Linux Amateur Radio AX.25 HOWTO

Jeff Tranter, VE3ICH

tranter@pobox.com
v2.0, 19 September 2001
The Linux operating system is perhaps the only operating system in the world that can boast native and

standard support for the AX.25 packet radio protocol utilized by Amateur Radio operators worldwide. This
document describes how to install and configure this support.

Linux Amateur Radio AX.25 HOWTO

Table of Contents

A Yo [0 T3 1 o TR
1.1.Changedrom the PreVIOUSVEISION.ccooi i aannane 1
1.2.Whereto obtainnewversionsof thiS AOCUMENE...........uuiiiieiiiiiiiee e 1
1.3.0therrelateddOCUMENEATIAN.ciieee et e e et e e e e e et e e e et e e e s et e e s eeba e e s setbaseeeeeanaeeees 1

2. The PacketRadio ProtOCOIS ANA LINUXoveeeeeeeeeeeeeeeee e et e e e et e e et e et e e e e e e e e e e e e e e e e e e eeeeeeneeeaeeeenans 3
2.1. Howit all fitS tOQELNEY... ..o ——————————————— 3

3. The AX.25/NET/ROM/ROSE SOftware COMPONENTS.uuuuurriirriieerreirrirreesreeereereeeeeeeererrerrererreereeesrerseeeseees 5

3.1.Findingthekernel.toolsandutility PACKAQES............oooiiiiiiiii i 5
I I I N A1) T AT Y0 T o TP 5

I 2 N ALY AT T oY1 o Yo] £ TP 5
I T N ATy N A S U 11 10T 5
I I N A1) N ad STV L1 LT TP 6

4. Installing the AX.25/NET/ROM/ROSE SOftWAIE.........cccovviiiiiiiiiiiiiee e, 7

o I o a0 o)1 1Yo Rd aT=] =T L= PP 7
4.1.1.A word aboutkerNEIMOAUIES.ttt ettt e e e e e e e e e e e eenns 9

6. Configuring an AX.25 POI......ccoiiiiieieeee e, 15

6.1.Creatingthe AX.25 NEtWOIKABVICE........ccooeiei e 15
6.1.1.Creatinga KISS AEVICEuuuuiiiiiiiiiiiieriteiieereeeteesssessesssssssessssssssseeersaereeesererrerrerrrerreeraeees 15
6.1.2.Creatinga BPACK ABVICE.......coiieiieeiieeeeeeee e, 17
6.1.3.Creatinga BayCOMAEVICE.cocoee it 17
6.1.4.Configuringthe AX.25 channelaccesparametersS.........uuvvvveevvereeeeieeieeeeeeeeeeeeeeeeeeeeeens 18
6.1.5.Creatinga kernelSoundmodenmleVviCe.............cooeiiiieiiii i 19
6.1.6.Creatinga user—-modeSoundmMOdEnTEVICE.uururrrrrrriiirrirerreerreereeereeereeereeerrereeeeee 23
6.1.7.Creatinga YAM dEVICE........ccovviiiiiiiiieeeeeeee e 23
6.1.8.Creatinga Pl CArddEVICE...........uuuuuiuuuiiiiiiitiiiiiitieireiabeaaeeaaeeeeseaessaesseessssssssssssessssssssssensees 23
6.1.9.Creatinga PacketTWINAEVICE.covvviiiiiiiiiiiec e 24
6.1.10.Creatinga geNeriCSCCARBVICE.cceiviiiiiiieiieeeeee e, 24
6.1.11.Creatinga BPQ etherneteViCe...........coooeei i 32
6.1.12.Configuringthe BPQ Nodeto talk to the Linux AX.25 SUPPOLL.......c.cccvvuvvvnrinrrnnninnns 32

8. Configuring @ NET/ROM POI....ccciiiiiiiiiiiiiiieeeeeee ettt 36
8.1.Configuring/etC/aX25/NIPOIES.uuuuiuuruuriiirrrurrsreerereeeessaeeseeesseseeesseeseeeeeeesaeeseerereesrerrrerrrerrertreereees 36
8.2.Configuring/etc/ax25/NrBrO@UCASLuuvuiiirieiiiiiieitiriiireereeeeeeeeeeeeeeeeesseeeeeeeeeeseeeeeeeeeeeeeeseeeeeeeaeees 37
8.3.Creatingthe NET/ROM NEtWOIKAEVICE.ccoeeiiieiiieeeeeeee e, 38
8.4.Startingthe NET/ROM DAEIMOIN......uuvvveereerieireereeeeseeseeeseeeseeesseessessesessesseeeserererseertretrerarertrerereereees 38

Linux Amateur Radio AX.25 HOWTO

Table of Contents

OO0 aile TUTaTaTo =T @ 1] o o O USPPRPRY 40
10.1.ConfiguriNg/EtC/aX25/ISPOITS ittt b e e b st se st s s s s s s s s e st s s s s seesenenneseneeeees 40
10.2.Creatingthe ROSENEIWOIKAEVICE.uuuuiiuiiuiiiiiiiiiiiiiiiatiaetaasessaesasaessessssssssssssssssesssssssssssseesnees 41
10.3.ConfiguriNGROSEROULING.uvvuuiiiiiiiriiiiiiuteisiesssssssssseesessssssssssseesseesseeseeereerereesrerrererrerrarrreereees 41

11.Making AX.25/NET/ROM/ROSE CallS......cccceiiiiiiiiiieie e e e eeeie et ettt e e e e e e et a e e e e e e s e eaasaaaeeeeeeaaanes 42

12.Configuring Linux to acceptPacketCONNECTHIONS.uuuuuuriiriiiiiiiiiiiiesirertreesrsseessesesresresereeereeereeeereerreeee 43
12.1.Creatingthe/etc/ax25/ax25d.COMIE. e 43

13. Configuring the NOAE SOfIWEAIE..........coeiiieiieieieeeeeeee e, 49
13.1.Creatingthe/etc/ax25/N0de.COMHlE........ovvviiiiiiiiiiii 49

14. ConfigUriNg AXSPAWL......cceiiiiieee e ———— 5¢
14.1.Creatingthe/etc/ax25/aXSPaWN.COMEE.............uuuuuurririiiiiiiiriiiieeirrerreee e 54

16.Configuring the USEr_CallPrOQIAMIS. ... uuuuuuuuuureuuirurturteureeserssreseesesessasssssssssesseessesssssseeeereeeeertrerrerreeetaeeeeeees 58

17.Configuring the ROSE Uplink and Downlink COMMANAS.............ccoeeiieiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee 59
17.1.Configuringa ROSEAOWNIINK.ccooiiiiiiiiiiiee e, 59
17.2.ConfiguriNng@ROSEUPDIINK.uuuuuiiiiiiiniiiiiiitiiaiebaar bbb eeaasesabseessasssssssssssssssssssssssssssseesseeseees 59

18. AssociatingAX.25 callsignswith LINUX USEIS........ccooiiii i 61

S O] oo [Nl le AN nd S PP PP PPPPPPPR o:

Linux Amateur Radio AX.25 HOWTO

Table of Contents

22.50mesampleconfigUIALIONS...........covviiiiiieeeeee e, 67
22.1.SmallEthernet AN with Linux asarouterto RAdiOLAN...........eviiiiviiiiiiiiee e, 67
22.2.1PIP encapsulatedatewayCoNfigUIAtiON...........uuuuuuuuerrirriisiiieiereirssrseeerssreereeereeereere—————————————— 68
22.3.AXIP_encapsulatedatewayconfiguration..............ccoooiiioiiiioiiiiicece e 72

22.3.1.AXIP _configuratioNOPLIONSuuuuuruuuuuuuiuutiautiattisstsesraseessseasesseeeseesssssssssssssssessesssseneees 72
22.3.2.A typical/etc/ax25/ax25ipd.COMHEuummmiiiiiiiiiiiiiieiee 73
22.3.3.RUNNINGAX25IPMo e ——— 74
22.3.4.Somenotesabouttheroutesandrouteflags............ccccoooee 74
22.4.Linking NOSandLinux UsingapipedeViICE...........coeviiiiiiiiiieeeeee e, 75

23. Summary of AX.25-related LINUX COMMANGAS.........ccoeiiiiiiiieiie e 77

24.Where do | find more information @DOUL ... 2. ... ciivei it e e e e e e e et eeeeaaaeeeeeens 80
I =0 (=) = 10 1o R 8(
Ry () (0] o10] | 1o Yol 0 [aT=T 01z 1110 o RO 80
24.3. HardwarEDOCUMENEATION.uuuieeieete e ettt e e e et e e e et e e e e e e e e e e et e e e s eet e e e eeaan e s s esaaeeseabaeaeseeranses 80
24.4. 1LinuX HAMBRAAIOSOFIWAIE.un ittt ettt e e e e e e e e s e e e e et eeeraaan s 80

26. ACKNOWIEAGEIMENTES. ... eetieiiiiiiieieieeeeee ettt et e e et e et e et et et eee e e e ettt e et e e et et eaeee et ea e et e e e eeeteeeeaaetaaeaaaeeaeaaaaaaaaaaaaaaaaaaas 8:

A = =Te | T Yo TP €

1. Introduction

Amateur radio is a non—profit, non—commercial activity enjoyed by hobbyists world-wide. Radio amateurs
are licensed by government authorities to use portions of the radio spectrum allocated to them for
non-commercial, non—profit activities including personal communication, public service, and technical
experimentation. Packet Radio is a particular digital mode of communication that makes use of networking
protocols to provide computer to computer communication.

This document was originally an appendix to the HAM-HOWTO, but grew too large to be reasonably
managed in that fashion. This document describes how to install and configure the native AX.25, NET/ROM
and ROSE support for Linux. A few typical configurations are described that could be used as models to
work from.

The Linux implementation of the amateur radio protocols is very flexible. To people relatively unfamiliar
with the Linux operating system the configuration process may look daunting and complicated. It will take
you a little time to come to understand how the whole thing fits together. You will find configuration very
difficult if you have not properly prepared yourself by learning about Linux in general. You cannot expect to
switch from some other environment to Linux without learning about Linux itself.

1.1. Changes from the previous version

* Document has a new maintainer.

* Converted to DocBook SGML format. Converted most tabular information to use tables.

* Released under GNU FDL license.

¢ Added information on new drivers for Baycom, YAM, 6PACK, and user mode soundmodem.

* Added APRS section.

« Many miscellaneous updates to reflect changes since document was last updated in 1997. There are
likely still many errors or outdated information.

1.2. Where to obtain new versions of this document

The best place to obtain the latest version of this document is from a Linux Documentation Project archive.
The Linux Documentation Project runs a web server and this document appears ithe@x&s-HOWTO.
This document is also available in various formats fronLihex Documentation Project.

You can always contact me, but | pass new versions of the document directly to the LDP HOWTO
coordinator, so if it isn't there then chances are | haven't finished it.

1.3. Other related documentation

There is a lot of related documentation. There are many documents that relate to Linux networking in more
general ways and | strongly recommend you also read these as they will assist you in your efforts and provit
you with deeper insight into other possible configurations. They are:

* Linux Networking HOWTO

1. Introduction 1

http://www.linuxdoc.org/HOWTO/AX25-HOWTO.html
http://www.linuxdoc.org
http://www.linuxdoc.org/HOWTO/Net-HOWTO/index.html

Linux Amateur Radio AX.25 HOWTO

 Linux Ethernet HOWTO

« Linux Firewall and Proxy Server HOWTO

e Linux 2.4 Advanced Routing HOWTO
* Netrom—Node mini—Howto

You may come across references to a Linux HAM HOWTO. This document is obsolete and has been

replaced by thélamsoft Linux Ham Radio Applications and Utilities Database web site. More general Linux
information may be found by referencing othérux HOWTO documents.

1. Introduction 2

http://www.linuxdoc.org/HOWTO/Ethernet-HOWTO.html
http://www.linuxdoc.org/HOWTO/Firewall-HOWTO.html
http://www.linuxdoc.org/HOWTO/Adv-Routing-HOWTO.html
http://www.linuxdoc.org/HOWTO/mini/Netrom-Node.html
http://radio.linux.org.au/
http://www.linuxdoc.org/HOWTO/HOWTO-INDEX/index.html

2. The Packet Radio Protocols and Linux

The AX.25 protocol offers both connected and connectionless modes of operation, and is used either by itse
for point—point links, or to carry other protocols such as TCP/IP and NET/ROM.

It is similar to X.25 level 2 in structure, with some extensions to make it more useful in the amateur radio
environment.

The NET/ROM protocol is an attempt at a full network protocol and uses AX.25 at its lowest layer as a
datalink protocol. It provides a network layer that is an adapted form of AX.25. The NET/ROM protocol
features dynamic routing and node aliases.

The ROSE protocol was conceived and first implemented by Tom Moulton W2VY and is an implementation
of the X.25 packet layer protocol and is designed to operate with AX.25 as its datalink layer protocol. It too
provides a network layer. ROSE addresses take the form of 10 digit numbers. The first four digits are called
the Data Network Identification Code (DNIC) and are taken from Appendix B of the CCITT X.121
recommendation. More information on the ROSE protocol may be obtained frgdA Tl Web server.

Alan Cox developed some early kernel based AX.25 software support for Domathon Naylor has taken

up ongoing development of the code, has added NET/ROM and ROSE support and is now the developer of
the AX.25 related kernel code. DAMA support was developed by Joerg, DL1BKE. Baycom and
Soundmodem support were added Byomas Sailer. The AX.25 software is now maintained by a small team
of developers on SourceForge.

The Linux code supports KISS and 6PACK based TNC's (Terminal Node Controllers), the Ottawa PI card,
the Gracilis PacketTwin card and other Z8530 SCC based cards with the generic SCC driver, several paralls
and serial port Baycom modems, and serial port YAM modems. Thomas Sailer's kernel soundmodem driver
supports SoundBlaster and sound cards based on the Crystal chip set, and his newer user-mode soundmo
uses the standard kernel sound drivers, so it should work with any sound card supported under Linux.

The user programs contain a simple PMS (Personal Message System), a beacon facility, a line mode conne
program, listen (an example of how to capture all AX.25 frames at raw interface level), and programs to
configure the NET/ROM protocol. Also included are an AX.25 server style program to handle and dispatch
incoming AX.25 connections and a NET/ROM daemon which does most of the hard work for NET/ROM
support.

There are utility programs to support APRS, including digipeating and gatewaying to the Internet.

2.1. How it all fits together

The Linux AX.25 implementation is a brand new implementation. While in many ways it may looks similar
to NOS, or BPQ or other AX.25 implementations, it is none of these and is not identical to any of them. The
Linux AX.25 implementation is capable of being configured to behave almost identically to other
implementations, but the configuration process is very different.

To assist you in understanding how you need to think when configuring this section describes some of the
structural features of the AX.25 implementation and how it fits into the context of the overall Linux structure.

2. The Packet Radio Protocols and Linux 3

http://www.rats.org/
mailto:g4klx@g4klx.demon.co.uk
mailto:jreuter@poboxes.com
mailto:sailer@ife.ee.ethz.ch
http://www.sourceforge.net

Linux Amateur Radio AX.25 HOWTO

Simplified Protocol Layering Diagram

| I | |
AF_AX25 | AF_NETROM | AF_INET |AF_ROSE |
I I I I
I | |
| TCPIP | |

NET/ROM | |ROSE |

I I
AX.25 |

This diagram simply illustrates that NET/ROM, ROSE and TCP/IP all run directly on top of AX.25, but that
each of these protocols is treated as a separate protocol at the programming interface. The ~_' names are
simply the names given to the "Address Family' of each of these protocols when writing programs to use
them. The important thing to note here is the implicit dependence on the configuration of your AX.25 device:
before you can configure your NET/ROM, ROSE or TCP/IP devices.

Software Module Diagram of Linux Network Implementation

User | Programs | call node || Daemons | ax25d mheardd |
| | pms mheard || | inetd netromd |
I I Il I
| Sockets |open(), close(), listen(), read(), write(), connect()|
I I I
| | AF_AX25 | AF_NETROM | AF_ROSE | AF_INET |

I

I

I

I

I

I

I

I I I I I I I
|Kernel | Protocols| AX.25 | NetRom | ROSE |IP/TCP/UDP|
I

I

I

I

I

I

I

I

| Devices | ax0,axl | nrO,nrl |roseO,rosel | ethO,pppO |

I I I I I I
| Drivers | Kiss PI2 PacketTwin SCC BPQ |slip ppp |
| | Soundmodem Baycom | ethernet |

I I I I
Hardware | P12 Card, PacketTwin Card, SCC card, Serial port, Ethernet Card |

This diagram is a little more general than the first. This diagram attempts to show the relationship between
user applications, the kernel and the hardware. It also shows the relationship between the Socket applicatio
programming interface, the actual protocol modules, the kernel networking devices and the device drivers.
Anything in this diagram is dependent on anything underneath it, and in general you must configure from the
bottom of the diagram upwards. So for example, if you want to run the call program you must also configure
the hardware, then ensure that the kernel has the appropriate device driver, that you create the appropriate
network device, that the kernel includes the desired protocol that presents a programming interface that the
call program can use. | have attempted to lay out this document in roughly that order.

2. The Packet Radio Protocols and Linux 4

3. The AX.25/NET/ROM/ROSE software
components

The AX.25 software is comprised of three components: the kernel source, the network configuration tools
and the utility programs.

AX.25 support in the Linux kernel has been fairly stable since the 2.2 series of kernel versions. This
document assumes you are using the most recent kernel, which as the time of writing was 2.4.9.

&
Software versions listed in this document were the latest at
the time of writing, but are subject to change. Check for
newer versions when downloading them.

3.1. Finding the kernel, tools and utility packages

3.1.1. The kernel source

The kernel source can be found at www.kernel.org and ftp.kernel.org. For the 2.4.9 kernel it
would be downloaded from ftp:/ftp.kernel.org/pub/linux/kernel/v2.4/linux-2.4.9.tar.gz.

3.1.2. The network tools

The latest release of the standard Linux network tools support AX.25 and NET/ROM and can be found at
http://www.tazenda.demon.co.uk/phil/net—tools.

The latest ipchains package can be found at http://netfilter.filewatcher.org/ipchains.

&
It is usually not necessary to download and install these as
any recent Linux distribution should include them.

3.1.3. The AX.25 utilities

The old ax25-utils used with the 2.0 and 2.1 kernels is now obsolete and has been replaced with new
packages hosted on SourceFaatjbttp://sourceforge.net/projects/hams.

The software is distributed as three packages: the AX.25 library, tools, and applications. At the time of
writing the most recent versions were the following:

« ftp://hams.sourceforge.net/pub/hams/ax25/libax25-0.0.7.tar.gz
* ftp://hams.sourceforge.net/pub/hams/ax25/ax25-tools—0.0.6.tar.gz
« ftp://lhams.sourceforge.net/pub/hams/ax25/ax25-apps—0.0.4.tar.gz

3. The AX.25/NET/ROM/ROSE software components 5

ftp://ftp.kernel.org/pub/linux/kernel/v2.4/linux-2.4.9.tar.gz
http://www.tazenda.demon.co.uk/phil/net-tools
http://netfilter.filewatcher.org/ipchains/
http://sourceforge.net
http://sourceforge.net/projects/hams
ftp://hams.sourceforge.net/pub/hams/ax25/libax25-0.0.7.tar.gz
ftp://hams.sourceforge.net/pub/hams/ax25/ax25-tools-0.0.6.tar.gz
ftp://hams.sourceforge.net/pub/hams/ax25/ax25-apps-0.0.4.tar.gz

Linux Amateur Radio AX.25 HOWTO

3.1.4. The APRS utilities

If you want to use APRS you can downlQad afasd_aprsdigi:

« http://prdownloads.sourceforge.net/aprsd/aprsd—2.1.4.tar.gz
* http://www.users.cloud9.net/~alan/ham/aprs/aprsdigi—2.0—pre3.tar.gz

3.1.4. The APRS utilities

http://sourceforge.net/projects/aprsd/
http://www.users.cloud9.net/~alan/ham/aprs/
http://prdownloads.sourceforge.net/aprsd/aprsd-2.1.4.tar.gz
http://www.users.cloud9.net/~alan/ham/aprs/aprsdigi-2.0-pre3.tar.gz

4. Installing the AX.25/NET/ROM/ROSE software

To successfully install AX.25 support on your Linux system you must configure and install an appropriate
kernel and then install the AX.25 utilities.

Rather than building and installing from source, you may prefer
to install prebuilt binary packages for your system. Debian and
RPM format packages are available on various archive sites
including_http://www.debian.orgnd_http://rpmfind.net; look for
"ax25". Incidently, the Debian Linux distribution is considered by
many people to be one of the more "Amateur Radio friendly"
distributions, and provides many amateur radio applications as
Debian packages (one of the founders of the project is a ham).

4.1. Compiling the kernel

If you are already familiar with the process of compiling the Linux kernel then you can skip this section, just
be sure to select the appropriate options when compiling the kernel. If you are not, then read on. You may
also want to read thidnux Kernel HOWTO.

The normal place for the kernel source to be unpacked to is the /usr/src directory into a subdirectory
called linux. To do this you should be logged in as root and execute a series of commands similar to the
following:

cd /usr/src

mv linux linux.old

tar xzvf linux-2.4.9.tar.gz
cd linux

After you have unpacked the kernel source, you need to run the configuration script and choose the options
that suit your hardware configuration and the options that you wish built into your kernel. You do this by
using the command:

|# make menuconfig |

If you are running X you can get a graphical interface using:

|# make xconfig |

You might also try:

|# make config |

I'm going to describe the full screen method (menuconfig) because it is easier to move around, but use
whichever you are most comfortable with.

4. Installing the AX.25/NET/ROM/ROSE software 7

http://www.debian.org
http://rpmfind.net
http://www.linuxdoc.org/HOWTO/Kernel-HOWTO.html

Linux Amateur Radio AX.25 HOWTO

In either case you will be offered a range of options at which you must answer "Y' or "N'. (Note you may alsc
answer "M' if you are using modules. For the sake of simplicity | will assume you are not, please make
appropriate modifications if you are).

The options most relevant to an AX.25 configuration are:

Code maturity level options ———>
[*] Prompt for development and/or incomplete code/drivers

General setup ———>
[*] Networking support

Networking options ——->
<*> UNIX domain sockets

[*] TCP/IP networking
[?] IP: tunneling

Amateur Radio Support ———>
——— Packet Radio protocols
[*] Amateur Radio AX.25 Level 2 protocol
[?] AX.25 DAMA Slave support
[?] Amateur Radio NET/ROM protocol
[?] Amateur Radio X.25 PLP (Rose)
AX.25 network device drivers ———>
<?> Serial port KISS driver
<?> Serial port 6PACK driver
<?> BPQ Ethernet driver
<?> High—speed (DMA) SCC driver for AX.25
<?> 78530 SCC driver
<?> BAYCOM serl2 fullduplex driver for AX.25
<?> BAYCOM serl2 halfduplex driver for AX.25
<?> BAYCOM picpar and par96 driver for AX.25
<?> BAYCOM epp driver for AX.25
<?> Soundcard modem driver
[?] soundmodem support for Soundblaster and compatible cards
[?] soundmodem support for WSS and Crystal cards
[?] soundmodem support for 1200 baud AFSK modulation
[?] soundmodem support for 2400 baud AFSK modulation (7.3728MHz crystal)
[?] soundmodem support for 2400 baud AFSK modulation (8MHz crystal)
[?] soundmodem support for 2666 baud AFSK modulation
[?] soundmodem support for 4800 baud HAPN-1 modulation
[?] soundmodem support for 4800 baud PSK modulation
[?] soundmodem support for 9600 baud FSK G3RUH modulation
<?> YAM driver for AX.25

The options | have flagged with a ™*' are those that you must must answer "Y' to. The rest are dependent on
what hardware you have and what other options you want to include. Some of these options are described i
more detail later on, so if you don't know what you want yet, then read ahead and come back to this step lat

After you have completed the kernel configuration you should be able to cleanly compile your new kernel:

make dep
make clean
make zlmage

4. Installing the AX.25/NET/ROM/ROSE software 8

Linux Amateur Radio AX.25 HOWTO

Make sure you move your arch/i386/boot/zImage file wherever you want it and then edit your
/etc/lilo.conf file and rerun lilo to ensure that you actually boot from it.

4.1.1. A word about kernel modules

Compiling drivers as modules is useful if you only use AX.25 occasionally and want to be able to load and
unload them on demand to save system resources. However, some people have problems getting the
modularized drivers working because they are more complicated to configure. If you've chosen to compile
any drivers as modules, then you'll also need to run the commands:

make modules
make modules_install

to install your modules in the appropriate location.

You will also need to add some entries into your /etc/modules.conf file to ensure that the
kerneld program knows how to locate the kernel modules. You should add/modify the following:

alias net—-pf-3 ax25
alias net—-pf-6 netrom
alias net-pf-11 rose
alias tty-Idisc-1 slip
alias tty—Idisc-3 ppp
alias tty—Idisc—5 mkiss
alias bcO baycom
alias nrO netrom
alias pi0a pi2

alias ptOa pt

alias scc0 optoscc (or one of the other scc drivers)
alias sm0 soundmodem
alias tunlo newtunnel

alias char-major—4 serial
alias char-major-5 serial
alias char-major—6 Ip

On Debian—based Linux systems these entries should go into the file
/etc/modutils/aliases and then you need to run
/shbin/update—mpodules.

4.2. The AX.25 library, tools, and application programs

After you have successfully compiled and booted your new kernel you need to compile and install the ax25
library, tools, and application programs.

To compile and install libax25 you should use a series of commands similar to the following:

cd /usr/src
tar xzvf libax25-0.0.7.tar.gz
cd libax25-0.0.7

4.1.1. A word about kernel modules 9

Linux Amateur Radio AX.25 HOWTO

./configure ——exec_prefix=/usr ——sysconfdir=/etc ——localstatedir=/var
make
make install

The arguments to the configure command ensure that the files
will be installed in the "standard" places under the directory
/usr in subdirectories bin, sbin, etc and man. If you simply

run configure with no options it will default to putting all files
under /usr/local. This can cause the situation where you have
configuration files in both /usr and /ustr/local. If you want to
ensure that this can't happen you can make

/usr/locall/etc/ax25 a symbolic link to /etc/ax25 at the

very beginning of the install process and then you won't have to
worry about it.

If this is a first time installation, that is you've never installed any ax25 code on your machine before, you
should also use the:

|# make installconf |

command to install some sample configuration files into the /etc/ax25/ directory from which to work.

You can now build install the AX.25 tools in a similar fashion:

cd /usr/src

tar xzvf ax25-tools—0.0.6.tar.gz

cd ax25-tools—0.0.6

./configure ——prefix=/usr ——sysconfdir=/etc ——localstatedir=/var
make

make install

make installconf (if you want to install the configuration files)

And finally you can install the AX.25 applications:

cd Jusr/src

tar xzvf ax25—apps—0.0.4.tar.gz

cd ax25—-apps-0.0.4

./configure ——prefix=/usr ——sysconfdir=/etc ——localstatedir=/var
make

make install

make installconf (if you want to install the configuration files)

If you get messages something like:

gcc —Wall —Wstrict—prototypes —O2 —I../lib —c call.c

call.c: In function “statline":

call.c:268: warning: implicit declaration of function “attron’
call.c:268: "A_REVERSE' undeclared (first use this function)
call.c:268: (Each undeclared identifier is reported only once
call.c:268: for each function it appears in.)

then you should double check that you have the ncurses package properly installed on your system. The

4.1.1. A word about kernel modules 10

Linux Amateur Radio AX.25 HOWTO

configuration script attempts to locate your package in the common locations, but some installations have it
badly installed and it is unable to locate them.

4.1.1. A word about kernel modules 11

5. A note on callsigns, addresses and things
before we start

Each AX.25 and NET/ROM port on your system must have a callsign/ssid allocated to it. These are
configured in the configuration files that will be described in detail later on.

Some AX.25 implementations such as NOS and BPQ will allow you to configure the same callsign/ssid on
each AX.25 and NET/ROM port. For somewhat complicated technical reasons Linux does not allow this.
This isn't as big a problem in practice as it might seem.

This means that there are things you should be aware of and take into consideration when doing your
configurations.

1. Each AX.25 and NET/ROM port must be configured with a unique callsign/ssid.

2. TCP/IP will use the callsign/ssid of the AX.25 port it is being transmitted or received by, ie the one
you configured for the AX.25 interface in point 1.

3. NET/ROM will use the callsign/ssid specified for it in its configuration file, but this callsign is only
used when your NET/ROM is speaking to another NET/ROM, this is not the callsign/ssid that AX.25
users who wish to use your NET/ROM “node' will use. More on this later.

4. ROSE will, by default, use the callsign/ssid of the AX.25 port, unless the ROSE callsigh has been
specifically set using the “rsparms' command. If you set a callsign/ssid using the ‘rsparms' command
then ROSE will use this callsign/ssid on all ports.

5. Other programs, such as the "ax25d' program can listen using any callsign/ssid that they wish and
these may be duplicated across different ports.

6. If you are careful with routing you can configure the same IP address on all ports if you wish.

5.1. What are all those T1, T2, N2 and things ?

Not every AX.25 implementation is a TNC2. Linux uses nomenclature that differs in some respects from tha
you will be used to if your sole experience with packet is a TNC. The following table should help you
interpret what each of the configurable items are, so that when you come across them later in this text you'll
understand what they mean.

Linux TAPR TNC Description

T1 FRACK How long to wait before retransmitting
an unacknowledged frame.

T2 RESPTIME The minimum amount of time to wait
for another frame to be received befofe
transmitting an acknowledgement.

T3 CHECK The period of time we wait between
sending a check that the link is still
active.

N2 RETRY How many times to retransmit a frame

before assuming the connection has

5. A note on callsigns, addresses and things before we start 12

Linux Amateur Radio AX.25 HOWTO

failed.

Idle The period of time a connection can e
idle before we close it down.

MAXFRAME The maximum number of

unacknowledged transmitted frames.

Window

5.2. Run time configurable parameters

The kernel allows you to change many parameters at run time. If you take a careful look at the
/proc/sys/net/ directory structure you will see many files with useful names that describe various
parameters for the network configuration. The files in the /proc/sys/net/ax25/ directory each
represent one configured AX.25 port. The name of the file relates to the name of the port.

The structure of the files in /proc/sys/net/ax25/portname/ is as follows:

Filename Meaning Values Default

ip_default_mode IP Default 0=DG 1=VC 0
Mode

ax25 default_mode AX.25 Default [0=Normal 0
Mode 1=Extended

backoff_type Backoff O=Linear 1

1=Exponential

connect_mode Connected 0=No 1=Yes 1
Mode

standard_window_size Standard 1.7 2
Window

extended_window_size Extended 1..63 32
Window

t1_timeout T1 Timeout 1s .. 30s 10s

t2_timeout T2 Timeout 1s .. 20s 3s

t3_timeout T3 Timeout Os .. 3600s 300s

idle_timeout Idle Timeout |[Om or greater 20m

maximum_retry count N2 1.31 10

maximum_packet_length |AX.25 Frame |1 ..512 256
Length

In the table T1, T2 and T3 are given in seconds, and the Idle Timeout is given in minutes. But please note
that the values used in the sysctl interface are given in internal units where the time in seconds is multiplied
by 10, this allows resolution down to 1/10 of a second. With timers that are allowed to be zero, e.g. T3 and
Idle, a zero value indicates that the timer is disabled.

5.2. Run time configurable parameters 13

Linux Amateur Radio AX.25 HOWTO

The structure of the files in /proc/sys/net/netrom/ is as follows:

Filename Meaning |Values|Default
default_path_quality 10
link_fails_count 2
network_ttl_initialiser 16
obsolescence_count_initialiser 6
routing_control 1
transport_acknowledge delay 50
transport_busy_delay 1800
transport_maximum_tries 3
transport_requested_window_sjze 4
transport_timeout 1200

The structure of the files in /proc/sys/net/rose/ is as follows:

Filename Meaning|Values|Default
acknowledge hold_back_timequt 50
call_request_timeout 2000
clear_request_timeout 1800
link_fail_timeout 1200
maximum_virtual_circuits 50
reset_request_timeout 1800
restart_request_timeout 1800
routing_control 1
window_size 3

To set a parameter all you need to do is write the desired value to the file itself, for example to check and se
the ROSE window size you'd use something like:

cat /proc/sys/net/rose/window_size

3

echo 4 >/proc/sys/net/rose/window_size
cat /proc/sys/net/rose/window_size

4

5.2. Run time configurable parameters 14

6. Configuring an AX.25 port

Each of the AX.25 applications read a particular configuration file to obtain the parameters for the various
AX.25 ports configured on your Linux machine. For AX.25 ports the file that is read is the
letc/ax25/axports file. You must have an entry in this file for each AX.25 port you want on your

system.

6.1. Creating the AX.25 network device

The network device is what is listed when you use the “ifconfig' command. This is the object that the Linux
kernel sends and receives network data from. Nearly always the network device has a physical port associa
with it, but there are occasions where this isn't necessary. The network device does relate directly to a devic
driver.

In the Linux AX.25 code there are a number of device drivers. The most common is probably the KISS
driver, but others are the SCC driver(s), the Baycom driver and the Soundmodem driver.

Each of these device drivers will create a network device when it is started.

6.1.1. Creating a KISS device

Kernel Compile Options:

Amateur Radio support ———>
[*] Amateur Radio support
——— Packet Radio protocols
<*> Amateur Radio AX.25 Level 2 protocol

AX.25 network device drivers ——>
——— AX.25 network device drivers
<*> Serial port KISS driver

Probably the most common configuration will be for a KISS TNC on a serial port. You will need to have the
TNC preconfigured and connected to your serial port. You can use a communications program like
minicom or seyon to configure the TNC into kiss mode.

To create a KISS device you use the kissattach program. In it simplest form you can use the
kissattach program as follows:

lusr/sbin/kissattach /dev/ttySO radio 44.135.96.242
kissparms —p radio -t 100 —s 100 -r 25

The kissattach command will create a KISS network device. These devices are called “ax[0-9]'. The first
time you use the kissattach command it creates "ax0', the second time it creates "ax1' etc. Each KISS devic
has an associated serial port.

The kissparms command allows you to set various KISS parameters on a KISS device.

6. Configuring an AX.25 port 15

Linux Amateur Radio AX.25 HOWTO

Specifically the example presented would create a KISS network device using the serial device
“/devi/ttyS0O' and the entry from the /etc/ax25/axports with a port name of ‘radio'. It then
configures it with a txdelay and slottime of 100 milliseconds and a ppersist value of 25.

Please refer to the man pages for more information.

6.1.1.1. Configuring for Dual Port TNC's

The mkiss utility included in the ax25-utils distribution allows you to make use of both modems on a dual
port TNC. Configuration is fairly simple. It works by taking a single serial device connected to a single
multiport TNC and making it look like a number of devices each connected to a single port TNC. You do this
before you do any of the AX.25 configuration. The devices that you then do the AX.25 configuration on are
pseudo-TTY interfaces, (/dev/ttyg*), and not the actual serial device. Pseudo-TTY devices create a kind

of pipe through which programs designed to talk to tty devices can talk to other programs designed to talk tc
tty devices. Each pipe has a master and a slave end. The master end is generally called “/dev/ptyg* and
the slave ends are called “/dev/ttyg*. There is a one to one relationship between masters and slaves, so
/dev/ptyqO is the master end of a pipe with /dev/ttyq0 as its slave. You must open the master end of

a pipe before opening the slave end. mkiss exploits this mechanism to split a single serial device into separ:
devices.

Example: if you have a dual port TNC and it is connected to your /dev/ttyS0 serial device at 9600 bps,
the command:

[usr/sbin/mkiss —s 9600 /dev/ttySO /dev/ptyqO /dev/ptyql
lusr/sbin/kissattach /dev/ttyq0 portl 44.135.96.242
lusr/sbin/kissattach /dev/ttyql port2 44.135.96.242

would create two pseudo-tty devices that each look like a normal single port TNC. You would then treat
/dev/ttyq0 and /dev/ttygl just as you would a conventional serial device with TNC connected. This
means you'd then use the kissattach command as described above, on each of those, in the example for
AX.25 ports called portl and port2. You shouldn't use kissattach on the actual serial device as the

mkiss program uses it.

The mkiss command has a number of optional arguments that you may wish to use. They are summarized
follows:

-C
enables the addition of a one byte checksum to each KISS frame. This is not supported by most KIS
implementations, it is supported by the G8BPG KISS ROM.

—s <speed>
sets the speed of the serial port.

-h

enables hardware handshaking on the serial port, it is off by default. Most KISS implementation do
not support this, but some do.

6.1.1. Creating a KISS device 16

Linux Amateur Radio AX.25 HOWTO

enables logging of information to the syslog log file.

6.1.2. Creating a 6PACK device

Kernel Compile Options:

Amateur Radio support ———>
[*] Amateur Radio support
——— Packet Radio protocols
<*> Amateur Radio AX.25 Level 2 protocol

AX.25 network device drivers ———>
——— AX.25 network device drivers

<*> Serial port 6PACK driver

6PACK is a protocol that is supported by some TNCs as an alternative to KISS. It is used in a similar fashiol
to the KISS driver, using the slattach command instead of kissattach.

A mini HOWTO on the 6PACK driver is included in the kernel source code as the file
{usr/src/linux/Documentation/networking/6pack.txt.

6.1.3. Creating a Baycom device

Kernel Compile Options:

Amateur Radio support ———>
[*] Amateur Radio support
——- Packet Radio protocols
<*> Amateur Radio AX.25 Level 2 protocol

AX.25 network device drivers ——>
——— AX.25 network device drivers

<?> BAYCOM ser12 fullduplex driver for AX.25
<?> BAYCOM serl2 halfduplex driver for AX.25
<?> BAYCOM picpar and par96 driver for AX.25
<?> BAYCOM epp driver for AX.25

Thomas Sailer, despite the popularly held belief that it would not work very well, has developed Linux
support for Baycom modems. His driver supports the Ser12 serial port, Par96 and the enhanced
PicPar parallel port modems. Further information about the modems themselves may be obtained from the

Baycom Web site.

Your first step should be to determine the i/o and addresses of the serial or parallel port(s) you have Baycor
modem(s) connected to. When you have these you must configure the Baycom driver with them.

6.1.2. Creating a 6PACK device 17

mailto:sailer@ife.ee.ethz.ch
http://www.baycom.de/

Linux Amateur Radio AX.25 HOWTO

The Baycom driver creates network devices called: bcO, bcl, bc2 etc. when it is configured.

The sethdlc utility allows you to configure the driver with these parameters, or, if you have only one Baycom
modem installed you may specify the parameters on the insmod command line when you load the Baycom
module.

For example, a simple configuration. Disable the serial driver for COML1.: then configure the Baycom driver
for a Serl2 serial port modem on COMZ1.: with the software DCD option enabled:

setserial /dev/ttyS0O uart none
insmod hdlcdrv
insmod baycom mode="ser12*" iobase=0x3f8 irq=4

Par96 parallel port type modem on LPT1: using hardware DCD detection:

insmod hdlcdrv
insmod baycom mode="par96" iobase=0x378 irg=7 options=0

This is not really the preferred way to do it. The sethdlc utility works just as easily with one device as with
many.

The sethdlc man page has the full details, but a couple of examples will illustrate the most important aspect:
of this configuration. The following examples assume you have already loaded the Baycom module using:

insmod hdlcdrv
insmod baycom

or that you compiled the kernel with the driver inbuilt.

Configure the bc0 device driver as a Parallel port Baycom modem on LPT1: with software DCD:

|# sethdlc —p —i bcO mode par96 io 0x378 irq 7 |

Configure the bcl device driver as a Serial port Baycom modem on COML1:

|# sethdlc —p —i bc1 mode "ser12*" io 0x3f8 irq 4 |

6.1.4. Configuring the AX.25 channel access parameters

The AX.25 channel access parameters are the equivalent of the KISS ppersist, txdelay and slottime type
parameters. Again you use the sethdlc utility for this.

Again the sethdlc man page is the source of the most complete information but another example of two won
hurt:

Configure the bc0 device with TxDelay of 200 mS, SlotTime of 100 mS, PPersist of 40 and half duplex:

|# sethdlc —i bcO —a txd 200 slot 100 ppersist 40 half |

6.1.4. Configuring the AX.25 channel access parameters 18

Linux Amateur Radio AX.25 HOWTO

Note that the timing values are in milliseconds.

6.1.4.1. Configuring the Kernel AX.25 to use the Baycom device

The Baycom driver creates standard network devices that the AX.25 Kernel code can use. Configuration is
much the same as that for a Pl or PacketTwin card.

The first step is to configure the device with an AX.25 callsign. The ifconfig utility may be used to perform
this.

|# Isbinvifconfig bco hw ax25 VK2KTJ-15 up |

will assign the Baycom device bc0 the AX.25 callsign VK2KTJ-15. Alternatively you can use the
axparms command, you'll still need to use the ifconfig command to bring the device up though:

ifconfig bcO up
axparms —setcall bcO vk2ktj—15

The next step is to create an entry in the /etc/ax25/axports file as you would for any other device. The
entry in the axports file is associated with the network device you've configured by the callsign you
configure. The entry in the axports file that has the callsign that you configured the Baycom device with is
the one that will be used to refer to it.

You may then treat the new AX.25 device as you would any other. You can configure it for TCP/IP, add it to
ax25d and run NET/ROM or ROSE over it as you please.

6.1.5. Creating a kernel Soundmodem device

Kernel Compile Options:

Amateur Radio support ———>
[*] Amateur Radio support
——— Packet Radio protocols
<*> Amateur Radio AX.25 Level 2 protocol

AX.25 network device drivers ——>
——— AX.25 network device drivers

<*> Soundcard modem driver

[?] soundmodem support for Soundblaster and compatible cards

[?] soundmodem support for WSS and Crystal cards

[?] soundmodem support for 1200 baud AFSK modulation

[?] soundmodem support for 2400 baud AFSK modulation (7.3728MHz crystal)
[?] soundmodem support for 2400 baud AFSK modulation (8MHz crystal)

[?] soundmodem support for 2666 baud AFSK modulation

[?] soundmodem support for 4800 baud HAPN-1 modulation

[?] soundmodem support for 4800 baud PSK modulation

[?] soundmodem support for 9600 baud FSK G3RUH modulation

DR I . . I ./ P)

Thomas Sailer has built a driver for the kernel that allows you to use your soundcard as a modem. Connect

6.1.4. Configuring the AX.25 channel access parameters 19

Linux Amateur Radio AX.25 HOWTO

your radio directly to your soundcard to play packet! Thomas recommends at least a 486DX2/66 if you want
to use this software as all of the digital signal processing is done by the main CPU.

The driver currently emulates 1200 bps AFSK, 4800 HAPN and 9600 FSK (G3RUH compatible) modem
types. The only sound cards currently supported are SoundBlaster and Windows Sound System Compatible
models. If you have a sound card of another type, you can try the user-mode soundmodem described later
this document.

The sound cards require some circuitry to help them drive the Push—-To-Talk circuitry, and information on
this is available fronThomas's Soundmodem PTT circuit web page. There are quite a few possible options,
they are: detect the sound output from the soundcard, or use output from a parallel port, serial port or MIDI
port. Circuit examples for each of these are on Thomas's site.

The Soundmodem driver creates network devices called: sm0, sm1, sm2 etc when it is configured.

-
The Soundmodem driver competes for the same resources
as the Linux sound driver, so if you wish to use the
Soundmodem driver you must ensure that the Linux sound
driver is not installed. You can, of course, compile them
both as modules and insert and remove them as you wish.

6.1.5.1. Configuring the sound card

The Soundmodem driver does not initialize the sound card. The ax25-utils package includes a utility to do
this called “setcrystal' that may be used for sound cards based on the Crystal chip set. If you have some oth
card then you will have to use some other software to initialize it. Its syntax is fairly straightforward:

|setcrystal [-w wssio] [-s sbio] [-f synthio] [-i irq] [-d dma] [-c dmaZ2] |

So, for example, if you wished to configure a SoundBlaster card at i/o base address 0x388, irq 10 and DMA
you would use:

|# setcrystal —s 0x388 —i 10 -d 1 |

To configure a Window Sound System card at i/o base address 0x534, irq 5, DMA 3 you would use:

|# setcrystal -w 0x534 -i 5 -d 3 |

The [-f synthio] parameter is the set the synthesizer address, and the [-c dma2] parameter is to set
the second DMA channel to allow full duplex operation.

6.1.5.2. Configuring the Soundmodem driver

When you have configured the soundcard you need to configure the driver telling it where the sound card is
located and what sort of modem you wish it to emulate.

6.1.5. Creating a kernel Soundmodem device 20

http://www.baycom.org/~tom/pcf/ptt_circ/ptt.html

Linux Amateur Radio AX.25 HOWTO

The sethdlc utility allows you to configure the driver with these parameters, or, if you have only one
soundcard installed you may specify the parameters on the insmod command line when you load the
Soundmodem module.

For example, a simple configuration, with one SoundBlaster soundcard configured as described above
emulating a 1200 bps modem:

insmod hdlcdrv
insmod soundmodem mode="sbc:afsk1200" iobase=0x220 irg=5 dma=1

This is not really the preferred way to do it. The sethdlc utility works just as easily with one device as with
many.

The sethdlc man page has the full details, but a couple of examples will illustrate the most important aspect:
of this configuration. The following examples assume you have already loaded the Soundmodem modules
using:

insmod hdlcdrv
insmod soundmodem

or that you compiled the kernel with the driver inbuilt.

Configure the driver to support the Windows Sound System card we configured above to emulate a G3RUH
9600 compatible modem as device smO0 using a parallel port at 0x378 to key the Push-To-Talk:

|# sethdlc —p —i sm0 mode wss:fsk9600 io 0x534 irqg 5 dma 3 pario 0x378 |

Configure the driver to support the SoundBlaster card we configured above to emulate a 4800 bps HAPN
modem as device sm1l using the serial port located at 0x2f8 to key the Push—-To-Talk:

|# sethdlc —p —i sm1 mode sbc:hapn4800 io 0x388 irg 10 dma 1 serio 0x2f8 |

Configure the driver to support the SoundBlaster card we configured above to emulate a 1200 bps AFSK
modem as device sm1l using the serial port located at 0x2f8 to key the Push-To-Talk:

|# sethdlc —p —i sm1 mode sbc:afsk1200 io 0x388 irq 10 dma 1 serio 0x2f8 |

6.1.5.3. Configuring the AX.25 channel access parameters

The AX.25 channel access parameters are the equivalent of the KISS ppersist, txdelay and slottime type
parameters. You use the sethdlc utility for this as well.

Again the sethdlc man page is the source of the most complete information but another example of two won
hurt:

Configure the smO0 device with TxDelay of 100 mS, SlotTime of 50mS, PPersist of 128 and full duplex:

|# sethdlc —i sm0 —a txd 100 slot 50 ppersist 128 full |

6.1.5. Creating a kernel Soundmodem device 21

Linux Amateur Radio AX.25 HOWTO

Note that the timing values are in milliseconds.

6.1.5.4. Setting the audio levels and tuning the driver
It is very important that the audio levels be set correctly for any radio based modem to work. This is equally
true of the Soundmodem. Thomas has developed some utility programs that make this task easier. They are
called smdiag and smmixer.
smdiag

provides two types of display, either an oscilloscope type display or an eye pattern type display.
smmixer

allows you to actually adjust the transmit and receive audio levels.

To start the smdiag utility in 'eye' mode for the Soundmodem device smO you would use:

|# smdiag —-i sm0 —-e |

To start the smmixer utility for the Soundmodem device smO you would use:

|# smmixer —i sm0 |

6.1.5.5. Configuring the Kernel AX.25 to use the Soundmodem

The Soundmodem driver creates standard network devices that the AX.25 Kernel code can use.
Configuration is much the same as that for a Pl or PacketTwin card.

The first step is to configure the device with an AX.25 callsign. The ifconfig utility may be used to perform
this.

|# /shin/ifconfig sm0 hw ax25 VK2KTJ-15 up |

will assign the Soundmodem device sm0 the AX.25 callsign VK2KTJ-15. Alternatively you can use the
axparms command, but you still need the ifconfig utility to bring the device up:

ifconfig smO up
axparms —setcall smO vk2ktj—15

The next step is to create an entry in the /etc/ax25/axports file as you would for any other device. The
entry in the axports file is associated with the network device you've configured by the callsign you
configure. The entry in the axports file that has the callsign that you configured the Soundmodem device
with is the one that will be used to refer to it.

You may then treat the new AX.25 device as you would any other. You can configure it for TCP/IP, add it to
ax25d and run NET/ROM or ROSE over it as you please.

6.1.5. Creating a kernel Soundmodem device 22

Linux Amateur Radio AX.25 HOWTO

6.1.6. Creating a user—-mode Soundmodem device
Kernel Compile Options: not applicable

Thomas Sailer has written a sound modem driver that runs in user-mode using the kernel sound drivers, so
should work with any sound card supported under Linux.

The driver is implemented as the user-mode program soundmodem. The graphical
soundmodemconfig program allows configuring and testing the soundmodem driver. As well as kernel
sound support you need the kernel AX.25 mkiss driver.

The software and documentation can be downloaded_from http://www.baycom.org/~tom/ham/soundmodem.

6.1.7. Creating a YAM device

Kernel Compile Options:

Amateur Radio support ———>
[*] Amateur Radio support
——— Packet Radio protocols
<*> Amateur Radio AX.25 Level 2 protocol

AX.25 network device drivers ———>
——— AX.25 network device drivers

<?> YAM driver for AX.25

YAM is Yet Another Modem, a 9600 baud modem designed by Nico Palermo. Information on the Linux
driver can be found at http://www.teaser.fr/~frible/lyam.html while general information on the modem can be
found at_http://www.microlet.com/yam/

6.1.8. Creating a PI card device

Kernel Compile Options:

General setup ——>
[*] Networking support
Network device support ———>
[*] Network device support

[*] Radio network interfaces
[*] Ottawa PI and P1/2 support for AX.25

The PI card device driver creates devices named “pi[0-9][ab]'. The first Pl card detected will be

allocated "pi0’, the second "pil' etc. The "a' and "b' refer to the first and second physical interface on the Pl
card. If you have built your kernel to include the PI card driver, and the card has been properly detected the!
you can use the following command to configure the network device:

|# [sbin/ifconfig pi0a hw ax25 VK2KTJ-15 up |

6.1.6. Creating a user-mode Soundmodem device 23

http://www.baycom.org/~tom/ham/soundmodem/
http://www.teaser.fr/~frible/yam.html
http://www.microlet.com/yam/

Linux Amateur Radio AX.25 HOWTO

This command would configure the first port on the first Pl card detected with the callsign VK2KTJ-15 and
make it active. To use the device all you now need to do is to configure an entry into your
letc/ax25/axports file with a matching callsign/ssid and you will be ready to continue on.

The PI card driver was written Bavid Perry.

6.1.9. Creating a PacketTwin device

Kernel Compile Options:

General setup ———>
[*] Networking support
Network device support ———>
[*] Network device support

[*] Radio network interfaces
[*] Gracilis PackeTwin support for AX.25

The PacketTwin card device driver creates devices hamed "pt[0-9][ab]'. The first PacketTwin card

detected will be allocated "pt0’, the second "ptl' etc. The "a' and "b' refer to the first and second physical
interface on the PacketTwin card. If you have built your kernel to include the PacketTwin card driver, and the
card has been properly detected then you can use the following command to configure the network device:

|# /sbin/ifconfig pt0a hw ax25 VK2KTJ-15 up |

This command would configure the first port on the first PacketTwin card detected with the callsign
VK2KTJ-15 and make it active. To use the device all you now need to do is to configure an entry into your
letc/ax25/axports file with a matching callsign/ssid and you will be ready to continue on.

The PacketTwin card driver was written Gyaig Small, VK2XLZ.

6.1.10. Creating a generic SCC device

Kernel Compile Options:

General setup ———>
[*] Networking support
Network device support ———>
[*] Network device support

[*] Radio network interfaces
[*] 28530 SCC KISS emulation driver for AX.25

Joerg Reuter, DL1BKE, has developed generic support for Z8530 SCC based cards. His driver is
configurable to support a range of different types of cards and present an interface that looks like a KISS
TNC so you can treat it as though it were a KISS TNC.

6.1.9. Creating a PacketTwin device 24

mailto:dp@hydra.carleton.edu
mailto:csmall@triode.apana.org.au
mailto:jreuter@poboxes.com

Linux Amateur Radio AX.25 HOWTO

6.1.10.1. Obtaining and building the configuration tool package

While the kernel driver is included in the standard kernel distribution, Joerg distributes more recent versions
of his driver with the suite of configuration tools that you will need to obtain as well.

You can obtain the configuration tools package frdogrg's web page,
ftp://dbObm.automation.fh—aachen.de/incoming/di1bke,
ftp://insl1.etec.uni—karlsruhe.de/pub/hamradio/linux/z8380//ftp.ucsd.edu/hamradio/packet/tcpip/linux, or
ftp://ftp.ucsd.edu/hamradio/packet/tcpip/incoming.

You will find multiple versions, choose the one that best suits the kernel you intend to use:
z8530drv-2.4a.dl1bke.tar.gz for 2.0.* kernels and z8530drv-utils—3.0.tar.gz for 2.1.6
or later kernels.

The following commands were what | used to compile and install the package for kernel version 2.0.30:

cd /usr/src

gzip —dc z8530drv-2.4a.dl1bke.tar.gz | tar xvpofz —
cd z8530drv

make clean

make dep

make module # If you want to build the driver as a module

make for_kernel # If you want the driver to built into your kernel
make install

After the above is complete you should have three new programs installed in your /sbin directory: gencfg,
sccinit and sccstat. It is these programs that you will use to configure the driver for your card.

You will also have a group of new special device files created in your /dev called sccO-scc7. These will
be used later and will be the "KISS' devices you will end up using.

If you chose to ‘'make for_kernel' then you will need to recompile your kernel. To ensure that you include
support for the z8530 driver you must be sure to answer "Y' to: 28530 SCC kiss emulation
driver for AX.25' when asked during a kernel 'make config'.

If you chose to 'make module' then the new scc.o will have been installed in the appropriate
/lib/modules directory and you do not need to recompile your kernel. Remember to use the
insmod command to load the module before your try and configure it.

6.1.10.2. Configuring the driver for your card

The z8530 SCC driver has been designed to be as flexible as possible so as to support as many different ty
of cards as possible. With this flexibility has come some cost in configuration.

There is more comprehensive documentation in the package and you should read this if you have any
problems. You should particularly look at doc/scc_eng.doc or doc/scc_ger.doc for more detailed
information. I've paraphrased the important details, but as a result there is a lot of lower level detail that |
have not included.

The main configuration file is read by the sccinit program and is called /etc/z8530drv.conf. This file
is broken into two main stages: Configuration of the hardware parameters and channel configuration. After

6.1.10. Creating a generic SCC device 25

http://www.qsl.net/dl1bke
ftp://db0bm.automation.fh-aachen.de/incoming/dl1bke
ftp://insl1.etec.uni-karlsruhe.de/pub/hamradio/linux/z8530
ftp://ftp.ucsd.edu/hamradio/packet/tcpip/linux
ftp://ftp.ucsd.edu/hamradio/packet/tcpip/incoming

Linux Amateur Radio AX.25 HOWTO

you have configured this file you need only add:

|# sccinit

into the rc file that configures your network and the driver will be initialized according to the contents of the
configuration file. You must do this before you attempt to use the driver.

6.1.10.2.1. Configuration of the hardware parameters

The first section is broken into stanzas, each stanza representing an 8530 chip. Each stanza is a list of
keywords with arguments. You may specify up to four SCC chips in this file by default. The #define
MAXSCC 4 in scc.c can be increased if you require support for more.

The allowable keywords and arguments are:

chip
the chip keyword is used to separate stanzas. It will take anything as an argument. The arguments
are not used.

data_a
this keyword is used to specify the address of the data port for the z8530 channel "A'. The argument
is a hexadecimal number e.g. 0x300

ctrl_a
this keyword is used to specify the address of the control port for the z8530 channel "A'. The
arguments is a hexadecimal number e.g. 0x304

data_b
this keyword is used to specify the address of the data port for the z8530 channel "B'. The argument
is a hexadecimal number e.g. 0x301

ctrl_b
this keyword is used to specify the address of the control port for the z8530 channel "B'. The
arguments is a hexadecimal number e.g. 0x305

irg
this keyword is used to specify the IRQ used by the 8530 SCC described in this stanza. The argume
is an integer e.g. 5

pclock

this keyword is used to specify the frequency of the clock at the PCLK pin of the 8530. The argumen
is an integer frequency in Hz which defaults to 4915200 if the keyword is not supplied.

6.1.10. Creating a generic SCC device 26

Linux Amateur Radio AX.25 HOWTO

board

the type of board supporting this 8530 SCC. The argument is a character string. The allowed values
are:

PAOHZP
the PAOHZP SCC Card
EAGLE
the Eagle card
PC100
the DRSI PC100 SCC card
PRIMUS
the PRIMUS-PC (DG9BL) card
BAYCOM
BayCom (U)SCC card
escc
this keyword is optional and is used to enable support for the Extended SCC chips (ESCC) such as
the 8580, 85180, or the 85280. The argument is a character string with allowed values of "yes' or "nc
The default is "no'.

vector

this keyword is optional and specifies the address of the vector latch (also known as "intack port") fo
PAOHZP cards. There can be only one vector latch for all chips. The default is 0.

special

this keyword is optional and specifies the address of the special function register on several cards.
The default is 0.

option
this keyword is optional and defaults to 0.
Some example configurations for the more popular cards are as follows:

BayCom USCC

chip 1
data_a 0x300

6.1.10. Creating a generic SCC device 27

Linux Amateur Radio AX.25 HOWTO

ctrl_a 0x304
data_b 0x301
ctrl_b 0x305

irqgq 5

board BAYCOM
#

SCC chip 2

#

chip 2

data_a 0x302
ctrl_a 0x306
data_b 0x303
ctrl_b 0x307
board BAYCOM

PAOHZP SCC card

chip 1

data_a 0x153
data_b 0x151
ctrl_a 0x152
ctrl_b 0x150
irq 9

pclock 4915200
board PAOHZP
vector 0x168
escc no

#

#

#

chip 2

data_a 0x157
data_b 0x155
ctrl_a 0x156
ctrl_b 0x154
irq 9

pclock 4915200
board PAOHZP
vector 0x168
escc no

DRSI SCC card

chip 1

data_a 0x303
data_b 0x301
ctrl_a 0x302
ctrl_b 0x300

irq 7

pclock 4915200
board DRSI
escc no

If you already have a working configuration for your card under NOS, then you can use the gencfg comman
to convert the PE1CHL NOS driver commands into a form suitable for use in the z8530 driver configuration
file.

To use gencfg you simply invoke it with the same parameters as you used for the PE1CHL driver in
NET/NOS. For example:

6.1.10. Creating a generic SCC device 28

Linux Amateur Radio AX.25 HOWTO

|# gencfg 2 0x150 4 2 0 1 0x168 9 4915200

will generate a skeleton configuration for the OptoSCC card.

6.1.10.3. Channel Configuration

The Channel Configuration section is where you specify all of the other parameters associated with the port
you are configuring. Again this section is broken into stanzas. One stanza represents one logical port, and
therefore there would be two of these for each one of the hardware parameters stanzas as each 8530 SCC
supports two ports.

These keywords and arguments are also written to the /etc/z8530drv.conf file and must appear
after the hardware parameters section.

Sequence is very important in this section, but if you stick with the suggested sequence it should work okay.
The keywords and arguments are:

device

this keyword must be the first line of a port definition and specifies the name of the special device
file that the rest of the configuration applies to. e.g. /dev/sccO

speed

this keyword specifies the speed in bits per second of the interface. The argument is an integer: e.g.
1200

clock
this keyword specifies where the clock for the data will be sourced. Allowable values are:
dpll
normal halfduplex operation
external
MODEM supplies its own Rx/Tx clock
divider
use fullduplex divider if installed.
mode
this keyword specifies the data coding to be used. Allowable arguments are: nrzi or nrz

rxbuffers

6.1.10. Creating a generic SCC device 29

Linux Amateur Radio AX.25 HOWTO

this keyword specifies the number of receive buffers to allocate memory for. The argument is an
integer, e.g. 8.

txbuffers

this keyword specifies the number of transmit buffers to allocate memory for. The argument is an
integer, e.g. 8.

bufsize