
Periscope 

The Undercover Debugger 
For The IBM Personal Computer 

1Jy Brett Salter 



Periscope Manual Version 2.01 

Published by Data Base Decisions • 14 Bonnie Lane 
Atlanta, GA 30328 • USA. Telephone: 404/256-3860 

Copyright 1984, 1985 by Data Base Decisions. All 
rights reserved. No part of this publication, 
including the enclosed diskette, may be reproduced 
or distributed in any form or by any means without 
the prior written permission of the pUblisher. The 
software may be used by only one person at a time. 
It may not be used on a network server without the 
prior written permission of the publisher. 

The hardware is warranted to be free from defects 
for one year from the date of purchase. If you need 
to return the hardware for repairs, please call the 
telephone number above for a return authorization 
number. 

The software is provided 'AS IS'. without warranty 
of any kind, either expressed or implied. We will 
attempt to fix any problems you encounter with the 
software if you will notify us of the problem and 
provide us a way to recreate the situation in which 
the problem occurs. We welcome your suggestions and 
comments regarding improvements and enhancements to 
this product. 

The entire risk as to the performance of this 
package is with the purchaser. Data Base Decisions 
has carefully reviewed the materials provided with 
this package, but does not warrant that the 
operation of the items included in this package will 
be uninterrupted or error-free. Data Base Decisions 
assumes no responsibility or liability of any kind 
for errors in the package or for the consequences of 
any such errors. 



Contents 

Preface 
Obtaining Updates 
The Two Models Of Periscope 
Learning Periscope 
Using The Manual 

Chapter I 

Page 

v 
v 
v 
vi 

Introduction 1-1 
Welcome 1-1 
Items Included In The Periscope Package 1-1 
What Makes Periscope Different 1-2 
Features And Benefits 1-3 
Symbols -- Your Road Map 1-5 
System Requirements 1-6 

Chapter II 
Backing Up The Disk 

Chapter III 
Equipment Installation 
Checking For Conflicts 
Setting The DIP Switches 
Installing The Submarine Board 
Installing The Periscope II 

Break-Out Switch 

Chapter IV 
Tutorial 

Chapter V 
Installing The Periscope Software 
I nstallation Options 
Alternate Start-up Methods 

Chapter VI 
Using Periscope 
The Quit Options 
Keyboard Usage 
Debugger Parameters 

The Debugger Conunands 
Help 
Assemble to memory 
Assemble then Unassemble 
Display Breakpoints 

i 

2-1 

3-1 
3-1 
3-2 
3-6 

3-8 

4-1 

5-1 
5-1 
5-8 

6-1 
6-1 
6-2 
6-4 

6-8 
6-8 
6-9 
6-10 
6-11 



Clear Breakpoints 
Enable Breakpoints 
Disable Breakpoints 
Breakpoint on Byte 
Breakpoint on Code 

Breakpoint on Interrupt 
Breakpoint on Line 
Breakpoint on Memory 
Breakpoint on Port 
Breakpoint on Register 

Breakpoint on User test 
Breakpoint on Word 
Compare 
Display using current format 
Di splay using ASCII format 

Display using Byte format 
Display using Double word format 
Display Effective address 
Display using Integer format 
Display using Number format 

Display using Record format 
Display using Word format 
Enter 
Enter Symbol 
Fill 

Go 
Go using Trace 
Hex arithmetic 
Input 
Jump 

Jump Line 
Jump Noswap 
Klear 
Load Absolute disk sectors 
Load File from disk 

Move 
Name 
Output 
Quit 
Register 

Register Restore 
Register Save 
Search 
Search for Address reference 
Search for Unassembly match 

ii 

6-12 
6-13 
6-14 
6-15 
6-16 

6-17 
6-18 
6-19 
6-20 
6-21 

6-22 
6-23 
6-24 
6-25 
6-26 

6-27 
6-28 
6-29 
6-30 
6-31 

6-32 
6-34 
6-35 
6-36 
6-37 

6-38 
6-40 
6-42 
6-43 
6-44 

6-45 
6-45 
6-46 
6-47 
6-48 

6-49 
6-50 
6-51 
6-52 
6-53 

6-56 
6-56 
6-57 
6-58 
6-59 



Trace 
Trace Back 
Trace Noswap 
Unassemble memory 
Unassemble ASM instructions 

Unassemble Source I ASM instructions 
View file 
Write Absolute disk sectors 
Write File to disk 
Xlate (translate) hex number 

Xlate (translate) Address 
Xlate (translate) Decimal number 
Option S 
Option U 
Option W 

Chapter VII 
IWNning Your Program 

Chapter VIII 
Using The Periscope Utilities 
PSPATCH.COM 
PUBLIC. COM 
i{S.COM 

SYMLOAD.COM 
TS.COM 
USEREXIT.ASM and USEREXIT.COM 

Chapter IX 
Technical Notes 
Debugging Theory 
CPU Differences 
DOS Notes 

Debugging Techniques 
Debugging Device Drivers 
Periscope Internals 
The Submarine Board 
The IBM Enhanced Graphics Adapter 

Appendices 
Error Messages 
Index 

iii 

6-60 
6-61 
6-62 
6-63 
6-65 

6-66 
6-67 
6-68 
6-69 
6-70 

6-70 
6-70 
6-71 
6-72 
6-73 

7-1 

8-1 
8-1 
8-2 
8-2 

8-4 
8-5 
8-7 

9-1 
9-1 
9-2 
9-3 

9-4 
9-6 
9-7 
9-9 
9-10 

A-I 
X-I 



iv 



Preface 

Obtaining Updates 

Be sure to complete and return the enclosed 
registration cardl The first update released after 
you purchase Periscope is sent to you free-of-charge 
if you're a registered user. Registered users also 
receive notification of future updates. There is a 
nominal charge for these subsequent updates. 

The Two Models Of Periscope 

This manual describes two different models of 
Periscope. Periscope I includes the Submarine 
memory board with 16K of write-protected RAM and a 
remote break-out switch. Periscope II does not 
include the memory board, but does include a remote 
break-out switch. The two models of Periscope are 
functionally very similar, but there are some 
operational differences. We use an arrow + to point 
out the differences in this manual. 

+ The version number (as shown on the diskette label 
and by the programs PS.COM and RUN.COM) has an'S' 
suffix for Periscope II. Do not try to use the 
Periscope I software without the Submarine board or 
use the Periscope II software with the Submarine 
board. 

Learning Periscope 

Ideally you should read the entire manual and take 
the tutorial in Chapter IV before you begin using 
Periscope. While you may not remember everything 
you read, you will get a good idea of the scope of 
Periscope and you'll learn to use it faster. 

However, there's something to be said for learning 
by doing, so if you're anxious to get started, here 
are the things you absolutely must do: 

Step 1 -- Back up the Periscope disk (Chapter II) 
Step 2 -- Install the Equipment (Chapter III) 
Step 3 -- Take the tutorial (Chapter IV) or Install 
the software (Chapter V) 
Step 4 -- Load your program (Chapter VII) 

Refer to the chapters in parentheses for details on 
each step. We strongly recommend that you take the 
tutorial in Step 3. You'll install the debugger 
software during the tutorial, and you'll get a feel 

v 



for Periscope's overall capabilities that you won't 
get by merely installing the software. 

Using The Manual 

Here is how the manual is organized: 

Chapter I -- Introduction -- gives you an overview 
of Periscope, its features, benefits, and 
requirements. 

Chapter II -- Backing up the Disk -- gives you a 
step-by-step procedure for backing up the Periscope 
disk and describes each file on the disk. 

Chapter III -- Equipment Installation -- this 
chapter describes how to check your configuration 
for conflicts with the Submarine board's default 
settings. how to change the board's settings if you 
have conflicts, and how to install the board and 
break-out switch . 

.. For Periscope II, this chapter describes how to 
install the break-out switch. 

Chapter IV -- Tutorial: Up Periscope -- walks you 
through a session using Periscope to 'debug' a 
simple assembler program. 

Chapter V -- Installing the Periscope Software -
describes how to install the debugger software; 
explains the installation options and the alternate 
methods of installing Periscope. 

Chapter VI -- Debugging with Periscope -- defines 
the keys, the quit options, the command parameters, 
and the debugging commands. 

Chapter VII -- RUNning Your Program -- describes how 
the program loader. RUN.COM, works. 

Chapter VIII -- Using The Periscope Utilities -
describes how to use the various utility programs 
included in the package. 

Chapter IX -- Technical Notes -- discusses debugging 
theory, CPU differences, DOS, debugging techniques, 
debugging device drivers and non-DOS programs, 
Periscope internals, the Submarine board, and the 
IBM Enhanced Graphics Adapter (EGA). 

Appendix A -- Error Messages -- explains Periscope's 
error messages. 

vi 



I In traduction 

Welcome! 

Thank you for choosing Periscope as your debugging 
system. You've made your life as a software 
developer easier, because Periscope gives you the 
tools you need to find and fix your programs' bugs 
quicklyl The sooner you begin using Periscope, the 
sooner you'll start saving yourself many hours of 
debugging time. While you're getting acquainted 
with Periscope, remember that we support what we 
sell. If you run into a problem or have a qUestion, 
just give us a call. 

The following topics are covered in this chapter: 

• Items Included In The Periscope Package 
• What Makes Periscope Different 
• Features And Benefits 
• Symbols -- Your Road Map 
• System Requirements 

Items Included In The Periscope Package 

The Periscope Debugging System includes: 

1) The Submarine board, with 16K of write-protected 
RAM 

The board's purpose is to protect the debugger code. 
It is easily installed in one of your computer's 
expansion slots, and the memory and ports it uses 
are switch-selectable (see Chapter III). During the 
software installation procedure (Chapter V), the 
critical portion of the Periscope software is loaded 
into the board's memory, and the memory is 
write-protected. This means that you don't have to 
worry about a runaway program corrupting Periscope . 

.. The Submarine board is not included in Periscope II 
-- ignore all references to the memory board if 
you're using Periscope II. 

2) A remote break-out switch 

The switch located on the board's mounting bracket 
enables you to stop an executing program and enter 
Periscope at any time. The optional remote switch 
that plugs into the phono jack on the board's 
mounting bracket (see Chapter III) performs exactly 
the same function. This break-out capability means 
that you can interrupt the system any time, to debug 

1-1 



the executing program or just to see what's going 
on. It is especially valuable when your system is 
hung . 

• For Periscope II, the break-out switch taps in to 
an expansion slot that is already in use, so no 
additional slots are required. See Chapter III for 
installation instructions. 

3) A diskette, with the Periscope debugger software 
and related files 

The diskette contains the debugger software, plus a 
sample program and files used in the tutorial 
(Chapter IV); Periscope utility programs (Chapter 
VIII); and a Periscope demo program. (See Chapter 
II for a description of each file on the diskette). 

The critical portion of the debugger code is loaded 
into the board's protected memory during software 
installation. The remaining non-critical code and 
data areas are loaded into normal RAM. You can 
control the amount of normal memory to be used by 
Periscope -- from none to over 128K -- but 
Periscope's capabilities are severely limited when 
you choose to operate with only the board's internal 
memory. (Check the type of the Periscope commands 
in Chapter VI to determine which commands require 
external memory.) 

• For Periscope II, all of the debugger code and data 
areas are loaded into normal RAM. 

4) A quick-reference card 

The quick-reference card provides you with a concise 
list of Periscope's commands, command parameters, 
installation options, and key usage, all of which 
are described in detail in Chapters V and VI. 

5) This manual 

This manual's purpose is to provide you with the 
training you need to learn Periscope (Chapter IV) 
and with the technical information you need to 
become an expert Periscope user (Chapters V through 
IX). We strongly urge you to read the entire 
manual! 

What Makes Periscope Different 

In its review of Periscope, the Boston Computer 
Society says, "Periscope is a great debugger with 
something unique to offer systems-level programmers 

1-2 



" Periscope's differences are in fact valuable 
to ALL programmers! It is designed to be tough and 
dependable, to give you control when you need it, 
regardless of the type of programming you do. It's 
fast and easy to use, too. As the reviewer 
concludes, "We were impressed by Periscope's very 
fast response in all its operations. It is a 
pleasure to use, and a refreshingly different 
product ... offers great value and unique 
advantages." 

One of Periscope's key differences is its thorough 
crash recovery capability. The protected memory 
keeps runaway programs from interfering with the 
operation of critical debugger code. The break-out 
switch lets you check out problems when they occur, 
without having to stop and load your program under 
debugger control. Periscope is highly dependable 
because it saves the state of the machine when it's 
activated, then restores this saved state when done. 
Even when hardware interrupts are disabled, you can 
recover the machine by pressing the break-out 
switch. 

+ Periscope II does not offer the same level of crash 
recovery as Periscope I since it does not include 
the write-protected Submarine board. 

You can use Periscope to debug device drivers, 
non-DOS and memory-resident programs. You can even 
debug DOS because Periscope uses BIOS rather than 
DOS function calls for most of its operations. 

Two of Periscope's unusual features are the ability 
to stop on reads and writes to ranges of memory and 
the ability to set up record definitions or 
templates for displaying memory. C programmers find 
the breakpoint capability invaluable for resolving 
pointer problems. Memory templates are valuable 
regardless of the language you use. They allow you 
to display memory in a meaningful format, making the 
debugging process faster and easier. A sample 
record definition for the PSP is included in the 
Record Definition File on the diskette -- when you 
use it, the PSP looks like a PSP with all its 
'fields' appropriately labelled. 

Features And Benefits 

Periscope's job is to make software development 
quicker and easier for programmers. That's why it's 
designed to be easy to learn and use, reliable, 
comprehensive, and fast. The key features below are 
grouped according to these design criteria. 

1-3 



Periscope is EASY TO LEARN AND USE because it gives 
you: 
• Optional on-line help 
• Commands similar to Debug's 
• Optional windows that you can define and re-define 
to display disassembly, stack, register, and data 
information 
• Multiple memory display formats, including ASCII, 
byte, integer, signed integer, word, and double word 
• The ability to define your own memory display 
templates and to display memory using these 
definitions while debugging 
• Symbols, source line numbers, and source code 
instead of addresses (See the discussion on symbols 
later in this chapter) 
• The ability to assign command sequences to 
function keys 
• The ability to switch from your program's screen 
to Periscope's screen and back with a single 
keystroke 
• The ability to use a two-monitor system -
Periscope uses the monitor not used by your program 
• The ability to display available symbols and 
interactively add and change symbols 

Periscope is RELIABLE because: 
• It gives you dependable crash recovery -
Periscope saves the interrupt vectors it uses when 
activated, then restores them when done 
• You can safely interrupt the system any time with 
the break-out switch, then continue running as if 
Periscope had never been used 
• It doesn't use DOS except for file access, so you 
can debug your program even when DOS isn't working 
• It protects itself; runaway programs can't touch 
the code residing in the Submarine board's memory, 
and Periscope I keeps tabs on its code in normal RAM 
to make sure it doesn't get corrupted 
• Periscope II's code resides in normal RAM and is 
not protected nor recovered if corrupted 

Periscope is COMPREHENSIVE because it gives you: 
• A symbolic in-line assembler 
• Over 75 breakpoint options, including sticky and 
temporary code breakpoints; breakpoints on register 
values, byte and word values, and reads and writes 
to ranges of memory and I/O ports using various 
tests; the ability to write your own breakpoint 
tests; and more 
• Trace and traceback capability 
• The ability to disassemble any location in memory, 
displaying the symbols, line numbers, and code from 
your source program 
• The ability to search memory for string/byte 
patterns, procedure and address references, and 

1-4 



instructions 
• The ability to view text files 
• The ability to read and write disk files and 
absolute disk sectors 
• The ability to read and write I/O ports 
• The ability to compare two locations in memory, to 
move a block of memory from one location to another, 
and to make changes to memory 
• The ability to jump over calls and interrupts 
• The ability to display, change, save, and restore 
the registers and flags 
• The ability to translate from hex to decimal and 
vice-versa, and to perform hex arithmetic 
• User exits, so you can execute your own code from 
within Periscope 

Periscope is FAST because: 
• It's written entirely in assembler. 

Symbols -- Your Road Map 

Periscope is symbolic, meaning it allows you to use 
data and procedure names from your source program 
when you're debugging. This symbolic capability 
speeds up debugging tremendously, since you do not 
have to look for a particular sequence of 
instructions to find a certain section of code, nor 
do you have to remember the location of code or data 
-- you can access it by name! You can use source 
line numbers and even actual source code if your 
compiler provides the information Periscope needs! 

For example, assume that a program you're debugging 
calls a subroutine named PRINT LINE, and you want to 
go to the first call of this subroutine in your 
program. You would enter 'G @PRINT LINE'. ('G' is 
the Periscope Go command; '@' or '.;- precedes any 
symbolic reference; see Chapter VI.) If symbols were 
not available, you'd have to know the address of the 
subroutine in order to get to it. If you were to 
disassemble this same program, the disassembly would 
display 'PRINT LINE' wherever it is referenced in 
the program. -

Symbols are read from the MAP file generated by your 
linker. Periscope supports the IBM, Microsoft, 
Phoenix, and DRI linkers. If your compiler 
generates line number references in the object files 
it produces, Periscope will give you line numbers 
and source code, as well. For more specific 
information on symbols, see the sections in Chapter 
VIII on the TS.COM and PUBLIC.COM utility programs 
and the description of RUN.COM in Chapter VII. 

1-5 



System Requirements 

The system requirements for Periscope are: 

• IBM Personal Computer. XT. AT. Compaq. or other 
close compatible such as Zenith Z-1S0. Columbia. 
Leading Edge. Sperry and many others. 

• PC-DOS/MS-DOS 2.00 or later 

• 128K RAM 

• 1 disk drive 

• 80-column monitor 

The Submarine memory board may be installed in an 
expansion chassis if desired. 

Periscope supports IBM's Enhanced Graphics Adapter. 
(See Chapter IX.) 

1-6 



II Backing Up The Disk 
The enclosed diskette contains the files shown 
below. When you receive this package, backup the 
diskette using the following procedure: 

• Place your DOS diskette in drive A and enter 
'DISKCOPY A: B:'. 

• When prompted, insert the Periscope diskette in 
drive A, and a blank diskette in drive B. Press any 
key to perform the copy. 

• When DISKCOPY is complete, remove the original 
diskette and store it in a safe place. 

The files on the diskette are: 

PS.COM -- This program loads the resident debugger 
into the protected memory. It is usually run once 
per DOS session, but can be rerun to change the size 
of its external data areas. These external data 
areas are used for non-essential code and data, 
including the screen buffers, symbol table, and help 
file . 

.. For Periscope II, all code and data areas are 
placed in normal RAM. 

PS.DEF -- This ASCII text file contains some sample 
record definitions that are read when RUN.COM is 
used to load a program. 

PSDEMO.COM -- This program is a billboard-style 
demonstration of Periscope. It is not copyrighted 
and may be freely distributed. 

PSHELP.TXT -- This is the optional help file that is 
loaded into RAM by PS.COM when the /H installation 
option is specified. This file is a normal ASCII 
text file which can be modified as needed using a 
text editor. 

PSHELP2.TXT -- This is the short form of the help 
file. It gives the syntax and a short description 
for each command. To use this file instead of the 
standard help file, rename it to PSHELP.TXT. 

PSPATCH.COM -- This program is used to patch PS.COM 
to work on some of the less compatible computer 
systems. It is not needed if you use an IBM, 
Compaq, or other 99.44% compatible. 

PUBLlC.COM -- This program is used to generate 

2-1 



public statements for most data items and procedures 
in an assembly program -- giving you the best 
possible symbol support for debugging. 

READ.ME -- This file, if present, contains any 
changes made to this manual since it was last 
published. 

RS.COM -- This program is used to verify a record 
definition (DEF) file and determine the record table 
size required by the DEF file. It enables you to 
efficiently allocate space for the record definition 
table. 

RUN.COM -- This is the program loader. It is used 
to load a program or data file into memory, read the 
program's symbol table and record definition table 
if available and pass control to the resident 
debugger. This program will not work unless the 
Periscope software has been installed. 

SAMPLE.ASM -- This is the source code for the sample 
assembly program used in the tutorial. 

SAMPLE. COM -- This is the executable code for the 
sample assembly program used in the tutorial. 

SAMPLE.MAP -- This is the MAP file produced when the 
sample program is linked. It is used to provide 
symbolic references. 

SYMLOAD.COM -- This program lets your program change 
Periscope's symbol table while your program is 
running. It is useful for programs that manage 
their own overlays or are running under another 
environment, such as TopView. 

TS.COM -- This program is used to verify a MAP file 
and determine the symbol table size required by the 
MAP file. It enables you to efficiently allocate 
space for the symbol table and to generate a 
Periscope symbol file (PSS). This symbol file is 
optional for the standard linker (IBM/Microsoft), 
but is required for the Phoenix and DRI linkers. 

USEREXIT.ASM -- This sample program illustrates user 
breakpoints and user exits from Periscope, including 
a DOS availability test and a display of the 
8087/80287 status. 

USEREXIT.COM -- This is the executable equivalent of 
USEREXIT .ASM. 

2-2 



III -- Equipment Installation 
This chapter describes the installation of the 
Periscope I protected memory board and the 
installation of the Periscope II break-out switch. 

The following topics are covered in this chapter . 

• Checking for conflicts with memory and port use 

• Setting the DIP switches 

• Installing the Submarine board 

• Installing the Periscope II break-out switch 

.. If you're using Periscope II. skip to the last 
section in this chapter. 

Checking For Conflicts 

The board uses 16K of memory and two consecutive I/O 
ports. For proper operation. the memory and ports 
used by the board must not be used by any other 
device. When you receive the board. the DIP (Dual 
In-line Package) switches are set to use memory from 
COOO:OOOO to COOO:3FFF and I/O ports 300H and 30tH. 

This area of memory is just above the area reserved 
for screen buffers. but below the area used by the 
fixed disk controller in the XT. The use of this 
area of memory conflicts with IBM's Enhanced 
Graphics Adapter (EGA). If you have an EGA. try 
using memory at segment C400H. Submarine's default 
setting may also conflict with other add-on memory 
cards that use this area for a RAM disk or ROM 
device drivers. Check the documentation for any 
non-IBM expansion options to see if this is the 
case. 

The two I/O ports used by the board are in the block 
(300H to 31FH) reserved by IBM for a prototype card. 
If you have a prototype card in your system. you'll 
need to check to see which ports. if any. it uses. 
The use of these two ports conflicts with the 3Com 
Ethernet card. which uses ports 300H through 30FH. 
If you have this card. try using port 310H. Other 
expansion options may also use Submarine's default 
I/O ports. Check the documentation for any non-IBM 
expansion options to see if this is .the case. Note 
that the true range of I/O ports available is from 
zero to 3FFH. since the IBM PC only supports the ten 
low-order bits of a port address. 

3-1 



If you find no conflicts with the memory or I/O 
ports used by the board. skip the next section on 
setting the DIP switches and proceed to the section 
titled Installing the Submarine Board. 

Setting The DIP Switches 

There are two DIP switches on the Submarine board. 
The switch labeled SW1 (nearer to the top of the 
board) controls the I/O ports used by the board. 
The switch labeled SW2 controls the starting address 
of memory used by the board. 

SWI is preset to use I/O ports 300H and 301H. The 
switches may be set to indicate any two consecutive 
I/O ports on a four-byte boundary. You must not set 
the switches so that they conflict with other ports 
in the system. 

Certain ports are off-limits. These include zero to 
lOOH and others used by expansion cards in your 
system. If port 300H is not available. try 310H. 
Consult the IBM Technical Reference Manual and the 
documentation for your non-IBM expansion cards to 
avoi.d conflicts. 

The switches can be read by laying the board on a 
table. component (chip) side uP. with the top of the 
board facing you and the mounting bracket to your 
left. From this vantage point. the address can be 
read as a binary number. Switches eight and seven 
make up the first hex number. switches six. five. 
four and three make up the second hex number. and 
switches two and one make up the two high bits of 
the third hex number. When the switch is OFF (up or 
away from you). it corresponds to a one. When the 
switch is ON (down or towards you). it corresponds 
to a zero. 

The three hexadecimal numbers correspond to the port 
address. OOxx yyyy zzOO. where OOxx is the first 
number. yyyy is the second number. and zzOO is the 
third number. For example. when you receive the 
board. switches seven and eight are OFF (equal to 
one) and all others are ON (equal to zero). This is 
the same as the bit pattern 0011 0000 0000. which is 
300H. 

To change the port setting to 304H. move switch one 
to the OFF position. Notice that the two missing 
bits of the first and third numbers are always zero. 

The following table illustrates the switch settings. 
The first section of the table illustrates the use 

3-2 



of switches seven and eight to set the 'hundreds' 
part of the address. the second section illustrates 
the use of switches three through six to set the 
'tens' part of the address. and the third section 
illustrates the use of switches one and two to set 
the 'units' part of the address. 

DIP SWITCH SW1 (I/O PORT) 

'Hundreds' 'Tens' 'Units' 

5tarting Port 58 57 56 55 54 53 52 51 

000 Il'4 Il'4 ON ON ON Il'4 ON Il'4 
100 Il'4 OFF Il'4 Il'4 ON Il'4 Il'4 ON 
200 OFF Il'4 Il'4 Il'4 ON Il'4 Il'4 Il'4 
3l'Jl'J OFF OFF Il'4 Il'4 ON Il'4 Il'4 Il'4 

3l'Jfl OFF OFF Il'4 Il'4 ON Il'4 Il'4 Il'4 
31l'J OFF OFF Il'4 ON ON OFF Il'4 Il'4 
32l'J OFF OFF Il'4 ON OFF ON Il'4 Il'4 
33l'J OFF OFF ON Il'4 OFF OFF Il'4 Il'4 

34l'J OFF OFF Il'4 OFF ON Il'4 ON Il'4 
35l'J OFF OFF Il'4 OFF ON OFF ON Il'4 
36l'J OFF OFF Il'4 OFF OFF Il'4 Il'4 ON 
37l'J OFF OFF Il'4 OFF OFF OFF Il'4 ON 

38l'J OFF OFF OFF ON ON ON Il'4 Il'4 
39l'J OFF OFF OFF ON ON OFF Il'4 Il'4 
3Al'J OFF OFF OFF ON OFF ON Il'4 Il'4 
3Bl'J OFF OFF OFF Il'4 OFF OFF Il'4 Il'4 

3Cl'J OFF OFF OFF OFF ON ON Il'4 Il'4 
3Dl'J OFF OFF OFF OFF ON OFF ON Il'4 
3El'J OFF OFF OFF OFF OFF Il'4 Il'4 Il'4 
3Fl'J OFF OFF OFF OFF OFF OFF ON Il'4 

3l'Jl'J OFF OFF Il'4 ON ON Il'4 ON Il'4 
3l'J4 OFF OFF Il'4 Il'4 ON Il'4 ON OFF 
3l'J8 OFF OFF Il'4 Il'4 ON Il'4 OFF Il'4 
3l'JC OFF OFF ON Il'4 ON Il'4 OFF OFF 

3-3 



DIP switch SW2 is preset to use memory starting at 
COOO:OOOO for 16K. The switches may be set to 
indicate any area in memory on a 16K boundary. You 
must not set the switches so that they conflict with 
other memory installed in the system. 

Certain ranges of memory are off-limits. These 
include -- 0000:0000 to, but not including 
xOOO:OOOO, where x is the number of 64K banks of RAM 
installed; BOOO:OOOO to BOOO:OFFF if a monochrome 
adapter is installed; B800:0000 to B800:3FFF if a 
color/graphics adapter is installed; AOOO:OOOO to 
COOO:3FFF if an EGA is installed; C800:0000 to 
EOOO:FFFF if the system is an XT; and FOOO:OOOO to 
FOOO:FFFF on all systems. For example, if your 
system has S12K, memory below 8000:0000 is already 
used by RAM, and is therefore off-limits. 

The starting memory address can be read by laying 
the board on a table, component (chip) side up, with 
the top of the board facing you and the mounting 
bracket to your left. From this vantage point, the 
address can be read as a binary number. Switches 
six, five, four, and three make up the first hex 
number, and switches two and one make up the two 
high bits of the second hex number. When the switch 
is OFF (up or away from you), it corresponds to a 
one. When the switch is ON (down or towards you), 
it corresponds to a zero. 

The two hexadecimal numbers correspond to the 
highest part of the absolute memory address, xyOOO 
or xyOO:OOOO, where x is the first number and y is 
the second number. For example, when you receive 
the board, switches five and six are OFF (equal to 
one) and all others are ON (equal to zero). This is 
the same as the bit pattern 1100 00, which 
corresponds to COOO:OOOO. 

If memory starting at segment COOOH is already in 
use, try using C400H. To change the memory setting 
to C400:0000, move switch one to the OFF position. 
Notice that the two missing bits of the second 
number are always zero. 

The following table illustrates the switch settings. 
The first section of the table illustrates the use 
of switches three through six to set the 64K 
boundary, and the second section of the table 
illustrates the use of switches one and two to set 
the 16K boundary. 

3-4 



DIP SWITCH SW2 (MEMORV) 

64 K Boundary 16 K Boundary 

Starting Address S6 S5 S4 S3 S2 S1 

000.0:0.0.00 (.0 K) ON ON ON ON ON ON 
1000:0.0.0.0 (64 K) ON ON ON OFF ON ON 
2000:.00.00 (12B K) ON ON OFF ON ON ON 
3.0.0.0:.0.000 (192 K) ON ON OFF OFF ON ON 

40.0.0:.000.0 (256 K) ON OFF ON ON ON ON 
50.0.0:.00.00 (320 K) ON OFF ON OFF ON ON 
6.000:.0.00.0 (384 K) ON OFF OFF ON ON ON 
7.0.0.0:.0.00.0 (448 K) ON OFF OFF OFF ON ON 

8.0.0.0:.0.0.0.0 (512 K) OFF ON ON ON ON ON 
90.0.0:.00.00 (576 K) OFF ON ON OFF ON ON 
A0.0.0:.00.00 (64.0 K) OFF ON OFF ON ON ON 
B0.0.0:.0.00.0 (7.04 K) OFF ON OFF OFF ON ON 

C.0.00:.000.0 (768 K) OFF OFF ON ON ON ON 
0.0.0.0:.0.0.0.0 (832 K) OFF OFF ON OFF ON ON 
E000:.0.0.00 (896 K) OFF OFF OFF ON ON ON 
F00.0:.0000 (96.0 K) OFF OFF OFF OFF ON ON 

C00.0:0.0.00 (768 K) OFF OFF ON ON ON ON 
C40.0:0.00.0 (784 K) OFF OFF ON ON ON OFF 
C8.00:0.0.0.0 (800 K) OFF OFF ON ON OFF ON 
CC00:.0.0.0.0 (816 K) OFF OFF ON ON OFF OFF 

3-5 



Installing The Submarine Board 

Before installing the board, be sure that the power 
is off and that the power cord is removed from the 
PC! To complete the installation, you'll need a 
small screwdriver. 

Step 1 -- Open the PC by removing the cover mounting 
screws on the rear of the system unit. Slide the 
cover of the system unit forward as far as possible 
without removing it from the system unit. 

Step 2 -- The board can be installed in anyone of 
the available expansion slots on the system board. 
If you do not plan to use the remote break-out 
switch, the left-most expansion slot will be the 
most convenient for reaching the switch located on 
the board's mounting bracket. Select an available 
expansion slot and remove the metal bracket from the 
back panel for that slot, using a small screwdriver. 
The metal bracket may be discarded, but be sure to 
save the retaining screw. 

Step 3 -- Align the board with the expansion slot 
and lower it until the edge connector is resting on 
the expansion slot receptacle on the system board. 
Press the board straight down until it seats in the 
expansion slot. Install the retaining screw through 
the board's bracket into the PC's back panel and 
tighten it. 

Step 4 Slide the cover of the system unit back 
over the machine and install the cover mounting 
screws. 

Step 5 -- If you plan to use the remote break-out 
switch, install it now, while the power is still 
off. Remove the dummy plug from the phono jack 
mounted on the bracket and insert the phono plug 
that is connected to the remote switch. 

If you do not plan to use the remote break-out 
switch, leave the dummy plug in place. This will 
help prevent the accidental use of this jack for 
some other potentially dangerous use -- such as the 
connection of a composite monitor. 

Step 6 -- Re-connect all peripherals and replace the 
power cord. 

Step 7 -- Boot the system. If your system is other 
than an IBM, Compaq, or 99.44% compatible, run the 
program PSPATCH.COM. This program patches PS.COM to 
use addresses for interrupt vectors as found on your 
system at boot time. PSPATCH should be run without 

3-6 



any memory resident routines (including device 
drivers) loaded. If you have any problems, see the 
description of PSPATCH in Chapter VIII. 

Step 8 -- Install Periscope by executing PS.COM. If 
you changed the DIP switches, you'll need to specify 
the memory and/or port settings as installation 
options. For example, if the memory was changed to 
C400:0000 and the port was changed to 304H, enter 
'PS /M:C400 /P:304'. See Chapter V for more 
information on the installation options. If an 
error occurs, see Appendix A for an explanation of 
the error. 

Step 9 -- After installing Periscope, press the 
remote break-out switch or the switch located on the 
board's mounting bracket. The debugger screen 
should be displayed, showing the current values of 
the registers and a disassembly of the current 
instruction. To continue, enter 'G' and press 
return. 

Do not press the break-out switch before PS.COM is 
installed -- you'll get a parity error and have to 
turn the power off and back on. 

If the break-out switch doesn't work when Periscope 
is first installed, check the DIP switch setting for 
the 8087. If you have an 8087 installed, the switch 
should be OFF. If you don't have an 8087, the 
switch should be ON. 

3-7 



Installing The Periscope II Break-Out Switch 

Before installing the break-out switch, be sure that 
the power is off and that the power cord is removed 
from the PC! To complete the installation, you'll 
need a small screwdriver and a bright light source, 
such as a flashlight. Please refer to the 
illustration below. It shows the switch installed 
in an IBM PC. Keep in mind that there may be slight 
physical differences if you're using another 
machine. 

Step 1 -- Open the PC by removing the cover mounting 
screws on the rear of the system unit. Slide the 
cover of the system unit forward as far as possible 
without removing it from the system unit. 

Step 2 -- The cable assembly has a push-button 
switch, a five foot length of cable and two 
connectors. One of the connectors is a ring 
terminal (see Exploded View A) and the other is a 
gold-plated probe (see Exploded View B). 

Component Side 
of Board 

Socket--4r-:;;#Z--

Mother--+7""- /' 
Board --=-,,;:.;;;.~<t' 

Gold 
Finger 

Exploded View A 

1I--~-Gold·Plated 
Probe 

Exploded View B 

3-8 



Route the connector end of the cable assembly into 
the PC from the back of the system unit. There are 
several possible ways of routing the cable, either 
through a knock-out panel or in the space between 
the keyboard connector and the expansion slots. Do 
NOT install the cable so that it is lying on top of 
the back panel -- when the cover is installed, the 
cable may be crimped and possibly damaged. 

Step 3 -- Remove the retaining screw on the 
expansion slot mounting bracket nearest to the power 
supply. This slot is usually, but not always, 
occupied by a disk controller card. Note -- If this 
slot is not in use, use the in-use slot that gives 
you the best accessibility to the component (chip) 
side of the board. 

Insert the retaining screw through the ring terminal 
and then place the washer on the retaining screw. 
Re-install the retaining screw as shown in the 
illustration. Align the cable so that it is 
parallel with the back panel of the system unit. Be 
sure it has a minimum of twists and turns between 
the ring terminal and the point where the cable 
comes into the system unit. 

The ring terminal provides both an electrical ground 
and strain relief. Be sure that it is securely 
installedl 

Step 4 -- Using the flashlight or other bright light 
source, install the gold-plated probe into pin Al of 
the expansion slot used in Step 3. The slot must be 
in use for the probe to be attached securely. 

Pin Al is the pin on the component (chip) side of 
the expansion board that is closest to the board's 
mounting bracket. This pin is used to generate a 
Non-Maskable Interrupt (NMI). 

To install the probe, hold it so that the probe is 
pointing downward and the cable is angled away from 
the board. Push the probe down firmly into pin Al 
between the gold finger on the board and the 
connector in the socket as shown in the 
illustration. Note -- not all boards have a gold 
finger at pin Al -- look for the first socket 
connector to positively identify the pin. Push the 
probe in as far as possible to ensure a good 
connection and to keep the uninsulated part of the 
probe from contacting anything other than the 
desired pin. 

Step 5 -- Double check the placement of the probe. 
It should be in the pin on the component (chip) side 

3-9 



of the expansion board nearest the board's mounting 
bracket. The probe must be between the board and 
the connector pin in the socket -- it must not be 
between the connector pin and the outer edge of the 
socket! 

Some sockets have an extra dummy hole at the end of 
the socket. Be sure not to insert the probe in this 
holel 

Step 6 -- Double check the placement of the ring 
terminal. It should be firmly held by the retaining 
screw that holds the expansion board in place. For 
the best electrical contact, be sure that the 
supplied washer has been installed between the ring 
terminal and the board's mounting bracket. 

Step 7 -- Slide the cover of the system unit back 
over the machine and install the cover mounting 
screws. 

Step 8 -- Re-connect all peripherals and replace the 
power cord. 

Step 9 -- Boot the system. If your system is other 
than an. IBM, Compaq. or 99.44% compatible, run the 
program PSPATCH.COM. This program patches PS.COM to 
use addresses for interrupt vectors as found on your 
system at boot time. PSPATCH should be run without 
any memory resident routines (including device 
drivers) loaded. If you have any problems. see the 
description of PSPATCH in Chapter VIII. 

Step 10 -- Install Periscope by executing PS.COM. 
If an error occurs. see Appendix A for an 
explanation of the error. 

Step 11 -- After installing Periscope. press the 
break-out switch. The debugger screen should be 
displayed, showing the current values of the 
registers and a disassembly of the current 
instruction. To continue. enter 'G' and pre~s 
return. 

Do not press the break-out switch before PS.COM is 
installed -- you'll get a parity error and have to 
tum the power off and back on. 

If the break-out switch doesn't work when Periscope 
is first installed. check the DIP switch setting for 
the 8087. If you have an 8087 installed, the switch 
should be OFF. If you don't have an 8087, the 
switch should be ON. 

3-10 



IV Tu torial : Up Periscope 
This chapter takes you through a guided tour of 
Periscope, using a simple assembly language program. 
This tutorial demonstrates many of Periscope's 
debugging commands, but for more detailed 
information, you'll need to see Chapter VI. 

Before you can take the tutorial, you'll need to 
install the memory board (see Chapter III). To get 
started, place the Periscope disk in drive A and 
make drive A the default disk drive. Then enter cps 
IR' from the DOS prompt. This will load Periscope 
into memory and will also load the on-line help 
file. If you've changed the DIP switches on the 
board, be sure to enter the memory andlor port 
options on this line as well. 

+ For Periscope II, you don't have to install the 
break-out switch before taking the tutorial. 

The program used in this tutorial is named 
SAMPLE.COM. This simple program displays the total 
and the available memory in the system. There are 
four files associated with this program. They are: 

• PS.DEF -- Contains record definitions for the PSP 
(Program Segment Prefix) and the FCB (File Control 
Block) and other records 

• SAMPLE.ASM The source code for SAMPLE.COM 

• SAMPLE. COM The executable program 

• SAMPLE. MAP The MAP file produced by the linker 
when the 1M option is used 

Periscope uses the DEF file to read keyboard 
definitions and record definitions into memory. 
This file is created with an editor as a standard 
ASCII text file. In the file PS.DEF, there are two 
sample keyboard definitions and four record 
definitions. These record definitions can be used 
to display any area of memory in an easy-to-read 
format. There's a utility program to verify and 
determine the amount of memory required by a DEF 
file. See the description of RS.COM in Chapter VIn 
for more information. 

Periscope uses the MAP file in order to replace the 
RAM addresses normally supplied while debugging with 
the more meaningful labels used in the program being 
debugged. The MAP file can be created when you link 
your program by specifying a MAP file and the '1M' 
and 'ILl' options. This file contains the public 

4-1 



code and data addresses and their labels. Periscope 
then uses these symbols to display the labels rather 
than the numeric addresses. The more symbols you 
have, the easier it is to debug your program -- so 
we've provided a program to generate as many PUBLIC 
statements as possible. Also. there's a program to 
verify and size MAP files and convert non-standard 
MAP files to Periscope's format. See the 
descriptions of PUBLIC. COM and TS.COM in Chapter 
VIII for more information. 

Before you start debugging SAMPLE. COM , use the DOS 
TYPE or PRINT command to print a listing of 
SAMPLE.ASM for reference. The program's mainline 
code starts at START and ends at DOSRET. The 
mainline calls three procedures. The first 
procedure, GETMEM, is called once to retrieve the 
total memory and the available memory. CONVERT is 
called twice to convert the memory size from hex to 
ASCII. Finally, DISPLAY is called once to display 
the re suIts. 

Now that Periscope is installed and you have a 
listing of SAMPLE.ASM for reference, start the 
program loader RUN by entering 'RUN SAMPLE.COM' and 
pressing the return key. 

RUN displays the address of the PSP and messages 
indicating that the address references, record 
definitions, and key definitions were loaded into 
the symbol tables, record tables, and key definition 
tables respectively. Then the display switches to 
the debugger screen and the first instruction of the 
program is displayed --

AX=0000 BX=0000 CX=008B DX=0000 SP=FFFE BP=0000 SI=0000 01=0000 
OS=0C73 ES=0C73 SS=0C73 CS=0C73 IP=0100 NV UP EI PL ZR NA PE NC 

SAMPLE: 
0C73:0100 EB35 JMP START 

Registers BX and CX show the size of the program. 
Registers DS, ES, SS, and CS all show the PSP 
segment since this is a COM program. The actual 
number will vary, depending on the version of DOS 
and any memory-resident programs you're using. 

Also, notice the symbols -- the current instruction 
is labeled SAMPLE, since the name was defined as 
PUBLIC. The address of the jump is START, not an 
offset. If you need to know the offset, enter 'U 
@START' to disassemble memory starting at the symbol 
START. 

4-2 



For help, enter '?' and press return. A command 
summary is displayed, from which you can see the 
possible commands. Now enter '? D' to get help on 
the Display command. 

To display the PSP, enter 'DB CS:O'. This shows the 
first 128 bytes of the PSP in Byte format. For a 
more useful display, enter 'DR CS:O @PSP'. The 
record definition makes it much easier to see what's 
what in the PSP. You can add record definitions as 
you need them by editing the DEF file (see the 
description of RS.COM in Chapter VIII). To see the 
record definitions available, press F7 before 
entering anything after the debugger prompt. 

To move to the next instruction, enter 'T'. Now 
you're at the instruction labeled START. Enter 'U' 
to disassemble the next few lines --

START: 
21C73:21137 E8172121 CALL GETMEM 
21C73:2113A A133211 MOV AX,[TOTMEM] 
21C73:2113D BF121211 MOV DI,211121 TMEMORV 
21C73:211421 E8242121 CALL CIlWERT 
21C73:21143 A135211 MOV AX,[FREMEM] 
21C73:21146 BF2C2I1 MOV DI .2112C ; AMEMORV 
21C73:8149 E81B2I8 CALL CONVERT 
21C73:2114C E834821 CALL DISPLAV 

DOSRET: 
21C73:2114F CD221 INT 221 

GETMEM: 
8C73:8151 B1216 MOV CL,216 
8C73:21153 BE2I22121 MOV 51.2121212 
8C73:21156 8B2I4 MOV AX, [51] 

Notice the two lines with the commented references 
to TMEMORY and AMEMORY. These instructions are 
ambiguous references to items in the symbol table. 
This situation occurs when a number is moved to a 
register. Periscope cannot be sure that the 
references exist in the source program, so it 
displays the symbol as a comment. In this case, the 
instructions reference the symbols, but a situation 
where 100H is moved to a register would give a false 
reference to the program entry point, SAMPLE. 

The SA (Search Address) command is used to search 
for address references. Enter 'SA @START @DISPLAY 
@CONVERT' to search from START to DISPLAY for 
references to the procedure CONVERT. Also, try 'SA 
@START @DISPLAY @TOTMEM' to search the same range of 
memory for references to the data variable TOTMEM. 

4-3 



Before continuing, set a sticky code breakpoint at 
the end of the program, DOSRET. To do this enter 
'BC @DOSRET' and press return. 

To see the symbols available, press F8. Now, set a 
word breakpoint on the value of the variable TOTMEM 
changing from zero to any other value. To do this 
enter 'BW @TOTMEM NE 0' and press return. To see 
the current breakpoints, enter 'BA ?'. The result 
is --

BC D05RET 
BW TOTMEM NE ~~~~ 

Now enter 'GT' to execute the program with both of 
the breakpoints activated. Execution will stop at 
the instruction after the one that moves register AX 
into TOTMEM --

AX=~1~~ BX=~S~S CX=~S~6 DX=~SSS 5P=FFFC BP=~S~8 51=8882 DI=8~~8 
OS-8C73 E5=8C73 SS=8C73 CS=8C73 IP=~15D NV UP EI Pl NZ NA PE NC 
~C73:S15D SCCB MOV BX,CS 

To see the instruction that caused the breakpoint, 
enter 'TB'. Periscope's traceback command shows 
previously executed instructions. Now, clear the 
word breakpoint by entering 'BW If'. Check the 
breakpoints by entering 'BA ?'. Only the one code 
breakpoint should be present. 

To see the current value of TOTMEM, enter '01 
@TOTMEM L2'. This is the total memory in K -- note 
that the result is in decimal, not hex. To show the 
value in hex, use 'DW @TOTMEM L2'. To convert back 
to decimal, use the translate command. Enter 'X 
nnnn', where nnnn is the hex value of TOTMEM. The 
decimal value is displayed as the second field. 
Since the value of TOTMEM is still in register AX, 
'X AX' gives the same result. 

Use the Jump command to trace through the next few 
instructions. Enter' J' and press return. Then 
press F4 to repeat the previous command. When you 
get to the 'RET' instruction, use the 'J' command 
one more time to get back to the mainline code. 

Clear the screen by entering 'K' and pressing 
return. Then disassemble the number conversion 
routine by entering 'U @CONVERT @OISPLAY'. To get 
back to the current instruction, enter 'R' and press 
return. 

4-4 



To check the number conversion routine, CONVERT, use 
the Jump command three times to get to the 
instruction after the first call to CONVERT. 
Display the converted value by entering 'DA @TOTAL' 
or 'DA @TMEMORY'. This value should agree with the 
converted value of TOTMEM displayed previously. 

Since the sticky code breakpoint for DOSRET is still 
in effect, enter 'G' to go to DOSRET. Alternately, 
if the sticky breakpoint did not exist, you could 
enter 'G @DOSRET'. 

To view the source file for this program, enter 'V 
SAMPLE.ASM' and press return. Use the PgUp, PgDn, 
Home, End, Up, and Down arrow keys to move through 
the file. When done, press the Esc key to return to 
the debugger prompt. 

To set Periscope's windows, enter '/W DRSU'. This 
sets up four windows showing data, register, stack, 
and disassembly information. The presence, order, 
and length of these windows can be changed on the 
fly. Try '/W D:8 R U:8'. Now turn the windows off 
again by using , / W'. 

The remaining commands are not germane to this 
sample program, but we'll explore some of them here. 

To display the interrupt vectors at the beginning of 
memory in double word format, enter 'DD 0:0'. 

To change the value of register ex, enter 'R ex' and 
press return. When the colon prompt is displayed, 
enter '10' and press return. Alternately, you can 
do the same thing in one line by entering the number 
after the register -- try entering 'R ex 10'. 
Afterwards, check the result -- enter 'R' and press 
return to display the registers. 

Display memory at offset 200H by entering 'DB 
DS:200'. Now clear this unused memory by using the 
Fill command. Enter 'F DS:200 L 80 " II' to store 
80H bytes of spaces. Now, enter 'D 200' again --

0C73:~2~~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 

* ~~~6 LINES OF 2~ SKIPPED * 
0C73:~27~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 

See how the six lines of spaces in the middle of the 
display were omitted? 

Use the Enter command to modify memory -- 'E DS:240 
"test'" enters the string 'test' starting at DS:240. 

4-5 



The Search command is used to find a byte! string 
pattern. Enter'S 100 400 "test'" to search from 
offset100R to offset 400R for the string 'test'. 
It will be found at offset 240. 

The Compare command is used to compare two blocks of 
memory. Enter 'C 200 L ex 240' to compare the lOR 
bytes (the value of register CX) starting at offset 
200R to the lOR bytes starting at offset 240R. The 
result might be: 

~C73:~2~~ 2~ 74 ~C73:~24~ 
~C73:~201 2~ 65 0C73:0241 
~C73:~202 2~ 73 0C73:0242 
~C73:~203 2~ 74 ~C73:~243 

The first four bytes are different, since the first 
block contains spaces and the second block contains 
the string 'test'. The remaining twelve bytes are 
the same, so nothing is displayed for them. 

To copy one block of memory to another, the Move 
command is used. Enter 'M DS:240 24F DS:200' to 
copy the contents of 240R through 24FR to 200R 
through 20FR. Use 'D 200' to verify the move. 

To, perform hex arithmetic, enter 'R' followed by a 
number, an operator (+, -, *, or !) and a second 
number and press return. For example, to subtract 
20R from lOR, enter 'R 10-20'. 

To quit the debugger, enter 'Q'. The quit options 
are then displayed. Enter 'R' to return to DOS or 
'CO to continue and then press return. Either 
response ends the debugging session. 

4-6 



V Installing The Periscope 
Software 
This chapter describes the installation of the 
resident debugger, Periscope (PS.COM). The 
following topics are covered: 

• Installation options and defaults 

• Alternate start-up methods 

Installation Options 

To load Periscope, enter cpS' from the DOS prompt, 
followed by the desired installation options. (See 
the next section in this chapter for alternate 
start-up methods). Periscope has the following 
default values (in alphabetical order by 
installation option): 

A -- One monitor is assumed. 
B -- The traceback buffer is presumed to be lK 
(enough for 32 entries). 
C -- The screen color is low-intensity white on 
black. 
D -- The original INT 13H (disk) vector is not 
restored before a short boot. 
E -- The source file buffer is presumed to be lK. 
F -- Slow color output is presumed. 
H -- On-line help is not available. 
I -- No user interrupt exit is available. 
J Sys Req does not activate Periscope. 
K -- Shift-PrtSc does not activate Periscope. 
L -- Periscope's external tables are loaded as low 
in memory as possible. 
M -- The write-protected memory begins at COOO:OOOO 
and ends at COOO:3FFF. 
P The write-protect ports are 300H and 301H. 
R -- The record table size is presumed to be lK. 
S -- The original screen size is presumed to be 4K, 
which is sufficient for text mode only. 
T -- The symbol table size is presumed to be lK. 
V -- The BIOS interrupt vectors used by Periscope 
(8H, 9H, lOH, 16H, 17H, and lCH) are set to their 
power-on values when Periscope is used, and restored 
to the original values when you exit Periscope. 
W -- Windows are turned off. 
Z -- External tables are not suppressed. 

+ For Periscope II, the M, P, and Z installation 
options are not available. 

Use the installation options described below to 

5-1 



change the above defaults. All options contain a 
slash (I) and a single letter mnemonic. Some of the 
options include a number. If a number is used. it 
is always preceded by a colon (:) and is always in 
hexadecimal notation. 

The installation options are: 

? -- Display help information about Periscope's 
installation options. 

I A -- Use an alternate debug screen. This option 
indicates that you have both a monochrome and a 
color monitor attached to the system via separate 
display adapters. The debugger uses the monitor 
that is not currently active when the break-out 
switch is pressed or when a program is loaded with 
RUN.COM. If this option is used. the IS option is 
ignored and no memory is reserved for the original 
or debug screen buffer. 

When possible. use the monochrome monitor for the 
debugger display. since the monochrome display is 
faster than the color display. 

IB:nn -- Set the size of the traceback buffer to 
something other than lK. This option is used when 
you want more than the 32 traceback entries 
available from the default buffer size. The one or 
two-digit hexadecimal number nn is the number of K 
desired. The number may be from zero to lOH K. 
Remember that the input is in hex! 

IC:nn -- This option sets the color attribute for 
Periscope's display. The two digit number is from 1 
to FFH. The border of the screen is set to the same 
color as the background. To calculate the number 
you want (I use 17H -- gray on blue) see your 
machine's technical reference manual or the table 
below. 

The layout of the color attribute bits is: 

Bit number 7 6 5 4 3 2 0 

Use X R G B H R G B 
----------- -----------
background foreground 

color color 

X - blink if 1, else no blink 
R - red gun on if 1, else off 
G - green gun on if 1, else off 
B - blue gun on if 1, else off 

5-2 



H - high-intensity if 1, else normal 

The RGB combinations are: 
Green plus Blue is Cyan 
Red plus Blue is Magenta 
Red plus Green is Brown (Yellow if high intensity) 
Red plus Green plus Blue is Gray (White if high intensity) 

Assuming that you want cyan on black, use 0000 0011 
binary, or '/C:3'. There are some illegal color 
combinations that Periscope won't allow. These 
include 0, 8, 80H, and 88H which are all variants of 
black on black, and other similar situations where 
the foreground and background colors are the same, 
such as 77H and F7H. 

ID -- Restore the original INT 13H vector before a 
short boot. This option is used with certain RAM 
disk software to re-point the diskette interrupt 
vector to BIOS before using the short boot option. 
It is needed only if the RAM disk software you use 
modifies the original interrupt 13H to point to 
memory that is corrupted by a short boot. 

IE:nn -- Set the size of the source file buffer to 
something other than lK. This option is used to 
improve performance when the Unassemble Source or 
View file commands are used. The one or two-digit 
hexadecimal number nn is the number of K desired. 
The number may be from zero to 10H K. Remember that 
the input is in hex! 

IF -- Set fast output for a color monitor. This 
option should be used if you have a 'snow-free' 
color card. The original IBM color card suffers 
from 'snow' when you attempt to write directly to 
the screen buffer. A snow-free card allows you to 
write directly to the screen without any 
interference. If you have one of these snow-free 
cards, use this option to speed up the screen 
display. 

IH -- Install the on-line help. If this option is 
specified, the file PSHELP.TXT is loaded into RAM 
and on-line help will be available from the resident 
debugger. The file must be in the current 
directory. 

The amount of memory required is the same as the 
size of the file. The file PSHELP.TXT is a normal 
ASCII text file. It can be edited as needed to add 
or remove help information. Be sure to leave the 
back-slashes and commands on a separate line and to 
end the file with a single back-slash. Two versions 

5-3 



of Periscope's help file are provided. PSHELP.TXT 
is the large version, containing syntax requirements 
and descriptions for each of Periscope's commands. 
PSHELP2.TXT is a much smaller version. containing 
syntax requirements and a short description for each 
command. To use the smaller help file. rename it to 
PSHELP.TXT and use the /H installation option. 

II:nn -- This option is used to allow access to 
user-written code from Periscope. The program must 
be a memory-resident routine that is already 
installed using an interrupt from 60H to FFH. It 
must meet the specifications as defined for the 
program USEREXIT.ASM in Chapter VIII. The two-digit 
hexadecimal number nn must be from 60H to FFH. 

11. -- This option enables the Sys Req key on the AT 
as an entry to Periscope. Sys Req will not work 
when interrupts are disabled -- try using the 
break-out switch in this case. 

Note that the CS:IP shown after using Sys Req to 
enter Periscope is the instruction after INT ISH in 
the keyboard handler (INT 9). To make PS.COM 
reloadable. this option does not pass interrupts on 
through to a previously installed interrupt handler. 
If you're using INT ISH for something else. do not 
use this option. Instead. modify your INT ISH 
handler to generate an INT 2 when Sys Req is 
pressed. Once this option is used. the use of Sys 
Req will activate Periscope. until the system is 
re-booted using a normal boot. since DOS does not 
modify INT ISH. 

/K -- This option enables the Shift-PrtSc keys as an 
entry to Periscope. Shift-PrtSc will not work when 
interrupts are disabled try using the break-out 
switch in this case. 

Note that the CS:IP shown after using Shift-PrtSc to 
enter Periscope is the instruction after INT 5 in 
the keyboard handler (INT 9). Once this option is 
used. the use of Shift-PrtSc will activate 
Periscope. until the system is re-booted using a 
normal boot. since DOS does not modify INT 5. 

The same effect can be achieved by using Periscope's 
move command -- 'M 0:8 L4 0:14'. If you're 
debugging software that uses the BOUND instruction. 
you should use /K so an exception won't cause your 
printer to print foreverl 

/L:nnnn -- Load Periscope's tables starting at the 
specified segment. Normally. Periscope's external 
tables and code are loaded as low as possible (just 

5-4 



after DOS). If you're debugging device drivers or 
other non-DOS programs, this option can be used to 
place Periscope's tables in an area of memory that 
is not corrupted by a short boot. The four-digit 
hexadecimal number is the segment where the tables 
should start. It must be greater than the current 
PSP plus 10H paragraphs and less than the top of 
memory minus 1000H paragraphs. For example, if the 
PSP is COOH and the top of memory is 5000H, the 
limits for this option would be CIOH through 4000H. 

IM:nnnn -- Set the protected memory segment to 
something other than COOOH. The four-digit 
hexadecimal number nnnn represents the segment to be 
used. Be sure that the segment used does not 
conflict with other memory installed in the system 
and that the desired segment is indicated by the DIP 
switches on the board. If you must change the 
default setting, be sure to carefully follow the 
memory switch setting procedures in Chapter III . 

• The '1M' installation option is not available for 
Periscope II. 

IP:nnn -- Set the protected memory ports to 
something other than 300H and 301H. The three-digit 
hexadecimal number nnn represents the lower of the 
two ports to be used. Be sure that the ports used 
do not conflict with other ports installed in the 
system and that the desired port is indicated by the 
DIP switches on the board. If you must change the 
default setting, be sure to carefully follow the 
port switch setting procedures in Chapter III. 

The architecture of the 8086 family supports 64K 110 
ports (0 through FFFFH), but the IBM PC and 
compatibles support only the first 1024 (3FFH) of 
these ports, many of which are reserved. The high 6 
bits are ignored, with the result that port 1200H is 
really 200H, etc . 

• The '/P' installation option is not available for 
Periscope II. 

IR:nn -- Set the size of the record definition table 
to something other than lK. This option is used 
when debugging programs with large DEF files and 
large resultant record tables. The one or two-digit 
hexadecimal number nn is the number of K desired. 
The number may be from zero to 20H K. Remember that 
the input is in hex! See the description in Chapter 
VIII of RS.COM, which determines the record table 
size required for a DEF file. 

IS:nn -- Set the size of the original or saved 

5-5 



screen buffer to something other than 4K. This 
option is ignored if the 1 A option is used. It is 
used when debugging programs that use the 
color-graphics adapter. It is only required for 
single-monitor systems where a 4K screen buffer is 
too small. The one or two-digit hexadecimal number 
nn is the number of K desired, from zero to 20H K. 
If you're using the standard color-graphics adapter, 
and need 16K, enter' 15:10'. Remember that the 
input is in hexl The maximum size allowable is 32K, 
using '/5:20'. Keep the number as small as 
possible, since each Trace or Go command has to copy 
this buffer twice. 

IT:nn -- Set the size of the symbol table to 
something other than 1K. This option is used when 
debugging programs with large MAP files and a large 
resultant symbol table. The one or two-digit 
hexadecimal number nn is the number of K desired. 
The number may be from zero to 3FH (63) K. Remember 
that the input is in hexl See Chapter VIII for 
information on TS.COM, which determines the symbol 
table size required for a MAP file and generates 
compact memory-image symbol files. 

IV:nn -- Indicate a BIOS interrupt vector that is to 
be left alone. Normally, when Periscope is 
activated, it temporarily resets the interrupt 
vectors it uses to their power-on default values. 
This is done to make Periscope as dependable as 
possible. When Periscope is exited, the interrupt 
vectors are restored to their values on entry. If 
you have a situation where you want Periscope to use 
your modified interrupt vectors while it is running, 
use the /V:nn option, where nn is the one or two 
digit hexadecimal interrupt number. The possible 
numbers are 8 (timer), 9 (keyboard), 10H (video), 
16H (keyboard I/O), 17H (printer), and 1CH (timer 
control). Note that each vector must be entered 
separately. For example, to leave vectors 10H and 
17H alone, use' IV:10 IV:17'. Periscope temporarily 
changes the Ctrl-Break vector (lBH), the DOS 
Ctrl-Break exit address (23H), and the DOS Fatal 
error vector (24H), but these changes cannot be 
overridden. 

/ W -- This option is used to set Periscope's 
windows. Periscope can window data, stack, 
register, and/or disassembly information. The 
window specification can be entered when PS.COM is 
run or from within Periscope. Once windows are 
established, the windowed data is displayed at a 
constant location on the screen and is updated after 
each command. 

5-6 



The format of the window specification is '/ W D:nn R 
S:nn U:nn', where' /W' indicates that windowing 
information follows. The t()kens D, R, S, and U 
indicate the type of data to be windowed. The 
tokens are optional and may be in any order. If a 
token is omitted, the corresponding type of 
information will not be windowed. The windows are 
displayed in the same order as the tokens are 
encountered in the input line. 

The 'D' window shows data in any of the display 
formats. The 'R' window shows register and flag 
information. The'S' window shows the current 
stack. The 'u' window shows disassembled 
instructions. 

':nn' defines the length of the window (in hex as 
with all other installation options). If no length 
is specified, a default will be used. The maximum 
length for anyone window is 10H (16) lines and the 
total area that can be windowed is 21 lines, 
including a separator line following each window. 
When a length specification is used, at least one 
space must follow the number. 

The default, minimum, and maximum lines for each of 
the four window types are: 

Default Minimum Maximum 

Data 4 1 1fJH (16) 
Register 2 2 2 
Stack 2 1 1fJH (16) 
Unasm 4 4 1fJH (16) 

/Z -- This option is used to keep Periscope from 
using any memory external to the Submarine board. 
It overrides other options that allocate memory 
outside of the 16K on the board. This option should 
be used only when necessary, since it greatly 
restricts Periscope's capabilities. 

+ The '/Z' installation option is not available for 
Periscope II. 

The installation options can be entered in any 
combination of upper and lower case. No spaces are 
required between entries, except after numbers in 
the window specification. Some examples follow: 

PS / A /W D:8 R U:8 -- Use two monitors and establish 
windows showing eight lines of data, two lines 

5-7 



(default) of register information, and eight lines 
of disassembly. 

PS IM:AOOO IP:31C IS:I0 -- Use memory in the screen 
buffer area (AOOO:OOOO to AOOO:3FFF) for the 
protected memory and use ports 31C and 31D for the 
write-protect ports. Reserve 16K to save the 
program's screen on a single-monitor system. 

PS IT:20 IV:I0 IH -- Reserve 32K for the symbol 
table, preserve the current INT 10H vector when 
Periscope is active, and load the on-line help file. 

The cumulative size of the external data areas can 
be from zero K (if the IZ option is used) to over 
128K. These buffers are located in normal RAM using 
the terminate and stay resident function of DOS. 
The protected memory on the Submarine board is used 
for the critical code and data areas of the resident 
debugger. 

If any errors are encountered dUring the 
initialization process, Periscope displays an error 
message and terminates. See Appendix A for an 
explanation of the error messages. It is possible 
to hang the system by specifying an invalid port or 
memory address or by setting the DIP switches 
incorrectly. 

Periscope should be installed via an AUTOEXEC.BAT 
file if you want to ensure its presence each time 
the system is booted. If you are not sure whether 
Periscope is installed, do not press the break-out 
switch -- try running RUN.COM instead. If Periscope 
is not installed, RUN will display an error message. 

Alternate Start-up Methods 

Periscope can be installed via a full-screen display 
that lets you choose among all possible options. To 
use this method, enter cpS II' when the DOS prompt is 
displayed. This full-screen method is 
self-explanatory. All 'information' messages are 
suppressed when this screen is used -- only error 
messages are displayed. When function key F9 is 
used, this full-screen display generates a response 
file named PS that can later be used to start 
Periscope with cpS @PS'. 

Normally, we recommend that you invoke PS.COM from 
an AUTOEXEC.BAT file. If you sometimes need 
different Periscope options for debugging different 
types of programs, the response file is for you. 
This file is an ASCII text file that contains any 

5-8 



PS.COM installation options. For example, if you 
create a file named C:STD that contains • Ib:4 Iv:10 
I a'. you can enter 'PS @C:STD' to load Periscope 
using the options found in the file named C:STD. 
You can use 'PS IC:17 @C:STD' to set the color 
attribute and then retrieve the options from the 
file named C:STD. Any options entered after a 
response file name are ignored. For example, 'PS 
@C:STD IC:17' would not set the color attribute. 
The file name used for a response file may be any 
legal file name. 

5-9 



5-10 



VI Using Periscope 
This chapter describes the use of the resident 
debugger, Periscope (PS.COM). The following topics 
are covered: 

• The quit options (Boot, Continue, Debug, Return to 
DOS, Short boot) 

• Keyboard usage 

• Debugger parameters 

• The debug commands 

The Quit Options 

When you use 'Q' to quit the debugger, Periscope's 
quit options are displayed. The prompt is: 

(XX) Normal boot (B), Continue (C), Debug (D), 
Return to DOS (R), or Short boot (S)? 

The first value in parentheses indicates the method 
that was used to activate Periscope. The possible 
values are: 

BR A monitor breakpoint was taken. 
GO A code breakpoint was taken. 
PI Parity error 1 (motherboard) occurred. 
P2 Parity error 2 (expansion memory) occurred. 
SW -- The break-out switch was pressed. Note: this 
also appears for Shift-PrtSc, Sys Req, and 80286 
exception interrupts 6 and DH. 
TR -- An instruction was traced. 

• When the Periscope II break-out switch is used, 
'P2' is shown instead of 'SW'. 

The normal boot (B) option performs the same 
function as Alt-Ctrl-Del, clearing all of user 
memory and resetting the standard interrupt vectors. 
This option can be used when the system is 
hopelessly confused or when you suspect that a 
runaway program may have incorrectly modified a 
critical area of memory. 

The continue (C) option returns control to the 
executing program after restoring the program's 
screen. If nothing is executing, i.e. the DOS 
prompt is displayed, control is returned to DOS. 
This method does not set any breakpoints. 

The debug (D) option is used to return to the 

6-1 



debugger. 

The return to DOS (R) option is used to abandon 
execution of the current program and return to DOS. 
Note that any open files will not be closed -- this 
can cause problems if the files have been updated. 
Also, any changes the program has made to interrupt 
vectors will not be backed out. 

The short boot (S) option is used to re-boot the 
system via Interrupt I9H. This method preserves 
most of RAM, including the interrupt vectors. Some 
sections of memory in the first 64K are overwritten 
by the boot record and DOS. This can cause problems 
for some memory-resident programs, such as a 
low-memory RAM disk. 

Keyboard Usage 

Since Periscope uses DOS functions only for the 
Load, Name, View, Unassemble Source, and Write 
commands, not all of the DOS editing capabilities 
are available when you're debugging a program. This 
section describes the editing capabilities that are 
implemented in Periscope. 

You may use the following keys to edit the 
previously entered command line: 

FI or Right Arrow -- copies one character from the 
previous command line into the current command line 
(same as DOS). 

F3 -- copies the remainder of the previous command 
line into the current command line. This key copies 
up to, but does not include the carriage return 
(same as DOS). 

F4 -- same as F3, except that a carriage return is 
added at the end of the command line. For 
repetitive corruJl.ands, you can use just one keystroke 
-- F4. 

Ins -- places the current command line into insert 
mode (same as DOS). 

Del -- deletes a character from the previous command 
line (same as DOS). 

Esc -- cancels the current command line (same as 
DOS). 

Backspace or Left Arrow -- deletes the current 
keystroke and backs up one character 

6-2 



Other keys are defined as follows: 

Ctrl-Break -- cancels the current command and 
returns to the debug prompt. 

Ctrl-PrtSc -- toggles printer echo of screen output 
on and off (same as DOS). Any control codes or 
special characters other than carriage return and 
line feed are suppressed. Only the non-windowed 
area of the screen is printed. 

Ctrl-S -- suspends output until another key is 
pressed. Use this key combination to keep 
information from scrolling off the screen too 
quickly. 

F6 -- pauses when the screen is full. To change the 
pause state, press F6 when the cursor is at the 
beginning of a command line. If pause is off, it is 
turned on and the message 'Pause on' is displayed. 
If pause is on, it is turned off and the message 
'Pause off' is displayed. 

When pause is on, the message 'Press any key' is 
displayed each time a single command fills the 
un-windowed area of the screen. This keeps the 
display from scrolling away too quickly, especially 
when most of the screen is being used for windows. 

F7 -- displays the current record definitions as 
read from a DEF file when RUN is started. If the 
cursor is at the beginning of a command line, all 
record definitions are displayed. You can display 
record definitions that start with a character 
sequence by entering the desired characters and then 
pressing F7. For example, to display all record 
definitions starting with 'PS', enter 'PS' at the 
start of a command line and press F7. Be sure not 
to enter any spaces before or after the search name. 

F8 -- displays the address and name of the symbol 
table entries as read from a MAP or PSS file when 
RUN is started. If the cursor is at the beginning 
of a command line, all symbols are displayed. You 
can display symbols that start with a character 
sequence by entering the desired characters and then 
pressing F8. For example, to display all symbols 
starting with the letter 'A'. enter 'A' at the start 
of a command line and press F8. Be sure not to 
enter any spaces before or after the search name. 

F9 -- same as Ctrl-S. 

FlO -- switches from the debugger screen to the 
program's screen if only one monitor is being used. 

6-3 



If two monitors are used and the / A option was used 
to install PS.COM, this key has no effect. To 
return to the debugger screen from the program's 
screen, press any key. 

Semi-colon -- This character is used as a pseudo 
carriage-return. Use it to enter multiple commands 
on one line. For example, if you're tracing through 
a program that requires repetitive Go and Fill 
commands, you could enter 'G @NEWPAGE;F @PAGENO L2 
0' to go to the line labeled NEWPAGE and fill memory 
starting at PAGENO. After the line has been entered 
once, you can use F4 to repeat it. 

Shift-PrtSc -- prints the entire screen to the 
parallel printer (same as DOS), except if the /K 
option was used when PS.COM was installed. Be 
careful if control codes have been displayed on the 
screen with the Display or Xlate commands -- use 
Ctrl-PrtSc to avoid output of control codes to the 
printer. 

Alt-Fl through Alt-FIO -- saves the current command 
line of up to 64 characters. Enter a command and 
press Alt and a function key to save the command for 
later recall. To get a carriage return after the 
saved command, enter a semi-colon as the last 
character of the command before saving it. Key 
assignments may be read from the DEF file -- see the 
description of RS.COM in Chapter VIII. 

Ctrl-Fl through Ctrl-FIO -- recalls the command line 
saved by Alt-Fn. The recall function can be used 
anywhere within a command. To easily remember the 
key usage, think of Alt-Fn as 'A'ssign and Ctrl-Fn 
as 'C'alI. 

Debugger Parameters 

The debugger is command driven. Input may be 
entered in upper or lower case. Either a space or a 
comma may be used to delimit parameters within a 
command. A delimiter is required when a 
sub-function is omitted, after a symbol, and between 
two numbers. 

Each command requires at least a single-character 
mnemonic. All but a few commands require additional 
input. 

The various parameters used by Periscope are defined 
below, in alphabetical order. Brackets ([ ]) in the 
command syntax are used to indicate an optional 
entry. (Note that brackets actually entered in a 

6-4 



command line are used to indicate that the address 
is to be used as a near pointer.) An ellipsis ( ... ) 
is used to indicate a repetitive entry. 

$ -- The dollar sign or 'here' indicator can be used 
with the Display commands to replace the display 
address and more easily display some types of data. 
It assumes a value equal to one more than the last 
byte previously displayed. For example, if you want 
to page through memory displaying 200H bytes at a 
time, you can use 'D $ L200' rather than having to 
specify an address each time. Similarly, the DR 
command can be used to display repeating record 
definitions. For example, 'DR $ .RECORD' can be 
used to display a repeating fixed-length record. 

<address> -- The address of a memory location. The 
address is composed of a segment and an offset, 
separated by a colon. Alternately, regi sters can be 
used for either or both numbers, or a valid symbol 
can be used for both the segment and offset. For 
some commands, the segment may be omitted. Possible 
addresses include 1000:1234, DS:SI, and @PRINT_LINE. 

<arithmetic operator> -- The arithmetic symbols +, 
-, *, and I, used for addition, subtraction, 
multiplication, and division, respectively. 

<byte> -- A one- or two-digit hexadecimal number 
from 0 to FF or an 8-bit register. 

<decimal number> -- A decimal number from 0 to 
65535. No punctuation is allowed. 

<drive> -- A single-digit number corresponding to a 
disk drive, where 0 equals drive A, 1 equals drive 
B, etc. 

<flag> -- A flag register. The possible values and 
two-character mnemonics are: 

FLAG SET (=1) CLEAR (=0) 

Overflow OV NV 
Direction ON (STD) UP (CLD) 
Interrupt E1 (ST!) D1 (CLI) 
Sign NG (negative) PL (positive) 
Zero ZR (zero) NZ (non-zero) 
Auxil iary carry AC NA 
Parity PE (even) PO (odd) 
Carry CY (STC) NC (CLC) 

<function> -- The debugger command, such as D 

6-5 



(Display memory), or U (Unassemble). 

<length> -- The number of bytes affected by a 
command. This may be represented by 'L nnnn' where 
nnnn is a hexadecimal number from 1 to FFFF. It may 
also be represented by a number following an 
address. In this case the length is calculated as 
the number plus one minus the offset. For example, 
'D CS:100 L 100' and 'D CS:100 IFF' (IFF plus 1 
minus 100) both have a length of 100H. 

A register name may be substituted for the number in 
either format. The current value of the register is 
used for the number. 

A symbol may also be used for the length argument. 
The segment associated with the symbol must be the 
same as the segment referenced in the preceding 
address and the offset must not be less than the 
offset referenced in the address. 

<list> -- A list of byte(s) and/or string(s). For 
example "03 'COMMAND COM' 12 34" is a list composed 
of a byte, a string, and two trailing bytes. 

<name> -- A file name, including drive, path, and 
extension as needed. 

<number> -- A one- to four-digit hexadecimal number 
from 0 to FFFF. If a register name is used, its 
current value is substituted for the number. 

<offset> -- The one- to four-digit hexadecimal 
number or register representing the offset into the 
specified segment. 

<port> -- The one- to four-digit hexadecimal number 
associated with an I/O port. 

<range> -- An address and a length. For example 
'CS:100 LIDO' and '0:0 FF' are ranges. Two symbols 
may be used if they both reference the same segment 
and if the offset of the second symbol is greater 
than or equal to the offset of the first symbol. 

<register> -- A machine register. The 16-bit 
registers are AX, BX, CX, DX, SP, BP, SI, DI, DS, 
ES, SS, CS, and IP. The 8-bit registers are AH, AL, 
BH, BL, CH, CL, DH, and DL. 

< sectors> -- Two hexadecimal numbers representing 
the starting relative sector number and the total 
number of sectors (max 80H). The sector numbering 
scheme is the one used by DOS interrupts 25H and 
26H. 

6-6 



< segment> -- A one- to four-digit hexadecimal number 
or register representing one of the four segment 
registers (Code. Data. Extra. or Stack). 

< string> -- A quoted list of ASCII characters. 
Either single or double quotes may be used to 
delimit the string. To enter a string containing an 
embedded quote. use the other form of quote to 
delimit the string. or enter two quotes where the 
single embedded quote is desired. 

< sub-function> -- The mnemonic used with most 
commands. For example. to display memory in word 
format. enter 'DW'. where 'W' is the sub-function. 
The sub-function must follow the function 
immediately -- no intervening spaces are allowed. 
This is necessary to differentiate between a 
sub-function and an address. For example. consider 
'DD' and 'D D'. The first command displays data in 
double word format starting at the current segment 
and offset. The second command displays data in the 
current format starting at offset D in the current 
segment. 

< symbol> -- A name corresponding to an address or a 
record definition. Symbols are loaded from a PSS or 
MAP file when the corresponding program is loaded by 
RUN. On entry. a symbol is always preceded by '@' 
or a period. For example. to disassemble memory 
starting at the symbol 'PRINT LINE'. enter 'U' 
@PRINT_LINE'. -

Symbols are also used to reference record 
definitions read from a DEF file. For example. to 
display the FCB. enter 'DR CS:5C @FCB'. 

<test> -- Used to compare two values. The possible 
tests are LT (less than). LE (less than or equal). 
EQ (equal). NE (not equal). GE (greater than or 
equal). and GT (greater than). 

U -- Brackets around an address are used to 
indicate that the offset is to be used as a near 
pointer to another offset within the specified 
segment. The trailing bracket is optional. For 
example. if the word at CS:250H contains 1234H. 'U 
[CS:250]' disassembles memory starting at CS:1234. 

U -- Braces around an address are used to indicate 
that the segment and offset are to be used as a far 
pointer to another segment and offset pair. The 
trailing brace is optional. For example. to 
disassemble INT lOH. enter 'U {O:40}'. This command 
uses the offset at O:40H and the segment at O:42H. 
which is interrupt vector lOH. 

6-7 



The Debugger Commands 

The debugger commands are described on the following 
pages. 

The code and data areas needed to execute essential 
Periscope commands are stored in the protected 
memory. These commands are always available and 
show a type of Internal in the following 
descriptions. The code needed to execute 
non-critical commands and the error messages are 
stored in normal RAM (unless the /Z option is used 
when Periscope is installed). These commands show a 
type of External in the following descriptions. 
Before executing an external command, Periscope 
performs a checksum to verify that the memory has 
not been modified. If the memory has been 
corrupted, Error 26 is displayed. To reload a 
corrupted external code area, execute RUN.COM. 

+ For Periscope II, all of Periscope's code and data 
areas are in normal RAM, so all commands are 
considered External. No checksum or reload 
facilities are available for Periscope II, so it is 
possible for its code to be corrupted by a runaway 
program. 

Command: Help 

Syntax:? [<function) < sub-function>] 

Type: External 

Description: This command displays the debugger 
commands by function and sub-function if the on-line 
help file has been loaded. If the help file is not 
available. a command summary is displayed. If 
external functions are not available, Error 26 is 
displayed. 

Examples: 

"?' displays a command summary. 

'? DD' displays help for the Display Double word 
command if the on-line help file has been loaded. 

6-8 



Command: Assemble to memory 

Syntax: A [<address>] 

Type: External 

Description: This command assembles instructions to 
memory. 

To use the in-line assembler, enter 'A [<address>]' 
when Periscope's prompt is displayed and press 
return. The assemble address is then displayed. If 
no address is specified, CS:IP is used. Enter the 
instructions to be assembled and press return. To 
terminate the assembly, press return when the cursor 
is at the beginning of a new line. 

The assembler supports all of the 8086, 8088, 80186, 
and real-mode 80286 opcodes. The protected-mode 
opcodes of the 80286 are not sUpported. If a prefix 
instruction such as a segment override or a repeat 
prefix is used, it must be on a separate line 
preceding the instruction it affects. Various forms 
of the opcodes are supported, including synonyms 
such as JE and JZ, etc. There are two special cases 
-- string primitives such as MOVS must explicitly 
reference a byte or word (MOVSB or MOVSW) and a far 
return must be entered as RETF. 

Jump or call instructions generate the shortest form 
of call for the address specified. When referencing 
memory, be sure to use brackets around the address 
field to differentiate it from a direct reference. 

When using symbols, the symbol name must be preceded 
by '@' or a period. If you are referencing the 
contents of a symbol, be sure to put the symbol name 
in brackets -- e.g., MOV AX,[@PAGENO]. To get the 
offset of a symbol into a register, do not use the 
brackets e.g., MOV AX,@PAGENO. Symbols may also 
be used as arguments to JMPs and CALLs. 

For instructions that require the phrase 'byte ptr' 
or 'word ptr' to specify the width of the operation, 
use 'b' or 'w', in upper or lower case, instead. 

Example: To assemble an instruction at 1234:5678 to 
jump to the symbol @NEW PAGE, enter 'A 1234:5678' 
and press return. Then enter 'JMP @NEW PAGE' and 
press return. Press return again to exit the 
in-line assembler. 

6-9 



Command: Assemble then Unassemble 

Syntax: AU [<address>] 

Type: External 

Description: This command is the same as the 
Assemble command described previously. except that 
it disassembles an instruction immediately after 
assembling it. 

This immediate feedback was originally used to debug 
the in-line assembler. We left it in Periscope 
since users reacted positively to it. 

Example: To assemble an instruction at CS:IP to move 
the value of the symbol .TOTMEM to register AX, 
enter 'AU' and press return. Then enter 'MOV 
AX, [.TOTMEM] , and press return. The instruction is 
disassembled and then the next prompt is displayed. 
Press return again to exit the in-line assembler. 

6-10 



Command: Display Breakpoints 

Syntax: BA ? BB ? BC ? BI ? BL ? BM ? BP ? BR 
? BU ? or B W ? 

Type: External 

Description: These commands display the current 
breakpoints. The question mark is required only 
when multiple breakpoint functions are being 
performed with one command. 

A leading minus sign indicates that the breakpoint 
is disabled. The sub-function indicates the 
breakpoint group to be displayed as follows: 

A -- display All breakpoints 
B -- display Byte breakpoints 
C -- display Code breakpoints 
I -- display the Interrupt breakpoint status 
L -- display the source code Line breakpoint status 
M -- display Memory breakpoints 
P -- display Port breakpoints 
R -- display Register breakpoints 
U -- display User breakpoints 
W -- display Word breakpoints 

Examples: 

Assume that a Byte breakpoint had been set. for the 
symbol LINE COUNT equal to 38H and that a Register 
breakpoint had been set for CX less than 5. 

'BB' displays 'BB LINE_COUNT EQ 38'. 

'BR ?' displays 'BR CX LT 0005'. 

'BA ?' displays both of the above breakpoints. 

6-11 



Command: Clear Breakpoints 

Syntax: BA ", BB ", BC ", BI ", BL ", BM ., BP •• BR 
", BU ., or BW • 

Type: External 

Description: These commands clear the current 
breakpoints. 

The monitor breakpoints and sticky code breakpoints 
are remembered until they are cleared. The 
sub-function indicates the breakpoint group to be 
cleared as follows: 

A clear All breakpoints 
B clear Byte breakpoints 
C clear Code breakpoints 
I -- clear the Interrupt breakpoint 
L clear the source code Line breakpoint 
M clear Memory breakpoints 
P clear Port breakpoints 
R clear Register breakpoints 
U clear User breakpoints 
W -- clear Word breakpoints 

Examples: 

Assume that a Byte breakpoint had been set for the 
symbol LINE COUNT equal to 38H and that a Register 
breakpoint had been set for CX less than 5. 

'BB ", clears the Byte breakpoint. 

'BR ", clears the Register breakpoint. 

'BA ", clears All breakpoints. 

6-12 



Command: Enable Breakpoints 

Syntax: BA +, BB +, BC +, BI +, BL +, BM +, BP +, BR 
+, BU +, or BW + 

Type: External 

Description: These commands enable the current 
breakpoints. 

Enabled breakpoints are used when the G or GT 
command is entered. When enabled, the breakpoint 
display does not show a leading minus sign before 
the breakpoint. The sub-function indicates the 
breakpoint group to be enabled as follows: 

A -- enable All breakpoints 
B -- enable Byte breakpoints 
C -- enable Code breakpoints 
I -- enable the Interrupt breakpoint 
L -- enable the source code Line breakpoint 
M -- enable Memory breakpoints 
P enable Port breakpoints 
R -- enable Register breakpoints 
U -- enable User breakpoints 
W -- enable Word breakpoints 

Examples: 

Assume that a Byte and a Port breakpoint had been 
set and then disabled. 

'BP +' enables the Port breakpoint(s). 

'BB +' enables the Byte breakpoint(s). 

'BA +' enables All breakpoints. Note that the 
Interrupt and Line breakpoints are enabled only if 
they have been previously turned on with 'BI +' or 
'BL +' and then disabled. 

6-13 



Command: Disable Breakpoints 

Syntax: BA -, BB -, BC -, BI -, BL - BM - BP - BR 
-, BU -, or BW -

Type: External 

Description: These commands disable the current 
breakpoints. 

Disabled breakpoints are ignored when the G or GT 
commands are used. When RUN.COM is used, all 
breakpoints are disabled to prevent possible 
interference with the new program. Use the enable 
breakpoint command to enable the desired 
breakpoints. 

When disabled, the breakpoint display shows a 
leading minus sign before the breakpoint. The 
sub-function indicates the breakpoint group to be 
disabled as follows: 

A -- disable All breakpoints 
B -- disable Byte breakpoints 
C -- disable Code breakpoints 
I -- disable the Interrupt breakpoint 
L -- disable the source code Line breakpoint 
M -- disable Memory breakpoints 
P disable Port breakpoints 
R -- disable Register breakpoints 
U -- disable User breakpoints 
W -- disable Word breakpoints 

Examples: 

Assume that a Byte and a Port breakpoint have been 
set. 

'BP 'disables the Port breakpoint{s). 

'BB 'disables the Byte breakpoint{s}. 

'BA 'disables All breakpoints. Note that the 
Interrupt and Line breakpoints are disabled only if 
they have been previously turned on. 

6-14 



Command: Breakpoint on Byte 

Syntax: BB <address> <test> <byte> [ ... J 

Type: External 

Description: This command is used to set a 
breakpoint when a byte of memory meets a test. 

Up to eight breakpoints may be set at one time. If 
a segment is not specified in the address, the 
current data segment is used. If any of the tests 
pass, a breakpoint is taken. To trace execution 
with this breakpoint enabled, the GT command must be 
used. This breakpoint stops execution of a program 
on the instruction following the instruction that 
changed the specified byte of memory. Multiple 
breakpoints may be set on a single input line. The 
breakpoint clear, display, enable, and disable 
functions may also be present on the line. After 
being set, these breakpoints are remembered until 
they are cleared. 

Examples: 

'BB .LINE COUNT EQ 38' sets a Byte breakpoint for 
the memoi=y location corresponding to LINE_COUNT. 

iBB If 05:123 GT FO ?' clears all Byte breakpoints, 
sets one, and then displays the Byte breakpoint. 

6-15 



Command: Breakpoint on Code 

Syntax: BC < address> [ ... J 

Type: External 

Description: This command is used to set a 
breakpoint when an instruction is executed. 

It performs the same function as addresses entered 
after the Go command. except that these breakpoints 
are remembered or sticky. If a segment is not 
specified in the address. CS is presumed. Either 
the G or GT command may be used to enable Code 
breakpoints. This breakpoint stops execution of a 
program before the instruction at the specified 
address is executed. Multiple breakpoints may be 
set on a single input line. The breakpoint clear. 
display. enable. and disable functions may also be 
present on the line. See the Go command for more 
information. 

Examples: 

'BC @PRINT LINE' sets a Code breakpoint for the 
memory location corresponding to PRINT_LINE. 

'BC * CS:123 ?' clears all Code breakpoints. sets 
one. and then displays the Code breakpoint. 

6-16 



Command: Breakpoint on Interrupt 

Syntax: BI + 

Type: External 

Description: This command is used to set a 
breakpoint when a software interrupt is executed. 

This breakpoint is used to get to the next 
instruction that performs an interrupt. Use this 
breakpoint to watch the software interrupts 
performed by a program. After setting the Interrupt 
breakpoint, use GT to execute to the next interrupt. 

Note that 'BI +' must be used to turn on Interrupt 
breakpoints for the first time -- 'BA +' (enable all 
breakpoints) will enable the Interrupt breakpoint 
only if it has been previously turned on and then 
disabled. After being set, this breakpoint is 
remembered until it is cleared. 

Example: 'BI +' turns the Interrupt breakpoint on so 
that a subsequent GT command will stop when the next 
'INT xx' instruction is reached. 

6-17 



Command: Breakpoint on Line 

Syntax: BL + 

Type: Externa 1 

Description: This command is used to set a 
breakpoint when a source code line is executed. 

This breakpoint is used to get to the next 
instruction that corresponds to a source line of a 
high-level language program. If your program is 
executing and you press the break-out switch, 
chances are very good that the program will be 
stopped in DOS, BIOS, or in a library routine. This 
breakpoint is a convenient method of getting back to 
the source program. It requires source line numbers 
to be in the symbol table -- symbols added with the 
ES command will not suffice. After setting the Line 
breakpoint, use GT to execute to the next source 
line. 

Note that 'BL +' must be used to turn on Line 
breakpoints for the first time -- 'BA +' (enable all 
breakpoints) will enable the Line breakpoint only if 
it has been previously turned on and then disabled. 
After being set, this breakpoint is remembered until 
it is cleared. 

Example: 'BL +' turns the Line breakpoint on so that 
a subsequent GT command will stop when the next 
instruction that corresponds to a source code line 
is reached. 

6-18 



Command: Breakpoint on Memory 

Syntax: BM <address> <address> C andlor R andlor W 
[ ... J 

Type: External 

Description: This command is used to set a 
breakpoint when a range of memory will be executed, 
read andlor written. 

The two addresses may have different segments, but 
the second address must not be lower in memory than 
the first address. If a segment is not specified in 
the address, the current data segment is used. Up 
to eight breakpoints may be set at one time. The 
'C' breakpoint will occur only if CS:IP is in the 
specified range. The read or write breakpoints will 
occur only if a read or write starts in the 
specified range. If any of the tests pass, a 
breakpoint is taken. To trace execution with this 
breakpoint enabled, the GT command must be used. 
This breakpoint stops execution of a program on the 
instruction that will execute. read or write the 
specified range of memory. Multiple breakpoints may 
be set on a single input line. The breakpoint 
clear, display. enable, and disable functions may 
also be present on the line. After being set, these 
breakpoints are remembered until they are cleared. 

Examples: 

'BM @DATASTART @DATAEND W' sets a Memory breakpoint 
for memory from DATASTART thru DATAEND. Any 
instruction that writes to this range of memory 
causes a breakpoint to be taken, before the 
instruction is executed. 

'BM IE SS:SP SS:FFFF RW ?' clears all Memory 
breakpoints, sets a breakpoint to trap any reads or 
writes to the memory from SS:SP (the current stack 
position) to SS:FFFF (the top of the stack segment), 
and displays the Memory breakpoint. 

6-19 



Command: Breakpoint on Port 

Syntax: BP <port> <port> I and/or 0 [ ... ] 

Type: External 

Description: This command is used to set a 
breakpoint when a range of I/O ports will be read 
and/or written as the result of an instruction. 

The second port must be greater than or equal to the 
first port. Up to eight breakpoints may be set at 
one time. A breakpoint will occur only if an IN or 
an OUT occurs to a port in the specified range. If 
any of the tests pass, a breakpoint is taken. To 
trace execution with this breakpoint enabled, the GT 
command must be used. This breakpoint stops 
execution of a program on the instruction that will 
read or write the specified range of ports. 
Multiple breakpoints may be set on a single input 
line. The breakpoint clear, display, enable, and 
disable functions may also be present on the line. 
After being set, these breakpoints are remembered 
until they are cleared. 

Examples: 

'BP 310 31F I' sets a Port breakpoint for ports from 
310 to 31F. Any instruction that reads from this 
range of ports causes a breakpoint to be taken, 
before the instruction is executed. 

'BP If 304 304 0 ?' clears all Port breakpoints, sets 
a breakpoint to trap any writes to port 304, and 
displays the Port breakpoint. 

6-20 



Command: Breakpoint on Register 

Syntax: BR <register> <test> <number> [ ... J 

Type: Externa 1 

Description: This command is used to set a 
breakpoint when a register meets a test. 

Up to one test per register may be set at one time. 
If any of the tests pass, a breakpoint is taken. To 
trace execution with this breakpoint enabled, the GT 
command must be used. This breakpoint stops 
execution of a program on the instruction following 
the instruction that changed the specified register. 
Multiple breakpoints may be set on a single input 
line. Any of the 16-bit or 8-bit registers may be 
used. The breakpoint clear, display, enable, and 
disable functions may also be present on the line. 
After being set, these breakpoints are remembered 
until they are cleared. 

Examples: 

'BR ex EQ 0123' sets a breakpoint when register ex 
is equal to 123H. 

'BR * ES NE DS ?' clears all Register breakpoints, 
sets one, and then displays it. Note that DS is 
used for its current value only. 

6-21 



Command: Breakpoint on User test 

Syntax: BU <number> [ ... J 

Type: External 

Description: This command is used to enable a 
user-written breakpoint. 

The User breakpoints permit breakpoint tests not 
provided by Periscope. The number may vary from 1 
to 8, indicating one of eight possible User 
breakpoints. To use this breakpoint, a program 
similar to USEREXIT.ASM as described in Chapter VIII 
must be installed before PS.COM is run. Also, the 
/1 installation option must be used when PS.COM is 
run. On return from the user routine, register AL 
is set to 1 if a breakpoint is to be taken. Any 
other value causes no breakpoint to be taken. Note 
that any other breakpoints currently set may cause a 
breakpoint to be taken. 

The first User breakpoint in the sample program 
USEREXIT.ASM is used to set a breakpoint when DOS is 
available for file I/O. If you need to perform DOS 
functions after pressing the break-out switch, this 
User breakpoint will come in handy. 

Multiple breakpoints may be set on a single input 
line. The breakpoint clear, display, enable, and 
disable functions may also be present on the line. 
After being set, these breakpoints are remembered 
until they are cleared. 

Examples: 

Assuming that a user-written interrupt handler has 
been installed using INT 60H and that PS.COM had the 
'/1:60' installation option, 'BU l' enables User 
breakpoint number 1. 

'BU 9' returns an error since the User breakpoint 
range is from one to eight. 

6-22 



Command: Breakpoint on Word 

Syntax: BW <address> <test> <number> [ ... J 

Type: External 

Description: This command is used to set a 
breakpoint when a word of memory meets a test. 

Up to eight breakpoints may be set at one time. If 
a segment is not specified in the address, the 
current data segment is used. If any of the tests 
pass, a breakpoint is taken. To trace execution 
with this breakpoint enabled, the GT command must be 
used. This breakpoint stops execution of a program 
on the instruction following the instruction that 
changed the specified word of memory. Multiple 
breakpoints may be set on a single input line. The 
breakpoint clear, display, enable, and disable 
functions may also be present on the line. After 
being set, these breakpoints are remembered until 
they are cleared. 

Examples: 

'BW @CHAR COUNT EQ 1234' sets a Word breakpoint for 
the memory-location corresponding to CHAR_COUNT. 

'BW * DS:123 GT SI ?' clears all Word breakpoints, 
sets one, and then displays it. Note that SI is 
used for its current value only. 

6-23 



Command: Compare 

Syntax: C <range> <address> 

Type: Internal 

Description: This command is used to compare two 
blocks of memory a byte at a time. 

If any differences are found, the address and value 
of the first byte and the value and address of the 
second byte is displayed. Nothing is displayed for 
bytes that match. Since this command accepts two 
addresses as input, the two blocks of memory may be 
in different segments. If no segment is input, the 
current data segment is used. The length parameter 
indicates how much memorY is to be compared. 

Assume that you want to compare memory location 
3000:0000 with 3000:0010 for 8 bytes. Enter 'c 
3000:0 L 8 3000:10'. The result might be: 

3000:0000 88 00 3000:0010 
3000:0001 02 66 3000:0011 
3000:0003 04 27 3000:0013 

The above display shows three bytes that were 
different. Each line shows the first address, the 
value of the first address, the value of the second 
address, and the second address. Since the other 
five lines were not displayed, the values of these 
bytes were the same. 

Examples: 

'C DS:SI L 100 ES:DI' compares tOOH bytes starting 
at DS:SI with 100H bytes starting at ES:DI. 

'C 123 L CX 456' compares memory starting at DS:123 
with memory s"tarting at DS:456. The number of bytes 
compared is the current value of register CX. 

'C @FCB1 L 25 @FCB2' compares memory starting at the 
symbol FCB1 with memory starting at the symbol FCB2 
for 25H bytes. 

6-24 



Command: Display using current format 

Syntax: D [<range>] 

Type: Internal 

Description: This command is used to display a block 
of memory in the current display format. 

When Periscope is installed, Display defaults to a 
Byte format. Subsequent Display commands use the 
most recent explicit format. See both the 
descriptions of the various display formats on the 
following pages as well as the information 
applicable to all display formats in the next 
paragraphs. 

The syntax for all of the Display commands except DE 
and DR is very flexible. If you enter 'Dx', where x 
is the sub-function, memory is displayed starting 
where the last Display command left off. If you 
enter 'Dx <number>' the number is presumed to be an 
offset, the segment is presumed to be DS, and the 
length is presumed to be 80H. If you enter 'Dx 
<number> <length>' the number is presumed to be an 
offset, and the segment is presumed to be DS. 

When display information is not shown in a window 
and one or more lines in the middle of the display 
are found to be mUltiple occurrences of the ·same 
number, the line(s) are suppressed and a message of 
the form 'II NNNN LINES OF XX SKIPPED II' is displayed 
in place of the line(s). NNNN is the number (in 
hex) of lines skipped and XX is the byte value found 
in all bytes in all of the skipped lines. 

6-25 



Command: Display using ASCII format 

Syntax: DA [<range>] 

Type: Internal 

Description: This command is used to display a block 
of memory in ASCII. 

Each line of the display shows the starting segment 
and offset and up to 64 bytes of ASCII characters. 
All characters are displayed as is, except for the 
control characters nul, backspace, tab, carriage 
return, and line feed. Nuls are converted to spaces 
and the other three control characters are converted 
to periods. A new line is started when a CR/LF is 
found. If a tab character is found, the output 
position is moved to the next tab stop. 

For example, if you enter 'DA @TEXT' the display 
might look like this: 

1350:0200 Periscope is a full-featured symbolic debugger, system monitor a 
1350:0240 nd "break-out" .. 
1350:0250 switch for the IBM PC, XT, AT, and compatibles. 

Examples: 

'DA' displays memory starting where the last Display 
command left off. 

"DA @FILENAME L20' displays memory starting at the 
symbol FILENAME for a length of 20H bytes. 

"DA ES:DI' displays memory starting at ES:DI for a 
length of 80H. 

6-26 



Command: Display using Byte format 

Syntax: DB [<range>] 

Type: Internal 

Description: This command is used to display a block 
of memory in hex and ASCII. 

Each line of the display shows the starting segment 
and offset, up to 16 bytes, and their ASCII 
representation. 

A dash is displayed between the eighth and ninth 
bytes for readability. If a display is not started 
on a paragraph boundary (i.e., the memory address is 
not evenly divisible by 16), a short line is 
displayed for the first line. Similarly, if the 
display does not end on a paragraph boundary, the 
last line will be a short line. 

For the ASCII display, the high-order bit is 
ignored, i.e., a byte whose value is greater than 
80H has 80H (128) subtracted from it before being 
displayed. Also, any bytes from zero to IFH are 
displayed as periods. 

For example, if you enter 'DB 0:0 L 20' or 'DBO:O 
IF' the display might look like this: 

~~~0:0~~0 5E ~3 3F ~8 50 ~B F~ BF-62 ~B F~ BF 67 0B F~ BF .. ?].p?b.p?g.p? 
~00~:0010 EO 01 7~ ~~ 54 FF ~~ F~-62 0B F0 SF ~5 1800 FO m.p.T .. pb.p? .. p 

Examples: 

'DB' displays memory starting where the last Display 
command left off. 

'DB @LINE COUNT L l' displays the byte at the symbol 
LINE_COUNT. 

'DB ES:DI' displays memory starting at ES:DI for a 
length of 80H. 

6-27 



Command: Display using Double word format 

Syntax: DD [<range>] 

Type: Internal 

Description: This command is used to display a block 
of memory in double word format. 

This format is useful for examining data that is 
stored as a word offset followed by a word segment. 
Each line of the display shows the starting segment 
and offset and up to 4 pairs of segments and 
offsets. If the number of bytes displayed is not 
evenly divisible by 16. the last line will be a 
short line. 

For example. if you enter 'DD 0:0 L 20' or 'DDO:O 
IF' the display might look like this: 

0000:0000 083F:03SE BFF8:8BSD BFF8:8B62 BFF8:8B67 
0000:0010 0070:81ED F808:FFS4 BFF8:8B62 F808:188S 

Examples: 

'DD' displays memory starting where the last Display 
command left off. 

'DD 0:0 L 20' displays the interrupt vectots 0 
through 7. 

'DD @VECTORLIST' displays memory starting at the 
symbol VECTORLIST. 

6-28 



Command: Display Effective address 

Syntax: DE 

Type: Internal 

Description: This command is used to display the 
effective address of any reads or writes performed 
by the current instruction. It has no arguments. 

The display shows the address of any reads or writes 
performed by the instruction at CS:IP. The display 
is always in byte format. This display mode is best 
used with a Data window -- the window will display 
the current effective address automatically before 
each instruction is executed. 

If the current instruction reads memory, the 
effective address of the read is shown. If the 
instruction writes memory, the effective address of 
the write is shown. If the instruction reads and 
writes memory, only the read address is shown. 

Examples: 

If the current instruction is 'LODSB', the DE 
command displays memory in byte format starting at 
the read address, DS:SI. 

If the current instruction is 'MOV [0123],AX', the 
DE command displays memory starting at DS:123H. 

If the current instruction is 'MOVSW', the DE 
command displays memory starting at DS:SI but does 
not display the write address of ES:DI. 

6-29 



Command: Display using Integer format 

Syntax: D! [<range>] 

Type: Internal 

Description: This command is used to display a block 
of memory in unsigned integer (word) format. 

This format is useful for examining data that is 
stored as an unsigned word integer. Each line of 
the display shows the starting segment and offset 
and up to 8 decimal numbers. The number displayed 
may be from zero to 65535. If the number of bytes 
displayed is not evenly divisible by 16, the last 
line will be a short line. 

For example, if you enter 'D! DS:SI L 20' the 
display might look like this: 

15E6: 1£100 1 2 3 4 32764 32765 32766 32767 
15E6:1010 32768 32769 32770 32771 65532 65533 65534 65535 

Examples: 

'D!' displays memory starting where the last Display 
command left off. 

'D! DS:SI L 20' displays memory starting at DS:SI 
for a length of 20H bytes. 

'D! @ARRAY' displays memory starting at the symbol 
ARRAY. 

6-30 



Command: Display using Number format 

Syntax: DN [<range>] 

Type: Internal 

Description: This command is used to display a block 
of memory in signed integer (word) format. 

This format is useful for examining data that is 
stored as a signed word integer as used by BASIC and 
other languages. Each line of the display shows the 
starting segment and offset and up to 8 decimal 
numbers. The decimal numbers shown may vary from 
zero to 32767 (OH to 7FFFH) and from -32768 to -1 
(8000H to FFFFH). If the number of bytes displayed 
is not evenly divisible by 16, the last line will be 
a short line. 

For example, if you enter 'DN DS:SI L 20' the 
display might look like this: 

15E6:1000 +1 +2 +3 +4 +32764 +32765 +32766 +32767 
15E6:1010 -32768 -32767 -32766 -32765 -4 -3 -2 -1 

Examples: 

'DN' displays memory starting where the last Display 
command left off. 

'DN DS:SI L 20' displays memory starting at DS:SI 
for a length of 20H bytes. 

'DN @ARRAY' displays memory starting at the symbol 
ARRAY. 

6-31 



Command: Display using Record format 

Syntax: DR <address> <symbol> 

Type: Internal 

Description: This command is used to display a block 
of memory in an easy-to-read format using a 
previously-created record definition. 

This format is useful for examining data that is 
part of a record, such as the PSP or a FCB. Each 
line of the display shows a field name and the data 
for the field in any format supported by Periscope. 
Any area of memory can be displayed using any record 
definition. 

To use a record format, a record definition, or DEF 
file must exist. The program loader, RUN.COM, loads 
the record definitions from the DEF file. You can 
add record definitions using a text editor. See the 
sample file PS.DEF and the description of RS.COM in 
Chapter VIII. The following definition of the PSP 
is from the file PS.DEF. 

\PSP 
Int 20,b,2 
Top Mem,w,2 
Reserved,b,1 
Long Call, b, 1 
DDS Func,d,4 
Terminate,d,4 
Ctrl-Break,d,4 
Error,d,4 
DOS Use,b,1S 
Environ,w,2 
DOS Use,b,2e 
PSP1,b,10 
PSP2,b,14 

Program Segment Prefix 
DOS return 
Amaunt of memory in paragraphs 
Reserved for DDS 
Long call to DDS function dispatcher 
CS:IP of DDS function dispatcher 
CS:IP of DOS terminate address 
CS:IP of Ctrl-Break exit address 
CS:IP of critical error exit address 
Reserved for DDS 
DOS 2.00 Environment segment 
Reserved for DOS 
The first PSP read from the command line 
The second PSP read from the command line 

Assuming that the definition for the PSP record has 
been loaded, enter 'DR CS:O @PSP' to get a display 
similar to the following: 

Int 20 CD 20 
Top Mem 5000 
Reserved 00 
Long Call 9A 
DOS Func F01D:FEF0 
Terminate 0B42:012C 
Ctrl-Break 0B42:0139 
Error 0B42:0481 

M 

6-32 



DOS Use 

Environ 
DOS Use 

PSP1 
PSP2 

42 ~B ~1 ~1 ~1 ~~ ~2 FF FF FF FF FF FF FF FF FF 
FF FF FF FF FF FF 
125B 
E2 FF 61 12 14 ~~ 18 ~~ 61 12 ~~ ~~ ~~ ~~ ~~ ~~ 
* ~~~1 LINES OF ~~ SKIPPED * 
~~ ~~ CD 21 CB ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ 
~~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ ~~ ~~ ~~ ~~ 
~~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ 2~ ~~ ~~ ~~ ~~ 
tltl ~tl ~~ ~~ 

B •••••••••.•.••. 

•• MIK ••••••••• 

The syntax for this command is less flexible than 
that of the other Display commands. You must enter 
an address and a record name. The address should 
include a segment, since the address used for this 
command is kept separate from the address used for 
the other Display commands. 

Examples: 

Assume that the records PSP and FCB are defined (as 
in the file PS.DEF). 

'DR CS:O @PSP' displays the PSP, using memory 
starting at CS:O. 

'DR CS:5C @FCB' displays the first FCB in the PSP, 
which starts at CS:5C. 

'DR @FCBl @FCB' displays the FCB starting at the 
address referenced by the symbol FCBl. Note that 
the symbol table is used for the first symbol and 
the record definition table is used for the second 
symbol. 

6-33 



Command: Display using Word format 

Syntax: DW [<range>] 

Type: Internal 

Description: This command is used to display a block 
of memory in word format. 

This format is useful for examining data that is 
stored as words rather than as bytes. It reverses 
out the 'back words' style of storage used by the 
8086 family. Each line of the display shows the 
starting segment and offset and up to 8 words. If 
the number of bytes displayed is not evenly 
divisible by 16, the last line will be a short line. 

For example, if you enter 'DW 0:0 L 20' or 'DWO:O 
IF' the display might look like this: 

0000:0000 035E 083F 0B50 BFF0 0B62 BFF0 0B67 BFF0 
0000:0010 01EO 0070 FF54 F000 0B62 BFF0 1805 F000 

Examples: 

'DW' displays memory starting where the last Display 
command left off. 

'DW SS:SP FFFF' displays the stack from SS:SP to the 
top of the stack segment. 

'DW @POINTER' displays memory starting at the symbol 
POINTER. 

6-34 



Command: Enter 

Syntax: E <address> [<list>] 

Type: External 

Description: This command is used to modify memory. 

The segment and offset must be specified for the 
address, to avoid accidental changes to memory. 

If the optional list is present, the specified 
memory is modified and the command terminates. If 
the list is not present, an interactive mode is 
started. This mode allows you to examine and 
optionally modify individual bytes starting at the 
specified address. 

For example, if you enter 'E 2000:123' and press 
return, the interactive mode is started. The 
program displays the address and the current value 
of the byte as '2000:0123 xx.', where xx is the 
current value. To modify this value, enter the hex 
number (0 through FF). Any invalid input, such as 
'G9' or too many digits is not echoed. 

Press the space bar to skip to the next byte. Press 
the hyphen key to back up one byte. The backspace 
key is used to discard a single digit. Use the 
return key to terminate the interactive mode. Note 
that the interactive mode is not compatible with the 
multiple command capability of Periscope -- i.e., 
you cannot use semi-colons to 'stack' multiple 
commands on one line. 

When moving forward with the space bar, a new line 
is started when the address is evenly divisible by 
eight. When moving backward with the hyphen key, 
each address is on a new line. 

Examples: 

'E CS:5C 0 "FILENAMEEXT", modifies the value of 
CS:5C through CS:67 to contain a binary zero and the 
string 'FILENAMEEXT'. 

'E 404:100' starts the interactive mode and displays 
'0404: 100 80.'. To change this value to 88H. type 
88. To display the next byte, press the space bar. 
To change the byte at offset 104H to 0, enter 0 when 
the byte is displayed. To back up to offset 102H, 
press the hyphen key as many times as needed to get 
back to it. When you've finished your changes, 
press the return key. 

6-35 



Command: Enter Symbol 

Syntax: ES <address> <symbol> 

Type: External 

Description: This command is used to define or 
redefine symbol table entries. 

A segment and offset must be specified for the 
address. The symbol name must 16 characters or less 
and must be preceded by '@' or a period. The symbol 
table is searched for a symbol of the same name. If 
an existing symbol is found, the segment and offset 
associated with it are updated. If no match is 
found, a new symbol is added at the end of the 
symbol table. 

Examples: 

'ES CS:I00 @START' defines a symbol named START to 
have a segment equal to the current value of CS and 
an offset of 100H. 

'ES ES:DI @OUTDATA' defines a symbol named OUTDATA 
to have a segment and offset equal to the current 
values of ES and DI, respectively. 

6-36 



Command: Fill 

Syntax: F <range> <list> 

Type: Internal 

Description: This command is used to fill a block of 
memory with a byte/string pattern. 

A segment and offset must be specified for the 
address, to avoid accidental changes to memory. The 
length specifies the number of bytes to be affected. 
The list is the pattern that is copied into the 
specified range of memory. If the length of the 
list is less than the length of the range specified, 
the list is copied as many times as needed to fill 
the range. Conversely, if the length of the list is 
greater than the length of the range, the extra 
bytes are not copied. 

Examples: 

'F ES:O L 1000 0' writes binary zeroes to memory 
starting at ES:O for a length of 1000H bytes. 

'F DS:SI L CX "test'" writes the string 'test' to 
memory starting at DS:SI. If CX is 3, only 'tes' is 
copied. If CX is 8, 'test' is copied exactly two 
times, etc. 

'F @ARRAY @ENDARRAY 0' zeroes memory from the symbol 
ARRAY up to and including the symbol ENDARRAY. 

6-37 



Command: Go 

Syntax: G [<address>] [ ... ] 

Type: Internal 

Description: The Go command is used to set sticky 
and temporary code breakpoints and execute the 
program being debugged. 

If any addresses are specified on the command line, 
the byte at each of the addresses is replaced with a 
CCH, the single-byte breakpoint. When control is 
returned to Periscope via any method, the original 
byte is restored. The addresses entered on the 
command line are referred to as temporary code 
breakpoints. Up to four of these breakpoints may be 
used. If the address does not contain a segment, 
the current code segment is used. 

To set sticky code breakpoints, use the BC command 
described earlier. This method allows you to set up 
to 16 sticky code breakpoints. 

If 'G' with no addresses is entered, the sticky 
breakpoints, if any, are used. If there are no 
sticky breakpoints, program execution continues 
until the break-out switch is pressed. The sticky 
breakpoints are remembered until cleared or PS.COM 
is rerun. If you have code and/or monitor 
breakpoints set and want to continue program 
execution without using any of the breakpoints, you 
can disable all breakpoints or use the QC command to 
exit Periscope. 

You cannot set code breakpoints in ROM -- code 
breakpoints require that Periscope be able to 
exchange the original byte with CCH before starting 
the Go. Since the setting of a code breakpoint in 
the middle of an instruction can have bizarre 
results, set code breakpoints using symbol names 
where possible. 

When a Go command is used, Periscope invisibly 
traces one instruction and then performs the Go. 
This allows you to set a breakpoint on the current 
instruction to repetitively go to the same address. 

Examples: 

All of the examples below invoke any sticky code 
breakpoints that are set and not disabled. 

'G @PRINT LINE' sets a temporary code breakpoint at 
the address equal to the symbol PRINT LINE and 

6-38 



starts execution of the program. 

'G FFOO:OOOO' returns an error since the address is 
in ROM. 

'G' begins execution of the program with no 
temporary code breakpoints. 

'G 123' sets a temporary code breakpoint at CS:123. 

6-39 



Command: Go using Trace 

Syntax: GT [< address> J [ ... J 

Type: Internal 

Description: The Go using Trace command is the same 
as the normal Go command, except that it also 
invokes the non-code or monitor breakpoints. 

These breakpoints are Byte (BB), Interrupt (B1), 
Line (BL), Memory (BM), Port (BP), Register (BR), 
User (BU), and Word (BW). Using these breakpoints 
puts the system into a mode where every instruction 
executed by your program is analyzed to see if a 
breakpoint has been reached. This analysis can slow 
down the execution by a factor of 100 to 1000, but 
in many cases is the only way to find an elusive 
bug. Since this command is slow, try to use the 
normal Go command to get as close to the problem as 
possible. 

The monitor breakpoints are remembered until cleared 
or PS.COM is rerun. If you have code and/or monitor 
breakpoints set and want to continue program 
execution without using any of the breakpoints, you 
can disable all breakpoints or use the QC command to 
exit Periscope. 

Try to get in the habit of checking the breakpoint 
settings before using this command. Enter 'BA' to 
display the current breakpoints before entering 
'GT'. This way you can make sure that the right 
breakpoints have been set. 

If the external commands are not available, you will 
not be able to display or modify the breakpoint 
settings. If the external commands become 
unavailable due to a checksum failure, you should 
use RUN.COM to reload the external commands as soon 
as possible. If the /Z option was used when PS.COM 
was installed, you'll have to rerun it without the 
/Z option to make use of the sticky or monitor 
breakpoints. 

For temporary and sticky code breakpoints, this 
command performs in the same fashion as the Go 
command described above. After a breakpoint, use 
the TB command to see the instructions preceding the 
instruction that caused the breakpoint. 

Examples: 

All of the examples below invoke the monitor and 
sticky code breakpoints that are both set and 

6-40 



enabled. 

'GT @PRINT LINE @NEW PAGE' sets temporary code 
breakpoints at the addresses equal to the symbols 
PRINT LINE and NEW PAGE. - -
GT begins execution of the program with no temporary 
code breakpoints -- only sticky and monitor 
breakpoints that are enabled. 

'GT ES:456' sets a temporary code breakpoint at 
ES:456. 

6-41 



Command: Hex arithmetic 

Syntax: H <number> <arithmetic operator> <number> 

Type: External 

Description: This command is used to perform 
hexadecimal arithmetic. 

Addition, subtraction, multiplication, and division 
are available. The standard operators are used for 
each function. The numbers must be in hex and may 
be from one to four bytes. If a register name is 
entered in place of one of the numbers, its current 
value is used for the number. 

Multiplication returns two words separated by 
spaces. The first word is the high-order part. 
Division returns two words separated by the letter 
R. The first word is the quotient and the second is 
the remainder. 

Examples: 

'H 1234+123' gives an answer of 1357 

'H 1234-123' gives an answer of 1111 

'H 1234/123' gives an answer of 0010 R 0004 

'H 1234*123' gives an answer of 0014 B11e 

'H DI-Sl' displays the result of subtracting the 
current value of SI from the current value of DI 

6-42 



Command: Input 

Syntax: I <port) 

Type: Internal 

Description: This command is used to read an I/O 
port. 

The port number may be from zero to FFFFH, although 
the IBM PC only supports ports from zero to 3FFH 
any larger number is effectively ANDed with 3FFH. 
The byte value retrieved by reading the port is 
displayed on the line following the command. 

Examples: 

'I 100' performs a read of port 100H and displays 
the byte input. 

'I DX' performs a read of the port indicated by 
register DX and displays the byte input. 

6-43 



Command: Jump 

Syntax: J 

Type: Internal 

Description: This command is used as a shorthand 
fonn of Go -- to jump to the next instruction. 

It enables you to skip over the current instruction 
and go to the next instruction. It is used to skip 
over instructions that will return to the next 
instruction, such as CALL and INT. It is also 
useful for quickly moving through repeated 
instructions and LOOPs. 

This command perfonns the same function as a 
temporary code breakpoint set on the next 
instruction -- the difference is that you don't have 
to stop and compute the address and then enter a Go 
command -- Jump does it for you. If the current 
instruction is any fonn of a RET, IRET, or JMP 
(including conditional jumps) Periscope traces one 
instruction (to follow the code) instead of using a 
temporary code breakpoint. 

There is one condition under which this command does 
not work. When you're tracing ROM no code 
breakpoints can be used, since you can't write to 
ROM. 

Generally speaking, it is safe to use this command 
in place of the Trace command. There are some cases 
that present a problem, however. One possibility is 
a LOOP instruction that passes control downwards 
rather than upwards. Others include a CALL or INT 
that does not return control to the next 
instruction, and when a stack change is in progress 
(SS:SP points to an undefined area). 

Examples: 

Assume that the current instruction is 'INT 21'. 
Enter 'J' to place a temporary code breakpoint at 
the instruction after the 'INT 21' and automatically 
perfonn a Go command. 

Assume that the current instruction is 'RET'. Enter 
• J' to trace to the next logical (not physical) 
instruction. 

6-44 



Command: Jump Line 

Syntax: JL 

Type: Internal 

Description: This command is used to jump from one 
source code line to the next source code line. 

This command is usable only when the current 
instruction corresponds to a high-level language 
source code line. The JL command sets a temporary 
code breakpoint on the next source code line in the 
same module. This is a quick method of moving 
through a high-level language program. keeping to 
the source code lines. 

Example: Assume the current instruction is line 10 
of the first source code module. Enter' JL' to go 
to the next physical source code line number for the 
same module. Note: If your compiler does not 
generate line numbers for every line. the next line 
symbol may not be line 11. 

Command: Jump Noswap 

Syntax: JN 

Type: Internal 

Description: This command is used to jump to the 
next instruction without swapping screen displays. 

This command is the same as the Jump command 
described earlier. except that it does not save and 
restore the screen display. On a single-monitor 
system. Periscope normally saves and restores the 
program's screen during each Jump instruction. This 
variant of the Jump instruction is provided so users 
of single-monitor systems can elect not to save the 
screen for instructions that do not change the 
program's screen. If this command is used for an 
instruction that modifies the screen, the screen 
output will be directed to Periscope's screen, 
possibly garbling it. If this occurs, use the K 
command to clear the screen or FlO to swap to the 
program's screen and back. 

Examples: 

See the examples for the Jump command. 

6-45 



Command: Klear 

Syntax: K 

Type: Internal 

Description: This command clears the debugger 
screen. It has no arguments. 

Example: 'K' clears the screen. 

6-46 



Command: Load Absolute disk sectors 

Syntax: LA <address> <drive> <sectors> 

Type: External 

Description: This command is used to load absolute 
disk sectors into memory. 

The segment defaults to CS if no segment is 
specified in the address. The drive is a 
single-digit number indicating the disk drive (O=A, 
l=B, etc.). The sectors parameter is the starting 
sector number and the number of sectors to be read. 
The maximum number of sectors that can be read in 
one operation is BOH, which equals 64K bytes. 

To use this command, DOS must be available. See the 
description of the Name command for more 
information. This command uses DOS interrupt 25H. 
See the DOS manual for information on the numbering 
of the absolute disk sectors. 

Examples: 

'LA DS: 1 00 0 10 20' loads data into memory starting 
at DS: 100 from drive A. starting at sector number 
10H for 20H sectors. 

'LA 100 1 0 4' loads data into memory starting at 
CS:100 from drive B, starting at sector 0 for 4 
sectors. 

6-47 



Command: Load File from disk 

Syntax: LF [<address>] 

Type: External 

Description: This command is used to load a file 
from disk into memory. 

The optional address specifies where the file is to 
be loaded. If the address is not specified, CS:100 
is used. To use this command, DOS must be 
available. See the description of the Name command 
for more information. Before this command can be 
used, the Name command must be used to specify a 
file name. 

The LF command can be used to load any type of file 
into memory. After the file has been loaded, BX and 
CX indicate the size of the file in bytes. After 
the file is loaded into memory no other processing 
occurs -- EXE files are not relocated or stripped of 
their headers. RUN.COM should generally be used to 
load and execute a program, since it loads the 
symbol table and performs relocation for EXE files. 
The LF command is useful for loading a file into 
memory for examination or modification. 

Examples: 

'LF DS:1000' loads the file defined by a Name 
command into memory starting at DS:1000. 

'LF' loads the file defined by a Name command into 
memory starting at CS: 100. 

6-48 



Command: Move 

Syntax: M <range> <address> 

Type: External 

Description: This command is used to copy a block of 
memory to another location in memory. 

The segment and offset must be specified for both 
addresses, to avoid accidental changes to memory. 
If the source block and target block overlap, the 
move into the target block is performed without loss 
of data. The source segment and target segment may 
be different. 

Examples: 

'M 1000:0 L 100 1000:80' copies 100H bytes from the 
source block (1000:0 to 1000:FF) to the target block 
(1000:80 to 1000:17F). Since the source and target 
blocks overlap by 80H bytes, the move copies memory 
starting at 1000:FF and works down, so that the 
target block is an exact copy of the original source 
block. 

'M 1000:80 L 100 1000:0' copies 100H bytes from the 
source block (1000:80 to 1000: 17F) to the target 
block (1000:0 to 1000:FF). Since the source and 
target blocks overlap and the source is higher than 
the target, the move copies memory starting at 
1000:80 and works up. 

'M DS:SI L ex ES:DI' copies ex bytes from the source 
block (DS:SI) to the target block (ES:DI), where all 
values are the current contents of the respective 
registers. 

6-49 



Command: Name 

Syntax: N <name> 

Type: External 

Description: This command is used to enter data into 
the PSP for disk I/O and for naming files to be read 
or written by Periscope. 

The name parameter is copied to a Periscope buffer 
for use with the Load and Write commands. It is 
then copied to the unformatted parameter area in the 
PSP, starting at CS:80H. After the name is copied 
into CS:80H, the DOS parsing function is used to 
parse the first two file names in the command line 
into the FCBs at CS:5CH and CS:6CH. If an invalid 
drive id is found on a file, a message is generated 
and register AL or AH is set to FF, indicating the 
first or second file, respectively. 

This command copies all data entered after the N 
until a carriage return is found -- it ignores the 
use of a semi-colon for entering multiple commands 
on one line. If the PSP cannot be found, Periscope 
can still be used to read or write the file, 
presuming that DOS is available. 

Since the Name, Load, View, Unassemble Source, and 
Write commands use DOS calls, Periscope must check 
to be sure that DOS is available. Hardware 
interrupts must be enabled and the vector for 
interrupt 21H must equal a value saved by PS.COM and 
RUN. COM. 

The Name command also requires that the PSP's 
address has been set by RUN.COM and that the first 
four bytes of the PSP contain the bytes 'CD 20' 
followed by the top of memory size in paragraphs. 

Examples: 

'N C:COMMAND.COM' copies the file name to 
Periscope's internal file buffer and to the 
unformatted parameter area at CS:80H and then parses 
the file name into the FCB at CS:5CH. 

'N FILEl,FILE2/N' copies the file names to 
Periscope's internal file buffer and to the 
unformatted parameter area at CS:80H and then patses 
the file names into the FCBs at CS:5CH and CS:6CH. 

6-50 



Command: Output 

Syntax: 0 <port> <byte> 

Type: Internal 

Description: This command is used to output a byte 
to an I/O port. 

The port number may be from zero to FFFFH. although 
the IBM PC only supports ports from zero to 3FFH -
any larger number is effectively ANDed with 3FFH. 
The byte value output to the port may be from zero 
to FFH. 

Examples: 

'0 100 FF' outputs FFH to port 1 OOH. 

'0 DX 12' outputs 12H to the port indicated by 
register DX. 

'0 DX AX' returns an error since register AX 
represents a word -- only bytes can be output via 
Periscope. 

6-51 



Command: Quit 

Syntax: Q [<sub-function>] 

Type: Internal 

Description: This command is used to exit the 
debugger and display Periscope's quit options. 

The optional sub-function is used to pre-answer the 
quit option prompt. The possible combinations are 
QB, QC. QD. QR, and QS to Quit and Boot, Continue. 
Debug, Return to DOS, or perform a Short boot, 
respectively. See the section in this chapter 
entitled 'Quit Options' for more information. 

Examples: 

'Q' exits the debugger and displays the quit 
options. 

'QC' exits the debugger and continues execution of 
the interrupted program without setting any 
breakpoints. 

'QS' exits the debugger and performs a short boot. 

6-52 



Command: Register 

Syntax: R [<register)] or [F] 

Type: Internal 

Description: This command is used to display and 
modify the current values of the registers and 
flags. 

If you enter 'R' and press return, the current 
values of the registers and flags are displayed. If 
the current instruction performs a memory read 
and/or write, the effective address of the 
read/write is displayed, along with the current 
value of memory at the effective address(es). 
Finally, the current instruction is disassembled. 
The effective address and current instruction are 
shown in the U window if one is used. 

Some examples are shown below: 

Example 1: 

AX=007F BX=0034 CX=0000 OX=0000 SP=1724 BP=00A0 S1=0F1E 01=1560 
OS=0040 ES=00BF SS=00BF CS=F000 1P=E8S0 NV UP 01 PL ZR NA PE NC 
F000:EBS0 74F3 JZ EB4S ; jump 

Example 2: 

AX=0000 BX=0000 CX=0100 OX=0001 SP=FFFO BP=0000 SI=0000 01=0000 
OS=063A ES=063A SS=063A CS=063A 1P=010E NV UP EI PL ZR NA PE NC 
WR OS:0131 = 0000 
063A:010E B91E3101 MOV [F1LE_OFFSET],BX 

Example 3: 

AX=0000 BX=0000 CX=0100 
OS=063A ES=063A SS=063A 

PS6S: 
063A:01AO BF2F01 MOV 

OX=0001 SP=FFFB BP=0000 SI=0000 01=0000 
CS=063A IP=01AO NV UP E1 PL ZR NA PE NC 

or ,012F FILE SEGMENT 

In all of the above examples, the first two lines 
display the current values of the thirteen registers 
and the eight flags. See the table below for an 
explanation of the flag mnemonics. 

In Example 2, the third line shows that the current 
instruction performs a write to the word at DS:0131 
and that the current value of the word is zero. If 
the instruction were to read memory, line three 
would also show that information. The evaluation of 
the effective address of memory reads and writes 

6-53 



shows the effect of any and all memory access before 
the execution of the instruction. The effective 
address calculations and displays for the 8088, 
8086, 80186, and 80286 real mode instructions are 
supported, with the exception that the stack shown 
as affected by the ENTER instruction is limited to a 
single 'PUSH BP' and does not include the PUSH that 
is done for each nesting level. 

In Example 3, the third line shows 'P565', the name 
of the current address from the symbol table. This 
line is present only when CS:IP exactly matches an 
entry in the symbol table. 

The last line in each of the examples shows the 
disassembled instruction. The address of the 
instruction (CS:IP) is shown at the left, followed 
by the one to six bytes that make up the 
instruction, and the instruction itself. 

If the current instruction is a conditional jump 
(see Example 1), the jump is evaluated based on the 
current flag settings as 'jump' or 'no jump', 
meaning that the jump will or will not be taken, 
respectively. If an instruction references a byte 
value and the data byte is from 20H to 7FH, the 
ASCII equivalent of the byte is shown at the end of 
the line as a comment, in quotes. Illegal 
instructions are shown as '???'. 

If an address referenced by an instruction is found 
in the symbol table, the symbol name is substituted 
for the offset (see Example 2). If an ambiguous 
reference to an address is made, the symbol name is 
shown at the end of the disassembled instruction as 
a comment (see Example 3). This indicates that the 
symbol mayor may not have been used in the original 
instruction. Ambiguous references are generated by 
a move of an offset to a register, such as 'MOV 
DI,OFFSET FILE_SEGMENT'. 

An address must match exactly for the symbol to be 
found. The current value of the segment used by the 
instruction (explicit or implicit) must match the 
segment in the symbol table. The offset used by the 
instruction must also match the offset in the symbol 
table. 

To modify a register, enter 'R <register>'. 
Periscope displays the current value of the 
register, followed by a colon. If you enter a one
to four-digit hex number or another regi ster name 
and press return, the register is changed. If you 
press return without entering a number, the register 
is not changed. The valid 16-bit register names are 

6-54 



~,~,cr,~,~,&,@,m,m,~,~,~,a~ 
IP. The valid 8-bit register names are AH, AL, BH, 
BL, CH, CL, DH, and DL. 

To modify a flag, enter 'R F'. Periscope displays 
the current values of the flags (see the table 
below) followed by a hyphen. To change the flags, 
enter the desired mnemonics and press return. If 
you press return without entering any flag 
mnemonics, no flags are changed. The flags may be 
entered in any order, in upper or lower case, and 
with or without spaces between the entries. 

FLAG SET (=1) CLEAR (=0) 

Overflow OV NV 
Direction DN (STD) UP (CLD) 
Interrupt EI (ST!) DI (CLI) 
Sign NG (negative) PL (positive) 
Zero ZR (zero) NZ (non-zero) 
Auxiliary carry AC NA 
Parity PE (even) PO (odd) 
Carry Cy (STC) NC (CLC) 

Examples: 

'R' displays all registers and flags, the effective 
address for reads and/or writes, and disassembles 
the current instruction. 

'R AX' displays the current value of register AX and 
prompts you for the new value. Press return to 
leave the register unchanged, or enter a one- to 
four-digit hex number and press return to change the 
register. 

'R AX CX' is a one-line method of changing the value 
of register AX to the current value of register CX. 

'R F' displays the current flags, followed by a 
hyphen. If you want to change the zero flag from NZ 
to ZR, enter 'ZR' and press return. You can also 
enter 'R F ZR'. 

6-55 



Command: Register Restore 

Syntax: RR 

Type: Internal 

Description: This command is used to restore the 
registers to a previously-saved state. 

This command is usable only after a RS command has 
been used to save the registers. After a Restore 
has been performed, Restore is disabled until 
another Save has been performed. 

Example: Assume the registers were previously saved 
using the RS command. Enter 'RR' to restore all 
registers to their values when the RS command was 
used. 

Command: Register Save 

Syntax: RS 

Type: Internal 

Description: This command is used to save the 
registers for later restoration. 

The Register Save command saves the current state of 
the machine's registers and flags in case you need 
to restore the registers to that state at some later 
point. For example, assume you're debugging a 
subroutine. In many situations, it is very 
convenient to save the machine's registers and then 
start debugging the subroutine. If you discover a 
problem, you can then restart the subroutine by 
restoring the registers from their saved values. 

To use the Register Save command, enter 'RS' when 
the Periscope prompt is displayed. Later, you can 
restore the registers to their saved state by using 
the RR command. This command does not restore any 
data areas modified by the subroutine. 

To prevent accidental restoration of the registers, 
the RS command sets a flag that is cleared by the RR 
command. When this flag is cleared, the RR command 
generates Error 26, function not available. 

Example: Enter 'RS' to save the machine registers. 
At any point later, the RR command may be used to 
restore the registers to their saved values. 

6-56 



Command: Search 

Syntax: S <range> <list> 

Type: External 

Description: This command is used to search memory 
for a byte / string pattern. 

The block of memory specified by the range is 
searched for the pattern specified by the list. If 
a match is found, the starting address of the match 
is displayed and the search for matches continues at 
the next byte. If no matches are found, nothing is 
displayed. If no segment is specified in the 
address, the current data segment is used. 

Examples: 

'S CS:IP L 200 CD 21' searches memory from the 
current instruction (CS:IP) for 200H bytes for the 
pattern CD 21. Any matches are displayed in 
segment:offset format. 

'S @PRINT LINE L 50 C "Page'" searches SOH bytes 
starting at the address of the symbol PRINT LINE for 
the byte OCH followed by the string 'Page'.-

6-57 



Command: Search for Address reference 

Syntax: SA <range> <address> 

Type: External 

Description: This command is used to search memory 
for references to a specified address. 

This command can be thought of as a disassembly that 
only shows instructions that reference an address of 
interest. To use it, specify an address range that 
is to be searched and the address reference that is 
to be searched for. If you're not using a symbol 
name for the address reference, be sure to specify 
the segment register that is to be used. For 
example, if you're searching for a procedure 
reference, specify CS. 

You can use this command to find JMPs and CALLs to a 
procedure or to find locations in your program where 
a data variable is accessed. Any instruction that 
references the specified address is displayed. 

Examples: 

'SA CS:I00 L 200 @P200' searches from CS:I00 for 
200H bytes for any references to the address 
represented by the symbol P200. 

'SA @PSTART @PEND DS:O' searches from the address 
represented by PSTART through the address 
represented by PEND for references to DS:O. 

6-58 



Command: Search for Unassembly match 

Syntax: SU <range) <list> 

Type: External 

Description: This command is used to search memory 
for instructions that match a pattern. 

This command can be thought of as a disassembly that 
only shows instructions that match a specified 
pattern. To use it, specify an address range that 
is to be searched and the pattern that is to be 
searched for. For example, to find all MOVSB 
instructions, enter MOVSB in quotes as the list 
argument. 

Be sure to enter the search list as a quoted string 
in upper case letters. Note that there are eight 
spaces from the start of the mnemonic field to the 
start of the operand field -- to find all 
occurrences of 'MOV SP', enter 'MOV', five spaces, 
and 'SP'. Note: this command will not find source 
code lines or procedure labels -- just disassembled 
instructions. 

Examples: 

'SU CS:I00 L 200 "MOVbbbbbSS'" searches from CS:I00 
for 200H bytes for any instructions that contain 
'MOVbbbbbSS', where 'b' is a blank. There must be 
exactly five spaces after the 'MOV' for the command 
to work. 

'SU @PSTART @PEND "POP'" searches from the address 
represented by PSTART through the address 
represented by PEND for POP instructions. 

6-59 



Command: Trace 

Syntax: T [<number>] 

Type: Internal 

Description: This command is used to execute the 
current program one instruction at a time. 

If the optional number is not entered, one 
instruction is executed and control is returned to 
Periscope. If the number is entered, that number of 
instructions are executed. For each trace the 
sequence of events is: the debugger screen is saved, 
the original program screen is restored, the 
instruction is executed, the program screen is 
saved, the debugger screen is restored, and the 
Register command is performed, showing the next 
instruction to be executed. 

Unlike the Go command, the Trace command can be used 
to trace through ROM, since it works by changing the 
trap flag and not by modifying the code to be 
traced. 

Examples: 

'T' traces the execution of a single instruction. 

'T 3' traces the execution of the next three 
instructions. 

'T ex' traces the execution as many times as 
indicated by the current value of the ex register. 
If ex is currently 100H and the next instruction 
changes it to zero, the trace will still be 
performed 100H times. 

6-60 



Command: Trace Back 

Syntax: TB * or F or Land [< + 1 - number>] 

Type: Internal 

Description: This command is used to display 
previously executed instructions. 

The traceback buffer is used to save the machine 
registers each time Periscope is exited. This 
circular buffer can contain zero to 512 entries, 
depending on the PS.COM installation option '/B:nn'. 
Each entry contains the machine registers and an 
ascending sequence number. When displayed, the 
buffer shows the registers, sequence number, and a 
symbolic disassembly of the instruction indicated by 
the saved CS:IP. If PS.COM was installed with 
either'/B:O' or '/Z', this command is not 
available. The following example shows three 
consecutive entries. 

AX=0000 BX=0000 CX=008B OX=0000 5P=FFFE BP=0000 51=0000 01=0000 
05=15E6 E5=15E6 55=15E6 CS=15E6 IP=0137 NV UP EI PL ZR NA PE NC 10001 

5TART: 
15E6:0137 E81700 CALL GETMEM 

AX=0000 BX=0000 CX=008B DX=0000 5P=FFFC BP=0000 51=0000 01=0000 
05=15E6 E5=15E6 55=15E6 C5=15E6 IP=0137 NV UP EI PL ZR NA PE NC 10002 

GETMEM: 
15E6:0151 B106 MOV CL,06 

AX=0000 BX=0000 CX=0006 OX=0000 5P=FFFC BP=0000 51=0000 01=0000 
05=15E6 E5=15E6 55=15E6 C5=15E6 IP=0137 NV UP EI PL ZR NA PE NC 10003 
15E6:0153 BE0200 MOV 51,0002 

Use 'TB L' to display the last entry in the buffer 
and 'TB F' to display the first entry. The L or F 
may be followed by a number to display multiple 
entries. An optional '+' before the number displays 
entries in ascending sequence and a '-' before the 
number displays entries in descending sequence. The 
buffer and sequence number may be cleared by using 
'TB *'. 

Since Periscope adds to the buffer each time it is 
exited, watch out for possible discontinuities in 
the traceback buffer. If you're using the T or GT 
commands, there's no problem. If you're using the G 
or J commands, not all instructions will be 'seen' 
by Periscope -- they'll leave discontinuities in the 
traceback buffer. Note that the disassembly uses 
the current contents of memory at the saved CS:IP so 

6-61 



the disassembly may be incorrect if the instructions 
have been changed. 

Examples: 

'TB L3' shows the last three instructions traced, 
with the most recent first. 

'TB F4' shows the first four instructions in the 
circular buffer, with the most recent last. 

'TB -2' shows the two previous instructions, with 
the most recent first. 

'TB 3' shows the next three instructions, with the 
most recent last. 

'TB !IE' clears the traceback buffer and resets the 
sequence number to zero. 

Command: Trace Noswap 

Syntax: TN [<number>] 

Type: Internal 

Description: This command is used to execute the 
current program one instruction at a time without 
swapping screen displays. 

This command is the same as the Trace command 
described earlier, except that it does not save and 
restore the screen display. On a single-monitor 
system, Periscope normally saves and restores the 
program's screen during each Trace instruction. 
This variant of the Trace instruction is provided so 
users of single-monitor systems can elect not to 
save the screen for instructions that do not change 
the program's screen. If this command is used for 
an instruction that modifies the screen, the screen 
output will be directed to Periscope's screen, 
possibly garbling it. If this occurs, use the K 
command to clear the screen or FlO to swap to the 
program's screen and back. 

Examples: 

See the examples for the Trace command above. 

6-62 



Command: Unassemble memory 

Syntax: U [<range>] 

Type: Internal 

Description: This command is used to disassemble 
memory into the 8088, 8086, 80186, and 80286 
real-mode instructions. 

Memory is disassembled in either the ASM or 
Source/ ASM mode as set by the UA and US commands 
respectively. ASM is the default mode. 

The syntax for this command is very flexible. If 
you enter. 'U', the disassembly starts where the last 
'u' command left off. The commands G, J, R, and T 
reset the starting point to CS:IP. If you enter 'U 
<number>' the number is presumed to be an offset, 
the segment is presumed' to be CS, and the length is 
presumed to be 20H. If you enter 'U <number> 
<length>' the number is presumed to be an offset, 
and the segment is presumed to be CS. 

Two sample disassemblies are shown below. Both are 
of the same range of memory, but the second listing 
was made using a symbol table. Note the difference 
in readability. 

Without symbols: 

1261:~137 EB17~~ CALL ~151 
1261:~13A A133~1 MOV AX. [0133] 
1261:~130 BF1~~1 MOV DI .~11~ 
1261:014~ EB24~~ CALL ~167 

1261:~143 A135~1 MOV AX. [~135] 
1261:~146 BF2C~1 MOV or .~12C 
1261:~149 EB1B~~ CALL ~167 

1261:~14C EB34~~ CALL ~1B3 

1261:014F CD2~ INT 2~ 

With symbols: 

START: 
1261:0137 EB17~~ CALL GETMEM 
1261:~13A A133~1 MOV AX. [TOTMEM] 
1261:~13D BF1~~1 MOV DI.~11~ TMEMORY 
1261:~14~ EB24~~ CALL CONVERT 
1261:~143 A135~1 MOV AX. [FREMEM] 
1261:~146 BF2C~1 MOV DI.~12C ; AMEMORY 
1261:~149 EB1B~~ CALL CONVERT 
1261:~14C EB34~~ CALL DISPLAY 

DOSRET: 
1261 : ~14F CD20 INT 2~ 

6-63 



Each line of the disassembly shows the address of 
the instruction (CS:IP) followed by the one to six 
bytes that make up the instruction. Next the 
instruction is displayed. 

If an address in the instruction is an exact match 
with an entry in the symbol table, the symbol name 
is substituted for the address. For example, in the 
second line, address DS:0133 is referenced. When 
the symbol table is searched, the name TOTMEM is 
found and displayed instead of 0133. 

If you're debugging programs where DS and/or ES do 
not initially point to the data area(s), variable 
references such as this one are not shown until DS 
and/or ES are changed to point to the data area(s) 
within your program. Code references, such as the 
label 'START' are found, since CS must be correct 
for the program to execute. 

If an ambiguous reference to an address is made, the 
symbol name is shown at the end of the disassembled 
instruction as a comment. This indicates that the 
symbol mayor may not have been used in the original 
instruction. Ambiguous references are generated by 
a move of an offset to a register, such as 'MOV 
DI.OFFSET TMEMORY'. 

Examples: 

'u @NEW PAGE' disassembles memory starting at the 
symbol NEW_PAGE. The default length of 20H bytes is 
used. 

'U CS:IP L l' disassembles memory for one 
instruction at the current instruction. The same 
result can be achieved by using the Register 
command. 

'U' disassembles memory starting where the last U 
command left off. If the G, J, R or T commands were 
used, the disassembly starts at CS:IP. 

6-64 



Command: Unassemble ASM instructions 

Syntax: UA [<range>] 

Type: Internal 

Description: This command is used to disable source 
disassembly (the US command) and to disassemble 
memory into the 8088, 8086, 80186, and 80286 
real-mode instructions. 

Use this command to turn off source-level debugging 
of a high-level language. The U command described 
earlier disassembles memory in one of two modes -
ASM or Source. The ASM mode is the default and is 
set by the UA command. The source mode is set by 
the US command. 

Examples: 

'UA @NEW PAGE' disassembles memory starting at the 
symbol NEW PAGE. The default length of 20H bytes is 
used. -

'UA @AI0 L l' disassembles memory for one 
instruction starting at the symbol AI0. 

'UA' disassembles memory starting where the last U 
command left off. If the G, J, R or T commands were 
used, the disassembly starts at CS:IP. 

6-65 



Command: Unassemble Source/ ASM instructions 

Syntax: us [<range>] 

Type: Internal 

Description: This command is used to enable source 
disassembly and to disassemble memory into the 8088, 
8086, 80186, and 80286 real-mode instructions. 

Use this command to turn on source-level debugging 
of a high-level language. The U command described 
earlier disassembles memory in one of two modes -
ASM or Source/ASM. The ASM mode is the default and 
is set by the UA command. The source mode is set by 
the US command. 

When needed, Periscope prompts for the file name 
corresponding to the module being disassembled. 
Enter the file name and press return to display the 
high-level language source code along with the 
disassembled instructions. If the file is not 
found, the prompt is displayed again. If you press 
return without entering a file name, source 
disassembly is disabled. To change source files, 
enter 'UA', press return, and then enter 'US' again. 
Note that the View command turns off Source 1 ASM 
mode. 

To display source code, the following conditions 
must be met: 
- DOS must be available (see the description of the 
Name command for more information) 
- A file buffer must be available (if PS.COM was 
installed with either' IE:O' or 'IZ', this command 
is not available) 
- Line symbols must be available for Periscope to be 
able to associate an instruction with a source code 
line 
-Any disk I/O errors will cause an incomplete source 
display or none at all 

Examples: 

'US @AIO' disassembles memory starting at the line 
symbol AIO. The default length of 20H bytes is 
used. 

'US' disassembles memory starting where the last U 
command left off. If the G, J, R or T commands were 
used, the disassembly starts at CS:IP. 

6-66 



Command: View file 

Syntax: V <name> 

Type: External 

Description: This command is used to view a source 
file from within Periscope. 

The name is any legal file name, including drive, 
path, file, and extension. To use this command, DOS 
must be available. See the description of the Name 
command for more information. A file buffer must be 
available -- if PS.COM was installed with either 
'/E:O' or '/Z', this command is not available. 

The file is displayed in the un-windowed area of the 
screen. Use the PgUp and pgDn keys to page up and 
down through the file. Use the up and down arrow 
keys to move up or down one line at a time. Use the 
Home and End keys to move to the start and end of 
the file. When you're finished viewing the file, 
press the Esc key to return to the debugger prompt. 
Note that Ctrl-Break cannot be used to terminate the 
view command -- Esc is the only way to exit View. 

Examples: 

'V C:PS.DEF' displays the file PS.DEF. Use the 
PgUp, PgDn, Up, Down, Home, and End keys to move 
through the file. When done, press Esc to return to 
Periscope's normal operation. 

6-67 



Command: Write Absolute disk sectors 

Syntax: WA <address> <drive> <sectors> 

Type: External 

Description: This command is used to write memory to 
absolute disk sectors. 

The segment defaults to CS if no segment is 
specified in the address. The drive is a 
single-digit number indicating the disk drive (O=A, 
1=B, etc.). The sectors parameter is the starting 
sector number and the number of sectors to be 
written. The maximum number of sectors that can be 
written in one operation is 80H, which is 64K bytes. 

To use this command, DOS must be available. See the 
description of the Name command for more 
information. This command uses DOS interrupt 26H. 
See the DOS manual for information on the numbering 
of the absolute disk sectors. 

When using this command, be very careful! An 
absolute disk write can very easily destroy a file 
allocation table (FAT) or a disk directory! 
Usually, you will want to perform a Load Absolute, 
change a few bytes of memory, and then perform a 
Write Absolute of the data back to disk. If this is 
the case, be sure that the parameters used with the 
Load and Write commands are the same. 

Examples: 

'WA DS:100 0 10 20' writes data from memory starting 
at DS:100 to drive A, starting at sector number 10H 
for 20H sectors. 

'WA 100 1 0 4' writes data from memory starting at 
CS: 100 to drive B, starting at sector 0 for 4 
sectors. 

6-68 



Command: Write File to disk 

Syntax: WF [<address>] 

Type: Externa I 

Description: This command is used to write a file 
from memory to disk. 

The optional address specifies where the memory 
image of the file begins. If an address is not 
specified, CS:I00 is used. To use this command, DOS 
must be available. See the description of the Name 
command for more information. Before this command 
can be used the Name command must be used to specify 
a file name. 

This command can be used to write any type of file 
to disk. Before the file is written, be sure that 
BX and CX indicate the size of the file in bytes. 
Do not attempt to write an EXE file that was not 
loaded with the LF command -- an EXE file loaded by 
RUN.COM is missing its header and cannot be written 
to disk. 

Examples: 

'WF DS:I000' writes the file defined by a Name 
command from memory to disk starting at DS:lOOO. 

'WF' writes the file defined by a Name command from 
memory to disk starting at CS:I00. 

6-69 



Command: Xlate (translate) Hex number 

Syntax: X <number> or XH <number> 

Type: External 

Description: This command is used to translate a 
one- to four-digit hexadecimal number or a register 
to its decimal, binary, and ASCII equivalents. 

Example: 'X 5051' displays 
'5051h 20561d 0101 0000 0101 0001b PQ'. 

Command: Xlate (translate) Address 

Syntax: XA <address> 

Type: External 

Description: This command is used to translate an 
address (segment and offset) into its equivalent 
five-byte absolute address. 

The absolute address is calculated by multiplying 
the segment by 10H and adding the offset to the 
result. 

Example: 'XA 1234:5678' displays '17988'. 

Command: Xlate (translate) Decimal number 

Syntax: XD < decimal number> 

Type: External 

Description: This command is used to translate a 
one- to five-digit decimal number to its 
hexadecimal, binary, and ASCII equivalents. 

The number must be from zero to 65535. The number 
may not have any punctuation, such as commas or 
periods. Numbers larger than 65535 can be 
translated, but the high order part is lost. 

Example: 'XD 4660' displays 
'5051h 20561d 0101 0000 0101 0001b PQ'. 

6-70 



Command: Option S 

Syntax: IS < segment> < segment) 

Type: External 

Description: This command is used to make global 
changes to the values of segments in the symbol 
table. 

The entire symbol table is searched for symbols 
having a segment that matches the first segment 
entered. If a match is found, the symbol's segment 
is changed to the second segment entered and the 
symbol name is displayed. This command is used to 
adjust the segments of symbols when a program 
relocates its data areas, such as in Microsoft 
BASIC, FORTRAN, and Pascal. 

Example: 'IS FOOD DS' changes the segment of all 
symbol table entries that are currently FOOD to the 
current value of DS. 

'IS CS CS' displays the segment of all symbol table 
entries that match the value of CS. This is a good 
method for querying the symbol table without 
changing anything. 

6-71 



Command: Option U 

Syntax: IU <byte> [<address>] 

Type: External 

Description: This command is used to perform 
user-written code from Periscope. 

To use this exit, a program similar to USEREXIT.ASM 
as described in Chapter VIII must be installed and 
PS.COM must be installed with the /I option. The 
number entered after the IU must be from nine to 
FFH. It is passed to the user-written program in 
register AH. Other information is passed, including 
the optional address entered on the command line. 
See Chapter VIII for more information. 

USEREXIT.COM has a status display for the 8087 and 
80287 numeric processors. To use USEREXIT, load it 
before PS.COM is loaded. Then, use '/1:60' when 
installing PS.COM. From within Periscope, enter' IU 
87' to display the status of the numeric processor. 

Example: Assuming that a user-written interrupt 
handler has been installed using INT 60H and that 
PS.COM had the '/1:60' installation option, '/U 9' 
performs user exit number 9. 

6-72 



Command: Option W 

Syntax: / W D[ < :byte >] R S[ < :byte >] u[ < :byte >] 

Type: External 

Description: This command is used to change 
Periscope's windows from within Periscope. 

Periscope can window Data, Stack, Register, and/or 
Unassembly information. Once windows are 
established, the windowed data is displayed at a 
constant location on the screen and is updated after 
each command. 

The tokens D, R, S, and U indicate the type of data 
to be windowed. The tokens are optional and may be 
in any order. If a token is omitted, the 
corresponding type of information will not be 
windowed. The windows are displayed in the same 
order a s the tokens are encountered on the input 
line. 

The D window shows data in any of the display 
formats. The address used initially defaults to 
0:0, until a Display command is used. The window 
continues to show the same address until another 
display command is used. The output of the Display 
Record command is not shown in this window. 
Duplicate lines are not suppressed for windowed 
data. When RUN.COM is used to enter Periscope, the 
display address is set to DS:100. 

The R window shows register and flag information. 
The length is fixed at two lines. 

The S window shows the current stack. The display 
is the equivalent of 'DW SS:SP'. 

The U window shows disassembled instructions. The 
effective address of any memory reads or writes is 
shown in the first line when the first instruction 
displayed starts at CS:IP. The address used 
initially for the disassembly defaults to CS:IP and 
is reset to CS:IP each time a G, J, R, or T command 
is used. Any area of memory can be disassembled by 
using the U command with the desired address. To 
page through memory, enter the U command with no 
address. 

The byte parameter defines the length of the window 
in hex. If no length is specified, a default will 
be used. The maximum length for anyone window is 
10H (16) lines and the total area that can be 
windowed is 21 lines, including a separator line 

6-73 



following each window. When a length specification 
is used, at least one space must follow the number. 

The default, minimum, and maximum lines for each of 
the four window types are: 

Data 
Register 
Stack 
Unasm 

Default 

4 
2 
2 
4 

Minimum 

1 
2 
1 
4 

Maximum 

UlH (16) 
2 

1flH (16) 
1flH (16) 

If you want to tum off all windowing, enter '/W' 
with no arguments. 

Examples: 

/ W D:8 R -- Window data in the first 8 lines of the 
screen, followed by two lines of register 
information. A total of 12 lines are used for 
windows, including the two separator lines. 

/ W SRU -- Window the stack in the first two lines of 
the screen, followed by two lines of register 
information, followed by four lines of disassembly. 
A total of 11 lines are used for windows. 

6-74 



VII RUNning Your Program 
The program RUN.COM is used to load COM or EXE files 
and enter the resident debugger. Periscope must be 
installed for RUN to work. For help, enter 'RUN ?' 
when the DOS prompt is displayed. 

RUN can also be used to load data files or no file 
at all. If no file is loaded, the first instruction 
is set to 'INT 20H', the DOS return, to prevent 
accidental execution of meaningless data. If a data 
file is loaded, be sure to use the Return to DOS 
option after quitting the debugger. The Continue 
option or Go command would execute the data file 
with unpredictable results. 

RUN is started by entering "RUN filename.ext 
command-line" at the DOS prompt, where filename.ext 
is the path, file name, and extension (EXE, COM or 
other) of the file to be loaded. The command line 
is the same command line used when the program is 
started directly from DOS. RUN adjusts the FCBs and 
command line in the PSP to look like the target 
program had been started directly from DOS. 

RUN resets Periscope's display address to the PSP 
segment at offset IOOH. It also clears some of 
Periscope's external tables, including the traceback 
buffer, source file buffer, screen buffers, record 
definition table, and symbol table. If any 
breakpoints are set, they are disabled to avoid 
possible interference with the new program. If the 
external code area has been garbled, RUN will reload 
it, using PS.COM . 

• For Periscope II, RUN does not reload any garbled 
code. 

If the file extension is COM or EXE, the specified 
directory is searched for a file of the form 
filename.DEF. If this file is found, it is presumed 
to be a record definition file. If it is not found, 
the file PS.DEF is used if available. The DEF file 
is then used to load Periscope's record and keyboard 
definition tables. If a DEF file is not found, the 
record definition table is cleared, but any keyboard 
definitions are not cleared. If an error is found 
in the DEF file, the record definition table will be 
partially loaded. See the description of RS.COM in 
Chapter VIII for more information. 

If the file extension is COM or EXE, the specified 
directory is searched for a file of the form 
filename.PSS. If this file is found, it is used 
instead of the MAP file for the program's symbols. 

7-1 



If the PSS file is not found, the directory is 
searched for a file of the fonn filename.MAP. This 
file is then used to load Periscope's symbol table 
with address and line references. If a MAP file is 
not found, the symbol table is cleared. If an error 
is found in the MAP file, the symbol table is 
partially loaded. If you're using the Phoenix or 
DRI linkers, a PSS file must be used for symbols. 
See the description of TS.COM in Chapter VIII for 
more infonnation. 

RUN then relocates itself upward and reads the 
target program into memory, beginning at RUN's 
original location, and perfonns any segment 
relocation required by EXE files. Registers BX and 
CX are then set to the size in bytes of the target 
file. Other registers are set according to the 
rules for loading COM and EXE files (see the DOS 
manual). 

Starting with DOS 3.00, the drive, path, and 
filename of the loaded program is stored at the end 
of the environment space. Since RUN does not use 
the EXEC function to load programs, thi s area shows 
RUN. COM as the loaded program rather than the target 
program. The environment space is of variable 
length and is followed by DOS's memory allocation 
blocks, so it is not safe for anything but DOS to 
modify the environment. If your program uses this 
infonnation, consider loading it nonnally and then 
loading symbols using SYMLOAD.COM (see Chapter 
VIII). 

Your program is loaded exactly where it would be if 
DOS were to load it under the same conditions. This 
feature allows RUN to be used to load 
memory-resident programs. Until RUN is used again, 
the record definition, keyboard definition, and 
symbol tables are preserved. 

Finally, control is passed to the resident portion 
of Periscope. When you've finished debugging your 
program, you can exit Periscope in one of three ways 
-- use a Go with no breakpoints set, Quit the 
debugger and then Continue execution, or Quit the 
debugger and Return to DOS. If you use the last 
option, be sure that all output files are closed and 
that any interrupt vectors your program has modified 
have been reset to their original values. 

7-2 



VIII Using The Periscope 
Utilities 
This chapter discusses these Periscope utility 
programs: 

• PSPATCH.COM -- Used to patch PS.COM for not-quite 
compatible computers 

• PUBLIC.COM -- Used to generate Public statements 
for assembly language programs 

• RS.COM -- Used to verify and size record and key 
definitions 

• SYMLOAD.COM Used to load Periscope's symbol 
tables from within your program 

• TS.COM -- Used to verify and size MAP files and 
generate PSS files from the output of various 
linkers 

• USEREXIT.ASM and USEREXIT.COM -- A sample program 
to perform user exits and user breakpoints from 
Periscope 

Periscope supports DOS 2.00 pathnames for all file 
I/O. Programs that perform file I/O accept command 
lines containing any legal DOS pathname. Note that 
a pathname must be terminated by a carriage return 
(end of command line), a space, or a slash. 

PSPATCH.COM 

This program is used to patch PS.COM when Periscope 
is used on the less compatible 'compatibles'. It is 
not needed when Periscope is used on an IBM, Compaq, 
or other 99.44% compatible machine. It is needed 
when the entry points for BIOS interrupt vectors 
differ from the IBM standard. 

To run this program, boot the system so that no 
memory-resident programs or device drivers are 
installed. Make sure that PS.COM is on the default 
drive and enter 'PSPATCH'. PS.COM is. then patched 
as needed. If you get a message of the form 
'Segment for interrupt xxH is not FOOOH -- Use IV 
option for this interrupt', be sure that these IV 
installation option(s) are used each time PS.COM is 
run. After patching PS.COM, install it and make 
sure that the Ctrl-Break keys, video display, 
keyboard, and parallel printer all function 
correctly. 

8-1 



PUBLIC.COM 

This program is used to generate public statements 
for assembler programs. With Periscope, the more 
symbols you have, the better. To run this program, 
enter 'PUBLIC progname' from the DOS prompt. If no 
extension is specified, ASM is assumed. The program 
reads your source and writes a file of public 
statements to the file progname.PUB. You can then 
include or merge this file into your program. 

For help, enter 'PUBLIC ?'. The output is in lower 
case unless you use the IU option after the file 
name. The program generates public statements for 
all data variables and procedures, subject to the 
rules below. 

If the multi-line COMMENT statement is used, it must 
be the first word found in the source line. Nothing 
is generated for a name that starts with the numbers 
zero through nine. Any public statements generated 
for equates are absolute references and are not 
relocated in memory. 

The source line is skipped if the first word found 
in the line is PUBLIC, EXTRN, END, ASSUME, ORG, 
INCLUDE, EVEN, NAME, TITLE, SUBTTL, PAGE, ELSE, 
WIDTH, %OUT, NOT, OR, AND, XOR, or MASK. A public 
statement is generated for the first word in a line 
if the first word ends in a colon or if the second 
word found in a line is DB, DO, OW, DQ, DT, PROC, 
LABEL, EQU, or =. STRUC definitions are skipped. 

PUBLIC recognizes macros and conditional statements 
-- any items found inside these types of statements 
are ignored. Since these items can be nested, the 
program keeps track of the nesting level and 
generates public statements only when the nesting 
level is zero. The following items increment the 
nesting level -- MACRO, IFDEF, IFIDN, IFDIF, REPT, 
IRPC, IFNB, IRP, IFE, IFB, IFI, IF2, IF, and IFNDEF. 
ENDIF and ENDM decrement the nesting level. 

RS.COM 

This program is used to verify and size a record 
definition file. It reads a DEF file containing 
record and/or keyboard definitions and displays the 
number of definitions found and the total record 
table size required for the file. These definitions 
are loaded by RUN.COM to provide support for 
Periscope's DR command and for keyboard assignment 
using the Ctrl-Fn keys. 

8-2 



To run this program, enter 'RS progname' from the 
DOS prompt. The file extension is presumed to be 
DEF. The DEF file is presumed to be in the same 
format as the sample file PS.DEF. Use the size 
shown by RS.COM for the PS.COM /R installation 
option. For help enter 'RS ?'. 

A section of the PS.DEF file is shown below. 

\f1;k;dr es:0 .psp; 
\f2;dr es:5e .feb; 
\FCB File Control Block 
Drive,b,1 Drive 0;default, 1;A, 2;B, etc. 
File,b,B File name 
Extension,b,3 
Block NO,w,2 
Rec Size ,W, 2 
File Size,d,4 
Date,w,2 
Reserved, b, 10 
Rec NO,b,1 
ReI Rec NO,d,4 

File extension 
Current block number 
Logical record size 
File size 
Date of last update 
Reserved for DOS 
Current relative record number 
Relative record number from beginning of file 

The first two lines of this file contain keyboard 
definitions for function keys Fl and F2. While in 
Periscope, these keyboard definitions may be called 
by pressing Ctrl and Fn at the same time. The 
keyboard definition must contain a back-slash, the 
function key number, an equal sign, and the desired 
keystrokes. No spaces are allowed until after the 
equal sign. If you want multiple commands, use a 
semi-colon to separate the commands. If you want 
the command to be executed immediately, place a 
semi-colon at the end of the line. No comments are 
allowed on keyboard definition lines. The maximum 
length of a keyboard definition's text is 64 
characters for each of the ten function keys. 

The third line of the file starts a record 
definition. The record name is limited to 16 
characters and must be preceded by a back-slash. No 
embedded spaces are allowed in the record name. 

Until another back-slash is found at the start of a 
line or the end of the file is reached, each of the 
following lines defines a field within the record. 
Each of the lines contains a field name, a field 
type, and a field length, separated by commas. The 
field name may be up to 10 characters long and may 
have embedded spaces. The field type may be any of 
the display formats, except E {effective address}. 
The field length is the total number of bytes 
required by the field. This number is in 

8-3 



hexadecimal notation. If double word formatting is 
used, the length must be a multiple of four. If 
word, integer, or number formatting is used, the 
length must be a mUltiple of two. The length of any 
one field and the total length of the record may be 
from one to FFFFH. Each field line may be commented 
using a semi-colon preceding the comments. 

SYMLOAD.COM 

This program is used to load Periscope's symbol 
tables from within your program. This approach is 
needed when your program manages overlays or is not 
loaded by RUN. COM. 

SYMLOAD is a memory-resident routine that is run 
once per DOS session (it can be rerun if needed). 
It attaches itself to an interrupt vector so your 
program can access it as desired. The default 
interrupt used by SYMLOAD is 67H, but this can be 
changed if needed. SYMLOAD uses DOS calls to read a 
symbol file, so DOS must be available for it to 
work. 

To install SYMLOAD, enter 'SYMLOAD /I:nn', where nn 
is the interrupt number to be used to access 
SYMLOAD, when the DOS prompt is displayed. Be sure 
that Periscope has already been installed, since it 
is required for SYMLOAD to work. The' /I:nn' 
command-line entry is needed only when SYMLOAD is to 
use an interrupt other than 67H. If you do specify 
an interrupt, be sure that the interrupt is not 
already used by another program. 

Once SYMLOAD has been installed, it may be accessed 
from your program by performing the appropriate 
interrupt. The registers used on entry are: 

BX -- The value of your program's PSP segment. If 
your program is an EXE file, add lOH to the PSP 
segment. The symbols' segments will be relocated 
relative to the value passed in this register. 

DS:DX -- Points to a PSS file name in ASCIIZ format. 
An extension of PSS is required. For example, to 
load 'C:SAMPLE.PSS', DS:DX would point to the string 
'C:SAMPLE.PSS' followed by a binary zero. See the 
description of the program TS.COM for information on 
creating a PSS file. 

On return, register AH contains the status of the 
operation. Register AL is used to return additional 
error information if a read error occurred. The 
possible values of AH are: 

8-4 



o -
I -
AL) 
2 
3 
4 

Successful symbol table load 
Error reading PSS file (DOS error returned in 

Periscope symbol table too small for PSS file 
Logical error in PSS file 
Periscope is not installed 

If the status returned is zero, the symbol table has 
been loaded successfully. Note that all addresses 
are relocated relative to the segment address passed 
in register BX, except for absolute references and 
for symbols whose segment was already in the range 
of FOOOH to FFFFH. 

TS.COM 

This program is used to verify and size a MAP file 
and optionally generate a Periscope symbol file. It 
reads a MAP file as produced by the linker and 
displays the number of address references, number of 
line references, and the total symbol table size 
required for the file. 

To run this program, enter 'TS progname' from the 
DOS prompt. The file extension is presumed to be 
MAP. The MAP file is presumed to be in the same 
format as the sample file SAMPLE. MAP. Use the size 
shown by TS.COM for the PS.COM IT installation 
option. For help, enter 'TS ?'. 

Microsoft and IBM have made some subtle changes in 
the format of the MAP file from time to time. If 
you encounter problems reading a MAP file, please 
contact us as soon as possible. 

To generate address references in the MAP file, 
you'll need to specify both a MAP file and the 1M 
option at link time. Entries are generated in the 
MAP file for names defined as PUBLIC by your 
compiler or assembler. For ASM programs, a PUBLIC 
statement is used to generate an address reference 
in the MAP file. For C programs, variables defined 
outside the MAIN and external references to other 
modules will generate address references in the MAP 
file. For Pascal programs, variables defined as 
PUBLIC and external references to other modules will 
generate address references in the MAP file. 

Only the first 16 characters of a public name are 
used by Periscope. Any characters beyond the 
16-character limit are discarded. The programs 
TS.COM and RUN.COM read the first group of address 
entries in the MAP file -- the one sorted by name. 
Any absolute references found in the MAP file are 

8-5 



included, but are not relocated to the program's 
location. 

To generate line references in the MAP file, you'll 
need to specify a MAP file and the ILl option at 
link time. Not all compilers support the line 
number option. The ones that are known to support 
this option are: Computer Innovations C, Lattice C, 
Microsoft C, Microsoft Pascal, and Microsoft 
FORTRAN. 

The line references generated by TS.COM and RUN.COM 
have a single-character alphabetic prefix, followed 
by the actual line number. The alphabetic prefix 
starts at 'A' and is incremented for each module 
found in the MAP file. For example, line 10 of the 
first module is referenced as 'AIO', and line 20 in 
the second module is referenced as 'B20'. The first 
26 modules are referred to as A through Z. 
Subsequent modules are referred to as AA through AZ, 
BA through BZ, etc. 

If you have some symbols that you don't want to see, 
edit the MAP file and insert braces as desired to 
turn off symbol generation. A left brace (0 turns 
symbol generation off, and a right brace (}) turns 
it back on. Be careful when saving the MAP file 
don't let any TABs or high bits into the file. 

Large MAP files are relatively slow to load, since 
RUN.COM must extract the symbols each time the 
corresponding program is executed. To reduce the 
load time for large symbol tables, enter 'TS 
progname/S' to analyze the MAP file and create a 
file of the form progname.PSS that is a memory image 
of the symbol table for the program. 

When RUN is executed, it first looks for the PSS 
file. If the PSS file is found, it is used for the 
symbol table. If no PSS file is found, the MAP file 
is used. Be careful -- if you have created a PSS 
file and then re-link the program without creating a 
new PSS file, the old PSS file will be used. It's a 
good idea to create the new PSS file from the batch 
file used to compile and link your program. 

If the PSS file is too big to fit in the space 
allocated by Periscope, no symbols will be loaded. 
This is in contrast to the MAP file, where the 
symbol table may be partially loaded before an error 
occurs. 

Periscope supports Digital Research's LlNK86 
(version 1.3) and Phoenix's PLINK (version lAx). 
Since RUN knows nothing about the formats used by 

8-6 



these two linkers, TS.COM must be used to generate a 
PSS file for both of them. 

For LINK86 , enter 'TS progname/D/S'. The ID option 
tells TS that the input file was generated by DRl's 
linker. The presumed input file extension for this 
option is SYM, not MAPI The IS option tells TS to 
write the PSS file to disk, for later use by RUN. 
At link time, be sure to specify a SYM file. Line 
numbers are not available as symbols for LINK86. 

For PLINK, enter 'TS progname/P/S'. The IP option 
tells TS that the input file was generated by 
Phoenix's linker. The presumed input file extension 
for this option is MAP. The IS option tells TS to 
write the PSS file to disk, for later use by RUN. 
At link time, be sure to specify a MAP file and the 
'G' report (all symbol information is read from the 
'G' report). This method can be used starting with 

. PLINK 1.30, but does not support line numbers. 

To get all possible symbols with PLINK, enter 'TS 
progname/Q/S'. The IQ option tells TS to use the 
EXE file for all symbols. The IS option tells TS to 
write the PSS file to disk, for later use by RUN. 
At link time, be sure to specify 'SYMTABLE' as a 
linker directive. This method can be used starting 
with PLINK 1.40. 

USEREXIT .ASM and USEREXIT .COM 

This sample program illustrates Periscope's ability 
to perform user-written code. User-written code can 
be used to perform breakpoint tests (see the BU 
command) and user exits (see the IU command). 

The user-written code is installed as a memory 
resident program using an available interrupt from 
60H to FFH. The program must be installed before 
PS.COM is run. Also, the PS.COM installation option 
II:nn must be used, where nn is the interrupt vector 
used to access the user-written code. A signature 
of 'PS' must be present in the resident routine in 
the word preceding the interrupt entry point. 

The registers used on entry are: 

AH -- Contains the breakpoint test number of one to 
eight or the user exit number of nine to FFH. 

AL -- Always zero. 

DS:SI -- Point to Periscope's data area (see 
USEREXIT.ASM for the layout of the table). This 

8-7 



table contains the values of various variables used 
by Periscope. Any changes to the variables in this 
table are passed back to Periscope. 

On return from a user breakpoint, register AL should 
be set to a binary one to indicate a hit. Any other 
value indicates that no breakpoint is to be taken. 

On return from a user exit, register AL indicates 
whether the exit code has set a command to be 
executed by Periscope. If AL equals 2, Periscope 
reads the command line passed back from the user 
exit. The command line must start with a semi-colon 
and end with a carriage return. A user exit may use 
BIOS functions as desired. Periscope assumes the 
screen has been changed and moves the cursor to the 
bottom of the screen on return from a user exit. 

Do not attempt to perform DOS functions from 
user-written code -- DOS may be activel You do not 
need to preserve the values of any registers other 
than SS and SP on return to Periscope. If your 
routine needs more than 32 words of stack space, 
switch to an internal stack, but be sure to switch 
back to the original stack before returning. 

To install USEREXIT.COM, run the program from DOS. 
Then install PS.COM using the installation option 
'/I:60'. When Periscope is active, try using 'BU l' 
and then 'GT' to get to a point where DOS is 
available. Try "U 9' as an example of a user exit 
modifying the command line. If you have an 8087 or 
an 80287, try '/U 87' to display the numeric 
processor status. 

8-8 



IX Technical Notes 
This chapter discusses miscellaneous technical 
topics: 

• Debugging theory and limitations 

• CPU differences 

• DOS notes 

• Debugging techniques 

• Debugging device drivers and non-DOS programs 

• Periscope internals 

• The Submarine board 

• The IBM Enhanced Graphics Adapter 

Debugging Theory 

The 8086 processor family provides two built-in 
functions that aid the debugging process. These are 
the breakpoint and single-step capabilities. 

The breakpoint capability uses a special single-byte 
code to indicate that a breakpoint is to be taken. 
This code causes the system to perform an Interrupt 
3 when the first byte of an instruction equals CCH. 
This is the facility used by the Go command in 
Periscope, for both the temporary and sticky code 
breakpoints. 

When Periscope sets a code breakpoint, the original 
byte is saved in an internal table and the 
breakpoint code is inserted in its place. For this 
reason, it is not possible to set a code breakpoint 
in ROM or other unmodifiable memory. 

When the breakpoint is taken, Periscope is entered 
through a special entry point. The use of this 
entry point signals Periscope to reverse out any 
code breakpoints that are currently set and then 
decrement the instruction pointer (IP) by one to 
show the correct instruction. 

If an unexpected instruction contains a CCH in the 
first byte, Periscope is unable to reset the 
instruction to its prior value and will disassemble 
the instruction as "INT 3'. You will need to 
manually alter the byte or modify the IP register to 
continue execution of the program being debugged. 

9-1 



Single-step is the other type of 8086 breakpoint. 
It is set by modifying the trap flag to indicate 
that every instruction should be trapped. If this 
flag is set, the system performs an Interrupt 1 
before the execution of each instruction, allowing 
you to single-step through a program. The trap flag 
is used by Periscope for the Trace command and all 
of the monitor breakpoint commands (Byte, Interrupt, 
Line, Memory, Port, Register, User, and Word). 

If an instruction outside Periscope clears the trap 
flag, it causes any tracing currently underway to be 
turned off. If an instruction external to Periscope 
sets the trap flag unexpectedly, Periscope ignores 
it. 

Since Periscope cannot be used to trace itself, it 
is not possible for it to trace the execution of 
Interrupts 1, 2, or 3 or any other interrupts that 
point to Periscope's code areas. 

CPU Differences 

If an 8087 is used with interrupts enabled, an error 
will cause a NMI. Since Periscope uses the NMI, the 
debugger screen is displayed. Use the G command to 
continue execution. Since the 8087 may interrupt 
the 8088 at any point, CS:IP may contain any value. 
The 80287 does not use the NMI, so an error will not 
invoke Periscope. 

Many PCs and XTs have an early version of the 8088 
CPU that has a serious bug. This version can be 
identified by the copyright date of 1978 shown on 
the chip. The defect in these CPUs is that the 
instruction after an instruction that changes the 
stack segment is not protected from being 
interrupted. The defined method for changing the 
stack is to change the stack segment and then 
immediately change the stack pointer. If this 
process is interrupted, the stack may be in no man's 
land -- the beginning of a system hang. The fix is 
to get the later chip -- identified by copyright 
dates of 1978 and 1981. 

On a correctly functioning 8088, any instruction 
that modifies any of the segment registers protects 
the next instruction from being interrupted. This 
is a bit of overkill, since changes to DS, ES, and 
CS do not need the protection that stack changes 
require. This is why you'll notice that Periscope 
skips instructions while tracing through an 
instruction that modifies a segment register -- the 
instruction was actually executed, but it was 

9-2 



invisible to Periscope. Be careful not to use 
Periscope's Jump or Go instructions to stop in the 
middle of a stack changeover, since this can cause 
the same problem as the defective 8088. 

On the 80286, the instruction protection for changes 
to segment registers applies only to the stack 
segment -- instructions that change DS, ES, or CS do 
not protect the next instruction. Still, be careful 
not to use the Jump or Go instructions to stop in 
the middle of a stack change. 

For the 80286, Periscope may be used in real (8086) 
mode only. The exception interrupts 6 (invalid 
opcode) and ODH (segment overrun) are intercepted by 
Periscope with CS:IP pointing to the offending 
instruction. If the code segment of these 
interrupts points to memory below PS.COM when it is 
installed, no change is made to the interrupt since 
it is already in use. Avoid use of hardware 
interrupt IRQ 5 (INT ODH) on an AT for such things 
as a mouse, since a segment overrun that occurs when 
this interrupt does not point to Periscope will hang 
your system. 

DOS Notes 

If you're using DOS 2.00 or 2.10, you should be 
aware of bugs in DOS that can cause problems. The 
bugs involve improper changes to DOS's stack where 
the SP register is modified before the SS register. 
This can cause problems when the break-out switch is 
pressed at just the right time or when you attempt 
to trace through DOS. PC Tech Journal published the 
patch for DOS 2.10 in the November 1984 issue. The 
same principles apply to DOS 2.00, although the 
addresses are different. If possible, use a later 
version of DOS -- the bugs are fixed in DOS 3.00. 

So that Periscope can perform file I/O safely, it 
checks the undocumented, but reliable, in-DOS flag. 
This byte contains zero if DOS is available. 
Periscope also checks to see that interrupts are 
enabled, to be sure that DOS was interrupted at a 
safe point. It verifies that the vector for INT 21H 
is the same as saved by PS.COM and RUN.COM. The 
location of the in-DOS flag can be found by 
performing INT 21H with AH=34H. ES:BX returns the 
address of the flag. If you want to perform file 
I/O and Periscope is telling you that DOS functions 
are not available, get CS:IP back to your code and 
try again. Do not attempt to modify the in-DOS flag 
or the interrupt flag in order to fool Periscope -
you can get a garbled disk directory very easily. 

9-3 



To make DOS available. you can use the user 
breakpoint in the sample program USEREXIT.ASM (See 
Chapter VIII for more information). 

Debugging Techniques 

While Periscope is active. the BIOS interrupt 
vectors it uses are reset to point to BIOS unless 
the 'IV' installation option was used. To access 
some memory-resident programs while Periscope is 
active. you may have to use some of these options. 
For example. a program that displays the time may 
use interrupt 1CH. Unless you specify '/V:1C' when 
PS.COM is run. the clock program won't be active 
when Periscope is. Be aware that each 'IV' option 
used reduces Periscope's dependability. since the 
interrupt vector is left pointing to RAM that can be 
corrupted. 

When you press the break-out switch to stop the 
execution of a program. chances are very good that 
you'll stop the machine in either BIOS or DOS. If 
you want to get back to your program. try using the 
Register breakpoint. Enter 'BA II' to clear any 
breakpoints currently set. If you know your 
program's Code Segment. enter 'BR CS EQ nnnn' to set 
a Register breakpoint when CS equals the desired 
value. If you aren't sure. use 'BR CS NE CS' to set 
a breakpoint when the Code Segment changes from its 
current value. Then enter 'GT' to continue 
execution with the Register breakpoint set. This 
will usually get you back to the program. or at 
least from BIOS to DOS or vice-versa. If you"re 
debugging a program that has line numbers as 
symbols. use the BL breakpoint to get back to your 
code. 

To repetitively trace an instruction. enter the Go 
command once and then repeat it using F4. For 
example. if you want to watch the execution of line 
110H. enter 'G 110' and press return. Then press F4 
to repeat the go instruction as many times as 
desired. 

To debug a memory-resident program. use RUN to load 
the program and its symbol table. The program will 
be loaded in the same location as if it were run 
directly from the DOS prompt. Enter 'G' to install 
the program and return to the DOS prompt. Until RUN 
is used to load another program. the symbol table 
will remain available -- ready for you at a push of 
the button. 

If you're programming in assembler. use the PUBLIC 

9-4 



program described in Chapter VIII to get symbolic 
access to as much of your program as possible. The 
more symbols you use, the easier it is to debug your 
programs. 

If you're programming in C using a compiler by 
Computer Innovations, Lattice, or Microsoft, you can 
get debugging information such as line numbers and 
address references in your MAP file by using options 
provided with these compilers. By defining 
variables outside the MAIN, you can cause address 
references to be generated for program variables. 
At link time, be sure to specify a MAP file and the 
/LI and/or /M options as desired. 

If you're programming in Microsoft BASIC, FORTRAN, 
or Pa seal, the addresses in the MAP file that 
reference data variables will be incorrect. These 
compilers generate false segments for OGROUP data. 
The actual segment used depends on the amount of 
memory available at run time. To correct the false 
segments, do the following: 

• Use RUN to load the program, then execute the 
program until OS is modified. The best method is to 
go to the first line in the source program, using 
the symbol for the line number. The value of OS at 
this point is the correct segment. 

• Display a known data symbol using the Display 
command. The segment associated with the symbol is 
the invalid segment. 

• Enter '/S xxxx yyyy' where xxxx is the invalid 
(old) segment and yyyy is the correct (new) segment. 
This will change all occurrences of segment xxxx in 
the symbol table to yyyy. 

If you're calling assembly-language subroutines from 
a high-level language, Periscope can be used to 
trace through the execution of the subroutine to 
verify that it is operating correctly. If the 
subroutine is linked to a compiled program, simply 
use 'G @SUBNAME', where SUBNAME is the name of the 
subroutine. If the subroutine is being called from 
an interpretive language such as BASIC, modify the 
subroutine so that the first byte contains CCH. 
Then when the subroutine is executed, the breakpoint 
(CCH) will activate Periscope. At that point, you 
can modify the instruction to be a NOP (no 
operation) by using 'E CS:IP 90' or skip to the next 
instruction by modifying IP to be IP plus 1. 

9-5 



Debugging Device Drivers 

After installing Periscope, press the break-out 
switch to get into the debugger. Then enter 'QS' to 
perfonn a short boot. This technique can be used to 
cross-boot into another operating system, a non-DOS 
environment such as a self-contained program, or 
back into DOS. 

The short boot perfonns an INT I9H, and leaves NMI 
(INT 2) intact. If you are debugging non-DOS or 
pre-DOS programs such as device drivers, you can use 
the break-out switch after a short boot to get back 
into Periscope. If the timing is critical, as in 
the situation where you need to debug device driver 
initialization code, embed an INT 2 in the code 
itself. 

INT ISH and INT S remain unchanged across a short 
boot. If you've used the I J or IK options to allow 
entry to Periscope via Sys Req or Shift-PrtSc, these 
keys will still work after the short boot, presuming 
no change by another program. 

Periscope uses RAM external to the Submarine board 
for screen buffers, record tables, symbol tables, 
key definitions, non-critical code, and the on-line 
help file. After a short boot, this memory is no 
longer an extension of DOS. If you need to keep 
Periscope from using any memory other than what is 
on the Submarine board, you may use the installation 
option 'IZ'. This sets the size of the external 
buffers to zero. A screen buffer size of zero is 
also achieved by using the '/S:O' or 'I A' 
installation options. The latter indicates that 
both monochrome and color displays are available. 
This method is much preferred over using '/S:O', 
since it preserves the original program's screen. 

In many cases when you are debugging device drivers 
or non-DOS programs it will be sufficient to place 
the external tables somewhere above the first 64K of 
memory in the system, instead of specifying zero 
length. The PS.COM '/L:nnnn' installation option 
can be used to specify the starting address for 
Periscope's tables. 

+ For Periscope II, all code and data areas are in 
nonnal RAM and the IZ installation option is not 
available. For debugging device drivers, use the 
'IL' installation option to place Periscope's code 
and data in the middle of memory. 

9-6 



Periscope Internals 

When the resident portion of Periscope is activated 
via any method, the following steps are performed: 

• If Periscope is already active, control is 
returned to the calling program. 
• If INT 1 (single-step) is used to enter Periscope 
and a hardware interrupt is active, control is 
returned to the calling program. 
• The write-protected memory on the Submarine board 
is write-enabled. 
• The registers and stack are saved. 
• If this is a monitor breakpoint, and the current 
instruction does not satisfy any of the breakpoint 
tests, control is returned to the program being 
debugged after reversing the above items. 
• The temporary and sticky code breakpoints are 
reverted as needed. 
• If a hardware interrupt is active, it is cleared. 
• The speaker is turned off and the keyboard is 
turned on. 
• Interrupts 1, 2, and 3 are refreshed to point to 
Periscope. 
• The state of the keyboard buffer and CRT control 
tables are saved. 
• The current values of the BIOS interrupts used by 
Periscope are saved and changed to their power-on 
values, except if the 'IV' option was used when 
PS.COM was installed. 
• Any needed screen savingl swapping is performed. 
• Periscope's screen is displayed. 

When Periscope is exited using the Trace, Go, 
Continue, or return to DOS commands, the following 
steps are performed: 

• The screen and keyboard buffers are restored to 
their value on entry. The screen is not restored if 
the IN or TN commands are used. 
• BIOS interrupts are restored to their value On 
entry. 
• The registers and stack are restored to their 
values on entry. 
• The memory on the Submarine board is 
wri te -prote cted. 
• If the DOS return is used, the speaker is turned 
off and the keyboard is turned on. 

When Periscope is exited using the Short boot 
option, the following steps are performed: 

• If Periscope was installed with the ID option, the 
value of interrupt 13H is reset to its value at the 
time Periscope was loaded from disk. 

9-7 



• User interrupts 60H through 67H are set to 0:0. 
• BIOS interrupts are restored to their power-on 
values. 
• The stack is relocated to the end of the first 64K 
of memory. 
• The speaker is turned off and keyboard is turned 
on. 

When Periscope is exited using the normal boot 
option, the following steps are performed. 

• The stack is relocated to the end of the first 64K 
of memory. 
• The speaker is turned off and keyboard is turned 
on. 

The requirements for the proper operation of 
Periscope are: 

• On entry, the stack must have room for three 
words, not including the three words required by the 
interrupt to get from the program being debugged to 
Periscope. 

• If trace or a monitor breakpoint is used, 
Interrupt 1 must point to the proper point in the 
resident portion of Periscope. 

• If the break-out switch is used, Interrupt 2 must 
point to the proper point in the resident portion of 
Periscope. Also, NMI must not be disabled via an 
OUT of zero to port AOH on the PC and XT or an OUT 
of IFH to port 70H on the AT. 

• If a code breakpoint is used, Interrupt 3 must 
point to the proper point in the resident portion of 
Periscope. 

The data fields used by Periscope are located at the 
beginning of the protected memory. The record 
definition PSDATA in the file PS.DEF contains the 
most useful of these data fields. The source file 
contains comments describing the various fields in 
the record definition. To display Periscope's data 
area assuming the default memory address of 
COOO:OOOO, enter 'DR COOO:O @PSDATA'. 

+ For Periscope II, enter 'DR xxxx:lOO @PSDATA', 
where xxxx is the starting segment for Periscope's 
tables. 

9-8 



The Submarine Board 

The board uses 16K of memory and two consecutive I/O 
ports. The memory is configured as 8 chips of 
2K-by-8 static RAM, with a cycle time of 200 NS or 
less. The starting address of the memory is 
switch-selectable to any 16K boundary. The starting 
I/O port is switch-selectable to any 4-byte 
boundary. See Chapter III for information on the 
switch settings. 

The memory is write-enabled when the value DBH is 
output to the first of the two ports. Any other 
value output to this port write-protects the memory. 
When the break-out switch is pressed, a NMI is 
generated. Periscope detects that the switch was 
pressed by checking the high bit read from the 
second I/O port. If this bit is on, the switch was 
pressed, otherwise the switch was not pressed. To 
clear the switch, output any value to the second 
port. Clear the switch and NMI near the end of your 
program using the code shown below. 

mov dX,3fl1h 
out dX,al 
in a1,61h 
jmp short $+2 
mov ah,3flh 
or al,ah 
out 61h,al 
jmp short $+2 
not ah 
and al,ah 
out 61h,al 

assumes Submarine port is 30flh 
clear the break-out switch - any value in al is ok 
enable nmi 
delay for 286 
use 3flh if pc or xt. flch if at 

delay for 286 

9-9 



The IBM Enhanced Graphics Adapter 

IBM's Enhanced Graphics Adapter (EGA) conflicts with 
Submarine's default memory setting -- the EGA's ROM 
is addressed at COOO:OOOO. If you have an EGA, 
change Submarine's memory address to C400:0000 or 
some other value. Since the EGA has its own ROM 
BIOS for handling video functions (INT 10H), be sure 
to use a '/V:I0' installation option when an EGA is 
present. This ensures that Periscope uses the EGA's 
BIOS rather than the standard BIOS. 

Periscope supports the EGA's new video modes, 
including those using segments other than BOOOH and 
BBOOH. For single-monitor systems, a maximum of 321< 
of the screen buffer is saved and restored by 
Periscope. 

If you plan to use the EGA's extended palette 
capabilities on a single-monitor system, be sure to 
use the extended save area (via SAVE PTR as 
described in the EGA BIOS listing). This RAM data 
area is updated when the palette or overscan is set, 
allowing Periscope to restore the original palette 
when returning to your program. There are two 
problems with using this save area, however. First, 
the save/restore of the palette registers is 
incredibly slow. Second, the overscan or border 
color is not saved in a consistent location. If you 
use the 'set overscan' function (INT 10H, AH=10H, 
AL=I), the color is saved in a different location 
than if you use the 'set all palettes and overscan' 
function (INT 10H, AH=10H, AL=2). For use with 
Periscope. the latter call should be used. The best 
bet for using an EGA is to have a two-monitor 
system. If you use a single-monitor system, 
remember that the maximum screen size that can be 
saved and restored by Periscope is 32K. 

9-10 



Appendix A -- Error Messages 
The error messages generated by programs in this 
package are numbered. Each program has been 
assigned a range of numbers for easy 
cross-reference. The error numbers and 
corresponding programs are: 

1 through 39 -- resident portion of Periscope 
(PS.COM) 
40 through 69 -- transient or installation portion 
of Periscope (PS.COM) 
70 through 89 -- RUN.COM 
90 through 99 -- RS.COM 
100 through 109 TS.COM 
110 through 119 PSPATCH.COM 
120 through 129 -- PUBLIC.COM 
130 through 139 -- SYMLOAD.COM 

A list of the possible error messages and an 
explanation of each follows: 

01 Invalid function -- An unknown debugger command 
was entered. The first character of the command 
must be ? A. B. C. D. E. F. G. H. I, J. K. L. M, N. 
0, Q. R, S, T. U, Y, W, X. or / in upper or lower 
case. 

02 Invalid/missing address -- An address was 
expected, but was not found or was found to be 
invalid. The address may be entered as a symbol 
(preceded by '@' or a period) or a one- to 
four-digit segment, a colon, and a one- to 
four-digit offset. A register name may be 
substituted for the segment or offset. 

The segment and colon may be omitted from most 
commands. The offset must be present for all 
commands requiring an address. 

03 Missing segment -- Some commands that modify 
memory (Enter, Fill, and Move) require an explicit 
segment to reduce the chance of accidental memory 
modifications. Enter the segment as a number or 
register, or use a symbol for the address. 

04 Invalid/missing length -- The length argument was 
not found or was found to be invalid. If entered as 
'L nnnn', the number nnnn must be greater than zero. 
If entered as an offset, the number must be greater 
than or equal to the first offset. If entered as a 
symbol, the symbol's segment must equal the first 
segment entered and the symbol's offset must be 
greater than or equal to the first offset. 

A-I 



Note that the length argument is optional for the 
Display and Unassemble commands. The default length 
for these commands is 80H and 20H bytes 
respectively. 

05 Unexpected input -- After completion of a 
command, an unexpected entry was found. If mUltiple 
commands are desired, place a semi-colon between the 
commands. 

06 Missing list -- No list was found for the Fill or 
Search commands. These two commands require a 
byte/string list. 

07 Missing quote The trailing single or double 
quote was not found for a list. 

08 Missing operator -- If the Hex arithmetic command 
was used, this error indicates the absence of an 
arithmetic operator between the two numbers. The 
valid operators are: +, -, *, and /. 

If the Byte breakpoint (BB), Register breakpoint 
(BR), or Word breakpoint (BW) command was used, this 
error indicates the absence of a test. The valid 
tests are: LT, LE, EQ, NE, GE, and GT, in upper or 
lower case. 

If the Interrupt breakpoint (BI) or Line breakpoint 
(BL) command was used, this error indicates the 
absence of a plus or minus sign to enable or disable 
the breakpoint. 

If the Memory breakpoint (BM) command was used, this 
error indicates the absence of a code, read and/or 
write check. The valid operators are C, Rand W in 
upper or lower case. 

If the Port breakpoint (BP) command was used, this 
error indicates the absence of an input or output 
check. The valid operators are I and 0 in upper or 
lower case. 

09 Number is not decimal -- The number entered when 
the translate decimal (XD) command is used must be 
in decimal format, with no punctuation. 

10 Invalid/missing number -- A required number was 
not found or was found to be invalid. The number 
must be from one to four hex digits or a valid 
register name. For some commands, the number is 
limited to two hex digits or the 8-bit registers. 
If part of a list, the number must be one or two 
digits and a register name cannot be used. 

A-2 



!l Invalid/missing register -- The register name 
must be AX, BX, CX, DX, SP, BP, SI, DI, DS, ES, SS, 
CS, or IP. The 8-bit registers AH, AL, BH, BL, CH, 
CL, DH, and DL may also be used. The register name 
may be in upper or lower case. 

If this error occurs from the in-line assembler, it 
may mean that the register specified does not fit 
the instruction or is illegal (e.g., PUSH AL or POP 
CS). 

12 Invalid flag -- The valid flag names are OV, NY, 
~,&,m,m,~,~,~,m,~,m,~,ro,cr, 

and NC, in upper or lower case. 

13 Too many breakpoints -- Too many addresses were 
input for the BC command (limit 16), the BB command 
(limit 8), the BP command (limit 8), the BW command 
(limit 8), or the G command (limit 4). 

14 Invalid sub-function -- For commands using 
sub-functions, the sub-function must be entered 
immediately after the function. The Assemble 
command must be followed by a space or a U. The 
Breakpoint command must be followed by an A, B, C, 
I, L, M, p. R. U, or W. The Display command must be 
followed by a space. A. B, D. E. I, N, R. or W. The 
Enter command must be followed by a space or S. The 
Go command must be followed by a space or T. The 
Jump command must be followed by a space, L, or N. 
The Load and Write commands must be followed by A or 
F. The Register command must be followed by a 
space, F, R, S. or a register name. The Search 
command must be followed by a space, A, or U. The 
Trace command must be followed by a space, B, or N. 
The Unassemble command must be followed by a space, 
A, or S. The X1ate command must be followed by a 
space (same as the H sub-function), A, D, or H. The 
Option (/) command must be followed by a S, U. or W. 

15 Cannot trace INT 3 -- An attempt was made to 
trace interrupt 3 using Periscope. This interrupt 
is off-limits, since any attempts to have the 
program trace itself results in total confusion. 

16 Cannot modify memory -- An attempt was made to 
set a code breakpoint in memory that could not be 
modified. The memory is not present. is read-only 
(ROM). or was not correctly updated with the CCH 
code needed for a code breakpoint. 

17 Second address/port less than first -- The second 
address or port number used with the BM or BP 
commands was less than the first number. Enter an 
address or port number greater than or equal to the 

A-3 



first. For commands requiring a range, the second 
offset was found to be less than the first offset. 
For example, the command 'D 0:100 80' is invalid, 
since 80 is less than 100. 

18 Unknown symbol -- An unknown symbol was 
referenced. The symbol must be preceded by '@' or a 
period and must be followed by a trailing space, 
carriage return, or semi-colon. The maximum symbol 
length is 16 characters. Lower case input is 
converted to upper case before the symbol or record 
definition table (if DR is used) is searched. 

Line numbers are of the form 'Xnn', where X is the 
module prefix (A for the first module in the link 
map, B for the second, etc.) and nn is the decimal 
line number. The line number does not have leading 
zeroes. For example, '@A1' may be a valid symbol, 
but '@A01' is not. 

To display the symbol names and addresses from the 
symbol table, use F8. To display the record 
definition table, use F7. 

19 Table full or invalid -- The record or symbol 
table was found to have a logical error or is 
completely full. Try using an undefined record or 
symbol in a display statement. If this error 
occurs, the table has a logical error, otherwise the 
table is full. 

If the table is invalid, chances are good that it 
was garbled by a runaway program. If you have done 
a short boot and have not re-installed Periscope, be 
aware that the memory previously reserved by DOS is 
no longer reserved. 

20 DOS functions not available -- DOS function calls 
are U'Sed by the Load, Name, View, Unassemble Source, 
and Write commands. Since DOS is not re-entrant, 
Periscope tests to be sure that DOS is available 
(not active). This is done by checking a flag set 
by DOS 2.00 and later versions. This flag must be 
zero, interrupts must be enabled, and the interrupt 
vector must equal its saved address for Periscope to 
allow DOS functions. If you receive this message, 
use the Go command to get back to your program's 
code and try the DOS function again. If you're in 
DOS, execute RUN.COM and try the DOS function again. 
For the LA and W A commands, Interrupt vectors 25 and 
26 must contain the same address as when PS.COM or 
RUN.COM was run. 

21 Not enough memory -- Insufficient memory is 
available to perform the Load command. Periscope 

A-4 



checks the amount of memory to be sure enough memory 
is available for disk 1/0. 

22 Invalid drive -- One of the drive names specified 
in the Name command is invalid. Register AL or AH 
is set to FFH if the first or second file name had 
an invalid drive identifier, respectively. 

23 Cannot open file -- Periscope was unable to open 
afile for input or output. If you're loading a 
file into memory, check the name as specified to the 
Name command. If you're writing a file, check that 
the filename is legal, the file is not a read-only 
file, and room exists in the directory for the file. 
This error can also occur if too many files are 
open. 

24 Incorrect window specification -- The parameters 
specified with the I W option were found to be in 
error. The window specification may contain the 
tokens D, R, S, and U in any order, in upper or 
lower case. If a number is entered, it must be of 
the form 'X:nn', where X is the token, and nn is 
from 1 to 10H. For the R token, the number is 
ignored and presumed to be two. A number must be 
followed by a space, a slash (indicating the start 
of another installation option), or a carriage 
return. The total number of windowed lines, 
including a separator line for each window, must be 
21 or less. The minimum size of the U window is 
four lines. 

25 Read/write error -- A fatal error occurred when 
reading or writing a file or absolute sectors. 
Check the disk and filename and retry the command. 

26 Function not available -- This error indicates 
that the desired command is not available. If the 
'IZ' installation option was used with PS.COM, the 
external commands are not available. These same 
commands are also not available if a checksum 
indicates that the external code area has been 
garbled. To reload a garbled external code area, 
execute RUN.COM. The internal commands are always 
available. 

This error can also occur under several other 
conditions: when a RR command is used and no RS 
command has been previously used to save the 
registers; when a TB command is used and IB:O or IZ 
was used when PS.COM was installed; when a US or V 
command is used and IE:O or IZ was used when PS.COM 
was installed; or when a BU or IU command is used 
and no /I:nn was used when PS.COM was installed. 

A-5 



27 Unknown mnemonic -- An unknown mnemonic was 
specified to the in-line assembler. The assembler 
knows the mnemonics for the 8088, 8086, 80186, and 
80286 processors. For the 80286, only the real-mode 
opcodes are supported. Check the mnemonic and try 
again. Segment overrides and other prefixes must be 
on a separate line preceding the instruction they 
affect. 

28 BI W pointer missing An ambiguous instruction 
was specified to the in-line assembler. Certain 
instructions, such as 'MOY [SI] ,1', require a width 
indicator of byte or word. The instruction would be 
entered as 'MOY B [SI],1' or 'MOY W [S1],1', 
respectively. Note that Periscope's disassemble 
command shows the 'B' as 'byte ptr' and the oW' as 
'word ptr'. 

29 Invalid memory reference -- An instruction that 
incorrectly references memory was specified to the 
in-line assembler. Check the register(s) and offset 
specified in the instruction to be sure that the 
memory reference is legal. For example, 'MOY 
AX,[DX]' is not legal, but 'MOY AX,[BX]' is legal. 

30 Extralmissing argument(s) -- There are too many 
or too few arguments for the mnemonic specified. 
Check the number of arguments and try again. Note 
that the 80286 multiply immediate instruction must 
always be entered in the three-argument format. 

31 Line symbol not found -- For the JL command, the 
current instruction (CS:IP) must be a line symbol. 
The next symbol found in the symbol table must also 
be a line symbol and the module prefix must match. 
Use the BL breakpoint to get to the next source code 
line and then use the JL command. 

32 PSP not found -- The Name command was not able to 
locate the PSP. This error can be ignored if you 
need to read or write a file with the LF or WF 
commands. If you are trying to format the PSP, use 
RUN to re-enter Periscope. 

40 Number must be .! to .1: hex digits (0-9, A-F) 
All numbers associated with Periscope installation 
options are in hex format for consistency. For the 
IB, IC, IE, II, IR, IS, IT, and IY options, the 
number must be one or two hex digits. 

41 Not enough memory -- Insufficient memory is 
available to install Periscope. Check the amount of 
available memory using CHKDSK. Boot the system or 
reduce the space Periscope requires in RAM by 
adjusting the installation options. 

A-6 



42 Invalid installation option -- An unexpected 
entry was found in the installation options. The 
valid entries are: If, I A, IB:nn, IC:nn, ID, IE:nn, 
IF, IH, /I:nn, I J, IK, IL:nnnn, IM:nnnn, IP:nnnn, 
IR:nn, IS:nn, IT:nn, IV:nn, IW D:nn R S:nn U:nn, and 
12, where nn represents a one- or two-digit hex 
number and nnnn represents a one- to four-digit hex 
number. Entries may be separated by spaces . 

.. For Periscope II, installation options 1M, IP, and 
12 are not available. 

43 Interrupt must be 08H, 09H. 10H, 16H, 17H, or lCH 
The IV option specified---aIlinterrupt number other-

than the ones listed above. 

44 Unable to modify protected memory -- Periscope 
was not able to install itself in the protected 
memory. Check the port setting on the board and the 
port number specified with the IP option, if any. 

45 Unable to protect memory -- After protecting the 
memory on the board, Periscope was able to modify 
the supposedly protected memory. Check the memory 
setting on the board and the memory address 
specified with the 1M option, if any. 

46 Copy of program in protected memory is invalid -
The copy of Periscope in the protected memory does 
not agree with the temporary copy in RAM. Check 
that the memory board is properly seated in the 
expansion slot and that the chips on the board are 
properly seated in their sockets. 

47 Screen size must be from Q to 20H ~ KB -- The 
size of the original screen specified with the IS 
option must be from zero to 20H K. Note that the 
number is in hex! 

48 Symbol table size must be from 0 to 3FH (63) KB 
The sizeofthe symbol table specified with the 

IT option must be from zero to 3FH K. Note that the 
number is in hex! 

49 DOS 2.00 or later required -- Periscope requires 
DOS 2.00 or later. Version 1.10 of Periscope is the 
last version that supports DOS 1.00 or 1.10. 

50 Record table size must be from Q to 20H (32) KB 
-- The size of the record definition table specified 
with the IR option must be from zero to 20H K. Note 
that the number is in hex! 

51 HELP file not found -- The help file, PSHELP.TXT 
was not found on the default directory. Change the 

A-7 



current directory, copy the help file to the current 
directory, or omit the IH option. 

52 Unable to read HELP file -- An error occurred 
reading PSHELP.TXT~estore the file from your 
backup disk. 

53 Port number must be from 100H to 3FCH -- The port 
number specified withthe IP oPtion-must be from 
100H to 3FCH. Note that the number is in hex! 

54 Memory specification conflicts with memory used 
by DOS -- The memory address specified with the 1M 
option conflicts with DOS memory. Use a higher 
address, outside the range of DOS memory. 

55 Color attribute must be from OlH to FFH and 
foreground color must not equal bi:iCkgroUrld color 
The number specified with the IC option indicates a 
color combination that will display nothing, i.e., 
the foreground and background colors are the same. 
Choose another color and remember that the number is 
in hex! 

56 Incorrect window specification -- See the 
explanation of Error 24, above. 

57 Unable to read response file -- An error occurred 
when PS.COM tried to read the response file. Check 
the file name and try again. Note that any 
installation options entered after the response file 
name are ignored. For example, 'PS Ic:17 @c:std' 
sets the color attribute to 17H and then reads the 
rest of the options from the file 'c:std'. If you 
use 'PS @c:std Ic:17', the color attribute is not 
used. 

58 Backtrace buffer size must be from Q to 10H (16) 
KB -- The size of the backtrace buffer specified 
with the IB option must be from zero to 10H K. Note 
that the number is in hex! 

59 Invalid user interrupt vector -- The user 
interrupt vector specified with the II option must 
be from 60H to FFH. The interrupt handler must be 
already installed using the specified interrupt. 
Periscope checks for the presence of the interrupt 
handler by reading memory at the interrupt's segment 
and offset. The word prior to the interrupt entry 
point must equal 'PS'. See the sample program, 
USEREXIT.ASM, for more information. 

60 Load segment for Periscope tables must be from 
xxxx to yyyy -- The load segment as specified with 
the IL option must be greater than the current value 

A-8 



of the PSP plus 10H paragraphs. The load segment 
must also be less than the top of memory minus 1000H 
paragraphs. If the PSP is COOH and the top of 
memory is 5000H, then the allowable range for the 
load segment is C10H through 4000H. 

61 Source buffer size must be from Q to 10H i!..Q1 KB 
-- The size of the source buffer specified with the 
IE option must be from zero to 10H K. Note that the 
number is in hexl 

62 Unable to write response file -- Periscope is 
unable to write the response file on the default 
drive. Check the disk and try again. 

70 File not found -- RUN was not able to find the 
specified file:-check the file name and restart 
RUN. 

71 EXE Header not found -- A file with an extension 
of EXE was specified, but the header record 
identifying the file as a valid EXE file was not 
found. Regenerate the EXE file and restart RUN. 

72 Unable to read xxxxxxxxxxx -- An error occurred 
reading thelndicated file. Check to be sure the 
disk is ready and that the file size shown by DIR 
indicates the true file size. 

73 Not enough memory -- Insufficient memory is 
available for RUN to load the desired program. 
Check the amount of available memory using CHKDSK 
and re-boot as needed. 

74 Periscope (Version x.xx) not installed -- RUN 
cannot run without the corresponding version of 
Periscope installed. Install the correct version of 
Periscope and restart RUN. 

75 Periscope not installed correctly -- RUN was 
unable to modify the protected memory. Reload 
Periscope and try again. 

76 Unable to load MAP file -- A MAP file was found 
for a COM or EXE file, but RUN was unable to load it 
correctly. Check the format of the MAP file and the 
size required for the MAP file using TS.COM. The 
MAP file must be in the format as produced by LINK 
-- some editors may cause subtle reformatting of the 
file. 

If the space required by the MAP file is greater 
than the symbol table size, as much of the MAP file 
is loaded into the symbol table as possible. Use F8 
to see the symbols that were loaded. 

A-9 



77 Unable to load DEF file -- A DEF file was found 
for a COM or EXE file, but RUN was unable to load it 
correctly. Check the format of the DEF file and the 
size required for the DEF file using RS.COM. 

If the space required by the DEF file is greater 
than the record table size, as much of the DEF file 
is loaded into the record table as possible. Use F7 
to see the records that were loaded. Note that the 
last record will usually be only partially defined. 

78 Unable to load PSS file -- An error occurred when 
RUN attempted"tC>load the PSS file into the symbol 
table. Usually the PSS file is larger than the 
space reserved for the symbol table when Periscope 
was installed. If this is the case, restart 
Periscope with a larger symbol table, otherwise 
check the file and try again. 

79 Logical error in symbol table -- A logical error 
was found in the symbol table during final 
processing. If a PSS file is used, regenerate it 
and try again. If a MAP file is used, please report 
the error immediately. 

80 Unable to read PS.COM -- RUN detected that the 
Periscope code outside the protected memory has been 
garbled. To restore this code, RUN must read 
PS.COM, which is assumed to be in the current 
directory. Make sure PS.COM is in the current 
directory and try again. 

90 DEF file not found -- RS.COM was not able to find 
afile of the specified name with an extension of 
DEF. 

91 Unable to read DEF file -- An error occurred 
reading the-DEF file.- Check the drive and file and 
try again. 

92 Line xxxxx of DEF file is not in correct format = "i'ile"" DEF fileis not in the format expected. The 
line number indicates the line in the DEF file where 
the error occurred. Check the format of the DEF 
file as defined in the description of RS.COM in 
Chapter VIII. 

93 Not enough memory -- Insufficient ~emory is 
available for RS.COM to load the DEF hIe. Check 
the amount of available memory using CHKDSK and 
re-boot as needed. 

94 DOS 2.00 or later required -- Periscope requires 
DOS-rOO or later.-Version 1.10 of Periscope is the 
last version that supports DOS 1.00 or 1.10. 

A-I0 



100 MAP file not found -- TS.COM was not able to 
find a file of the specified name with an extension 
of MAP. 

101 Unable to read MAP file -- An error occurred 
reading the MAP file-:--Regenerate the file and try 
again. 

102 Line xxxxx of MAP file is not in correct format 
-- The MAP file is not in the format expected. The 
line number indicates the line in the MAP file where 
the error occurred. 

If you've used a text editor to modify the MAP file. 
be sure to save it in its original format -- with no 
embedded tab characters or high bits set. The 
format as produced by the linker may have changed 
try using another version of LINK. If this is the 
problem. please advise us of the situation as soon 
as possible. 

103 Not enough memory -- Insufficient memory is 
available for TS.COM to load the MAP file. Check 
the amount of available memory using CHKDSK and 
re-boot as needed. 

104 Unable to write PSS file -- A disk error 
occurred when TS attempted to write the PSS file. 
Check the disk and try again. 

105 DOS 2.00 or later required -- Periscope requires 
DOS 2.00 orIater-:--Y"ersion 1.10 of Periscope is the 
last version that supports DOS 1.00 or 1.10. 

106 Unknown PLINK symtable type - x -- TS.COM 
encountered an unknown record type In the symbol 
table at the end of the PLINK file. Please notify 
us immediately if you encounter this error. 

110 Unable to patch PS.COM (Version x.xx) -- An 
error occurred reading or writing PS.COM. Check the 
disk and file and try again. 

111 Interrupt lCH does not point to an IRET 
instruction -- PSPATCH found that interrupt 1CH does 
not point to an !RET instruction. Check to make 
sure that no device drivers or memory...,resident 
programs are installed. If this does not clear up 
the problem. please call for assistance. 

112 DOS 2.00 or later required -- Periscope requires 
DOS 2.00 or later. Version 1.10 of Periscope is the 
last version that supports DOS 1.00 or 1.10. 

113 Wrong version of PS.COM -- The versions of 

A-ll 



PSPATCH.COM and PS.COM do not agree. Use the same 
version of both programs and try again. 

120 DOS 2.00 or later required -- Periscope requires 
DOS 2.00 or later. Version 1.10 of Periscope is the 
last version that supports DOS 1.00 or 1.10. 

121 File not found -- The PUBLIC program was not 
able "'"'t<>find a file of the specified name. If no 
extension is specified, ASM is used. If an 
extension is specified, it is used. 

122 Not enough memory -- Insufficient memory is 
available for PUBLIC.COM to load the program file. 
Check the amount of available memory using CHKDSK 
and re-boot as needed. 

123 Unable to read program file -- An error occurred 
reading the program file. Check the file and try 
again. 

124 Unable to write .PUB file -- A disk error 
occurred when PUBLIC attempted to write the PUB 
file. Check the disk and try again. 

130 Periscope (Version x.xx) not installed --
SYMLOAD cannot run without the corresponding version 
of Periscope installed. Install the correct version 
of Periscope and restart SYMLOAD. 

131 Invalid command line input -- The only valid 
command line input to SYMLOAD is '/I:nn' where nn is 
the interrupt vector to be used by SYMLOAD. The hex 
number must be from zero to FF. 

A-12 



Index 

Special Characters 

$ parameter 6-5 
IS command 6-71 
IU command 5-1. 5-3. 

6-72. 8-7 
I W command 6-73 
80286. 8088 cpus 6-9. 

6-54, 6-63. 9-1 thru 
9-3 

8087, 80287 numeric 
processors 2-2. 6-73. 
8-8, 9-2 

[ parameter 6-7 
{ parameter 6-7 

A 

address parameter 6-5 
arithmetic operator 

parameter 6-5 
ASM programs 8-2. 8-5, 

9-4 
assemble command 6-9. 

6-10 

B 

backspace key 6-2 
BASIC programs 9-5 
BIOS 5-1. 5-6. 8-1 
boot option 5-3. 6-1. 

6-2, 9-6 
breakpoints 6-11 thru 

6-23, 9-1 
breakpoint clear command 

6-12 
breakpoint disable 

command 6-14 
breakpoint display 

command 6-11 
breakpoint enable 

command 6-13 
breakpoint on byte 

command 6-15 
breakpoint on code 

command 6-16, 6-38 
breakpoint on interrupt 

command 6-17 
breakpoint on line 

command 6-18 
breakpoint on memory 

command 6-19 
breakpoint on port 

command 6-20 
breakpoint on register 

command 6-21 
breakpoint on user test 

command 6-22. 8-7 
breakpoint on word 

command 6-23 
byte parameter 6-5 

C 

C programs 8-5, 8-6, 9-5 
clear screen command 

6-46 
color-graphics adapter 

5-1 thru 5-3 
COM files 7-1 
commands 6-8 thru 6-74 
compare command 6-24 
conflicts, memory 3-1 
conflicts, ports 3-1 
continue option 6-1 
copy (see move command) 
Ctrl-Break key 6-3 
Ctrl-PrtSc key 6-3 
Ctrl-S key 6-3 

D 

debug option 6-1 
debugging techniques 9-4 
debugging theory 9-1 
decimal number parameter 

6-5 
DEF file 6-32. 7-1, 8-2 
Del key 6-2 
device drivers 9-6 
DIP switches 3-2 thru 

3-5 
disassemble (see 

unassemble) 
disk drive parameter 6-5 
display ASCII command 

6-26 
display byte command 

6-27 
display current format 

command 6-25 
display double word 

X-I 



command 6-28 
display effective 

address command 6-29 
display integer command 

6-30 
display number command 

6-31 
display record command 

6-32, 8-2 
display word command 

6-34 
DOS 6-2, 6-50, 7-2, 8-1, 

9-3 
drive parameter 6-5 

E 

effective address 6-29, 
6-53 

Enhanced Graphics 
Adapter 1-6, 3-1, 9-10 

enter command 6-35 
enter symbol command 

6-36 
errors A-1 thru A-12 
Esc key 6-2 
EXE files 6-48, 7-1 

F 

F1 key 6-2 
F3 key 6-2 
F4 key 6-2 
F6 key 6-3 
F7 key 6-3 
F8 key 6-3 
F9 key 6-3 
FlO key 6-3 
function keys 6-4 
File Control Block (FCB) 

6-50 
fill command 6-37 
flag 6-55 
flag parameter 6-5 
FORTRAN programs 9-5 
function parameter 6-5 

G 

go command 6-38 
go using trace command 

6-40 

H 

help command 2-1, 5-1, 
5-3, 6-8 

hex arithmetic command 
6-42 

I 

input command 6-43 
Ins key 6-2 
installation options 5-1 

thru 5-9 
interrupts 5-1, 5-5, 

5-6, 9-4, 9-6 

] 

jump command 6-44 
jump line command 6-45 
jump noswap command 6-45 

K 

keyboard usage 6-2 thru 
6-4 

klear command 6-46 

L 

left arrow key 6-2 
length parameter 6-6 
load absolute sectors 

command 6-47 
load file command 6-48 
line number, program 8-6 
linker 1-5, 7-2, 8-5 
list parameter 6-6 

M 

MAP file 7-1, 8-5 
memory board (see 

Submarine) 
memory, protected 9-9 
monitor, alternate 5-1, 

5-2 
move command 6-49 
multiple commands 6-4, 

9-4 

X-2 



N 

name command 6-50 
name parameter 6-6 
non-maskable interrupt 

(NMI) 3-9, 9-6 thru 
9-9 

number parameter 6-6 

o 
offset parameter 6-6 
output command 6-51 

p 

parameters 6-4 thru 6-7 
parity error 3-7, 3-10 
Pascal programs 8-5, 9-5 
Periscope 

installation options 
5-1 thru 5-7 

internals 9-7, 9-8 
model I v 
model II differences 

v, vi, I-I, 1-2, 
1-3, 1-4, 2-1, 3-1, 
3-8, 4-1, 5-1, 5-5, 
5-7, 6-1, 6-8, 7-1, 
9-6, 9-8 

tables 5-1 thru 5-7 
port 6-43, 6-51 
port parameter 6-6 
ports, memory protect 

3-1, 9-9 
Program Segment Prefix 

(PSP) 1-3, 4-2, 6-50, 
7-1 

PS.COM program (also see 
Periscope) 2-1, 5-1 
thru 5-9 

PS.DEF file 2-1, 4-1 
PSDEMO.COM program 2-1 
PSHELP.TXT file (see 

help) 
PSHELP2.TXT file (see 

help) 
PSPATCH.COM program 2-1, 

8-1 
PSS file 7-1, 8-4, 8-5 
PUBLIC.COM program 2-1, 

8-2 

Q 

quit command 6-52 
quit options 6-1 

R 

range parameter 6-6 
READ.ME file 2-2 
record definitions (see 

DEF file) 
register parameter 6-6 
register command 6-53 
register restore command 

6-56 
register save command 

6-56 
response file 5-8 
return to DOS option 6-2 
right arrow key 6-2 
RS.COM program 2-2, 8-2 
RUN.COM program 2-2, 

4-2, 7-1 

s 
SAMPLE.ASM/.COM/.MAP 

files 2-2, 4-1 
sample program 4-1 
screen 5-1, 5-5 
search command 6-57 
search for address 

reference command 6-58 
search for unassembly 

match command 6-59 
sectors parameter 6-6 
segment parameter 6-7 
semi-colon key 6-4 
Shift-PrtSc key 5-1, 

5-3, 6-4 
string parameter 6-7 
sub-function parameter 

6-7 
Submarine v, I-I, 3-1, 

3-6 
conflicts 3-1, 9-10 
installation 3-6 
switch settings 3-2 
technical notes 9-9 

SWI 3-2, 3-3 
SW2 3-2, 3-4, 3-5 
switch, DIP (see DIP 

switch) 

X-3 



switch, break-out v, 
1-1, 3-6, 3-8 

symbol 1-5 
symbol parameter 6-7 
symbol table 5-1, 5-6, 

6-36, 8-4 
SYMLOAD.COM program 2-2, 

8-4 
Sys Req key 5-1, 5-3 
system requirements 1-6 

T 

test parameter 6-7 
trace command 6-60 
trace back command 5-1, 

5-2, 6-61 
trace noswap command 

6-62 
translate address 

command 6-70 
translate decimal number 

command 6-70 
translate hex number 

command 6-70 
TS.COM program 2-2, 8-5 
tutorial 4-1 thru 4-6 

u 
unassemble command 6-63 
unassemble asm command 

6-65 
unassemble source I asm 

command 5-3, 6-66 
user exit (see IU 

command) 
USEREXIT.ASM/.COM files 

2-2, 6-72, 8-7 

v 
view file command 5-3, 

6-67 

w 
windows 5-1, 5-6, 6-73 
write absolute sectors 

command 6-68 
write file command 6-69 

write-protected memory 
3-1, 9-9 

x 
xlate (see translate) 

X-4 


