


Periscope 

The Undercover Debugger 
For The IBM Personal Computer 

by Brett Salter 



Periscope Manual (Version M31) 

SOFTWARE BY: Brett Salter 
MANUAL BY: Sharon Bailey & Brett Salter 

PUBLISHED BY: 
The Periscope Company, Inc. 
14 Bonnie Lane 
Atlanta, GA 30328 USA 
Phone: 404/256-3860 

SALES: 800/722-7006 
TECH SUPPORT: 404/256-3372 (9am-5pm Eastern time) 

Copyright © 1986. The Periscope Company. Inc. (TPC). All 
rights reserved. No part of this publication. including the 
program diskette. may be reproduced or distributed in any 
form or by any means without the prior written permission 
of the publisher. The software may be used by only one 
person on one computer system at a time. The software 
may be used by any number of people on any number of 
computer systems so long as there is no possibility that 
the software is being used at more than one location at 
the same time. As Borland International aptly says. "Treat 
it like a book"! 

We will attempt to fix errors you find in the software if 
you will provide us a way to recreate the problem on our 
computer systems. We welcome your suggestions and 
comments regarding improvements and enhancements. 
Periscope's evolution is guided by its users. 

The entire risk as to the performance of this package is 
with the purchaser. TPC has carefully reviewed the 
materials provided with this package. but does not 
warrant that the operation of the items included in this 
package will be uninterrupted or error-free. TPC assumes 
no responsibility or liability of any kind for errors in the 
package or for the consequences of any such errors. 



Table of Contents 

Chapter Page 

Please Read-Important Information 
Money-Back Guarantee ........................................ v 
Warranties ....................................................... v 
FCC Compliance ................................................. vi 

Preface 
Registration. Updates. Upgrades. And Tech Support .. vii 
The Four Models Of Periscope ............................. viii 
Learning Periscope ............................................ ix 
Using The Manual .............................................. ix 

Chapter I-Introduction 
\Velcome! ......................................................... 1-1 
Items Included In The Periscope Package .............. 1-1 
What Makes Periscope Different ........................... 1-3 
Features And Benefits ........................................ 1-4 
Symbols-Your Road Map Through Memory ............... 1-5 
System Requirements .......................................... 1-6 

Chapter n-Configuring Periscope 
Backing Up And Configuring Periscope ................... 2-1 
Files Contained On The Periscope Disk ................. 2-2 

Chapter III-Installing The Hardware 
Checking For Conflicts ....................................... 3-1 
Setting The DIP Switches .................................... 3-2 
Installing The Periscope I Board .......................... 3-5 
Installing The Periscope II Break-out Switch ......... 3-6 
Installing The Periscope III Board ........................ 3-9 

Chapter IV-Tutorial: Using Periscope 
Tutodal Using Assembler Program ......................... 4-1 

Chapter V-Tutorial: Periscope And 'C' 
Tutorial Using 'c' Program .................................. 5-1 

Chapter VI-Installing The Periscope Software 
Installation Options ........................................... 6-1 
Alternate Start-up Methods .................................. 6-9 

Chapter VII-Debugging With Periscope 
The Quit Options ............................................... 7-1 
Keyboard Usage ................................................. 7-3 
Command Parameters .......................................... 7 - 7 
The Periscope Commands .................................... 7-11 

Assemble to memory ....................................... 7-13 
Assemble then Unassemble ............................... 7-14 

Contents i 



Breakpoints All .............................................. 7-15 
Breakpoint on Byte ......................................... 7 -15 
Breakpoint on Code ......................................... 7-16 
Breakpoint on Interrupt .................................... 7-17 
Breakpoint on Line ......................................... 7-18 
Breakpoint on Memory ..................................... 7-18 
Breakpoint on Port .......................................... 7-19 
Breakpoint on Register .................................... 7-20 
Breakpoint on User test ................................... 7-21 
Breakpoint on Word ........................................ 7-22 
Breakpoint on eXit .......................................... 7-23 

Compare ........................................................ 7 -24 

Display using current format ............................ 7-25 
Display using ASCII format ............................... 7 -26 
Display using Byte format. ............................... 7-26 
Display using Double word format ..................... 7-27 
Display Effective address ................................ 7-28 
Display using Integer format ............................ 7-29 
Display using Long real format ......................... 7-29 
Display using Number format ............................ 7-30 
Display using Record format ............................. 7-30 
Display using Short real format ........................ 7-32 
Display using Word format ............................... 7-33 
Display using asciiZ format ............................. 7-33 

Enter ............................................................ 7-35 
Enter Alias .................................................... 7-36 
Enter Symbol ................................................. 7-36 

Fill .............................................................. 7-38 

Go ............................................................... 7-39 
Go Equal ....................................................... 7-40 
Go using All .................................................. 7 -40 
Go using Hardware (Model III only) ................... 7-41 
Go using Monitor ............................................ 7-41 
Go using Trace .............................................. 7-43 

Help ............................................................ 7-45 
Hex arithmetic ............................................... 7-45 
Hardware breakpoints All (Model III only) .......... 7-46 
Hardware Bit breakpoint (Model III only) ............ 7-46 
Hardware Controls (Model III only) .................... 7-47 
Hardware Data breakpoint (Model III only) .......... 7-49 
Hardware Memory breakpoint (Model III only) ...... 7-50 
Hardware Port breakpoint (Model III only) .......... 7-51 
display Hardware buffer in Raw mode 
(Model III only) ............................................. 7-52 
display Hardware buffer Single entry 
(Model III only) ............................................. 7-55 
display Hardware buffer in Trace mode 
(Model III only) ............................................. 7-56 

11 Contents 



display Hardware buffer in Unasm mode 
(Model III only) ............................................. 7-58 
Hardware Write (Model III only) ....................... 7-60 

Input ............................................................ 7-62 
Interrupt Restore ............................................ 7-62 
Interrupt Save ................................................ 7 -62 

Jump ............................................................ 7-64 
Jump Line ..................................................... 7 -64 

Klear ............................................................ 7-66 
Klear and Initialize ........................................ 7-66 

Load Absolute disk sectors .............................. 7-67 
Load File from disk ........................................ 7-67 
Load Symbols from disk .................................. 7-68 

Move ............................................................ 7-69 

Name ............................................................ 7-70 

Output .......................................................... 7-71 

Quit ............................................................. 7-72 

Register ........................................................ 7-73 
Register Restore ............................................. 7-75 
Register Save ................................................ 7-76 

Search .......................................................... 7-77 
Search for Address reference ............................ 7-77 
Search for Calls ............................................. 7-78 
Search then Display ........................................ 7 -78 
Search for Return address ................................ 7-79 
Search for Unassembly match ........................... 7 -80 

Trace ........................................................... 7-81 
Trace Back/Trace Registers/Trace Unasm ............ 7-81 

Unassemble memory ........................................ 7-84 
Unassemble ASM instructions ............................ 7-86 
Unassemble Both asm and source ...................... 7-86 
Unassemble Source ......................................... 7 -87 

View file ...................................................... 7-89 
View Source file ............................................ 7 -90 

Write Absolute disk sectors ............................. 7-91 
Write File to disk .......................................... 7-91 
Write Symbols to disk .................................... 7-92 

Xlate (translate) hex number ............................ 7-94 
Xlate (translate) Address ................................. 7-94 

Contents iii 



Xlate (translate) Decimal number ....................... 7-94 

Option D (Data window select) .......................... 7-95 
Option E (Echo screen to a file) ....................... 7-95 
Option N (Nearest symbols) .............................. 7-96 
Option R (Remove symbol) ................................ 7 -96 
Option S (Segment change) ............................... 7-97 
Option T (Trace interrupt table) ........................ 7 -98 
Option U (User exit) ........................................ 7-99 
Option W (Window setup) ................................ 7-99 
Option X (eXit to DOS) ................................... 7-102 

Chapter VIII-RUNning Your Program 
Loading Your Program With RUN ........................... 8-1 

Chapter IX-Using The Periscope Utilities 
CLEARNMI.COM ................................................... 9-2 
CONFIG.COM ....................................................... 9-2 
INT.COM ........................................................... 9-3 
PS3TEST.COM ..................................................... 9-4 
PSKEY.COM ........................................................ 9-5 
PSTEST.COM ...................................................... 9-6 
PUBLIC.COM ....................................................... 9-7 
RS.COM ............................................................ 9-8 
SYMLOAD.COM .................................................... 9-10 
SYSLOAD.SYS ..................................................... 9-11 
TS.COM ............................................................ 9-12 
USEREXIT.ASM and USEREXIT.COM ........................... 9-15 

Chapter X-Technical Notes 
Debugging Theory ............................................ 10-1 
NMI Use ......................................................... 10-2 
CPU Differences ............................................... 10-3 
DOS Notes ...................................................... 10-4 
Debugging Techniques ...................................... 10-5 
Debugging Device Drivers And Non-DOS Programs ... 10-8 
Debugging Hardware Interrupts ........................... 10-8 
Periscope Internals .......................................... 10-9 
The Periscope I Board ...................................... 10-9 
The Periscope III Board .................................... 10-10 
The IBM Enhanced Graphics Adapter .................... 10-10 

Chapter XI-Using Periscope III 
Introduction To Periscope III ............................. 11-1 
Capabilities .................................................... 11-2 
Compatibility And Other Caveats ......................... 11-4 
Hardware Breakpoint Examples ........................... 11-6 

Appendix A-Error Messages ................................... A-I 

Index ................................................................. X-I 

IV Contents 



Please Read-Important Information 

• Money-Back Guarantee 

• Warranties 

• FCC Compliance 

Money-Back Guarantee (All Models) 

If you purchase Periscope from The Periscope Company, 
Inc. (TPC) and the package does not perform to your 
satisfaction, you may return it within 30 days of our 
shipping date, and we will refund your purchase price, 
excluding shipping charges. Other suppliers mayor may 
not offer a similar guarantee. 

Return authorization must be obtained from TPC at 404/256-
3860 prior to return. Returned packages must be received 
within the 3~-day guarantee period, must be marked with 
the return authorization number, must contain all 
materials, including the registration card, and must arrive 
in as-new condition. If the return authorization is not 
clearly marked on the package, it will be refused. If the 
package is damaged or incomplete, or if it is received 
after the 30-day guarantee period, a minimum 15% 
restocking fee may be deducted from the amount refunded. 
Note: A separate fee of 15% may be deducted on returns 
of Model III unless there is an unresolvable conflict with 
the user's computer system. 

Warranties 

TPC warrants the enclosed printed circuit board and/or 
break-out switch (all models except II-X) to be in good 
working order for a period of one year from the date of 
purchase as a new product. 

Important Information v 



Should this hardware fail to perform properly any time 
within the one-year warranty period, TPC will, at its 
option, repair or replace it at no cost except as set forth 
in this warranty. Replacement parts or products will be 
furnished on an exchange basis only. Replaced parts 
and/or products become the property of TPC. No warranty 
is expressed or implied for damage caused by accident, 
abuse, misuse, natural or personal disaster, or 
unauthorized modification. 

Warranty service may be obtained by sending the board 
and/ or switch to TPC during the warranty period. Return 
authorization must be obtained at 404/256-3860 prior to 
return, and proof of purchase date must be included. If 
shipped by mail or any common carrier, owner agrees to 
insure and accept all liability for loss or damage, to 
prepay all shipping charges, and to use a shipping 
container equivalent to the original packaging. 

The Periscope diskette, manual, and binder (all models) 
are warranted to be free from defects for ninety days 
from the date of purchase. If any materials are found 
defective during the 90-day warranty period, call TPC at 
404/256-3860 for warranty service. 

FCC Compliance 

The equipment contained m this package complies with 
the requirements in Part 15 of FCC Rules for a Class A 
computing device. Operation of this equipment in a 
residential area may cause unacceptable interference to 
radio and TV reception, requiring the operator to take 
whatever steps are necessary to correct the interference. 
Shielded cable should be used with this unit to insure 
compliance with the Class A limits. 

Warning: This equipment generates, uses, and can 
radiate radio frequency energy and if not installed and 
used in accordance with the instruction manual, may 
cause interference to radio communications. It has been 
tested and found to comply with the limits for a Class A 
computing device pursuant to Subpart J of Part 15 of FCC 
Rules, which are designed to provide reasonable 
protection against such interference when operated in a 
commercial environment. Operation of this equipment in a 
residential area is likely to cause interference in which 
case the user at his own expense will be required to 
take whatever measures may be required to correct the 
interference. 

vi Important Information 



Preface 

• Registration, Updates, Upgrades, And Tech Support 

• The Four Models of Periscope 

• Learning Periscope 

• Usihg The Manual 

Registration, Updates, Upgrades, And Tech 
Support 

Be sure to complete and return the enclosed registration 
card. It entitles you to an automatic first software 
update, free of charge, and notice of future updates, for 
which there is a nominal charge. 

(Note: Keep your registration card in a safe place if you 
do not send it in immediately. Without it, you must 
provide us with proof-of-purchase and pay the current 
update fee to become registered and receive your first 
software update.) 

Registered users may upgrade to a higher-priced model of 
Periscope for the difference in price plus a nominal 
upgrade fee (currently $10). For instance, if you purchase 
Model II, then later decide you need the protected 
memory offered by Model I, it would cost you $180 (the 
Model I price of $345 less the Model II price of $175 
plus $10) to trade in your Model II for a Model I. The 
current list prices, which mayor may not be what you 
actually paid, are always used to calculate the price 
difference. Call us at 404/256-3860 for details and/or a 
return authorization number. 

Registered users also receive free technical support by 
calling 404/256-3372, Monday through Friday, from 9 AM 

Preface vii 



to 5 PM Eastern time. Please cal1 rather than writing if 
possible-it's much faster and easier to resolve problems 
on the telephone than by mail. When you call with a 
problem, please be prepared to answer these questions: 

• What Model (I, II, II-X, or III) and version (e.g., 3.10) 
of Periscope are you using? 
• What brand and model of computer are you using (e.g., 
IBM XT)? 
• What version of DOS are you using (e.g., PC DOS 2.1)? 
• What boards are installed in your system? 
• What device drivers and/or memory-resident software 
are you using? 
• What Periscope installation options are you using? 
• What is the problem you're experiencing? 
• Are you able to repeat the problem on the same 
computer system or on another computer system? 

The Four Models Of Periscope 

This manual describes four different models of Periscope. 
The four models include very similar software, but there 
are differences in the hardware. We use an arrow (+) to 
point out key model differences in this manual. 

+ Periscope I includes a memory board with 56K of 
write-protected RAM and a remote break-out switch. The 
protected RAM protects Periscope's software from programs 
that overwrite low memory, where debugger software 
normally resides. And since Periscope resides in the 
board's memory, it doesn't compete with your program for 
space in normal RAM. 

The switch located on the Model I board's mounting 
bracket enables you to stop an executing program and 
enter Periscope at any time. The optional remote switch 
that plugs into the phono jack on the mounting bracket 
performs exactly the same function. This break-out 
capability means that you can interrupt the system any 
time, to debug the executing program or just to see 
what's going on. It is especially valuable when your 
system is hung. 

+ Periscope II includes a remote break-out switch, but 
no protected memory board. The switch taps into an 
expansion slot that is already in use, so no additional 
slot is required. (The break-out switch with Model I 
requires a slot because it is implemented via the board.) 
The Model II break-out switch performs the same function 
described above for the Model I break-out switch. 

viii Preface 



.. Periscope II-X is software only, with no break-out 
switch or memory board. Because it does not include a 
break-out switch, it does not support Interrupt 2 (NMI) , 
generated by the switch. (However, you can install your 
own break-out switch to generate Interrupt 2, then 
configure Periscope as a Model II.) Model II-X works on 
the IBM convertible, which uses Interrupt 2 for its own 
purposes, and may work in other environments where 
there's a conflict with the other models of Periscope . 

.. Periscope III includes a remote break-out switch, and 
a memory board with 64K of write-protected RAM, a real
time trace buffer, and hardware breakpoints. The memory 
protection and break-out capability are the same as for 
Model I (except there's 8K more protected memory). The 
difference is that the Model III board also contains the 
logic to monitor the system bus, and with your program 
executing at full speed, captures vital execution 
information andlor stops at specified hardware 
breakpoints. There are additional Periscope commands, 
used only with Model III, that enable you to deal with 
the Model III board functions. 

Learning Periscope 

Please read or at least browse through the manual and 
take the tutorials in Chapters IV and V before you begin 
using Periscope. 

Information on using Periscope III is included throughout 
the manual. However, there is a special chapter (Chapter 
XI) on hardware-assisted debugging that Periscope III 
users should read before reading the other chapters. 

When you're ready to get started, here are the things you 
must do: 

Step l-Back up the Periscope disk and configure 
Periscope (See Chapter II.) 
Step 2-Install the hardware (See Chapter III.) 
Step 3-Take the tutorials (See Chapters IV and V.) 
Step 4-Install the software (See Chapter VI.) 
Step 5-Load your program (See Chapter VIII.) 

Using The Manual 

Here's how the manual is organized: 

Chapter I-Introduction-gives you an overview of 
Periscope, its features, benefits, and requirements. 

Preface ix 



Chapter II-Configuring Periscope-gives you a step-by
step procedure for backing up, then configuring the 
Periscope software; also describes each file on the disk. 

Chapter III-Installing the Hardware-describes how to 
check your configuration for conflicts with the default 
settings of either of the Periscope boards, how to change 
your Periscope board's settings if you have conflicts, and 
how to install the board and break-out switch. 

+ For Periscope II, a separate section covers how to 
install the break-out switch. 

Chapter IV-Tutorial: Using Periscope-walks you through 
a session using Periscope to 'debug' a simple assembler 
program. 

Chapter V-Tutorial: Periscope and 'C'-wa1ks you through 
a session using Periscope to 'debug' a simple 'C' 
program. 

Chapter VI-Installing the Periscope Software-describes 
how to install the Periscope software; explains the 
installation options and the alternate methods of 
installing Periscope. 

Chapter VII-Debugging with Periscope-defines the quit 
options, keyboard usage, the command parameters, and 
Periscope's commands. 

Chapter VIII-RUNning Your Program-describes how the 
program loader, RUN.COM, works. 

Chapter IX-Using The Periscope Utilities-describes how 
to use the various utility programs included in the 
package. 

Chapter X-Technical Notes-discusses debugging theory, 
NMI use, CPU differences, DOS, debugging techniques, 
debugging device drivers and non-DOS programs, Periscope 
internals, the Periscope (I and III) boards, and the IBM 
Enhanced Graphics Adapter (EGA). 

Chapter XI-Using Periscope III-describes hardware
assisted debugging with Periscope III. 

Appendix A-Error Messages-explains Periscope's error 
messages. 

x Preface 



I-In traduction 

• Welcome I 

• Items Included In The Periscope Package 

• What Makes Periscope Different 

• Features And Benefits 

• Symbols-Your Road Map Through Memory 

• System Requirements 

Welcome! 

Thank you for choosing Periscope as your debugging 
system. You've made your life as a software developer 
easier, because Periscope gives you the tools you need 
to find and fix your programs' bugs quickly! The sooner 
you begin using Periscope, the sooner you'll start saving 
yourself many hours of debugging time. While you're 
getting acquainted with Periscope, remember that we 
support what we sell. If you run into a problem or have 
a question, please call Tech Support at 404/256-3372. 

Items Included In The Periscope Package 

The first four items below are included with all models 
of Periscope. The switch, board, and umbilical (items 5, 
6 and 7) are included only with the indicated models. 

1) A registration card 

The registration card is important ... don't lose it! It 
entitles you to a free first software update, notices of 

Introduction 1-1 



subsequent updates, and free technical support by calling 
404/256-3372. For more information, see the Preface. 

2) A diskette. with the Periscope software and related 
files 

The diskette contains the debugger software, plus sample 
programs and files used in the tutorials (Chapter IV and 
V); Periscope utility programs (Chapter IX); and a 
Periscope demo program. See Chapter II for a description 
of each file on the diskette. 

3) A quick-reference card 

The quick-reference card provides you with a concise list 
of Periscope's commands, command parameters, 
installation options, and keyboard usage, all of which are 
described in detail in Chapters VI and VII. 

4) This manual 

This manual's purpose is to provide you with the traInIng 
you need to learn Periscope (Chapters IV and V) and with 
the technical information you need to become an expert 
Periscope user (Chapters VI through X). We strongly urge 
you to read the manual! 

5) A remote break-out switch (All Models except II-X) 

The switches located on the Model I and III boards' 
mounting brackets, the optional remote switches that plug 
into the phono jacks on the Model I and III boards' 
mounting brackets, and the optional remote switch that 
comes with Model II perform exactly the same function. 
They enable you to interrupt the system at any time, 
often saving you from rebooting or powering down and up 
again. See Chapter III for installation instructions. 

6) A board (Models I & III) 

The Model I board includes protected RAM plus support 
for the break-out switch. Because Periscope resides in 
the board's protected memory. the debugger software can't 
be overwritten by a runaway program, plus normal RAM is 
available for your program. The Model III board includes 
protected RAM and support for the break-out switch, and 
it supports hardware breakpoints and provides a real-time 
trace buffer. See Chapter III for installation instructions. 

7) An Umbilical Socket (Model III only) 

1 -2 Introduction 



The Model III package includes an umbilical that plugs 
into the 8087/80287 socket on the motherboard to pick up 
the one signal (indicating whether a memory read is an 
instruction fetch) not available on the bus. This umbilical 
does not preempt use of the numeric processor. See 
Chapter III for installation instructions. 

What Makes Periscope Different 

Reviewers agree that Periscope is hard to beat for solid, 
dependable, tough debugging. Periscope is the only 
debugger ever chosen as Product of the Month by award
winning PC Tech J oumal. Explaining why Periscope was 
chosen, Technical Editor Jeff Duntemann says that 
Periscope has "an extraordinarily clean and innovative 
design" and an "overal1 aura of quality too strong to 
ignore." In Ward Christensen's review, Periscope was 
dubbed as "unrivaled for it's flexibility," and Mr. 
Christensen concluded that " ... Periscope's diverse 
features. affordable price. and portability place it in a 
class by itself." Jim Kronman, who reviewed Periscope II
X for Computer Language wrote afterwards, "1 am ve r y 
impressed with Periscope ... it has become my 'heavy duty' 
debugger of choice ... " 

Periscope was originally conceived as a crash-recovery 
system, so one of its key differences is its thorough 
crash recovery capability. The protected memory included 
with Models I and III keeps runaway programs from 
interfering with the operation of Periscope. The break-out 
switch included with all models except II-X lets you 
check out problems when they occur, without having to 
stop and load your program under debugger control. 

• Periscope II and II-X do not offer the same level of 
crash recovery as Periscope I and III since Models II and 
II-X do not include a write-protected memory board. 

You can use Periscope to debug device drivers, non-DOS 
programs, interrupt handlers, and memory-resident 
programs. You can even debug DOS because Periscope 
uses BIOS rather than DOS function calls for most of its 
operations. 

Periscope is highly dependable because it saves the 
state of the machine when it's activated, reverts to a 
fresh, power-on machine state for its own use (unless 
you specify otherwise), then restores the saved state 
when done. Even when hardware interrupts are disabled, 
you can recover the machine by pressing the break-out 
switch included with all models except II-X. 

Introduction 1-3 



You can now choose from a full line of Periscope 
debugging systems, beginning with software-only Model 
II-X through the powerful hardware-assisted Model Ill. 
Periscope III, in addition to providing the known 
dependability and comprehensiveness of the other models, 
offers tremendously-powerful capabilities for debugging 
real-time systems, like a real-time trace buffer several 
times the size normally provided. It uses a superset of 
Periscope commands, so once you're familiar with one of 
the other models of Periscope, you just have to learn an 
additional dozen commands to take full advantage of 
Model Ill's special hardware functions! 

Features And Benefits 

Since Periscope's job is to make software development 
quicker and easier for programmers, it's designed to be 
easy to learn and use, reliable, comprehensive, and fast. 

These features make Periscope easy to learn and use: 

• Optional on-line help. 
• DOSEDIT-like command-editing. 
• Commands that are a logical extension of DEBUG's. 
• Optional windows that you can define and redefine to 
display disassembly, stack, register, file, and data 
information. You can define up to four data windows, and 
you can control both foreground and background colors for 
each window. 
• Multiple memory display formats, including ASCII, byte, 
integer, signed integer, word, double word, short real, 
long real, and ASCIIZ string; plus, define and display 
memory using your own memory display templates. 
• Symbol support, including source code and line 
numbers. (See the discussion on symbols later in this 
chapter. ) 
• The ability to assign command sequences to function 
keys. 
• The ability to switch from your program's screen to 
Periscope's screen and back with a single keystroke. If 
you use a two-monitor system Periscope automatically 
uses the monitor not used by your program. 

These features make Periscope reliable: 

• Dependable crash recovery-Periscope saves the 
interrupt vectors it uses each time it is activated, then 
restores them when done. 
• You can safely interrupt the system any time with the 
break-out switch, then continue running as if Periscope 
had never been used; Periscope doesn't use DOS except 

1-4 Introduction 



for file access, so you can debug your program even if 
DOS is not available. 
• Periscope protects itself; runaway programs can't touch 
the protected memory. 

+ The code in Models II and II-X resides in normal RAM 
and is not protected. 

These features make Periscope comprehensive: 

• A symbolic in-line assembler. 
• Over 75 software breakpoints, including sticky and 
temporary code breakpoints; breakpoints on register 
values, byte and word values, and reads and writes to 
ranges of memory and I/O ports using various tests; the 
ability to write your own breakpoint tests; and more. 
• Trace and traceback capability. 
• Disassemble any location in memory, displaying the 
symbols, line numbers, and code from your source 
program. 
• Search memory for string/byte patterns, procedure and 
address references, and instructions. 
• Time your code in increments of 838 nanoseconds. 
• View text files. 
• Read and write disk files and absolute disk sectors. 
• Read and write I/O ports. 
• Compare two locations in memory, to move a block of 
memory from one location to another, and to make 
changes to memory. 
• Execute calls and interrupts at full speed. 
• Display, change, save, and restore the registers and 
flags. 
• Translate from hex to decimal and vice-versa, and to 
perform hex arithmetic. 
• Support for the EGA, including 43-line mode when using 
a single monitor. 
• User exits, so you can execute your own code from 
within Periscope. 

Periscope is FAST because it's written entirely in 
assembler! 

Symbols-Your Road Map Through Memory 

Periscope is symbolic, meaning it allows you to use data 
and procedure names from your source program when 
you're debugging. This symbolic capability speeds up 
debugging tremendously, since you do not have to look 
for a particular sequence of instructions to find a certain 
section of code, nor do you have to remember the 
location of code or data-you can access it by name. You 
can even use source line numbers and your high-level 

Introduction 1-5 



source code if your compiler provides the information 
Periscope needs. 

For example, assume that a program you're debugging 
calls a subroutine named PRINT LINE, and you want to go 
to the first call of this subroutine in your program. You 
would enter 'G PRINT LINE'. ('G' is the Periscope Go 
command; see Chapter VII.) If symbols were not available, 
you'd have to know the address of the subroutine in 
order to get to it. If you were to disassemble this same 
program, the disassembly would display 'PRINT LINE' 
wherever it is referenced in the program. -

Symbols are read from the MAP file generated by your 
linker. Periscope supports the IBM, Microsoft, Phoenix, 
and DRI linkers as well as providing limited support of 
the Cware DeSmet and Manx Aztec C compilers. Periscope 
also provides symbol support, including source lines and 
code, for compiled Turbo Pascal programs if you use 
TdebugPLUS by TurboPower Software. If your compiler 
generates line number references in the object files it 
produces, Periscope will give you line numbers and 
source code. For more specific information on symbols, 
see the tutorials in Chapters IV and V, the sections in 
Chapter IX on the TS.COM and PUBLIC.COM utility programs, 
and the description of RUN.COM in Chapter VIII. 

System Requirements 

The system requirements for Periscope are: 

• IBM PC, XT, or AT; Compaq; or other close compatible 
such as Zenith Z-150, Columbia, Leading Edge, Sperry and 
many others. 
• PC/MS-DOS 2.00 or later 
• 64K available RAM 
• 1 disk drive 
• 80-column monitor 

• Model III works on the IBM PC, XT, and AT, the Compaq 
8088 and 80286 systems, and other very close 
compatibles. It does NOT work on: IBM XT/286; Compaq 
8086 and 80386 Deskpros; AT&T 6300 and 6300+; IBM 
Personal System/2; any zero wait-state machine; any 
machine containing a 'Turbo' card. Call Tech Support if 
you have compatibility questions or problems. 

The Model I board may be installed in an expansion 
chassis. The model III board must be installed in the 
system unit. 

1-6 Introduction 



II-Configuring Periscope 

• Backing Up And Configuring Periscope 

• Files Contained On The Periscope Disk 

Backing Up And Configuring Periscope 

When you receive this package, back up and configure 
Periscope using the following procedure: 

• Place your DOS diskette in drive A and enter 'DISKCOPY 
A: B:'. 

• When prompted, insert the Periscope diskette in drive 
A, and a blank diskette in drive B. Press any key to 
perform the copy. 

• When DISKCOPY is complete, remove the original 
diskette and store it in a safe place. 

• Reboot the system without any device drivers or 
memory-resident programs installed. (You may skip this 
step only if you have an IBM or Compaq system.) 

• Place the Periscope back-up diskette in drive A and 
enter 'A:CONFIG'. 

• Answer the prompts on the full-screen display (shown 
below) and press FlO to configure Periscope. The 
configuration program generates the selected model of the 
Periscope software and copies the files from the 
distribution disk to the drive specified, using a sub
directory named 'PERI'. The last prompt controls the 
minimum command length that is added to Periscope's 
command buffer. If any errors occur, check the error 
messages in Appendix A and retry as needed. For more 
information on the configuration program, CONFIG.COM, see 
Chapter IX. Note: If you select Model II-X and you want 

Configuring Periscope 2-1 



to define hot keys to activate Periscope, please read the 
informa tion in Chapter IX on PSKEY. 

Important! This program should be run IJithout any device drivers or memory
resident programs installed unless you're using an IBM or Compaq system! 

Key usage -
Enter - next field 
Home - first field 
End - last field 
Up - prior field 
DOIJn - next field 
Esc - exit to DOS 
FlO - configure PS 

Periscope Model (choose one): 
o - Model I (protected memory board) 
1 - Model II (break-out sIJitch) 
2 - Model II-X (softIJare only -- no NMI support) 
3 - Model III (hardIJare breakpoint board) 

Enter choice (0-3) [0] 

Target drive (A-Z)? [C) (uses/creates '\PERI\') 

Copy Periscope ancillary files to target drive (Y/N)? [YJ 

Minimum command length to be added to edit buffer (0-9) [0] 

Files Contained On The Periscope Disk 

The files on the distribution diskette are: 

CLEARNMI.COM-Despite the name, the non-maskable 
interrupt (NMI) used by the break-out switch can indeed 
be masked out. This memory-resident utility program 
attaches to the timer interrupt and clears the non
maskable interrupt ports once a second. 

CONFIG.COM-This utility program is used to configure the 
Periscope software, moving it from the distribution disk 
onto your working disk. 

FTOC.C-This is the source for the Fahrenheit-to-Celsius 
program from the Kernighan and Ritchie text. Thi s progTam 
is used in the 'C' tutorial in Chapter V. 

FTOC.DEF-Thi s is a Peri scope record defini lion file used 
when debugging the FTOC program. 

FTOC.EXE-This is the executable code for the FTOC 
pr-ogram used in Chapter V. 

FTOC.MAP-This is the MAP file produced by the linker for 
the FTOC program. It contains symbol and 1 ine number 
references. 

INT.COM-This utility program is used to save, display, or 
compare the values of the interrupt vectors. It is 
typically used to determine the interrupt vectors used by 
a resident program. 

2-2 Configuring Periscope 



PS.DEF-This ASCII text file contains some sample 
Periscope record definitions that are read when RUN.COM 
is used to load a program. 

PS.PGM-This is the Periscope program for Models I, II, 
and II-X. It is converted to PS.COM by the configuration 
program, CONFIG.COM. 

PS3TEST.COM-This program is used to run trace buffer 
and breakpoint tests on the Periscope III board. 

PSDEMO.COM-This program is a billboard-style 
demonstration of Periscope. It is not copyrighted and may 
be freely distributed. All other files on this disk are 
copyrighted and may not be distributed. 

PSH.PGM-This is the Periscope program for Model III. It 
is converted to PS.COM by the configuration program, 
CONFIG.COM. 

PSHELP.TXT-This is the optional help file that is loaded 
into RAM by PS.COM when the / H installation option is 
specified. This file is a normal ASCII text file which can 
be modified as needed using a text editor. 

PSHELP2.TXT-This is the short form of the help file. It 
gives the syntax and a short description for each 
command. To use this file instead of the standard help 
file, rename it to PSHELP.TXT. 

PSINT.TXT-This is the optional interrupt comments file 
that is loaded into RAM by PS.COM when the / H 
installation option is specified. This file is a normal 
ASCII text file which can be modified as needed using a 
text editor. 

PSKEY.COM-This memory-resident utility program is used 
to select hot keys to activate Periscope via the 
keyboard, including SysReq, Shift-PrtSc, and shift key 
combinations. 

PSTEST.COM-This program is used to run memory 
diagnostics on the Periscope I and III boards. 

PUBLIC.COM-This utility program is used to generate 
public statements for most data items and procedures in 
an assembly program-giving you the best possible symbol 
support for debugging. 

READ.ME-This file contains any changes made to this 
manual since it was last published. 

Configuring Periscope 2-3 



RS.COM-This utility program is used to verify a record 
definition (DEF) file and determine the record table size 
required by the DEF file. It enables you to efficiently 
allocate space for the record definition table. 

RUN.COM-This is the program loader. It is used to load a 
program or data file into memory, read the program's 
symbol table and record definition table if available and 
pass control to Periscope. 

SAMPLE.ASM-This is the source code for the sample 
assembly program used in the tutorial. 

SAMPLE.COM-This is the executable code for the sample 
assembly program used in the tutorial. 

SAMPLE.MAP-This is the MAP file produced when the 
sample program is linked. It is used to provide symbolic 
reference s. 

SYMLOAD.COM-This utility program lets your program 
change Periscope's symbol table while your program is 
running. It is useful for programs that manage their own 
overlays or are running under another environment, such 
as TopView. 

SYSLOAD.SYS-This utility program is used to load any COM 
file as a device driver. It can be used to load Periscope 
at CONFIG.SYS time, allowing you to debug device drivers. 

TS.COM-This utility program is used to verify a MAP file 
and determine the symbol tablel size required by the MAP 
file. It enables you to efficientIy allocate space for the 
symbol table and to generate a Periscope symbol file 
(PSS). This symbol file is optional for the standard linker 
(IBM/Microsoft), but is reqUiredl for other linkers. 

USEREXIT.ASM-This sample program illustrates user 
breakpoints and user exits from Periscope, including a 
DOS availability test and a display of the 8087/80287 
status. 

USEREXIT.COM-This is the executable code generated 
from USEREXIT.ASM. 

2-4 Configuring Periscope 



III-Installing The Hardware 

• Checking For Conflicts 

• Setting The DIP Switches 

• Installing The Periscope I Board 

• Installing The Periscope II Break-Out Switch 

• Installing The Periscope III Board 

+ If you're using Periscope II-X, skip this chapter. 

+ If you're using Periscope II, skip to the fourth section 
in this chapter (Installing the Periscope II Break-Out 
Switch). 

+ If you're using Periscope I or III, read the first two 
sections, which apply to both boards. Then read the third 
section (Installing the Periscope I Board) if you have 
Model I or the last section (Installing the Periscope III 
Board) if you have Model III. 

Checking For Conflicts 

The Model I board uses 56K of memory and two 
consecutive I/O ports. The Model III board uses 64K of 
memory and four consecutive I/O ports. For proper 
operation, the memory and ports used by either board 
must not be used by any other device. When you receive 
your board, the DIP (Dual In-line Package) switches are 
set to use memory starting at DOOO;OOOO and I/O ports 
starting at 300H. 

This area of memory is above DOS memory and the area 
reserved for screen buffers. The board's default setting 
may conflict with other add-on memory cards that use 

Installing The Hardware 3-1 



this area for a RAM disk or ROM device drivers. Expanded 
memory boards typically use this area. Check the 
documentation for any non-standard expansion cards to 
see if this is the case. 

The I/O ports used by both boards are in the block (300H 
to 31FH) reserved by IBM for a prototype card. If you 
have a prototype card in your system, you'll need to 
check to see which ports, if any, it uses. The use of 
these ports conflicts with the 3Com Ethernet card, which 
uses ports 300H through 30FH. If you have this card, try 
using port 310H. Other expansion options may also use 
Periscope's default I/O ports. Check the documentation for 
any non-standard expansion cards to see if this is the 
case. Note that the true range of I/O ports available is 
from zero to 3FFH, since the IBM PC only supports the 
ten low-order bits of a port address. 

If you find no conflicts with the memory or I/O ports 
used by your Periscope board, skip the next section on 
setting the DIP switches. 

Setting The DIP Switches 

There are two DIP switches on both the Periscope I board 
and the Periscope III board. The eight-position switch 
labeled SWI controls the I/O ports used by the board. 
The four-position switch labeled SW2 controls the 
starting address of memory used by the board. 

SWI is preset to use I/O ports starting at 300H. The 
switches may be set to indicate any I/O ports on a four
byte boundary. You must not set the switches so that 
they conflict with other ports in the system. Certain ports 
are off-limits. These include zero to lOOH and others 
used by expansion cards in your system. If port 300H is 
not available, try 310H. Consult the IBM Technical 
Reference Manual and the documentation for your non
standard expansion cards to avoid conflicts. 

The switches can be read by laying the board on a table, 
component (chip) side up, with the top of the board 
facing you and the mounting bracket to your left. From 
this vantage point, the address can be read as a binary 
number. Switches eight and seven make up the first hex 
number, switches six, five, four and three make up the 
second hex number, and switches two and one make up 
the two high bits of the third hex number. When the 
switch is OFF (up or away from you), it corresponds to a 
one. When the switch is ON (down or towards you), it 
corresponds to a zero. 

3-2 Installing The Hardware 



The three hexadecimal numbers correspond to the port 
address, OOxx yyyy zzOO, where OOxx is the first number, 
yyyy is the second number, and zzOO is the third number. 
For example, when you receive the board, switches seven 
and eight are OFF (equal to one) and all others are ON 
(equal to zero). This is the same as the bit pattern 0011 
0000 0000, which is 300H. To change the port setting to 
304H, move switch one to the OFF position. Notice that 
the two missing bits of the first and third numbers are 
always zero. 

The following table illustrates the switch settings. 

DIP SWITCH SWl (I/O PORT5) 

I 'Hundreds' I 'Tens' I 'Units' 
I I I 

S2 51 5tarting Port I 58 57 I 56 55 54 53 I 

----------:---------:----------:-------I I I 

I ON ON I ON ON ON ON I ON ON 
I ON OFF I ON ON ON ON I ON ON 
I OFF ON I ON ON ON ON I ON ON 
I OFF OFF I ON ON ON ON I ON ON 

______ 1 I 1 ____ _ 
: I I 

300 
310 
320 
330 

340 
350 
360 
370 

380 
390 
3M 
3B0 

3C0 
300 
3E0 
3F0 

I OFF OFF I ON ON ON ON I 
I OFF OFF I ON ON ON OFF I 
I OFF OFF I ON ON OFF ON I 
I OFF OFF I ON ON OFF OFF I 
I I I 
I OFF OFF I ON OFF ON ON I 
I OFF OFF I ON OFF ON OFF I 
I OFF OFF I ON OFF OFF ON I 
I OFF OFF I ON OFF OFF OFF I 
I I I 
I OFF OFF I OFF ON ON ON I 
I OFF OFF I OFF ON ON OFF I 
I OFF OFF I OFF ON OFF ON I 
I OFF OFF I OFF ON OFF OFF I 
I I I 
I OFF OFF I OFF OFF ON ON I 
I OFF OFF I OFF OFF ON OFF I 
I OFF OFF I OFF OFF OFF ON I 
I OFF OFF I OFF OFF OFF OFF I 
I I I 

ON ON 
ON ON 
ON ON 
ON ON 

ON ON 
ON ON 
ON ON 
ON ON 

ON ON 
ON ON 
ON ON 
ON ON 

ON ON 
ON ON 
ON ON 
ON ON 

----------: I :------
300 
304 
308 
30C 

I OFF OFF I ON ON ON ON I 
I OFF OFF I ON ON ON ON I 
I OFF OFF I ON ON ON ON I 
I OFF OFF I ON ON ON ON I 

ON ON 
ON OFF 
OFF ON 
OFF OFF 

The first section of the table illustrates the use of 
switches seven and eight to set the 'hundreds' part of 
the address, the second section illustrates the use of 
switches three through six to set the 'tens' part of the 
address, and the third section illustrates the use of 
switches one and two to set the 'units' part of the 
address. 

InstaIling The Hardware 3-3 



DIP switch SW2 is preset to use memory starting at 
DOOO:OOOO. The switches may be set to indicate any area 
in memory on a 64K boundary. You must not set the 
switches so that they conflict with other memory 
installed in the system. 

Certain ranges of memory are off-limits. These 
include-OOOO:OOOO to, but not including xOOO:OOOO, where 
x is the number of 64K banks of RAM installed; AOOO:OOOO 
to AOOO:FFFF if an EGA or other enhanced display adapter 
is installed; BOOO:OOOO to BOOO:FFFF since this range is 
used by the monochrome and color/graphics adapters; 
COOO:OOOO to COOO:FFFF if an EGA is installed or the 
system is an XT; EOOO:OOOO to EOOO:FFFF if the system IS 

an AT; and FOOO:OOOO to FOOO:FFFF on all systems. For 
example, if your system has 512K, memory below 
8000:0000 is already used by RAM, and is therefore off
limits. 

The starting memory address can be read by laying the 
board on a table, component (chip) side up, with the top 
of the board facing you and the mounting bracket to your 
left. From this vantage point, the address can be read as 
a binary number. Switches four, three, two, and one make 
up the first hex number. When the switch is OFF (up or 
away from you), it corresponds to a one. When the 
switch is ON (down or towards you), it corresponds to a 
zero. 

The hexadecimal number corresponds to the highest part 
of the absolute memory address, xOOOO or xOOO:OOOO, 
where x is the first number. For example, when you 
receive the board, switches four, three, and one are OFF 
(equal to one) and switch two is ON (equal to zero). This 
is the same as the bit pattern 1101, which corresponds 
to DOOO:OOOO. 

If memory starting at segment DOOOH is already in use, 
try using EOOOH if the system is a PC or an XT. To 
change the memory setting to EOOO:OOOO, move switch two 
to the OFF position and switch one to the ON position. If 
the system is an AT, try using COOOH. To change the 
memory setting to COOO:OOOO, move switch one to the ON 
position. 

The following table illustrates the switch settings. 

3-4 Installing The Hardware 



DIP SWITCH SW2 (MEMORY) 

Starting Address S4 S3 S2 S1 

00tl0:0tltltl (0 K) ON ON ON ON 
1tlflk1:0tlfltl (64 K) ON ON ON OFF 
20kltl:00tl0 (128 K) ON ON OFF ON 
300tl:0000 (192 K) ON ON OFF OFF 

4fltltl:0tl00 (256 K) ON OFF ON ON 
5000:0000 (320 K) ON OFF ON OFF 
6000:0000 (384 K) ON OFF OFF ON 
7000:0000 (448 K) ON OFF OFF OFF 

8000:0000 (512 K) OFF ON ON ON 
9000:00fl0 (576 K) OFF ON ON OFF 
A000:0000 (640 K) OFF ON OFF ON 
B000:0000 (704 K) OFF ON OFF OFF 

C0tl0:000tl (768 K) OFF OFF ON ON 
D000:0fl00 (832 K) OFF OFF ON OFF 
E0fl0:fl0fl0 (896 K) OFF OFF OFF ON 
F000:0fl00 (960 K) OFF OFF OFF OFF 

Installing The Periscope I Board 

Before installing the board, be sure that the power is off 
and that the power cord is removed from the PC! To 
complete the installation, you'll need a small 
screwdriver. 

Step l-open the PC by removing the cover mounting 
screws on the rear of the system unit. Slide the cover of 
the system unit forward as far as possible without 
removing it from the system unit. 

Step 2-The board can be installed in anyone of the 
available expansion slots on the system board, except 
the slot nearest the power supply in an XT. If you do not 
plan to use the remote break-out switch, the left-most 
expansion slot will be the most convenient for reaching 
the switch located on the board's mounting bracket. 
Select an available expansion slot and remove the metal 
bracket from the back panel for that slot, using a small 
screwdriver. The metal bracket may be discarded, but be 
sure to save the retaining screw. 

Step 3-Align the board with the expansion slot and lower 
it until the edge connector is resting on the expansion 
slot receptacle on the system board. Press the board 
straight down until it seats in the expansion slot. Install 
the retaining screw through the board's bracket into the 
PC's back panel and tighten it. 

Step 4-Slide the cover of the system unit back over the 
machine and install the cover mounting screws. 

Installing The Hardware 3-5 



Step 5-If you plan to use the remote break-out switch, 
install it now, while the power is still off. Remove the 
dummy plug from the phono jack mounted on the bracket 
and insert the phono plug that is connected to the remote 
switch. 

If you do not plan to use the remote break-out switch, 
leave the dummy plug in place. This will help prevent 
the accidental use of this jack for some other potentially 
dangerous use-such as the connection of a composite 
monitor. 

Step 6-Re-connect all peripherals and replace the power 
cord. 

Step 7-Boot the system. If you haven't configured the 
Periscope software, do so now-see Chapter II for more 
information. 

Step 8-Install Periscope by executing PS.COM. If you 
changed the DIP switches, you'll need to specify the 
memory and/or port settings as installation options. For 
example, if the memory was changed to EOOO:OOOO and 
the port was changed to 304H, enter 'PS /M:EOOO /P:304'. 
See Chapter VI for more information on the installation 
options. If an error occurs, see Appendix A for an 
explanation of the error. 

Step 9-After installing Periscope, press the remote break
out switch or the switch located on the board's mounting 
bracket. The Periscope screen should be displayed, 
showing the current values of the registers and a 
disassembly of the current instruction. To continue, enter 
'G' and press return. 

Do not press the break-out switch before PS.COM is 
installed-you'll get a parity error and have to turn the 
power off and back on. 

If the break-out switch doesn't work when Periscope is 
first installed on a PC or XT, check the DIP switch 
setting for the 8087. If you have an 8087 installed, the 
switch should be OFF. If you don't have an 8087, the 
switch should be ON. 

Installing The Periscope II Break-Out Switch 

Before installing the break-out switch, be sure that the 
power is off and that the power cord is removed from the 
PC! To complete the installation, you'll need a small 
screwdriver and a bright light source, such as a 

3-6 Installing The Hardware 



flashlight. Please refer to the illustration below. It shows 
the switch installed in an IBM PC. Keep in mind that 
there may be slight physical differences if you're using 
another machine. 

Component Side 
of Board 

Socket ----'tr-:#"-

Mother----b.L-
Board -"'-'-';;;;~_;,I 

Gold 
Finger 

Exploded View A 

,--------\--

II---~=--Gold· Plated 
Probe 

Exploded View B 

Step 1-0pen the PC by removing the cover mounting 
screws on the rear of the system unit. Slide the cover of 
the system unit forward as far as possible without 
removing it from the system unit. 

Step 2-The cable assembly has a push-button switch, a 
five foot length of cable and two connectors. One of the 
connectors is a ring terminal (see Exploded View A) and 
the other is a gold-plated probe (see Exploded View B). 

Route the connector end of the cable assembly into the 
PC from the back of the system unit. There are several 
possible ways of routing the cable, either through a 
knock-out panel or in the space between the keyboard 
connector and the expansion slots. Do NOT install the 

Installing The Hardware 3-7 



cable so that it is lying on top of the back panel-when 
the cover is installed. the cable may be crimped and 
possibly damaged. 

Step 3-Remove the retaining screw on the expansion slot 
mounting bracket nearest to the power supply. This slot 
is usually. but not always. occupied by a disk controller 
card. Note-If this slot is not in use. use the in-use slot 
that gives you the best accessibility to the component 
(chip) side of the board. 

Insert the retaining screw through the ring terminal and 
then place the washer on the retaining screw. Re-install 
the retaining screw as shown in the illustration. Align 
the cable so that it is parallel with the back panel of 
the system unit. Be sure it has a minimum of twists and 
turns between the ring terminal and the point where the 
cable comes into the system unit. 

The ring terminal provides both an electrical ground and 
strain relief. Be sure that it is securely installed! 

Step 4-Using the flashlight or other bright light source. 
install the gold-plated probe into pin Al of the expansion 
slot used in Step 3. The slot must be in use for the 
probe to be attached securely. 

Pin Al is the pin on the component (chip) side of the 
expansion board that is closest to the board's mounting 
bracket. This pin is used to generate a Non-Maskab1e 
Interrupt (NMI). 

To install the probe. hold it so that the probe is pointing 
downward and the cable is angled away from the board. 
Push the probe down firmly into pin Al between the gold 
finger on the board and the connector in the socket as 
shown in the illustration. Note: Not all boards have a 
gold finger at pin AI-look for the first socket connector 
to positively identify the pin. Push the probe in as far 
as possible to ensure a good connection and to keep the 
uninsu1ated part of the probe from contacting anything 
other than the desired pin. 

Step 5-Doub1e check the placement of the probe. It 
should be in the pin on the component (chip) side of the 
expansion board nearest the board's mounting bracket. 
The probe must be between the board and the connector 
pin in the socket-it must not be between the connector 
pin and the outer edge of the socket! 

Some sockets have an extra dummy hole at the end of 
the socket. Be sure not to insert the probe in this hole! 

3-8 Installing The Hardware 



Step 6-Double check the placement of the ring terminal. 
It should be firmly held by the retaining screw that holds 
the expansion board in place. For the best electrical 
contact, be sure that the supplied washer has been 
installed between the ring terminal and the board's 
mounting bracket. 

Step 7-Slide the cover of the system unit back over the 
machine and install the cover mounting screws. 

Step 8-Re-connect all peripherals and replace the power 
cord. 

Step 9-Boot the system. If you haven't configured the 
Periscope software, do so now-see Chapter II for more 
information. 

Step 1o-Install Periscope by executing PS.COM. If an 
error occurs, see Appendix A for an explanation of the 
error. 

Step 11-After installing Periscope, press the break-out 
switch. Periscope's screen should be displayed, showing 
the current values of the registers and a disassembly of 
the current instruction. To continue, enter 'G' and press 
return. 

Do not press the break-out switch before PS.COM is 
installed-you'll get a parity error and have to turn the 
power off and back on. 

If the break-out switch doesn't work when Periscope is 
first installed on a PC or XT, check the DIP switch 
setting for the 8087. If you have an 8087 installed, the 
switch should be OFF. If you don't have an 8087, the 
switch should be ON. 

Installing The Periscope III Board 

Before installing the board, be sure that the power is off 
and that the power cord is removed from the PC! To 
complete the installation, you'll need a small 
screwdri ver. 

Step 1-open the PC by removing the cover mounting 
screws on the rear of the system unit. Slide the cover of 
the system unit forward and remove the cover from the 
system unit. 

Step 2-The board can be installed in anyone of the 
available full-length slots on the system board. In an AT, 

Installing The Hardware 3-9 



be sure to remove the plastic cover from the high bus 
connectors and to install the board in a 16-bit expansion 
slot. In a PC or XT, leave the plastic cover on the high 
bus connectors so that the exposed fingers won't cause a 
short-circuit. 

Select an available expansion slot and remove the metal 
bracket from the back panel for that slot, using a small 
screwdriver. The metal bracket may be discarded, but be 
sure to save the retaining screw. 

Step 3-Locate the 8087 or 80287 socket on the 
motherboard. It's a 40-pin socket usually located near 
the CPU. If you have an 8087 or 80287 installed, note the 
direction of the 'nose' or notch in the chip and then 
remove the chip using a small screwdriver or an IC 
extractor. Install the 8087 or 80287 into the 40-pin 
umbilical socket supplied with Periscope III. Be sure that 
the notch on the chip is aligned with the notch on the 
umbilical socket. Note: The motherboard socket may be 
backwards in some machines. Check your reference 
manuals to be sure of the direction. 

Insert the umbilical socket into the socket on the 
motherboard, being careful to align the notches on the 
two sockets. Now press the socket firmly into place. It 
is very important that the umbilical socket is securely 
fitted into the motherboard socket! If the umbilical is not 
installed correctly, the Periscope software will not load. 

Step 4-Plug the cable attached to the umbilical socket 
into the four-pin header near the bracket on the 
Periscope III board. The connector is keyed so that it 
can be attached in one position only-with the cable 
pointing toward the front of the system unit. 

Step 5-Align the Periscope III board with the expansion 
slot and lower it until the edge connector is resting on 
the expansion slot receptacle on the system board. Press 
the board straight down until it seats in the expansion 
slot. Install the retaining screw through the board's 
bracket into the PC's back panel and tighten it. Route the 
umbilical cable near the back panel of the system so 
that it won't be pinched when the cover is installed. 

Step 6-If you plan to use the break-out switch located 
on the board's mounting bracket, screw the enclosed 
black Bakelite switch cap onto the end of the switch that 
goes through the board's mounting bracket. 

Step 7-Replace the cover of the system unit and install 
the cover mounting screws. 

3-10 Installing The Hardware 



Step 8-If you plan to use the remote break-out switch, 
install it now, while the power is still off. Remove the 
dummy plug from the phono jack mounted on the bracket 
and insert the phono plug that is connected to the remote 
switch. 

If you do not plan to use the remote break-out switch, 
leave the dummy plug in place. This will help prevent 
the accidental use of this jack for some other potentially 
dangerous use-such as the connection of a composite 
monitor. 

Step 9-Re-connect all peripherals and replace the power 
cord. 

Step 10-Boot the system. If you haven't configured the 
Periscope software, do so now-see Chapter II for more 
information. 

Step 11-Install Periscope by executing PS.COM. If you 
changed the DIP switches, you'll need to specify the 
memory and/ or port settings as installation options. For 
example, if the memory was changed to EOOO:OOOO and 
the port was changed to 304H, enter 'PS /M:EOOO /P:304'. 
See Chapter VI for more information on the installation 
options. If an error occurs, see Appendix A for an 
explanation of the error. 

Step 12-After installing Periscope, press the remote 
break-out switch or the switch located on the board's 
mounting bracket. Periscope's screen should be displayed, 
showing the current values of the registers and a 
disassembly of the current instruction. To continue, enter 
'G' and press return. 

If the hreak-out switch doesn't work when Periscope is 
first installed on a PC or XT, check the DIP switch 
setting for the 8087. If you have an 8087 installed, the 
switch should be OFF. If you don't have an 8087, the 
switch should be ON. 

Step 13-To confirm the correct operation of your 
Periscope III board, execute the program PS3TEST.COM. If 
you've changed the DIP switches, you'll need to specify 
the memory and/or port settings as in Step 11 above. If 
an error occurs while running PS3TEST, please see the 
instructions on running PS3TEST in Chapter IX. 

Installing The Hardware 3-11 



3-12 Installing The Hardware 



IV-Tu torial : Using Periscope 

• Tutorial Using Assembler Program 

This chapter takes you through a guided tour of 
Periscope, using a simple assembly language program. 
This tutorial demonstrates some of Periscope's debugging 
commands, but for more detailed information, you'll need 
to see Chapter VII. 

Before you can take the tutorial, you'll need to configure 
the software (see Chapter II) and install the hardware 
(see Chapter III). Make the Periscope directory the default 
directory and then enter 'PS IH IT:2' from the DOS 
prompt. Thi s will load Peri scope into memory, load the 
on-line help file and interrupt comment file, and allocate 
2KB for symbol tables. If you've changed the DIP 
switches on the board, be sure to enter the memory 
andlor port options on this line as well. 

The program used in this tutorial is named SAMPLE. COM. 
This simple program displays the total and the available 
memory in the system. There are four files associated 
with thi.s program. They are: 

PS.DEF-Contains record definitions for the PSP (Program 
Segment Prefix) and the FCB (File Control Block) and other 
records 

SAMPLE.ASM-The source code for SAMPLE. COM 

SAMPLE.COM-The executable program 

SAMPLE.MAP-The MAP file produced by the linker when 
the 1M option is used 

Periscope uses the DEF file to read keyboard, alias, and 
record definitions into memory. This file is created with 
an editor as a standard ASCII text file. In the file 

Tutorial 4-1 



PS.DEF, there are two sample keyboard definitions and 
three record definitions. Record definitions can be used 
to display any area of memory in an easy-to-read format. 
There's a utility program to verify and determine the 
amount of memory required by a DEF file. See the 
description of RS.COM in Chapter IX for more information. 

Periscope uses the MAP file in order to replace the RAM 
addresses normally supplied while debugging with the 
more meaningful labels used in the program being 
debugged. The MAP file can be created when you link 
your program by specifying a MAP file and the '1M' 
option. This file contains the public code and data 
addresses and their labels. Periscope then uses these 
symbols to display the labels ra,ther than the numeric 
addresses. The more symbols you have, the easier it is 
to debug your program-so we've provided a program to 
generate as many PUBLIC statements as possible. Also, 
there's a program to verify and size MAP files and 
convert non-standard MAP files to Periscope's format. See 
the descriptions of PUBLlC.COM and TS.COM in Chapter IX 
for more information. 

Before you start debugging SAMPLE. COM , use the DOS TYPE 
or PRINT command to print a listing of SAMPLE.ASM for 
reference. The program's mainline code starts at START 
and ends at DOSRET. The mainline calls three procedures. 
The first procedure, GETMEM, is called once to retrieve 
the total memory and the available memory. CONVERT is 
called twice to convert the memory size from hex to 
ASCII. Finally, DISPLAY is called once to display the 
results. 

Now that Periscope is installed and you have a listing of 
SAMPLE.ASM for reference, start the program loader RUN by 
entering 'RUN SAMPLE.COM' and pressing the return key. 

RUN displays the address of the PSP and informational 
messages. Then the display switches to Periscope's 
screen and the first instruction of the program is 
displayed-

Ax=eeee Bx=ee0e CX=0eBB Dx=ee00 SP=FFFE BP=ee0e SI=eee0 DI=0e00 
OS=0C73 ES=0C73 SS=0C73 CS=0C73 IP=0100 FL=0246 NV UP El PL ZR NA PE NC 

SAMPLE: 
0C73:0100 EB35 JMP START 

Registers BX and CX show the size of the program. 
Registers DS, ES, SS, and CS all show the PSP segment 
since this is a COM program. The actual number will 
vary, depending on the version of DOS and any memory
resident programs you're using. 

4-2 Tutorial 



Also, notice the symbols-the current instruction is 
labeled SAMPLE, since the name was defined as PUBLIC. 
The address of the jump is START, not an offset. If you 
need to know the offset, enter 'U START' to disassemble 
memory starting at the symbol START. 

For help, enter '?' and press return. A command summary 
is displayed, from which you can see the possible 
commands. Now enter '? D' to get help on the Display 
command. 

To display the PSP, enter 'DB CS:O'. This shows the first 
128 bytes of the PSP in Byte format. For a more useful 
display, enter 'DR CS:O PSP'. The record definition makes 
it much easier to see what's what in the PSP. You can 
add record definitions as you need them by editing the 
DEF file (see the description of RS.COM in Chapter IX). To 
see the record definitions available, press F7 before 
entering anything after the Periscope prompt. 

To move to the next instruction, enter 'T'. Now you're at 
the instruction labeled START. Enter 'U' to disassemble 
the next few lines-

START: 
~C73:~137 E817~~ CALL GETMEM 
~C73:~13A A133~1 MOV AX, [TOTMEM 1 
~C73:~130 BF1~~1 MOV 01,0110 TMEMORY 
0C73:0140 E824~~ CALL CONVERT 
llC73: ~143 A 13501 MOV AX, [FREMEM] 
llC73:0146 BF2C~1 MOV OI,012C AMEMORY 
0C73:0149 E81B~0 CALL CONVERT 
~C73:~14C E834~0 CALL DISPLAY 

OOSRET: 
llC73:~14F C02~ INT 2~ Program terminate 

GETMEM: 
0C73:0151 B1~6 MOV CL,f16 
llC73:11153 BE02~1l MOV 51,0002 
~C73:0156 8B~4 MOV AX, [SI] 

Notice the two lines with the commented references to 
TMEMORY and AMEMORY. These instructions are ambiguous 
references to items in the symbol table. This situation 
occurs when a number is moved to a register. Periscope 
cannot be sure that the references exist in the source 
program, so it displays the symbol as a comment. In this 
case, the instructions actually reference the symbols 
shown, but a situation where 100H is moved to a register 
would give a false reference to the program entry point, 
SAMPLE. 

The SA (Search Address) command is used to search for 
address references. Enter 'SA START DISPLAY CONVERT' to 
search from START to DISPLAY for references to the 
procedure CONVERT. Also, try 'SA START DISPLAY TOTMEM' 
to search the same range of memory for references to the 
data variable TOTMEM. 

Tutorial 4-3 



Before continuing, set a sticky code breakpoint at the 
end of the program, DOSRET. To do this enter 'BC DOSRET' 
and press return. 

To see the symbols available, press Fa. Now, set a word 
breakpoint on the value of the variable TOTMEM changing 
from zero to any other value. To do this enter 'BW 
TOTMEM NE 0' and press return. To see the current 
breakpoints, enter 'BA ?'. The result is-

BC OOSRET 
BW TOTMEM NE 0000 

Now enter 'GT' to execute the program with both of the 
breakpoints activated. Execution will stop at the 
instruction after the one that moves register AX into 
TOTMEM-

AX=0100 BX=0000 CX=0006 OX=0000 5P=FFFC BP=0000 51=0002 01=0000 
05=0C73 E5=0C73 SS=0C73 CS=0C73 1P=0150 FL=0212 NV UP E1 PL NZ AC PO NC 
0C73:0150 BCCB MOV BX,C5 

To see the instruction that caused the breakpoint, enter 
'TB'. Periscope's traceback command shows previously 
executed instructions in a full-screen mode using the 
software trace buffer. Press the Esc key to display 
Periscope's prompt. Now, clear the word breakpoint by 
entering 'BW *'. Check the breakpoints by entering 'BA ?'. 
Only the one code breakpoint should be present. 

To see the current value of TOTMEM, enter 'DI TOTMEM 
L2'. This is the total memory in K-note that the result is 
in decimal, not hex. To show the value in hex, use 'DW 
TOTMEM L2'. To convert back to decimal, use the 
translate command. Enter 'X nnnn', where nnnn is the hex 
value of TOTMEM. The decimal value is displayed as the 
second field. Since the value of TOTMEM is still in 
register AX, 'X AX' gives the same result. 

Use the Jump command to trace through the next few 
instructions. Enter 'J' and press return. Then press F4 to 
repeat the previous command. When you get to the 'RET' 
instruction, use the 'J' command one more time to get 
back to the mainline code. 

Clear the screen by entering 'K' and pressing return. Then 
disassemble the number conversion routine by entering 'U 
CONVERT DISPLAY'. To get back to the current instruction, 
enter 'R' and press return. 

To check the number conversion routine, CONVERT, use the 
Jump command three times to get to the instruction after 

4 -4 Tutori 81 



the first call to CONVERT. Display the converted value by 
entering 'DA TOTAL' or 'DA TMEMORY'. This value should 
agree with the converted value of TOTMEM displayed 
previously. 

Since the sticky code breakpoint for DOSRET is still in 
effect, enter 'G' to go to DOSRET. Alternately, if the 
sticky breakpoint did not exist, you could enter 'G 
DOSRET' . 

To view the source file for this program, enter 'V 
SAMPLE.ASM' and press return. Use the PgUp, PgDn, Home, 
End, Up, and Down arrow keys to move through the file. 
When done, press the Esc key to return to the Periscope 
prompt. 

To set Periscope's windows, enter '/W DRSU'. This sets 
up four windows showing data, register, stack, and 
disassembly information. The presence, order, and length 
of these windows can be changed on the fly. Try using 
Ctrl-F9 and Ctrl-F10 to call up Periscope's standard 
monochrome and color window settings. Now turn the 
windows off again by using '/ W'. 

The remaining commands are not germane to this sample 
program, but we'll explore some of them here. 

To display the interrupt vectors starting with INT 20H, 
enter 'DD 0:20"4'. 

To change the value of register CX, enter 'R CX' and 
press return. When the colon prompt is displayed, enter 
'10' and press return. Alternately, you can do the same 
thing in one line by entering the number after the 
register-try entering 'R CX 10'. Afterwards, check the 
result-enter 'R' and press return to display the registers. 

Display memory at offset 200H by entering 'DB DS:200'. 
Now clear this unused memory by using the Fill command. 
Enter 'F DS:200 L 80 " '" to store 80H bytes of spaces. 
Now, enter 'D 200' again-

0C73:0200 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 
" 0006 LINES OF 20 SKIPPED" 

0C73:0270 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 

See how the six lines of spaces in the middle of the 
display were omitted? 

Use the Enter command to modify memory-'E DS:240 
"test'" enters the string 'test' starting at DS:240. 

Tutorial 4-5 



The Search command is used to find a byte/string 
pattern. Enter'S 100 400 "test'" to search from offset 
100H to offset 400H for the string 'test'. It will be found 
at offset 240. 

The Compare command is used to compare two blocks of 
memory. Enter 'C 200 L CX 240' to compare the 10H bytes 
(the value of register CX) starting at offset 200H to the 
10H bytes starting at offset 240H. The result might be: 

0C73:0200 20 74 0C73:0240 
0C73:0201 20 65 0C73:0241 
0C73:0202 20 73 0C73:0242 
0C73:0203 20 74 0C73:0243 

The first four bytes are different. since the first block 
contains spaces and the second block contains the string 
'test'. The remaining twelve bytes are the same, so 
nothing is displayed for them. 

To copy one block of memory to another, the Move 
command is used. Enter 'M DS:240 24F DS:200' to copy 
the contents of 240H through 24FH to 200H through 20FH. 
Use 'D 200' to verify the move. 

To perform hex arithmetic, enter 'H' followed by a 
number. an operator (+. -, ", or /) and a second number 
and press return. For example. to subtract 20H from 10H. 
enter 'H 10-20'. 

To quit Periscope. enter 'Q'. The quit options are then 
displayed. Enter 'R' to return to DOS or 'C' to continue 
and then press return. Either response ends the debugging 
session. 

4-6 Tutorial 



V-Tutorial: Periscope And 'C' 

• Tutorial Using 'C' Program 

This chapter takes you through a guided tour of Periscope 
from the high-level language perspective. This tutorial 
demonstrates some of Periscope's debugging commands, 
but for more detailed information, you'll need to take the 
tutorial in Chapter IV and also refer to Chapter VII. 

Before you can take the tutorial, you'll need to configure 
the software (see Chapter II) and install the hardware 
(see Chapter III). Make the Periscope directory the default 
directory and then enter 'PS /H /T:2' from the DOS 
prompt. This will load Periscope into memory, load the 
on-line help file and interrupt comment file, and allocate 
2KB for symbol tables. If you've changed the DIP 
switches on the board, be sure to enter the memory 
and/or port options on this line as well. 

The program used in this tutorial is named FTOC.EXE. The 
four files associated with this program are: 

FTOC.C--The source code for FTOC.EXE. 

FTOC.DEF-Contains keyboard, alias, and record 
definitions. 

FTOC.EXE-The executable program. 

FTOC.MAP-The MAP file produced by the linker when the 
/Ll and /M options are used. 

Periscope uses the FTOC.C file to display source code. 

Periscope uses the FTOC.DEF file to read keyboard, alias, 
and record definitions into memory. This file is created 
with an editor as a standard ASCII text file. In the file 
FTOC.DEF, there are four sample keyboard definitions, two 

'C' Tutorial 5-1 



alias definitions, and one record definition. See the 
description of RS.COM in Chapter IX for more information 
about DEF files. 

Periscope uses the MAP file to replace RAM addresses 
normally supplied while debugging with more meaningful 
labels from the program being debugged. The MAP file can 
be created when you link your program by specifying a 
MAP file and the 'ILl' and' 1M' options. This file 
contains the public code and data addresses and their 
labels. Periscope displays these labels (symbols) rather 
than the numeric addresses. The more symbols you have, 
the easier it is to debug your program! 

The compiler options to generate line number information 
in the object file vary from one vendor to the next. The 
command-line options we're aware of are '-d' for Lattice, 
'/Zd' for Microsoft, and '-xO', '-xl', or '-x2' for CI. 

Some symbol names will vary from one compiler to 
another. We've used Lattice C, Version 3.00 to compile 
this sample program. If you're using another compiler, 
different symbol names will be seen for compiler
generated symbols. 

Before you start debugging FTOC.EXE, use the DOS TYPE or 
PRINT command to print a listing of FTOC.C for reference. 
Note that the declarations of the variables LOWER, UPPER, 
STEP, FAHR, and CELSIUS are outside the main-which 
causes these variables to be made global and available 
as symbols. Local, stack-based variables are not 
available as symbols. (Local symbol support is a planned 
enhancement, however.) 

Now that Periscope is installed and you have a listing of 
FTOC.C for reference, enter 'RUN FTOC.EXE' and press 
return. RUN displays the address of the PSP and 
informational messages. Then the display switches to the 
debugger screen and the first instruction of the program 
is displayed. Note: You won't see any C source code yet, 
since this instruction is in the prologue, which is written 
in assembler. 

Press Ctrl-F9 (monochrome) or Ctrl-FIO (color) to set 
Periscope's standard windows. The data window is shown 
at the top of the screen, then the register and 
disassembly windows. The vertical stack window is 
shown at the right, with the current stack pointer at the 
top. The value of the BP register is indicated by a 
chevron at the left of the stack window. 

5-2 'e' Tutorial 



To monitor the variables FAHR and CELSIUS in the data 
window, enter 'DS FAHR'. Since CELSIUS immediately 
follows FAHR in memory, both variables can be seen on 
one line, labeled FAHR. Neither variable is initialized 
yet, so their present values can be ignored. 

Press function key FS to see the two aliases defined in 
the FTOC.DEF file. Aliases are a method of identifying 
items to Periscope. The 'MP' alias identifies a module 
path and the 'MX' alias identifies a module extension. 
Both are used for source-level debugging. The 'MP' alias 
defines the path name to be used when displaying a 
source file and the 'MX' alias defines the file extension. 
Recent versions of the linker put the module name in the 
MAP file, so Periscope concatenates the path, name, and 
extension to get the module's full file name. 

The EA (enter alias) command is used to modify aliases. 
The syntax of this command is: 'EA <alias> [<name>]', 
where the alias must be exactly two characters and the 
name must be from zero to 16 characters. If the current 
drive is not 'C:', change the 'MP' alias by entering 'EA 
MP X:' where X is the module path. If you enter 'EA MP' 
with no argument, the alias is deleted. When a path 
name is used, end the MP alias with a back-slash! The 
'MX' alias correctly shows '.c', so no change is required. 

For compiler products that put the module name and 
extension into the MAP file, the 'MX' alias should not be 
used. Periscope can read a module name of up to eight 
characters and an extension of up to four characters 
(including period) from the MAP file. 

The current instruction is in the prologue or initialization 
code. To get to the actual program, enter 'G MAIN' (use 
'G MAIN' for Microsoft C). Periscope now shows the C 
source code with the intervening assembler instructions 
in the disassembly window. Ordinarily, if the MP and MX 
aliases are correctly set and a recent version of LINK is 
used, you won't be prompted for the source file name. If 
you are ever prompted for the name, press the F3 key to 
see what file Periscope attempted to use. You can edit 
this file name and press return to try again. 

Now, go to line 10 of the program by entering 'G A10·. 
Now that you're on a source line, enter 'JL' to get to the 
next source line in the program. The Jump Line command 
uses the Jump command until the 'current' instruction is 
the beginning of a source line. To use it, you must be 
on a source line! 

ie' Tutorial 5-3 



Periscope has three disassembly modes: UA for assembly 
only; UB for both source and assembly; and US for 
source-only. The source-only display shows assembly 
code only until the first source line reference is found 
and then switches into source-only mode. Enter 'UA', 
'US', and then 'UB' to see the difference in the display. 
Unless the '/E:O' installation option is used, Periscope 
assumes 'UB' mode. See Chapter VII for more information. 

The 'J' command executes to the next sequential 
assembly level instruction. The 'T' command is the same 
as the 'J' command, except that it will trace into called 
routines and interrupts, instead of keeping to the next 
sequential instruction. Try both commands a few times 
and note how the disassembly window changes. 

Now, enter 'G PRINTF' to get to the next call of the 
library procedure PRINTF. At this point, you're away from 
your program's source code, so no source lines are 
shown. To get back to the next source code line, enter 
'BL+ ;GT' to turn line breakpoints on and execute in 
'monitor' mode until the next instruction corresponding to 
a source line is executed. This method of finding your 
source is very slow, but can be a handy way of getting 
back to your source code. You'll now end up at line 18 
in the program. Check the values of FAHR and CELSIUS as 
displayed in the window versus the values just displayed 
by the program. 

Enter 'G A18' a few times to go to the next execution of 
line 18. Notice how the values of FAHR and CELSIUS in 
the data window change each time. 

We've set up a sample record definition called 'VARS' 
that describes the data variables in this program. To 
display the variables starting at the symbol LOWER, enter 
'DR LOWER VARS'. Since a keyboard definition was set in 
the DEF file, you can also use Ctrl-F4 to call out this 
command. 

To view the source file for this program, enter 'VS' and 
press return. Use the PgUp, PgDn, Home, End, Up, and 
Down arrow keys to move through the file. When done, 
press the Esc key to return to the Periscope prompt. 

To quit Periscope, enter 'Q'. The quit options are then 
displayed. Enter 'c' to continue and then press return to 
end the debugging session. 

5-4 'C'Tutorial 



VI-Installing The Periscope 
Software 

• Installation Options 

• Alternate Start-up Methods 

Installation Options 

To load Periscope, enter CpS' from the DOS prompt, 
followed by the desired installation options. (See the 
next section in this chapter for alternate start-up 
methods). Periscope has the following default values (in 
alphabetical order by installation option): 

43-The standard 25-line mode is assumed. 

A-One monitor is assumed. 

B-The software trace buffer is presumed to be lK (enough 
for 32 entries). 

C-The screen color is low-intensity white on black. 

D-The original INT 13H (disk) vector is not restored 
before a short boot. 

E-The source file buffer is presumed to be lK. 

F-Slow color output is presumed, unless an EGA is used. 

H-0n-line help and interrupt comments are not available. 

I-No user interrupt exit is available. 

L-Periscope's external tables are loaded as low in 
memory as possible. 

Installing The Software 6-1 



M-The write-protected memory starts at DOOO:OOOO. 

N-For Periscope I and III, the software is loaded into 
the protected memory. 

P-The ports used by the board start at 300H. 

Q--The system is not a PC or XT with a 80286 'turbo' 
card. 

R-The record table size is presumed to be IK. 

S-The program's screen size is presumed to be 4K, which 
is sufficient for text mode only. 

T-The symbol table size is presumed to be IK. 

V-The BIOS interrupt vectors used by Periscope (8H, 9H, 
IOH, ISH, I6H, I7H, and ICH) are set to their power-on 
values each time Periscope is used, and restored to their 
original values when Periscope is exited. 

W-Windows are turned off. 

Z-Externa1 tables are not suppressed . 

.. For Periscope II and II-X, the M, N, P, and Z 
installation options do not apply. 

Use the installation options described below to change 
the above defaults. A11 options contain a slash (/) and a 
single letter mnemonic, except for the '/43' option. Some 
of the options include a number. If a number is used, it 
is always preceded by a colon (:) and the number IS 

always in hexadecimal notation. Periscope can be 
installed multiple times per DOS session, but each install 
a110cates more memory. 

The installation options are: 

?-Disp1ay help information about Periscope's installation 
options. 

/43-Use the Enhanced Graphics Adapter (EGA) 43-1ine 
mode. When this option is used, Periscope supports a 
single monitor in 43-line mode, presuming that the 
display is already in 43-line text mode when the resident 
portion of Periscope is activated. This option reserves 
7KB of memory for Periscope's screen and 7KB for the 
application's screen. Dual-monitor support is not currently 
available for 43-line mode. Periscope wi11 use 25 lines 

6-2 Installing The Software 



unless the screen was already in 43-line text mode. If 
Periscope is set to 43-line mode with screen swap off 
and the program's screen is set to 2S-line mode, 
Periscope will revert to 2S-line mode and turn screen 
swap back on. 

lA-Use an alternate debug screen. This option indicates 
that you have both a monochrome and a color monitor 
attached to the system via separate display adapters. 
Periscope uses the monitor that is not currently active 
when the break-out switch is pressed or when a program 
is loaded with RUN.COM. If this option is used, the /S 
option is ignored and no memory is reserved for the 
program's or Periscope's screen buffer. 

IB:nn-Set the size of the software trace buffer to 
something other than 1K. This option is used when you 
want more than the 32 trace entries available from the 
default buffer size. The one or two-digit hexadecimal 
number nn is the number of K desired. The number may 
be from zero to 3FH K, allowing a maximum of 2016 
entries. Remember that the input is in hex! 

.. Periscope Ill's hardware trace buffer is always 8192 
entries deep. See Chapter XI. 

IC:nn-This option sets the color attribute for Periscope's 
display. The two digit number is from 1 to FFH. The 
border of the screen is set to the same color as the 
background. (If an Enhanced Color Display (ECD) is used 
on an EGA, no border color can be set.) To calculate the 
number you want (I use 17H-gray on blue) see your 
machine's technical reference manual or the table below. 

The layout of the color attribute bits is: 

Bit number 

Use 

7 

X 

6 

R 

5 

G 

4 

B 

background 
color 

X - blink if 1. else no blink 
R - red gun on if 1. else off 

3 

H 

G - green gun on if 1. else off 
8 - blue 9un on if 1. else off 
H - high-lntensity if 1. else normal 

The RGB combinations are: 

2 

R G 

foreground 
color 

1'1 

B 

Installing The Software 6-3 



Green plus Blue is Cyan 
Red plus Blue is Magenta 
Red plus Green is Brown (Yellow if high intensity) 
Red plus Green plus Blue is Gray (White if high intensity) 

Assuming that you want cyan on black, use 0000 0011 
binary, or '/C:3'. There are some illegal color 
combinations that Periscope won't allow. These include 0, 
8, 80H, and 88H which are all variants of black on 
black, and other similar situations where the foreground 
and background colors are the same, such as 77H and 
F7H. 

ID-Restore the original INT 13H vector before a short 
boot. This option is used with certain RAM disk software 
to re-point the diskette interrupt vector to BIOS before 
using the short boot option. It is needed only if the RAM 
disk software you use modifies the original interrupt 13H 
to point to memory that is corrupted by a short boot. 

IE:nn-Set the size of the source file buffer to something 
other than 1K. This option is used to improve performance 
when the Unassemble Source or View file commands are 
used. The one or two-digit hexadecimal number nn is the 
number of K desired. The number may be from zero to 
10H K. Remember that the input is in hex! 

+For Models I and III, the source file buffer is placed in 
the protected memory if space is available and if the 
buffer size is 1KB. If the size is larger than 1KB, it is 
always placed in low (DOS) memory. 

IF-Set fast output for a color monitor. This option should 
be used if you have a 'snow-free' color card. The 
original IBM color card suffers from 'snow' when you 
attempt to write directly to the screen buffer. A snow
free card allows you to write directly to the screen 
without any interference. If you have one of these snow
free cards, use this option to speed up the screen 
display. This option is assumed if an EGA is used. 

IH-Install the on-line help and interrupt comments. If 
this option is specified, the files PSHELP.TXT and 
PSINT.TXT are loaded into RAM and will be available from 
Periscope. The files must be in the current directory or 
must be able to be found via the Periscope path. To set 
the Periscope path, enter 'SET PS=XXX' at the DOS prompt, 
where XXX is the desired path. 

The amount of memory required is the same as the size 
of the file. The file PSHELP.TXT is a normal ASCII text 
file. It can be edited as needed to add or remove help 
information. Be sure to leave the back-slashes and 
commands on a separate line and to end the file with a 

6-4 Installing The Software 



single back-slash. Two versions of Periscope's help file 
are provided. PSHELP.TXT is the larger version, containing 
syntax, use, and an example of each of Periscope's 
commands. PSHELP2.TXT is the smaller version, containing 
syntax and usage descriptions, but no examples. To use 
the smaller help file, rename it to PSHELP.TXT and use 
the /H installation option. 

The file PSINT.TXT is a normal ASCII text file. It can be 
edited as needed to add or remove interrupt information. 
Each line contains an interrupt number, a space, a 
function number (value of register AH), a space, and a 
description of up to 30 characters followed by a carriage 
return and line feed. The two numbers may be from 00 to 
FF. If the function number is ' .. ', the associated 
description is displayed for any value of AH or when the 
interrupt is not the current instruction. 

To load only one of the files PSHELP.TXT or PSINT.TXT, 
rename the other file to some other name. 

!I:nn-This option is used to allow access to user
written code from Periscope. The program must be a 
memory-resident routine that is already installed using an 
interrupt from 60H to FFH. It must meet the 
specifications as defined for the program USEREXIT.ASM in 
Chapter IX. The two-digit hexadecimal number nn must be 
from 60H to FFH. 

I J and IK-These options are discontinued in Version 3. 
See the description of PSKEY.COM in Chapter IX for the 
current hotkey technique. 

IL:nnnn-Load Periscope's tables starting at the 
specified segment. Normally, Periscope's external tables 
are loaded as low as possible (just after DOS). If you're 
debugging non-DOS programs, this option can be used to 
place Periscope's tables in an area of memory that is not 
corrupted by a short boot. The four-digit hexadecimal 
number is the segment where the tables should start. It 
must be greater than the current PSP plus 10H paragraphs 
and less than the top of memory minus lOOOH paragraphs. 
For example, if the PSP is COOH and the top of memory 
is 5000H, the limits for this option would be CIOH 
through 4000H. 

IM:nnnn-Set the protected memory segment to something 
other than DOOOH. Periscope I has 56KB of protected 
memory. Periscope III has 64KB of protected memory. The 
four-digit hexadecimal number nnnn represents the 
segment to be used. Be sure that the segment used does 
not conflict with other memory installed in the system 

Installing The Software 6-5 



and that the desired segment is indicated by the DIP 
switches on the board. If you must change the default 
setting, be sure to carefully follow the memory switch 
setting procedures in Chapter III. 

+ The '1M' installation option is not available for 
Periscope II or II-X. 

IN-Run the Periscope I or III software without using the 
protected memory. If you need to run the Model I 
software without the Periscope I board, use this option. 
When this option has been used, the software does not 
clear the Model I switch. If you want to use the switch, 
you can clear it by outputting any value to the second 
port on the board (e.g. '0 301 0' for the standard 
configuration). For Model III, this option loads the 
software into normal system memory, but the Model III 
board must still be present for Periscope III to work. 

+ The 'IN' installation option is not available for 
Periscope II or II-X. 

IP:nnn-Set the starting protected memory port to 
something other than 300H. Periscope I uses two 
consecutive ports and Periscope III uses four consecutive 
ports. Be sure that the ports used do not conflict with 
other ports installed in the system and that the desired 
port is indicated by the DIP switches on the board. If 
you must change the default setting, be sure to carefully 
follow the port switch setting procedures in Chapter III. 

The architecture of the 8086 family supports 64K I/O 
po~ts (0 through FFFFH), but the IBM PC and compatibles 
support only the first 1024 (3FFH) of these ports, many 
of which are reserved. The high 6 bits are ignored, with 
the result that port 1200H is really 200H, etc. 

+ The 'IP' installation option is not available for 
Periscope II or II-X. 

IQ-Indicates a hybrid system that has a PC or XT style 
motherboard and an 80286 CPU board. This option must be 
specified if your system is an AT&T 6300 Plus or if you 
have a 286 'turbo' card in a PC-class machine. 

IR:nn-Set the size of the record definition table to 
something other than 1K. This option is used when 
debugging programs with large DEF files and large 
resultant record tables. The one or two-digit hexadecimal 
number nn is the number of K desired. The number may 
be from zero to 20H K. Remember that the input is in 

6-6 Installing The Software 



hex! See the description of RS.COM, which determines the 
record table size required for a DEF file, in Chapter IX. 

IS:nn-Set the size of the program's screen buffer to 
something other than 4K. This option is ignored if the / A 
option is used. It is used when debugging programs that 
use the color-graphics adapter (CGA) or EGA. It is only 
required for single-monitor systems where a 4K screen 
buffer is too small. The one or two-digit hexadecimal 
number nn is the number of K desired, from zero to 20H 
K. If you need 16K, enter '/S:10'. Remember that the 
input is in hex! The maximum size allowable is 32K, 
using' /S:20'. Keep the number as small as possible, 
since each Trace or Go command has to copy this buffer 
twice. If you're using graphics modes on the EGA that 
need more than 32KB, a dual-monitor system is required 
to preserve your graphics screens. 

IT:nn-Set the size of the symbol table to something 
other than lK. This option is used when debugging 
programs with large MAP files and a large resultant 
symbol table. The one or two-digit hexadecimal number 
nn is the number of K desired. The number may be from 
zero to 3FH (63) K. Remember that the input is in hex! 
See Chapter IX for information on TS.COM, which 
determines the symbol table size required for a MAP file 
and generates compact memory-image symbol files. 

IV:nn-Indicate a BIOS interrupt vector that is to be left 
alone. Normally, each time you enter Periscope, it saves 
your program's interrupt vectors then temporarily resets 
the interrupt vectors it uses to their power-on default 
values. This is done to make Periscope as dependable as 
possible. When control is returned to the interrupted 
program, the interrupt vectors are restored to their values 
on entry to Periscope. 

If you have a situation where you want Periscope to use 
your modified interrupt vectors while it is running, use 
the /V:nn option, where nn is the one or two digit 
hexadecimal interrupt number. The possible numbers are 8 
(timer), 9 (keyboard), 10H (video), ISH (cassette/ 
scheduler), 16H (keyboard 110), 17H (printer), and ICH 
(timer control). Note that each vector must be entered 
separately. For example, to leave vectors 10H and 17H 
alone, use '/V:I0 /V:17'. Periscope temporarily changes 
the Ctrl-Break vector (IBH), the DOS Ctrl-Break exit 
address (23H), and the DOS Fatal error vector (24H), but 
these changes cannot be overridden. 

Note: The '/V:I0' option is no longer required for an EGA. 

Installing The Software 6-7 



Here are some specific situations where you should use 
the 'IV' option: 

• If you're using one of the keyboard translation 
programs (KEYBxx.COM) , use' IV:9' to keep the keyboard 
handler available from within Periscope . 

• If you're using Hercules graphics, run the public 
domain program HERC.COM and use '/V:9' to be able to 
switch screen modes from within Periscope . 

• If you're using a serial printer, run MODE.COM and use 
'/V:17' to be able to access your printer from within 
Periscope. 

• If you're using AST Fastdisk Version 1.40, use '/V:1S' 
to avoid problems writing to the RAM disk from within 
Periscope. 

/W-This option is used to set Periscope's windows. 
Please see 'Option W' in Chapter VII for the syntax and a 
complete description. (The window specification can be 
entered as an installation option when PS.COM is run or 
as a command from within Periscope.) Periscope's 
standard window settings for monochrome and color 
systems are available via Ctrl-F9 and Ctrl.,..F10 
respecti vely. 

/Z-This option is used to keep Periscope from using any 
memory external to the Periscope board. It overrides other 
options that allocate memory outside of the memory on 
the board. A warning message is displayed when it 
cancels options already selected. 

+ The 'IZ' installation option is not available for 
Periscope II or II-X. 

The installation options can be entered in any 
combination of upper and lower case. No spaces are 
required between entries, except after numbers in the 
window specification. Some examples follow: 

PS /A /W D:8 R U:8-Use two monitors and establish 
windows showing eight lines of data, two lines (default) 
of register information, and eight lines of disassembly. 

PS /M:AOOO /P:31C /S:lo-Use memory in the screen buffer 
area (starting at AOOO:OOOO) for the protected memory and 
use ports starting at 31C. Reserve 16K to save the 
program's screen on a single-monitor system. 

6-8 Installing The Software 



PS IT:20 IV:I0 IH-Reserve 32K for the symbol table, 
preserve the current INT 10H vector when Periscope is 
active, and load the on-line help file. 

The cumulative size of the external tables can be from 
zero K to over 128K. These buffers are located in normal 
RAM using the terminate-and-stay-resident function of 
DOS. The protected memory on the Periscope board is 
used for the code and data areas of Periscope and as 
much of the external tables as will fit. In many cases, 
no memory is required other than the Periscope board's 
protected memory. 

If any errors are encountered during the initialization 
process, Periscope displays an error message and 
terminates. See Appendix A for an explanation of the error 
messages. It is possible to hang the system by 
specifying an invalid port or memory address or by 
setting the DIP switches incorrectly. If you are not sure 
whether Periscope is installed, do not press the break
out switch-try running RUN.COM instead. If Periscope IS 

not installed, RUN will display an error message. 

Alternate Start-up Methods 

Periscope can be installed via a full-screen display that 
lets you choose among all possible options. To use this 
method, enter 'PS IE' at the DOS prompt. The screen shown 
below is displayed. 

Periscope Version 3.10 Copyright 1986, The Periscope Company, Inc. 

43 - Use 43-line mode on an EGA (yin)? [N] 
A - Use an alternate monitor (yin)? [N] 
B - Soft~are trace buffer size (0-3FH kb) [01] 
C - Screen color attribute (l-FFH) [07] 
D - Restore original INT 13H for short boot (yin)? [N] 
E - Source file buffer size (0-10H kb) [01] 
F - Use fast color output (yin)? [N] 
H - Install help and interrupt comments (yin)? [N] 
I - User interrupt vector number (0-FFH) [00] 
L - Load Periscope tables at segment [0000] 
M - Protected memory segment (xxxx-E000) [D000] 
N - Run ~ithout using protected memory (yin)? [N] 
P - Protected memory port (100-3FC) [300] 
Q - Hybrid system: PC or XT ~ith 80286 CPU (yin)? [N] 
R - Record definition table size (0-20H kb) [01] 
S - Screen buffer size (0-20H kb) [04] 

Key usage 
Enter - next field 
Home - first field 
End - last field 
Up - prior field 
Do~ - next field 
Esc - exit to DOS 
F9 - ~Tite response 

file & install PS 
F10 - install PS 

T - Symbol table size (0-3FH kb) [01] 
V - Leave BIOS interrupts alone ~hile Periscope is active (yin)? --

INT 08H [N] 09H [N] 10H [N] 15H [N] 16H [N] 17H [N] 1CH [N] 
W - Windo~ types & lengths: Data (0-14H) [00] Register (0 or 2) [00] 

Stack (YIN) [N] Unasm (4-14H) [00] View (0-14H) [00] 
Z - Use zero RAM other than protected memory (yin)? [N] 

Installing The Software 6-9 



All 'information' messages are suppressed when this 
screen is used-only error messages are displayed. When 
function key F9 is used, this full-screen display 
generates a response file named PS that can later be 
used to start Periscope with 'PS @PS'. 

Normally, we recommend that you invoke PS.COM from an 
AUTOEXEC.BAT file to ensure its presence each time the 
system is booted. If, however, you sometimes need 
different Periscope options for debugging different types 
of programs, the response file is for you. This file is an 
ASCII text file that contains any PS.COM installation 
options. For example, if you create a file named C:STD 
that contains '/B:4 /V:I0 / A', you can enter 'PS @C:STD' 
to load Periscope using the options found in the file 
named C:STD. You can use 'PS /C:17 @C:STD' to set the 
color attribute and then retrieve the options from the file 
named C:STD. Any options entered after a response file 
name are ignored. For example, 'PS @C:STD /C:17' would 
not set the color attribute. The file name used for a 
response file may be any legal file name. 

6-10 Installing The Software 



VII-Debugging With Periscope 

• The Quit Options 

• Keyboard Usage 

• Command Parameters 

• The Periscope Commands 

The Quit Options 

When you use 'Q' to quit Periscope, the quit options are 
displayed. The prompt is: 

(XX) Boot (B), Continue (C), Debug (D), Long boot (L), Return to DOS (R), or 
Short boot (5)7_ 

The first value in parentheses indicates the method that 
was used to activate Periscope. The possible values are: 

BR-A monitor breakpoint was taken. 
EX-An exception interrupt (6 or DH) occurred on the 
80286 CPU. 
GO-A code breakpoint was taken. 
HW-A hardware breakpoint occurred (Periscope III only). 
PI-Parity error 1 (motherboard) occurred. 
P2-Parity error 2 (expansion memory) occurred. 
SW-The break-out switch was pressed. Note: this also 
appears for entry via hotkeys set with PSKEY.COM. 
TR-An instruction was traced. 

+ When the Periscope II break-out switch is used, 'P2' 
is shown instead of 'SW' and the message 'Parity error 2 
(break-out switch)' is displayed on entry to Periscope. 
This is normal for Model II and should be ignored. 

The Boot (B) option performs the same function as Alt
Ctrl-Del, clearing all of user memory and resetting the 
standard interrupt vectors. This option can be used when 
the system is hopelessly confused or when you suspect 

Debugging With Periscope 7-1 



that a runaway program may have incorrectly modified a 
critical area of memory. If an exception interrupt occurs, 
you should boot the system as soon as possible. 

The Continue (C) option returns control to the executing 
program after restoring the program's screen. If nothing IS 

executing, i.e. the DOS prompt is displayed, control is 
returned to DOS. This method does not set any 
breakpoints-use the Go command to set breakpoints. 

The Debug (D) option is used to return to the Periscope 
prompt. 

The Long boot (L) option puts the system through full 
diagnostics, as when the system is first powered on. It 
should be used if you need to reinstall any BIOS drivers 
such a s the EGA. 

The Return to DOS (R) option is used to abandon 
execution of the current program and return to DOS. Note 
that any open files will not be closed-this can cause 
problems if the files have been updated. Any changes the 
program has made to interrupt vectors will not be backed 
out. See the description of the Interrupt Save and Restore 
(IS and IR) commands. Also, the keyboard buffer is 
cleared. When possible, use 'QC' or 'G' instead of this 
command. 

The Short boot (S) option is used to re-boot the system 
via Interrupt 19H. This method preserves most of RAM, 
including the interrupt vectors. Some sections of memory 
in the first 64K are overwritten by the boot record and 
DOS. This can cause problems for some memory-resident 
programs, such as a low-memory RAM disk. Since all 
interrupts are not restored, this boot option is more 
fragile than the other two. 

Periscope can be activated by unexpected events. When 
one of these events occurs, the appropriate message is 
displayed: 'Parity error I'; 'Parity error 2 (break-out 
switch)'; or 'Exception interrupt'. Parity error 1 indicates 
a parity error on the motherboard. Parity error 2 indicates 
a parity error in the expansion bus (this message is also 
triggered by Model U's break-out switch). An exception 
interrupt occurs on an 80286 machine when an illegal 
instruction is executed or when a segment wraparound 
occurs. 

7-2 Debugging With Periscope 



Keyboard Usage 

Periscope has a DOSEDIT -like command editor. Previous 
commands are kept in a circular buffer that is 512 bytes 
in size. All lines above the minimum length set by 
CONFIG.COM are saved, except when F3 or F4 is used to 
repeat a previous line. The following editing keys are 
supported: 

Home-Move the cursor to the start of the command line. 

End-Move the cursor to the end of the command line. 

Up Arrow-Display the previous command line from the 
circular buffer. 

Down Arrow-Display the next command line from the 
circular buffer. 

Left Arrow-Move the cursor one position to the left. 

Right Arrow-Move the cursor one position to the right. 

Ins-Toggle insert mode on and off. 

Del-Delete a character from the command line. 

Backspace-Delete the current keystroke and back up one 
character. 

Ctrl-End-Erase from the current cursor position to the 
end of the command line. 

Ctrl-Left-Move to the start of the previous word in the 
command line. 

Ctrl-Right-Move to the start of the next word In the 
command line. 

Esc-Erase the command line. 

Ctrl-pgDn-Remove the current command line from the 
circular edit buffer. 

Ctrl-PgUp-Clear the entire circular edit buffer. 

The function keys used by Periscope are: 

FI-Toggle code timing on and off. When this mode is 
turned on, the message 'Code timing on' is displayed. 

Debugging With Pe ri scope 7-3 



Any subsequent Go or Jump (but not Jump Line) commands 
time your code in increments of 838 nanoseconds (the 
standard 55 millisecond timer-tick divided by 64K). On 
return to Periscope, the timed value is displayed as a 
decimal number. This method is very accurate, except for 
very short duration events of less than 20 to 30 ticks. 
Due to the overhead imposed by Periscope's entry and 
exit code, extremely short duration events are not timed 
correctly. If the time displayed is less than 20 to 30 
ticks or is displayed as 'N/ A', run the stand-alone timer 
test program (available on request) or exercise the code 
multiple times and take an average. The maximum event 
length that can be timed is 655,359,999 times 838 ns, or 
approximately one hour. The I/O ports used by this 
technique are 40H and 43H. To turn code timing off, 
press FI again. The message 'Code timing off' is then 
displayed. Note that your code is run at full speed when 
the code timing is on. 

F2-Toggle screen swap on and off when Periscope is 
used on a single monitor. This key has no effect when 
the / A installation option is used. When off, this mode 
keeps Periscope from displaying the program's screen 
when a Go, jump, or Trace command is used. If you're 
tracing code that doesn't modify the display, you may 
want to turn screen swap off to avoid the 'flash' caused 
by the restoration of the program's screen during each 
Go, Jump, or Trace command. Be sure to turn screen swap 
back on before executing code that will cause the 
program under test to output to the screen. 

F3-Copy the remainder of the previous command line into 
the current command line. This key copies up to, but 
does not include the carriage return. The command line is 
not added to the circular edit buffer again. 

F4-Same as F3, except that a carriage return is added at 
the end of the command line. For repetitive commands, 
you can use just one keystroke-F4. 

FS-Display the current aliases. If the cursor is at the 
beginning of a command line, all aliases are displayed. 
You can display alias names that start with a character 
sequence by entering the desired characters and then 
pressing F5. For example, to display all alias names 
starting with 'C', enter 'c' at the start of a command line 
and press F5. Note that the alias name search is case 
sensitive and that the search is for the alias name, not 
the alias itself! Be sure not to enter any spaces before 
or after the search name. 

F6-This key selects one of three pause modes: Pause on; 
Pause/clear on; and Pause off. The 'Pause on' mode 

7-4 Debugging With Periscope 



displays a message when the screen is full and waits for 
a key press before scrolling another screen full of 
information into view. 'Pause/clear on' differs from the 
'Pause on' mode in that it clears the screen after a key 
is pressed and displays data from the top of the screen. 
This technique allows for much quicker updating of the 
second and subsequent screens, but loses the prior 
screen as soon as a key is pressed. The 'Pause off' 
mode continually scrolls the non-windowed area of the 
screen. 

F7-Displays the current record definitions. If the cursor 
is at the beginning of a command line, all record 
definitions are displayed. You can display record 
definitions that start with a character sequence by 
entering the desired characters and then pressing F7. For 
example, to display all record definitions starting with 
'PS', enter 'PS' at the start of a command line and press 
F7. Be sure not to enter any spaces before or after the 
search name. 

F8-Displays the address and name of the symbol table 
entries. If the cursor is at the beginning of a command 
line, all symbols are displayed. You can display symbols 
that start with a character sequence by entering the 
desired characters and then pressing F8. For example, to 
display all symbols starting with the letter 'A', enter 'A' 
at the start of a command line and press F8. Be sure not 
to enter any spaces before or after the search name. 

F9-Toggle call tracing on and off. When this mode is 
turned on, the message 'Call trace on' is displayed. 
When a GA or GT command is used, any CALL instructions 
executed are displayed on Periscope's screen. Nested 
calls are indicated by leading spaces before the address, 
up to a maximum of 16 levels deep. For example. the 
call trace of the FTOC.EXE program from the beginning to 
MAIN (using GT) is: 

2A9C:~1C2 E8~715 
2A9C:17l'lA E894~9 

2A9C:~2B6 E84C19 
2A9C: 1C30 E8E4~1 
2A9C:1C89 E860E6 

CALL 
CALL 

CALL 
CALL 
CALL 

RBRK 
RBRK 

MAIN 
-GETFC 

MAIN 

This mode is best used on a dual-monitor system. If you 
have one monitor, turn screen swap off using F2 if 
possible. A procedure label or source code may be shown 
along with the disassembled call, in which case the 
label or source code is correctly indented, but the 
associated call is not. When this mode is turned off, the 
message 'Call trace off' is displayed. 

Debugging With Periscope 7-5 



FlO-Switches from Periscope's screen to the program's 
screen if only one monitor is being used. If the / A 
installation option was used or if screen swap is off, 
this key has no effect. To return to Periscope's screen 
from the program's screen, press any key. 

Alt-FI through Alt-Flo-Saves the current command line 
of up to 64 characters. Enter a command and press Alt 
and a function key to save the command for later recall 
using Ctrl-Fn. To get a carriage return after the saved 
command, enter a semi-colon as the last character of the 
command before saving it. Key assignments may be read 
from the DEF file-see the description of RS.COM in 
Chapter IX. 

Ctrl-FI through Ctrl-FIG-recalls the command line saved 
by Alt-Fn. The recall function can be used anywhere 
within a command. To easily remember the key usage, 
think of Alt-Fn as 'A'ssign and Ctrl-Fn as 'C'aii. 

Other keys are defined as follows: 

Alt-5-Toggles the vertical windowed stack display on and 
off. At least one window must be used for this key to 
have any effect. 

Ctrl-Break-Cancels the current command and returns to 
Periscope's prompt. 

Ctrl-PrtSc-Toggles printer echo of screen output on and 
off. Any control codes or special characters other than 
carriage return and line feed are suppressed. Only the 
non-windowed area of the screen is printed. 

Ctrl-5-Suspends output until another key is pressed. 

PadMinus (gray minus key on numeric pad)-Moves 
backward one line in the current window. This command 
affects the current data window if the last command is a 
display command or if no disassembly window is in use. 
To enter a minus sign, use the other minus key. 

PadPlus (gray plus key on numeric pad)-Moves forward 
one line in the current window. This command affects the 
current data window if the last command is a display 
command or if no disassembly window is in use. To enter 
a plus sign, use the other plus key. 

PgDn-Pages forward through the current window. This 
command affects the current data window if the last 
command is a display command or if no disassembly 

7 -6 Debugging With Periscope 



window is in use. Otherwise this key affects the 
disassembly window. 

PgUp-Pages backward through the current window. This 
command affects the current data window if the last 
command is a display command or if no disassembly 
window is in use. Otherwise this key affects the 
disassembly window. 

Semi-colon-This character is used as a pseudo carriage
return. Use it to enter multiple commands on one line. 
For example, if you're tracing through a program that 
requires repetitive Go and Fill commands, you could enter 
'G NEWPAGE;F PAGENO L2 0' to go to the line labeled 
NEWPAGE and fill memory starting at PAGENO. After the 
line has been entered once, you can use F4 to repeat it. 

Shift-PrtSc-Prints the entire screen to the parallel 
printer. Be careful if control codes have been displayed 
on the screen with the Display or Xlate commands-use 
Ctrl-PrtSc to avoid output of control codes to the printer. 

Command Parameters 

Periscope is command driven. Commands may be entered 
in upper or lower case. Either a space or a comma may 
be used to delimit parameters within a command. A 
delimiter is required when a sub-function is omitted, 
after a symbol, and between two numbers. 

Each command requires at least a single-character 
mnemonic. All but a few commands require additional 
input. 

The various parameters used by Periscope are defined 
below, in alphabetical order. Brackets ([ J) in the 
command syntax are used to indicate an optional entry. 
(Note that brackets actually entered in a command line 
are used to indicate that the address is to be used as a 
near pointer.) An ellipsis ( ... ) is used to indicate a 
repetitive entry. 

$-The dollar sign or 'here' indicator can be used with 
the Display commands to replace the display address and 
more easily display some types of data. It assumes a 
value equal to one more than the last byte previously 
displayed. For example, if you want to page through 
memory displaying 200H bytes at a time, you can use 'D 
$ L200' rather than having to specify an address each 
time. Similarly, the DR command can be used to display 

Debugging With Periscope 7-7 



repeating record definitions. For example, 'DR $ . RECORD , 
can be used to display a repeating fixed-length record. 

<address)-The address of a memory location. The address 
is composed of a segment and an offset, separated by a 
colon. Alternately, registers can be used for either or 
both numbers, or a valid symbol can be used for both the 
segment and offset. For some commands, the segment may 
be omitted. Possible addresses include 1000:1234, DS:SI, 
and PRINT LINE. 

<alias)-A two-character short-hand notation for a 
Periscope variable. The valid aliases are: 

MP-The module path name for source-level debugging 
MX-The module extension for source-level debugging 
Xl-The command executed on entry to Periscope 
X2-The command executed after each Periscope command 
X3-The command executed on exit from Periscope 

<arithmetic operator)-The arithmetic symbols +, -, IE, 

and I, used for addition, subtraction, multiplication, and 
division, respectively. 

<byte)-A one- or two-digit hexadecimal number from 0 to 
FF or an 8-bit register. 

<decimal nUmber)-A decimal number from 0 to 65535. No 
punctuation is allowed. 

<drive)-A single-digit number corresponding to a disk 
drive, where 0 equals drive A, 1 equals drive B, etc. 

<f1ag)-A flag register. The possible values and two
character mnemonics are: 

FLAG SET (=1) CLEAR (=l'J) 
--------------- ------------ ------------
Overflow OV NV 
Direction ON (STO) UP (CLO) 
Interrupt EI (STI) 01 (CLI) 
Sign NG (negative) PL (positive) 
Zero ZR (zero) NZ (non-zero) 
Auxiliary carry AC NA 
Parity PE (even) PO (odd) 
Carry CY (STC) NC (CLC) 

<function)-The Periscope command, such as D (Display 
memory), or U (Unassemble). 

<length)-The number of bytes affected by a command. 
This may be represented by 'L nnnn' where nnnn is a 
hexadecimal number from 1 to FFFF. It may also be 
represented by a number following an address. In this 

7-8 Debugging With Periscope 



case the length is calculated as the number plus one 
minus the offset. For example, 'D CS:100 L 100' and 'D 
CS:100 IFF' (IFF plus 1 minus 100) both have a length of 
100H. 

A register name may be substituted for the number in 
either format. The current value of the register is used 
for the number. 

A symbol may also be used for the length argument. The 
segment associated with the symbol must be the same as 
the segment referenced in the preceding address and the 
offset must not be less than the offset referenced in the 
address. 

<lisO-A list of byte(s) and/or string(s). For example "03 
'COMMAND COM' 12 34" is a list composed of a byte, a 
string, and two trailing bytes. 

<name)-A file name, including drive, path, and extension 
as needed. May also be any name for use as an alias. 

< number)-A one- to four-digit hexadecimal number from 
o to FFFF. If a register name is used, its current value 
is substituted for the number. 

<offseO-The one- to four-digit hexadecimal number or 
register representing the offset into the specified 
segment. 

<porO-The one- to four-digit hexadecimal number 
associated with an I/O port. 

<range)-An address and a length. For example 'CS:100 L 
100' and '0:0 FF' are ranges. Two symbols may be used 
if they both reference the same segment and if the offset 
of the second symbol is greater than or equal to the 
offset of the first symbol. 

<register)-A machine register. The 16-bit registers are 
AX, BX, CX, DX, SP, BP, SI, DI, DS, ES, SS, CS, and IP. 
The 8-bit registers are AH, AL, BH, BL, CH, CL, DH, and 
DL. 

<sectors)-Two hexadecimal numbers representing the 
starting relative sector number and the total number of 
sectors (max 80H). The sector numbering scheme is the 
one used by DOS interrupts 2SH and 26H. 

Debugging With Periscope 7-9 



<segment)-A one- to four-digit hexadecimal number or 
register representing one of the four segment registers 
(Code, Data, Extra, or Stack). 

<string)-A quoted list of ASCII characters. Either single 
or double quotes may be used to delimit the string. To 
enter a string containing an embedded quote, use the 
other form of quote to delimit the string, or enter two 
quotes where the single embedded quote is desired. 

<sub-function)-The mnemonic used with most commands. 
For example, to display memory in word format, enter 
'DW', where 'W' is the sub-function. The sub-function 
must follow the function immediately-no intervening 
spaces are allowed. This is necessary to differentiate 
between a sub-function and an address. For example, 
consider 'DD' and 'D D'. The first command displays data 
in double word format starting at the current segment and 
offset. The second command displays data in the current 
format starting at offset D in the current segment. 

<symbol)-A name corresponding to an address or a 
record definition. Symbols are loaded from a PSS or MAP 
file when the corresponding program is loaded by RUN. A 
symbol name may be optionally preceded by a period. (If 
a period precedes a name, the name is forced to be a 
symbol.) For example, to disassemble memory starting at 
the symbol 'PRINT_LINE', enter 'U . PRINT_LINE' . 

Symbols are evaluated first, before numbers and registers. 
This can cause conflicts and/or confusion if a symbol 
has the same name as a valid register or number (e.g. AX 
or A123). Be careful not to confuse symbol names with 
addresses-the command 'D A123' first tries to use A123 
as a symbol name. If a symbol is not found, Al23 is 
used as a hex number. To inhibit its use as a hex 
number, use 'D .A123'. 

Symbols are also used to reference record definitions 
read from a DEF file. For example, to display the FCB, 
enter 'DR CS:5C FCB'. 

<test>-Used to compare two values. The possible tests 
are LT (less than), LE (less than or equal), EQ (equal), 
NE (not equal), GE (greater than or equal), and GT 
(greater than). 

[ }--Brackets around an address are used to indicate that 
the offset is to be used as a near pointer to another 
offset within the specified segment. The trailing bracket 
is optional. For example, if the word at CS:250H contains 

7-10 Debugging With Periscope 



1234H, 'U [CS:250]' disassembles memory starting at 
CS:1234. 

{ }-Braces around an address are used to indicate that 
the segment and offset are to be used as a far pointer to 
another segment and offset pair. The trailing brace is 
optional. For example, to disassemble INT 10H, enter 'U 
{0:10*4}'. This command uses the offset at 0:40H and the 
segment at 0:42H, which is interrupt vector 10H. 

O.-A prefix of '0.' before a symbol name extracts the 
offset portion of a symbol name. For example, to modify 
the instruction pointer to the offset portion of the symbol 
NEW_PAGE, use 'R IP O.NEW _PAGE'. 

S.-A prefix of'S.' before a symbol name extracts the 
segment portion of a symbol name. For example, assume 
the symbol ARRAY points to 1234:5678. To display memory 
at 1234:0000, you could use 'D S.ARRAY:O'. 

+, -, ., I-These arithmetic operators may be used to 
perform inline arithmetic. The operators + (add), -
(subtract), * (multiply), and / (divide) are evaluated from 
left to right. For example, odd 0:21*4', 'r ip ip+1', 'd 
ss:sp-4', 'u bx+si-5' are all acceptable. 

The Periscope Commands 

Periscope's commands are described on the following 
pages. Because of the number, complexity, and importance 
of the breakpoint commands, a few words of introductory 
information may help you understand the different types. 

There are three categories of breakpoints: Code 
breakpoints, Monitor breakpoints, and Hardware 
breakpoints. Code breakpoints are set on specific 
addresses in your program. When the instructions at the 
specified addresses are about to be executed, a 
breakpoint is taken. Monitor breakpoints are a wide 
class of dynamically-evaluated conditions. Hardware 
breakpoints are set with the Periscope III board only. 
They are set on the real-time bus events that occur 
during the execution of your program. 

Code breakpoints are set via the 'BC' (Breakpoint on 
Code) command. These breakpoints are 'sticky' code 
breakpoints since they are remembered until explicitly 
cleared with the 'BC' or 'BA' commands. Temporary code 
breakpoints are set when an address is entered with the 
'G' (Go) command. They are not remembered after the 
execution of the 'G' command that set them. All of the Go 

Debugging With Periscope 7-11 



commands (G, G=, GA, GH, GM, GT) activate Code 
breakpoints. 

Monitor breakpoints are set via these commands: 'BB' 
(Byte), 'BI' (Int), 'BL' (Line), 'BM' (Memory), 'BP' (Port), 
'BR' (Register). 'BU' (User). 'BW' (Word). and 'BX' (eXit). 
They are aU 'sticky'. or remembered until explicitly 
cleared. They are activated by the GA. GM. and GT 
commands only. 

Hardware breakpoints are set via the 'HM' (Hardware 
Memory) and 'HP' (Hardware Port) commands. The 'HB' 
(Hardware Bit). 'HC' (Hardware Control). and 'HD' 
(Hardware Data) breakpoint commands are used to qualify 
the Hardware Memory and Hardware Port breakpoints. All 
Hardware breakpoints are 'sticky', or remembered until 
explicitly cleared. 

Breakpoint command terms that may be confusing at first 
are: display. set. clear. enable. and disable. Here's what 
they mean. When you set any 'sticky' breakpoint. it will 
be in effect each time you use the appropriate Go 
command. You can keep it from being in effect by either 
disabling or clearing it. If you clear it. Periscope no 
longer knows about it. If you disable it. Periscope knows 
it's there, but does not use it until you enable it. 
Disabled breakpoints are displayed with a leading '-'. 

To clear all breakpoints, use the 'BA lE' command (for the 
software breakpoints) or the 'HA IE' command (for the 
hardware breakpoints). To clear an entire group of 
breakpoints, use the 'Bx lE' command or the 'Hx lE' 

command, where 'x' indicates the group you want to 
clear, such as Byte, Memory, Port, Word, etc. To clear an 
individual breakpoint, re-enter the breakpoint (except for 
the HB and HC breakpoints). Periscope's program loader, 
RUN.COM. always disables all hardware and software 
breakpoints. except for the 'HC' breakpoints. A useful 
habit to develop is to display all breakpoints with 'BA' 
and 'HA' before executing the Go command. so that you 
know for sure what breakpoints are set and enabled. 

See the Help command later in this chapter for 
information on using Periscope's on-line help function. 

7-12 Debugging With Periscope 



Command: Assemble to memory 

Syntax: A [< address>] 

Description: This command assembles instructions to 
memory. 

To use the in-line assembler, enter 'A [<address>]' when 
Periscope's prompt is displayed and press return. The 
assemble address is then displayed. If no address is 
specified, CS:IP is used. Enter the instructions to be 
assembled and press return. To terminate the assembly, 
press return when the cursor is at the beginning of a 
new line. 

The assembler supports all of the 8086, 8087, 8088, 
80186, 80287, and real-mode 80286 opcodes. The 
protected-mode opcodes of the 80286 are not supported. 
If a prefix instruction other than a segment override (CS:, 
DS:, ES:, or SS:) is used, it must be on a separate line 
preceding the instruction it affects. Various forms of the 
opcodes are supported, including synonyms such as JE 
and J2, etc. There are two special cases-string 
primitives such as MOVS must explicitly reference a byte 
or word (MOVSB or MOVSW), and a far return must be 
entered as RETF. 

Jump or call instructions generate the shortest form of 
call .for the address specified. When referencing memory, 
be sure to use brackets around the address field to 
differentiate it from a direct reference. 

When using symbols, the symbol name may be preceded 
by a period. If you are referencing the contents of a 
symbol, be sure to put the symbol name in brackets-e.g., 
MOV AX,[PAGENO]. To get the offset of a symbol into a 
register, do not use the brackets-e.g., MOV AX,PAGENO. 
Symbols may also be used as arguments to JMPs and 
CALLs. 

For instructions that require the phrase 'BYTE PTR' or 
'WORD PTR' to specify the width of the operation, use B 
or W, in upper or lower case, instead. Some 8087 and 
80287 instructions require a width indicator of D, Q, or T 
for Double word, Quad word, or Ten byte respectively. 

Periscope SUpports the DB pseudo-op, allowing you to 
enter hex or ASCII characters into memory. 

Example: To assemble an instruction at 1234:5678 to 
jump to the symbol NEW_PAGE, enter 'A 1234:5678' and 

Periscope Commands-A 7-13 



press return. Then enter ']MP NEW PAGE' and press 
return. Press return again to exit the in-line assembler. 

Command: Assemble then Unassemble 

Syntax: AU [<address>] 

Description: This command is the same as the Assemble 
command described previously, except that it 
disassembles an instruction immediately after assembling 
it. 

This immediate feedback was originally used to debug the 
in-line assembler. We left it in Periscope since users 
reacted positively to it. 

Example: To assemble an instruction at CS:IP to move the 
value of the symbol .TOTMEM to register AX, enter 'AU' 
and press return. Then enter 'MOY AX,[.TOTMEMJ' and 
press return. The instruction is disassembled and then 
the next prompt is displayed. Press return again to exit 
the in-line assembler. 

7-14 Periscope Commands-A 



Command: display, clear, enable, and/or disable All 
software Breakpoints 

Syntax: BA [?] [IE] [+] [-] 

Description: This command displays (?), clears (IE), 
enables (+), and/ or disables (-) the currently-set 
software breakpoints. If you enter 'BA' only, display is 
assumed, and all currently-set breakpoints are displayed. 
Disabled breakpoints are displayed with a leading '-' 

Examples: 

Assume that a Byte breakpoint has been set for the 
symbol LINE COUNT equal to 38H and that a Register 
breakpoint has been set for CX less than 5. No other 
breakpoints have been set. 

'BA' or 'BA ?' displays both breakpoints: 'BB LINE COUNT 
EQ 38' and 'BR CX LT 0005'. 

'BA IE' clears both breakpoints. 

'BA +' enables both breakpoints. (Line and eXit 
breakpoints are enabled only if they have been previously 
turned on with 'BL +' or 'BX +' and then disabled.) Note: 
Since RUN.COM disables all breakpoints, use this command 
to re-enable previously-set breakpoints. 

'BA -' disables both breakpoints. (Line and eXit 
breakpoints are disabled only if they have been 
previously turned on.) 

Command: Breakpoint on Byte 

Syntax: BB [<address> <test> <byte>] [?] [IE] [+] [-] [ ... ] 

Description: This command is used to set a breakpoint 
when a byte of memory meets a test. 

Up to eight breakpoints may be set at one time. If a 
segment is not specified in the address, the current data 
segment is used. If any of the tests pass, a breakpoint 
is taken. To trace execution with this breakpoint enabled, 
the GA or GT command must be used. This breakpoint 
stops execution of a program on the instruction following 
the instruction that changed the specified byte of 

Periscope Commands-B 7-15 



memory. Multiple breakpoints may be set on a single 
input line. The breakpoint clear (*), display (?), enable 
(+), and disable (-) functions may also be present on the 
line. 

After being set, these breakpoints are remembered until 
they are cleared. Re-entering a previously set breakpoint 
clears the breakpoint and displays the message 
'Breakpoint cleared'. Be careful to display all breakpoints 
before using the Go command to make sure the 
breakpoints you've got are the ones you want. 

Examples: 

'BB .LINE COUNT EQ 38' sets a Byte breakpoint for the 
memory location corresponding to LINE COUNT. 

'BB * DS:123 GT PO ?' clears all Byte breakpoints, sets 
one, and then displays the Byte breakpoint. 

'BB' or 'BB ?' displays all Byte breakpoints. 

Command: Breakpoint on Code 

Syntax: BC [< address>] [?] [*] [+] [-] [ ... ] 

Description: This command is used to set a breakpoint 
when an instruction is executed. 

It performs the same function as addresses entered after 
the Go command, except that these breakpoints are 
remembered. If a segment is not specified in the address, 
CS is presumed. Any form of the Go command may be 
used to enable Code breakpoints. This breakpoint stops 
execution of a program before the instruction at the 
specified address is executed. Multiple breakpoints may 
be set on a single input line. The breakpoint clear (*), 
display (?), enable (+), and disable (-) functions may 
also be present on the line. See the Go command for 
more information. 

After being set, these breakpoints are remembered until 
they are cleared. Re-entering a previously set breakpoint 
clears the breakpoint and displays the message 
'Breakpoint cleared'. Be careful to display all breakpoints 
before using the Go command to make sure the 
breakpoints you've got are the ones you want. 

7-16 Periscope Commands-B 



Examples: 

'BC PRINT LINE' sets a Code breakpoint for the memory 
location corresponding to PRINT LINE. 

'BC IE CS:123 ?' clears all Code breakpoints, sets one, 
and then displays the Code breakpoint. 

'BC {O:21 IE 4' sets a Code breakpoint at the entry point for 
Interrupt 21H. 

'BC' or 'BC ?' displays all Code breakpoints. 

Command: Breakpoint on Interrupt 

Syntax: BI [<byte>] [?] [IE] [+] [-] [#] [ ... ] 

Description: This command is used to set a breakpoint 
when a software interrupt is executed. 

This breakpoint is used to get to the next occurrence of 
any software interrupts from 0 to FFH. Multiple interrupt 
numbers may be entered on a single line. To set 
breakpoints on all interrupts, use BI #. This breakpoint is 
activated only with the GA or GT command. If the 
interrupt of interest is in RAM, use a Go command to get 
to the interrupt in real time. For example, to get to Int 
21H, enter 'G {O:21 IE 4}'. The breakpoint clear (IE), display 
(?), enable (+), and disable (-) functions may also be 
present on the line. 

After being set, these breakpoints are remembered until 
they are cleared. Re-entering a previously set breakpoint 
clears the breakpoint and displays the message 
'Breakpoint cleared'. Be careful to display all breakpoints 
before using the Go command to make sure the 
breakpoints you've got are the ones you want. 

Examples: 

'BI IE 21' clears all Interrupt breakpoints and then sets a 
breakpoint on Interrupt 21H. 

'BI #' sets all Interrupt breakpoints. 

'BI' or 'BI ?' displays all Interrupt breakpoints. 

Periscope Commands-B 7-17 



Command: Breakpoint on Line 

Syntax: BL [?] [If] [+] [-] [ ... ] 

Description: This command is used to set a breakpoint 
when a source code line is executed. 

This breakpoint is used to get to the next instruction 
that corresponds to a source line of a high-level 
language program. If your program is executing and you 
press the break-out switch, chances are very good that 
the program will be stopped in DOS, BIOS, or in a library 
routine. This breakpoint is a convenient method of getting 
back to the source program. It requires source line 
numbers to be in the symbol table-symbols added with 
the ES command will not suffice. Mter setting the Line 
breakpoint, use GA or GT to execute to the next source 
line. Since this command can be very slow, use a Go 
command to a known execution address if possible. The 
breakpoint clear (If), display (?), enable (+), and disable 
(-) functions may also be present on the line. 

BL + must be used to tum on Line breakpoints for the 
first time-BA + (enable all breakpoints) will enable the 
Line breakpoint only if it has been previously turned on 
and then disabled. After being set, this breakpoint is 
remembered until it is cleared. 

Note: You may also use the SR and SC commands to 
analyze the stack to determine the next source line. 

Example: 

'BL +' turns the Line breakpoint on so that a subsequent 
GA or GT command will stop when the next instruction 
that corresponds to a source code line is reached. 

Command: Breakpoint on Memory 

Syntax: BM [<address> <address> R aod/or Wand/or X] 
[?] [If] [+] [_] [ ... ] 

Description: This command is used to set a breakpoint 
when a range of memory will be read, writtten, and/or 
executed. 

The two addresses may have different segments, but the 
second address must not be lower in memory than the 

7-18 Periscope Commands-B 



first address. A range may be used instead of the two 
addresses. If a segment is not specified in the address, 
the current data segment is used. Up to eight breakpoints 
may be set at one time. The read (R) or write (W) 
breakpoints will occur only if a read or write starts in 
the specified range. The execute (X) breakpoint will occur 
only if CS:IP is in the specified range. If any of the 
tests pass, a breakpoint is taken. To trace execution 
with this breakpoint enabled, the GA or GT command must 
be used. This breakpoint stops execution of a program on 
the instruction that will read, write, or execute the 
specified range of memory. Multiple breakpoints may be 
set on a single input line. The breakpoint clear (IE), 
display (?), enable (+), and disable (-) functions may 
also be present on the line. 

This breakpoint will not detect a change caused by code 
that is not traced-it will never see changes made by a 
hardware interrupt. If you're using the GT command, be 
sure that the appropriate interrupts are being traced. 

After being set, these breakpoints are remembered until 
they are cleared. Re-entering a previously set breakpoint 
clears the breakpoint and displays the message 
'Breakpoint cleared'. Be careful to display all breakpoints 
before using the Go command to make sure the 
breakpoints you've got are the ones you want. 

Examples: 

'BM DATASTART DATAEND W' sets a Memory breakpoint for 
writes from DATASTART thru DATAEND. Any instruction that 
writes to this range of memory causes a breakpoint to be 
taken, before the instruction is executed. 

'BM IE SS:SP SS:FFFF RW ?' clears all Memory breakpoints, 
sets a breakpoint to trap any reads or writes to the 
memory from SS:SP (the current stack position) to SS:FFFF 
(the top of the stack segment), and displays the Memory 
breakpoint. 

'BM' or 'BM ?' displays all Memory breakpoints. 

Command: Breakpoint on Port 

Syntax: BP [<port> <port> I and/or OJ [?J [IEJ [+J [-J [ ... J 

Periscope Commands-B 7-19 



Description: This command is used to set a breakpoint 
when a range of I/O ports will be read and/or written as 
the result of an instruction. 

The second port must be greater than or equal to the 
first port. Up to eight breakpoints may be set at one 
time. A breakpoint will occur only if an IN or an OUT 
occurs to a port in the specified range. If any of the 
tests pass, a breakpoint is taken. To trace execution 
with this breakpoint enabled, the GA or GT command must 
be used. This breakpoint stops execution of a program on 
the instruction that will read or write the specified range 
of ports. Multiple breakpoints may be set on a single 
input line. The breakpoint clear (,,), display (?), enable 
(+), and disable (-) functions may also be present on the 
line. 

After being set, these breakpoints are remembered until 
they are cleared. Re-entering a previously set breakpoint 
clears the breakpoint and displays the message 
'Breakpoint cleared'. Be careful to display all breakpoints 
before using the Go command to make sure the 
breakpoints you've got are the ones you want. 

Examples: 

'BP 310 31F I' sets a Port breakpoint for ports from 310 
to 31F. Any instruction that reads from this range of 
ports causes a breakpoint to be taken, before the 
instruction is executed. 

'BP " 304 304 a ?' clears all Port breakpoints, sets a 
breakpoint to trap any writes to port 304, and displays 
the Port breakpoint. 

'BP' or 'BP ?' displays all Port breakpoints. 

Command: Breakpoint on Register 

Syntax: BR [<register> <test> <number>] [?J ["J [+J [-J 
[ ... J 

Description: This command is used to set a breakpoint 
when a register meets a test. 

Up to one test per register may be set at one time. If 
any of the tests pass, a breakpoint is taken. To trace 
execution with this breakpoint enabled, the GA or GT 
command must be used. This breakpoint stops execution 

7 -20 Periscope Commands-B 



of a program on the instruction following the instruction 
that changed the specified register. Multiple breakpoints 
may be set on a single input line. Any of the 16-bit or 
8-bit registers may be used. The breakpoint clear (IE), 
display (?), enable (+), and disable (-) functions may 
also be present on the line. 

After being set, these breakpoints are remembered until 
they are cleared. Re-entering a previously set breakpoint 
clears the breakpoint and displays the message 
'Breakpoint cleared'. Be careful to display all breakpoints 
before using the Go command to make sure the 
breakpoints you've got are the ones you want. 

Examples: 

'BR CX EQ 0123' sets a breakpoint when register CX is 
equal to 123H. 

'BR IE ES NE DS ?' clears all Register breakpoints, sets 
one, and then displays it. Note that DS is used for its 
current value only. 

'BR' or 'BR ?' displays all Register breakpoints. 

Command: Breakpoint on User test 

Syntax: BU [<number>] [?] [IE] [+] [-] [ ... ] 

Description: This command is used to enable a user
written breakpoint. 

The User breakpoints permit breakpoint tests not provided 
by Periscope. The number may vary from 1 to 8, 
indicating one of eight possible User breakpoints. To use 
this breakpoint, a program similar to USEREXIT.ASM as 
described in Chapter IX must be installed before PS.COM 
is run. Also, the /1 installation option must be used 
when PS.COM is run. On return from the user routine, 
register AL must be set to 1 if a breakpoint is to be 
taken. Any other value causes no breakpoint to be taken. 
Note that any other breakpoints currently set may cause a 
breakpoint to be taken. 

The first User breakpoint in the sample program 
USEREXIT.ASM is used to set a breakpoint when DOS is 
available for file I/O. If you need to perform DOS 
functions after pressing the break-out switch, this User 
breakpoint will come in handy. 

Periscope Commands-B 7-21 



Multiple breakpoints may be set on a single input line. 
The breakpoint clear (IE), display (?), enable (+), and 
disable (-) functions may also be present on the line. 

After being set, these breakpoints are remembered until 
they are cleared. Re-entering a previously set breakpoint 
clears the breakpoint and displays the message 
'Breakpoint cleared'. Be careful to display all breakpoints 
before using the Go command to make sure the 
breakpoints you've got are the ones you want. 

Examples: 

Assuming that a user-written interrupt handler has been 
installed using INT 60H and that PS.COM had the '/1:60' 
installation option, 'BU l' enables User breakpoint number 
1. 

'BU 9' returns an error since the User breakpoint range IS 

from one to eight. 

'BU' or 'BU ?' displays all User breakpoints. 

Command: Breakpoint on Word 

Syntax: BW [<address> <test> <number>] [?] [IE] [+] [-] 
[ ... ] 

Description: This command is used to set a breakpoint 
when a word of memory meets a test. 

Up to eight breakpoints may be set at one time. If a 
segment is not specified in the address, the current data 
segment is used. If any of the tests pass, a breakpoint 
is taken. To trace execution with this breakpoint enabled, 
the GA or GT command must be used. This breakpoint 
stops execution of a program on the instruction following 
the instruction that changed the specified word of 
memory. Multiple breakpoints may be set on a single 
input line. The breakpoint clear (IE), display (?), enable 
(+), and disable (-) functions may also be present on the 
line. 

After being set, these breakpoints are remembered until 
they are cleared. Re-entering a previously set breakpoint 
clears the breakpoint and displays the message 
'Breakpoint cleared'. Be careful to display all breakpoints 
before using the Go command to make sure the 
breakpoints you've got are the ones you want. 

7-22 Periscope Commands-B 



Examples: 

'aw CHAR COUNT EQ 1234' sets a Word breakpoint for the 
memory location corresponding to CHAR COUNT. 

'S'.\' IE DS:123 GT SI ?' clears all Word breakpoints, sets 
one, and then displays it. Note that SI is used for its 
current value only. 

'BW' or 'BW ?' displays all Word breakpoints. 

Command: Breakpoint on eXit 

Syntax: BX [?] [IE] [-] [+] [ ... ] 

Description: This command is used to set a breakpoint on 
return from a subroutine or interrupt handler. 

With this breakpoint set, execution continues until a RET, 
RETF, or IRET instruction is found. It is a convenient 
method of executing until the program is about to transfer 
control to another procedure. 

Note that BX + must be used to turn on eXit breakpoint 
for the first time-BA + (enable all breakpoints) will 
enable the eXit breakpoint only if it has been previously 
turned on and then disabled. After being set, this 
breakpoint is remembered until it is cleared. 

Examples: 

'BX +' turns the eXit breakpoint on so that a subsequent 
GA or GT command will stop when a RET, RETF, or IRET 
instruction is reached. 

'BX' or 'BX ?' displays the status of the eXit breakpoint. 

Periscope Commands-B 7-23 



Command: Compare 

Syntax: C <range> <address> 

Description: This command is used to compare two blocks 
of memory a byte at a time. 

If any differences are found, the address and value of 
the first byte and the value and address of the second 
byte is displayed. Nothing is displayed for bytes that 
match. Since this command accepts two addresses as 
input, the two blocks of memory may be in different 
segments. If no segment is input, the current data 
segment is used. The length parameter indicates how 
much memory is to be compared. 

Assume that you want to compare memory location 
3000:0000 with 3000:0010 for 8 bytes. Enter 'C 3000:0 L 
8 3000:10'. The result might be: 

3000:0000 88 00 3000:0010 
3000:0001 02 66 3000:0011 
3000:0003 04 27 3000:0013 

The above display shows three bytes that were different. 
Each line shows the first address, the value of the first 
address, the value of the second address, and the second 
address. Since the other five lines were not displayed, 
the values of these bytes were the same. 

Examples: 

'C DS:SI L 100 ES:DI' compares 100H bytes starting at 
DS:SI with 100H bytes starting at ES:DI. 

'C 123 L CX 456' compares memory starting at DS: 123 
with memory starting at DS:456. The number of bytes 
compared is the current value of register CX. 

'c FCB1 L 25 FCB2' compares memory starting at the 
symbol FCB1 with memory starting at the symbol FCB2 for 
25H bytes. 

7-24 Periscope Commands-C 



Command: Display using current format 

Syntax: D [<range>] 

Description: This command is used to display a block of 
memory in the current display format. 

When Periscope is installed, Display defaults to a Byte 
format. Subsequent Display commands use the most recent 
explicit format. See both the descriptions of the various 
display formats on the following pages as well as the 
information applicable to all display formats in the 
following two paragraphs. 

The syntax for all of the Display commands except DE 
and DR is very flexible. If you enter 'Dx', where x is the 
sub-function, memory is displayed starting where the last 
Display command left off. If you enter 'Dx <number>' the 
number is presumed to be an offset, the segment is 
presumed to be DS, and the length is presumed to be 
80H. If you enter 'Dx <number> <length>' the number is 
presumed to be an offset, and the segment is presumed 
to be DS. 

When display information is not shown in a window and 
one or more lines in the middle of the display are found 
to be multiple occurrences of the same number, the 
line(s) are suppressed and a message of the form '" NNNN 
Lines Of XX Skipped ", is displayed in place of the 
line(s). NNNN is the number (in hex) of lines skipped and 
XX is the byte value found in all bytes of the skipped 
lines. 

If a data window is used, the PgUp, PgDn, PadMinus, and 
PadPlus keys can be used to move forward and backward 
through memory. These keys affect the data window if the 
last command was a display command. 

Examples: 

'D' displays memory starting where the last Display 
command left off. 

'D ES:DI' displays memory starting at ES:DI for a length 
of 80H. 

'D LINE COUNT L l' displays memory starting at the 
symbol -LINE COUNT for a length of 1 using the current 
format. 

Periscope Commands-D 7-25 



Command: Display using ASCII format 

Syntax: DA [< range> ] 

Description: This command is used to display a block of 
memory in ASCII. 

Each line of the display shows the starting segment and 
offset and up to 64 bytes of ASCII characters. All 
characters are displayed as is, except for the control 
characters nul, backspace, tab, carriage return, and line 
feed. Nuls are converted to spaces and the other three 
control characters are converted to periods. A new line is 
started when a CR/LF is found. If a tab character is 
found, the output position is moved to the next tab stop. 

For example, if you enter 'DA TEXT' the display might 
look like thi s: 

1350:0200 Periscope is a full-featured symbolic debugger, system monitor a 
1350: 0240 nd "break-out .... 
1350:0250 switch for the IBM PC, XT, AT, and compatibles. 

If a data window is used with this format, the PgUp and 
PadMinus keys do not keep the display aligned, since the 

data is variable length. 

Examples: 

'DA' displays memory starting where the last Display 
command left off. 

'DA FILENAME L20' displays memory starting at the symbol 
FILENAME for a length of 20H bytes. 

'DA ES:DI' displays memory starting at ES:DI for a length 
of SOH. 

Command: Display using Byte format 

Syntax: DB [<range>] 

Description: This command IS used to display a block of 
memory in hex and ASCII. 

Each line of the display shows the starting segment and 
offset, up to 16 bytes, and their ASCII representation. 

7 -26 Periscope Commands-D 



A dash is displayed between the eighth and ninth bytes 
for readability. If a display is not started on a paragraph 
boundary (i.e., the memory address is not evenly 
divisible by 16), a short right-aligned line is displayed 
for the first line. Similarly, if the display does not end 
on a paragraph boundary, the last line will be a short 
left-aligned line. 

For the ASCII display, the high-order bit is ignored, i.e., 
a byte whose value is greater than 80H has 80H (128) 
subtracted from it before being displayed. Also, any bytes 
from zero to IFH are displayed as periods. 

For example, if you enter 'DB 0:0 L 20' or 'DBO:O IF' the 
display might look like this: 

0000:0000 5E 03 3F 08 50 0B F0 BF-62 08 F0 BF 67 0B F0 BF .. ?].p?b.p?g.p? 
0000:0010 ED 01 700054 FF 00 F0-62 0B F0 BF 05 18 00 FO m.p.T .. pb.p? .. p 

Examples: 

'DB' displays memory starting where the last Display 
command left off. 

'DB LINE COUNT L l' displays the byte at the symbol 
LINE COUNT. 

'DB ES:DI' displays memory starting at ES:DI for a length 
of 80H. 

Command: Display using Double word format 

Syntax: DD [<range>] 

Description: This command is used to display a block of 
memory in double word format. 

This format is useful for examining data that is stored as 
a word offset followed by a word segment. Each line of 
the display shows the starting segment and offset and up 
to 4 pairs of segments and offsets. If the number of 
bytes displayed is not evenly divisible by 16, the last 
line will be a short line. 

For example, if you enter 'DD 0:0 L 20' or 'DD 0:0 IF' 
the display might look like this: 

Periscope Commands-D 7-27 



0000:0000 083F:035E 
0000:0010 0070:01ED 

Examples: 

BFF0:0B5D 
F000:FF54 

BFF0:0862 
BFF0:0B62 

BFF0:0B67 
F000: 1805 

'DD' displays memory starting where the last Display 
command left off. 

'DD 0:0 L 20' displays the interrupt vectors 0 through 7. 

'DD {0:20 lE 4}' displays memory starting at interrupt 20H. 

Command: Display Effective address 

Syntax: DE 

Description: This command is used to display the 
effective address of any reads or writes performed by the 
current instruction. It has no arguments. 

The display shows the address of any reads or writes 
performed by the instruction at CS:IP. The display is 
always in byte format. This display mode is best used 
with a Data window-the window will display the current 
effective address automatically before each instruction is 
executed. 

If the current instruction reads memory. the effective 
address of the read is shown. If the instruction writes 
memory. the effective address of the write is shown. If 
the instruction reads and writes memory, only the read 
address is shown. 

Examples: 

If the current instruction is LODSB, the DE command 
displays memory in byte format starting at the read 
address. DS:SI. 

If the current instruction is MOV [0123].AX. the DE 
command displays memory starting at DS:123H. 

If the current instruction is MOVSW. the DE command 
displays memory starting at DS:SI but does not display 
the write address of ES:DI. 

7-28 Periscope Commands-D 



Command: Display using Integer format 

Syntax: DI [<range>] 

Description: This command is used to display a block of 
memory in unsigned integer (word) format. 

This format is useful for examining data that is stored as 
an unsigned word integer. Each line of the display shows 
the starting segment and offset and up to 8 decimal 
numbers. The number displayed may be from zero to 
65535. If the number of bytes displayed is not evenly 
divisible by 16. the last line will be a short line. 

For example. if you enter 'DI DS:SI L 20' the display 
might look like this: 

15E6:1000 1 2 3 4 32764 32765 32766 32767 
15E6:1010 32768 32769 32770 32771 65532 65533 65534 65535 

Examples: 

'DI' displays memory starting where the last Display 
command left off. 

'DI DS:SI L 20' displays memory starting at DS:SI for a 
length of 20H bytes. 

'DI ARRAY' displays memory starting at the symbol ARRAY. 

Command: Display using Long real format 

Syntax: DL [<range>] 

Description: This command is used to display a block of 
memory in long real (quad word) format. 

This format is used to examine data that is stored as an 
8-byte floating point number in 8087 (IEEE) format. Each 
line of the display shows the starting segment and offset 
and up to two numbers in scientific notation. 

For example. if you enter 'DL DS:SI L 20' the display 
might look like this: 

4981:0182 .80167410292270 E-290 .11125369876685 E-307 
4981:0192 0 .11820704873320 E-307 

Examples: 

Periscope Commands-D 7-29 



'DL' displays memory starting where the last Display 
command left off. 

'DL DS:SI L 20' displays memory starting at DS:SI for a 
length of 20H bytes. 

'DL ARRAY' displays memory starting at the symbol ARRAY. 

Command: Display using Number format 

Syntax: DN [<range>] 

Description: This command is used to display a block of 
memory in signed integer (word) format. 

This format is useful for examining data that is stored as 
a signed word integer as used by BASIC and other 
languages. Each line of the display shows the starting 
segment and offset and up to 8 decimal numbers. The 
decimal numbers shown may vary from zero to 32767 (OH 
to 7FFFH) and from -32768 to -1 (8000H to FFFFH). If 
the number of bytes displayed is not evenly divisible by 
16, the last line will be a short line. 

For example, if you enter 'DN DS:SI L 20' the display 
might look like this: 

15E6:1000 +1 +2 +3 +4 +32764 +32765 +32766 +32767 
15E6:1010 -32768 -32767 -32766 -32765 -4 -3 -2 -1 

Examples: 

'DN' displays memory starting where the last Display 
command left off. 

'DN DS:SI L 20' displays memory starting at DS:SI for a 
length of 20H bytes. 

'DN ARRAY' displays memory starting at the symbol ARRAY. 

Command: Display using Record format 

Syntax: DR <address> <symbol> 

7 -30 Periscope Commands-D 



Description: This command is used to display a block of 
memory in an easy-to-read format using a previously
created record definition. 

This format is useful for eXamlnIng data that is part of a 
record, such as the PSP or an FCB. Each line of the 
display shows a field name and the data for the field in 
any format supported by Periscope. Any area of memory 
can be displayed using any record definition. 

To use a record format, a record definition, or DEF file 
must exist. RUN.COM loads the record definitions from the 
DEF file. You can add record definitions to the DEF file 
using a text editor. See the sample file PS.DEF and the 
description of RS.COM in Chapter IX. The following 
definition of the PSP is from the file PS.DEF. 

\PSP 
Int 20,b,2 
Topmem,w,2 
Res.,b,1 
Long Call, b, 1 
DOS Func,d,4 
Term Addr,d,4 
Brk Actdr,ct,4 
Err Addr,d,4 
Res. ,b,16 
Environ,w,2 
Res. ,b,2e 
FCB1,b,10 
FCB2,b,14 

Program Segment Prefix 
DOS return 
Amount of memory in paragraphs 
Reserved for DOS 
Long call to DOS function dispatcher 
CS:IP of DOS function dispatcher 
CS:IP of DOS terminate address 
CS:IP of Ctrl-Break exit address 
CS:IP of critical error exit address 
Reserved for DOS 
DOS 2.00 Environment segment 
Reserved for DOS 
The first FCB read from the command line 
The second FCB read from the command line 

Assuming that the definition for the PSP record has been 
loaded, enter 'DR CS:O PSP' to get a display similar to 
the following: 

Int 20 
Topmem 
Res. 
Long Call 
DOS Func 
Term Addr 
Brk Addr 
Err Addr 
Res. 

Environ 
Res. 

FCB1 
FCB2 

CD 20 
5000 
00 
9A 
F01D:FEF0 
0B42:012C 
0B42:0139 
0B42:0481 
42 0B 01 01 01 00 02 FF FF FF FF FF FF FF FF FF 
FF FF FF FF FF FF 
125B 
E2 FF 61 12 14 00 18 00 61 12 00 00 00 00 00 00 
* 0001 LINES OF 00 SKIPPED * 
00 00 CD 21 CB 00 00 00 00 00 00 00 00 00 
00 20 20 20 20 20 20 20 20 20 20 20 00 00 00 00 
00 20 20 20 20 20 20 20 20 20 20 20 00 00 00 00 
00 00 00 00 

M 

B ••••••••••.•••. 

.. M!K .....•... 

The syntax for this command is less flexible than that of 
the other Display commands. You must enter an address 
and a record name. The address should include a 
segment, since the address used for this command is 
kept separate from the address used for the other Display 
commands. 

Periscope Commands-D 7-31 



Examples: 

Assume that the records PSP and FCB are defined <as in 
the file PS.DEF). 

'DR CS:O PSP' displays the PSP, using memory starting at 
CS:O. 

'DR CS:5C FCB' displays the first FCB in the PSP, which 
starts at CS: 5C. 

'DR FCBl FCB' displays the FCB starting at the address 
referenced by the symbol FCB1. Note that the symbol 
table is used for the first symbol and the record 
definition table is used for the second symbol. 

Command: Display using Short real format 

Syntax: DS [<range>] 

Description: This command is used to display a block of 
memory in short real (double word) format. 

This format is used to examine data that is stored as a 
4-byte floating point number in 8087 <IEEE) format. Each 
line of the display shows the starting segment and offset 
and up to two numbers in scientific notation. 

For example, if you enter 'DS DS:SI L 10' the display 
might look like this: 

4981:0182 .3944305 E-30 
4981:018A .1875863 E-29 

Examples: 

.1057946 E-35 
o 

'DS' displays memory starting where the last Display 
command left off. 

'DS DS:SI L 10' displays memory starting at DS:SI for a 
length of lOR bytes. 

'DS ARRAY' displays memory starting at the symbol ARRAY. 

7-32 Periscope Commands-D 



Command: Display using Word format 

Syntax: DW [<range>] 

Description: This command is used to display a block of 
memory in word format. 

This format is useful for examlnmg data that is stored as 
words rather than as bytes. It reverses out the 'back 
words' style of storage used by the 8086 family. Each 
line of the display shows the starting segment and offset 
and up to 8 words. If the number of bytes displayed is 
not evenly divisible by 16, the last line will be a short 
line. 

For example, if you enter 'DW 0:0 L 20' or 'DWO:O IF' 
the display might look like this: 

0000:0000 035E 083F 0850 8FF0 0862 8FF0 0867 BFF0 
0000:0010 01EO 0070 FF54 F000 0862 8FF0 1805 F000 

Examples: 

'DW' displays memory starting where the last Display 
command left off. 

'DW SS:SP FFFF' displays the stack from SS:SP to the top 
of the stack segment. 

'DW POINTER' displays memory starting at the symbol 
POINTER. 

Command: Display using asciiZ format 

Syntax: DZ [<range>] 

Description: This command is used to display a block of 
memory in nul-terminated ASCII format. 

This command is the same as the DA command, except 
that the display ends when a nul (binary zero) is found. 
If a data window is used, the display continues to the 
end of the data window. See the description of the DA 
command above for more information. 

Examples: 

Periscope Commands-D 7-33 



'DZ' displays memory starting where the last Display 
command left off. 

'DZ FILENAME' displays memory starting at the symbol 
FILENAME and continues until a nul is found or 80H bytes 
have been displayed. 

7 -34 Periscope Commands-D 



Command: Enter 

Syntax: E <address> [<list>] 

Description: This command is used to modify memory. 

The segment and offset must be specified for the 
address, to avoid accidental changes to memory. 

If the optional list is present, the specified memory is 
modified and the command terminates. If the list is not 
present, an interactive mode is started. This mode allows 
you to examine and optionally modify individual bytes 
starting at the specified address. 

For example, if you enter 'E 2000:123' and press return, 
the interactive mode is started. The program displays the 
address and the current value of the byte as '2000:0123 
xx.', where xx is the current value. To modify this value, 
enter the hex number (0 through FF). Any invalid input, 
such as 'G9' or too many digits, is not echoed. 

Press the space bar to skip to the next byte. Press the 
hyphen key to back up one byte. The backspace key is 
used to discard a single digit. Use the return key to 
terminate the interactive mode. Note that the interactive 
mode is not compatible with the multiple command 
capability of Periscope-i.e., you cannot use semi-colons 
to 'stack' multiple commands on one line. 

When moving forward with the space bar, a new line is 
started when the address is evenly divisible by eight. 
When moving backward with the hyphen key, each 
address is on a new line. 

Examples: 

'E CS:5C 0 "FILENAMEEXT", modifies the value of CS:5C 
through CS:67 to contain a binary zero and the string 
'FILENAMEEXT' . 

'E 404:100' starts the interactive mode and displays 
'0404:100 80.'. To change this value to 88H, type 88. To 
display the next byte, press the space bar. To change 
the byte at offset 104H to 0, enter 0 when the byte is 
displayed. To back up to offset 102H, press the hyphen 
key as many times as needed to get back to it. When 
you've finished your changes, press the return key. 

Periscope Commands-E 7-35 



Command: Enter Alias 

Syntax: EA <alias> [<name>] 

Description: This command is used to define or redefine 
an alias. 

The alias is a two-character short-hand notation for a 
one- to l6-character name. See the definition of the 
alias parameter earlier in this chapter for more 
information on the available aliases. To display the 
current aliases. press the F5 key. If this command is 
used without a name parameter. the alias is deleted. 

The Xl. X2. and X3 aliases cause a Periscope command 
to be executed on entry to Periscope. after each 
Periscope command. and on exit from Periscope 
respectively. If an error occurs during this alias 
execution. further alias execution is suppressed until the 
EA command is used again. 

Examples: 

'EA X2 D ES:DI' defines alias X2 as 'D ES:DI'. This 
command is executed after each Periscope command-a 
convenient way to constantly monitor the current value of 
ES:DI. 

'EA X2' deletes alias X2. 

Command: Enter Symbol 

Syntax: ES <address> <symbol> 

Description: This command is used to define or redefine 
symbol table entries. 

A segment and offset must be specified for the address. 
The symbol name must be 16 characters or less and may 
be preceded by a period. The symbol table is searched 
for a symbol of the same name. If an existing symbol is 
found, the segment and offset associated with it are 
updated. If no match is found. a new symbol is added at 
the end of the symbol table. To display the current 
symbols. press the F8 key. 

Examples: 

7-36 Periscope Commands-E 



'ES CS:100 START' defines a symbol named START to have 
a segment equal to the current value of CS and an offset 
of lOOH. 

'ES ES:DI OUTDATA' defines a symbol named OUTDATA to 
have a segment and offset equal to the current values of 
ES and DI. respectively. 

Periscope Commands-E 7-37 



Command: Fill 

Syntax: F <range> <list> 

Description: This command is used to fill a block of 
memory with a byte / string pattern. 

A segment and offset must be specified for the address 
to avoid accidental changes to memory. The length 
specifies the number of bytes to be affected. The list is 
the pattern that is copied into the specified range of 
memory. If the length of the list is less than the length 
of the range specified, the list is copied as many times 
as needed to fill the range. Conversely, if the length of 
the list is greater than the length of the range, the extra 
bytes are not copied. 

Examples: 

'F ES:O L 1000 0' writes binary zeroes to memory starting 
at ES:O for a length of 1000H bytes. 

'F DS:SI L CX "test'" writes the string 'test' to memory 
starting at DS:SI. If CX is 3, only 'tes' is copied. If CX 
is 8, 'test' is copied exactly two times, etc. 

'F ARRAY ENDARRAY 0' zeroes memory from the symbol 
ARRAY up to and including the symbol ENDARRAY. 

7 -38 Periscope Commands-F 



Command: Go 

Syntax: G [<address>] [ ... ] 

Description: The Go command is used to set temporary 
code breakpoints, activate sticky code breakpoints, and 
execute the program being debugged. (See the introduction 
to the Commands section of this chapter for a general 
discussion of breakpoints and breakpoint terminology.) 
This command activates code breakpoints only. To 
activate monitor breakpoints, use the GA or GT commands. 
To activate hardware breakpoints, use the GH command. 

If any addresses are specified on the command line, the 
byte at each of the addresses is replaced with a CCH, 
the single-byte breakpoint. When control is returned to 
Periscope via any method, the original byte is restored. 
The addresses entered on the command line are referred 
to as temporary code breakpoints. Up to four of these 
breakpoints may be used. If the address does not contain 
a segment, the current code segment is used. 

To set sticky code breakpoints, use the BC command 
described earlier. This method allows you to set up to 16 
sticky code breakpoints. 

If 'G' with no addresses is entered, the sticky 
breakpoints, if any, are used. If there are no sticky 
breakpoints, program execution continues until the break
out switch is pressed. The sticky breakpoints are 
remembered until cleared or PS.COM is rerun. If you have 
code and/ or monitor breakpoints set and want to continue 
program execution without using any of the breakpoints, 
you can disable all breakpoints using 'BA -' or use the 
QC command. 

You cannot set code breakpoints in ROM-code breakpoints 
require that Periscope be able to exchange the original 
byte with CCH before starting the Go. Since the setting of 
a code breakpoint in the middle of an instruction can 
have unpredictable results, set code breakpoints using 
symbol names where possible. 

When a Go command is used, Periscope invisibly traces 
one instruction and then performs the Go. This allows you 
to set a breakpoint on the current instruction to 
repetitively go to the same address. 

Examples: 

Periscope Commands-G 7-39 



'G PRINT LINE' sets a temporary code breakpoint at the 
address equal to the symbol PRINT LINE and starts 
execution of the program. -

'G FFOO:OOOO' returns an error since the address is in 
ROM. 

'G' begins execution of the program with no temporary 
code breakpoints. 

'G 123' sets a temporary code breakpoint at eS:123 and 
starts execution of the program. 

Command: Go Equal 

Syntax: G= [<address>] [ ... ] 

Description: This cOmIDand sets eS:IP to the first 
address. sets any indicated code breakpoints. activates 
any sticky code breakpoints set with the Be command. 
and executes the program being debugged. This command 
activates code breakpoints only. 

Other than setting eS:IP to the first address entered. this 
command is identical in function to the Go command 
described above. The equal sign must appear directly 
after the letter G. 

Examples: 

'G=PRINTF' sets eS:IP to the value indicated by the 
symbol PRINTF and executes the program. 

'G=123' sets eS:IP to eS:123 and executes the program. 

Command: Go using All 

Syntax: GA [< address>] [ ... ] 

Description: This command is the same as the GT 
command described below. except that ALL instructions 
are traced by this command. This command activates code 
and monitor breakpoints only. 

7-40 Periscope Commands-G 



The GT command single steps through instructions, except 
when a software interrupt is performed. Then the interrupt 
trace table (see the IT command) is checked. If the 
interrupt is not in the table. GT does not trace through 
the interrupt. This can cause GT to miss breakpoints. The 
GA command always traces ALL the way through software 
interrupts. It is slower than GT, but more dependable. 

Example: See the examples under the GT command. 

Command: Go using Hardware (requires Periscope 
III) 

Syntax: GH [< address>] [ ... ] 

Description: This command is used to activate code and 
hardware breakpoints and execute the program being 
debugged. This command activates code and hardware 
breakpoints only (not monitor breakpoints!). 

This command is the same as the Go command, except 
that it also sets any hardware breakpoints that are 
enabled. Whenever the hardware breakpoints are changed, 
they must be completely reset. This full reset involves 
over one million OUT instructions, so please be patient. 

The hardware breakpoints are disabled when RUN.COM is 
used-be sure to check the status of the hardware 
breakpoints using the 'HA' command before starting 
execution. See the description of the Go command for 
more information. 

Examples: 

'GH PRINT LINE' sets a temporary code breakpoint at the 
address equal to the symbol PRINT LINE, invokes all code 
and hardware breakpoints that are set and starts 
execution of the program. 

'GH' invokes all hardware breakpoints that are set and 
begins execution of the program. 

Command: Go using Monitor 

Syntax: GM [<address>] [ ... ] 

Periscope Commands-G 7-41 



Description: This command is used to go at full speed to 
a certain point and then evaluate the monitor breakpoints. 
If any of the monitor breakpoints indicate a hit, 
Periscope's screen is displayed. Otherwise full speed 
execution resumes. This command activates code and 
hardware breakpoints only-the monitor breakpoints are 
evaluated only when a code or hardware breakpoint 
occurs. 

For all models of Periscope other than model III, this 
command acts as a combination of the G and GT 
commands. Consider the situation where you need to 
watch a buffer for an end of file marker. Using GT, this 
would usually be very time-consuming. If you enter a 
monitor test (such as BR AL EQ lA) and then use GM to 
go to the appropriate place in your code, most of the 
code will be executed at full speed. Each time a code 
breakpoint is reached, the monitor breakpoint(s) are 
evaluated, rather than after every instruction. 

For Periscope III, this command acts like a combination 
of the GH and GT commands. Consider a situation where 
you need to find where your program is writing to low 
memory. Since DOS and other programs can be legitimately 
writing to low memory, you need to watch for writes to 
low memory where the offending Code Segment points to 
your program. To do this with Periscope III, set a 
hardware breakpoint watching for writes to the desired 
range, then enter a monitor breakpoint (such as BR CS EQ 
CS), and then enter 'GM'. Each time a hardware breakpoint 
occurs, the monitor breakpoint(s) are evaluated. If any of 
the monitor breakpoints indicates a hit, Periscope's 
screen is displayed. Otherwise full speed execution 
resumes. The monitor breakpoints of interest when 
Periscope III is used are BB, BR, BW, and BU. The 
Register breakpoint is particularly powerful, since register 
information is not available on the bus. For more complex 
events, the user breakpoint tests can be used. This 
command can run slowly if the hardware breakpoint 
occurs frequently-try to qualify the hardware breakpoint 
as tightly as possible for best performance. 

Note: Each time a hardware breakpoint occurs, a 
discontinuity appears in the real-time trace buffer. This 
happens because nothing is added to the buffer from the 
time the hardware breakpoint occurs until just before 
Periscope returns control to the interrupted program. 

Since the monitor breakpoint is evaluated one or more 
instructions after the instruction that caused the hardware 
breakpoint, it is possible for the hardware breakpoint and 
the software breakpoint to be out of sync. This can 
cause an occasional false or missed breakpoint. For 

7 -42 Periscope Commands-G 



example. if you're watching for writes to memory where 
the CS points to your program, code that changes CS 
during the breakpoint overrun interval can cause 
problems. 

Examples: 

'GM PRINT LINE' sets a temporary code breakpoint at the 
address equal to the symbol PRINT LINE. invokes all 
hardware breakpoints that are set Df Periscope III is 
used) and starts execution of the program. When a code 
or hardware breakpoint occurs. the monitor breakpoints 
are evaluated. If any of the monitor breakpoints indicate 
a hit, Periscope's screen is displayed. Otherwise. full
speed execution resumes. 

Command: Go using Trace 

Syntax: GT [< address> J [ ... J 

Description: This command is the similar to the normal 
Go command, except that it enters a single step mode 
and evaluates the monitor breakpoints after each 
instruction. This command activates code and monitor 
breakpoints only. 

This command puts the system into a mode where every 
instruction executed by your program is analyzed to see 
if a breakpoint has been reached. This analysis can slow 
down the execution by a factor of 100 to 1000. but in 
many cases is the only way to find an elusive bug 
(unless you're using Periscope III). Since this command 
is slow, try to use the normal Go command to get as 
close to the problem as possible. 

The monitor breakpoints are remembered until cleared or 
until PS.COM is rerun. If you have code and/or monitor 
breakpoints set and want to continue program execution 
without using any of the breakpoints. you can disable all 
breakpoints (using BA -) or use the QC command. 

Since breakpoints are cleared when re-entered. get in the 
habit of checking the breakpoint settings before using 
this command. Enter 'BA' to display the current 
breakpoints before entering 'GT'. This way you can make 
sure that the right breakpoints have been set before 
starting execution. 

Periscope Commands-G 7-43 



For temporary and sticky code breakpoints, this command 
performs in the same fashion as the Go command 
described above. After a breakpoint, use the TB command 
to see the instructions preceding the instruction that 
caused the breakpoint. 

When a software interrupt is encountered, it is executed 
step-by-step if and only if the interrupt number is set in 
the trace table (see the description of the IT command). 
If the breakpoint you're trying to find is in an interrupt 
or is caused by an interrupt, you should use the GA 
command, since it traces all interrupts. 

If you're using the GT command and the program being 
debugged starts running at full speed, an ill-behaved 
interrupt has probably modified the trap (single-step) 
flag. To find the problem interrupt, press the break-out 
switch and then use TB to see the last code traced by 
Periscope. Note the last entry in the software trace 
buffe~the interrupt shown caused Periscope to lose 
control. You've got two possible solutions: either use the 
IT command to force tracing of the offending interrupt or 
use the GA command to force tracing of all interrupts. 

Borland's SIDEKICK can interfere with the tracing of 
Interrupt 21H when GT is used-force tracing of INT 21 
using the IT command; use the GA command instead of 
GT; or better yet-remove SIDEKICK while debugging. 

Examples: 

'GT PRINT LINE NEW PAGE' sets temporary code 
breakpoints at the addresses equal to the symbols 
PRINT LINE and NEW PAGE. - -

'GT' begins execution of the program with no temporary 
code breakpoints-only sticky and monitor breakpoints that 
are enabled. 

'GT ES:456' sets a temporary code breakpoint at ES:456. 

7 -44 Periscope Commands-G 



Command: Help 

Syntax: ? [<function><sub-function>] 

Description: This command displays Periscope's commands 
by function and sub-function if the on-line help file has 
been loaded. If the help file is not available, a command 
summary is displayed. 

Examples: 

'?' displays a command summary. 

'? DD' displays help for the Display Double word command 
if the on-line help file has been loaded. 

Command: Hex arithmetic 

Syntax: H <number> <arithmetic operator> <number> 

Description: This command is used to perform 
hexadecimal arithmetic. 

Addition, subtraction, multiplication, and division are 
available. The standard operators are used for each 
function. The numbers must be in hex and may be from 
one to four hex digits. If a register name is entered in 
place of one of the numbers, its current value is used 
for the number. 

Multiplication returns two words separated by spaces. The 
first word is the high-order part. Division returns two 
words separated by the letter R. The first word is the 
quotient and the second is the remainder. 

Examples: 

'H 1234+123' gives an answer of 1357. 

'H 1234-123' gives an answer of 1111. 

'H 12341123' gives an answer of 0010 R 0004. 

'H 1234*123' gives an answer of 0014 B11C. 

'H DI-Sl' displays the result of subtracting the current 
value of SI from the current value of DI. 

Periscope Commands-H 7-45 



Command: display, clear, enable, and/or disable All 
Hardware breakpoints (requires Periscope III) 

Syntax: HA [?] [ .. ] [+] [-] [ ... ] 

Description: This command is used to display, clear, 
enable, or disable the hardware breakpoints. 

HA ? displays all hardware breakpoints, HA .. clears all 
hardware breakpoints, HA + enables all hardware 
breakpoints, and HA - disables all hardware breakpoints. 
If the hardware controls (HC) are set to the default 
values, nothing is displayed for them when 'HA ?' is 
used. See the 'BA' command for software breakpoints. 

Examples: 

'HA ?' or 'HA' displays all hardware breakpoints. 

'HA +' enables all hardware breakpoints. Note: since 
RUN.COM disables the breakpoints, use this command to 
re-enable the previously-set breakpoints. 

Command: Hardware Bit breakpoint (requires 
Periscope III) 

Syntax: HB [xxxx xxx x L and/or H] [?] [ .. ] [+] [-] 

Description: This command is used to set, display, clear, 
enable, or disable the hardware data bit breakpoint. 

The Bit breakpoint is entered as a binary number of 
exactly eight characters. The allowable bit values are 0, 
1, and X which correspond to a zero, one, and 'don't 
care' respectively. Only one value may be specified and 
the breakpoint must be used in conjunction with a HM or 
HP breakpoint, i.e. the specified data bits are used to 
qualify a Memory or Port breakpoint. 

The source of the data is indicated by an 'L' for the low 
(8-bit) bus or 'H' for the high (16-bit) bus. The high bus 
is never used on a PC-class machine nor with the 8-bit 
memory in an AT-class machine. For 16-bit memory, the 
low and/or high busses may be used-see the table in 
the HD command below to determine bus usage. If you 

7 -46 Periscope Commands-H 



are using an AT-class machine and are not sure which 
bus to specify, try using 'LH' to specify either bus. You 
may get some extraneous breakpoints, but at least you 
won't miss any. 

HB ? displays the bit breakpoint, HB IE clears the bit 
breakpoint, HB + enables the bit breakpoint, and HB -
disables the bit breakpoint. 

Examples: 

'HB 1XXX XXXX L' sets the bit breakpoint for the low bus 
on any value containing a binary one in bit 7 and any 
value in bits 6 through zero. 

'HB 1010 01XO H' sets the bit breakpoint for the value 
A4H or A6H on the high bus. 

Command: Hardware Controls (requires Periscope 
III) 

Syntax: HC [?J [IEJ [#<number>] [M<byte>J [0- or O+J [S
or S+] [TB, TC, or TTJ 

Description: This command is used to display, clear, or 
set the hardware controls. The controls include the pass 
count, megabyte range, trace overflow stop, selective 
trace, and trigger location. 

The pass count is entered as '#' followed by a number 
from one to FFFFH. It is used as a real-time breakpoint 
counter-when the specified number of breakpoints have 
occurred, Periscope interrupts the executing program. If 
one is specified as the pass count, the first breakpoint 
will interrupt the program. If the pass count is set to 
four, the fourth breakpoint will interrupt the program, etc. 
Note that the pass count must be used in conjunction 
with an HM or HP breakpoint. 

The megabyte range is entered as 'M' followed by a 
number from zero to OFH. It affects the address range 
used by the HM command. It is valid only on an AT
class machine that has a 16-bit bus. This number is 
normally zero for addresses in the first megabyte of 
memory, but it may be any value from zero to OFH. If it 
is not zero, Hardware Memory breakpoints are generated 
only when memory beyond the first megabyte is 
referenced. 

Periscope Commands-H 7-47 



The trace overflow stop is enabled by entering '0+' and 
disabled by entering '0-'. When enabled. the overflow 
stop generates a breakpoint each time the hardware trace 
buffer fills up. This breakpoint allows you to see the bus 
events in 8K groups. so you can examine program flow 
starting at a particular point. You can use this capability 
to count the- bus cycles required by an application in 
increments of SK. This control does not require an HM or 
HP breakpoint. 

The selective trace is enabled by entering 'S+' and 
disabled by entering 'S-'. When enabled. only events that 
would cause a hardware breakpoint are saved in the 
hardware trace buffer. This mode should used with a pass 
count that indicates the number of events desired before 
the Periscope screen is displayed. For example. if you 
want to capture the next 16 Outs to port 3B4H. set the 
Port breakpoint and enter 'HC * #10 S+' to clear the 
controls and then set them to capture only the next 10H 
trigger events. Finally. enter 'GH' to arm the board and 
begin execution. 

Note: When selective trace is used. not all bus events 
are saved in the trace buffer. so it is not usually 
meaningful to disassemble the trace buffer. Also. when 
'S+' is used. the trigger location is set to the bottom of 
the buffer ('TB', as discussed below.) 

The trigger location may be set to the Top ('IT'). Center 
('TC'). or Bottom ('TB') of the trace buffer. When set to 
the toP. the trace buffer shows 8K events AFTER the 
trigger event. numbered from 0 to +IFFE. When set to the 
center. the trace buffer shows up to 4K events before the 
trigger event and 4K events after the trigger event. 
numbered from -FFF to 0 to +FFF. When set to the 
bottom. the trace buffer shows up to SK events BEFORE 
the trigger event. numbered from -IFFE to O. Note: The 
trigger location that is in effect when a hardware 
breakpoint occurs controls the contents of the trace 
buffex-although the trigger location may be changed after 
a breakpoint. the contents of the trace buffer remain the 
same. TC and IT are meaningful only for a hardware 
breakpoint. not when the break-out switch is pressed. 
See the description of the HT command below for more 
informa tion. 

Examples: 

'HC * #5 IT' clears the hardware controls. sets the pass 
count to 5. and sets the trigger location to the top of 
the buffer. 

7-48 Periscope Commands-H 



'HC 0+ ;GH' sets the trace overflow stop on and begins 
execution with hardware breakpoints enabled. After 8,192 
(8K) bus events have been added to the hardware trace 
buffer, control is returned to Periscope. 

'HC S+ #20 TC' sets selective trace on with a pass count 
of 20H. Since selective trace is on, the 'TC' command is 
ignored and 'TB' is assumed. 

Command: Hardware Data breakpoint (requires 
Periscope III) 

Syntax: HD [<byte> <byte> Land/or H] [?] [ .. ] [+] [-] [ ... ] 

Description: This command is used to set, display, clear, 
enable, or disable hardware Data breakpoints. 

The Data breakpoints are entered as ranges of values, 
where the low and high values must be from zero to 
OFFH. Up to 16 ranges may be specified. This breakpoint 
must be used in conjunction with an HM or HP 
breakpoint, i.e. the specified data ranges are used to 
qualify a Memory or Port breakpoint. 

Due to the design of the hardware breakpoint tables, it is 
not possible to set a breakpoint where the range stored 
in the table is all zeroes. The breakpoint setting 'HD 0 
0' is therefore not allowed. If you need to set a value of 
zero, use the 'HB' command. 

The source of the data is indicated by an 'L' for the low 
(8-bit) bus or 'H' for the high (16-bit) bus. These 
indicators are additive, i.e. once 'L' is specified, it 
applies to all Data breakpoints. The high bus is never 
used on a PC-class machine nor with 8-bit memory in an 
AT-class machine. For 16-bit memory, the low and/or 
high busses may be used. See the table below to 
determine bus usage. If you are using an AT-class 
machine and are not sure which bus to specify, try using 
'LH' to specify either bus. You may get some extraneous 
breakpoints, but at least you won't miss any. 

Periscope Commands-H 7-49 



Environment 

PC or XT 
AT/B-bit memory 
AT/16-bit memory 

even byte 
even word 
odd byte 
odd word* 

Low bus High bus 

X 
X 

X 
LO 

HI(2) 

HI 
X 
LO(1) 

* Access to a word at an odd address is broken into two cycles 

After being set. these breakpoints are remembered until 
they are cleared. Re-entering a previously set breakpoint 
clears the breakpoint and displays the message 
'Breakpoint cleared'. Be careful to display all breakpoints 
before using the GH or GM command to make sure the 
breakpoints you've got are the ones you want. 

Examples: 

'HD 10 IF L' allows breakpoints when the data on the 
lower bus is from 10H to IFH. 

'HD IE 20 2F L 40 4F H' clears data breakpoints and sets 
breakpoints for data values from 20H to 2FH and 40H to 
4FH on either the low or high bus. Note that the low or 
high bus indicators apply to both ranges! 

Command: Hardware Memory breakpoint (requires 
Periscope III) 

Syntax: HM [<address> <address> M and/or Rand/or W 
and/or X] [?] [IEJ [+J [-J [ ... J 

Description: This command is used to set. display. clear. 
enable. or disable Memory breakpoints. 

The breakpoints are entered as two addresses or a range. 
Up to 16 ranges may be specified. The source of the 
breakpoint is indicated by an 'M', 'R'. 'w' and/or 'X'. 
indicating DMA. memory read. memory write. and code 
execution (instruction prefetch) respectively. These 
indicators are additive. i.e. once 'R' is specified. it 
applies to all Memory breakpoints. 

Note: Although DMA is used to refresh dynamic RAM. it is 
not possible to set breakpoints on RAM refresh cycles. 

Due to the design of the hardware breakpoint tables. it is 
not possible to set a breakpoint where the range stored 
in the table is all zeroes. The breakpoint setting 'HM 0:0 

7 -50 Periscope Commands-H 



0:0' is therefore not allowed. Also, do not attempt to set 
memory breakpoints inside Periscope's code/data 
area-Error 37 will result. 

A breakpoint starting at an odd address in 16-bit memory 
can be missed if the next lower even address is 
accessed as a word. In this case, the message "Warning 
- Odd low address may cause missed breakpoint" is 
displayed when the breakpoint is entered. The message 
can be ignored if you're sure that the memory in question 
will be accessed starting at the odd address. 

The instruction pre fetch breakpoint is generated when a 
byte is read into the prefetch queue, not when it is 
actually executed. Since the pre fetch queue is four bytes 
long on the 8088 and six bytes long on the 8086 and 
80286, instructions are read before they're actually 
executed. Due to the 'breakpoint overrun' phenomenon, a 
breakpoint does not occur immediately. So the instruction 
in question mayor may not have been executed by the 
time Periscope is activated. If the desired instruction has 
not been executed, try setting the execution breakpoint 
after an instruction that flushes the pre fetch queue (JMP, 
CALL, RET, !RET, INT, etc.). 

After being set, these breakpoints are remembered until 
they are cleared. Re-entering a previously set breakpoint 
clears the breakpoint and displays the message 
'Breakpoint cleared'. Be careful to display all breakpoints 
before using the GH or GM command to make sure the 
breakpoints you've got are the ones you want. 

Examples: 

'HM BOOO:O Ll W' sets a breakpoint on writes to memory 
at BOOO:O (the upper left-hand corner of the monochrome 
screen) for a length of one byte. 

'HM 0:0 0:3FF R' sets a breakpoint on reads of the 
interrupt vector table. 

'HM 0:0 CS:O W' sets a breakpoint on writes to memory 
from the beginning of memory to the current code 
segment. 

Command: Hardware Port breakpoint (requires 
Periscope III) 

Syntax: HP [<port> <port> I and/or OJ [?J [IEJ [+J [-J [ ... J 

Periscope Commands-H 7-51 



Description: This command is used to set. display. clear. 
enable. or disable Port breakpoints. 

The breakpoints are entered as a range of two ports. 
where each value must be from zero to FFFFH. although 
the IBM PC fully supports ports from zero to 3FFH. Up to 
16 ranges may be specified. Due to the design of the 
hardware breakpoint tables. it is not possible to set a 
breakpoint where the range stored in the table is all 
zeroes. The breakpoint setting 'HP 0 O' is therefore not 
allowed. 

The source of the breakpoint is indicated by an'!' 
and/or '0' indicating an In (port read) or Out (port write). 
respectively. These indicators are additive. i.e. once'!' 
is specified. it applies to all Port breakpoints. 

After being set. these breakpoints are remembered until 
they are cleared. Re-entering a previously set breakpoint 
clears the breakpoint and displays the message 
'Breakpoint cleared'. Be careful to display all breakpoints 
before using the GH or GM command to make sure the 
breakpoints you've got are the ones you want. 

Examples: 

'HP 308 308 l' sets a breakpoint on reads of port 308H. 

'HP 310 31F 0' sets a breakpoint on writes of ports from 
310H to 31FH. 

Command: display Hardware buffer in Raw mode 
(requires Periscope III) 

Syntax: HR [IE] or HR [I] [<segmenO] [<name> or 
<address>] 

Description: This command is used to display the real
time trace buffer in a 'raw dump' format. Each line of the 
display corresponds to one bus event. Each line contains 
an address. data. an operation. a symbol corresponding to 
the address if available. a sequence number. and 
possible other information. 

The trace buffer may be cleared by entering 'HR IE'. The 
entire buffer may be displayed using 'HR ". If an 
asterisk or exclamation point is not used. a full-screen 
display mode is entered unless the buffer is empty. The 

7-52 Periscope Commands-H 



only way to exit this mode is to press the Esc key. The 
optional segment is used to decode addresses. The 
optional filename or address indicates a trace buffer file 
previously created with the HW command that is used 
instead of the current contents of the trace buffer. 

While in full-screen mode, the keys available are: Home, 
End, Up, Dn, PgUp, PgDn, Left Arrow, and Esc. You can 
switch between buffer display modes by entering 'R', 'T', 
or 'U'. 

You can move to any location in the buffer by entering 
'#' followed by the sequence number. Note that the 
sequence number must be from -IFFE to +lFFE. Any value 
outside this range is ANDed with IFFFH. 

You can search for items in the trace buffer. To search 
for an address, enter 'I' followed by the address or 
symbol name. To search for low or high data values, 
enter'IL nn' or '/H nn' respectively, where nn is the 
low or high data byte. To search for an operation type, 
enter 'IT x', where x is I (In), M (DMA), 0 (Out), R 
(Read), W (Write), or X (Fetch). The buffer search starts 
at the second line from the top of the screen. Note: 
When searching for an address using a symbol name that 
starts with 'H', 'L', or 'T', start the symbol name with a 
period to avoid conflict with the other search commands. 

The address is shown at the start of the line. The 
address may appear in one of four formats-a segmented 
address including the segment, a colon, and an offset; a 
4-digit port number; a 5-digit non-segmented address; or 
a 6-digit non-segmented address. The segmented address 
is displayed when the address can be decoded into BIOS 
(segment FOOOH), Periscope's code segment, DOS, or the 
current code segment. The optional segment that can be 
entered on the command line overrides the current code 
segment. To change the "decode" segment, enter'S' 
followed by the segment value. The 4-digit port number 
is used for 1/0 port access. The 5-digit non-segmented 
address is used when Periscope is unable to decode the 
segment into one of the above values. If addresses above 
one megabyte occur on an AT-class machine, the 6-digit 
non-segmented address is displayed. 

The second field is the data present on the bus. If a PC
class machine is used, this field is always a byte, since 
all bus access on a PC occurs 8 bits at a time. If an 
AT-class machine is used, the data field may be a high 
byte, low byte, or a word. The high byte is present on 
the high bus and is left-aligned in the data field. The 
low byte is present on the low (8-bit) bus and is right-

Periscope Commands-H 7-53 



aligned. The word is shown in word format, with the high 
(later) byte displayed first. 

The third field is the operation. The possible values are: 
DMA (Direct Memory Access); Fetch (code prefetch); In 
(I/O port read); Out (I/O port write); Probe (the external 
probe line has been pulled low); Read (memory read, not 
including code prefetch); and Write (memory write). All 
but the DMA and Probe operations are mutually exclusive. 
If an invalid combination is detected, a hex number and 
a question mark are displayed in the operation field. 
Please call Tech Support if you see this displayed. A 
symbol name may follow the operation if the address 
indicates a symbol. 

The fourth field is used only on an AT-class machine 
when a byte access to memory has been made. It shows 
the other data byte in parentheses. Due to the vagaries 
of the 16-bit bus, we've included this orphan data 
byte-if you ever get any unexpected breakpoints, check 
this byte I If a byte access was made to the low bus, 
this field will show the data present on the high bus and 
vice-versa. 

The fifth field is a sequence number. The hex number 
may be from -lFFE to +lFFE, depending on the trigger 
location. The first entry in the circular buffer is 
indicated by 'Top' after the sequence number. Use the 
Home key to get to the Top of the buffer. The last entry 
in the buffer is indicated by 'Bottom' after the sequence 
number. Use the End key to get to the Bottom of the 
buffer. Use the Left Arrow key to get to the center of the 
buffer (actually, 4K from the end of the buffer). 

The other possible field follows the sequence number. If 
the address is within Periscope's code/data area, a 'PS' 
is displayed to identify the code/data !as being 
Periscope. You may see these 'PS' entries at the 
beginning and end of the trace buffer-they show where 
Periscope was turning control over to the application and 
regaining control from the application respectively. 

A sample hardware trace buffer display is shown below. 

7-54 Periscope Commands-H 



ADDRESS DATA OPERATIIJol ORPHAN SEQUENCE 

1B9A:I'l137 E8 Fetch START (9A) -I'lI'lCF 
1B9A:I'l138 1'l1'l17 Fetch -1'l!'lCE 
1B9A:1'l13A 33A1 Fetch -I'lI'lCD 
1B9A:1'l13C BFIl1 Fetch -1l!'lCC 
1B9A:1l151 B1 Fetch GETMEM (1l1) -1l!'lCB 
1B9A:FFFC 1l13A Write -!'l!'lCA 
1B9A:!'l152 BEI'l6 Fetch -!'l!'lC9 
1B9A:1l154 1l1l1l2 Fetch -1l!'lC8 
1B9A:1l156 1'l48B Fetch -!'lI'lC7 
1B9A:1l15B E8D3 Fetch -IlI'lC6 
1B9A:1'l15A 33A3 Fetch -I'lI'lC5 
1B9A:1'l1'l1l2 AI'lI'lI'l Read -I'lI'lC4 
1B9A:1'l15C 8CI'l1 Fetch -I'lI'lC3 
1B9A:1'l15E D3CB Fetch -I'lI'lC2 
1B9A:1'l161'l 2BEB Fetch -I'lI'lC1 
1B9A:1'l162 A3C3 Fetch -1'l!'lCI'l 
1B9A:1'l164 1'l135 Fetch -l'lilBF 
1B9A:1'l133 81'l Write TOTMEM (35) -ilIlBE 

Examples: 

'HR' displays the last page of the trace buffer. 

'HR 1234' decodes as many addresses as possible using 
1234 as the segment value. 

'HR If' clears the hardware trace buffer. 

Command: display Hardware buffer Single entry 
(requires Periscope III) 

Syntax: HS [If] or [<segment>] 

Description: This yommand displays the last entry in the 
real-time hardware trace buffer in a 'raw dump' format. 

'HS If' clears the real-time hardware trace buffer, just as 
the other buffer display commands do. The display output 
is identical to that shown by the HR command. This 
command does not enter a full-'screen mode-it displays 
one line showing the last entry in the hardware trace 
buffer and then displays the Periscope prompt. It is used 
to display the bus cycle that caused a hardware 
breakpoint. See the HR command for more information. 

Example: 

'GH;HS' enables hardware breakpoints and displays the 
last entry in the real-time hardware trace buffer after a 
hardware breakpoint occurs. 

Periscope Commands-H 7-55 



Command: display Hardware buffer in Trace mode 
(requires Periscope III) 

Syntax: HT [,,] or HT [!] [<segmenO] [<name> or 
<address>] 

Description: This command is used to display the real
time hardware trace buffer in a disassembly-and-data 
format. Code pre fetch bus cycles are disassembled in 
symbolic form. Other bus cycles (read, write, in, out) are 
displayed in the 'raw' format described in the 'HR' 
command, except for DMA cycles, which are not shown. 

The trace buffer may be cleared by entering 'HT "'. The 
entire buffer may be displayed using 'HT !'. If an 
asterisk or exclamation point is not used, a full-screen 
display mode is entered unless the buffer is empty. The 
only way to exit this mode is to press the Esc key. The 
optional segment is used to decode addresses. The 
optional filename or address indicates a trace buffer file 
previously created with the HW command that is used 
instead of the current contents of the trace buffer. 

While in full-screen mode, the keys available are: Home, 
End, Up, Dn, PgUp, PgDn, Left Arrow, and Esc. You can 
switch between buffer display modes by entering 'R', 'T', 
or 'U'. Depending on what is found in the trace buffer, 
HT may show nothing. If this happens, enter 'R' to 
switch to the HR mode. 

You can move to any location in the buffer by entering 
'#' followed by the sequence number. Note that the 
sequence number must be from -IFFE to +lFFE. Any value 
outside this range is ANDed with IFFFH. 

You can search for items in the trace buffer. To search 
for an address, enter 'I' followed by the address or 
symbol name. To search for low or high data values, 
enter 'IL nn' or '/H nn' respectively, where nn is the 
low or high data byte. To search for an operation type, 
enter 'IT x', where x is I (In). M (DMA), 0 (Out), R 
(Read), W (Write), or X (Fetch). The buffer search starts 
at the second line from the top of the screen. Note: 
When searching for an address using a symbol name that 
starts with 'H', 'L', or 'T', start the symbol name with a 
period to avoid conflict with the other search commands. 

The Up and Dn keys move up or down by one record-this 
will not necessarily result in a change of the screen. 

7-56 Periscope Commands-H 



Similarly, the PgUp key moves backward by as many 
records as there are lines displayed. The best results are 
obtained by using the pgDn key, since this key moves 
forward and starts a new page where the current one 
ends. 

The disassembled lines are in the standard disassembly 
format, showing an address, the opcodes making up the 
instruction, and the instruction itself. The address is 
shown in segmented notation or in 5- or 6-digit form as 
described in the 'HR' command. To change the "decode" 
segment, enter'S' followed by the segment value. If the 
code is executing in Periscope's code segment, a 'PS' 
notation appears near the end of the line. A quick way to 
discern disassembly lines from other lines is that the 
disassembly lines don't show a sequence number. Note 
that segment override prefixes may be separated from the 
instructions they affect. 

When disassembling instructions, one or more bus cycle 
records are required per instruction. All code pre fetch 
cycles are added to a buffer which is then disassembled. 
Even though code has been fetched by the processor, 
there is no absolute method of telling whether the code 
was actually executed, so Periscope attempts to infer the 
execution of code in the buffer. If a discontinuity in the 
address occurs or after an unconditional 'JMP', 'CALL', 
'RET' (far or near), 'INT', or 'IRET' instruction is found, 
the buffer is flagged as being flushed, since the 
system's pre fetch buffer acts in a similar fashion. These 
flushed instructions are indicated by an asterisk in front 
of the mnemonic. 

Any memory or port accesses performed by an instruction 
(read, write, in, or out) are shown one or more lines 
after the instruction itself. These memory or port 
accesses may be the only way to determine that an 
instruction was actually executed. (The display does not 
currently match memory/port access with the appropriate 
instruction ... maybe one day.) 

Register information is not available on the bus directly, 
but it is possible to deduce register values, especially 
by looking at the results of MaY instructions and implicit 
or explicit PUSHes and POPs, such as when an INT or 
IRET instruction is executed. You can often deduce the DS 
and ES registers from instructions that manipulate 
memory, etc. 

When using the Up or Dn keys, the display can vary 
drastically. This is due to the cumulative effect of the 
buffered instructions and Periscope's flush logic. 
Instructions can disappear and then reappear in odd 

Periscope Commands-H 7-57 



positions. You might think of this erratic movement as 
being like house of mirrors, where a slight movement can 
cause a large distortion in what you see. 

A sample hardware trace buffer display is shown below. 
Note the asterisk before the second instruction, indicating 
it was flushed from the pre fetch buffer. 

START: 
1B9A:0137 E817~0 CALL GETMEM 
1B9A:~13A A13301 *MOV AX,[TOTMEM] 
1B9A:FFFC 013A Write -00CA 

GETMEM: 
1B9A:~151 B106 MOV CL,06 
1B9A:0153 BE0200 MOV S1,0002 
1B9A:0156 8B04 MOV AX, [S1] 
1B9A:0158 D3E8 SHR AX,CL 
1B9A:0002 A000 Read -~~C4 
1B9A:015A A333~1 MOV [TOTMEM],AX 
1B9A:015D SCCB MOV BX,CS 
1B9A:015F D3EB SHR BX,CL 
1B9A:0161 2BC3 SUB AX,BX 
1B9A:~163 A335~1 MOV [FREMEM] ,AX 
1B9A:0133 80 Wr it e TOTMEM (35) -00BE 

Examples: 

'HT BOOO' displays the last page of the hardware trace 
buffer, showing all addresses in segment BOOO in 
segmented format. 

'HT IE' clears the hardware trace buffer. 

Command: display Hardware buffer in Unasm mode 
(requires Periscope III) 

Syntax: HU [IE] or HU [I] [<segmenO] [<name> or 
< address>] 

Description: This command is used to display the real
time hardware trace buffer in a disassembly-only format. 
Code prefetch bus cycles are disassembled in symbolic 
form. Other bus cycles (read, write, in, out, DMA) are not 
shown. 

The trace buffer may be cleared by entering 'HU IE'. The 
entire buffer may be displayed using 'HU I'. If an 
asterisk or exclamation point is not used, a full-screen 
display mode is entered unless the buffer is empty. The 
only way to exit this mode is to press the Esc key. The 
optional segment is used to decode addresses. The 

7 -58 Periscope Commands-H 



optional filename or address indicates a trace buffer file 
previously created with the HW command that is used 
instead of the current contents of the trace buffer. 

While in full-screen mode, the keys available are: Home, 
End, Up, Dn, PgUp, PgDn, Left Arrow, and Esc. You can 
switch between buffer display modes by entering 'R', 'T', 
or 'U'. Depending on what is found in the trace buffer, 
HU may show a blank display. If this happens, enter 'R' 
to switch to the HR mode. 

You can move to any location in the buffer by entering 
'U' followed by the sequence number. Note that the 
sequence number must be from -lFFE to +lFFE. Any value 
outside this range is ANDed with IFFFH. 

You can search for items in the trace buffer. To search 
for an address, enter' I' followed by the address or 
symbol name. To search for low or high data values, 
enter 'IL nn' or '/H nn' respectively, where nn is the 
low or high data byte. To search for an operation type, 
enter 'IT x', where x is I (In), M (DMA), 0 (Out), R 
(Read), W (Write), or X (Fetch). The buffer search starts 
at the second line from the top of the screen. Note: 
When searching for an address using a symbol name that 
starts with 'H', 'L', or 'T', start the symbol name with a 
period to avoid conflict with the other search commands. 

The Up and Dn keys move up or down by one record-this 
will not necessarily result in a change of the screen. 
Similarly, the PgUp key moves backward by as many 
records as there are lines displayed. The best results are 
obtained by using the pgDn key, since this key moves 
forward and starts a new page where the current one 
ends. 

The disassembled lines are in the standard disassembly 
format, showing an address, the opcodes making up the 
instruction, and the instruction itself. The address is 
shown in segmented notation or in 5- or 6-digit form as 
described in the 'HR' command. To change the "decode" 
segment, enter'S' followed by the segment value. If the 
code is executing in Periscope's code segment, a 'PS' 
notation appears near the end of the line. 

When disassembling instructions, one or more bus cycle 
records are required per instruction. All code pre fetch 
cycles are added to a buffer which is then disassembled. 
Even though code has been fetched by the processor, 
there is no absolute method of telling whether the code 
was actually executed, so Periscope attempts to infer the 
execution of code in the buffer. If a discontinuity in the 

Periscope Commands-H 7-59 



address occurs or after an unconditional 'JMP', 'CALL', 
'RET' (far or near), 'INT' or 'IRET' instruction is found, 
the buffer is flushed, since the system's pre fetch buffer 
acts in a similar fashion. Flushed instructions are 
flagged with an asterisk when 'HT' is used, but are not 
shown when this command is used. 

When using the Up or Dn keys, the display can vary 
drastically. This is due to the cumulative effect of the 
buffered instructions and Periscope's flush logic. 
Instructions can disappear and then reappear in odd 
positions. You might think of this erratic movement as 
being like house of mirrors, where a slight movement can 
cause a large distortion in what you see. 

A sample hardware trace buffer display is shown below. 

START: 
1B9A:0137 E81700 CALL GETMEM 

GETMEM: 
1B9A:11151 Bl116 MOV CL,116 
lB9A:11153 BEI'l21111 MOV S1,110112 
1B9A:0156 8B04 MOV AX, [SI] 
189A:f'l158 03E8 SHR AX,CL 
1B9A:1115A A3331'l1 MOV [TOTMEM] ,AX 
lB9A:11150 BCCB MOV BX,CS 
169A:1115F 03EB SHR BX,CL 
189A:11161 2BC3 SUB AX,BX 
lB9A:11163 A335111 MOV [FREMEM] ,AX 

Examples: 

'HU S.START' displays the last page of the hardware trace 
buffer, decoding all possible addresses to the segment of 
the symbol START. 

'HU lE' clears the hardware trace buffer. 

Command: Hardware Write (requires Periscope III) 

Syntax: HW <name> or HW <address> 

Description: This command is used to save the contents 
of the hardware trace buffer to disk or memory. The 
saved trace buffer can be viewed with the HR, HT, and 
HU commands. 

If DOS is not busy, use the first form of the command to 
save the trace buffer to a disk file. The file is always 

7 -60 Periscope Commands-H 



49,158 bytes in length, which is the 48K trace buffer 
plus a 6-byte header. 

If DOS is busy, use the second form of the command to 
save the trace buffer to memory. The address used must 
have an offset of zero and be in the first 640K of 
memory. Be careful not to overwrite DOS or your program. 
If COMMAND is active (i.e. the DOS prompt is shown), 
don't use the last 48K of memory, since this will 
overwrite the transient portion of COMMAND. After saving 
the buffer to memory, use the Go command to get to some 
point in your code so you can write the memory image to 
a disk file. When writing the file, set register BX to zero 
and register CX to C006H. 

If it is not possible to write the trace buffer to disk or 
memory, enter 'HC S+;QC' to turn selective trace on and 
continue execution. This magic combination minimizes 
changes to the trace buffer so you can later save the 
trace buffer. Note: Do not use RUN.COM to re-enter 
Periscope since it always clears the trace buffer! 

To save the trace buffer to disk from DOS, use 'PS3TEST 
IW'. 

Examples: 

'HW PSBUF.DAT' saves the current contents of the 
hardware trace buffer to the file PSBUF.DAT. To view the 
saved trace buffer, enter 'HT CS PSBUF.DAT', where CS is 
the "decode" segment. 

'HW 8000:0' saves the current contents of the hardware 
trace buffer to memory starting at 8000:0. To view the 
saved trace buffer, enter 'HR CS 8000:0', where CS is the 
"decode" segment. 

Periscope Commands-H 7-61 



Command: Input 

Syntax: I <port) 

Description: This command is used to read an I/O port. 

The port number may be from zero to FFFFH, although the 
IBM PC only supports ports from zero to 3FFH-any larger 
number is effectively ANDed with 3FFH. The byte value 
retrieved by reading the port is displayed on the line 
following the command. 

Examples: 

'I 100' performs a read of port 100H and displays the 
byte input. 

'I DX' performs a read of the port indicated by register 
DX and displays the byte input. 

Command: Interrupt Restore 

Syntax: IR 

Description: This command is used to restore the 
interrupt vectors to a previously-saved state. 

This command is usable only after an IS command has 
been used to save the interrupt vectors. After an Interrupt 
Restore has been performed, the Interrupt Restore 
command is disabled until another Interrupt Save has 
been performed. 

Example: 

Assume the interrupt vectors were previously saved using 
the IS command. Enter 'IR' to restore all vectors to their 
values saved by the IS command. 

Command: Interrupt Save 

Syntax: IS 

7-62 Periscope Commands-/ 



Description: This command is used to save the interrupts 
for later restoration. 

The Interrupt Save command saves the current state of 
the machine's interrupt vectors in case you need to 
restore the vectors to that state at some later point. For 
example, assume you're debuggging a program that 
modifies some of the interrupt vectors. If you need to 
terminate execution of the program, you can restore the 
interrupt vectors and then use the QR command to return 
to DOS. 

To use the Interrupt Save command, enter 'IS' when the 
Periscope prompt is displayed. Later, you can restore the 
vectors to their saved state by using the IR command. 

To prevent accidental restoration of the vectors, the IS 
command sets a flag that is cleared by the IR command. 
When this flag is cleared, the IR command generates an 
error. 

Example: 

Enter 'IS' to save the interrupt vectors. At any point 
later, the IR command may be used to restore the vectors 
to their saved state. 

Periscope Commands-l 7-63 



Command: Jump 

Syntax: J 

Description: This command is used as a shorthand form 
of Go-to execute at full speed to the next instruction. 

It executes the current instruction at full speed, avoiding 
single-stepping through the execution of CALL, INT, LOOP 
or other repeated instructions. This command performs the 
same function as a temporary code breakpoint set on the 
next instruction-the difference is that you don't have to 
stop and compute the address and then enter a Go 
command-Jump does it for you. If the current instruction 
is any form of a RET, IRET, or JMP (including conditional 
jumps) Periscope traces one instruction (to follow the 
code) instead of using a temporary code breakpoint. 

There is one condition under which this command does 
not work. When you're tracing ROM no code breakpoints 
can be used, since you can't write to ROM. 

Generally speaking, it is safe to use this command In 

place of the Trace command. There are some cases that 
present a problem, however. One possibility is a LOOP 
instruction that passes control downwards rather than 
upwards. Others include CALLs or INTs that do not return 
control to the next instruction. 

Examples: 

Assume that the current instruction is INT 21. Enter 'J' to 
place a temporary code breakpoint at the instruction after 
the INT 21 and execute the INT at full speed. 

Assume that the current instruction is RET. Enter 'J' to 
trace to the next logical (not physical) instruction. 

Command: Jump Line 

Syntax: JL 

Description: This command is used to jump from one 
source-code line to the next source-code line. 

This command is usable only when the current instruction 
corresponds to a high-level language source-code line. 

7-64 Periscope Commands-J 



The JL command performs Jump commands until the next 
source line is found. This is a quick method of moving 
through a high-level language program, keeping to the 
source-code lines. 

Example: 

Assume the current instruction is line 10 of the first 
source-code module. Enter' JL' to go to the next logical 
source-code line. Note: If your compiler does not 
generate line numbers for every line, some lines may be 
skipped. 

Periscope Commands-J 7-65 



Command: Klear 

Syntax: K 

Description: This command clears the Periscope screen 
and regenerates the windows if used. It has no 
arguments. 

Example: 

'K' clears the screen. 

Command: Klear and Initialize 

Syntax: KI 

Description: This command initializes the monitor, clears 
the Periscope screen, and regenerates the windows if 
used. It has no arguments. 

This variant of the clear command should be used if 
Periscope's screen is not in text mode on entry to 
Periscope. Do not use this command if 43-line mode is 
set-it will revert the screen to 25-line mode. 

Example: 

'KI' performs a mode set and clears the screen. 

7 -66 Periscope Commands-K 



Command: Load Absolute disk sectors 

Syntax: LA <address> <drive> <sectors> 

Description: This command is used to load absolute disk 
sectors into memory. 

The segment defaults to es if no segment is specified in 
the address. The drive is a single-digit number indicating 
the disk drive (O=A, 1=B, etc.). The sectors parameter is 
the starting sector number and the number of sectors to 
be read. The maximum number of sectors that can be read 
in one operation is 80H, which equals 64K bytes. 

To use this command, DOS must not be busy. See the 
description of the Name command for more information. 
This command uses DOS interrupt 25H. See the DOS 
manual for information on the numbering of the absolute 
disk sectors. 

Examples: 

'LA DS: 100 0 10 20' loads data into memory starting at 
DS:IOO from drive A, starting at sector number 10H for 
20H sectors. 

'LA 100 1 0 4' loads data into memory starting at es: 100 
from drive B, starting at sector 0 for 4 sectors. 

Command: Load File from disk 

Syntax: LF [<address>] 

Description: This command is used to load a file from 
disk into memory. 

The optional address specifies where the file is to be 
loaded. If the address is not specified, eS:lOO is used. 
To use this command, DOS must not be busy. See the 
description of the Name command for more information. 
Before this command can be used, the Name command 
must be used to specify a file name. 

The LF command can be used to load any type of file 
into memory. After the file has been loaded, BX and ex 
indicate the size of the file in bytes. After the file is 
loaded into memory no other processing occurs-EXE files 

Periscope Commands-L 7-67 



are not relocated or stripped of their headers. RUN.COM 
should generally be used to load and execute a program, 
since it loads the symbol table and performs relocation 
for EXE files. The LF command is useful for loading a 
file into memory for examination or modification. 

Note: This command cannot load into memory beyond the 
end of DOS memory. For a 640K system, the maximum 
address is 9000:FFFF. 

Examples: 

'LF DS: 1000' loads the file defined by a Name command 
into memory starting at DS: 1000. 

'LF' loads the file defined by a Name command into 
memory starting at CS:IOO. 

Command: Load Symbols from disk 

Syntax: LS " or < segment> < name> 

Description: This command is used to load a Periscope 
symbol file (PSS) into the symbol table. 

The asterisk clears the symbol table. If an asterisk is 
used, the command terminates. If it is not used, the 
symbols are added to the end of the symbol table. The 
segment contains the relocation factor that is added to 
the segment values found in the PSS file. For COM files, 
this is the value of the PSP segment or CS. For EXE 
files, this is the value of the PSP segment plus 10H. The 
name is the path and file name of a PSS file. Do NOT 
enter the .PSS extension. The use of this command 
destroys the name set with the Name command. 

This command cannot be used to load a MAP file-only 
PSS files are supported. 

Examples: 

'LS ,,' clears the symbol table. 

'LS CS SAMPLE' loads the file SAMPLE.PSS into the symbol 
table, relocating the segments by the current value of CS. 

7 -68 Periscope Commands-L 



Command: Move 

Syntax: M <range> <address> 

Description: This command is used to copy a block of 
memory to another location in memory. 

The segment and offset must be specified for both 
addresses. to avoid accidental changes to memory. If the 
source block and target block overlap. the move into the 
target block is performed without loss of data. The 
source segment and target segment may be different. 

Examples: 

'M 1000:0 L 100 1000:80' copies 100H bytes from the 
source block (1000:0 to 1000:FF) to the target block 
(1000:80 to 1000:17F). Since the source and target blocks 
overlap by 80H bytes. the move copies memory starting 
at 1000:FF and works down. so that the target block is 
an exact copy of the original source block. 

'M 1000:80 L 100 1000:0' copies 100H bytes from the 
source block (1000:80 to 1000:17F) to the target block 
(1000:0 to 1000:FF). Since the source and target blocks 
overlap and the source is higher than the target. the 
move copies memory starting at 1000:80 and works up. 

'M DS:SI L ex ES:DI' copies ex bytes from the source 
block (DS:S1) to the target block (ES:DI). where all values 
are the current contents of the respective registers. 

Periscope Commands-M 7-69 



Command: Name 

Syntax: N <name> 

Description: This command is used to enter data into the 
PSP for disk I/O and for naming files to be read or 
written by Periscope. 

The name parameter is copied to a Periscope buffer for 
use with the Load and Write commands. It is then copied 
to the unformatted parameter area in the PSP, starting at 
CS:80H. After the name is copied into CS:80H, the DOS 
parsing function is used to parse the first two file names 
in the command line into the FCBs at CS:5CH and CS:6CH. 
If an invalid drive id is found for a file, a message is 
generated and register AL or AH is set to FF, indicating 
the first or second file, respectively. 

This command copies all data entered after the N until a 
carriage return is found-it ignores the use of a semi
colon for entering multiple commands on one line. If the 
PSP cannot be found, Periscope can still be used to read 
or write the file, presuming that DOS is not busy. 

Since the Name, Load, View, Unassemble Source, Write, 
Echo, and Exit to DOS commands use DOS calls, Periscope 
must check to be sure that DOS is not busy. 

The Name command also requires that the PSP's address 
has been set by RUN.COM and that the first four bytes of 
the PSP contain the bytes 'CD 20' followed by the top of 
memory size in paragraphs. 

The LS and WS commands destroy the file name set by 
this command. After using either of these commands, re
enter the desired Name command, if any. 

Examples: 

'N C:COMMAND.COM' copies the file name to Periscope's 
internal file buffer and to the unformatted parameter area 
at CS:80H and then parses the file name into the FCB at 
CS:5CH. 

'N FILEI,FILE2/N' copies the file names to Periscope's 
internal file buffer and to the unformatted parameter area 
at CS:80H and then parses the file names into the FCBs 
at CS:5CH and CS:6CH. 

7-70 Periscope Commands-N 



Command: Output 

Syntax: 0 <port> <byte> 

Description: This command is used to output a byte to an 
I/O port. 

The port number may be from zero to FFFFH. although the 
IBM PC only supports ports from zero to 3FFH-any larger 
number is effectively ANDed with 3FFH. The byte value 
output to the port may be from zero to FFH. 

Examples: 

'0 100 FF' outputs FFH to port 100H. 

'0 DX 12' outputs 12H to the port indicated by register 
DX. 

'0 DX AX' returns an error since register AX represents a 
word-only bytes can be output via Periscope. 

Periscope Commands-O 7-71 



Command: Quit 

Syntax: Q [< sub-function> ] 

Description: This command is used to exit the debugger 
and display Periscope's quit options. 

The optional sub-function is used to pre-answer the quit 
option prompt. The possible combinations are QB, QC, QD. 
QL, QR, and QS to Quit and Boot. Continue. Debug. perform 
a Long boot. Return to DOS. or perform a Short boot, 
respectively. See the section in this chapter entitled 
'Quit Options' for more information. 

Examples: 

'Q' exits the debugger and displays the quit options. 

'QC' exits the debugger and continues execution of the 
interrupted program without setting any breakpoints. 

'QS' exits the debugger and performs a short boot. 

7 -72 Periscope Commands-Q 



Command: Register 

Syntax: R [<register>] or [F] 

Description: This command is used to display and modify 
the current values of the registers and flags. 

If you enter 'R' and press return, the current values of 
the registers and flags are displayed. If the current 
instruction performs a memory read and/or write, the 
effective address of the read/write is displayed, along 
with the current value of memory at the effective 
address(es). Finally, the current instruction is 
disassembled. The information is shown in the appropriate 
windows if windows are being used. 

Some examples are shown below: 

Example 1: 

AX=~~7F BX=~034 CX=~~~0 OX=~00~ SP=1724 BP=~0A0 SI=~F1E 01=1560 
05=0040 ES=00BF SS=00BF CS=F000 IP=E850 FL=0046 NV UP 01 PL ZR NA PE NC 
F000:E850 74F3 JZ E845 ; jump 

Example 2: 

AX=000~ BX=0000 CX=01~0 OX=~~~1 SP=FFFO BP=0000 SI=0~~~ D1=0~00 
O5=063A ES=063A SS=063A CS=063A 1P=010E FL=0246 NV UP EI PL ZR NA PE NC 
WR 05:0131 = 0000 
063A:010E 891E3101 MOV [FILE_OFFSET].BX 

Example 3: 

AX=0000 BX=0000 CX=~100 DX=~001 SP=FFFB BP=0000 SI=0000 DI=0000 
O5=063A ES=063A SS=063A CS=063A IP=01AD FL=0246 NV UP EI PL ZR NA PE NC 

P565: 
063A:01AD BF2F01 MOV DI.012F ; FILE_SEGMENT 

In all of the above examples, the first two lines display 
the current values of the registers and the flags. See the 
table below for an explanation of the flag mnemonics. 
The last line in each of the examples shows the 
disassembled instruction. The address of the instruction 
(CS:IP) is shown at the left, followed by the one to six 
bytes that make up the instruction, and the instruction 
itself. 

In Example 2, the third line shows that the current 
instruction performs a write to the word at DS:0131 and 
that the current value of the word is zero. If the 
instruction were to read memory, line three would also 
show that information. 

The evaluation of the effective address of memory reads 
and writes shows the effect of any and all memory 
access before the execution of the instruction. The 

Periscope Commands-R 7-73 



effective address calculations and displays for the 8086, 
8087, 8088, 80186, 80287, and 80286 real mode 
instructions are supported, with the exceptions that the 
stack shown as affected by the ENTER instruction is 
limited to a single PUSH BP and does not include the 
PUSH that is done for each nesting level and that the 
FRSTOR and FSAVE instructions do not show the 94 bytes 
they read and write. 

In Example 3, the third line shows P565, the name of the 
current address from the symbol table. This line is 
present only when CS:IP exactly matches an entry in the 
symbol table. 

If the current instruction is a conditional jump (see 
Example 1), the jump is evaluated based on the current 
flag settings as 'jump' or 'no jump', meaning that the 
jump will or will not be taken, respectively. If an 
instruction references a byte value and the data byte is 
from 20H to 7FH, the ASCII equivalent of the byte is 
shown at the end of the line as a comment, in quotes. 
Illegal instructions are shown as '???'. 

If an address referenced by an instruction is found in the 
symbol table, the symbol name is substituted for the 
offset (see Example 2). If an ambiguous reference to an 
address is made, the symbol name is shown at the end 
of the disassembled instruction as a comment (see 
Example 3). This indicates that the symbol ['lay or may 
not have been used in the original instruction. Ambiguous 
references are generated by a move of an offset to a 
register, such as MOV Dr,OFFSET FILE_SEGMENT. 

An address must match eX3ctly for the symbol to be 
found. The current value of the segment used by the 
instruction (explicit or implicit) must match the segment 
in the symbol lable. The offset used by the instruction 
must also match the offset in the symbol table. 

To modify a register, enter 'R (register>'. Periscope 
displays the current value of the register, followed by a 
colon. If you enter a one- to four-digit hex number or 
another register name and press return, the register is 
changed. If you press return without entering a number, 
the register is not changed. The valid 16-bit register 
names are AX, BX, CX, DX, SP, BP, SI, Dr, DS, ES, SS, CS, 
and IP. The valid 8-bit register names are AH, AL, BH, 
BL, CH, CL, DH, and DL. 

To modify a flag, enter 'R F'. Periscope displays the 
current values of the flags (see the table below) followed 
by a hyphen. To change the flags, enter the desired 

7-74 Periscope Commands-R 



mnemonics and press return. If you press return without 
entering any flag mnemonics. no flags are changed. The 
flags may be entered in any order, in upper or lower 
case, and with or without spaces between the entries. 
The hex value of the flag register is displayed following 
the mnemonic FL. 

FLAG 

Overflow 
Direction 
Interrupt 
Sign 
Zero 
Auxiliary carry 
Parity 
Carry 

Examples: 

SET (=1) 

OV 
~ (STD) 
EI (STI) 
NG (negative) 
ZR (zero) 
AC 
PE (even) 
CV (STC) 

CLEAR (=Il) 

NV 
UP (CLD) 
01 (CLI) 
PL (positive) 
NZ (non-zero) 
NA 
PO (odd) 
NC (CLC) 

'R' displays all registers and flags, the effective address 
for reads andlor writes, and disassembles the current 
instruction. 

'R AX' displays the current value of register AX and 
prompts you for the new value. Press return to leave the 
register unchanged, or enter a one- to four-digit hex 
number and press return to change the register. 

'R AX ex' is a one-line method of changing the value of 
register AX to the current value of register ex. 

'R IP IP+l' modifies the instruction pointer to its current 
value plus one. 

'R F' displays the current flags, followed by a hyphen. If 
you want to change the zero flag from NZ to ZR. enter 
'ZR' and press return. You can also enter 'R F ZR'. 

Command: Register Restore 

Syntax: RR 

Description: This command is used to restore the 
registers to a previously-saved state. 

This command is usable only after a RS command has 
been used to save the registers. After a Register Restore 
has been performed, Restore is disabled until another 
Register Save has been performed. 

Periscope Commands-R 7-75 



Example: 

Assume the registers were previously saved using the RS 
command. Enter 'RR' to restore all registers to their 
values saved by the RS command. 

Command: Register Save 

Syntax: RS 

Description: This command is used to save the registers 
for later restoration. 

The Register Save command saves the current state of the 
machine's registers and flags in case you need to restore 
the registers to that state at some later point. For 
example, assume you're debugging a subroutine. In many 
situations, it is very convenient to save the machine's 
registers and then start debugging the subroutine. If you 
discover a problem, you can then restart the subroutine 
by restoring the registers from their saved values. 

To use the Register Save command, enter 'RS' when the 
Periscope prompt is displayed. Later, you can restore the 
registers to their saved state by using the RR command. 
This command does not restore any data areas. 

To prevent accidental restoration of the registers, the RS 
command sets a flag that is cleared by the RR command. 
If this flag is not set, RR generates an error. 

Example: 

Enter 'RS' to save the machine registers. The RR command 
may then be used to restore the saved register values. 

7 -76 Periscope Commands-R 



Command: Search 

Syntax: S <range> <list> 

Description: This command is used to search memory for 
a byte / string pattern. 

The block of memory specified by the range is searched 
for the pattern specified by the list. If a match is found. 
the starting address of the match is displayed and the 
search for matches continues at the next byte. If no 
matches are found, nothing is displayed. If no segment is 
specified in the address, the current data segment is 
used. 

Examples: 

's CS:IP L 200 CD 21' searches memory from the current 
instruction (CS:IP) for 200H bytes for the pattern CD 2l. 
Any matches are displayed in segment:offset format. 

's PRINT LINE L 50 C "Page'" searches 50H bytes starting 
at the address of the symbol PRINT LINE for the byte OCH 
followed by the string 'Page'. -

Command: Search for Address reference 

Syntax: SA <range> <address> 

Description: This command is used to search memory for 
references to a specified address. 

This command can be thought of as a disassembly that 
only shows instructions that reference an address of 
interest. To use it, specify an address range that is to 
be searched and the address reference that is to be 
searched for. If you're not using a symbol name for the 
address reference, be sure to specify the segment 
register that is to be used. For example, if you're 
searching for a procedure reference, specify CS. 

You can use this command to find jMPs and CALLs to a 
procedure or to find locations in your program where a 
data variable is accessed. Any instruction that references 
the specified address is displayed. 

Examples: 

Periscope Commands-S 7-77 



'SA CS:I00 L 200 CONVERT' searches from CS:I00 for 200H 
bytes for any references to the address represented by 
the symbol CONVERT. 

'SA PSTART PEND DS:O' searches from the address 
represented by PSTART through the address represented by 
PEND for references to DS:O. 

Command: Search for Calls 

Syntax: SC [<byte>] 

Description: This command searches the stack for 
references to CALLed subroutines and software INTerrupts. 
If a match is found, the disassembly of the CALL or INT 
is displayed. This technique can help you determine the 
calling sequence used by a program and to unravel 
nested code. SC is similar to SR; SR analyzes the stack 
looking outward, while SC analyzes the stack looking 
inward. 

The results are usually accurate, but cannot be 
guaranteed. For example, if a PUSH instruction saves a 
value on the stack that is the same as the address of 
the instruction after a CALL instruction, a false hit will 
occur. This instruction analyzes 32 stack entries unless 
the optional argument is used or unless the value of SP 
wraps around from FFFF to zero. 

This command does not interpret hardware interrupts since 
there is no interrupt in the instruction stream to indicate 
what happened. 

Example: 'SC' searches the stack for CALLS and INTS. If 
any are found, the disassembled instruction is displayed. 
Note that the most recent item is displayed first. 

Command: Search then Display 

Syntax: SD <range> <list> 

Description: This command is used to search memory for 
a byte/ string pattern and then display the 'find(s)'. 

7-78 Periscope Commands-S 



This command is the same as the Search command, 
except that any matches are displayed in byte format. If 
a data window is used, the matching address is 
displayed in the active window. After a key press, the 
search continues. See the Search command for more 
information. 

Example: 

'SO CS:O FFFF "Hello'" searches memory from CS:O to 
CS:FFFF for the string "Hello". If any matches are found, 
they are displayed in byte format. 

Command: Search for Return address 

Syntax: SR [<byte>] 

Description: This command searches the stack for return 
addresses. Each stack item is examined to see if it 
contains an address after a CALL or INT instruction. 

This command is similar to the SC command; SR analyzes 
the stack looking outward, while SR analyzes the stack 
looking inward. 

If a match is found, the address of the instruction and 
the offset to the nearest symbol after the CALL or INT is 
displayed. This technique can help you determine the 
calling sequence used by a program and to unravel 
nested code. The results are usually accurate, but cannot 
be guaranteed. For example, if a PUSH instruction saves 
a value on the stack that is the same as the address of 
the instruction after a CALL instruction, a false hit will 
occur. This instruction analyzes 32 stack entries unless 
the optional argument is used or unless the value of SP 
wraps around from FFFF to zero. 

Some programs may manipulate the stack in ways that 
cause this command to fail. For example, Lattice C can 
add an odd value to the SP register, which causes the 
stack to be viewed incorrectly. 

This command does not interpret hardware interrupts since 
there is no interrupt in the instruction stream to indicate 
what happened. 

Example: 

Periscope Commands-S 7-79 



'SR' searches the stack for return addresses. If any are 
found, the return address and the offset from the next 
lower symbol are displayed. The address shown is the 
instruction following a CALL (near or far) or an INT. Note 
that the most recent item is displayed first. 

Command: Search for Unassembly match 

Syntax: SU <range) <list) 

Description: This command is used to search memory for 
instructions that match a pattern. 

This command can be thought of as a disassembly that 
only shows instructions that match a specified pattern. 
To use it, specify an address range that is to be 
searched and the pattern that is to be searched for. For 
example, to find all MOVSB instructions, enter MOVSB in 
quotes as the list argument. 

Be sure to enter the search list as a quoted string. Note 
that there are seven spaces from the start of the 
mnemonic field to the start of the operand field-to find 
all occurrences of MOV SP, enter 'MOV', four spaces, and 
'SP'. Note: this command will not find source-code lines 
or procedure labels-just disassembled instructions. Any 
lower case input is converted to upper case before the 
search is performed. The search starts in the mnemonic 
field (column 25) and goes through the end of the 
argument field (column 61). 

Examples: 

'su CS:I00 L 200 "MOVbbbbSS'" searches from CS:I00 for 
200H bytes for any instructions that contain 'MOVbbbbSS', 
where 'b' is a blank. There must be exactly four spaces 
after the 'MOV' for the command to work. 

'SU PSTART PEND "POP'" searches from the address 
represented by PSTART through the address represented by 
PEND for POP instructions. 

7-80 Periscope Commands-S 



Command: Trace 

Syntax: T [<number>] 

Description: This command is used to execute the current 
program one instruction at a time. 

If the optional number is not entered, one instruction is 
executed and control is returned to Periscope. If the 
number is entered, that number of instructions is traced. 
After each trace, the registers, effective address, and 
current instruction are displayed. 

If you're using a single-monitor system to trace code 
that does not do any screen writes, you may want to use 
the F2 key to turn the screen swap off. This eliminates 
the annoying flash caused by the program's screen being 
restored in case the instruction updates the screen. 

Unlike the Go command, the Trace command can be used 
to trace through ROM, since it works by changing the trap 
flag and not by modifying the code to be traced. 

Examples: 

'T' traces the execution of a single instruction. 

'T 3' traces the execution of the next three instructions. 

'T ex' traces the execution as many times as indicated 
by the current value of the ex register. If ex is currently 
100H and the next instruction changes it to zero, the 
trace will still be performed 100H times. 

Command: Trace Back / Trace Registers / Trace 
Unasm 

Syntax: TB (*] ; TR (*] ; TU [*] 

Description: These commands are used to view the 
software trace buffer. Do not confuse this buffer with the 
real-time hardware trace buffer available with Periscope 
III. 

The software trace buffer is used to save the machine 
registers each time Periscope is exited. This circular 
buffer can contain zero to 2016 entries, depending on the 

Periscope Commands-T 7-81 



installation option IB:nn. Each entry contains the machine 
registers and an ascending sequence number. When 
displayed, the buffer shows the registers, sequence 
number, and a symbolic disassembly of the instruction 
indicated by the saved CS:IP. The following example 
shows three consecutive entries in the format used by 
the TB command. 

AX=0000 BX=0000 CX=008B OX=0000 SP=FFFE BP=0000 S1=0000 01=0000 10001 
DS=15E6 ES=15E6 SS=15E6 CS=15E6 1P=0137 FL=0346 NV UP E1 PL ZR NA PE NC 

START: 
15E6:0137 E81700 CALL GETMEM 

AX=0000 BX=0000 CX=008B OX=0000 SP=FFFC BP=0000 S1=0000 01=0000 10002 
OS=15E6 ES=15E6 SS=15E6 CS=15E6 1P=0151 FL=0346 NV UP E1 PL ZR NA PE NC 

GETMEM: 
15E6:0151 B106 MOV CL,06 

AX=0000 BX=0000 CX=0006 OX=0000 SP=FFFC BP=0000 S1=0000 01=0000 10003 
OS=15E6 ES=15E6 SS=15E6 CS=15E6 IP=0153 FL=0346 NV UP E1 PL ZR NA PE NC 
15E6:0153 BE0200 MOV S1,0002 

The trace buffer may be cleared by entering 'TB .'. If an 
asterisk is not used, a full-screen display mode is 
entered. The only way to exit this mode is to press the 
Esc key. While in full-screen mode, the cursor is 
positioned at the lower left-hand corner. The keys 
available are: Home, End, Up, Dn, PgUp, PgDn, and Esc. If 
you press any other key, the message 'Press Esc to end 
full-screen mode' is displayed. 

The TR and TU commands are subsets of the TB command. 
TR displays just the registers and sequence number, and 
TU displays just the disassembled instruction. For 
example, for the trace records shown above, TR shows: 

AX=0000 BX=0000 CX=008B OX=0000 SP=FFFE BP=0000 S1=0000 DI=0000 10001 
OS=15E6 ES=15E6 SS=15E6 CS=15E6 1P=0137 FL=0346 NV UP E1 PL ZR NA PE NC 

AX=0000 BX=0000 CX=008B OX=0000 SP=FFFC BP=0000 S1=0000 01=0000 10002 
DS=15E6 ES=15E6 SS=15E6 CS=15E6 1P=0151 FL=0346 NV UP E1 PL ZR NA PE NC 

AX=0000 BX=0000 CX=0006 OX=0000 SP=FFFC BP=0000 S1=0000 DI=0000 10003 
DS=15E6 ES=15E6 SS=15E6 CS=15E6 1P=0153 FL=0346 NV UP E1 PL ZR NA PE NC 

Similarly, the TU command shows: 

START: 
15E6:0137 E81700 CALL 

GETMEM: 
15E6:0151 B106 MOV 
15E6:0153 BE0200 MOV 

GETMEM 

CL,06 
S1,0002 

Since Periscope adds to the buffer each time it is exited, 
watch out for possible discontinuities in the software 
trace buffer. If you're using the T, GA, or GT commands, 
there's no problem. If you're using the G or J commands, 
not all instructions will be 'seen' by Periscope-the 
unseen instructions leave discontinuities in the trace 

7-82 Periscope Commands-T 



buffer. Note that the disassembly uses the current 
contents of memory at the saved CS:IP so the 
disassembly may be incorrect if the instructions have 
been changed. If the trace buffer is empty, a TB, TR or 
TU command has no effect. 

When using the TB, TR, or TU commands to display the 
software trace buffer, you can switch among any of the 
three formats by keying B, R, or U, respectively. 

Examples: 

'TB' shows both the register and disassembly display of 
the end of the software trace buffer. 

'TR' shows just the register display. 

'TU' shows just the disassembly display. 

'TB .' clears the software trace buffer and resets the 
sequence number to zero. 

Periscope Commands-T 7-83 



Command: Unassemble memory 

Syntax: U [<range>] 

Description: This command is used to disassemble 
memory into the 8086, 8087, 8088, 80186, 80287, and 
80286 real-mode instructions. 

Memory is disassembled in the ASM, Source/ ASM (Both), 
or Source mode as set by the UA, UB, and US commands 
respectively. Source/ ASM is the default mode, unless the 
/E:O installation option was used, in which case ASM is 
the default mode. 

The syntax for this command is very flexible. If you 
enter 'U', the disassembly starts where the last U 
command left off. The commands G, J, R, and T reset the 
starting point to CS:IP. If you enter 'U <number>' the 
number is presumed to be an offset, the segment is 
presumed to be CS, and the length is presumed to be 
20H. If you enter 'U <number> <length>' the number is 
presumed to be an offset, and the segment is presumed 
to be CS. 

Two sample disassemblies are shown below. Both are of 
the same range of memory, but the second listing was 
made using a symbol table. Note the difference in 
readabili ty. 

Without symbols: 

1261:0137 E81700 
1261 :013A A13301 
1261:013D BF1001 
1261:0140 E82400 
1261:0143 A13501 
1261:0146 BF2C:J1 
1261:0149 E81800 
1261:014C E83400 
1261:014F CD20 

With symbols: 

CALL 0151 
MOV AX,[0133] 
MOV D1,0110 
CALL 0167 
MOV AX,[0135] 
MOV D1,012C 
CALL 0167 
CALL 0183 
1NT 20 

7 -84 Periscope Commands-U 



START: 
1261 0137 E81700 CALL GETMEM 
1261 013A A13301 MOV AX,[TOTMEM] 
1261 013D BF1001 MOV DI,0110 TMEMORY 
1261 0140 E82400 CALL CONVERT 
1261 0143 A13S01 MOV AX. [FREMEM] 
1261 0146 BF2C01 MOV DI.012C AMEMORY 
1261 0149 E81B00 CALL CONVERT 
1261 014C E83400 CALL DISPLAY 

DOSRET: 
1261:014F CD20 INT 20 

Each line of the disassembly shows the address of the 
instruction (CS:IP) followed by the one to seven bytes 
that make up the instruction. Next the instruction is 
displayed. 

If an address in the instruction is an exact match with 
an entry in the symbol table, the symbol name is 
substituted for the address. For example, in the second 
line, address DS:0133 is referenced. When the symbol 
table is searched, the name TOTMEM is found and 
displayed instead of 0133. 

If you're debugging programs where DS and/or ES do not 
initially point to the data area(s), variable references 
such as this one are not shown until DS and/or ES are 
changed to point to the data area(s) within your program. 
Code references, such as the label START are found, 
since CS must be correct for the program to execute. 

If an ambiguous reference to an address is made, the 
symbol name is shown at the end of the disassembled 
instruction as a comment. This indicates that the symbol 
mayor may not have been used in the original 
instruction. Ambiguous references are generated by a 
move of an offset to a register, such as MOY DI,OFFSET 
TMEMORY. 

Segment override instructions (CS:, DS:, ES:, and SS:) are 
shown folded into the instruction they affect except when 
a segment override precedes an instruction that does not 
have a memory operand. In this case, the segment 
override appears to the left of the mnemonic field. Other 
prefixes (REP, LOCK, etc.) are shown on a separate line 
preceding the instruction they affect. 

If a disassembly window is used, the PgUp, PgDn, 
PadPlus, and PadMinus keys can be used to move forward 
and backward through memory. These keys affect the 
disassembly window unless a data window is in use and 
the last command was a display command. 

Examples: 

Periscope Commands-U 7-85 



'U NEW PAGE' disassembles memory starting at the symbol 
NEW_PAGE. The default length of 20H bytes is used. 

'U CS:IP L I' disassembles memory for one instruction at 
the current instruction. The same result can be achieved 
by using the Register command. 

'U' disassembles memory starting where the last U 
command left off. If the G, J, R or T commands were 
used, the disassembly starts at CS:IP. 

Command: Unassemble ASM instructions 

Syntax: UA [<range>] 

Description: This command is used to enable ASM-on1y 
disassembly and to disassemble memory. 

Use this command to turn off source-level debugging. 
After the subfunction has been entered once, it is not 
necessary to enter it again. See the U command above for 
more information. 

Examples: 

'UA NEW PAGE' disassembles memory starting at the 
symbol NEW_PAGE. The default length of 20H bytes is 
used. 

'UA A10 L I' disassembles memory for one instruction 
starting at the symbol AIO. 

'UA' disassembles memory starting where the last U 
command left off. If the G, J, R or T commands were 
used, the disassembly starts at CS:IP. 

Command: Unassemble Both asm and source 

Syntax: UB [<range>] 

Description: This command is used to enable mixed ASM 
and source disassembly and to disassemble memory. 

Use this command to enable ASM and source-level 
debugging. This mode shows high-level source code, 

7-86 Periscope Commands-U 



followed by the ASM code generated by the high-level 
code. After the subfunction has been entered once, it is 
not necessary to enter it again. This mode is the default 
unless the /E:O installation option is used. See the 
descriptions of the U and US commands for more 
information. 

Examples: 

'UB .AIO' disassembles memory in Source/ ASM format 
starting at the symbol AIO. 

'UB' disassembles memory starting where the last U 
command left off. If the G, J, R or T commands were 
used, the disassembly starts at CS:IP. 

Command: Unassemble Source 

Syntax: us [<range>] 

Description: This command is used to enable source 
disassembly and to disassemble memory. 

Use this command to turn on source-level debugging of a 
high-level language. This mode shows a minimum of ASM 
code-it shows assembly code until the first source line 
is found and then shows just high-level source code. 

If you're using a recent version of the IBM/Microsoft 
linker and you've set up the MP and MX aliases 
described in Chapter Y, Periscope should never prompt 
you for a file name for source-level debugging. (If you 
haven't already done so, PLEASE take the C tutorial in 
Chapter Y.) Otherwise, when needed, Periscope prompts for 
the file name corresponding to the module being 
disassembled. Enter the file name and press return to 
display the source code. If the file is not found, the 
prompt is displayed again. If you press return without 
entering a file name, source disassembly is disabled. To 
display the file name prompt again, enter 'UA' and then 
enter 'US'. For Phoenix's PLINK, the source file name 
must be entered manually-no automatic module name 
extraction is provided by Periscope. 

To display source code, the following conditions must be 
met: 

• DOS must not be busy (see the description of the Name 
command for more information) 

Periscope Commands-V 7-87 



• A file buffer must be available (if PS.COM was installed 
with IE:D, this command is not available) 

• Line symbols must be available for Periscope to be 
able to associate an instruction with a source-code line 

• Any disk I/O errors will cause an incomplete source 
display or none at all 

To see the correspondence between the module names and 
module prefixes (A, B, etc.), enter' IS FFFF FFFF'. This 
will display all line name records, showing the module 
prefix and the module name. 

The MP alias should usually end with a backslash. The 
MP and MX aliases can be overridden with a colon and a 
period respectively. If one of the aliases is incorrect, 
you can enter the correct path, file and extension or 
better yet, press F3 and then edit that file name. 

When a disassembly window is used, the pgDn key 
displays more source code. The new page will always 
start at a source line referenced in the symbol table. The 
other positioning keys (PgUp, PadPlus, and PadMinus) may 
show ASM code. 

Examples: 

'US AID' disassembles memory starting at the line symbol 
AID. The default length of 2DH bytes is used. 

'US' disassembles memory starting where the last U 
command left off. If the G, J, R or T commands were 
used, the disassembly starts at CS:IP. 

7 -88 Periscope Commands-U 



Command: View file 

Syntax: V <name> 

Description: This command is used to view a text file 
from within Periscope. Don't try to use it to display a 
file that's not in ASCII! 

The name is any legal file name. including drive. path. 
file. and extension. To use this command. DOS must not 
be busy (see the description of the Name command for 
more information). A file buffer must be available-if 
PS.COM was installed with IE:O. this command is not 
available. 

The file is displayed in the non-windowed area of the 
screen. unless a View window has been set up. The line 
numbers displayed are shown in the lower left-hand 
corner of the screen. Use the PgUp and pgDn keys to 
page up and down through the file. Use the up and down 
arrow keys to move up or down one line at a time. Use 
the Home and End keys to move to the start and end of 
the file. Use the right arrow key to display beyond 
column 80 and the left arrow key or the enter key to get 
back. When you're finished viewing the file. press the 
Esc key to return to Periscope's prompt. Note that Ctrl
Break cannot be used to terminate this command-Esc is 
the only way out. 

A simple string search is available. Enter a slash (' I') 
and the text to be located. The search begins on the 
second line from the top of the screen. The search is not 
case sensitive. When found. the string is displayed at 
the top of the screen. To repeat a search. enter a slash 
and press F4. If no match is found. the last record in 
the file is displayed. 

To position to a specific line. enter a pound sign ('#'). 
the decimal line number (1 to 65535). and press return. 
The desired line is then displayed. 

If a View window is used. the window is static after Esc 
has been pressed to return to the Periscope prompt. If 
the windows are changed or the screen is cleared. the 
View window is lost. Use the View command to re-display 
the file. 

Example: 

'V C:PS.DEF' displays the file PS.DEF. Use the PgUP. PgDn. 
Up, Down. Left. Right. Home. and End keys to move 

Periscope Commands-V 7-89 



through the file. When done. press Esc to return to the 
Periscope prompt. 

Command: View Source file 

Syntax: VS 

Description: This command is used to view the current 
source file. It has no arguments and is available only 
when source-level debugging has been turned on using 
the UB or US commands. This command functions exactly 
like the View command described above. 

Example: 

'VS' displays the current source file. When finished 
viewing the file. press Esc to return to the Periscope 
prompt. 

7-90 Periscope Commands-V 



Command: Write Absolute disk sectors 

Syntax: WA <address> <drive> <sectors> 

Description: This command is used to write memory to 
absolute disk sectors. 

The segment defaults to CS if no segment is specified in 
the address. The drive is a single-digit number indicating 
the disk drive (O=A, 1=B, etc.). The sectors parameter is 
the starting sector number and the number of sectors to 
be written. The maximum number of sectors that can be 
written in one operation is 80H, which is 64K bytes. 

To use this command, DOS must not be busy. See the 
description of the Name command for more information. 
This command uses DOS interrupt 26H. See the DOS 
manual for information on the numbering of the absolute 
disk sectors. 

When using this command, be very careful-an absolute 
disk write can very easily destroy a file allocation table 
(FAT) or a disk directory! Usually, you will want to 
perform a Load Absolute, change a few bytes of memory, 
and then perform a Write Absolute of the data back to 
disk. If this is the case, be sure that the parameters 
used with the Load and Write commands are the same. 

Examples: 

'WA DS:100 0 10 20' writes data from memory starting at 
DS: 100 to drive A, starting at sector number 10H for 20H 
sectors. 

'WA 100 1 0 4' writes data from memory starting at 
CS:100 to drive B, starting at sector 0 for 4 sectors. 

Command: Write File to disk 

Syntax: WF [<address>] 

Description: This command is used to write a file from 
memory to disk. 

The optional address specifies where the memory image 
of the file begins. If an address is not specified, CS:100 
is used. To use this command, DOS must not be busy. 

Periscope Commands-W 7-91 



See the description of the Name command for more 
information. Before this command can be used, the Name 
command must be used to specify a file name. 

This command can be used to write any type of file to 
disk. Before the file is written, be sure that BX and CX 
indicate the size of the file in bytes. Do not attempt to 
write an EXE file that was not loaded with the LF 
command-an EXE file loaded by RUN.COM is missing its 
header and cannot be written to disk. 

Examples: 

'WF DS:1000' writes the file defined by a Name command 
from memory to disk starting at DS:1000. 

'WF' writes the file defined by a Name command from 
memory to disk starting at CS:100. 

Command: Write Symbols to disk 

Syntax: WS <segment> <name> 

Description: This command is used to write a Periscope 
symbol (PSS) file using the current symbol table. 

The segment contains the relocation factor that is 
subtracted from the current symbol segment before the 
file is written. For COM files, this is the value of the 
PSP segment or CS. For EXE files, this is the value of 
the PSP segment plus 10H. The name is the path and file 
name of a PSS file. Do NOT enter the 'PSS' extension. 
Note that the use of this command destroys the name set 
with the Name command. 

This command cannot be used to write a MAP file-only 
PSS files are supported. The symbol tables are left 
unchanged by this command. 

If an error occurs when writing the symbol file, the 
symbols may be left with the relocation factor subtracted. 
If this happens, you can recover the symbols using WS 0 
<name> to write the symbols without further relocation. 
Then use LS * to clear the symbol table, followed by LS 
< segment> <name> to restore the symbol table. 

Examples: 

7-92 Periscope Commands-W 



'WS CS SAMPLE' subtracts the current value of CS from 
the symbol's segments and writes the file SAMPLE.PSS. 

'WS 0 C:TEST' subtracts zero from the symbol's segments 
and writes the file C:TEST.PSS. 

Periscope Commands-W 7-93 



Command: Xlate (translate) Hex number 

Syntax: X <number> or XH <number> 

Description: This command is used to translate a one- to 
four-digit hexadecimal number or a register to its 
decimal, octal, binary, and ASCII equivalents. 

Example: 

'X 5051' displays '5051h 
0000 0101 0001b PQ'. 

20561d 0501210 

Command: Xlate (translate) Address 

Syntax: XA <address> 

0101 

Description: This command is used to translate an 
address (segment and offset) into its equivalent five-byte 
absolute address. The absolute address is calculated by 
multiplying the segment by 10H and adding the offset to 
the result. 

Example: 

'XA 1234:567S' displays '179BS'. 

Command: Xlate (translate) Decimal number 

Syntax: XD <decimal number> 

Description: This command is used to translate a one- to 
five-digit decimal number to its hexadecimal, octal, 
binary, and ASCII equivalents. The number must be from 
zero to 65535. The number may not have any punctuation, 
such as commas or periods. Numbers larger than 65535 
can be translated, but the high order part is lost. 

Example: 

'XD 20561' displays '5051h 20561d 0501210 
0101 0000 0101 0001b PQ'. 

7-94 Periscope Commands-X 



Command: Option D (Data window select) 

Syntax: /D [<byte>] 

Description: This command is used to select the active 
data window when more than one data window is in use. 

The active window is the one modified by display 
commands. The inactive window(s) display memory in the 
same format as when they were last active. If one data 
window is in use, this command has no effect. If no 
number is entered, the next data window is made active 
(as indicated by the up arrow after the window number). 
If a number that corresponds to a data window (0-3) is 
entered, that window is made active. 

Examples: 

'/D' makes the next data window active. If there are 
three data windows, the first use of this command makes 
the second window active. The second use of this 
command makes the third window active. The third use of 
this command makes the first window active, etc. 

'/D 3' makes the last data window active, assuming four 
data windows are in use. 

Command: Option E (Echo screen to a file) 

Syntax: IE [<name>] 

Description: This command is used to echo Periscope's 
screen output to a disk file. 

All non-windowed output is written to a disk file at the 
same time it is being written to the screen. To begin 
this mode, enter' IE' followed by a file name and a 
carriage return. Do not use semi-colons to 'stack' 
commands when this command is used. While active, the 
command prompt shows' IE>' to remind you that echo 
mode is on. To end echo mode, enter' IE' with no file 
name. The usual rules about DOS availability from within 
Periscope apply. 

Examples: 

Periscope Commands-/ 7-95 



'IE D: OUTPUT , starts echo mode, using the file D:OUTPUT. 
Until another 'IE' command is used, Periscope's non
windowed screen output is written to this file. 

'IE' ends echo mode, closing the file D:OUTPUT and 
returns to the standard Periscope prompt. 

Command: Option N (Nearest symbols) 

Syntax: IN [< address> ] 

Description: This command is used to search for the 
symbols nearest to the specified address. 

Up to three symbols are displayed-the next lower symbol 
(left); the equal symbol (middle); and the next higher 
symbol (right). 

This command can help you get your bearings when 
you've interrupted an executing program by showing you 
the nearest symbols. If no address is entered, CS:IP is 
assumed. The nearest symbol that is located lower in 
memory is displayed at the beginning of the line, 
followed by the symbol for the specified address, which 
is followed by the nearest symbol that is located higher 
in memory. If no lower, equal, or higher symbol is found, 
nothing is displayed. 

Examples: 

Assume three symbols X, Y, and Z located at 1000:100, 
1000:200, and 1000:300 respectively. 

'IN 1000:200' displays: 

'HH"l'l:l'lHll'l X 1l'll'll'l:l'l2l'll'l Y Hlfll'l:l'l3l'll'l Z' 

'IN 1000:0' displays: 

1l'll'll'l:l'l1l'll'l X' 

Command: Option R (Remove symbol) 

Syntax: IR < symbol> 

7 -96 Periscope Commands-/ 



Description: This command is used to remove a symbol 
from the symbol table. 

This command is used to eliminate undesired symbols. 
Since symbol names are evaluated before register names, 
a symbol named AX would disable references to register 
AX unless this command was used. 

Examples: 

'/R AX' removes the symbol AX, leaving no conflict with 
the register named AX. 

'/R B123' removes the symbol B123. Be careful when 
removing line number symbols, since these cannot be re
entered using the ES command. 

Command: Option S (Segment change) 

Syntax: IS < segment> < segment> 

Description: This command is used to make global 
changes to the values of segments in the symbol table. 

The entire symbol table is searched for symbols having a 
segment that matches the first segment entered. If a 
match is found, the symbol's segment is changed to the 
second segment entered and the new address and the 
symbol name are displayed. This command is used to 
adjust the segments of symbols when a program relocates 
its data areas, such as in Microsoft BASIC, FORTRAN, and 
Pascal. 

Examples: 

'IS FOOD OS' changes the segment of all symbol table 
entries that are currently FOOD to the current value of DS. 

'IS CS CS' displays the segment of all symbol table 
entries that match the value of CS. This is a good 
method for querying the symbol table without changing 
anything. 

Periscope Commands-/ 7-97 



Command: Option T (Trace interrupt table) 

Syntax: IT [?] [*] [#] [<byte>] [ ... J 

Description: This command is used to force tracing of 
interrupts when the GT command is used. 

Some interrupt service routines turn the trap flag off 
when returning status information in the flag registers. If 
Periscope does not trace all the way through such 
routines when the GT command is used, the program can 
get out of Periscope's control and begin executing at full 
speed. The known troublesome interrupts are 13H, ISH, 
16H, lAH, 20H, 2SH, 26H, 2FH, 40H, and 41H. When 
Periscope is first installed, these interrupts are flagged 
for forced tracing. Using this command, you can change 
the interrupts that are to be traced when GT is used. The 
possible command arguments are *, #, ?, and numbers 
from 0 to FF (always presumed hex). The * clears all 
traps and # sets all traps. A ? displays the current trace 
list. A hex number toggles the state for that interrupt 
from off to on or vice-versa. 

Warnings: 

• Interrupt 21H should be in the trace list whenever 
function 4BH (Exec) is used or if Borland's SIDEKICK is in 
the system. 

• When an interrupt is not traced, Periscope becomes 
dormant until the second instruction after the INT XX 
instruction. 

• If a GT command is used when the current instruction 
(CS:IP) is an interrupt, the interrupt is always traced. 

• If you have problems with the GT command losing 
control, try using the GA command. 

Examples: 

'IT #' forces tracing of all interrupts. 

'IT * 21' clears all interrupts and then forces tracing of 
Int 21H. 

7-98 Periscope Commands-/ 



Command: Option U (User exit) 

Syntax: IU <byte> [<address>] 

Description: This command is used to perform user
written code from Periscope. 

To use this command, a program similar to USEREXIT.ASM 
as described in Chapter IX must be installed and PS.COM 
must be installed with the II option. The number entered 
after the IU command must be from nine to FFH. It is 
passed to the user-written program in register AH. Other 
information is passed, including the optional address 
entered on the command line. See Chapter IX for more 
information. 

USEREXIT.COM has a status display for the 8087 and 
80287 numeric processors. To use USEREXIT, load it 
before PS.COM is loaded. Then, use /1:60 when installing 
PS.COM. From within Periscope, enter' IU 87' to display 
the status of the numeric processor. 

Example: 

Assuming that a user-written interrupt handler has been 
installed using INT 60H and that PS.COM had the /1:60 
installation option, IU 9 performs user exit number 9. 

Command: Option W (Window setup) 

Syntax: I W [D< :byte >] [R] [S< :byte >] [U < :byte >] [V < :byte >] 

Description: This command is used to change Periscope's 
windows from within Periscope. Its use and syntax are 
identical to the IW installation option. (See Chapter VI.) 

Periscope can window Data, Stack, Register, Unassembly 
andlor View information. Once windows are established, 
the windowed data is displayed at a constant location on 
the screen and is updated after each command (the View 
window is updated only when the View command is used). 

The tokens D, R, S, U and V indicate the type of data to 
be windowed. The tokens are optional and may be in any 
order. If a token is omitted, the corresponding type of 
information will not be windowed. The windows are 
displayed in the same order as the tokens are 

Periscope Commands-/ 7-99 



encountered on the input line, except for the stack 
window, which is always on the right-hand side. 

The D window shows data in any of the display formats. 
The window continues to show the same address until 
another display command is used. The output of the 
Display Record command is not shown in this window. 
Duplicate lines are not suppressed for windowed data. 
When RUN.COM is used to enter Periscope, the display 
address is set to DS:100. 

Up to four data windows may be used, with each window 
showing a different range and using a different display 
format. For example, if you want to set up three data 
windows with lengths of 4 lines, 2 lines, and 6 lines, 
respectively, enter '/W D:4 D:2 D:6'. To change the 
active data window, use the /D command. If the start 
address of a data window matches a symbol, the symbol 
name is displayed in the separator line at the end of the 
window. After a display command is used, the PgDn, 
PgUp, PadPlus, and PadMinus keys may be used to browse 
forward and backward through memory. 

The R window shows register and flag information. The 
length is fixed at two lines. The effective address of any 
memory reads or writes is shown in the separator line 
following this window. 

The S window is vertical, on the right-hand side of the 
screen. The length of the stack window is equal to the 
total number of lines contained in the other types of 
windows-a stack window cannot exist without other 
windows! An arrow in the left margin of the window 
indicates the current value of BP. Since the stack window 
can overlay the output of the byte and register display, 
you may turn the stack window on and off using the Alt
S key. If you choose not to use a stack window, you can 
always view the stack using DW SS:SP. Note that the 
stack is read from the upper right-hand corner of the 
screen downwards. 

The U window shows disassembled instructions. The 
address used initially for the disassembly defaults to 
CS:IP and is reset to CS:IP each time a G, J, R, or T 
command is used. Any area of memory can be 
disassembled by using the U command with the desired 
address. The disassembly window shows the current 
instruction in reverse colors. The current high-level 
source line and/or procedure labels are also shown in 
reverse. Some window colors may cause the reverse color 
to be invisible. For example, color 7E on a monochrome 
EGA causes the reverse bar to be invisible. When tracing, 
Periscope minimizes the regeneration of the disassembly 

7-100 Periscope Commands-/ 



window and just moves the reverse video bounce bar 
when possible. After any command other than a display 
command has been used, the PgDn, PgUp, PadPlus, and 
PadMinus keys may be used to browse forward and 
backward through memorY. 

In the separator line following the disassembly window, 
the current location is shown. For DOS 2.x, the message 
'In DOS' is shown if the current CS is less than AOOOH. 
otherwise the message 'In BIOS' is shown. For DOS 3.x. 
Periscope uses the DOS memory allocation blocks to get 
the actural program name when possible. Two caveats-the 
lookup is based on CS only and 'In RUN.COM' will be 
shown when in a program loaded by RUN.COM. 

The V window is used to view a text file. After 
establishing a View window. the View command uses the 
space reserved by the window. See the description of the 
View command for more information. 

The byte parameter defines the length of the window in 
hex. If no length is specified. a default is used. The 
maximum length for anyone window and the total area 
that can be windowed is four lines less than the screen 
length. including a separator line following each window. 
When a length specification is used. at least one space 
must follow the number. If you're using 43-line mode. the 
windows can get quite large. Since the windows are 
regenerated after each command. large windows can slow 
Periscope's response time. 

The default and minimum number of lines for each of the 
five window types are: 

Default Minimum 

Data 
Register 
Stack (Total 
Unasm 
View 

4 1 
2 2 
of other windows) 
4 4 
4 1 

The colors of the windows can be individually set, using 
a hex number from 1 to FF (the numbering scheme is the 
same as that used by the IC installation option described 
in Chapter VI.). To set the colors, append the hex number 
to the line length. separated by a '.'. For example. 
Periscope's 'standard' window setting is I W D:4.74 R.4 7 
S.71 U:8.17. which sets a four line data window with 
color 74 (red on white); a register window with color 47 
(white on red); a vertical stack window with color 71 
(blue on white); and an eight-line disassembly window 
with color 17 (white on blue). The current instruction is 
shown in reverse (blue on white). This default window 

Periscope Commands-/ 7-101 



setting is available by pressing Ctrl-FI0. If you're using 
a monochrome monitor, try using Ctrl-F9 instead. 

If you want to turn off all windowing, enter' IW' with no 
arguments. 

Examples: 

'/W D:8 R'-Window data in the first 8 lines of the 
screen, followed by two lines of register information. A 
total of 12 lines are used for windows, including the two 
separator lines. 

'I W SRU'-Window register information in the first two 
lines of the screen, followed by four lines of 
disassembly. A total of 11 lines are used for windows, 
including separator lines, so the specified stack window 
is 11 lines long. 

Command: Option X (exit to DOS) 

Syntax: IX 

Description: Exit to DOS, presuming DOS is not busy and 
memory has been freed. 

This command requires DOS 3.00 or later. DOS must not be 
busy and memory must have been freed using DOS 
function call 4AH. No arguments are allowed. To return to 
Periscope, enter 'EXIT' at the DOS prompt. During the exit, 
don't execute RUN. COM , PS.COM, or change the state of 
the system (e.g. change monitors). 

Example: 

'/X'-Assuming memory has been freed and that DOS is not 
busy, this command exits Periscope and displays the DOS 
prompt. When you're ready to return to Periscope, enter 
'EXIT' at the DOS prompt. 

7-102 Periscope Commands-/ 



VIII-RUNning Your Program 

• Loading Your Program With RUN 

Use the program RUN.COM to load COM or EXE files and 
enter Periscope. (Periscope must be installed.) For help, 
enter 'RUN ?' when the DOS prompt is displayed. 

RUN can also be used to load data files or no file at all. 
If no file is loaded, the first instruction is set to INT 
20H, the DOS return, to prevent accidental execution of 
meaningless data. If a data file is loaded, be sure to 
use the QR command to quit Periscope and return to DOS. 
Using QC or G(o) would have unpredictable results. 

RUN is started by entering 'RUN filename.ext command
line' at the DOS prompt, where filename.ext is the path, 
file name, and extension (EXE, COM or other) of the file 
to be loaded. The command line is the same one used 
when the program is started from DOS. RUN adjusts the 
FCBs and command line in the PSP to look like the target 
program had been started directly from DOS. 

RUN resets Periscope's display address to the PSP 
segment at offset IOOH. It also clears some of 
Periscope's tables, including the software trace buffer, 
source file buffer, screen buffers, record definition table, 
and symbol table. If any breakpoints are set, they are 
disabled to avoid possible interference with the current 
program being debugged. 

If a file is specified, the specified directory is searched 
for a file of the form filename.DEF. If this file is found, 
it is presumed to be a record definition file. If it is not 
found, the file PS.DEF is used if available. The DEF file 
is then used to load Periscope's record, alias, and 
keyboard definition tables. If a DEF file is not found, the 
record and alias definitions are cleared, but any keyboard 
definitions are not cleared. To set the Periscope path, 
enter 'SET PS=xxx', where xxx is the path required to 

RUNning Your Program 8-1 



find the DEF file. If an error is found in the DEF file, the 
record definition table will be partially loaded. See 
Chapter IX for more information. 

If the file extension is COM or EXE, the specified 
directory is searched for a file of the form 
'filename.PSS'. If this file is found, it is used instead of 
the MAP file for the program's symbols. If the PSS file is 
not found, the directory is searched for a file of the form 
filename.MAP. This file is then used to load Periscope's 
symbol table with address and line references. If a MAP 
file is not found, the symbol table is cleared. If an error 
is found in the MAP file, the symbol table is partially 
loaded. If you're using the IBM/Microsoft linker, either 
the MAP file or a PSS file may be used. Other linkers 
must use a PSS file. See Chapter IX for more information. 

RUN then relocates itself upward and reads the target 
program into memory, beginning at RUN's original location, 
and performs any segment relocation required by EXE 
files. Registers BX and CX are set to the size in bytes of 
the target file. Other registers are set according to the 
rules for loading COM and EXE files (see the DOS manual). 

Starting with DOS 3.00, the drive, path, and filename of 
the loaded program is stored at the end of the 
environment space. Since RUN does not use the EXEC 
function to load programs, this area shows RUN.COM as 
the loaded program rather than the target program. The 
environment space is of variable length and is followed 
by DOS's memory allocation blocks, so it is not safe for 
anything but DOS to modify the environment. If your 
program uses this information, consider loading it 
normally and then loading symbols using the 'LS' 
command or SYMLOAD.COM (see Chapter IX). 

Note: RUN.COM has an option that can be used to have 
the DOS EXEC function load your program. This option 
should be used if you experience problems using RUN. 
When the EXEC option is used, the program is loaded 
approximately 7KB higher in memory than otherwise, but 
the program name in the environment space is correct. To 
use the EXEC function, add '/X' immediately after RUN. 
For example, enter 'RUN/X FTOC.EXE'. If an EXEC error 
occurs, error 82 is displayed. This error usually indicates 
a bad path name. 

Your program is loaded exactly where it would be if DOS 
were to load it under the same conditions. This feature 
allows RUN to be used to load memory-resident programs. 
Until RUN is used again, the record definition, alias, 
keyboard definition, and symbol tables are preserved. 

8-2 RUNning Your Program 



Finally, control is passed to the resident portion of 
Periscope. When you've finished debugging your program, 
you can exit Periscope in one of three ways-use a Go 
with no breakpoints set, use the QC command to quit 
Periscope and continue execution, or use the QR command 
to quit Periscope and return to DOS. If you use the last 
option, be sure that all output files are closed and that 
any interrupt vectors your program has modified have 
been reset to their original values. 

RUNning Your Program 8-3 



8-4 RUNning Your Program 



IX-U sing The Periscope Utili ties 

• CLEARNMI.COM-A memory-resident program that 
ensures NMI is available 

• CONFIG.COM-Configures Periscope for your system 

• INT.COM-Display. save. and compare the interrupt 
vectors 

• PS3TEST .COM-Used to test the Periscope III breakpoint 
and trace buffer functions 

• PSKEY.COM-Sets hotkey(s} used to activate Periscope 

• PSTEST .COM-Used to test the memory on the 
Periscope I and III boards 

• PUBLIC.COM-Generates public statements for assembler 
programs 

• RS.COM-Used to verify and size record. alias. and key 
definitions 

• SYMLOAD.COM-Loads Periscope's symbol tables from 
within your program 

• SYSLOAD.SY5-Loads COM files at CONFIG.SYS time. 
allowing you to debug device drivers 

• TS.COM-Verify and size MAP files and generate PSS 
files from the output of various linkers 

• USEREXIT.ASM and USEREXIT.COM-A sample program to 
perform user exits and user breakpoints from Periscope 

Periscope supports DOS 2.00 pathnames for all file 110. 
Programs that perform file I/O accept command lines 

Periscope Utilities 9-1 



contammg any legal DOS pathname. Note that a pathname 
must be terminated by a carriage return (end of command 
line), a space, or a slash. 

CLEARNMLCOM 

Despite the name, the non-maskable interrupt (NMI) used 
by the break-out switch can indeed be masked out. Since 
the NMI signal travels through two ports going from the 
expansion bus to the CPU, these ports can disable the 
break-out switch. The memory-resident utility program 
CLEARNMI.COM attaches to the user timer interrupt (lCH) 
and clears these two ports once a second. To use it, 
load CLEARNMI anytime-preferably from your AUTOEXEC 
file. The only installation option is /Q, which should be 
used only if the /Q installation option is used with 
PS.COM to indicate a hybrid machine. 

This program can be installed multiple times, but each 
install allocates more memory and does not clear the 
effects of the previous install. 

CONFIG.COM 

This program is used to configure Periscope for your 
system. To run this program, boot the system so that no 
memory-resident programs or device drivers are installed. 
(You may omit this boot step with no memory-resident 
programs or device drivers installed only if you're using 
an IBM or Compaq system.) Place the Periscope 
distribution disk in drive A: and enter ·CONFIG'. To use a 
di sk drive other than A:, enter the drive on the command 
line. The program then shows a full-screen display (see 
Chapter II) that prompts you to answer four questions. 

The first field is for the Model of Periscope to be used. 
Enter the number corresponding to the Model desired. 
Note: To run Model I and Model III, you'll need the 
appropriate Periscope board installed. Models II and II-X 
do not require any hardware. If you're planning to run 
Model I without the board, you can either configure it as 
a Model II or you can use the IN installation option at 
run time (see Chapter VI). 

The second field indicates the target drive. Normally, in 
a hard disk system, this would be drive C:. Any legal 
drive id from A: through Z: may be used. If the 
subdirectory \PERI\ does not exist on the target drive, it 
is created. You can copy the Periscope files to another 
directory later if you like. 

9-2 Periscope Utilities 



The third field indicates whether the ancillary files are 
copied from the distribution disk to the target disk. A 
reply of 'N' causes only PS.COM to be written to the 
target drive. 

The fourth field indicates the mIntmum command length 
that is added to the circular command buffer. The default 
value of zero may be changed to any value from one to 
nine. If you choose a value of two, commands up to two 
characters in length are not added to the circular buffer. 

After entering your responses to the four prompts, press 
FlO to configure Periscope. Note any warning or error 
messages displayed as the configuration occurs. If you 
get a message of the form 'Segment for interrupt xxH is 
not FOOOH-Use IV option for this interrupt', be sure that 
these IV installation option(s) are used each time PS.COM 
is run. (See Chapter VI.) 

If CONFIG.COM finds that an interrupt vector does not have 
the expected entry point, it will patch the entry point in 
PS.COM, unless the system is an IBM or Compaq computer. 
To force patching of an IBM or Compaq system, enter 
'CONFIG 0' from the DOS prompt. To suppress patching of 
a known 100% compatible system, use 'CONFIG 1'. 
Generally, you should not have to suppress or force 
patching if you've followed the instructions above. 

INT.COM 

This program is used to display, save, or compare the 
interrupt vectors. The three usage modes are: 

INT <filename> IW-save the current interrupt vectors to 
a file. 

INT [<filename> ID xx yy}-display the previously-saved 
interrupt vectors from a file (if no filename is present, 
the current vectors are displayed). The optional numbers 
xx and yy indicate the range of vectors to be displayed. 

INT <filename> IC-compare a previously saved file with 
the current interrupt vectors. 

To see the interrupt vectors used by a resident program, 
save the current vectors using the IW option, load the 
program in question, and then compare the current vectors 
with the saved vectors using the IC option. 

For example, to see the interrupts used by CLEARNMI.COM, 
do the following: 

Periscope Utilities 9-3 



Enter 'INT CLEAR/ W' to save the current interrupt vectors. 
Load CLEARNMI from DOS. Enter 'INT CLEAR/C' to compare 
the current interrupt vectors with the values saved in the 
file CLEAR. You can also display the saved vectors using 
'INT CLEAR/D'. 

PS3TEST .COM 

This utility program is used to perform breakpoint and 
trace buffer tests on the Periscope III board. (PSTEST /3 
is used to test the Periscope III protected memory-see 
PSTEST.COM later in this chapter for more information.) 

The options available for PS3TEST are: 

IB-Test the break-out switch 
IC:nnnn-Run tests multiple times, where nnnn is a hex 
number from 0 to FFFF 
ID-Run DMA test using a DOS disk in drive A 
IE-Set error exit mode, activating Periscope if an error 
is found 
II-Set inverted mode, suppressing error messages 
IM:nnnn-Use protected memory segment other than 
DOOOH 
IP:nnn-Use write protect port other than 300H 
IS-Set silent mode, showing only error messages 
IV-Set verbose mode, placing each message on a 
separate line 
IW-Write the contents of the hardware trace buffer to 
the file PSBUF.DAT 

PS3TEST performs many different tests to validate the 
correct operation of a Periscope III board. If no errors 
occur, the message 'No errors detected' is displayed. 
During the test of 8-bit memory, the program uses a 
section of the monochrome screen as a scratch pad-don't 
worry about the characters that flash across the end of 
the fifth line. 

If an error occurs, a message with possible sub-errors IS 

displayed and the next test is begun. If you get any 
errors, please check the following items before calling 
Tech Support. 

• Is the computer an IBM PC, XT, AT or 100% compatible 
machine? This means no zero wait-state machines, no 
systems with 'turbo' processor cards, and no 80386-based 
systems. Many machines that are compatible at the 
software level are not compatible at the hardware level. 
Known incompatible machines include the IBM XT/286, the 
IBM System/2 machines, the Compaq 8086 and 80386 

9-4 Periscope Utilities 



Deskpros, the AT&T 6300 and 6300 Plus, the Sperry PC 
and IT, and the Zenith Z248. 

• Check the placement of the umbilical socket and cable. 
Make sure that the socket is correctly installed and 
firmly seated. Make sure that the cable is plugged in to 
the four-position connector near the mounting bracket . 

• Check the settings of the DIP switches. If they've been 
changed from the standard settings, be sure to specify 
the appropriate '1M' and/or '/P' options . 

• What speed is the system running? If the CPU speed is 
less than or equal to 8 MHz, the standard Periscope III 
board should suffice. If you're running between 8 MHz 
and 10 MHz, you need the high-speed (10 MHz) board. If 
you're running faster than 10 MHz, slow the system down 
and run PS3TEST again. 

If the board has previously worked in this machine, call 
Tech Support for help. Otherwise, please test the board 1ll 

a known compatible system (IBM PC, XT, AT or Compaq 
8088 or 80286 system) before calling Tech Support. 

PSKEY.COM 

PSKEY.COM is a memory-resident utility program that is 
used to set hot keys. It replaces the I J and I K 
installation options available in previous versions of 
Periscope. plus it lets you select your own hot key 
combination to activate Periscope. The options available 
are: 

P Use Shift-PrtSc to activate Periscope (via INT 5) 
S - Use Sys Req to activate Periscope (via INT 15H) 
3 - Use INT 3 instead of INT 2 to activate Periscope 
A - Alt (combined with other shift keys) 
C - Ctrl (combined with other shift keys) 
L - Left shift (combined with other shift keys) 
R - Right shift (combined with other shift keys) 
I - Insert (combined with other shift keys-must be first 
key pressed if used!) 

For example, PSKEY LRS would activate Periscope when 
the Sys Req key is pressed or when the Left and Right 
shift keys are simultaneously pressed. 

Note: If you have configured Periscope as Model II-X, the 
3 option must be used. This is necessary because Model 
II-X does not support INT 2 (NMI). If the 3 option is not 
used, PSKEY will beep, indicating that it was not able to 

Periscope Utilities 9-5 



activate Periscope via INT 2. Unless you need to use 
NMI, configure Periscope as Model II. If the 3 option is 
used, you'll need to modify IP after a stop.,...-use R IP IP+I 
to skip over the INT 3 instruction. 

When using the P or S keys, Periscope comes up in the 
keyboard handler, far away from your code. On the other 
hand, since the shift key combinations 'back-end' the 
keyboard interrupt, a single Trace command puts you into 
the code that was interrupted by the key press! The shift 
key combinations can be defined as needed to avoid 
conflicts with other memory-resident programs. 

This program can use interrupts 2 or 3, 5, 9 and ISH, 
depending on the command line options. It can be 
installed multiple times per DOS session, but each install 
allocates more memory and does not clear the effects of 
the previous install. 

If PSKEY cannot find Periscope via interrupts 2 or 3 when 
the hot keys are pressed, it beeps the speaker and does 
not invoke Periscope. Since PSKEY is loaded into normal 
memory and is dependent on hardware interrupts being 
enabled, use the break-out switch for maximum 
dependability. 

PSTEST.COM 

This program is used to perform memory tests of the 
Periscope I and III protected memory. The options 
available are: 

IG-Test original Periscope I board with 16K of memory 
II-Test Periscope I board with 56K of memory (default) 
13-Test Periscope III board with 64K of memory 
IC:nnnn-Run tests multiple (nnnn) times, where nnnn IS 

a hex number from 0 to FFFFH 
IM:nnnn-Use protected memory segment other than 
DOOOH 
IP:nnn-Use write protect port other than 300H 

The memory tests performed are: writing zeroes; writing 
FF; writing a rotating bit pattern; continuous copying of a 
repeating pattern; and a memory write-protect test. Note 
that the memory tests overwrite the contents of the 
protected memory. Be sure to use the IN installation 
option with PS.COM if Periscope is installed to prevent a 
conflict. 

If an error occurs during the test, seven or eight columns 
of numbers are displayed. Each column reflects the 

9-6 Periscope Utilities 



number of failures for the corresponding memory chip (Ul 
thru U7 for the /1 option. Ul thru U8 for the /0 option. 
and U29 thru U32 and U38 thru U41 for the /3 option). If 
you notice errors for a single IC. check the chip to be 
sure it is firmly seated in its socket and has no bent 
pins. If the memory passes the test. the display is 
overwritten by the next test to conserve space on the 
display. If the memory fails. the error messages are not 
overwritten. 

PUBLIC.COM 

This program is used to generate public statements for 
assembler programs. With Periscope. the more publics you 
have. the more symbols you have. and the more symbols 
you have. the easier it is to debug your program I To run 
this program. enter 'PUBLIC filename' from the DOS prompt. 
If no extension is specified. ASM is assumed. The 
program reads your source and writes a file of public 
statements to the file filename.PUB. You can then include 
or merge this file into your program. 

The options available are: 

Ie - do not generate code references (PROC. LABEL. or 
near labels) 
ID - do not generate data references (DB. DD. DW. DQ. 
and DT) 
IE - do not generate equate references (EQU or =) 
/I - generate references found inside conditional 
statements (IF. IFE ..• ) 
IL - force the public definitions to lower case 
IU - force the public definitions to upper case 

For help. enter 'PUBLIC ?'. The program generates public 
statements for all data variables and procedures. subject 
to the rules below. 

If the multi-line COMMENT statement is used. it must be 
the first word found in the source line. Nothing is 
generated for a name that starts with the numbers zero 
through nine. Any public statements generated for equates 
are absolute references and are not relocated in memory. 

The source line is skipped if the first word found in the 
line is PUBLIC. EXTRN. END. ASSUME. ORG. INCLUDE, EVEN, 
NAME. TITLE. SUBTTL. PAGE. ELSE. WIDTH. %OUT. NOT. OR. 
AND. XOR. or MASK. A public statement is generated for 
the first word in a line if the first word ends in a colon 
or if the second word found in a line is DB. DD. DW. DQ. 
DT. PROC. LABEL. EQU. or =. When a STRUC definition is 

Periscope Utilities 9-7 



encountered, no publics are generated until an ENDS is 
found. 

PUBLIC recognizes macros and conditional statements-any 
items found inside these types of statements are ignored. 
Since these items can be nested. the program keeps track 
of the nesting level and generates public statements only 
when the nesting level is zero. The following items 
increment the nesting level-MACRO. IFDEF. IFIDN. IFDIF. 
REPT. IRPC. IFNB, IRP, IFE. IFB. IFI. IF2. IF. and IFNDEF. 
ENDIF and ENDM decrement the nesting level. 

PUBLIC does not suppress EQU statements that refer to 
memory (e.g .• xxx EQU [BP+2])-use the IE option or 
IF IENDIF statements to suppress these. 

RS.COM 

This program is used to verify and size a record 
definition file. It reads a DEF file containing record. 
alias. and keyboard definitions and displays the number 
of definitions found and the total record table size 
required for the file. These definitions are loaded by 
RUN.COM to provide support for Periscope's DR command. 
keyboard assignment using the Ctrl-Fn keys. and 
commands that use the aliases. 

To run this program. enter 'RS progname' from the DOS 
prompt. The file extension is presumed to be DEF. The 
DEF file is presumed to be in the same format as the 
sample file PS.DEF. Use the size shown by RS.COM for the 
PS.COM /R installation option. For help enter 'RS ?'. 

A section of the PS.DEF file is shown below. 

\f1=k;dr cs:0 .psp; 
\f2=dr cs:5c .fcb; 
\FCB File Control Block 
Drive,b,1 Drive 0=default, 1=A, 2=B, etc. 
File,b,a File name 
Ext,b,3 File extension 
Block l,w.2 Current block number 
Rec Size,w,2 Logical record size 
File Size,d,4 File size 
Date,w,2 Date of last update 
Res.,+,a Reserved for DOS 
Rec l,b,1 Current relative record number 
ReI Rec l,d,4 Relative record number from beginning of file 

The first two lines of this file contain keyboard 
definitions for function keys FI and F2. While in 
Periscope, these keyboard definitions may be called by 
pressing Ctrl and Fn at the same time. The keyboard 

9-8 Periscope Utilities 



definition must contain a back-slash, the function key 
number, an equal sign, and the desired keystrokes. No 
spaces are allowed until after the equal sign. If you 
want multiple commands, use a semi-colon to separate 
the commands. If you want the command to be executed 
immediately, place a semi-colon at the end of the line. 
No comments are allowed on keyboard definition lines. 
The maximum length of a keyboard definition's text is 64 
characters for each of the ten function keys. 

The third line of the file starts a record definition. The 
record name is limited to 16 characters and must be 
preceded by a back-slash. No embedded spaces are 
allowed in the record name. 

Until another back-slash is found at the start of a line 
or the end of the file is reached, each of the following 
lines defines a field within the record. Each of the lines 
contains a field name, a field type, and a field length, 
separated by commas. The field name may be up to 10 
characters long and may have embedded spaces. The field 
type may be any of the display formats, except E 
(effective address). The field length is the total number 
of bytes required by the field. This number is in 
hexadecimal notation. 

If long real formatting is used, the length must be a 
multiple of eight. If double word or short real formatting 
is used, the length must be a multiple of four. If word, 
integer, or number formatting is used, the length must be 
a multiple of two. The length of anyone field and the 
total length of the record may be from one to FFFFH. 
Each field line may be commented using a semi-colon 
preceding the comments. A field type of + skips over the 
indicated number of bytes without displaying anything. 

There are five different aliases currently supported by 
Periscope. An alias is a two-character mnemonic that 
represents a name of up to 16 characters. An alias may 
be entered as a line in a DEF file (see FTOC.DEF for 
definitions of MP and MX) or may be entered using the EA 
command (see Chapter VII). 

The supported aliases are: 

MP-The module path name for source-level debugging 
MX-The module extension for source-level debugging 
Xl-The command executed on entry to Periscope 
X2-The command executed after each Periscope command 
X3-The command executed on exit from Periscope 

Periscope Utilities 9-9 



Note: An invalid command entered as alias Xl, X2, or X3 
can cause Periscope to issue an unexpected error 
message. 

SYMLOAD.COM 

This program is used to load Periscope's symbol tables 
from within your program. This approach can be used 
when your program manages overlays or is not loaded by 
RUN.COM. The LS command may also be used to load 
symbol s on the fly. 

SYMLOAD is a memory-resident routine that is run once 
per DOS session (it can be rerun if needed). It attaches 
itself to an interrupt vector so your program can access 
it as desired. The default interrupt used by SYMLOAD is 
67H, but this can be changed if needed. SYMLOAD uses 
DOS calls to read a symbol file, so DOS must not be busy 
for SYMLOAD to work. 

To install SYMLOAD, enter 'SYMLOAD /I:nn', where nn is 
the interrUpt number to be used to access SYMLOAD. Be 
sure that Periscope has already been installed, since it 
is required for SYMLOAD to work. The /I:nn command-line 
entry is needed only when SYMLOAD is to use an interrupt 
other than 67H. If you do specify an interrupt, be sure 
that the interrupt is not already used by another program. 

Once SYMLOAD has been installed. it may be accessed 
from your program by performing the appropriate interrupt. 
The registers used on entry are: 

BX-The value of your program's PSP segment. If your 
program is an EXE file. add IOH to the PSP segment. The 
symbols' segments will be relocated relative to the value 
passed in this register. 

CL-If this register is a binary 1. the new symbols are 
added to the end of the existing symbol table. otherwise 
the symbol table is cleared and the new symbols are 
loaded. 

DS:DX-Points to a PSS file name in ASCIIZ format. An 
extension of PSS is required. For example, to load 
C:SAMPLE.PSS, DS:DX would point to the string 
C:SAMPLE.PSS followed by a binary zero. See the 
description of the program TS.COM for information on 
creating a PSS file. 

On return. register AH contains the status of the 
operation. Register AL is used to return additional error 

9-10 Periscope Utilities 



information if a read error occurred. The possible values 
of AH are: 

o-Successful symbol table load 
I-Error reading PSS file (DOS error returned in AL) 
2-Periscope symbol table too small for PSS file 
3-Logical error in PSS file 
4-Periscope is not installed 
5-Logical error in symbol table 

If the status returned is zero, the symbol table has been 
loaded successfully. Note that all addresses are relocated 
relative to the segment address passed in register BX, 
except for absolute references and for symbols whose 
segment was already in the range of FOOOH to FFFFH. 

By setting register CL to I, you can load mUltiple symbol 
tables. One PSS file is loaded into the symbol table per 
subroutine call, but the register setting can be used to 
append the new symbols to the end of the symbol table. 

SYSLOAD.SYS 

SYSLOAD.SYS is a utility program written by Bob Smith. 
Bob has licensed us to distribute this powerful program 
with Periscope. It allows you to load any of the .COM 
programs in the Periscope package as a device driver. By 
being able to load PS.COM and RUN.COM as device drivers, 
you can greatly ease the debugging of your own device 
drivers. To use SYSLOAD, place a line of the form 
'device=sysload.sys <arguments>' in the CONFIG.SYS file. 
The arguments field may be one or more of the following: 

'/C=c:command.com' is an optional argument that 
specifies the location of the command processor in case 
the resident program needs it. This text is used as the 
argument to COMSPEC in the pseudo-environment created 
when calling the program to be loaded. Note that the full 
drive, path, filename, and extension of the command 
processor must be specified. This argument is not 
required by any of the programs in the Periscope 
package. 

'II' is an optional argument that generates an INT 3 to 
activate Periscope just before jumping to the specified 
program. 

'/Q' is an optional argument that sets quiet mode and 
displays serious error messages only. This option is 
useful when loading a transient program. 

Periscope Utilities 9-11 



'/P=c:filename.ext argl arg2 ...• is required and must 
appear last. It specifies the drive. path. and file name of 
the program to be loaded. followed by the arguments the 
program needs. Be sure to specify the full file extension 
although only .COM programs can be handled at present. 
Note that the part of DOS which loads device drivers also 
converts all characters to upper case. Thus case 
sensitive arguments cannot be passed to the program. 

To load Periscope via SYSLOAD.SYS. use a line similar to 
'device = sysload.sys Ip=c:\peri\ps.com It:8 Ic:17 la If' 
in CONFIG.SYS. 

TS.COM 

This program is used to verify and size a MAP file and 
optionally generate a Periscope symbol file. It reads a 
MAP file as produced by the linker and displays 
informational messages and the total symbol table size 
required for the file. 

To run this program. enter 'TS progname' from the DOS 
prompt. The file extension is presumed to be MAP. The 
MAP file is presumed to be in the same format as the 
sample file FTOC.MAP. Use the size shown by TS.COM for 
the IT installation option. For help. enter 'TS ?'. 

The options available are: 

Ie - Read a DeSmet .MAP file as produced by CWare's C 
compiler 
ID - Read a LINK86 .SYM file as produced by Digital 
Research's LINK86 
IFx - Filter a single leading character x from public 
symbols 
1M - Read an Aztec .SYM file as produced by Manx's C 
compiler 
IP - Read a PLINK .MAP file as produced by Phoenix's 
PLINK 
IQ - Read a PLINK .EXE file as produced by Phoenix's 
PLINK 
IS - Write a Periscope .PSS symbol file 

Microsoft and IBM have made some subtle changes in the 
format of the MAP file from time to time. If you encounter 
problems reading a MAP file. please contact us as soon 
as possible. 

To generate address references in the MAP file. you'll 
need to specify both a MAP file and the 1M option at 
link time. Entries are generated in the MAP file for names 

9-12 Periscope Utilities 



defined as PUBLIC by your compiler or assembler. For ASM 
programs, a PUBLIC statement is used to generate an 
address reference in the MAP file. For C programs, 
variables defined outside the MAIN and external 
references to other modules will generate address 
references in the MAP file. For Pascal programs, variables 
defined as PUBLIC and external references to other 
modules will generate address references in the MAP file. 

Only the first 16 characters of a public name are used by 
Periscope. Any characters beyond the 16-character limit 
are discarded. The programs TS.COM and RUN.COM read the 
first group of address entries in the MAP file-the one 
sorted by name. Any absolute references found in the MAP 
file are included, but are not relocated to the program's 
location. 

To generate line references in the MAP file, you'll need 
to specify a MAP file and the ILI option at link time. Not 
all compilers support the line number option. The ones 
that are known to support this option are: Computer 
Innovations C, IBM C, IBM Pascal, Lattice C, Mark 
Williams C, Microsoft C, Microsoft Pascal, and Microsoft 
FORTRAN. (Using TMAP-part of tDebugPlus by TurboPower 
Software, you can do source-level debugging of compiled 
Turbo Pascal programs.) Recent versions of the linker put 
the module name in the line number section of the MAP 
file. If this information is available, Periscope extracts 
up to 12 characters of a module name and extension for 
use with the MP and MX aliases. See Chapter V for more 
information. 

The line references generated by TS.COM and RUN.COM 
have a single-character alphabetic prefix, followed by the 
actual line number. The alphabetic prefix starts at A and 
is incremented for each module found in the MAP file. For 
example, line 10 of the first module is referenced as 
AlO, and line 20 in the second module is referenced as 
B20. The first 26 modules are referred to as A through Z. 
Subsequent modules are referred to as AA through AZ, BA 
through BZ, etc. 

If you have some symbols that you don't want to see, 
edit the MAP file and insert braces as desired to turn off 
symbol generation. A left brace (0 turns symbol 
generation off, and a right brace ()) turns it back on. Be 
careful when saving the MAP file-don't let any TABs or 
high bits into the file. 

Large MAP files are relatively slow to load, since 
RUN.COM must extract the symbols each time the 
corresponding program is executed. To reduce the load 
time for large symbol tables, enter 'TS progname/S' to 

Periscope Utilities 9-13 



analyze the MAP file and create a file of the form 
progname.PSS that is a memory image of the symbol table 
for the program. 

When RUN is executed. it first looks for the PSS file. If 
the PSS file is found. it is used for the symbol table. If 
no PSS file is found. the MAP file is used. Be careful-if 
you have created a PSS file and then re-link the program 
without creating a new PSS file. the old PSS file will be 
used. It's a good idea to create the new PSS file from 
the batch file used to compile and link your program. 

If the PSS file is too big to fit in the space allocated by 
Periscope. no symbols will be loaded. This is in contrast 
to the MAP file, where the symbol table may be partially 
loaded before an error occurs. 

Periscope supports Digital Research's LINK86 (version 1.3) 
and Phoenix's PLINK (version l.4x). Since RUN knows 
nothing about the formats used by these two linkers. 
TS.COM must be used to generate a PSS file for both of 
them. 

For LINK86. enter 'TS progname/D/S'. The ID option tells 
TS that the input file was generated by DRI's linker. The 
presumed input file extension for this option is SYM. not 
MAP! The IS option tells TS to write the PSS file to disk. 
for later use by RUN. At link time. be sure to specify a 
SYM file. Line numbers are not available as symbols for 
LINK86. 

For PLINK. enter 'TS progname/P/S'. The IP option tells 
TS that the input file was generated by Phoenix's linker. 
The presumed input file extension for this option is MAP. 
The IS option tells TS to write the PSS file to disk. for 
later use by RUN. At link time. be sure to specify a MAP 
file and the G report (all symbol information is read from 
the G report). This method can be used starting with 
PLINK 1.30. but does not support line numbers. 

To get all possible symbols with PLINK. enter 'TS 
progname/Q/S'. The IQ option tells TS to use the EXE file 
for all symbols. The IS option tells TS to write the PSS 
file to disk. for later use by RUN. At link time. be sure 
to specify 'SYMTABLE' as a linker directive. This method 
can be used starting with PLINK 1.40. 

TS.COM also supports the CWare (DeSmet) and the Manx 
(Aztec) C compilers. Use the IC option to read a CWare 
MAP file. The CS segment is set to zero and the DS 
segment is set to FODOR. You'll need to use the 
Periscope IS command to relocate DS symbols to the 

9-14 Periscope Utilities 



appropriate location. To read a Manx SYM file. just use 
the I M option. 

The 'filter' option is used to filter out a single leading 
character from symbol names. For example. Microsoft C 
uses leading underscores on public symbols. If you use 
'IF '. TS.COM will remove the first leading underscore 
found on each symbol. 

USEREXIT .ASM and USEREXIT .COM 

This sample program illustrates Periscope's ability to 
perform user-written code. User-written code can be used 
to perform breakpoint tests (see the BU command) and 
user exits (see the /U command). 

The user-written code is installed as a memory-resident 
program using an available interrupt from 60H to FFH. 
The program must be installed before PS.COM is run. Also. 
the PS.COM installation option /I:nn must be used. where 
nn is the interrupt vector used to access the user-written 
code. A signature of 'PS' must be present in the resident 
routine in the word preceding the interrupt entry point. 

The registers used on entry are: 

AH-Contains the breakpoint test number of one to eight 
or the user exit number of nine to FFH. 

AL-Always zero. 

DS:SI-Points to Periscope's data area (see the file 
USEREXIT.ASM for the layout of the table). This table 
contains the values of various variables used by 
Periscope. Any changes to the variables in this table are 
passed back to Periscope. 

ES:BX-Points to a user service routine in Periscope. This 
routine is accessed via a far call. Register AH is used 
to indicate the function desired. When using this routine. 
all registers are preserved. The functions available are: 

• AH=l-Display nul-terminated string starting at DS:SI. 
This function uses the standard Periscope display handler 
to display a string on the screen. The maximum length of 
the string is 83 characters. including a carriage return. 
line feed. and nul. The string must end with a nul 
(binary zero)! 

Your suggestions for additional routines are welcomed. 

Periscope Utilities 9-15 



On return from a user breakpoint, register AL should be 
set to a binary one to indicate a hit. Any other value 
indicates that no breakpoint is to be taken. 

On return from a user exit, register AL indicates whether 
the exit code has set a command to be executed by 
Periscope. If AL equals 2, Periscope reads the command 
line passed back from the user exit. The command line 
must start with a semi-colon and end with a carriage 
return. A user exit may use BIOS functions as desired. 
Periscope assumes any screen output is done via the 
user service described above-the cursor is no longer 
moved to the bottom of the screen on return from a user 
exit. 

Do not attempt to perform DOS functions from user-written 
code-DOS may be busy! You do not need to preserve the 
values of any registers other than SS and SP on return to 
Periscope. If your routine needs more than 32 words of 
stack space, switch to an internal stack, but be sure to 
switch back to the original stack before returning. 

To install USEREXIT.COM, run the program from DOS. Then 
install PS.COM using the installation option /1:60. When 
Periscope is active, try using BU 1 and then GT to get to 
a point where DOS is not busy. Try IU 9 as an example 
ofa user exit modifying the command line. If you have 
an 8087 or an 80287, try IU 87 to display the numeric 
processor status. 

9-16 Periscope Utilities 



X-Technical Notes 

• Debugging Theory 

• NMI Use 

• CPU Differences 

• DOS Notes 

• Debugging Techniques 

• Debugging Device Drivers And Non-DOS Programs 

• Debugging Hardware Interrupts 

• Periscope Internals 

• The Periscope I Board 

• The Periscope III Board 

• The IBM Enhanced Graphics Adapter 

Debugging Theory 

The 8086 processor family provides two built-in functions 
that aid the debugging process. These are the breakpoint 
and single-step capabilities. 

The breakpoint capability uses a special single-byte code 
to indicate that a breakpoint is to be taken. This opcode 
causes the system to perform an Interrupt 3 when the 
first byte of an instruction equals CCH. This is the 
facility used by the Go command in Periscope. for both 
the temporary and sticky code breakpoints. 

Technical Notes 10-1 



When Periscope sets a code breakpoint, the original byte 
is saved in an internal table and a CCH is inserted in 
its place. For this reason, it is not possible to set a 
code breakpoint in ROM or other unmodifiable memory. 

When the breakpoint is taken, Periscope is entered 
through a special entry point. The use of this entry point 
signals Periscope to reverse out any code breakpoints 
that are currently set and then decrement the instruction 
pointer {IP) by one to show the correct instruction. 

If an unexpected instruction contains a CCH in the first 
byte, Periscope is unable to reset the instruction to its 
prior value and will disassemble the instruction as INT 3. 
You will need to manually alter the byte or modify the IP 
register to continue execution of the program being 
debugged. 

Single-step is the other type of 8086 breakpoint. It is 
set by modifying the trap flag to indicate that every 
instruction should be trapped. If this flag is set, the 
system performs an Interrupt 1 before the execution of 
each instruction, allowing you to single-step through a 
program. The trap flag is used by Periscope for the GA, 
GT, J, and T commands. 

If an instruction outside Periscope clears the trap flag, it 
causes any tracing currently underway to be turned off. If 
an instruction external to Periscope sets the trap flag 
unexpectedly, Peri scope ignore sit. 

Since Periscope cannot be used to trace itself, it is not 
possible for it to trace the execution of Interrupts 1, 2, 
or 3 or any other interrupts that point to Periscope. 

Some programs may use Interrupts I, 2, or 3 for their 
own purposes. Periscope normally refreshes these vectors 
each time it is activated, but you can override this 
refresh procedure. Call Tech Support at 404/256-3372 for 
more infolmation. 

NMI Use 

All models of Periscope except Periscope II-X make use 
of Interrupt 2, the non-maskable interrupt (NMI). This 
interrupt is used by the break-out switch to gain control 
of the system and enter Periscope. Some systems do not 
support the use of NMI, since it is either not available 
on the system bus or is used by some other system 
function. 

10-2 Technical Notes 



Three computers that don't support NMI on the bus are 
the Tandy 1000, Cordata PC, and the IBM Convertible. The 
most common use of NMI is to emulate a 6845 CRT 
controller on some of the non-standard display adapters. 
For example, EGAs made by Paradise Systems, Quadram, 
and Video 7 allow emulation of various display modes. 
This is achieved using software that is activated via an 
NMI. Other boards by Paradise Systems and Sigma Designs 
also use NMI. Luckily, the use of NMI by most of these 
boards can be turned off so that there is no conflict with 
Periscope's break-out switch. 

Generally, you can load Periscope after the emulation 
code is loaded, or disable the emulation. If the device 
reasserts NMI periodically, you may have problems using 
the break-out switch. If you're programming the CMOS RAM 
on an AT, configure Periscope as Model II-X so Periscope 
won't use port 70H. 

If you're using a Compaq Deskpro 386, note that the 
original version of the CEMM device driver intercepts INT 
2 (NMI) during its execution. If you press the break-out 
switch during this period, the driver displays a message 
that says "Press any key to reboot". Compaq is working 
on a solution to this problem. 

CPU Differences 

If an 8087 is used with interrupts enabled, an error will 
cause an NMI. Since Periscope uses the NMI, the 
debugger screen is displayed. Since the 8087 may 
interrupt the 8088 at any point, CS:IP may contain any 
value. The 80287 does not use the NMI, so an error will 
not invoke Periscope. 

Many PCs and XTs have an early version of the 8088 CPU 
that has a serious bug. This version can be identified by 
the copyright date of 1978 shown on the chip. The defect 
in these CPUs is that the instruction after an instruction 
that changes the stack segment is not protected from 
being interrupted. The defined method for changing the 
stack is to change the stack segment and then 
immediately change the stack pointer. If this process is 
interrupted, the stack may be in no man's land-the 
beginning of a system hang. The fix is to get the later 
chip-identified by copyright dates of 1978 and 1981. At 
install time, Periscope checks for a defective 8088-if 
one is found, Error 65 is displayed. 

On a correctly functioning 8088, any instruction that 
modifies any of the segment registers protects the next 
instruction from being interrupted. This is a bit of 

Technical Notes 10-3 



overkill, since changes to DS, ES, and CS do not need 
the protection that stack changes require. This is why 
you'll notice that Periscope skips instructions while 
tracing through an instruction that modifies a segment 
register-the instruction was actually executed, but it was 
invisible to Periscope. Be careful not to use Periscope's 
Go command to stop in the middle of a stack changeover, 
since this can cause the same problem as the defective 
8088. 

The NEC V20 and the 80C88 go even further than the 
8088-they also protect the instruction after a read of the 
segment registers, except for POP instructions. For 
example, the V20 protects the instruction after MOV AX,ES, 
while the 8088 does not. 

On the 80286, the instruction protection for changes to 
segment registers applies only to the stack 
segment-instructions that change DS, ES, or CS do not 
protect the next instruction. Still, be careful not to use 
the Go command to stop in the middle of a stack change. 

For the 80286, Periscope may be used in real (8086) 
mode only. The exception interrupts 6 (invalid opcode) 
and ODH (segment overrun) are intercepted by Periscope 
with CS:IP pointing to the offending instruction. If the 
code segment of these interrupts points to memory below 
PS.COM when it is installed, no change is made to the 
interrupt since it is already in use. Avoid use of 
hardware interrupt IRQ 5 (INT ODH) on an AT for such 
things as a mouse, since a segment overrun that occurs 
when this interrupt does not point to Periscope will hang 
your system. If you get an exception interrupt, chances 
are good that the system is severely corrupted-a reboot 
is generally recommended. 

DOS Notes 

If you're using DOS 2.00 or 2.10, you should be aware of 
bugs in DOS that can cause problems. The bugs involve 
improper changes to DOS's stack where the SP register is 
modified before the SS register. This can cause problems 
when the break-out switch is pressed at just the right 
time or when you attempt to trace through DOS. PC Tech 
Journal published the patch for DOS 2.10 in the November 
1984 issue. The same principles apply to DOS 2.00, 
although the addresses are different. If possible, use a 
later version of DOS-the bugs are fixed in DOS 3.00. 

Under some versions of DOS (e.g., 3.10), DOS decides 
whether a program is an EXE based on the first two bytes 
in the file, not the file extension. This can cause 

10-4 Technical Notes 



problems with RUN.COM, since it assumes that a file with 
a .COM extension is really a COM file. If the extension is 
.EXE, RUN confirms that the first two bytes indicate an 
EXE file. 

If you're using DOS 3.2, note that DOS modifies INT 2 
(NMI) after CONFIG.SYS time. To prevent the modification 
of INT 2, patch IBMBIO.COM at offset BODH. 

So that Periscope can perform file I/O safely, it checks 
the undocumented, but reliable, in-DOS flag. This byte 
contains zero if DOS is not busy. Periscope also checks 
to see that interrupts are enabled, to be sure that DOS 
was interrupted at a safe point. The location of the in
DOS flag can be found by performing INT 21H with 
AH=34H. ES:BX returns the address of the flag. If you 
want to perform file I/O and Periscope is telling you that 
DOS is busy, get CS:IP back to your code and try again. 
Do not attempt to modify the in-DOS flag or the interrupt 
flag in order to fool Periscope-you can get a garbled 
disk directory very easily. To make DOS not busy, you 
can use the user breakpoint in the sample program 
USEREXIT.ASM (See Chapter IX for more information). 

Starting with DOS 3.20, Interrupts I, 2, and 3 are changed 
by DOS on a short boot. This can complicate matters if 
you're trying to use the break-out switch across a short 
boot. You'll need to patch DOS or better yet, reset the 
vectors to point to Periscope. 

Debugging Techniques 

While Periscope is active, the BIOS interrupt vectors it 
uses are reset to point to BIOS unless the /V installation 
option was used. To access some memory-resident 
programs while Periscope is active, you may have to use 
some of these options. For example, a program that 
displays the time may use interrupt lCH. Unless you 
specify /V:IC when PS.COM is run, the clock program 
won't be active when Periscope is. Be aware that each 
/V option used reduces Periscope's dependability, since 
the interrupt vector is left pointing to RAM that can be 
corrupted. If you're having problems running some 
software with Periscope, check the interrupt vectors using 
INT.COM (see Chapter IX) and see the known conflicts in 
the description of the /V installation option (Chapter VI). 

Avoid debugging with ill-behaved resident programs in the 
system. While you can debug with these types of 
programs in the system, they can often muddy the 
waters-making it much harder for you to see just what 
your program is doing. 

Technical Notes 10-5 



When you press the break-out switch to stop the 
execution of a program, chances are very good that you'll 
stop the machine in either BIOS or DOS. If you want to 
get back to your program, use the Go command to execute 
to a known point in your program. If that's not possible, 
try using the Register breakpoint. Enter 'BA ", to clear 
any breakpoints currently set. If you know your program's 
Code Segment, enter 'BR CS EQ nnnn' to set a Register 
breakpoint when CS equals the desired value. If you 
aren't sure, use 'BR CS NE CS' to set a breakpoint when 
the Code Segment changes from its current value. Then 
enter 'GT' to continue execution with the Register 
breakpoint set. This will usually get you back to the 
program, or at least from BIOS to DOS or vice-versa. If 
you're debugging a program that has line numbers as 
symbols, use the BL breakpoint to get back to your code. 

To repetitively trace an instruction, enter the Go command 
once and then repeat it using F4. For example, if you 
want to watch the execution of the instruction at offset 
ll0H, enter 'G 110' and press return. Then press F4 to 
repeat the Go instruction as many times as desired. 

To debug a memory-resident program, use RUN to load the 
prog-ram and its symbol table. The program will be loaded 
in the same location as if it were run directly from the 
DOS prompt. Enter 'G' to install the program and return to 
the DOS prompt. Until RUN is used to load another 
program, the symbol table will remain available-ready for 
you at a push of the break-out button! 

If you're programming in assembler, use the PUBLIC 
program described in Chapter IX to get symbolic access 
to as much of your program as possible. The more 
symbols you use, the easier it is to debug your 
programs. 

Microsoft compilers can place data (pseudo-code) after 
interrupts 34H through 3DH to emulate the 8087 numeric 
processor. When disassembled by Periscope, the data 
following the interrupt causes the disassembly to be 
garbled. To prevent execution of data, the Jump command 
traces interrupts in the range from 34H to 3DH. 

If you're programming in C using a compiler by Computer 
Innovations, CWare, IBM, Lattice, Manx, Mark Williams, or 
Microsoft, you can get debugging information such as line 
numbers and address references in your MAP file by using 
compile-time options provided with these compilers. By 
defining variables outside the MAIN, you can cause 
address r"eferences to be generated for program variables. 
At link time, be sure to specify a MAP file and the /Ll 
and/or /M options for full symbol support. No source-

10-6 Technical Notes 



level support is available for the CWare or Manx 
compilers. 

If you're programming in Microsoft BASIC. FORTRAN. or 
Pascal. the addresses in the MAP file that reference data 
variables will be incorrect. These compilers generate 
false segments for DGROUP data. The actual segment used 
depends on the amount of memory available at run time. 
To correct the false segments. do the following: 

• Use RUN to load the program. then execute the program 
until DS is modified. The best method is to go to the 
first line in the source program. using the symbol for the 
line number. The value of DS at this point is the correct 
segment . 

• Display a known data symbol using the Display 
command. The segment associated with the symbol is the 
invalid segment . 

• Enter' IS xxx x yyyy' where xxxx is the invalid (old) 
segment and yyyy is the correct (new) segment. This will 
change all occurrences of segment xxxx in the symbol 
table to yyyy. 

Note: This problem is corrected in version 3.3 of 
Microsoft Pascal and FORTRAN. 

If you're calling assembly-language subroutines from a 
high-level language. Periscope can be used to trace 
through the execution of the subroutine to verify that it 
is operating correctly. If the subroutine is linked to a 
compiled program, simply use G SUBNAME, where SUBNAME 
is the name of the subroutine. If the subroutine is being 
called from an interpretive language such as BASIC. 
modify the subroutine so that the first byte contains CCH. 
Then when the subroutine is executed. the breakpoint 
(CCH) will activate Periscope. At that point, you can 
modify the instruction to be a NOP (no operation) by 
using E CS:IP 90 or skip to the next instruction by using 
R IP IP+1. 

Avoid debugging packed EXE files-you'll have to trace 
through the header before your program is unpacked and 
available. If you must debug a packed EXE, use RUN to 
load the program. use G to start execution. press the 
break-out switch, and then start debugging. 

If the debugger screen is garbled. use K or KI to clear 
the screen or initialize the screen, respectively. 

Technical Notes 10-7 



Debugging Device Drivers And Non-DOS Programs 

If you're debugging device drivers, see the description of 
SYSLOAD.SYS in Chapter IX. This utility lets you load 
Periscope or any other COM file at CONFIG.SYS time. 

For non-DOS or pre-DOS programs, install Periscope 
normally, then press the break-out switch to get into the 
debugger. Then enter 'QS' to perform a short boot. This 
technique can be used to cross-boot into another 
operating system, a non-DOS environment such as a self
contained program, or back into DOS. 

The short boot performs an INT 19H, and leaves NMI (INT 
2) intact, except when DOS 3.20 is used (see DOS Notes 
above). If you are debugging non-DOS or pre-DOS 
programs, you can use the break-out switch after a short 
boot to get back into Periscope. If the timing is critical, 
embed an INT 2 or INT 3 in the code itself. 

Periscope I and III use RAM external to the Periscope 
board when the protected memory overflows. When 
performing a short boot, be aware that any external 
tables are no longer an extension of DOS and may be 
used by another program or garbled during the boot 
process. For best results, use either the /Z installation 
option to suppress external tables or use the /L 
installation option to place the external tables in the 
middle of memory. 

+ For Periscope II and II-X, all code and data areas are 
in normal RAM and the /Z installation option is not 
available-use the /L installation option instead. 

Debugging Hardware Interrupts 

To debug hardware interrupts, the code should be in RAM 
so that you can set code breakpoints in the interrupt 
service code. Periscope's T, GA, or GT commands will not 
trace into hardware interrupts such as the Timer tick (IRQ 
0) and the Keyboard (IRQ 1), so you must set a code 
breakpoint in the service code to be able to stop in the 
interrupt code. Once stopped, you can trace through the 
code as desired. 

+For serious hardware interrupt work, you need Periscope 
III to be able to see just what happens when your code 
runs. 

If Periscope must issue a non-specific End of Interrupt 
(EO!) to clear interrupts, a message of the form 'EOI 

10-8 Technical Notes 



issued for IRQ x' is displayed, where x is zero for the 
timer and one for the keyboard, respectively. The EOI is 
one of the few things that Periscope cannot undo when 
control is returned to your program, so you may want to 
use a semaphore mechanism to keep your code from being 
re-entered while being debugged. 

On AT-class machines, EO! is used for IRQ 0 and 1 only, 
but on a PC-class machine, Periscope may issue an E01 
for any IRQ level. 

Periscope Internals 

Periscope uses Interrupts 1 (single-step), 2 (NMI), and 3 
(breakpoint). If the system is an AT-class machine, 
Periscope may also intercept Interrupts 6 (invalid opcode) 
and DH (segment wrap-around). Interrupts 5, 9, and ISH 
can be used by the PSKEY.COM program (see Chapter IX). 

The data fields used by Periscope are located at the 
beginning of the protected memory. The record definition 
PSDATA in the file PS.DEF contains the most useful of 
these data fields. The source file contains comments 
describing the various fields in the record definition. To 
display Periscope's data area assuming the default 
memory address of DOOO:OOOO, enter 'DR DOOO:O PSDATA'. 

+ For Periscope II and II-X, enter 'DR xxxx:lOO PSDATA', 
where xxxx is the starting segment for Periscope's 
tables. (The segment used by INT 3.) 

The Periscope I Board 

The current board (Rev 2) uses 56K of memory and two 
consecutive I/O ports. The memory is configured as seven 
chips of 8K-by-8 static RAM, with a cycle time of 150 NS 
or less. The starting address of the memory is switch
selectable to any 64K boundary. The starting I/O port is 
switch-selectable to any 4-byte boundary. The board 
draws approximately 2 watts of power. See Chapter III for 
information on the switch settings. The original 16K board 
(Rev 1), where the memory is configured as 8 chips of 
2K-by-8 static RAM, cannot be used with software after 
version 2.1x. 

The memory is write-enabled when the value DBH is 
output to the first of the two ports. Any other value 
output to this port write-protects the memory. When the 
break-out switch is pressed, an NMI is generated. 
Periscope detects that the switch was pressed by 

Technical Notes 10-9 



checking the high bit read from the second I/O port. If 
this bit is on, the switch was pressed, otherwise the 
switch was not pressed. To clear the switch and NMI, 
output any value to the second port. Clear the switch and 
NMI near the end of your program using the code shown 
below. 

mov dX,301h 
out dX,al 
in al,61h 
jmp short $+2 
mov ah,30h 
or al,ah 
out 61h,al 
jmp short $+2 
not ah 
and al,ah 
out 61h,al 

assumes Periscope port is 300h 
clear the break-out switch - any value in al is ok 
enable nmi 
delay for 286 
use 30h if pc or xt, 0ch if at 

delay for 286 

The Periscope III Board 

The current board (Rev 1) uses 64K of memory and four 
consecutive I/O ports. The memory is configured as eight 
chips of dynamic RAM, with a cycle time of 150 NS or 
less. The starting address of the memory is switch
selectable to any 64K boundary. The starting I/O port is 
switch-selectable to any 4-byte boundary. The board 
draws approximately 7 watts of power. See Chapter III for 
information on the switch settings. 

Since the Periscope III board does not latch NMI, the 
first two lines of code shown above may be omitted when 
clearing NMI. 

The IBM Enhanced Graphics Adapter 

The /V:I0 installation option is no longer needed if an 
EGA is present. Since the EGA uses memory from AOOO:O 
through COOO:3FFF, don't try to use this range of memory 
as protected memory when an EGA is present. 

Periscope supports the EGA's new video modes, including 
those using segments other than BOOOH and B800H. For 
single-monitor systems, a maximum of 32K of the screen 
buffer is saved and restored by Periscope. If you're using 
the new graphics modes of the EGA, you'll need a dual
monitor system to save the full graphics image. 

If you plan to use the EGA's extended palette capabilities 
on a single-monitor system, be sure to use the extended 
save area (via SAVE PTR as described in the EGA BIOS 
listing). This RAM data area is updated when the palette 
or overscan is set, allowing Periscope to restore the 
original palette when returning to your program. There are 

10-10 Technical Notes 



two problems with using this save area, however. First, 
the save /restore of the palette registers is incredibly 
slow. Second, the overscan or border color is not saved 
in a consistent location. If you use the 'set overscan' 
function (INT lOH, AH=lOH, AL=l), the color is saved in 
a different location than if you use the 'set all palettes 
and overscan' function (INT lOH, AH=lOH, AL=2). For use 
with Periscope, the latter call should be used. The best 
bet for using an EGA is to have a two-monitor system. If 
you use a single-monitor system, remember that the 
maximum screen size that can be saved and restored by 
Periscope is 32K. 

Periscope has limited support of the EGA's 43-line mode. 
See the description of the /43 installation option in 
Chapter VI. 

Technical Notes 10-11 



10-12 Technical Notes 



XI-Using Periscope III 

• Introduction to Periscope III 

• Capabilities 

• Compatibility And Other Caveats 

• Hardware Breakpoint Examples 

Introduction to Periscope III 

Periscope III is a powerful hardware-assisted debugger 
for use in IBM PC, XT, and AT-class machines. Its 
commands are a superset of the normal Periscope 
commands, so it provides both the capabilities of 
existing models of Periscope plus its own special 
hardware capabilities. 

The Periscope III board monitors the system bus, 
watching for user-specified breakpoints to occur while 
the test program is running at full speed. These 
breakpoints can be set on memory reads and writes, code 
prefetch, I/O port reads and writes, DMA activity, and 
may be further qualified by data values and/or a pass 
counter. When the board detects that a breakpoint has 
been reached, it generates an NMI which activates the 
resident Periscope software. 

The board requires a full-length slot. If it is installed in 
an AT-class machine, the slot must be a 16-bit slot. An 
umbilical socket is provided that must be installed in the 
8087 or 80287 socket. (This umbilical socket does not 
preempt the use of a numeric processor.) Periscope III 
works on the IBM PC, XT, and AT, and the Compaq 8088 
and 80286 machines at processor speeds up to 8MHz. 
(Note: a 10MHz version is also available.) Machines that 
the board does not support are the IBM XT/286, the IBM 
System/2 series, the Compaq 8086 Deskpro, the Compaq 

Using Periscope III 11-1 



80386 Deskpro, the AT&T 6300 and 6300 Plus, systems 
using an add-in 'turbo' card, and zero wait-state 
machines. 

Capa bili ties 

The Periscope III board has three major modules: 

• Protected program memory 
• Hardware breakpoints 
• Real-time trace buffer 

The protected program memory is 64KB of write
protected RAM. This memory is like the protected memory 
in Periscope I; it is used for Periscope's code and data. 
As much of Periscope's tables as will fit are located in 
this memory. Any tables that do not fit in the protected 
memory are located as low as possible in DOS memory. 
The protected memory is normally addressed at segment 
DOOOH, but can be moved to another address if needed. If 
there is a conflict with other memory in the system, 
Periscope's program memory can be disabled via jumper 
J3. (When the shunt block connects the top two pins of 
J3, the program memory is disabled; when it connects the 
lower two pins of J3, the memory is enabled.) 

The hardware breakpoints available include: 

• Memory access (read, write, DMA, code prefetch) 
• I/O Port access (in or out) 
• Data values and/or data bit mask (on the high and/or 
low bus) 
• Pass counter 

Memory breakpoints can be set on up to 16 ranges from 
0000:0000 to FOOO:FFFFH. For an AT-class machine, 
breakpoints can also be set on memory ranges beyond the 
first megabyte. The qualifiers available for memory 
breakpoints include memory read, memory write, DMA, and 
code prefetch. The memory breakpoints are bit-mapped 
(using 128KB of local memory on the Periscope III 
board)-allowing every byte in the first megabyte to be 
individually addressed. 

Port breakpoints can be set on up to 16 ranges from zero 
to FFFFH, although the ports fully supported by the PC 
are from zero to 3FFH. The qualifiers available for port 
breakpoints include I/O read and I/O write. The port 
breakpoints are bit-mapped, allowing every port in the 
64K range to be individually addressed. 

11-2 Using Periscope III 



Data breakpoints can be set on the low (8-bit) bus and 
on the high (16-bit) bus if an AT-class machine is used. 
Data breakpoints are used to qualify a memory or port 
breakpoint-no breakpoints are possible on data values 
only. Data breakpoints can be set on up to 16 ranges 
from zerq to FFH. A bit mask may be also be used to 
indicate desired data values. Bit values of zero, one, or 
'don't care' are all supported. 

The pass counter is used to interrupt the executing 
program after the indicated number of breakpoints has 
occurred. The default pass count is I, which causes an 
interrupt on the first breakpoint. The value of the pass 
counter may be from one to FFFFH. If the memory, port 
and/ or data values found on the current bus cycle would 
cause a breakpoint, the internal pass counter is 
decremented. When the pass counter reaches zero, an 
interrupt is generated. 

The real-time trace buffer is a circular buffer that 
captures up to 8,192 (8K) bus events. Each bus event 
'record' is 48 bits wide, which includes the 20- to 24-
bit bus address, 8- or 16-bit data for the bus cycle, bus 
status bits (I/O read, I/O write, memory read, memory 
write, code prefetch, and DMA), and an external probe bit. 
(When the two pins of jumper J2 are connected, the 
'Probe' indicator is shown in the trace buffer.) The buffer 
can be displayed in three formats-a raw dump that shows 
the address, data, and status information for each cycle, 
a disassembly mode that uses the prefetch cycles found 
in the buffer to show only instructions, and a 
combination of the above two, which shows a mix of 
instructions and the data accesses performed by the 
instruction stream. 

Once the Periscope software is loaded, the buffer is 
updated after each bus cycle, even if you're not 
debugging. This means that you can press the break-out 
switch any time to see what's been happening. Also, if 
you should ever get an exception interrupt, just look in 
the trace buffer to see where things went awry. 

A breakpoint option is available to stop program 
execution when the trace buffer is filled, allowing you to 
examine the execution flow of a program starting at a 
known point and stopping after 8,192 bus events have 
occurred. Also, a selective trace capability is available 
that lets you capture just trigger events in the trace 
buffer - useful when you need to capture multiple 
widely-spaced events in real-time. 

The trace buffer can be set to show the events leading 
up to a breakpoint in three different methods: up to 8K 

Using Periscope III 11-3 



events before the breakpoint; up to 4K events before the 
breakpoint and 4K events after the breakpoint; or 8K 
events after the breakpoint. For real-time applications, 
these capabilities are extremely valuable, since you can 
see how your program got where it did plus where it 
went afterwards! 

Using the above breakpoints, it is possible to trap 
complex events. For example, if you need to watch for 
the fifth time the character '%' is displayed anywhere on 
the monochrome display, set a breakpoint for: memory 
writes to the screen (BOOO:OOOO to BOOO:OFFF); data 
equaling the percent sign; and the pass counter equal to 
five. 

Since some conditions are not visible from the system 
bus, we've implemented a hardware / software combination 
breakpoint in Periscope III. Using this capability, you can 
execute at full speed until a hardware breakpoint is 
reached, then drop into software to evaluate a condition. 
If the software condition gives a 'hit', Periscope's screen 
is displayed, otherwise full speed execution continues. 
For example, if your program is zapping low memory, set 
a memory breakpoint to trap any writes to the desired 
range. This breakpoint alone will probably get some false 
hits, since DOS and other programs could be legitimately 
writing into the specified range. If you set a software 
test that the code segment must be equal to your 
program's code segment, then all writes other than those 
done by your code are filtered out. This technique runs 
your program at something less than 100% full speed, but 
since the software is activated only when there's a 
hardware hit, the effective speed is rarely less than 99%. 
See the description of the GM command in Chapter VII for 
more information. 

Compatibility And Other Caveats 

When designing a product as complex as Periscope III, 
some tradeoffs are required. To make the board work on 
both PC- and AT-class machines, the board has to get 
the majority of its signals from the system bus. The only 
signal used by the board that is not available on the bus 
is the line that indicates whether a memory read is an 
instruction fetch. This signal is the one picked up by the 
umbilical socket from the numeric processor (using pin 26 
on the 8087 and pin three on the 80287). Accessing 
signals from the bus works fine as long as the bus is 
used per IBM's design. Some computers, notably the 8086 
and 80386 Deskpros and the AT&T 6300 and 6300 Plus, 
have a non-standard bus or don't put all signals on the 
bus, and therefore do not work with Periscope III. 

11-4 Using Periscope III 



Periscope III is necessarily more sensitive to the bus 
structure than other add-in cards since its job in life is 
to monitor bus transactions-if some of these transactions 
are not present on the bus or are othetwise different from 
the IBM standard. Periscope III cannot work properly. 

One area to watch is the setting of data breakpoints. If 
you use a PC-class machine. just remember that all data 
breakpoints use low. or 8-bit memory. If you use an AT
class machine. things are much more complicated. 

An AT-class machine has both 8-bit and 16-bit memory. 
Eight-bit memory includes such things as display 
adapters. the protected memory in Periscope. and other 
cards that work in PC-class machines as well as AT
class machines. For these devices. all memory access is 
via the low or 8-bit bus. a byte at a time. 

The other memory in an AT-class machine. including all 
DOS memory and ROM BIOS. is 16 bits wide. This memory 
can be accessed either a byte or a word at a time. How 
it is accessed affects how the data appears on the bus. 
The most efficient method is to access a word at an 
even address. This will read two bytes in one bus cycle. 
with the low (even) byte appearing in the low bus and 
the high (odd) byte appearing in the high bus. 

If a word is accessed starting at an odd address. the 
read or write is split into two bus cycles. with the first 
cycle accessing the low (odd) byte on the high bus and 
the second cycle accessing the high (even) byte on the 
low bus. If a byte is accessed starting at an odd 
address. the high bus is used. If an even-addressed byte 
is accessed. the low bus is used. 

Just remember this: 8-bit accesses are always on the 
low bus. For 16-bit accesses. even addresses are on the 
low bus and odd addresses are on the high bus. 

The table below shows the possible permutations: 

Environment Low bus High bus 
----------------
PC or XT X 
AT a-bit memory X 
AT 16-bit memory 

even byte X 
even word LO HI 
odd byte X 
odd word HI(2) LO(1) 

On an AT-class machine. a breakpoint set at an odd 
address in 16-bit memory causes Periscope to issue the 
message 'Warning - Odd low address may cause missed 
breakpoint'. since a word access of the preceding (even) 

Using Periscope III 11-5 



word would not indicate the affected address! You can 
safely ignore this warning when you're sure that access 
will start at the odd address-otherwise you should adjust 
the breakpoint address to the next lower even address. 

To determine which memory in an AT-class machine is 8-
bit and which is 16-bit. Periscope tests memory at 4KB 
intervals at install time and builds a control table 
containing this information. Unfortunately. it is not 
possible to test the I/O ports-Periscope must assume 
that all I/O ports are 8-bit devices. 

When a byte access is made to an odd address in 16-bit 
memory, the low data bus will usually contain data from 
the previous bus cycle. 

There is a phenomenon called 'breakpoint overrun' that 
occurs with all hardware breakpoint devices. Between the 
time a breakpoint is detected and the time the processor 
is stopped with an NMI, one or more instructions are 
executed. When looking in the traceback buffer with the 
'HR' or 'HS' commands. the last bus cycle shown is the 
one that caused the interrupt to occur. The 'HT' and 'HU' 
commands show the instructions being executed or about 
to be executed when the breakpoint occurred. In any 
event, expect that several instructions will have been 
executed since the breakpoint occurred. For this reason. 
it is pointless to set a hardware breakpoint watching for 
an instruction that overwrites the NMI vector - use 
Periscope's BM command for this job. 

Note: Don't reboot the system using Ctrl-Alt-Del when the 
board is armed (i.e .• a GH or a GM command is in 
use)-if a breakpoint occurs during the boot, your system 
may hang. Go into PS and use any exit other than GH or 
GM to disarm the board. 

Hardware Breakpoint Examples 

• To break in BIOS, use 'HM * FOOO:xxxx Ll X;GH'. where 
xxxx is the desired IP in ROM. This will trap on a 
prefetch of the specified location-usually stopping when 
the instruction is about to be executed . 

• To trap set cursor calls. use 'HM 0:10*4 L3 R;BR AH 
EQ 1 ;GM'. This traps access to the video interrupt (INT 
10H) and then tests register AH. If the register is equal 
to one, Periscope's screen is displayed, otherwise full
speed execution resumes. 

11-6 Using Periscope III 



• To trap writes to interrupt vectors by your program, use 
'HM 0:0 0:3FF W;BR CS EQ CS;GM'. If you use IBM's VDISK 
on an AT-class machine, avoid breakpoints on memory 
from 0:380 to 0:3FF since this range is used as the 
stack while the machine returns from protected mode. 

• If you suspect your program is underflowing its stack, 
use 'HM SS:O L3 W;GH' to trap writes to the bottom of 
the stack, assuming that the lower bound of the stack is 
at SS:O. 

• If you use Microsoft Windows ramdisk on an AT-class 
machine, set a breakpoint on reads of memory beyond the 
first megabyte using 'HC * Ml TC' and 'HM 0:0 1000:0 
R'. Then enter 'GH' and do a DIR of the ramdisk. 
Periscope will show a very interesting code sequence in 
the center of the trace buffer. 

• To debug across a short boot, arm the Periscope III 
board with GH and then restore all BIOS vectors (8, 9, 
10, 15, 16, 17, lC) to ROM and issue an 'INT 19'. 
Assuming NMI is left pointing to Periscope and Periscope 
is not corrupted by the boot, the breakpoint will re
activate Periscope. 

• To monitor interrupt usage, enter 'HM * 0:0 3FF RW' 
and then 'GH ;HS' . 

Using Periscope III 11-7 



11-8 Using Periscope III 



Appendix A-Error Messages 

• Error Messages 

The error messages generated by programs in this 
package are numbered. Each program has been assigned a 
range of numbers for easy cross-reference. The error 
numbers and corresponding programs are: 

01 through 39-resident portion of Periscope (PS.COM) 
40 through 69-transient or installation portion of 
Periscope (PS.COM) 
70 through 89-RUN.COM 
90 through 99-RS.COM 
100 through 109-TS.COM 
110 through 119-INSTALL.COM 
120 through 129-PUBLIC.COM 
130 through 139-SYMLOAD.COM 
140 through 149-INT.COM 
150 through 159-PSKEY.COM 
160 through 189-PSTEST.COM 
190 through 199-SYSLOAD.SYS 
200 through 229-PS3TEST.COM 

A list of the possible error messages and an explanation 
of each follows: 

01 Invalid command 
An unknown debugger command was entered. Enter '?' to 
display the commands available. 

02 Invalid/missing address 
An address was expected, but was not found or was 
found to be invalid. The address may be entered as a 
symbol (optionally preceded by a period) or a one- to 
four-digit segment, a colon, and a one- to four-digit 
offset. A register name may be substituted for the 
segment or offset. 

Error Messages A-l 



The segment and colon may be omitted from most 
commands. The offset must be present for all commands 
requiring an address. 

03 Missing segment 
Some commands that modify memory (Enter, Fill, and 
Move) require an explicit segment to reduce the chance 
of accidental memory modifications. Enter the segment as 
a number or register, or use a symbol for the address. 

04 Invalid/missing length 
The length argument was not found or was found to be 
invalid. If entered as 'L nnnn', the number nnnn must be 
greater than zero. If entered as an offset, the number 
must be greater than or equal to the first offset. If 
entered as a symbol, the symbol's segment must equal 
the first segment entered and the symbol's offset must be 
greater than or equal to the first offset. 

Note that the length argument is optional for the Display 
and Unassemble commands. The default length for these 
commands is SOH and 20H bytes respectively. 

05 Unexpected input 
After completion of a command, an unexpected entry was 
found. If multiple commands are desired, place a semi
colon between the commands. 

06 Missing list 
No list was found for the Fill or Search commands. These 
commands require a byte / string list. 

07 Missing quote 
The trailing single or double quote was not found for a 
list. 

08 Missing operator 
If the Hex arithmetic command was used, this error 
indicates the absence of an arithmetic operator between 
the two numbers. The valid operators are: +, - * and /. 

If the EA command was used, the alias name must be 
exactly two characters, followed by the one- to 16-
character alias, or followed by nothing to clear the alias. 

If the Byte breakpoint (BB), Register breakpoint (BR), or 
Word breakpoint (BW) command was used, this error 
indicates the absence of a test. The valid tests are: LT, 
LE, EQ, NE, GE, and GT, in upper or lower case. 

A-2 Error Messages 



If the Line breakpoint (BL) or eXit breakpoint (BX) 
command was used, this error indicates the absence of a 
plus or minus sign to enable or disable the breakpoint. 

If the BM, BP, HD, HM, or HP commands were used, this 
error indicates the absence of an operator after the 
range. For example, BP 300 303 is missing the In/Out 
operator. 

09 Number is not decimal 
The number entered when the translate decimal (XD) 
command is used must be in decimal format, with no 
punctuation. 

10 Invalid/missing number 
A required number was not found or was found to be 
invalid. The number must be from one to four hex digits 
or a valid register name. For some commands, the number 
is limited to two hex digits or the 8-bit registers. If part 
of a list, the number must be one or two digits and a 
register name cannot be used. 

11 Invalid/missing register 
The register name must be AX, BX, CX, DX, SP, BP, SI, DI, 
DS, ES, SS, CS, or IP. The 8-bit registers AH, AL, BH, BL, 
CH, CL, DH, and DL may also be used. The register name 
may be in upper or lower case. 

If this error occurs from the in-line assembler, it may 
mean that the register specified does not fit the 
instruction or is illegal (e.g., PUSH AL or POP CS). 

12 Invalid flag 
The valid flag names are OV, NV, DN, UP, EI, DI, NG, PL, 
ZR, NZ, AC, NA, PE, PO, CY, and NC, in upper or lower 
case. 

13 Too many breakpoints 
Too many breakpoints are set for the command. See 
Chapter VII for the limits for the command used. 

14 Invalid sub-function 
For commands using sub-functions, the sub-function must 
be entered immediately after the function. Enter '?' to 
display the commands available. 

15 Cannot trace INT 3 
An attempt was made to trace interrupt 3 using Periscope. 
This interrupt is off-limits, since, it points to Periscope 
and any attempts to have Periscope trace itself would 
result in total confusion. 

Error Messages A-3 



16 Cannot modify memory 
An attempt was made to set a Code breakpoint in memory 
that could not be modified. The memory is not present, IS 
read-only (ROM), or was not correctly updated with the 
CCH code needed for a Code breakpoint. 

17 Second address/port less than first 
The second address or port number used with the BM, BP, 
HM, or HP commands was less than the first number. 
Enter an address or port number greater than or equal to 
the first. 

For commands reqUIrIng a range, the second offset was 
found to be less than the first offset. For example, the 
command D 0:100 SO is invalid, since SO is less than 
100. 

18 Unknown symbol 
An unknown symbol was referenced. The symbol may be 
preceded by a period and must be followed by a delimiter 
such as a space, carriage return, or semi-colon. The 
maximum symbol length is 16 characters. Lower case 
input is converted to upper case before the symbol or 
record definition table (if DR is used) is searched. 

Line number symbols are of the form Xnn, where X is the 
module prefix (A for the first module in the link map, B 
for the second, etc.) and nn is the decimal line number. 
The line number does not have leading zeroes. For 
example, .A1 may be a valid line number, but .AOI is 
not. Note: Use a leading period if a symbol name could 
be interpreted as a hex number. 

To display the symbol names and addresses from the 
symbol table, use FS. To display the record definition 
table, use F7. 

19 Table full or invalid 
The record or symbol table was found to have a logical 
error or is completely full. Try using an undefined record 
or symbol in a display statement. If this error occurs, 
the table has a logical error, otherwise the table is full. 

If the table is invalid, chances are good that it has been 
garbled. For the symbol table, use the LS command to 
clear and reload symbols. 

20 DOS busy 
DOS function calls are used by the Load, Name, View, 
Unassemble Source, Write, Echo and DOS exit commands. 
Since DOS is not re-entrant, Periscope tests to be sure 
that DOS is available (not busy). This is done by 

A-4 Error Messages 



checking a flag set by DOS 2.00 and later versions. This 
flag must be zero, interrupts must be enabled, and the 
interrupt vector must equal its saved address for 
Periscope to allow DOS functions. If you receive this 
message, use the Go command to get back to your 
program's code and try the DOS function again. If you're 
in DOS, execute RUN.COM and try the DOS function again. 
For the LA and W A commands, Interrupt vectors 25 and 26 
must contain the same address as when PS.COM or 
RUN.COM was run. 

21 Not enough memory 
Insufficient memory is available to perform the Load or 
eXit to DOS command. Periscope checks the amount of 
memory to be sure enough memory is available for disk 
I/O. 

22 Invalid drive 
One of the drive names specified in the Name command is 
invalid. Register AL or AH is set to FFH if the first or 
second file name, respectively, had an invalid drive 
identifier. 

23 Cannot open file 
Periscope was unable to open a file for input or output. 
If you're loading a file into memory, check the name as 
specified to the Name command. If you're writing a file, 
check that the filename is legal, the file is not a read
only file, and room exists in the directory for the file. 
This error can also occur if too many files are open. 

24 Incorrect window specification 
The parameters specified with the / W option were found 
to be in error. The window specification may contain the 
tokens D, R, S, U and V in any order, in upper or lower 
case. If a number is entered, it must be of the form 
X:nn, where X is the token, and nn is the number of 
lines desired. For the R token, the number is ignored and 
presumed to be two. A number must be followed by a 
space, a slash (indicating the start of another 
installation option), a carriage return, or a period and a 
color setting in the format cc. The total number of 
windowed lines, including a separator line for each 
window, must be 21 or less. The minimum size of the U 
window is four lines. If 43-line mode is used, the 
window sizes may be 18 lines longer than for 25-line 
mode. 

25 Read/write error 
A fatal error occurred when reading or wrItIng a file or 
absolute sectors. Check the disk and filename and retry 
the command. 

Error Messages A-5 



26 Function not available 
This error indicates that the desired command IS not 
available. 

This error can occur under several conditions: when an IR 
command is used and no IS command has been previously 
used to save the interrupt vectors; when a RR command 
is used and no RS command has been previously used to 
save the registers; when a TB, TR, or TU command is 
used and IB:O was used when PS.COM was installed; 
when a UB, US or V command is used and IE:O was used 
when PS.COM was installed; when LS is used and IT:O 
was used when PS.COM was installed; or when a BD or /U 
command is used and no II:nn was used when PS.COM 
was installed. 

27 Unknown mnemonic 
An unknown mnemonic was specified to the in-line 
assembler. The assembler knows the mnemonics for the 
8086, 8087, 8088, 80186, 80286, and 80287 processors. 
For the 80286, only the real-mode opcodes are supported. 
Check the mnemonic and try again. Prefixes other than 
segment overrides must be on a separate line preceding 
the instruction they affect. 

28 B. W. D. Q or T pointer needed 
An ambiguous instruction was specified to the in-line 
assembler. Some instructions, such as MOV [SIJ,I, require 
a width indicator of byte or word. The instruction would 
be entered as MOV B [SI],1 or MOV W [SI],I, respectively. 
Note that Periscope's disassemble command shows the B 
as byte ptr and the W as word ptr. 

8087/80287 instructions may require a width indicator of 
D, Q, or T for double word, quad word, or ten byte 
respectively. 

29 Invalid memory reference 
An instruction that incorrectly references memory was 
specified to the in-line assembler. Check the register(s) 
and offset specified in the instruction to be sure that the 
memory reference is legal. For example, MOV AX,[DXJ is 
not legal, but MOV AX,[BXJ is legal. 

30 Invalid argument(s) 
There are too many or too few arguments for the 
mnemonic specified. Check the number of arguments and 
try again. Note that the 80286 mUltiply immediate 
instruction must always be entered in the three-argument 
format. 

31 Line symbol not found 

A-6 Error Messages 



For the JL command, the current instruction (CS:IP) must 
be a line symbol. If you're not currently at a source 
line, use the Go command or the BL breakpoint to get to 
the next source-code line and then use the JL command. 

32 PSP not found 
The Name command was not able to locate the PSP. This 
error can be ignored if you need to read or write a file 
with the LF or WF commands. If you are trying to format 
the PSP, use RUN to re-enter Periscope. 

33 Cannot write echo file 
A file error has occurred while writing the echo file. 

34 DOS 3.0 or later required 
The IX command requires DOS 3.0 or later to be able to 
retrieve the PSP. 

3S COM SPEC not found 
The IX command was unable to find the COM SPEC 
parameter in the environment block. DOS may be 
garbled-reboot and try again. 

36 DE mode set 
A D command was entered after a DE command. Use a 
sub-function to change the display mode. 

37 Range conflicts with Periscope 
The range specified by an HM command crosses into 
Periscope's memory. Specify another range that does not 
interfere with Periscope. 

40 Number must be 1 to 4 hex digits (0-9. A-F) 
All numbers associated with Periscope installation options 
are in hex format for consistency. For the IB, IC, IE, /I, 
IR, IS, IT, and IV options, the number must be one or 
two hex digits. 

41 Not enough memory 
Insufficient memory is available to install Periscope. 
Check the amount of available memory using CHKDSK. Boot 
the system or reduce the space Periscope requires in RAM 
by adjusting the installation options. 

42 Invalid installation option 
An unexpected entry was found in the installation 
options. To display the valid installation options, enter 
"PS ?' from the DOS prompt, or use PS IE to install 
Periscope. 

43 Interrupt must be OaH. 09H. 10H. ISH. l6H. l7H. or 
lCH 

Error Messages A-7 



The IV option specified an interrupt number other than 
the ones listed above. 

44 Unable to modify protected memory 
Periscope was not able to install itself in the protected 
memory. Check the port setting on the board and the port 
number specified with the IP installation option, if any. 
Also, check that you're not using a 16K board. More 
memory is now required! If the problem persists, run 
PSTEST.COM (see Chapter IX). 

45 Unable to protect memory 
After protecting the memory on the board, Periscope was 
able to modify the supposedly protected memory. Check 
the memory setting on the board and the memory address 
specified with the 1M installation option, if any. Also, 
check that you're not using a 16K board. More memory is 
now required! If the problem persists, run PSTEST.COM 
(see Chapter IX). 

46 Copy of program in protected memory is invalid 
The copy of Periscope in the protected memory does not 
agree with the temporary copy in RAM. Check that the 
memory board is properly seated in the expansion slot 
and that the chips on the board are properly seated in 
their sockets. Also, check that you're not using a 16K 
board. More memory is now required! If the problem 
persists, run PSTEST.COM (see Chapter IX). 

47 Screen size must be from 0 to 20H (32) KB 
The size of the program's screen specified with the IS 
option must be from zero to 20H K. Note that the number 
is in hex! 

48 Symbol table size must be from 0 to 3FH (63) KB 
The size of the symbol table specified with the IT option 
must be from zero to 3FH K. Note that the number is in 
hex! 

49 DOS 2.00 or later required 
Periscope requires DOS 2.00 or later. 

50 Record table size must be from 0 to 20H (32) KB 
The size of the record definition table specified with the 
IR option must be from zero to 20H K. Note that the 
number is in hex! 

51 IQ option invalid for this system 
The IQ option can be used only on a PC- or XT -class 
machine with an 80286 CPU. 

52 Unable to read Help or Comment file 

A-8 Error Messages 



An error occurred reading PSHELP.TXT or PSINT.TXT. 
Restore these files from your backup disk. 

53 Port number must be from lOOH to 3FCH 
The port number specified with the IP option must be 
from 100H to 3FCH. Note that the number is in hex! 

54 Memory specification conflicts with memory used by 
DOS 
The memory address specified with the 1M option 
conflicts with DOS memory. Use a higher address. outside 
the range of DOS memory. 

55 Color attribute must be from OlH to FFH and 
foreground color must not equal background color 
The number specified with the IC or I W option indicates 
a color combination that will display nothing. i.e .• the 
foreground and background colors are the same. Choose 
another color and remember that the number is in hex! 

56 Incorrect window specification 
See the explanation of Error 24. above. 

57 Unable to read response file 
An error occurred when PS.COM tried to read the response 
file. Check the file name and try again. Note that any 
installation options entered after the response file name 
are ignored. For example. PS Ic:17 @c:std sets the color 
attribute to 17H and then reads the rest of the options 
from the file c:std. If you use PS @c:std Ic:17. the color 
attribute is not used. 

58 Trace buffer size must be from 0 to 3FH (63) KB 
The size of the software trace buffer specified with the 
IB option must be from zero to 3FH K. Note that the 
number is in hex! 

59 Invalid user interrupt vector 
The user interrupt vector specified with the II option 
must be from 60H to FFH. The interrupt handler must be 
already installed using the specified interrupt. Periscope 
checks for the presence of the interrupt handler by 
reading memory at the interrupt's segment and offset. The 
word prior to the interrupt entry point must equal 'PS'. 
See the sample program. USEREXIT.ASM. for more 
information. 

60 Load segment for Periscope tables must be from xxxx 
to yyyy 
The load segment as specified with the IL option must 
be greater than the current value of the PSP plus lOH 
paragraphs. The load segment must also be less than the 

Error Messages A-9 



top of memory minus lOOOH paragraphs. If the PSP is 
COOH and the top of memory is 5000H, then the allowable 
range for the load segment is ClOH through 4000H. 

61 Source buffer size must be from 0 to 10H (16) KB 
The size of the source buffer specified with the IE 
option must be from zero to lOH K. Note that the number 
is in hex! 

62 Unable to write response file 
Periscope is unable to write the response file on the 
default drive. Check the disk and try again. 

63 Periscope not configured-run CONFIG.COM 
Periscope must be configured before it can be run in your 
system. See Chapter II. 

64 Unable to use 43-line mode 
An Enhanced Graphics Adapter is required for 43-line 
mode. If the EGA is driving a color display, the Enhanced 
Color Display is also required. 

65 Defective CPU (stack change was interrupted). 
Replace ASAP! 
The 8088 CPU in your system is an early version of the 
chip that does not protect the instruction after the stack 
segment is modified. This defect can cause problems 
when tracing through DOS, using a numeric processor, and 
when using Periscope. The CPU should be replaced as 
soon as possible. 

66 Incorrect software for hardware 
An attempt was made to run the Periscope I software on 
the Periscope III board or vice-versa. The Periscope I 
software may be run without the Periscope I board in the 
system, but it may not be run on the Periscope III board. 
The Periscope III software requires that the Periscope III 
board be in the system. 

67 Unable to read trace buffer 
Periscope was unable to read the hardware trace buffer. 
Check the items listed under the description of the utility 
program PS3TEST.COM and try again. This error may also 
occur if a parity error occurs as memory in the first 
megabyte is read by Periscope. 

70 File not found 
RUN was not able to find the specified file. Check the 
file name and restart RUN. 

71 EXE Header not found 

A-10 Error Messages 



A file with an extension of EXE was specified, but the 
header record identifying the file as a valid EXE file was 
not found. Regenerate the EXE file and restart RUN. 

72 Unable to read xxxxxxxxxxx 
An error occurred reading the indicated file. Check to be 
sure the· disk is ready and that the file size shown by 
DIR indicates the true file size. 

73 Not enough memory 
Insufficient memory is available for RUN to load the 
desired program. Check the amount of available memory 
using CHKDSK and re-boot as needed. 

74 Periscope Version x.xx not installed 
RUN cannot run without the corresponding version of 
Periscope installed. Install the correct version of 
Periscope and restart RUN. 

75 Periscope not installed correctly 
RUN was unable to modify the protected memory. Reload 
Periscope and try again. 

76 Format error in MAP file 
A MAP file was found for a COM or EXE file, but RUN was 
unable to load it correctly. Check the format of the MAP 
file and the size required for the MAP file using TS.COM. 
The MAP file must be in the format as produced by 
LINK-some editors may cause subtle reformatting of the 
file. 

77 Unable to load DEF file 
A DEF file was found for a COM or EXE file, but RUN was 
unable to load it correctly. Check the format of the DEF 
file and the size required for the DEF file using RS.COM. 

If the space required by the DEF file is greater than the 
record table size, as much of the DEF file is loaded into 
the record table as possible. Use F7 to see the records 
that were loaded. Note that the last record will usually 
be only partially defined. 

78 PSS file larger than symbol table-no symbols loaded 
An error occurred when RUN attempted to load the PSS file 
into the symbol table. Usually the PSS file is larger than 
the space reserved for the symbol table when Periscope 
was installed. If this is the case, restart Periscope with 
a larger symbol table, otherwise check the file and try 
again. 

79 Logical error in symbol table 

Error Messages A-ll 



A logical error was found in the symbol table during final 
processing. If a PSS file is used, regenerate it and try 
again. If a MAP file is used, please report the error 
immediately. 

80 MAP/PSS file date/time is prior to program's 
date/time 
This warning message indicates that the date/time stamp 
on the program file is more than three minutes later than 
that of the MAP or PSS file. This is to be expected if the 
program file has been patched. Otherwise, it indicates 
that an obsolete MAP or PSS file is being used. Proceed 
with caution! 

81 MAP file larger than symbol table-some symbols 
loaded 
The space required by the MAP file is greater than the 
symbol table size. As much of the MAP file is loaded 
into the symbol table as possible. Use F8 to see the 
symbols that were loaded. To correct the problem, 
reinstall Periscope with a larger symbol table. 

90 DEF file not found 
RS.COM was not able to find a file of the specified name 
with an extension of DEF. 

91 Unable to read DEF file 
An error occurred reading the DEF file. Check the drive 
and file and try again. 

92 Line xxxxx of DEF file is not in correct format 
The DEF file is not in the format expected. The line 
number indicates the line in the DEF file where the error 
occurred. Check the format of the DEF file as defined in 
the description of RS.COM in Chapter IX. 

93 Not enough memory 
Insufficient memory is available for RS.COM to load the 
DEF file. Check the amount of available memory using 
CHKDSK and re-boot as needed. 

94 DOS 2.00 or later required 
Periscope requires DOS 2.00 or later. 

100 MAP file not found 
TS.COM was not able to find a file of the specified name 
with an extension of MAP. If the options so indicate, a 
SYM or EXE file is used instead of a MAP file. 

101 Unable to read xxx file 
An error occurred reading the MAP, SYM, or EXE file. 
Regenerate the file and try again. 

A-12 Error Messages 



102 Line xxxxx of xxx file is not in correct format 
The MAP, SYM, or EXE file is not in the format expected. 
The line number indicates the line in the MAP file where 
the error occurred. 

If you've used a text editor to modify the MAP file, be 
sure to save it in its original format-with no embedded 
tab characters or high bits set. The format as produced 
by the linker may have changed-try using another version 
of LINK. If this is the problem, please advise us of the 
situation as soon as possible. 

103 Not enough memory 
Insufficient memory is available for TS.COM to load the 
MAP file. Check the amount of available memory using 
CHKDSK and re-boot as needed. 

104 Unable to write PSS file 
A disk error occurred when TS attempted to write the PSS 
file. Check the disk and try again. 

105 DOS 2.00 or later required 
Periscope requires DOS 2.00 or later. 

106 Unknown PLINK symtable type-x 
TS.COM encountered an unknown record type in the symbol 
table at the end of the PLINK file. Please notify us 
immediately if you encounter this error. 

107 Symbol table overflow at line xxxxx 
The compressed symbol table is too large. Use a text 
editor to modify the MAP file. You can either delete lines 
from the MAP file or comment them using braces, where { 
begins commenting and } ends it. 

108 Invalid option 
An invalid command-line option was used. Enter 'TS ?' to 
display the valid options. 

110 Unable to read PS.PGM or PSH.PGM 
An error occurred reading the file PS.PGM or PSH.PGM. 
Check the disk and file and try again. 

111 Interrupt 1CH does not point to an IRET instruction 
Interrupt lCH does not point to an IRET instruction. Check 
to make sure that no device drivers or memory-resident 
programs are installed and reboot the system as needed. 
If this does not clear up the problem, please call 
technical support at 404/256-3372 for assistance. 

112 DOS 2.00 or later required 
Periscope requires DOS 2.00 or later. 

Error Messages A-13 



113 Wrong version of Periscope 
The versions of CONFIG.COM and PS.PGM do not agree. Use 
the same version of both programs and try again. 

114 Unable to write file 
An error occurred when CONFIG.COM attempted to write a 
file on the target disk. Check the disk and try again. 

115 File too large 
An internal error has occurred. Reboot and try again. If 
the problem persists, please notify us. 

116 Unable to read file 
An error occurred when CONFIG.COM attempted to read a 
file from the distribution disk. Make sure the disk is a 
diskcopy of the original distribution disk and try again. 

120 DOS 2.00 or later required 
Periscope requires DOS 2.00 or later. 

121 File not found 
The PUBLIC program was not able to find a file of the 
specified name. If no extension is specified, ASM is 
used. If an extension is specified, it is used. 

122 Not enough memory 
Insufficient memory is available for PUBLIC.COM to load 
the program file. Check the amount of available memory 
using CHKDSK and re-boot as needed. 

123 Unable to read program file 
An error occurred reading the input file. Check the file 
and try again. 

124 Unable to write .PUB file 
A disk error occurred when PUBLIC attempted to write the 
output file. Check the disk and try again. 

125 Invalid option 
An invalid command-line option was used. Enter 'PUBLIC 
?' to display the valid options. 

130 Periscope Version x.xx not installed 
SYMLOAD cannot run without the corresponding version of 
Periscope installed. Install the correct version of 
Periscope and restart SYMLOAD. 

131 Invalid option 
The only valid command-line option for SYMLOAD is 
'/I:nn' where nn is the interrupt vector to be used by 
SYMLOAD. The hex number must be from zero to FF. 

A-14 Error Messages 



140 File not found 
INT.COM was unable to read the specified file. Check the 
file name and try again. 

141 Unable to read or write file 
An error occurred reading or writing the indicated file. 
Check the disk and try again. 

142 DOS 2.00 or later required 
Periscope requires DOS 2.00 or later. 

143 Invalid option 
An invalid command-line option was used. Enter 'INT ?' to 
display the valid options. 

150 No hotkeys set 
No hotkeys were specified. Enter 'PSKEY ?' to display the 
possible hotkeys. 

160 Invalid option 
An invalid command line option was used. Enter 'PSTEST 
?' to display the valid options. 

161 Zero test failed 
PSTEST was unable to write zeroes to the protected 
memory. If all memory chips fail, check the memory and 
port switch settings. If one or two chips fail, check the 
indicated memory chips. 

162 Foxfox test failed 
PSTEST was unable to write FFH to the protected memory. 
If all memory chips fail, check the memory and port 
switch settings. If one or two chips fail, check the 
indicated memory chips. 

163 Rotate test failed 
PSTEST was unable to write a rotating bit pattern to the 
protected memory. If all memory chips fail, check the 
memory and port switch settings. If one or two chips 
fail, check the indicated memory chips. 

164 Write protect failed 
PSTEST was unable to write protect the memory. Check 
the port switch settings. 

165 Copy test failed 
PSTEST was unable to copy a block of memory to the 
protected memory. If all memory chips fail, check the 
memory and port switch settings. If one or two chips 
fail, check the indicated memory chips. 

Error Messages A-15 



190 Program terminated without resident request 
The program specified by the IP option did not terminate 
and stay resident. This is a warning message that can be 
suppressed with the IQ option. 

191 Unable to read file 
The file specified with the IP option cannot be read. 

192 Invalid option 
An invalid command-line option was found in 
SYSLOAD.SYS. Check the options used with the description 
of SYSLOAD.SYS in Chapter IX. 

200 Invalid option 
An invalid command-line option was used. Enter 'PS3TEST 
?' to display the valid options. 

201 Unable to write PSBUF.DAT 
An error occurred writing the hardware trace buffer to 
disk. Check the disk and command-line options used and 
try again. 

202 through 225 
These errors indicate a potentially serious diagnostic 
failure. Check the items listed under the description of 
the utility program PS3TEST.COM and try again. If any 
errors persist. call Tech Support for assistance. 

A-16 Error Messages 



Index 

Special Characters 
$ (here) 'parameter 7-7 
? (see help command) 
143 option 6-2 
ID command 7-95 
IE command 7-95 
IN command 7-96 
IR command 7-96 
IS command 7-97 
IT command 7-98 
IU command 7-99 
/W command 7-99 
IX command 7-102 
8086 CPU family 6-6, 10-1 

thru 10-4, 11-1, 11-2 
8087. 80287 numeric 

processors 3-6, 3-9, 3-
10,3-11,10-3,11-1 

[ ] (brackets) parameter 7-
10 

{ } (braces) parameter 7-11 
+.- .... 1 parameters 7-11 

A 
address parameter 7-8 
alias 7-4, 9-9 
alias parameter 5-3 (see 

also enter alias 
command) 

Alt-Fl thru Alt-FIO keys 7-
6 

Alt-S key 7-6 
alternate monitor 6-3 
arithmetic operator 

parameter 7-8 
ASM programs 9-7 
assemble command (A) 7-13 
assemble then unassemble 

command (AU) 7-14 
assembler tutorial (see 

chapter IV) 
Aztec C 9-12, 9-14 

B 
backing up 2-1 
backspace key 7-3 
BASIC programs 10-7 

BIOS 6-7, 6-8, 11-6 
boot option 7-1 
break-out switch viii, 1-2, 

2-2, 3-6 thru 3-9, 3-10, 
3-11, 7-1 

breakpoint all command 
(BA) 7-15 

breakpoint on byte 
command (BB) 7-15 

breakpoint on code 
command (BC) 7-16 

breakpoint on exit command 
(BX) 7-23 

breakpoint on interrupt 
command (BI) 7-17 

breakpoint on line command 
(BL) 7-18 

breakpoint on memory 
command (BM) 7-18 

breakpoint on port command 
(BP) 7-19 

breakpoint on register 
command (BR) 7-20 

breakpoint on user test 
command (BU) 7-21 

breakpoint on word 
command (BW) 7-22 

breakpoint overrun 11-6 
bre akpoints 7 -11, 11 -2 thru 

11-7 
byte parameter 7-8 

C 
C programs 9-12 thru 9-15 
C tutorial (see chapter V) 
call tracing 7-5 
clear screen (see klear 

command) 
CLEARNMI.COM 2-2, 9-2 
code breakpoints 7-1, 7-11 
code pre fetch 7-50, 7-54, 

7-56, 7-57. 7-59, 7-60, 
11-2 

code timing 7-3 
color 6-3 
color-graphics adapter 6-7 
COM files 8-1, 8-2 
command parameters 7-7 

thru 7-11 
commands 7-11 thru 7-102 
compare command (C) 7-24 
Computer Innovations 9-13, 

10-6 

Index X-I 



CONFIG.COM 2-1, 2-2, 9-2 
configuring Periscope (see 

CONFIG.COM) 
conflicts, memory 3-1 
conflicts, port 3-1 
continue option 7-2 
copy (see move command) 
Ctrl-Brealz key 7-6 
Ctrl-End key 7-3 
Ctrl-FI thru Ctrl-FIO keys 

7-6 
Ctrl-Left key 7-3 
Ctrl-pgDn key 7-3 
Ctrl-PgUp key 7-3 
Ctrl-PrtSc key 7-6 
Ctrl-Right key 7-3 
Ctrl-S key 7-6 
CWare (see DeSmet) 

D 
data breakpoints 7-49, 11-5 
debug option 7-2 
debugging techniques 10-5 

tbru 10-7 
debugging theory 10-1 
decimal number parameter 

7-8 
DEF file 7-5,8-1,9-8 tbm 

9-10 
Del key 7-3 
DeSmet 9-12, 9-14 
device drivers 9-11, 10-8 
Digital Research 9-14 
DIP switches 3-2 tbru 3-5 
disassemble (see 

unassemble) 
disk drive parameter (see 

dri ve parameter) 
display ASCII command (DA) 

7-26 
display ASCIIZ command 

(DZ) 7-33 
display byte command (DB) 

7-26 
display current format 

command (D) 7-25 
display double word 

command (DW) 7-27 
display effective address 

command (DE) 7-28 
display hardware trace 

buffer 7-52 tbru 7-60 

X-2 Index 

display integer command 
(DI) 7-29 

display long real command 
(DL) 7-29 

display number command 
(DN) 7-30 

display record command 
(DR) 7-30 

display short real command 
(DS) 7-32 

display word command (DW) 
7-33 

DMA 11-2 
DOS 8-2, 9-1,10-4 
DOS EDIT 7-3 
down arrow key 7-3 
dri ve parameter 7-8 

E 
effective address 7-28, 7-

73, 7-74 
End key 7-3 
Enhanced Graphics Adapter 

6-4, 6-7, 10-10 
enter command (E) 7-35 
enter alias command (EA) 

5-3, 7-36 
enter symbol command (ES) 

7-36 
EO! 10-8 
errors A-1 tbru A-16 
Esc key 7-3 
exception interrupt 7-1, 7-

2, 10-4 
EXE files 8-1, 8-2 

F 
FI thru FlO function keys 

7-3 tbru 7-6 
FCC Compliance vi 
fill command (F) 7-38 
flag(s) 7-8, 7-73 tbTU 7-75 
flag parameter 7-8 
FTOC.C 2-2, 5-1 
FTOC.DEF 2-2, 5-1 
FTOC.EXE 2-2,5-1 
FTOC.MAP 2-2, 5-1 
FORTRAN programs 9-13 
function parameter 7-8 



G 
go conunand (G) 7-39 
go equal conunand (GE) 7-

40 
go using all conunand (GA) 

7-40 
go using monitor conunand 

(GM) 7-41 
go using hardware conunand 

(GH) 7-41 
go using trace conunand 

(GT) 7--43 
guarantee v 

H 
hardware breakpoints 7-11, 

7-12,7-46 thru 7-52, 11-
1 thru 11-3, 11-6, 11-7 

hardware breakpoints all 
conunand (HA) 7-46 

hardware bit breakpoint 
conunand (HB) 7-46 

hardware controls conunand 
(HC) 7-47 

hardware data breakpoint 
conunand (HD) 7-49 

hardware interrupts 10-4, 
10-8 

hardware memory breakpoint 
conunand (HM) 7-50 

hardware port breakpoint 
conunand (HP) 7-51 

(display) hardware trace 
buffer in raw mode 
conunand (HR) 7-52 

(display) hardware trace 
buffer single entry 
conunand (HS) 7-55 

(display) hardware trace 
buffer in trace mode 
conunand (HT) 7-56 

(display) hardware trace 
buffer in unasm mode 
conunand (HU) 7-58 

hardware write conunand 
(HW) 7-60 

help conunand (?) 6-4, 7-45 
hex arithmetic conunand (H) 

7-45 
Home key 7-3 
hot keys 9-5 

I 
IBM 9-13 
input conunand (I) 7-62 
Ins key 7-3 
installation options 6-1 

thru 6-10 
INT.COM 2-2, 9-3 
interrupt conunents (see 

PSINT.TXT) 
interrupt restore conunand 

(IR) 7-62 
interrupt save conunand (IS) 

7-62 
interrupts 6-7, 9-3, 10-8 
IRQ 0 10-8 
IRQ 1 10-8 

J 
jump conunand (J) 7-64 
jump line conunand (JL) 7-

64 

K 
keyboard usage 7-3 thru 7-

7 
klear conunand (K) 7-66 
klear and initialize 

conunand (KI) 7-66 

L 
Lattice 9-13 
left arrow key 7-3 
length parameter 7-8 
line number, program 9-12 

thru 9-14 
LINK86 9-14 
linker 8-2 
list parameter 7-9 
load absolute sectors 

conunand (LA) 7-67 
load file conunand (LF) 7-

67 
load symbols conunand (LS) 

7-68 
long boot option 7-2 

M 
Manx (see Aztec) 
MAP file 9-12 thru 9-14 
MP alias 5-3, 7-8, 9-9 

Index X-3 



MX alias 5-3, 7-8, 9-9 
Mark Williams 9-13 
memory board (see 

Periscope) 
memory, protected 3-1,6-5, 

6-6, 9-6, 11-2 
Microsoft 9-13, 11-7 
monitor, alternate (see 

alternate monitor) 
monitor breakpoints 7-1,7-

11,7-12 
move command (M) 7-69 
multiple commands 7-7 

N 
name command (N) 7-70 
name parameter 7-9 
non-maskable interrupt 

(NMI) 2-2, 3-8, 9-2, 10-2, 
10-3, 10-8 

number parameter 7-9 

o 
O. parameter 7-11 
offset parameter 7-9 
output command (0) 7-71 

p 
PSP (see Program Segment 

Prefix) 
PadMinus key 7-6 
PadPlus key 7-6 
parameters (see command 

parameters) 
parity error 3-6,3-9,7-1, 

7-2 
Pascal programs 9-13 
pass counter 7-47, 11-2, 

11-3 
Periscope 

description 1-3 thru 1-5 
internals 10-9 
model I viii, 9-2 
model I board 1-2, 3-1 
thru 3-6, 9-2, 10-9 
model I differences 3-1, 
6-4 
model II viii, 7-1, 9-2 
model II differences x, 
1-3, 1-5, 3-1, 6-2, 6-6, 
6-8, 7-1, 10-8, 10-9 

X-4 Index 

model II switch 3-6 thru 
3-9 
model II-X ix, 9-2, 9-4 
model II-X differences 1-
3, 1-5, 3-1, 6-2, 6-6, 6-
8, 10-8, 10-9 
model III ix, 9-2, 11-1 
thru 11-8 
model III board 1-2, 3-1 
thru 3-5, 3-9 thru 3-11, 
9-2, 10-10, 11-1, 11-2, 
11-4 
model III differences 1-
6, 3-1, 6-3, 6-4, 10-8 

PgDn key 7-6 
PgUp key 7-7 
Phoenix 9-12, 9-14 
PLINK 9-12, 9-14 
port parameter 7-9 
ports, memory protect 3-1 

thru 3-3, 6-6 
Program Segment Prefix 

(PSP) 4-2,7-31,8-1 
PS.COM 6-1 thru 6-10 
PS.DEF 2-3, 4-1, 10-9 
PS.PGM 2-3 
PS3TEST.COM 2-3, 9-4 
PSDEMO.COM 2-3 
PSH.PGM 2-3 
PSHELP. TXT 2-3 
PSHELP2.TXT 2-3 
PSINT.TXT 2-3, 6-5 
PSKEY.COM 2-3, 9-4 
PSS file 8-2, 9-12 thru 9-

14 
PSTEST.COM 2-3, 9-6 
PUBLIC.COM 2-3, 9-7 

Q 
quick-reference card 1-2 
quit command (Q) 7-72 
quit options 7-1, 7-2 

R 
range parameter 7-9 
READ.ME file 2-3 
real-time trace buffer 7-42, 

7 -55, 11 -2 thru 11 -4, 
also see HR, HS, HT, and 
HU commands 

record definitions (see DEF 
file) 



register conunand (R) 7-73 
thru 7-75 

register parameter 7-9 
register restore conunand 

(RR) 7-75 
register save conunand (RS) 

7-76 
registration vii, 1-1 
response file 6-10 
return to DOS option 7-2 
right arrow key 7-3 
RS.COM 2-4, 5-2, 9-8 
RUN.COM 2-4,4-2,8-1, 8-2 

s 
S. parameter 7-11 
SAMPLE.ASM/ .COM/ .MAP 

files 2-4, 4-1 
sample programs 4-1, 5-1 
screen swap 7-4 
search conunand (S) 7-77 
search for address 

reference conunand (SA) 
7-77 

search for calls conunand 
(SC) 7-78 

search then display 
conunand (SD) 7-78 

search for return address 
conunand (SR) 7-79 

search for unassembly 
match conunand (SU) 7-80 

sectors parameter 7-9 
segment parameter 7-10 
semi-colon key 7-7 
Shift-PrtSc key 7-7, 9-5 
short boot option 7-2 
sticky breakpoints 7-11 
string parameter 7-10 
sub-function parameter 7-

10 
Submarine (see Periscope 

model I board) 
SWI 3-2, 3-3 
SW2 3-2 thru 3-5 
switch, DIP (see DIP 

switch) 
switch, break-out (see 

break-out switch) 
SYM file 9-12 
symbol(s) 1-5,5-2,6-7,7-

5, 7-10, 9-12 thru 9-14 
symbol parameter 7-10 

symbol table (see 
SYMLOAD.COM and TS.COM) 

SYMLOAD.COM 2-4, 9-10 
Sys Req key 9-5 
SYSLOAD.SYS 2-4, 9-11 
system requirements 1-6 

T 
tDebugPLUS 9-13 
technical support vii, 1-1 
test parameter 7-10 
timing, high-resolution (see 

code timing) 
trace back conunand (TB) 

7-81 
trace buffer (hardware) 11-

2 thru 11-4, also see HR, 
HS, HT, and HU commands 

trace buffer (software) 6-3 
trace conunand (T) 7-81 
trace registers conunand 

(TR) 7-81 
trace unassembly conunand 

(TU) 7-81 
translate address conunand 

(XA) 7-94 
translate decimal number 

conunand (XD) 7-94 
translate hex number 

conunand (X) 7-94 
TS.COM 2-4, 9-12 thru 9-15 
Turbo Pascal 9-13 
TurboPower Software 9-13 
tutorials 

u 

assembler 4-1 thru 4-6 
'C' 5-1 thru 5-4 

umbilical socket 1-2, 11-1 
unassemble conunand (U) 7-

84 
unassemble ASM conunand 

(UA) 7-86 
unassemble both ASM and 

source conunand (UB) 7-
86 

unassemble source 
conunand (US) 7-87 

up arrow key 7-3 
updates vii 
upgrades vii 

Index X-5 



user exit 6-5 (also see IU 
command) 

USEREXIT.ASM/.COM 2-4, 9-
15 

V 
view file command (V) 7-89 
view source file command 

(VS) 7-90 

w 
warranties v 
windows 6-8, 7-99 
write absolute sectors 

command (WA) 7-91 
write file command (WF) 7-

91 
write-protected memory 3-1 
write symbols command 

(WS) 7-92 

X 
Xl alias 7-8, 9-9 
X2 alias 7-8, 9-9 
X3 alias 7-8, 9-9 
xlate (see translate) 

X-6 Index 


