/A cackars

User’s Guide for the Graphical User Interface

MC68040/EC040/LC040
Emulator/Analyzer
(HP 64783A/B)

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and

fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1993, 1994, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

HP is a trademark of Hewlett-Packard Company.
UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A.
and other countries.

Hewlett-Packard Company

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.
Rights for non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

Printing History

New editions are complete revisions of the manual. The date on the title page
changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level of
the software product at the time the manual was issued. Many product updates and
fixes do not require manual changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual revisions.

Edition 1 B3090-97000, March 1993
Edition 2 B3090-97001, October 1993
Edition 3 B3090-97002, January 1994

Safety and Certification and Warranty

Safety information, and certification and warranty information can be found on the
pages before the back cover.

\\

The HP 64783A/B Emulator

HP 64700
Instrumentation
Card Cage

HP 64783A/B

Address

Opcode or Status

time count

sunhols mnemonic w/synbols relative
Pridemo+0000000C 050019FE BTST A
Prog ldemo,Loop 103919FE MOVE.B Didemo.Cnd_Input, D0 160 ng
Dldeno,Cmd_Input 00000000 $00-- supr data byte wr 120 n3
Prldemo+00000010 00000000 50000 supr prgn long rd 120 n3|
Pr|demo+00000012 05000000 $0500 supr prem word rd 240 |
+005 Pridemo+Q0000014 €6000000 BNE.W Prldemo.Call_Int 120 n3|
+006 Prldemo+00000016 00060000 $0006 supr prgm word rd 120 |
+007 Didemo.Cnd_Input 000E0000 $00-- supr data byte rd 120 3|
+008 Prldemo+00000018 60000000 BRA,W Praldemo, EndLoop 120 |
+009 Pridemo+0000001A 000E0000 $00OE supr prgn word rd 200 3|
1010 Prldemo,Call_Int 61000000 BSR,W Progl Int_Cmd 120 |
+011 Pridemo+0000001E 000CO000 $000C supr prgn word rd 160 3|
+012 Proldemo, EndLoop 60E40000 BRA,B Progldemo, Loop 120 |
+013 ProglInt_Cmd QCO00000 CMPILE #¢41,00 160 3|
4014 handle_+00000002 00410000 0041 supr prgm long rd 120 |
STATUS: MRBO20--Running user program Emulation trace complete______ LI
0 ==t symbols on
pod_cmd set perfinit perfrun perfend ===ETC--

68040/EC040/LC040 Emulator

N
A\

Demo Target System

HP 9000 Series
Host System

The HP 64783A/B Emulator

Description

The HP 64783A/B emulator supports the Motorola 68040, 68EC040, and 68LC040
microprocessors operating at clock speeds up to 33 MHz (HP 64783A) or 40 MHz
(HP 64783B). Differences between the three microprocessors are shown in the
table below:

Motorola Processor Includes MMU Includes FPU
68040 yes yes
68EC040 no no
68LC040 yes no

The emulator uses an MC68040 microprocessor and is pin-for-pin compatible with
the MC68EC040 and MC68LC040 microprocessors. Refer to the end of Chapter 4,
"Using the Emulator", for special considerations when using the emulator in target
systems designed with the MC68EC040 or MC68LC040.

Throughout this manual, the microprocessor will be referred to as the MC68040,
except where the three versions must be discussed separately.

Additionally, this emulator supports development of target systems using the
MC68040 together with up to 31 MC68360's in slave mode. Refer to the end of
Chapter 4, "Using the Emulator", for an explanation of this emulator’s support for
the MC68360 slave mode.

The emulators plug into the modular HP 64700 instrumentation card cage and offer
80 channels of processor bus analysis with the HP 64704A or HP 64794A
emulation-bus analyzer. Flexible memory configurations are offered from zero
through two megabytes of emulation memory. High performance download is
achieved through the use of a LAN or RS-422 interface. An RS-232 port and a
firmware-resident interface allow debugging of a target system at remote locations.

For software development, the HP AXCASE environment is available on SUN
SPARCsystems and HP workstations. This environment includes an ANSI standard

C compiler, assembler/linker, a debugger that uses either a software simulator or
the emulator for instruction execution, the HP Software Performance Analyzer that
allows you to optimize your product software, and the HP Branch Validator for test
suite verification.

If your software development platform is a personal computer, support is available
from several third party vendors. This capability is provided through the HP
64700’s ability to consume several industry standard output file formats.

Ada language support is provided on HP 9000 workstations by third party vendors,
such as Alsys and Verdix. An Ada application developer can use the HP emulator
and any compiler that generates HP/MRI IEEE-695 to do exhaustive, real-time
debugging in-circuit or out-of-circuit.

Features

HP 64783A/B Emulator

* 16 to 33 MHz active probe emulator (HP 64783A)
e 20 to 40 MHz active probe emulator (HP 64783B)
* Supports MC68040, MC68EC040, and MC68LC040
e Supports burst and synchronous bus modes
e Symbolic support
* Number of breakpoints available:
— If specified at RAM addresses: unlimited;
— If specified at ROM addresses: eight.
e 36 inch cable and 219 mm (8.8") x 102 mm (4") probe, terminating in PGA
package
» Background and foreground monitors
» Simulated 1/0O with workstation interfaces
» Consumes IEEE-695, HP-OMF, Motorola S-Records, and Extended Tek Hex
File formats directly. (Symbols are available with IEEE-695HIReEOMF
formats.)
e Multiprocessor emulation
— synchronous start of 32 emulation sessions
— cross triggerable from another emulator, logic analyzer, or oscilloscope
» Demo board and self test module included

Vi

Emulation-bus analyzer

80-channel emulation-bus analyzer, which uses the static deMMUer of the
MC68040 emulator

Postprocessed, dequeued trace with symbols

Eight events, each consisting of address, status, and data comparators
Events may be sequenced eight levels deep and can be used for complex
trigger qualification and selective store

Emulation memory

256 Kbyte, 512 Kbyte, 1 Mbyte, 1.25 Mbyte and 2 Mbyte memory
configurations available

4 Kbytes of dual-ported memory available if you use the background monitor.
Mapping resolution is 256 bytes

No wait states required by the emulator for processor speeds up to 25 MHz
One wait state required in all accesses above 25 MHz

vii

In This Book

This manual covers the HP 64783A/B emulator. All information in the manual
applies to all three Microprocessor versions, unless it is marked with the processor
name (MC68040, MC68EC040, or MC68LC040).

Part 1, “Quick Start Guide,” tells you how to start using the emulator.

1. Getting Started
2. Solving Quick Start Problems

Part 2, “User’s Guide,” describes how to use the emulator/analyzer interface to
perform a variety of tasks.

. Using the Emulator/Analyzer Interface

. Using the Emulator

. Using the Emulation-Bus Analyzer

. Making Coordinated Measurements

. Making Software Performance Measurements

. Configuring the Emulator (to be performed before you run a program in
emulation)

9. Solving Problems

coO~NO O W

Part 3, “Reference Guide,” provides detailed information on emulator functions,
commands and environments.

10. Using MC68040 Memory Management

11. Emulator Commands

12. Emulator Messages

13. Setting X Resources

14. The SPARCsystem Interface

15. Microtec Language Tools used with the Emulator
16. Specifications and Characteristics

Part 4. "Concepts Guide," discusses X Resources and the Graphical User Interface.

Part 5, “Installation and Service Guide,” shows you how to install and maintain the
emulator.

18. Installation and Service
19. Installing/Updating Emulator Firmware

viii

Contents

Part 1

Quick Start Guide

In This Part 2

Getting Started

The Emulator/Analyzer Interface — At a Glance

The Softkey Interface 4

Softkey Interface Conventions 5

The Graphical User Interface 6
Graphical User Interface Conventions 8

The Getting Started Tutorial 11

Step 1: Start the demo 12

Step 2: Display the program in memory 14

Step 3: Run from the transfer address 15

Step 4: Step high-level source lines 16

Step 5: Display the previous mnemonic display 17
Step 6: Run until an address 18

Step 7: Display data values 19

Step 8: Display registers 20

Step 9: Step assembly-level instructions 21

Step 10: Trace the program 22

Step 11: Display memory at an address in a register 24

Step 12: Patch assembly language code 25

4

Contents

The MMU Demonstration 28

Step 13: Obtain the normal interface and MMU demo 29

Step 14: See the setup of the MMU 31

Step 15: Look at the translation table details for a single logical address 32

Step 16: Look at details of MMU TableC 33

Step 17: Output characters on the seven-segment display 34

Step 18: Take a trace of emulation activity 35

Step 19: Prepare the deMMUer so you can see symbolic addresses in the trace list
36

Step 20: Take a new trace 37

Step 21: Inverse assemble the trace list 38

Step 22: Reset the emulator 39

Solving Quick Start Problems

If the desired emulator interface won't start 42

If the text-based Softkey Interface won't start under X-Windows 42
If you can't load the demo program 43

If you can't display the program 44

Part 2

Using The Emulator

Making Measurements 46
In This Part2 46

Using the Emulator/Analyzer Interface

Maximum Number of Windows 49
Activities that Occur in the Windows 49
Using Multiple Terminals 51

Contents

Starting the Emulator/Analyzer Interface 52

To see emulator/analyzer availability before interface startup 52
To start the emulator/analyzer interface 53

To start the interface using the default configuration 54

To execute a command file at interface startup 55

To unlock an interface that was left locked by another user 56

Opening Other HP 64700 Interface Windows 57

To open additional emulator/analyzer windows 57
To open the high-level debugger interface window 58
To open the software performance analyzer (SPA) interface window 58

Entering Commands 59

To turn the command line on or off in the Graphical User Interface 59
To enter commands on the command line 60

To edit the command line using the command line pushbuttons on the Graphical
User Interface 61

To edit the command line using the command line popup menu 62
To edit the command line using the keyboard 63

Torecall commands 63

To execute a completed command 64

To get online help on commands 65

To display the errorlog 66

To display the eventlog 66

Using Special Features of the Graphical User Interface 67

To choose a pulldown menu item using the mouse (method 1) 67
To choose a pulldown menu item using the mouse (method 2) 68
To choose a pulldown menu item using the keyboard 69

To choose popup menu items 70

To place values into the entry buffer using the keyboard 71

To copy-and-paste to the entry buffer 71

To recall entry buffer values 74

To use the entry buffer 74

To copy-and-paste from the entry buffer to the command line entry area 75
To use the action keys 76

To use dialog boxes 76

Using display-control features of the Softkey Interface 80

Xi

Contents

Copying information to a file or printer 81

Exiting the Emulator/Analyzer Interface 83

To end a single window in the interface 83
To end the emulation session in all windows 84

Creating and Executing Command Files 85

Passing Parameters to Command Files 85

Using &ArG_IEfT in Command Files 86

Using UNIX Commands and Scripts with Command Files 86

Using Shell Variables with Command Files 86

Restrictions on Commands 87

Status Line Updates 87

Nesting Command Files 87

Pausing Command Files 87

Placing Comments in Command Files 88

Continuing Command File Lines 88

Specifying a Search of Several Command File Directories 88

To create a command file by logging commands 88

To create a command file by using a text editor 90

To execute (or playback) a command file 91

To nest command files 92

To pause command file execution 93

To add a comment to a command file 94

To pass parameters to a command file 95

To increase flexibility of command files by using &ArG_IEfT 97

To specify the order of searching several command file directories (HP64KPATH)
98

Forwarding Commands to Other HP 64700 Interfaces 100

To forward commands to the high-level debugger 100
To forward commands to the software performance analyzer 101

Accessing the Terminal Interface 102

To display the Terminal Interface screen 103

To copy the Terminal Interface screen contents to a file 103
To enter Terminal Interface commands 104

To get help on Terminal Interface commands 106

Xii

Contents

Accessing the Operating System 107

To set environment variables 107
To enter UNIX commands 108
To display the name of the emulation module 109

Using the Emulator

The Emulator And Its Applications 112

The demo Application 113
To build programs 113
To configure the emulator 115

Loading and Storing Programs 116

To load a program 116

To load the demo program 118
To store a program 119

To editfiles 120

Using Symbols 123

To load a symbol database 124

To display global symbols 125

To display local symbols 126

To display the parent symbol of a symbol 128

To copy and paste a full symbol name to the entry buffer 129

To enter a symbol 130

To display the current directory and current working symbol 131
To change the directory context 132

To change the current working symbol context 132

Xiii

Contents

Accessing Processor Memory Resources

To display program data structures 134

To display only source lines 136

To display intermixed source lines 137

To display symbols without source lines 138
To display absolute addresses 139

To display memory in byte format 140

To display memory in word format 141

To display memory in long word format 142
To display memory in mnemonic format 143
To return to the previous mnemonic display 144
To display memory in real number form 145
To redisplay memory locations 146

To display memory repetitively 146

To modify memory 147

Using Processor Run Controls 150

To run a program 150

To run programs from the transfer address 152
To run programs from reset 152

To run programs until a selected address occurs
To break to the monitor 154

To step the processor 155

To reset the processor 158

Viewing and Modifying Registers 159

To display registers 159
To modify registers 161

134

153

Xiv

Contents

Using Execution Breakpoints 163

Setting execution breakpoints in RAM 163

Setting execution breakpoints in ROM 164

Execution breakpoints in ROM when the MMU manages memory 164
Using temporary and permanent breakpoints 165

To enable execution breakpoints 166

To disable an execution breakpoint 166

To set a permanent breakpoint 167

To set a temporary breakpoint 168

To set a ROM breakpoint in RAM 169

To clear an execution breakpoint 170

To clear all execution breakpoints 172

To display the status of all execution breakpoints 172

Changing the Interface Settings 174

To set the source/symbol modes 174
To set the display modes 175
Source/Symbols View 176

Field Widths 176

Auto Update 176

Using the Emulator In-Circuit 177

To install the emulation probe 177
To power-on the emulator and your target system 179
To probe target system sockets 179

Using The Emulator With MMU Enabled 180

To enable the processor memory management unit 180

To view the present logical-to-physical mappings 181

To see translation details for a single logical address 183

To see details of a translation table used to map a selected logical address

185

Using an FPU with an MC68EC040 or MC68LCO040 Target System

187

XV

Contents

Using M68040 support for the M68360 Companion Mode 188

To set up custom M68040 Action Keys to support the M68360 Companion Mode

189

Tasks you may wish to perform when using the M68040/M68360 companion

Mode 194
For more information 196

Using the Emulation-Bus Analyzer
Power of the Emulation-Bus Analyzer 198

Making Simple Trace Measurements 199

To start a trace measurement 200

To stop a trace measurement 201

To display the trace list 201

To display the trace status 203

To change the trace depth 204

To modify the last trace command entered 205

To define a simple trigger qualifier 206

To specify a trigger and set the trigger position 207
To define a simple storage qualifier 208

Displaying the Trace List 209

To disassemble the trace list 212
To specify trace disassembly options 213

To specify trace dequeueing options 215

To display the trace without disassembly 217

To display symbols in the trace list 218

To display source lines in the trace list 220

To change the column width 221

To select the type of count information in the trace list 222

To offset addresses in the trace list 224

To reset the trace display defaults 225

To move through the trace list 225

To display the trace list around a specific line number 226

To change the number of states available for display 227

To display program memory associated with a trace list line 228

To open an edit window into the source file associated with a trace list line

XVi

228

Contents

Analyzing Program Execution When The MMU Is Enabled 229

To program the deMMUer in a static memory system 229
To store a deMMUer setup file 231

To load the deMMUer from a deMMUer setup file 231

To trace program execution in physical address space 232

Making Complex Trace Measurements 233

To use address, data, and status values in trace expressions 238
To enter a range in a trace expression 239

To use the sequencer 240

To specify a restart term 241

To specify trace windowing 242

To specify both sequencing and windowing 243

To count states or time 244

To define a storage qualifier 245

To define a prestore qualifier 246

To trace activity leading up to a program halt 247

To modify the trace specification 248

To repeat the previous trace command 249

To capture a continuous stream of program execution no matter how large your
program 250

Saving and Restoring Trace Data and Specifications 254

To store a trace specification 254
To store trace data 255
To load a trace specification 256
To load trace data 257

Saving and Restoring DeMMUer Setup Files 258

To store a DeMMUer setup file 258
To load a DeMMUer setup file 258

Using Basis Branch Analysis 259
To store BBA datato afile 259

XVil

Contents

6 Making Coordinated Measurements

The Elements of Coordinated Measurements 262
Comparison Between CMB and BNC Triggers 264

Setting Up for Coordinated Measurements 265

To connect the Coordinated Measurement Bus (CMB) 265
To connect to the rear panel BNC 267

Starting/Stopping Multiple Emulators 269

To enable synchronous measurements 269
To start synchronous measurements 270
To disable synchronous measurements 270

Using Trigger Signals 271

To drive the emulation-bus analyzer trigger signal to the CMB 273
To drive the emulation-bus analyzer trigger signal to the BNC connector
To break emulator execution on signal from CMB 275

To break emulator execution on signal from BNC 276
To arm the emulation-bus analyzer on signal from CMB 277
To arm the emulation-bus analyzer on signal from BNC 277

Making Example Measurements 278

To start a simultaneous program run on two emulators 278
To trigger one emulation-bus analyzer with another 279
To break to the monitor on an analyzer trigger signal 280

Making Software Performance Measurements

Using the Software Performance Measurement Tool 282

Use the Software Performance Analyzer (SPA) for more capability 282

Understanding activity measurements 283

Understanding duration measurements 286

Xviii

274

Contents

To use the Software Performance Measurement Tool 287

Step 1. Setup the trace command 288

Step 2. Initialize the performance measurement 289

Step 3. Run the performance measurement 293

Step 4. End the performance measurement 294

Step 5. Generate the performance measurement report 295

Configuring the Emulator

Using the Configuration Interface 303

To start the configuration interface 304

To modify a configuration section 306

To apply configuration changes to the emulator 308
To store configuration changes to afile 308

To change the configuration directory context 309
To display the configuration context 310

To access help topics 310

To access context sensitive (f1) help 311

To exit the configuration interface 311

To load a configuration 312

Modifying the Monitor Setup 313

To select the monitor type 314

To select the monitor filename 315

To select the monitor address 316

To select the monitor interrupt priority level 317

To select whether or not the emulator will terminate monitor bus cycles 318

To select if there will be a keep-alive function, its address, and function code 319

Mapping Memory 320

To add memory map entries 322

To modify memory map entries 325

To delete memory map entries 327

To characterize unmapped ranges 327

To map memory ranges in which data is not loaded into the caches 328
To map memory in which the emulator will terminate bus cycles 328

To map memory to be stored within the dual-port memory 329

XiX

Contents

Configuring the Emulator General Iltems Screen 330

To enable/disable target system interrupts 331

To enable/disable the instruction and data caches 332

To enable/disable the memory management unit (MMU) 333

To specify whether the clock speed of the emulation bus is greater than 25 MHz
334

To restrict the emulator to real-time runs 335

To enable/disable breaks on writes to ROM 336

To specify the memory access size 337

To specify the initial value of the stack pointer 338

To specify the initial value of the program counter 339

Setting the Trace Options 340

To include/exclude background monitor execution in the trace 341
To identify the data rate of your emulation system for the 1K analyzer 341

Modifying the Simulated IO Configuration Iltems 343

Modifying the Interactive Measurement Specification Configuration
ltems 344

To select whether the card cage rear panel BNC is connected to the Trigl or Trig2
or both signals 345

To select whether the coordinated measurement bus is connected to the Trigl or
Trig2 or both signals 346

To select whether the emulator will allow a signal on Trig2 to initiate a break from
target program execution 347

To select whether or not the emulation-bus analyzer will operate with, or ignore,
the Trig2 line of the coordinated measurement bus. 348

Providing MMU Address Translation for the Foreground Monitor
349

Locating the Foreground Monitor using the MMU Address Translation Tables
351

XX

Contents

9 Solving Problems

If the emulator appears to be malfunctioning 354

If the trace listing opcode column contains only the words "dma long write (retry)
repeatedly 355

If the analyzer fails to trigger on a program address 355

If the analyzer triggers on a program address when it should not 356

If trace disassembly appears to be partially incorrect 356

If there are unexplained states in the trace list 357

If you see negative time or negative states in the trace list 358

If the analyzer won't trigger 358

If the emulator won't work in a target system 359

If you see multiple guarded memory accesses 359

If you suspect that the emulator is broken 360

If you have trouble mapping memory 361

If emulation memory behavior is erratic 361

If you're having problems with DMA 362

If you're having problems with emulation reset 362

If the deMMUer runs out of resources during the loading process 363

If verbose mode shows less than eight mappings but the deMMUer is "out of
resources" 364

If you only see physical memory addresses in the analyzer measurement results
364

If the deMMUer is loaded but you still get physical addresses for some of your
address space 365

If you can't break into the monitor after you enable the MMU 366

If the target system exhibits unexpected behavior after executing a breakpoint
366

XXi

Contents

Part 3

10

Reference

In This Part 368

Using Memory Management

Understanding Emulation and Analysis Of The Memory
Management Unit 370

Terms And Conditions You Need To Understand 370

Logical vs Physical 370

What are logical addresses? 371

What are physical addresses? 371

Static and dynamic system architectures 371

Static system example 371

Non-paged dynamic system example 371

Paged dynamic system example 372

Where Is The MMU? 373

Using Supervisor and User Privilege Modes 374

How the MMU is enabled 374

Hardware enable 374

Software enable 375

Restrictions when using the emulator with the MMU turned on 375
How the MMU affects the way you compose your emulation commands 376

Seeing Details of the MMU Translations 377

How the emulator helps you see the details of the MMU mappings 377
Supervisor/user address mappings 379

Translation details for a single logical address 380

Address mapping details 380

Status information 381

Table details for a selected logical address 382

XXii

11

Contents

Using the DeMMUer 383

What part of the emulator needs a deMMUer? 383

What would happen if the analyzer didn’t get help from the deMMUer? 383
How does the deMMUer serve the analyzer? 383

Reverse translations are made in real time 384

DeMMUer options 384

What the emulator does when it loads the deMMUer 385

Restrictions when using the deMMUer 386

Keep the deMMUer up to date 386

The target program is interrupted while the deMMUer is being loaded 386
The analyzer must be off 386

Expect strange addresses if you analyze physical memory with multiple logical
mappings 386

Resource limitations 388

Example to show resource limitations 389

The Emulation Memory Map Can Help 389

Dividing the deMMUer table between user and supervisor address space 391

Solving Problems 392

Using the "display mmu_translations” command to overcome plug-in problems
392

Use the analyzer with the deMMUer to find MMU mapping problems 393
Failure caused by access to guarded memory 393

Failure due to system halt 394

Execution breakpoint problems 395

A "can't break into monitor" example 395

Emulator Commands

How Pulldown Menus Map to the Command Line 401
Emulator Configuration: Memory Map 405

How Popup Menus Map to the Command Line 406

Syntax Conventions 408

Oval-shaped Symbols 408
Rectangular-shaped Symbols 408
Circles 409

The —NORMAL— Key 409

xXxiii

Contents

Summary of Commands 410

break 411
cmb_execute 412
copy 413

COUNT 419

display 421

DISPLAY MEMORY 427
DISPLAY MMU 431
DISPLAY TRACE 434
end 439

—EXPR— 441
FCODE 444

HELP 445

load 446
log_commands 449
modify 450
performance_measurement_end 457
performance_measurement_initialize
performance_measurement_run 460
pod command 461
QUALIFIER 463

reset 466

run 467
SEQUENCING 469
set 471

specify 477

step 479

stop_trace 481

store 482

—SYMB— 484

trace 492

TRIGGER 496
<UNIX_COMMAND> 498
wait 499

WINDOW 501

12 Emulator Error Messages

Emulator error messages 504

458

XXiV

13

14

15

16

Contents

Setting X Resources

Setting X Resources 554

To modify the Graphical User Interface resources 556
To use customized scheme files 560

To set up custom action keys 562

To set initial recall buffer values 563

To set up demos or tutorials 565

The SPARCsystem Graphical User Interface and Softkey Interface

HP-UX/SunOS product number cross reference 571
Using your SPARCsystem keyboard 572
Keyboard template 575

Microtec Language Tools Used With MC68040 Emulators

Using Microtec Language Tools 579

To use the Microtec commands 580
Assembler defaults 581

Linker defaults 581

Librarian defaults 582

The Microtec MCC68K compiler 582

Specifications and Characteristics

Processor Compatibility 584

Electrical 584

Motorola JTAG 584

HP 64783A/B Maximum Ratings 585

HP 64783A/B Electrical Specifications 586

HP 64783A/B Clock AC Timing Specifications 588
HP 64783A/B Output AC Timing Specifications 589
HP 64783A/B Input AC Timing Specifications 591
Physical 594

Environmental 595

BNC, labeled TRIGGER INJOUT 595
Communications 596

XXV

Contents

Part 4

17

Concept Guide

In This Part 598

X Resources and the Graphical User Interface
X Resources and the Graphical User Interface 600

X Resource Specifications 601

Resource Names Follow Widget Hierarchy 601
Class Names or Instance Names Can Be Used 602
Wildcards Can Be Used 602

Specific Names Override General Names 603

How X Resource Specifications are Loaded 604

Application Default Resource Specifications 604
User-Defined Resource Specifications 604
Load Order 605

Scheme Files 606

Resources for Graphical User Interface Schemes 606
Scheme File Names 607

Load Order for Scheme Files 607

Custom Scheme Files 608

XXVi

Contents

Part 5 Installation and Service Guide

In This Part 610

18 Connecting the Emulator to a Target System

Plugging The Emulator Into A Target System 612

Understanding an emulator 612

Equivalent circuits 614

Obtaining the terminal interface 616

Connecting the emulator to the target system 617

Verifying Operation Of The Emulator In Your Target System 619

Running the emulator configured like the processor 620

To verify operation of the target system 621

Interpreting the trace list 630

Fixing timing problems 632

Installing the emulator in a target system without known good software 633

XXVii

Contents

19

Installing Emulator Features 635

Evaluating the reset facilities 635

Installing the background monitor 637

Resetting into the background monitor 637

Dealing with keep-alive circuitry while using the background monitor 639
Testing memory accesses with the background monitor 640

Running a program from the background monitor 641

Breaking into the background monitor 644

Exiting the background monitor 645

Software breakpoint entry into the background monitor 646

Stepping with the background monitor 648

Installing the foreground monitor 651

Resetting into the foreground monitor 652

Dealing with keep-alive circuitry by using the custom foreground monitor 654
Testing memory access with the foreground monitor 655

Running a program from the foreground monitor 656

Breaking into the foreground monitor 658

Exiting the foreground monitor 660

Software breakpoint entry into the foreground monitor 660

Stepping with the foreground monitor 663

Installing emulation memory 665

Installation and Service
Installation 668

Installing Hardware 670

Step 1. Install optional memory modules on Deep Analyzer card, if desired 672
Observe antistatic precautions 672

Step 2. Connect the Emulator Probe Cables 674

Step 3. Install Boards into the HP 64700 Card Cage 677

Step 4. Install emulation memory modules on emulator probe 689

Step 5. Connect the emulator probe to the demo target system 693

Step 6. Apply power to the HP 64700 695

Connecting the HP 64700 to a Computer or LAN 699

XXViii

Contents

Installing HP 9000 Software 700

Step 1. Install the software from the media 700

Step 2. Verify the software installation 703

Step 3a. Start the X server and the Motif Window Manager (mwm) 704
Step 3b. Start HP VUE 704

Step 4. Set the necessary environment variables 705

Installing Sun SPARCsystem Software 707

Step 1. Install the software from the media 707

Step 2. Start the X server and OpenWindows 708
Step 3. Set the necessary environment variables 708
Step 4. Verify the software installation 710

Step 5. Map your function keys 711

Step 6. Restart the window system 712

Step 7. Run the interface in a window 712

Verifying the Installation 713

Step 1. Determine the logical name of your emulator 713
Step 2. Start the interface with the

emul700command 714

Step 3. Step through the demo with the Action Keys 717
Step 4. Exit the Graphical User Interface 717

Step 5. Verify the performance of the emulator 718
What is pv doing to the Emulator? 720

Troubleshooting 721

Parts List 722
What is an Exchange Part? 722

20 Installing/Updating Emulator Firmware

To update emulator firmware with "progflash* 727
To display current firmware version information 730
If there is a power failure during a firmware update 731

Glossary

Index

XXiX

XXX

Part 1

Quick Start Guide

Part 1

Quick Start Guide

In This Part

This part describes how to quickly become productive with the emulation system.

Getting Started

Chapter 1: Getting Started

Display area.

Status line.

Command line.

——

The Emulator/Analyzer Interface — At a Glance

When an X Window System that supports OSF/Motif interfaces is running on the
host computer, the emulator/analyzer interface is the Graphical User Interface.
Some interface features include pull-down and pop-up menus, point and click
setting of breakpoints, cut and paste, on-line help, customizable action keys, and
pop-up recall buffers.

The emulator/analyzer interface can also be the Softkey Interface which is provided
for several types of terminals, terminal emulators, and bitmapped displays. When
using the Softkey Interface, commands are entered from the keyboard.

The Softkey Interface

Memory :mnemonic :file main (module) . "main.c":
address data

000FD2 4E5&0000 LINK A6, ff00000

000FDe 4EB2000015 JSR 000152E

000FDC 4EB200001A JSR 0001aA96
4E71 HOP
4EB9000015 JSR 00015D8
5289000076 ADDQR.L #1,00076F4
4879000076 PEA.L 00076F4

000FFe 4EB2000010 JSR 000102¢
000FFC 588F ADDQ.L #4,A7

000FFE 4A39000077 TST.B 0007700
001004 €708 BEQ.B 000100E
001006 4EB2000019 JSR 00019D8
00100C 4E71 NOP

00100E 4EB200001A JSR 0001ABA
001014 4E71 NOP

00101e e&0CC BRA.B 0000FE4

STATUS : ows: main."main.c":
display memory main mnemonic

trace

Display area. Can show memory, data values, analyzer traces, registers,
breakpoints, status, simulated 1/0O, global symbols, local symbols, pod commands
(the emulator’'s underlying Terminal Interface), error log, or display log. You can
use the UP ARROW, DOWN ARROW, PAGE UP, and PAGE DOWN cursor keys
to scroll or page up or down the information in the active window.

Chapter 1: Getting Started

Status line. Displays the emulator and analyzer status. Also, when error and
status messages occur, they are displayed on the status line in addition to bei
saved in the error log.

Command line. Commands are entered on the command line by pressing
softkeys (or by typing them in) and executed by pressing the Return key. The Tab
and Shift-Tab keys allow you to move the cursor on the command line forward or
backward. The Clear line key (or CTRL-e) clears from the cursor position to the
end of the line. The CTRL-u key clears the whole command line.

Softkey Interface Conventions

Example Softkey Interface commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command syntax.

bold italic Commands, options, and parts of command syntax which
may be entered by pressing softkeys.

normal User specified parts of a command.

$ Represents the UNIX prompt. Commands which follow
the "$" are entered at the UNIX prompt.

Softkey interface commands are executed by pressing the carriage return key on the
keyboard.

Chapter 1: Getting Started

The Graphical User Interface

—'E Hewlett Packard Emulator/Analyzer: em68040 (m68040) E a EJ
Menu bar. — File Display Modify Execution Breakpoints Trace Settings Help
. ction keys: < Demo > Disp Sre Trace Run Step Source
Action keys. —— -2 ys: | [DispSre0) | 0_| | Step
| = Your Key = | tdake |Disp Sre Prev |Run Alertil () | Break | Step Asm

() imain I_R/ecall
Entry buffer. — Memory :mnemonic (file = main{modulel. "main.c":
addre label da A

31 fwoid update_systemil; /#* update system wariables #/
Entl’y buffer recall — 32 extern woid interrupt_simi{}; /* simulate an interrupt */
pushbutton. gi extern woid do_sort(}; /#* sets up ascii array and call
35 main(}
36 i
. 97 init_system(};
DISplay area. | proc_spec_initi);
33
186 while (truel
1A
Scrollbar, ——— 1] 182 update_system(};
183 num_checks++;
184 interrupt_sim{&num_checks);
185 if {graph?’
A 1686 graph_datal};
Status line. \ 187 proc_specificl);
STATUS: HG8640--Running in monitor (€|

display memory main mnemonic

Command Line:
Command line

enty area. B O e e e R | B i
Command: Cursor: |§.§é§<ﬁ§i%§§} |Forward |Clear to end |Clear |He|p ¥
E

Softkey
pushbuttons.
Command pushbuttons. Includes Cursor pushbuttons for command line

command recall pushbutton. area control.

Menu Bar. Provides pulldown menus from which you select commands. When
menu items are not applicable, they appear half-bright and do not respond to mouse
clicks.

Action Keys. User-defined pushbuttons. You can label these pushbuttons and
define the action to be performed.

Chapter 1: Getting Started

Entry Buffer. Wherever you see "()" in a pulldown menu, the contents of the

entry buffer are used in that command. You can type values into the entry bu

or you can cut and paste values into the entry buffer from the display area or f

the command line entry area. You can also set up action keys to use the contents of
the entry buffer.

Entry Buffer Recall pushbutton. Allows you to recall entry buffer values that
have been predefined or used in previous commands. When you click on the entry
buffer Recall pushbutton, a dialog box appears that allows you to select values.

Display Area. Can show memory, data values, MMU translation tables, analyzer
traces, registers, breakpoints, status, simulated 1/O, global symbols, local symbols,
pod commands (the emulator’'s underlying Terminal Interface), error log, or display

log.

Whenever the mouse pointer changes from an arrow to a hand, you can press and
hold theselectmouse button to access popup menus.

Scroll Bar. A "sticky slider" that allows navigation in the display area. Click on
the upper and lower arrows to scroll to the top (home) and bottom (end) of the
window. Click on the inner arrows to scroll one line. Drag the slider handle up or
down to cause continuous scrolling. Click between the inner arrows and the slider
handle to page up or page down.

Status Line. Displays the emulator and analyzer status. Also, when error and
status messages occur, they are displayed on the status line in addition to being
saved in the error log. You can press and holdeteetmouse button to access the
Status Line popup menu.

Command Line. The command line area is similar to the command line in the
Softkey Interface; however, the graphical interface lets you use the mouse to enter
and edit commands.

e« Command line entry area Allows you to enter emulator commands from the
command line.

» Softkey pushbuttons Clicking on these pushbuttons, or pressing softkeys,
places the command in the command line entry area. You can press and hold
theselectmouse button to access the Command Line popup menu.

e Command pushbuttons(includes command recall pushbutton). The
commandReturn pushbutton is the same as pressing the carriage return key —
it sends the command in the command line entry area to the emulator/analyzer.

Chapter 1: Getting Started

The commandRecall pushbutton allows you to recall previous or predefined
commands. When you click on the comm&uatall pushbutton, a dialog box
appears that allows you to select a command.

e Cursor pushbuttons for command line area contral Allows you to move
the cursor in the command line entry area forward or backward, clear to the
end of the command line, or clear the whole command line entry area.

You can choose not to display the command line area by turning it off. For the
most common emulator/analyzer operations, the pulldown menus, popup menus,
and action keys provide all the control you need. Choosing menu items that require
use of the command line will automatically turn the command line back on.

Graphical User Interface Conventions

Choosing Menu Commands

This chapter uses a shorthand notation for indicating that you should choose a
particular menu item. For example, the following instruction

ChooséFile - Load - Configuration

means to first display tHele pulldown menu, then display thead cascade
menu, then select tl@onfiguration item from the Load cascade menu.

Based on this explanation, the general rule for interpreting this notation can be
stated as follows:

* The leftmost item in bold is the pulldown menu label.

+ If there are more than two items, then cascade menus are involved and all
items between the first and last item have cascade menus attached.

» The last item on the right is the actual menu choice to be made.

Chapter 1: Getting Started

Mouse Button and Keyboard Bindings

Because the Graphical User Interface runs on different kinds of computers, w
may have different conventions for mouse buttons and key names, the Graphica
User Interface supports different bindings and the customization of bindings.

This manual refers to the mouse buttons using general (or "generic") terms. The
following table describes the generic mouse button names and shows the default
mouse button bindings.

Mouse Button Bindings and Descriptions

Bindings:

Generic

Button Sun

Name HP 9000 SPARCsystem Description

paste left left Paste from the display
area to the entry buffer.

command paste middle! middle! Paste from the entry
buffer to the command
line text entry area.

select right right Click selects first item in
popup menus. Press and
hold displays menus.

command selectleft right Displays pulldown menus.

pushbutton left left Actuates pushbuttons

select outside of the display area.

1 Middle button on three-button mouse. Both buttons on two-button mouse.

Chapter 1: Getting Started

The following table shows the default keyboard bindings.

Keyboard Key Bindings

Generic Key Name

menu select
insert

delete
left-arrow
right-arrow
up-arrow
down-arrow
escape

TAB

HP 9000
extend char
insert char
delete char
left arrow
right arrow
up arrow
down arrow
escape

TAB

Sun SPARCsystem

extend char
insert char
delete char
left arrow
right arrow
up arrow
down arrow

escape

TAB

10

Chapter 1: Getting Started

The Getting Started Tutorial

This tutorial gives you step-by-step instructions on how to perform a few basic
tasks using the emulator/analyzer interface. The screen displays shown in this
chapter were obtained by running the MC68040 emulator/analyzer.

The tutorial examples presented in this chapter make the following assumptions:

e The HP 64783 emulator and HP 64704 analyzer are installed into the
HP 64700 Card Cage.

e The HP 64700 is connected to the host computer.

» The emulator/analyzer interface software has been installed as outlined in
Chapter 19, "Installation and Service", and updated as outlined in Chapter 20,
"Installing/Updating Emulator Firmware".

» The emulator is operating out-of-circuit; that is, connected to the demo board,
not your target system, as outlined in Chapter 19, "Installation and Service".

» The emulator contains at least 60 Kbytes of emulation memory.

» Power is turned on to the instrumentation card cage and the LED on the demo
board is lit.

The Demonstration Program

The demonstration program used in this chapter is a simple environmental control
system. The program controls the temperature and humidity of a room requiring
accurate environmental control.

11

Chapter 1: Getting Started
Step 1: Start the demo

Step 1: Start the demo

A demo program and its associated files are provided with the Graphical User
Interface.

Change to the demo directory.

 Type:
$ cd /usr/hp64000/demo/debug_env/hp64783

Refer to the README file for more information on the demo program. Type:

$ more README

Check that "/usr/hp64000/bin" and "." are in your PATH environment variable. To
see the value of PATH, type:

$ echo $PATH

If the Graphical User Interface software is installed on the same computer or same
type of computer that you are using to run this "Getting Started" procedure, skip
this step and go directly to step 4 of this "Start the demo" procedure.

If the Graphical User Interface software is installed on a different type of computer
than the computer you are using, edit the "platformScheme" resource setting in the
"Xdefaults.emul" file. For example, if the Graphical User Interface will be run on

an HP 9000 computer and be displayed on a Sun SPARCsystem computer, change
the platform scheme to "SunOS". This can’'t be done in the demo directory
specified above because the Xdefaults.emul file is write-protected. You will need

to move it to a new directory and then change its permissions. The best way to do
this is to enter the command:

$ Startemul <logical_emul_name>
In the above command, <logical_emul_name> is the logical name of your

emulator, given in the HP 64700 emulator device table file
(/usr/hp64000/etc/64700tab.net).

12

Chapter 1: Getting Started
Step 1: Start the demo

After you give the "Startemul" command, you will be asked if you would like to
have the demo files copied to a different directory. Answer yes, and then spe
your own demo directory. The files will be copied to your own directory where
you can change the permissions on the Xdefaults.emul file so that you can edit it.

Type:
$ chmod 664 Xdefaults.emul

Now edit the Xdefaults.emul file. For this example, you would edit as follows:

$ vi Xdefaults.emul

I* platformScheme: pc-xview
I* platformScheme: HP-UX
* platformScheme: SunOS
I*. platformScheme: HPxterm

Finally, save the Xdefaults.emul file with its modifications, and then start the
emulation session again from the demo directory where you have your custom
Xdefaults.emul file.

Start the emulator/analyzer demo with the command:

$ Startemul <logical_emul_name>

The <logical_emul_name> in the command above is the logical emulator name
given in the HP 64700 emulator device table file (/Jusr/hp64000/etc/64700tab.net).
For the MC68040 emulator, it is usually m68040.

If you did not perform Step 3 of this "Start the demo" procedure, you will be asked
if you would like to have the demo files copied to a directory of your own

choosing. Itis a good idea to have these files copied to your own demo directory if
you have space available in your system because it protects the original demo files
from changes you might make during this demo procedure.

This script starts the emulator/analyzer interface (with a customized set of action
keys), loads a configuration file for the demo program, and then loads the demo
program.

13

Chapter 1: Getting Started
Step 2: Display the program in memory

Step 2: Display the program in memory

1 If the symbol "main” is not already in the entry buffer, move the mouse pointer to
the entry buffer (notice the flashing I-beam cursor) and type in "main”.

2 ChooseDisplay - Memory - Mnemonic ().

Or, using the command line, enter:

display memory main mnemonic
The command line can be brought on screen by cho8eitiggs— Command
Line in the menu bar or placing the cursor in the display area and typing.

1 1
—'E Hewlett Packard Emulator/Analyzer: em68040 (m68040) E a EJ
File Display Modify Execution Breakpoints Trace Seftings Help

Action keys: | = Demo = | Run xfer til {) |Disp Src & Asm | Patch ()

| = Your Key = | tMake & Load | Step Asm | Step Source | Disp Var()

| Disp @REG || Disp Src Prev || Trace | Run [Again

() imain IRecaII

Memaory :mnemonic :file = main{modulel. "main.c":
addre label data A
31 extern void update_systemi); /#* update system wariables #*/
32 extern void interrupt_simi}; /% simulate an interrupt */
33 extern void do_sortil; /% sets up ascii array and call
34
35 maini}
35 i
97 init_systemi);
98 proc_spec_initi};
33
186 while {truel
181 i
182 update_system();
183 num_checks++;
184 interrupt_sim{&num_checks);
185 if {graph?
1686 graph_datall;
187 proc_specificll);
| STATUS: cws: main. main.c”: |
F F

The default display mode settings cause source lines and symbols to appear in
displays where appropriate. Notice you can use symbols when specifying
expressions. The global symbol "main" is used in the command above to specify
the starting address of the memory to be displayed.

14

Chapter 1: Getting Started
Step 3: Run from the transfer address

Step 3: Run from the transfer address

The transfer address is the entry address defined by the software development tools
and included with the program’s symbol information.

Click on theRun Xfer til () action key.

Or, using the command line, enter:

run from transfer_address until main
Memory :Bs :mremonic :(file = main{modulel. "main.c":
addre label data A
91 extern void update_system(); /% update system wariables #/
32 extern void interrupt_simi); /% simulate an interrupt */
93 extern void do_sort(); /¥ sets up ascii array and call
34
35 maint}
Y
37 init_systemi);
33 proc_spec_init{);
33
168 while {(truel
181 i
182 update_system();
183 num_checks++;
184 interrupt_sim{&num_checks);
185 if (graph’
186 graph_datall;
187 proc_specifici);
STATUS: M686040--Running in monitor Software break: 90000235485 M

Notice the message "Software break: <address>" is displayed on the status line and
that the emulator is "Running in monitor". You may have to cliclséiertmouse

button on the STATUS line to obtain this message. When you run until an address,
a breakpoint is set at the address before the program is run.

Notice the highlighted bar on the screen; it shows the content of the current
program counter.

15

Chapter 1: Getting Started
Step 4: Step high-level source lines

Step 4: Step high-level source lines

You can step through the program by high-level source lines. The emulator
executes as many instructions as are associated with the high-level program source
lines.

To step a source line from the current program counter, click @tépeSource
action key, or choodexecution- Step Source- from PC.

Or, using the command line, enter:
step source

Notice that the highlighted bar (the current program counter) moves to the next
high-level source line.

Step into the "init_system" function by continuing to step source lines by clicking
on theStep Sourceaction key, by clicking on thagain action key which repeats
the previous command, by choosxggecution- Step Source»fromPC, or by
entering thestep sourcecommand on the command line.

Memory :@s :fmnemonic :file = init_systemimodulel). "init_system.c":
addre label data
26
27 void init_wal_arri{};
28
23 woid
3d init_systemi]

- S# FUNCTION init_system() #/
32

f* Initialize the target values for temperature and humidity */

33 target_temp = 73;

34 target_humid = 45;

35

36 /% Intialize the wariables indicating the current envirorment #
37 /* conditions */

38 current_temp = B&;

39 current_humid = 41;

48

41 /* Set starting directions for temp and humid */

42 temp_dir = up;

16

Chapter 1: Getting Started
Step 5: Display the previous mnemonic display

Step 5: Display the previous mnemonic display .

Click on theDisp Src Prevaction key, or choodeisplay - Memory - Mnemonic
Previous.

Or, using the command line, enter:

display memory mnemonic previous_display

This command is useful, for example, when you have stepped into a function that
you do not wish to look at—you can return the previous mnemonic display to the
screen and run your program until the source line that follows the function call is
reached. The next step in this procedure will show you how to make the emulator
run through the function "init_system();" and stop when "proc_spec_init();" is
reached.

17

Chapter 1: Getting Started
Step 6: Run until an address

Step 6: Run until an address

When displaying memory in mnemonic format, a selection in the popup menu lets
you run from the current program counter address until a specific source line.

» Position the mouse pointer over the line "proc_spec_init();". Press and hold the
selectmouse button, and chooRen Until from the popup menu.

—'E Hewlett Packard Emulator/Analyzer: em68040 (mG8040) E a EJ
File Display Modify Execution EBreakpoints Trace 3Settings Help
Action keys: | < Demo > | Run Xfer til () |Disp Src & Asm | Patch ()
| < ¥Your Key > | Make & Load | Step Asm | Step Source | Disp Var()
| Disp @REG | Disp Src Prev i Trace | Run [Again
[Jimain IRecaII
Memory :Bs imnemonic :file = mainimodulel. "main.c":
addre label data A&
31 extern void update_system{}; /% update system variables #/
32 extern void interrupt_sim(}; /* simulate an interrupt */
33 extern void do_sort(}; /% sets up ascii array and call
34
35 main{}
36 i
97 init_system{J);
EE c_initl g
35 L Choose Action for Highlighted Line
13? ”Ehi le {true) Set{Clear Software Breakpoint
182 update_syst| Edit Source
1683 num_check s+ =
184 interrupt_s Run Until
165 if t{graph?
106 graph._da Trace After
187 proc_specif| Trace Before
| STATUS: HB8040--Stepping comp| |T2¢€ About E N
f Trace Until f

Or, using the command line, enter:

run until main."main.c": line 98

After the command has executed, notice the highlighted bar indicates the program
counter has moved to the specified source line.

18

Chapter 1: Getting Started
Step 7: Display data values

Step 7: Display data values

1 Position the mouse pointer over "num_checks" in the source line that reads
"num_checks++;" and click tigastemouse button (notice "num_checks" is cut
and pasted into the entry buffer).

2 Click on theDisp Var () action key, or choose
Display - Data Values- Add() - int32.

Or, using the command line, enter:

display data , num_checks int32
{()inum_checks IRecaII é
Oata :update
addre label type data
AER7E75A |_num_check5 int3Z 5]

The "num_checks" variable is added to the data values display and its value is
displayed as a 32-bit integer.

19

Chapter 1: Getting Started
Step 8: Display registers

Step 8: Display registers
You can display the contents of the processor registers.
» ChooseDisplay - Registers— BASIC.

Or, using the command line, enter:

display registers

Registers

Next PC HOHAZS728sp
PC B@BEZ2372 STATUS 2784 < s =z > ISP DOB@@0EE MSP @BOEEEEEA1 ISP BEES7FSC
0a-07 PAAEERZA BEBAREZE BAA73IB0T BREAZ322 BPOREEER HOREOHER APEREERR BERBAGE
AB-AY BEAY31B4 BOE75Y500 BEA/5158 BOEYS1BD BPAYE335 HOOSA188 ARESYFI4 BEASYFEC
CACR BEPA@EEE VBR BE@REAEA SFC S OFC 5

20

Chapter 1: Getting Started
Step 9: Step assembly-level instructions

Step 9: Step assembly-level instructions

You can step through the program one instruction at a time.

To step one instruction from the current program counter, click dbtépeAsm
action key, or choodexecution- Step Instruction - from PC.

Or, using the command line, enter:

step

Registers

HNext PC ABHAZ37Z2Esp
FC BEERZ3I72 STATUS 2784 < s =z > USP D@@BE@EEEE MSP GOHBEEE1 ISP BEBE7FEC
0a-07 BEPAEEZE PEAEAR-A BREYIA0DE BEARHZ3Z2Z APAHEEAE PREEARHOR HEERAEER BRERDAR
AB-AY BEE7YS1B4 BEAYE750 BOEY5188 HARYS1BR AUAYE333 MOHSR185 DBASYF34 ABESYFS
CACR BRBO@EEE VBR D@ABEAEEE SFC 5 OFC 5

Step_PC HBBEZS72E8s ISR p.proc_spec_init

Next PC BBEB374ABsp
FC BBBE374A STATUS 2784 < s =z » USF DEOBEEOEE MSP @A0HBEE01 ISP BABE7FG5
08-07 HEEHEEDEZE DEODADZE BRE7SEDE BEBHZ3Z2Z DOEDEEDOE PODEADHDE DEDOEDED ABEODAD
AB-A7 @EB7E1B4 BEB7E700 BOEYS18E5 ©ABYE1BY DOA7E833 BOE80185 DEBE7FI4 ABESTFS
CACR Bp@oe@pge VBR b@pEaess SFC S DOFC S

Notice, when registers are displayed, stepping causes the assembly language
instruction just executed to be displayed.

21

Chapter 1: Getting Started
Step 10: Trace the program

Step 10: Trace the program

When the analyzer traces program execution, it looks at the data on the emulation
processor’s bus and control signals at each bus cycle. The information seen at a
particular bus cycle is called a state.

When one of these states matches the "trigger state" you specify, the analyzer stores
states in trace memory. When trace memory is filled, the trace is said to be
"complete."

Click on theRecall pushbutton to the right of the entry buffer.

A selection dialog box appears. You can select from entry buffer values that have
been entered previously or that have been predefined.

Click on "main" in the selection dialog box, and click the "OK" pushbutton.

Notice that the value "main" has been returned to the entry buffer.

To trigger on the address "main" and store states that occur after the trigger, choose
Trace - After ().

Or, using the command line, enter:

trace after long_aligned main

Notice the message "Emulation trace started" appears on the status line. This

shows that the analyzer has begun to look for the trigger state which is the address
"main" on the processor’s address bus.

Run the emulator demo program from its transfer address by choosing
Execution— Run - from Transfer Address.

Or, using the command line, enter:

run from transfer_address

22

Chapter 1: Getting Started
Step 10: Trace the program

Notice that now the message on the status line is "Emulation trace complete™.

shows the trigger state has been found and the analyzer trace memory has b
filled.

5 To view the captured states, choBésplay - Trace.

Or, using the command line, enter:

display trace

Address
| Imhn 1
Jisagidifngibugi su

n

Opcode or Status w/ Source Lines
mremonic w/symbol

main.c - line

1 thru

prog|main.main LINK.W AG, #$BEER

pr(maintBAEEARE4 MOVE.L A3, (A7

=pr|main+tBHAEEEEE MOVE. L Az, -CA7Y

+BE2 pr|main+tB0AEAEES MOVER.L #$6H873188, A2

+B83 =pr|main+tBEEEEEEE MOVER.L #$¥0E88753168, A3

+8A4 pr|main+tBBEEEALIE $BEB7516A sprog long read

+HAS sysstact+BBEEFF34 $BHBBYFFA sdata long write
it main. e - line EEE:s bisgitan: duduti s fisd g ignidadifudafifugafidedugifudadidi ifuss id ki g

#Ed1, (A2}

The default display mode settings cause source lines and symbols to appear in the
trace list.

Captured states are numbered in the left-hand column of the trace list. Line 0
always contains the state that caused the analyzer to trigger.

Other columns contain address information, data values, opcode or status
information, and time count information.

23

Chapter 1: Getting Started
Step 11: Display memory at an address in a register

Step 11: Display memory at an address in a
register

Click on theDisp @REGaction key. A "Define command file ..." dialog box
appears.

Or, using the command line, enter the name of the command file:

mematreg
A prompt appears in the command line.

Move the mouse pointer to the "Define command file ..." dialog box text entry area,
type "A7", and click the "OK" pushbutton.

Or, if the prompt is in the command line, enter:

A7

Memory :@s :bytes :access=bytes :blocked :update
addre data ihe rascii
ARAgYF48-4F aa @@ 7F IC B8 @@ ©d @a
ARAG7FSE-57 @@ @@ BB BS @8 @@ FF iC
ARAGYFS5-5F AR BB @@ BB @R BB BB 68 e
ARAgYFEB-67 aa @7 87 4E @@ @3 YF 54 .. o N

ARAG7FEB-6F Aa B8 31 48 @@ @7 9@ 03 O
ARAgYF7B-77 A @Y 9@ 03 @8 @8 23 22 A
AREE7F78-7F L B 1 B | - S 1 A | v < e
ARAG7Fa6-57 37 RE @@ YC @@ @3 YF 34 70
ARAGYFE5-8F A@ B8 23 C6 @8 @y §7 08 P
ARAg7FIB-37 A@ @Y 9@ 08 @@ @3 YF F@

ARAgYFI8-9F aa @@ 23 16 @@ @@ ©@d @a R
ABEayrFAE-AY A8 B8 B8 @8 B8 @B B8 68 .

ARAE7FAS-AF A@ @Y B3 38 B8 @B @R 68 e
ARAgYFBEE-B7 A@ @@ @@ 38 @@ @@ @8 62 ... B
ARAG7FBEB-BF A@ @@ @8 15 @@ @@ @@ @1 .
ARAgYFCB-C7 a@ @@ @8 15 B8 @8 @8 @a e
ARAgYFCB-CF Aa @@ @@ 48 @@ @7 §7 08 ... B

24

Chapter 1: Getting Started
Step 12: Patch assembly language code

Step 12: Patch assembly language code

1 With "main” still in the entry buffer, click on tiHeun Xfer til () action key.

2 To display memory with assembly-level instructions intermixed with the high-level
source lines, click on thRisp Src & Asm action key.

Memory :Bs :mnemonic :file = main{modulel). "main.c”:
addre label data
3z extern void interrupt_simil}; /* simulate an interrupt */
93 extern void do_sort(); /* sets up ascii array and call
34
35 maini}
35 i
i EEll-+ |main.main 4ESEAGEE LINKE.H AE, #1$HEAE
AHEHZ2358 2FAaB MOVE. L A3, -(A7:
ABEEZ235A 2F AR MOVE. L Az, -(A7:
ABEEZ35C 247CABRYE1 MOVER.L #$8E873183,R2
ABABZ362 257CABAEYE1 MOVER.L #$BBBYT1EA, A3
37 init_systemi);
AHEHZ2368 14BCHBA]L HMOVE. B #$E1, (A2
ABEEZ3EC 4EBSAEEEZF JSR init.init_system
33 proc_spec_initil);
AAEBRZ37 2 4EB3ABRASY ISR p.proc_spec_init
33
188 while {(truel}

3 Click on thePatch () action key.

A window appears and ttv¢ editor is started. Under "ORG main", add the line:

LINK A6,#1234h

Exit out of the editor, saving your changes (using 'wq’).

ThePatch () action key lets you patch code in your program. The file you just
edited is assembled, and the patch main menu appears. Type "a" beside "Enter
choice:", and then press your carriage return key to apply the patch.

25

Chapter 1: Getting Started
Step 12: Patch assembly language code

Memory :Bs imnemonic :file = mainimodule). "main.c”:

addre label dats A
32 extern void interrupt_simi(); /% simulate an interrupt ®/
33 extern void do_sorti); /% sets up ascii array and calls
34
35 maini
36 i
- EEEEEEEE - | main. main 4ES61234 LINK. W AG, #$ 1234

BBEAEZ958 ZFaB MOVE. L A3, -EA7)

BBEAZ95A ZFBA MOVE. L A2, -tA7)

BREaZ35C 247CBEA781 MOVER.L #$BBE751885, A2

ABEAZ362 Z67CBEA751 MOVER.L #$BBE7516B6, A3
97 init_systemil;

BABEAZ968 14BCEBAL MOVE. B #$B1, (AZ2)

BABEAZ96C 4EBIBEABZF JSR init.init_system
35 proc_spec_initi);

BABBRZ37 2 4EBIRBAASY ISR p.proc_spec_init
93
164 while (truel

Notice in the emulator/analyzer interface that the instruction at address "main" has
changed.

4 Click on thePatch () action key again.
A window running thevi editor again appears, allowing you to modify the patch
code that was just created. Modify the line you added previously to:

LINK A6,#0

Exit out of the editor, saving your changes.

The file you just edited is assembled, and the patch main menu appears. Type "a"
and press your carriage return key to apply the patch.

Notice in the emulator/analyzer interface that the instruction at address "main" has
been changed back to what it was originally.

When patching a single address, make sure the new instruction takes up the same
number of bytes as the old instruction; otherwise, you may inadvertently modify
code that follows.

26

Chapter 1: Getting Started
Step 12: Patch assembly language code

5 Type "main+4 thru main+15" in the entry buffer.

By entering an address range in the entry buffer (that is, <address> through
<address>) before clicking on tRatch () action key, you can modify a patch
template file which allows you to insert as much or as little code as you wish.

6 Click on thePatch () action key again.

A window running thevi editor again appears. Suppose you want to patch the
demo program so that the proc_spec_init() function is called before the
init_system() function. Suppose also that there is memory available at address
7FEOH. Edit the patch template file as shown below.

; PCHS700 Assembly Patch File: PCHmain+4.s

 Date : Fri Feb 12 14:06:06 MDT 1993

; Dir : /users/guest/demo/debug_env/hp64783
; Owner: guest

INCLUDE PCHSINC.s
ORG main+4
BRA patchl ;You may want to change this name!
ORG 7FEOh ;You MUST set this address!
patchl NOP
; i You may need to modify labels and operands of the 111
; il following code to match your assembler syntax i
; 1l Patching Range: main+4 thru main+15

JSR _proc_spec_init

JSR _Init_system
BRA main+16 ;You MUST set this address also!

Notice that symbols can be used in the patch file. Exit out of the editor, saving
your changes (‘wQq’).

The file you just edited is assembled, and the patch main menu appears. Type "a"
and press your carriage return key to apply the patch.

You can step through the program to view execution of the patch. Place "main” in
the entry buffer and use t¢ep Sourceaction key, or choodexecution- Step
Source-from ().

Or, using the command line, enter:

Sstep source

27

Chapter 1: Getting Started
Step 12: Patch assembly language code

The MMU Demonstration

The remainder of this demonstration shows how the MC68040 emulator helps you
develop and analyze your target program within a memory system that is managed
by the MMU of the MC68040 processor.

The MMU demo program attempts to simulate a real target system to display
hexadecimal characters on the seven-segment display on the HP 64783A demo
board (used with HP 64783A and HP 64783B emulators). A simple operating
system uses interrupts to maintain a system clock and configures the MMU to
translate addresses and provide memory access protection. The operating system
waits for a hexadecimal string to be placed in "sysbuf" and then spawns a user task
to display each character on the demo board’'s seven-segment display. The user
task interfaces with the operating system to set up an alarm timer and to output
individual characters to the display. The display of characters is interrupt driven.

This demo requires 128 Kbytes of emulation memory. The first 64-Kbyte block of
emulation memory is mapped to lower memory and corresponds to system ROM.
ROM space is translated 1:1 and is entirely write protected. The first half of ROM
contains privileged operating system code and is also protected against user mode
access. The second half of ROM is user accessible and contains shared library and
operating system interface functions. The second 64-Kbyte block of emulation
memory is mapped to upper memory and corresponds to system RAM. RAM

space is NOT translated 1:1 and has varying access protections. During bootup, the
operating system loads the user program, user data, and operating system data from
ROM into RAM after the MMU is enabled. The user program is loaded into the

first half of RAM and gets write-protected. The user data and stack is located in the
next quarter of RAM and has no access protections. The last quarter of RAM
contains operating system data and stack and is protected against user access. A
transparent translation register is used to provide a 1:1 address translation for the
emulation monitor located at 0xff000000. The following MMU translation display
summarizes all address translations:

Logical Address Physical Address Attributes
00000000..00007fff 00000000..00007fff@a S W (32K sprog)
00008000..0000ffff 00008000..0000ffff@a W (32K libc)
00010000..00017fff ffff0000..ffff7fff@a W (32K uprog)
00010000..0001bfff ffff8000..fff{Bfff@a (16K udata)
0001C000..0001ffff ffffC000..ffffffff@a S (16K sdata)
ff000000. ffffffff ff000000..ffffffff@a TT (monitor)

Where:
S = Supervisor access only.
W = Write-protected.
TT = Controlled by a transparent translation register.

28

Chapter 1: Getting Started
Step 13: Obtain the normal interface and MMU demo

Read the README file in the mmudemo directory, which you will access next
this demonstration procedure. The README file suggests tests you can mak
addition to those shown in this chapter, with the demo program. These can h
you become more comfortable with use of the MMU in this emulator.

Step 13: Obtain the normal interface and MMU
demo

The MMU demo program is run from the normal interface of the MC68040
emulator/analyzer, not the special interface you used to run the "ecs" demo in the
first part of this chapter. If you still have the graphical user interface on screen,

chooseFile - Exit — Released.

If using the softkey interface, enter the command:

end release_system

Obtain the MMU demo directory by typing the command:

$cd /usr/hp64000/demo/debug_env/hp64783/mmudemo

Start the normal MC68040 emulator/analyzer with the command:

$emul700 <logical_emul_name>

The <logical_emul_name> in the command above is the logical emulator name
given in the HP 64700 emulator device table file that you used in the first
demonstration (Step 1, Substep 4 of this procedure).

Load the MMU demo program and start it running, as follows:

ChooseFile - Load - Emulator Config ... In the file selection dialog box, select
/usr/hp64000/demo/debug_env/hp64783/mmudemo/demo.EA, and click OK.

ChooseFile - Load - Executable ... In the file selection dialog box, select
/usr/hp64000/demo/debug_env/hp64783/mmudemo/demo.x, and click OK.

29

Chapter 1: Getting Started
Step 13: Obtain the normal interface and MMU demo

ChooseExecution— Run - from Reset
Or, using the command line, enter the following commands:

load configuration demo.EA
load demo.x
set source memory_only_trace_on
run from reset

30

Chapter 1: Getting Started
Step 14: See the setup of the MMU

Step 14: See the setup of the MMU

ChooseDisplay -~ MMU Translations

Or, using the command line, enter the following command:

display mmu_translations

The above commands let you see the present setup of the MMU. The MMU was
set up by the demo program when you first started it.

Logical Address Physical Address Attributes
000000000..000007fff 000000000..000007fff@a S W
000008000..00000ffff 000008000..00000ffff@a W
000010000..000017fff Offff0000..0ffff7fff@a W
000018000..00001bfff 0ffff8000..0ffffbfff@a
00001c000..00001ffff Offffc000..0ffffffff@a S
0ff000000..0ffffffff 0ff000000..0ffffffff@a TT

Note that the first and second ranges of logical addresses are translated 1:1 to their
physical addresses. The third, fourth, and fifth ranges of logical addresses are
translated to different physical addresses. The last range of logical addresses is
translated 1:1 to its corresponding range of physical addresses.

The "TT" attribute beside the last range of physical addresses indicates that it is
transparently translated by one of the transparent translation registers. The
emulation monitor occupies the first part of the last address range.

The transparent translation registers were used to provide a 1:1 translation for the
monitor because they are much easier to use. The demo program could have
created an appropriate entry in the MMU tables to provide the required translation
for the emulation monitor.

31

Chapter 1: Getting Started
Step 15: Look at the translation table details for a single logical address

Step 15: Look at the translation table details for a
single logical address

* ChooseDisplay - MMU Translations ... In the Display MMU Translations dialog
box, select MMU Tables, Address 18000h, and Table Level All. Then click OK.

 Or, using the command line, enter the following command:

display mmu_translations tables 18000h level all

The following display should appear. It shows how logical address 18000h is
translated through the MMU tables to its corresponding physical address ffff8000h.

Logical Address(hex) 0 0 0 1 8 0 O O
Logical Address (bin) 0000 0000 0000 0001 1000 0000 0000 0000
Table Level AAAA AAAB BBBB BBCC CCCC PPPP PPPP PPPP

LEVEL INDEX LOCATION CONTENTS TBL/PAGE G UxSCM M U W UDT/PDT
SRP 00000200 00000200 RESIDENT

A 000 00000200 0000040b 00000400 y n RESIDENT

B 000 00000400 0000060b 00000600 y n RESIDENT

C 024 00000660 ffff801lb ffffB0O00 N 00 ncwyy n RESIDENT

Physical Address (hex) = ffff8000

When you are developing a virtual memory system, you will need to check the
translations of selected addresses. NI tables option of theDisplay -~ MMU
Translations ... command lets you do this.

» Try displaying the translation for a non-resident page, such as address 54321h.
Also, try using the memory command to access a non-resident page. The monitor
always recovers from its own exceptions generated during commands, and displays
a detailed error message.

32

Chapter 1: Getting Started
Step 16: Look at details of MMU Table C

Step 16: Look at details of MMU Table C

ChooseDisplay - MMU Translations ... In the Display MMU Translations dialog
box, select MMU Tables, Address 18000h, and Table Level C (Page). Then click
OK.

Or, using the command line, enter the following command:

display mmu_translations tables 18000h Jlevel C

The following display should appear. It shows the portion of MMU Table C that is
used to translate logical address 18000h.

Logical Address(hex) 0 0 0 1 8 0 O O
Logical Address (bin) 0000 0000 0000 0001 1000 0000 0000 0000
Table Level AAAA AAAB BBBB BBCC CCCC PPPP PPPP PPPP

LEVEL INDEX LOCATION CONTENTS TBL/PAGE G UxSCM M U W UDT/PDT
SRP 00000200 00000200 RESIDENT

000 00000200 0000040b 00000400 y n RESIDENT

000 00000400 0000060b 00000600 y n RESIDENT

000 00000600 0000009f 00000000 N 00y cw nyy RESIDENT
001 00000604 00001087 00001000 n 00y cw nny RESIDENT
002 00000608 00002087 00002000 n 00y cw nny RESIDENT
003 0000060c 00003087 00003000 N 00y cwnny RESIDENT
004 00000610 00004087 00004000 n 00y cw nny RESIDENT
005 00000614 00005087 00005000 n 00y cw nny RESIDENT
006 00000618 00006087 00006000 n 00y cw nny RESIDENT
007 0000061c 00007087 00007000 n 00y cwnny RESIDENT
008 00000620 0000800f 00008000 n 00 ncw nyy RESIDENT
009 00000624 00009007 00009000 n 00 ncw nny RESIDENT
010 00000628 0000a007 0000a000 n 00 ncw nny RESIDENT

00000000000 T >

Occasionally you will need to examine the content of one of the MMU translation
tables at the point where it is used to translate a particular logical address. The
Table Level selection in the MMU Translation dialog box lets you do this.

33

Chapter 1: Getting Started
Step 17: Output characters on the seven-segment display

Step 17: Output characters on the seven-segment
display

ChooseSettings— Command Line to turn on the command line, if you are using
the graphical user interface.

Using the command line, store the value of a hexadecimal string to be output on the
seven-segment display of the demo board. To see the digits
"™0123456789AbCdEF" appear once, enter the following:

modify memory sysbuf string to "0123456789ABCDEF"

As soon as the operating system of the demo program detects that "sysbuf" has
been modified, it starts the user task to display each character in the string for 1/2
second. After the last character has been displayed, the user task returns to the
operating system and "sysbuf" can be modified again.

To display characters repetitively, add an "@" sign to the end of the string. For
example:

modify memory sysbuf string to "0123456789ABCDEF@"

To restart the program after an "@" sign is used, chierseution— Run - from
Reset or from the command line:

run from reset

34

Chapter 1: Getting Started
Step 18: Take a trace of emulation activity

Step 18: Take a trace of emulation activity

ChooseTrace - Everything, and then choosErace - Display. Choose
Settings- Display Modes ... In the Display Modes dialog box, select Source in
Trace Off, Then click OK. Now on the command line, enter the command:

display trace absolute status mnemonic

Or, using the command line, enter the following commands:
trace

display trace absolute status mnemonic
set source off symbols off

A trace list similar to the following should appear on screen.

Trace List Offset=0
Label: Address Data Absolute Status
Base: hex hex mnemonic

after 000008F4 65F24A82 $65F24A82 phy sprog long read
+001 000008F8 6FEA7050 $6FEA7050 phy sprog long read
+002

+003
+004
+005
+006
+007
+008
+009
+010
+011
+012
+013
+014

000008FC B08263E4
000008ES8 4A322800
000008EC 67085282
000008F0 7050B480
FFFFC010 00000000
000008F4 65F24A82
000008F0 7050B480
000008F4 65F24A82
000008F8 6FEA7050
000008FC B08263E4
00000900 2D7C0000
00000904 092AFFF8
000008EO FFO0588F

$B08263E4 phy sprog long read
$4A322800 phy sprog long read
$67085282 phy sprog long read
$7050B480 phy sprog long read
$00------ phy sdata byte read

$65F24A82 phy sprog long read
$7050B480 phy sprog long read
$65F24A82 phy sprog long read
$6FEA7050 phy sprog long read
$B08263E4 phy sprog long read
$2D7C0000 phy sprog long read
$092AFFF8 phy sprog long read
$FF00588F phy sprog long read

Note that all of the addresses displayed are physical addresses (denoted by "phy" in
the "Absolute Status Mnemonic" column of the trace list).

When the analyzer receives physical addresses, it can only show hexadecimal
values in the "Address" column of the trace list. The analyzer has no way to cross
reference the physical addresses on the emulation bus with the logical addresses
from which they were translated. Therefore, the analyzer cannot show you any
symbol information associated with these addresses. To see logical addresses in the
tracelist, you must use the deMMUer.

35

Chapter 1: Getting Started
Step 19: Prepare the deMMUer so you can see symbolic addresses in the trace list

Step 19: Prepare the deMMUer so you can see
symbolic addresses in the trace list

ChooseSettings— DeMMUer -, and then make sure thlerbosepushbutton is

pressed (to see details on screen). ChSeengs—- DeMMUer — Load from
Memory.

Or, using the command line, enter the following command:

load demmuer verbose

A display similar to the following should appear.

All physical addresses within the following 32-Mbyte range(s) will be
reverse translated into logical addresses for the analyzer:
000000000..001ffffff@a

0fe000000..0ffffffff@a

The lowest logical address from the translation tables is assumed when
multiple translations reference the same physical address.

The above command loaded the deMMUer with information to reverse translate

two ranges of physical addresses obtained from the MMU. By default, the
deMMUer was enabled when it was loaded. The verbose mode of this command
was selected so we could see which ranges of physical addresses would be reverse
translated by the deMMUer.

Any physical addresses that might have been derived from two or more logical
addresses will be reverse translated to the lowest logical address by the deMMUer.

Remember the setup of the MMU. It showed the following:

Logical Address Physical Address Attributes
000000000..000007fff 000000000..000007fff@a S W
000008000..00000ffff 000008000..00000ffff@a W
000010000..000017fff Offff0000..0ffff7fff@a W
000018000..00001bfff 0ffff8000..0ffffbfff@a
00001c000..00001ffff Offffc000..0ffffffff@a S
0ff000000..0ffffffff 0ff000000..0ffffffff@a TT

Physical address ffff0000H, for example, might appear when the MMU translates
either logical address 10000H or logical address ffff0000H. The deMMUer will

send 10000H to the analyzer because it is the lowest logical address that might have
caused physical address ffffO000H to appear on the emulation bus.

36

Chapter 1: Getting Started
Step 20: Take a new trace

When a physical address maps to two or more logical addresses, the deMMU
normally sends the logical address with the lowest value to the analyzer.
Exceptions to this rule are discussed in Chapter 10, "Using Memory Manage

Step 20: Take a new trace

The purpose of this trace is to see if the analyzer is now capturing logical address
information for each state on the emulation bus. Chocsee - Everything, and

then choosd@race - Display. Choos&ettings— Source/Symbol

Modes- Symbols

Or, using the command line, enter the following commands:

trace
display trace
set symbols on

after sys_sta+0000002C 6FEA7050 $6FEA7050 log sprog long read
+001 sys_sta+00000030 B08263E4 $B08263E4 log sprog long read
+002 sys_sta+00000034 2D7C0000 $2D7C0000 log sprog long read
+003 sys_sta+00000038 092AFFF8 $092AFFF8 log sprog long read
+004 sys_sta+00000014 FFO0588F $FF00588F log sprog long read
+005 sys_sta+00000018 74006008 $74006008 log sprog long read
+006 sys_sta+0000001C 4A322800 $4A322800 log sprog long read
+007 sys_sta+00000024 7050B480 $7050B480 log sprog long read
+008 sys_sta+00000028 65F24A82 $65F24A82 log sprog long read
+009 sys_sta+0000002C 6FEA7050 $6FEA7050 log sprog long read
+010 sys_sta+00000030 B08263E4 $B08263E4 log sprog long read
+011 sys_sta+0000001C 4A322800 $4A322800 log sprog long read
+012 sys_sta+00000020 67085282 $67085282 log sprog long read
+013 sys_sta+00000024 7050B480 $7050B480 log sprog long read
+014 sdata|_sysbuf 00000000 $00------ log sdata byte read

Note that "log" is now shown in the "Absolute Status Mnemonic" column. Because
the deMMUer is supplying logical addresses to the analyzer, the analyzer is able to
replace the hexadecimal addresses with the symbols in the trace list (i.e.
sdata|_sysbuf).

37

Chapter 1: Getting Started
Step 21: Inverse assemble the trace list

Step 21: Inverse assemble the trace list

* Now show the trace list inverse assembled into assembly language mnemonics.
ChooseSettings— Display Modes ... In the Display Modes dialog box, select
Source Mixed irSource in Trace Then click OK.

* Or, using the command line, enter the following commands:
display trace disassemble_from_line_number 0
set source on inverse_video on symbols on
set source memory_only trace on

after sys_sta+0000002C 6FEA7050 BLE.B spr|sys_startup+$0018

=sys_sta+0000002E MOVEQ #$00000050,D0
+001 sys_sta+00000030 BO8263E4 CMP.L D2,DO
=sys_sta+00000032 BLS.B spr|sys_startup+$0018

#itHHH##H#demo.c - line 248 thru 250
BHHBHH R R

/* invoke user task to display string */
argv[0] = "demo";
+002 sys_sta+00000034 2D7C0000 MOVE.L #$0000092A,($FFF8,A6)
+003 sys_sta+00000038 092AFFF8 $092AFFF8 log sprog long read
+004 sys_sta+00000014 FFO0588F Unimplemented F-Line Opcode: $FFO
=sys_sta+00000016 ADDQ.L #4,A7
H#Ht#HHHH#demo.c - line 234 thru 238
HEHHHHE R

for (;;)

The above display is the trace list format established at power up. When you enter
a trace command and use your command to change the trace format, your changes

become the new default for tbésplay — Trace command.

Note that symbols are shown in the trace list instead of the hexadecimal address
values they represent. You requested that symbols be shown in place of
hexadecimal address values when you included the "symbols on" option in the
commands above.

38

Chapter 1: Getting Started
Step 22: Reset the emulator

Step 22: Reset the emulator

Sometimes you may want to reset the emulation processor. This may be done from
the emulator or the target system. To reset the emulation processor from the
emulator, choosExecution- Reset

On the comand line, enter:

reset

The Status line will show "M68040--Emulation reset".

When you apply power to the emulator, the initialization process leaves the
emulator in the reset state. Changing some configuration items also resets the
processor. (Refer to Chapter 8, "Configuring the Emulator”, for more information.)

39

40

Solving Quick Start Problems

Solutions to problems you might face during the Getting Started procedures.

41

Chapter 2: Solving Quick Start Problems
If the desired emulator interface won't start

Solving Quick Start Problems

This chapter helps you identify and resolve problems that may arise while using
procedures in Chapter 1, "Getting Started".

For more information, refer to Chapter 9, "Solving Problems".

If the desired emulator interface won't start

[J Check for correct installation of the interface software. Refer to Chapters 18, 19,
and 20 in the "Installation and Service" part of this manual, and tRI6700
Series Emulators Installation/Service Guide

L] Verify that the $PATH environment variable includes the directory containing the
interface software (/usr’/hp64000/bin). The interface files are loaded in the
"lusr/hp64000/bin" directory by the installation procedure.

If the text-based Softkey Interface won’t start
under X-Windows
L] If the Graphical User Interface is starting when you are trying to start the Softkey

Interface, include theu skemuloption to theemul700command to override the
Graphical User Interface and force the start of the Softkey Interface.

42

Chapter 2: Solving Quick Start Problems
If you can't load the demo program

If you can’t load the demo program

[J Check to ensure that the emulator probe is plugged into the demo board, with.

power connected to the demo board from the emulator. (The demo program
not work with target systems other than the demo board.)

[J Make sure the reset flying lead is connected from the probe to the demo board.
[J Check to ensure that you changed to the demo directory:

* Jusr/hp64000/demo/debug_env/hp64783 for the MC68040.

43

Chapter 2: Solving Quick Start Problems
If you can't display the program

If you can’t display the program
[Verify that the program loaded correctly.

[J Check to see that the status of the emulator is reset or is running in monitor. See
the STATUS line on the display. If the emulator is halted, it can’t use the monitor
to display program memory. In this case, reset the emulator and try to display the
program memory again.

[] Check the event log by choosibisplay — Event Log, or by using thelisplay
event_logcommand on the command line. If the event log shows that the program
loaded, try reloading the program again.

L] If you are displaying memory witsymbols on ensure that the symbol data base
has been loaded with the program. If this is the cause of the problem, you will be
able to obtain the memory display by referring to the address using its hexadecimal
value instead of its symbolic value. For example, to obtain a display of the
program in memory at symbolic address demo:main:

Move the mouse pointer to the entry buffer and type in "main”; and then select
Display - Memory — Mnemonic ().
or use the command line to enter:

display memory main mnemonic

44

Part 2

Using The Emulator

45

Part 2

Making Measurements

When you’ve become familiar with the basic emulation process, you'll want to
make specific measurements to analyze your software and target system. The
emulator has many features that allow you to control program execution, view
processor resources, and program activity.

In This Part 2

Chapter 3, “Using the Emulator/Analyzer Interface,” tells you how to use the
Graphical User Interface and Softkey Interface commands.

Chapter 4, “Using the Emulator,” shows you how to use the emulator/analyzer
commands to control the emulation processor and make simple emulation
measurements.

Chapter 5, “Using the Emulation-Bus Analyzer,” explains how to use the
emulation-bus analyzer to record program execution for debugging.

Chapter 6, “Making Coordinated Measurements,” tells how to couple two or more
emulators to coordinate measurements involving more than one processor.

Chapter 7, "Making Software Performance Measurements," shows you how to use
the Software Performance Measurement Tool supplied with the emulator.

Chapter 8, “Configuring the Emulator,” explains how to use the emulator/analyzer
commands to allocate emulation resources such as memory and how to enable and
disable certain emulator features.

Chapter 9, “Solving Problems,” describes some of the problems that you might
encounter when you use the emulator, and shows how to solve them.

This part of the manual explains how to accomplish various common tasks, often
requiring use of several emulator/analyzer commands together. It assumes you
know how to use the commands to control the emulator. If you need a general
introduction to using the emulator, refer to Part 1.

46

Using the Emulator/Analyzer
Interface

How to enter commands in the Graphical User Interface and the Softkey Interface

47

Chapter 3: Using the Emulator/Analyzer Interface

Using the interface

The strength of the emulator/analyzer interface is that it lets you perform the
real-time analysis measurements that are helpful when integrating hardware and
software.

The C debugger interface (which is a separate product) lets you view the stack
backtrace and high-level data structures, and it lets you use C language expressions
and macros. These features are most useful when debugging software.

The Software Performance Analyzer (SPA) interface (which is also a separate
product) lets you make measurements that can help you improve the performance
of your software.

These interfaces can operate at the same time with the same emulator. When you
perform an action in one of the interfaces, it is reflected in the other interfaces.

This chapter shows you how to perform the basic tasks associated with each type of
emulator/analyzer interface. The information is grouped into the following sections:

e Starting the emulator/analyzer interface.

» Opening other HP 64700 interface windows.

* Entering commands

» Using special features of the Graphical User Interface.
» Using display-control features of the Softkey Interface.
» Copying information to a file or printer.

» Exiting the emulator/analyzer interface.

» Creating and executing command files.

» Forwarding commands to other HP 64700 interfaces.
» Accessing the terminal interface.

» Accessing the operating system.

When an X Window System that supports OSF/Motif interfaces is running on the
host computer, the emulator/analyzer interface is the Graphical User Interface
which provides features such as pulldown and popup menus, point and click setting

48

Chapter 3: Using the Emulator/Analyzer Interface

of breakpoints, cut and paste, on-line help, customizable action keys, and popup
recall buffers.

The emulator/analyzer interface also provides the Softkey Interface for several
types of terminals, terminal emulators, and bitmapped displays. When using the
Softkey Interface, commands are entered from the keyboard.

When using the Graphical User Interface,dbmmand lingortion of the interface
gives you the option of entering commands in the same manner as they are e
in the Softkey Interface. If you are using the Softkey Interface, you can only e
commands from the keyboard using the command line.

The menu commands in the Graphical User Interface are a subset of the commands
available when using the command line. While you have a great deal of capability
in the menu commands, there are some commands that must be entered in the
command line.

Maximum Number of Windows

Ten is the maximum number of windows you can use to view HP 64700
emulator/analyzer operation. Only one C debugger interface window and one SPA
window are allowed, but you can start multiple emulator/analyzer interface
windows.

Activities that Occur in the Windows

When using an HP 64700-Series emulator in a window environment (or with
multiple terminals), the following activities occur in the windows where the
emulator is currently operating.

Commands Complete in Sequence

When you execute commands that access the emulator (in multiple windows) the
first command you specify will complete before the second command begins
executing.

Status Line is Updated

When you perform an emulation task in one window that updates the status line,
status lines are updated in all other windows where the emulator is operating. The
event log is also updated in each window.

49

Chapter 3: Using the Emulator/Analyzer Interface

Status Line

Meaning

Slow clock
Emulation reset
Target reset
Bus grant
Halted

No bus cycles
Running user program

Running in monitor

No target power
Awaiting CMB ready

CPU in wait state

Unknown state

No clock source from the emulated
system.

The processor is being reset from the
emulator.

The processor is being reset from the
emulated system.

The processor has not been granted the
bus by the external arbiteBG is not
asserted).

The processor has double bus faulted.
No bus cycles are occurring.

The processor is executing a target
(user) program.

The processor is executing the
emulation monitor.

No power from the emulated system.

The emulator is waiting for a CMB
READY signal. Refer to Chapter 6

The processor is waiting for a cycle
termination from the target system.

The emulator is in an unknown state.
You will probably need to reset the
emulation processor, initialize the
emulator, or cycle power to reinitialize
the emulator.

50

Chapter 3: Using the Emulator/Analyzer Interface

Ending the Emulation Session

When you are using the emulator in multiple windows, you can choose to either
end the emulation session in a single window, or in all the windowserkhe
command by itself just ends the window where the command is executed.

Using Multiple Terminals

If you do not have a window environment installed on your host computer, you
still obtain the benefits of multiple windows by logging onto the same UNIX
system from several terminals, and starting the emulator on each terminal, just as
described here for several windows.

The rest of this chapter describes how to start and stop interface instances and
sessions in multiple windows.

51

Chapter 3: Using the Emulator/Analyzer Interface
Starting the Emulator/Analyzer Interface

Starting the Emulator/Analyzer Interface

Before starting the emulator/analyzer interface, the emulator and interface software
must have already been installed as described in Chapter 19, "Installation and
Service".

. This section describes how to:
» Display the availability of emulators defined in the 64700tab.net file.
« Start the interface.
» Start the interface using the default configuration.
» Execute a command file on interface startup.

* Unlock an interface that was left locked by another user.

To see emulator/analyzer availability before
interface startup

* Use theemul700 -lvoremul700 -lv <emul_name>ommand.

The-lv option of theemul700command provides a verbose listing of all emulators
defined in the 64700tab and 64700tab.net files, and shows whether they are already
in use, locked, or available. If a logical emulator name (<emul_name>) is included
in the command, just the status of that emulator is listed. The verbose option also
lists all of the interfaces that can be started.

Examples To list, verbosely, the status of the emulator whose logical name is "em68040":

$ emul700 -lv. em68040

52

Chapter 3: Using the Emulator/Analyzer Interface
Starting the Emulator/Analyzer Interface

The information may be similar to:

em68040 - m68040 available
description: M68040 emulation, w/internal analysis, 260Kb emul mem
user interfaces: xemul, xperf, skemul, skperf
device channel: /dev/emcom23

Or, the information may be similar to:

em68040 - m68040 running; user = guest@myhost
description: M68040 emulation w/internal analysis, 260Kb emul mem
user interfaces: xemul, xperf, skemul, skperf
internet address: 21.17.9.143

The "em68040" in the command above is the logical emulator name given in the
HP 64700 emulator device table file (/lusr/hp64000/etc/64700tab.net).

Blank lines and the rest of each line after a '# character are ignored.

The information in each line must be in the specified order, with one line
for each HP series 64700 emulator. Use blanks or tabs to separate fields.
#

+ + +

Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)

+ + +

lan:. em68040 m68040 21.17.9.143
serial: em68040 m68040 myhost /dev/iemcom23 OFF 9600 NONE XON 2 8

To start the emulator/analyzer interface

* Use theemul700 [-u < user interface>]<emul_nameezommand.

If /Jusr/hp64000/binis specified in your PATH environment variable, you can start
the interface with themul700 <emul_name>xommand. The "emul_name" is the
logical emulator name given in the HP 64700 emulator device table
(/usr/np64000/etc/64700tab.net).

If you are running the X Window System, the graphical user interface for the
emulator/analyzer will start by default. Otherwise, the softkey user interface will
start. You can force a particular interface to be used by including the "-u" option
and the name of the user interface desired.

53

Chapter 3: Using the Emulator/Analyzer Interface
Starting the Emulator/Analyzer Interface

If you are running a window system on your host computer (for example, the X
Window System), you can run the interface in up to 10 windows. This capability
provides you with several views into the emulation system. For example, you can
display memory in one window, registers in another, an analyzer trace in a third,
data in a fourth, and results of software performance measurements in the fifth (if a
software performance analyzer is installed as part of your system).

Examples To start the emulator/analyzer interface for the MC68040 emulator, enter:

$ emul700 em68040

If you're currently running the X Window System, the Graphical User Interface
starts; otherwise, the Softkey Interface starts.

The status message shows that the default configuration file has been loaded. If the
command is not successful, you will be given an error message and returned to the
UNIX prompt. Error messages are described in Chapter 12, "Emulator Error
Messages".

To start the softkey user interface for the emulator/analyzer when the X Window
System is running, enter:

$ emul700 -u skemul em68040

To start the interface using the default
configuration

« Enter theemul700 -d <emul_name>xommand.

In theemul700 -d <emul_name>xommand, thed option says to use the default
configuration. Thed option is ignored if the interface is already running in
another window or on another terminal.

54

Chapter 3: Using the Emulator/Analyzer Interface
Starting the Emulator/Analyzer Interface

Examples

To execute a command file at interface startup

Enter theemul700 -c <cmd_file> <emul_nameeommand.

Starting a command filed <cmd_file>) at emulator startup allows you to
automate some of the setup and configuration of the emulator. For example,
may have a command file that loads a particular configuration file, a program f
and then sets up trace display formats and specifications.

If the HP64KPATH variable is set, the interface will use the search paths specified
in this variable to locate a command file passed to it witlertigd700command.

Refer to the "Creating and Using Command Files" section later in this chapter for
information on creating command files.

To start the emulator/analyzer interface and run the "startup” command file, enter:

$ emul700 -c startup em68040

where “m68040" is thingical namefor the HP 64783 MC68040 emulator.

55

Chapter 3: Using the Emulator/Analyzer Interface
Starting the Emulator/Analyzer Interface

Examples

To unlock an interface that was left locked by
another user

Use theemul700 -U <emul_name>xommand.

The-U option to theemul700command may be used to unlock the emulators
whose logical names are specified. You can only use this command if there is no
current session in progress.

To unlock the emulator whose logical name is "em68040", enter:

$ emul700 -U em68040

56

Chapter 3: Using the Emulator/Analyzer Interface
Opening Other HP 64700 Interface Windows

Opening Other HP 64700 Interface Windows

TheFile - Emul700 menu lets you open additional emulator/analyzer interface
windows or other HP 64700 interface windows, if products for those windows have
been installed (for example, the software performance analyzer, SPA, interfac
the high-level debugger interface).

This section shows you how to:
» Open additional emulator/analyzer interface windows.
* Open the high-level debugger interface window.

» Open the software performance analyzer (SPA) interface window.

To open additional emulator/analyzer windows

To open additional Graphical User Interface windows, choose
File - Emul700- Emulator/Analyzer under Graphic Windows

To open additional Softkey Interface windows, choose
File - Emul700- Emulator/Analyzer under Terminal Windows

Enter theemul700 <emul_name>ommand in another terminal emulation
window.

You have a choice of opening up to nine additional windows, whether they be
Graphical User Interface windows, or terminal emulation windows containing the
Softkey Interface.

When you open an additional window, the status line will show that this session is
joining a session already in progress, and the event log is displayed.

You can enter commands in any window in which the interface is running. When
you enter commands in different windows, the command entered in the first
window must complete before the command entered in the second window can
start. The status lines and the event log displays are updated in all windows.

57

Chapter 3: Using the Emulator/Analyzer Interface
Opening Other HP 64700 Interface Windows

TheFile - Emul700 menu may display other choices if the interface finds other
HP 64700 products on the computer.

To open the high-level debugger interface window

ChooseFile - Emul700- High-Level Debugger ..under Graphic Windows

For information on how to use the high-level debugger interface, refer to the
debugger/emulatddser’s Guide

To open the software performance analyzer
(SPA) interface window

ChooseéFile - Emul700- Performance Analyzer ...under Graphic Windows

For information on how to use the software performance analyzer, refer to the
Software Performance Analyzer User’'s Guide

58

Chapter 3: Using the Emulator/Analyzer Interface
Entering Commands

Entering Commands

The Graphical User Interface and Softkey Interface provide simple, effective
mechanisms for entering commands to be processed by the emulator and analyzer.

Basic descriptions of both interfaces are given in Chapter 1, "Getting Started".

This section shows you how to:

* Turn the command line on and off.

» Enter commands on the command line.

» Edit commands.

* Recall commands that were used before.
» Execute a completed command.

e Get online help on commands.

» Display the error log and the event log.

To turn the command line on or off in the
Graphical User Interface

To turn the command line on or off using the pulldown menu, choose
Settings— Command Line.

To turn the command line on or off using the status line popup menu: position the
mouse pointer within the status line area, press and hodglégreimouse button,
and choos€ommand Line On/Off from the menu.

To turn the command line off using the command line entry area popup menu:
position the mouse pointer within the entry area, press and haldldnmouse
button, and chooseommand Line Off from the menu.

59

Chapter 3: Using the Emulator/Analyzer Interface
Entering Commands

» To turn the command line on, position the mouse pointer in the main display area
and start typing.

The above selections turn display of the command line area on or off. When itis
on, the command line is displayed; you can use the softkey pushbuttons, the
command return and recall pushbuttons, and the cursor pushbuttons for
command-line editing. When it is off, the command line is not displayed; you use
only the pulldown menus and the action keys to control the interface.

The command line area begins just below the status line and continues to the
bottom of the emulator/analyzer window. The status line is not part of the
command line; it will be displayed whether the command line is on or off.

Choosing certain pulldown menu items while the command line is off causes the
command line to be turned on. That is because the menu item chosen requires
some command-line input that cannot be supplied any other way.

To enter commands on the command line

* In the Graphical User Interface, successively position the mouse pointer on
pushbuttons and click thmushbutton selechouse button until a complete
command is formed.

» Successively press keyboard function keys corresponding to softkey pushbuttons
until a complete command is formed.

» Type in the command you want to use. You must type in the full command name as
shown in Chapter 11, "Emulator Commands". This may be different from the
label on the corresponding softkey.

» Type in the first few characters of a command name, andgfets. The
interface will complete the command name automatically. Repeat this process until
a complete command is formed.

60

Chapter 3: Using the Emulator/Analyzer Interface
Entering Commands

To edit the command line using the command
line pushbuttons on the Graphical User Interface

To position the cursor at a specific character, place the mouse pointer on the
character and click treelectmouse button.

To clear the command line, click tidear pushbutton.

To clear the command line from the cursor position to the end of the line, click the
Clear to end pushbutton

To move to the right one command word or token, clicktiwvard pushbutton.
To move to the left one command word or token, clickBhekup pushbutton.

To insert characters at the cursor position, presaseet key on your keyboard to
change to insertion mode, and then type the characters to be inserted.

To replace characters at the cursor position, presssbe key on your keyboard
to change to replacement mode, and then type the replacement characters.

To delete characters to the left of the cursor position, press the <BACKSPACE>
key on your keyboard.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that point in the command.

When moving by words to the left or right, fherward pushbutton becomes gray
and provides no function when the cursor reaches the end of the command string.
TheBackup pushbutton becomes gray and provides no function when the cursor
reaches the beginning of the command.

61

Chapter 3: Using the Emulator/Analyzer Interface

Entering Commands

To edit the command line using the command
line popup menu

To position the cursor at a specific character, place the mouse pointer on the
character and click treelectmouse button.

To clear the command line, position the mouse pointer within the Command Line
entry area, press and hold gaectmouse button until the Command Line popup
menu appears, and then choGéear Entire Line from the menu.

To clear the command line from the cursor position to the end of the line, place the
mouse pointer where you want the clear-to-end function to start. Press and hold the
selectmouse button until the Command Line popup menu appears, and then choose
Clear to End of Line from the menu.

To insert characters, position the mouse pointer where you wish to locate the text
cursor (or over a non-text area to use the current text cursor location). Press and
hold theselectmouse button to display the Command Line popup menu, and then
choosePosition Cursor, Insert Modefrom the menu. Type the characters to be
inserted.

To replace characters, position the mouse pointer where you wish to locate the text
cursor (or over a non-text area to use the current text cursor location). Press and
hold theselectmouse button to display the Command Line popup menu, and then
choosePosition Cursor, Replace Moddrom the menu. Type the characters to be
inserted.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that point in the command.

62

Chapter 3: Using the Emulator/Analyzer Interface
Entering Commands

To edit the command line using the keyboard

In the Graphical User Interface, place the mouse pointer either in the display area,
on the status line, or in the command line area. Then you can use the following
keys to select points in the command line: <Left arrow>, <Right arrow>, <Tab
<Shift><Tab>, <Insert char>, <Back space>, <Delete char>, <Clear line>, and
<CTRL>u.

Move to the next word on the command line by pressingTlabd> key. Move to
the previous word on the command line by pressing 8teft><Tab> key
combination.

Enter more than one command on a command line by separating the commands
with semicolons ().

Recall previous commands by pressu@jri>r to cycle backward, ctCtrl>b to
cycle forward through the command line buffer.

Delete the current command line by pressiagri>u .

Clear the command line from the cursor position to the end of the line by pressing
<Ctrl>e.

To recall commands

In the Graphical User Interface, click the pushbutton latiRészall in the
Command Line area to display the dialog box.

Choose a command from the dialog box. (You can also enter a command directly
into the Selection area of the dialog box.)

Because all command entry methods in the interface (pulldown menus, action keys,
and command line entries) are echoed to the command line entry area, the contents

63

Chapter 3: Using the Emulator/Analyzer Interface
Entering Commands

of the Command Recall dialog box is not restricted to just commands entered
directly into the command line entry area.

The Command Recall dialog box contains a list of interface commands executed
during the session as well as any predefined commands present at interface startup.

If you exit the emulation/analysis session with the interface "locked", commands in
the recall buffer are saved and will be present when you restart the interface.

You can predefine entries for the Command Recall dialog box and define the
maximum number of entries by setting X resources (refer to Chapter 13, "Setting
X Resources").

See "To use dialog boxes" in this chapter for information about using dialog boxes.

To execute a completed command

* In the Graphical User Interface, click the pushbutton laldeégdrn (near the
bottom of the command line area).

 In the Graphical User Interface, position the mouse pointer in the command line
entry area; press and hold ge&ectmouse button until the Command Line popup
menu appears; and then choosebBkecute Commandmenu item.

» Press the carriage return key on the keyboard.

64

Chapter 3: Using the Emulator/Analyzer Interface
Entering Commands

To get online help on commands

To get a dialog box that lists an index of helpful information in the Graphical User
Interface, seledtlelp -~ General Topic...or Help ~ Command Line... Then
choose a topic of interest from the Help Index.

To get specific help about the operation of the command line on the Graphical
Interface, click thédelp pushbutton located near the bottom, right-hand corner of
the Command Line area.

Get specific help about a command to be entered on the command line, type:

help <command_name>

The<command_name>parameter can be entered from the softkeys after you type
help.

You can type a question marR (n place of the keyworbelp. When you use the
help command, information about the command you selected (including syntax and
sample usage) scrolls onto the screen.

The Help Index lists topics covering operation of the interface as well other
information about the interface. When you choose a topic from the Help Index, the
interface displays a window containing the help information. You may leave the
window on the screen while you continue using the interface.

65

Chapter 3: Using the Emulator/Analyzer Interface
Entering Commands

To display the error log

* ChooseDisplay - Error Log.

» Position the mouse pointer on the status line, press and halel¢licenouse
button, and then chooSisplay Error Log from the popup menu.

» Using the command line, entdisplay error_log.

The last 100 error messages that have occurred during the emulation session are
displayed.

To display the event log

* ChooseDisplay - Event Log.

» Position the mouse pointer on the status line, press and halel¢licenouse
button, and then chooisplay Event Logfrom the popup menu.

» Using the command line, enidisplay event_log

The last 100 events that have occurred during the emulation session are displayed.

The status of the emulator and analyzer are recorded in the event log, as well as the
conditions that cause the status to change (for example, breakpoints and trace
commands).

66

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

Using Special Features of the Graphical User
Interface

The following paragraphs show you how to use pulldown and popup menus, the

entry buffer, action keys, and dialog boxes to compose commands and contro
emulator and analyzer operation. These features are only available in the Gr

User Interface.

This section shows you how to:

* Choose a pulldown menu item.

e Choose a popup menu item.

» Place values into the entry buffer.

» Copy and paste from the entry buffer to the command line.
* Use action keys.

* Use dialog boxes.

To choose a pulldown menu item using the
mouse (method 1)

1 Position the mouse pointer over the name of the menu on the menu bar.

2 Press and hold teommand selechouse button to display the menu.

While continuing to hold down the mouse button, move the mouse pointer to the
desired menu item. If the menu item has a cascade menu (identified by an arrow on
the right edge of the menu pushbutton), then continue to hold the mouse button
down and move the mouse pointer toward the arrow on the right edge of the menu.
The cascade menu will display. Repeat this step for the cascade menu until you
find the desired menu item.

3 Release the mouse button to select the menu choice.

67

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or message box when the menu
item is chosen.

To choose a pulldown menu item using the
mouse (method 2)

Position the mouse pointer over the menu name on the menu bar.
Click thecommand seleehouse button to display the menu.

Move the mouse pointer to the desired menu item. If the menu item has a cascade
menu (identified by an arrow on the right edge of the menu pushbutton), then
repeat the previous step and then this step until you find the desired item.

Click the mouse button to select the item.

If you decide not to select a menu item, simply move the mouse pointer off of the
menu and click the mouse button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

68

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

To choose a pulldown menu item using the
keyboard

To initially display a pulldown menu, press and hold the menu select key (for
example, the "Extend char" key on an HP 9000 keyboard), and then type the
underlined character in the menu label on the menu bar. (For example, "f"* for
"File". Type the character in lower case only.)

To move right to another pulldown menu after having initially displayed a menu,
press theight-arrow key.

To move left to another pulldown menu after having initially displayed a menu,
press thdeft-arrow key.

To move down one menu item within a menu, presddia-arrow key.
To move up one menu item within a menu, pressipharrow key.

To choose a menu item, type the character in the menu item label that is underlined.
Or, move to the menu item using the arrow keys and then press the carriage return
key on the keyboard.

To cancel a displayed menu, pressBEBeapekey.

The interface supports keyboard mnemonics and the use of the arrow keys to move
within or between menus. For each menu or menu item, the underlined character in
the menu or menu item label is the keyboard mnemonic character. Notice the
keyboard mnemonic is not always the first character of the label. If a menu item

has a cascade menu attached to it, then typing the keyboard mnemonic displays the
cascade menu.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

Dialog boxes support the use of the keyboard as well. To direct keyboard input to a
dialog box, you must position the mouse pointer somewhere inside the boundaries
of the dialog box. That is because the interkagdoard focus policig set to

69

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

pointer. That just means that the window containing the mouse pointer receives the
keyboard input.

In addition to keyboard mnemonics, you can also specify keyboard accelerators
which are keyboard shortcuts for selected menu items. Referto Chapter 13,
"Setting X Resources", and the "Softkey.Input" scheme file for more information
about setting the X resources that control defining keyboard accelerators.

To choose popup menu items

1 Move the mouse pointer to the area whose popup menu you wish to access. (If a
popup menu is available, the mouse pointer changes from an arrow to a hand.)

2 Press and hold thse=lectmouse button.

3 After the popup menu appears (while continuing to hold down the mouse button),
move the mouse pointer to the desired menu item.

4 Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

The following popup menus are available in the Graphical User Interface:
* Mnemonic Memory Display.

» Breakpoints Display.

» Global Symbols Display.

* Local Symbols Display.

+ Status Line.

« Command Line.

70

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

To place values into the entry buffer using the
keyboard

Position the mouse pointer within the text entry area. (An "lI-beam" cursor will
appear.)

Enter the text using the keyboard.

To clear the entry buffer text area from beginning until end, press the <CTRL>u
key combination.

To copy-and-paste to the entry buffer

To copy and paste a discrete text string as determined by the interface, position the
mouse pointer over the text to copy and clickghstemouse button.

To specify the exact text to copy to the entry buffer: press and hgddstemouse
button; drag the mouse pointer to highlight the text to copy-and-paste; release the
pastemouse button.

You can copy-and-paste from the display area, the status line, and from the
command line entry area.

When you position the pointer and click the mouse button, the interface expands
the highlight to include the most complete text string it considers to be discrete.
Discrete here means that the interface will stop expanding the highlight in a given
direction when it discovers a delimiting character not determined to be part of the
string. A common delimiter would, of course, be a space.

When you press and hold the mouse button and drag the pointer to highlight text,
the interface copies all highlighted text to the entry buffer when you release the
mouse button.

Because the interface displays absolute addresses as hex values, any copied and
pasted string that can be interpreted as a hexadecimal value (that is, the string

71

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

Note

contains only numbers 0 through 9 and characters "a" through "f*) automatically
has an "h" appended.

If you have multiple Graphical User Interface windows open, a copy-and-paste
action in any window causes the text to appear in all entry buffers in all windows.
That is because although there are several displays of the entry buffer, there is only
one entry buffer; it is common to all windows. That means you can copy and paste
a symbol or an address seen in one window and then use it in another window.

On a memory display or trace display, a symbol may not be completely displayed
because there are too many characters to fit into the width limit for a particular
column of the display. To make a symbol usable for copy-and-paste, you can scroll
the screen left or right to display all, or at least more, of the characters from the
symbol. The interface displays absolute addresses as hex values.

Text pasted into the entry buffer replaces that which is currently there. You cannot
use paste to append text to existing text already in the entry buffer.

See "To copy-and-paste from the entry buffer to the command line entry area" for
information about pasting the contents of the entry buffer into the command line
entry area.

72

Example

A mouse click
causes the interface
to expand the
highlight to include
the symbol
mmutest+0000000C

and paste the symbol | +gz24

into the entry buffer.

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

To paste the symbol (plus offset) "demodis+00000004" into the entry buffer from
the interface display area, position the mouse pointer over the symbol and then
click the paste mouse button.

e Hewlett Packard Emulator/Analyzer: em68040 (m68040) N i
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace () | Run | Step Source

| < Your Key > | Make |Disp Sre Prev |Run Kfertil() | Break | Step Asm

():: demodis+BABRAEAY IHecaII

More data off sc
Opcode or Status w/ Source Lines
G1-H uymbol mnemonic w/symbol
a1z FFaBaczs LEA ($@@, A2, 06.WY, A3
+813 FFasaczc JHP (A3
= FFaBaczE BT3T #$683, ($F4CE, PCY
+B814 FFEAAC3H $BEESF4CE log sprog long read
+@15 FFAEAECE MOVE. L (Al)+, 0@
= FFaBaBECz MOVES.L D, (AEY+

+816 = FFEBEECE BRA. W $FFEBEacZE
a1z FFBABZ238 $4E424ESE log sdata long read

\tETB\\i\\ FFaBaECH MOVER. L ($F54@,PCY, AB

+A13 = FFAABECE incomplete instr.: S43FRSTPIYS

+HA28 A4 $4E424E5E log sdata long write

+B21 FFABaECE MOVE. L (Aly+, 0@

= FFaBaecz MOVES.L Dd, (ABY+

+8z22 = FFABEaECE BRA. W $FFaEacZE

+823 = FFaBaECH MOVER. L ($F54@,PCY, AB ¥

= FFBHEECE incomplete instr.: S43FRS?7PYY/

STATUS: HE8040--Running user program Emulation trace complete (%

set source on symbols on

[T e [owor Joorios] [owinty JLovear [[omt JEotve]
] Command: Cursor: |§Z§é§¢§szzg> |Forward |Clear to end |Clear |He|p ¥
E

73

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

To recall entry buffer values

Position the mouse pointer over fRecall pushbutton just to the right of the entry
buffer text area, click the mouse button to bring up the Entry Buffer Recall dialog
box, and then choose a string from that dialog box.

The Entry Buffer Recall dialog box contains a list of entries gained during the
emulation session as well as any predefined entries present at interface startup.

If you exit the emulation/analysis session with the interface 'locked", recall buffer
values are saved and will be present when you restart the interface.

You can predefine entries for the Entry Buffer Recall dialog box and define the
maximum number of entries by setting X resources (refer to Chapter 13, "Setting X
Resources").

See the following "To use dialog boxes" section for information about using dialog
boxes.

To use the entry buffer

Place information into the entry buffer (see the previous "To place values into the
entry buffer using the keyboard", "To copy-and-paste to the entry buffer”, or "To
recall entry buffer values" task descriptions).

Choose the menu item, or click the action key, that uses the contents of the entry
buffer (that is, the menu item or action key that contains "()").

74

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

To copy-and-paste from the entry buffer to the
command line entry area

Place text to be pasted into the command line in the entry buffer text area.

You may do that by: .

» Copying the text from the display area using the copy-and-paste feature.

» Enter the text directly by typing it into the entry buffer text area.

» Choose the text from the entry buffer recall dialog box.
Position the mouse pointer within the command line text entry area.
If necessary, reposition the cursor to the location where you want to paste the text.

If necessary, choose the insert or replace mode for the command entry area (by
pressing the <insert> key on the keyboard).

Click thecommand pastmouse button to paste the text in the command line entry
area at the current cursor position.

The entire contents of the entry buffer are pasted into the command line at the
current cursor position.

Although a paste from the display area to the entry buffer affects all displayed entry
buffers in all open windows, a paste from the entry buffer to the command line only
affects the command line of the window in which you are currently working.

See "To copy-and-paste to the entry buffer" for information about pasting
information from the display into the entry buffer.

75

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

To use the action keys

1 If the action key uses the contents of the entry buffer, place the required

information in the entry buffer.

Position the mouse pointer over the action key and click the action key.

Action keys are user-definable pushbuttons that perform interface or system
functions. Action keys can use information from the entry buffer — this makes it
possible to create action keys that are more general and flexible.

Several action keys are predefined when you first start the Graphical User Interface.
Some of these perform tasks and others show you how to define and use action
keys. You'll really appreciate action keys when you define and use your own.

Action keys are defined by setting an X resource. Refer to Chapter 13, "Setting X
Resources", for more information about creating action keys.

To use dialog boxes

Click on an item in the dialog box list to copy the item to the text entry area of the
dialog box.

2 Edit the item in the text entry area (if desired).

3 Finally:

* Click on the "OK" pushbutton to make the selection and close the dialog box.

» Click on the "Apply" pushbutton to make the selection and leave the dialog
box open.

* Click on the "Cancel" pushbutton to cancel the selection and close the dialog
box.

76

Chapter 3: Using the Emulator/Analyzer Interface

Using Special Features of the Graphical User Interface

The Graphical User Interface uses a number of dialog boxes for selection and recall:

Directory Selection

File Selection

Entry Buffer Recall

Command Recall

Settings Display
Modes

Modify Register

Symbol Selection

Selects the working directory. You can change to a
previously accessed directory, a predefined directory, or
specify a new directory.

From the working directory, you can select an existing
name or specify a new file name.

You can recall a previously used entry buffer text string, a
predefined entry buffer text string, or a newly entered entry
buffer string, to the entry buffer text area.

You can recall a previously executed command, a
predefined command, or a newly entered command, to the
command line.

You can set the display mode and customize the display
presentation for memory and trace list displays.

You can view and modify values of any selected register,
as well as recalling previous values of the registers.

Selects the current working symbol (cws). You can change
to a previously accessed cws, a predefined cws, or specify a
new cws.

The dialog boxes share some common properties:

* Most dialog boxes can be left on the screen between uses.

» Dialog boxes can be moved around the screen and do not have to be positioned
over the Graphical User Interface window.

» If you iconify the interface window, all dialog boxes are iconified along with

the main window.

Except for the File Selection dialog box, predefined entries for each dialog box
(and the maximum number of entries) are set via X resources (refer to Chapter 13,
"Setting X Resources").

77

Chapter 3: Using the Emulator/Analyzer Interface

Using Special Feature

s of the Graphical User Interface

Examples To use the File Selection dialog box:

The file filter selects | F— e : ‘
specific files. = EmulaturfAnalyzer. File Selection

Alist of File Filter

filter-matching files
from the current
directory.

A list of files
previously accessed
during the emulation
session.

A single click on a
file name from either
list highlights the file
name and copies it to
the text area. A

double click chooses
the file and closes thé
dialog box.

Label informs you
what kind of file
selection you are
performing.

Text entry area. Text
is either copied tiere |
from the recall list, or

fusr/hpB4ABR/ demo/ debug_erv/hpB47837 %, [ix]

Files

fusrfhp&4000/demofdebug_envihp&4783fecs.x £
<Previous Files>

usrfhpgd000fdemolfdebuyg envihp8d783fmmudemoldemo.x

fusrfhp&d4000/demolfdebug envihp&d783fecs.x

Load Executable (Program and Symbols)
fusr/hpb4HB8/ dema/ debug_emv/hpb4783/ mmudemo// demo. x

entered directly. OK Filter Cancel
) ;

Clicking this Entering a new file Clicking this pushbutton
pushbutton chooses filter and clicking this cancels the file selection
the file name pushbutton causes a list operation and closes the
displayed in the text of files matching the dialog box.
entry area and closes new filter to be read
the dialog box. from the directory.

78

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

To use the Directory Selection dialog box:

Label informs you of ; == Emulator/Analyzer: Directory Selection
the type of list
displayed. Previous Working Directories
A list of predefined Associated X Resource: "emul.m&8040*dirSelectSub.entri
or previously
accessed directories. HOME .
inale click HP&4000fmonitor
Assingle click on a HP&4000/demofdebug_envihp64783

directory name from HP&4000/env/hp&a783
the list highlights the - P

name and copies it to
the text entry area. A
double click chooses
the directory and

closes the dialog box 4 T
Text entry area. .
Directory name Selection

is either copied here : | & ;-\ /1 n54R8B8/ demo/ debug_erv/ hpB4783/mmudemo
from the recall list, or

entered directly.

OK Apply Cancel

1% ;
Clicking this Clicking this Clicking this
pushbutton chooses pushbutton chooses the pushbutton cancels the
the directory directory displayed in directory selection
displayed in the text the text entry area, but operation and closes
entry area and closes keeps the dialog box on the dialog box.
the dialog box. the screen instead of

closing it.

79

Chapter 3: Using the Emulator/Analyzer Interface
Using display-control features of the Softkey Interface

Using display-control features of the Softkey
Interface

» Use the following control-key combinations to redraw, reposition, and update the

. display of the Softkey Interface:
Result

Input

<Ctrl>| To redraw the current display
<Ctrl>f To roll the display left
<Ctrl>g To roll the display right
<Ctrl>s To stop screen updates
<Ctrl>q To resume screen updates

You can roll the display left and right only if there is more information than will fit
into 80 columns.

80

Chapter 3: Using the Emulator/Analyzer Interface
Copying information to a file or printer

Copying information to a file or printer

ChooseFile » Copy. Select the type of information from the cascade menu (see
copy options below), and use the dialog box to select the file or printer.

Using the command line, enter a command such as:

copy <copy option> to <destination>

In the above command, <copy option> has a name similar to those listed below
(available through softkey selection), and <destination> is a printer or the name of a
file.

ASCII characters are copied to the file or printer. If you copy information to an
existing file, it will be appended to the file. Details of the copy options are
discussed in the following paragraphs.

Display ... Copies information currently in the display area. This option is useful
for restricting the number of lines that are copied. Also, this option is useful for
copying the contents of register classes other than BASIC.

Memory ... Copies the contents of a range of memory. The format is the same as
specified in the last display memory command. For example, if you copy memory
after displaying a range of memory in mnemonic format, the file would contain the
mnemonic memory information. If there is no previous display memory command,
the format used is a blocked hex byte format beginning at address zero.

Data Values ... Copies the contents of the defined data values last displayed. An
error occurs if you try to copy data values to a file if you have not yet displayed
data values.

Trace ... The most recently captured trace is copied to the file. The copied trace
listing is formatted according to the current display mode.

You can set the display mode with ettings— Source/Symbols Modesr
Settings- Display Modespulldown menu items. See the "Changing the Interface
Settings" section.

Registers ... Copies the current values of the BASIC register class to a file. To
copy the contents of the other register classes, first display the registers in that
class, and then use thie - Copy - Display ...command.

81

Chapter 3: Using the Emulator/Analyzer Interface
Copying information to a file or printer

Breakpoints ... Copies the breakpoints list. If no breakpoints are present in the
list, only the enable/disable status is copied.

Status ... Copies the emulator/analyzer status display.

Global Symbols ... Copies the global symbols. If symbols have not been loaded,
this menu item is grayed-out and unresponsive.

Local Symbols () ... Copies the local symbols from the symbol scope named (by
an enclosing symbol) in the entry buffer. If symbols have not been loaded, this
menu item is grayed-out and unresponsive.

Pod Commands ...Copies the last 100 lines from the pod commands display.
Error Log ... Copies the last 100 lines from the error log display.
Event Log ... Copies the last 100 lines from the event log display.

See theopy command syntax in Chapter 11, "Emulator Commands", for more
information.

82

Chapter 3: Using the Emulator/Analyzer Interface
Exiting the Emulator/Analyzer Interface

Exiting the Emulator/Analyzer Interface

The following paragraphs show you how to end single instances of the interface in
selected windows, and how to exit from the interface and end your session.

This section shows you how to:
* End a single window in the interface.

+ End the emulation session in all windows.

To end a single window in the interface

In the interface window you wish to close, sekét - Exit — Window.

If using the command line, in the interface window you wish to close, enter:

end

This ends the interface instance in the window where the command is executed.
None of the other windows are affected.

If the window is the only window into the emulation session, the above command
ends the emulation session and leaves the emulator in a locked state. Emulators
restarted from a locked state will reload the last valid configuration and absolute
file.

83

Chapter 3: Using the Emulator/Analyzer Interface
Exiting the Emulator/Analyzer Interface

To end the emulation session in all windows

» To exit all windows, save your configuration to a temporary file, and lock the
emulator so it cannot be accessed by others, $élect Exit — Locked.

If using the command line, enter:

end locked

» To exit all windows and release the emulator for use by others, select
File - Exit — Released

If using the command line, enter:

end release_system

If you exit locked, the interface saves the current configuration to a temporary file
and locks the emulator to prevent other users from accessing it. When you again
start the interface with tremul700command, the temporary file is reloaded, and
you return to the configuration you were using when you quit.

Also, when you end locked, the contents of the entry buffer and command recall
buffer are saved. These recall buffer values will be present when you restart the
interface.

In contrast, if you end released, all changes you made to your configuration are lost.
You may want to save your current configuration to a configuration file before you
end released.

84

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

Creating and Executing Command Files

A command file is an ASCII file containing command-line commands. The
interface can read a command file and execute the commands found there as if the
commands were entered one-by-one on the command line. Command files ¢
turn, call other command files. The interface will execute the called file like a
subroutine of the calling file.

You can create command files from within the interface by logging commands to a
command file as you execute commands. You can also create a command file
outside the interface with an ASCII text editor. Logging commands from the
command line has the advantage of making sure the commands are syntactically
correct when they reach the command file. Syntactically incorrect commands found
by the interface will cause it to halt execution of a command file.

With a single command file, you can automate a complete test procedure. For
example, you could start the interface and then execute a command file that would
perform the following steps:

Load a configuration file.

Load an absolute file.

Modify registers or memory locations.
Set up a trace specification.

Start the program running.

Capture a trace.

Save the trace listing to a file.

~NoO b wWNBRE

Command files are also useful for saving very complex trace specifications so that
they can be used again during another emulation session, or by other people.

Passing Parameters to Command Files

Command files can accept parameters. Parameters are like variables in the
command file and are usually used in place of explicit arguments to interface
commands. A command file that accepts parameters can be made more general than
a command file containing explicit argument values and can apply to a wider range
of uses.

Parameters can be passed in either of two ways. You can pass the parameters on the
command line when you execute the command file, or you can execute the

command file without the parameters and let the interface prompt you for the
parameters.

85

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

Parameters must be declared at the beginning of a command file uSARRIS
keyword. Parameters are preceded by an ampersand (&) and consist of a
combination of one or more letters or underscores. Letters may be upper-case or
lower-case.

Using &ArG_IEfT in Command Files

A command file may contain a special argument nafed®_|EfT . This special
argument does not have to be declared usinBARMS keyword. It can be used

in command files containing other parameters, or in command files that do not
contain any parameters. This special argument can accept the union of zero or more
command line arguments as a single argument. See “To increase flexibility of
command files by using &ArG_IEfT” for more information.

Using UNIX Commands and Scripts with Command Files

Command files may include UNIX commands and may call shell scripts. Some
commands are recognized directly by the interfpeal(for example) while others
require a preceding exclamation point (!) to identify them as shell commands.

Using Shell Variables with Command Files

Command files may contain shell variables. Command files only support shell
variables beginning with “$”, followed by an identifier. An identifier is composed

of an underscore or a letter followed by zero or more letters, digits, or underscores.
Identifiers may follow the “$” symbol directly, or follow the “$” enclosed in braces
“{}". An identifier mustbe enclosed in braces if any letter, digit, or underscore that
is not part of the identifier immediately follows the identifier. Otherwise, the
following text will be interpreted as part of the identifier. You can examine any

shell variables defined for your environment by using the Ud&fiXcommand.
Positional shell variables, such as $1, $2, and so on, are not supported. Neither are
special shell variables, such as $@, $*, and so on.

To illustrate how shell variables work, consider the shell variable “S”, defined to be
the string “soft”. Suppose you wanted to use the shell variable to reference the
directory “/users/softkey”. The reference “/users/${S}key” would produce the
desired directory name. However, the reference “/users/$Skey” would cause the
shell variable “Skey” to be searched for.

86

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

Restrictions on Commands

There are certain commands that you cannot execute from a command file. These
are commands that require a response from you. For example, you cannot place
modify configuration commands in a command file because the command file
cannot “respond” to configuration questions.

Another restriction has to do with calling a command file from an executing
command file when the called command file requires parameters. You must s
the parameters with the call to the command file, or the calling command file
abort. That is because the calling command file cannot respond to the called file’s
parameter prompts.

Status Line Updates

The emulator status line is not always immediately updated with new status
information when the interface executes commands from a command file. You may
have to explicitly display the emulator status after a command file has executed by
issuing aisplay statuscommand.

Nesting Command Files

You can call other command files from an executing command file. Called files
can, in turn, call other command files. This nesting of calls can continue to a
maximum of eight levels. Command files called from an executing command file
are executed like subroutines of the calling file. Control returns to the calling file
after the called file has executed.

Pausing Command Files

You can use thevait command in command files. This allows you to pause
execution of the command file between commands.

A variation of the wait command, theit measurement_completeommand,

should be used after starting a trace. Use this command so that a copy or display
command following a trace command will not execute until states from the new
trace are available for copy or display.

If you press <CTRL>c to stop execution of a command file while the "wait"
command is being executed from the command file, the <CTRL>c will terminate
the "wait" command, but will not terminate command file execution. To do this,
press <CTRL>c again.

87

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

Placing Comments in Command Files

As with any source file, comments in command files can help to explain the
operation of the command file, and record creation and modification information.
You can place comments in a command file either by using a text editor or by
entering the comment as a “command” in the interface command line while logging
commands. A special character, the pound sign (#), causes the interface to ignore
comments in command files, and also allows you to log comments to a command
file from the command line. A comment may appear on a line by itself, or it may
follow a command on a line. Commands cannot appear on a line after the comment
character because they will be interpreted as part of the comment.

Continuing Command File Lines

You can continue command file lines across several physical text file lines. This is
done by using a continuation character.

The continuation character is the backslash (\) character. Placing a backslash at the
end of the line just before the line feed causes the following line to be concatenated
with the current line. Multiple lines can be concatenated by ending all but the last
line with a backslash. The concatenated lines will be treated as a single command
line. Note that if you end the last line of a command file with a backslash, the
command will appear in the interface command line, but will not be executed.

Specifying a Search of Several Command File Directories

HP64KPATH is a special shell variable you can set to specify alternative search
paths for command files. HP64KPATH works much like the UNIX PATH in that
you can specify several directories, separated by colons (), to be searched.

The remainder of this section lists the tasks associated with creating and using
command files.

To create a command file by logging commands

SelectFile - Log - Record...and use the dialog box to select a command file
name. If using the command line, enter the command:

88

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

log_commands to <filename>
2 Enter and execute commands to complete the desired task.

3 Stop logging commands by selectiitg - Log — Stop. If using the command line,
enter the command:

log_commands off

The above commands provide a mechanism that logs commands, entered and
executed at the command line, to a file. Later, the command file can be executed by
the interface. Thing_commandscommand does not appear on the softkeys. Type

it on the command line, or type the first few letters of the command and then press
<TAB>.

All commands entered on the command line after youlggpecommands to
<filename>are logged to the <filename> until either kbg commands off
command is used or the interface is exited.

<filename>is any valid UNIX file name. File names may include path
information. If <filename> already exists, commands are appended to the current
contents of the file, unless theappendoption is used. If <filename> does not
exist, a new file is created.

File creation errors can sometimes be caused by write permission violations of
either files or directories. If you are having trouble creating a command file, make
sure you have the correct permissions.

Example To save a set of commands in the file STARTEMUL by logging commands while
executing them during an emulation session, enter the following commands in the
command line:

log_commands to STARTEMUL

You can add a comment to a file while logging if you

precede the comment with a pound sign.

The Softkey Interface will

ignore the rest of the line up to the line feed.

load configuration bigproject/config

load bigproject/program

trace after START

run from 2000h # Comments can follow on the same line

89

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

wait measurement_complete

The preceding wait command variation ensures that
new trace states will be available in the trace buffer
before the "display trace" command is executed.
display trace

log_commands off

To create a command file by using a text editor

Use a text editor to create the command file.

A command file is a text file containing commands in the form that appear on the
command line. You can create command files with an ASCII text editor, suth as

Make sure that the commands you create in your command file are syntactically
correct. Syntactically incorrect command lines will halt command file execution.

90

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

To execute (or playback) a command file

To execute a command file at interface startup, us& theommand file name>
option with youremul700command.

To execute a command file from within the Graphical User Interface, select
File - Log - Playback and use the dialog box to select the name of the comma
file you wish to execute.

To execute a command file using the command line, enter the name of the
command file and press the carriage return key.

Any name entered on the command line that is not recognized as a member of the
emulator/analyzer command set will be treated as the name of a command file.
Command file names may be preceded by directory paths.

If the command file name does not have a directory path prefixed to it, the interface
will search for it as follows:

» If the environment variabldP64KPATH is set, the interface will first search
in all directories listed in the HP64KPATH variable. If the interface does not
find the command file in those directories, it then searches the current working
directory for the command file.

* If the environment variabldP64KPATH is not set, the interface searches
only in the current working directory for the command file.

If the command file name has a path name prefixed to it, the interface will only
look in the specified path for the command file.

To interrupt execution of a command file, press the <CTRL>c key combination.
(The mouse pointer must be within the interface window.)

If you press <CTRL>c to stop execution of a command file while the "wait"
command is being executed from the command file, <CTRL>c will terminate the
"walit" command, but will not terminate command file execution; in this case, you
must press <CTRL>c again.

See “To specify the order of searching several command file directories
(HP64KPATH)” for more information about th#P64KPATH variable.

91

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

Examples Suppose you have a command file named STARTEMUL, it is located in your
current working directory, and it contains the following commands:

log_commands to STARTEMUL

load configuration bigproject/config

load bigproject/program

trace after START

run from 2000h

wait measurement_complete

The preceding wait command variation ensures that
new trace states will be available in the trace buffer
before the "display trace" command is executed.
display trace

log_commands off

If you start the emulation session and enter STARTEMUL (the command file
name) in the command line, all commands fioad configuration... to display
trace will be sequentially executed on the command line.

To nest command files

e Call a command file from an executing command file by including the command
file name in the executing command file.

The emulation/analyzer interface executes commands found in a command file just
as if they were entered into the command line. That means if the interface
encounters a command that is not part of its own command set, it will attempt to
execute it as a command file. (See “To execute a command file” in this section for
an explanation of command file execution.)

Command files called from other command files may be nested to a maximum of
eight levels. Control returns to the calling command file after the called command
file is executed. A called command file is like a subroutine of the calling command
file.

92

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

Command files requiring parameters must have those parameters supplied by the
calling command file as part of the call. Failure to supply the parameters causes an
error and a halt of the calling command file.

Example The first command file (named “cmdfile1”) calls the second (named “cmdfile2”)
and then executes a single instruction after control returns.

cmdfilel:
cmdfile2
display memory
cmdfile2:

load configuration democfg
load demo

To pause command file execution

» To pause execution of a command file until the SIGINT (<CTRL>c) signal is
received, use th@ait command.

» To pause execution of a command file for a specific amount of time, usaithe
<time> command, wheretime> is in seconds.

» To pause execution of a command file until a trace trigger has been found and the
trace buffer is filled, use thgait measurement_completeommand.

You may want to add a delay to a command file under certain conditions. For
example, you may want to execute a command file up to a certain point, have it
display a screen, and then pause while you examine the output on the screen.

Placewait measurement_completén your command file following a trace

command to ensure that the trace completes before command file execution
continues. This ensures that subsequent trace display or trace copy commands use
the new trace states, not states from a previous trace.

93

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

Examples

A wait command without parameters will cause execution to pause until the
<CTRL>c key combination is entered. If you have a command file that is hanging
on await command, check to make sure that the wait kdsree> or a
measurement_complet@rgument.

Pause a command file for 5 seconds by placing the following command in the
command file:

wait 5
Pause a command file until a trace trigger has been satified and the trace buffer has
filled by placing the following command after a trace command in a command file:

wait measurement_complete

Example

To add a comment to a command file

Use a pound sign (#) to precede the comment string.

You can use this technique either while logging commands to a file during an
emulation session, or when you are creating a command file with a text editor. Any
text that follows the comment character, up to the next new line, is ignored by the
interface. Comments may appear on lines by themselves, or commeritdlovay
commands on the same line.

Two variations of comments are shown in the following command file fragment:

The next command is the default trace command

trace

wait measurement_complete # make sure the trace buffer
has new states

display trace

94

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

To pass parameters to a command file

1 Define formal parameters on the first line of the command file following the
PARMS keyword.

2 Pass actual parameters to the command file when it is executed.

A formal parameteis composed of an ampersand (&) followed by one or more
letters or underscores. Formal parameters are like variables in the command file.
Formal parameters are replaced by actual parameters when the command file is
executed.

An actual parameteis an ASCII string that represents a symbol or value. Actual
parameters containing blanks must be enclosed in single or double quotes.

Actual parameters are supplied to the command file in two ways.

* As arguments to the command file entered on the command line along with the
command file name. Values gresitional Enter a value for the first parameter
that follows the PARMS keyword in the command file immediately following
the command file name on the command line. Enter a value for the second
parameter second after the command file name. And so on.

* Inresponse to prompts from the interface. If a formal parameter exists in the
command file and no actual parameter was passed to it on the command line,
the interface will prompt you for a value for the formal parameter. If you enter
a command file name without supplyiagy actual parameters, the interface
will prompt you for values foall the formal parameters.

You may use either method to supply parameters, or a combination of the two.
Being prompted for the parameters relieves you from having to remember the
parameters.

If, from another command file, you call a command file that requires parameters,
you must supply all the parameters with the call. The calling command file cannot
respond to parameter prompts; an error will occur and the calling command file will
halt.

Examples The following command file, called “loadany,” is a general command file for
loading a configuration file and then an executable file.

95

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

PARMS &cfgname &binfile
load configuration &cfgname
load &binfile

The following command, entered on the command line, calls the command file
“loadany” and passes the actual parameters needed by the command file:

loadany democfg demo

You could start the command file “loadany” without parameters and allow the
interface to prompt you for the actual parameters. Issue the command:

loadany

and then respond to the parameter prompts. A prompt for the “cfgname” parameter
for this command file will look like the following:

STATUS: M68040--Running in monitor------------

Define command file parameter [&cfgname]

You might also start the command file, supply just the first parameter, and have the
interface prompt you for the second parameter. Issue the command:

loadany democfg

to cause the interface to prompt you for the second parameter (&binfile).

96

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

To increase flexibility of command files by using
&ArG_IEfT

1 Use the special parame&ArG_IEfT anywhere in the command file.

2 Pass zero or more arguments to the command file on the command line.

You can create highly flexible command files using the special parameter
&ArG_IEfT . It must be entered with the preceding ampersand (&) and exactly in
the combination of upper and lower case letters shown here. It is not a parameter in
the sense of command file formal and actual parameters. (See “To pass parameters
to a command file” for more information.) Instead, it is a special parameter that

may be included in either a command file with formal parameters or in a command
file without formal parameters.

When the interface find&ArG_IEfT in a command file, it replaces it with the

union of all arguments remaining in the string of arguments passed to the command
file. Arguments for this special parameter must be passed on the command line and
can be zero or more in number. The interfaitenot prompt for a value for

&ArG_IEfT . If you do not pass any values, the interface removes the special
parameter and executes the command associated with the special parameter without
any arguments.

Example The following three commands are all variations ofdisplay memory command:

display memory
display memory 1000h
display memory 1000h, 2000h thru +20h, 3000h

The first command displays memory in the format specified by the last memory
display command. The second command displays memory at address 1000h in
blocked word format. The third command displays memory at two specific memory
locations and also from a range of locations all in a single blocked word display.

97

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

The following command file (consisting of one line), called “dm,” can be used to
implement all three commands:

display memory &ArG_IEfT
The following three command-file invocations replicate the three separate
commands:

dm
dm 1000h
dm 1000h, 2000h thru +20h, 3000h

To specify the order of searching several
command file directories (HP64KPATH)

Set the environment variallP64KPATH to one or more alternative directory
paths. Separate each path from the others with a colon (}).

You can set the environment variable HP64KPATH to specify alternative

directories for command files. If this variable is set, the interface searches each path
listed in the variable successively until the command file it is searching for is found
or no more paths exist. If the command file has not been found after this search,
then the interface looks in the current working directory for the command file. If

this variable is not set, the interface only searches the current working directory.

This variable is typically set to point to a common directory of command files that
might be used by several people. You could also use this variable so that you would
not have to store command files in the same working directory as, say, source files
for a project.

The directories listed in the HP64KPATH variable moesearched if the command
file has an explicit path name prefixed to it.

Usesetto specify or change this variable if you are using the command line. Use
export to set this variable from your HP-URrofile file.

98

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

Examples Set this variable, from within the interface, to cause the interface to search first the
“/lusers/common/cmdfiles” directory, then the “/users/myid/cmdfiles” directory, and
then the current working directory, by issuing either of the two follows@tg
commands:

set HP64KPATH=/users/cmdfiles:/users/myid/cmdfiles

or

set HP64KPATH=/users/cmdfiles:/users/myid/cmdfiles:.

Force the current working directory to be the first directory searched instead of the
last directory searched by including the dot symbol as the first directory in the
HP64KPATH, as in

set HP64KPATH=.:/users/cmdfiles:/users/myid/cmdfiles

By making the current directory the first in the path, you speed up command file
access for command files in the current working directory because the interface
would otherwise search the current working directory only after searching all of the
other directories listed in HP64KPATH.

99

Chapter 3: Using the Emulator/Analyzer Interface
Forwarding Commands to Other HP 64700 Interfaces

Forwarding Commands to Other HP 64700
Interfaces
To allow the emulator/analyzer interface to run concurrently with other HP 64700

interfaces like the high-level debugger and software performance analyzer, a
background "daemon" process is necessary to coordinate actions in the interfaces.

This background process also allows commands to be forwarded from one interface
to another. All interfaces having software versions above 5.00 may forward
commands; only Graphical User Interfaces can receive forwarded commands.
Commands are forwarded using foevard command available in the command

line. The general syntax is:

forward <interface_name> "<command_string>"

This section shows you how to:
» Forward commands to the high-level debugger.

* Forward commands to the software performance analyzer.

To forward commands to the high-level debugger

» Enter theforward debug "<command_string>" command using the command
line.

Examples To send the Program Run" command to the debugger:

forward debug "Program Run"

Or, since only the capitalized key is required:

forward debug "P R"

100

Chapter 3: Using the Emulator/Analyzer Interface
Forwarding Commands to Other HP 64700 Interfaces

To forward commands to the software
performance analyzer

Enter theforward perf "<command_string>" command using the command line.

Examples To send the "profile" command to the software performance analyzer: .
forward perf "profile”

101

Chapter 3: Using the Emulator/Analyzer Interface
Accessing the Terminal Interface

Accessing the Terminal Interface

The Terminal Interface is the name given to a primitive command set that resides in
the emulator firmware. The Terminal Interface is described in the
MC68040/EC040/LC040 Emulator/Analyzer Terminal Interface User's GYi

may sometimes need to use Terminal Interface commands during an emulation
session. For example, you must use a Terminal Interface command to run the
emulator’s internal performance verificatigv] test.

You can access the Terminal Interface of the emulator directly thpmehh
commandsdn your high-level interface (Graphical User Interface or Softkey
Interface) The high-level interface provides a screen to display Terminal Interface
output and two ways to use the keyboard to input Terminal Interface commands.

Terminal Interface commands bypass the high-level interface and are executed
directly by the emulator firmware. For that reason, the high-level interface can
become out-of-sync with the emulator if you use certain Terminal Interface
commands. Changing configuration items, for example, will cause the actual state
of the emulator to be different from the internal record of the state of the emulator
that is kept by the high-level interface. Changing communications parameters can
prevent the high-level interface from communicating further with the emulator, and
cause abnormal termination of the interface. Be careful when using Terminal
Interface commands to avoid creating problems for the high-level interface. The
following table lists some Terminal Interface commands to avoid, and why:

Commands Reasons to Avoid

stty, po, xp Do not use. Will change the channel operation and
hang emulator.

echo, mac Usage may confuse the channel protocol.

wait Do not use, will block access to emulator.

init, pv * Will reset emulator and forand release_system

t Do not use. Will confuse trace status polling and
unload.

*Performance verification (pv} an internal self-test of the emulator hardware. If
you suspect any problems with your emulation system hardware, use the Terminal
Interface command “pv” to run the internal self-test. pv is on this list of pod
commands to avoid because running it will reset the emulator and end the
emulation session. That does not mean you should not run pv if you suspect

102

Chapter 3: Using the Emulator/Analyzer Interface
Accessing the Terminal Interface

hardware trouble. Just be aware that it will terminate the emulation session if you
do run it.

See théViIC68040/EC040/LC040 Emulator/Analyzer Terminal Interface User’s
Guidefor more information about the Terminal Interface.

The remainder of this section explains how to display the Terminal Interface

screen, copy the Terminal Interface screen to a file, and enter Terminal Interf
commands.

To display the Terminal Interface screen

SelectDisplay -~ Pod Commands If you are using the command line, enter:
display pod_command

The interface will accept Terminal Interface commands, but will not show the
results (output) of those commands unless the Terminal Interface (pod command)
screen is displayed. Generally, you display this screen before entering one or more
pod commands.

To copy the Terminal Interface screen contents
to a file

To append the contents of the Terminal Interface screen to the contents of a file,
selectFile - Copy - Pod Commands ...or if using the command line, enter:

copy pod_cmd to <filename>

103

Chapter 3: Using the Emulator/Analyzer Interface
Accessing the Terminal Interface

» To replace the contents of a file with the contents of the Terminal Interface screen,

on the command line enter:

copy pod_command to <filename> noappend

You can save the current contents of the Terminal Interface screen to a file by using
the copy command. Additionally, you can copy the Terminal Interface screen to a
printer or to a UNIX command by using other copy command options. Refer to
Chapter 11, "Emulator Commands", for more information about copy command
options.

<filename>is any valid UNIX file name. The file name may include path
information. If the file does not exist, the interface creates it. File creation errors
can sometimes be caused by UNIX permission violations on files or subdirectories.
Make sure you have write permission on the file and on the directory where you
intend to create the file.

To enter Terminal Interface commands

1 To execute just one or two Terminal Interface commands, enter the Terminal

Interface command, enclosed in double quotes, as an argurpent tmmand
on the command line.

or

If you expect to enter several Terminal Interface commands, enable Terminal
Interface command pass-through and disable high-level interface command

processing by selectirgettings— Pod Command- Keyboard, or on the
command line, entgrod_command keyboard

Enter the desired Terminal Interface commands.

End Terminal Interface command pass-through and re-enable high-level interface
command processing by pressingshspendsoftkey.

104

Examples

Chapter 3: Using the Emulator/Analyzer Interface
Accessing the Terminal Interface

Before you enter a Terminal Interface command, you should udespiay
pod_commandcommand to display the Terminal Interface screen. If you do not
display the Terminal Interface screen, you cannot see the output from the Terminal
Interface commands you enter.

If you are entering a single Terminal Interface commandyade command
“<command>" variation is useful. However, entering a series of pod command
easier if done from thieeyboard. While keyboard entry is in effect, the interface
passes all keyboard input through to the Terminal Interface. The Terminal Inte
validates and executes all commands directly and displays the results on the
Terminal Interface screen.

Access the Terminal Interface and display memory locations 0 through 20 in long
word format:

display pod_command
pod_command “m -dl 0..20”

Access the Terminal Interface from the command line, check the emulator status,
then the trace configuration, and finally return keyboard control to the command
line:

display pod_command
pod_command keyboard
es

tcf

suspend

105

Chapter 3: Using the Emulator/Analyzer Interface
Accessing the Terminal Interface

Examples

To get help on Terminal Interface commands

1 SelectDisplay - Pod Commands If you are using the command line, enter:

display pod_command

On the command line, enter:

pod_command “help <cmd_name>"

<cmd_name> is the Terminal Interface command on which you want to receive
help.

You can access the emulator’s low-level Terminal Interface using the
pod_commandkeyword. If you need help on any Terminal Interface command,
you can use iteelp command.

See théViIC68040/EC040/LC040 Emulator/Analyzer Terminal Interface User's
Guidefor more information regarding the Terminal Interface.

Get help on the Terminal Interfacecommand:

display pod_command
pod_command “help cf’

Get help on all Terminal Interface command groups:

display pod_command

pod_command “help *”

106

Chapter 3: Using the Emulator/Analyzer Interface
Accessing the Operating System

Accessing the Operating System

Through the command line, you can access the operating system to use services
available there. You can set environment variables and enter UNIX commands.

This section shows you how to:

* Set environment variables.

* Enter UNIX commands.

» Display the name of the emulation module.

To set environment variables

» Typeset <ENVIRONMENT VARIABLE>=<VALUE> .

You can set UNIX environment variables with Hetcommand. The
<ENVIRONMENT VARIABLE> can be any UNIX environment identifier name.
The<VALUE> can be any string value. If the value has embedded spaces, use
double quotes around the string.

Example To set the PRINTER environment variabléges, enter:

set PRINTER ="Ip -s"

107

Chapter 3: Using the Emulator/Analyzer Interface
Accessing the Operating System

To enter UNIX commands

* Typel<UNIX_COMMAND>
* Type!<UNIX_COMMAND>! <options>

You can execute any UNIX command by preceding it on the command line with an
exclamation mark (!). The system creates a shell process and executes the
command line string following the exclamation mark.

If you enter only the exclamation mark (!), a command process is created and the
command shell is started. Exiting the command shell by tygiitgeturns you to
the emulator/analyzer interface.

You can precede and follow your UNIX command with exclamation marks. This
allows you to include options with your command, such as:

in_browser executes your UNIX command and provides results in a
scrollable window instead of a terminal window (default
display).

wait_for_exit waits for your UNIX command to finish its execution before

allowing the next command to begin. This is useful for
commands that require extra time to complete, such as "make".

no_prompt_ used to speed operation when you don't need the results

before_exit display. For example, this will complete a command without
prompting for the press of the RETURN key in commands that
would normally prompt for the RETURN key.

Examples Show the values of the current environment variables:
Isetimore
Edit a command file previously created with the command:
log_commands to <FILENAME>
Ivi <FILENAME>

108

Chapter 3: Using the Emulator/Analyzer Interface
Accessing the Operating System

See a directory listing in a browser window:

lls! in_browser

Make files in a directory and hold off loading the executable file until the "make"
has finished:

Imake! wait _for exit . load <file> .

To display the name of the emulation module

» Using the command line, enter th@me_of modulecommand.

While operating your emulator, you can verify the name of the emulation module.
This is also the logical name of the emulator in the emulator device file.

Examples To display the name of your emulation module:

name_of module

The name of the emulation module is displayed on the status line.

109

110

Using the Emulator

How to control the processor and view system resources

111

Chapter 4: Using the Emulator
The Emulator And Its Applications

The Emulator And Its Applications

The HP 64783 emulator helps you test and debug applications in real time. The
emulator is a functional replacement for MC68040 microprocessor. It provides
access to processor registers and memory, as well as complete execution run
control.

The emulator provides debugging capability for:
» embedded system hardware startup and test
» hardware/software integration

The emulator may also be used out-of-circuit as a code execution environment.
However, software development and testing will probably be handled best in a host
execution environment.

The emulation system is connected to a host computer by a LAN connection, or by
a serial (RS-232C) data communication link.

The emulation interface can display data and symbolic assembly code in windows,
or can additionally show the C-language source code intermixed with the assembly
code. You can start and stop execution of application code usingtlaadstep
commands. Breakpoints can be placed at strategic locations to stop application
execution when a specific address is reached.

An application can communicate directly with the emulation interface by using the
simulated I/O library. This provides standard input and output, messaging and
access to the UNIX file system. During initial stages of development, an

application can print status and debugging messages to the emulation display using
simulated I/O. Files can be created, opened, read from, and written to on the host
system. These routines can be converted as target system hardware becomes
available.

112

Chapter 4: Using the Emulator
The Emulator And Its Applications

The demo Application

A demo program, and an associated configuration file, are provided with the
emulator. The demo application allows you to learn about the emulator without the
bother of writing and loading your own program.

The standard program was written in MC68000 assembly language. When the
emulator loads the program, it also defines a symbol table containing symbols from
the program. You can use these symbols when you're making measurements using
the program.

The demo program emulates a hypothetical environmental control system for
computer room. The name of the demo program is ecs.x.

For detailed information about the files used in the demo program, and methods
and requirements for starting the demo program, read the READMEDEMO and
README files in the directory named /usr/hp64000/demo/debug_env/hp64783.

To load and run the complete demo program, your emulation system must have at
least 256K of emulation memory (obtained by installing at least one SRAM on the
emulation probe. Refer to Chapter 19, "Installation and Service", at the end of this
manual for instructions on how to install SRAM memory modules.

To build programs

Create source files in “C” or MC68040 assembly language using a text editor.

Translate the “C” source files to relocatable object code using a compatible C cross
compiler.

Translate the assembly source files to relocatable object files using a compatible
MC68040 cross assembler.

Link all relocatable object files with the linker/loader to produce an absolute object
file in the IEEE-695 format. (The loaders for the HP language tools produce a file
with the extension .x for IEEE-695 format.) If you want to produce an absolute file
in the HP64000 format, specify the appropriate loader options. (The IEEE-695
format is better for emulation tasks.)

113

Chapter 4: Using the Emulator
The Emulator And Its Applications

5 (Optional) Build an SRU symbol database before entering emulation by entering

the srubuild <absfilename>command.

If you're planning to load programs into emulation or target system memory, you
need to have your files in a format acceptable to the MC68040 emulator. Usually,
this means that you'll want your files in IEEE-695 absolute format. The HP
language tools for the HP 9000 produce this format.

Processor C Compiler Assembler
MC68040 HP B1463 HP B1465

You may use other language tools if they produce either IEEE-695 or HP64000
absolute file formats.

Other file formats, such as Motorola S-records and Tektronix hex format can be
converted to HP64000 format by using the HP 64888 utility software.

114

Chapter 4: Using the Emulator
The Emulator And Its Applications

To configure the emulator

Configure the emulator to meet the resource needs of your target system and
application program by following the instructions in Chapter 8, "Configuring the
Emulator"”.

To configure the emulator, choddg®dify — Emulator Config Then answer
the questions that appear in the Emulator Configuration dialog box.

Using the command line, enter:

modify configuration

This starts a series of questions whose answers define the emulator configuration.

You must configure the emulator to allocate system resources such as memory, and
to set handling of interrupts. You must do this before you load and execute
programs and make emulator measurements. Refer to Chapter 8, "Configuring the
Emulator".

If you want to use the examples in this manual, you must load a special
configuration file and load the demo program. See "To load the demo program" in
this chapter for more information.

115

Chapter 4: Using the Emulator
Loading and Storing Programs

Loading and Storing Programs

The emulator provides commands that allow you to move files into emulation or
target memory from a host computer through the LAN or serial ports of the

HP 64700 Card Cage. You can also save a range of memory in an absolute file for
later reuse. (You might do this if you patch a section of code and need to do further
testing.)

Many different absolute file formats are supported. The primary ones used with the
emulator interface are the IEEE-695 and HP64000 absolute formats.

Theload command has other options that allow you to control the load process.
Refer to thdoad command syntax in Chapter 11, "Emulator Commands".

To load a program

* ChooseFile - Load - Executable... In the dialog box, click on the name of the
executable file to load, and then click OK.

» Using the command line, load a program absolute file into emulation or target
memory by enterintpad [<memory_type>] <filename> [fcode <fcode>]

<memory_type> is optionalemul_memis emulation memory and
user_memis target system memory. The default is to load all
memory.

<filename> is the name (including paths if needed) of an HP64000 or
IEEE-695 format absolute file. You do not need to specify the
extension if it isx or X.

<fcode> is an optional function code from the following list.

116

Chapter 4: Using the Emulator
Loading and Storing Programs

<fcode> Meaning

none emulator load, defaults to supervisor
space

super supervisor address space

user user address space

The emulator can load HP64000 or IEEE-695 format absolute files into emulaff
or target system memory. So, you can develop programs on your UNIX
workstation; then build the programs and load them into the emulator for
debugging.

Use the memory type parameter if you want to load only the parts of the program
that have addresses corresponding to those types of memory in the map.

Example To load the executable part of your absolute file into memory and any symbolic
information found in the absolute file, chodske - Load — Executable...

To load the executable part of your absolute file into memory but not load symbolic
information found in the absolute file, chodske - Load - Program Only...

To load only the symbolic information found in the absolute file (without loading
the executable part of your absolute file), chdeike- Load — Symbols Only...

Suppose you are using two MMU mappings, one of which is user space from 1000
through 1fff hex. The other is supervisor space from 1000 through 1fff hex. You
have absolute files called userprog.x and supprog.x. To load these programs using
the command line, enter:

load userprog fcode user
load supprog fcode super

The programs are loaded into the correct address space.

117

Chapter 4: Using the Emulator
Loading and Storing Programs

To load the demo program

1 With your emulator interfaceot on screen, enter the following commands in a

terminal window:

cd /usr’hp64000/demo/debug_env/hp64783
Startemul <logical name>

Where <logical name> is the name assigned to your emulator. The default logical
name for the MC68040 emulatomi®804Q For a detailed discussion of how to
find a logical name, refer to Chapter 1, "Getting Started".

The terminal window will ask you if you wish to copy the demo files to a different

directory. It is best to answer "y" to this question, and then supply the full path
name of your own demo directory.

The demo files will be copied and modified, as required, into the directory you
specify, and then the emulator interface will appear on screen. It will be ready for
you to run the demo procedure.

Press the Action keys from left to right and top to bottom to see the demo.

The demo program supplied with the MC68040 acts as a hypothetical
environmental control system for a computer room. You can use this program to
learn more about the emulator. Refer to the information on the demo program in the
reference part of this manual.

The examples in this manual use the demo program. To make the examples work
correctly, you must load the demo emulator configuration file and demo program as
described above.

118

Chapter 4: Using the Emulator
Loading and Storing Programs

To store a program

» Using the command line, transfer a range of memory locations from the emulator to
an HP 9000 file by entering the command:

store memory | fcode <fcode>] <expression> | thru

<expression>] [offset_ by <offset>] to <filename>

<fcode> is an optional function code as follows:

<fcode> Meaning

none emulator store, defaults to supervisor
space.

super supervisor address space

user user address space

<expression> specifies the starting (and endingthiru <expression>
addresses of the memory range to be stored.

<offset> optional value to be subtracted fremaxpression=>

<filename> is the name (including paths if needed) of a file to store the data.

If you patched a program or data structure by modifying memory, you may want to
save the memory image for comparison with other changes or for future testing.
Thestore command allows you to do this.

Thestore command creates absolute files in HP64000 format.X legtension is
added automatically.

Example To save the memory locations of the init_system routine in an absolute file named
new, use the command line to enter:

store memory init_system thru init_system endto new

119

Chapter 4: Using the Emulator
Loading and Storing Programs

To edit files

ChooseFile - Edit - File... and use the dialog box to specify the file name.

To edit a file based on an address in the entry buffer, place the address reference
(either absolute or symbolic) in the entry buffer; and then cheitese Edit - At
() Location.

To edit a file based on the current program counter, cheilese Edit — At PC
Location.

To edit a file associated with a symbol when you are displaying symbols, position
the mouse pointer over the symbol, press and holskleetmouse button, and
chooseEdit File At Symbol from the popup menu.

To edit a file when displaying memory in mnemonic format, position the mouse
pointer over the line of source where you want to begin the edit, press and hold the
selectmouse button, and choo&dit Source from the popup menu.

When editing files at addresses, the interface determines which source file contains
the code generated for the address and opens an edit session on the file. The
interface will issue an error message if it cannot find a source file for the address.

The interface will choose the "vi" editor as its default editor, unless you specify
another editor by setting an X resource. Refer to Chapter 13, "Setting X
Resources", for more information about setting this resource.

You must load symbols before most edit commands are available because symbol
information is needed to be able to locate the files.

120

Examples

Choosing this menu
item brings up a
terminal window
with an edit session
open on the file
where the
highlighted symbol
is defined.

To edit a file that defines a symbol:

Chapter 4: Using the Emulator
Loading and Storing Programs

1 z
e Hewlett Packard Emulator/Analyzer: em68040 (mB8040) Pa b
File Display Modify Execution Breakpoints Trace Settings Help

Action keys: | < Demo > | Disp Sre() | Trace () | Run | Step Source
| <Your Key > | Make |Disp Src Prev |Run Kfer til () | Break | Step Asm
{):imain IRecaII
Global symbaols in demao.x
Procedure symbols A&
Procedure name Address range __ Segment Offset
modisp AHAREA34 - ABABSHI0 prog AA34

outchar Global Symbols Display iaea - 686168A1 uprog EELE]
setalaxm Display Local Symbol ASA - BHBASAIT prog AASA
sys_demodisf & SPIAY LoCal SYMBOIS 5rg _ ppARE?OF sprog alalals]
sys_demoi Psplay Parent Symbeoly [VEB - 80BEB511 sprog Ba1s
sys_intrhdl 812 - BHBABET3 sprog AE84A
sgs_setalarrr\@{lt Full Symbol Name 574 _ g@ARRECE sprog ABAC
sys_startup e T 8CC - BEHBASZ2T sprog B164
tolower Edit File Defining Symboll-re - aomoazar 1:be pADA
usermaode AHAASABA - ABABSHES prog a5]5]5]
Static symbals
Symbol name Address range __ Segment Offset
__ctype BEEBES 1AG libe Baeg v
__initcopy HEBRSASE prog a5]5]5]
STATUS: H680408--Running user program Emulation trace complete
display global_symbols

"] Command: Cursor: |§Z ahup |Forward |Clear to end |Clear |He|p "l
f f

121

Chapter 4: Using the Emulator
Loading and Storing Programs

To edit afile at the location of a source line:

t
e Hewlett Packard Emulator/Analyzer: em68040 (mB8040) Pa b
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo > | Disp Sre() | Trace () | Run | Step Source
Choosing this menu | <Your Key > | Make |Disp Src Prev |Run Kfer til () | Break | Step Asm
item brings up a () main [Recall
te_rmlnal W!ndOW . Memory :mnemonic :file = demoimodulel. "demo.c":
with an edit session addrass lahel data A
. 452 # SIDEEFFECTS none ;
open on the file 3 */
ighli 49 1
where the hlghllghted 455 /% initialize global for ocutchar(}l #/

source line exists.

BOBIBEAZ up|dend Choose Action for Highlighted Line RAg, A7), AB

BBB}}E?HE ie”(:'ear Software Breakpoint JHE4d, ARY , udata | _userbuf
458 Edit Source qularly call outchart) #/
459 N

008 | BERE Run Until v | demo. outchar, PC)

ABA |EEE 2 atal_dur‘ation, -{A7)

BEH |BEBS Trace After |demo.setalarm

ABA | AHBE Trace Before A7
468
461 Trace About = been displayed #/

462 Trace Until
STATUS: cws: demo."demo.c": M

display memory main mnemonic

(oo oo Lrer ovien] Loty JLoveor Lo o]

Tl

"] Command:
E

Cursor: |§Z ahup |Forward |Clear to end |Clear

122

Chapter 4: Using the Emulator
Using Symbols

Using Symbols

When you load a program for the first time, the emulator uses the Symbolic
Retrieval Utilities (SRU) to build a symbol database for each module. This database
associates symbol names and symbol type information (not data types) with logical
addresses. You will see a message on screen showing the module for which the
database is being built.

Once a symbol database is created for a particular module, it does not need t
rebuilt unless the module is changed. You can rebuild modules usisnytidd

utility (refer to theSymbol Retrieval Utilities, SRU, User’s GUidéyou reenter
emulation without building symbols, the emulator software automatically rebuilds
portions of the symbol database as you reference symbols in modified modules.
Usually, you should ussrubuild after you rebuild your absolute files to save time
during emulation.

Global symbol information is immediately available for the file that you loaded. To
obtain local symbol information, you need to reference the module that contains the
symbols.

You can use the symbol names instead of addresses when entering expressions as
part of an emulation command. Therefore, you don’t have to remember address
information to make a measurement. Also, the emulator can display symbols within
the results of a measurement, usingsittesymbols orcommand. This helps you

relate the measurement to your original program.

Long symbol names can be truncated in the symbols display; however, you can
increase the width of the symboils display by starting the interface with more
columns (refer to Chapter 13, "Setting X Resources").

The MC68040 emulator interface can read absolute files in HP-OMF or IEEE-695
format. For more information on SRU, refer to $anbol Retrieval Utilities, SRU,
User’'s Guide Also refer to the information on symbol entry syntax in the
—SYMB— section of Chapter 11, "Emulator Commands".

When you load an absolute file into memory (unless you specify a load without
symbols), symbol information is also loaded. Both global symbols and symbols that
are local to a source file can be displayed.

123

Chapter 4: Using the Emulator

Using Symbols

Example

To load a symbol database

ChooseéFile - Load - Symbols Only... In the dialog box, click on the name of the
desired symbols file, and then click OK.

Using the command line, load a new symbol database by entering the command:

load symbols <filename>

<filename> is the name of the absolute file in HP64000 or IEEE-695 format for
which you want to load symbols.

Theload symbolscommand is useful when your system uses several different
absolute files or when the target program resides in target ROM and is not loaded
through the emulator. The symbol database for the most recently loaded absolute
file is the current symbol database. If you want to use a symbol database from a
different absolute file without reloading the file, useltied symbolscommand to

load only the symbol database for that file.

Suppose you have a system that uses two absolute files, one called system.x and
another called task.x. You load these as follows:

load system.x
load task.x
The symbol database for task.x will be available because it was loaded last. To

reference symbols from system.x, use the command:

load symbols system.x

Now the symbol database for task.x will not be available.

124

Chapter 4: Using the Emulator
Using Symbols

Example

To display global symbols

ChooseDisplay — Global Symboals.

Using the command line, display global symbols by entering the command:

display global_symbols

Thedisplay global_symbolscommand displays a list of global (externally define
symbols in the program modules you have loaded into emulation or target me

The symbols list includes the address range associated with a symbol, the name of
the associated segment, and the offset of the symbol within the segment.

You can use theP andDOWN cursor keys and tiéEXT andPREV keys to
scroll or page through the global symbols listing.

Display the global symbols for the demo program:

display global_symbols

125

Chapter 4: Using the Emulator
Using Symbols

To display local symbols

» If you are using the Graphical User Interface:

» First place the name of the symbol whose local symbols should be displayed
into the entry buffer, and then in the menu bar, chBisgay - Local
Symbols().

* When displaying symbols, position the mouse pointer over a symbol on the
symbol display screen and click teelectmouse button.

* When displaying symbols, position the mouse pointer over the symbol, press
and hold theselectmouse button, and chodd&splay Local Symbolsfrom the
popup menu.

» Using the command line, display the symbols defined within a given symbol by
entering the command:

display local_symbols_in <symbol_name>

This command displays address information associated with each symbol. The
symbols defined within a given symbol are local to that symbol. That is, they are
defined as children of that symbol. See “To enter a symbol” for more information
on the <symbol_name>. If no local symbols are associated with your selection, the
interface displays the parent symbol.

To display the address ranges associated with the high-level program’s source file
line numbers, you must display the local symbols in the file.

Example Display the local symbols for the update_sys module in the demo program:
display local_symbols_in update_sys(module)
Suppose that you had an IEEE-695 absolute file with a module named system and a

procedure within that module also named system. You could display the local
symbols for the procedure named system by entering:

display local_symbols_in system.system

126

Chapter 4: Using the Emulator
Using Symbols

To display the source reference address ranges:

display local_symbols_in system.c:

To display local symbols using the symbols display popup menu:

—'E Hewlett Packard Emulator/Analyzer: em68040 (m68040) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
View the local Action keys: | = Demo = | Disp Sre () | Trace () | Run | Step Source
symbo|s associate | < Your Key » | Make |Disp Sre Prev |Run Xfer til () | Break | Step Asm
with the hlghllghtgd (): main [Recan
Sy,mbOI by_ChOOSIng Glgbal symbols in demo.x
this menu item. Prodedure symbols A
Procedure name Address range __ Segment Offset
demaodiap AABASE34 - BEAESASD prog AE34
main AAB1ABAZ - BBEALBACTY uprog aaR2
outchar AAB1ABAR - BEALBAA] uprog aaBEa
setalarm AEBASEEA - BBEABSASI prog BASA
sys_demoadisp BABARYCE - BBEABEYOF sprog aaBEa

AABARYER - BBEABEE1] sprog
AEAEAS 12 - BEEBESY3 sprog
AARRRR 74— A]

sys_demointr
sys_intrhdlr

sys_setalarm

sys_startup Global Symbols Display 4323 sprog a1a4
tolower Display Local Symbol 2BF libec aaBEa
usermode 1splay Local Symho's B89 prog aaBEa

Paplay Parent Symbols

Static symbols

Symbal name __| Cut Full Symbol Name = __ Segment Offset
__ctype [. libe Jaala]e]

" initeopy Edit File Defining Symbol prog ARAA ¥
STATUS: M68040--Running user program Emulation trace complete

display global_symbals

(oo oo oo Jooion] Lowinty Loven J[_owsJfre]

] Command: Cursor: |§Z§é§¢§szzg> |Forward |Clear to end |Clear |He|p ¥
E

If local symbols exist within the scope of the symbol you chose, then the display
changes to show those symbols. Otherwise, the interface issues an error.

127

Chapter 4: Using the Emulator

Using Symbols

Examples

View the parent
symbol associate
with the highlighted
symbol by choosing
this menu item.

To display the parent symbol of a symbol

When displaying symbols, position the mouse pointer over the symbol, press and
hold theselectmouse button, and choo®&splay Parent Symbolsrom the popup
menu.

If a parent symbol does not exist for the highlighted symbol, this menu item will be
grayed-out and unresponsive to mouse clicks.

¥
—'E Hewlett Packard Emulator/Analyzer: em68040 (m68040) E a EJ

File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | = Demo = | Disp Sre () | Trace () | Run | Step Source
< ¥Your Key > | Make |Disp Src Prev |Run Kfer til () | Break | Step Asm

()\:i‘\@in IRecaII

Symbals\in demoi{modulel.sys_setalarmi{procedure’

Procedure special symbols

Procedure special name Address range __ Segment
ENTRY HABEAGY 4 sprog
EXIT HBARBECA sprog
EXTRANGE

Local Symbols Displa

Display Local Symbols

Di:iplm,nr Parent Symbols
Cut Full Symbol Hame
Edit File Defining Symbol

STATUS: cws: demo.sys_setalarm

display local_symbols_in sys_setalarm{procedurel

[T ror JLeveee [evor Jonton] [odity [ovesk J[_ond Jfbre]
-] Command: Cursor: |§Z§é§¢§szzg> |Forward |Clear to end |Clear |He|p ¥
E

128

Chapter 4: Using the Emulator
Using Symbols

Examples

Copy the full name
of the highlighted
symbol to the entry
buffer by choosing
this menu item.

To copy and paste a full symbol name to the
entry buffer

When displaying symbols, position the mouse pointer over the symbol, press and
hold theselectmouse button, and chooSet Full Symbol Namefrom the popup
menu.

Once the full symbol name is in the entry buffer, you can use it with pulldown
menu items or paste it to the command line area.

By cutting the full symbol name, you can be sure that you specified the complete
scope of the symbol, including all names of symbols that were truncated.

¥
—'E Hewlett Packard Emulator/Analyzer: em68040 (m68040) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo > | Disp Sre () | Trace () | Run |Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Alertil () | Break | Step Asm
{):idemoimodulel. sys_setalarm{procedure’ I Recall
Symbols in demoimodulel
Procedure symbols A
Procedure name Address range __ Segment Offset
demodisp AABASE34 - BEABSASD prog A834
i AEE188AZ - BBEE1BACT uprog BAB8Rz
AAB1ABAR - BEALBAA] uprog a8aa
AEBASEEA - BBEABSAII prog Ba8sA
BABARTYCE - BBEABEYOF sprog a8aa
AABARTYER - BBABBEE1] sprog aa1s

AEAEAS 12 - BBEEBEEY3 sprog AE4A

} sprog HEBAC]

CAMATAAA D 7 A

sys_startup Local Symbols Display sprog a184
usermads Display Local Symbols preg uauo
Static symboly Display Parent Symbols

Symbal name _| = __ Segment Offset
alarm Cut Full Symbol Name [BEF sdata A4
clocktic Edit File Defining Symbol CHES =sdata HEAR
duration 9z 8003 udata oonn ¥

STATUS: cws: demo

display local_symbols_in demoimodule?

[T ror I[eee T owor J[oiorion] [oodity J[bvear][ond Jeoiie]
] Command: Cursor: |§Z§é§¢§azzg> |Forward |Clear to end |Clear |He|p ¥
E

129

Chapter 4: Using the Emulator
Using Symbols

To enter a symbol

» Enter symbols according to the syntax shown in the —SYMB— syntax pages in
Chapter 11, "Emulator Commands".

Examples These are examples of some valid symbol entries:

Int Cmd
demo.Main(procedure)
demo.EndLoop
handle_msg.Fill_Dest
handle_msg.Cmd_A
system.c:line10

130

Chapter 4: Using the Emulator
Using Symbols

To display the current directory and current
working symbol

ChooseDisplay - Context... A dialog box will open and show the name of the
current directory and current working symbol.

Using the command line, display the name of the current directory by tywidhg
and the name of the current working symbol by typiwg.

If you're entering symbol names from several different modules, you may be

unsure which symbol is the current working symbol. Digplay — Context...or
pws commands allow you to check this.

Thepws andpwd commands aren't available on the softkeys. You must type them
at the keyboard.

The directory context, included in the dialog box seen in the Graphical User
Interface is the directory accessed by all system references for files (primary load,
store, and copy commands) if no explicit directory is mentioned. Unless you have
changed directories since beginning the emulation session, the current directory
context is that of the directory from which you started the interface.

The current working symbol context is supported by the emulator/analyzer and the
Symbol Retrieval Utilities (SRU) working together. The current working symbol
represents an enclosing scope for local symbols. If symbols have not been loaded
into the interface, you cannot display or change the symbol context.

131

Chapter 4: Using the Emulator

Using Symbols

To change the directory context

ChooseFile - Context— Directory and use the dialog box to select a new directory.

Using the command line, enter ttek <directory> command.

The Directory Selection dialog box contains a list of directories accessed during the
emulation session as well as any predefined directories present at interface startup.

You can predefine directories and set the maximum number of entries for the
Directory Selection dialog box by setting X resources (see Chapter 13, "Setting X
Resources").

To change the current working symbol context

ChooseéFile - Context— Symbolsand use the dialog box to select a new working
symbol context.

Using the command line, enter thws <symbol_context>ommand. (Because
cwsis a hidden command and doesn’t appear on a softkey label, you have to type it
in.)

You can predefine symbol contexts and set the maximum number of entries for the
Symbol Scope Selection dialog box by setting X resources (see Chapter 13,
"Setting X Resources").

Displaying local symbols or displaying memory in mnemonic format causes the
working symbol context to change as well. The new context will be that of the
local symbols or memory locations displayed.

132

Chapter 4: Using the Emulator
Using Symbols

Example The update_sys module of the demo program defines several symbols, including
get_targets, graph_data, and write_hdwr. You refer to these in a group of memory
display commands as follows:

display memory update_sys.get_targets blocked bytes
display memory update_sys.graph_data blocked bytes
display memory update_sys.write_hdwr blocked bytes

To save repeated typing of update_sys, enter:

cws update_sys .

Then enter the memory display commands as:

display memory get_targets blocked bytes
display memory graph_data blocked bytes
display memory write_hdwr blocked bytes

133

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Accessing Processor Memory Resources

While you are debugging your system, you may want to examine memory
resources. For example, you may need to verify that the correct data is loaded, or
check the results of a data write. Also, you may need to modify memory locations
to test different data sets for a program. The emulator has flexible memory
commands that allow you to view and modify memory as needed.

To display program data structures

Place an absolute or symbolic address or file hame containing the desired data
structures in the entry buffer. Then chobBseplay - Data Values- New ()and

select the data type from the cascade menu. This clears the data values display and
adds a new item.

Place the absolute or symbolic address of the desired data in the entry buffer. Then

chooseDisplay— Data Values- Add () and select the data type from the cascade
menu. This adds data items to the data values display.

ChooseDisplay — Data Valuesif you have a display of data values on screen and
you want to update that display.

Using the command line, display a program data structure by entering:

display data <lower> [thru <upper>] <type> {, <lower>
[thru <upper>] <type> }.

<lower> and <upper> are address expressions representing the lower and upper
boundaries of the memory range to be displayed.

134

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

<type> is a data type for display formatting as follows:

Type Description

Designator

byte Hex display of one 8-bit location

word Hex display of one 16-bit location

long Hex display of one 32-bit location

int8 Display one 8-bit location as a signed integer (two’s
complement)

intl6 Display one 16-bit location as a signed integer (two’s
complement)

int32 Display one 32-bit location as a signed integer (two’s
complement)

u_int8 Display one 8-bit location as an unsigned positive integer

u_intl6 Display one 16-bit location as an unsigned positive integer

u_int32 Display one 32-bit location as an unsigned positive integer

char ASCII characters

You can use thdisplay datacommand to display simple data types in your

program. This can make the display of simple variables easier to read because you
don't have to visually sort a display (such as a memory display) to find the
locations of interest.

You can use symbols in the address expression.

Example To clear the data values display and add the target_temp static symbol from the
demo program:

display data target_temp byte

To add display of the aver_temp array from the demo program:

display data , aver_temp thru aver_temp end word

135

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

To display only source lines

* ChooseSettings— Source/Symbol Modes. Source Only.

» Using the command line, enter:

set source only symbols on

Only high-level source lines are displayed in mnemonic memory and trace displays.

Examples To turn ON source lines in displays, and display memory in mnemonic format:

set source only symbols on

display memory

main

mnemonic

1 1
—'E Hewlett Packard Emulator/Analyzer: em68040 (m68040) E a EJ
File Display Modify Execution Breakpoints Trace Sefttings Help
Action keys: | < Demo = | Disp Sre () | Trace () | Run | Step Source

| = Your Key = | tdake |Disp Sre Prev |Run Alertil () | Break | Step Asm

() imain IRecaII

Memaory :mnemonic :file = demof{modulel."demo.c”
addre label data A
438 R R
435 S FUNCTION #/
448 woid
441 maintargc, argy!
442 int argc:
443 char #*argvl];
444
445 £
446 * Main entry point for the user mode task to display a hexadecimal
447 * on the demo board’s 7-segment display. A global pointer is set
448 * point the string in argv[1] and the operating system’s interval
443 *# is used to call outchar() to output each character at regular in
456 *
451 * RETLRN nane
452 # SIDEEFFECTS nane
453 */
454 i
| STATUS: M68040--Running user program Emulation trace complete i |
F F

136

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Examples

To display intermixed source lines

ChooseSettings— Source/Symbol Modes. Source Mixed
Using the command line, enter:
set source on symbols on

High-level source lines are intermixed with assembly language instructions in
mnemonic memory and trace displays.

To turn ON source lines in displays, and display memory in mnemonic format:

set source on symbols on
display memory main mnemonic

E
—'E Hewlett Packard Emulator/Analyzer: em68040 (m68040) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Alertil () | Break | Step Asm
() imain IRecaII
Memory :mnemonic :file = demoimodulel. "demao.c”
addre label &
i 1 for outch /|

aEaE 1882 . . OVER.L ($B88E8,A7), A

A86 188A6 MOVE. L (30884, A8, udata|_userbuf

AEE 1 BERE . 487AFF 5@

ABE 16ABZ 2F3306A158 MOVE. L udata|_duration, -(A7}
86 18EES 4EE3HBABSA ISR pr|demo. setalarm

AEE 1 BEEE SEEF ADDOG. L #5, A7

until entire string has

rbuf)

454
80D 1BECH 4ABJBEE188 T5T.L udsta| _userbuf

| STATUS: M68040--Running user program Emulation trace complete P
E 13

137

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

To display symbols without source lines

* ChooseSettings— Source/Symbol Modes. Symbols

» Using the command line, enter:

set source off symbols on

Symbols are included in memory mnemonic, trace, breakpoints, and register step
displays.

Examples To turn ON symbols in displays, and display memory in mnemonic format:

set source off symbols on
display memory main mnemonic

—'E Hewlett Packard Emulator/Analyzer: em68040 (m68040) E a EJ
File Display Modify Execution Breakpoints Trace Sefttings Help
Action keys: | < Demo = | Disp Sre () | Trace () | Run | Step Source

| = Your Key = | tdake |Disp Sre Prev |Run Alertil () | Break | Step Asm

() imain IRecaII
Memaory :mnemonic :file = demof{modulel."demo.c”:

addre label dats A
BEP186AZ up|demo.main ZBEFBEGS MOVER. L ($HBAS, A7), AB
B8R 18AAG 23ESAHB4HE MOVE.L (38084, A8}, udata| _userbuf
B8R 1AHARE 487AFFSA PER {upr|demo. outchar, PCY
AaE 1 aae2 2F33aea18a8 MOVE.L udata| _duration, -(A7}
BEE 18HES 4EE3ABBASE ISR pr|demo. setalarm
HEE 1AHEE SHEF ADDQ. L #a, A7
BB 18ACA 4AE3AEB188 TST.L udata| _userbuf
BEE 18ACE BEF S BME. B uprog|maint$BE1E
BB 18ACS 4E7S RTS
B8R 18ACA FFF@ Unimplemented F-Line Opcode: $FFFE
ABE1ABCC out.segtable BHBABACH ORI.B #$Co, 08
B8R 18808 HEBEAAF I ORI.B #$F3,08
BB 18804 BEBBAAARS ORI.B #$A4, 08
BB 18803 HEBEAREA ORI.B #$EA, DB
BB 18A0C AEBEARST ORI.B #$33,08
B8R 1AREA BEBEARSZ ORI.B #$32,08
AaE 1A8E4 ABRBABG2 ORI.B #$82, 08
| STATUS: M68040--Running user program Emulation trace complete e HN_ N

138

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Examples

To display absolute addresses

ChooseSettings— Source/Symbol Modes, Absolute.

Using the command line, enter:

set source off symbols off

No symbols or source lines are included in mnemonic memory or trace displa

To turn OFF symbols and source lines in displays, and display memory in

mnemonic format:

set source off symbols off
display memory main mnemonic

—'E Hewlett Packard Emulator/Analyzer: em68040 (m68040)

File Display Modify Execution Breakpoints Trace Settings

Action keys: | < Demo = | Disp Sre() | Trace () | Run | Step Source
| = Your Key = | Make |Disp Srec Prev |Run Alertil () | Break | Step Asm
():imain IRecaII
Memory :mremonic :file = demoimodulel. "demao.c”
addre data &

AR 16EAZ 206FBAEE MOVER.L ($BE@3,RA7), A6
00 186AG Z23E0@aB480 MOVE.L ($0Ba4, A, $600 15004

ABA1ABAE 487AFF5A PER ($FF58, PC)
ABA1ABEZ 2F359BAB18A MOVE.L $BAE15ABE, - (A7)
ABA1ABBE 4EB3BAEASA ISR $BABASASA
ABA1ABBE SASF AOD0O. L #8, A7
ABA1ABCA 4AB3BAE1EA TST.L $BA0 18AH4
ABA1ABCE BEFE BME. B $BAE 1BACH
ABA1ABCE 4E7S RTS
AEE1aECA FFFA Unimplemented F-Line Opcode: $FFFA@
ABA1ABCC BEBEAECA ORI.B #$CB, DA
ABA1AB0E BEBEAEFI ORI.B #$F3, 08
ABA1AB04 BEBEAEARY ORI.B #$A4, DA
ABA1AB0E BHBEAEBA ORI.B #$B6, DA
ABA1ABOC BEBEAEST ORI.B #$33, DA
ABA1ABER BEBEARSZ ORI.B #$32, 04
ABA1ABE4 BEBEARGZ ORI.B #4482, 04
STATUS: H68040--Running user program Emulation trace complete

139

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Example

To display memory in byte format

ChooseDisplay - Memory - Hex() - bytes. If you want to include a line range or
starting point for your memory display in your command, enter it into the entry
buffer before you execute this command.

Using the command line, display a range of memory in byte format by entering:

display memory <lower> [thru <upper>] bytes

To format the memory listing as a single column, add the keyalmmolutebefore
the data type in theéisplay memory command. To format the memory listing as
multiple columns, add the keywobtbcked before the data type in théesplay
memory command.

Display the demo program’s average temperature array:

display memory aver_temp thru aver_temp end bytes

140

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Example

To display memory in word format

ChooseDisplay - Memory - Hex() - words. If you want to include a line range
or starting point for your memory display in your command, enter it into the entry
buffer before you execute this command.

Using the command line, display a range of memory in word format by entering:

display memory <lower> [thru <upper>] words

To format the memory listing as a single column, add the keyalmmolutebefore
the data type in theéisplay memory command. To format the memory listing as
multiple columns, add the keywobtbcked before the data type in théesplay
memory command.

Display the demo program’s average temperature array:

display memory aver_temp thru aver_temp end blocked
words

141

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Example

To display memory in long word format

ChooseDisplay - Memory - Hex() - long. If you want to include a line range or
starting point for your memory display in your command, enter it into the entry
buffer before you execute this command.

Using the command line, display a range of memory in long word format by
entering:

display memory <lower> [thru <upper>] long

To format the memory listing as a single column, add the keyalmmolutebefore
the data type in theéisplay memory command. To format the memory listing as
multiple columns, add the keywobtbcked before the data type in théesplay
memory command.

Display the processor’s interrupt vector table:

display memory 0 thru 3ffth absolute long

142

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

To display memory in mnemonic format

ChooseDisplay - Memory —- Mmemonic() or Mnemonic at PC. If you want to
include a line range or starting point in your command, enter it into the entry buffer
before you choose thdnemonic() command.

Using the command line, display memory in mnemonic format by entering:

display memory <lower> [thru <upper>] mnemonic

A highlighted bar shows the location of the current program counter address. This
allows you to view the program counter while stepping through user program
execution.

When youdisplay memory mnemonic the emulator disassembles the memory
locations beginning with the first address you specify. If this address is not the
starting address of an instruction, the display will be incorrect.

To offset the addresses in the memory mnemonic display, add the parameter
offset_by <expression=o the end of the display memory command line.
<expression>is an address expression that is subtracted from each address in the
memory display. If code gets relocated, and therefore makes symbolic information
obsolete, you can use thset_byoption to change the address information so

that it again agrees with the symbolic information. You can alsoffss byto

change listed addresses so that they match addresses in compiler or assembler
listings.

Whether source lines, assembly language instructions, or symbols are included in
the display depends on what you choose wittSetengs— Source/Symbols
Modes or Settings— Display Modespulldown menu items.

Use theset symbols orcommand to display symbol information for addresses in
the memory mnemonic display.

If symbols are loaded into the interface, the default is to display source only.

143

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Examples

To display memory for the main part of the demo program, enter main in the entry

buffer and choosBisplay - Memory - Mmemonic(), or enter on the command
line:

display memory main mnemonic
Display the write_hdwr routine for the update_sys program in mnemonic format,
with symbols in the address column:

set symbols on
display memory update_sys.write_hdwr thru write_hdwr end
mnemonic

To return to the previous mnemonic display

ChooseDisplay - Memory - Mmemonic previous.

This command is useful for quickly returning to the previous mnemonic memory
display.

For example, suppose you are stepping source lines and you step into a function
that you would like to step over. You can return to the previous mnemonic
memory display, set a breakpoint the line following the function call, and run the
program from the current program counter.

144

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Example

To display memory in real number form

ChooseDisplay - Memory - Real()- <real type>. If you want to include a line
range or starting point in your command, enter it into the entry buffer before you
execute this commandsreal type>may be short, long, extended, or packed.

Using the command line, enter commands as follows:

1 Display memory values as 32-bit (IEEE-754 single precision) real number.
selecting:

display memory <lower> [thru <upper>] real short

2 Display memory values as 64-bit (IEEE-754 double precision) real numbers by
selecting:

display memory <lower> [thru <upper>] reallong

3 Display memory values as 96-bit (IEEE-754 double extended precision) real
numbers by selecting

display memory <lower> [thru <upper>] real extended

4 Display memory values as 96-bit Motorola Packed real numbers by selecting:

display memory <lower> [thru <upper>] real packed

Real numbers use the formats defined byl Standard for Binary
Floating-Point ArithmeticThey can be short (32 bits), long (64 bits), or extended
(96 bits).

To display a set of data values in real numbers, beginning with the floating
humidity in the demo program, place the global symbol float_humid in the entry

buffer and choosBisplay - Memory - Real()- long. If using the command line,
enter:

display memory float_humid real long

145

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

To redisplay memory locations

* ChooseDisplay - Memory.

» Using the command line, redisplay memory with the same address range and
format as the previous memory display by selecting:

display memory
The last range and format options are maintained in the interface. When you

display memory without specifying the location or format for the display, the
previous options are used.

To display memory repetitively
» ChoosdDisplay - Memory - Repetitively.

» Using the command line, continuously display memory with:
display memory repetitively

This command continuously updates the memory display. Use this only to monitor
memory while running your target code; it requires a lot of CPU time. To allow the
current memory display to be updated whenever the emulator detects a
modification to memory content (such as loading a file, or setting a software
breakpoint) use theet updatecommand, oBettings— Display Modes...

146

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

To modify memory

ChooseModify -~ Memory, or enter the desired memory location and new value in
the entry buffer and click ddodify — Memory at (). The equivalent command

will be shown on the command line. Complete the command by entering
appropriate information on the command line.

Using the command line, enter commands as follows:

* To modify a single memory location to a single value, select:

modify memory <address> to <value>

* To modify a range of memory locations to a single value, select:

modify memory <lower> thru <upper> tfo <value>

* To modify a range of memory locations with a list of values, select:

modify memory <lower> thru <upper> to

<valuel><value2>,

* To change whether memory is modified by bytes, words, or long words, add
the <mode> parameter before th&keyword.

» To modify memory as real numbers, select:

modify memory <lower> [thru <upper>] real [shortflong]

to <reall>[,<real2>, ..]]

* To modify a sequence of bytes to an ASCII string literal, select:

modify memory <lower> thru <upper> string to “<string>"

The <address>parameter is an expression representing a single address location.

The<lower> and<upper> values are address expressions representing the lower

and upper boundaries of the memory area to be modifiailie>represents the

data value to which the contents of memory are to be modified<sftieg> is a
character string.

147

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Examples

The<mode>parameter can be eithgytes words, orlong. Otherwise, the mode
specified by the lagtisplay memory command determines how data is displayed.
If you selected "Any" when you specified "Memory Access Size" as part of the
emulation configuration, the size you specify here will be used to access memory
for the modification you specify.

Modify the byte at elf hex to 43 hex:

ChooseModify — Memory, and on the command line, type Oettft43h

modify memory 0QOelfh to 43h

The above example assumes that byte mode was in effect. If not, add the mode
parameter:

modify memory 0QOelfh bytesto 43h

Modify the memory using a symbol:

modify memory erno bytesto 43h

Modify the range of locations from e00 through e38 to zero:

modify memory 0e00h thru 0e38h to O

Modify the range of locations from 0e00 through 0e38 to “ABC":
modify memory 0e00h thru 0e38h bytesto 41h,42h,43h

Modify the memory at e00 hex to the string “This is a string”:

modify memory 0e00h string to “This is a string\n\0”

Remember that the memory modification is affected by the display mode. Suppose
that locations fO0 and fO1 each contain 01. If you enter the command:

modify memory 0f0lh bytesto 3h

Then location fOO contains 01 and location fO1 contains 03. But, if you entered:

modify memory 0f0Oh wordsto 3h

148

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Then location fOO will contain 00, and location fO1 will contain 03. Notice that you
refer to a word by an even address, which is the address of its most significant byte
(this is defined by the MC68040 processor architecture).

149

Chapter 4: Using the Emulator
Using Processor Run Controls

Using Processor Run Controls

When you don’t use an emulator, run control can be difficult. Usually, you're
limited to starting the processor from reset, and then entering data values that
vector program execution to the routines you want to test. Reaching those routines
may be difficult or impossible if the data values are boundary conditions or if the
program logic is faulty.

By using the emulator, you can run the processor from the current program counter
or any desired address. If you want to examine the system after each program
instruction, you can use tilstepcommand to step through the program. You can
break to the monitor program to examine on-chip resources such as RAM and
registers, and you can reset the processor from the emulator.

To run a program

ChooseExecution- Run and select the desired starting point from the submenu, or
selectuntil() to specify the ending point. Enter the starting or ending address in the
entry buffer before you choose a command that corftaing) or until() .

Using the command line, enter commands as follows:

* Torun a program from the current program counter (PC) value, enter:

run

* Torun a program from a specific address, enter:

run from <—EXPR—>

Where<—EXPR—> is a valid address expression that may include symbols.
* Torun a program from the reset vector, enter:

run from reset

* Torun a program from its transfer address, enter:

150

Examples

Chapter 4: Using the Emulator
Using Processor Run Controls

run from transfer_address
When you're ready to start a program run, either to test target system operation or
make an analyzer measurement, you useutheommand.

<—EXPR—> is a 32-bit address expression. You can include supervisor or user
function codes to specify the privilege level for the run command.

Therun from reset command pulses the processor reset line. The processor fetches
the values at offsets 0 and 4 from the vector table, loads these values into the
interrupt stack pointer and program counter registers, and then begins runnin

the program counter address value.

A run command causes the emulator processor to begin running from the current
program counter, provided that the emulator is not in the reset state. If the emulator
is in the reset state, then command (with no parameters) is equivalentrana

from reset command, unless tlien command is preceded byeak command.

If you reset the emulator, break to the monitor, and then run the emulator, the stack
pointer and program counter values are taken from the values supplied to
configuration items instead of from the reset vector locations. Refer to Chapter 8,
"Configuring the Emulator”, for more information about setting the initial stack
pointer and program counter values.

To run from the demo program’s starting location:
Enter main in the entry buffer, and cho&ecution- Run - from().

Or, on the command line, enter:

run from main

To run programs from the current program counter value:

ChooseExecution- Run - from PC, or on the command line, enter:

run

151

Chapter 4: Using the Emulator
Using Processor Run Controls

To run programs from the transfer address

* ChooseExecution— Run — from Transfer Address.

» Using the command line, enter:

run from transfer_address

Most software development tools allow you to specify a starting or entry address
for program execution. That address is included with the absolute file’s symbolic
information and is known by the interface as the "transfer address".

Before you can run from the transfer address, it must exist in the absolute file, and
you must load symbols along with the program code from the absolute file. If the
interface does not detect a transfer address, this menu item is grayed-out and
unresponsive to mouse clicks.

To run programs from reset

* ChooseExecution— Run - from Reset

» Using the command line, enter:

run from reset

This command resets the emulation processor and begins executing your target
program at either the start address for the processor, or at the address fetched from
the reset vector for the processor. It may be necessary to supply a reset signal from
your target system as well. See your processor-specific documentation for
information about the exact mechanism involved.

152

Chapter 4: Using the Emulator
Using Processor Run Controls

To run programs until a selected address occurs

When displaying memory in mnemonic format, position the mouse pointer over the
line that you want to run until; then press and holdstiectmouse button and
chooseRun Until from the popup menu.

Place the address you want to run until in the entry buffer; then choose
Execution— Run - until() .

Using the command line, enter:

run until <address>

When you run until an address, a breakpoint is set at the address and the program is
run from the current program counter until the breakpoint is hit.

This command is useful for bypassing large areas of code. For example, you may
want to run your program through the program startup code until the "main”
function begins so that you can begin testing your code at "main"”.

When using the command line, you can combine the various types of run-from
commands with the run-until command; for example, you can run from the transfer
address until the start of a routine you wish to test.

You may need to enable breakpoints before "run until" will work. See "To enable
or disable the breakpoint feature" later in this chapter.

153

Chapter 4: Using the Emulator
Using Processor Run Controls

To break to the monitor

ChooseExecution- Break.

Using the command line, cause the emulation processor to break from execution of
your target program and start execution in the monitor by entering:

break

The emulation monitor is a program that provides various emulation functions,
including register access and target system memory manipulation. During a run that
is restricted to real-time execution, you must break execution to the monitor before
executing any emulation commands that access registers, emulation memory that is
not dual-port, or target system memory. You also can usgeéhk command to

pause your target program execution.

Execution breakpoints amdn until <address>commands can be used to break to
the monitor at selected points in your target program.

The status line changes to “Running in monitor.”

If you enter ebreak command while the processor is in a wait state (hung bus
cycle), the emulator may terminate hung target bus cycles in an attempt to
transition into the monitor. A bus cycle is considered hung when the target system
has not provided the required termination within 300 ms. The emulator never
attempts to terminate hung bus cycles in program space. The emulator will
generate a status message for each address where it forcefully terminates a bus
cycle. You can determine emulator staisglay - Status) to get information

about a hung bus cycle before initiating a break (and accept the termination side
effect) or use theesetcommand.

154

Chapter 4: Using the Emulator
Using Processor Run Controls

To step the processor

ChooseExecution- Step Sourceor Execution— Step Instruction. Select the

starting point for processor stepping from the associated submenu. If you will enter
a command that requires a starting address, enter that address in the entry buffer
before entering the command.

Using the command line, enter commands as follows:
» To step the processor one instruction from the current program counter v
enter:

step

» To step one line of high level source, enter:

step source

* To step the processor <count> number of times from the current program
counter value, enter:

step <count>

» To step the processor one instruction from an address given by <address>, type:

step from <address>

* To step the processor <count> number of times from an address given by
<address>, type:

step <count> from <address>

» To suppress display of registers for intermediate steps of a multi-step
execution, add thelently parameter after thstep <count>command.
(<count>must be greater than one.) This is only effective when stepping is
done in the same interface displaying registers.

Thestepcommand lets you single-step the processor through progranttepe.
Sourceexecutes one line in your high-level source progftep Instruction
executes one line of your assembly language program.

155

Chapter 4: Using the Emulator
Using Processor Run Controls

When displaying memory mnemonic, a highlighted bar shows the current program
counter address. After each step, the highlighted bar moves to the new PC address.
When displaying registers, the registers are updated after every step.

You can open multiple windows to show memory mnemonic and registers at the
same time. Both are updated with each step.

If you omit the<address> the current program counter value is used. You can use
transfer_addressto step from the entry point of the program.

When stepping through instructions associated with source lines, execution may
take a long time and the message "Stepping source line 1; Next PC: <address>" is
displayed on the status line. In this situation, you can abort the step command by
pressing <CTRL>c.

The emulator uses the built-in tracing capability of the MC68040 processor to

single step assembly instructions. The emulator needs the trace exception vector
(located at offset 0x24 in the vector table) to be set properly in order to single step
instructions. When a step command is given to the emulator, the emulator reads the
trace exception vector and attempts to change one or more vector table entries if the
trace exception vector is not set correctly. As long as the vector table is located in
emulation memory or target RAM, stepping should always succeed. Upon
completion of single stepping, the emulator restores modified vector table entries
and issues a status message the first time the vector table is modified.

If the trace exception vector does not contain the correct value and the vector table
is located in target ROM, the emulator will issue an error message and not perform
the single step. There are two ways to deal with this situation. Either alter the
ROM-based code so the trace vector contains the correct value, or copy/relocate the
vector table into emulation memory or target RAM.

The correct value of the trace exception vector differs, depending on whether you
are using a background or foreground monitor. The foreground monitor requires
that the trace exception vector point to the TRACE_ENTRY address in the monitor
(located at offset 0x680 from the start of the monitor). If the trace exception vector
already contains the correct value, the emulator performs the single step without
modifying the vector table. Otherwise, the emulator attempts to change the trace
a-line and f-line exception vectors to the TRACE_ENTRY address in the
foreground monitor.

The background monitor only requires that the trace exception vector be an even
value and point to readable memory. This allows the processor to complete trace
exception processing, including initial prefetches from the trace exception handler,
during transition into the background monitor. After reading the trace exception

156

Chapter 4: Using the Emulator
Using Processor Run Controls

vector, the emulator attempts to read from the address it points to. If the read
succeeds, the emulator single steps without modifying the vector table. Otherwise,
the emulator attempts to write the current value of VBR into the trace exception
vector (because the vector table is readable).

There are some limitations when single stepping. A step may fail when single
stepping an instruction that changes the address of the vector table (modifies the
VBR register). With the background monitor, instructions that can be interrupted
(ie: floating-point operations) may not complete because the emulator generates an
interrupt after a finite amount of time after the single step is initiated.

Examples To step the processor one instruction from its present location, choose
Execution- Step Instruction - from PC, or on the command line, enter:

step

To step the processor three instructions from the current program counter:

step 3

To step the processor five source-level instructions from the init_system symbol in
the demo program:

step 5 source from init_system

To step once from the program entry point, choose

Execution- Step Instruction - from Transfer Address, or on the command line,
enter:

step from transfer_address

157

Chapter 4: Using the Emulator
Using Processor Run Controls

To reset the processor

ChooseExecution- Reset

Using the command line, enter commands as follows:

* To resetthe emulation processor from the emulator, enter:

reset

» To reset the emulator from the target system, assert the RESET signal in your
target system.

When you apply power to the emulator, the initialization process leaves the
emulator in the reset state. Changing some configuration items also resets the
processor. (Refer to Chapter 8, "Configuring the Emulator”, for more information.)

Sometimes you may want to reset the emulation processor prior to a program run.
Theresetcommand allows you to do this. Or, you can reset the emulation
processor from the target system.

The MC68040 emulator will respond to a target system reset. A target system reset
does not reset the entire emulator. It resets only the emulation processor.

If the emulator is running a user program when the target system reset occurs, it
will behave as if aun from reset command were issued.

If the MC68040 emulator is in the monitor when the target reset occurs, it will
reenter the monitor when the reset is released.

The reset command holds the processor in the reset state until a break, run, or step
command. A CMB command can cause the emulator to run from reset. Also, a
request to access memory or registers may cause a break into the monitor.

158

Chapter 4: Using the Emulator
Viewing and Modifying Registers

Viewing and Modifying Registers

The emulator allows you to display registers to determine the results of program
execution. You can display a single register, or you can display groups of related
registers.

Sometimes you may want to modify a register, and then run a segment of program
code to test the results.

To display registers

ChooseDisplay - Registers— BASIC, or FPU, orMMU to display the desired
register class.

Using the command line, enter commands as follows:

» Todisplay an individual register, enter:

display registers <register_name>
where <register_name> is one of the names shown in the table on the next
page.

» To display the basic processor register set, enter:

display registers or display registers BASIC

» To display the floating-point registers, enter:

display registers FPU

The available registers and register classes are in the table on the following page.

159

Chapter 4: Using the Emulator
Viewing and Modifying Registers

Register Class

Register Names

BASIC

PC, STATUS, USP, ISP, MSP, CACR, D0..D7, AO..A7, VBR,
DFC, SFC

FPU

FPCR, FPSR, FPIAR, FPO..FP7

MMU

ITTO, DTTO, ITT1, DTT1, MMUSR, TC, URP, SRP

Examples

The processor must be running to allow register displays. If it's running in the
monitor, the emulator does the display directly. If the emulator is reset, it will try
to break to the monitor. If it's running the target system program, the emulator
forces a break to the monitor, gets the register data, and then returns to the user
program. (If you restrict the emulator to real-time runs, the display registers
command isn’t allowed while you're running your target program. Refer to
Chapter 8, "Configuring the Emulator.")

The MMU register class of the MC68ECO040 is different from the MMU register
class of the MC68040 and MC68LC040. The MC68ECO040 uses registers
DACRO/IACRO and DACR1/IACR1, which are nearly identical to DTTO/ITTO and
DTTL/ITT1. These MC68ECO040 registers are displayed in the DTTO/ITTO,
DTTL/ITT1 registers, respectively.

The TTRs are still usable when the MMU is disabled and correspond with ACRs.

Display the processor’s AO register:

display registers AO

160

Chapter 4: Using the Emulator
Viewing and Modifying Registers

To modify registers

ChooseModify - Register.., and in the dialog box, type in the register name and
new value.

Using the command line, modify a register to a new value by typing:

modify register <reghame> to <value>

Where <regname> is the name of a processor register, and <value> is an exp
matching the data type of the register (byte or word).

You can enter values into the three FPU control registers using numbers in the
following bases: hexadecimal, decimal, octal, and binary. (You can’t use symbols
for the floating-point registers.)

You can enter values into the eight floating-point registers using either
floating-point or hexadecimal notation. Special values, such as denormals, infinity,
andNaN (Not a Number) can be entered by using hexadecimal notation. The
following are examples of acceptable entries for the floating-point registers:

+12.34e+56

-1.E23

.1e-23

1.2

7

7654321
0000.000001
7{ffO00O0fffffffffffffffH

Modifying a register’s contents can help you test the effects of different program
values without the trouble of rebuilding your program code. For example, you
might stop the processor at a certain point (use a software breakpoint), and then
modify a register and run from that point to test the result.

The register is displayed after modification to confirm the change.

The processor must be running to allow modifying registers. See "To display
registers" above for more information.

161

Chapter 4: Using the

Emulator

Viewing and Modifying Registers

Examples To modify a register, choos&odify — Register.., and fill in the dialog box.

Place the mouse pointer.n Click Recall to select

the text entry area and type Modify Register / register names and

in the name of the register Name | Fe [Recan values from predefined

and the new value. or previously specified
Value IRecaII .

Click this pushbutton entries.

to
Value Type | Hex =
read the present value of\ b

the selected register.

Click this pushbutton
and select the desired
type from the submenu.

[} Read Current Register Value

| Apply | Cancel

Click OK to modify Click Apply to modify Click this pushbutton to
the register to the newthe register to the value cancel the modification and
value and close the specified and leave the close the dialog box.

dialog box. dialog box open.

To use the command line to modify the PC register to an address:

modify register PC to init_system

To use the command line to modify the D3 register to O:

modify register D3 to 0

162

Chapter 4: Using the Emulator
Using Execution Breakpoints

Using Execution Breakpoints

Breakpoints allow you to stop target program execution at a particular address and
transfer control to the emulation monitor. Suppose your system crashes when it
executes in a certain area of your program. You can set a breakpoint in your
program at a location just before the crash occurs. When the processor executes the
breakpoint, the emulator will force a break to the monitor. You can display registers
or memory to understand the state of the system before the crash occurs. Th
can step through the program instructions and examine changes in the syste
registers that lead up to the system crash.

Execution breakpoints are implemented using the BKPT instruction of the
MC68040. You can enable, disable, set, or clear execution breakpoints.

Set execution breakpoints at the first word of program instructions. Otherwise,
your BKPT may be interpreted as data and no breakpoint cycle will occur. When
the BKPT instruction is executed, target program execution stops immediately
(unlike using the analyzer to cause a break into the monitor, which may allow
several additional bus cycles to execute before the break finally occurs).

Setting execution breakpoints in RAM

When you set an execution breakpoint in RAM, the emulator will place a
breakpoint instruction (BKPT) at the address you specified, and then read that
address to ensure that the BKPT instruction is there. The program instruction that
was replaced by BKPT is saved by the emulator.

When the breakpoint instruction is executed, the BKPT acknowledge cycle is
detected by the emulator, and the emulator causes a break to the monitor. At this
point, the emulator replaces the BKPT instruction with the original instruction it
saved. Italso replaces the BKPT instruction with the original instruction whenever
you disable or remove the breakpoint.

The emulator allows an unlimited number of breakpoints to be set in RAM.

163

Chapter 4: Using the Emulator
Using Execution Breakpoints

Setting execution breakpoints in ROM

If you try to set an execution breakpoint at a location in ROM, the emulator will
attempt to set the breakpoint as it does in RAM, but it will fail because the
instruction in ROM will not change. Then the emulator will set up a hardware
resource to "jam" the BKPT instruction onto the data bus when the processor
attempts to fetch the normal instruction from the breakpoint address.

There are only enough resources in hardware to specify eight ROM breakpoints at
one time.

To determine if an active breakpoint uses one of the eight hardware resources,
display the address in memory. Breakpoints implemented in software will show a
BKPT instruction at the breakpoint address. Breakpoints implemented using one of
the eight hardware resources will show the original instruction at the breakpoint
address.

Execution breakpoints in ROM when the MMU
manages memory

If the MMU is enabled when setting an execution breakpoint in ROM, the emulator
translates the logical breakpoint address and uses the physical address to set up the
emulation hardware resource.

In the unlikely event that multiple logical addresses translate to the same physical
address in ROM, or that ROM address translations change while the breakpoint is
set, it is possible for the breakpoint to be jammed onto the data bus for the wrong
logical address.

164

Chapter 4: Using the Emulator
Using Execution Breakpoints

Using temporary and permanent breakpoints

When you set a temporary execution breakpoint, the emulator creates the
breakpoint as described in the preceding paragraphs. When the breakpoint
instruction is executed, the emulator breaks to the monitor and removes the
breakpoint. Now you can execute that portion of program code as often as you like
and the breakpoint will not occur again, unless you enable it again.

When you set a permanent breakpoint, the emulator will process it the same
temporary breakpoint, but when the breakpoint instruction is executed, the ori
instruction will only replace the breakpoint instruction during its next execution
This allows you to step through the original instruction one time. After your first
step, the BKPT instruction will replace the original instruction again so that the
breakpoint will occur the next time the breakpoint address is hit.

Permanent breakpoints remain in effect until you explicitly disable or remove them.

Permanent breakpoints are available when using version A.04.00 or greater of the
emulation system firmware.

165

Chapter 4: Using the Emulator
Using Execution Breakpoints

To enable execution breakpoints

» ChooseBreakpoints - Enable.

* Inside the breakpoints list display, press and holg¢lextmouse button and then
chooseEnable/Disable Software Breakpointgrom the popup menu.

» Using the command line, enable breakpoints with:

modify software_breakpoints enable

You must enable breakpoints before you can set, inactivate, or clear any
breakpoints.

Once you have enabled breakpoints, you can enter new ones into the breakpoint
table. Note that if you enable breakpoints, add several, and then disable them, they
all become inactive. If you reenable the breakpoints feature, you must choose
Breakpoints - Set All, or on the command-line, enterodify

software_breakpoints seif you want to set all the existing breakpoint entries.

To disable an execution breakpoint

» ChooseBreakpoints » Enable again. Thé3reakpoints— Enable selection is a
switch.

* Inside the breakpoints list display, press and hold¢lexrtmouse button and then
chooseEnable/Disable Software Breakpointgrom the popup menu.

» Using the command line, disable breakpoints with:

modify software_breakpoints disable

166

Chapter 4: Using the Emulator
Using Execution Breakpoints

Sometimes you will want to temporarily disable the execution breakpoints feature
without removing the existing breakpoints. Use one of the above commands to do
this.

When you disable breakpoints, the emulator replaces the BKPT instructions at all
breakpoint locations with the original instructions. It marks the breakpoint table
entries as “inactive.” The processor won't break to monitor when the instructions at
inactive locations are executed.

If you later enable breakpoints, the ones in the table are still inactive. To use t
you must set them by choosiBgeakpoints - Set All, or on the command-line,
entering thanodify software_breakpoints secommand.

To set a permanent breakpoint

When displaying memory in mnemonic format, position the mouse pointer over the
program line where you wish to set the breakpoint and clickeleetmouse

button. Or, press and hold thelectmouse button and chooSet/Clear Software
Breakpoint from the popup menu.

Place an absolute or symbolic address in the entry buffer; then, choose
Breakpoints - Permanent()

Using the command line, enter the command:

modify software_breakpoints set <address> permanent

The breakpoints feature must be enabled before individual breakpoints can be set.

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction mnemonic at
the breakpoint address will show the breakpoint instruction.

167

Chapter 4: Using the Emulator
Using Execution Breakpoints

To set a temporary breakpoint

» Type in the absolute or symbolic address of the breakpoint you want to set in the
entry buffer. Then choo®reakpoints - Temporary(), (or choose

Breakpoints - Set()if your version of HP 64700 system firmware is less than
A.04.00).

» ChooseBreakpoints - Set All to set all existing breakpoints in the breakpoint table.

* Inside the breakpoints list display, press and holdélexrtmouse button and then
chooseSet All Breakpoints from the popup menu.

» Using the command line, enter comands as follows:

» To set a breakpoint at a location given by <address>, enter:

modify software_breakpoints set <address>

» To set all existing breakpoints in the breakpoint table, enter:

modify software_breakpoints set

To add a new breakpoint, you can chd8seakpoints » Temporary() with the

name of the new breakpoint in the entry buffer, or usentify
software_breakpoints secommand and specify the address for the breakpoint.
You can also use this method to reenable an existing breakpoint at that address.

If you chooseBreakpoints— Set All, or use thenodify software_breakpoints set
command without an address parameter, all existing breakpoints in the breakpoints
table will be enabled. The breakpoints feature must be enabled before individual
breakpoints can be set.

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction mnemonic at
the breakpoint address will show the breakpoint instruction.

168

Chapter 4: Using the Emulator
Using Execution Breakpoints

Examples Set a new breakpoint at get_targets:

modify software_breakpoints set update_sys.get_targets

Reenable all existing breakpoints:

modify software_breakpoints set

To set a ROM breakpoint in RAM

* Type in the name of the breakpoint you want to set in the entry buffer. Then
chooseBreakpoints - Force HW - Permanent()or Temporary().

» Using the command line, enter:

modify software breakpoints set <ADDRESS> permanent (or
temporary) force_hw

There may be times when you want to have the emulator use one of its eight
hardware resources to ensure an emulation break at a RAM address. For example,
you may know that the program in ROM will overwrite the RAM address before

the breakpoint is executed. Normally, this will eliminate the breakpoint instruction.
The above commands ensure that the breakpoint will be executed at the specified
address, regardless of how the software at that address may change during
execution.

169

Chapter 4: Using the Emulator
Using Execution Breakpoints

To clear an execution breakpoint

Type in the name of the breakpoint you want to clear in the entry buffer. Then
chooseBreakpoints - Clear ().

ChooseBreakpoints - Clear All to clear all existing breakpoints in the breakpoint
table.

Inside the breakpoints list display, press and holé¢lextmouse button and then
chooseClear (delete) Breakpointfrom the popup menu to clear the selected
breakpoint.

Using the command line, enter comands as follows:

» Toremove an existing breakpoint at a location given by <addrester:

modify software_breakpoints clear <address>

» Toremove all existing breakpoints, enter:
modify software_breakpoints clear
When you're finished using a particular breakpoint, you should clear the breakpoint

table entry. The original instruction is restored to memory, and the breakpoint table
entry is removed.

170

Examples

Bring up the menu
and choose this
item to clear the
highlighted
breakpoint.

Chapter 4: Using the Emulator
Using Execution Breakpoints

To clear a breakpoint using the breakpoints display popup menu:

= Hewlett Packard Emulator/Analyzer: em68040 (m68040) E a
File Display Modify Execution Breakpoints Trace Setiings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source

| < Yourkﬁe{: | Make |Disp Sre Prev |Run Xfertil() | Break | Step Asm

Software breakpoin;é\\éjnabled
addre lab

tatu

HBE 18R
ARa 18ABE

uprog

demotmadule) . "demo. c"
&), "demo.c":
demo. outchar

line 456 permanent
line 453 permanent

cantshla o

Shant

t ine

Choose Action for Highlig

Set/lnactivate Breakpoint

Clear (delete) Breakpoint

Choose Action for All Breakpoints

Enable/Disable Software Breakpoints
Set All Breakpoints
Clear (delete) All Breakpoints

STATUS:

H68040--Running user program

Emulation trace complete

To clear an existing breakpoint at get_targets:

modify software_breakpoints clear

To clear all existing breakpoints:

modify software_breakpoints clear

update_sys.get_targets

171

Chapter 4: Using the Emulator
Using Execution Breakpoints

To clear all execution breakpoints

When displaying breakpoints, position the mouse pointer within the breakpoints
display screen, press and hold skéectmouse button, and chooSéear (delete)
All Breakpoints from the popup menu.

ChooseBreakpoints— Clear All.

Using the command line, enter:

modify software_breakpoints clear

To display the status of all execution breakpoints

ChooseBreakpoints - Display or Display - Breakpoints.

Using the command line, display the status of all breakpoints by selecting:

display software_breakpoints

The breakpoints table shows you whether the breakpoints feature is currently
enabled or disabled. Also, the status is shown for each breakpoint in memory. If
“Pending,” the BKPT instruction is in memory at that location and the breakpoint is
set. If “Inactive,” the memory location contains the original instruction, and the
breakpoint will not be executed.

Active breakpoints are indicated in the memory mnemonic display by asterisks
beside the lines with breakpoints set.

The status of a breakpoint can be:

temporary Which means the temporary breakpoint has been set but
not encountered during program execution. These

172

Chapter 4: Using the Emulator
Using Execution Breakpoints

breakpoints are removed from the breakpoint table when
the breakpoint is encountered.

pending Which means the temporary breakpoint has been set but
not encountered during program execution. These
breakpoints are inactivated when the breakpoint is

encountered.
permanent Which means the permanent breakpoint is active.
inactivated Which means the breakpoint has been inactivated.

Temporary breakpoints are inactivated when they are
encountered during program execution. Both temporary
and permanent breakpoints may be inactivated using the
breakpoints display popup menu.

In the breakpoints display, a popup menu is available, obtained by pressing the
selectmouse button. You can set, inactivate, or clear breakpoints as well as enable
or disable the breakpoints feature from the popup menu.

173

Chapter 4: Using the Emulator
Changing the Interface Settings

Changing the Interface Settings

This section shows you how to:
» Set the source/symbol modes.

* Set the display modes.

To set the source/symbol modes

To display assembly language mnemonics with absolute addresses, choose
Settings— Source/Symbol Modes. Absolute.

To display assembly language mnemonics with absolute addresses replaced by
global and local syumbols where possible, choose

Settings— Source/Symbol Modes. Symbols

To display assembly language mnemonics intermixed with high-level source lines,
chooseSettings— Source/Symbol Modes. Source Mixed

To display only high-level source lines, choose

Settings— Source/Symbol Modes. Source Only.

Using the command line, enter commands as follows:

* To display mixed source and assembly language, enter:

set source on

» To display only source language statements, enter

set source only

» To display only assembly language, enter:

set source off

174

Chapter 4: Using the Emulator
Changing the Interface Settings

The source/symbol modes affect mnemonic memory displays and trace displays.
Each display mode cascade menu choice is a toggle. Choosing one of these items
causes it to be the only one active and toggles all others off. Provided that symbols
were loaded, the interface defaults to:

» Source only for mnemonic memory displays.

» Source mixed for trace listing displays.

To set the display modes

* ChooseSettings— Display Modes..to open the display modes dialog box.

Press and hold treelectmouse button and drag\ QE Ermulatorf Analvear Display Mades

the mouse to select "Source Only", "Source :
. " " . -~ efSymbols View
Mixed", or "Off".
L. Source-in MMemo | Source Only =
Clicking toggles whether symbolic information.is
displayed. Source in Trace |Source Mixed =

Move the mouse pointer to the text entry area% Tab Expansion (2 to 15 Spaces)

type in the desired field widths. il Symbolic Addresses
Label Field sets the width of the Label:/Address

ol ~Field Widths
Mnemonic Field sets the width of the Opcode or Label Field 1
Status field. Mnemonic Field 5

Symbols in Mnemonic Field sets the widths of Svmbols in Mnemonic Field
symbols shown in the Opcode or Status field. Y -

Source Lines field sets the width of lines that Source Lines 148
show source-file lines. Source: (60 to 255) All Others: (1 to 80)
Clicking toggles auto update settings: ~Aute Update
Clicking this checkbox changes all | 3 Memory Displays (Except Mnemonic)
display mode settings to their defaults: ii] Memory Mnemonic Auto PC

L il Trace Displa
Clicking: play

OK saves changes and closes dialc_>g box. [Default All Settings

Apply saves changes and leaves dialog box

open. 1 QK Apply Cancel

Cancel closes dialog box and ignores changes. ;

175

Chapter 4: Using the Emulator
Changing the Interface Settings

Source/Symbols View

Source in Memoryspecifies whether source lines are included, mixed with
assembly code, or excluded from mnemonic memory displays.

Source in Tracespecifies whether source lines are included, mixed with stored
states, or excluded from trace displays.

Symbolic Addressespecifies whether symbols are included in displays.

Tab Expansionsets the number of spaces displayed for tabs in source lines.

Field Widths

Label Field sets the width (in characters) of the address field in the trace list or
label (symbols) field in any of the other displays.

Mnemonic Field sets the width (in characters) of the mnemonic field in memory
mnemonic, trace list, and register step mnemonic displays. It also changes the
width of the status field in the trace list.

Symbols in Mnemonic Fieldsets the maximum width of symbols in the mnemonic
field of the trace list, memory mnemonic, and register step mnemonic displays.

Source Linessets the width (in characters) of the source lines in the memory
mnemonic display.

Auto Update

Memory Displays (Except Mnemonic)ltoggles whether memory displays are
automatically updated after commands that change memory contents or whether
you must enter memory display commands to update the display. You may wish to
turn off memory display updates, for example, when displaying memory mapped
I/O.

Memory Mnemonic Auto PCtoggles whether the mnemonic memory display is
automatically updated to follow the PC or remain unchanged.

Trace Displaystoggles whether trace displays are automatically updated when

trace measurements complete or whether you must enter trace display commands to
update the display. You may wish to turn off trace display updates in one
emulator/analyzer window in order to compare the display with a new trace display
in another emulator/analyzer window.

176

CAUTION

Chapter 4: Using the Emulator
Using the Emulator In-Circuit

Using the Emulator In-Circuit

As your target system design progresses, you will want to test features of your
program that will interact with your target system hardware instead of emulation
memory hardware.

You must connect the emulator probe to your target system to do in-circuit
emulation. Then you can make analyzer measurements and have the memory
display and other capabilities of the emulator to debug target system problem

When you use the emulator in-circuit, you need to carefully consider the

relationship of the emulator to your target system design. Refer to Chapter 18,
"Connecting the Emulator to a Target System", later in this manual. It discusses
things you need to know to successfully connect the emulator to a target system and
overcome problems you may encounter. Refer to Chapter 8, "Configuring the
Emulator", for details of the emulation configuration.

CAUTION

CAUTION

CAUTION

To install the emulation probe

Possible damage to the emulator probe. The emulation probe contains devices that
are susceptible to damage by static discharge. Take precautions before handling the
probe to avoid damaging the internal components of the probe with static

electricity.

Possible damage to the emulator. Make sure both your target system and emulator
power are OFF before installing the emulator probe into the target system. The
emulator may be damaged if the power is on when installing the probe.

The emulator probe will be damaged if incorrectly installed. Make sure to align pin
Al of the probe connector with pin Al of the socket.

177

Chapter 4: Using the Emulator
Using the Emulator In-Circuit

FLYING LEAD

68040
EMULATOR
PROBE

TARGET SYSTEM

PGA SOCKET

PIN A1

64783E0

1 Remove the processor from your target system socket. Note the location of pin Al
on the processor and on the target system socket. Store the processor in a protected
environment (such as antistatic foam).

2 Insert the emulator probe into your target system socket. Make sure to align pin Al
of the emulator probe and the target system socket.

178

Chapter 4: Using the Emulator
Using the Emulator In-Circuit

To power-on the emulator and your target system

CAUTION You must turn on power to the emulator before you turn on power to your target
system. Otherwise, the emulator may be damaged. Turn off power to the target
system before turning off power to the emulator.

1 Turn on power to the emulator. .

2 Turn on power to your target system.

3 Before you turn off power to the emulator, be sure to turn off power to your target
system.

To probe target system sockets

» Aflexible adapter is available from Hewlett-Packard for special target system
probing needs. ltis listed in the following table:

Probe type HP part number
68040 PGA to PGA flexible adapter E3429A

179

Chapter 4: Using the Emulator
Using The Emulator With MMU Enabled

Using The Emulator With MMU Enabled

When you enable memory management in the MC68040 emulator, many
capabilities and features become available that are not otherwise offered. Also,
some of the features of the emulator behave differently. The remaining pages in
this chapter will help you when you are using the MC68040 emulator with the
MMU enabled. Chapter 10, "Using Memory Management", provides detailed
information to help you use the MC68040 MMU most efficiently.

Disable the MMU unless you are using it for address translation. You will still be
able to use the transparent translation registers for such tasks as defining cache
modes.

To enable the processor memory management
unit

In order to use the MC68040 MMU to provide logical-to-physical address
translation, the MMU must be enabled within the emulator configuration and the
target system must deassertMigIS signal (MMU Disable). If the MMU is not
enabled within the emulator configuration, the emulator assem4Die signal

and ignores th®IDIS signal from the target system, thus preventing the target
system from using the MMU. If you are using the background monitor, you will
need to select a foreground monitor before the MMU can be enabled within the
emulator configuration. Refer to the chapter titled "Configuring the Emulator" for
details of setting up the emulator configuration.

Once theMDIS signal is driven properly, the target system software is responsible
for setting up address translation tables in memory and initializing the processor’s
MMU registers at run time. This task is typically managed by the target system’s
boot code or operating system. Refer to yWatorola 68040 User's Manudbr
information on how to use the MMU.

If the emulator is being used in an MC68ECO040 target system, or if the MMU is
not needed for translating page addresses from address translation tables in
memory, then you should disable the MMU within the emulator configuration.
This causes the emulator to assertMId S signal. However, the assertion of this

180

Chapter 4: Using the Emulator
Using The Emulator With MMU Enabled

signal does not affect the operation of the transparent translation or access control
registers.

Examples

To view the present logical-to-physical mappings

range for your mappings display, cho@splay—- MMU Translations... Then in
the dialog box, click oMMU Mappings, and enter the desired logical address
range.

ChooseDisplay - MMU Translations. If you want to specify a logical address .

Using the command line, enter the command:

display mmu_translations

The display will show the logical-to-physical address translations defined by the
current MMU registers and translation tables.

To see the logical-to-physical mappings using the default range of logical addresses
(initially O through Offffffffh), chooseDisplay -~ MMU Translations, or on the
command line, enter:

display mmu_translations

To see all of the logical-to-physical mappings for logical addresses from 0 through
Offffh (when only the URP root pointer is enabled), chdosplay - MMU
Translations.... Then in the dialog box, click ddMU Mappings, and enter Start
Address 0 and End Address 0ffffh, and click ok.

181

Chapter 4: Using the Emulator
Using The Emulator With MMU Enabled

~Type of Query
& MRMU Mappings
<> MU Tables

~Logical Address

Start Address Bh IRecaII
End Address [BFfFFFFFFh [recan
Function Code

Tabis Lavsl EotH] =

= hARAU Register VYalues (in hex)

IZ Override Processor Register Values

T Value {16 bi) I fFoogl
FEP Walue {32 DY Fipoail
PEELEY Wl {BP hip} Fioaait
FYTO Walue {87 b I floogl
PR Walue {82 bl fipogil
EXYED Walue {3 LY Frooait
IRV Valun (T3 bR Pgaoal

o]] [eme

Using the command line, enter:

display mmu_translations 0 thru Offffh

To see the logical-to-physical mappings for the pages that contain logical address
40f0h, enter the command:

display mmu_translations 40f0h

To see only the mappings in supervisor space in the address range from O through
Offffh, enter the command:

display mmu_translations fcode super 0 thru Offffh

To see only the mappings in user space in the address range from 0 through Offfth,
enter the command:

display mmu_translations fcode user 0 thru Offffh

182

Chapter 4: Using the Emulator
Using The Emulator With MMU Enabled

To show all of the valid mappings using the register overload capability of the
command, enter a command to disable the MMU, and then enable it in your
command, such as:

modify register MMU TC to 0

display mmu_translations use_value TC 8000h

To see translation details for a single logical .
address

* ChooseDisplay - MMU Translations... Then in the dialog box, click ddMU
Tables and enter the Logical Address whose table details you want to see in the
Address box, and click ok.

» Using the command line, enter the command:

display mmu_translations tables <address>

Examples To see how logical address 40fOh is mapped through the translation tables to its
corresponding physical address, chdosplay - MMU Translations... Then in
the dialog box, click oMMU Tables, enter 40f0Oh in the Address box, and click ok.

183

Chapter 4: Using the Emulator
Using The Emulator With MMU Enabled

~Type of Query
& MRMU Mappings
<> MU Tables

~Logical Address

Start Address [48f8h IRecaII
End Address [BFfFFFFFFh [recan
Function Code

Tabis Lavsl EotH] [==

= hARAU Register VYalues (in hex)

IZ Override Processor Register Values

T Value {16 bi) I fFoogl
FEP Walue {32 DY Fipoail
PEELEY Wl {BP hip} Fioaait
FYTO Walue {87 b I floogl
PR Walue {82 bl fipogil
EXYED Walue {3 LY Frooait
IRV Valun (T3 bR Pgaoal
| [ox [Footy

Using the command line, enter:

display mmu_translations tables 40f0h

To see how logical address 1000h in user space is mapped through the translation
tables to its corresponding physical address, chozgptay - MMU

Translations... Then in the dialog box, click ddMU Tables, enter 1000h in the
Address box, click on the pushbutton beside Function Code andussiefibm

the submenu, and click ok.

Using the command line, enter:

display mmu_translations tables fcode user 1000h

184

Chapter 4: Using the Emulator
Using The Emulator With MMU Enabled

To see details of a translation table used to map
a selected logical address

* ChooseDisplay - MMU Translations... Then in the dialog box, click ddMU
Tables and enter the Logical Address whose translation table you want to see in
the Address box. Finally, besidiable Level, click on the pushbutton to identify
the table you want to see, and then click ok.

» Using the command line, enter the command: .

display mmu_translations tables <address> level
<table level>

Where <table_level> is the table level you want to see (e&hByorC), and
<address> is the logical address that uses the table at the point to be shown.

Note that table levelll is also offered. If you seleatl, you will see the translation
details for your logical address through the tables. This is the same as if you had
not selected thievel <table_level> option.

Table A may be accessed at several different base addresses, depending on which
logical address is to be translated. This command ensures you see Table A where
you want to see it.

Examples To see the details of Table A used to map logical address 1250h, choose
Display—- MMU Translations... Then in the dialog box, click ddMU Tables,
and enter 1250h in the Address box. Finally, beBatde Level click on the
pushbutton to select A, and then click ok.

185

Chapter 4: Using the Emulator
Using The Emulator With MMU Enabled

~Type of Query
<> MMU Mappings
& MMMU Tables

~Logical Address

Address ; 12580 IRecaII

End Addvess | recat

Function Code
Table Level A(Root) =

= hARAU Register VYalues (in hex)

IZ Override Processor Register Values

T Value {16 bi) I fFoogl
FEP Walue {32 DY Fipoail
PEELEY Wl {BP hip} Fioaait
FYTO Walue {87 b I floogl
PR Walue {82 bl fipogil
EXYED Walue {3 LY Frooait
IRV Valun (T3 bR Pgaoal

| [ox (oo

Using the command line, enter:

display mmu_translations tables 1250h level A

186

Chapter 4: Using the Emulator
Using an FPU with an MC68EC040 or MC68LCO040 Target System

Using an FPU with an MC68EC040 or MC68LC040
Target System

The MC68EC040 and MC68LC040 processors do not have an on-chip FPU. When
floating-point functionality is required, all floating-point operations must be
implemented in software using integer instructions. Language systems usually
provide a floating-point software library for this purpose.

The HP 64783A/B emulator uses an MC68040 processor with an on-chip FP
Because there is no way to disable the FPU, floating-point operations may ex
differently, depending on the language system used. If your language system
generates calls directly to the floating-point software library and does not emit any
opcodes for floating-point instructions, then there should be no difference in
floating-point operations whether you are using the emulator or the
MC68EC040/LC040 processor plugged into your target system.

If your language system emits opcodes for floating-point instructions and relies on
an F-Line exception handler to call the floating-point software library when the
instruction is executed, then your target system will operate differently when the
emulator is plugged in. When using the emulator, most floating-point instructions
will be executed on the FPU in hardware instead of generating an F-Line exception
and allowing the floating-point operations to be implemented in software. For this
scenario, the following three points should be taken into consideration:

» Floating-point software libraries cannot be tested while the emulator is plugged
in. Floating-point instructions are always executed on-chip, not by your
floating-point libraries. This will definitely cause a problem for anyone trying
to develop floating-point software libraries.

e Target programs containing FPU instructions will run faster when the emulator
is plugged into the target system because they are executed in the hardware of
the MC68040 instead of by the floating-point software libraries, as they will be
when the MC68EC040/LC040 processor is plugged in. This will cause
performance measurements to show much better results when using the
emulator than you will actually obtain when you use the MC68EC040/LC040
processor.

» If you are unaware that your language tools use floating-point instructions (and
you do not actively provide floating-point libraries and F-Line exception
handling), you may find that your target system does not work when you
unplug the emulator and plug in your MC68EC040/LC040 target processor.

187

Chapter 4: Using the Emulator
Using M68040 support for the M68360 Companion Mode

Using M68040 support for the M68360
Companion Mode

Many designers need development tools for Motorola’s M68360 processor.
However, designers of higher performance systems will need to achieve a greater
level of throughput than the 5 MIPS CPU32+ processor on board the M68360 can
provide. These designers will consider using the M68360 Companion Mode
together with a 22 MIPS M68040 "master" CPU.

This section shows you how to:

» setup a custom arrangement of action keys on the Graphical User Interface to
operate the M68040/M68360 in the Companion Mode.

» use the custom action keys to develop products that use the M68040/M68360
Companion Mode. Through the action keys, you can perform such actions as
viewing registers, configuring registers, developing boot code, and running
programs.

188

Chapter 4: Using the Emulator
Using M68040 support for the M68360 Companion Mode

To set up custom M68040 Action Keys to support
the M68360 Companion Mode

The following paragraphs show you how to set up a custom ararngement of
M68040 Action Keys in the Graphical User Interface to support the M68360
Companion Mode. Refer to Chapter 13 "Setting X Resources", and to the
discussion in online fil8HP64000/lib/X11/app-defaults/HP64_Softkefor

details of how action keys are configured, formatted, and used within the Grap
User Interface.

1 Find the Motorola 68040 family-specific Application Resources in your
HP64_Softkeyfile in your $HP64000/lib/X11/app-defaultdirectory. This
portion of the file sets up the standard arrangement of action keys in the 68040
Graphical User Interface. It will be similar to the following example.

! I Action
! Action Key Definitions (See also XcHotkey discussion above)
*m68040*actionKeys.packing: PACK_COLUMN
*m68040*actionKeys.numColumns: 2
*m68040*actionKeysSub.keyDefs: \

" Demo " "ltelldemoHP 64783DEMO! in_browser" \
"Disp Src ()" "display memory () mnemonic" \

"Trace ()" "trace about (); display trace" \

"Run" "™\

"Step Source" "step source" \

"Your Key " "ltellkeysHP! in_browser" \

"Make" "Imake! in_browser" \

"Disp Src Prev" "display memory mnemonic previous_display" \
"Run Xfer til ()" "run from transfer_address until ()" \

"Break" "break" \

"Step Asm" "step”

One way to access th#P64_Softkeyfile is to choose thEile - Edit - File
pulldown in the Graphical User Interface, and in the file selection dialog box,
select$HP64000/lib/X11/app-defaults/HP64_Softkey

2 Copy the3HP64000/lib/X11/app-defaults/HP64_Softkefile to a temporary
filename within your home directory. Name it "MyActKeys.tmp". Then edit
the temporary file to delete all lines except those that define the present setup
of action keys in your interface. See above.

189

Chapter 4: Using the Emulator

Using M68040 support for the M68360 Companion Mode

3 Now change directories ®HP64000/inst/emul/64783A/compmodand

view the fileACTION040360 on your screen.

$ cat ACTION040360
emul.m68040*browseSub.enableEnhancements: True
emul.m68040*browse_popup.title:Browser Window

emul.m68040*actionKeys.packing: PACK_COLUMN
emul.m68040*actionKeys.numColumns: 3
emul.m68040*actionKeysSub.keyDefs: \

"COMPANION"
"MODE KEYS"

"Gen Boot Code"

"Help Reg ()"
"Help 360"

"help68360register2" \
"help68360register2" \
"boot68360sim" \

"help68360registerl ()" \
"help68360register” \

"Pick Util" "utils68360chip” \
"Pick Reg 360" "display68360reglist" \
"Pick Chip 360" "select68360chip” \

"Reg 360 All" "display68360registers" \
"Mod 360 ()" "modify68360register ()" \
"Reg 360 ()" "display68360register ()" \
"Run Util ()" "0\

"Disp Mod 1/0" "display68360aftmod" \
"Set Chip ()" "set68360chip ()" \

"PRBD 360 All" "display68360prbds" \
"Mod Memory" "modify68360memory" \
"PRBD 360 ()" "display68360prbd ()"

The file ACTION040360 contains the special action keys that support the M68360
Companion Mode in the M68040 emulator. Itis set up to arrange the action keys
in three rows across the M68040 interface (note .numColumns: 3 in the file
listing).

190

Chapter 4: Using the Emulator
Using M68040 support for the M68360 Companion Mode

4 Add the Companion Mode action keys from file
$HP64000/inst/emul/64783A/compmode/ACTION040360 the normal
action keys contained in your file "MyActKeys.tmp". Save this file.

5 Edit your "MyActKeys.tmp" file to add a blank action key with a
nondestructive action string before the first Companion Mode action key
("COMPANION") in order to obtain a balanced arrangement of action keys
across the interface, and to change the number of action key rows to five
(indicated by .numColumns: 5). When the edit is complete, your file should
appear as follows:

Note All three of the action strings that call the "help68360register2" command
are visual placeholders. You can customize this file by replacing these two
action strings with any other action strings desired.

! Action Key Definitions (See also XcHotkey discussion above)
emul.m68040*browseSub.enableEnhancements: True
emul.m68040*browse_popup.title:Browser Window
emul.m68040*actionKeys.packing: PACK_COLUMN
emul.m68040*actionKeys.numColumns: 5
emul.m68040*actionKeysSub.keyDefs: \

" Demo " "ltelldemoHP 64783DEMO! in_browser" \
"Disp Src ()" "display memory () mnemonic" \

"Trace ()" "trace about (); display trace" \

"Run" “run” \

"Step Source" "step source" \

"Your Key " "ltellkeysHP! in_browser" \

"Make" "Imake! in_browser" \

"Disp Src Prev" "display memory mnemonic previous_display" \
"Run Xfer til ()" "run from transfer_address until ()" \

"Break" "break" \

"Step Asm" "step” \
" " "help68360register2" \
"COMPANION" "help68360register2" \
"MODE KEYS" "help68360register2" \

"Gen Boot Code" "boot68360sim" \
"Help Reg ()" "help68360registerl ()" \
"Help 360" "help68360register” \
"Pick Util" "utils68360chip” \

"Pick Reg 360" "display68360reglist" \
"Pick Chip 360" "select68360chip" \

"Reg 360 All" "display68360registers" \
"Mod 360 ()" "modify68360register ()" \
"Reg 360 ()" "display68360register ()" \
"Run Util ()" "0\

"Disp Mod 1/0" "display68360aftmod" \
"Set Chip ()" "set68360chip ()" \

"PRBD 360 All" "display68360prbds™ \
"Mod Memory" "modify68360memory" \
"PRBD 360 ()" "display68360prbd ()"

191

Chapter 4: Using the Emulator
Using M68040 support for the M68360 Companion Mode

6 Add your special arrangement of action keys to your .Xdefaults file by typing

the command:

cat MyActKeys.tmp >> $HOME/.Xdefaults

Make sure you export your ".Xdefaults" file so that it will be read when the

M68040 interface starts. Use the following command:

export XENVIRONMENT=$HOME/.Xdefaults

Start your M68040 Graphical User Interface and see your special arrangement
of action keys using your normaiul700 ...command. Your interface should
have five rows of action keys, the last three rows being the M68040 Action

Keys that support the M68360 Companion Mode. See below.

3

¥
—'E Hewlett Packard Emulator/Analyzer: emG8040 (mE8040) l a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre() | Trace() | Run | Step Source
| < Your Key > | Make | Disp Sre¢ Prev | Run Xfer til () | Break | Step Asm
| | COMPANION | MODE KEYS :[Gen Boot Codei| Help Reg() i| Help 360
[PickuUtil || Pick Reg360 :| Pick Chip360 ;| Reg380All || Mod3s0() i| Reg360()
[Runutil() || DispMod1/0 || SetChip() | PRBD 360 All || Mod Memory || PRBD 360 ()
():imain IRecall
Memory tmnemonic :file = main{modulel. "main.c":
addre labe] data A
31 extern void update_system(); f* update system wariables */
9z extern void interrupt_sim{}; /* simulate an interrupt */
33 extern wvoid do_sorti); /% sets up ascii array and calls
94
35 maini}
36 1
97 init_system();
35 proc_spec_initi);
99
188 while (true)
141 {
182 update_system{);
183 num_checks++;
184 interrupt_sim{&num_checks};
185 if lgraph?
186 graph_datall;
187 proc_specific();
7| STATUS: cws: main."main.c”: iELI |

E E

192

Chapter 4: Using the Emulator
Using M68040 support for the M68360 Companion Mode

9 Press the Action Key labeled "Help 360". A window will open, providing
general information to help you get started using the M68360 Companion
Mode through the M68040 Action Keys. See below:

= Browser Window

!Brws_act040 README040360! in_browser $HP&4cm360B10

wekrcekonkek MEFP4E/MEE368 COMPAMION MODE ACTION KEYS QUICK REFERENCE ks

ENYIR YARS
HPE4MBARZEA
HPE4MBAR3EAFL

HPE4MBAR3GA_1. .31

HPE4D15F368
ACTION KEYS
"Gen Boot Code”
"Help Reg ¢ 1"
"Help 368"
"Pick Util"
"Run Util "
"Pick Reg 3EB"
"Disp Mod 1/8"
"Pick Chip 3EB"
"Set Chip ¢ 3"
"Reg 368 ALl"
"PRBO 368 ALl"
"Mod 368 ()"
"Mod Memaory”
"Reg 368 ()7

"PRED 3E8 ¢)"

VALUE DESCRIPTION

Must be set to same walue as MEAR

Function code access string (rec: " fcode super "2
OPTIONMAL: Set these to the address of each slawve 368
Defaults to 1, display new register walue after modify
COMMAND ISSUED

Generate S5IMBE boot code to browser

Display detailed description of a S5IMBH or CPM register
Display this help information

FPick a 368 command utility script {(place name in cut buffer:
Run the command utility script named in the cut buffer
Display the list of registers (should normally be left

Toggles display after modify on and of f

Pick a particular 368 slawve chip (places name in cut buffer:
Change focus to 368 chip named in cut buffer

Display all SIMGA and CPM registers in browser window
Display all Parameter RAMs and Buffer Descriptors in browser

Modify walue of SIMBH or CPM register named in cut buffer

Modify a memory location

Display walue of the 3IMGE or CPM register named in cut
buffer to browser window

Display walue of the Parameter RAM and associsted Buffer
Oescriptors named in cut buffer to browser window

up"d

193

Chapter 4: Using the Emulator
Using M68040 support for the M68360 Companion Mode

Tasks you may wish to perform when using the
M68040/M68360 companion Mode

The following paragraphs show you how to perform typical development
operations supported in the action keys of the M68040 Graphical User Interface.
For further details, refer to the help screen available by pressing the "Help 360"
Action Key.

To obtain a record of the present contents of all SIM60 and CPM registers in
one listing, press the "Reg 360 All" Action Key.

To view the contents of a single SIM60 or CPM register, press the "Pick Reg
360" Action Key. Within the appropriate browser window, click on the name
of the register to be displayed. Then press the "Reg 360 ()" Action Key.

To modify the content of a SIM60 or CPM register, press the "Pick Reg 360"
Action Key. Within the appropriate browser window, click on the name of the
register to be modified. Then press the "Mod 360 ()" Action Key. Type the

desired value in the Define command file parameter dialog box and click OK.

To obtain a record of the present content of all parameter RAMs and Buffer
Descriptors in one browser, press the "PRBD 360 All" Action Key.

To view the contents of a single Parameter RAM and its associated Buffer
Descriptors, place the name of the desired channel in the entry buffer and press
the "PRBD 360 ()" Action Key.

To modify the contents of a Parameter RAM or Buffer Descriptor, press the
"Mod Memory" Action Key. The Define command file parameter dialog box

will appear three times. In the first appearance, enter the desired address; next,
enter size; and finally, enter value. Click OK after each entry.

To select the M68360 slave module whose registers will be viewed through the
M68040 interface, press the "Pick Chip 360" Action Key. In the appropriate
browser window, click on the name of the desired M68360 slave module, and
click Done. Then press the "Set Chip ()" Action Key.

194

Chapter 4: Using the Emulator
Using M68040 support for the M68360 Companion Mode

To assign a new base address to contain the register set of an M68360 chip,
press the "Pick Util" Action Key. In the browser window, highlight
assign68360chip, and click Done. Press the "Run Util()" Action Key. Type
the new base address in the Define command file parameter dialog box, and
click OK.

To save peripheral register settings to a file. Press the "Pick Util" Action Key.
In the browser window, highlight save68360registers and click Done. Press
the "Run Util()" Action Key. Type the desired directory/filename to contain
register values in the Define command file parameter dialog box, and clic

To restore peripheral register settings to files, Press the "Pick Util" Action
In the browser window, highlight load68360registers and click Done. Pre
the "Run Util()" Action Key. Type the name of the directory/flename that
contains the desired register values into the Define command file parameter
dialog box, and click OK.

To remove all temporary files that have been created during the development
session, press the "Pick Util" Action Key. In the browser window, highlight
clean68360util and click Done. Press the "Run Util()" Action Key.

To generate boot code for configuring the SIM60 unit, press the "Gen Boot
Code" Action Key. When the boot code browser window opens, press the
Save to File... pushbutton and enter the name of the file to contain the
generated boot code; then click OK. Assemble and link the file of generated
boot code with your code.

195

Chapter 4: Using the Emulator
Using M68040 support for the M68360 Companion Mode

For more information

General information about using the Action Key solution to the M68040/M68360
Companion Mode is available by pressing the "Help 360" Action Key.

Detailed information for configuring a particular SIM60 or CPM register can be
obtained by placing the name of the register in the entry field and pressing the
"Help Reg ()" Action Key.

Help for understanding how action keys work in the Graphical User Interface is
available in Chapter 13, "Setting X Resources", and in the online file named
$HP64000/lib/X11/app-defaults/HP64_Softkeyunder the discussion called
XcHotkey:Action Keys.

196

Using the Emulation-Bus Analyzer

How to record program execution in real-time

197

Chapter 5: Using the Emulation-Bus Analyzer
Power of the Emulation-Bus Analyzer

Power of the Emulation-Bus Analyzer

Theemulation-bus analyzes a powerful tool that allows you to view the

execution of your program in real-time. Extensive triggering and sequencing
capability ensures that the analyzer captures only the information you need so you
don't spend time searching through long trace lists to find the information that is of
interest.

The Graphical User Interface has menus that let you specify some simple analyzer
measurements like tracing after, about, or before an address. You can also specify
qualifications for which states get stored and which states can be prestored; the
analyzer can prestore up to two states before each qualified store state.

The analyzer has much more capability than is available in the menus. You can
access this capability by using the command line to make your trace specifications.
Use of the command line is also covered in this chapter.

Once a trace specification command is entered, either with the menus or the
command line, it can be recalled, edited if desired, and executed again. Also, trace
specifications and trace data can be stored to files and loaded from files.

198

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

Making Simple Trace Measurements

You can make simple records of the processor’s bus activity using just a few
analyzer commands. When you set up the analyzer to record processor bus activity,
you are preparing to makdrace measuremenburing the trace measurement, the
analyzer saves a record of the bus activity in trace memory. The display of the
trace memory content is called tinece list

The information captured at the occurrence of each clock is called a state. When a
captured state matches your specification for the trigger state, the analyzer
identifies it as the trigger state and stores it in trace memory.

The default specification for the trigger state is "any state." When you starta t
measurement using the default trace specification, the analyzer will identify th

state it captures as the trigger state and fill the remaining space in the trace m y
with the states that follow it. A trace is said to be complete when the trace memory
is filled with captured states, and the trigger state resides at its specified point in the
trace memory (the first state captured in memory, by default).

When a trace measurement is started, you can view the progress of the
measurement by displaying the trace status.

In some situations, for example, when the trigger state is never found or when the
analyzer hasn't filled its trace memory, the trace measurement does not complete.
In these situations, you can halt the trace measurement.

Once atrace is displayed, you can use the cursor keys and other keyboard keys to
position the trace list on screen. To speed up the display of traces, you can reduce
the depth of the trace list. Also, when entering trace commands, you can recall and
modify preceding trace commands to speed command entry.

199

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

Example

To start a trace measurement

Chooselrace - Everything.

Using the command line, enter:

trace

When you use thgace command without any options, the analyzer begins
recording processor bus cycles immediately, and continues until the trace buffer is
filled. In the default trace configuration, the analyzer stores all bus cycles.

If you are using the deep analyzer, the depth of the trace list buffer depends on
whether or not you installed memory modules on the analyzer card, and the
capacity of the memory modules installed. Refer to Chapter 19, "Installation and
Service", for details. If you are using the 1K analyzer, the trace list buffer is 512 or
1024 states deep (depending on whether or not you turn on the state/time count).
See "To count states or time" in this chapter.)

Start the demo program and trace from the program start:

Startemul

reset

trace

run from transfer_address

200

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

To stop a trace measurement

ChooseTrace - Stop.

Using the command line, enter:

stop_trace

You must use this command to stop a trace started wWithce - Until Stop
command (refer to "To trace activity leading up to a program halt" later in this
chapter). Several other conditions may occur that will make you want to stop
trace. The analyzer may not record any trace states because your trigger
specification isn't correct, or because you have a target system problem. At o
times, a valid trace may be capturing data slowly. You can useiherace
command to prevent the analyzer from storing additional data.

You do not have to stop a trace in order to begin viewing a partial trace because the
interface supports incremental trace uploading. After the trigger condition occurs,
the interface begins uploading and displaying trace states as they are captured.

To display the trace list
Chooselrace - Display.

ChooseDisplay - Trace.
Using the command line, enter:
display trace

When you complete a trace measurement, you will want to see the results. The
display trace command shows you the current trace list. The trace display is
updated each time you enter a neace command, until you display some other

201

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

data using theisplay command. (See treet updatecommand in “Emulator
Commands” for details.)

Whether source lines, disassembled trace states, or symbols are included in the
display depends on the modes you choose with the
Settings— Source/Symbols Modesr Settings— Display Modespulldown menu

items.
Example A simple trace list resembles:
M68040 Sat Feb 20 12:16:02 1993
Trace List Offset=0
Label: Address Data Opcode or Status
Base: hex hex mnemonic
after 00003348 51FC137C TRAPF
=0000334A MOVE.B #3$01,($001A,A1)

+001 0000334C 0001001A $0001001A sprog long read
+002 0007879F 00000001 $------ 01 sdata byte write
+003 00003350 528551FC ADDQ.L #1,D5

=00003352 TRAPF
+004 00003354 BA866DEA CMP.L D6,D5
=00003356 BLT.B $00003342

+005 0007879E 00000100 $----01-- sdata byte write
+006 00003358 51FCB254 TRAPF

=0000335A CMP.W (A4)D1
+007 0000335C 6EOE137C BGT.B $0000336C
=0000335E MOVE.B #$01,($001C,Al)

+008 00003360 0001001C $0001001C sprog long read
+009 00003364 021300FD ANDI.B #$FD,(A3)

202

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

To display the trace status

» ChooseDisplay - Status.

» Using the command line, display the trace status witdifmay statuscommand.

When you complete a trace measurement, you'll want to see the results.

The commands above show the current emulator and analyzer status. The analyzer
status shows:

» whether the trace has completed (trace memory is full)
e analyzer arm condition

» whether the trigger has been found

* number of states captured

e current sequencer state and occurrence count

Example In the following example trace status display, the screen shows that the emulation
trace has completed, an analyzer arm (a condition to activate the analyzer) was not
defined for this measurement, the analyzer trigger was captured in memory before
the analyzer trace completed, 1024 trace states were captured (1023 states plus the
trigger state), and one analyzer sequence term was needed to satisfy the analyzer
trigger.

M68040 Sat Feb 20 12:20:40 1993
Status
Emulator Status
M68040--Running user program
Trace Status

Emulation trace complete
Arm ignored

Trigger in memory

Arm to trigger ?

States 1024 (1024) 0..1023
Sequence term 2
Occurrence left 1

203

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

To change the trace depth

ChooseTrace- Display Options...and in the dialog box, enter the desired trace
unload depth in the field beside Unload Depth. Then click the OK or Apply
pushbutton.

Using the command line, enter:
display trace depth <depth>

Using one of the above command forms, you specify the number of states that will
be unloaded for display, copy, or file storage. By reducing the trace unload depth,
you shorten the time it takes for the interface to unload the trace information. You
can increase the trace unload depth to view more states of the current trace.
Regardless of how much or how little unload depth you specify, the entire trace
memory will be filled with captured states during a trace.

In the deep analyzer, the maximum number of trace states depends on whether or
not you installed memory modules in the analyzer card, and the capacity of the
memory modules. Refer to Chapter 19, "Installation and Service", for details. In
the 1K analyzer, the maximum number of trace states is 1024 when counting is
turned off, and 512 otherwise. In either analyzer, the minimum trace depth is 9.

Trace data must be unloaded before it can be displayed, copied, or stored in a file.
If you wish to reduce the number of states that are unloaded for display, you must
enter the unload depth specification (in one of the two ways shown above) before
you enter the trace command. The above commands cannot be used to reduce the
number of states displayed in the current trace. You can enter a new unload depth
specification after a trace is complete to increase the amount of trace memory that
is unloaded, if desired.

204

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

To modify the last trace command entered

Chooselrace - Trace Specand use the dialog box to select and edit a trace
command.

Using the command line, enter:

trace modify_command

The Trace Specification Selection dialog box contains a list of trace specificati
executed during the emulation session as well as any predefined trace specifi
present at interface startup.

You can predefine trace specifications and set the maximum number of entries for
the dialog box by setting X resources (see Chapter 13, "Setting X Resources").

Thetrace modify_commandcommand recalls the last trace command. The
advantage of this command over command recall is that you do not have to move
forward and backward over other commands to find the last trace command; also,
the last trace command is always available, no matter how many commands have
since been entered.

205

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

Example

To define a simple trigger qualifier

Enter your trigger qualifier (such agjdress 1000hin the entry buffer. Thenin
the menu bar, click ofrace - After() , Trace - Before(),or Trace - About().

When displaying memory in mnemonic format, position the mouse pointer over the
program line that you wish to use as a trigger, press and hadldoémouse

button, and choosErace After, Trace Before,or Trace About from the popup

menu.

Using the command line, use tin@ce command to specify a trigger.

The default option for the analyzer is to begin to fill trace memory immediately
after the start of the trace. The trace completes when trace memory is full and the
trigger has been captured.

The trigger is a reference event in a trace list. You select trigger position to see
activity leading up to the trigger event, or following the trigger event, or both.

To trigger a trace measurement after the demo program executes the Init_system
procedure, place init_system in the entry buffer and chibese - After(), or on
the command line, enter:

trace after long_aligned init_system
The “long_aligned” option ensures that if the address of the trigger event is not on a
long word boundary, the analyzer will still be able to recognize it.

To capture a trace leading up to the address of gen_ascii_data, and then break to
the monitor when that trigger event occurs, place gen_ascii_data in the entry buffer
and choos@race - Until(), or on the command line, enter:

trace before long_aligned gen_ascii_data
break_on_trigger

206

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

To capture a trace of activity both preceding and following the write_hdwr symbol
in the update_sys module, place update_sys.write_hdwr in the entry buffer and

chooselrace - About(), or on the commad line, enter:

trace about long_aligned update_sys.write_hdwr

To specify a trigger and set the trigger position

Place the trigger specification desired (suchditess 1000hin the entry buffer,
and then choosErace - After() , Trace - Before(), or Trace — About().

When displaying memory in mnemonic format, position the mouse pointer over the
program line that you wish to use as the trigger, press and hael¢ténouse

button, and choosErace After, Trace Before,or Trace About from the popup

menu.

Using the command line, selérce after, trace beforg ortrace aboutto set the
trigger position.

Normally the analyzer begins to save processor activity whenever the trace is
started. By selecting trigger position, you can specify which portion of processor
activity you will view in the trace list.

Thetrace after command causes the analyzer to fill its trace memory with
processor activity that occurred after the trigger event.

Thetrace beforecommand causes the analyzer to fill its trace memory with
processor activity that occurred before the trigger event.

Thetrace aboutcommand causes the analyzer to fill its trace memory with
processor activity that occurred before and after the trigger event. With this
command, the trigger event is positioned at the center of the trace.

The actual trigger position in the trace list is within +/-3 states of the position
specified.

207

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

Example

When you enter eiace aboutcommand, the trigger state (line 0) is normally

labeled “about”. However, if there are three or fewer states before the trigger, the
trigger state is labeled “after”, and if there are three or fewer states after the trigger,
the trigger state is labeled “before”.

To trace on states before the demo program accesses the current humidity, enter:

trace before address current_humid status write
set symbols on
display trace

Example

To define a simple storage qualifier

Place your storage qualifier in the entry buffer (sucstatsis read, and then
chooseTrace - Only().

Using the command line, use thiely option in thetrace command.

All captured states are stored by default. However, you can qualify which states get
stored with thenly option to therace command.

When you are running the demo program, to store only accesses to the address
"target_temp", place target_temp in the entry buffer, and then choose
Trace - Only(), or on the command line, enter:

trace only target_temp

208

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Displaying the Trace List

Thetrace listis your view of the analyzer’s record of processor bus activity. You

can specify what is shown in the trace list to make it easier to find the information

of interest. For example, you can display symbol information where available, or
source lines from the high-level languages used to write the target system program.
You can also change the column widths and set options for disassembly of the trace
list.

This section covers many of the options available for controlling the trace display.
Display control is available through tfieace - Display Options...dialog box, the
trace list popup menu, and the command line. You can combine most options
within a single command on the command line to obtain a desired trace displa
thedisplay traceandsetcommand descriptions in Chapter 11, "Emulator
Commands", for more information.

If you are using the emulator with the MMU enabled, you will need to enable and
load the deMMUer before you can use source file symbols in your commands,
display source file symbols in your trace lists, or see blocks of source code
preceding related trace data. Refer to "Analyzing Program Execution when the
MMU is Enabled" later in this chapter to see how to load and use the deMMUer.

209

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Examples

Click to select the desired
format of trace disassembly.

Click to select the way that
absolute status information is
shown in the trace list.

Click to select count
reference: Relative (to
preceding state), or Absolute
(to trigger).

Click to select trace list
dequeuing, if available for
your emulator.

Enter the desired depth of the

trace memory to be unloaded
for display or storage in afile.

Enter a value to be subtracted
from addresses and
symbol/source-line
references shown in the trace
list.

E
Enter the desired trace Iist/
line number to be placed o

screen.

—_—

To use the Trace Options dialog box:

=

Emulator/Analyzer: Trace Options

Data Format

Riatus Format

Unload Depth
Address

ove to

~Trachtions

Mnemonic =

Hpw

=

Count Format @ Relative < Absolute
1 T} Dequeue Enable

8132

Recall

et i Bh

Recall

Recall

Liy/

4 oK

,,
t

Click OK

to specify
the trace
options and
close the
dialog box.

Click Apply
to specify
the trace
options and
leave the
dialog box
open.

/

Click these
pushbuttons
to select
predefined
or
previously
specified
entries.

Click this
pushbutton
to cancel
the entries
and close
the dialog
box.

210

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Examples To use the trace list popup menu:
13 13
—'E Hewlett Packard Emulator/Analyzer; em68040 (m68040) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo > Disp Sre () Trace () % Run Step Source %
| < Your Key > I Make |Disp Sre Prev |F\un Alertil() | Break | Step Asm
Click to begin trace ():main | Recall
disassembly from the E More date off ot
- - Address ode or Status w/ Source Lines ime co
selected line, moving faee cubaie i st/ sunb 2 Crelatime
that |ine to the tOp Of it dmain. e - lins 1 thru L s s s 2 111

the display.
Click to open an edit TR

window into the = R Choose Action for Highlighted Linem

, 86 nS
source file that Disassemble From nusepa e |
Edit Source 128 =3

contains the address of +a83 _
the Selected ||ne ﬁﬂﬂﬁﬂﬂﬁmaln Display Memory At iﬂﬁﬁﬁﬁﬁﬁﬂﬂﬁﬁﬁﬂﬂﬂﬂﬂﬂ ¥
JE=E maintBEEEEE1Z ISR PTG, Spe. init aa. nS ¥
CIICk tO open a dIS I +8B5 sysstact+dBABTFI4 $8BABFFFA sdata long write 8a. nS5
window inF;o memo?yay/ STATUS: HG6BG46--Running user program Emulation trace complete A3
.. run from transfer_address

containing the address) -

of the selected line.

Note that the format of Tun | trace I step |disp1ag I modify | break | end |---ETC--

the memory d|sp|ay -] Command: Cursor: [Gactup | [Forwardi[Clear to end 1
11 13

will be mnemonic for
addresses in the code
segment and absolute
otherwise.

211

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

To disassemble the trace list

ChooseTrace- Display Options...and in the dialog box, select Data Format
Mnemonic. Then click the OK or Apply pushbutton.

Use the mouse to place the cursor on a line in the trace list where you want
disassembly to begin. Then presssbkectmouse button, and click on
Disassemble Fronin the trace list popup menu.

Using the command line, enter commands as follows:

* To disassemble instruction data in the trace list, enter:

display trace mnemonic

» To control where trace list disassembly starts, enter:

display trace disassemble_from_line_number <LINE #>

<LINE #> is a line number corresponding to a state in the trace list.

Disassembly of instruction data means that you will see instructions as they would
appear in an assembly language program listing. That is, instruction mnemonics
and operands are shown instead of hexadecimal instruction data.

The analyzer interface normally disassembles instruction data in the trace list.
However, if you specifbsolutedata display, that mode remains in effect until
you select thennemonicoption.

When you identify a particular trace list line where disassembly is to begin, be sure
to specify a line number that corresponds to an analyzer state with an opcode fetch.
The analyzer interface disassembles and displays the trace starting with the state

you specify.

212

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Examples To disassemble instruction data in the trace list starting at line 40:

Place the cursor on line 40, press the select mouse button, and click on
Disassemble Fromin the popup menu.

Or, using the command line, enter:

display trace disassemble_from_line_number 40

To specify trace disassembly options

» Selection of disassembly options is not supported in pulldowns of the Graphical
User Interface. By default, the Graphical User Interface séligttsword and
all_cycles Use the command-line if you need to specify trace disassembly using
other options.

» Using the command line, enter commands as follows:

» To show only instruction cycles in the trace list, enter:

display trace disassemble_from_line_number <LINE#>
instructions_only

* To show all bus cycles in the trace list, enter:

display trace disassemble_from_line_number <LINE#>
all_cycles

» To start instruction disassembly from the upper word of the bus, enter:
display trace disassemble_from_line_number <LINE#>
high_word

» To start instruction disassembly from the lower word of the bus, enter:

display trace disassemble_from_line_number <LINE#>
low_word

213

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Examples

Normally, the MC68040 presents the trace list data as it was stored by the analyzer.
That is, all bus cycles are shown, and disassembly starts with the most significant
word of the data.

If you don’t want to see operand cycles in the trace list, specify the
instructions_only option.

Each analyzer bus state may have two data words. An opcode can appear in either
word. You can force disassembly to begin with the lower word of the first trace
state by using thiew_word option. If the disassembled trace list isn't what you
expected, try using this option.

The disassembly options remain in effect until you specify a new disassembly
option.

Show only instruction cycles in the trace list starting at line 40:
display trace disassemble_from_line_number 40
instructions_only

Show all bus cycles in the trace list:

display trace disassemble_from_line_number 40 all_cycles

Start instruction disassembly from the upper word of the bus:

display trace disassemble_from_line_number 100 high_word

Start instruction disassembly from the lower word of the bus

display trace disassemble_from_line_number 100 /low word

214

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

To specify trace dequeueing options

ChooseTrace- Display Options...and in the dialog box, select Dequeue Enable.
Then click the OK or Apply pushbutton.

Using the command line, enter commands as follows:

» To dequeue the trace list, enter:

display trace dequeue on

» To display the trace list without dequeueing, enter:

display trace dequeue off

* To tell the analyzer which data operand is aligned with the first opcode, enter:

display trace disassemble_from_line_number <LINE#>
align_data_from_line <STATE#>

<LINE #> is a line number corresponding to a state in the trace list. <STATE#> is
the line number of the data operand that is associated with the instruction at
<LINE#>.

A dequeued trace list is available through the disassembly options. In a dequeued
trace list, unused instruction prefetch cycles are discarded, and operand cycles are
placed immediately following the corresponding instruction fetch. If you choose a
non-dequeued trace list, instruction and operand fetches are shown exactly as
captured by the analyzer.

Once the dequeuer has been started on the correct opcode, it will continue to
disassemble correctly unless an unusual condition causes it to misinterpret the data.
By specifying the first instruction state for disassembly and the number of the first
operand cycle for that instruction, you can resynchronize the disassembly. (You
may also need to use tlosv_word option.)

You may see TAKEN, NOT TAKEN, or ?TAKEN? beside a branch in your
dequeued trace list. TAKEN is shown beside a branch if the dequeuer determines
that the branch was taken. NOT TAKEN is shown if the dequeuer determines that
the branch was definitely not taken. ?TAKEN? means the dequeuer was not able to
determine whether or not the branch was taken. If you read down the trace list and

215

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Examples

see that the branch was taken, usalis@ssemble_from_line_numbecommand

to restart disassembly at the trace list line number of the branch destination. You
will need to include thiow word option if the destination opcode is in the low
word at the destination address. You may need to resynchronize alignment of
operand cycles with the instruction at the branch address, using the
align_data_from_line option.

Dequeue the trace list:

ChooseTrace- Display Options...and in the dialog box, select Dequeue Enable.
Then click the OK or Apply pushbutton.

Or, using the command line, enter:

display trace dequeue on

Display the trace list without dequeueing:

display trace dequeue off

Tell the analyzer which data operand should be aligned with the first opcode:

display trace disassemble_from_line_number 40
align_data_from_line 42

216

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

To display the trace without disassembly

ChooseTrace- Display Options...and in the dialog box, select Data Format
Absolute. You can select Hex, Binary, or Mnemonic format for display of status
information. Then click the OK or Apply pushbutton.

Using the command line, enter commands as follows:

» To display the trace list without instruction disassembly and with status
information in binary format, enter:

display trace absolute status binary

» To display the trace list without instruction disassembly and with status
information in hexadecimal format, enter:

display trace absolute status hex

» To display the trace list without instruction disassembly and with status
information in mnemonic format, enter:

display trace absolute status mnemonic

For some measurements, it may be more convenient for you to view the trace data
without instruction disassembly. The Data Format Absolute selection in the
Trace - Display Options...dialog box, or thedisplay trace absolutecommand

allows you to do this. Notice that once you enter this format selection, subsequent
trace lists will displayed in this format until you select the mnemonic format with
the dialog box odisplay trace mnemoniccommand again.

You can select the display format for the status information when you choose Data
Format Absolute in the dialog box, or when you uselthglay trace absolute
command. The status information can be displayed in binary, hex, or as mnemonics
that indicate the nature of the current bus cycle (such as a read or write).

217

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Examples

Display the trace list without instruction disassembly and with status information in
binary format:

ChooseTrace- Display Options...and in the dialog box, select Data Format
Absolute. Select Status Format Binary. Then click the OK or Apply pushbutton.

Or, using the command line, enter:
display trace absolute status binary

Display the trace list without instruction disassembly and with status information in
hexadecimal format, make appropriate entries imthee- Display Options...
dialog box, or enter the following command:

display trace absolute status hex

Display the trace list without instruction disassembly and with status information in
mnemonic format, make appropriate entries infiteee - Display Options...
dialog box, or enter the following command:

display trace absolute status mnemonic

To display symbols in the trace list

ChooseSettings— Source/Symbol Modes, Symbols or choose

Settings- Display Modes ...and in the dialog box, click ddymbolic Addresses

In the Field Widths area of the dialog box, you can select the widths of the Label
Field and Symbols in Mnemonic Field to control the display space allocated to the
symbols. To select symbol types, use the command line, described below.

Using the command line, enter commands as follows:

» Todisplay symbols in the trace list, enter:

set symbols on

* Todisplay only high level symbols, enter:

218

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

set symbols high

* Todisplay only low level symbols, enter:

set symbols low

* To display all symbols (both high and low level), enter:

set symbols all

If you are using the emulator with the MMU enabled, you will need to enable and
load the deMMUer before you can display source file symbols in your trace lists.
Refer to "Analyzing Program Execution when the MMU is Enabled" later in thi
chapter to see how to load and use the deMMUer.

When you enable symbol display, addresses and operands are replaced by th
symbols that correspond to those values. The symbol information is derived from
the SRU symbol database for that command file. See Chapter 4, "Using the
Emulator", for more information on SRU and symbol handling.

High-level symbols are those that are available only from high-level languages such
as a compiler. Low-level symbols are those that are available from assembly
language modules (which may include symbols generated internally by a compiler).

The Settings— Source/Symbol Modes., Settings— Display Modes.., or

set symbolscommand remains in effect until you enter a new

Settings— Source/Symbol Modes., Settings— Display Modes.., or set symbols
command with different options.

Refer to Chapter 4, "Using the Emulator”, for details of how to set up and use the
Display Modes dialog box.

219

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

To display source lines in the trace list

* ChooseSettings— Source/Symbol Modes, Source Mixedor
Settings— Source/Symbol Modes. Source Only .

» ChooseSettings— Display Modes...,and in the dialog box, click ddource in
Trace and select eitheBource Mixedor Source Onlyfrom the submenu.

» Using the command line, enter commands as follows:

» To display mixed source and assembly language in the trace list, enter:

set source on

» To display only source language statements in the trace list, enter:

set source only

* To display only assembly language in the trace list, enter:

set source off

If you are using the emulator with the MMU enabled, you will need to enable and
load the deMMUer before you can display source code preceding related trace data
in your trace lists. Refer to "Analyzing Program Execution when the MMU is
Enabled" later in this chapter to see how to load and use the deMMUer.

If you developed your target programs in a high-level language such as “C,” you
can display the source code in the trace list with the corresponding assembly
language statements. Or, you can choose to display only the source listing without
the assembly language information.

The analyzer uses the line-number information in the SRU symbol database for the
absolute file to reference between source lines and assembly language information.
Refer to Chapter 4, "Using the Emulator" for more information on SRU and symbol
handling.

220

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

To change the column width

ChooseSettings— Display Modes.., and select desired widths for information in

the trace list by using the dialog box. Refer to the "Examples" page under "To
display symbols in the trace list", earlier in this chapter for details of how to use the
dialog box.

To set the column width for the address column in the trace list, enter:

set width label <WIDTH>

To set the column width for the mnemonic column in the trace list, enter:

set width mnemonic <WIDTH>

To set the column width for source lines in the trace list, enter:

set width source <WIDTH>

To set the column width for the symbols column in the trace list, enter:

set width symbols <WIDTH>

<WIDTH> is an integer specifying the width of the column in characters.
(KWIDTH> is restricted to certain values which are shown if you press the
<WIDTH> softkey.)

You can display more information by widening a column or ignore the information
by narrowing the column. For example, you might want to widen the label column
so that you can see the complete names of the symbols in that column.

You can combine multiple options on the command line to set the width for several
columns at once.

221

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Example

Set the width of the address label column to 30 characters and the width of the
mnemonic column to 50 characters:

set width label 30 mnemonic 50

To select the type of count information in the
trace list

ChooseTrace- Display Options...and in the dialog box, select Count Format
Relative or Absolute, as desired. Then click the OK or Apply pushbutton.

To display count information in the trace list relative to the trigger state, enter:

display trace count absolute

To display count information in the trace list relative to the previous trace list state,
enter:

display trace count relative

The count information in the trace list is always displayed if it is turned on. To turn
on the trace counting function, enter a command beginningnaté countingon
the command line. Refer to "To count states or time" later in this manual for details.

When using the 1K analyzer, the trace memory is 512 states deep if counting states
or time is turned on and 1024 states deep if counting is turned off. To disable
counting in the 1K analyzer, use the commaade counting off When using the

deep analyzer, full memory depth is always available; the depth of the deep
analyzer is not affected by the counting selected. See “To count states or time.”

222

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Examples Count time and store only each iteration of the update_sys symbol in the demo
program (if using the 1K analyzer, make sure the clock speed is set to "Slow" in the
configuration):

Specify the trace for the emulator:

trace only long_aligned update_sys counting time
(Thelong_alignedparameter is needed because the MC68040 fetches opcodes as
32-bit values and update_sys may not be the first part of that value.)

Now, start the program run; then display the trace:

run from transfer_address

display trace count relative

Count absolute entries into the get_targets routine of the demo program:

trace only address range update_sys thru update_sys end
counting state get_targets

run from transfer_address

display trace count absolute

223

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Example

To offset addresses in the trace list

ChooseTrace- Display Options...and in the dialog box, enter the desired offset
value in the field beside Address Offset. Then click the OK or Apply pushbutton.

Use theoffset_bycommand-line option to trdisplay trace command.

The Address Offset affset_bytrace display options allow you to cause the
address information in the trace display to be offset by the amount specified. The
offset value is subtracted from the instruction’s physical address to yield the
address that is displayed.

If code gets relocated and therefore makes symbolic information obsolete, you can
use the Address Offset offset_byoption to change the address information so
that it again agrees with the symbolic information.

You can also specify an offset to cause the listed addresses to match the addresses
in compiler or assembler listings.

Trace execution from entry of the demo program (the main label) then offset by the
value of main so that the addresses appear the same as the location counter in the
assembler listing:

reset

trace

run from transfer_address

display trace offset_by main

224

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

To reset the trace display defaults

ChooseSettings— Display Modes... Then in the dialog box, click on Default All
Settings, and click the OK pushbutton. This leaves the trace display in the "source
intermixed and symbols on" mode.

Using the command line, enter:

set default

This turns off all symbolics and source references in the interface. .

To move through the trace list

Use the scroll bar at the right of the display to scroll up and down. Use the arrows
at the bottom of the display (if any) to scroll left and right.

Using the command line, enter commands as follows:

» Toroll the trace display to the left, pregstri>f simultaneously.

» Toroll the trace display to the right, pres3tri>g simultaneously.

» Toroll the display down one line, press the down arrow key.

» Toroll the display up one line, press the up arrow key.

» To move to the previous page in the trace list, presBghdp or Prev key.
» To move to the next page in the trace list, presB¢hBn or Next key.

Though the trace display is set to 256 or more states, only 15 lines may be
displayed in the interface window, depending on your terminal type. You can move
through the trace list display using various key combinations.

You can roll the display left and right only if the trace list is wider than 80 columns.
This may occur if you increased the width of the columns.

225

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Examples

To display the trace list around a specific line
number

ChooseTrace- Display Options...and in the dialog box, enter the desired trace
list line number in the field beside Move to Line. Then click the OK or Apply
pushbutton.

Center the trace display about a particular state given by <LINE #> by entering

display trace <LINE #>

If you need to move to a particular state quickly, you can use this command. The
command places the specified state in the center of the current trace display.

Display the trace about line number 20:

ChooseTrace- Display Options...and in the dialog box, enter 20 in the field
beside Move to Line. Then click the OK or Apply pushbutton.

Enter the following command on the command line to display the trace about line
number 256:

display trace 256

226

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Examples

To change the number of states available for
display

ChooseTrace- Display Options...and in the dialog box, enter the desired number
of states to be made available for display in the field beside Unload Depth. Then
click the OK or Apply pushbutton.

Using the command line, set the depth of the trace list with:

display trace depth <DEPTH#>
<DEPTH#> is the number of states to be available in the trace list for displayin.

copying, or storing to a file. If you are using the deep analyzer, the depth of the
trace list buffer depends on whether or not you installed memory modules on the
analyzer card, and the capacity of the memory modules installed. Refer to Chapter
19, "Installation and Service", for details. If you are using the 1K analyzer, the
trace list buffer is 512 or 1024 states deep (depending on whether or not you turn
on the state/time count). See "To count states or time" in this chapter.)

When you display the trace list, the interface requests the number of states specified
by the trace depth from the emulator. If you want faster trace display, you can
decrease the trace depth. To display more states, you can increase the trace depth.
Notice that the trace depth setting only regulates the number of states sent from the
emulation-bus analyzer to the interface. You still need to udegthép andPg Dn

keys to page through the trace list.

Set the depth of the trace memory to 256 states:

ChooseTrace- Display Options...and in the dialog box, enter 256 in the field
beside Unload Depth. Then click the OK or Apply pushbutton.

Set the depth of the trace to 1024 states:
display trace depth 1024

227

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

To display program memory associated with a
trace list line

Using the mouse, place the cursor on the line in the trace list where you want to see
the associated content of program memory. Then pressldwmouse button,
and click orDisplay Memory At in the trace list popup menu.

You will see a display of memory at the location of the program that emitted the
selected trace list line. This is the same as placing the program address of the
selected trace list line in the entry buffer and choo&implay - Memory - At()

in the pulldown menus.

To open an edit window into the source file
associated with a trace list line

Using the mouse, place the cursor on the line in the trace list whose source file you
wish to edit. Then press tkelectmouse button, and click &dit Source in the
trace list popup menu.

A new window will open. It will show the source file that emitted the line you
selected in the trace list. An edit session will be in progress on the source file in the
new window. When you complete the desired edit, save the file and close the
window.

228

Chapter 5: Using the Emulation-Bus Analyzer
Analyzing Program Execution When The MMU Is Enabled

Analyzing Program Execution When The MMU Is
Enabled

Most emulation and analysis commands that require an address as part of the
command use logical addresses. When the MC68040 MMU is enabled, physical
addresses are placed on the emulation bus. The physical addresses may not be the
same as the logical addresses. The deMMUer reverse translates the physical
addresses back to logical addresses and supplies these to the analyzer so that the
analyzer can:

» accept commands expressed in source file symbols.
» display trace lists with addresses expressed in source file symbols.
» display appropriate portions of source code preceding lists of trace data.

Refer to Chapter 10, "Using Memory Management”, for detailed information to
help you use the deMMUer more efficiently.

To program the deMMUer in a static memory
system

Run your program to the point where you are sure the MMU is set up.

Break to the monitor program by chooskexgcution— Break.

Using the command line, enter:

break

ChooseSettings—» DeMMUer — Load from Memory.

If you want the emulator to override one or more of the MMU register values with
values you specify during the load process, ch8estngs— DeMMUer - Load
from Memory..., and specify the desired values in the dialog box.

229

Chapter 5: Using the Emulation-Bus Analyzer
Analyzing Program Execution When The MMU Is Enabled

To see a listing of the addresses that will be reverse translated by the DeMMUer
during the loading process, cho@sdtings- DeMMUer - Verbosebefore you
enter youDeMMUer Load command.

Note thaDeMMUer Load commands automatically enable the deMMUer.

Using the command line, enter the following command:

load demmuer [verbose]

Note that théoad command automatically enables the deMMUer.

Continue execution of your target program by chooExgrution— Run - from
PC or Execution— Run - from Reset or using the command line to enten, or
restart the program with the commangh from reset.

To pick the place to load the deMMUer, you might set an execution breakpoint in
your code at a point where you are sure your MMU will be set up to translate the

address space you want to analyze. After the breakpoint has executed (emulator
running in foreground monitor), you can load the deMMUer.

Whether you continue your program or restart it, the deMMUer will have the
ability to reverse translate the physical addresses according to the MMU setup at
the time you issued thead demmuercommand. The deMMUer will remain
loaded even if you reset the emulation processor.

If you restart your program, you can use the analyzer to see how the MMU tables
are created and how the program operates.

Address ranges will be reverse translated correctly if they are translated by the
setup of the MMU that existed when you issueddhd demmuercommand. If
context switches cause the MMU to access logical memory that was not
represented in the MMU tables when you loaded the deMMUer, incorrect logical
addresses will be provided by the deMMUer.

230

Chapter 5: Using the Emulation-Bus Analyzer
Analyzing Program Execution When The MMU Is Enabled

To store a deMMUer setup file

ChooséFile - Store DeMMUer (From MMU Tables) and enter the name to be
used for the deMMUer file in the File Selection dialog box.

Using the command line, enter:
store demmuer <file>

The deMMUer setup file is created by the emulator as it reads the present con
of the MMU tables and creates a file of reverse translations appropriate for th
deMMUer.

To load the deMMUer from a deMMUer setup file

ChooseSettings— DeMMUer — Load from File, and enter the name of the
deMMUer file in the File Selection dialog box.

ChooseFile - Load - DeMMUer, and enter the name of the deMMUer file in the
File Selection dialog box.

Using the command line, enter:
load demmuer <file>

Files that store setup information for the deMMUer have filenames that end in
".ED".

231

Chapter 5: Using the Emulation-Bus Analyzer
Analyzing Program Execution When The MMU Is Enabled

To trace program execution in physical address
Space

ChooseSettings— Demmuer— Enable to disable the deMMUer.

Using the command line, disable the deMMUer with the command:

set demmuer off

The Settings— Demmuer— Enable command in the Graphical User Interface is a
switch that enables and disables the deMMUer.

Now the analyzer will get its address information directly from the emulation
address bus. This information is useful when you want to see behavior of your
operating system.

232

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Making Complex Trace Measurements

You can have the analyzer record bus activity by simply using the trace command
without any options. But this doesn’t use the analyzer effectively for two reasons:

» the trace memory may fill before the program reaches the states of interest.

» you may have to search through a long trace list to find a few states pertinent to
your measurement problem.

The HP 64700 analyzer has trigger and sequence capabilities that help solve these
problems. These tools act as a filter for processor bus activity that allows the
analyzer to capture only the states you want to see in the measurement.

A trigger tells the analyzer to identify a certain bus state as a point of referenc
the trace of states. gequencés a more complex specification that specifies a
series of bus states that must be found to satisfy the trigger.

This section tells you how to get the most out of the HP 64700 analyzer by using
trigger and sequence specifications. It also describes additional measurement tools
to help you get more information from the trace.

Many of the options in this section can be combined one or more times. See the
trace syntax in Chapter 11, "Emulator Commands", for more information.

Expressions are an important part of trace specifications because they specify the
numeric or logical values that the analyzer matches for trigger and storage.
Expressions are represented by the <expression> symbol in this chapter. Refer to
Chapter 11, "Emulator Commands", for specifics on expression syntax.

Expressions in Trace Commands

When modifying the analysis specification, you can enter expressions that consist
of values, symbols, and operators.

Values Values are numbers in hexadecimal, decimal, octal, or binary. These
number bases are specified by the following characters:

Bb Binary (example: 10010110b).
QgOo Octal (example: 3770 or 377Q).
D d (default) Decimal (example: 2048d or 2048).

233

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Hh Hexadecimal (example: Oa7fh).
You must precede any hexadecimal number that begins
with an A, B, C, D, E, or F with a zero.

Don't care digits may be included in binary, octal, or hexadecimal numbers and
they are represented by the letdérer x. A zero must precede any numerical value
that begins with an “X".

Symbols A symbol database is built when the absolute file is loaded into the
emulator. Both global and local symbols can be used when entering expressions.
Global symbols are entered as they appear in the global symbols display. When
specifying a local symbol, you must include the name of the module ("anly.c") as
shown below.

anly.c:cmp_function
Operators Analysis specification expressions may contain operators. All

operations are carried out on 32-bit, two’s complement integers. (Values which are
not 32 bits will be sign extended when expression evaluation occurs.)

The available operators are listed below in the order of evaluation precedence.
Parentheses are also allowed in expressions to change the order of evaluation.

, = Unary two’s complement, unary one’s complement. The
unary two's complement operator is not allowed on
constants containing don't care bits.

* 1, % Integer multiply, divide, and modulo. These operators are
not allowed on constants containing don't care bits.

+, - Addition, subtraction. These operators are not allowed on
constants containing don't care bits.

& Bitwise AND.

| Bitwise inclusive OR.

234

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Values, symbols, and operators may be used together in analysis specification
expressions. For example, if the local symbol exists, the following is a valid
expression:

module.c:symb+0b67dh&0fffO0h
However, you cannot add two symbols unless one of them is an EQU type symbol.

Emulation-Bus Analyzer Trace Signals

The emulation-bus analyzer has 80 channels available for capturing information: 64
of those channels are used for the instruction bus and data bus, and the remaining
16 channels monitor other processor signals or synthesized signals, and are
collectively called the status lines. You can use status values as trigger or stor
qualifiers. For example, you may want to capture processor reads to a certain
address, but not processor writes. You can use a status value to qualify only
processor read cycles to the memory location.

A number of status values have already been defined for you. They are collectively
known as the status equates and cover most common processor operations. Status
equates appear on softkeys at the appropriate time so you can include the status you
want in your command line.

235

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

The following table lists the predefined status equates. The descriptions identify

Name Status Value Description

ack LTI XXXXXXXX LXXXXXY Acknowledge access.

alto 10xxxxxxxx1x000xy Alternate logical function code O.

alt3 L1OXxXXXXXxx1x011xy Alternate logical function code 3.
alt4 L10Xxxxxxxx1x100xy Alternate logical function code 4.

alt7 L1OXXXXXXXX1X111Xy Alternate logical function code 7.
burst OXXXXXOXXXXXXXXKXY Burst cycle.

byte OXXXXXXO LXXXXXXXXY Byte transfer request (S121/S120=01).
cpush OXXXXXXXXX1X000xy Data cache push access.

d_tblwk OXXXXXXXXX1X011Xy Data translation table access.

data OXXXXXXXXX1XX01XyY Data space access.

dma OXXHXXXXXXXXOXXXXXY Direct memory access.

i tblwk OXXXXXXXXX1X 100Xy Instruction translation tables access.
line OXXXXXX L LXXXXXXXXY Line transfer request (SI1Z1/S1Z0=11).
logical OXXOXXXXXXXXXXXXXY Logical memory address.

long OXXXXXXOOXXXXXXXXY Longword transfer request (S1Z1/S120=00).
physical OXXLXXXXXXXXXXXKXY Physical memory address.

prog OXXXXXXXXX1XX10XY Program space access.

read OXXXXXXXXXXX LXXXXY Read cycle.

retry OXXXXXXXXOOXXXXXXY Retrying a previous bus cycle.
snp_hitl OXXO LXXXXXOXXXXXY Snoop operation 1 (SC1/SC0=01)
snp_hit2 OXX LOXXXXXOXXXXXY Snoop operation 2 (SC1/SC0=10)
snp_inhb OXXOOXXXXXOXXXXXY Snooping inhibited.

snp_miss OXXLIXXXXXOXXXXXY Snoop miss.

sup OXXXXXXXXXIXLXXXY Supervisor space.

supdata OXXXXXXXXX1X101xy Supervisor data space.

supprog 0XX00XXXXX1X110xy Supervisor program space.

ta OXXXXXXXXLOXXXXXXY Transfer acknowledge.

the emulator status represented by the equates

68040 Equates

236

tea
upa0
upal
upa2
upa3
user
userdata
userprog
word
write

OXXXXXXXXO LXXXXXXY
OXXOOXXXXXXXXXXY
OXXOLXXXXXXXXXXY
OXXTLOXXXXXXXXXXY
OXXTLIXXXXXXXXXXY
OXXXXXXXXX LXOXXXY
OXXXXXXXXX1X001xy
OXXXXXXXXX1X010xy
OXXXXXX LOXXXXXXXXY
OXXXXXXXXXXXOXXXXY

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Transfer error acknowledge.

User prog attributes UPA[1:0]=00.
User prog attributes UPA[1:0]=01.
User prog attributes UPA[1:0]=10.
User prog attributes UPA[1:0]=11.
User space.

User data space.

User program space.

Word transfer request (S121/S120=10).
Write cycle.

237

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Example

To use address, data, and status values in trace
expressions

Enter the value(s) desired in the entry buffer (sudddsess 1000h Then
Chooselrace - After(), Trace — Before(), or Trace— About(), as desired.

Using the command line, enter commands as follows:

» To specify an address expression, enter:

<expression> -or- address <expression>

» To specify a data expression, enter:

data <expression>

» To specify a status expression, enter:

status <expression>

Many trace commands require that you enter address, data and status expressions to
specify the bus state. You can combine multiple expressions on the same command

line to build a complete bus state qualifier. You can also use logical operators to
build more complex states. Refer to Chapter 11, "Emulator Commands", for details.

The default expression type is address, therefore you don't need to specify the
addresskeyword when you enter an address expression.

Start a trace and store only writes of 0 hex to the graph address in the demo
program:

trace only graph data 0 status write

238

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

To enter a range in a trace expression

Use the command-line rules (described below) to create your expression in the
entry buffer. Then Choosgace - After(), Trace — Before(),or Trace- About(),
as desired.

Using the command line, enter commands as follows:

» To specify an address range enter:

address range <expression> thru <expression>

* To specify a data range, enter:

data range <expression> thru <expression>

« To specify a status range enter:

status range <expression> thru <expression>

» To take the logical not of a range, useribekeyword before theange
keyword.

Ranges allow you to qualify analyzer actions on a contiguous set of values. Mostly,
you'll use address ranges to trigger or store on access to a data block such as a
lookup table. But, you can also use data ranges to qualify a trigger or storage on a
range of data values.

There is only one range term available in the trace specification. Once it has been
used, it cannot be reused. That is, if you specify a range in a trigger specification,
you can't duplicate it in the storage specification. (The Terminal Interface does
allow this type of measurement, though there is still only one range term. See the
MC68040/EC040/LC040 Emulator/Analyzer Terminal Interface User's Quide

Since address is the default range type, you can onattiresskeyword. You
can't omit thedata or statuskeywords if those are the bus parts you want to
qualify.

You can use the logical operator to combine the range term with several state
qualifiers. See the examples.

239

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Examples

Store only the accesses to the demo program’s current_humid location:

trace only range current_humid thru +1h

Store only bus cycles where data is in the range 6h..26h or is 29h:

trace only data range 6h thru 26h ordata 29h

Example

To use the sequencer

Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain the dialog
box by choosingrace - Trace Spec...You can click on your specification in the
dialog box, edit it if desired, and click OK.

Using the command line, specify a trace sequence by entering:

trace find_sequence <bus_state> occurs <#times> [then
<bus_state> occurs <#times> | trigger <bus_state>

<bus_state> represents a combination of address, data and status expressions that
must be matched to satisfy the trigger or sequence qualifier. <#times> is the
number of times that bus state must occur to satisfy the qualifier.

The trace sequencer allows you to specify up to seven sequence terms (including
the trigger) that must be satisfied to trigger the analyzer. If you use the windowing
specification, the sequence specification is limited to four sequence terms.

Use the analyzer sequencer to trigger after finding a series of events:

trace find_sequence main then update_sys.get targets
trigger after proc_spec

240

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Example

To specify a restart term

Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain the dialog
box by choosingrace- Trace Spec...You can click on your specification in the
dialog box, edit it if desired, and click OK.

Using the command line, restart the search for the trace sequence terms by
including the restart parameter in

trace find_sequence <bus_state> occurs <#times> [then
<bus_state> occurs <#times> | restart <bus_state>
trigger <bus_state>

<bus_state> represents a combination of address, data and status expressions that
must be matched to satisfy the trigger or sequence qualifier. <#times> is the
number of times the selected bus state must occur to satisfy the qualifier.

The restart qualifier allows you to restart the trace sequence whenever a certain
instruction or data access occurs. For example, you might have a complicated trace
sequence that searches for an intermittent failure condition. You could set the
restart term to restart the sequence whenever a bus cycle occurred that ensures that
the code segment would perform correctly. Thus, the trace will be satisfied only
when that restart term never occurs and the code segment fails.

Use the analyzer sequencer to trace a series of events and then restart the sequencer
if the restart term is found while searching for the events:

trace find_sequence update_sys.get_targets then
update_sys.write_hdwr restart update_sys.set_outputs
trigger after current_humid

241

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Examples

To specify trace windowing

Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain the dialog
box by choosingrace- Trace Spec...You can click on your specification in the
dialog box, edit it if desired, and click OK.

Using the command line, enter commands as follows:

» To trace only the states occurring after a particular bus cycle, enter:

trace enable <bus_state>

» To trace only the states occurring between two particular bus cycles, enter:
trace enable <bus_state> disable <bus_state>

<bus_state> represents a combination of address, data and status expressions that
must be matched to satisfy the windowing qualifier.

The trace window specification makes it easy to trace only the occurrences of a
particular routine. This is especially useful in high-level languages, where storing
only the accesses to a particular address range may miss several function calls
within the routine.

Trace states occurring after the start of the example program:

trace enable main

Trace states occurring between the start of the example program and the call to the
message interpreter:

trace enable main disable proc_spec

242

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Example

To specify both sequencing and windowing

Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain that dialog
box by choosingrace- Trace Spec...You can click on your specification in the
dialog box, edit it if desired, and click OK.

Using the command line, enter commands as follows:

Specify a trace sequence that starts with a window and ends with a trigger by
entering:

trace enable <bus_state> disable <bus_state>
find_sequence <bus_state> occurs <#times> [then
<bus_state> occurs <#times> | trigger <bus_state>

<bus_state> represents a combination of address, data and status expressions that
must be matched to satisfy the trigger or sequence qualifier. <#times> is the
number of times that bus state must occur to satisfy the qualifier.

You can use the sequencing and windowing specifications together to make
specification of complex qualifiers easier. If you use the windowing specification,
the sequence specification is limited to four sequence terms. Also, note that when
you use a windowing specification, you cannot use a restart term with your
sequence specification.

Use the analyzer sequencer to trace states occurring between the start of the
example program and the call to the message interpreter, then trigger after access to
the variable that stores the value of current humidity, but only if it is accessed after

a specific series of events:

trace enable main disable proc_spec find_sequence
update_sys.get_targets then long_aligned
update_sys.write_hdwr trigger after current_humid

243

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

To count states or time

Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain that dialog
box by choosingrace- Trace Spec...You can click on your specification in the
dialog box, edit it if desired, and click OK.

Using the command line, enter commands as follows:

» To count occurrences of a particular bus state in the trace, enter:

trace counting <bus_state>
<bus_state> represents a combination of address, data and status expressions
that must be matched to satisfy the trigger qualifier.

* To count all states in the trace, enter:

trace counting anystate

 To count time in the trace, enter:

trace counting time

» To disable counting in the trace, enter:

trace counting off

You can use the analyzer’s state/time counter to count time or bus states. If using
the deep analyzer, counting imposes no restrictions on memory depth. If using the
1K analyzer, use of the counter restricts the trace memory to a maximum depth of
512 states. If you disable the counter in the 1K analyzer, usitigdeecounting

off command, maximum trace depth is 1024 states.

When using the 1K analyzer, the MC68040 emulator defauttsuoting off. To
count states or time, you must configure the analyzer clocks correctly. See "To
configure the analyzer clock” in Chapter 8, "Configuring the Emulator”, for more
information.

Use thedisplay trace countcommand to determine how the count is displayed in
the trace list. See “To display count information in the trace” for more information.

244

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Examples To count occurrences of a particular bus state in the trace (this requires the 1K
analyzer speed to be set to "Slow" in configuration):

trace counting address 10h

Count all states in the trace:

trace counting anystate

Count time in the trace:

trace counting time

Disable counting in the trace:

trace counting off

To define a storage qualifier

» Enter the storage qualifier (suchsistus read in the entry buffer. Then
choosdrace - Only().

» Using the command line, store only certain states in the trace list by entering:

trace only <bus_state>

<bus_state> represents a combination of address, data and status expressions that
must be matched to satisfy the storage qualifier.

Storage qualifiers can help filter unwanted information from program execution
and improve your trace measurement. The analyzer stores only the information
specified in the storage qualifier. Note that if you have a sequencer or trigger
specification, any states given there are shown in the trace list even if they don’t
meet the storage qualifier.

245

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Examples

Trace only address 10h:

trace only address 10h

Trace only data value Offh:

trace only data 0Offh

Trace only write operations

trace only status write

To define a prestore qualifier

Place your prestore qualification into the entry buffer. Then choose
Trace- Only() Prestore.

Using the command line, enter commands as follows:

» Specify a prestore qualifier by entering:
trace prestore <bus_state>
<bus_state> represents a combination of address, data and status expressions
that must be matched to satisfy the prestore qualifier.
» Disable prestore qualification by entering:
trace prestore anything
You use the prestore qualifier to save states that are related to other routines that
you're tracing. For example, you might be tracing a subprogram, and want to see
which program called it. You can specify calls be prestored and that entries to the

subprogram be stored. The easiest way to do this is to prestore program reads that
are outside the address range of the subprogram being called.

246

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

You may have several program modules that write to a variable, and sometime
during execution of your program, that variable gets bad data writen to it. Using a
prestore measurement, you can find out which module is writing the bad data.
Store-qualify writes to the variable, and use prestore to capture the instructions that
caused those writes to occur (perhaps by prestoring program reads).

Examples Specify a prestore qualifier:
trace prestore address not range gen_ascii_data thru
gen_ascii_data end status prog and read only

long_aligned gen_ascii_data

Disable prestore qualification:

trace prestore anything

To trace activity leading up to a program halt

» Choosé€lrace - Until Stop.

» Using the command line, trace on a program halt by entering:

trace on_halt

The above commands cause the analyzer to continuously fill the trace buffer until
you issue drace - Stop or stop_tracecommand.

Sometimes you may have a program failure that can’t be attributed to a specific
trigger condition. For example, the emulator may access guarded memory and
break to the monitor. You want to trace the events leading up to the guarded
memory access but you don’t know what to specify for a trigger. Use the above
command. The analyzer will capture and record states until the break occurs. The
trace list will display the last processor states leading up to the break condition.

Note that the "trace until stop" command may not capture the desired information
when you are using a foreground monitor (unless the code that causes the break

247

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

also causes the processor to halt) because the analyzer will continue to capture
foreground monitor states after the break. When using a foreground monitor, you
can use the command line to enter a trace command that stores only states outside
the range of the foreground monitor program (for exanyalee on_halt only not

range <mon_start_addr> thru <mon_end_addr> on_ha}t

Example

To modify the trace specification

Chooselrace - Trace Spec... You can recall, modify, and enter your trace
specification in the dialog box.

Using the command line, enter:

trace modify_command

Then use the command line editing features to change the trace command
specifications.

If you made an error in a trace command or want to change the measurement results
slightly, it's often easier to recall the previous trace command and edit it than it is

to enter a new trace command. The Trace Specification Selection dialog box lets
you recall, edit, and enter trace commands that have been executed during the
emulation session or trace commands that have been predefined.

Predefine entries for the Trace Specification Selection dialog box and define the
maximum number of entries by setting X resources (refer to Chapter 13, "Setting X
Resources").

See the "To use dialog boxes" description in Chapter 3, "Using the
Emulator/Analyzer Interface", for information about using selection dialog boxes.

Recall the last trace command wittace - Trace Spec...or by entering:

trace modify_command

Then edit the trace command as you desire.

248

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

To repeat the previous trace command

Chooselrace - Again.

To continually repeat the last trace, chobs®ce - Repetitively.

Using the command line, repeat the previous trace command (including its
complete trace specification) by entering:

trace again

Thetrace againcommand is most useful when you want to repeat a measure
with the same trace specification. It saves you the trouble of reentering the
complete trace command specification.

The "repetitively" choice continually repeats the last trace command. Successive
traces begin as soon as the results from the just-completed trace are displayed.

Also, this command is useful when you load a trace specification from a file. (See
"To load a trace specification" in this chapter.)

249

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

To capture a continuous stream of program
execution no matter how large your program

The following example can be performed in emulation systems using the deep
analyzer (it cannot be done with the 1K analyzer). It shows you how to capture all
of the execution of your target program. You may wish to capture target program
execution for storage, for future reference, and/or for comparison with execution
after making program modifications. The execution of a typical target program will
require more memory space than is available in the trace memory of an analyzer.
This example shows you how to capture all of your target program execution while
excluding unwanted execution of the emulation monitor.

ChooseTrace - Display Options .., and in the dialog box, enter 0 or the total
depth of your deep analyzer trace memory in the entry field beside Unload Depth.
Then click OK or Apply. This sets unload depth to maximum.

For this measurement, the analyzer will drive trigl and the emulator will receive
trigl from the trigger bus inside the card cage. The trigl signal is used to cause the
emulator to break to its monitor program shortly before the trace memory is filled.
This use of trigl is not supported in workstation interface commands. Therefore,
terminal interface commands (accessible through the pod command feature) must
be used. Enter the following commands:

Settings— Pod Command Keyboard

tgout trigl -c <states before end of memory¥trigger output trigl before trace
complete)

bc -e trigl (break conditions enabled on trig1)

Click thesuspendsoftkey

Note that "tgout trigl -c <states...>" means generate trigl as an output when the
state that is <states...> before the end of the trace memory is captured in the trace
memory; "bc -e trigl" means enable the emulator to break to its monitor program
when it receives trigl.

Select a value forstates before end of memorythat allows enough time and/or
memory space for the emulator to break to its monitor program before the trace
memory is filled. Otherwise, some of your program execution will not be captured

in the trace. Many states may be executed before the emulation break occurs,
depending on the state of the processor when the trigl signal arrives. Also, if your
program executes critical routines in which interrupts are masked, the occurrence of

250

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

trigl may be ignored until the critical routine is completed (when using a
foreground monitor).

If you are using a foreground monitor, enter the following additional pod
commands to prevent the trace memory from capturing monitor execution. The
following example commands will obtain this result in some emulators:

Settings— Pod Command Keyboard
trng addr=<address range occupied by your monitorXtrigger on range address
= <address range>)
where <address range> is expressed as <first addr>..<last addr>
tsto Ir (trace store not range)
Click thesuspendsoftkey

Note that "trng addr=<addr>..<addr>" means define an address range for the
analyzer; "tsto Ir'" means store all trace activity except activity occurring in the
defined address range.

Start the analyzer trace with the commandce - Again

Start your program running usiigxecution— Run - from(), from Transfer
Address orfrom Reset as appropriate.

TheTrace- Again (or trace agair) command starts the analyzer trace with the

most recent trace specifications (including the pod_command specifications you
entered). Thé&race command cannot be used by itself because it defaults the "bc -e
trigl", "trng addr=...", and "tsto Ir" specifications, returning them to their default
values before the trace begins.

You can see the progress of your trace with the comrasplay - Status A
line in the Trace Status listing will show how many states have been captured.

The notation "trigl break" usually followed by "Emulation trace complete" will
appear on the status line. If "trigl break" remains on the status line without
"Emulation trace complete”, manually stop the trace with the command:

Trace - Stop

251

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

10

You must wait for the notation "trigl break" and/or "Emulation trace complete” to
appear on the status line; this ensures the trace memory is filled during the trace
(except for the unfilled space you specified in Step 2 above).

Note that when you set a delay specification usiogt -c or tgout -t (trigger

output delay before trace complete/after trigger), the trace will indicate complete as
soon as the analyzer has captured the state specified, even though the entire trace
memory has not been filled.

If the notation "trigl break" remains on the status line without being replaced by
"Emulation trace complete", it indicates the trace memory is not completely filled,
and no more states are being captured.

Store the entire trace memory content in a file with a command like:

wait measurement_complete ; copy trace to <directory/filename>

The "wait" command is inserted ahead of the "copy" command to ensure that the
unload of trace data is complete before you try to store it. Without "wait", you will
get an ERROR message warning that the unload is still in process. The
<filename>is an ASCII filename for a binary file that can be viewed using the
load trace command.

Start a new trace with the commatrdce again

Resume the program run from the point where it was interrupted when the emulator
broke to the monitor with the commamdn

Wait until the notation "trigl break" and/or "Emulation trace complete" appears on
the status line. Then store the new trace memory content in a new file with
commands like:

stop_trace
wait measurement_complete ; copy trace to <directory/filename+1>

Note that "filename+1" in the above command suggests use of consecutive
filenames to store your execution files, such as FILENAMEL, FILENAMEZ2, etc.

Repeat steps 8 through 10 above until all program execution has been captured.
Your destination directory will have a set of files that, taken together, contain all of
your program execution. Note that if you did not prevent capture of foreground

252

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

monitor cycles in step 3 above, the last few trace lines in each file may contain
monitor cycles.

253

Chapter 5: Using the Emulation-Bus Analyzer
Saving and Restoring Trace Data and Specifications

Saving and Restoring Trace Data and
Specifications

The emulator/analyzer can save your trace data and trace specifications in a file for
later use. This can help you record measurement results that you can use for
comparison with other tests, and it is useful to automate measurements.

Suppose you're using the emulator in a manufacturing test application. The target
system is your product board. You might build a command file that recalls a trace
specification, makes the trace on the target board, and then recalls a previous
measurement result (from a working product) and compares it to the new
measurement (using the UNB{f command).

To store a trace specification

ChooseFile - Store— Trace Spec...In the dialog box, select an existing filename
or specify a new filename to contain the present trace specification. Then click OK.

Using the command line, store the current trace specification by entering:

store trace_spec <filename>

<filename> is any UNIX file name including paths. The extension .TS is
automatically added to the file name.

The trace specification file is a binary file.

Thestore trace_specommand allows you to save a trace specification (effectively
the current trace command with all trigger, storage and sequence options) in a file
for later use. For example, you might have seusak commands that you want

to make every time your target system program is modified. You can store each
trace command in a separate file and recall it later usirigaldrace_spec

command.

254

Chapter 5: Using the Emulation-Bus Analyzer
Saving and Restoring Trace Data and Specifications

Example Store a trace specification to a file:
Store trace_spec tspec. TS
To store trace data
ChooseéFile - Store— Trace Data... In the dialog box, select an existing filename
or specify a new filename to contain the present trace memory content. Then
OK.
Using the command line, store the current trace data by entering:
store trace <filename>
<filename> is any UNIX file name including paths. The trace data file is a binary
file. The extensionTR is automatically added to the file name. A trace data file
can be reloaded into the interface and displayed like any other trace listing.
You can store the trace data resulting from a measurement. This can be useful if
you want to compare the results of later measurements with a reference result
obtained in an earlier measurement.

Example Store a trace to afile:

store trace tracel. TR

255

Chapter 5: Using the Emulation-Bus Analyzer
Saving and Restoring Trace Data and Specifications

Example

To load a trace specification

ChooseFile - Load - Trace Spec...In the dialog box, click on the name of the
trace specification you want to load (placing it in the Load Trace Specification
box). Then click OK.

Using the command line, load an existing trace specification from a file by entering:

load trace_spec <filename>

<filename> is any UNIX file name including paths. The extendi&is assumed.

Once you save a trace specification in a file usingrilee- Store— Trace Spec...
or store trace_specommand, you can load it using the appropriate command
above. To start a trace with the trace specification that you loaded, use the
Trace - Again or trace againcommand.

Load a trace specification from a file and start the trace:

load trace_spec tspec

trace again

256

Chapter 5: Using the Emulation-Bus Analyzer
Saving and Restoring Trace Data and Specifications

To load trace data

* ChooseFile - Load - Trace Data... In the dialog box, click on the name of the
trace data file (file of trace memory content) you want to load (placing it in the
Load Trace Data box). Then click OK.

» Using the command line, load trace data from a file by entering:

load trace <filename>

<filename> is any UNIX file name including paths. The extendiéis assumed.
Loads a previously saved trace from a binary trace data file (with a ".TR" suffi

Once you save trace data in a file usingrife— Store— Trace Data...or store

trace command, you can reload it. To view the data you loaded, use the
Display - Trace, Trace- Display, ordisplay trace command. Remember that a

new trace measurement will overwrite this trace data (but not the file from which it
was loaded).

The interface will try to display the trace listing in the display format active when
the trace data was stored. If the interface needs symbols to replace absolute
addresses or to find high-level source lines, and symbols are not loaded, an error
occurs.

For example, suppose "source-mixed" was the display mode when the trace was
captured and the executable file "testl" was the file being executed in the
emulator/target system. To reload and display a trace listing saved from that
emulation session requires reloading the symbols for "test1".

Example Load a trace from a file:

load trace tracel

257

Chapter 5: Using the Emulation-Bus Analyzer
Saving and Restoring DeMMUer Setup Files

Saving and Restoring DeMMUer Setup Files

To store a DeMMUer setup file

ChooseéFile - Store— DeMMUer (From MMU Tables)... In the dialog box, click
on the name of the file you want to store your deMMUer setup (placing it in the
Store Demmuer File box). Then click OK.

Using the command line, store a deMMUer setup file by entering:
store demmuer <filename>

<filename> is any UNIX file name including paths. The extendfhis assumed.

Stores a deMMUer setup file (with a ".ED" suffix) by reading the present content of
the MMU registers and the MMU tables.

To load a DeMMUer setup file

ChooseéFile » Load - DeMMUer... In the dialog box, click the name of the file
you want to load (placing it in the Load Demmuer File box). Then click OK.

Using the command line, load a deMMUer setup file by entering:

load demmuer <filename>
<filename> is any UNIX file name including paths that was created by an
appropriate store demmuer command. The exterBDris assumed.

The deMMUer setup file is loaded into the deMMUer. The present content of the
MMU registers and the MMU tables are ignored.

258

Chapter 5: Using the Emulation-Bus Analyzer
Using Basis Branch Analysis

Using Basis Branch Analysis

Basis branch analysis (BBA) is provided by the HP Branch Validator product. This
product is used to analyze the testing of your programs, create more complete test
suites, and quantify your level of testing.

The HP Branch Validator records branches executed in a program and generates
reports that provide information about program execution during testing. It uses a
special C preprocessor to add statememts that write to a data array when program
branches are taken. After running the program in the emulator (using test input),
you can store the BBA information to a file. Then, you can generate reports based
on the stored information.

This section shows you how to:
» Store BBA data to afile.

Refer to theHP Branch Validator (BBA) User’s Guider complete details on the
BBA product and how it works.

To store BBA data to a file

ChooseFile - Store— BBA Data and use the selection dialog box to specify the
file name.

The default file name "bbadump.data” can be selected from the dialog box.

259

260

Making Coordinated Measurements

Using the Coordinated Measurement Bus to start and stop multiple emulators and
analyzers

261

Chapter 6: Making Coordinated Measurements
The Elements of Coordinated Measurements

The Elements of Coordinated Measurements

The Coordinated Measurement Bus (CMB) connects multiple emulators and allows
you to make synchronous measurements between those emulators.

For example, you might have a target system that contains an MC68040 processor
and another processor. You use HP 64700 Series emulators to replace both target
system processors, and connect the emulators using the CMB. You can run a
program simultaneously on both emulators. Or, you can start a trace on one
emulation-bus analyzer when the other emulator reaches a certain program address.
These measurements are possible with the CMB.

When HP 64700 Card Cages are connected together via the Coordinated
Measurement Bus (CMB), you can start and stop up to 32 emulators at the same
time.

You can use the analyzer in one HP 64700 to arm (that is, activate) the analyzers in
other HP 64700 Card Cages or to cause emulator execution in other HP 64700 Card
Cages to break into the monitor.

You can use the HP 64700's BNC connector (labeled TRIGGER IN/OUT on the
lower left corner of the HP 64700 rear panel) to trigger an external instrument (for
example, a logic analyzer or oscilloscope) when the analyzer finds its trigger
condition. Also, you can allow an external instrument to arm the analyzer or break
emulator execution into the monitor.

Tasks that you perform to make coordinated measurements include:
e Setting up for coordinated measurements.

e Starting and stopping multiple emulators.

» Driving trigger signals to the CMB or BNC.

e Stopping program execution on trigger signals.

e Arming analyzers on trigger signals.

262

Chapter 6: Making Coordinated Measurements
The Elements of Coordinated Measurements

The location of the CMB and BNC connectors on the HP 64700 rear panel is
shown in the following figure.

o ey @

CMB Connector — g 0 = B]UUBUU
ool

Fcomm Cﬂnﬂgﬁ .

I

U

U UL Awarns Ul H
o -
i WARNING
~

Wl & -

115W23W hutor

BNC Connector

64700E20

There are three bidirectional signal lines on the CMB connector on the rear panel of
the emulator. These CMB signals are:

TRIGGER The CMB TRIGGER line is low true. This signal can be driven
or received by any HP 64700 connected to the CMB. This
signal can be used to trigger an analyzer. It can be used as a
break source for the emulator.

READY The CMB READY line is high true. It is an open collector
circuit and performs an ANDing of the ready state of enabled
emulators on the CMB. Each emulator on the CMB releases this
line when it is ready to run. This line goes true when all enabled
emulators are ready to run, providing for a synchronized start.

When CMB is enabled, each emulator is required to break to
background when CMB READY goes false, and will wait for
CMB READY to go true before returning to the run state.
When an enabled emulator breaks, it will drive the CMB
READY false and will hold it false until it is ready to resume
running. When an emulator is reset, it also drives CMB
READY false.

263

Chapter 6: Making Coordinated Measurements
The Elements of Coordinated Measurements

EXECUTE The CMB EXECUTE line is low true. Any HP 64700 on the
CMB can drive this line. It serves as a global interrupt and is
processed by both the emulator and the analyzer. This signal
causes an emulator to run from a specified address when CMB
READY returns true.

Comparison Between CMB and BNC Triggers

The BNC trigger signal is a positive rising edge TTL level signal. The BNC trigger
line can be used to either drive or receive an analyzer trigger, or receive a break
request for the emulator.

The CMB trigger and BNC trigger lines have the same logical purpose: to provide a
means for connecting the internal trigger signals (trigl and trig2) to external
instruments. The CMB and BNC trigger lines are bidirectional. Either signal may

be used directly as a break condition.

The CMB trigger is level-sensitive, while the BNC trigger is edge-sensitive. The
CMB trigger line puts out a true pulse following receipt of EXECUTE, despite the
commands used to configure it. This pulse is ignored internally.

Note that if you use the EXECUTE function, the CMB TRIGGER should not be
used to trigger external instruments, because a false trigger will be generated when
EXECUTE is activated.

264

Chapter 6: Making Coordinated Measurements
Setting Up for Coordinated Measurements

Setting Up for Coordinated Measurements

This section describes how:
* To connect the Coordinated Measurement Bus.
» To connect the rear panel BNC.

For more information, refer to théP 64700 Series Installation/Service Guide

To connect the Coordinated Measurement Bus
(CMB)

CAUTION Be careful not to confuse the 9-pin connector used for the CMB with those used by
some computer systems for RS-232C communications. Applying RS-232C signals
to the CMB connector is likely to result in damage to the HP 64700 Card Cage.

To use the CMB, you will need one CMB cable for the first two emulators and one additional cablge for
every emulator after the first two. The CMB cable is orderable from HP under product number
HP 64023A. The cable is four meters long.

You can build your own compatible CMB cables using standard 9-pin D type subminiature connectors
and 26 AWG wire.

Hewlett-Packard does not guarantee proper CMB operation if you are using a self-built cable!

265

Chapter 6: Making Coordinated Measurements
Setting Up for Coordinated Measurements

1 Connect the cables to the HP 64700 CMB ports.

(FEMALE)
(NC)

TWO EMULATORS

THREE EMULATORS, ETC

(FEMALE
(NO)

64700E14

266

Chapter 6: Making Coordinated Measurements
Setting Up for Coordinated Measurements

Number of HP 64700 Series
Emulators

Maximum Total Length of
Cable

Restrictions on the CMB
Connection

panel pullups connected. *

rear

2108 100 meters None.

9to 16 50 meters None.

9to 16 100 meters Only 8 emulators may have rear
panel pullups connected. *

17 to 32 50 meters Only 16 emulators may have

* A modification must be performed by your HP Sales Engineer.

Emulators using the CMB must use background emulation monitors.

At least 3/4 of the HP 64700-Series emulators connected to the CMB must be powered up before
operation of the entire CMB configuration can be assured.

To connect to the rear panel BNC

CAUTION

The BNC line on the HP 64700 accepts input and output of TTL levels only. TTL

levels must not be less than 0 volts or greater than 5 volts. Failure to observe these
specifications may result in damage to the HP 64700 Card Cage.

267

Chapter 6: Making Coordinated Measurements
Setting Up for Coordinated Measurements

1 Connect one end of a 50-ohm coaxial cable with male BNC connectors to the HP 64700 BNC
receptacle and the other end to the appropriate BNC receptacle on the other measuring instrument.

d‘ﬂou
7rigd
ALIGN SLOTS ON
SIDES OF PLUG
WITH TABS ON
SIDES OF JACK
f
! o
Af
1rigd

PUSH TOGETHER
AND TURN UNTIL
CONNECTORS LOCK

64700C15

The BNC connector is capable of driving TTL level signals into a 50 ohm load. (A positive rising g£dge is
the trigger signal.) It requires a driver that can supply at least 4 mA at 2 volts when used as a regeiver.
The BNC connector is configured as an open-emitter structure which allows for multiple drivers to be
connected. It can be used for cross-triggering between multiple HP 64700Bs when no other
cross-measurements are needed. The output of the BNC connector is short-circuit protected ang
protected from TTL level signals when the emulator is powered down.

S

268

Chapter 6: Making Coordinated Measurements
Starting/Stopping Multiple Emulators

Starting/Stopping Multiple Emulators

When HP 64700 Card Cages are connected together via the Coordinated
Measurement Bus (CMB), you can start and stop up to 32 emulators at the same
time. These are called synchronous measurements.

This section describes how to:
» Enable synchronous measurements.
e Start synchronous measurements.

» Disable synchronous measurements.

To enable synchronous measurements

Enter thespecify run command on the command line.

You can enable the emulator’s interaction with the CMB by usingptbeify run
command. When the EXECUTE signal is received, the emulator will run at the
current program counter address or the address specifiedsieitigy run
command.

Note that when the CMB is being actively controlled by another emulatateine
command does not work correctly. The emulator may end up running in user code
(NOT stepping). Disable CMB interaction while stepping the processor. (See “To
disable synchronous measurements” following.)

Note that enabling CMB interaction does not affect the operation of analyzer
cross-triggering.

You can use thepecify tracecommand to specify that an analyzer measurement
begin upon reception of the CMB EXECUTE signal.

The trace measurement defined bydpecify tracecommand will be started when
the EXECUTE signal becomes active. When the trace measurement begins, you
will see the message “CMB execute; emulation trace started”.

269

Chapter 6: Making Coordinated Measurements
Starting/Stopping Multiple Emulators

Examples

When you enter a normtthce command, trace at execute is disabled, and the
analyzer ignores the CMB EXECUTE signal.

To enable synchronous measurements from the transfer address:
specify run from transfer_address

To trace from an address when synchronous execution begins:

specify trace after address 10h

To start synchronous measurements

Enter thecmb_executecommand on the command line.

Thecmb_executecommand will cause the emulator to emit a pulse on the
EXECUTE line, thereby initiating a synchronous measurement. You do not have to
enable CMB interaction to use tbeab_executecommand because by enabling

CMB interaction, you are only specifying how the emulator will react to the CMB
EXECUTE signal.

All emulators whose CMB interaction is enabled will break into the monitor when
any one of the emulators participating in the synchronous measurement breaks to
its monitor.

To disable synchronous measurements

Enter thespecify run disablecommand on the command line.

You can disable the emulator's interaction with the CMB by usinggheify run
disablecommand. When interaction is disabled, the emulator ignores the CMB
EXECUTE and READY lines.

270

Chapter 6: Making Coordinated Measurements
Using Trigger Signals

Using Trigger Signals

The HP 64700 contains two internal linegy1l andtrig2, that can carry trigger
signals from the emulator or analyzer to other HP 64700s on the Coordinated
Measurement Bus (CMB) or other instruments connected to the BNC connector.

You can configure the internal lines to make connections between the emulator,
analyzer, CMB connector, or BNC connector. Measurements that depend on these
connections are callédteractive measurements coordinated measurements

» To configure the internaitigl andtrig2 lines, you must access the emulation
configuration, either by choosimdodify — Emulator Config ... in the graphical
user interface and then selecting Interactive Measurement Specification, or by
entering thenodify configuration command in the softkey interface, and then
answering “yes” to the “Modify interactive measurement specification?” questi
In the softkey interface, the following display appears.

Interactive Measurement Specification

BNC <<-?2?->> ---\ BNC <<-?2?->> ---\
| I
CMBT <<-2?2->> | CMBT <<-2?2->> -—|
| Trigl | Trig2
Emulator <<------ --- | Emulator <<-?2?--- --- |
|
Analyzer ------ >> -/ Analyzer <<-?2?->> ---/
NOTES:
1. The connections marked "??" are set up here in configuration.
2. drive = ---->> receive = <<---- (The display won't change, however.)

STATUS: Interactive Measurement Specification
Should BNC drive or receive Trigl? neither

_drive__ receive_ neither_ __both___ _RECALL_

This display illustrates the possible connections between the internatrigies (
andtrig2) and the emulator, analyzer, and external devices.

271

Chapter 6: Making Coordinated Measurements

Using Trigger Signals

Notice that the analyzer always drives trigl, and the emulator always receives trigl.
This provides for thbreak _on_trigger syntax of thérace command.

You can disable connections made by the internal trigl and trig2 lines by
answering “neither” or “no” to the appropriate interactive measurement
configuration question.

These are some ways that you can use the internal trigger signals:

You can use the trigl or trig2 line to make a connection between the analyzer
and the CMB connector or BNC connector so that, when the analyzer finds its
trigger condition, a trigger signal is driven on the HP 64700’s Coordinated
Measurement Bus (CMB) or BNC connector.

You can use the trigl or trig2 line to make a connection between the emulator
break input and the CMB connector, BNC connector, or analyzer so that
program execution can break when a trigger signal is received from the CMB,
BNC, or analyzer.

You can use the trig2 line to make a connection between the analyzer and the
CMB connector or BNC connector so that the analyzer can be armed (that is,
enabled) when a trigger signal is received from the CMB or BNC connector.

You can use the trigl and trig2 lines to make several types of connections at
the same time. For example, when the analyzer finds its trigger condition, a
signal is driven on the trigl line. This signal may be used to stop user program
execution, but the trigger signal may also be driven on the CMB and BNC
connectors.

It is possible for signals to be driven and received on the CMB or BNC
connectors. So, for example, while the analyzer’s trigger signal can be driven
on the CMB and BNC connectors, signals can also be received from the CMB
and BNC connectors and used to stop user program execution. In this case, the
emulator will break into the monitor on either the analyzer trigger or on the
reception of a trigger signal from the CMB or BNC.

The following tasks show you how to set up the emulator and analyzer to:

Drive the emulation trigger to the CMB and BNC.
Break emulator execution on CMB and BNC signals.

Arm the emulation-bus analyzer on CMB, BNC, and analyzer signals.

272

Chapter 6: Making Coordinated Measurements
Using Trigger Signals

To drive the emulation-bus analyzer trigger
signal to the CMB

ChooseMadify — Emulator Config ...

1 Inthe top-level emulator configuration dialog box, click on Interactive
Measurement Specification under Analyzer Configuration Sections.

2 Choose “receive” beside the “CMBT on Trigl?” question.

Using the command line, entaodify configuration.

1 Answer “yes” to the “Modify interactive measurement specification?” quesiy

2 Answer “receive” to the “Should CMBT drive or receive Trigl?” question.

You could also drive the emulation-bus analyzer trigger to the CMB over the trig2
internal line by specifying that the CMBT should receive trig2 and that the
emulation-bus analyzer should drive trig2.

273

Chapter 6: Making Coordinated Measurements

Using Trigger Signals

To drive the emulation-bus analyzer trigger
signal to the BNC connector

ChooseMadify — Emulator Config ...

1 Inthe top-level emulator configuration dialog box, click on Interactive
Measurement Specification under Analyzer Configuration Sections.

2 Choose “receive” beside the “BNC on Trigl?” question.

Using the command line, entaodify configuration.

1 Answer “yes” to the “Modify interactive measurement specification?” question.

2 Answer “receive” to the “Should BNC drive or receive Trigl?” question.

You could also drive the emulation-bus analyzer trigger to the BNC over the trig2
internal line by specifying that the BNC should receive trig2 and that the
emulation-bus analyzer should drive trig2.

274

Chapter 6: Making Coordinated Measurements
Using Trigger Signals

To break emulator execution on signal from CMB

ChooseMadify — Emulator Config ...

1 Inthe top-level emulator configuration dialog box, click on Interactive
Measurement Specification under Analyzer Configuration Sections.

2 Select "drive" for the "CMBT on Trigl" item.

Using the command line, entaodify configuration.

1 Answer “yes” to the “Modify interactive measurement specification?” question.

2 Answer “drive” to the “Should CMBT drive or receive Trigl?" question.

The trigl signal is always supplied to the emulator. By entering the command,
trace break_on_triggeremulation will break to the monitor when the CMB signal
occurs.

You could also break emulator execution on a trigger signal from the CMB over the
trig2 internal line by specifying that the CMB should drive trig2 and that the
emulator break should receive trig2.

275

Chapter 6: Making Coordinated Measurements
Using Trigger Signals

To break emulator execution on signal from BNC

» ChooseModify — Emulator Config ...

1 Inthe top-level emulator configuration dialog box, click on Interactive
Measurement Specification under Analyzer Configuration Sections.

2 Select "drive" for the "BNC on Trigl" item.

» Using the command line, enteodify configuration.

1 Answer “yes” to the “Modify interactive measurement specification?” question.

2 Answer “drive” to the “Should BNC drive or receive Trigl?” question.

The trigl signal is always supplied to the emulator. By entering the command,
trace break _on_triggeremulation will break to the monitor when the BNC signal
occurs.

You could also break emulator execution on a trigger signal from the BNC over the
trig2 internal line by specifying that the BNC should drive trig2 and that the
emulator break should receive trig2.

276

Chapter 6: Making Coordinated Measurements
Using Trigger Signals

To arm the emulation-bus analyzer on signal
from CMB

Using the command line, ent@odify configuration.

1

2

Answer “yes” to the “Modify interactive measurement specification?” question.

Answer “drive” to the “Should CMBT drive or receive Trig2?” question.

Answer “receive” to the “Should Analyzer drive or receive Trig2?” question.

Use thearm_trig2 option to thérace command.

To arm the emulation-bus analyzer on signal
from BNC

Using the command line, ent@odify configuration.

1

2

Answer “yes” to the “Modify interactive measurement specification?” question.

Answer “drive” to the “Should BNC drive or receive Trig2?" question.

Answer “receive” to the “Should Analyzer drive or receive Trig2?” question.

Use thearm_trig2 option to thérace command.

277

Chapter 6: Making Coordinated Measurements
Making Example Measurements

Making Example Measurements

The following tasks show you how to:
e Start a simultaneous program run on two emulators.
» Trigger one emulation-bus analyzer with another.

» Break to the monitor on an analyzer trigger signal.

To start a simultaneous program run on two
emulators

Before performing these steps, both emulators must be connected to the CMB. To
connect the CMB, see "To connect the coordinated measurement bus (CMB)" at the
beginning of this chapter.

Enable the CMB on each emulator.

Reset each emulator.

Set the run address for the first emulator.
Set the run address for the second emulator.

Start program execution on both emulators.

The procedure for starting a simultaneous trace on two emulators is similar. For
each emulator, you should set up the trigger specification before enabling the CMB.
Then start the analysis trace to enable trace on execute for each emulator. When the
EXECUTE signal is received, both emulators will begin running and will start a

trace according to the given trigger specification.

278

Chapter 6: Making Coordinated Measurements
Making Example Measurements

To trigger one emulation-bus analyzer with
another

Before performing these steps, both emulators must be connected to the CMB. To
connect the CMB, see "To connect the coordinated measurement bus (CMB)" at the
beginning of this chapter.

Enable the CMB on each emulator.

Reset each emulator.

Set up the first emulator to drive the CMB trigger.

Set up the second emulator to receive the CMB trigger.
Start a trace on each emulation-bus analyzer.

Start a run on each emulator.

In the above steps, you set one emulation-bus analyzer to drive the CMB trigger,
and set another to trigger on receipt of a CMB trigger. You can use the same
concepts to trigger external instruments using the BNC connector on the rear panel
of the HP 64700 Series Card Cage.

279

Chapter 6: Making Coordinated Measurements
Making Example Measurements

To break to the monitor on an analyzer trigger
signal

Enter the emulation configuration.

Set the emulator to receive trigl.

Set the emulation-bus analyzer to drive trigl.
Specify the trigger conditions for the trace.
Start the trace.

Start the program run.

The trigger signals and the analyzer trigger capabilities allow you to specify
breakpoints. You can use the trigger specification to specify complex sequences of
address, data and status, then break the program to the monitor when the sequence
is found. This is useful when you want to examine memory locations and registers
after the trigger condition occurs, but before further program execution.

You can use a similar process to break to monitor when a BNC trigger or CMB
trigger is received.

280

Making Software Performance
Measurements

How to make software performance measurements on your programs

281

Chapter 7: Making Software Performance Measurements
Using the Software Performance Measurement Tool

Using the Software Performance Measurement
Tool

The Software Performance Measurement Tool (SPMT) is a feature included in the
emulator/analyzer that allows you to make software performance measurements on
your programs. Two types of software performance measurements can be made
with the SPMT: activity measurements, and duration measurements.

The SPMT post-processes information from the analyzer trace list. When you end
a performance measurement, the SPMT dumps the post-processed information to a
binary file, which is then read using tberf32 report generator utility.

Use the Software Performance Analyzer (SPA) for
more capability

For more capability in making measurements of the performance of your software,
you can order the Software Performance Analyzer (SPA). SPA helps designers
understand the execution of software modules in an absolute file.

SPA provides answers to questions such as:

* Why does it take so long to execute a program?
* Which modules are taking extra long time to execute?

While SPA performs a measurement, it shows the current measurement results.
There is no need for you to transfer files; all you do is indicate the type of display
desired (histogram or table listing). If you are interested in purchasing SPA,
contact your HP Sales Representative.

282

Chapter 7: Making Software Performance Measurements
Understanding activity measurements

Understanding activity measurements

Activity measurements are measurements of the number of accesses (reads or
writes) within an address range. The SPMT shows you the percentage of analyzer
trace states that are in the specified address range, as well as the percentage of time
taken by those states. Two types of activity are measured: memory activity, and
program activity.

Memory activity is all activity that occurs within the address range.

Program activity is the activity caused by instruction execution in the address
range. Program activity includes opcode fetches and the cycles that result from the
execution of those instructions (such as reads, writes, and stack pushes).

For example, suppose an address range being measured for activity contains an
opcode that causes a stack push, which results in multiple write operations to the
stack area (outside the range). The memory activity measurement will count only
the stack push opcode cycle. However, the program activity measurement wil
count the stack push opcode cycle and the write operations to the stack.

By comparing the program activity and the memory activity in an address rang

you can get an idea of how much activity in other areas is caused by the code being
measured. An activity measurement report of the code (prog), data, and stack
sections of a program is shown in the next figure.

283

Chapter 7: Making Software Performance Measurements
Understanding activity measurements

Label

prog
Address Range ADEH thru 1261H

Memory Activity
State Percent Rel = 57.77 Abs = 57.77

Mean = 295.80 Sdv = 26.77
Time Percent Rel = 60.97 Abs = 60.97

Program Activity
State Percent Rel = 99.82 Abs = 99.82
Mean =511.10 Sdv = 0.88
Time Percent Rel = 99.84 Abs = 99.84
data

Address Range 6007AH thru 603A5H

Memory Activity
State Percent Rel = 30.51 Abs = 30.51
Mean = 156.20 Sdv = 31.87
Time Percent Rel = 28.09 Abs = 28.09

Program Activity
State Percent Rel= 0.18 Abs= 0.18
Mean = 0.90 Sdv= 0.88
Time Percent Rel= 0.16 Abs= 0.16
stack

Address Range 40000H thru 43FFFH

Memory Activity
State Percent Rel= 11.72 Abs = 11.72
Mean = 60.00 Sdv = 29.24
Time Percent Rel = 10.94 Abs = 10.94

Program Activity
State Percent Rel= 0.00 Abs = 0.00

Mean = 0.00 Sdv= 0.00
Time Percent Rel= 0.00 Abs = 0.00

Graph of Memory Activity relative state percents >= 1

prog 57.77%
data 30.510% *rrrsidkkkkssnkk
stack 11.72% *xxx

Memory and Program Activity

284

Chapter 7: Making Software Performance Measurements
Understanding activity measurements

Graph of Memory Activity relative time percents >= 1

prog 60.97%
data 28.090 *Fxkxkkdkskkkk
stack 10.94% *rxxxx

Graph of Program Activity relative state percents >= 1
prog 99.82%

Graph of Program Activity relative time percents >=1
prog 99.84%

Summary Information for 10 traces

Memory Activity
State count

Relative count 5120

Mean sample 170.67

Mean Standard Dv 29.30

95% Confidence 12.28% Error tolerance
Time count

Relative Time - Us 2221.20

Program Activity
State count
Relative count 5120
Mean sample 170.67
Mean Standard Dv 0.58
95% Confidence 0.24% Error tolerance
Time count
Relative Time - Us 2221.20
Absolute Totals
Absolute count - state 5120
Absolute count - time - Us 2221.20

Memory and Program Activity (Cont'd)

285

Chapter 7: Making Software Performance Measurements
Understanding duration measurements

Understanding duration measurements

Duration measurements provide a best-case/worst-case characterization of code
execution time. These measurements record execution times that fall within a set of
specified time ranges. Th&ce command is set up to store only the entry and exit
states of the module to be measured (for example, a C function or Pascal
procedure). The SPMT provides two types of duration measurements: module
duration and module usage.

Module duration measurements record how much time it takes to execute a
particular code segment (for example, a function in the source file).

Module usage shows how much of the execution time is spent outside of the
module (from exit to entry). This measurement gives an indication of how often
the module is being used.

Before you perform duration measurements, you should be aware of the prefetch
and recursion considerations associated with these measurements.

When using the SPMT to perform duration measurements, there should be only two
addresses stored in the trace memory: the entry address, and the exit address.
Prefetches or recursion can place several entry addresses before the first exit
address, and/or several exit addresses before the first entry address. Duration
measurements are made between the last entry address in a series of entry
addresses, and the last exit address in a series of exit addresses as shown in the
prefetch correction listing. All of the entry and exit addresses which precede these
last addresses are assumed to be unused prefetches, and are ignored during time
measurements.

START - unused prefetch

START - unused prefetch

START - unused prefetch

START - START actually taken -

END - unused prefetch

END - unused prefetch Measure duration
END - unused prefetch

END - END actually taken -

START - unused prefetch

START - unused prefetch Measure duration
START - unused prefetch

START - START actually taken -

END - unused prefetch

END - unused prefetch

286

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

The SPMT makes its duration measurements from the last start address in the series
of start addresses, to the last end address in the series of end addresses. The other
start and end addresses are unused prefetches and are ignored by the software of the
SPMT. Recursive procedures will still affect the accuracy of your measurements.

The prefetch correction has the following consequences:

» Prefetches are ignored. They do not affect the accuracy of the measurement in
process.

* When measuring a recursive function, module duration will be measured
between the last recursive call and the true end of the recursive execution. This
will affect the accuracy of the measurement.

» Ifamodule is entered at the normal point, and then exited by a point other than
the defined exit point, the entry point will be ignored. It will be judged the
same as any other unused prefetch, and no time-duration measurement will be
made. lIts time will be included in the measure of time spent outside the
procedure or function.

» Ifamodule is exited from the normal point, and then reentered from some
other point, the exit will also be assumed to be an unused prefetch of the
state.

If you are making duration measurements on a function that is recursive, or one that
has multiple entry and/or exit points, the result may be invalid information.

To use the Software Performance Measurement
Tool

Activity and duration measurements are made with the SPMT in a five-step
process, summarized as follows:

1 Set up the trace command.
2 Initialize the performance measurement.

3 Run the performance measurement.

287

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

4 End the performance measurement.

5 Generate the performance measurement report.

Step 1. Set up the trace command

Before you initialize and run performance measurements, the current trace
command (the last trace command entered) must be properly set up.

1 Increase the trace depth to the maximum number by entering:

display trace depth 512

In general, you want to give the SPMT as many trace states as possible to
post-process to increase statistical accuracy. Also it is important that "time" be
counted by the analyzer; otherwise, the SPMT measurements will not be
correct.

2 Choose to make either activity measurements or duration measurements.

» To make activity measurements (which measures activity as a percentage of all
activity, the current trace command should be the default), enter:

trace counting time

The default trace command triggers on any state, and all captured states are
stored. Also, since states are stored "after" the trigger state, the maximum
number of captured states appears in each trace list.

You can use trace commands other than the default. You can qualify trace
commands any way you like to obtain specific information. However, when
you qualify the states that get stored in the trace memory, your SPMT results
will be biased by your qualifications; the percentages shown will be of only
those states stored in the trace list.

288

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

» To make duration measurements, set up the trace command to store only the entry
and exit points of the module of interest. For example:

trace after <symbol_entry> or <symbol_exit> only
symbol_entry or symbol_exit counting time

or

trace after <module_name> start or module_name end only

module_name start or module_name end counting time

Since the trigger state is always stored, you should trigger on the entry or exit
points.

<symbol_entry> and <symbol_exit> are symbols from the user program.

<module_name> is the name of a C function or Pascal procedure (and is listed
as a procedure symbol in the global symbol display).

Step 2. Initialize the performance measurement

After you set up the trace command, you must tell the SPMT the address ranges on
which you wish to make activity measurements or the time ranges to be used in the
duration measurement. This is done by initializing the performance measurement,
which can be accomplished in various ways.

» To use the default configuration, enter the following command with no options:

performance_measurement _initialize

This specifies an activity measurement. If a valid symbolic database has been
loaded, the addresses of all global procedures and static symbols will be used.
Otherwise, a default set of ranges that cover the entire processor address range
will be used.

289

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

» To initialize with user-defined files (activity or duration measurement), specify the
SPMT address or time ranges to use by placing the information in a file and
entering the file name in theerformance_measurement_initializecommand.

The formats for the address range file (activity measurements) and time range
file (duration measurements) are described in this chapter.

» To include program symbols (procedure name or static), user defined address
ranges, and comments in address range files, refer to this example file:

Any line which starts with a # is a comment.
All user’s labels must be preceded by a "|".

|users_label 10H 1000H
program_symbol

A program symbol can be a procedure name or a static. In the case of a pro-
cedure name the range of that procedure will be used.

|users_label2 program_symboll -> program_symbol2

"->" means through. The above will define a range which starts with symboll
and goes through symbol2. If both symbols are procedures then the range will
be defined as the start of symboll through the end of symbol2.

dirl/dir2/source_file.s:local_symbol

The above defines a range based on the address of local_symbol.

* To include comments and units for time ranges in time range files, refer to this
example file:

Any line which starts with a # is a comment.

1 us 20 us
10.1 ms 100.6 ms
355s 6.77s

us microseconds

ms milliseconds

s seconds

#

The above are the only abbreviations allowed. The space between the number
and the units abbreviation is required.

Time units can be in microseconds (us), milliseconds (ms), or seconds (S).

290

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

* To select duration measurements, enter:

performance_measurement_initialize duration

or

performance_measurement _initialize <FILE> duration

When no user defined time range file is specified, the following set of default time
ranges are used.

1 us 10 us

10.1 us 100 us
100.1 us 500 us
500.1 us 1 ms
1.001 ms 5 ms
5.001 ms 10 ms
10.1 ms 20 ms
20.1 ms 40 ms
40.1 ms 80 ms
80.1 ms 160 ms
160.1 ms 320 ms
320.1 ms 640 ms
640.1ms1.2s

» To initialize with global symbols, enter:

performance_measurement _initialize

or

performance_measurement_initialize global_symbols

Global symbols in the symbols database becomes the address ranges for which
activity is measured. If the symbols database is not loaded, a default set of
ranges that cover the entire processor address range will be used. The global
symbols database contains procedure symbols, which are associated with the
address range from the beginning of the procedure to the end, and static
symbols, which are associated with the address of the static variable.

291

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

» To initialize with local symbols, enter:

performance_measurement_initialize local_symbols_in
<source file name>

The symbols associated with the source file become the address ranges for
which activity is measured. If the symbols database is not loaded, an error
message will occur telling you that the source filename symbol was not found.

You can also use the "local_symbols_in" option with procedure symbols. This
allows you to measure activity related to the symbols defined in a single
function or procedure.

These are example commands showing performance measurement initialization
with local symbols.

performance_measurement_initialize local_symbols_in
spmt_demo.C:

performance_measurement_initialize local_symbols_in
spmt_demo.C:math_library

performance_measurement_initialize local_symbols_in
math_library

« To restore the current measurement, enter:

performance_measurement_initialize restore

This allows you to restore old performance measurement data from the
perf.out file in the current directory.

If you have not exited and reentered emulation, you can add traces to a
measurement simply by entering anotberformance_measurement_run
command. However, if you exit and reenter the emulation system, you must
enter theperformance_measurement_initialize restoreommand before you
can add traces to a measurement. When you restore a performance
measurement, make sure your current trace command is identical to the
command used with the restored measurement.

292

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

When restoring old performance measurement data, the "restore"” option determines
if the current emulator software version matches the version used when the
performance measurement data was stored (ipetisut files). If the versions

match, the restore will be performed. If you ran tests using a former software
version and savegerf.out files, then updated your software to a new version

number, you will not be able to restore pktf.out measurement files.

Step 3. Run the performance measurement

Theperformance_measurement_rurcommand processes analyzer trace data.

When you end the performance measurement, this processed data is dumped to the
binary "perf.out” file in the current directory. Tperf32 report generator utility is

used to read the binary information in the "perf.out" file.

To process the current trace data, enter:

performance_measurement_run

To execute the current trace command consecutively, a certain number of times,
enter:

performance_measurement_run <COUNT>

The data that results from each trace command is processed and combined with
the existing processed data. The STATUS line will say "Processing trace
<NO.>" during the run so you will know how your measurement is

progressing. The only way to stop this series of traces is by @%iRb ¢ (sig

INT).

The more traces you include in your sample, the more accurate your results
will be. At least four consecutive traces are required to obtain statistical
interpretation of activity measurement results.

293

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

Step 4. End the performance measurement

» To end the performance measurement, enter:

performance_measurement_end

Theperformance_measurement_endommand takes the data generated by the
performance_measurement_runcommand and places it in a file nanpexif.out

in the current directory. If a file named "perf.out" already exists in the current
directory, it will be overwritten. Therefore, if you wish to save a performance
measurement, you must renamepbd.out file before performing another
measurement.

Theperformance_measurement_endommand does not affect the current
performance measurement data which exists within the emulation system. In other
words, you can add more traces later to the existing performance measurement by
entering anothgerformance_measurement_runcommand.

Once you have entered therformance_measurement_endommand, you can
use theperf32 report generator to look at the data saved ipéneout file.

The "perf.out" file is a binary file. Do not try to read it with the UNixire or cat
commands. Thperf32 report generator utility (described in the following section)
must be used to read the contents of the "perf.out" file.

294

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

Step 5. Generate the performance measurement
report

Theperf32 report generator utility must be used to read the information in the
"perf.out" file and other files dumped by the SPMT (in other words, renamed
"perf.out" files). Theperf32 utility is run from the UNIX shell. You can fork a
shell while in the Softkey Interface and nperf32, or you can exit the Softkey
Interface and ruperf32.

To save the current performance measurement information in a file called
"perfl.out", and produce a histogram showing only the program activity occupied
by the functions and variables.

mv perf.out perfl.out
perf32 -hpf perfl.out

A default report, containing all performance measurement information, is gene
when theperf32 command is used without any options. The options available
perf32 allow you to limit the information in the generated report. These option
are:

-h Produce outputs limited to histograms.

-S Produce a summary limited to the statistical data.

-p Produce a summary limited to the program activity.

-m Produce a summary limited to the memory activity.

-f<file> Produce a report based on the information contained in <file>

instead of the information contained in perf.out.

-C Print only program and memory activity information
consuming time.

Options-h, -s, -p, and-m affect the contents of reports generated for activity
measurements. These options have no effect on the contents of reports generated
for duration (time interval) measurements.

295

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

The reports generated for activity measurements show you the percentage of
analyzer trace states that are in the specified address range, as well as the
percentage of time taken by those states. The performance measurement must
include four traces before statistics (mean and standard deviation) appear in the
activity report.

» To interpret reports of activity measurements, understand the information described
here. You will see this information in activity measurement reports.

Memory activity All activity found within the address range.

Program activity All activity caused by instruction execution in the address
range. Program activity includes opcode fetches and the
cycles that result from the execution of those instructions
(like reads and writes to memory and stack pushes).

Relative A count or time value associated with activity in address
ranges in the performance measurement.

Absolute A count or time value associated with all trace state
activity, not just activity in the address ranges defined for
the performance measurement.

Mean Average number of analyzer trace states in the range
specified. The following equation is used to calculate the
mean:

states in_range
mean =
toral states

Standard deviation Deviation from the mean of state count. The following
equation is used to calculate standard deviation:

N
std dev = /\/Nl—_f X 3 Ssumq — N (mean)?
i=1

296

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

Where:

N Number of traces in the measurement.

mean Average number of states in the range per trace.
Ssumgq Sum of squares of states in the range per trace.

Symbols within range Names of other symbols that identify addresses or ranges
of addresses within the range of this symbol.

Additional symbols Names of other symbols that also identify this address.

for address Some compilers emit more than one symbol for certain
addresses. For example, a compiler may emit
"math_library" and "_math_library" for the first address in
a routine named math_library. The analyzer will show the
first symbol it finds to represent a range of addresses, or a
single address point, and it will show the other symbols
under either "Symbols within range" or "Additional
symbols for address", as applicable. In the "math_librar
example, it may show either "math_library" or
" _math_library" to represent the range, depending on
which symbol it finds first. The other symbol will be
shown below "Symbols within range" in the report. These
conditions appear particularly in default measurements that
include all global and local symbols.

Relative and absoluteRelative count is the total number of states associated with

counts the address ranges in the performance measurement.
Relative time is the total amount of time associated with
the address ranges in the performance measurement. The
absolute counts are the number of states or amount of time
associated with all the states in all the traces.

297

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

Error tolerance and An approximate error may exist in displayed information.

confidence level

Error tolerance for a level of confidence is calculated using
the mean of the standard deviations and the mean of the
means. Error tolerance gives an indication of the stability
of the information. For example, if the error is 5% for a
confidence level of 95%, then you can be 95% confident
that the information has an error of 5% or less.

The Student’s "T" distribution is used in these calculations
because it improves the accuracy for small samples. As the
size of the sample increases, the Student’s "T" distribution
approaches the normal distribution.

The following equation is used to calculate error tolerance:

error pct.
Where:
Om
t
N
Pm

Om Xt
~ N X Pn

x 100

Mean of the standard deviations.

Table entry in Student’s "T" table for a given confidence
level.

Number of traces in the measurement.

Mean of the means (the mean sample).

298

Chapter 7: Making Software Performance Measurements

To use the Software Performance Measurement Tool

Duration measurements provide a best-case/worst-case characterization of code
execution time. These measurements record execution times that fall within a set of
specified time ranges.

» To interpret reports of duration measurements, understand the information
described here. You will see this information in duration measurement reports.

Number of intervals

Maximum time

Minimum time

Average time

mean =

Number of "from address" and "to address" pairs (after
prefetch correction).

The greatest amount of time between the "from address" to
the "to address".

The shortest amount of time between the "from address" to
the "to address".

Average time between the "from address" and the "to
address". The following equation is used to calculate th
average time:

amount of time for all intervals

number of intervals

Standard deviation

Deviation from the mean of time. The following equation
is used to calculate standard deviation:

1 N
std dev = /\/NTI Xiélssumq -

Where:
N
mean

Ssumgq

N (mean)2

Number of intervals.
Average time.

Sum of squares of time in the intervals.

299

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

Error tolerance and An approximate error may exist in displayed information.

confidence level

Error tolerance for a level of confidence is calculated using
the mean of the standard deviations and the mean of the
means. Error tolerance gives an indication of the stability
of the information. For example, if the error is 5% for a
confidence level of 95%, then you can be 95% confident
that the information has an error of 5% or less.

The Student’s "T" distribution is used in these calculations
because it improves the accuracy for small samples. As the
size of the sample increases, the Student’s "T" distribution
approaches the normal distribution.

The following equation is used to calculate error tolerance:

error pct.

Where:

Om

Pm

Om Xt

=NTPm-X1OO

Mean of the standard deviations in each time range.

Table entry in Student’s "T" table for a given confidence
level.

Number of intervals.

Mean of the means (for example, mean of the average
times in each time range).

300

Configuring the Emulator

301

Configuring the Emulator

This chapter describes how to configure the emulator. You must map memory
whenever you use the emulator. When you plug the emulator into a target system,
you must configure the emulator so that it operates correctly in the target system.
The configuration tasks are grouped into the following sections:

» Using the configuration interface.

e Setting up the emulation monitor.

* Mapping memory.

* Modifying the general configuration items.

» Selecting analyzer trace options.

» Configuring simulated /0.

» Specifying connections for interactive measurements.

The simulated I/O feature and configuration questions are described in the
Simulated 1/0 User’s Guide

The interactive measurement configuration options are described in this chapter,
and additional information is given in Chapter 6, "Making Coordinated
Measurements”.

302

Chapter 8: Configuring the Emulator
Using the Configuration Interface

Using the Configuration Interface

This section shows you how to set up, modify, and store emulation configurations
using the emulator configuration interface.

This section shows you how to:

» Start the configuration interface.

* Modify a configuration section.

» Apply configuration changes to the emulator.
» Store configuration changes to a file.

» Change the configuration directory context.

» Display the configuration context.

» Access help topics.

» Access context sensitive (f1) help.

» Exit the configuration interface.

This section describes the emulator configuration in general. The remaining
sections in this chapter describe the specific configuration options for your
emulator.

When you have developed an emulation configuration, saved it to a file, and closed
the configuration interface, you can useFfile - Load — Emulator Config...

command and associated dialog box in the top level emulator/analyzer interface to
load the configuration file into your emulator.

303

Chapter 8: Configuring the Emulator
Using the Configuration Interface

To start the configuration interface

ChooseModify — Emulator Config... from the emulator/analyzer interface
pulldown menu.

Using the command line, enter tmedify configuration command.

The configuration interface top-level dialog box (see the following example) is
displayed.

The configuration sections that are presented depend on the hardware and the
features of your particular emulator.

The configuration interface may be left running while you are using the
emulator/analyzer interface.

If you're using the Softkey Interface from a terminal or terminal emulation
window, you don’t get a dialog box from which to choose configuration sections;
however, you have access to the same configuration options through a series of
configuration questions.

304

Chapter 8: Configuring the Emulator
Using the Configuration Interface

Examples The 68040 emulator configuration interface top-level dialog box is shown below.
= Emulator Configuration: emG68040 {(m68040) E N
The menu bar.
— i File Display Help
~ Emulator Configuration Sections
Clicking on one of [.i Monitor Setup
these lines selects [} Memory Map
the associated
configuration [: General ltems
section. [} Trace Options
[Simulated 10
~Analyzer Configuration Sections
I} Interactive Measurement Specification
Clicking this

pushbutton loads any |Apply to Emulator

configuration change
into the emulator.

This portion of the dialog box displays
configuration status information.

305

Chapter 8: Configuring the Emulator
Using the Configuration Interface

To modify a configuration section

1 Start the emulator configuration interface.
2 Click on a section name in the configuration interface top-level dialog box.

3 Use the section dialog box to make changes to the configuration.

If you are using the Softkey Interface:

The configuration questions in the "Monitor Setup" section are the first to be
asked.

To access the memory map and define, modify, or delete map entries in the
"Memory Map" section, answer "yes" to the "Modify memory configuration?"
question.

To access the questions in the "General Items" section, answer "yes" to the
"Modify emulator pod configuration?" question.

To access the questions in the "Trace Options" section, answer "yes" to the
"Modify debug/trace options?" question.

To access the questions in the "Simulated 10" section, answer "yes" to the
"Modify simulated I/O configuration?" question.

To access the questions in the "Interactive Measurement Specification" under
"Analyzer Configuration" section, answer "yes" to the "Modify interactive
measurement specification?" question.

306

Examples Most configuration sections provide dialog boxes similar to the following.
E E
e Emulator Configuration: em68040 (mB68040) o il
Display Help

The dialog box for
this section has
been opened.

Applies configuration
changes to the emulator.

Configuration options
in this section.

1 | oK |Cance| Help
E E
Closes the dialog box. Cancels all changes Presents emulator
since the last "OK", configuration help
"Apply to Emulator”, topic browser.

Chapter 8: Configuring the Emulator

Using the Configuration Interface

+ Emulator Configuration Sections
iii] Monitor Setup

[Memory Map

[} General ltems

[} Trace Options

7 Simulated 10

~Analyzer Configuration Sections

[} Interactive Measurement Specification

3 LAppIy to\Emulator Changes Mot Loaded

—'E Emulator Configuration: Monitor Setup

~Monitor Setup

Monitor Type | Foreground (built-in) =

Rondtor Filename fmB4783. ¥

Monitor Address 1BARH

Interrupt Priority Level

Emulator Terminates Monitor Bus Cycles < Yes & Mo

Enable Keap Allve Fanetion < ez & Neo

Keep Allve Function Uods & Supey € Lisey

Keoep Albve Address

or store to file.

307

Chapter 8: Configuring the Emulator
Using the Configuration Interface

As soon as you change a configuration option, the change is recorded (as seen by
the "Changes Not Loaded" message in the top level dialog box).

To apply configuration changes to the emulator

Click the "Apply to Emulator” pushbutton in the top-level dialog box.

This loads the configuration changes into the emulator. Status text to the right
shows whether or not the load was successful.

You can apply configuration changes to the emulator at any time (even while
several of the configuration dialog boxes are open). This lets you verify changes
without closing dialog boxes for the configuration sections.

The "Apply to Emulator" pushbutton does not create a file to store configuration
changes. To do that, choose Hile . Store... pulldown in the top level interface
window, described later.

If you exit the configuration interface with configuration changes that have not
been stored, you will be asked whether you want to store the changes, exit without
storing, or cancel the exit.

To store configuration changes to a file

ChooseéFile - Store...from the pulldown menu in the top-level configuration
interface window, and use the file selection dialog box to name the configuration
file.

If you're using the Softkey Interface, the last configuration question,
"Configuration file name?", lets you name the file to which configuration
information is stored. If you don’t enter a name, configuration information is saved
to a temporary file (which is deleted when you exit the interface and release the
emulation system).

308

Chapter 8: Configuring the Emulator
Using the Configuration Interface

When modifying a configuration using the graphical user interface, you can store
your answers at any time.

Configuration information is saved in a file with an extension of ".EA".

When using the Graphical User Interface, do not try to modify the ".EA". It may
not load correctly after modification. Instead, start the configuration interface,
make desired modifications, and store the configuration file to a new, or existing,
filename.

For more information on how to use dialog boxes, refer to the "Entering
Commands", and "Using Special Features of the Graphical User Interface" sections
in Chapter 3, "Using the Emulator/Analyzer Interface".

To change the configuration directory context

ChooseéFile - Directory... from the pulldown menu in the top-level configuration
interface window, and use the directory selection dialog box to specify the ne
directory.

The directory context specifies the directory to which configuration files are stored
and from which they are loaded.

For more information on how to use dialog boxes, refer to the "Entering
Commands", and "Using Special Features of the Graphical User Interface" sections
in Chapter 3, "Using the Emulator/Analyzer Interface".

309

Chapter 8: Configuring the Emulator
Using the Configuration Interface

To display the configuration context

» ChooseDisplay - Context...from the pulldown menu in the top-level
configuration interface window.

The current directory context and the current configuration files are displayed in a
window. Click the "Done" pushbutton when you wish to close the window.

@ Emulator Configuration: Current Context

= Directory: fusrthp64000fdemofdebug_envfhp&4783
| Configuration File: fusrfhp&4000/demofdebug_envihp64783/kyConfig

To access help topics

* ChooseHelp — General Topic...from the pulldown menu in the top-level
configuration interface window, click on a topic in the selection dialog box, and
click the "OK" pushbutton.

310

Chapter 8: Configuring the Emulator
Using the Configuration Interface

To access context sensitive (f1) help

Place the mouse pointer over the item for which you want help, and press the f1
keyboard key.

ChooseHelp — On Item... from the pulldown menu in the top-level configuration
interface window. Notice that the mouse pointer changes to a question mark.
Move the question mark over the item for which you want help in the top-level
configuration interface window, and click thelectmouse button.

If you are having trouble using the f1 key to obtain help, you may be able to use the
guestion mark obtained by thielp - On Item... pulldown. If theHelp - On

Item... pulldown does not obtain the desired result, try the f1 key. The operation of
these two selections differs on different platforms.

In some dialog boxes, the question mark obtained byehe— On Item...
pulldown may not obtain a help screen when you place it on a command nam
the help screen may be obtained when you place the question mark over an i

field or pushbutton associated with the command name.

To exit the configuration interface

ChooseFile - Exit from the pulldown menu in the top-level configuration interface
window (or type <CTRL>Xx).

This will close the top-level configuration interface window together with all of the
children of the top-level configuration interface window.

If configuration changes have not been stored to a file, a confirmation dialog box
appears, giving you the options of: storing, exiting without storing, or canceling the
exit.

311

Chapter 8: Configuring the Emulator
Using the Configuration Interface

To load a configuration

* In the emulator/analyzer interface, chobde — Load — Emulator Config... from
the pulldown menu, and use the file selection dialog box to specify the
configuration file to be loaded.

» Using the command line, enter load configuration <FILE> command.

This command loads previously created and stored configuration files. You cannot
load a configuration while the configuration interface is running.

312

Chapter 8: Configuring the Emulator
Modifying the Monitor Setup

Modifying the Monitor Setup

In order to modify the monitor setup, you must obtain the top-level Emulator
Configuration dialog box. Simply click on the Monitor Setup pushbutton. The
Monitor setup dialog box will appear.

—'E Emulator Configuration: Monitor Setup

~Monitor Setup

Monitor Type | Foreground (built-in) =

Montior Fllenamne FrmE4783. % |

Monitor Address 1BEBH

Interrupt Priority Level
Emulator Terminates Monitor Bus Cycles <> Yes & No
Enabile Keep Allve Funetion < Ve @ Mo
Keep Alive Funstion Code & Bupsr € lser

Keep Allve Address

This section shows you how to:

» Select the monitor type.

» Select the monitor filename.

» Select the monitor address.

» Select the monitor interrupt priority level.

» Select whether or not the emulator will terminate monitor bus cycles without
regard to the state of the target system.

» Select whether or not there will be a keep-alive function, and if there will be a
keep-alive function, select its address and function code, if desired.

313

Chapter 8: Configuring the Emulator
Modifying the Monitor Setup

To select the monitor type

Choose "Background”, "Foreground (built-in)", Foreground (customized)”, or
"None" for the "Monitor Type" configuration option.

Choosing "Background" specifies that the background monitor will be used with

the emulator. The background monitor is useful when you are first plugging into a
target system. It occupies no address space that might be used by your target
program. You cannot enable the MMU, use the processor caches, or perform dma
cycles when the background monitor is in use, or when your system is arbitrating
the bus. Also, when one of the routines of the background monitor is executing, the
emulator cannot service any target system interrupts, even NMI interrupts.

Choosing "Foreground (built-in)" specifies that the foreground monitor shipped
with your emulator will be used. A foreground monitor must be used when the
memory management unit or the caches of the MC68040 (or both) are enabled or
bus arbritration is performed. Also, the emulator can be configured to service
target system interrupts of any desired level during execution of foreground
monitor routines.

Choosing "Foreground (customized)" specifies that a custom foreground monitor
will be used. With this selection, you will need to specify the Monitor Filename in
this dialog box.

Choosing "None" specifies that no monitor will be used. This option is useful

when you are first connecting the emulator to a target system (refer to Chapter 18,
"Connecting the Emulator to a Target System"). Sometimes the task of connecting
an emulator to a target system can be complicated by characteristics of the
emulation monitor. For example, foreground monitor bus cycles are visible to the
target system. By selecting "None", you eliminate the question "am | having

trouble connecting to my target system because of something the monitor is doing?"

When you choose "None", you will be able to run the emulator from reset (if you
previously loaded a program), and you will be able to take a trace with the analyzer
to see what activity is being executed by your emulator. You will not be able to use
any of the other emulator capabilities and features (such as loading a program or
displaying memory). When your system is running successfully with the "None"
selection, then choose one of the other monitor options to see if your target system
will operate with the emulation monitor.

314

Chapter 8: Configuring the Emulator
Modifying the Monitor Setup

To select the monitor filename

Type in the name of the custom foreground monitor in the text entry area beside
"Monitor Filename".

The custom foreground monitor absolute file will be automatically loaded after
configuration is complete. The monitor must already be linked to the desired
location and should not be linked with any of your target programs.

The location for the monitor source file f8sr/hp64000/monitor/fm64783.s
The file format for the monitor MUST be HP64000 absolute format (file.X).
If using the HP 68030/68040 assembler/linker (B1465), use the -h option.
If using Microtec Research, Inc. assembler/linkers, use the -h option.

For other language systems, use the "HP 64000 Hosted Development System
Absolute File Translator" program.

No symbols are required for loading the custom foreground monitor.

315

Chapter 8: Configuring the Emulator
Modifying the Monitor Setup

To select the monitor address

Type the base address of the foreground monitor in the text entry field beside
"Monitor Address" in the dialog box.

Enter a hexadecimal address on a 4-Kbyte boundary (XXXXX000h).

If you are using a foreground monitor (either the built-in foreground monitor or a
custom foreground monitor), you must set the base address where the monitor will
be loaded.

The emulator loads the foreground monitor into the 4-Kbyte block of dual-port
emulation memory. It resets the memory map, and creates a map term at the
address you enter in this dialog box. You cannot delete or alter this map term by
using the map configuration commands. Instead, you must change the monitor
configuration using this Monitor Setup dialog box.

If the memory management feature of the MC68040 emulator is enabled, be sure
the foreground monitor is mapped in an area that is translated 1:1, and it is not
write-protected. Refer to the end of this chapter for instructions on how to map the
foreground monitor to appropriate address space.

316

Chapter 8: Configuring the Emulator
Modifying the Monitor Setup

Example

To select the monitor interrupt priority level

Type in the desired interrupt priority level for your foreground monitor in the text
entry area beside "Interrupt Priority Level".

Enter a number from 0 to 7 in the text entry area. This is the interrupt priority level
that will be held off by the emulation monitor during monitor execution. Interrupts
having values higher than the number you enter here will be recognized by the
processor.

Set the interrupt priority level low enough to allow your target system to function
correctly, but high enough to avoid excessive interrupt processing. The default
value of 0 allows all target system interrupts to be recognized by the foreground
monitor.

The emulator uses a level 7, non-maskable interrupt to interrupt the target system
and break into the monitor. When the foreground monitor is not executing critical
code (such as monitor entry and exit), the foreground monitor will set the inter
priority mask to the value you enter beside "Interrupt Priority Level", or to the
interrupt level that was in effect before monitor entry, whichever is greater.

Suppose your target system has a disk device driver that uses interrupt level 5, and
the service routine must be run to prevent target system damage. To allow
interrupts of higher priority than level 4 to be serviced during foreground monitor
execution, enter 4 beside "Interrupt Priority Level". In this case, all interrupts with
values of 4 or less will be ignored when the foreground monitor is executing.

317

Chapter 8: Configuring the Emulator
Modifying the Monitor Setup

To select whether or not the emulator will
terminate monitor bus cycles

* Choose "Yes" or "No" for the "Emulator Terminates Monitor Bus Cycles"
configuration option.

Choosing "Yes" specifies that the emulator will terminate foreground monitor
cycles using emulator-generated cycle termination signals. Cycle termination
signals generated by the target system during access to the foreground monitor,
including TEA, will be ignored.

Choosing "No" specifies that foreground monitor cycles will be terminated when
the target systeMA, or TEA, or both signals are asserted.

This configuration item only applies to the map term assigned to the foreground
emulation monitor. If you choose "No", and the emulation monitor is in an address
range where the target system does not rtArar TEA, the emulator will stop.

If this happens, reset the emulation processor, and then choose "Yes" for this
configuration option.

Foreground monitor bus cycles are visible to the target system. If you choose
"Yes", your target system may operate erratically if it is not expecting the
emulation monitor bus cycles.

318

Chapter 8: Configuring the Emulator
Modifying the Monitor Setup

To select if there will be a keep-alive function, its
address, and function code

Choose "Yes" or "No" for the "Enable Keep Alive Function” configuration option
(available for use with the background monitor).

Choosing "Yes" specifies that a selected address will be read by the background
monitor periodically. You must also specify the address to be read, and the
function code used when reading that address, as follows:

» Choose "Super" or "User" for the "Keep Alive Function Code" configuration
option. This determines whether the supervisor function code or the user
function code will be used when the emulator reads the keep-alive address.

» Typein the keep-alive address in the text entry area beside "Keep Alive
Address". This address in target memory will be read periodically during

background monitor execution. The read accesses to the target memory
address can be used to avoid a timeout of a target system bus or a watch
timer during background monitor execution.

Choosing "No" specifies that there will be no keep-alive memory read cycles in
target memory during background monitor operation.

319

Chapter 8: Configuring the Emulator

Mapping Memory

Mapping Memory

Because the emulator can use target system memory or emulation memory (or
both), you must map the available ranges of memory so that the emulator knows
where to direct its accesses.

All memory ranges used by your programs must be specified in the memory map
before you load programs into memory.

Up to eight ranges of memory can be mapped, and the resolution of mapped ranges
is 256 bytes, that is, the memory ranges must begin on 256-byte boundaries
(numbers ending in 00h) and must end on 256-byte boundaries (numbers ending in
FFh).

Emulation memory is made available to the mapper in 256-byte blocks. When you
map an address range to emulation memory, at least one 256-byte block is assigned
to the range. When a block of emulation memory is assigned to a range, itis no
longer available, even though part of the block may be unused.

In order to map memory, you must first start the configuration interface and access
the "Memory Map" configuration section (refer to the previous "Using the
Configuration Interface" section).

320

Chapter 8: Configuring the Emulator
Mapping Memaory

—'E Emulator Configuration: Memory Map

File Map Settings Help

Emulation memory remaining:
attribute

ielal: bytes

1 18@E@H- 1FFFH MONITOR dualpart

STATUS: Happing emulation memory, default blocks: target/ram

This section shows you how to:

* Add memory map entries.

* Modify memory map entries.

» Delete memory map entries.

» Characterize mapped and unmapped ranges.

» Specify whether or not read data will be inhibited from being loaded into the
caches during transactions in the associated memory range.

* Map memory ranges in which the emulator will terminate bus cycles without
regard to the state of the target system.

* Map memory ranges to be stored within the dual port memory.

321

Chapter 8: Configuring the Emulator

Mapping Memory

To add memory map entries

Chooseviap - Add New Entry from the pulldown menu in the memory map
window.

Press and hold trselectmouse button and choo&dd New Entry from the popup
menu.

Using the command line, enter the address range, memory type, and possibly an
emulator_terminates_bus_cyclesortransfer_cache_inhibitattribute, or both
attributes for each emulation memory range.

You can characterize memory ranges as emulation RAM, emulation ROM, target
system RAM, target system ROM, or as guarded memory.

Guarded memory accesses will cause emulator execution to break into the monitor
program.

Writes to locations characterized as ROM will cause emulator execution to break
into the monitor program if you choose "Yes" for the "Break processor on Write to
ROM" option in the "Emulator Configuration: General Items" dialog box.

RAM memory in the emulation or target system will be changed by processor
writes, even if that memory has been characterized as ROM.

You can include the transfer cache inhibit attribute with any memory range. If
included, no data will be loaded into either the instruction cache or data cache
during any transactions occuring in the associated memory range. This ensures that
all activity will appear on the emulation bus and be available for tracing with the
emulation-bus analyzer.

You can include the "Emulator Terminates Bus Cycles" attribute with any memory
range. If included, the emulator will terminate bus cycles without regard to the
state of the target system. This is useful in ranges whefé\thar TEA, or both
signals are not available from the target system. The danger of this option is that
the emulator may become out of sync with the target system if the target system
supplies these signals.

You can specify that a particular address range be loaded into the dual-port memory
if using of a background monitor in the Monitor Setup dialog box.

322

Chapter 8: Configuring the Emulator
Mapping Memaory

The first two methods of mapping memory ranges give you the following dialog

box.

The starting address of
the range to be added.

Subtract or add the
address increment value.
The end address is

Configuration: Memory Map

changed by the same

The ending address o
the range to be added.
Specifies the increment
value for the "+" and

"-" puttons of the start
and end address fields.

Specifies type of
memory occupied by
this range.

Specify if read data i

- Add New Map Entry

amount, moving the

Start Address

End Address

MemoryType Emul RAM 2

Transfer Cache Inhibit

Pral Port Memaory

B
B . I Change only the end
Address Increment m B .

—

Emulator Terminates Bus Cycles < Yes & No

< Yes ¢ \No

O Yoo @ No

block of memory.

\

address, thereby
changing the size of the
block of memory.

Multiply or divide the
increment value by 2.

These pushbuttons may

inhibited from being

[

be held down to repeat

[Done the action.

loaded into the caches
in this range.

Specify if the emulator
terminates bus cysles in
this range without
waiting for the target
system.

Adds the
defined range

map.

Only available when
the background
monitor is in use.

Inactive in the
"Add" mode of
to the memory map entry.

Closes the
dialog box.

323

Chapter 8: Configuring the Emulator

Mapping Memory

Examples

Example 1: Suppose you're using the emulator in-circuit, and there is a 12-byte I/O
port at 1c000 hex in your target system. You have ROM in your target system from
0 through ffff hex. Also, you want to use the dual-port emulation memory at 20000

hex. You could use the Memory Map dialog box to create the following three map

entries:

Start Addres4c000h End Addresd.cOffth, Memory TypeTarget RAM

Start Addres®h, End Addres$§ffffh, Memory TypeTarget ROM

Start Addres0000h End Addres20fffh, Memory TypeEmul RAM, Dual Port
Memory =Yes

Using the command line, you would enter:

1c000h thru 1cOffh target ram
0 thru Offffh target rom
20000h thru 20fffh emulation ram dualport

Remember that the only way to make the dual-port emulation memory available for
your target program is to use the background monitor. When a foreground monitor
is in use, it occupies the dual-port emulation memory, by default.

Example 2: This second example shows the relationship between memory ranges
and the block sizes of memory. Suppose you have installed 256-Kbyte SRAM
memory modules in Memory slots 0 and 1 (called BANK 0 and BANK 1) on the
emulation probe. This makes four 64-Kbyte blocks and two 128-Kbyte blocks
available to the memory mapper. Then you enter the following map commands:

Start Addres®h, End Addresgfffh, Memory TypeEmul RAM

Start Addres20000h End Addres8f000h, Memory TypeEmul RAM

Start Addresg0000h End Addresdgffffh, Memory TypeEmul RAM

Start Addres$0000h End Addres&00ffh, Memory TypeEmul RAM

Map - Default Memory Type - Target RAM - Transfer Cache Inhibit ON

Using the command line, you would enter:

0 thru 7fffh emulation ram

20000h thru 3f000h emulation ram
40000h thru 4ffffh emulation ram
50000h thru 500ffh emulation ram
default target ram transfer_cache_inhibit

If you haven't used the dual-port emulation RAM, the first map term that is small
enough to fit is assigned to that memory. In this example, that is the last term you

324

Chapter 8: Configuring the Emulator
Mapping Memaory

defined (the range from 50000..500ff). The entire 4-Kbyte block is reserved though
you specified only a 256-byte range. Two 64-Kbyte blocks and one 128-Kbyte
block are used from the SRAM emulation memory on the probe, leaving two
64-Kbyte blocks and one 128-Kbyte block. One of the 64-Kbyte blocks is used for
the first map term, but 32 Kbytes of that block are unused and unavailable. The
third term uses the other 64-Kbyte block. The second term uses part of the
128-Kbyte block, leaving the rest unavailable.

Mapper resolution is independent of block allocation. In the above example, if you
haddefault guarded and your program accessed 8000h, the emulator would do a
guarded memory break.

To modify memory map entries

ChooseMap - Modify Entry from the pulldown menu in the memory map
window and select the entry number from the cascade menu.

Position the mouse pointer over the entry you wish to modify. Press and hold the
selectmouse button, and chods®dify Entry from the popup menu.

These commands open the same dialog box that is used for adding memory map
entries, except it lets you modify the current settings for the entry.

In order to modify an entry when using the command line, you must delete the
entry and add a new entry.

325

Chapter 8: Configuring the Emulator
Mapping Memory

Examples To modify a memory map entry using the popup menu:

—'E Emulator Configuration: Memory Map

Help

Emulation memory remaining: BBk bytes
attribute
dualport

Memory Map Display

Bring up the menu—;]
Modify Entry

and choose this item
Add New Entry

to modify the
highlighted memaory Delete Entry

map entry.

Use the Modify Map Entry dialog box (same as the Add New Map Entry dialog
box) to modify the entry. Click the "Modify" pushbutton to modify the selected
range in the memory map according to changes you make in the Modify Map Entry

dialog box.

326

Chapter 8: Configuring the Emulator
Mapping Memaory

To delete memory map entries

ChooseMap - Delete Entry from the pulldown menu in the memory map window
and select the entry number from the cascade menu.

Position the mouse pointer over the entry you wish to delete. Press and hold the
selectmouse button and chooBelete Entry from the popup menu.

Using the command line, enter ttielete <ENTRY#>command.

Note that programs should be reloaded after deleting map terms. The memory
mapper may reassign blocks of emulation memory after the insertion or deletion of
map terms.

To characterize unmapped ranges

ChooseMap - Default Memory Type from the pulldown menu in the memory
map window and select the memory type from the cascade menu. ctigose
Target RAM or Target ROM, you must also chooSeansfer Cache Inhibit
OFF or Transfer Cache Inhibit ON.

— If you choosélransfer Cache Inhibit OFF, transactions that are sent
to unmapped memory may also be loaded into the instruction cache,
data cache, or both caches.

— If you choosélransfer Cache Inhibit ON, no data that is sent to
unmapped memory will be written into the caches.

Using the command line, enter thiefault <memory_type>command.

Unmapped memory ranges are treated as target system RAM by default.
Unmapped memory ranges cannot be characterized as emulation memory.

327

Chapter 8: Configuring the Emulator
Mapping Memory

To map memory ranges in which data is not
loaded into the caches

* Choose "Yes" or "No" for the "Transfer Cache Inhibit" configuration option in the
"Modify Map Entry" or "Add New Entry" dialog box.

Choosing "Yes" specifies that no data will be loaded into either the instruction
cache or data cache during any transactions occuring in the associated memory
range. This choice is useful when you need to have all transactions appear on the
external buses to allow the emulation-bus analyzer to capture complete traces of
processor activity.

Choosing "No" specifies that data will be loaded into either the instruction cache or
data cache, as applicable, during transactions occurring in the associated memory
range. This choice is useful when you need to have transactions completed in the
fastest and most efficient manner. Use of processor caches increases the processor
speed of execution.

To map memory in which the emulator will
terminate bus cycles

* Choose "Yes" or "No" for the "Emulator Terminates Bus Cycles" configuration
option in the "Modify Map Entry" or "Add New Entry" dialog box.

Choosing "Yes" causes the emulator to terminate bus cycles without regard to the
state of the target system. This is useful in ranges wheféthe TEA or both

signals from the target system are not available. The danger of including this
option is that the emulator may become out of sync with the target system if the
target system provides these signals.

Choosing "No" ensures that the timing of cycle termination signals will not cause
the emulator and target system to become out of sync. No emulation bus cycle will
be terminated until th€A or TEA signal is received from the target system.

328

Chapter 8: Configuring the Emulator
Mapping Memaory

To map memory to be stored within the dual-port
memory

Choose "Yes" or "No" for the "Dual Port Memory" configuration option in the
"Modify Map Entry" or "Add New Entry" dialog box (available only when using
the background monitor).

Choosing "Yes" specifies that the map term must be stored in the 4-Kbyte dual-port
emulation memory.

Choosing "No" specifies that the map term must be stored in either emulation
memory or target system memory, according to specifications made for its address
range in the memory map.

This block can also be mapped by specifyingdinlport attribute after the map
address and memory type specification on the command line.

There is one 4-Kbyte block of dual-port emulation memory on the emulator pr
(Dual-port means the emulation controller can access memory locations witho
interfering with program execution). If you use a foreground monitor, the monit
will be loaded into this space and you won't be able to map this memory for any
other purpose.

If you specify an address range less than 4 Kbytes to be placed in the dual-port
memory, all 4 Kbytes of the dual-port memory will be allocated because that is the
minimum block size for that memory. If you specify a block size less than 4 Kbytes
and the dual-port memory is unmapped, the emulator will use that memory to more
closely match the requested address range to the block size.

329

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

Configuring the Emulator General Items Screen

In order to configure the emulator pod, you must first start the configuration
interface and access the "General ltems" configuration section (refer to "Using the
Configuration Interface" earlier in this chapter).

—'E Emulator Configuration: General ltems

~Processor Settings
Enable Target System Interrupts @ Yes € No
Enable Instruction/Data Caches & Yes € No

Enable Memory Management Unit 4 Yes <> No

~Emulator Settings
Bus Clock Speed > 25MHz € Yes & Mo
Restrict to Real Time < Yes & No

Break on Write to ROM 4 Yes <€ No

Memory Access Size
Initial Stack Pointer Value .

Initial Program Counter Value ;| BFFFFFFFFH
|
: ;

This section shows you how to:
» Configure items that affect operation of the emulation processor, such as:
— Enable/disable target system interrupts.
— Enable/disable the instruction and data caches.
— Enable/disable the memory management unit (MMU).
» Configure items that affect operation of the emulator, such as:
— Specify whether or not the bus clock speed is greater than 25 MHz.

— Restrict the emulator to real time runs.

330

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

Break from target program to monitor execution when the emulator
detects an attempt to write to a ROM address.

Set the memory access size.

Set the initial value of the stack pointer.

Set the initial value of the program counter.

To enable/disable target system interrupts

Choose "Yes" or "No" for the "Enable Target System Interrupts" configuration
option.

Choosing "Yes" allows target system interrupts to be received by the emulatio
processor. This is useful to test whether your target system interrupt logic wo
correctly after the interrupt service routines have been designed and the interr
vectors have been assigned.

Choosing "No" causes all target system interrupts to be ignored by the emulation
processor. You may want to disable target system interrupts if your target system
interrupt logic doesn’t work correctly or isn't finished. Target system interrupts are
always ignored during execution of certain critical routines of the foreground
monitor, such as monitor entry and monitor exit, and are always ignored in the
background monitor.

331

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

To enable/disable the instruction and data caches

Choose "Yes" or "No" for the "Enable Instruction/Data Caches" configuration
option.

Choosing "Yes" allows the instruction and data caches to be enabled. With this
choice, the caches can still be disabled in selected memory ranges as specified
when mapping memory.

Choosing "No" causes the emulator to asser€DES signal to prevent

instructions and data from being loaded into the respective caches during target
program execution. This overrides any specifications you may make for individual
entries on the memory map.

When you disable the instruction and data caches, all activity appears on the
emulation processor buses where it can be monitored and captured by the
emulation-bus analyzer. When you allow the caches to be enabled, program
execution is faster, but only partial information is available to be traced by the
emulation-bus analyzer. This may cause confusing trace displays or failure to
trigger, especially if the code being analyzed is a small loop where all the
instructions and operands fit into cache and registers.

When you are more concerned about measuring processor performance, you should
enable the caches. If you are making analyzer measurements at the same time, you
may need to experiment to find suitable trigger combinations.

If you need to disable caching only for accesses to a specific memory block, enter
that as part of your specification when defining the corresponding memory map
term. This allows you to capture analysis information for specific memory ranges
without dramatically affecting overall system performance.

332

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

To enable/disable the memory management unit
(MMU)

Choose "Yes" or "No" for the "Enable Memory Management Unit" configuration
option.

Choosing "Yes" allows the MMU of the emulation processor to control placement
of the target program in physical memory. The target system will be able to enable
and disable the MMU during program execution by usindVib¢S signal.

Choosing "No" causes the emulator to disable the MMU of the emulation processor
by asserting th#DIS signal.

The MC68040 MMU can manage a program that occupies a large space in logical
(virtual) memory while running it from a much smaller space in physical memory.
When you operate the emulation processor with the MMU enabled, you must
ensure that the foreground monitor is contained in memory space that:

* is not write-protected.

* is mapped 1:1 (logical address = physical address). The reason that this
mapping is important is that the MMU may be enabled or disabled at any time
during program execution; whether or not the MMU is enabled, the emulator
must be able to enter the foreground monitor to provide emulation features.
Refer to the section titled "Mapping The Foreground Monitor For Use With
The MC68040 MMUSs" later in this chapter.

333

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

To specify whether the clock speed of the
emulation bus is greater than 25 MHz

* Choose "Yes" or "No" for the "Bus Clock Speed >25MHz" configuration option.

Choosing "Yes" causes the emulator to add one wait state to each synchronous and
burst memory access.

Choosing "No" allows all synchronous and burst accesses to be completed at full
processor speed with no wait states.

When the external bus clock (BCLK) is operating at a frequency above 25 MHz,
this question must be answered "Yes".

When operating above 25 MHz, the target system is responsible for adding a wait
state to its accesses. The emulator will not attempt to add a wait state to target
accessses, other than to ignore cycle terminations until a wait state has passed. The
target system is responsible for making sure cycle terminations and data are valid
after the wait state.

The 4-Mbyte memory modules are not as fast as the 256-Kbyte and 1-Mbyte
memory modules. The emulator always adds one wait state to accessess to
emulation memory when it detects the presence of any 4-Mbyte memory modules
on the emulation probe.

334

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

CAUTION

To restrict the emulator to real-time runs

Choose "Yes" or "No" for the "Restrict to Real Time" configuration option.

Choosing "Yes" causes the emulator to offer only a limited set of emulation
features: reset, break, run, and step.

Choosing "No" allows the emulator to offer its complete emulation feature set at
any time during execution of your target program.

If your target system could be damaged because the emulator is interrupted while
running critical routines, choose "Yes" for this configuration option.

The emulator uses the emulation monitor program to implement some features,
such as displaying processor registers. When the emulation processor executes a
monitor routine, it is not executing your target program. This may cause probl

in target systems that need real-time program execution (uninterrupted execut

the target program).

When you choose "Yes" for this configuration item, you must do an execution
break in order to display registers or display target memory, and you will not be
able to use simulated 10.

While this configuration item affects which commands will be accepted, it does not
affect access breakpoints, such as break on write to ROM, break on analyzer
trigger, or break on access to guarded memory. It also doesn't affect the emulator’s
response to execution breakpoints.

335

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

To enable/disable breaks on writes to ROM

* Choose "Yes" or "No" for the "Break on write to ROM" configuration option.

Choosing "Yes" enables breaks on writes to ROM with the following results:

» The emulator will stop executing the target program and begin execution in the
emulation monitor whenever the target program attempts to write to a memory
region mapped as ROM.

» The emulator will modify the content of RAM memory that is mapped as
ROM, even when write to ROM break is enabled.

Choosing "No" disables breaks on writes to ROM. The emulator will continue to
execute the target program even when it detects an attempt to write to an address
mapped as ROM. Emulation writes will modify the content of RAM memory that
has been mapped as ROM.

336

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

To specify the memory access size

Choose "Any", "Bytes", "Words", or "Longs" for the "Memory Access Size"
configuration option.

Choose "Any" if you want the emulator to select the optimum access size for the
transaction to be completed.

Choose "Bytes" if the emulator should make only 8-bit accesses to memory.
Choose "Words" if the emulator should make only 16-bit accesses to memory.
Choose "Longs" if the emulator should make only 32-bit accesses to memory.

When accessing memory locations, the access mode specifies the type of
microprocessor cycles that are used to read or write the value(s). By default, "Any"
is selected. In the "Any" mode, long-word accesses are made to memory, except
when accessing an address not on a long-word boundary, or when only one b

one word remains to be accessed. In these cases, the appropriate memory a
mode ("Bytes" or "Words") will be used.

If you choose the "Bytes" access mode, and a target system location is modified to
contain the value 12345678H, byte instructions will be used to write the byte values
12H, 34H, 56H, and 78H to target system memory.

If set to "Any", the size you include in your "display memory" or "modify memory"
command will be used for the access. It will temporarily override the "Any"
designation for the access. If set to "Bytes", "Words", or "Longs", the size selected
in your "display memory" or "modify memory" commands will have no effect on

the actual memory access; it will be what you specified for the memory access size.

337

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

To specify the initial value of the stack pointer

Type in the address that is the initial value for the interrupt stack pointer in the text
entry area beside "Interrupt Stack Pointer Value".

Enter a 32-bit hexadecimal address for the initial value of the ISP. Normally, this
value is the same as the value at memory address 0. The default value is 1H. This
in an invalid value. Itis given as the default to remind you to enter the correct
hexadecimal address for the ISP before using the emulator.

Normally, if you run the emulator from reset, the processor fetches the value at
offset 0 from the vector table, and loads it into the interrupt stack pointer. There are
cases where the interrupt stack pointer cannot be fetched from the reset vector table.
For example, if you reset the emulator, break to the emulation monitor, and then

run the emulator from the monitor, the stack pointer value will not be read from the
normal location. In these cases, the stack pointer value will be read from the value
you enter here.

338

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

To specify the initial value of the program counter

Type in the address that is the initial value for the program counter in the text entry
area beside "Initial Program Counter Value".

Enter a 32-bit hexadecimal address for the initial value of the program counter.
Normally, this value is the same as the value at memory address 4. The default
value is OFFFFFFFFH. This in an invalid value. Itis given as the default to remind
you to enter the correct hexadecimal address for the program counter before using
the emulator.

Normally, if you run the emulator from reset, the processor fetches the value at
offset 4 from the vector table, and loads it into the program counter. There are
cases where the program counter value cannot be fetched from the reset vector
table. For example, if you reset the emulator, break to the emulation monitor, and
then run the emulator from the monitor, the program counter value will not be read
from the normal location. In these cases, the program counter value will be re
from the value you enter here.

339

Chapter 8: Configuring the Emulator
Setting the Trace Options

Setting the Trace Options

In order to set the trace options, you must first start the configuration interface and
access the "Trace Options" configuration section (refer to the previous "Using the
Configuration Interface" section).

~—'E Emulator Configuration: Trace Options

Trace Options

Trace Mode (Type of Cycles)
Analyzer Speed

| o (e] |

This section shows you how to:

» Enable tracing emulation-bus activity in foreground address space, background
address space (tracing execution of the background monitor), or both address
spaces. This lets you select whether to include background monitor execution
in analyzer traces when using the background monitor.

» Identify the data rate of your emulation system for the emulation-bus analyzer.
The capabilites of the 1K analyzer differ with different data rates. The full
capabilites of the deep analyzer are available at all data rates.

340

Chapter 8: Configuring the Emulator
Setting the Trace Options

To include/exclude background monitor
execution in the trace

Choose "Foreground", "Background", or "Both" for the "Trace Mode (Type of
Cycles)" configuration item.

Choosing "Foreground" specifies that the analyzer trace only foreground cycles,
including execution of your target program and of the foreground monitor, if you
are using a foreground monitor. In this mode, the analyzer will not trace execution
of a background monitor.

Choosing "Background" specifies that the analyzer will trace only background
cycles. This is rarely useful because it excludes target program execution.

Choosing "Both" specifies that the analyzer trace both foreground and background
cycles. This option allows all emulation processor cycles to be viewed in the trace

display when you are using a background monitor. .

To identify the data rate of your emulation
system for the 1K analyzer

If you are using the deep analyzer with your emulator, you can ignore this choice.
The deep analyzer will provide its full capabilities regardless of the choice made
here.

If you are using the 1K analyzer, choose "Slow", "Fast", or "Very Fast" for the
"Analyzer Speed" configuration item.

Choosing "Slow" specifies that the burst data rate of the traced activity is not more
than 16.67 MHz. The 1K analyzer can perform counts of selected states or counts
of time between states when the traced data rate is "Slow".

Choosing "Fast" specifies that the burst data rate of the traced activity is between
16.67 and 20.00 MHz. The 1K analyzer can perform counts of selected states when

341

Chapter 8: Configuring the Emulator
Setting the Trace Options

the traced data rate is "Fast". It cannot perform counts of time between the traced
states.

Choosing "Very Fast" specifies that the burst data rate of the traced activity is
greater than 20.00 MHz. The 1K analyzer cannot perform any counts when the
traced data rate is " Very Fast".

If burst cycles are not being used, set the "Analyzer Speed" to "Slow".

The MC68040 analyzer clock is set to "Very Fast" by default. The 1K analyzer can
capture all types of bus cycles correctly up to the maximum clock rate of 40 MHz,
but cannot correctly count states or time at higher speeds for certain bus cycle types.

The worst-case situation is one where a zero-wait state burst cycle is performed.
The analyzer clock rate for burst cycles is given by the equation:

Processor Clock Ra{BCLK)
(1 + number of wait statgs

Analyzer Clock Rate

To determine the correct selection, calculate the maximum data rate by using the
above equation. Remember that the emulator requires one wait state for all accesses
when the external clock is greater than or equal to 25 MHz. Then choose the data
rate option according to the data rate.

If no burst cycles are performed, the 1K analyzer clock speed can be set "Slow".

342

Chapter 8: Configuring the Emulator
Modifying the Simulated 1O Configuration ltems

Modifying the Simulated IO Configuration Items

In order to modify the simulated I/O configuration items, you must first start the
top-level configuration interface and select the Simulated 10 pushbutton in the
dialog box. The Simulated IO dialog box will appear on screen. Refer to the
Simulated 1/0 User's Guider details on configuring and using simulated I/O.

= Emulator Configuration: Simulated 10

= Simulated 1O

Enable Polling for Simulated /0 <> Yes @& No

Simio Control Address 1; _systemio_

Simio Control Address 2: SIMIO_CA_QD

Simio Control Address 3 SIMIO_CA_T

Simio Control Address 4 SIMIO_CA_T

Simio Control Address 5 SIMIO_CA_F

Simio Control Address 6 SIMIO_CA_F

File for Standard Input § /dev/=imio

File for Standard Output: /dev/=imio

File for Standard Error : /dev/simio

Enable Simio Status Messages £ Yes & Mo

0K Cancel Help

343

Chapter 8: Configuring the Emulator
Modifying the Interactive Measurement Specification Configuration Items

Modifying the Interactive Measurement
Specification Configuration Items

In order to modify the interactive measurement configuration items, you must first
start the configuration interface. In the top-level configuration interface dialog box,
choose "Interactive Measurement Specification" under "Analyzer Configuration
Sections".

= Interactive Measurement Specification

~ Interactive Measurement Specification
BMNC on Trig1 Meither =
CMET on Trig1 Meither =

BMNC on Trig2 Meither =

CMBT on Trig2 Meither =
Emulator Break Receive Trig2 < Yes @ No

Analyzer on Trig2 | Meither =

E E

This section shows you how to:

» Select whether or not the card cage rear panel BNC is connected to the Trigl
or Trig2 or both signals of the emulation-bus analyzer.

» Select whether or not the coordinated measurement bus connection on the card
cage rear panel is connected to the Trigl or Trig2 or both signals of the
emulation-bus analyzer.

» Select whether or not the emulator will allow a signal on Trig2 to initiate an
emulation break.

» Select whether or not the emulation-bus analyzer will ignore the Trig2 line of
the coordinated measurement bus.

344

Chapter 8: Configuring the Emulator
Modifying the Interactive Measurement Specification Configuration Items

Refer to Chapter 6, "Making Coordinated Measurements”, in this manual for
further details on the use of signals shown in the Interactive Measurement
Specification dialog box.

To select whether the card cage rear panel BNC
is connected to the Trigl or Trig2 or both signals

Choose "Drive", "Receive”, "Neither", or "Both" for the "BNC on Trig1" or "BNC
on Trig2" or both configuration items.

Choosing "Drive" specifies that the signal connected to the BNC will be driven
onto the Trigl or Trig2 or both lines of the emulation-bus analyzer.

Choosing "Receive" specifies that the Trigl or Trig2 or both signals from the
emulation-bus analyzer will be available to be received by any connection to t
BNC.

Choosing "Neither" specifies that the BNC is isolated from the Trigl or Trig2 or
both lines of the emulation-bus analyzer.

Choosing "Both" specifies that the BNC can both "Drive" and "Receive" the Trigl
or Trig2 or both signals of the emulation-bus analyzer.

Refer to Chapter 16, "Specifications and Characteristics", in this manual for the
electrical specifications of the Trigl and Trig2 trigger signals.

345

Chapter 8: Configuring the Emulator
Modifying the Interactive Measurement Specification Configuration Items

To select whether the coordinated measurement
bus is connected to the Trigl or Trig2 or both
signals

Choose "Drive", "Receive", "Neither", or "Both" for the "CMBT on Trigl" or
"CMBT on Trig2" or both configuration items.

Choosing "Drive" specifies that the signal connected to the coordinated
measurement bus connection will be driven onto the Trig1 or Trig2 or both lines of
the emulation-bus analyzer.

Choosing "Receive" specifies that the Trigl or Trig2 or both signals from the
emulation-bus analyzer will be available to be received by any connection to the
coordinated measurement bus.

Choosing "Neither" specifies that the coordinated measurement bus is isolated from
the Trigl or Trig2 or both lines of the emulation-bus analyzer.

Choosing "Both" specifies that the coordinated measurement bus can both "Drive"
and "Receive" the Trigl or Trig2 or both signals of the emulation-bus analyzer.

Refer to Chapter 16, "Specifications and Characteristics", in this manual for the
electrical specifications of the Trigl and Trig2 trigger signals.

346

Chapter 8: Configuring the Emulator
Modifying the Interactive Measurement Specification Configuration Items

To select whether the emulator will allow a signal
on Trig2 to initiate a break from target program
execution

Choose "Yes" or "No" for the "Enable Break Receive Trig2" specification.

Choosing "Yes" specifies that a trigger signal supplied on the Trig2 line will be
supplied to the emulator where it can be used to initiate an emulation break from
execution of the target program and begin execution in the emulation monitor.

Choosing "No" specifies that no emulation break will occur in response to any
trigger signal on Trig2.

Use this selection if you intend to cause an emulation break in response to an event
found by a device connected to the card cage rear panel BNC. The emulator
always receives Trig1l from the emulation-bus analyzer; Trigl can be used to cause
a break from execution of the target program to the monitor when the
emulation-bus analyzer detects a trigger condition during a trace.

Refer to Chapter 16, "Specifications and Characteristics", in this manual for the
electrical specifications of the Trigl and Trig2 trigger signals.

347

Chapter 8: Configuring the Emulator
Modifying the Interactive Measurement Specification Configuration Items

To select whether or not the emulation-bus
analyzer will operate with, or ignore, the Trig2
line of the coordinated measurement bus.

Choose "Drive", "Receive”, or "Neither" for the "Analyzer on Trig2" specification.

Choosing "Drive" specifies that the emulation-bus analyzer will drive a trigger
signal on the Trig2 line of the coordinated measurement bus when it recognizes its
trigger condition during a trace.

Choosing "Receive" specifies that the emulation-bus analyzer will receive the
signal on the Trig2 line of the coordinated measurement bus when it is supplied,
and it will mark the state that it is capturing as the trigger state at the instant when
the Trig2 signal is detected.

Choosing "Neither" specifies that the emulation-bus analyzer will ignore the Trig2
line of the coordinated measurement bus.

Refer to Chapter 16, "Specifications and Characteristics", in this manual for the
electrical specifications of the Trigl and Trig2 trigger signals.

348

Chapter 8: Configuring the Emulator
Providing MMU Address Translation for the Foreground Monitor

Providing MMU Address Translation for the
Foreground Monitor

When using the memory management unit (MMU) of the MC68040, the target
system must provide the proper address translation for the foreground monitor. To
be able to do this, you will need to understand your target system’s physical
memory map and MMU address translation structure. You may need to modify
your mapping scheme or some of its mapping protections.

In order for the monitor to operate after the MMU is turned on, the target system
must provide 1:1 address translation (logical address = physical address) for the
block of memory occupied by the monitor. The foreground monitor will reside in a
4-Kbyte block of emulation memory corresponding to a single page in the MMU.
This memory can be mapped to begin on any 4-Kbyte address boundary. Simply
specify an address ending in 000h when you answer the monitor address question
when you set up the emulation configuration.

For example, if the monitor is located at logical address 0ffff1000h, then the M
must translate that address to physical address Offff1000h, logical address
0ffff1004h to physical address 0ffff1004h, etc.

Do not write-protect the address range occupied by the foreground monitor.

There are two ways to provide the proper address translation for the memory space
occupied by the foreground monitor:

e Locate the foreground monitor in a block of memory that is transparently
translated via ITTx and DTTx transparent translation registers (TTRs). The
monitor contains both code and data so two TTRs are needed to provide
translations: one for instructions, and the other for data. When the MMU
processes translations, it first compares the logical address with the parameters
of the TTRs. Ifit finds a match, the MMU uses the logical address as the
physical address for the access (obtaining the needed 1:1 translation).

The minimum block size that can be transparently translated by the TTRs is 16
Mbytes. If your target system already sets one or both data and instruction
TTRs for supervisor, or both supervisor and user, access and no
write-protection, then you may be able to find an unused 4-Kbyte block within
this 16-Mbyte range where the monitor can reside.

349

Chapter 8: Configuring the Emulator
Providing MMU Address Translation for the Foreground Monitor

Example

If your target system does not use the TTRs, then you may want to modify
your MMU boot code to configure an instruction and data TTR specifically for
the monitor.

This example shows how to modify boot code to use a pair of TTRs. Assume
your target system does not access any physical addresses in the 16-Mbyte
range 02000000..02ffffffh, and DTTO/ITTO are unused. By locating the
monitor at address 02000000 and adding the following code fragment to your
boot code, you should be able to break into the monitor while the MMU is
turned on:

* configure ITTO/DTTO for emulation monitor
MOVE.L #$0200C000,DO

MOVEC DO,ITTO

MOVEC DO,DTTO

Without these transparent translations for the monitor, the MMU will probably
generate an access fault when you attempt to break into the monitor. The
access fault would occur because addresses in the 02000000 range would have
no valid translations (they would be on a non-resident page).

If you cannot modify your boot code, you may be able to use an execution
breakpoint to break into the monitor before the MMU is enabled and use the
monitor to configure the TTRs. Do this only as a last resort because the
MC68040 processor automatically disables all TTRs whenever an emulation or
target reset occurs (and they must be reinitialized each time).

The second way to provide proper address translation for the foreground
monitor is to locate the monitor within a page that is controlled by the MMU
address translation tables; one that is always resident, writeable, supervisor
accessible, and translated 1:1. The monitor occupies one 4-Kbyte page of
emulation memory. It will be stored in the 4-Kbyte range of the dual-port
memory.

350

Chapter 8: Configuring the Emulator
Providing MMU Address Translation for the Foreground Monitor

Locating the Foreground Monitor using the MMU
Address Translation Tables

Locate the foreground monitor at a specific page address and add the proper
address translation for this page in your supervisor address translation tables. The
minimum page size is 4 Kbytes so the monitor only requires a single translation.
The page that contains the foreground monitor must always be resident, translated
1:1 (logical address = physical address), and never be write-protected.

The most direct way to do this is to modify the address translation tables in your
source code, rebuild your executable file, and download the executable into RAM,

or reprogram the executable into ROM. For systems that use an operating system
to manage dynamic translation tables in RAM, the page allocated to the monitor
must not be allowed to be swapped out by the operating system. This may require
that the page selected for the monitor reside in unused space within the operating
system (assuming the operating system is translated 1:1). The easiest way to create
unused space is to globally define an 8-Kbyte array of data that is never refer
by your software. After rebuilding your operating system software, refer to the
linker symbol map file to determine the address range of this array. Use the |
address that resides on a 4-Kbyte boundary within this range as the starting a
for the monitor.

As a last resort, if your target system software cannot be rebuilt, you can use the
emulator to modify your translation tables directly.

The emulator provides a command to display individual address translations in
detail, including address, value, and mnemonic information about each descriptor
from the translation tables. You may be able to provide the proper address
translation for the monitor by simply modifying a single descriptor (long word) to
convert an invalid page into a resident page.

If the translation tables are located in ROM, you will need to copy them into
emulation memory before you attempt to modify them. This is done by storing all
or part of your ROM to a file, and then mapping emulation memory over the ROM
address range and reloading the file.

351

352

Solving Problems

What to do when the emulator doesn’t behave as expected

353

Chapter 9: Solving Problems
If the emulator appears to be malfunctioning

Sometime during your use of the emulator, you'll encounter a problem that isn’t
adequately explained by an error message or obvious target system symptoms. This
chapter explains how to solve some of these more complex problems.

Consider the following sources of information in addition to the specific problems
discussed in this chapter:

» Look at the error log. Sometimes a problem will cause several error messages to be
generated. Only the last error message will be shown on the status line. You can
see the last 100 error messages by viewing the error log. Refer to Chapter 3,
"Using the Emulator/Analyzer Interface", for details of how to display the error log.

» Look at the event log. Changes in status of the emulator/analyzer may cause
unexpected results. To see a list of the last 100 events that affected the status of the
emulator/analyzer, view the event log. Refer to Chapter 3, "Using the
Emulator/Analyzer Interface”, for details of how to display the event log.

» Look at the present status of the emulator/analyzer to see if it will suggest the cause
of