User’'s Guide

HP B1472
68000/302
Debugger/Emulator

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and

fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1989-1992,1995 Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open
Company UNIX 93 branded products.

UNIX® is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

Hewlett-Packard Company

P.O . Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in subparagraph (C) (1) (ii) of the
Rights in Technical Data and Computer Software Clause in DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are set forth in
FAR 52.227-19(c)(1,2).

About this edition

Many product updates and fixes do not require manual changes, and manual
corrections may be done without accompanying product changes. Therefore, do

not expect a one-to-one correspondence between product updates and manual
revisions.

Edition dates and the corresponding HP manual part numbers are as follows:

Edition 1 B1472-97003, May 1992
Edition 2 B1472-97004, July 1992
Edition 3 B1472-97005, September 1995

Certification and Warranty

Certification and warranty information can be found at the end of this manual on
the pages before the back cover.

Debugging C Programs for 68000/302
Microprocessors

The HP B1472 68000/302 Debugger/Emulator is a debugging tool for 68000,
68ECO000, and 68302 microprocessor code. The debugger loads and executes C
programs or assembly language programs on an HP 64742, HP 64743, HP 64744,
or HP 64746 emulator. The code is executed in real time unless a specific feature
of the debugger or emulator requires halting the processor. The emulator functions
as a high-speed execution environment for the debugger.

With the Debugger, You Can ...

* Browse and edit C and C++ source files.

* View C and C++ functions on the stack.

* Monitor variables as the program executes.

» View assembly language code with source lines.

» View registers and stack contents.

e Step through programs by C or C++ source lines or by assembly language
instructions.

» Stop programs upon the execution of selected instructions or upon a read or
write of selected memory locations.

» Create conditional breakpoints using macros.

» Patch C or C++ code without recompiling.

» Collect microprocessor bus-level data as the program executes. You can
specify when data should be collected and which states get saved.

» Simulate input and output devices using your computer’s keyboard, display,
and file system.

+ Save and execute command files.

e Log debugger commands and output.

« Examine the inheritance relationships of C++ classes.

» Use the debugger, the emulator/analyzer, and the Software Performance
Analyzer together.

With the Graphical Interface You Can ...

Use the debugger under an X Window System that supports OSF/Motif
interfaces.

Enter debugger commands using pull-down or pop-up menus.

Set source-level breakpoints using the mouse.

Create custom action keys for commonly used debugger commands or
command files.

View source code, monitored data, registers, stack contents, and backtrace
information in separate windows on the debugger’s main display.

Access on-line help information.

Quickly enter commands using the guided syntax of the standard interface.

With the Standard Interface You Can ...

Use the debugger with a terminal or terminal emulator.

Quickly enter commands using guided syntax, command recall, and command
editing.

View source code, monitored data, registers, stack contents, and backtrace
information in separate windows on the debugger’s main display.

Define your own screens and windows in the debugger’s main display.
Access on-line help information.

Compatibility with One-Megabyte Memory
emulators

This version of the 68000/302 debugger/emulator is compatible with the
one-megabyte memory emulators for the 68000/68302 processors. If you have one
of these emulators, and the emulator softkey interface for the emulator, make sure
that you have installed the following or later versions of the softkey interface:

emulator Processor Softkey Interface
64742/64743 68000 B1468 version A.03.01
64746 68302 B1469 version A.03.03

Interaction of the debugger with earlier versions of these softkey interfaces may
cause problems with emulation memory mapping with the one-megabyte
memories. If you do not have the one-megabyte memory version of the emulator,
the debugger and softkey interface will not have any interaction problems.

Vi

Compatibility with Other Products

The debugger/simulator has been designed to work with HP-UX (version 8.0 or
greater), SunOS, or Solaris (see ltstallation Noticefor version requirements)
and the following Hewlett-Packard language products:

HP B3640, Motorola 68000 Family C Cross Compiler, Version 4.00
HPB3641, Motorola 68000 Family Assembler, Linker, Librarian, Version 2.00

HP B1471, HP 64000-UX Operating Environment Software,
Version 6.20

See the “Loading and Executing Programs” chapter if you are using the Microtec
language tools.

One of the following emulators:
HP 64742 68000 emulator

HP 64743 68000 emulator
HP 64744 68EC000 emulator

HP 64746 68302 emulator

vii

In This Book

This book is organized into five parts:

Part 1. Quick Start Guide

An overview of the debugger and a short lesson to get you started.

Part 2. User’s Guide

How to use the debugger to solve your problems.

Part 3. Concept Guide

Background information on X resources.

Part 4. Reference

Descriptions of what each debugger command does, details of how the debugger
works, and a list of error messages.

Part 5. Installation

How to install the debugger software on your computer.

viii

Contents

Part 1

Quick Start Guide

Getting Started with the Graphical Interface

The Graphical Interface at a Glance 5

Pointer and cursor shapes 5

The Debugger Window 6
Graphical Interface Conventions 8
Mouse Buttons 9

Platform Differences 10

The Quick Start Tutorial 11

The Demonstration Program 11

To prepare to run the debugger 12
To start the debugger 13

To activate display area windows 15
To run until main() 16

To scroll the Code window 17

To display a function 18
Torununtilaline 19

To edit the program 20

To displayinit_system(pgain 21

To set a breakpoint 21

To run until the breakpoint 22

To patch code using a macro 23

To delete a single breakpoint 25

To delete all breakpoints 25

To step through a program 26

To run until a stack level 26

To step over functions 27

To step out of a function 27

To display the value of a variable 27
To change the value of a variable 28

Contents

To recall an entry buffer value 29

To display the address of a variable 30

To break on an access to a variable 31

To use the command line 32

To use a C printf command 32

To turn the command line off 33

To trace events following a procedure call 34
Toseeon-linehelp 36

To end the debugging session 37

Part 2

User’s Guide

Entering Debugger Commands
Starting the Debugger 45

Using Menus, the Entry Buffer, and Action Keys 46

To choose a pull-down menu item using the mouse (method 1) 46
To choose a pull-down menu item using the mouse (method 2) 47
To choose a pull-down menu item using the keyboard 48

To choose pop-up menu items 49

To use pop-up menu shortcuts 50

To place values into the entry buffer using the keyboard 50

To copy-and-paste to the entry buffer 50

To recall entry buffer values 52

To edit the entry buffer 53

To use the entry buffer 53

To copy-and-paste from the entry buffer to the command line entry area
To use the action keys 54

To use dialog boxes 55

To access help information 59

Using the Command Line with the Mouse 60

To turn the command line on or off 61
To enteracommand 62
To edit the command line using the command line pushbuttons 63

53

Contents

To edit the command line using the command line pop-up menu 64
Torecall commands 64

To get help about the command line 65

To find commands which duplicate a menu selection 65

Using the Command Line with the Keyboard 66

To enter debugger commands from the keyboard 66

To edit the command line 68

To recall commands using the command line recall feature 68
To display the help window 69

Viewing Debugger Status 70

Debugger Status 70

Indicator Characters 72

CPU Emulated 72

Current Module 72

Last Breakpoint 72

Trace Status 72

To display information about the debugger version 73

Solving problems with the interface 74
If pop-up menus don'tpopup 74

Loading and Executing Programs

Compiling Programs for the Debugger 76

Using a Hewlett-Packard C Cross Compiler 76
Using Microtec Language Tools 78

Loading Programs and Symbols 80

To specify the location of C source files 80

To load programs 81

To load program code only 82

To load symbols only 83

To load additional programs 84

To turn demand loading of symbols on or off 84

Stepping Through and Running Programs 86
To step through programs 86

Xi

Contents

To step over functions 87

To run from the current program counter (PC) address 88
To run from a start address 88

To run until a stop (break) address 89

Using Breakpoints 91

To set a memory access breakpoint 91

To set an instruction breakpoint 93

To set a breakpoint for a C++ object instance 95

To set a breakpoint for overloaded C++ functions 96
To set a breakpoint for C++ functions in aclass 96

To clear selected breakpoints 97

To clear all breakpoints 98

To display breakpoint information 99

To halt program execution on return to a stack level 102

Restarting Programs 103

To reset the processor 103
To reset the program counter to the starting address 103
To reset program variables 104

Loading a Saved CPU State 105
To load a saved CPU state 105

Accessing the UNIX Operating System 107

To fork a UNIX shell 107
To execute a UNIX command 108

Using the Debugger and the Emulator Interface 109
To start the emulation interface from the debugger 109

Using the Debugger with the Branch Validator 110
To unload Branch Validator data from program memory 110

4 Viewing Code and Data

Using Symbols 112

To add a symbol to the symbol table 112
To display symbols 113

Xii

Contents

To display symbols in all modules 114
To delete a symbol from the symbol table 114

Displaying Screens 116

To display the high-level screen 118

To display the assembly level screen 118

To switch between the high-level and assembly screens 118
To display the standard 1/O screen 119

To display the next screen (activate a screen) 119

Displaying Windows 121

To change the active window 123

To select the alternate view of a window 124

To view information in the active window 125

To view information in the "More" lists mode 127
To copy window contents to a file 127

To view commands in a separate window 128

Displaying C Source Code 129

To display C source code 129
To find first occurrence of a string 130
To find next occurrence of a string 130

Displaying Disassembled Assembly Code 131
To display assembly code 131

Displaying Program Context 132

To set current module and function scope 132

To display current module and function 133

To display debugger status 133

To display register contents 134

To list all registers 135

To display the function calling chain (stack backtrace) 136

To display all local variables of a function at the specified stack (backtrace)
level 139

To display the address of the C++ object invoking a member function 139

Using Expressions 141
To calculate the value of a C expression 141

Xiii

Contents

To display the value of an expression or variable 142
To display members of a structure 143

To display the members of a C++ class 144

To display the values of all members of a C++ object 144
To monitor variables 145

To monitor the value of a register 146

To discontinue monitoring specified variables 146

To discontinue monitoring all variables 147

To display C++ inheritance relationships 147

To print formatted output to a window 147

To print formatted output to journal windows 148

Viewing Memory Contents 150

To compare two blocks of memory 150

To search a memory block for a value 150

To examine a memory area for invalid values 151
To display memory contents 151

Using Simulated /O 153

How Simulated I/O Works 154

Simulated I/0O Connections 154

Special Simulated 1/0 Symbols 155

To enable simulated /1O 156

To disable simulated /O 156

To set the keyboard 1/0 mode to cooked 157
To set the keyboard I/0 mode toraw 157
To control blocking of reads 158
Toredirect /O 158

To check resource usage 160

To increase I/O file resources 160

Making Trace Measurements

The Trace Function 164

To start a trace using the Code pop-up menu 168
To start a trace using the command line 169

To stop atrace in progress 170

To display atrace 170

To specify trace events 172

To delete trace events 172

To specify storage qualifiers 173

Xiv

Contents

To specify trigger conditions 174

To halt program execution on the occurrence of a trigger 175

To remove a storage qualification term 176

To remove a trigger term 176

To trace code execution before and after entry into a function 177

To trace data written to a variable 177

To trace data written to a variable and who wrote to the variable 178
To trace events leading up to writing a particular value in a variable 179
To execute a complex breakpoint using the trace function 180

To trace entry to and exit from modules 181

Editing Code and Data

Editing Files 184

To edit source code from the Code window 184

To edit an arbitrary file 185

To edit a file based on an address in the entry buffer 185
To edit a file based on the current program counter 185

Patching Source Code 186

To change a variable using a C expression 186
To patch a line of code using a macro 187

To patch C source code by inserting lines 188
To patch C source code by deleting lines 188

Editing Memory Contents 190

To change the value of one memory location 190

To change the values of a block of memory interactively 190
To copy a block of memory 191

To fill a block of memory with values 192

To compare two blocks of memory 192

To re-initialize all program variables 193

To change the contents of a register 193

Using Macros and Command Files

Using Macros 197

To display the Macro Operations dialog box 201
To define a new macro interactively using the graphical interface 201

XV

Contents

To use an existing macro as a template for a new macro 202
To define a macro interactively using the command line 202
To define a macro outside the debugger 203

To edit an existing macro 204

To save macros 204

To load macros 205

If macros do notload 205

Tocallamacro 205

To call a macro from within an expression 206

To call a macro from within a macro 207

To call a macro on execution of a breakpoint 208

To call a macro when stepping through programs 209

To stopamacro 210

To display macro source code 211

To delete amacro 211

Using Command Files 212

To record commands 213

To place comments in a command file 213

To pause the debugger 214

To stop command recording 214

Torun a command file 215

To set command file error handling 216

To append commands to an existing command file 217
To record commands and results in a journal file 217
To stop command and result recording to a journal file 218
To open a file or device for read or write access 218
To close the file associated with a window number 219
To use the debugger in batch mode 220

Configuring the Debugger

Setting the General Debugger Options 223

To display the Debugger Options dialog box 223

To list the debugger options settings 223

To change debugger options settings 224

To specify whether command file commands are echoed to the Journal
window 224

To set automatic alignment for breakpoints and disassembly 225

To set backtrace display of bad stack frames 225

XVi

Contents

To specify demand loading of symbols 225
To select the interpretation of numeric literals (decimal/hexadecimal) 226
To specify step speed 227

Setting the Symbolics Options 228

To display symbols in assembly code 228

To display intermixed C source and assembly code 228
To convert module names to upper case 229

To control case sensitivity of symbol lookups 229

Setting the Display Options 230

To specify the Breakpoint window display behavior 230

To specify the Breakpoint, Status, or Simulated I/O window display
behavior 230

To display half-bright or inverse video highlights 231

To turn display paging on or off (more) 231

To specify scroll amount 231

To store timing information when tracing 232

To mask fetches while tracing 232

Modifying Display Area Windows 233

To resize or move the active window 233

To move the Status window (standard interface only) 234

To define user screens and windows 235

To display user-defined screens 236

To erase standard I/O and user-defined window contents 236
To remove user-defined screens and windows 237

Saving and Loading the Debugger Configuration 238

To save the current debugger configuration 238
To load a startup file 239

Setting X Resources 240

Where resources are defined 240

To modify the debugger’s graphical interface resources 242
To use customized scheme files 246

To set up custom action keys 248

To set initial recall buffer values 249

XVil

Contents

9

Configuring the Emulator
What must be configured 253

Using the Configuration Interface 254

To start the Emulator Configuration dialog box 255
To modify a configuration section 256

To store a configuration 257

To examine the emulator configuration 258

To change the configuration directory context 259
To display the configuration context 259

To access configuration help information 260

To exit the Emulator Configuration dialog box 260
To load a configuration file 261

To create or modify a configuration file 263

If an error occurs when loading a configuration file 263

File Format 265

Memory Map Section 266
Configuration Questions Section 268

Using function codes 280

Using An Emulation Monitor 281

Using A Background Monitor 281

Using A Foreground Monitor 281

To prepare the foreground monitor for use 281
References 284

Part 3

10

Concept Guide

X Resources and the Graphical Interface

An X resource is user-definable data 288

A resource specification is a name and a value 288
Don't worry, there are shortcuts 289

But wait, there is trouble ahead 290

Xviii

Contents

Class and instance apply to applications as well 291

Resource specifications are found in standard places 292

Loading order resolves conflicts between files 292

The app-defaults file documents the resources you can set 293
Scheme files augment other X resource files 294

You can create your own scheme files, if you choose 295

Scheme files continue the load sequence for X resources 295

You can force the debugger’s graphical interface to use certain schemes
Resource setting - general procedure 297

296

Part 4

11

Reference

Debugger Commands

Command Summary 302

Breakpoint Commands 302

Session Control Commands 302

Expression Commands 304

File Commands 304

Memory Commands 305

Program Commands 306

Symbol Commands 306

Trace Commands 307

Window Commands 307

Breakpt Access 309

Breakpt Clear_All 311

Breakpt Delete 312

Breakpt Erase 313

Breakpt Instr 314

Breakpt Read 316

Breakpt Write 317

Debugger Directory 318

Debugger Execution Display_Status 319
Debugger Execution Environment FwdCmd 320
Debugger Execution Environment Load_Config 321
Debugger Execution Environment Modify_Config 322
Debugger Execution I0_System 323

XiX

Contents

Debugger Execution Load_State 326
Debugger Execution Reset_Processor 327
Debugger Host_Shell 328

Debugger Help 330

Debugger Level 331

Debugger Macro Add 332

Debugger Macro Call 335

Debugger Macro Display 336
Debugger Option Command_Echo 337
Debugger Option Breakpts 338
Debugger Option General 339
Debugger Option List 342

Debugger Option Symbolics 343
Debugger Option Trace 346
Debugger Option View 348
Debugger Pause 351

Debugger Quit 352

Expression C_Expression 354
Expression Display Value 355
Expression Fprintf 358

Expression Monitor Clear_All 363
Expression Monitor Delete 364
Expression Monitor Value 365
Expression Printf 368

File Command 370

File Error_Command 371

File Journal 372

File Log 374

File Startup 376

File User_Fopen 378

File Window_Close 380

Memory Assign 381

Memory Block_Operation Copy 383
Memory Block_Operation Fill 384
Memory Block_Operation Match 386
Memory Block_Operation Search 388
Memory Block_Operation Test 390
Memory Display 392

Memory Hex 394

Memory Register 396

Memory Unload_BBA 398

XX

Program Context Display 400
Program Context Expand 401
Program Context Set 402
Program Display_Source 403
Program Find_Source Next 404
Program Find_Source Occurrence
Program Load 407

Program Pc_Reset 410
Program Run 411

Program Step 414

Program Step Over 416
Program Step With_Macro 418
Symbol Add 419

Symbol Browse 422

Symbol Display 423

Symbol Remove 428

Trace Again 430

Trace Display 431

Trace Event Clear_All 437
Trace Event Delete 438
Trace Event List 439

Trace Event Specify 440
Trace Event Used_List 444
Trace Halt 445

Trace StoreQual 446

Trace StoreQual Event 450
Trace StoreQual List 452
Trace StoreQual None 453
Trace Trigger 454

Trace Trigger Event 458
Trace Trigger List 461

Trace Trigger Never 462
Window Active 463

Window Cursor 465

Window Delete 466

Window Erase 467

Window New 468

Window Resize 471

Window Screen_On 472
Window Toggle_View 473

405

Contents

XXi

Contents

12 Expressions and Symbols in Debugger Commands

Expression Elements 477

Operators 477
Constants 479

Symbols 484

Program Symbols 484
Debugger Symbols 485
Macro Symbols 485
Reserved Symbols 486
Line Numbers 486

Addresses 487

Code Addresses 487
Data and Assembly Level Code Addresses 487
Address Ranges 487

Keywords 489
Forming Expressions 490
Expression Strings 491

Symbolic Referencing 492

Storage Classes 492
Data Types 493

Special Casting 496
Scoping Rules 497
Referencing Symbols 497
Evaluating Symbols 501
Stack References 502

13 Predefined Macros

break info 508
byte 510

close 511
cmd_forward 512
dword 514

XXii

14

15

error 515
fgetc 516
fopen 517
getsym 518
isalive 519
key get 520

key stat 521
memchr 522
memclr 523
memcpy 524
memset 525
open 526
pod_command 528
read 530
reg_str 531
showversion 532
strcat 533
strchr 534
strcmp 535
strcpy 536
stricmp 537
strlen 538
strncmp 539
until 540
when 541
word 542
write 543

Debugger Error Messages

Debugger Versions

Version C.06.20 564

New options to format displayed expression values
Revision numbers changed 564

Native language support 564

New symbol matching options 564

New object file formats 564

New commands added on command line 564

564

Contents

xxiii

Contents

Version C.06.0x 565
Solaris Support Added 565

Version C.05.3x 565

Support for Intel Hex and Motorola-S record file formats added 565
Option added to control symbol case lookup 565

Native language support added to source display window 565
New commands added on command line 566

Version C.05.2x 566

Journal browser added for GUI versions 566

Demand loading is now default 566

New commands added on command line 566
HP64_DEBUG_PATH search path changed 567

Support for #define constants added 567

New Predefined Macro 567

Support for Deep Analyzer Added 567

Enable/Disable of Software Breakpoint System Added 567

Version C.05.1x 568

Larger Symbol Table 568

More Global Symbols 568

Radix Option Side Effects 568

New Demand Loading Option 569
Software Breakpoint Limits Changed 569

Version C.05.01 569

Graphical User Interface 569

New Product Number 569

New Reserved Symbols 569

New Predefined Macro 570
Environment Variable Expansion 570
Target Program Function Calls 570
C++ Support 570

Simulated Interrupts Removed 570
Simulated /O Changes 571

XXiV

Contents

Part 5 Installation Guide

16 Installation

Installation at a Glance 576

Supplied interfaces 576

Supplied filesets 577
Emulator/Analyzer Compatibility 577
C Compiler Installation 577

To install software on an HP 9000 system 578

Required Hardware and Software 578
Step 1. Install the software 579

To install the software on a Sun SPARCsysiem 580

Required Hardware and Software 580
Step 1: Install the software 581
Step 2: Map your function keys 581

To install the emulator hardware 583

To set up your software environment 584

To start the X server 584

To start HP VUE 585

To set environment variables 586

To find the logical name of your emulator 588
To add an emulator to the 64700tab.net file 589
To add an emulator to the /etc/hosts file 590

To verify the software installation 591

XXV

Contents

XXVi

Part 1

Quick Start Guide

Part 1

Getting Started with the Graphical
Interface

How to get started using the debugger’s graphical interface.

Chapter 1: Getting Started with the Graphical Interface

When an X Window System that supports OSF/Motif interfaces is running on the
host computer, the debugger hagaphical interfacethat provides features such

as pull-down and pop-up menus, point and click setting of breakpoints, cut and
paste, on-line help, customizable action keys and pop-up recall buffers.

The debugger also hastandard interfacéor several types of terminals, terminal
emulators, and bitmapped displays. When using the standard interface, commands
are entered from the keyboard. You should use the graphical interface for the
exercises in this chapter.

Some advanced commands are not well-suited to menus. Those commands are
entered through theommand line The command line allows you to enter standard
interface commands in the graphical interface.

Chapter 1: Getting Started with the Graphical Interface

The Graphical Interface at a Glance .

Pointer and cursor shapes

Arrow

The arrow mouse pointer shows where the mouse is pointing.

Hand

The hand mouse pointer indicates that a pop-up menu is available by pressing the
right mouse button.

Hourglass

The hourglass mouse pointer means "wait." If the debugger is busy executing a
program, you may stop it by pressigtrl>-C.

Text

The "I-beam" keyboard cursor shows where text entered with the keyboard will
appear in the entry buffer or in a dialog box.

Command-line

The "box" keyboard cursor on the command line shows where commands entered
with the keyboard will appear.

Chapter 1: Getting Started with the Graphical Interface

Menu bar ——

Action keys<

Entry buffer ™

Scroll bar

Display are

Status line

Command line

{

The Debugger Window

1
2
3
4
5
6
7
8
9

Code 2
I***
#A Heuwlett-Packard Software Product
Copyright Hewlett-Packard Co. 1992

All Rights Reserved. Reproduction, adaptation, or translation without pri
written permission 1is prohibited, except as allowed under copyright law
e ok ok ke ok ok ol ok ok ok ok ok sk ok ol ol kol ke kol ok ko ok sk kol ol ok ok ok ok ko ko ok sk ok sk ok ok ke ok ko ok ok ok ko sl kol kol ok kol sk ok ol ok ook ke okok ok kok ok ok
#include <stdio.h>
#include <string.h>
#include “update_sys.h"
#include "proc_spec.h®
f***
* This typedef is also found in demo.h but since demo.h is not included in
* this file, this declaration appears here by itself.
e ok ke ok ok ok ok ok ol ok Ok ok koK ok ook s kR ok ok s okOk ko o ROk sk Ok sk ok ok ok ok ki ok ok ok ok ok o koK sk Kok ok Ok s kR kO KOk ok ok R ok Ok ok ok

#define SHRINKFACTOR 1.3

File Display Modify Execution Breakpoints Window Settings Help
Actionkeys: | <Demo> |[DispSrc ()][CExpr()][Run || Runtii() || Step Over |
|< Your Key > | Make " Disp Src PC | Monitor () | Step Run Xfer Step Out
():|main Recall
Monitor 3 Backtrace————4—
1 @. 008BR400:crtB@i\entry
2 A
3
4
5
6
7
8

#define LISTLEN NUM_OF_OLD#*4+1
Journal 1
Note: PC unchanged. v
> File Command ecmdfiles/debug/Cmd_dbmac._com
STATUS: Continuing previous emulation session - Emulator status: InMon [ATb]

> File Command cmdfiles/debug/Cmd_dbmac.com

|Breakpt| |Debugger| |Expression| - |Hemorg| |Program| |St_.|mbol| |Hindom| ITracel

Command Error_Command User_Fopen Journal Log Hindow_Close Startup

| Command: [Return|[Recall Cursor: [Backup||[Forward|[Clear to end][Clear] Help

Chapter 1: Getting Started with the Graphical Interface

Menu Bar. Provides pull-down menus from which you select commands. Wh
menu items are not applicable, they appear half-bright and do not respond to
clicks.

Action Keys. User-defined pushbuttons. You can label these pushbuttons and
define the action to be performed. Action key labels and functions are defined by
setting X resources (see the “Configuring the Debugger” chapter).

Entry Buffer. Wherever you see "()" in a pull-down menu, the contents of the

entry buffer are used in that command. You can type values into the entry buffer, or
you can cut and paste values into the entry buffer from the display area or from the
command line entry area. You can also set up action keys to use the contents of the
entry buffer.

Display Area. This area of the screen is divided into windows which display
information such as high-level code, simulated input and output, and breakpoints.
To activate a window, click on its border.

In this manual, the word "window" usually refers to a window inside the debugger
display area.

Scroll Bar. Allows you to page or scroll up or down the information in the active
window.

Status Line. Displays the debugger and emulator status, the CPU type, the
current program module, the trace status, and the number of the last breakpoint.

Command Line. The command line area is similar to the command line in the
standard interface; however, the graphical interface lets you use the mouse to enter
and edit commands. You can turn off the command line if you only need to use the
pull-down menus.

Chapter 1: Getting Started with the Graphical Interface

Graphical Interface Conventions

This manual uses a shorthand notation for indicating that you should choose a
particular menu item. For example, the following instruction

ChooseFile — Load — Executable...

means to select tliéle menu, then seletibad from the File menu, then select the
Executable...item from the Load menu.

File

Context >

Load t>Emulator Config ...
Store b>|Executable ...

Copy Window [>|Program Only ...

Log B> Symbols Only ...
Emul700 B>{User-Defined Macros ...
Edit B

Term ...

Exit >

Refer to the “Entering Debugger Commands” for specific information about
choosing menu items.

In this manual, the word "window" usually means a window inside the debugger
display area, rather than an X window.

Chapter 1: Getting Started with the Graphical Interface
Mouse Buttons

Mouse Buttons

Mouse Button Descriptions

Button Name General Function

left Selects pushbuttons. Pastes from the display area to
the entry buffer.

middle Pastes from the entry buffer to the command line text
area. If you have a two-button mouse, press both
buttons together to get the "middle button."

right Click selects first item in pop-up menus. Click on
window border activates windows. Press and hold
displays menus.

command select Displays pull-down menus. May be the left button or
right button, depending on the kind of computer you
have.See'Platform Differences” on page 10.

Chapter 1: Getting Started with the Graphical Interface

Platform Differences

Platform Differences

A few mouse buttons and keyboard keys work differently between platforms. This
manual refers to those mouse button and keyboard bindings in a general way.
Refer to the following tables to find out the button names for the computer you are
using to run the debugger.

Mouse Button Bindings

Generic Button Name HP 9000 Sun SPARCsystem

command select left right

Keyboard Key Bindings

Generic Key Name HP 9000 Sun SPARCsystem

menu select extend char extend char
(diamond)

left-arrow left arrow left arrow

right-arrow right arrow right arro

Mhese keys do not work while the cursor is in the main display area.

10

Chapter 1: Getting Started with the Graphical Interface
Platform Differences

The Quick Start Tutorial

This tutorial gives you step-by-step instructions on how to perform a few basic
tasks using the debugger.

Perform the tasks in the sequence given; otherwise, your results may not be the
same as those shown here.

Some values displayed on your screen may vary from the values shown here. The
exercises in this chapter use the HP 64742/3 68000 emulator. If you are using the
HP 64744 68EC000 or HP 64746 68302 emulator, the information displayed in
some windows on your screen will be different.

The Demonstration Program

The demonstration program used in this chapter is a simple environmental control
system (ECS). The system controls the temperature and humidity of a room
requiring accurate environmental control. The program continuously looks at flags
which tell it what action to take next.

Note Some commands are printed on two lines in this chapter. When entering these
commands, type the entire command on one line.

11

Chapter 1: Getting Started with the Graphical Interface
To prepare to run the debu gger

To prepare to run the debugger

1 Check that the debugger has been installed on your computer. Installation is

described in the "Installation” chapter.

Find the logical name of your emulator.

The emulator namemul68kis used in the examples in this chapter. If you have
given your emulator a different logical name in the HP 64700 emulator device table
/usr/hp64000/etc/64700tab.nese your emulator name or lan address in the
examples. See the section “To find the logical name of your emulator” in the
“Installation” chapter of this manual. See tte 64700A Card Cage
Installation/Service Manudbr detailed information on installing your emulator.

Find out where the debugger software is installed. If it is not installed under
"/usr/hp64000" then use "$HP64000" wherever "/usr/hp64000" is printed in this
chapter.

Check that "/usr/hp64000/bin" and "." are in your $PATH environment variable.
(Type "echo $PATH" to see the value of $PATH.)

If the debugger software is installed on a different kind of computer than the
computer you are using, edit the "platformScheme" in the Xdefaults.all and
Xdefaults.emul files. These files are located in
/usr/hp64000/demo/debug_env/hp64742 or
/usr/hp64000/demo/debug_env/hp64746. For example, if you are sitting at a Sun
workstation which is networked to an HP 9000 Series 300 workstation, change the
platformScheme to "SunOS".

12

Chapter 1: Getting Started with the Graphical Interface
To start the debu gger

To start the debugger

1 Change to the debugger demo directory:

cd /usr/hp64000/demo/debug_env/ <emulator>

where<emulator> is hp64742 for a 68000 emulator, or hp64746 for a 68302
emulator.

2 Start the debugger by entering:

Startdebug emul68k

This will set some environment variables, start the debugger, load a configuration
file, and load a program for you to look at.

If the logical name of your emulator is revhul68k then use the name of your
emulator instead @mul68k If you do not know the name of your emulator, see
“To find the logical name of your emulator” in the “Installation” chapter of this
manual.

The Startdebug script will ask you whether it should copy the demo files to another
directory. If you have a C compiler available, answer "y". (You cannot modify the
files in /usr/hp64000/demo.)

Or, if you have installed the emulator/analyzer and Software Performance Analyzer
interfaces, you can use the following command to start all of the interfaces:

Startall emul68k

13

Chapter 1: Getting Started with the Graphical Interface
To start the debugger

Note If you were debugging your own program, you would need to enter a command
like:

db68k -e emul68k -C Config -c mycmd ecs
This command starts the debugger, which executes the commangdited.com

and loads the absolute fides.x See the “Loading and Executing Programs”
chapter for more details.

File Display Modify Execution Breakpoints Window Settings Help

Actionkeys: | <Demo> |[DispSrc()]| CExpr() [Run][Runtil() || Step Over |

< Your Key > Make Disp Src PC || Monitor () Step Run Xfer Step Cut

():[main Recall
Monitor 3— —————Backtrace—————4—

1 num_checks @ 8. DBPee400:crtBientry

2 target_temp © A

3 current_tem @

4 old data [60]:temp 2}

5 humid 8

b ave_temp @ _.0000PBE+B0

7 ave_humid @._008RGGE+B0

8 [81]:temp 2}

Code 2
/********l**********l**************************l**********l**********l****
A Hewlett-Packard Software Product
Copyright Hewlett-Packard Co. 1992

All Rights Reserved. Reproduction, adaptation, or translation without pri
written permission is prohibited, except as allowed under copyright law
Ak ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok koK ok ko ok ok ok ok ok kK ok ok ook ok ok o ok kK ok ok ok ok ko ok ok ok Ok ok Rk kK ok ok ok ok R Ok kR Rk kK
#include <stdio.h>
#include <string.h>
#include "update_sys.h"
#include "proc_spec.h”
/********I**********l**************************I**********I**********l****
* This typedef is also found in demo.h but since demo.h is not included in|
* this file, this declaration appears here by itself.
ok ok ok ok ok ok o ok ok ok ok ok ok ok o ok o o ok o ok ok ok ok o ok o ok ok ok ok o ok ok ok ol ok ok ok ok ok o ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok ok
#define SHRINKFACTOR 1.3
#edefine LISTLEN NUM_OF_0LD*4+1

Journal 1
W v

> File Command cmdfiles/debug/Cnd_dbmac.com

1
2
3
4
5
6
7
8
9

STATUS: New emulation session, processor reset to monitor [a]p]

14

Chapter 1: Getting Started with the Graphical Interface
To activate display area windows

To activate display area windows .

Notice there are several windows in the main display area of the debugger. The
different windows contain different types of information from the debugger. The
active window has the thicker border.

Use the right mouse button to click on the border of the Monitor window.

Be sure to click only once (do not "double-click"). The Monitor window should
now have a thick border. Now activate the Code window:

Use the right mouse button to click on the border of the Code window.

If you click on the border of the active window, it will be expanded. Just click
again to show the window in its normal size.

See the “Debugging Programs” chapter for a list of other ways to activate a
window.

15

Chapter 1: Getting Started with the Graphical Interface
To run until main()

To run until main()

1 Click on theRun til () action key. Run Til ()

The Code window now shows thmin ()routine.

Clicking on theRun til () action key runs the program until the line indicated by
the contents of thentry buffer

Locate thd): symbol. The area to the right of this symbol is the entry buffer.
When you started the demonstration program, the debugger loaded the entry buffer
with the value “main”.

File Display Modify Execution Breakpoints Window Settings Help
Action keys: < Demo > Disp Src () C Expr () Run Run til () Step Over
|< Your Key >| Make Disp Src PC Monitor () Step Run Xfer Step Out
—b ()3:|main |Recan
Monitor: 3 Backtrac <4
1 num_checks %] 2. 80880436 7crt@\<unknown>
2 target_temp @ 1. 00888664 startup™_startup A
3 current_tem @ @. BBBABFD2*main\main
4 old_data [B80]:temp -]
5 humid e A
3 ave_temp ©.80BPBGBE+QB =
7 ave_humid P .00PBBBE+BB
8 [01]:temp e

extern void do_sort(); /% sets up asciil array and calls combs

main{}
{

init_system(); -
proc_spec_init(); |:

while (true’
{

update_system();
num_checks++;
interrupt_sim{(&num_checks?};
if (graph)

graph_data();
proc_specific();

V]
Journal 1
> Program Run Until main v
(Temp) Break module main line 96
STATUS: InMon 68000 MODULE: main BREAK #: 1 TRC:ldle [21 ®]

16

Chapter 1: Getting Started with the Graphical Interface
To scroll the Code window

To scroll the Code window
To see more of the program you can:

Use the mouse to operate the vertical scroll bar:

Click to go to top of fle —————— a
Click to go up one line

Click to go up one half page

Drag slider to move incrementally ——

Click to go down one half page

Click to go down one line ——w___

Click to go to end of file v
Use the mouse to operate the horizontal scrolling buttons: [41#]

Use the <Page Up> and <Page Down> keys on your keyboard.

The scroll bar affects the contents of the active (highlighted) window.

You might notice that the scroll bar has a "sticky" slider which always returns to
the center of the scroll bar. This is so that you can always do local navigation even
in very large programs. Use tbésp Src () action key or th®isplay - Source ()
pull-down menu item to move larger distances.

17

Chapter 1: Getting Started with the Graphical Interface
To display a function

To display a function

1 Position the cursor over the callitat_system
2 Click the left mouse button.

This will place the string "init_system" into the entry buffer.
3 Click on theDisp Src ()action key.

4 Scroll up one line to see the "init_system()" line.

You should now see the source code fortitesystem(youtine in the Code

window.
File Display Modify Execution Breakpoints Window Settings Help
Action keys: [<Demo> i[DispSrc() || CExpr() || Run [Runtil() [Step Over

< YourKey > Make Disp Src PC§| Monitor () Step Run Xfer Step Out

ciinit_system

Monitor 3 Backtrace————4—
1 num_checks %] 2. 800804367crt@\<unknown>
2 target_temp @ 1. 90000664 startup_startup A
3 current_tem @ 0. 9PBOOFD2*main\main
4 old_data [@8]:temp]
5 humid 2] A
6 ave_temp 0 _0POBRBE+BR
7 ave_humid 0 .P00BERE+BE
8 [81]:temp -]
init_system(>
{ /* FUNCTION init_system() #*/
/¥ Initialize the target values for temperature and humidity */
target_temp = 73; :
target_humid = 45; D
/* Intialize the variables indicating the current environment */
/* conditions */
current_temp = 68;
current_humid = 41;
/* Set starting directions for temp and humid */
temp_dir = up;
humid_dir = up;
/* Initialize the variables that depict the current status of the */
/* computer room and what hardware needs to be on or off in the room # A
Journal 1
> Program Context Set init_system W ¥
> Program Display_Source init_system
STATUS: Command 68080 MODULE: init_system BREAK #: 1 TRC:ldle L %1 W]

18

Chapter 1: Getting Started with the Graphical Interface
To run until a line

To run until a line

1 Position the cursor over line 34. The hand-shaped cursor means that a pop-up
menu is available.

2 Hold down the right mouse button to display the Code window pop-up menu.
Move the mouse tBun until, then release the button.

Line 34 should now be highlighted. Notice that "init_system" now appears in the
Backtrace window at level 0, which means that the program counter is inside the
init_system(function.

File Display Modify Execution Breakpoints Window Setlings Help

Action keys: | <Demo > Disp Src () CExpr() Run Run til () Step Over

< Your Key > Make Disp Src PC || Monitor () Step Run Xfer Step Out

():]init_system Recall
Monitor 3— ————Backtrace——4—

1 num_checks @ 0. PBBRB488:crt@ientry

2 target_temp @ &

3 current_tem 8

4 old_data [68]:temp -]

5 humid -]

6 ave_temp 0 ._0PPOROE+0O

7 ave_humid @.0P8BBBE+BO

8 [81]:temp -]

/% FUNCTION init_system() =/

/* Initialize the target values for temperature and humidity */
target_temp = 73;
target_humid = 45;

Debugger Display

/* Intialize the variab|Set/Delete Breakpoint prrent environment */
/* conditions */ Edit

current_temp = 68; It source
current_humid = 41; Attach Macro ...

/% Set starting directi Edit Attached Maoro L.

temp_dir = up; Run until
humid_dir = up;

Trace after

/* Initialize the varial|Trace before current status of the */
/* computer room and whiq..-ao abhout be on or off in the room *
func_needed = 8;

Trace until

Journal 1
> Program Context Set init_system v
> Program Display_Source init_system

STATUS: Command 68080 HODULE: init_system BREAK #: @ TRC:ldle [4TP]

19

Chapter 1: Getting Started with the Graphical Interface

To edit the program

To edit the program

This step assumes you are using an HP Advanced Cross Language System
compiler (HP B3640). If you are using another compiler, skip this step.

Suppose we wanted the initial valudariget_temgo be 74 instead of 73. The
debugger makes it easy to change the source code:

Place the cursor over the assignmenaiget tempgline 33).

Hold the right mouse button and selEdit Source from the Code window pop-up
menu.

An editor will appear in a new X window. The default text editer.i¥ou can
use a different text editor by editing X resources (described in the "Configuring the
Debugger" chapter).

File Display Modify Execution Breakpoints Window Settings Help
Action keys: | <Demo > Disp Src () CExpr() Run Run til () Step Over

|< Your Key > Make Disp Src PC || Monitor () Step Run Xfer Step Out

():| init_systen IRecaII

num_checks e

1
2 t t_t 73 .
3 cz:g:n{ ::E 8 #include "update_sys.h"
4 old_data [008] :temp #include demo.h
5 humid . P
& as’:ltemp void init_val_arr();
7 ave_humid void
8 [e11:t b
emp init_systen()
7% FUHCTION init_system() */
31 { /* FUNCTION init_sys| /% Initialize the target values for temper
32 /* Initialize the ta target_temp = 70;
33 target_temp = 73; target_humid = 45;
target_humid = 45; o s . e s .
L /% Intialize the variables indicating the
36 /* Intialize the var /* conditions */
37 /* conditions */ current_temp = 68;
38 current_temp = 68; current_humid = 41;
39 t_humid = 41; . N .
40 current_hamt /* set starting directions for temp and hu
41 /¥ Set starting dire| temp_dir =_up;
42 temp_dir = up; humid_dir = up;
43 humid_dir = up; % PR N N
44 R _/ Initialize the variables that depict th
45 /% Initialize the vall init_system.c" 100 lines, 3168 characters
46 /* computer room and what hardware needs to be on or o in the room *
47 func_needed = 8;
Journal 1
(Temp) Break module init_system line 34 v
> Debugger Host_Shell vi +33 init_system.c

STATUS: Command 68008 HODULE: init_system BREAK #: 1 TRC:Idle 4 [®]

20

Chapter 1: Getting Started with the Graphical Interface
To display init_system() again

3 Change the "73" to "74". .
4 Exit the editor.
5 Click on theMake action key.

The program will be re-compiled with the new value and reloaded.

To display init_system() again

* Click on theDisp Src() action key.

Since "init_system" is still in the entry buffer, iné_system(youtine is displayed.

You have now completed a edit-compile-load programming cycle.

To set a breakpoint

We want to run until just past the line that we changed.
1 Position the mouse pointer over line 42.

2 Click the right mouse button to set a breakpoint.

The breakpoint window is displayed, showing the breakpoint has been added.

An asterisk (*) appears in the first column of the Code window next to the location
of the breakpoint. Dots apppear in front of any other lines (such as comments)
associated with the breakpoint.

21

Chapter 1: Getting Started with the Graphical Interface
To run until the breakpoint

To run until the breakpoint

Click on theRun Xfer action key to run the program from its transfer address.

While the program is executing, the menus and buttons are "grayed out," and an
"hourglass" mouse pointer is displayed. You cannot enter debugger commands
while the program is executing. If you need to stop an executing program, type
<Ctrl>-C with the mouse pointer in the debugger X window.

After a few moments, line 42 will be highlighted, showing that program execution
stopped there.

The Journal window shows that a break occurred and which breakpoint it was.

File Display Modify Execution Breakpoints Window Settings Help
Action keys: | < Demo > || Disp Src () " CExpr() || Run || Run til () || Step Over |
[¢ YourKeys]| Make |[Disp SrcPC][Monitor() || Step || RunXfer || Step Out |
()|init_sgstem IRecaH
Honitor 3 Backtrace————4—

1 num_checks @ 3. 808804367crt@\<unknoun>

2 target_temp 74 2. 09000664 startup_startup A
3 current_tem 68 1. 8@088OFDC mainymain

4 old_data [@B]:temp -] @. PBRR1552 init_system\init_sy

5 humid]

] ave_temp ©.0000GOE+00

7 ave_humid ©@.000000E+00

8 [@1]:temp]

current_humid = 41;

/* Set starting directions for temp and humid =/

42 temp dir = up;

humid_dir = up;

/* Initialize the variables that depict the current status of the */
/* computer room and what hardware needs to be on or off in the room =

func_needed = 8;
hduwr_encode = 8;

/*Initialize the count of calls to update_state_of_system() =/
num_checks = @;

/* Initialize writing location in old_array */
curr_loc = 8;

Journal 1
> Program Run v
Break # 1 on instr module init_system line 42

STATUS: Command 68006 HODULE: init_system BREAK #: 1 TRC:Idle [4IP]

22

Chapter 1: Getting Started with the Graphical Interface
To patch code using a macro

To patch code using a macro

1 Position the cursor over line 38.

2 SelectAttach Macro from the Code window pop-up menu.

38 current_temp = 68; n

39 current_humid = 41; Debugger Display
Set/Delete Breakpoint
Edit source

Attach Macro ...
Edit Attached Magro .
Run until

The Macro Operations dialog box appears. The macro "patch_temp" is already
selected. Before we attach the macro, let's examine it:

Defined Macros
writep(port, size, value)
write(fildes, buf, nbyte)
<User-Defined Macros>

graph_on()
do_forward()
show_num()

atch_temp_arg(tem

Parameters:; Recall ;

Selected Macro

patch_temp

Attach

3 Click on theEdit button in the dialog box.

This macro will seturrent_tempo 71 each time the breakpoint is encountered.
The macro skips over the assignment in the program source code by setting the
program counter to line 39. The return value of 0 tells the macro to stop program
execution after the macro.

Debugger Macro Add int patch_temp()

/* set the current_temp to be 71 degrees instead of what the code says */
current_temp = 71;

23

Chapter 1: Getting Started with the Graphical Interface
To patch code using a macro

/* Restart execution at line # 39 -- Skips over the code too!! */
$Memory Register @PC = #39$;

/* Return value indicates continuation logic: 1=continue, O=break */
return(0);

4 Exit the editor.

5 Click on theAttach button in the dialog box.

The plus sign ("+") in front of line 38 indicates that a macro has been attached to a
breakpoint at that line.

6 Click on theRun Xfer action key to run the program.

File Display Modify Execution Breakpoints Window Settings Help
Action keys: | <Demo > Disp Src () || CExpr() Run Run til () Step Over
< Your Key » Make Disp Src PC|| Monitor () Step Run Xfer Step Out
()|init_system Recall
r Breakpoint 25— 4—
ADDRESS MOD/FNCT LINE TYPE COMMAND ARGUMENT
1 eees1552 init_sys #42 INST/H init_system\#42 A
2 00801542 init_sys 238 INST/H init_system\#38; pat
sY
8 [011:temp] | |
35
36 /+ Intialize the variables indicating the current enviromment */
37 /* conditions */
I+ 38 current_temp = 68;
39 current_humid = 41;
40
R 41 /* Set starting directions for temp and humid */
g2 temp_dir = up;|
43 humid_dir = up;
44
45 /x Initialize the variables that depict the current status of the */
46 /+ computer room and what hardware needs to be on or off in the room ¥
47 func_needed = 8;
48 hdwr_encode = 8;
49
56 /xInitialize the count of calls to update_state_of_system() */
51 num_checks = @;
Journal 1
> File Command /Ausr/tmp/xEAAa27769.com v
> Breakpt Instr init_system\#38; patch_temp()

STATUS: Command 68088 HODULE: init_system BREAK #: 1 TRC:ldle L[4IP]

24

Chapter 1: Getting Started with the Graphical Interface
To delete a single breakpoint

Notice thatcurrent_tempas shown in the Monitor window, is 71, not 68. Click
Disp Src PCto show the source in the code window.

To delete a single breakpoint

Once you set a breakpoint, program execution will break each time the breakpoint
is encountered. If you don’t want to break on a certain breakpoint again, you must
delete the breakpoint. Suppose you want to delete the breakpoint that was
previously set at line 42 init_system

Position the mouse over line 42.

Click the right mouse button to delete the breakpoint.

The breakpoint window shows the breakpoint has been deleted. The asterisk in
front of line 42 disappears.

To delete all breakpoints

Position the mouse pointer in the Breakpoint window.

Hold down the right mouse button to selBetete All Breakpointsfrom the
Breakpoint window pop-up menu.

All breakpoints are deleted.

25

Chapter 1: Getting Started with the Graphical Interface
To step through a program

To step through a program

You can execute one source line (high-level mode) or one instruction
(assembly-level mode) at a time by stepping through the program.

Click on theStep action key a few times.

If you want to try using a pull-down menu, selegecution- Step-from PC a
few times.

As the debugger steps through the program, you can see the PC (PC) progress
through the source code, as shown by the inverse video line in the Code window.

To run until a stack level

Now we need to go back toain(). You can run the program until it entensin()
by running to a stack level.

Position the mouse pointer over the line containing "main\main” in the Backtrace
window.

SelectRun Until Stack Level from the Backtrace pop-up menu.

The program counter is now backnmain(), on the call tgoroc_spec_init()

Backtrac 4
AAAEA436Y cr 18N < unknown>
AAREAGEY startuph_startup

3.
2.
l.
a

. BE60 1651 Backtrace Display

Highlight{Toggle Window
Remove Window

Disp Source at Stack Level
Disp Vars at Stack Level
Run Until Stack Level

26

Chapter 1: Getting Started with the Graphical Interface
To step over functions

To step over functions .

You can either step through functions or step over functions. When you step over a
function, it is executed as a single program step.

Click on theStep Overaction key.

The next line imain()is highlighted. The routingroc_spec_init(vas executed
as a single program step.

To step out of a function

Click on theStep action key until the program counter isujpdate _system()

Click on theStep Outaction key.

The program will execute until it returns frampdate_system()

To display the value of a variable

Use the left mouse button to highlight "num_checks" in the Code window.

Click on theC Expr () action key.

In the Journal window, the current value of the variable is displayed in its declared
type (int). Notice that this is the same as the value displayed in the Monitor
window.

27

Chapter 1: Getting Started with the Graphical Interface

To change the value of a variable

To change the value of a variable

1 Inthe entry buffer, add "=10" after "num_checks".

2 Click on theC Expr () action key.

The new value is displayed in the Journal window and in the Monitor window.

File Display Modify Execution Breakpoints Window Settings Help

Actionkeys: | <Demo > Disp Sre () || CExpr() Run Run til () Step Over

< Your Key > Make Disp Src PC || Meonitor () Step Run Xfer Step Out

(ylpum_checks=18 |Reca"
Monitor 3 Backtrace 4—

1 num_checks 18 2. 008884367crt@\<unknoun>

2 target_temp 76 1. PBPBB6E64 startup™_startup A

3 current_tem 70 0. POBBBFEA mainmain

4 old_data [00]:temp 70

5 humid 43

3 ave_temp 0.00000PE+B0

7 ave_humid ©.000000E+00

8 [01]1:temp 65

160
181

while (true)

182 update_system();
183 nun_checks++;

interrupt_sim(&num_checks);

184
185
186
187
168
189 }
11@
111
112 =
113
114
115
116

*
*
*
*

PARMS :
DESCRIPTION:

if (graph)
graph_data();
proc_specific();

f****************I*I*I**********I*I*I**********I*I************I*I*********
FUNCTION: interrupt_sim
counter -- loop counter passed in from main

create a simulation of a (usually) long interrupt service routine tha
also has a duration profile to use with a SPA duration trigger.

Journal

> Expression C_Expression num_checks=1@

Result is:

18 Bx8A

"l

STATUS: Command

63600

MODULE: main

BREAK #: 1

TRC:Idle

a]»

28

Chapter 1: Getting Started with the Graphical Interface
To recall an entry buffer value

To recall an entry buffer value
1 Click on theRecall button.

2 In the Recall dialog box, click the left mouse button on "num_checks".

3 In the Recall dialog box, click the left mouse buttorOd.

The string "num_checks" is now in the entry buffer.

='| Debugger/Emulator: Entry Buffer Value Selection

Previous Entry Buffer Values

(r

| num_checks=180 |

|

29

Chapter 1: Getting Started with the Graphical Interface
To display the address of a variable

To display the address of a variable

You can use the C address operator (&) to display the address of a program

variable.

1 Position the mouse pointer in the entry buffer.

2 Type "&"in the entry buffer so that it contains "&num_checks".

3 Click on theC Expr () action key.

The result is the address of the variahlen_checksThe address is displayed in
hexadecimal format.

File Display Modify Execution Breakpoints Window Settings Help

Action keys: | < Demo > Disp Src () C Expr () Run Run til () Step Over

< Your Key » Make Disp Sre PC || Monitor () Step Run Xfer Step Out

(): | &um_checks Recall
Monitor 3— ——————Backtrace 4—

1 num_checks 18 2. 88BeR4367crtB\<unknown>

2 target_temp 76 1. 00000664 startuph_startup A

3 current_tem 78 0. BBBOBFEA main\main

4 old_data [68]:temp 70

5 humid 43

6 ave_temp 0.00DBPBE+B0

7 ave_humid ©.P0066RE+00

8 [B1]:temp 65

lee while (true)
1e1 {
182 update_system();
interrupt_sim(&num_checks);
if (graph)
graph_data();
proc_specific();

104
165
186
167
leg
109 I
118

T11 kst sor okl s oK KR SO OK S K O KR S K SO KO S SR SOK KR S SOROK KR S OOK KO SO OK O S R OR K R

112 % FUNCTION: interrupt_sim

113 PARMS :

114 DESCRIPTION:
115 create a simulation of a (usually)} long interrupt service routine tha
116 also has a duration profile to use with a SPA duration trigger.

counter -- loop counter passed in from main

Journal

> Expression C_Expression &num_checks
Result is: data address 000076F4 {num_checks}

i

STATUS: Command

68000 MODULE: main BREAK #: 1 TRC:ldle

a4 »

30

Chapter 1: Getting Started with the Graphical Interface
To break on an access to a variable

To break on an access to a variable

If you started the debugger using &tartall script, skip this section. Access
breakpoints are disabled because the analyzer has been configured to use the Trig2
trigger for other purposes.

You can also set breakpoints on a read, a write, or any access of a variable. This
helps to locate defects due to multiple functions accessing the same variable.
Suppose you want to break on the access of the vaniainlechecks

("&num_checks" should still be in the entry buffer.)

Set the breakpoint by selectiBgeakpoints - Set- Read/Write ().

File Display Modify Execution | Breakpoints | Window Settings Help
Actionkeys: | <Demo> || Disp .Qisplay (I Bun | Runtil() || Step Over |
[YourKeys|[Make |[Disp 125t B Instruction () [RunXfer][Step Out_|
- Delete () Read ()
() | &num_checks Delete Al Wite () IRecaII
Edit/Call Macro ... |Read/Write ()

Run the program by clicking on tfRun action key.

When the program stops, the code window shows that the program stopped at the
next reference to the variablem_check<Due to the latency of the emulation
analyzer, the processor may halt several cycles after the breakpoint has been
detected.

Try running the program a few more times to see where it stops. (Notice that
num_checkss passed by referenceitderrupt_sim Sincecounterpoints to the
same address asm_checkghe debugger stops at referencesotanter)

Delete the access breakpoint. SeWotdow - Breakpoints, place the mouse in
the Breakpoint window, press and hold the right mouse button, and delese
All Breakpoints.

31

Chapter 1: Getting Started with the Graphical Interface
To use the command line

To use the command line

1 SelectSettings— Command Line from the menu bar.

The command line area which appears at the bottom of the debugger window can
be used to enter complex commands using either the mouse or the keyboard.

Build a command out of the command tokens which appear beneath the command
line entry area.

To use the command line with the mouse, click on the button for each command
token.

When the command has been built, type or select <Return>.

To use a C printf command

The command line’s Expression Printf command prints the formatted output of the
command to the Journal window using C format parameters. This command
permits type conversions, scaling, and positioning of output within the Journal
window.

Place the string "num_checks=10" in the entry buffer by usinBecall button.
Click theC Expr () action key to assign 10 to num_checks.

Using the command line, enter:

Expression Printf "%010d",num_checks

In this example, the value ntim_checkss printed as a decimal integer with a
field width of 10, padded with zeros.

32

Chapter 1: Getting Started with the Graphical Interface
To turn the command line off

File Display Meodify Execution Breakpoints Window Settings Help
Action keys: | <Demo > Disp Src () || CExpr() Run Run til () Step Over
[« YourKey>|| Make Disp Src PC|[Monitor () Step Run Xfer Step Qut
() | &num_checks Recall
ADDRESS MOD/FNCT LINE TYPE COMMAND ARGUMENT
A
8 [B1]1:temp 65
Cod: 2
188 while (true)
lel {
182 update_system();
183 num_checks++;
104 interrupt_sim(&ium_checks);
185 if (graph)
186 graph_data();
187 proc_specific();
168 H
169 1}
11e
R T L T
112 * FUNCTION: interrupt_sim
113 = PARMS: counter -- loop counter passed in from main
114 + DESCRIPTION:
115 * create a simulation of a (usually) long interrupt service routine tha
116 * also has a duration profile to use with a SPA duration trigger.
Journal 1
> Expression Printf "%818d",num_checks v
00BeOE0e11
STATUS: Command 68008 MODULE: main BREAK #: 1 TRC:Halted TP]

> Expression Printf "%@18d",num_checks |

_ |I‘1emor‘gﬂ [Progran] [Synbel] [Hindou] [Trace]

C_Expression Fprintf Printf Monitor Display_Value

|Command: [Return][Recall] Cursor: [Buckup|[Forward][Clear to end][Clear] Help |

To turn the command line off

1 Move the mouse pointer to the Status line.

2 Hold down the shift key and click the right mouse button.

The shift-click operation selects the second item from a pop-up menu, which in this
case iCommand Line On/Off.

You can turn the command line on and off from the Settings pull-down menu, the
Status pop-up menu, and the command line pop-up menu.

33

Chapter 1: Getting Started with the Graphical Interface
To trace events following a procedure call

To trace events following a procedure call

1 Position the mouse pointer over the callipalate_system@n line 102.
2 SelectTrace after from the Code window pop-up menu.

3 Run the program by clicking on tiRun action key.

Notice that the debugger interface is "grayed out" and that the mouse pointer is an
hourglass when the mouse is in the debugger X window. This means that the
program is executing.

102 update_system(); -
103 num_checks++; | Debugger Display
104 A VI M VIC TN Set/Delete Breakpoint
185 if (graph))
166 graph_data(); Edit source
le7 proc_specific(); Attach Macro ...
133 ¥ ’ Edit Attached Macro L
Run until
Trace after

Trace before
Trace about
Trace until

4 Wait for the status line to shollRC:Cmplt , then pressCtrl>-C in the debugger
window.

5 SelectWindow - Trace to see the bus states which occurred after the call to
update_system()

The trace listing will be displayed in the Trace Mode debugger window. If an
emulator/analyzer X window is active, it will display the trace listing. You can
scroll through the trace to see more bus states.

6 Press theESC>key to exit the trace display.

34

Chapter 1: Getting Started with the Graphical Interface
To trace events following a procedure call

.:.l Hewlett Packard DBhu@Er/Emulatnr: hplsdze (mB8000) | o ||:|
File Display Modify Exccution Breskpoints Window Settings Help
Actionkeys | «Demo> |[Dsp S]] CEwr | Fun || Benuy || Step Over |
[« YourKey || Make |[Disp SrePC| Monitor (3 || Step || Bundtier || Step Ous |
{ylmain Iﬁacaﬁ
Trace Hode
In update_sys\update_system. Line 48..53
Lines 48..53 get_targets(&target_temp, &target_humid);
. Lines 78..94 {
Line 95 MAKEBARCARG3) ;
Reenter update_sysiget_targets
Line 95 MAKEBAR(ARG3) ;
ESC-ESC=Quit mode F2=New Top Line Fb6=Track Direction{*) F7=Track
8 [61]1:temp 1
Code 2—
263
264 old_datalcurr_locl.temp = current_temp;
265 old_datalcurr_locl.humid = current_humid;
266 curr_loc++;
267 if (curr_loc > NUM_OF_OLD) curr_loc = @; /+BUG!IIIIIx/
268
269 temp_tot=0;
270 for (i=@;i<NUM_OF_OLD;i++)
271 temp_tot += old_datalil.temp;
272
213 old_datalcurr_loc].ave_temp = (float)temp_tot/(float)(NUM_OF_OLD);
274
275 humid_tot=0;
276 for (i=@;i<NUM_OF_OLD;i++)
277 humid_tot += old_datalil.humid;
278
Journal 1—
* Trace Display
Trace mode entered. Press ESC-ESC to quit mode.

[STATUS: TrcMode

686800

MODULE: update_sys

BREAK #:

@ TRC:DataOK

35

Chapter 1: Getting Started with the Graphical Interface
To see on-line help

. To see on-line help

1 SelectHelp - General Topic ...

2 SelectTo Use Help then click on th©K button.

Spend a few minutes exploring the help topics, so that you can find them when you
need them.

36

Chapter 1: Getting Started with the Graphical Interface
To end the debugging session

To end the debugging session

¢ Use thecommand selechouse button to choosée - Exit — Released (all
windows, release emulator)

[File]

Context [

Load g

Store g

Copy Window >

Log L

Emul700 g

Edit B

Term ...

Exit b=| Window (save session) <Cirl> X

Locked (all windows, save session)
Released (all windows, release emulator)

The debug session is ended and your system prompt is displayed. The Released
option unlocks the emulator so that other users on your system can use it.

This completes your introduction to the 68000/302 Debugger/Emulator. You have
used many features of the debugger. For additional information on performing
tasks with the debugger, refer to the "User's Guide" part of this manual. For more
detailed information on debugger commands, error messages, etc., refer to the
"Reference" part of this manual.

37

Chapter 1: Getting Started with the Graphical Interface
To end the debugging session

38

Part 2

User’s Guide

Part 2

40

Entering Debugger Commands

How to enter debugger commands using the mouse or the keyboard.

41

Entering Debugger Commands

This chapter shows you how to enter debugger commands using the graphical
interface or the standard interface. The tasks are grouped into the following
sections:

e Starting the debugger.

¢ Using menus, the entry buffer, and action keys.
¢ Using the command line with the mouse.

¢ Using the command line with the keyboard.

* Viewing debugger status.

Thegraphical interfaceprovides an easy way to enter commands using a mouse. It
lets you use pull-down and pop-up menus, point and click setting of breakpoints,
cut and paste, on-line help, customizable action keys and pop-up recall buffers, and
other advanced features. To use the graphical interface, your computer must be
running an X Window System that supports OSF/Motif interfaces.

The debugger also hastandard interfacéor several types of terminals, terminal
emulators, and bitmapped displays. When using the standard interface, commands
are entered from the keyboard.

When using the graphical interface, t@nmand lingoortion of the interface gives

you the option of entering commands in the same manner as they are entered in the
standard interface. If you are using the standard interface, you can only enter
commands from the keyboard using the command line.

42

Chapter 2: Entering Debugger Commands

Function Key Commands

You can enter commonly used commands quickly and easily by pressing the
function keys F1 through F8 on your keyboard. Function keys can be used in the
graphical interface as well as the standard interface. The following table and figure
describe the commands associated with the function keys.

If you are using the debugger on a Sun SPARCsystem, refer to the "Installatio
chapter for information on mapping function keys.

Function Key Commands

Function Graphical Equivalent, Description

Key Command Line Equivalent

F1 Display - Next Window, Activate the next higher numbered window.
Window Active Next

F2 Display - Previous Window, Activate the next lower numbered window.
Window Active Previous

F3 Settings— High Level Debugor Switch between assembly-level and high-level
Settings— Assembly Level Debug mode.
Debugger Level

F4 Right click on active window border, Select the alternate display of the active
Window Toggle_View window.

F5 Help - Command Line.., Access on-line help.
Debugger ? (Help)

F6 Display— Simulated I/O, Access the standard I/O screen. Also access
Window Screen_On Next any existing user-defined screens.

F7 Execution- Step Instruction—from PC, Execute one C source line (high-level mode),
Program Step or execute one microprocessor instruction

(assembly-level mode).

F8 Execution- Step Source-from PC, Execute one C source line, but treat whole

Program Step Over functions as a single line (high-level mode);

execute one microprocessor instruction, but
treat whole subroutines as a single instruction.

43

Chapter 2: Entering Debugger Commands

Command Line Control Character Functions

Press the control kesCtrl> simultaneously with thB, CE,F,GL,Q R S, U,
or\ keys to execute the operations listed in the following table. (The letter keys
may be upper- or lower-case.)

Command Line Control Character Functions

Control Function

<Ctrl> B Recall command reverse.

<Ctrl> C Abort the current command and return to debugger command mode.
<Ctrl> E Clear to end of command line.

<Ctrl> F Shift contents of active window to right.

<Ctrl> G Shift contents of active window to left.

<Ctrl> L Redraw screen.

<CtrlI> Q Resume output to screen (standard interface only).

<Ctrl>R Recall previous command.

<CtrI> S Suspend output to screen (standard interface only).

<Ctrl> U Clear command line

<Ctrl>\ End the debug session (same as Debugger Quit Yes command)

The Journal Window

The debugger displays debugger commands entered from the keyboard in the
Journal window. The Journal window also displays warning and informational

messages from the debugger and output generated by commands. This window is

available in both the high-level and assembly-level screens.

44

Chapter 2: Entering Debugger Commands
Starting the Debu gger

See Also

Starting the Debugger

Use thedb68kcommand to start the debugger.

The “Getting Started with the Graphical Interface” chapter for information abo
starting the graphical interface.

The “Loading and Executing Programs” chapter for information about loading
programs as you start the debugger.

The “Using Macros and Command Files” chapter for information about loading
command files as you start the debugger.

The “Configuring the Debugger” chapter for information about using debugger
startup files.

The on-line "manual page" for information aboutdb&8kcommand and its
command-line options. To see this information, type the following operating
system command:

man db68k

45

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

Using Menus, the Entry Buffer, and Action Keys

This section describes the tasks you perform when using the debugger’s graphical
interface to enter commands. This section describes how to:

* Choose a pull-down menu item using the mouse.

* Choose a pull-down menu item using the keyboard.
¢ Use the pop-up menus.

* Use action keys.

¢ Use the entry buffer.

* Copy and paste to the entry buffer.

¢ Use dialog boxes.

* Access help information.

To choose a pull-down menu item using the
mouse (method 1)

1 Position the mouse pointer over the name of the menu on the menu bar.
2 Press and hold trommand selechouse button to display the menu.

3 While continuing to hold down the mouse button, move the mouse pointer to the
desired menu item. If the menu item has a cascade menu (identified by an arrow
on the right edge of the menu button), then continue to hold the mouse button down
and move the mouse pointer toward the arrow on the right edge of the menu. The
cascade menu will display. Repeat this step for the cascade menu until you find the
desired menu item.

4 Release the mouse button to select the menu choice.

46

Note

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

Some menu items have an ellipsis (“...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or message box when the menu
item is chosen.

Thecommand selediutton can be either the left or right button, depending on t
computer you are using. The “Getting Started with the Graphical Interface” ch
has a table which explains which button to use.

To choose a pull-down menu item using the
mouse (method 2)

Position the mouse pointer over the menu name on the menu bar.
Click thecommand seleehouse button to display the menu.

Move the mouse pointer to the desired menu item. If the menu item has a cascade
menu (identified by an arrow on the right edge of the menu button), then repeat the
previous step and then this step until you find the desired item.

Click the mouse button to select the item.

If you decide not to select a menu item, simply move the mouse pointer off of the
menu and click the mouse button.

Some menu items have an ellipsis (*...”) as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

47

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

To choose a pull-down menu item using the
keyboard

To initially display a pull-down menu, press and holdrttenu seledtey (for
example, the “Extend char” key on a HP 9000 keyboard) and then type the
underlined character in the menu label on the menu bar. (For example, “f” for
“File”. Type the character in lower case.)

To move right to another pull-down menu after having initially displayed a menu,
press theight-arrow key.

To move left to another pull-down menu after having initially displayed a menu,
press thdeft-arrow key.

To move down one menu item within a menu, presdolaen-arrow key.
To move up one menu item within a menu, pressipharrow key.

To choose a menu item, type the character in the menu item label that is
underlined. Or, move to the menu item using the arrow keys and then press the
<RETURN> key on the keyboard.

To cancel a displayed menu, pressHEseapekey.

The interface supports keyboard mnemonics and the use of the arrow keys to move
within or between menus. For each menu or menu item, the underlined character

in the menu or menu item label is the keyboard mnemonic character. Notice the
keyboard mnemonic is not always the first character of the label. If a menu item
has a cascade menu attached to it, then typing the keyboard mnemonic displays the
cascade menu.

Some menu items have an ellipsis (“...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

Dialog boxes support the use of the keyboard as well. To direct keyboard input to
a dialog box, you must position the mouse pointer somewhere inside the

48

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

boundaries of the dialog box. That is because the intetéstmard focus policis
set topointer. That just means that the window containing the mouse pointer
receives the keyboard input.

In addition to keyboard mnemonics, you can also specify keyboard accelerators
which are keyboard shortcuts for selected menu items. Refer to the “Setting X
Resources” chapter and the “Debug.Input” scheme file for more information a
setting the X resources that control defining keyboard accelerators.

To choose pop-up menu items

Move the mouse pointer to the area whose pop-up menu you wish to access. (If a
pop-up menu is available, the mouse pointer changes from an arrow to a hand.)

Press and hold the right mouse button.

After the pop-up menu appears (while continuing to hold down the mouse button),
move the mouse pointer to the desired menu item.

Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

Some pop-up menus which are available include:
¢ Display-area Windows.
e Status Line.

e Command Line.

49

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

To use pop-up menu shortcuts

* To choose the first item in a pop-up menu, click the right mouse button.

* To choose the second item in a pop-up menu, hold dowstthi#> key and click
the right mouse button.

To place values into the entry buffer using the
keyboard

1 Position the mouse pointer within the text entry area. (An “I-beam” cursor will
appear.)

2 Enter the text using the keyboard.

To clear the entry buffer text area from beginning until end, presCineU key
combination.

To copy-and-paste to the entry buffer

* To copy and paste a "word" of text, position the mouse pointer over the word and
click the left mouse button.

* To specify the exact text to copy to the entry buffer, position the mouse pointer
over the first character to copy, then hold the left mouse button while dragging the
mouse pointer over the text. When you release the mouse button, the highlighted
text will appear in the entry buffer.

You can copy-and-paste from the display area, the status line, and from the
command line entry area.

50

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

Note If you have several graphical interface windows connected to the emulator, then a
copy-and-paste action in any window causes the text to appear in all entry buffers
in all windows. That is because although there are several entry buffers being
displayed, there is actually only one entry buffer, which is shared by all windows.
You can use this to copy a symbol or an address from one window to another
window.

On a memory or trace display, you may need to scroll the display to show mo
characters of a symbol.

The interface displays absolute addresses as hex values. If you copy and paste an
address from the display to the entry buffer, you must add a trailing “h” to make

the interface interpret it as a hex value when you use the entry buffer contents with
a command.

Text pasted into the entry buffer replaces that which is currently there. You cannot
use paste to append text to text already in the entry buffer. You can retrieve
previous entry buffer values by using Recall button.

See “To copy-and-paste from the entry buffer to the command line entry area” for
information about pasting the contents of the entry buffer into the command line

entry area.

Example To paste the symbol “init_system” into the entry buffer from the interface display
area, position the mouse pointer over the symbol and then click the left mouse
button.

|[): |deateisgstem IRecaIII
47 woid

49 T

51

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

To recall entry buffer values

1 Position the mouse pointer over fRecall button just to the right of the entry
buffer text area, and click the mouse button to bring up the Entry Buffer Value
Selection dialog box.

2 In the dialog box, click on the string you want.

3 In the dialog box, click on the "OK" button.

The Entry Buffer Value Selection dialog box contains a list of previous values from
the entry buffer. You can also predefine entries for the Entry Buffer Value
Selection dialog box and define the maximum number of entries by setting X
resources (refer to the “Setting X Resources” chapter).

If you decide not to change the contents of the entry buffer, click on the "Cancel"
button in the dialog box.

If you want the Entry Buffer Value Selection dialog box to remain visible after you
make a selection, press "Apply" instead of "OK". You may drag the dialog box to
another location on your display so that it does not cover the debugger window.

See the following “To use dialog boxes” section for information about using dialog
boxes.

52

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

To edit the entry buffer

To position the keyboard cursor, click the left mouse button or use the arrow keys.

To clear the entry buffer, typeCtri>-U . .

To delete characters, press #fBackspace>or <Delete char>keys.

To delete several characters, highlight the characters to be deleted using the left
mouse button, then press &RBackspace>or <Delete char>keys.

To use the entry buffer

Place information into the entry buffer (see the previous “To place values into the
entry buffer using the keyboard”, “To copy-and-paste to the entry buffer”, or “To
recall entry buffer values” task descriptions).

Choose the menu item, or click the action key, that uses the contents of the entry
buffer.

The contents of the entry buffer will be used wherever the "()" symbol appears in a
menu item or action key.

To copy-and-paste from the entry buffer to the
command line entry area

Position the mouse pointer within the command line text entry area.

53

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

2 If necessary, reposition the keyboard cursor to the location where you want to paste
the text.

3 If necessary, choose the insert or replace mode for the command entry area.

4 Click the middle mouse button to paste the text into the command line entry area at
the current cursor position.

Note You should paste to the command lardy when the command line is expecting an
address or a string. The characters from the entry buffer will be treated as if they
were typed from the keyboard. If the command line is expecting keyword tokens,
pasting can have unexpected results. For example, pasting "delta" into an empty
command line will generate a "Debugger Execution Load_State ta" command!

Although a paste from the display area to the entry buffer affects all displayed
entry buffers in all open windows, a paste from the entry buffer to the command
line only affects the command line of the window in which you are currently
working.

See “To copy-and-paste to the entry buffer” for information about pasting
information from the display into the entry buffer.

To use the action keys

1 If the action key uses the contents of the entry buffer, place the desired information
in the entry buffer.

2 Position the mouse pointer over the action key and click the action key.

Action keys are user-definable pushbuttons that perform interface or system
functions. Action keys can use information from the entry buffer — this makes it
possible to create action keys that are more general and flexible.

Several action keys are predefined when you first start the debugger’s graphical
interface. You can use the predefined action keys to make, load, run, and step

54

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

through the demo program. You'll really appreciate action keys when you define
and use your own.

Action keys are defined by setting an X resource. Refer to the chapter “Setting X
Resources” for more information about creating action keys.

To use dialog boxes

Click on an item in the dialog box list to copy the item to the text entry area.
Edit the item in the text entry area (if desired).

Click on the “OK” pushbutton to make the selection and close the dialog box, click
on the “Apply” pushbutton to make the selection and leave the dialog box open, or
click on the “Cancel” pushbutton to cancel the selection and close the dialog box.

The graphical interface uses a number of dialog boxes for selection and recall:

Directory Selection Selects the working directory. You can change to a
previously accessed directory, a predefined directory, or
specify a new directory.

File Selection From the working directory, you can select an existing file
name or specify a new file name.

Entry Buffer Recall ~ You can recall a previously used entry buffer text string, a
predefined entry buffer text string, or a newly entered entry
buffer string, to the entry buffer text area.

Command Recall You can recall a previously executed command, a
predefined command, or a newly entered command, to the
command line.

The dialog boxes share some common properties:

* Most dialog boxes can be left on the screen between uses.
» Dialog boxes can be moved around the screen and do not have to be positioned
over the graphical interface window.

55

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

» If you iconify the interface window, all dialog boxes are iconified along with
the main window.

Except for the File Selection dialog box, predefined entries for each dialog box
(and the maximum number of entries) are set via X resources (refer to the “Setting
X Resources” chapter).

In file names, you may use a tilde as shorthand for your home directory.

56

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

Examples To use the File Selection dialog box:

—=E File Selection

The file filter selects File Filter
specific files. ~—__

T /users/demob4/edge/edged2d/ sources/* .EA
A list of
filter-matching files. Files

users/demo6dfedgefedge020/sources/cnfg020trc.EA A
~ users/demo6dfedgefedge020/sources/configd20.EA

, _ usersidemo64/edgefedge020/sources/config030.EA

A list of files <Previous Files>

previously accessed usrfhp64000/inst/emul/runtime/0F 23E43A.lan/default.EA
during the debugger users/demo64/edgefedge020/sources/cnfg0z0trc.EA
session. — i| fusersidemoB4diedgeledge020/sourcesicnfg-test.EA
usersfdemobdfedgefedge020/sources/config020.EA

A single click on a

file name from either
list highlights the file
name and copies it to d
the text area. A I]
double click chooses] .
the file and closes the || Load configuration

dialog box. fusers/demob4/edye/edgedcd/sources/

oK Filter Cancel

Label informs you
what kind of file
selection you ar
performing.

Text entry area. Text is Clicking this button Entering a new file filter Clicking this button
either copied here from chooses the file name and clicking this button cancels the file selection
the recall list, or entered displayed in the text causes a list of files operation and closes the

directly. entry area and closes thenatching the new filter dialog box.
dialog box. to be read from the
directory.

57

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

To use the Directory Selection dialog box:

Label informs you of a | Directory Selection
the type of list] .] .
displayed. Previous Working Directories
To customize the initial list of entries look for the X resource
A single click on a # "dbE8k.mE8020*dirSelectSub” in the file

directory name from fust/lib/X11/app-defaults/HP64_Debug
the list highlights the # and add your own custom definition to your .Xdefaults file.
name and copies it # (Use the File->Edit->File pulldown to edit these files.)
£
to the text area. A
double click chooses SHOME

the directory and $HPE4000/demo/emulihp64748
closes the dialog box

' usersimyproj
Alist of predefined /usersidemoB4/edgefedgelziisources

or previously
accessed directories. Selection

/users/demobd/edge/edgedZB/sources

Text entry area. CIickin'g this button Clicking this button Clicking this'button
Directory name is either chooses the directory chooses the directory cancels the directory
copied here fromthe displayed in the text displayed in the text selection operation and
recall list, or entered entry area and closes thentry area, but keeps thecloses the dialog box.
directly. dialog box. dialog box on the screen

instead of closing it.

58

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

To access help information

1 Display the Help Index by choosititelp — General Topic ...or
Help -~ Command Line ...

2 Choose a topic of interest from the Help Index.

The Help Index lists topics covering operation of the interface as well other
information about the interface. When you choose a topic from the Help Index, the
interface displays a window containing the help information. You may leave the
window on the screen while you continue using the interface.

Examples To see more information on how to use the on-line help, cli¢hedp, then click
onGeneral Topics .., then click on "To Use Help", then click on the "OK" button.

Help
Topic ... =] Help Topics Index
Commands ... Topics
Version ... - - General Information--
X Resource Names ...
— (At a Glance

Questions & Answers
[Action Keys

[Command Line Operation

() Entry Buffer

Dialog Boxes

For More Information
Glossary

To Set or Clear Breakpoints
To Set a Variable

--Menu Bar--

Menu Bar: File->Context->
Menu Bar: File->Load->

EI -]
Selection - Help: Topics
[To Use Help, |
To Use Help
Cancel Use the menu to see information about the debugger’s graphical

user interface.

To see more text, move the mouse to the scrollbar on the right side
of the window. Hold the right mouse button while you move the mouse up
and doun.

To move the help window, move the mouse to the iitle bar.
Hold the right mouse butten while you drag the window.

To get help on another topic, click on that topic then click on the
button in the ESTSREYSEHSIEEN uindou.

To save a help topic in a file which you can print or view at later
time, click on the B [button. A file selection dialog box

will ask you to name the file in which to save the information.
Saveto File

59

Chapter 2: Entering Debugger Commands
Using the Command Line with the Mouse

Using the Command Line with the Mouse

When using the graphical interface, t@nmand lingoortion of the interface gives

you the option of entering commands in the same manner as they are entered in the
standard interface. Additionally, the graphical interface makes the command

tokens pushbuttons so commands may be entered using the mouse.

If you are using the standard interface, the command line is the only way to enter
commands.

This section describes how to:

* Turn the command line off/on.
¢ Enter commands.

¢ Edit commands.

¢ Recall commands.

¢ Display the help window.

60

Chapter 2: Entering Debugger Commands
Using the Command Line with the Mouse

To turn the command line on or off

To turn the command line on or off using the pull-down menu, choose
Settings— Command Line.

To turn the command line on or off using the status line pop-up menu: positio
mouse pointer within the status line area, press and hold the right mouse butt
and choos€ommand Line On/Off from the menu.

To turn the command line on or off with a single mouse click, hold $éft> key
and click on the status line.

To turn the command line off using the command line entry area pop-up menu:
position the mouse pointer within the entry area, press and hold the right mouse
button, and choosgommand Line On/Off from the menu.

To turn the command line on with the keyboard: place the mouse pointer in the
display area and press any alphanumeric key.

"On" means that the command line is displayed and you can use the command
token pushbuttons, the command return and recall pushbuttons, and the cursor
pushbuttons for command line editing. "Off" means the command line is not
displayed and you can use only the pull-down and pop-up menus and the action
keys to control the interface.

The command line area begins just below the status line and continues to the
bottom of the debugger window. The status line is not part of the command line
and continues to be displayed whether the command line is on or off.

Choosing certain pull-down menu items while the command line is off causes the
command line to be turned on. That is because the menu item chosen requires
some input at the command line that cannot be supplied another way.

61

Chapter 2: Entering Debugger Commands
Using the Command Line with the Mouse

To enter a command

1 Build a command using the command token pushbuttons by successively

positioning the mouse pointer on a pushbutton and clicking the left mouse button
until a complete command is formed.

Execute the completed command by clickingRle¢urn pushbutton (found near
the bottom of the command line in the “Command” group).

Or:

Execute the completed command using the Command Line entry area pop-up
menu: Position the mouse pointer in the command line entry area; press and hold
the right mouse button until the Command Line pop-up menu appears; then, choose
the Execute Commandmenu item.

You may need to combine pushbutton and keyboard entry to form a complete
command.

A complete command is a string of partial commands or command tokens. You
know a command is complete when “<return>" appears on one of the command
token pushbuttons. The interface does not check or act on a command, however,
until the command is executed. (In contrast, commands resulting from menu
choices and action keys are supplied with the needed carriage return as part of the
command.)

62

Chapter 2: Entering Debugger Commands
Using the Command Line with the Mouse

To edit the command line using the command
line pushbuttons

To clear the command line, click thdear pushbutton.

To clear the command line from the cursor position to the end of the line, click.
Clear to endpushbutton.

To move to the right one command word or token, clickttrevard pushbutton.
To move to the left one command word or token, clickBhekup pushbutton.

To insert characters at the cursor position, presksegt char key to change to
insertion mode, and then type the characters to be inserted.

To delete characters to the left of the cursor position, presBtekspace>key.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that level of the command.

When moving by words left or right, tlBackup pushbutton is grayed out and
unresponsive when the cursor reaches the beginning of the command string.

See “To edit the command line using the mouse and the command line pop-up
menu” and “To edit the command line using the keyboard” for information about
additional editing operations you can perform.

63

Chapter 2: Entering Debugger Commands
Using the Command Line with the Mouse

To edit the command line using the command
line pop-up menu

To clear the command line: position the mouse pointer within the Command Line
entry area; press and hold the right mouse button until the Command Line pop-up
menu appears; chooSéear Entire Line from the menu.

To clear the command line from the cursor position to the end of the line: position
the mouse pointer at the place where you want the clear-to-end to start; press and
hold the right mouse button until the Command Line pop-up menu appears; choose
Clear to End of Line from the menu.

To position the cursor at the next token or the previous token: press and hold the
right mouse button until the Command Line pop-up menu appears; choose
Forward Tab or Backward Tab from the menu.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that level of the command.

See “To edit the command line using the mouse and the command line
pushbuttons” and “To edit the command line using the keyboard” for information
about additional editing operations you can perform.

To recall commands

Click the pushbutton labeldglecallin the Command Line to display the dialog box.

Choose a command from the buffer list. (You can also enter a command directly
into the text entry area of the dialog box.)

Because all command entry methods in the interface — menus, action keys, and
command line entries — are echoed to the command line entry area, the contents of
the Command Recall dialog box is not restricted to commands entered directly into
the command line entry area.

64

Chapter 2: Entering Debugger Commands
Using the Command Line with the Mouse

The Command Recall dialog box contains a list of interface commands executed
during the debugger session as well as any predefined commands present at
interface startup.

You can predefine entries for the Command Recall dialog box and define the
maximum number of entries by setting X resources (refer to the “Setting X
Resources” chapter).

See “To use dialog boxes” for information about using dialog boxes.

To get help about the command line

To display the help topic explaining the operation of the command line, select
Help — General Topic ..~ Command Line Operation.

To display the command line help menu, seislp . Command Line ...

To find commands which duplicate a menu
selection

To see how a menu item maps to command line commands:
SelectwWindow - Journal Browser - Start to open a journal browser window.

Select the menu item.

Most menu selections generate one or more commands. If you know which
commands are generated, you can include them in action keys or command files.

65

Chapter 2: Entering Debugger Commands
Using the Command Line with the Keyboard

Using the Command Line with the Keyboard

Commands are entered on the command line at the debugger prompt (>) and
executed by pressing tkReturn> key. Command tokens are entered by typing a
single letter, typically the first uppercase letter of the token.

The third and fourth lines of the status window display command tokens. The third
line shows the tokens that you can enter at the current location in the command
line. The fourth line shows tokens that are available if you select the highlighted
command token on the third line. The command token lines provide you with a
look ahead feature, showing you the debugger commands available to you at any
time.

This section describes how to:
¢ Enter commands.

¢ Edit commands.

¢ Recall commands.

* Access on-line help information.

To enter debugger commands from the keyboard

Build a command using direct keyboard entry by successively typing letters
corresponding to command tokens until a complete command is formed.

Execute a completed command using the keyboard, presR#tarn> key on the
keyboard.

You can enter commands any time the cursor is displayed on the command line.
You can enter only one debugger command at a time.

Debugger commands have the following syntax:

command [qualifier...] [parameter...]

66

Chapter 2: Entering Debugger Commands
Using the Command Line with the Keyboard

To enter a command keyword, type the first letter of the keyword. For example, to
enter the commarnidebugger Level Assemblype the letters D, L, and A. The
following command will appear on the command line:

Debugger Level Assembly
Press<Return> to enter (execute) the command.

In command examples, the letter you must type is highlighted in bold type.

Note In cases where you can select from more than one keyword beginning with the
same letter, type the first uppercase letter of the desired keyword. For example,
typeOto selecOn andF to select BF.

Enter qualifier keywords in the same way as command keywords. Qualifiers
provide the debugger with information on how to execute the command. Qualifiers
are normally single words that immediately follow the command name. For
example, in the command:

Program Find_Source Next Backward

the qualifierBackwardcauses the debugger to search the file from the current
position in the file towards the beginning of the file for a specified string.

Type parameters in their entirety from the keyboard. Parameters must be separated
from the command or qualifier keyword by at least one space. Parameters describe
the object of the command and are typically C expressions that represent values or
addresses used by the command. For example, in the command:

Expression Display_Value &system_is_running

the parametefsystem_is_runningpecifies the address of the variable
system_is_running

67

Chapter 2: Entering Debugger Commands
Using the Command Line with the Keyboard

To edit the command line

To clear the command line, presStri>U .

To clear the command line from the cursor position to the end of the line, press
<Ctrl>E.

To move to the right one command word, preEab>.
To move left or right character-by-character, press-thend - keys.

To delete characters to the left of the cursor position, pres8HWEKSPACE>
key.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that level of the command.

To recall commands using the command line
recall feature

To recall commands from the command line, press@td>R key combination.
Continue to pressCtrI>R to move from the most recently executed commands
backward to earlier commands.

To move forward in the recall list, presStrl>B .

The command line recall feature is available to you, but it is not as easy to use or as
flexible as the Command Recall dialog box in the graphical interface. You must
search through commands in a linear fashion instead of going directly to the
command you want in the dialog box. The depth of the recall list is predefined and
cannot be controlled by you. The recall list may contain duplicate entries that you
must scroll past and that take up room in the recall list. Finally, you cannot

68

Chapter 2: Entering Debugger Commands
Using the Command Line with the Keyboard

predefine entries for the recall list — the list only contains the most recent
commands executed during the debugger session.

To display the help window

Press the function keys.

Or:

Enter the command

Debugger ?

This command displays a menu of debugger commands, command parameters,
function keys, and other debugger features. Descriptions for each topic may be
obtained by positioning the cursor on the first letter of any topic in the help menu
and pressing theReturn> key.

The debugger’s help window is context sensitive. When you display the help
window, the cursor is located on the last command you entered before displaying
the help window. The debugger assumes you need help with this command. Press
<Return> to display information about the command.

Pressing<Return> or <Down> displays information on the next item in the help
menu. PressingUp> displays information about the previous item in the help
menu.

You can move the cursor to the first command of a command type (Breakpt,
Debugger, etc.) by entering the first letter of the command type. For example, to
move the cursor to the entry for the first window command, émer:

The cursor will be positioned at the Window Active command entry. Then you can
use the cursor keys to select the window command you need help with and press
<Return> to display information on that command.

Press thé&5 function key one time or press the escagies€> key twice to exit
the help window. (Note that you cannot exit the graphical interface help window
this way.)

69

Chapter 2: Entering Debugger Commands

Viewing Debugger Status

Viewing Debugger Status

The status line shows you what the debugger is doing. The status line:

Contains information about the operation being performed by the debugger.
Contains indicators to warn you about special conditions.

Shows the microprocessor being emulated.

Shows the program module associated with the current program counter.
Shows the number of the last breakpoint that occurred.

Shows the trace measurement status.

The status line is always present in both the graphical interface and the standard
interface.

The debugger displays the status line in the following format:
STATUS:<Status> [J][L]]W] CPU MODULE: <module> BREAK #: <#> TRC:<Trc_status>
[R]

Debugger Status

The Status field on the status line shows the current state of the debugger. The
possible values for this field are:

Command The debugger is ready to accept a command or a macro
definition.
Execute The debugger is executing target environment instructions. The

debugger displayBxecuteon the status line when you enter the
Program Run command or the Program Step command.

ComFile The debugger is reading commands from a command file.
Macro The debugger is executing a macro.
Paused The debugger is in the paused state after execution of the

Debugger Pause command.

70

Chapter 2: Entering Debugger Commands
Viewing Debugger Status

Reading The debugger is reading an executable file or a C source file
into the debugger's memory.

Working The debugger is executing internal debugger operations.

The status field may also display emulator status. See the emulator manual f
detailed descriptions of the following states:

InMon The emulator is running in the monitor; the debugger will
accept commands.

BusGrnt The emulated processor has granted its bus to another device.
Halted The emulated processor has entered a halted state.

uP Idle The emulator processor is idle.

Reset The emulated processor is being held in a reset state.

AwtRst The emulator is awaiting a target system reset.

Asleep The emulated processor is Asleep.

SlowBus The emulated processor’s bus is responding slowly or not at all.

This is probably the result of many wait states or a handshake at
an unimplemented address.

SlowClk The emulated processor’s clock is running slowly or not at all.
NotRdy The emulated processor’s bus is being held in a "not ready"
state. This is probably due to extended wait states or

unimplemented memory.

Unknown The emulator has entered an unknown state. If this occurs, you
should attempt to reset the processor into the monitor.

CMBWait The emulator is awaiting some action on its Coordinated
Measurement Bus.

TargRst The emulated processor is being held in a reset state by the
target system.

71

Chapter 2: Entering Debugger Commands
Viewing Debugger Status

TargPwr The target processor is not powered.

Indicator Characters

The Warning indicator (W) indicates that the program counter is not on a C source
line boundary. The debugger displays a warning when it detects a breakpoint, an
instruction halt, or an instruction error between lines.

The Log indicator (L) indicates that commands are being logged to a log file.

The Journal indicator (J) indicates that everything appearing in the Journal window
is being written to a journal file.

The Register indicator (R) indicates that a register variable is being used, but its
lifetime is not known by the debugger. The debugger displays an R when the
variable is referenced, indicating that the values being used for this variable may
not be valid.

CPU Emulated

The CPU entry indicates which microprocessor is being emulated.

Current Module

The MODULE: entry names the current module (<module>). The current module
is the module pointed to by the program counter. If the program counter points

outside of the known code area associated with the program, this entry displays
PP7??7?77

Last Breakpoint

The BREAK # entry indicates the number of the last breakpoint that occurred, or
(0) zero if execution was not terminated with a breakpoint.

Trace Status

The TRC:<Trc_status> entry indicates the status of the trace measurement
function. The possible values feifrc_status> are listed on page 166 in the
“Making Trace Measurements” chapter.

72

Chapter 2: Entering Debugger Commands
Viewing Debugger Status

To display information about the debugger
version

SelectHelp - General Topic .. Interface Revision Information.

Information about how this version of the debugger differs from previous versi.
is now included in the on-line help. This includes the information which was

previously printed in th®perating Noticeor the "Versions" chapter of théser's
Guide

73

Chapter 2: Entering Debugger Commands
Solving problems with the interface

Solving problems with the interface

If pop-up menus don’t pop up

When you hold the right mouse button down, a pop-up menu does not appeatr.
Here are some things to check:

Check that the mouse pointer is hand-shaped.

Some areas of the screen do not have pop-up menus.

Check that your mouse buttons are not being redefined in your window manager
resource file. Delete any redefinitions from the resource file.

For example, it is very common for usersroi/mto redefine the right mouse
button to raise a window by changing the mouse button definitions imtirarc

file. The redefinition causes mwm to trap the right mouse button and not pass it
through to the debugger. Deleting the redefinition will allow the button click to
pass through.

74

Loading and Executing Programs

How to load a program into the debugger and control its execution.

75

Note

Compiling Programs for the Debugger

Using a Hewlett-Packard C Cross Compiler

Use the default compile mode when compiling your target programs for use with
the debugger. The default settings generate executable files (.x file extension) in
the HP-MRI IEEE-695 file format required by the debugger. The default option
settings force a stack frame to be built for every function call, which is required for
stack backtracing.

The “Getting Started” chapter of 868000 C Cross Compiler User’'s Guidwes
an example of how to compile a simple program and execute it in the
HP 64742/743/744/746 environment.

Do not use theh option when compiling and linking your program for the
debugger. Theh option causes the compiler to generate HP 64000 file formats.
Use the default settings which generate executable files in the HP-MRI IEEE-695
file format required by the debugger. The debugger extracts all symbolic
information from the executable (.x) file.

Using Environment Dependent Files

The HP B3640 Motorola 68000 Family C Cross Compiler provides environment
dependent files that support the HP 64742/743/744/746 emulation environment.
The debugger has the same simulated I/O capabilities as the HP 64000 Series
emulators. The same environment dependent files are used for both the debugger
and emulator environments. These environment dependent routines affect the
following areas of C programming:

* program setup
¢ dynamic memory allocation

* program input and output

The "Environment Dependent Routines” chapter o68@00 C Cross Compiler
User's Guidedescribes the environment dependent routines supplied with the
compiler.

76

Note

Chapter 3: Loading and Executing Programs
Compiling Programs for the Debu gger

Using Optimizing Modes

If you use the optimizing modes (—O or —OT), function calls that do not have
automatic variables may not have stack frames. As a result, the stack backtrace
window will not contain entries for such functions. Additionally, the optimizing
modes will cause the compiler to generate code which is not easily debugged.

When initially compiling a program for the debugger, you should turn off all
optimizations to avoid confusion when using the debugger. After program flo
and all basic algorithms have been debugged, you can recompile the progra
all optimizations turned on.

When you compile with all optimizations on, one or more of the following
problems may occur while using the debugger:

* Target program execution in the debugger may not appear to correctly reflect
the logical flow of the program.

* The debugger may not stop execution at a high-level breakpoint or may stop
execution at the wrong location in the program.

* The debugger may not be able to display local variables.

Forcing Variables to be Placed in Memory

The default compiler settings automatically create register variables for statics and
frequently used variables. Some debugger functions such as access breakpoints
will not work with register variables. The compiler optidvic, -Fturns off the
compiler’s automatic creation of register variables, forcing the compiler to assign
these variables to memory. This enables greater functionality of some debugger
commands. After debugging your code, you can then recompile your code without
these options for greater efficiency.

Using Math Libraries

Although FPU instructions can be executed in the target system, the
debugger/simulator cannot execute these instructions. To generate code that will
run interchangeably in both the debugger/emulator and debugger/simulator, use the
C compiler’s floating point library routines. These libraries contain routines that

77

Chapter 3: Loading and Executing Programs
Compiling Programs for the Debugger

do not use FPU instructions, thereby allowing them to execute properly in both
debugging environments.

References

The “Getting Started” chapter of t68000 C Cross Compiler User’s Guidrres
an example of how to compile a simple program and execute it in the debugger
environment.

The “Command Syntax” chapter of t&8000 C Cross Compiler User's Guide
gives detailed descriptions of compiler options.

The “Environment Dependent Routines” chapter of6®@00 C Cross Compiler
User's Guidedescribes the environment dependent routines supplied with the
compiler.

Using Microtec Language Tools

The debugger is designed to work with the HP Advanced Cross Language System.
However, you can also use the Microtec Research, Inc. language tools with the
debugger.

Microtec’s language tools are quite similar to the HP language tools. The input
syntax and code generated by the HP and Microtec assemblers, linkers, and
librarians are identical with few exceptions.

The language tools available from Micrdteare themcc68k C compiler, the
ccc68kC++ compiler, thesm68kassembler, thimk68k linker, and thdib68k
librarian.

Using the Microtec Commands

For instructions on how to compile and assemble programs using the Microtec
language tools, refer to tigplication Note for Hewlett-Packard 68xxx Product
Interfaces and Microtec Research Inc. 68xxx Language .Tbois application

note is available from your Hewlett-Packard sales representative.

Assembler Defaults

You should be aware of these differences between asm68k and as68k:

Command-line syntax. The differences are minor. See the on-line man pages
for a description of the command-line options.

78

Chapter 3: Loading and Executing Programs
Compiling Programs for the Debu gger

Case sensitivity. as68k is case sensitive by default, asm68k is not. Use the
command line flag "-fcase" to make asm68k case sensitive.

Symbols in HP-MRI IEEE-695 files. The HP assembler places local symbols
in the output object file by default, asm68k does not. Use the command line flag
"-fd’ with asm68k to generate local symbols.

The HP assembler places global symbols in the debug part by default. There is no
way to do this with Microtec’s asm68k. This information is needed to correctly
scope symbols. Thus you will find that some symbols may be incorrectly scop
with the Microtec assembler.

Linker Defaults

You should be aware of these differences between Ink68k and Id68k:

Output file format. 1d68k produces HP-MRI IEEE-695 by default. Ink68k
products Motorola S-Records by default. To generate an HP-MRI IEEEx$95 (
format absolute file, use thEl command line option ofi flag.

Local symbols. 1d68k provides local symbols in absolute file by default, but
Ink68k does not. The command line fldigand optiontH also set thd flag which
will cause Ink68k to generate local symbols.

Support files. 1d68k and Ink68k have different default locations and
environment variables used to locate linker command files and libraries.

Librarian Defaults

ar68k usesa as the default library suffix. lib68k usdid as the default library
suffix.

The Microtec MCC68K Compiler

mcc68Kk is very different from the HP compilers. Study the Microtec
documentation if you need specific information about mcc68k.

79

Chapter 3: Loading and Executing Programs
Loading Programs and Symbols

Loading Programs and Symbols

This section shows you how to:

* Specify the location of C source files.

* Load programs.

¢ Load programs only (without symbols).

* Load symbols only (without the program).
* Load additional programs.

¢ Specify demand loading of symbols.

To specify the location of C source files

Before you start the debugger, set the HP64_DEBUG_PATH environment variable.

The location of C source files can be defined to the debugger with the UNIX shell
variableHP64_DEBUG_PATH If HP64_DEBUG_PATH is defined, the

debugger first searches for the files in the path(s) specified in the variable, in the
order in which they are listed.

In addition to path names, you can place a percent%iyctfaracter in the
HP64_DEBUG_PATH definition. The percent sign forces the debugger to search
for files in their compile-time locations. (Compile-time paths are stored in the
absolute file.) The search of these paths occurs at the point that the percent sign is
found in the variable. For example, if the percent sign is first in the variable before
any paths, the debugger will search for the file in the location recorded for it in the
absolute file before checking the other locations specified by the
HP64_DEBUG_PATH variable.

If HP64 DEBUG_PATH is not defined, or HP64_DEBUG_PATH is defined, but
the files were not found in the paths listed there, the debugger searches for source
files in the following sequence:

80

Example

Chapter 3: Loading and Executing Programs
Loading Programs and Symbols

1 their location at compile time (this information is recorded in the absolute file)
2 the current directory (if the required source files are not found in their compile
location)

The shell variable definition:
HP64_DEBUG_PATH=/users/proj/src:/users/proj/mysrc
export HP64_DEBUG_PATH

causes the debugger to search paths for C source files in the following order:

1 Jusers/proj/src

2 |users/proj/mysrc

3 the paths specified in the absolute file at compile time
4 the current directory

If you use the csh shell (most Sun systems)satmvinstead okxport to set the
variable.

To load programs

When starting the debugger, enter the executable file name as the last term in the
db68k command line.

$ db68k -e emul68k <abs_file>

Or:

SelectFile - Load - Executable then use the File Selection dialog box to select
the executable file.

Or:

Using the command line, enter:

Program Load Default <file_name>

When you load an absolute file using these commands, the debugger:

81

Chapter 3: Loading and Executing Programs
Loading Programs and Symbols

Examples

1 Removes all previous program symbols.
2 Removes all previously set breakpoints.
3 Resets the program counter (PC).

4 Loads the full symbol set.

5 Loads the new executable module.

Absolute files contain executable object code. They must have a file name
extension ofx. You do not need to specify thefile extension when entering the
absolute file name.

TheProgramL oadDefault command is equivalent to tRegramL oadNew All
Pc_Set command.

To load the executable fikrs.x

$ db68k -e emul68k ecs

Or:

Program Load Default ecs

To load program code only

SelectFile - Load - Program Only ..., then use the File Selection dialog box to
select the absolute file.

Or:

Using the command line, enter:

Program Load New Code_only No_Pc_Set <absolute_name>

Enter the name of the absolute file whose code is to be loaded, and press the
<Return> key.

The code image will be loaded without loading symbols or resetting the PC.

82

Chapter 3: Loading and Executing Programs
Loading Programs and Symbols

If you are re-loading a program, you may need to re-specify variables for the
Monitor window. To re-load a program without clearing the Monitor window,
enter:

Program Load Append Code_only No_Pc_Set <absolute_name>

To load symbols only

Use the -1 option to the db68k command when starting the debugger.
$ db68k -e emul68k -I <absolute_file> <RETURN>
Or:

SelectFile - Load - Symbols Only .., then use the File Selection dialog box to
select the absolute file.

Or:

Using the command line, enter:

Program Load New Symbols_only No_Pc_Set <absolute_file>

Enter the name of the absolute file whose symbols are to be loaded, and press the
<Return> key.

Only symbolic information is loaded from the absolute file.

When joining an emulation session already in progress, or when continuing a
previously locked session, the debugger will attempt to load the symbols from the
last executable loaded, if you do not specify the name of an executable on the
command line.

83

Chapter 3: Loading and Executing Programs
Loading Programs and Symbols

Examples

To load additional programs

Using the command line, enter:

Program Load Append

Select either All, Code_Only, or Symbols_Only. Then, select either Pc_Set or
No_Pc_Set. Finally, enter the name of the absolute file to be appended, and press
the<Return> key.

All both code and symbols are loaded.
Code_Only only code from the absolute file is loaded.
Symbols_Only only symbols from the absolute file are loaded.

Pc_Set the program counter (PC) is set to the transfer address found in
the absolute file.

No_Pc_Set the program counter (PC) is not changed.

When you append a program, it is loaded without deleting the existing program.
The new symbols will be added in a tree with the executable file name as the root.

To append the program “module2.x” to the current program without setting the
program counter:

Program Load Append Al No_Pc_Set module2

To turn demand loading of symbols on or off

SelectSettings— Debugger Optionsand set th®emand Loadingoption.

With demand loading, some symbol information is loaded on an as-needed,
demand basis rather than during the initial load of the .x file. Demand loading lets

84

Chapter 3: Loading and Executing Programs
Loading Programs and Symbols

you load and debug programs that otherwise would not be loadable because of very
large amounts of symbol information.

Symbol information for global symbols, local symbols in the source module
containing main, and local symbols in assembly modules are loaded during the
initial load of the .x file. Local symbols in C source modules other than that
module which contains main are loaded either when the user explicitly references
the module or when the program is stopped with the program counter in the
module.

You can also use the -d option when starting the debugger to specify demand
loading. The -doff option turns off demand loading. This option wil override th
option in the startup file.

85

Chapter 3: Loading and Executing Programs
Stepping Through and Running Programs

Stepping Through and Running Programs

The various Program Run command options can be combined to make complex
run-time control commands for your program.

This section shows you how to:

* Step through programs.
. * Step over functions.
¢ Run from the current PC address.

* Run from a start address.

* Run until a stop address.

To step through programs

¢ Click on theStep action key.

Or:

¢ SelectExecution- Step-from PC.

Or:

* Using the command line, enter:

Program Step

And press theReturn> key.

Your program executes one C source line (high-level mode) or one machine
instruction (assembly-level mode) at a time from the address contained in the

86

Chapter 3: Loading and Executing Programs
Stepping Through and Running Programs

program counter PC. When the program calls a function, stepping continues in the
called function.

You can specify a starting address with the Program Step command. You can also
specify a step count to cause the debugger to step multiple lines or instructions in
your program.

The debugger updates the screen after each instruction or line is executed. The
highlighted line in the Code window (which indicates the value of the program
counter) is the location of the next line to be executed. If a breakpoint is
encountered, single-stepping is halted.

You can also use function kéy to single-step.

If the debugger steps into an HP library routine, run until the stack level above the
level of the library routine. Use the Program Run Until command or the Backtrace
window pop-up menu.

To step over functions

Click on theStep Overaction key.

Or:

SelectExecution- Step Over- from PC.

Or:

Using the command line, enter:

Program Step Over

And press theReturn> key.

The debugger steps through the program one line or one instruction at a time.
However, if the debugger encounters a C function or assembly-level JSR or CALL
instruction, it stops stepping, executes the JSR or CALL instruction, and then
continues stepping when the called subroutine returns.

87

Chapter 3: Loading and Executing Programs
Stepping Through and Running Programs

You can also use function ké&gB to step over functions.

To run from the current program counter (PC)
address

¢ Click on theRun action key.

Or:

* SelectExecution— Run - from PC.

Or:

* Using the command line, enter:

Program Run

And press theReturn> key.

The program runs until;

» The program encounters a permanent or temporary breakpoint.
* Anerror occurs.

* A STOP instruction is encountered.

* You pressCtrl>-C.

e The program terminates normally.

You can run from the current program counter address to resume program
execution after the program has been stopped.

To run from a start address

1 Enter the start address into the entry buffer.

88

Chapter 3: Loading and Executing Programs
Stepping Through and Running Programs

2 SelectExecution- Run - from ().

Or:

* Using the command line, enter:

Program Run From <start_addr>

Type in the start address, and press<Return> key.

The program runs until;

» The program encounters a permanent or temporary breakpoint.
* Anerror occurs.

* A STOP instruction is encountered.

* You pressCtrl>-C.

e The program terminates normally.

Running from a start address in high-level mode may cause unpredictable results if
the compiler startup routine is bypassed.

To run until a stop (break) address

1 Enter the stop address into the entry buffer.

2 SelectExecution- Run - until () or click on theRun til () action key.

Or:

* Using the command line, enter:

Program Run Until <break_addr>

Type in the stop address and, optionally, a pass count, and preBethm> key.

The break address (<break_address>) acts as a temporary instruction breakpoint. It
is automatically cleared when program execution is halted.

89

Chapter 3: Loading and Executing Programs
Stepping Through and Running Programs

Note

Examples

The pass count (<pass_count>) parameter specifies the number of times the break
address is executed before the program is halted. For example, a pass count of
three will cause the program to break on the fourth execution of the break address.

Multiple break addresses are OR’ed. In other words, if you specify more than one
break address, the program runs until either address is encountered.

The debugger/emulator implements instruction breaks using software breakpoints.
Therefore, break addresses cannot be specified for addresses in target ROM.

To run the program until either line 20 or line 90 is encountered, whichever occurs
first.

Program Run Until #20,#90

To run from the current program counter address until the break address
update_systens encountered twice:

Program Run Until update_system %%?2

The Until option in the command sets a temporary breakpoint at address
update_systemThe pass count parameter %%?2 specifies that the debugger is to
stop program execution on the second access to adgdste_system

90

Chapter 3: Loading and Executing Programs
Using Breakpoints

Note

Using Breakpoints

The debugger implements access, read, and write breakpoints using analyzer
hardware .

The debugger implements instruction breakpoints using software breakpoints.
The debugger may or may not display the TRAP instruction used for the breal

in the assembly-level code window. This may cause a temporary incorrect
disassembly of instructionsbeyond the breakpoint.

This section shows you how to:

* Seta memory access breakpoint (read, write, or either).
* Setan instruction breakpoint.

* Clear selected breakpoints.

* Clear all breakpoints.

¢ Display breakpoint information.

To set a memory access breakpoint

Enter the address (which may be a symbol) in the entry buffer. Select
Breakpoints - Setand selecRead Write, or Read/Write.

Or:

Using the command line, ent@reakpt , select the type of access to break on
(Read, Write, or Access), enter the address of the memory location, and press the
<Return> key.

The access types have the following meanings:

91

Chapter 3: Loading and Executing Programs

Using Breakpoints

Note

Read break on read accesses.
Write break on write accesses.
Access break on either read or write accesses.

Access breakpoints cause the debugger to halt program execution each time the
target program reads from or writes to the specified memory location(s). Memory
locations can contain code or data.

The debugger uses the emulation analyzer to implement access breakpoints. The
analysis hardware has eight single break resources and one range break resource.
Each breakpoint command uses one or more of the analysis resources.

The following commands each use one analysis break resource:

* Breakpt Access <addr>
» Breakpt Read <addr>
» Breakpt Write <addr>

The commandreakpt Access <addr>..<addr> uses the one range
break resource.

The commandBreakpt Read <addr>..<addr> or Breakpt Write
<addr>..<addr> use the analysis range resource and four analysis break
resources.

If you request more access breakpoints than there are available in the analysis
hardware, the messaBeeakpoint limit exceedaedlill be displayed on your screen.
If this happens, you must delete an existing analysis breakpoint before you can
enter a new one.

Due to the latency of the emulation analyzer, the processor will halt from 0 to 2
instruction cycles after the breakpoint is detected. Due to the processor’s prefetch
feature, it is possible for hardware breaks to occur on addresses of instructions that
are not executed.

The emulator user interface may specify a trace that overrides a debugger access
breakpoint. The debugger interface will set up the access breakpoint trace when a
run or step command is issued only if the analyzer is not currently in use. Using
both access breakpoints in the debugger and trace features in the emulator is not
recommended.

92

Chapter 3: Loading and Executing Programs
Using Breakpoints

Examples To cause execution to halt each time the program reads from or writes to the
variable current_temp:

Breakpt Access ¤t_temp

To cause execution to halt each time the program reads from the variable
current_temp:

Breakpt Read ¤t_temp

To cause execution to halt each time the program writes to the variable
current_temp:

Breakpt Wite ¤t_temp

To set an instruction breakpoint

* Position the mouse pointer in the code window over the line at which you wish to
set a breakpoint. Either click the right mouse button, or press and hold the right
mouse button to display the Debugger Display pop-up menu and GeiSkear
Breakpoint from the menu.

Or:

¢ Enter the instruction address into the entry buffer, then select
Breakpoints - Set- Instruction ().

Or:

* Using the command line, enter:

Breakpt | nstr <addr>

Enter the address of the instruction location, and pressRbéeirn> key.

The instruction breakpoint causes the debugger to halt program execution each
time the target program attempts to execute an instruction at the specified memory

93

Chapter 3: Loading and Executing Programs

Using Breakpoints

Note

location(s). The debugger halts program execution before the program executes
the instruction at the breakpoint address.

If you specify a range, the debugger sets breakpoints on the first byte of each
instruction within the specified range.

Set breakpoints are marked with asterisks “*” in the code window. In the high-level

mode, dots “.” show the source lines associated with a breakpoint.

Instruction breakpoints are implemented using the emulator’s software breakpoint
capability. You can set at least 32 software breakpoints. If your HP 64700 firmware
version is 4.0 or later, there is no limit on the number of breakpoints you can set.
Breakpoints are implemented by replacing the program opcode with a TRAP
instruction. Executing the TRAP instruction causes program control to be
transferred to the emulation monitor, stopping the program.

Because a TRAP instruction must replace the instruction at a memory location,
software breakpoints can only be set in:

* Emulation RAM.
* Emulation ROM.
* Target system RAM.

Software breakpoints cannot be set in target ROM. Software breakpoints cannot be
used to detect data accesses.

Setting an instruction breakpoint in a memory area mapped as emulation ROM is
allowed because the debugger can write to emulation ROM addresses.

Setting an instruction breakpoint in a memory area mapped as target ROM is
allowed if you answemo to the configuration questiddreak processor on write to
ROM? The breakpoint will be recorded in the breakpoint window. However, if the
target memory area is made up of ROM chips in the specified memory area, the
TRAP instruction cannot be written to memory. Therefore, the breakpoint will
never be executed.

If you answeryes to the configuration questid@reak processor on write to
ROM?, you are not permitted to set breakpoints in areas mapped as target ROM.

94

Chapter 3: Loading and Executing Programs
Using Breakpoints

Note The default setting of the debugger optidign_Bp(align breakpoint) isFF.
Setting the option t@®n causes breakpoints to be aligned based on the assembly
language instructions found in memory at the time the breakpoints are set. If
multiple breakpoints exist in the same program area, their alignment may be
incorrect. Make sure th&lign_Bpoption is set t@FF to prevent breakpoint
alignment problems. See the “Configuring the Debugger” chapter for more
information.

Example To set an instruction breakpoint at line 82 of the current module: .

Breakpt | nstr #82

To set a breakpoint for a C++ object instance

¢ Use the dot or arrow operator to specify the object and the member function.

This allows you to set a breakpoint for a member function only when it is invoked
for a given object or instance.

Example To break when functioofuncis invoked by object instancebjl, enter:

Breakpoint | nstr cobjl.cfunc

To do this the hard way, you could enter:

Breakpoint | nstr C::cfunc\@entry;when (C::cfunc\this==
&cobjl)

95

Chapter 3: Loading and Executing Programs

Using Breakpoints

Example

Examples

To set a breakpoint for overloaded C++ functions

To set a breakpoint at one of the functions when you know the argument type,
supply the argument type following the function name.

To set a breakpoint at one of the functions when you don’t know which argument
type you want, just use the name of the function. The debugger will list the choices
with a menu in the Journal window.

To set a breakpoint for the functiprint (which is not in a class) fdloat
arguments, entguint (float) in the entry buffer and select
Breakpoints Set ()

Another way to set a breakpoint for the functgimt is to enteprint in the
entry buffer, seledreakpoints - Set () then type the number of "print (float);"
from the menu in the Journal window.

To set a breakpoint for C++ functions in a class

Set a breakpoint for the C++ class.

To set breakpoints for all member functions of the atlssnamgenter
“classname::" in the entry buffer, then se®&akpoints - Set ()from the menu
bar.

Or, using the command line, enter:

Breakpoint | nstr classname::

96

Chapter 3: Loading and Executing Programs
Using Breakpoints

To clear selected breakpoints

Position the mouse pointer in the Code window over the line at which you wish to
clear a breakpoint. Click the right mouse button.

Or:

Position the mouse pointer in the Code window over the line at which you wis
clear a breakpoint. Hold the right mouse button and se&ftlear Breakpoint
Or:

Position the mouse pointer in the Breakpoint window over the breakpoint you wish
to clear. Hold the right mouse button and sdbstéte Breakpoint

Or:

Place the breakpoint address in the entry buffer, then Skaitpoints - Delete
0.

Or:

Using the command line, enter:

Breakpt Delete <brkpt_nmbr>

Enter the breakpoint number, and press<Return> key.

The debugger assigns a breakpoint number to each breakpoint. The debugger uses
this number to remove the breakpoint.

The <brkpt_nmbr> is the number of the breakpoint displayed in the debugger
breakpoint window. Enter a range of breakpoint numbers
(<brkpt_nmbr>..<brkpt_nmbr>) to remove more than one breakpoint at a time.
When you delete a breakpoint, all following breakpoints are renumbered.

Or:

97

Chapter 3: Loading and Executing Programs
Using Breakpoints

¢ Using the command line, enter:

Breakpt Erase <address>

where <address> is a parameter of the same form used to set a breakpoint.

Examples To delete breakpoint number 1:

Breakpt Delete 1

To clear all breakpoints

¢ SelectBreakpoints— Delete All

Or:

¢ SelectDelete All Breakpointsfrom the Breakpoints window pop-up menu.

Or:

* Using the command line, enter:

Breakpt Clear_All

And press theReturn> key.

98

Chapter 3: Loading and Executing Programs
Using Breakpoints

To display breakpoint information

SelectWindow - Breakpoints.

Or:

Using the command line, enter:

Wndow Active Breakpoint

And press theReturn> key.

The debugger displays the breakpoint window when:

* You enter a breakpoint command.
* You execute the Window Active Breakpoint command.
* You use function keys F1/F2 to activate next/previous windows.

The Breakpoint window temporarily overlays the top portion of the screen.

When made active, this window displays breakpoint information including:

» Breakpoint number.
» Breakpoint address.

* Name of the module or function containing the breakpoint (in high-level

mode).
* Module line number (in high-level mode).
» Breakpoint type.
e Command arguments entered with the breakpoint command.

The following paragraphs describe each field in the breakpoint window.

Breakpoint number

The debugger assigns a breakpoint number (#) when you execute a breakpoint
command. The debugger uses this number as a label to reference or clear each

breakpoint.

99

Chapter 3: Loading and Executing Programs

Using Breakpoints

Breakpoint address

The breakpoint address (ADDRESS) shows the memory location of the breakpoint.
The debugger displays the address as a hexadecimal value.

Module/function

The module/function field (MOD/FNCT) displays either the name of the module
containing the breakpoint or the name of a function if you qualified the breakpoint
with a function name. If you specify a module name with a breakpoint command,
the name must be followed by a line number (for exampign!#80). The field
width is eight characters. The debugger truncates field entries greater than eight
characters in length to eight characters.

Line number

The line number entry (LINE) displays a module line number if you set a

breakpoint in a high-level module. If the compiler did not generate executable code
for the C statement at the line number specified, the debugger examines the source
code and sets a breakpoint on the next line number for which the compiler
generated executable code.

In the code window, the debugger places asterisks beside all line numbers that are
associated with breakpoints. The debugger places period symiaside line
numbers that are specified as breakpoints, but have no code associated with them.

Breakpoint type

The breakpoint type (TYPE) describes what type of breakpoint is set: instruction,
read, write, or access. In assembly-level mode, the debugger sets instruction
breakpoints on microprocessor instruction addresses. In high-level mode, the
debugger sets instruction breakpoints on source line numbers. The debugger flags
instruction breakpoints withA (assembly-level) aofH (high-level). When

switching between modes, these flags are useful for differentiating between the
different types of breakpoints.

Command argument

The debugger records arguments (COMMAND ARGUMENT) in the breakpoint
window as you entered them on the command line. Line numbers, addresses,
symbol names, and macro names all appear in this field. For more information

100

Chapter 3: Loading and Executing Programs
Using Breakpoints

about breakpoints, see the specific breakpoint command descriptions in the
“Debugger Commands” chapter.

101

Chapter 3: Loading and Executing Programs

Using Breakpoints

Example

To halt program execution on return to a stack
level

SelectRun Until Stack Level from the Backtrace window pop-up menu.

Or:
Set a stack level breakpoint.
Run the program.

If desired, delete the breakpoint that was just encountered.

Assume that you want to run the program until it returns tontie() function.

You can determine where to set a breakpoint on return to main by using the stack
level information in the backtrace window (you may have to activate this window
in order to see the information in it).

There is a number next to the functioain()in the backtrace window. This is the
current stack level ahain() This is the address of the machine level instruction
immediately following the call tonitialize_system

Place the mouse pointer over the line in the backtrace window that lists "main."
Hold the right button and seldgun Until Stack Level.

Or, using the command line and assunmrain()is at stack level 1, enter:

Breakpoint | nstr @1

This command will cause program execution to stop when the program returns to
the functionrmain The at sign (@) is a debugger operator that causes the debugger
to interpret the number 1 as a stack level.

Executing the Breakpt Instr command causes the debugger to update and display
the Breakpoint window. The breakpoint you just entered is shown in the
Breakpoint window. Now use the appropriate commands to run the program and
delete the breakpoint.

102

Chapter 3: Loading and Executing Programs
Restarting Programs

Restarting Programs

This section shows you how to:
* Reset the processor.

* Reset the program counter to the starting address.

* Reset program variables. .

To reset the processor

SelectExecution— Reset to Monitor.

Or:

Using the command line, enter:

Debugger Execution Reset_Processor

And press theReturn> key.

Resetting the processor resets the microprocessor to its initial state and leaves the
microprocessor running in the monitor.

To reset the program counter to the starting
address

SelectExecution- Set PC to Transfer.

Or:

103

Chapter 3: Loading and Executing Programs

Restarting Programs

Examples

Using the command line, enter:

Program Pc_Reset

And press theReturn> key.

The program counter is reset to the transfer address of your absolute file. The next
Program Run or Program Step command entered witHoornaddress will restart
program execution at the beginning of the program.

To reset program variables

Reload your program.

Memory is not reinitialized when you reset the processor or reset the program
counter. Therefore, program variables are not reset to their original values. To
reset program variables after resetting the processor or program counter, reload
your program.

For faster loading, you can load only the program code. The debugger retains
symbol information. You do not have to reload symbol information if symbol
addresses have not changed.

For information on loading programs, refer to the previous “Loading Programs and
Symbols” section.

To save the current memory contents and register values in file "sessionl.sav":

Debugger Execution Save_State sessionl

104

Chapter 3: Loading and Executing Programs
Loading a Saved CPU State

Loading a Saved CPU State

State files are used to save the current CPU state (memory image and register
values) of a debug session. Though state files can only be created from within a
debugger/simulator session, you can use them to restore a CPU state in either a
debugger/simulator or debugger/emulator session.

This section shows you how to:

¢ Load asaved CPU state.

To load a saved CPU state

Ensure that the emulator is configured correctly for the code you are restoring and
that debugger parameters that affect the emulator (such as breakpoints) are set to
appropriate values.

Load symbolic information from same absolute file that was in the simulator when
the CPU state was saved. (The debugger/simulator does not save symbolic
information.)

Load the state file. Using the command line, enter:

Debugger Execution Load_State

Enter the name of the file from which the CPU state should be loaded, and press
the<Return> key.

The memory contents and register values saved with the debugger/simulator
Debugger Execution Save_State command are restored from the specified state file.
If you do not specify a file name, the debugger uses the defaulb@igk.sav

The Debugger Execution Load_State command does not restore breakpoints,
macros, or pseudoregister values. After redefining any breakpoints, macros, and
pseudoregisters, you are ready to continue your debugging session.

105

Chapter 3: Loading and Executing Programs
Loading a Saved CPU State

If your program uses simulated 1/O, it may not function properly on entering the
debugger/emulator because the simulated 1/O initialization may not have occurred.

Examples To restore memory contents and register values saved in state file "sessionl.sav":

Debugger Execution Load_State sessionl

106

Chapter 3: Loading and Executing Programs
Accessing the UNIX Operating System

Accessing the UNIX Operating System

This section shows you how to:
* Fork a UNIX shell.

e Execute a UNIX command.

To fork a UNIX shell

SelectFile -~ Term.

A terminal emulation window will be created.

Or:

Using the command line, enter:

Debugger Host_Shell

And press theReturn> key.

The Debugger Host_Shell command lets you temporarily leave the

debugging environment by forking a UNIX shell. The shell created is whatever the
shell variableéSHELLis expanded to. In this mode, you may enter operating
system commands.

The Debugger Host_Shell command does not end the debugger session; it suspends
program operation. To return to the debugger, er@@él>-D or typeexit at the
UNIX prompt, and press theReturn> key.

107

Chapter 3: Loading and Executing Programs
Accessing the UNIX Operating System

Examples

To execute a UNIX command

Using the command line, enter:

Debugger Host_Shell

Type in the UNIX command, and press #iReturn> key.

When using the graphical interface, a terminal emulation window will be opened
and the UNIX command will be executed in that window (as specified by the
“shellCommand” X resource).

When using the standard interfastgloutfrom the command is written to the
journal window. stderris not captured. Commands writingstolerr will corrupt
the display. Interactive UNIX commandannot be used in this mode.

To display the current working directory, enter:

Debugger Host_Shell pwd

108

Chapter 3: Loading and Executing Programs
Using the Debugger and the Emulator Interface

Using the Debugger and the Emulator Interface

The debugger and the emulator interface can use the emulator hardware at the same
time.

You should be aware of a few inconsistencies between the emulator and the
debugger interfaces:

* Modifying registers in one interface will not affect the register display in th

other interface. For example, modifying register DO in the emulator does n
change the contents of DO in the debugger interface. The PC register is a
exception to this rule.

* Loading an executable file in the debugger interface will set the program
counter to the transfer address by default. Loading an executable in the
emulator interface does not set the program counter.

To start the emulation interface from the
debugger

Proceed with your debugging session until you get to the point where you need to
use an emulator analysis feature.

If you are using the graphical interface, choose
File - Emul700- Emulator/Analyzer.

If you are using the standard interface, enter

Debugger Host_Shell

Then, at the operating system prompt, type:

emul700 <emulator_name>

When you are done using the emulator, egmer thenexit to return to the
debugger’s standard interface.

109

Chapter 3: Loading and Executing Programs
Using the Debugger with the Branch Validator

Using the Debugger with the Branch Validator

The Hewlett-Packard Branch Validator (BBA) is an interactive tool that helps you
rapidly determine which branches of a program have not been taken. With the
missed branches identified, you can modify your regression tests to ensure software
reliability.

The branch analysis information is collected by C programs that have been

. compiled using thebacpp preprocessor.

To unload Branch Validator data from program
memory

¢ SelectFile - Store— BBA Data ... Then choose a file name from the File
Selection dialog box.

Or:

¢ Using the command line, enter:

Memory Unload_BBA All

And press theReturn> key.

This command unloads branch analysis information associated with all absolute
files loaded.

The default file name isbadump.data

The BBA preprocessor (-b option) must be used at compile time in order for this
information to exist in program memory.

Once this information has been unloaded, it can be formatted with the BBA report
generatorbbarep(see théHP Branch Validator for AXLS C User's Gujde

110

Viewing Code and Data

How to find and display source code and memory contents.

111

Chapter 4: Viewing Code and Data
To add a symbol to the symbol table

Using Symbols

This section shows you how to:
¢ Add a symbol to the symbol table.
¢ Display symbols.

¢ Delete a symbol from the symbol table.

To add a symbol to the symbol table

¢ Using the command line, enter:

Symbol Add

Enter the symbol data type, the symbol name, and optionally the base address and
the initial value; then, press tk®eturn> key.

Two types of symbols can be added:

* Program symbols, which are identical to variables defined in a C or assembly
program. These symbols must be given base addresses.

¢ Debugger symbols, which may be used to aid and control the flow of the
debugger. These symbols are specified without a base address, and only
debugger commands and C expressions in macros can refer to them. They
cannot be referenced by the program in target memory.

Example To add a program symbol of type int (default) as an alias for "num_checks", enter
the following:

Symbol Add nc Address &num_checks Fill_ Mem -1

The "Fill_Mem -1" command places the value -1 in num_checks. Notice that the
Monitor window is not updated to reflect that change.

112

Chapter 4: Viewing Code and Data
To display symbols

To display symbols

¢ SelectDisplay- Symbol ()to display information about the symbol in the entry
buffer.

Or:

¢ Using the command line, enter:

Symbol Display Default

Enter the symbol, module, or function name; then, pressRe&urn> key.
Symbols and associated information are displayed in the journal window.

When displaying a symbol in the current module, the debugger looks for the
symbol in the current module. If there is no module qualifier, all symbols with the
specified name will be displayed, including global symbols and symbols local to
the module.

The wildcard charactérmay be placed at the end of a symbol name to represent
zero or more characters. If used with no symbol nansetreated the same &as
that is, all symbols are displayed.

Examples To display the symbol 'update_sys’ in the current module:
Symbol Display Default update_sys

Symbol Display Default update_sys
@ecs\\update_sys : Type is High level module.
Code section = 00001436 thru 00001C21

To display all symbols in module 'update_sys’
Symbol Display Default update_sys\

> Symbol Display Default update_sys\
Root is: update_sys

@ecs\\update_sys : Type is High level module.
Code section = 00001436 thru 00001C21
update_sys\update_system
: Type is Global Function returning void.
Address = 00001436 thru 00001513
update_system\refresh

113

Chapter 4: Viewing Code and Data
To display symbols in all modules

Examples

: Type is Local int.
Address = Frame + 8
update_systemlinterval_complete
: Type is Local int.
Address = Frame + 12

To display symbols in all modules

With "\" in the entry buffer, sele®isplay - Symbol ().

Or:

Using the command line, enter:

Symbol Display Default\

To delete a symbol from the symbol table

Using the command line, enter:

Symbol Remove <symb_name>

Enter the symbol, module, or function name; then, pressRe&urn> key.

The specified symbols are removed from the symbol table. Only program symbols
and user-defined debugger symbols can be deleted from the symbol table.

To delete the symbol "counter” in function "update_system":

Symbol Remove update_system\counter

To delete all symbols in module "update_sys":

Symbol Remove update_sys\

114

Chapter 4: Viewing Code and Data
To delete a symbol from the symbol table

To delete all symbols in all modules:

Symbol Remove \

115

Chapter 4: Viewing Code and Data
To delete a symbol from the symbol table

Displaying Screens

A debugger screen is what you see in the display area. Each debugger screen may
contain one or more debugger windows. A debugger window is a predefined
physical area on the screen containing specific debugger information.

The debugger has three predefined screens. Each predefined screen has a
corresponding name and number. The predefined screens and their associated
names and numbers are listed below:

Screen Name Screen Number
High-level screen 1
Assembly-level screen 2
Standard I/O screen 3

This section shows you how to:

¢ Display the high-level screen.

* Display the assembly level screen.

¢ Switch between the high-level and assembly screens.
* Display the standard 1/O screen.

¢ Display the next screen (activate a screen).

High-Level Screen

The debugger automatically displays the high-level screen when an executable (.x)
file containing the C function main() is loaded from the UNIX command line with
the db68k command. This screen has nine windows:

e journal

e code

e monitor

» backtrace
e status

» breakpoint
e error

* help

116

Chapter 4: Viewing Code and Data
To delete a symbol from the symbol table

e view

The high-level screen displays high-level source code and stack backtrace
information including the calling sequence of functions and function nesting levels.

Assembly-Level Screen

The debugger automatically displays the assembly-level screen when an executable
(.x) file is loaded from within the debugger or the executable file does not contain
the C source function main(). This screen has ten windows:

e journal

» code

e monitor

* register

e stack

» status

» breakpoint
s error

* help

o view

The assembly-level window displays assembly-level code and processor register
and stack information.

Standard I/O Screen

The debugger displays the standard I/O screen when your program requests
interactive input from the standard input device (stdin), or directs output to the
standard output device (stdout). It may also be displayed usii@ thuection

key. This screen has five windows:

e status

* breakpoint
e error

* help

s view

You can also access the standard 1/0 screen as a window (window No. 20).

The standard 1/0O window emulates a dumb terminal. It can be moved about the
display, but it can be no larger than 24 rows by 80 columns.

117

Chapter 4: Viewing Code and Data
To display the high-level screen

To display the high-level screen

* SelectSettings— High Level Debug

Or:

¢ Using the command line, enter:

Wndow Screen_On High_Level

To display the assembly level screen

* SelectSettings— Assembly Level Debug

Or:

* Using the command line, enter:

Wndow Screen_On Assembly Level

To switch between the high-level and assembly
screens

* Press thé&3 function key.

Or:

118

Chapter 4: Viewing Code and Data
To display the standard I/O screen

¢ Using the command line, enter:

Debugger Level

You can also use the Window New and the Window Active commands to display a
different screen.

To display the standard I/O screen .
* Press thé&6 function key.
Or:

¢ SelectWindow - Simulated IO.

Or:

* Using the command line, enter:

Whdow Screen_On Stdio

The standard I/O screen is displayed when your program requests interactive input
from the standard input device (keyboard) or when your program writes
information to the standard output device.

To display the next screen (activate a screen)

* Press thé&6 function key.

Or:

119

Chapter 4: Viewing Code and Data
To display the next screen (activate a screen)

¢ Using the command line, enter:

Whdow Screen_On Next

The next higher-numbered screen will be displayed. Either the high-level or the
assembly-level screen will be displayed, not both.

The debugger screens are numbered as follows:

Screen Name Screen Number

High-level screen 1
Assembly-level screen 2
Standard I/O screen 3

4-

User-defined screens 256

120

Chapter 4: Viewing Code and Data
To display the next screen (activate a screen)

Displaying Windows

This section shows you how to:
¢ Change the active window.
¢ Select the alternate view of a window.

e Setthe cursor position for a window.

A debugger window is a predefined physical area on the screen. The debugger has
18 predefined windows. Each window displays information specific to its
associated name (for example, the breakpoint window displays breakpoint
information).

Each of the 18 predefined windows has a corresponding name and number. All
windows (except the log file and journal file windows, which are files) also have an
associated screen number. The following table lists the predefined windows and
their associated names and numbers.

121

Chapter 4: Viewing Code and Data
To display the next screen (activate a screen)

Window Name Window Screen
Number Number
journal (high—level) 1 1
code (high—level) 2 1
monitor (high—level) 3 1
backtrace 4 1
status (high—level) 5 1
journal (assembly—level) 10 2
code (assembly—level) 11 2
monitor (assembly—level) 12 2
register (assembly—level) 13 2
stack 14 2
status (assembly—level) 15 2
standard 1/O 20 3
view 24 1,2,3
breakpoint 25 1,2,3
error 26 1,2,3
help 27 1,2,3
log file 28 none
journal file 29 none

The code window displays C source code in high-level mode. The code window
displays disassembled machine code in assembly-level mode. The C source code
that generated the assembly code can be interleaved with the assembly-level code.

When disassembled code is displayed, the address and machine code of a
disassembled instruction are displayed on the left side of the window as
hexadecimal values. For instructions over 6 bytes in length, bytes 7 through n are
replaced by ellipsis (...).

The stack window displays the stack beginning at the memory location pointed to
by the debugger stack pointer @SP. This window is available only within the
assembly-level screen.

122

Chapter 4: Viewing Code and Data
To change the active window

To change the active window

¢ Use thecommand selechouse button to click on the border of the window you
wish to activate.

Or:

¢ Select the window you want to make active fromwfiadow - menu.

Or:

¢ Use the command line to select a window:

Whdow Active <window>

where<window> is the name of the window to be made active, and press the
<Return> key.

The debugger uses a highlighted or thick border for the active window. The cursor
keys, scroll bar, and function ké&¢ (select the alternate display) only operate in
the active window.

If you are using a terminal without graphics capabilities, the active window is
indicated by single dashes around the border (other windows all have borders of
equals signs).

The window number is displayed in the upper right border of the window.

Examples To make the high-level backtrace window active:

Window - Backtrace

Or:
Wndow Active High_Level Backtrace

To make the breakpoint window active:

Wndow Active Breakpoint

123

Chapter 4: Viewing Code and Data
To select the alternate view of a window

Example

To make user window 57 active:

Whdow Active User_Window 57

To select the alternate view of a window

Click on the border of the active window with #t@mmand selechouse button.

Or:

Press thé&4 function key.

Or:

Using the command line, enter:
Wndow Toggle View

Or:

Using the command line, enter:

Wndow Toggle_View <Window>

where<Window> is the name of the window whose alternate view is to be
displayed, and press tk®eturn> key.

The typical default alternate view of a window is an enlarged view of the window,
letting you view more information. Repeating the command switches between the

normal view and the alternate view of the active window.

To display the alternate view of the high-level code window:

Wndow Toggle View High Level Code

124

Chapter 4: Viewing Code and Data
To view information in the active window

To view information in the active window

Use the scroll bar.

Or:

Use the cursor control keys.
Press th&Up> or <Down> cursor key to move up or down in the window one line
at a time.

Press thePage Down><Next>) or <Page Up>(<Prev>) key to move the
window one-half of the window length at a time.

Press theHome>or <End> (<Shift> <Home>) key to position the window at the
beginning or end of the information displayed in the window.

Type<CtrI>-F or<Ctrl>-G to shift the contents of the active window to the right
or left.

The following table describes the functions of the cursor control keys in the active
window and the command line window.

125

Chapter 4: Viewing Code and Data
To view information in the active window

Key

Description

—

N
!

Prev
Next
Home

End (Shift Home

)

Move to right in data field of command.
Highlight token to the right in status line window.

Move to left in data field of command.
Highlight token to the left in status line window.

Move up one line in window.

Move down one line in window.

Move up one half window.

Move down one half window.

Move to the top of the active window (except stack window).

Move to bottom of window (except for stack window).

Insert char Put keyboard in insert mode for editing data field of command.
Delete char Delete character within data field of command.
Undo Back tab.

The Home and End (Shift-Home) keys have additional functions when used with
the code and stack windows. The following table describes how the Home and End
(Shift-Home) keys work in these active windows.

126

Chapter 4: Viewing Code and Data
To view information in the "More" lists mode

Active Window Home Key End Key
Code Move to top of module Move to bottom of module
Stack Move to current stack pointer (SP) Move to current frame pointer (FP)

To view information in the "More" lists mode

If the "--More--" prompt is printed at the bottom of a window, the debugger is
waiting to display more than one screen of information.

* Press the space bar to display the next screen of information.

* Press th&Return> key to display the next line.

* Press "Q"to end the "More" display.

If you try to enter a command while the debugger is displaying the "--More--"
prompt, the command will not be executed until the "More" display has ended.

You can turn the "More" list mode off or on with tBettings— Debugger
Options dialog box.

For more information, see your operating system documentation orotke
command.

To copy window contents to a file

SelectFile - Copy Window - .

Or:

127

Chapter 4: Viewing Code and Data
To view commands in a separate window

* From the command line, enter the following commands:

File User_Fopen Append99 File< file_name >
Expression Fprintf 99, "%w",< window_number >
File Whdow_Close 99

To view commands in a separate window

SelectWindow - Journal Browser - Start.

Journal output—the commands and miscellaneous information usually displayed in
the Journal window—will be displayed in a separate browser window.

You may start several nested browser windows.

UseEnd to end output to the current browser window without closing the window.
SelectingRestart has the effect of and followed by aStart. UseNextNCmds
to record the next commands in a browser window (for example, to record

commands to use for an action key).

128

Chapter 4: Viewing Code and Data
To display C source code

Displaying C Source Code

This section shows you how to:
¢ Display the C source code.
* Find first occurrence of a string.

* Find next occurrence of a string.

To display C source code

1 Display the high-level screen (see the instructions in the previous “Displaying
Screens” section).

2 Display source code at the location in the entry buffer by selecting
Display - Source () Or click on theDisp Src () action key.

Or, using the command line, enter:
Program Display_Source

Enter the line number or function name of the code you wish to display, and press
the<Return> key.

Examples To display the C source code at line number 1 (in the current module):

Program Display_Source #1

To display the C source code at functmoain

Program Display_Source main

To display C++ source code at overloaded C++ funafong you can either give
the name of the function and select the definition from a menu, or you can specify
the definition by entering the argument type:

Program Display_Source cfunc (float)

129

Chapter 4: Viewing Code and Data
To find first occurrence of a string

Example

Example

To find first occurrence of a string

1 Display the high-level screen (see the instructions in the previous “Displaying

Screens” section).
Enter the string in the entry buffer.

SelectDisplay - Source Find Fwd ()or Display— Source Find Back ().
Or, using the command line, enter:
Program Find_Source Cccurrence <Direction>

Select either Forward or Backward as the direction, enter the line number or string
you wish to find, and press tk®eturn> key.

To find the first occurrence of the string “main”:

Program Find_Source Cccurrence Forward main

To find next occurrence of a string

SelectDisplay - Source Find Again

Or:

Using the command line, enter:

Program Find_Source Next <Direction>

Select either Forward or Backward as the direction, and presR#tarn> key.

To find the next occurrence of a string:

Program Find_Source Next Forward

130

Chapter 4: Viewing Code and Data
To display assembly code

Displaying Disassembled Assembly Code

Coprocessor Support

External devices must be supported by your target system. No support is provided
by the debugger/emulator.

68881/68882 Floating-Point Unit. The debugger does not disassemble the
68881 FPU instruction set. It does not contain features that allow FPU register
display or modification.

While FPU instructions can be executed in the target system, the
debugger/simulator cannot execute these instructions. To generate code that
run interchangeably in both the debugger/emulator and debugger/simulator, u

C compiler’s floating point library routines. These libraries contain routines that

do not use FPU instructions, thereby allowing them to execute properly in both
debugging environments.

68851 Memory Management Unit. The debugger does not support the 68851
MMU.

To display assembly code

SelectSettings— Assembly Level Debug

Or:

Using the command line, enter:

Wndow Screen_On Assembly Level

The Code window will show disassembled insructions.

131

Chapter 4: Viewing Code and Data
To set current module and function scope

Displaying Program Context

This section shows you how to:

¢ Set current module and function scope.

¢ Display current module and function.

¢ Display debugger status.

¢ Display register contents.

¢ List all debugger registers.

¢ Display the function calling chain (stack backtrace).

¢ Display all local variables of a function at the specified stack (backtrace) level.

To set current module and function scope

SelectFile - Context— Symbols .., enter the module or function name in the
dialog box, and click on the OK pushbutton.

Or:

Using the command line, enter:

Program Context Set

Enter the module or function name, and pressReturn> key.

The module and function scope is used by the debugger to uniquely identify
symbols. For example, several functions may have local variables with the same
names. When you use that variable name without naming the function, the
debugger assumes you mean the variable in the current module or function scope.

132

Chapter 4: Viewing Code and Data
To display current module and function

Examples To select module “update_sys” as the current module:

Program Context Set update_sys

To select function “update_sys\graph_data” as the current function:

Program Context Set update_sys\graph_data

To set the program context to the module at which the program counter is pointing:

Program Context Set

To display current module and function .

¢ SelectDisplay- Context. Click on the Done pushbutton when you wish to stop
displaying the information.

Or:

¢ Using the command line, enter:

Program Context Display

The current module, function, and line number are displayed in the journal window.

To display debugger status

¢ SelectWindow - Status

Or:

* Using the command line, enter:

Debugger Execution Display_Status

133

Chapter 4: Viewing Code and Data
To display register contents

The following information is displayed in the view window (which temporarily
overlays the top portion of the screen):

* Product version.

e Current working directory.
» Current log file in use.

e Current journal file in use.
» Startup file used.

The view window is also used to display trace data and information about trace
command or event status. When trace data is displayed, a trace status character
may be displayed in front of the trace line. The following table defines the trace
status characters.

Trace List Status Characters

Character Description

* The indicated trace line is the trigger condition.

+ The indicated trace line is in the middle of a C statement, that
is, not the first assembly language statement in the C source
statement.

! The data in the trace buffer line does not match the data in
memory.

? The trace line may be a prefetch.

To display register contents

¢ SelectwWindow - Registers

Or:

134

See Also

Chapter 4: Viewing Code and Data
To list all registers

¢ SelectModify - Register.., click Recall to choose the register from a list of

register names, and cli€ead Current Register Valueto display the value.

Or:

Using the command line, enter:

Wndow Active Assembly Registers

The register window shows the current values of the microprocessor's registers and
several debugger variables. The microprocessor register values are labeled
their standard names. The debugger displays all values in hexadecimal form
unless otherwise noted.

If you are running just the debugger the Registers window is available only within
the assembly-level screen. If the emulator/analyzer graphical interface is active,
Window — Registerswill display registers in the emulator window.

The information displayed in the register window varies with different
microprocessors. See the “Registers” chapter and page 134 for information about
the registers and pseudoregisters which you can display using expression
commands.

To list all registers

Using the command line, enter:

Symbol Display Reserved_Symbols

A list of all the registers and pseudoregisters supported by the debugger will be
displayed in the Journal window.

This command is useful if you want to know what registers are supported by the
debugger, or if you need to find the sizes of various registers.

Many of the registers are described in the “Registers” chapter.

135

Chapter 4: Viewing Code and Data
To display the function calling chain (stack backtrace)

To display the function calling chain (stack
backtrace)

SelectWindow - Backtrace.

Or:

Using the command line, enter:

Wndow Active High_Level Backtrace

The backtrace window displays the function calling chain, from the compiler
startup routine to the current function in high-level mode.

This window displays (from left to right):

» Function nesting level.

» Return address to the calling function.
» Frame status character.

* Module containing the function.

* Function name.

Function Nesting Level. The nesting level of the current function is always 0,
the calling function always 1, etc.

You may reference the nesting level when setting a breakpoint. For example, to
cause the program to execute until it returns to the second nested function, enter the
command:

Program Run Until @2

Another way to execute until a stack level is reached is to clRwosentil Stack
Levelin the Backtrace window pop-up menu.

Return Address. The return address field displays the return address of the
calling function.

Frame Status Character. One of several characters immediately precedes a
function name in the backtrace window. These frame status characters and their
descriptions are listed in the table below.

136

Chapter 4: Viewing Code and Data
To display the function calling chain (stack backtrace)

Character Description

Space The debugger is executing within a function.

The program counter is at a label. Typically, this is an assembly
language function point.

* The function has been entered, but the function prolog has not
been executed. The debugger cannot locate local symbols in the
function until the prolog has been executed.

? The frame is questionable. For example, this is displayed when
a function has been stripped of debug information.

! The frame is not valid.
The debugger is at the start of an interrupt routine.

+ The debugger is executing an interrupt routine.

Module Name. If the function is in a known module, the backtrace window
displays the module name. If the program counter is pointing to an address that is
not contained in a module known to the debugger, the module field in the backtrace
window displays a string of question marks (??????7?).

Function Name. If the return address of a function is inside a known function,

the debugger displays the function name. If the address is outside of all known
functions, the function field in the backtrace window will disptaynknown>

This is the case with the compiler startup module crtO, because it is assembly code
and contains no debug information.

Backtrace Information. Whenever a break occurs in program execution, the
backtrace window is updated. When updating the window, the debugger generates
backtrace information as described in the following paragraphs. The backtrace
window is displayed only in the high-level screen.

Nesting level 0. Nesting level 0 information is based solely on the current
value of the processor’s program counter (PC). The module
and function shown at this level are selected because the
value of the PC falls within their code spaces.

137

Chapter 4: Viewing Code and Data
To display the function calling chain (stack backtrace)

Nesting level 1. When program execution breaks on an address that has an
associated public label (for example, a function entry
point), nesting level 1 information is based on the
processor SP. The debugger assumes that the SP is pointing
to the return address because the label is assumed to be a
function entry point and no stack frame has yet been
established. With no stack frame available, the return
address of the calling function is at the top of the stack.
This return address is the address at level 1. The module
and function shown are based on this address, that is, the
address falls within their code spaces.

When program execution breaks on an address that has no
associated public label, nesting level 1 is based on the
processor’s frame pointer (register A6). In this case, the
stack location four bytes above the location pointed to by
register A6 contains the return address of the calling
function. This address is the address shown at level 1; the
module and function shown are based on this address.

Nesting levels 2 Nesting levels 2 through n are always based on existing

through n. stack frames. A stack frame is generated for each frame on
the stack, based on saved frame pointers. Nesting levels
are generated until backtracing of the stack encounters a
zero frame pointer. This occurs when the stack frame
associated with the compiler startup routines is
encountered.

Functions with no If a function has no stack frame (due to compiling with the

stack frame. -O option), the function that called it does not appear in the
backtrace window at any stack level other than levels 0 or
1.

Assembly language Assembly language functions that set up stack frames

functions. appear in the backtrace window, but the information shown
is incomplete. Since high level debug information is not
present in such handwritten functions, the stack frame
appears as a questionable frame. Additionally, there is no
function name associated with the frame, i.e., it is
displayed asunknown>

138

Chapter 4: Viewing Code and Data
To display all local variables of a function at the specified stack (backtrace) level

To display all local variables of a function at the
specified stack (backtrace) level

¢ SelectDisp Vars at Stack Levelfrom the Backtrace window pop-up menu.

Or:
¢ Using the command line, enter:
Program Context Expand <@stack_level>
Enter the stack level preceded byaasign (@), and press tk®Return> key.
The values of the parameters passed to the function and the function’s local
variables are displayed in the Journal window.

Example To display local variables at stack level 1, position the cursor over "1." in the
Backtrace window, and hold the right mouse button. Move the mosgpto
Vars at Stack Leveland release the button.

Or, use the command line to enter:

Program Context Expand @1

To display the address of the C++ object invoking
a member function

¢ Display the value of the functiontkis pointer.

If the program has stopped at a function, you can find out the address of the object
which invoked the function.

The program counter must besidethe function; otherwise you may see a "Local
variable not alive" error message.

139

Chapter 4: Viewing Code and Data
To display the address of the C++ object invoking a member function

Example To see the address of the object that invokedfihecfunction in clas€, enter the
following string in the entry buffer:

C::cfunc\this

then selecbisplay - Var/Expression ().

140

Chapter 4: Viewing Code and Data
To calculate the value of a C expression

Using Expressions

This section shows you how to:

¢ Calculate the value of a C expression.

* Display the value of an expression or variable.
* Monitor variables.

¢ Discontinue monitoring specified variables.

¢ Discontinue monitoring all variables.

* Print formatted output to a window.

* Print formatted output to journal windows.

To calculate the value of a C expression

* Enter the expression in the entry buffer, then s&ésglay - C Expression ()

Or:

* Using the command line, enter:

Expression C_Expression

Enter the C expression to be calculated, and pressiiirn> key.
The value of the C expression is displayed in the journal window.

If the C expression is an assignment statement, the Expression C_Expression
command sets the value of the C variable.

Examples To calculate the value of 'old_data’:

141

Chapter 4: Viewing Code and Data
To display the value of an expression or variable

Examples

Expression C_Expression old_data
Result is: data address 000091DC {old_data}

To calculate the value of member 'temp’ of the first element of the old_data array
of structures:

Expression C_Expression old_data[0].temp
Result is:

To assign the value 1 to 'num_checks':

Expression C_Expression num_checks = 1
Resultis: 1 0x01

To display the value of an expression or variable

Use the mouse to copy the expression or variable into the entry buffer, then select
Display— Var/Expression ().

Or:

Using the command line, enter:

Expression Display_Value

Enter the expression or variable whose value is to be displayed, and press the
<Return> key.

The value of the expression or variable is displayed in the journal window.

The contents of an item, such as an array, are displayed instead of the C value of
the item which is its address.

To display the value of the variable 'num_checks’:

Expression Display_Value num_checks
01h

To display the address of the variable 'num_checks’

142

Chapter 4: Viewing Code and Data
To display members of a structure

Expression Display_Value &num_checks
000091F0

To display the name of the current program module:

Expression Display_Value @module

To display the name of the current program function:

Expression Display_Value @function

To display members of a structure .

1 Copy the name of the structure into the entry buffer.

2 Add an asterisk (*) in front of the name of the structure.

3 SelectDisplay - Var/Expression ().

If you are using the command line, use ExpressiorDisplay Value command.

Example To display the names of the members of struasteict use the following
expression in the entry buffer:

*astruct

The * operator tells the debugger to display the members of the structure, rather
than the address of the structure.

143

Chapter 4: Viewing Code and Data
To display the members of a C++ class

. Example

Example

To display the members of a C++ class

Using the command line, enter

Symbol Display Options Search_all End_Options
<class_name >\

This will display the type, size, protection, and overloading of each member of
class_name

To display the members of claSsenter:

Symbol Display Options Search_all End_Options C\

To display the values of all members of a C++
object

Enter the name of the C++ object in the entry buffer and select
Display - Var/Expression ().

Or:

Using the command line, enter:

Expression Display_Value < object >

Remember, you are displaying the values iolgact so you need to run the
program to the point where the object is created. To display the members of a class,
see "To display the members of a C++ class."

To display the members of objexdbjin classC, enter "cobj" in the entry buffer
and selecbisplay - Var/Expression ().

144

Chapter 4: Viewing Code and Data
To monitor variables

To monitor variables

¢ Enter the variable to be monitored in the entry buffer and click dldiméor ()
action key.

Or:

¢ Enter the variable to be monitored in the entry buffer and deisglay - Monitor

0.

Or:

¢ Using the command line, enter:

Expression Mbonitor Value

Enter the variable to be monitored, and pressieturn> key.

The monitor window displays monitored variable expressions. This window can
be displayed in both the high-level and assembly-level screens.

Variables in the monitor window are updated each time the debugger stops
executing the program. (The program is not considered to be "stopped" when a
breakpoint with an attached macro is encountered.)

Example To monitor the value of variable 'current_temp’:

Expression Mbnitor Value current_temp

145

Chapter 4: Viewing Code and Data
To monitor the value of a register

Example

Example

To monitor the value of a register

Monitor a register just as you would a variable.

To monitor the value of register D2, enter "@D2" in the entry buffer and select

Display - Monitor () .
Or, using the command line, enter

Expression Monitor Value @D2.

To discontinue monitoring specified variables

SelectDelete Variablein the Monitor window pop-up menu.

Or:

Using the command line, enter:

Expression Mbonitor Delete

Enter the number of the variable (shown in the monitor window) that should no

longer be monitored, and press #ieturn> key.

The variable is removed from the monitor window.

To stop monitoring variable 2 in the monitor window:

Expression Mbonitor Delete 2

146

Chapter 4: Viewing Code and Data

To discontinue monitoring all variables

To discontinue monitoring all variables

SelectDelete All Variablesin the Monitor window pop-up menu.

Or:

Using the command line, enter:

Expression Monitor Clear_All

All variables are removed from the monitor window.

To display C++ inheritance relationships

Enter the name of a C++ class in the entry buffer, then select
Display— Symbols- Browse C++ Class ()

Or:

Using the command line, enter:

Symbol Browse

Enter the name of the C++ class to be displayed, and presRé¢han> key.

To print formatted output to a window

Using the command line, enter:

Expression Fprintf

147

Chapter 4: Viewing Code and Data
To print formatted output to journal windows

Examples

Examples

Enter the number of the user-defined window, the format string (enclosed in
quotes), and the arguments; then, pressiaurn> key.

The formatted output is written to the user-defined window. This command is
similar to the C fprintf function.

The debugger associates the log file window (window no. 28) with a log (.com) file
so that you can write output to that window using the Expression Fprintf command.
This window is not displayed. It is used only for writing to a command file.

The debugger associates the journal file window (window no. 29) with a journal
file so that it can write journal window output to the journal (,jou) file. Additional
output may be written to the journal file by writing to window 29.

To print the value o¥ar to user window 57 as a single character:

Expression Fprintf 57,"%c",var

To print a string in double quotes to user window 57 followed by the floating point
value of 'float_temp’ with a precision of 2:

Expression Fprintf 57,"The value of 'float_temp’ is:
%.2f \n" float_temp

To print formatted output to journal windows

Using the command line, enter:

Expression Printf

Enter the format string (enclosed in quotes) and the arguments; then, press the
<Return> key.

The formatted output is written to the journal window. This command is similar to
the C printf function.

To print the value o¥ar to the journal window as a single character:

Expression Printf "%c",var

148

Chapter 4: Viewing Code and Data
To print formatted output to journal windows

To print the string in double quotes to the journal window followed by the floating
point value of 'float_temp’ with a precision of 2:

Expression Printf "The value of 'float_temp’ is: %.2f
\n" float_temp

See Also "To view commands in a separate window" on page 128.

149

Chapter 4: Viewing Code and Data
To compare two blocks of memory

Example

Viewing Memory Contents

This sections explains how to to view, compare, and search blocks of memory.

To compare two blocks of memory

Using the command line, enter:

Memory Block Operation Match <Mismatch_Operation>

Select either Repeat_On_Mismatch or Stop_On_Mismatch to specify what happens
when a mismatch is found, enter the address range to be compared and the starting
address of the range that it is compared to; then, presRétarn> key.

To compare the block of memory starting at address 1000h and ending at address
10ffh with a block of the same size beginning at address 5000h and stop when a
difference is found:

Memory Block Operation Match Stop_On_Mismatch
1000h..10ffh,5000h

To search a memory block for a value

Using the command line, enter:

Memory Block Operation Search <Size> <Until>

Select either Byte, Word, or Long as the size of the memory locations, select either
Once or Repeatedly to specify when the search should stop, enter the address range
and the value that is to be searched for, and presfigtern> key.

150

Chapter 4: Viewing Code and Data
To examine a memory area for invalid values

Example To search for the expression 'gh’ in the memory range from address 1000h through
address 10ffh and stop when the expression is found or address 10ffh is reached:

Memory Block Operation Search Wbrd Once
1000h..+0xff = 'gh’

To examine a memory area for invalid values

¢ Using the command line, enter:
Memory Block Operation Test <Size> <Until> .

Select either Byte, Word, or Long as the size of the memory locations, select either
Once or Repeatedly to specify when the search should stop, enter the address range
and the value that should be found in the range, and presR¢haern> key.

Example To test for the expression 'gh’ in the memory range from address 1000h through
address 10ffh and stop when a word not matching the expression is found:

Memory Block Operation Test Wird Once 1000h..+0xff =
lgh7

To display memory contents

* Place a memory start location in the entry buffer and then select
Display— Memory - <Format>.

Or:

* Using the command line, enter:

Memory Display <Format>

151

Chapter 4: Viewing Code and Data
To display memory contents

Examples

Select either Mnemonic (()), Byte (()), Word (()), or Long (()) as the format in
which memory contents are to be displayed.

If you are using the command line, enter the starting address or the address range of
the memory whose contents are to be displayed, and presRahen> key.

To display disassembled memory in the code window starting at the symbol
'_emeg_shutdown’ (this command works only in assembly-level mode):

Memory Display Mhemonic _emeg_shutdown

To display memory in byte format in the journal window starting at the symbol
"current_humid’:

Memory Display Byte current_humid

152

Chapter 4: Viewing Code and Data
To display memory contents

Using Simulated 1/O

Simulated I/O (SIMIO) lets programs use the UNIX file systemUiNihX
commands, and use the keyboard and display for input and output.

Your programs can use SIMIO by means of the I/O libraries and environment
dependent routines provided with the HP B3640 Motorola 68000 Family C Cross
Compiler. Your programs use the library functions when they open, close, read, or
write to files, etc. These simulated I/O functions are identical in both the
debugger/emulator and debugger/simulator to let you write programs that will
function correctly in both environments. Refer to the "Environment Dependent
Routines" chapter of your compiler manual for information on using the C SIM
libraries.

If you are using the Microtec Research, Inc., C compiler, your programs can use
SIMIO by means of the C routines supplied to you with the debugger software.
These routines can be found in a subdirectory of debugger demo directory
/usr/hp64000/demo/debug_exemulator>named "mri." Your programs can use
these functions to open, close, read, or write to files, etc, in the debugger
environment. See the "simio.c,” "simio.h,” and the "README" files in the "mri"
subdirectory for more information.

Your programs can also use simulated 1/O by means of user-written assembly code.
If you are developing programs that use simulated I/O from assembly code, refer to
the Simulated 1/0 User’s Guidi®r a complete description of simulated 1/0O

protocol.

This chapter shows you how to:
¢ Enable simulated I/O.

¢ Disable simulated I/O.

¢ Setthe keyboard I/O mode.
* Redirect I/O.

* Check resource usage.

* Increase file resources.

¢ Display the simulated 1/0O system report.

153

Chapter 4: Viewing Code and Data
To display memory contents

How Simulated 1/0 Works

Communication between your program running in the emulation system and the
SIMIO process takes place through contiguous single-byte length memory
locations. The first memory location is called the Control Address (CA). The
Control Address and the memory locations that follow it are called the CA buffer.

Control Address buffers are less than or equal to 260 bytes in size. A maximum of
256 bytes of information can be transferred between the debugger and the host
system at one time. Some simulated I/O commands require four additional bytes
for command parameters.

Communication between a program and the simulated I/O process is a series of
requests by the program and responses by the SIMIO process:

The program places a SIMIO command in the CA buffer and then waits for a
return code to be placed in the first byte of the CA.

The SIMIO process polls the CA buffer memory. When it finds a command,
the SIMIO process executes the command. When the SIMIO process
completes the command, the first byte of the CA buffer is changed to the
command return code.

Simulated I/O Connections

The SIMIO system supports three types of I/O connections. These are:

» Keyboard and display.
* UNIXfiles.
* UNIX processes.

Display and Keyboard

The debugger provides a window named stdio which functions as the normal
display output for target programs. The screen can be opened for output from
target programs via SIMIO with the special ndaev/simio/display This name
appears to be an UNIX file name. However, it is really a name reserved by the
debugger to indicate the internal screen. The keyboard is accessed by the special
name/dev/simio/keyboard

UNIX Files

UNIX files are accessed by their names from the target program running in the
debugger in the same way they are accessed by host software. The file operations

154

Chapter 4: Viewing Code and Data
To display memory contents

of open, close, read, write, and seek are supported by the SIMIO protocol. When
opening a stream on an UNIX file, SIMIO supports the same control parameters for
file creation and blocking I/O that are available to host programs.

UNIX Processes

UNIX processes can be run as subprocesses to the debugger with their input and
output directed to the user program. Subprocesses are controlled from the user
program by a Process Identification number (PID). This lets the user program
check specific subprocesses, send them signals, or stop them. This subprocess
facility allows user programs to take advantage of the powerful software and
execution environment of the host UNIX system. Host programs can be used to
process data for a debugger user program or to simulate portions of the softw
that are not available in the user program.

Because simulated I/O lets the debugger execute UNIX commands, the debu
can communicate with other host system I/O devices, such as printers, plotters,
modems, etc.

For more information on using UNIX processes, refer to the description of the
exec_cmd(junction in the "Environment Dependent Routines" chapter of the
68000 C Cross Compiler Reference

Special Simulated 1/0 Symbols

User Program Symbols

The following symbols are user program symbols that are used by the SIMIO
system to process the simulated /O protocol:

systemio_buf This symbol indicates the start of the Control Address buffer.

Simulated 1/0 Reserved Symbols

The following names are reserved by the SIMIO system and cannot be used for
your file names. The SIMIO system recognizes these names and uses special
processing to direct the 1/O to the proper location:

stdin This name will be replaced by the name stored in the stdin_name. This
name is set via the Stdio_Redirect command.

155

Chapter 4: Viewing Code and Data
To enable simulated I/O

stdout This name will be replaced by the name stored in the stdout_name. This
name is set via the Stdio_Redirect command.

stderr This name will be replaced by the name stored in the stderr_name. This
name is set via the Stdio_Redirect command.

/dev/simio/keyboard This name refers to the keyboard while the product is
running interactively.

/dev/simio/display This name refers to the stdio display window while the
product is running interactively.

To enable simulated 1/0

¢ Using the command line, enter:

Debugger Execution | O_System Enable

When SIMIO is enabled, polling for simio command begins. In the
debugger/emulator, the host computer periodically reads the memory in the
emulator or target system to detect simio commands issued by the user code.
SIMIO behavior in the debugger is identical to that described i8ithelated 1/0
User’s Guide

SIMIO is also enabled if the "Enable polling for simulated 1/0?" emulator
configuration question was answesezs .

To disable simulated 1/0

* Using the command line, enter:

Debugger Execution | O_System Disable

156

Chapter 4: Viewing Code and Data
To set the keyboard 1/0O mode to cooked

To set the keyboard I/O mode to cooked

¢ Using the command line, enter:

Debugger Execution | O_System Modde Cooked

In the Cooked mode, the keyboard input is processed. This lets you type and then
edit the line to correct errors. When the final line is composed, presRdharn>

key to enter the line. Once the line is entered, it is read by the target program.
Only the characters from the final line and the carriage return character are passed

as input. If program execution is interrupted by entesiggl>-C before the line
is entered, the characters on the input line are lost.

See also "To set the keyboard I/O mode to raw"

To set the keyboard I/O mode to raw

* Using the command line, enter:

Debugger Execution | O_System Mdde Raw

In the Raw mode, each character you type is sent directly to the target program that
is reading from the keyboard. Characters are not echoed as they are typed. Any
input editing, such as backspace, must be handled by the target program. The only
special character that cannot be sent to the target progr&@irlis-C which is

used to interrupt the debugger’s execution of the program.

See also "To set the keyboard /0O mode to cooked"

157

Chapter 4: Viewing Code and Data
To control blocking of reads

See also

To control blocking of reads

¢ SettheD_NDELAYflag in thestartup()routine.

The flagO_NDELAYis passed to the functi@pen()to control whether or not

reads from the keyboard will bloekaiting for characters This flag can only be

set when opening the stream; it may not be changed after the file stream is open.
This flag can be set in the compiler-supplied roustagtup() This routine opens
streams stdin, stdout, and stderr.

The chapter titled "Environment Dependent Routines" ib8@0 C Cross
Compiler User's Guidenanual.

To redirect I/0

To redirect the three 1/O streams and to reset your program to the startup address,
perform the following steps.

Redirect the three 1/0 streams by changing the translation names for the stdio
streams. Using the command line, enter:

Debugger Execution | O_System Stdio_Redirect

<"stdin_name","stdout_name","stderr_name">

Enter the new names for standard input, standard output, and standard error; then,
press thecReturn> key.

Reset the program counter to the startup address. Gekmition— Set PC to
Transfer. Or, using the command line, enter:

Program Pc_Reset

When the target program starts execution from the normal compiler startup
address, the standard C startup libraries open the following three I/O streams:

e stdin

158

Examples

Chapter 4: Viewing Code and Data
To redirect 1/0

e stdout
e stderr

The debugger uses an internal table to determine where the streams should be
opened. Each of the names (stdin, stdout, and stderr) has an associated translation
name:

e stdin_name
e stdout _name
e stderr_name

The translation name contains the name of a file to use when the target requests
opening of any of these stdio streams. By default, stdin_name contains
/dev/simio/keyboar{he keyboard), and translations stdout_name and stderr_n
contain/dev/simio/displaythe standard I/O (stdio) screen).

These translations are used only when opening the streams. They cannot be

redirect the streams after they have been opened. The target program must be rerun
from the startup address to allow the stdio streams to be reopened if the translations
have been changed.

To redirect the standard input file to the keyboard, the standard output file to the
display, and the standard error file to file '/users/project/errorfile’:
Debugger Execution | O_System Stdio_Redirect

"/dev/simio/keyboard","/dev/simio/display",
"lusers/project/errorfile"

Program Pc_Reset

To redirect the standard input file to 'temp.dat’, the standard output file to
‘cmdout.dat’, and the standard error file to file 'errorlog.err”:

Debugger Execution | O_System Stdio_Redirect

"temp.dat","cmdout.dat","errorlog.err"

Program Pc_Reset

159

Chapter 4: Viewing Code and Data
To check resource usage

To check resource usage

Using the command line, enter:

Debugger Execution | O_System Report

The command displays the simulated I/O status, keyboard mode, and the
translation names used for stdin, stdout, and stderr.
The SIMIO system has the following default resource limitations:

* 40 open files
* 4 subprocesses

To increase 1I/O file resources

Change to directorfusr/hp64000/includghen change to the appropriate
subdirectory for your processor. @ACT STEP = Change the value of macro
FOPEN_MAXfrom 12 to the new maximum number of open files (the limit is 40)
in file stdio.h

Change to the appropriate environment directory ufusethp64000/enythen
change to therc subdirectory.

Recompile filestartup.c Type:
cc68k -Ouc startup.c
Add startup.oto the environment library using the command:

ar68k -r startup .. lenv.a

You can increase the simulated I/O file limit by modifying the startup code for
your compiler. The code must be modified from the UNIX shell. The maximum
number of open SIMIO files descriptors can be increased to 40.

160

Chapter 4: Viewing Code and Data
To increase I/O file resources

Caution Compiler startup files compiled with the modifiglio.hheader file will run only
in the debugger environment. Emulators which do not have the debugger interface
do not support the increased number of open SIMIO file descriptors. Calls to the
SIMIO function open() will fail in this environment if 12 file descriptors have
already been allocated.

161

Chapter 4: Viewing Code and Data
To increase 1/O file resources

162

Chapter 5: Making Trace Measurements

Making Trace Measurements

How to use the debugger to trace the execution of a program in the emulator.

163

Chapter 5: Making Trace Measurements

This chapter shows you how to:

» Starttraces.

e Stop traces.

» Display traces.

» Specify trace events.

* Delete trace events.

» Specify storage qualifiers.

» Specify trigger conditions.

» Halt program execution on the occurrence of a trigger.
» Remove a storage qualification term.

* Remove a trigger term.

The Trace Function

The trace function uses the emulation analyzer in your emulator to capture
processor bus cycle information synchronously with the processor’s clock signal.
A trace is a collection of these captured states.

You can make simple trace measurements using the Code window pop-up menu.
Using this menu, you can trace states before and after a line of code is executed.

If you need to make a simple trace measurement, skip the details which follow and
turn to "To start a trace using the Code pop-up menu."

You can make complex trace measurements using the command line Trace
command. You can tell the debugger exactly which states to store by defining
trigger events (a series of events which will start the trace) and storage
qualifications (which kinds of states to store).

If you will be making many detailed trace measurements, you may find it easier to
use the emulator/analyzer user interface.

Default Trace Specification

The default trigger condition is "never". You can make a default trace
measurement by entering theace Againcommand. When you use the default
trace condition, qualified bus cycles are collected continuously until you halt the
measurement. The trace buffer will then contain the bus states prior to the halt.

164

Chapter 5: Making Trace Measurements

Trace Events

Trace measurement parameters are specified as events. An eventis a bus state
consisting of a combination of address, data, and status values.

Address and Data Values. Address and data values may be specified as 32-bit
values or a range of of 32-bit values. You can specify a mask to mark valid bits in
addresses or data to define "don’t care" values. You can also specify the logical
"NOT" of an address or data value.

Status Values. Status values are the types of bus activities, such as:
Read or write operations.

Memory access size.
Function codes.

Cycle types.

You can also specify the logical "NOT" of a status value.

Trace Trigger

A trigger specifies the bus events that cause the debugger to make a trace
measurement. The debugger lets you trigger on the detection of a single event, an
OR’ed combination of events, or after a sequence of events are detected. You can
specify a sequence of events, the last of which is the triggering event. You can also
trigger on the Nth occurrence of an event, where N is a number you specify with
the count parameter in th@&race Trigger Event command.

You can position the trigger event at the start of the trace buffer, centered in the
trace buffer, or at the end of the trace buffer.

Storage Qualification

A storage qualifier defines which bus cycles will be stored when you make a trace
measurement. You can specify that only cycles corresponding to certain values be
stored in the trace buffer. These values can be addresses, a range of addresses, data
values, status values (the type of bus activity), or an OR’ed combination of values.
You can also specify the logical NOT of the specified value to be the storage

qualifier, that is, any condition that does not match the specification. You can

specify that the trace function store up to two instruction fetch cycles preceding the
qualified state (prestore).

165

Chapter 5: Making Trace Measurements

Trace Resources

The trace function uses the emulation analyzer to implement its measurements.
The analyzer puts the following limitations on resources available for trace
specifications:

* One range resource.
¢ Eight event resources.

* Seven sequence terms.

If you enter a range value that can be expressed as a "don’t care” value (for

example address 0x100 to Ox1ff), the debugger uses one of the eight

event resources, rather than the range resource. Complex event specifications, such
as combinations a6 andNot terms, can use multiple event resources. Up to

seven sequential events can be specified in a trigger specification.

Trace Status

The status of the trace measurement is indicated on the debugger status line by the
TRC:<Trc_status> field. The possible values fe&tTrc_status> are:

AwtTrg A trace measurement is in progress, but the trigger condition
has not been detected.

BrkRWA An access breakpoint has been set and will be used as the
trigger in the next trace measurement.

Cmplt A trace measurement has completed.

DataOK The trace buffer contains valid data.

Halted TheTrace Halt command was used to halt the trace.

Idle No trace measurement has been executed during the current

debug session.

Setup A trace measurement has been set up (specified), and will start
on the next program run or program step command. This status
message appears only before the first trace measurementin a
debug session.

166

Note

Chapter 5: Making Trace Measurements

Trgrd A trace measurement is in progress, and the trigger has been
detected.

Trace status characters

When trace data is displayed, a trace status character may be displayed in front of
the trace line. The following table defines the trace status characters.

Trace List Status Characters

Character Description

* The indicated trace line is the trigger condition.

+ The indicated trace line is in the middle of a C statement, th
is, not the first assembly language statement in the C sourc
statement.

! The data in the trace buffer line does not match the data in
memory.

? The trace line may be a prefetch.

Access Breakpoints

If you have set access breakpoints with the Breakpt Access, Breakpt Read, or
Breakpt Write commands, the trace function will interpret the breakpoints as trace
trigger terms. When you step or run your program after setting an access
breakpoint, the trace measurement is started automatically. You cannot define a
trace trigger while an access breakpoint is active. This will cause an error
condition.

The emulator user interface may specify a trace that overrides a debugger access
breakpoint. The debugger interface will set up the access breakpoint trace when a
run or step command is issued only if the analyzer is not currently in use. Using
both access breakpoints in the debugger and trace features in the emulator is not
recommended.

167

Chapter 5: Making Trace Measurements
To start a trace using the Code pop-up menu

Limitations to the Trace Function

There are limitations to the trace function imposed on the debugger by the use of a
foreground monitor and when triggering on C variables and instruction fetches.

Limitations when Using a Foreground Monitor. When you use a
foreground monitor, the trace function may capture monitor activity as well as your
target program activity.

Limitations when Triggering on C Variables. The emulator’s analysis
hardware watches bus cycles, and triggers on specified bus values. However, bus
cycles do not always map directly to C variables. This limitation takes two forms.

The first form occurs when an access to a C variable requires multiple bus cycles.
To illustrate this problem, consider a 32-bit varigble . A C statement that sets

the value offoo requires two bus cycles for a 16-bit data bugodf is at address
0x1000, the statement:

foo = 0x100

will result in a write of value 0 to address 0x1000 and value 0x100 to address
0x1002. To trigger on a write of 0x100fm requires that you trigger on a write

of value 0 to address 0x1000 and then value 0x100 to address 0x1002. You must
be aware of your data bus configuration and date organization when specifying
triggers containing both address and data values.

The second form of problem occurs when a C variable is written, but the address
never appears on the bus. To demonstrate this problem, consider a 32-bit C
variablefoo at addres€x1002 and a "wild pointer" pointing to address

0x1004 . A write indirect through the pointer will overwrite part of variafle ,

but the address dbo (0x1002) will never appear on the address bus. This
limitation can be overcome by specifying an address range when triggering on a
symbol that you suspect is being modified by a wild pointer. For example, specify
the range ofoo asfoo..+3

To start a trace using the Code pop-up menu

1 Position the mouse pointer over the line of code which should trigger the trace.

168

Chapter 5: Making Trace Measurements
To start a trace using the command line

2 Hold down the right mouse button and select one of thee items from the Code
window pop-up menu.

3 When "TRC:Cmplt" appears on the status line, stop execution of the program if it
is not already halted.

4 SelectWindow - Trace to see the trace information.

5 Use the keyboard arrow keys or the scroll bar to scroll through the trace
information. PressESC> <ESC>to exit trace mode.

This will trace the execution of code near the line you selected.

You can choose any one of the following:
* Trace after will trace what happens after the selected line is executed.
* Trace beforewill trace what happens before the selected line is executed.

* Trace aboutwill trace what happens before and after the selected line is
executed.

¢ Trace until will trace what happens before the selected line is executed.
When the selected line is reached, execution is stopped automatically.

To start a trace using the command line

A trace measurement is started on the fvsigram Step or Program Run
command following the specification of a trigger or storage qualifier, or after a
Trace Again command.

The Trace Again command starts the trace using the last trace specification you
set up or the default trace specification if you have not set up a trace in the current
debug session. The default specification is:

Trace StoreQual None

Trace Trigger Never

169

Chapter 5: Making Trace Measurements
To stop a trace in progress

The default specification causes the trace to execute continuously, storing all bus
states in the trace buffer, until you stop the trace by entering the command:

Trace Halt

If you have set up a trace specification, the trace function behavior is determined
by your specification.

The debugger must be in command mode (your target program is halted and the
word Commands displayed on the status line) in order for you to enter a trace
command.

To stop a trace in progress

Using the command line, enter:

Trace Halt

And press theReturn> key.

If the trace trigger specification is defined toTrace Trigger Never , the
trace function will run continuously until you halt the trace.

If you have defined a trace trigger specification, the trace function stops
automatically when the trace trigger specification is detected and the trace buffer is
full.

To display a trace

SelectWindow - Trace.

Or:

170

Examples

Chapter 5: Making Trace Measurements
To display a trace

* In the emulator/analyzer window, sel&splay - Trace.

Or:

Using the command line, enter:

Trace Display

And press theReturn> key.

The default trace display shows the high-level program source lines corresponding
to the trace states and entries and exits from modules.

Display options allow you to display entry to and exit from modules, assembly
language instructions, data read and write cycles, and the raw uninterpreted d
collected by the trace function.

TheLine(s) option allows you to specify a range of lines in the trace buffer to
be copied to a specified debugger window or the first state to be displayed in the
trace window.

To view source lines, their corresponding assembly language instructions, and data
read and write cycles:

Trace Display Mdules Source Assembly Data

To copy the raw data in lines -20 through +20 of the trace buffer to a log file you
have opened:

Trace Display Lines -20..20 <Tab> Raw CQutputTo 28

28 is the window number for the log file.

To display the raw data starting with the trigger state in the trace window and cause
the debugger to enter trace mode:

Trace Display Lines 0 <Tab> Raw

To exit trace mode, press thEsc>key twice. This action returns the debugger to
command mode where you can enter commands from the keyboard.

171

Chapter 5: Making Trace Measurements
To specify trace events

To specify trace events

¢ Using the command line, enter:

Trace Event Specify <event_nmbr> <Tab>
<event_definition>

And press theReturn> key.

You use trace events as terms in the trace trigger specification and in the storage
qualification specification. The event definition can be address values, data values,
status values, or a logically AND’ed combination of the above.

Examples Address event To define event 1 to be the address of function update_system:

Trace Event Specify 1 <Tab> Address | s update_system

Status event To define event 2 to be any bus cycle corresponding to an
instruction fetch from supervisor memory space:

Trace Event Specify 2 <Tab> Status |s FnCde Supr CycTyp
Fetch

Combined address and status eventTo define event 3 to be a write access of
variable current_humid offset by 2:

Trace Event Specify 3 <Tab> Address |Is
&(H B)current_humid+2 <Tab> Status |s Wite

TheH B (hex byte) type cast allows you to specify an offset of two so that the
debugger can capture the two least significant bytesmént_humid , a 32-bit
integer value.

To delete trace events

¢ Using the command line, enter:

Trace Event Delete <event_nmbr>

172

Chapter 5: Making Trace Measurements
To specify storage qualifiers

Enter the number of the event you wish to delete, and presRétarn> key.

If you attempt to delete an event that is assigned to a storage qualification term or
trigger term, the debugger will display an error message on your screen. You
cannot delete events that are assigned as storage qualifiers or trigger terms. You
can, however, modify these events by entering a new specification.

Examples To delete event 2:

Trace Event Delete 2

To specify storage qualifiers

¢ Using the command line, enter:

Trace StoreQual Event <event_nmbr>

Enter the number of the event previously defined with the Trace Event Specify
command, and press thReturn> key.

You can specify a single event or an OR’ed combination of events in the trace
storage qualification specification.

If you specify the Prestore function, the trace function stores the two instruction
fetch bus cycles immediately preceding the qualified states being stored.

Examples To store either of two events:

Trace Event Specify 1 <Tab> Address | s update_system

Trace Event Specify 3 <Tab> Address Is
&(H B)current_humid+2 <Tab> Status |s Wite

Trace StoreQual Event 1 <Tab> O3

The debugger will then store calls to functigrdate systeror write accesses to
variablecurrent_humid

173

Chapter 5: Making Trace Measurements
To specify trigger conditions

To store accessesutpdate_systeralong with the two bus cycles immediately
preceding the accesses:

Trace StoreQual Address | s update_system <Tab> Prestore

The prestore operation helps you determine what instructions caused an access to a
variable or function.

Note that in the preceding example, we defined the qualifying event in the Trace
StoreQual command rather than using an event defined previously with the Trace
Event Specify command. When you define the qualifying event in the Trace
StoreQual command, you can specify only a single event. You cannot use an
OR’ed combination of events as the storage qualification condition.

To specify trigger conditions

¢ Using the command line, enter:

Trace Trigger Event <event_nmbr>

Enter the number of the event previously defined with the Trace Event Specify
command, and press thReturn> key.

You can specify a single event, an OR’ed combination of events, a specified
number of occurrences of a single event or an OR’ed combination of events, or a
sequence of events (maximum of seven) in the trace trigger specification. If you
specify a sequence of more than seven events, the debugger will respond with an
error message indicating that the specification is too complex.

You can define the trigger event in the Trace Trigger command rather than using
an event defined previously with the Trace Event Specify command. When you
define the qualifying event in the Trace Trigger command, you can specify only a
single event. You cannot use an OR’ed combination of events, a sequence of
events, or multiple occurrences of an event as the trigger condition.

Examples Trigger on a single event To trigger on the occurrence of a call to function
update_system

Trace Event Specify 1 <Tab> Address | s update_system

174

Examples

Chapter 5: Making Trace Measurements
To halt program execution on the occurrence of a trigger

Trace Trigger Eventl

Trigger on a sequence of eventsTo trigger on a call to function
update_system followed by a write access to varialolerrent_humid

Trace Event Specify 1 <Tab> Address | s update_system

Trace Event Specify 3 <Tab> Address Is
&(H B)current_humid+2 <Tab> Status |s Wite

Trace Trigger Event1 <Tab> Then 3

Trigger on an OR’ed combination of events To trigger on a call to function
update_system or a write access to variatterrent_humid

Trace Event Specify 1 <Tab> Address | s update_system

Trace Event Specify 3 <Tab> Address Is
&(H B)current_humid+2 <Tab> Status |s Wite

Trace Trigger Eventl <Tab> O3

Trigger on the nth occurrence of an event To trigger on the fifth call to function
update_system

Trace Trigger Event 1 <Tab> Count 5

To halt program execution on the occurrence of a
trigger

Enter the keywor@rkOnTrg in your trace trigger specification to halt program
execution on occurrence of the trigger condition.

To break on a write to memory locatioarrent_humid

Trace Trigger Event3 <Tab> BrkOnTrg PosnTrig End

When you start your program, the debugger will execute the program until the
trigger condition is detected. Then the debugger will halt the program. The

175

Chapter 5: Making Trace Measurements
To remove a storage qualification term

keywordsPosnTrig End cause the trigger to be stored at the end of the trace
buffer, allowing you to view events leading up to the trigger.

To remove a storage qualification term

Using the command line, enter:

Trace StoreQual None

And press theReturn> key.

This command restores the storage qualification to its default value, that is, all bus
cycles will be stored in the trace buffer. If you specified events defined with the
Trace Event Specify command, the events are removed from the storage
qualification specification, but remain defined.

To remove a trigger term

Using the command line, enter:

Trace Trigger Never

And press theReturn> key.

This command restores the trace trigger to its default value. Events in trigger terms
defined with the Trace Event Specify command are disabled as trigger terms, but
are not removed as events. The Trace Trigger Never command causes the trace
function to never trigger. The trace will run continuously until you stop the trace
using the Trace Halt command.

176

Chapter 5: Making Trace Measurements
To trace code execution before and after entry into a function

To trace code execution before and after entry
into a function

Specify the trigger condition.

Trace Trigger Address |s function_name <Tab> Status |Is
FnCde Prog PosnTrig Center

Run the program.

When the trace is completed (the command line will contain the message
TRC:Cmplt), pres<CTRL C to halt program execution and enter command mode.

Display the trace data. .

To trace data written to a variable

Define trace event 1 to be a write access to the range of addresses corresponding to
the variable.

Trace Event Specify 1 <Tab> Address Is
&variable ..+sizeof(variable)-1 <Tab> Status |s Wite

By using thesizeof operator, we can specify an address range the size of the
variable to ensure that we capture all bytegasfable

Assignvariable as the trigger and storage qualification terms.

Trace Trigger Eventl

Trace StoreQual Eventl

Start program execution.

177

Chapter 5: Making Trace Measurements
To trace data written to a variable and who wrote to the variable

4 Complete the trace.

The the TRC status on the status line will changéRiG:Trgrd to indicate that
the first write has taken place.

You may do one of two things to complete the trace:
* To see afull buffer of writes, wait until the status chang@®f@:Cmpilt .

* To see the trace without waiting, pre€3trI>-C to return to command mode,
then halt the trace by entering:

Trace Halt

5 Display the trace information.

To trace data written to a variable and who wrote
to the variable

1 Define trace event 1 to be a write access to the range of addresses corresponding to
the variable.

Trace Event Specify 1 <Tab> Address |Is
&variable ..+sizeof(variable)-1 <Tab> Status |s Wite

2 Assign the variable as the trigger and storage qualification terms.

Trace Trigger Event1l
Trace StoreQual Eventl <Tab> Prestore

Note that we added therestore keyword to the Trace StoreQual command.
The Prestore keyword in the storage qualification definition will cause the trace
function to capture the last two fetch cycles before the writent@nt_humid
enabling you to see which routine is writing to the variable.

3 Start program execution.

178

Chapter 5: Making Trace Measurements
To trace events leading up to writing a particular value in a variable

4 Complete the trace.

The the TRC status on the status line will changéRiG:Trgrd to indicate that
the first write has taken place.

You may do one of two things to complete the trace:
* To see afull buffer of writes, wait until the status chang@®f@:Cmpilt .

* To see the trace without waiting, pre€3trI>-C to return to command mode,
then halt the trace by entering:

Trace Halt

5 Halt the trace measurement.

6 Display the trace information.

To trace events leading up to writing a particular
value in a variable

To trace events leading up to writing the value 0 (zero) to the elseemds in
a structure pointed to liyme , perform the following steps.

1 Define event 1 to be the write of a data value of O to the integer value
num_checks .

Trace Event Specify 1 <Tab> Address |Is
&(H B)time_struct.seconds+2 <Tab> DataIs 0 <Tab>
Status |s Wite

2 Assign event 1 to be the trace trigger, and position the trigger at the end of the trace

buffer so that states leading up to the trigger will be captured.

Trace Trigger Eventl <Tab> PosnTrig End

3 Disable any storage qualification terms to cause the trace function to store all states.

179

Chapter 5: Making Trace Measurements
To execute a complex breakpoint using the trace function

Example

1

Trace StoreQual None
Start program execution and the trace.
Program Run

When the trace is completed (the command line will contain the message
TRC:Cmplt), pres<CTRL C to halt program execution and enter command mode.

Display the trace information.

To execute a complex breakpoint using the trace
function

The trace function can be used to execute a complex breakpoint in your target
program.

Define event 6 to be a write of value 0x3c (60 decimal) to the least-significant
word of the integer valugeconds .

Trace Event Specify 6 <Tab> Address Is
&(H B)time->seconds+2 <Tab> Data |sO0x3c <Tab> Status
I's Wite

Define event 7 to be a write to the least-significant word of the integer value
minutes .

Trace Event Specify 7 <Tab> Address Is
&(H B)time->minutes+2 <Tab> Status |s Wite

Define the trace trigger as event 6 followed by event 7, and position the trigger at
the center of the trace buffer so that states leading up to the trigger and following
the trigger will be captured.

Trace Trigger Event6 <Tab> Then7 <Tab> BrkOnTrg
PosnTrig Center

180

Chapter 5: Making Trace Measurements
To trace entry to and exit from modules

The keywordBrkOnTrg causes the debugger to halt program execution when the
trigger condition is detected.

4 Start the trace measurement.

Program Run

The program will run until the trigger condition is detected and then halt.

5 Display the trace buffer.

Trace Display Line(s)0 <Tab> Source Assembly Data

Note that the minutes count is updated at line 0 in the trace display. The trigger
specification has allowed us to see the program activity leading up this event.
Press th&eturn key orF7 function key to scroll through the data source line
source line. Note that the highlighted line in the code window tracks the first i
displayed in the trace display. PressRBgunction key to change the direction o
tracking in the trace display.

To trace entry to and exit from modules

1 Define event 5 to be any instruction fetch with an opcode valde5¢ wherex
is a don't care value.

Trace Event Specify 5 <Tab> Data | s 0x4e50 &= OxfffO
<Tab> Status |s CycTyp Fetch

The don’t care condition is specified by specifying a mask in the data specification.
&=is the mask operator. This value corresponds to the LINK and UNLK
instructions.

2 Define event 5 as the trace storage qualifier.
Trace StoreQual Event5

3 Restore the trace trigger to its default value.

181

Chapter 5: Making Trace Measurements
To trace entry to and exit from modules

Trace Trigger Never
4 Start the program and trace.
Program Run

5 Let the program run for a moment, then p€IRL C to halt program execution
and enter command mode.

6 Stop the trace measurement.
Trace Halt
7 Display the trace information.

Trace Display Modules Assembly

The display should show entries and exits of modules and the assembly code that
was captured in the trace buffer. The code should consist of only LINK and UNLK

instructions.

Note This method of viewing entries and exits of modules may not work for all code. It
will depend on how your compiler generates code and which compiler options you
choose.

182

Chapter 6: Editing Code and Data

Editing Code and Data

How to use the debugger to make permanent or temporary changes to source code,
memory contents, and registers.

183

Chapter 6: Editing Code and Data
To edit source code from the Code window

Editing Files

The graphical interface gives you a number of context-dependent and
context-independent editing commands. From several screens, you can bring up
the source file that contains the source line or symbol you are viewing in the
display.

The interface will choose the “vi” editor as its default editor, unless you specify
another editor by setting an X resource. Refer to the chapter “Configuring the
Debugger” for more information about setting this resource.

Remember to re-compile

When you use the editor to change a source code file, you will need to re-compile
the source file. You can recompile with a click of the mouse if you define the
Make action key to compile the target program.

To edit source code from the Code window

Place the mouse pointer over the line you want to edit. F&déctource from the
Code window pop-up menu.

The debugger will start the editor in a new X window. The cursor in the editor
window will be on the same line of code as the mouse pointer in the Code window.

After editing the file, you quit the edit session by the standard method for the editor
used.

You will need to re-compile the source file. You can recompile with a click of the
mouse if you define thiglake action key to compile the target program.

184

Chapter 6: Editing Code and Data
To edit an arbitrary file

To edit an arbitrary file

1 SelectFile - Edit - File.

2 Using the file selection dialog box, enter the name of the file you wish to edit; then,
click on the OK pushbutton.

After editing the file, you quit the edit session by the standard method for the editor
used.

To edit a file based on an address in the entry
buffer

1 Place an address reference (either absolute or symbolic) in the entry buffer. .
2 SelectFile - Edit - At () Location.

The interface determines which source file contains the code generated for the
address in the entry buffer and opens an edit session on the file.

To edit a file based on the current program
counter

¢ SelectFile - Edit — At PC Location.

The interface determines which source file generated the address currently in the
program counter and opens an edit session on that source file. The interface will
issue an error if it cannot find a source file for the address in the PC.

185

Chapter 6: Editing Code and Data
To change a variable using a C expression

Patching Source Code

When you change source code by editing the C source file, you need to re-compile.

The debugger provides several ways to patch your program without re-compiling:
¢ Change a variable’s value using a C expression.

* Apply a patch using a breakpoint macro.

To change a variable using a C expression

Enter a C expression in the entry buffer.

A good way to do this is to highlight an expression from your source code using the
left mouse button. When you release the button, the expression will appear in the
entry buffer. Now edit the expression to have the desired value.

Click on theC Expr () action key. Or sele®isplay - C Expressionfrom the
menu bar.

The value of the variable will be changed until the program modifies it. You can
continuously monitor the variable’s value if you display it in the Monitor window
(use theMonitor () action key or th&xpressiorM onitor Value command).

Or:

Using the command line enter:

Expression C_Expression <expression>

186

Chapter 6: Editing Code and Data
To patch a line of code using a macro

To patch a line of code using a macro

1 Set a breakpoint at the line you wish to patch.

An easy way to set the breakpoint is to click the right mouse button on the line in
the Code window.

2 Attach a macro to the breakpoint.

ChooseAttach Macro ... from the Code window pop-up menu.

3 Write a macro to patch the code.

In the Macro Operations dialog box, enter the name of a new macro and click on
the Edit button.

The macro may contain any number of C expressions and debugger comman

The last two lines of the macro should be:

$Modify Register @PC = # next_line $;
return(1)

wherenext_lineis the number of the line after the breakpoint. Return 0O instead of 1
if you want the debugger to stop after the macro is executed.

Exit the editor as usual, then click on fa#ach button in the Macro Operations
dialog box.

Now whenever the breakpoint line is encountered, the debugger will execute the
macro before the patched line is executed. The macro will execute your patch
code, then skip to the next line.

187

Chapter 6: Editing Code and Data
To patch C source code by inserting lines

Example

To patch C source code by inserting lines

1 Define a macro containing the inserted statements. The macro must provide a

return value of 1 (true) in order for the program to continue after the macro is
executed.

Set a breakpoint on the C line following the point where the insertion should occur
and attach the macro to the breakpoint.

Start your program.

The program will run until the breakpoint is encountered. The debugger will then
interpret and execute the C statements in the macro, and continue executing the
program.

To patch C source code by deleting lines

1 Write a macro that sets the program counter to point to the first line of code beyond

the lines of code that you want to delete. The macro must provide a return value of
1 (true) in order for the program to continue after the macro is executed.

Set a breakpoint on the first line to be deleted and specify the macro with that
breakpoint.

Start your program.

The program will run until the breakpoint is encountered. The macro will then set
the program counter to the line specified in the macro. Program execution will

then continue, skipping the program lines between the breakpoint and line specified
in the macro.

Consider the following code:

25 count=5;
26 for (i=0; i < MAXNUM; i++)

188

Chapter 6: Editing Code and Data
To patch C source code by deleting lines

27 |

28 array[i]=1;

29 count=count+2;
30 k=count*i;

31

To delete lines 29 and 30, and insert a new line incremesdingby one, you
could write the following macro:

Debugger Macro Add patch_29()
{

count++;
$Expression C_Expression @PC = #31$;
return(1);

To execute the code patch, enter the command:

Breakpt | nstr #29;patch_29()

and run your program.

189

Chapter 6: Editing Code and Data
To change the value of one memory location

Editing Memory Contents

This section shows you how to:

¢ Change memory location values.
¢ Copy a block of memory.

* Fill a block of memory with values.
e Compare two blocks of memory.

* Change the contents of a register.

* Unload BBA data from program memory.

To change the value of one memory location

1 SelectModify - Memory.

Or, using the command line, enter:
Memory Assign <Size>
2 Using the command line, select either Byte, Word, or Long as the size of the

memory location, and enter the expression that assigns a value to an address, and
press thecReturn> key.

To change the values of a block of memory
interactively

1 SelectModify - Memory.

190

Chapter 6: Editing Code and Data
To copy a block of memory

Or, using the command line, enter:

Memory Assign <Size>

2 Using the command line, select either Byte, Word, or Long as the size of the
memory location, enter the address of the beginning of the block, and press the
<Return> key.

This starts the interactive memory modification mode.

3 Enter the value for the location displayed in the Journal window and press the
<Return> key.

4 To exit this mode, press thdReturn> key without entering a value.

Example To display the contents of memory location 1000h and allow interactive
modification of memory contents:

Memory Assign Byte 1000h
00001000 = 0x48 72:

To copy a block of memory

1 Using the command line, enter:
Memory Block_Operation Copy

2 Enter the address range of the memory to be copied, followed by a comma.

3 Enter the starting address of the destination and presf#tarn> key.

Example To copy the block of memory starting at address 1000h and ending at address 10ffh
to a block of the same size starting at address 5000h:

Memory Block Operation Copy 1000h..10ffh,5000h

191

Chapter 6: Editing Code and Data
To fill a block of memory with values

Example

Example

To fill a block of memory with values

Using the command line, enter:

Memory Block Operation Fil <Size>

Select either Byte, Word, or Long as the size of the memory locations, enter the
expression that assigns a value to locations in a range of addresses, and press the
<Return> key.

To fill memory locations 1000h through 1007h with the long pattern 61626364,
65666768:

Memory Block Operation Fill Long 0x1000..+7="abcdefgh’

To compare two blocks of memory

Using the command line, enter:

Memory Block Operation Match <Mismatch_Operation>

Select either Repeat_On_Mismatch or Stop_On_Mismatch to specify what happens
when a mismatch is found, enter the address range to be compared and the starting
address of the range that it is compared to; then, presRétarn> key.

To compare the block of memory starting at address 1000h and ending at address
10ffh with a block of the same size beginning at address 5000h and stop when a
difference is found:

Memory Block Operation Match Stop_On_Mismatch
1000h..10ffh,5000h

192

Chapter 6: Editing Code and Data
To re-initialize all program variables

To re-initialize all program variables

SelectFile - Load - Program Only ..., then use the File Selection dialog box to
select the absolute file.

Or:

Using the command line, enter:

Program Load New Code_only No_Pc_Set <absolute_name>

Enter the name of the absolute file whose code is to be loaded, and press the
<Return> key.

The code will be loaded without loading symbols or resetting the PC.

The debugger does not save the initial values of variables. The only way to re
the initial values is to re-load the program. After re-loading the program, you

need to restore some debugger settings; for example, you might need to re-s
variables for the Monitor window.

To change the contents of a register

SelectModify — Register. This will display the Modify Register dialog box.

Or:

Using the command line, enter:

Memory Register

On the command line, enter the name of the register and the value to which the
register’s contents should be changed, and pressRibieirn> key.

Registers may also be modified by usingré@istet’ in a C_expression.

193

Chapter 6: Editing Code and Data
To change the contents of a register

Example

To modify register values interactively:

Memory Register

The program counter PC is displayed in the journal window. You can modify the
PC by entering a value (10a4h in this example) at the cursor prompt and pressing
<Return>. The PC will be modified, and the next register will be displayed:

@pc =0x000010B8 4280: 10a4h
@sp =0x00015DB4 89524:

Press<Return> without entering a value to exit this mode.
To set the value of register @d1 to 44h:

Memory Register @d1=0x44

To interactively change the value of register @d1.:

Memory Register @d1

194

Chapter 7: Using Macros and Command Files

Using Macros and Command Files

How to use macros and command files to make debugging easier.

195

Chapter 7: Using Macros and Command Files

The debugger provides several ways for you to simplify tasks that you do often.

Macros are C-like functions. You can call macros individually, attach them to
breakpoints, or automatically execute them with each program step. Macros
are especially useful for temporarily patching C code.

Command filescontain series of debugger commands. The debugger can read
a command file and execute the commands found there as if they were entered
directly into the interface command line. Command files are useful for setting
up the debugger, for executing a program to a certain point, and for automated
testing.

Action keys are shortcut definitions or "hotkeys" which allow you to add new
commands to the graphical interface. Action keys are useful for simplifying
frequently-used commands, for making the debugger easier to use for
co-workers who do not frequently use a debugger, and for making the
debugger into a framework for demos and tutorials.

196

Chapter 7: Using Macros and Command Files
Using Macros

Using Macros

A macro is a C-like function consisting of debugger commands and C statements
and expressions.

Macros are most often used to:
+ Patch C source code.

Often, bugs found with the debugger can be temporarily patched with C source
statements in macros. You do not have to exit the debugger, edit the source
code, recompile and link, and then reenter the debugger. Instead, you can
make a temporary patch by using breakpoint macros.

* Return values to expressions.

» Create conditional breakpoints.

» Execute commands after each program step command.
* Execute a set of commands.

Macros can:

* Have input parameters (macro arguments).

» Define macro local variables.

» Contain C statements and expressions.

» Refer to target variables and registers.

» Refer to user-defined variables.

e Have return values.

o Call other macros.

e Can be used in expressions (if they return values).
» Execute most debugger commands.

Macros cannot:

» Define global variables.

» Define static variables.

* Berecursive.

» Define other macros.

» Contain the conditional operator (expression ? expression : expression).

Macros can be called:

» By specifying the macro name in an expression.
» By calling the macro from within another macro.
» With the Debugger Macro Call command.

» With the Breakpt command.

» With the Program Step With_Macro command.

197

Chapter 7: Using Macros and Command Files

Using Macros

Caution

This section shows you how to:

¢ Define a macro.

e Call amacro.

e Stop a macro.

¢ Display macro source code.

¢ Patch C source code by using macros.

* Delete a macro.

Saving and re-using macros

You can define and save macros interactively during a debugger session.

Macro limits

The maximum number of characters that can be entered on a line in a macro
definition is 255. When entering macro interactively, the debugger does not

respond to more than 78 characters on a line. When reading a command file, the
debugger stops recognizing characters after 255 characters have been read on a line.

The maximum number of lines allowed in a macro depends on the complexity of
the lines. Macros with too many lines (too complex) will fail. Error9at"
enough memory for expressioill be displayed.

A maximum of 40 parameters may be specified in a macro definition.

Once you have defined a macro, you can use it any time during the debugging
session, whenever that set of commands or statements is needed.

The pseudoregister @cycles is not implemented in the emulation environment.
Macros written for execution in both the simulation and emulation environments
must not refer t@cycles

Macro comments

Macros support C comments (introduced by the chardttars] terminated with
the charactery).

198

Chapter 7: Using Macros and Command Files
Using Macros

Macro arguments

You can use formal macro arguments throughout the macro definition. They are
replaced at execution time by the actual parameters present in the macro call. The
actual parameter is coerced to the corresponding formal parameter type. If
coercion is not possible, an error occurs.

You must list the macro’s arguments (if any), along with their associated types,
when you define the macro. For example, the following listing defines arguments
for the built-in macro strcpy():

Debugger Macro Add int strcpy(target, source)
char *target;
char *source;

Macro variables

Variables that are local to the macro may be created within the macro. The
definition of local variables follows the rules of C, with the exception that you
cannot define variables with initializers. Variables may be defined to have a
simple type, or they may be of type array or pointer. Derived types (such as
structures and unions), enumerated types, and typedefs are not legal within macros.

The macro processor does not recognize the C keywords extern, auto, static,
register. The macro processor reports an error if these C keywords are used.
variables are not scoped within a macro. However, symbols created with the
Symbol Add command (debugger symbols) are globally scoped, and can be
accessed from within a macro. Register variables (such as @PC) may also be
accessed from within a macro.

Target program symbols can also be accessed from within a macro. Variables
which are globally scoped within the target program can be accessed directly. File
static, function static, and automatic variables can be accessed directly only if the
current context of the debugger is the module or function in which they are scoped.
Otherwise, they require a module or function name as a qualifier before they can be
accessed. For example, assume the following definition exists in your target
program, in afile called init.c:

static int i; /* file static */
fao(int parm)
{

static int j; [* function static */
auto intk; [* function local */

199

Chapter 7: Using Macros and Command Files

Using Macros

If a macro is executed while the PC is pointing into the function foo(), variables i, j,
and k can be directly accessed. If this is not the case, i must be accessed with a
module qualifier, such as init\i. The function static] must be accessed as init\foo);.
The automatic k can be accessed as init\foo\k if the stack frame for foo() is alive.

Macro control flow statements

Macros support the following C control flow statements:

 If-else
* While and For
* Do-while

» Break and Continue in While, For, and Do statements.

However, macros cannot contain conditional expressions of the form:

<expression>?<expression>:<expression>

Macro return values
Macros support the C “return” statement for returning values.

If a breakpoint macro returns a nonzero value, program execution continues. If it
returns a zero value, program execution is halted. If a macro does not return a
value, it should be declared as void when it is defined.

Macros containing debugger commands

You can create macros that contain only a sequence of debugger commands.
Macros containing only debugger commands are similar to command files. You
can use these macros to set up complex initialization conditions.

You cannot use the following commands in macros:

 Program Run

* Program Step

* Program Step Over

» Debugger Host_Shell
» Debugger Macro Add
e Symbol Add

* Symbol Remove

* File Command

» Debugger Quit

200

Chapter 7: Using Macros and Command Files
Using Macros

To display the Macro Operations dialog box

¢ SelectBreakpoints- Edit/Call Macro from the menu bar.

Or:

¢ SelectAttach Macro from the Code window pop-up menu.

The Macro Operations dialog box allows you to call predefined macros, edit or call
existing user-defined macros, and create new macros.

To define a new macro interactively using the
graphical interface

1 Display the Macro Operations dialog box. .

2 Move the mouse pointer to the Selected Macro entry area.

3 Type<Ctrl>-U to clear the Selected Macro entry area, then type the name of the
macro you wish to create.

When you pressReturn> or click on theEdit button, the debugger will display
an editor window.

A "skeleton" macro will appear in the editor window.

4 Edit the macro definition.

When you exit the editor, save the macro under the default name. If you save it
under a different name, the macro may be lost.

See Also See "To use an existing macro as a template for a new macro" if you want to use an
existing macro as the basis for a new macro.

201

Chapter 7: Using Macros and Command Files
Using Macros

Example To create an macro called "test_macro”, séeeakpoints - Edit/Call Macro
and enter "test_macro" in the Selected Macro area. Now<Ressrn> or click
on theEdit button. Edit the macro in the editor window. If you are usingithe
editor, exit using the "ZZ" command. The new macro should now appear at the end
of the Defined Macros list.

To use an existing macro as a template for a new
macro

1 Display the Macro Operations dialog box.
2 In the dialog box, select the macro you wish to use as a template.
3 Click on theEdit button.

4 In the editor, change the name of the macro.

Now you may edit the parameters and body of the macro.

When you exit the editor, the macro will be saved under the new name. The
original macro will not be changed.

To define a macro interactively using the
command line

1 Enter the Debugger Macro Add command followed by an optional return type, and
then a macro name. The macro name must be followed by parentheses; the
parentheses can optionally enclose macro arguments separated by commas.

Debugger Macro Add [<type>] <name> ([parm,parm,...])
[<parm_types>;]

202

Chapter 7: Using Macros and Command Files
Using Macros

2 Enter the text of the macro body.

[[<C_expr>|<C_stmt>|$<debugger_cmd>$];...]

3 End the macro definition with a period as the first and only character on a line. The
macro is checked for syntax errors as soon as the period is encountered. If an error
is found within a macro, the macro definition is not saved. The macro must be
completely reentered.

Your completed macro definition should have the following syntax:

Debugger Macro Add [<type>] <name> ([parm,parm,...])
[<parm_types>;]

[[<C_expr>|<C_stmt>|$<debugger_cmd>$];...]

Debugger commands can be embedded in the macro by enclosing the commands
betweerss characters. For example,

$Expression C_Expression @PC = #313;

No standard C library functions are available from within a macro. However, t
are built-in macros available in the debugger that perform similar functions (re
to the "Predefined Macros" chapter).

To define a macro outside the debugger

1 Using a text editor on your host system, define the macro.
2 Save the macro definition in a command file (<filename>.com).
3 Start the debugger.

4 Load the command file into the debugger using the File Command command.

203

Chapter 7: Using Macros and Command Files

Using Macros

As the macro is loaded into the debugger, the macro processor parses the macro,
looking for syntax errors. If the macro definition contains no errors, it is loaded
into the debugger's symbol table.

If an error is detected, the macro processor reports the error and quits loading the
command file. The macro remains undefined.

The number of macros that you can define is limited only by the available memory
on your host computer system.

To edit an existing macro

If you want to edit a macro attached to a breakpoint, deticAttached Macro
from the Code window pop-up menu.

Or:
Display the Macro Operations dialog box.
Select the macro you want to edit.

Click on the Edit button.

Remember to save the macro under the default file name when you leave the editor
(use the "ZZ" or ":wq!" command wi).

To save macros

SelectFile - Store— User-Defined Macros...

The File Selection dialog box will be displayed so that you can choose a file in
which to save the macros. The debugger will automatically asireextension
to the file name.

204

Chapter 7: Using Macros and Command Files
Using Macros

The debugger will save all of the your user-defined macros to a file.

The debugger does not provide a way to save only selected macros. If you want to
save macros in separate files, you can create the macros using a text editor.

To load macros

SelectFile - Load - User-Defined Macros...

Choose the macro file to load from the File Selection dialog box.

If macros do not load

Check that the macros do not directly access local program variables.

When the debugger loads macros which access local program variables, the
debugger does not know which local scope to use to define the macro.

If you need to access local program variables in a macro, pass them to the macro as
parameters.

To call a macro

SelectBreakpoints - Edit/Call Macro ... - Call.

Or:

Using the command line, enter:

Debugger Macro Call

205

Chapter 7: Using Macros and Command Files
Using Macros

Enter the name of the macro to be called, and pres®Riieirn> key.

When a macro is called with the Debugger Macro Call command, its return value is
ignored. Macros are typically called in this manner for the side effects they
generate.

Example If you have the following macro definition:
Debugger Macro Add void stackchk()
{

/* The symbols 'stack’ and 'TopOfStack’ exist in the compiler’s */
/* environment library, and are addresses which indicate the */

/* bottom and the top of the system stack. The symbol @sp is a */
/* debugger reserved symbol which contains the current value of */
[* the processor’s stack pointer. *

$Expression Printf "%d bytes of stack used", TopOfStack - @sp$;
$Expression Printf "%d bytes of stack available", @sp - stack$;

the command:

Debugger Macro Call stackchk()

displays, in the journal window, the amount of stack used and the amount of stack
left.

To call a macro from within an expression

* Enter a macro call as part of any expression entered on the command line of the
debugger.

The debugger will evaluate the macro and use its return value when evaluating the
rest of the expression.

Example If you have the following macro definition:
Debugger Macro Add int power(x,y)
int X
int vy;
int i /* Loop counter */
int multiplier; /* Value x is multiplied by */

206

Chapter 7: Using Macros and Command Files
Using Macros

/* Multiply x by itself y -1 times */
for (i = 1, multiplier = x; i < y;i++)
x *= multiplier;

/* Return x My */
return x;

}

The command:

Expression Display_Value 33.3 + power(2,3)

will call and evaluate the macro, displaying the value 41.3 in the debugger’'s
journal window.

To call a macro from within a macro

* You can call a macro from within a macro when they are part of an expression.

The following restrictions apply to calling macros from within a macro:

* The macro called must have been previously defined.

* The macro cannot call itself.

Example If you have the following macro definition:

Debugger Macro Add int ten_to_the(y)
int vy;

return power(10,y); }

the macro will compute 10**y by calling the previously defined macwer()

207

Chapter 7: Using Macros and Command Files

Using Macros

Example

To call a macro on execution of a breakpoint

¢ SelectAttach Macro from the Code window pop-up menu.

Or:

When using the command line to set a breakpoint, add a semicolon (;) and the
name of the macro to the command.

When setting breakpoints, you can attach a macro to the breakpoint. Whenever the
breakpoint is encountered, the macro is executed. Depending on the return value of
the macro, program execution will either stop or continue.

¢ If the macro returns zero, program execution stops at the breakpoint.

¢ If the macro returns a nonzero value, program execution continues at the
breakpoint.

Macros attached to breakpoints can test program or user-defined variables before
determining whether execution should break or not (by returning zero or nonzero
values, respectively).

Macro control flow statements within a breakpoint macro can alter execution flow
in the target environment based on target or debugger variable values. You can
also include C expressions in macros. By using control flow statements and C
expressions in macros, you can patch your C programs.

The following example shows how return values can be used to conditionally
control a breakpoint. The example uses the Debugger Macro Add and Breakpt
Write commands to define a breakpoint that occurs only when the target variable
days becomes greater than 31.

Debugger Macro Add int daycheck()

if (days > 31)
return O;
else
return 1;

Breakpt Write &days; daycheck()

208

Chapter 7: Using Macros and Command Files
Using Macros

When the break occurs, the macro is executed. If days is less than or equal to 31,
program execution continues. If days is greater than 31, program execution stops.

If you have the following macro definition:

Debugger Macro Add int break_when(stopfunction, min, max)
char *stopfunction;
int min;
int max;
/* Debugger symbol @function is a char pointer to the name */
[* of the current function. Compare the current function */

/* with the function name passed, using the built-in macro */
/* memecmp(). */

if (Istremp(@function,stopfunction))
if ((global_var > min) && (global_var <max))

$Expression Printf "global_var: %d\n", global_var$;
return O;

/* Not in specified function, return 1 so that program will */
/* continue executing.
return 1;

the command:

Breakpt Wite &global_var; break_when("foo", 256,512)

will set a write breakpoint on the global variaglebal_var Whenever the
program writes tglobal_var, the macrdreak_when()s executed with the
parametersfoo", 256, and512 The macro returns the value 1 until the value of
global_varfalls between 256 and 512 because of a writgabal_varin the
functionfoo(). The macro then returns 0, causing the program to halt.

To call a macro when stepping through programs

SelectExecution- Step- with Macro

Or:

209

Chapter 7: Using Macros and Command Files
Using Macros

¢ Using the command line, enter:

Program Step Wth_Macro

Enter the name of the macro to be called, and presfRieirn> key.

You can use the Program Step With_Macro command to execute a macro after the
step occurs. Calling a macro in this manner is useful in tracking down subtle bugs.

Example If the functionfoo() was corrupting automatic variableslexandch on the stack,
the following macro and commands could be used to identify the line where the
corruption was occurring:

Debugger Macro Add void auto_check()
if ((index < 0 || index > 80) || (ch < 32 || ch > 126))
$Window Screen_On High_Level$;
$Expression Printf "Autos corrupted!!'\n"$;
$Expression Printf "index: %d ch: %c\n", index, ch$;
}
Program Run Until foo

Program Step Wth_Macro auto_check()

To stop a macro

* PresxCtrl>-C.

Macros can be halted during execution by press@igl>-C .

Caution <Ctrl>-C will stop execution of a macro. Press#@trl>-C may interrupt a
code-patching macro before it completes execution. If this occurs, you cannot
restart program execution within the macro where it stopped.

210

Chapter 7: Using Macros and Command Files
Using Macros

To display macro source code

* ChooseEdit in the Macro Operations dialog box.

Or:

¢ Using the command line, enter:

Debugger Macro Display <macro_name>

Enter the name of the macro you want to display, and pres&#tarn> key.

This command will write the macro source to the journal window. If you want to
write the macro source to a user-defined window or to a file, you can specify an
optional user window number as the destination.

Example To write the source for macro auto_check() to user window 51:

Debugger Macro Display auto_check() ,51

To delete a macro

¢ Using the command line, enter:

Symbol Remove <macro_name>

Enter the name of the macro you want to delete, and presRétern> key.

Use the Breakpt Delete command to remove the breakpoint that called the macro.

211

Chapter 7: Using Macros and Command Files
Using Command Files

Using Command Files

A command file is an ASCII file containing debugger commands.

You can create command files from within the interface by logging commands to a
command file as you execute the commands, or you can create or modify command
files outside the interface with an ASCII text editor.

The debugger can read a command file and execute the commands found there as if
they were entered directly into the interface command line.

Command files can also call other command files and the interface will execute the
called file like a subroutine of the calling file.

This section shows you how to:

* Record commands.

* Place comments in a command file.

¢ Pause the debugger.

* Stop command recording.

* Runacommand file.

¢ Setcommand file error handling.

¢ Append commands to a command file.

* Record commands and results to a journal file.
* Stop recording commands and results to a journal file.
* Open a file or device for read or write access.

¢ Close the file associated with a window number.

* Use the debugger in batch mode.

212

Chapter 7: Using Macros and Command Files
Using Command Files

To record commands

¢ Use the -tommand_fileption to the db68k command when starting the debugger.
(The debugger appends the file extensimmto command_filg

$ db68k -e <emulator_id> -| <command_file> <RETURN>

Or:

* SelectFile » Log -~ Record Commands Using the file selection dialog bog, enter
the name of the file to which the commands will be saved, and click on the OK
pushbutton.

Or:

* Using the command line, enter:

File Log On

Enter the name of the file to which commands will be saved, and press the
<Return> key.

All commands, whether they are entered from the menus or the command line, are
recorded to théog file. If a command causes an error, both the command and the
error code are recorded as comments.

Example To start logging commands to file “cmdfilel.com™

File Log Oncmdfilel

To place comments in a command file

* Using the command line, enter:

File Log Comment

213

Chapter 7: Using Macros and Command Files
Using Command Files

Enter the comment that should be placed in the command file, and press the
<Return> key.

In the command file, the comment is prefixed with a semicolon (;).

When editing command files, you can also use C-style comments (introduced by
the characters /* and terminated with the characters */).

Example To place the comment “Place this comment in a command file.” in the command
file:

File Log Comment Place this comment in the command file.

To pause the debugger

* Using the command line, enter:

Debugger Pause
And press theReturn> key.
The debugger is paused until you enter the spacebar.

You can also specify that the debugger pause for a number of seconds by using the
Debugger Pause Time command.

The Debugger Pause commands are useful when executing command files.

To stop command recording

¢ SelectFile - Log - Stop Command Recording

Or:

214

Chapter 7: Using Macros and Command Files
Using Command Files

¢ Using the command line, enter:

File Logo FF

And press theReturn> key.

The command file is closed.

To run a command file

¢ Use the -command_fileption to the db68k command when starting the
debugger. (Theommand_filenust end with thecomextension.)

$ db68k -e <emulator_id> -c <command_file> <RETURN>

Or:

¢ SelectFile - Log - Playback. Using the file selection dialog box, enter the nam
of the command file, and click on the OK pushbutton.

Or:

¢ Using the command line, enter:

File Command

Enter the name of the command file from which debugger commands will be
executed, and press thReturn> key.

The debugger will begin executing commands found in the command file as if
those commands were entered directly into the interface. The debugger will
continue to execute commands until it reaches the end of the file or, perhaps, until
an error occurs, depending on the command file error handling mode (see “To set
command file error handling”).

215

Chapter 7: Using Macros and Command Files
Using Command Files

Example

See Also

To interrupt playback of a command file, press<ti¢r|>-c key combination. (If
the graphical interface is being used, the mouse pointer must be within the interface
window.)

To start executing command from the file “cmdfilel.com”

File Command cmdfilel

File Startup in the "Debugger Commands" chapter

To set command file error handling

Using the command line, enter:

File Error_Command <Handling_Mode>

Select either Abort_Read, Continue_Read, or Quit_Debugger error handling mode,
and press theReturn> key.

When an error occurs while executing a command file:
Abort_Read causes the debugger to stop reading the command file.

Continue_Read causes the debugger to continue executing the command file
with the next command.

Quit_Debugger causes the debugger session to end.

216

Example

Chapter 7: Using Macros and Command Files
Using Command Files

To append commands to an existing command
file

Using the command line, enter:

File Log Append

Enter the name of the file to which commands will be appended, and press the
<Return> key.

To append command to the file “cmdfilel.com”

File Log Append cmdfilel

To record commands and results in a journal file

Use the -journal_file option to the db68k command when starting the debugge.
(The debugger appends the file extengjioato journal_file.)

$ db68k -e <emulator_id> -j <journal_file> <RETURN>

Or:

SelectFile - Log — Record Journal. Enter the name of the file to which the
commands and results will be saved, and click on the OK pushbutton.

Or:

Using the command line, enter:

File Journal On

Enter the name of the file to which commands and results will be saved, and press
the<Return> key.

217

Chapter 7: Using Macros and Command Files
Using Command Files

Journal files are similar to command files. They contain debugger commands
entered during a debug session. Journal files also contain any output generated by
debugger commands. Journal files contain everything that is written to the journal
window during a debug session.

Example To start recording commands and results to file “journall.jou™

File Journal Onjournall

To stop command and result recording to a
journal file

¢ SelectFile - Log - Stop Journal Recording

Or:

* Using the command line, enter:

File Journalo FF

And press theReturn> key.

To open a file or device for read or write access

* Using the command line, enter:

File User_Fopen

Select the open option, window number, and file name; then, presRehen>
key.

218

Chapter 7: Using Macros and Command Files
Using Command Files

After opening a file using the File User_Fopen Append or File User_Fopen Create
command, you can use the Expression Fprintf command to write information to the
file. Files opened for reading may be read from the built-in macro fgetc(). See the
"Predefined Macros" chapter of this manual for a complete description of this
macro.

The window number must be between 50 and 256 inclusive.

Use the Window Delete or the File Window_Close command to close the file.

Example To open user window 57 and redirect any data written to window 57 to the file
'varTrace.out”:

File User_Fopen Create 57 File varTrace.out

To close the file associated with a window
number

* Using the command line, enter:

File Whdow_ Close

Enter the window number associated with the file when it was opened, and press
the<Return> key.

Example To close the file associated with user window number 57:

File Whdow_ Close 57

219

Chapter 7: Using Macros and Command Files
Using Command Files

Example

To use the debugger in batch mode

Use the -b and -command_fileptions to the db68k command when starting the
debugger.

When using the debugger in batch mode, stdin, stdout, and stderr are disabled. The
-b option must be accompanied by the -c option and a debugger command file. All
commands are read from the command file. No user interaction with the debugger
is allowed. In batch mode, the debugger can be executed as a background process.
This mode is commonly used for automatic testing.

$ db68k -b -e <emulator> -c <command_file>

220

Chapter 8: Configuring the Debugger

Configuring the Debugger

How to change the appearance and behavior of the debugger.

221

Chapter 8: Configuring the Debugger

Configuring the debugger

These tasks are grouped into the following sections:

Setting the general debugger options.

Setting the symbolics options.

Setting the display options.

Modifying display area windows.

Saving and loading the debugger configuration.

Setting X resources.

Some options can be set using either the Debugger Options dialog box or the
command line. Other options can be set only using the command line.

222

Chapter 8: Configuring the Debugger
Setting the General Debugger Options

Setting the General Debugger Options

This section describes how to:
* Display the Debugger Options dialog box.
¢ List the debugger options settings.

¢ Change debugger options settings.

To display the Debugger Options dialog box

SelectSettings— Debugger Optionsfrom the menu bar.

You can change settings in the Debugger Options dialog box by clicking on the
appropriate buttons.

To list the debugger options settings .

SelectSettings— Debugger Options ...

You can also look at most debugger option settings by examining the Debugger
Options dialog box.

223

Chapter 8: Configuring the Debugger
Setting the General Debugger Options

See Also

To change debugger options settings

Use the Debugger Options dialog box.

Or:

Use the command line.

The "Debugger Option" sections in the "Debugger Commands" chapter for
information on using the command line to set debugger options.

To specify whether command file commands are
echoed to the Journal window

Using the command line, enter:

Debugger Option Command_Echo

Select On or Off, and press thReturn> key.

On Command file commands are echoed to the Journal window.

Off Command file commands are not echoed to the Journal window.

224

Chapter 8: Configuring the Debugger
Setting the General Debugger Options

To set automatic alignment for breakpoints and
disassembly

In the Debugger Options dialog box, click on the Align Breakpoints button to
toggle alignment.

On Debugger automatically aligns breakpoints or locations to be
displayed in mnemonic format to the beginning of instructions.

Off Breakpoints are not automatically aligned.

Off is the recommended setting because of software break instruction replacement.

To set backtrace display of bad stack frames

In the Debugger Options dialog box, click on the Frame Stop button to toggle
display of bad stack frames.

On Only consecutive valid stack frames are displayed. .
Off All stack frames, including bad frames, are displayed.

To specify demand loading of symbols

In the Debugger Options dialog box, click on the Demand Loading button.

On Symbol information is loaded on an as-needed basis.

Off All symbol information is loaded.

225

Chapter 8: Configuring the Debugger
Setting the General Debugger Options

The-doff command-line option overrides the On setting when the settings are
saved in a startup file.

To select the interpretation of numeric literals
(decimal/hexadecimal)

* In the Debugger Options dialog box, hold tlenmand selechouse button down
on the button for "Input Radix" or "Output Radix". Release the button to select
"Decimal” or "Hex".

If you select Hex, input and output values are interpreted as hexadecimal for
assembly-level references. Any assembly-level number you want interpreted as
decimal must be terminated withirgfor example, specify 32 as 32T).

Even if you select Hex, the following inputs wilht be interpreted as hexadecimal:
* Line numbers starting with "#".

* Variables in high-level expressions, includidgExpressionand macro
expressions. To cast a high-level expression as hexadecimal, use a leading
"0x" or a trailing "h".

* Debugger variables including:
— breakpoint numbers,
— viewport numbers, and
— data viewport line numbers.
Binary numbers are not available when you select Hex.

Floating point and enumeration type values are not affected.

226

Chapter 8: Configuring the Debugger
Setting the General Debugger Options

To specify step speed

¢ Using the command line, enter:

Debugger Option General Step_Speed <numb 0..100>

Enter the step speed number (from O to 100), and pres&#tarn> key.

Higher numbers represent slower speeds.

227

Chapter 8: Configuring the Debugger
Setting the Symbolics Options

Setting the Symbolics Options

This section shows you how to:
¢ Display symbols in assembly code.
¢ Display intermixed C source and assembly code.

¢ Control case-sensitivity for symbols and module names.

To display symbols in assembly code

In the Debugger Options dialog box, click on the Assembly Symbols button to
toggle assembly symbol display.

Select On or Off, and press thReturn> key.
On Symbols are displayed instead of addresses wherever possible.

Off Addresses are displayed.

To display intermixed C source and assembly
code

In the Debugger Options dialog box, click on the Intermixed Source/Assembly
button to toggle source display.

On Assembly code is intermixed with C source code.

Off Only C source code is displayed.

228

Chapter 8: Configuring the Debugger
Setting the Symbolics Options

To convert module names to upper case

In the Debugger Options dialog box, click on Uppercase Module Names.

To control case sensitivity of symbol lookups

In the Debugger Options dialog box, select one of the following values for Symbol
Lookup:

As Entered Only The debugger will always look up the symbol as entered,
case sensitive.

As Entered & Upper The debugger will look up the symbol as entered. If this
fails, the debugger will convert the symbol to upper case
and try again.

As Entered & Lower The debugger will look up the symbol as entered. If this
fails, the debugger will convert the symbol to lower case

and try again.
As Entered, Upper & The debugger will look up they symbol as entered. If thi

Lower fails, the debugger will convert the symbol to lower case
and try again. If this fails, the debugger will convert the
symbol to upper case and try again.

229

Chapter 8: Configuring the Debugger
Setting the Display Options

Setting the Display Options

This section shows you how to:

* Specify the Breakpoint, Status, or Simulated I/O window display behavior.
¢ Display half-bright or inverse video highlights.

* Display information a screen at a time (more).

* Specify scroll amount.

To specify the Breakpoint window display
behavior

* In the Debugger Options dialog box, hold tlenmand selechouse button down
on the Breakpoint Window button. Release the button to select On or Swap.

On The Breakpoint window is displayed at all times.

Swap The Breakpoint window is only displayed when you set or
delete a breakpoint or when you display breakpoints.

To specify the Breakpoint, Status, or Simulated
I/O window display behavior
* In the Debugger Options dialog box, under View Options, select On or Swap.

On The window is displayed at all times.

Swap The window is only displayed when you activate the window or
when the debugger updates the information in the window.

230

Chapter 8: Configuring the Debugger
Setting the Display Options

Off (Simulated 1/0O window only) The Stdio window is only
displayed when function key6 is pressed or when the
Window Screen_On Stdio command is entered.

To display half-bright or inverse video highlights

Using the command line, enter:

Debugger Option View Highlight

Select Half_Bright or Inverse, and press¢iReturn> key.

This setting does not affect the graphical user interface.

To turn display paging on or off (more)

In the Debugger Options dialog box, hold tlenmand selechouse button down
on the More List Mode button. Release the button to select On or Off.

On Information is listed one screen at a time.

Off Information is listed all at once.

To specify scroll amount

Using the command line, enter:

Debugger Option View Amt_Scroll <numb 0..50>

231

Chapter 8: Configuring the Debugger
Setting the Display Options

Enter the number of lines for information to be scrolled (from 0 to 50), and press
the<Return> key.

To store timing information when tracing

In the Debugger Options dialog box, select a Trace Counts option.

Time Use half of trace memory to store timing information.

Nothing Use all of trace memory to store bus states.

The debugger trace display does not display timing information, but it may be
viewed in the emulator/analyzer interface.

To mask fetches while tracing

In the Debugger Options dialog box, select a Fetch Mask option.

Fetch addresses will be masked to the selected boundary size.

This feature is useful when a processor has a larger data bus size than its instruction
fetch size. For instance, the 68020 has a 32-bit data bus, but instructions may be
located at 16-bit boundaries. In this case, set the alignment to Long. For example,
an instruction starting at address 0x402 will be fetched by a bus access at 0x400.
Unless fetch addresses are masked to Long, the fetch of the instruction at 0x402
would not be seen.

This mask only applies to trace triggers specified with a status cycle type of fetch
such as those specified by the pop-up menu in the Code window.

232

Chapter 8: Configuring the Debugger
Modifying Display Area Windows

Modifying Display Area Windows

You can reformat display-area screens by modifying their windows. For example,
you can reformat the high-level screen by resizing and moving the high-level Code,
Monitor, Backtrace, Journal, and Breakpoint windows. You can also resize and
move the alternate view of these windows.

This section shows you how to:

* Resize or move the active window.

* Move the Status window (standard interface only).

¢ Define user screens and windows.

¢ Display user-defined screens.

* Erase standard 1/0O and user-defined window contents.

* Remove user-defined screens and windows.

To resize or move the active window

Using the command line, enter:

Wndow Resize

And press th&Return> key.

TypeT to position the top-left corne to position the lower-right corner, btto

move the window without resizing it; then, use the cursor keys to move the window
or window border. When the window is at the desired location, press the
<Return> key to save the new coordinates.

If you make a mistake while resizing the window, p@$RL C or pres€sc
twice to restore the previous coordinates.

233

Chapter 8: Configuring the Debugger
Modifying Display Area Windows

Examples

The Window Resize command is used to move or alter the size of any existing
window, except for the Status window. Use the Window New command to move
the Status window in the standard interface.

When you use the Window Resize command on the normal view of a window, the
normal dimensions are modified. When you use the command on the alternate
view of a window, the alternate dimensions are modified.

You can enter resize commands when any screen is displayed. However, the
debugger does not display commands on the standard I/O screen or on any
user-defined screen.

To move the Status window (standard interface
only)

The Status window cannot be moved in the graphical interface.

Using the command line in the standard interface, enter:

Wndow New

Specify window number 5 to move the high-level Status window (or window
number 15 to move the assembly level Status window), select Tab followed by
High_Level (or Assembly), enter the new coordinates for the Status window, and
press thecReturn> key.

The Status window cannot be resized. The difference between the bottom row
coordinate and top row coordinate must be 3.

A high-level program must be loaded in order to move the high-level status screen.

Be sure to move any windows that occupy the screen area to which you are moving
the Status window. Otherwise, the Status window will be hidden behind these
windows.

To move the high-level Status window to the top of the display (upper left corner at
0,0 and lower right corner at 3,78):

Whdow New 5 <tab> Hgh_Level 0,0,3,78

234

Caution

Chapter 8: Configuring the Debugger
Modifying Display Area Windows

To move the assembly-level Status window to the bottom of the display:

Wndow New 15 <tab> Assembly 19,0,22,78

To define user screens and windows

Using the command line, enter:

Whdow New

Enter the window and screen parameters, and presf#tarn> key.

The debugger lets you define your own screens and windows so that you have
flexibility in displaying debugger information.

User-defined windows must be assigned a number greater than or equal to 50, and
less than or equal to 256. Numbers below 50 are reserved for predefined debugger
screens and windows.

When you make a new window with the Window New command, the normal view
and alternate view dimensions are set identically. The debugger allocates a buffer
with enough memory to contain the entire window. Therefore, the window wit
the largest dimensions (normally the alternate view) should be defined first to
allocate sufficient memory.

To display a user-defined screen, usettiedow Screen_On command or
press function kef6.

When making a new window on the high-level or assembly-level screens, be
careful not to enter coordinates that will result in a window that covers the status
line and command line. On a standard 80-column terminal display, a row
coordinate may be between 0 and 23. Creating a window with a bottom row
coordinate greater than 18 will cause part or all of the status and command lines to
be covered.

235

Chapter 8: Configuring the Debugger
Modifying Display Area Windows

Examples To make a user window numbered 57 in user screen 4 with the upper-left corner of
the window at coordinates 5,5 and the lower-right corner of the window at
coordinates 18,78:

Whdow New 57 <tab> User_Screen 4 <tab> Bounds 5,5,18,78

If user screen 4 does not exists, the debugger automatically creates it.

To display user-defined screens

* Using the command line, enter:

Wndow Screen_On User_Screen <screen_nmbr>

Enter the user screen number, and pressRaturn> key.

Examples To display user screen 4:

Whdow Screen_On User_Screen 4

To erase standard 1/0 and user-defined window
contents

¢ Using the command line, enter:

Whdow Erase <user window_nmbr>

Enter the user window number (the standard 1/0 window number is 20) whose
contents you wish to clear, and presstReturn> key.

If you do not specify a window number or if you specify 0, the active user-defined
window is cleared. This command is useful in macros.

236

Chapter 8: Configuring the Debugger
Modifying Display Area Windows

Examples To erase the contents of user window 57:

Whdow Erase 57

To remove user-defined screens and windows

* Using the command line, enter:

Whdow Delete <user window _nmbr>
Enter the number of the window to be removed, and presRtieirn> key.
To remove a user-defined screen, remove all windows associated with that screen.

You cannot remove predefined debugger windows and screens.

Examples To remove a user-defined screen that has three windows (humbers 50, 55, and 73):

Whdow Delete 50

Wndow Delete 55

Wndow Delete 73 .

237

Chapter 8: Configuring the Debugger
Saving and Loading the Debugger Configuration

Saving and Loading the Debugger Configuration

Information regarding debugger options and screen configurations can be saved in
astartup file Startup files can be created only from within the debugger.

This section shows you how to:
* Save the current debugger configuration.

* Load a startup file.

To save the current debugger configuration

Use the menu select mouse button to ch&dse- Store— Startup (.rc) file (as
default). The information is saved in file “db68k.rc” in the current directory.

Or:

Use the menu select mouse button to ch&dse- Store— Startup (.rc) file.
Using the file selection dialog box, enter the name of the file to which startup
information should be saved; then, click on the OK pushbutton.

This command also saves the window and screen settings.

When saving window and screen settings that have been customized for a
particular type of terminal, name the startup file the same as the TERM
environment variable setting. If no startup file is loaded when starting the
debugger, the debugger will automatically search for startup files named
“J$TERM.rc” (in the current directory) or “SHOME/.$TERM.rc” (in the home
directory). files.

238

Chapter 8: Configuring the Debugger
Saving and Loading the Debugger Configuration

To load a startup file

¢ Use the -startup_fileoption to the db68k command when starting the debugger.

$ db68k -e <emulator_id> -s <startup_file> <RETURN>

The debugger’s startup options and window specifications are configured as
described irstartup_file

Thestartup_filemust end with the .rc extension and can be created only from
within the debugger.

If no startup file is named, the following files are searched for in order. The first
one that exists will be used ($HOME and $TERM are UNIX environment
variables).

db68k.rc in the current directory
J$TERM.rc in the current directory
$HOME/.$TERM.rc

If no startup file is found, reasonable defaults will be used.

Examples To start the debugger and load the state saved in the startup file “my_state.rc™

$ db68k -e emul68k -s my_state.rc <RETURN> .

239

Chapter 8: Configuring the Debugger

Setting X Resources

Setting X Resources

The debugger’s graphical interface is an X Window System application which
means it is &lientin the X Window System client-server model.

The X server is a program that controls all access to input devices (typically a
mouse and a keyboard) and all output devices (typically a display screen). Itis an
interface between application programs you run on your system and the system
input and output devices.

An X resourcecontrols an element of appearance or behavior in an X application.
For example, one resource controls the text in action key pushbuttons as well as the
action performed when the pushbutton is clicked.

By modifying resource settings, you can change the appearance or behavior of
certain elements in the graphical interface.

Where resources are defined

When the graphical interface starts up, it reads resource specifications from a set of
configuration files. Resources specifications in later files override those in earlier
files. Files are read in the following order:

1 The application defaults file, $HP64000/lib/X11/app-defaults/HP64_Debug.

2 The $XAPPLRESDIR/HP64_Debug file. (The XAPPLRESDIR environment
variable defines a directory containing system-wide custom application
defaults.)

3 The server's RESOURCE_MANAGER property. (®ndb command loads
user-defined resource specifications into the RESOURCE_MANAGER

property.)

If no RESOURCE_MANAGER property exists, user defined resource settings
are read from the $HOME/.Xdefaults file.

4 The file named by the XENVIRONMENT environment variable.

If the XENVIRONMENT variable is not set, the $HOME/.Xdefauitsstfile
(typically containing resource specifications for a specific remote host) is read.

5 Resource specifications included in the command line witkxthe option.

6 System scheme files in directory /usr/hp64000/lib/X11/HP64_schemes.

240

Chapter 8: Configuring the Debugger
Setting X Resources

7 System-wide custom scheme files located in directory
$XAPPLRESDIR/HP64_schemes.

8 User-defined scheme files located in directory $HOME/.HP64_schemes (note
the dot in the directory name).

Scheme filegroup resource specifications for different displays, computing
environments, and languages.

The HP64_Debug application defaults file is re-created each time debugger’s
graphical interface software is installed or updated. You can use thedifNIX
command to check for differences between the new HP64_Debug application
defaults file and the old application defaults file that is saved as
$HP64000/lib/X11/HP64_schemes/old/HP64_Debug.

Refer to the “X Resources and the Graphical Interface” chapter for more detailed
information about X resources.

241

Chapter 8: Configuring the Debugger
Setting X Resources

To modify the debugger’s graphical interface
resources
You can customize the appearance of an X Windows application by modifying its

X resources. The following tables describe some of the commonly modified
application resources.

Application Resources for Schemes

Resource Values Description

HP64_Debug.platformScheme HP-UX | Names the subdirectory for platform
SunOS specific schemes. This resource should be
(custom) set to the platform on which the X server |s

running (and displaying the debugger’s
graphical interface) if it is different than the
platform where the application is running.

HP64_Debug.colorScheme BW Names the color scheme file.
Color
(custom)

HP64_Debug.sizeScheme Small Names the size scheme file which defines
Large the fonts and the spacing used.
(custom)

HP64_Debug.labelScheme Label Names to use for labels and button text.
$LANG The default uses the $LANG environment

(custom) variable if it is set and if a scheme file
named Debug.$LANG exists in one of the
directories searched for scheme files;
otherwise, the default is Label.

HP64 Debug.inputScheme Input Specifies mouse and keyboard operation
(custom)

242

Chapter 8: Configuring the Debugger
Setting X Resources

Commonly Modified Application Resources

Resource Values Description

HP64 Debug.enableCmdline True Specifies whether the command line areg is
False displayed when you initially enter the

debugger’s graphical interface.

*editFile (example) vi| Specifies the command used to edit files.
%s

*editFileLine (example) vi| Specifies the command used to edit a file|at
+%d %s a certain line number.

*m68000*actionKeysSub.keyDefs (paired list Specifies the text that should appear on the

of strings) | action key pushbuttons and the commands
that should be executed in the command
line area when the action key is pushed.
Refer to the “To set up custom action keys
section for more information.

*m68000*dirSelectSub.entries (list of Specifies the initial values that are placed in
strings) theFile - Context -, Directory pop-up
recall buffer. Refer to the “To set initial

recall buffer values” section for more

information.
*m68000*recallEntrySub.entries (list of Specifies the initial values that are placed|i
strings) the entry buffer (labeled “():"). Refer to the

“To set initial recall buffer values” section
for more information.

243

Chapter 8: Configuring the Debugger
Setting X Resources

The following steps show you how to modify the debugger’s graphical interface’s
X resources.

1 Copy part or all of the HP64_Debug application defaults file to a temporary file.
Type:

cp $HP64000/lib/X11/app-defaults/HP64_Debug HP64_Debug.tmp

2 Make the temporary file writable:

chmod +w HP64_Debug.tmp
3 Modify the temporary file.

Modify the resource that defines the behavior or appearance that you wish to
change.

For example, to change the number of lines in the main display area to 36, search
for the string “HP64_Debug.lines”. You should see lines similar to the following.

|
! The lines and columns set the vertical and horizontal dimensions of the

! main display area in characters, respectively. Minimum values are 18 lines
I'and 80 columns. These minimums are silently enforced.

|

| Note: The application cannot be resized by using the window manager.

IHP64_Debug.lines: 24
IHP64_Debug.columns: 85

Edit the line containing “HP64_Debug.lines” so that it is uncommented and is set
to the new value:

|
! The lines and columns set the vertical and horizontal dimensions of the
! main display area in characters, respectively. Minimum values are 18 lines

I'and 80 columns. These minimums are silently enforced.
|

| Note: The application cannot be resized by using the window manager.

HP64_Debug.lines: 36
IHP64_Debug.columns: 85

If you wish, you may delete any lines which you will not be modifying; any
resources you delete will use the default values.

Save your changes and exit the editor.

244

Chapter 8: Configuring the Debugger
Setting X Resources

4 If the RESOURCE_MANAGER property exists (as is the case with HP VUE — if
you're not sure, you can check by enteringdiah -query command), use the
xrdb command to add the resources to the RESOURCE_MANAGER property. For
example:

xrdb -merge -nocpp HP64_Debug.tmp
5 Save the changes where they can be found by the debugger.
One way to do this is to append the temporary file to your SHOME/. Xdefaults file.

For example:
cat HP64_Debug.tmp >> $HOME/.Xdefaults

You can also save the changes in a scheme file (see "To use customized scheme
files").

6 Remove the temporary file.

7 Start or restart the debugger’s graphical interface.

245

Chapter 8: Configuring the Debugger

Setting X Resources

To use customized scheme files

Scheme files are used to set platform specific resources that deal with color, fonts
and sizes, mouse and keyboard operation, and labels and titles. You can create and
use customized scheme files by following these steps.

Create the $HOME/.HP64_schemes/<platform> directory.

For example:

mkdir SHOME/.HP64_schemes
mkdir SHOME/.HP64_schemes/HP-UX

Copy the scheme file to be modified to the $HOME/.HP64_schemes/<platform>
directory.

Label scheme files are not platform specific; therefore, they should be placed in the
$HOME/.HP64_schemes directory. All other scheme files should be placed in the
$HOME/.HP64_schemes/<platform> directory.

For example:

cp /usr/hp64000/lib/X11/HP64_schemes/HP-UX/Debug.Color
$HOME/.HP64_schemes/HP-UX/Debug.MyColor

Note that if your custom scheme file has the same name as the default scheme file,
the load order requires resources in the custom file to explicitly override resources
in the default file.

Modify the $HOME/.HP64_schemes/<platform>/Debug.<scheme> file.

For example, you could modify the
“$HOME/.HP64_schemes/HP-UX/Debug.MyColor” file to change the defined
foreground and background colors. Also, since the scheme file name is different
than the default, you could comment out various resource settings to cause general
foreground and background color definitions to apply to the debugger’s graphical
interface. At least one resource must be defined in your color scheme file for it to
be recognized.

246

Chapter 8: Configuring the Debugger
Setting X Resources

4 If your custom scheme file has a different name than the default, modify the
scheme resource definitions.

The debugger’s graphical interface application defaults file contains resources that
specify which scheme files are used. If your custom scheme files are named
differently than the default scheme files, you must modify these resource settings
so that your customized scheme files are used instead of the default scheme files.

For example, to use the “SHOME/.HP64_schemes/HP-UX/Debug.MyColor” color
scheme file you would set the “HP64_Debug.colorScheme” resource to “MyColor”:

HP64_Debug.colorScheme: MyColor

247

Chapter 8: Configuring the Debugger
Setting X Resources

To set up custom action keys

* Modify the “actionKeysSub.keyDefs” resource.

To modify this resource, follow the procedure in "To modify the debugger’s
graphical interface resources."

The “actionKeysSub.keyDefs” resource defines a list of paired strings. The first
string defines the text that should appear on the action key pushbutton. The second
string defines the command that should be sent to the command line area and
executed when the action key is pushed.

A pair of parentheses (with no spaces, that is “()”) can be used in the command
definition to indicate that text from the entry buffer should replace the parentheses
when the command is executed.

Action keys that use the entry buffer should always include the entry buffer
symbol, “()", in the action key label as a visual cue to remind you to place
information in the entry buffer before clicking the action key.

Shell commands can be executed by using the Debugger Host_Shell command.
Also, command files can be executed by using the File Command command.

Finally, an empty action (") means to repeat the previous operation, whether it
came from a pull-down, a dialog, a pop-up, or another action key.

Example To set up custom action keys, modify the “debug*actionKeysSub.keyDefs”
resource:
*m68000*actionKeysSub.keyDefs: \

"Make" "D Hmake [I"\
"Disp Src ()" "PCS();PD("\
"Run Until ()* "PRU("\
"Step" "P S"

See Also “To modify debugger’s graphical interface resources” in this chapter.

248

Chapter 8: Configuring the Debugger
Setting X Resources

To set initial recall buffer values

* Modify the “entries” resource for the particular recall buffer.

Some of the resources for the pop-up recall buffers are listed in the following table:

Pop-up Recall Buffer Resources

Recall Pop-up Resources

Entry Buffer (): *recallEntrySub.entries

File —» Context- Directory ... *dirSelectSub.entries

Modify - Register; Recall Value *modRegDB*recallSub.entries

Command Line command recall *recallCmdSub.entries

Macro Operations dialog box; Recall | *macroDB_popup*recallSub.entries

Value
Other X resources for the recall buffers are described in the supplied application
defaults file.
The window manager resource “*transientDecoration” controls the borders ar
dialog box windows. The most natural setting for this resource is “title.”

Example To set the initial values for the directory selection dialog box, modify the

“debug*dirSelectSub.entries” resource:
*m68000*dirSelectSub.entries: \

"$HOME" \

oy

"lusers/projectl" \

"lusers/project2/code”

Refer to the previous “To modify the debugger’s graphical interface resources”
section in this chapter for more detailed information on modifying resources.

249

Chapter 8: Configuring the Debugger
Setting X Resources

250

Configuring the Emulator

How to configure the emulator for your target system.

251

Each target system differs in the way it uses the processor, memory, and memory
mapped I/O devices. During system development, your needs for emulator
resources may change as your target system design matures. You can allocate
emulator resources lmpnfiguringthe emulator.

There are three ways to configure the emulator:
* Load a configuration file into the emulator.
* Change the configuration using the Emulator Configuration dialog box.

¢ Change the configuration using tbebuggeiExecutionEnvironment
Modify_Config command from the command line.

The Emulation Configuration dialog box is available both in the debugger/emulator
graphical interface and in the emulator/analyzer graphical interface.

252

Chapter 9: Configuring the Emulator

What must be configured

For any target system, you must configure:

Memory. Because the emulator can use target system memory or emulation
memory (or both), it is necessary to map ranges of memory so that the emulator
knows where to direct its accesses.

You can synchronize emulation memory accesses to the target system in order to
more closely imitate target system memory. For example, if emulation memory
replaces slower target system memory that requires wait states, synchronizing
emulation memory to the target system causes wait states to be inserted on
emulation memory accesses as they would be on target system memory accesses.

Refer to the "Mapping Memory" section later in this chapter.

Clock. Generally, you should use the target system clock when plugging the
emulator into a target system.

Real-time circuitry. s there circuitry in the target system that requires programs
to run in real-time? Some emulator commands cause temporary breaks to the
monitor state, typically to access microprocessor register values, single-port
emulation memory, or target system memory. If the target system requires that
programs run in real-time, you must restrict the emulator to real-time runs.

Interrupts. Should the emulator respond to target system interrupts when running
in the monitor program? If so, you must use a foreground monitor program since

target system interrupts are always ignored during background operation (refer to
the "Selecting the Emulation Monitor..." section later in this chapter). If it's not
important that the emulator respond to target system interrupts when running i
monitor, you can use the background monitor.

253

Chapter 9: Configuring the Emulator
Using the Configuration Interface

Using the Configuration Interface

This section shows you how to modify, store, and load configurations using the
emulator configuration interface.

This section shows you how to:

e Start the configuration interface.

* Modify a configuration section.

* Store a configuration.

¢ Change the configuration directory context.
¢ Display the configuration context.

¢ Access help information.

¢ Exit the configuration interface.

* Load a configuration.

This chapter describes emulator configuration in general terms. For information
about your emulator’s specific configuration questions, refer to your emulator
User’s Guide

254

Chapter 9: Configuring the Emulator
Using the Configuration Interface

To start the Emulator Configuration dialog box

¢ SelectModify - Emulator Config... in either the debugger/emulator or
emulator/analyzer graphical interface.

The Emulator Configuration main menu and an Emultor Configuration window are
displayed. The Emulator Configuration dialog box may be left running while you
are using the debugger.

Examples The Emulator Configuration main menu is shown below.

ey Emulator Configuration

-Emulator Configuration Sections
4 General ltems
< Monitor Type

Memory Ma
Clicking on one of thege < ry Map)
lines selects a particul§r < Emulator Pod Settings
configuration section. < DebugiTrace Options
< Simulated 10

-Analyzer Configuration Sections
<» External Analyzer

<> Interactive Measurement Specification

Clicking this button
presents the question

for the selected T
configuration section.

~ | Modify Store Exit Help
e] |

E 2 i i 1 E

Clicking this button'JCIicking this button CIicLing this button

the emulator to begin exits the Emulator presents general
using the new Configuration dialog. configuration
configuration. instructions.

255

Chapter 9: Configuring the Emulator
Using the Configuration Interface

To modify a configuration section

1 Start the emulator Emulator Configuration dialog box.

2 Click on a section name in the Emulator Configuration main menu, and click the
"Modify Section" pushbutton.

3 Use the command line in the Emulator Configuration window to answer the
configuration questions.

Each configuration section presents a window similar to the following.

The menu bar. ~ s | Emulator Configuration: hplsdzo (m68000) B E%..
File Display Help

Select one of the sixteen BBBABA trap instructions for
use by the emulator to implement software breakpoints.

Conﬁguration help Hhen the software breskpoint trap number is changed, software
text d|sp|ay area. breakpoints are removed from memory.

NOTE: FAnyg breakpoints defined in target memory must be
cleared through the software_breakpoints command
before the trap instruction is changed.

Emulator status and
error message line.\

STATUS: Configquring H68000/68HC001/68ECODO

Command line text Trap number for software breakpoint (H..BFH}? BAEBFH
entl’y area.

Pushbutton softkeyS f [ewmber][J[JL__] [L[[Recu]
] Command: Cursor: [Backup|[Forward|[Clear to end|[Clear| [Help]

Command control
and cursor contr_ol/

pushbuttons.

256

Chapter 9: Configuring the Emulator
Using the Configuration Interface

To answer a configuration question, click the softkey pushbutton that has your
answer. Or, click on the "Return" command pushbutton to accept the answer that is
shown.

When you answer a configuration question, you are normally presented with the
next question in the section; however, there are some cases when a carriage return
is required, and you can supply it by clicking Beturn command pushbutton or

by pressing theReturn> key.

At the last question of a configuration section, you are asked if you wish to return
to the main menu. You can click the "next_sec" softkey pushbutton to access the
guestions in the next configuration section.

To recall a configuration question, click tRECALL softkey pushbutton. If you
do this at the starting question of a configuration section, you are asked if you want
to return to the main menu.

In order for the emulator to recognize any configuration changes, the configuration
must be applied to the emulator.

To store a configuration

When answering the configuration questions, ch&dse- Store...from the
pull-down menu, and use the File Selection dialog box to name the configurati
file.

When finished setting a configuration, click on Erét Window button. A dialog
box will ask whether you want to store the configuration.

The file to which the configuration is stored becomes the current configuration file.
The emulator only recognizes configuration changes when they are stored or
loaded.

When modifying a configuration, you can choose to store your answers at any time.
This is useful for quickly verifying the effect a configuration change has on the
emulator.

257

Chapter 9: Configuring the Emulator
Using the Configuration Interface

Configuration information is saved in two files with extensions of ".EA" and ".EB".
The file with the ".EA" extension is the "source" copy of the file, and the file with
the ".EB" extension is the "binary" or loadable copy of the file.

For more information on how to use dialog boxes, refer to the "To use dialog
boxes" description in the "Entering Commands" chapter.

To examine the emulator configuration

SelectModify — Emulator Config... to display the Emulator Configuration dialog
box.

Click on the configuration section you wish to examine.

Click on theReturn button or pressReturn> on your keyboard to page through
the configuration questions without changing their values.

At the end of the configuration section, clicky@sto return to the Emulator
Configuration dialog box (main menu).

Click onExit Window.

This procedure allows you to examine the emulator configuration without changing
it.

If you accidentally change one of the configuration items, don’t worry. As long as
you do not click orApply to Emulator, any changes you make will not be saved.
Just click onYeswhen the debugger asks "Your changes will be lost—Exit
configuration?"

258

Chapter 9: Configuring the Emulator
Using the Configuration Interface

To change the configuration directory context

When answering the configuration questions, ch&dse- Directory... from the
pull-down menu, and use the Directory Selection dialog box to specify the new
directory.

The directory context specifies the directory to which configuration files are stored
and from which they are loaded.

The Emulator Configuration dialog box directory context is separate from the
debugger interface directory context. Changing one does not affect the other.

To display the configuration context

When answering the configuration questions, ch@sglay - Context... from the
pull-down menu.

The current directory context and the current configuration files are displayed in a
window. Click theDonepushbutton when you wish to close the window.

259

Chapter 9: Configuring the Emulator
Using the Configuration Interface

To access configuration help information

* When answering the configuration questions, chétedp — General Topic...
from the pull-down menu.

* From the Emulator Configuration dialog box main menu, click on the "Help Topic"
button.

To exit the Emulator Configuration dialog box

* When answering the configuration questions, ch&dse- Exit... from the
pull-down menu (or type <CTRL>x), and clidlesin the confirmation dialog box.

* From the Emulator Configuration dialog box main menu, clicketkieWindow
button, and clickresin the confirmation dialog box.

Any modifications made to the configuration which haven't been stored are lost.
ChoosingNo from the confirmation dialog box cancels the exit and keeps the
emulator Emulator Configuration dialog box running.

260

Chapter 9: Configuring the Emulator
Using the Configuration Interface

To load a configuration file

Use theC command line option when starting the debugger.

Or:

Use a default configuration file.

Or:

Selectrile - Load — Emulator Config.

Or:

Using the command line, enter

Debugger Execution Environment Load_Config

The emulation configuration file contains configuration information for the

emulator. The debugger/emulator accepts files generated by the emulation software

or by an editor. The debugger uses.tié suffixed file (ASCII format) to load
emulator configurations.

If you do not specify a configuration file (r@ option is given) and the emulator is
locked at startup, the configuration saved when you left the emulator locked is
used. No default configuration is loaded.

If you do not specify the -C option and the emulator is not locked, the debugg
searches for a default configuration file in the following sequence:

1 configuration filedefault.EAIn the current directory.
2 configuration filedefault.EAin the $SHOME directory.

3 configuration file$HP64000/inst/emul/64742A/userconfig.@#° 64742 or
HP 64743 emulator)
or

$HP64000/inst/emul/64746A/userconfig.@° 64746 emulator)

261

Chapter 9: Configuring the Emulator
Using the Configuration Interface

Note

Examples

4 configuration file$HP64000/inst/emul/64742A/default.lpfovided with the
HP 64742 emulator and HP 64743 68000 emulator Softkey Interface software.

or

$HP64000/inst/emul/64746A/default.Brovided with the HP 64746 68302
emulator Softkey Interface software.

Default configuration files are also supplied with the HP B3640 68000 family C
compiler. You should copy the appropriate default configuration file for your
memory configuration into your directory and namaeitault. EA These files are
located in directory:

$HP64000/env/<env_dir>

where <env_dir> is the product number of the emulator you are using.

The file userconfig.EA is not supplied with the debugger. This file name refers to a
configuration file that you may create and put in directory

$HPE4000/inst/emul/64742A
$HP6E4000/inst/emul/64744A

or
$HP64000/inst/emul/64746A

The following examples show a few ways to load a configuration file:

db68k -e test -C srwcfg.EA
Run the debugger using emulator "test" and configuration file
"srwcfg.EA"

db68k -e m68000
Run the debugger using emulator "m68000" and use the default

configuration file named "default.EA" in the current working
directory.

If "default. EA" does not exist in the current directory, the
debugger searches for a default configuration file in the sequence
previously described in this section.

Debugger Execution Environment Load_Config "mycnfig"

262

Chapter 9: Configuring the Emulator
Using the Configuration Interface

Load the emulation configuration file "mycnfig.EA" (from within
the debugger).

To create or modify a configuration file

Use the Emulator Configuration dialog box to set up the configuration, then save
the configuration usingile - Store» Emul Config.

Or:

Change the configuration using thebuggelExecutionEnvironment
Modify_Config command from the command line.

Or:

Edit a configuration file using a text editor.

If you are using the graphical interface, use the Emulator Configuration dialog box.
Editing the configuration file can produce an invalid configuration.

If you use a text editor to create a configuration file, be sure to give the file a name
with the file extensionEA . The.EA file extension tells the debugger that the fil
is an ASCII configuration file.

If an error occurs when loading a configuration
file

Load a different configuration file.

Or:

263

Chapter 9: Configuring the Emulator
Using the Configuration Interface

1 Exit the debugger.
2 Maodify the configuration file using a text editor.

3 Return to the debugger

Caution If you reload a configuration using tifiebugger Execution
Environment Load_Config command, the contents of memory will be
changed. Even if the new configuration memory map is identical to the old
memory map, you must reload the contents of memory.

See also
TheSoftkey Interface User’'s Guidier your emulator
68000 C Cross Compiler Reference

264

Chapter 9: Configuring the Emulator
File Format

Editing the Emulation Configuration File

This section describes how to create or modify an emulation configuration file for
use with the debugger/emulator. This section is provided for users who do not
have the HP 64700 Series emulator softkey interface.

This section describes only those emulation questions that directly affect debugger
operation.

File Format

ASCII emulation configuration files (files witlEA extension) consist of a
memory map section followed by a list of configuration questions with answers.
The sample emulation configuration file shown below is created by editing the
configuration file/usr/hp64000/env/hp64742/Config.EA supplied with
the HP B3640 Motorola C Cross Compiler.

BEGIN MEMORY MAP
default guarded

#-- Map 66k bytes for all program sections and vector table (Oh-400h)
OH thru 0107FFH emulation rom

#-- Map 16k bytes for system stack
040000H thru 043FFFH emulation ram

#-- Map 44k bytes for all data sections and heap
060000H thru 06AFFFH emulation ram
END MEMORY MAP

Reset value for Supervisor Stack Pointer? 44000H

#-- Disassemble using Motorola syntax
Inverse assembly syntax to use? 64870

#-- Enable simulated 1/0 and specify address of I/O buffer
Enable polling for simulated 1/0? yes

Simio control address 1? _systemio_buf
Micro-processor clock source? internal

Enter monitor after configuration? yes

Enter monitor after configuration (using external clock)? no
Restrict to real-time runs? no

Monitor type? foreground

Monitor address? OFFF800H

Monitor function code? none

Monitor filename? Mfmon68000

Enable bus arbitration? yes

Interlock emulator DTACK with user DTACK? no

265

Chapter 9: Configuring the Emulator

File Format

Enable Bus Error on emulation memory accesses? no
Respond to target system interrupts? yes

Target memory access size? bytes

Drive background cycles to target system? yes

Value for address bits A23-A16 during background cycles? 0
Function code for background cycles? supr prog

Break processor on write to ROM? yes

Trap number for software breakpoint (0..0FH)? 0000FH
Trace background or foreground operation? foreground

Memory Map Section

The memory map section of the file must begin with the statement:

BEGIN MEMORY MAP

and end with the statement:

END MEMORY MA

Syntax:

BEGIN MEMORY MAP
<default specification>
<memory block specification>
END MEMORY MAP

Default Specification

Any address ranges that are unmapped when the mapping session is ended are
assigned to the memory type specified as the default. The default descriptor can be
defined as target RAM, target ROM, or guarded by usingéfeultstatement.

The syntax for the default specification statement is shown in the figure below.

Entering Memory Block Specifications

All memory mapper entries (blocks) consist of an address or address range, an
optional function code, and a descriptor which defines the type of memory within
the specified addresses.

You must select one of the five memory descriptors for each memory address range
that you map. The descriptors are target ROM, target RAM, emulation ROM,
emulation RAM, and guarded.

Define the mapper blocks using the syntax shown in the figure below.

The memory mapper options are defined as:

266

Chapter 9: Configuring the Emulator
File Format

<ADDR> The address specifying a particular memory location can be a
pattern of 32 bits or less. The pattern can be represented by a
binary, octal, decimal, or hexadecimal number.

target This refers to memory supplied by your target system. Mapping
an address range to target memory space does not require any
emulation memory.

emulation This refers to memory supplied by the emulation system. When
emulation memory is specified, the number of available blocks
of emulation memory decreases by the number of blocks
required for the assignment.

guarded This option designates an address range that you do not plan to
access. Any microprocessor access to a location within such a
range results in a break of the program execution. No emulation
memory is used when an address range is specified as
guarded .

rom ROM defines memory which can be read but cannot be
modified by the processor. The emulator can detect an error on
the occurrence of write cycles to this memory. Emulation
memory that is RAM but is mapped as ROM performs as ROM
during program execution.

ram RAM defines memory that can be read from or written to
without restriction.

The first <ADDR> of a range specification can be the starting address of a blo
boundary, or an address within the memory block. If you enter an address wit

the memory block, the system converts this address to the starting address of the
block prior to its mapping. Théaru <ADDR> portion of the syntax specifies the
ending address of the address range.

If the most significant digit in the address is numeric, you do not have to include a
leading zero.

Memory Map Examples

100h thru 1ffh target rom

400h thru 4ffh target ram

267

Chapter 9: Configuring the Emulator
File Format

1000h thru 1fffh supervisor program
emulation rom

2000h thru 2fffh supervisor program
emulation ram

3000h thru 3fffh user program emulation ram

3000h thru 3fffh user data emulation ram

Configuration Questions Section

The remainder of the file consists of a list of configuration questions and their
answers. The rest of this section describes the emulation configuration questions
and available answers.

Microprocessor clock source? internal

internal When you seledtternal , the emulation processor will
use the oscillator that is contained in the emulator as its
clock source.

external When you seleekternal , the emulation processor will
use the clock from the target system.

When you change this part of the emulation configuration, the emulator will enter
the reset state.

Enter monitor after configuration? yes

yes When you choogees , the emulator will enter the monitor
after you modify the emulation configuration. If this
process fails, the previous configuration will be restored.
The process could fail when an external clock has been
selected, but none is provided.

no When you chooseo, the emulator will not enter the
monitor after you modify the emulation configuration.

268

Note

Note

Chapter 9: Configuring the Emulator
File Format

Enter monitor after configuration (using external clock)? no

This question should be entered when you specify an external clock source.

yes

no

When you choogees , the emulator will enter the monitor

after you modify the emulation configuration. When you
chooseyes and external clock is selected, the configuration
will fail if the target system is turned off. The previous
configuration will be restored. The process could also fail when
an external clock has been selected, but none is provided.

When you chooseo, the emulator will not enter the monitor
after you modify the emulation configuration.

Restrict to real-time runs? no

no

yes

If runs are not restricted to real time, the emulation software
performs all commands upon request, and detects entry to the
emulation monitor at any time.

Restricting to real-time inhibits the emulation system from
extending the execution time of your program. While your
program is executing, emulation commands that require the
monitor program are restricted.

The answer to this question is irrelevant. In the debugger, all accesses to regi
and target memory are made while the emulator is running in the monitor.

Inverse assembly syntax to use? 64870

Choose 64870 for use with the debugger. The HP 64870/B3641 assembler uses

Motorola syntax.

Monitor type? background

background

When you specify a background monitor, a memory overlay is
created. The background monitor is loaded into this area. This

269

Chapter 9: Configuring the Emulator

File Format

gives you use of the processor's complete address range for
your target program.

foreground When you selefdreground , an executable file name
containing the HP 64742 or HP 64743 68000 foreground
monitor must be specified. The file containing the foreground is
automatically loaded at the end of emulation configuration.

The TRACE exception vector in the target system must point to
TRACE_ENTRY in the foreground monitor for single stepping
to operate with the foreground monitor.

Monitor address? <ADDR>

The monitor address value must be located on a two-kilobyte (800H) boundary. No
checking is done to ensure that the address entered is a multiple of two kilobytes.
The configuration process will fail if the address specified is not correct.

Answer this question only if your are using a foreground monitor.

Monitor function code? none

When you select a foreground monitor, a 2 kilobyte block of emulation memory is
automatically mapped. THanction codequestion lets you further qualify the
memory block into which the monitor will be loaded. You may select mohg

(no function code) csupr (supervisor space).

Answer this question only if you are using a foreground monitor.

Monitor filename? <filename>

This question lets you specify the name of the foreground monitor program
absolute file. Remember that you must assemble and link your foreground monitor
starting at the 2-Kbyte boundary specified for the previasitor address?

guestion. The monitor will be loaded at the end of the configuration process.

Only the 2 kilobytes of memory reserved for the monitor are loaded at the end of
configuration. Therefore, you should not link the foreground monitor to your user
program.

Answer this question only if you are using a foreground monitor.

270

Note

Chapter 9: Configuring the Emulator
File Format

Enable bus arbitration? yes

The bus arbitration configuration question defines how your emulator responds to
bus request signals from the target system.

yes When bus arbitration is enabled, the /BR (bus request) and
/BGACK (bus grant acknowledge) signals from the target
system are responded to exactly as they would be if only the
emulation processor was present without an emulator. In other
words, if the emulation processor receives a /BR from the target
system, it will respond by asserting /BG and will set the various
processor lines to tri-state at the end of the current cycle. The
target system should then assert /BGACK to complete
acquisition of the processor bus. /BR is then released by the
target; /BG is negated by the processor. When /BGACK is
negated by the target, the emulation processor restarts execution.

You cannot perform DMA (direct memory access) transfers between your target
system and emulation memory at any time; the 68000 and 68302 emulators do not
support DMA with emulation memory..

no When you disable bus arbitration, the emulator ignores the /BR
and /BGACK signals from the target system. The emulation
processor will never drive the /BG line true; nor will it place the
address, data and control signals into the tri-state mode.

Enabling and disabling bus master arbitration can be useful to you in isolating
target system problems. For example, you may have a situation where the
processor never seems to execute any code. You can disable bus arbitration
check and see if faulty arbitration circuitry in your target system is contributing to
the problem.

Interlock emulator DTACK with user DTACK? no

The /DTACK interlock question allows you to synchronize the emulation /DTACK
(data transfer acknowledge) signal with the target system /DTACK signal.

no Disables /DTACK interlock. All emulation and background
monitor accesses are terminated by a /DTACK signal generated
by the emulator.

271

Chapter 9: Configuring the Emulator
File Format

Note If you are not operating the emulator in-circuit, all emulation and background
monitor accesses are completed by the emulator generated /DTACK signal
regardless of the answer to this configuration question.

yes Enables /DTACK interlock. An emulation memory cycle will
not end until the target system asserts the /DTACK or /VPA
(valid peripheral address) signals. Note the following
relationships to other configuration items:

If a /BERR signal occurs during an emulation memory

cycle when bus error response is enabled (see the following
Enable Bus Error on emulation memory accesses?
guestion), then the cycle will be terminated and the
emulation processor will begin executing the bus error
handler.

If you have enabled background monitor cycles to be
driven to the target system (see the followivgre
background cycles to the target systequ@stion), the
target system must still provide a /DTACK or /VPA signal
as if it were a normal user program access to emulation
memory.

Enable Bus Error on emulation memory accesses? no
(68000 only)

This question allows you to define how the emulator will respond to a /BERR (bus
error) signal asserted by the target system during an emulation memory cycle.

no If you disable bus error response, the emulator ignores assertion
of the /BERR signal from the target system during emulation
memory accesses.

Note The emulator will always respond to the /BERR signal during all target system
memory cycles regardless of the setting of the answer to this configuration question.

yes If you enable bus error response, the emulation processor will
terminate the current emulation memory cycle and will begin

272

Note

Chapter 9: Configuring the Emulator
File Format

executing your bus error handler if your target system asserts
the /BERR signal during an emulation memory cycle.

You must interlock the target system /DTACK (data transfer acknowledge) with
the emulation system /DTACK; otherwise, the emulator will not respond correctly
to the /BERR signal from the target system.

Enable Bus Error Connected to target memory? no

(68302 only)

no When the bus error connection is disabled, the target system
/BERR and emulator /BERR signals are disconnected. the
68302 can still generate bus error; however, the target system
will not see this signal. The emulator also will not respond to
target system bus errors.

yes When the bus error connection is enabled, the target system

/BERR and emulator /BERR signal are connected to each other.

Respond to target system interrupts? yes

This question allows you to specify whether or not the emulation processor
responds to interrupts generated by the target system.

yes When you enable emulator response to target system interrupts,
all target system interrupts generated when the processor is
executing your user program are recognized by the emulati
processor.

If you are using the built-in background monitor, target system interrupts are
always ignored during background execution. If you are using a foreground
monitor, whether or not target system interrupts are recognized during monitor
execution is dependent on the implementation of your monitor.

no You can disable the recognition of all target system interrupts
by the emulator by answerinm.

273

Chapter 9: Configuring the Emulator

File Format

Note

Interrupt Mode? normal

(68302 only)

normal When the interrupt mode is normal, the interrupts are encoded
on /IPLO, /IPL1, and /IPL2.

dedicated When the interrupt mode is dedicated, /IPL2 becomes /IPL7,

/IPL1 becomes /IPL6, and /IPLO becomes /IRQ1. In dedicated
mode, edge or level mode is selected with the /IRQ7 mode
guestion.

/IRQ7 mode = level? yes

(68302 only)

yes When /IRQ7 mode is level, a low level on /IRQ7 will cause
interrupt 7.

no When /IRQ7 mode is not level, the mode is edge. A falling

edge on /IRQ7 will cause an interrupt.

Data bus width 16 bits? yes

(68302 only)
yes Set the processor bus width to 16 bits.
no Set the processor bus width to 8 bits.

If you are operating the emulator in-circuit, the target system BUSW pin overrides
the width specified here. For example, if the target system BUSW pin is high, the
bus width will be 16 bits, regardless of how this question is answered.

Reset value for Supervisor Stack Pointer? <ADDR>

This question allows you to specify the address value to which the supervisor stack
pointer will be set upon the first transition from emulation reset into the emulation
monitor.

The address specified in response to this question must be a 24-bit hexadecimal
even address. The supervisor stack pointer will be set to that value upon entry to

274

Note

Note

Note

Chapter 9: Configuring the Emulator
File Format

the emulation monitor after an emulation reset. This address should reside in an
otherwise unused emulation or target system RAM area.

We recommend that you use this method of configuring the supervisor stack
pointer. Without a stack pointer, the emulator is unable to make the transition to the
run state, step, or perform many other emulation functions. However, using this
option does not preclude you from changing the stack pointer value or location
within your program; it just sets the initial conditions to allow a run to begin.

A target system reset which occurs during background monitor operation will not
affect the supervisor stack pointer value.

When a foreground monitor is used, the reset value of the supervisor stack pointer
must be at least six bytes away from a guarded memory area. If the reset value of
SSP is not six bytes away from a guarded ar8#aek is in guarded memogyror

will occur when you attempt to run the program.

Target memory access size? bytes

This question allows you to specify the types of cycles that the emulation monitor
use when accessing target system memory. When an emulation command requests
the monitor to read or write target system memory locations, the monitor will either
use byte or word instructions to accomplish the read/write. The default emulat
configuration selects the byte access size.

bytes Specifies that the emulator will access target memory using
upper and lower byte cycles (one byte at a time).

words Specifies that the emulator will access target memory using
word cycles (one word at a time).

Drive background cycles to target system? yes

This question allows you to specify whether or not the emulator will drive the
target system bus on all background monitor cycles.

275

Chapter 9: Configuring the Emulator

File Format

If you have elected to use a foreground monitor, emulator foreground monitor
cycles will appear at the target interface exactly as if they were bus cycles caused
by any target system program.

yes Specifies that background cycles are driven to the target
system. All of the emulation processor’s address, data and
control strobes are driven during background cycles.

The value driven on the upper 8 bits (A23-A16, HP 64742/3 68000 and HP 64746
68302 emulators) or upper 16 bits (A23-A8, HP 64744 68EC000 emulator) of the
address bus is selected by t&ue for address bits A23-A16

during background cycles? guestion that follows; the value driven on the
function code lines is selected by thenction code for background cycles?

guestion that follows.

When background cycles are driven to the target system, background write cycles
appear as read cycles to the target system.

Use thedrive background cyclesption to avoid target system interaction

problems. For example, your target system memory refresh scheme may depend on
the constant repetition of bus cycles; or, you may be using a watchdog timer in

your target system which resets the system after no bus cycles occur in a specified
time period. Driving background cycles to the target system will help avoid
problems in either case.

no Background monitor cycles are not driven to the target system.
When you select this option, the emulator will appear to the
target system as if it is between bus cycles while it is operating
in the background monitor.

Value for address bits A23-A16/8 during background cycles? 0

This configuration question lets you specify what memory address will be driven to
the target system on address lines A23-A16 (68000 and 68302) or A23-A8
(68EC000) during emulation background monitor accesses. These lines will only
be driven if you have specified that the emulator drive background cycles to the
target system (see the previdsve background cycles to target

system question).

If you have set the emulator to use a foreground monitor, this configuration option
is still valid because the emulation processor executes a few bus cycles in the
background monitor before the transition to the foreground monitor.

276

Chapter 9: Configuring the Emulator
File Format

For example, with a 68000 or 68302 emulator, you might want your target system
to see that accesses are occurring in the range 05XXXXH while the emulator is
operating in background. By answeridfgH to this question, the emulator will

drive the value 05H on the upper address lines during every background monitor
access.

The 68000 and 68302 emulators let you specify 8 bits of address information to
drive during background cycles.

You should specify a value to set up an address which will not interfere with your
target system circuitry, such as memory management units or cache memory.

Function code for background cycles? supr prog

This question lets you select the function code state that will be driven to your
target system during emulator background monitor cycles. These function codes
will only be driven to the target system if you have specified that the emulator
drive background cycles to the target system (see the prévines

background cycles to target system guestion).

If you have elected to use a foreground monitor, this option is still valid because
the emulator spends a few cycles in the background before the transition to the
foreground.

You can select one of four possible function code states to be driven to the target
system during background monitor cycles. The setting you choose for your
situation is dependent on your particular system. Generally, you want to choose a
function code that will not cause target system hardware such as memory
management units to behave in an unpredictable manner.

supr prog The function code for supervisor program cycles will be dri
to the target system. This is function code 110 binary
(FC2-FCQO, respectively).

supr data The function code for supervisor data access cycles will be
driven to the target system. This is function code 101 binary
(FC2-FCO, respectively).

user prog The function code for user program cycles will be driven to the
target system. This is function code 010 binary (FC2-FCO,
respectively).

277

Chapter 9: Configuring the Emulator

File Format

user data The function code for user data access cycles will be driven to
the target system. This is function code 001 binary (FC2-FCO,
respectively).

/DTACK source for ¢s0? internal
/DTACK source for cs1? external
/DTACK source for cs2? external
/DTACK source for cs3? external

(68302 only)

internal If internal is selected, an active level on /CSO0, /CS1, /ICS2, or
/CS3 causes the processor /DTACK signal to be driven to the
target system. The emulator does not drive /DTACK to the
processor.

external If external is selected, an active level on /CS0, /CS1, /CS2, or

/CS3 causes the emulator to drive /DTACK to the processor,
from either the target system or the emulator based on the
answer to the /DTACK interlock question.

Break processor on write to ROM? yes

This question allows you to specify that the emulator break to the monitor upon
attempts to write to memory space mapped as ROM. The emulator will prevent the
processor from actually writing to memory mapped as emulation ROM; however,
they cannot prevent writes to target system RAM locations which are mapped as
ROM, even though the write to ROM break is enabled.

yes Causes the emulator to break into the emulation monitor
whenever the user program attempts to write to a memory
region mapped as ROM. You cannot assign breakpoints in
memory areas mapped as target ROM when you an@ser

no The emulator will not break to the monitor upon a write to
ROM. The emulator will not modify the memory location if it
is in emulation ROM. You can assign breakpoints in memory
areas mapped as target ROM when you ansaieHowever, if
the breakpoint is assigned to a memory location where a ROM
chip is located, the breakpoint will never trigger.

278

Chapter 9: Configuring the Emulator
File Format

Trap number for software breakpoint (0..0FH)? 000FH

On the 68000 and 68302 emulators, software breakpoints are implemented with the
68000 and 68302 software trap facility. This question allows you to specify which

of the 16 software trap instructions should be used when you set a software
breakpoint.

You can answer with values from 0 through OFH to specify the particular version
of the TRAP instruction to be used for software breakpoints. The value you specify
indicates the exception vector to use in processing the trap.

Use this configuration option if you have inserted other TRAP instructions in your
code with varying exception vector values. The configuration option will allow you
to specify a different exception vector than the ones you previously inserted so the
emulation monitor responds normally to execution of a breakpoint.

When you change the answer to this configuration question, any software
breakpoints currently defined are disabled (since the software trap instructions
currently in memory may differ from the new value you have specified).

Trace background or foreground operation? foreground

This question allows you to specify whether the analyzer trace only foreground
emulation processor cycles, only background cycles, or both foreground or
background cycles. When background cycles are stored in the trace, all but
mnemonic lines are tagged as background cycles.

foreground Specifies that the analyzer trace only foreground cycles. This
option is specified by the default emulator configuration.

background Specifies that the analyzer trace only background cycles. (
is rarely a useful setting.)

both Specifies that the analyzer trace both foreground and
background cycles. You may wish to specify this option so that
all emulation processor cycles may be viewed in the trace
display.

Simulated I/0O Questions

The simulated I/O questiot&able polling for simulated 1/0?,
andSimio control address 1? throughSimio control address

279

Chapter 9: Configuring the Emulator

Using function codes

6? may be omitted because the debugger controls simulated 1/O using a different
protocol.

The questiongile used for standard input? , File used for
standard output? , andFile used for standard error? are
ignored by the debugger. Therefore they may also be omitted from the
configuration file. Redirection is done from within the debugger using the
debugger Execution 10_System Stdio_Redirect command.

External Analysis Questions

The configuration questions for external analysis may be omitted. External analysis
functions cannot be accessed from within the debugger.

Naming The Configuration file

You must include the file extensioBA in your emulator configuration file name.
You can include multiple sub-level directories.

Using function codes

Function code support in the debugger applies only to target memory space.
Neither the debugger nor the emulator distinguishes between function codes for
emulation memory.

280

Chapter 9: Configuring the Emulator
Using An Emulation Monitor

Using An Emulation Monitor

The emulation monitor contains the emulation command execution modules that
enable the debugger software to display and modify target system memory and
CPU registers, in addition to other functions. It also contains the processor
exception vector look-up table. You can use either a background or a foreground
emulation monitor with your emulator. Thiser's Guide for your emulator gives

a comparison of foreground and background monitors and detailed information
about using foreground monitors.

Using A Background Monitor

A background monitor is supplied with your emulator. This monitor is provided on
ROM within the emulator. You do not need to load the monitor or reserve space in
memory for the monitor.

Using A Foreground Monitor

A foreground monitor is supplied with the emulator softkey interface software in
one of these files:

/usr/hp64000/monitor/Mfmon68000.s
/usr/hp64000/monitor/Mfmon68302.s

Foreground monitors are supplied with the debugger in these files:

/usr/hp64000/inst/db68k/64742A/Mfmon68000.s
/usr/hp64000/inst/db68k/64746 A/Mfmon68302.s .

To prepare the foreground monitor for use

Copy the monitor file to your working directory.

Edit the monitor file as needed to customize the monitor for your needs. This
includes filling in an exception vector table with addresses pointing to any custom
interrupt service routines (ISRs) that you have in your code.

281

Chapter 9: Configuring the Emulator
Using An Emulation Monitor

3 Specify where you want the monitor code in your memory map by uncommenting
the ORGstatement in the monitor file and filling in an address that starts on a two
Kbyte boundary.

4 Assemble and link the monitor.

If you are using the HP 64742 or HP 64743 emulator, enter the commands:

as68k -Lh Mfmon68000.s > Mfmon68000.lis
1d68k -¢c Mfmon68000.k -Lh > Mfmon68000.map

If you are using the HP 64746 emulator, enter the commands:

as68k -Lh Mfmon68302.s > Mfmon68302.lis
1d68k -¢c Mfmon68302.k -Lh > Mfmon68302.map

The file Mfmon68000.k is the linker command file for the HP 64742 orHP 64743
emulator. It should contain the statements:

name Mfmon68000
load Mfmon68000.0
end

The file Mfmon68302.k is the linker command file for the HP 64746 emulator. It
should contain the statements:
name Mfmon68302

load Mfmon68302.0
end

You can write your own foreground monitor. If you do write your own monitor,
make sure that it contains the same functionality as that provided with the monitor
supplied with the emulator.

To modify the emulator configuration for a foreground monitor

You must modify the emulation configuration to specify that you are using a
foreground monitor.

Answer these configuration questions:

Inverse assembly syntax to use? 64870

Enter64870 because you are using programs written for the
HP 64870/B1464 assembler.

Modify memory configuration? yes

282

Note

Caution

Chapter 9: Configuring the Emulator
Using An Emulation Monitor

You must answeyes to modify the memory configuration to select
the foreground monitor and to map memory.

Monitor type? foreground
Enterforeground to enable use of the foreground monitor.

Reset map (change of monitor type requires map reset)?
yes

You must answeyes because you are changing from a background
monitor to a foreground monitor.

Monitor address? xxxxh

Enter the address you used in the ORG statement for the entry point of
your monitor.

Monitor filename? Mfmon68000, or Mfmon68302

Enter the nam#fmon68000 or Mfmon68302 if you are using the
foreground monitor supplied with the emulator. If you are using a
different monitor, enter the name of that monitor.

Map memory for your program.

When you specify a foreground monitor and enter the monitor
address, all existing memory mapper terms are deleted and a term for
the monitor block is added. Add additional terms to provide memory
for your program’s program, stack, and data space.

Foreground monitors must be loaded at the time the emulator is configured. D
attempt to load a new monitor using the Program Load Default command. Foll

the steps listed in the previous procedure to specify the name of your monitor in the
configuration file.

Make sure that the exception vector table in the monitor contains pointers to
monitor entry points or to interrupt service routines that you have written to handle
each exception. Otherwise, the debugger will not function correctly.

283

Chapter 9: Configuring the Emulator
Using An Emulation Monitor

References

HP B3640 Motorola 68000 Family C Cross Comiler User’'s Guide
theUser’s Guidefor your emulator

284

Part 3

Concept Guide

Part 3

286

10

X Resources and the Graphical
Interface

An introduction to X resources.

287

Chapter 10: X Resources and the Graphical Interface

X Resources and the Graphical Interface

This chapter helps you to understand how to set the X resources that control the
appearance and operation of the debugger’s graphical interface. This chapter:

* Explains the X Window concepts surrounding resource specification.

* Explains the scheme files used by the debugger’s graphical interface.

The debugger’s graphical interface is an X Window System application which
means it is &lientin the X Window System client-server model.

TheX serveris a program that controls all access to input devices (typically a
mouse and a keyboard) and all output devices (typically a display screen). Itis an
interface between application programs you run on your system and the system
input and output devices.

An X resource is user-definable data

A resourceis a user-definable piece of data that controls the operation or
appearance of an X Windows application. A resource may apply to an application
(application-specific resources) or it may apply to the objects aaitirbtsfrom

which the application is constructed. That is particularly true of standard widget
resources that control the appearance of an application. For example, most widgets
have a standard resource that allows the user to specify the font used to display text
on objects like buttons, menus, and labels.

An application-specific resourds defined by the application developer and may
control such things as the mode of operation of an application. For example, you
can use an application-specific resource for the debugger’s graphical interface to
control whether to start the interface with the command line on or the command
line off.

A resource specification is a name and a value

Each resource in an application has a name and a value. Because an X Window
System application is constructed from widgets, a resource name is closely
associated with the names of the widgets that make up the application. Each
application begins with a top-level widget that is the parent of all other widgets in
the application. The name of the top-level widget is usually the same as that of the
application. This top-level widget may have a number of widgets “beneath” it that

288

Chapter 10: X Resources and the Graphical Interface

are called children of the top-level widget. The names for these widgets are most
often chosen for their mnemonic value. These children can also in turn have child
widgets. A resource name, then, is simply a name of a piece of data for the
lowest-level widget coupled with a string of widget names picked up from each of
the widgets along the path starting with the top-level widget and going down to the
lowest-level widget.

The data name and widget names within a resource name are separated from each
other by dots. The resource name itself is terminated by a colon. A resource value
is simply the data value itself. Ignoring the widget names and data name for the
moment, a common resource for most widgets is color. A data value for color
might be “blue.”

To put this all together, a resource string for the foreground color for the “quit”
pushbutton displayed on an application called “tracker” might look like the
following:

tracker.panel.control.quit.foreground: white

Don’t worry, there are shortcuts

As you might guess, specifying resources for applications with many levels of
widgets can be difficult and error-prone. For that reason, you can use a shortened
notation. To fully understand how the notation works, however, you must first
understand abolristance nameandclass names

An instance hamé a name given to a particular widget by an application

developer. You have already seen instance names used. The name “quit” is an
instance name for a pushbutton widget used by the developer of the “tracker”
application from the last example. An instance name makes the pushbutton widget
named “quit” unique from other pushbutton widgets in the “tracker” application.

A class namés a general name for all widgets of a particular type. For exampl
the class name for the OSF/Motif pushbutton widget is XmPushButton. When
refer to a widget in an application by its class name, you are referring to all wi
of that class in the application, and not to just a particular widget.

Instead of specifying the foreground color for the tracker quit button by using a
resource name made up of instance names as in the last example, you could instead
use a class name, as follows:

tracker.panel.control. XmPushbutton.foreground: white

289

Chapter 10: X Resources and the Graphical Interface

Using class names in this way makes it easier to specify resources because it
relieves you from having to discover the names of particular widgets in an
application. A long string of instance names or class names is still a long string of
names, however. Fortunately, a wildcard helps to make the shortcut a true shortcut.
The wildcard is an asterisk ("*"). It can be used to replace any number of class or
instance names in a resource name. The last example could now be shortened to
either of the following:

tracker*XmPushButton.foreground: white

tracker*quit.foreground: white

But wait, there is trouble ahead

An X Window System application maintains a complete list of resources, and the
application knows the complete instance and class names for each resource.
Because you can specify resource values using shortened notation, the application,
when starting up, must match specified values to individual resources. Some
general rules apply:

* Either a class name or instance name from the request must match each class
or instance name in the application’s list of resources.

* Entries prefixed by a dot are more specific and therefore have precedence over
entries prefixed by an asterisk.

* Instance names are more specific and therefore have precedence over class
names.

¢ Maitching is done from left to right. Instance or class names appearing at the
beginning of the specification have precedence over those later in the
specification.

As you can quickly see, resource matching favors specific resource names over
general resource names. General resource names, especially those involving class
names, can have unexpected and unintended effects. Consider the last example
again. The resource specification

tracker*XmPushButton.foreground: white

may not only set the foreground color of the quit button on the control panel of the
application to white — it could also set the foreground colors for any pushbutton
anywhere in the application. That is because the combination of the wildcard and

290

Chapter 10: X Resources and the Graphical Interface

the use of the class name make this resource specification match a resource request
for any pushbutton in the application.

The second of the two specifications in the example does not completely solve the
problem either. Suppose there was another button elsewhere in the application
with the instance name of “quit.” (Duplicating instance names is correct as long as
the widget paths to two different widgets of the same name are different.) The
second specification of

tracker*quit.foreground: white

could match a resource request for that button as well because the wildcard allows
the specification to match a number of different widget paths through the
application.

Resource specification is usually a matter of trial and error. The following resource
is probably specific enough to set just the foreground color for the quit button on
the control panel:

tracker*control*quit.foreground: white

To view the resources in the debugger’s graphical interface, you can choose
Help - X Resource Namesnd click on the “All names” button.

Class and instance apply to applications as well

Just as there are classes and instances of widgets, there are classes and instances of
X Window applications. Resource specifications can be constructed in such a way
that they apply to a whole class of applications, or just to an instance of those
applications.

The class name for the debugger graphical interface prodit®6#s Debug The
instance of the class that this debugger graphical interface falls under is calle
debug A few examples are in order.

* For a given resource (called <resource>), the following specification applies to
all debugger interface products for all processors:

HP64_Debug*<resource>: <value>

* The following specifications apply to all m68000 debugger interfaces:

HP64_Debug.m68000*<resource>: <value>

debug.m68000*<resource>: <value>

291

Chapter 10: X Resources and the Graphical Interface

According to the precedence rules for resource matching, the first specification is
the most general and would be overridden by either of the following two.

Resource specifications are found in standard places

X resources are defined in standard places so that applications can find them and
use them when starting up.

The app-defaults file

The app-defaults file contains only resources for a specific application. The system
directory for application default files is $HP64000/lib/X11/app-defaults. The name

of the default file is the same as the class name for the application and is also called
theapp-defaults filgfor example, HP64_Debug is the name of the debugger’s
graphical interface’s application defaults file).

These defaults should not be changed by individual users because doing so affects
the appearance and behavior of the application for all users of the application.

The .Xdefaults file

The .Xdefaults file in your SHOME directory usually contains user-defined
resources for several applications.

Scheme files

X resource specifications can poinsttheme fileg which other X resources are
specified.

Loading order resolves conflicts between files

If there are two files, then which resource specification from which file controls the
resource in the application? That problem is solved by adhering to a loading order
for files. The following is a list of the standard places, in order, that an application
looks to find resources:

1 The application default file.

The application default file for the graphical interface is caieé4_Debug
This file is created at software installation time and placed in the system
application defaults directory.

2 $XAPPLRESDIR/<class>

292

Chapter 10: X Resources and the Graphical Interface

This environment variable defines an alternative directory path leading to
customized class files. Useful for directing the application to system-wide
custom files.

3 RESOURCE_MANAGER property. Some X servers have a resource property
associated with the root window for the server. Resources are added to the
resource property database by usirdp. (HP VUE is an example.) The
server can use this property to access those resources.

If no RESOURCE_MANAGER property exists, then SHOME/.Xdefaults is
read. The primary and probably best method for creating or adding to this file
is by copying part or all of the app-defaults file into the .Xdefaults file.

4 $XENVIRONMENT file. This environment variable defines a file that
contains resource specifications.

If the XENVIRONMENT variable is not set, then $HOME/.Xdefahltstis
read.

5 Command line options

Resources can be specified on the command line by usingitiheommand
line option. The application strips these arguments out and sets these resources
before passing the rest of the command line on to the application.

Remember, load order specifies the precedence for resource overrides. A resource
found later in the load order overrides a resource found earlier in the load order if
the resource specifications match each other.

The app-defaults file documents the resources you can
set

TheHP64_Debudile is complete, well-commented, and a good source of
reference for graphical interface resources. The HP64_Debug file should be
primary source of information about setting graphical interface resources. Thi
can be easily viewed from the help topic menu by chodsétg— General Topic
and selecting the “X Resources: Setting” topic.

To further assist you with setting X resources, there is also another topic on the
help menu pull-down that you should use. Chdtsip - X Resource Nameso

display the class and instance name for the graphical interface in a dialog box.
From the dialog box, you can also display all widget class and instance names for

293

Chapter 10: X Resources and the Graphical Interface

all widgets that make up the debugger’s graphical interface. In most cases, you
will not need to delve that far into the widget tree, but it is there if you need it.

In addition to the app-defaults file, the graphical interface seame files

Resources are not duplicated between scheme files and the HP64_Debug file. You
may wish to set resources found in the scheme files as well, so you need to
understand how scheme files relate to the interface and to the other X resource files.

Scheme files augment other X resource files

Hewlett-Packard realizes that the debugger’s graphical interface will be run in
environments made up of workstations with different display capabilities and even
in environments with different types of computers (platforms) running the X
Window System. The debugger’s graphical interface, unlike many other X
applications, makes determinations about display hardware as to the platform type,
the resolution of the display, and whether the display is color or monochrome. The
interface then loads the appropriate scheme files to allow the interface to come up
in a reasonable way based on the hardware.

There are six scheme files. Their names and a brief description of the resources
they contain follows:

Debug.Label Defines the labels for the fixed text in the interface. Such
things as menu item labels and similar text are in this file.
If the SLANG environment variable is set, the scheme file
“Debug.$LANG” is loaded if it exists; otherwise, the file
“Debug.Label” is loaded.

Debug.BW Defines the color scheme for black and white displays.
This file is chosen if the display cannot produce at least 16
colors.

Debug.Color Defines the color scheme for color displays. This file is

chosen if the display can produce 16 or more colors.

Debug.Input Defines the button and key bindings for the mouse and
keyboard.
Debug.Large Defines the window dimensions and fonts for high

resolution display (1000 pixels or more vertically).

294

Chapter 10: X Resources and the Graphical Interface

Debug.Small Defines the window dimensions and fonts for low
resolution displays (less than 1000 pixels vertically).

Debug.Label (or Debug.$LANG) resides in the directory
/usr/hp64000/lib/X11/HP64_schemebhis directory is the upper level directory

for scheme files. The other five files are in subdirectories below this one named by
platform (or operating system). For example, the HP 9000 scheme files are in the
subdirectoryusr/hp64000/lib/X11/HP64_schemes/HP-UX

Like the app-defaults file, these scheme files are system files and should not be
modified directly.

You can create your own scheme files, if you choose

The debugger’s graphical interface supports user-defined scheme files. The
interface searches two places for user-defined scheme files and loads any it finds
after loading the system scheme files. Refer to any of the scheme files mentioned
for information about where to place your own scheme files.

Scheme files continue the load sequence for X resources

Scheme files extend the load order for finding X resources. System scheme file
resources override all other resources gathered so far, and user-defined scheme
files, in turn, override the system scheme files. Continuing from the load order list
previously, the scheme files follow, in the order

1 /usr/hp64000/lib/X11/HP64_schemes/Debug.Label
/usr/hp64000/lib/X11/HP64_schemes/<platform>/Debug.<scheme>

2 $XAPPLRESDIR/HP64_schemes/Debug.Label
$XAPPLRESDIR/HP64_schemes/<platform>/Debug.<scheme>
Just as $XAPPLRESDIR can point to a system-wide app-defaults file, so
point to a set of system-wide scheme files.

3 $HOME/.HP64_schemes/Debug.Label
$HOME/.HP64_schemes/<platform>/Debug.<scheme>

Please note the dot (.) in the “.HP64_schemes” directory name.

295

Chapter 10: X Resources and the Graphical Interface

You can force the debugger’s graphical interface to use
certain schemes

Five application-specific resources allow you to force the interface to use certain
schemes. The resources and what they control are as follows:
HP64_Debug.platformScheme:

Controls the platform scheme chosen by the interface. This resource is
particularly useful in mixed-platform environments where you might be

executing the interface remotely on an HP 9000 computer, but displaying the
interface on a Sun SPARCsystem computer. In this situation, you may wish to
set the resource to use the SunOS scheme so that you can use the same key and
mouse button bindings as other Sun OpenWindows applications.

The value of this resource is actually the name of a subdirectory under
/usr/hp64000/lib/X11/HP64_schemes or one of the alternative directories for
scheme files. You can create your own file and subdirectory under
/usr/hp64000/lib/X11/HP64_schemes (or alternative) and then set this resource
to choose that subdirectory instead of the standard platform subdirectory.

Values can be: HP-UX, SunOS, or the name of a sub-directory containing
custom scheme files.

HP64_Debug.colorScheme:

Chooses the black and white or color scheme.

Values can be: Color, BW, or the name of a custom scheme file.
HP64_Debug.inputScheme:

Chooses the keyboard and mouse bindings.

Values can be: Input or the name of a custom scheme file.

HP64_Debug.sizeScheme:
Chooses the large or small scheme for fonts and sizes.

Values can be: Large, Small, or the name of a custom scheme file.

HP64_Debug.labelScheme:

Chooses a different label scheme for fixed text. Again, this resource is
affected by the $LANG variable.

296

Chapter 10: X Resources and the Graphical Interface

Values can be: Label, SLANG (if this environment variable is set and there is a
Debug.$LANG scheme file), or the name of a custom scheme file.

These resources are in the app-defaults file. To override these resources, set them
in your.Xdefaultfile.

Again, setting X resources is a trial and error process. The scheme files used by the
debugger’s graphical interface simplify the process by collecting related resources
in specific files.

To review the organization:

* The app-defaults file contains resources that control the operation of the
interface. To override a resource in this file, copy the resource to your
Xdefaults file and change it there.

* Resources that control the appearance of the display and keyboard and mouse
button bindings for your platform are in the scheme files. Copy the scheme
files to an appropriate place and modify the resources found in them to change
the look of the interface.

If you would rather place these resources in your .Xdefaults file, remember the
load order. Make the resource name in the .Xdefaults file more specific or it
will be overridden by the one in the scheme file.

The app-defaults file and the scheme files are your best sources of reference for
help with modifying individual resources.

Resource setting - general procedure

Application specific resources

If you plan to modify an application-specific resource, you should look in the
HP64_Debug file for information about that resource.

If the RESOURCE_MANAGER property exists (as is the case with HP VUE),
copy the complete HP64_Debug file, or just the part you are interested in, to a
temporary file. Modify the resource in your temporary file and save the file. Then,
merge the temporary file into the RESOURCE_MANAGER property with the

xrdb -merge <filename>command.

297

Chapter 10: X Resources and the Graphical Interface

If the RESOURCE_MANAGER property does not exist, copy the complete
HP64_Debug file, or just the part you are interested in, to.yYalefaultsfile.
Modify the resource in your .Xdefaults file and save the file.

Finally, if the debugger’s graphical interface is currently executing, you must exit
and restart the interface for the change to have any effect.

General resources

If you plan to modify a general resource that could not be found in the
HP64_Debug file, look to the scheme files for information about that resource. A
general discussion of the kinds of information found in the scheme files can be
found in the previous “Scheme files augment other resources” section.

Copy the appropriate scheme file to one of the alternative directories and make the
modifications there. (If you are using $XAPPLRESDIR, make sure the variable is
set and exported.) Save the file. If the debugger’s graphical interface is currently
executing, you must exit the application and restart it to see the results of your
change.

298

Part 4

Reference

Part 4

300

11

Debugger Commands .

Detailed descriptions of command line commands.

301

Chapter 11: Debugger Commands

Command Summary

Breakpoint Commands

Breakpoint commands control execution of a program.

Command Definition

Breakpt Access Set a breakpoint on access (read/write) of an address
Breakpt Clear_All Clear all breakpoints

Breakpt Delete Delete specified breakpoints

Breakpt Instr Set an instruction breakpoint

Breakpt Read Set a breakpoint on a read from an address

Breakpt Write Set a breakpoint on a write to an address

Breakpt Erase Delete a breakpoint at a specific address

Session Control Commands

The session control commands select debugger operating modes, set debugger
session options, define and display macros, allow access to the host operating
system, and end debugger sessions.

Command Definition

Debugger ? Access debugger on-line help

Debugger Directory Display or change present working directory
Debugger Execution Display_Status Display current directory and files in use
Debugger Execution Environment Configure and control emulation environment
Debugger Execution 10_System Control debugger simulated 1/0

Debugger Execution Load_State Restore previously saved debugger session
Debugger Execution Reset_Processor Simulate microprocessor reset

Debugger Host_Shell Enter HP-UX operating system environment
Debugger Level Select debugger mode (high-level or assembly)

302

Debugger Macro Add
Debugger Macro Call
Debugger Macro Display
Debugger Option
Debugger Pause
Debugger Quit

Chapter 11: Debugger Commands

Create a macro

Call a macro

Display macro source code

Set or list debugger options for this session
Pause debugger session

Terminate a debugging session

303

Chapter 11: Debugger Commands

Expression Commands

Expression commands calculate expression values, print formatted output to a
window, and monitor variables.

Command

Definition

Expression C_Expression
Expression Display_Value
Expression Fprintf
Expression Monitor Clear_All
Expression Monitor Delete
Expression Monitor Value
Expression Printf

Calculate the value of a C expression
Display the value of an expression or variable
Print formatted output to a window
Discontinue monitoring all variables
Discontinue monitoring specified variables
Monitor variables
Print formatted output to Journal window

File Commands

File commands read and process command files, open files or devices for writing,
log debugger commands to a file, and save debugger startup parameters.

Command

Definition

File Command

File Error_Command
File Journal

File Journal Browser
File Log

File Startup

File User_Fopen
File Window_Close

Read in and process a command file
Set command file error handling
Send Journal Window output to a file or the browser
Send journal output to a graphical browser window
Record debugger commands/errors in a file
Save the default startup options
Open a file or device for read or write access
Close the file associated with a window number

304

Chapter 11: Debugger Commands

Memory Commands

Memory commands do operations on the target microprocessor’'s memory.

Command Definition

Memory Assign Change the values of memory locations
Memory Block_Operation Copy Copy a memory block

Memory Block_Operation Fill Fill a memory block with values

Memory Block_Operation Match Compare two blocks of memory
Memory Block_Operation Search Search a memory block for a value
Memory Block_Operation Test Examine memory area for invalid values
Memory Display Display memory contents

Memory Hex Read or write Intel Hex or Motorola S-Record memory images
Memory Register Change the contents of a register
Memory Unload_BBA Unload BBA data from program memory

305

Chapter 11: Debugger Commands

Program Commands

Program commands load and execute programs, control program execution, display
source code and program variables, and set or cancel program interrupts.

Command Definition

Program Context Set Specify current module and function scope

Program Context Display Display all local variables of a function

Program Context Expand Display all local variables of a function at the specified stack
(backtrace) level

Program Display_Source Display C source code

Program Find_Source Occurrence Find first occurrence of a string

Program Find_Source Next Find next occurrence of a string

Program Load Load or reload an absolute file for debugging and set load options

Program Pc_Reset Reset the program starting address

Program Run Start or continue program execution

Program Step Execute a number of instructions or lines

Program Step With_Macro Execute macro after each instruction step

Symbol Commands

Symbol commands add, remove, and display symbols.

Command Definition

Symbol Add Add a symbol to the symbol table
Symbol Browse Browse C++ class

Symbol Display Display symbol, type, and address
Symbol Remove Delete a symbol from the symbol table

306

Chapter 11: Debugger Commands

Trace Commands

Trace commands let you do bus level tracing of your program activity with bus
cycle store qualification of data.

Command Definition

Trace Again Start a trace using the last defined trigger and qualification terms
Trace Display Display trace information in the View window

Trace Event Clear_All Clear (remove) all defined events

Trace Event Delete Delete specified events

Trace Event List List terms (conditions) of specified event

Trace Event Specify Define an event (combination of bus conditions)

Trace Event Used_List List summary of trace events in the View window

Trace Halt Stop the current trace

Trace StoreQual Specify the bus conditions to be stored (captured)

Trace StoreQual Event Specify a previously defined event to be stored (captured)
Trace StoreQual List List the current storage qualification terms

Trace StoreQual None Disable current storage qualification terms (store everything)
Trace Trigger Specify the bus conditions to be used to trigger (start) a trace
Trace Trigger Event Specify a previously defined event to be used as the trigger
Trace Trigger List List the current trigger terms in the View window

Trace Trigger Never Disable current trigger terms (start trace on any bus state)

Window Commands

Window commands do operations on the debugger windows.

Command Definition

Window Active Activate a window

Window Cursor Set the cursor position for a window
Window Delete Remove a user-defined window or screen
Window Erase Clear data from a window

Window New Make a new screen or window

307

Chapter 11: Debugger Commands

Window Resize Change the size of a window
Window Screen_On Activate a screen
Window Toggle_View Select the alternate display of a window

308

Chapter 11: Debugger Commands
Breakpt Access

Breakpt Access

<: Breakpt :}—'<:

Access

C

<addr>

\\\\H. ~/}/ \I\»’ J/// <Return>
..<addr> ;<macro_ call>

The Breakpt Access command sets an access breakpoint at the specified memory
location (<addr>) or range (<addr>..<addr>). The access breakpoint halts program
execution each time the target program attempts to read from or write to the
specified memory location or range. Memory locations may contain code or data.

You can attach a macro to a breakpoint using the optional <macro_call> parameter.
See the chapter titled “Using Macros and Command files”.

Each time the debugger detects an access of the address or range, it does the
following:
1 Suspends program execution.

Sometimes execution may stop a few instructions past the instruction causing
the access. This is called "skid."

Execution will stop immediately following the current instruction.

2 Executes a macro (if you attached one to the breakpoint). Depending on the
macro return value, the debugger does one of the following actions:

— If the macro return value is true (nonzero), the debugger resumes
execution with the next instruction after the instruction that caused
read or write to the memory location. No breakpoint information is
displayed.

— If the macro return value is false (zero), the debugger returns to
command mode and displays breakpoint information.

3 Returns to command mode if no macro was attached and displays breakpoint
information.

309

Chapter 11: Debugger Commands
Breakpt Access

Interaction with trace commands

The Breakpt Access and Trace Trigger commands both use emulation analyzer
resources. If access breakpoints are active (indicat@&Rby BrkRWA on the

status line), then a Trace Trigger command may not be entered. If a trace trigger is
active, a Breakpt Access command may not be entered.

Note If a trace is started using the emulator interface, debugger read/write/access
breakpoints will be disabled until the trace has been completed. Do not attempt to
use the debugger read/write/access breakpoints and the emulator interface trace
specification feature at the same time.

The Breakpt Access command sets up a trace with the trigger at the end of the trace
buffer, using the current storage qualification. You can display the trace after the
break occurs to see the cycles leading up to the break.

See Also
Breakpt Clear_All Breakpt Read
Breakpt Delete Breakpt Write
Breakpt Erase Program Run
Breakpt Instr Program Step
Examples To set a breakpoint on accesses of addresses "assign_vectors’ through

'assign_vectors’ + 16:

Breakpt Access &assign_vectors..+16

To set a breakpoint on access of the address of the variable 'current_temp’:

Breakpt Access ¤t_temp

To stop program execution when the value of variable system_running is set or
read as TRUE:

Breakpt Access &system_running; when (system_running==1)

The predefined macro ‘'when’ is executed when the breakpoint is encountered.

310

Chapter 11: Debugger Commands
Breakpt Clear_All

Breakpt Clear_All

() (Clear Al)
Breakpt Clear All } <Return>

The Breakpt Clear_All command clears (removes) all defined breakpoints.

See Also
Breakpt Access Breakpt Read
Breakpt Delete Breakpt Write
Breakpt Erase Program Run
Breakpt Instr Program Step
Examples To remove all defined breakpoints:

Breakpt Clear_all

311

Chapter 11: Debugger Commands

Breakpt Delete

Breakpt

See Also

. Examples

Breakpt Delete

<brkpt nmbr> L j <Return>
.<brkpt _nmbr>

The Breakpt Delete command deletes (removes) one or more previously set
breakpoints. When you set a breakpoint, the debugger assigns it a breakpoint
number. Use this breakpoint number (<brkpt_nmbr>) to remove a specific
breakpoint. You can delete a group of breakpoints by specifying a range of
breakpoint numbers (<brkpt_nmbr>..<brkpt_nmbr>). The debugger displays the
breakpoint numbers in the Breakpoint window.

When you remove a breakpoint, the Breakpoint window displays the remaining
breakpoints. Any breakpoints following the one removed are renumbered.

Breakpt Access Breakpt Read
Breakpt Clear_All Breakpt Write
Breakpt Erase Program Run
Breakpt Instr Program Step

To delete breakpoint number 2:

Breakpt Delete 2

To delete breakpoint numbers 3 through 5:

Breakpt Delete 3..5

312

Chapter 11: Debugger Commands
Breakpt Erase

Breakpt Erase

;{ <gddr> = <Refurn>

B3051504

The Breakpt Erase command erases (deletes) a previously set breakpoint at a
specific address or all breakpoints set within a range of addresses. The Breakpt
Erase command differs from the Breakpt Delete command in that you identify the
breakpoint(s) you wish to remove by an address or by a range of addresses instead
of by a breakpoint number.

When you remove a breakpoint, the Breakpoint window displays the remaining
breakpoints. Any breakpoints following the breakpoints(s) removed are

renumbered.
See Also
Breakpt Access Breakpt Read
Breakpt Clear_All Breakpt Write
Breakpt Delete Program Run
Breakpt Instr Program Step
Examples To delete breakpoint set at the entry torttaen() function:

Breakpt Erase main

To delete a breakpoint set at the symoh_checks

Breakpt Erase &num_checks

313

Chapter 11: Debugger Commands
Breakpt Instr

Breakpt Instr

C Breakpt)——(Instr

C

<addr>

Note

\' j \‘ j <Return>
..<addr> ;<macro _call>

The Breakpt Instr command sets an instruction breakpoint at a specified memory
location (<addr>) or range (<addr>..<addr>). The instruction breakpoint halts
program execution each time the target program attempts to execute an instruction
at the specified memory location(s). If you specify a range, the debugger sets
breakpoints on the first byte of each instruction within the specified range or (in
high-level mode) the first instruction of each line within the range.

If you set a breakpoint for an overloaded C++ function, the debugger will ask you
to choose which definition of the function to use. You can also specify the
argument type of the function definition in parentheses after the function name in
the Breakpt Instr command.

The debugger/emulator cannot set instruction breakpoints on address locations in
target ROM.

You can attach a macro to a breakpoint using the optional <macro_call> parameter.
See the “Using Macros and Command Files” chapter.

The debugger performs the following actions when it encounters an instruction
breakpoint:

1 Suspends program execution before the program executes the instruction at the
breakpoint address.

2 Executes a macro (if you attached one when you set the breakpoint).
Depending on the macro return value, the debugger does one of the following
actions:

314

Chapter 11: Debugger Commands
Breakpt Instr

— If the macro return value is true (nonzero), the debugger resumes
execution starting at the instruction where the break occurred. No
breakpoint information is displayed.

— If the macro return value is false (zero), the debugger returns to
command mode without executing the instruction where the break
occurred and displays breakpoint information.

3 Returns to command mode without executing the instruction where the break
occurred if no macro was attached and displays breakpoint information.

See Also
Breakpt Access Breakpt Write
Breakpt Clear_All Program Run
Breakpt Delete Program Step
Breakpt Read
Examples To set an instruction breakpoint at line 82 of the current module:

Breakpt | nstr #82

To set an instruction breakpoint at line 83 of the current module only when the
system is running (using the predefined macro 'when’):

Breakpt | nstr #83; when (system_running)

To set an instruction breakpoint starting at address 10deh and ending at address
10e4h:

Breakpt | nstr 10deh..10e4h

To set instruction breakpoints beginning on lines 15 through 25 of module
'initSystem’:

Breakpt | nstr initSystem\#15..#25

315

Chapter 11: Debugger Commands
Breakpt Read

Breakpt Read

(Breakpt >—>< Read

C

<addr>

See Also

Examples

\‘ j \' j <Return>
..<addr> ;<macro_ call>

The Breakpt Read command sets a read breakpoint. The read breakpoint halts
program execution each time the target program attempts to read data from the
specified memory location (<addr>) or range (<addr>..<addr>).

The Breakpt Read command behaves just like the Breakpt Access command.

Breakpt Access

To set a breakpoint on reads from variable 'system_running’:

Breakpt Read &system_running

To set a read breakpoint starting at the address of variable 'current_temp’ and
ending 8 bytes after the address of 'current_temp’:

Breakpt Read ¤t_temp..+8

To stop program execution when the value of variable system_running is read as
TRUE:

Breakpt Read &system_running; when (system_running==1)

316

Chapter 11: Debugger Commands
Breakpt Write

Breakpt Write

(Breokpt >—>< Write

C‘ <addr> \' f \' J <Return>
..<addr> ;<macro_call>

The Breakpt Write command sets a write breakpoint. The write breakpoint halts
program execution each time the target memory attempts to write data to the
specified memory location (<addr>) or range (<addr>..<addr>).

The Breakpt Read command behaves just like the Breakpt Access command.

See Also Breakpt Access

Examples To set a breakpoint to occur when the program writes a false value to variable
'system_is_running’:

Breakpt Wite &system_running; when (system_running==00)

To set a write breakpoint starting at the address of global variable "current_temp’
and ending 8 bytes after the address of 'current_temp’:

Breakpt Wite ¤t_temp..+8

317

Chapter 11: Debugger Commands

Debugger Directory

Debugger Directory

(Debugger)—»(Directory Show_Working) J <Return>

Examples

Chonge_Working>—> <directory>

The Debugger Directory command displays or changes the current working
directory. When you specify ttghow_Workingparameter, the debugger displays
the current working directory in the journal window. When you specify the
Change_Workingarameter with a directory name, the debugger makes that
directory the current working directory.

Changing the working directory will change the current working directory in all
interfaces connected to the emulator.

To display the current working directory:

Debugger Directory Show_Working

To change the current working directory to /users/project/sources:

Debugger Directory Change_Working /users/project/sources

318

Debugger

Example

Chapter 11: Debugger Commands

Debugger Execution Display_Status

Debugger Execution Display_Status

Execution

Display Status

<Return>

The Debugger Execution Display_Status command activates the debugger View

window and displays the following status information:
Version of debugger

Current working directory
Current log file

Current journal file
Startup file used in current debug session
Loaded absolute files

If no files have been loaded, the absolute file will be missing from the display. If
multiple executable files have been loaded using the Program Load Append
command, they will be displayed in the View window. You may need to toggle the
window (click on the window border) to see all of the files.

To display product version, current working directory, and current log, journal,
startup, and absolute files in the View window:

Debugger

Execution

Display_Status

319

Chapter 11: Debugger Commands
Debugger Execution Environment FwdCmd

Debugger Execution Environment FwdCmd

<DebuggerHExecuTion}v@nvirommemf FwdCmd >—)
s

~— Emul yal }“<command>“H <Refurn>
—{ Perf
BMS
—— Debug
\‘C Ul_name)% ‘<Ul name=>" H <[aob=> }—/

The Debugger Execution Environment FwdCmd command enables you to forward
commands to other interfaces which are using the same emulator.

The other interfaces are:

Emul Emulator/analyzer interface. If several emulator interfaces
are sharing the emulator, the command will be forwarded
to the most recently started interface.

Perf Software Performance Analyzer.
BMS Broadcast Message Server (the Softbench Gateway).
Debug Debugger. This sends a command back to the debugger

you are using.

Ul_name An interface described by a string. The command will be
forwarded to an interface specified by a debugger or target
string array (char *).

If an interface of the type specified is currently running, the <command> will be
executed there and any errors will be displayed in that interface.

See Also Predefined macro "cmd_forward".

320

Chapter 11: Debugger Commands
Debugger Execution Environment Load_Config

Debugger Execution Environment Load_Config

Debugger j—= Execut‘on)—@mv’rommem})
C{LoodComf% <''config file"> H <Return>

The Debugger Execution Environment Load_Config command loads an emulation
configuration file for the emulator. The emulation configuration file contains
configuration information for the emulator. The debugger/emulator accepts files
generated by the emulation software or by an editor.

Note You cannot use tilde expansion when specifying emulator configuration files with
the Debugger Execution Environment Load_Config <"config_file&mmand
because the configuration file name must be enclosed in quotation marks.
However, you may use shell environment variables.

See Also The "Configuring the Emulator" chapter for detailed information on the modify
configuration command.

Example To load the emulation configuration file "mycnfig" (from within the debugger):

Debugger Execution Environment Load_Config "mycnfig"

Or, if "mycnfig" is in another directory:

Debugger Execution Environment Load_Config
"$HOME/project/mycnfig"

321

Chapter 11: Debugger Commands
Debugger Execution Environment Modify_Config

Debugger Execution Environment Modify _Config

Debugger * = Emvwrommembé@oj\fnyDmﬂgD—“ <Return=

The Debugger Execution Environment Modify _Config command starts a process
which allows you to modify the current emulator configuration.

See Also The “Configuring the Emulator” chapter in this manual.

322

Chapter 11: Debugger Commands
Debugger Execution IO_System

Debugger Execution IO_System

Execufion I0_System

<Refurn>

\¥*<§T®07Redweci>4* <'stdin_name”’ "stdout_name’,"stderr_name’> -

Cooked

/

deidmn

The Debugger Execution I0_System command enables you to configure the
simulated I/O system to use the host system keyboard, display, and file system to
simulate 1/0 devices for your target program.

Debugger Execution 10_System Enable

The Debugger Execution I0_System Enable command enables the debugger
simulated I/O system. Remember, you also need to configure the emulator for
simulated I/O polling and addresses.

Debugger Execution 10_System Disable

The Debugger Execution 10_System Disable command disables the debugge
simulated I/O system.

Debugger Execution I0_System Stdio_Redirect

The Debugger Execution 10_System Stdio_Redirect command allows you to
define the standard 1/O input (<stdin_name>), output (<stdout_name>), and error
(<stderr_name>) files/devices. These are file/device names in the host computer

323

Chapter 11: Debugger Commands
Debugger Execution 10_System

See Also

Examples

file system. Two special filenames allow you to access the system keyboard
(/dev/simio/keyboard) and the system display (/dev/simio/display).

Debugger Execution 10_System Mode

The Debugger Execution 10_System Mode command selects how keyboard 1/0
input is processed. Keyboard I/O may be either cooked or raw.

Cooked Mode. In cooked mode, the target program gets input from the

keyboard in the form of lines. Editing operations, such as backspace, line Kill, etc.,
on input is done by the debugger. WiReturn or CTRL D is entered, the line

is passed to the target program by the simulated 1/0 system. The keyboard input is
echoed to the screen during the editing operation. If program execution is
interrupted by enteringCtrl>-C before the line is entered, the characters on the
input line are lost.

Raw Mode. Inraw mode, each keystroke is passed from the keyboard to the
simulated 1/O system with no processing. No carriage return is needed to enter
characters and no editing operations are available. In the raw mode any character is
valid, includingCTRL D. No characters are echoed to the screen upon entry. The
only special character that cannot be sent to the target progr&rlis C which

is used to interrupt the debugger’s execution of the program.

Debugger Execution 10_System Keyboard_EOF

The Debugger Execution 10_System Keyboard_EOF command is retained only for
compatibility with older interfaces. Using this command will result in an error
message.

Debugger Execution 10_System Report
The Debugger Execution 10_System Report command displays the status of the
simulated I/O system.

The "Using Simulated I/O" section in the "Viewing Code and Data" chapter.

To enable simulated 1/O:

Debugger Execution | O_System Enable

To disable simulated I/O:

324

Chapter 11: Debugger Commands
Debugger Execution IO_System

Debugger Execution | O_System Disable

To redirect the standard input file to the keyboard, the standard output file to the
display, and the standard error file to file '/users/project/errorfile’:

Debugger Execution | O_System Stdio_Redirect
"/dev/simio/keyboard","/dev/simio/display",
"/users/project/errorfile"”

To redirect the standard input file to 'temp.dat’, the standard output file to
‘cmdout.dat’, and the standard error file to file 'errorlog.err”:

Debugger Execution | O_System Stdio_Redirect
"temp.dat","cmdout.dat","errorlog.err"

To set data input mode to cooked:

Debugger Execution | O_System Modde Cooked

325

Chapter 11: Debugger Commands
Debugger Execution Load_State

Debugger Execution Load_State

<Debugger>—'<Execution)—{Lood_Stote) L j <Return>
<save_file>

Example

The Debugger Execution Load_State command restores the memory contents and
register values saved with the debugger/simulator Debugger Execution Save_State
command. If you do not specify a file name (<save_file>), the debugger uses the
default filedb68k.sav

To restore memory contents and register values saved in save file "session1":

Debugger Execution Load_State sessionl

326

Chapter 11: Debugger Commands
Debugger Execution Reset_Processor

Debugger Execution Reset_Processor

Debugger * = Reset Processor } <Return>

This command resets the microprocessor and then attempts to break into the
monitor. The reset is a hardware reset of the processor accomplished by asserting
the reset line.

It does the following:

1 The program counter is loaded from exception vector 1 at location 4 in
memory.

2 The interrupt stack pointer is loaded from exception vector 0 at location 0 in
memory.

3 The status register is reset as follows;

— the trace bits are cleared,
— the supervisor bit is set to 1,
— the interrupt priority mask is set to level 7.

4 All other bits in the status register are set to 0.
5 Any pending interrupt or exception is cleared.
6 Registers A0-A6 and DO-D7 are set to 0.
7 The emulator breaks into the emulation monitor.
Note This command does not re-initialize memory. UsdPttogram Load New

Code_Only command to reset C variables.

See Also Program Pc_Reset

Example To reset the microprocessor:

Debugger Execution Reset_Processor

327

Chapter 11: Debugger Commands

Debugger Host_Shell

Debugger Host_Shell

(:Debugger:>4%i:Hosf,SheH :}:>

<command>

<Refturn>

NoPrompt

The Debugger Host_Shell command enables you to temporarily leave the
debugging environment by forking an operating system shell or to execute a single
UNIX operating system command from within the debugger. The type of shell
forked is based on the shell variable SHELL. In this mode, you may enter
operating-system commands. To return to the debugger GFigdr D or type

exit and press thReturn key.

INBrowser

NaPrompft

You can execute operating system commands from within the debugger by entering
a single operating system command with the debuBgbugger Host_Shell

command. If you are using the graphical interface, the operating system command
is executed in a "cmdscript" window. Preggeturn> to close the window. If you

are using the standard interfastloutfrom the command is written to the Journal
window andstderris not captured. Commands writingstaerrwill corrupt the

display. Interactive commandannotbe used in this mode.

The following options are available only in the graphical user interface:

InBrowser

Directs stderr and stdout of the command into text browser windows.

328

Chapter 11: Debugger Commands
Debugger Host_Shell

Wait
Suspends the interface until the command completes.

NoPrompt

When the command completes, the "cmdscript" window is closed immediatelly.

See Also Debugger Quit

Examples To temporarily exit the debugger to the UNIX operating system command mode:

Debugger Host_Shell

To write the current working directory to the journal window:
Debugger Host_Shell pwd

329

Chapter 11: Debugger Commands

Debugger Help

Debugger Help

Debugger

Example

S ?(Help) <Return>

This command displays the on-line help screen. The debugger provides on-line
help for all debugger commands, debugger command arguments, and debugger
function keys. You can access on-line help by entering the combetndjger

? or by pressing thE5 function key.

If you are using the graphical interface, a Help dialog box will be displayed. If you
are using the standard interface, a menu will appear in the display area.

If you enter the comman@lebugger ? in the standard interface, the debugger

puts the cursor at the top of the topic list in the help menu. If you preiSs the

function key, the debugger puts the cursor at the entry for the command displayed
on the command line (if one is displayed). Otherwise, the cursor is positioned at the
top of the topic list. You can select topics from the help menu in two ways:

* Use the cursor keys to move to the desired topic and preRstilne key.

* Type the first letter of the desired topic. This positions the cursor at that topic.
Then press thReturn key.

Use theReturn key to see more topics in alphabetical order.

To exit help in the standard interface, press&be (escape) key twice or press
function keyF5.

To display the debugger help screen:
Debugger ?

330

Chapter 11: Debugger Commands
Debugger Level

Debugger Level

Debugger - Level

<Return>

Assembly

~ High Level

The Debugger Level command selects either high-level mode or assembly-level
mode for debugging. When debugging programs containing C modules, you can
switch back and forth between the two modes. If the program contains no
high-level modules accessible to the debugger, the debugger displays an error
message if you attempt to select high-level mode.

If no parameters are specified with this command, the mode is switched back and
forth between the two modes, performing the same function &3thenction key.

Examples To select the assembly-level debug mode:

Debugger Level Assembly

To select the high-level debug mode:

Debugger Level High_Level

To switch to the alternate debug mode:

Debugger Level

331

Chapter 11: Debugger Commands

Debugger Macro Add

Debugger Macro Add

(Debugger)—{ Macro }={ Add \‘ f
<type>

C. <macro_n

Note

ame> > <Return
@L j @—» Return>

<param_list>

The Debugger Macro Add command defines a macro.

The name of the macro is specifieddipacro_name>. The result type of the

macro is specified bytype> . If a type is not specified, it defaults to type int. A
parenthesized list of parametéparam_list>) may optionally follow the

macro name. Parameter names must be composed of alphanumeric characters. A
maximum of 40 parameters is allowed.

When you enter the Debugger Macro Add command, the Journal window is
automatically enlarged, and the debugger displays the macro text prompt character
() indicating that you can enter the macro body.

If the stdio screen or a user-defined screen is active when the Debugger Macro Add
command is issued, the Journal window will not become active. Keyboard input at
this point will be interpreted by the debugger as the macro definition.

To terminate the macro definition, a period (.) must be entered as the first and only
character on a line.

The macro definition consists of all lines entered after the macro name and before
the terminating period. The macro definition consists of the source lines of the
macro (the macro body) and optional formal arguments. The syntax for the macro
body is:

{macro_statement; [macro_statement;]...}

332

Note

See Also

Chapter 11: Debugger Commands
Debugger Macro Add

The curly braces ({}) are required punctuation. Formal arguments can be used
throughout the macro definition, and are later replaced by the actual arguments in
the macro call.

The maximum number of characters that can be entered on a line in a macro
definition is 255. When entering macros interactively, the debugger does not

respond to more than 78 characters on a line. When reading a command file, the
debugger stops recognizing characters after 255 characters have been read on a line.

The maximum number of lines allowed in a macro depends on the complexity of
the lines. Macros with too many lines (too complex) will fail. Errori98t"enough
memory for expressidmvill be displayed.

A macro is similar to a C function. The body can contain any legal C statement
(except the SWITCH and GOTO statements). The statements IF, ELSE, DO,
WHILE, FOR, RETURN, BREAK, and CONTINUE can be used to control
program flow within a macro, just as in C. Macros have return types and can be
used in expressions.

Debugger commands may be used in macro definitions; they are indicated by
placing a dollar sign ($) at the beginning and the end of a command sequence. For
example, the following command sequences are legal in macro definitions:

$Program Find_Source Occurrence Forward system$;
or

$
Memory Assign Long &time=12
Program Find_Source Occurrence Forward system

Macros can be executed by specifying the macro name on the command line in a
Debugger Macro Call command, in an expression, or with a breakpoint command.

Macros can be removed using the command:

Symbol Remove <macro_name>

Breakpt Access

Breakpt Instr

Breakpt Read

Breakpt Write

Debugger Macro Call
Debugger Macro Display

333

Chapter 11: Debugger Commands

Debugger Macro Add

Example

Program Run

Symbol Remove

The “Using Macros and Command Files” chapter
The “Predefined Macros” chapter in this manual.

Debugger Macro Add int power(x, y)

int x;
int y;
t
int i /* Loop counter */
int multiplier; /* Value x is multiplied by */

/* Multiply x by itself y -1 times */
for (i = 1, multiplier = x; i <y; i++)
X *= multiplier;

/* Return x My */
return x;

Debugger Macro Add void stackchk()

/* The symbols 'stack’ and 'TopOfStack’ exist in the compiler’s */
/* environment library, and are addresses which indicate the */
/* bottom and the top of the system stack. The symbol @sp is a */
/* debugger reserved symbol which contains the current value of */
[* the processor’s stack pointer. */

$Expression Printf "%d bytes of stack used", TopOfStack - @sp$;
$Expression Printf "%d bytes of stack available", @sp - stack$;

334

Chapter 11: Debugger Commands
Debugger Macro Call

Debugger Macro Call

(Debugger)—{ Macro >—>< Call H <macro_call> H <Return>

See Also

Example

The Debugger Macro Call command calls a macro previously defined by the
Debugger Macro Add command or a macro built into the debugger.

Debugger Macro Add
Debugger Macro Display
Symbol Remove

To call the previously defined macro 'stackchk():

Debugger Macro Call stackchk()

335

Chapter 11: Debugger Commands
Debugger Macro Display

Debugger Macro Display

C

See Also

Examples

<macro_name> \' j <Return>
,<user window nmbr>

The Debugger Macro Display command displays the source code for the named
macro. If a window number is specified (<user_window_nmbr>), the macro source
is written to the file or user-defined window associated with the number. If you do
not specify a window number, the macro source is written to the Journal window.

Macro source for built-in macros cannot be displayed.

Debugger Macro Add
File Command
Symbol Display

To display the source for macro 'stackchk’ in user-defined window 57:

Debugger Macro Display stackchk,57

To display the source for macro 'stackchk’ in the Journal window:

Debugger Macro Display stackchk

336

Chapter 11: Debugger Commands
Debugger Option Command_Echo

Debugger Option Command_Echo

CDebugger)—{ Option)—{Commond_Echo " <Return>

oFF

The Debugger Option Command_Echo command controls whether or not
commands executed from a command file are echoed (copied) to the Journal
window. If theoFF parameter is specified, only the results (if any) of a command
are copied to the Journal window. If tB& parameter is specified, both the
command and its results (if any) are echoed to the Journal window. The default
setting isOn

Examples To turn OFF echo to the Journal window of commands executed from a command
file:

Debugger Option Command_Echo oFF

To turn ON echo to the Journal window of commands executed from a command
file:

Debugger Option Command_Echo On

337

Chapter 11: Debugger Commands
Debugger Option Breakpts

Option }{BFEGKDTS Disable_SW_Brks <Return>

Debugger Option Breakpts

Example

Enable_SW_Brks

B3051S03

The Debugger Option Breakpts command controls whether the software breakpoint
capability is enabled or disabled. If software breakpoints are enabled, you can set
Instruction breakpoints in your code using a variety of different methods supplied

by the interface. If software breakpoints are disabled, you cannot set Instruction
breakpoints in your code. You can still set Read, Write, and Access breakpoints
when software breakpoints are disabled because these breakpoints are implemented
by the analyzer hardware.

When you disable software breakpoints, any instruction breakpoints set in your
code are disabled, but not removed from the breakpoint table. If you re-enable
software breakpoints, all breakpoints listed in the breakpoint window again become
active.

To disable software breakpoints:

Debugger Option Breakpts Disable_ SW_Brks

338

Chapter 11: Debugger Commands

Debugger Option General

Debugger Option General

CDebugger)—{ Option >—{Cenerol >>

<Return>

Demand_Load
Step_Speed <nmbr 0..100> /

The Debugger Option General command changes the default values for the

following debugger startup options for the current debugging session:

Align_Bp Aligns breakpoints with processor instruction start
Frame_Stop Controls stack walking

Demand_Load Enables/disables demand loading of symbols

Radix Interprets assembly-level numbers as decimal or hex
Step_Speed Specifies the stepping speed

Use the Debugger Option List command to display the current option values.

To permanently change any option default values, first use the Debugger Option
command to change the value(s) and then use the File Startup command to save the

339

Chapter 11: Debugger Commands
Debugger Option General

Note

new default values in a startup file. See the File Startup command for more
information.

Align_Bp

The Align_Bp option controls automatic alignment of low-level breakpoints and
automatic alignment of disassembly. If the Align_Bp option is s€rtdhe

debugger locates what it interprets as the starting address of all instructions in a
module (by disassembling code from the beginning of the module). If you try to set
the breakpoint at an address other than the start of an instruction, the debugger
moves the breakpoint to the beginning of the next instruction and displays a
warning. If you try to display memory mnemonically from an address other than
the start of an instruction, the debugger moves the disassembly address to the
beginning of an instruction. No Warning is displayed. If the Align_Bp option is set
to oFF, the debugger lets you set the breakpoint at any address. The default setting
is OFF.

If multiple breakpoints exist in the same program area®igd Bp is set to
On their alignment may be incorrect. Make sureAlign_Bp option is set to
OFF to prevent breakpoint alignment problems.

Frame_Stop

When you set the Frame_Stop optiorOg if the debugger encounters a bad stack
frame, it displays only the valid stack frames below the bad frame in the Backtrace
window. When you set the Frame_Stop optionf&, the debugger displays all
frames, including the bad frame. The default settimg-i5

Demand_Load

When the Demand_Load option is setiq the debugger loads some symbol
information on an as-needed, demand basis rather than during the initial loading of
the executable (.x) file. Symbol information for global symbols, local symbols in

the source module containing main, and local symbols in assembly modules are
loaded during the initial load of the executable file. Local symbols in C source
modules other than that module which contains main are loaded when the debugger
explicitly references the module or when the program is stopped with the program
counter set to an address in the module. Demand loading lets you load and debug
programs that you could not otherwise load because of very large amounts of
symbol information. The default setting for Demand_Loaa5.

340

Chapter 11: Debugger Commands
Debugger Option General

There are several side effects of demand loading. The debugger command Memory
Unload_BBA is disabled. Type mismatch errors may not be detected during the
initial load of the executable (.x) file. Global symbols may have leading

underscores stripped, depending on whether they were defined or referenced in a C
or assembly source module.

Radix

The radix option causes the debugger to interpret numeric literals, including
integers and addresses, as either decimal or hexadecimal values. By default,
numeric literals are interpreted as decimal values.

If you setRadix to hexadecimal, any number you want interpreted as decimal
must be terminated withT|(for example, specify 32 as 32T).

Even if you select Hex, the following inputs wilht be interpreted as hexadecimal:
line numbers starting with "#", variables in high-level expressions, and debugger
variables including breakpoint numbers, viewport numbers, and data viewport line
numbers. To cast a high-level expression as hexadecimal, use a leading "0x" or a
trailing "h".

Binary numbers are not available whadix is set to hexadecimal. Floating

point and enumeration type values are not affected by the radix option.

The Output parameter lets you specify whether the output of the Expression
Display_Value, Expression Monitor Value, and Program Context Expand
command is displayed in decimal or hexadecimal format.

Step Speed

The Step_Speed option specifies the stepping speed. The stepping speed can be in
the range of 0 to 100 units. Higher numbers represent slower speeds. This option
affects the Program Step command. The default value is 0.

See Also File Startup
Debugger Option List

Example To align assembly-level breakpoints at the beginning of an instruction:

Debugger Option General Align_ Bp On

341

Chapter 11: Debugger Commands
Debugger Option List

Debugger Option List

The Debugger Option List command lists the current debugger option values in the
Journal window. The list will be similar to the sample list shown in the example.

See Also Debugger Option Command_Echo
Debugger Option General
Debugger Option Symbolics
Debugger Option View
Settings— Debugger Options ...

Examples To list the current debugger option settings in the Journal window:

Debugger Option List

342

Chapter 11: Debugger Commands
Debugger Option Symbolics

Debugger Option Symbolics

<:Debugger:>4v<: Option :>-<:Symbotcsj>t>

Assem_Symbols

Infermixed

= <Refurn>

oD

E3490B10

The Debugger Option Symbolics command changes the default values for the
following debugger symbol options and C source line display options for the
current debugging session:

Assem_Symbols Displays symbols in assembly code

Intermixed Intermixes C source with assembly code

Check_Args Enables parameter checking in commands and macro
Uppercase_Mods Converts module names to upper case

Line_Option Sets options for building line numbers

Symbol_Case Controls case-sensitivity of symbol lookups

Use the Debugger Option List command to display the current option values.

343

Chapter 11: Debugger Commands
Debugger Option Symbolics

To permanently change any option default values, first use the Debugger Option
command to change the value(s) and then use the File Startup command to save the
new default values in a startup file. See the File Startup command for more
information.

Assem_Symbols

The Assem_Symbols option causes symbols instead of memory addresses to be
displayed in the disassembled code whenever possible. Symbol names are placed to
the right of the disassembled code for immediate values. This is done because there
is no sure way of telling if the immediate value was represented by the symbol at
assembly time. This option is set@m by default.

Intermixed

The Intermixed option intermixes C source code with the assembly code generated
for each respective C statement. This option is off by default.

Check_Args

The Check_Args option controls parameter checking in commands and macros. If
OFF is selected, the debugger does not do any argument checkings|f

selected, the debugger warns you when an assignment is made which contains a C
type mismatch. This option is off by default.

Uppercase_Mods

The Uppercase_Mods option tells the debugger to convert module names to all
uppercase before entering them in the database. This is useful if you have module
names that are the same name as functions (for example, module 'main’ contains
function ‘'main’), because the debugger often scopes modules at a higher level than
functions.

Line_Option

The Line_Option defines options for building line numbers from the absolute file.
The only option currently defined is set using bit O of the number. Itis setto 1 to
not strech a section if the line address is outside the range of the enclosing section.
This currently applies to the OMF86 reader only.

344

Chapter 11: Debugger Commands
Debugger Option Symbolics

Symbol_Case

Symbol_Case tells the debugger how to look up symbols. The debugger will
always look up the symbol as entered, case sensitive. This option allows you to
specify that if the case sensitive lookup fails, the debugger should try again after
converting the symbol to all uppercase (Upper), lowercase (Lower), or upper first
and then lower (All). This option is useful if your toolset converts symbols to all
uppercase or lowercase characters.

See Also File Startup

Examples To display symbol names instead of address values in disassembled code:

Debugger Option Symbolics Assem_Symbols On

To turn OFF display of C source lines in assembly-level Code window:

Debugger Option Symbolics | ntermixedo FF

To enable debugger expression parameter checking:

Debugger Option Symbolics Check Args On

345

Chapter 11: Debugger Commands
Debugger Option Trace

Debugger Option Trace

(Debugger}(Opfion >—>< Trace

<Return>

Note

Depth <number > }—/ B3051S08

The Debugger Option Trace command changes the default behavior of bus-level
tracing.

Count

If Count isNothing , all of the trace memory will be used to store bus states.

If Count isTime, half of the trace memory will be used to store timing information.

If you are using the 64794A - Deep Emulation Analyzer, all memory will always
be used to store bus states regardless of the Count setting.

The debugger interface does not display timing information. Use the
emulator/analyzer interface to display timing.

Fetch_Align

The Fetch_Align option allows you to trigger a trace on an instruction’s address
which never appears on the bus. For example, this might happen when an
instruction for a processor with a 32-bit bus lies between longword boundaries.
The Fetch_Align operation masks address values so that they appear to occur on
the boundaries appropriate for the processor’s bus width.

346

Chapter 11: Debugger Commands
Debugger Option Trace

Depth

Sets the number of states available for display. This option only applies if you have
the 64794A Deep Emulation Analyzer. The number of states actually stored is a
configuration item; this option only controls the number of states uploaded to the
interface. To improve performance, set this number to a small initial value (1024)
and then increase it when you need to see more states. The measurement does not
need to be run again—changing the depth will cause more states to be displayed.

Defaults are Count Time and Fetch_Align Word.

See Also Information about "equivalent addresses" in your analyzer manual.

347

Chapter 11: Debugger Commands
Debugger Option View

Debugger Option View

Debugger — . View

\{Brec kaWimdow\ _ On <Return>
~—= Highlight %\HO\LBmght —"
Inverse

k{ More _ On —

= Stdio_Window

= Amt_Scroll = <nmbr W..50>‘/

The Debugger Option View command changes the default values for the following
debugger display options for the current debugging session:

Breakpt_Window
View_Window
Highlight

More

Stdio_ Window
Amt_Scroll

Use the Debugger Option List command to display the current option values.

To permanently change any of the default values, first use the appropriate
Debugger Option command to change the value(s) and then use the File Startup
command to save the new default values in a startup file. See the File Startup
command for more information.

348

Chapter 11: Debugger Commands
Debugger Option View

Breakpt_Window
The Breakpt_Window option controls the display of the breakpoint window.

The Onsetting causes the Breakpoint window to be displayed at all times. The
window may be hidden by other windows but will be displayed whenever a
breakpoint is set or deleted.

If you specify theSwap setting, the window is not automatically displayed. You
must set or delete a breakpoint or enter the Window Active Breakpoint command
to display the window. The default settingSwap.

View_Window
The View_Window option controls the display of the view window.

The Onsetting causes the View window to be displayed at all times. The window
may be hidden by other windows but will be displayed whenever a Debugger
Execution Display_Status command is executed.

If you specify theSwap setting, the window is not automatically displayed. You
must enter the Debugger Execution Display_Status command or the Window
Active View command to display the window. The default settiryiap.

Highlight

The Highlight option determines whether highlighted information in debugger
windows is displayed in half-bright video or inverse video. The default is Inverse.

More

The More option controls how information resulting from a debugger command is
listed to the Journal window.

If the More option i9n information is listed one screen at a time in the Journal
window, in the same way as the more command in the Unix operating system
works.

If the More option iFF, all information resulting from a debugger command is
written to the display at once, making it difficult to view information greater than
the number of lines available in the Journal window. The default setiibrg is

349

Chapter 11: Debugger Commands
Debugger Option View

Examples

Stdio_ Window
The Stdio_Window option controls the display of the Stdio window.

The Swap setting causes the Stdio window to be displayed when a program writes
to it and to be removed when the program returns to the command mode.

The Onsetting causes the Stdio window to be displayed at all times. The window
may be hidden by other windows but will be displayed when a program is writing
to it.

If the oFF setting is selected, the window is not automatically displayed. You must
press function kef6 or enter the commanwindow Screen_On Stdio to
display the window.

The default setting iSwap

Amt_Scroll

The Amt_Scroll option controls the amount that the Journal and Stdio windows are
scrolled when written to. When the output reaches the bottom of the window, the
data scrolls up one line by default. You can specify a number of lines from one to
50.

To set the Swap option so that the Breakpoint window is displayed only when the
Window Active Breakpoint command is executed:

Debugger Option View Breakpt Window Swap

To set the View_Window option so that the view window is always displayed:

Debugger Option View View_Window On

350

Chapter 11: Debugger Commands
Debugger Pause

Debugger Pause

Debugger

J } <Return>
Time >—> <seconds>

The Debugger Pause Time command pauses the debugger for the specified number
of seconds or (if you enter the Debugger Pause command without the Time
parameter) pauses the debugger until you press the space bar,

CTRL C, or the escape kef¢c) twice.The Debugger Pause command is useful
when executing command files.

See Also File Command

Examples To pause the debugger for ten seconds:

Debugger Pause Time 10

To pause the debugger until the space bar, CTRL C, or Esc-Esc is pressed:

Debugger Pause

351

Chapter 11: Debugger Commands

Debugger Quit

See Also

Examples

Debugger Quit

<Return>

S8
= Locked
(eemer)

The Debugger Quit command ends a debugging session without saving the session.
If you enter the comman@ebugger Quit Yes , the debugging session is
immediately ended.

The Debugger Quit command does not save the debugging session. Use the File
Startup command to save the current set of debugger startup options and window
parameters in a startup file.

Yes Option

The Yes option terminates only this interface to the emulator. If this is the only
interface using the emulator, the emulator will be left locked.

Locked Option

The Locked option lets you lock the emulation hardware (and a connected target
system) so that other users cannot access the hardware until it is explicitly released.

This option will cause all interfaces connected to the emulator to disconnect.

Released Option

The Released option releases the emulation hardware to other users on the host
computer system.
This option will cause all interfaces connected to the emulator to disconnect.

Debugger Host_Shell

To terminate the debugging session immediately:

352

Chapter 11: Debugger Commands
Debugger Quit

Debugger Quit Yes

To terminate the debugging session and release the emulator hardware so that other
users can access it:

Debugger Quit Released

To terminate the debugging session and lock the emulator hardware so that other
users cannot access it:

Debugger Quit Locked

353

Chapter 11: Debugger Commands
Expression C_Expression

Expression

Note

Examples

Expression C_Expression

<C_expr> <Return>

The Expression C_Expression command calculates the value of most valid C
expressions or assigns a value to a variable. The result is displayed in floating point
or in decimal, hexadecimal, and ASCII formats.

The Expression C_Expression command can be used to set C variables by
specifying a C assignment statement. This command recognizes variable types, and
the assignment expressions specified behave according to the rules of C.

The Expression C_Expression command cannot evaluate conditionals of the form:

<expression>?<expression>:<expression>

To calculate the value of 'time’ and display the result "data address 000091DC
{time_struct}":

Expression C_Expression time

To calculate the value of member 'hours’ of structure 'time’ and display the result
"4 0x04"

Expression C_Expression time->hours

To assign the value 1 to 'system_is_running’ and display the result "1 0x01":

Expression C_Expression system_is_running = 1

354

Chapter 11: Debugger Commands
Expression Display_Value

Expression Display Value

Q <expr> L j <Refurn>
<expr>

b1466s01

The Expression Display_Value command displays expressions and their values in
the Journal window.

/S

Displays the expression as a string.

IT

Displays the expression in decimal format.

H

Displays the expression in hexadecimal format.

355

Chapter 11: Debugger Commands
Expression Display_Value

If you do not use /S, /T, or /H, all expressions displayed with this command are
displayed according to their type as shown in the following list:

Type Display Format

Ints 32-bit signed decimal numbers

Longs 32-bit signed decimal numbers

Shorts 16-bit signed decimal numbers

Chars 8-bit characters (unsigned hexadecimal numbers if not
printable)

Pointers 32-bit unsigned numbers

Enums Name of Enumerator constant (enumerator value if name
not defined)

Arrays All elements

Structures All members

Quoted String All characters as typed, in by double quotes (" ")

Hex Byte 8-bit hexadecimal

Hex Word 16-bit hexadecimal

Hex Double Word ~ 32-bit hexadecimal

Float 32-bit floating point

Double 64-bit floating point

Note The contents of an item such as an array is displayed instead of the C value of the

item, which is its address.

If an expression range is displayed, each value within the range is displayed
according to the base type (if one exists). For example, if the vdiaigés a
character array, the following command results in elenfiagts/10] through
flags[30] being displayed:

Expression Display_Value flags+10..+30

Note that the command first evaluafleg)s/10] to a character, and uses this as
the base of the address rangkags[30] is also evaluated to a character. It is
used as the end of the address range.

Any expression can be type cast to display it in a different format. All values that
make up a complex type are printed. For example, if the vadeabtdis a long,
the following statement displays it as a four-character array:

Expression Display_Value (char[4])&count

356

Chapter 11: Debugger Commands
Expression Display_Value

To display the contents of a character array as a string, cast the variable using the
quoted string cast, as shown in the following example:

Expression Display_Value (Q S)buf

If the type of the expression is unknown, it defaults to type byte. See the
“Expressions and Symbols in Debugger Commands” chapter for more information
about type casting.

See Also Expression Fprintf
Expression Monitor Value
Expression Printf
Memory Display

Examples To display the value of the variable 'system_is_running’: 01h
Expression Display_Value system_is_running
To display the address of the variable 'system_is_running’: 000091F0
Expression Display_Value &system_is_running
To display the address of the C structure 'time’: 000091DC

Expression Display_Value time

To display the values of the members of structure 'time’:
hours 4

minutes 0O

seconds 20

Expression Display_Value *time

To display the name of the current program module:

Expression Display_Value @module

To display the name of the current program function:

Expression Display_Value @function

357

Chapter 11: Debugger Commands
Expression Fprintf

Fprintf >—> <window__nmbr>)

Expression Fprintf

C.

S'<format _string>" <Return>

,<argument>

The Expression Fprintf command prints formatted output to the specified
user-defined window. Formatted output may be written to a file that has been
opened by the File User_Fopen command. The Expression Fprintf command is
similar to the C fprintf function.

This command allows type conversions, scaling, and positioning of output in a file
or in a window. The window number must have been previously assigned by a File
User_Fopen or Window New command or the window number must be the log file
number (28) or journal file number (29), if opened.

The command requires a format string as the second parameter. The format string
may contain both text and argument conversion specifications. Whenever a
conversion specification is encountered, the next argument is converted according
to the specification, and the result is copied to the output window.

The conversion specifiers are similar to those in C and have the following format:
%[—] [digits] [.[digits]] [I] conversion_char
where:

% indicates the start of a conversion specification.

- indicates that the result of conversion is to be left-justified
within the field.

358

digits

digits

Chapter 11: Debugger Commands
Expression Fprintf

is a string of one or more decimal characters. Thelfggs is

a minimum field width. The field will be at least this many
characters wide, padded if necessary. The padding is normally
on the left. When- is used, padding is on the right. The field

is padded with blanks unless the first digitigits is a0; then

the field is padded with zeros.

separates two digit strings and must be specified if a second
digit string is used.

(second occurrence) is the maximum field width. For strings, it
is the maximum number of characters to print; for f and e
notations, it is the maximum number of fractional decimal
places to print. For g notation, it is the number of significant
digits to be printed.

indicates that a conversion character (d, x, or u) corresponds to
a long argument.

Conversion Characters

Conversion characters are listed in the following table with a detailed description
of each character.

Char

e E

Description
The argument is converted to character format.
The argument is converted to decimal format.

The float or double argument is converted to the format
[-]d.ddde+dd , where the number of digits after the decimal
point is equal to the precision. If precision is zero, no decim
point is printed. The default precision is 6. The E conversion
character produces a number with E instead of e introducin
exponent. The exponent always contains at least two digits.

The double argument is converted to decimal notation in the
format[-]ddd.ddd , where the number of digits after the
decimal point is equal to the precision specification. If the
precision is not specified, it is 6 by default; if the precision is

359

Chapter 11: Debugger Commands

Expression Fprintf

explicitly zero, no decimal point appears. If there is a decimal
point, at least one digit appears before it.

g,G The double argument is printed in f or e notation, orin F or E
notation when G is used. The precision specifies the number of
significant digits. The notation used depends on the value
converted; e or E notation will be used only if the exponent
resulting from the conversion is less than —3 or greater than or
equal to the precision. Trailing zeros are removed from the
result; a decimal point appears only if it is followed by a digit.

h The argument is either the debugger internal variable @HLPC,
or a high level line number preceded by#eharacter. Source
lines are formatted as strings according to %s rules. (Note: See
@HLPC in the "Registers" chapter of this manual.)

m The argument is an instruction address. The disassembled
instruction is treated as a string.

S The argument is a string. The characters from the string are
copied to the output until a NULL character is encountered or
the maximum number of characters specified have been printed.

u The argument is converted to unsigned decimal format.
Y The argument is displayed according to its type.
w The argument is is a window number. The current contents of

the window are written to the specified window.

X The argument is converted to hexadecimal. Letters are
displayed in upper cas@x is not printed before the value.

X The argument is converted to hexadecimal. Letters are
displayed in lower case.

% The characteyo is substituted for the field. Any other
non-conversion character following/is printed %% s used
to generatéb in the output as a literal character.

Conversion characters are case-sensitive. Values printed in E notation have the
following format:

360

Chapter 11: Debugger Commands
Expression Fprintf

[-]d.d...E{+|-}dd

Eachd represents a decimal digit. The number is first scaled so that one digit
appears to the left of the decimal point. The number of digits in the fractional part

is six by default, or the maximum field width if specified. The sign of the mantissa

is printed only if the number is negative. The sign of the exponent is always printed.

Values printed in F notation have the following format:
[-]d....d..

Eachd represents a decimal digit. The number of digits in the fractional part is six
by default or the maximum field width if specified. The number of digits printed
depends on the number of significant digits in the number.

Because floating point values are passed as parameters, they are converted to
double precision. Parameters must be promoted to double precision values as a
requirement of the C language. Other values passed as parameters may also be
converted.

The Expression Fprintf command uses the format string to decide how many
arguments to print. The number of conversion specifications must equal the
number of arguments. If there are too many arguments, some of them will not be
printed. If there are too few arguments, the value printed cannot be determined.

If the argument type does not correspond to its conversion field specification,
arguments may be converted incorrectly.

See the Expression Printf command for details about conversion specifiers.

See Also Expression Printf
File Journal
File Log
File User_Fopen
Window New

Examples To print value of 'var’ to user window 57 as a single character:

Expression Fprintf 57,"%c",var

To print the string in double quotes to user window 57 followed by the floating
point value of 'temperature’ with a precision of 2:

361

Chapter 11: Debugger Commands
Expression Fprintf

Expression Fprintf 57,"The value of 'temperature’ is:
%.2f \n",temperature

To print source line 24 to user window 55:
Expression Fprintf 55,"%h" #24
To print the contents of the assembly-level stack window to user window 256:

Expression Fprintf 256,"%w",14

362

Chapter 11: Debugger Commands
Expression Monitor Clear_All

Expression Monitor Clear_All

The Expression Monitor Clear_All command stops monitoring of all expressions
being monitored with the Expression Monitor Value command and removes alll
expressions from the Monitor window.

See Also Expression Fprintf
Expression Monitor Delete
Expression Monitor Value
Expression Printf
Memory Display

Examples To stop monitoring all expressions:

Expression Monitor Clear_All

363

Chapter 11: Debugger Commands

Expression Monitor Delete

Expression Monitor Delete

Expression

See Also

<display nmbr>

The Expression Monitor Delete command stops monitoring of specified
expressions being monitored with the Expression Monitor Value command and
removes those expressions from the Monitor window.

When an expression is monitored using the Expression Monitor Value command, it
is assigned a line number, which is displayed in the Monitor window. These
assigned line numbers are used to specify the expression or group of expressions to
be deleted (removed). All monitored expressions can be deleted with the

..<display _nmor>

J

Expression Monitor Clear_All command.

Expression Fprintf

Expression Monitor Clear_All

Expression Monitor Value
Expression Printf
Memory Display

Examples

To stop monitoring expression 2 in the Monitor window:

Delete 2

Expression

<Return>

To stop monitoring expressions 3 through 6 in the Monitor window:

Expression

Delete 3..6

364

Chapter 11: Debugger Commands
Expression Monitor Value

Expression Monitor Value

(Expression Monitor D—{ Value <expr>

\‘ ..<expr>

()
2/

<Return>

;<display _nmbr> L
..<display _nmbr>

The Expression Monitor Value command monitors the specified expressions as the

target program is executing. Expressions are updated and displayed in the Monitor
window each time the debugger stops executing the program.

Up to seventeen lines, selected by the display line range parameter
(;<display_nmbr>..<display_nmbr>), can be displayed in the Monitor window.

Variables located in registers are shown withkeetween their names and values.

365

Chapter 11: Debugger Commands
Expression Monitor Value

All expressions monitored with this command are displayed according to their type
as follows:

Type Display Format

Ints 32-bit signed decimal numbers

Longs 32-bit signed decimal numbers

Shorts 16-bit signed decimal numbers

Chars 8 bit characters (unsigned hexadecimal numbers if not
printable)

Pointers 32-bit unsigned numbers

Enums Name of Enumerator constant (enumerator value if name
not defined)

Arrays All elements if enough lines, else first element

Structures All members if enough lines, else first element

Quoted String Characters surrounded by double quotes (" ")

Hex Byte 8-bit hexadecimal

Hex Word 16-bit hexadecimal

Hex Double Word ~ 32-bit hexadecimal

Float 32-bit floating point

Double 64-bit floating point

If an expression range is displayed, each value within the range is displayed
according to the base type (if one exists). For example, if the vditedsés a
character array, the following command displays 20 characters.

Expression Mbnitor Value flags+10..+29

Any expression can be type cast to display its value in a different format. For
example, if the variable count is a long value, the following statement causes count
to be displayed as a four character array:

Expression Mbnitor Value (char[4])&count
If the type of the expression is unknown, it defaults to type byte.

Only 17 lines can be displayed in the data window. By default, a single line is used
to display monitored expressions. If an array is monitored, only the elements that
will fit on one line will be displayed. If a structure is monitored, only the first
member will be displayed. To display an entire array or structure, a display line
range may have to be specified. If all lines in the data window are filled, you must
use the Expression Monitor Delete command to delete an expression before
monitoring another one.

366

Chapter 11: Debugger Commands
Expression Monitor Value

If you do not specify a display line range, the next available line in the data
window is selected to display the monitored variable. If you specify one line, the
expression is displayed on that line. If you specify a range of lines, the amount of
data that will fit on those lines is displayed.

See Also Expression Monitor Clear_All
Expression Monitor Delete
Symbol Display

Examples To monitor the value of variable 'current_temp’:

Expression Mbnitor Value current_temp

To monitor the value of the three members in structure 'time’ and display them on
Monitor window lines 4 through 6:

Expression Mbonitor Value *time;4..6

To monitor the contents of string buf:

Expression Monitor Value (Q S)buf

367

Chapter 11: Debugger Commands

Expression Printf

Expression

Expression Printf

C‘ "<format _string>" <Return>

See Also

Examples

,<argument>

The Expression Printf command prints formatted output to the Journal window.

See the Expression Fprintf command for a detailed description.

Expression Fprintf
File User_Fopen

To print the string in double quotes to the journal window followed by the floating
point value of 'temperature’ with a precision of 2:

Expression Printf "The value of 'temperature’ is: %.2f
\n"temperature

To print source line 24 to the Journal window:

Expression Printf "%h",#24

To print the name of the current module to the Journal window:

Expression Printf "%s",@module

To print the disassembled instruction at address 2030h to the Journal window as a
string:

Expression Printf "%m", 2030h

368

Chapter 11: Debugger Commands
Expression Printf

00002030 2040 MOVEA.L D0O,A0
To print the contents of the assembly-level stack window to the Journal window:

Expression Printf "%w",14

> Expression Printf "%w",14
00043F58=0000275C
00043F54=00000096
00043F50=00000DA6

FP->00043F4C=00043F5C

SP->00043F48=00060106

369

Chapter 11: Debugger Commands

File Command

See Also

Example

File Command

<file_name> <Return>

The File Command command reads the file specified by <file_name> and executes
the commands contained in the file as though they were entered from the keyboard.
Commands in the file are executed until the end of the file is reached. Input then
continues from the previous source. The previous source can be the keyboard or
another command file.

This command is commonly used to read macro definitions from a file, to set up
I/O ports, or to change window displays.

File Command commands may be nested up to 16 levels deep.

If the filename consists of alphanumeric characters, a period, or a backslash, double
guotation marks are optional. Otherwise, quotation marks must enclose the file
name. If a filename extension is not specified, the debugger automatically appends
a default extensiongcom

Command files can be executed at debugger startup using the -c option, from the
command line during a debugging session, or from a startup file.

See the File Startup command description for information about how to
automatically execute a command file when the debugger is started.

File Log
File Startup
The “Using Macros and Command Files” chapter.

To execute command file 'varTrace.com’:

File Command varTrace

370

Chapter 11: Debugger Commands
File Error_Command

File Error_Command

< File HErroriCommcmd = Abort Read =
= Continue Read

= Quit Debugger

The File Error_Command command sets the command file error handling mode.
The command specifies what action the debugger takes when an error occurs while
reading a command fil&bort_Readtauses the debugger to return to the command
line after an error and wait for keyboard input. This is the default action.
Continue_Readauses the debugger to continue to the next command in the
command file after an errdQuit_Debuggercauses the debugger to end the
debugging session when an error occurs (as if you typed Debugger Quit Yes).

<Return>

See Also File Command
File Log
Examples To return to the command line after an error and wait for keyboard input:

File Error_ Command Abort Read

To continue to the next command in the command file after an error:

File Error_Command Continue Read

To exit the debugger when an error occurs:

File Error_Command Quit_Debugger

371

Chapter 11: Debugger Commands

File Journal

File Journal

(File)—E—(Journal

= <file name>

= <Refurn>

See Also

A

)
J
Nexwmd% <> V

The File Journal command copies the information written to the Journal window
output into a journal file specified by <file_name>. The default journal filename
extensionjou will be appended to <filename>. The journal file provides a history
of your debugging session.

File Journal On opens a journal file for writing. If a file already exists with
the specified file name, new information is appended to the end of the existing file.

File Journal Append opens an existing file. New information is appended
to the end of the existing file.

File Journal oFF closes the journal file.

File Journal Browse opens a journal browser window in the graphical
interface. Start opens a new browser windownd stops output to the current
browser without closing the windoRestart has the same effect 8&art followed
by End. NextNCmdscauses the output from the nextommands to be sent to an
individual browser.

A window number (29) is assigned to the journal file so that output can be written
to that file using the Expression Fprintf command.

Expression Fprintf "To view commands in a separate window" on page 128.

372

Chapter 11: Debugger Commands
File Journal

Examples To make and open journal file 'debugl.jou’ for writing:

File Journal Ondebugl
To close the currently open journal file:

File Journalo FF

To open existing journal file '"debugl.jou’ for writing and append new information
at the end of the file:

File Journal Append debugl

373

Chapter 11: Debugger Commands
File Log

File Log

(File)——(Log

<file_name> <Return>

Comment>—> <comment _text>

The File Log command records user input in a command file, specified by
<file_name>. The default flename extensioomwill be appended to <filename>.
The File Log command allows an interactive debugger session to be logged as a
command file which can be rerun at a later time.

File Log On opens a file for writing. If the specified file already exists, the file
is overwritten by the new data.

File Log Append reopens a logging file to allow new information to be added
to the end of the file.

File Log oFF terminates logging to the file.

File Log Comment places a string of text in the file as a comment. If a log file
is not open, File Log Comment commands are ignored by the debugger.

All successful commands are written to the log file so the file can later be used as a
command file.

Commands which are entered but not successfully completed, are written to the
.com file as comments along with their error codes.

User input is recorded in the log file until the Log oFF command is executed.

A window number (28) is assigned to the log file so that output can be written to
that file using the Expression Fprintf command.

See Also Expression Fprintf
File Error_Command

374

Chapter 11: Debugger Commands
File Log

Examples To make and open log file "log1l.com’ for writing:

File Log Onlogl

To close the currently open log file:

File Logo FF

To open existing log file logl.com’ for writing and append new information at the
end of the file:

File Log Append logl

To place the comment 'This is a comment string’ in the log file:

File Log Comment This is a comment string.

If a log file is not open, this command is ignored.

375

Chapter 11: Debugger Commands

File Startup

File Startup

j k j v} <Return>
<startup file> ,<command file>

See Also

Examples

The File Startup command saves the current debugger option settings and window
parameters in a startup file specified by <startup_file>. When you start a debugging
session and specify the startup file with the -s option of the db68k command, the
startup options and window parameters you saved will be the default parameters in
that debugging session.

A startup file has an extension.of appended to the end of it. If you do not specify
a startup file name, the startup options are saved in a file r¢h68#.rc

You can modify default debugger startup option values with the Debugger Option
command and window parameters with the Window commands.

Remember that you can also specify a command file to be executed when the
debugger starts.

Debugger Option

File Command

Window New

Window Resize

the "Using Macros and Command Files" chapter

To save the current set of debugger startup options and window parameters in
startup file 'my_start_file.rc’:

File Startup my_start_file

376

Chapter 11: Debugger Commands
File Startup

To save the current set of debugger startup options and window parameters in
startup file 'my_start_file.rc’ and execute the command file 'initDemo.com’

whenever the debugger is started using 'my_start_file.rc’:

File Startup my_start_file , initDemo

377

Chapter 11: Debugger Commands
File User_Fopen

File User_Fopen

¥

< ,) (/ N\ ;
File User Fopen = Append <window nmbr>

See Also

e)
e

C.

<Tab> 4 File D <file_name> <Return>

The File User_Fopen command opens the file specified by <file_name> for reading
or writing and assigns a window number to it.

The File User_Fopen Append command opens an existing file for writing,
adding new information at the end of the file.

The File User_Fopen Create command creates a new file for writing.
The File User_Fopen Read command opens an existing file for reading.

After opening a file using the File User_Fopen Append or File User_Fopen Create
command, you can use the Expression Fprintf command to write information to the
file. Files opened for reading may be read from the built-in macro fgetc(). See the
"Predefined Macros" chapter of this manual for a complete description of this
macro.

The window number must be between 50 and 256 inclusive.

Use the Window Delete or the File Window_Close command to close the file.

Expression Fprintf
File Window_Close
Window Delete
Window New

378

Chapter 11: Debugger Commands
File User_Fopen

Examples To open user window 57 and redirect any data written to window 57 to the file
'varTrace.out”:

File User_Fopen Create 57 File varTrace.out

To open user window 57 and append any data written to window 57 to the existing
file 'varTrace.out”:

File User_Fopen Append57 File varTrace.out

To open file 'temp.dat’ for reading, accessing the file as user window 52:

File User_Fopen Read52 Filetemp.dat

379

Chapter 11: Debugger Commands
File Window_Close

File Window_Close

W‘mdowiﬁose\ <file_window num> <Return>

The File Window_Close command closes a device or file which was previously
opened with the File User_Fopen command. The Window Delete command may
also be used for this purpose.

See Also File User_Fopen
Window Delete

Example To close file associated with user window number 57:

File Whdow_ Close 57

380

Chapter 11: Debugger Commands
Memory Assign

Memory Assign

<addr>

<Return>

=<expr>

=<expr_string>

Note

Debugger/emulators cannot modify memory locations in target ROM

The Memory Assign command changes the contents of the memory location
specified by<addr> to the value or values defined by the expressexpr> or
expression stringexpr_string> The size of the memory elements to be modified
is specified by one of the size qualifiers (Byte, Word, or Long).

Expression strings are specified as ASCII characters enclosed in quotation marks
and/or as a list of values separated by commas. Expressions and expression string
elements will be truncated or padded as required, based on the size qualifier.

Memory values can be entered interactively if you do not define a value on the
command line. When a value is not specified, the contents of the specified m
locations are displayed in hexadecimal and decimal. You can change the exis
value by entering any legal expression followed by a carriage return. The next
memory location and its contents are then displayed. The return key entered
without a value will cause the command to terminate.

The Memory Assign command does not recognize variable typing. It is intended to
be used as an assembly-level memory setting routine. For example, assume that the

381

Chapter 11: Debugger Commands

Memory Assign

See Also

Examples

variablecountis a long integer. If you want to set the value of count equal to 5, the
command

Memory Assign Long count=5

will not work. The command will set the memory location referenced by the value
of count equal to 5, not the contents of the variable. To set the value of count equal
to 5, use the following command:

Memory Assign Long &count=5

The Expression C_Expression command should be used to set C variables. This
command recognizes variable types and the specified expressions behave
according to the rules of C. The command:

Expression C_Expression count=5

will set count equal to 5.

Expression C_Expression
Memory Register

To display the contents of memory location 1000h and allow interactive
modification of memory contents:
00001000 = 0x48 72:

Memory Assign Byte 1000h

To change the contents of memory locations 2000h through 2005h to 00, 41, 00,
42,00, 43, and change the contents of locations 2006h/2007h to the value of
'system_is_running’:

Memory Assign Word 2000h=41h,42h,43h,system_is_running

382

Chapter 11: Debugger Commands
Memory Block _Operation Copy

Memory Block Operation Copy

(Memory)—{Block_Operotion)——(Copy H <addr>..<addr> b

Note

See Also

Examples

C——@——{ <addr> H <Return>

Debugger/emulators cannot copy to memory locations in target ROM.

The Memory Block_Operation Copy command copies the contents of the memory
range specified byaddr>..<addr> to a block of the same size starting at the
memory location specified bsaddr>.

Memory Assign

Memory Block_Operation Fill
Memory Block_Operation Match
Memory Block_Operation Search
Memory Block_Operation Test

To copy the block of memory starting at address 1000h and ending at address 10ffh
to a block of the same size starting at address 5000h:

Memory Block Operation Copy 1000h..10ffh,5000h

To copy the block of memory starting at the address of the structure
‘current_targets’ and ending 15 bytes after this address to a block of memory
starting at the address of the structure 'default_targets':

Memory Block Operation Copy ¤t_targets..+0xf,
&default_targets

383

Chapter 11: Debugger Commands
Memory Block_Operation Fill

Memory Block_Operation Fill

< Memory)—{BIock_Operotion)—{ Fill

C

<addr>..<addr> <Return>

Note

<expr>

<expr_string>

Debugger/emulators cannot fill memory locations in target ROM.

The Memory Block_Operation Fill command fills the range of memory locations
specified by the address ranggeddr>..<addr> with the value or values specified

by an expressiodexpr> or an expression stringexpr_string>. If no expression is
given, the debugger fills the specified memory locations with zeros. The specified
size qualifier (Byte, Word, or Long) determines the size of the value.

If you specify a single expression value, the debugger fills the memory area with
that value. If you enter an expression string, the debugger fills the memory area
with the specified string pattern.

An expression string is a list of values separated by commas and can include ASCII
characters enclosed in quotation marks. All expressions in an expression string are
padded or truncated to the size specified by the size qualifiers if they do not fit the
specified size evenly.

If the number of values in an expression string is less than the number of bytes in
the specified address range, the debugger repeatedly places the list of values in
memory until all designated memory locations are filled. If you specify more

384

Chapter 11: Debugger Commands
Memory Block_Operation Fill

values than can be contained in the specified address range, the debugger ignores
the excess values.

See Also Memory Assign
Memory Block_Operation Copy
Memory Block_Operation Match
Memory Block_Operation Search
Memory Block_Operation Test
Memory Register

Examples To fill memory locations 1000h through 1007h with the long pattern 61626364,
65666768:

Memory Block Operation Fill Long 0x1000..+7="abcdefgh’

To fill the memory area starting at location 1000h and ending at location 10ffh with
zeros:

Memory Block Operation Fill Byte 0x1000..0x10ff

385

Chapter 11: Debugger Commands
Memory Block _Operation Match

Memory Block Operation Match

(Memory)——(Block_OperotionD—{ Mateh Repeat On_Mismatch
Stop_On_ Mismatch
J

See Also

<Return>

<addr>..<addr> y <addr>

The Memory Block_Operation Match command compares the contents of two
blocks of memory to determine their similarities or differences. The command
compares the block of memory specified by the address raugle>..<addr>

with the same size block starting<atddr>.

The debugger displays differences between the two blocks of memory, mismatched
values and addresses, in the Journal window. If the contents of the two blocks of
memory are the same, the debugger displays the mddsagary blocks are the

same

The Memory Block_Operation Match Stop_On_Mismatch command halts when a
mismatch is found. If the Memory Block_Operation Match Repeat_On_Mismatch
command is selected, the comparison continues until the end of the block.

When you execute the Memory Block_Operation Match
Stop_On_Mismatch/Repeat_On_Mismatch command without specifying an
address range, the debugger continues comparing the address range specified in
the previous Memory Block_Operation Match Stop_On_Mismatch command
starting from where it found the last mismatch.

Memory Block_Operation Copy
Memory Block_Operation Fill
Memory Block Operation Search
Memory Block Operation Test

386

Chapter 11: Debugger Commands
Memory Block _Operation Match

Examples To compare the block of memory starting at address 1000h and ending at address
10ffh with a block of the same size beginning at address 5000h and stop when a
difference is found:

Memory Block Operation Match Stop_On_Mismatch
1000h..10ffh,5000h

To execute the previous Memory Block_Operation Match Stop_On_Mismatch
command starting from where it found the last mismatch:

Memory Block Operation Match Stop_On_Mismatch

To compare the block of memory starting at address 1000h and ending at address
10ffh with a block of the same size beginning at address 5000h and stop at the end
of the memory block:

Memory Block Operation Match Repeat_On_Mismatch
1000h..10ffh,5000h

387

Chapter 11: Debugger Commands
Memory Block_Operation Search

Memory Block Operation Search

(Memory)—{BIock_Operotion)—{ Search

=|| <Return>

\‘{ <addr>..<addr>

<expr_string>

The Memory Block_Operation Search command searches the block of memory
specified by<addr>..<addr> for the specified expressicexpr> or expression
stringgexpr_string> The size qualifier (Byte, Word, or Long) specifies the size of
an expression or each expression in an expression string. A Memory
Block_Operation Search command given without parameters continues the search
of a previous Memory Search command given with the Once qualifier. The
Repeatedly qualifier causes the search to repeat.

You can specify expression strings as ASCII characters enclosed in quotation
marks and/or as a list of values separated by commas. If the strings do not fit the
specified size evenly, all expressions in an expression string will be padded or
truncated to the size specified by the size qualifiers.

If you specify the Once qualifier, the search stops when the expression is found. If
you specify the Repeatedly qualifier, the debugger repeatedly searches for the
specified expression, displaying each match until it reaches the end of the block or
until you pres€TRL C.

When you execute the Memory Block_Operation Search command with the Once
qualifier, subsequent Memory Block_Operation Search commands that are
executed without expression parameters cause the debugger to continue searching
through the originally specified address range starting from where it found the last
match. If the expression or expression string is not found in the specified block,

the debugger displays the messkige found

388

Chapter 11: Debugger Commands
Memory Block_Operation Search

See Also Memory Display
Memory Block_Operation Copy
Memory Block_Operation Fill
Memory Block_Operation Match
Memory Block_Operation Test
Program Find First
Program Find Next

Examples To search for the expression 'gh’ in the memory range from address 1000h through
address 10ffh and stop when the expression is found or address 10ffh is reached:

Memory Block Operation Search Wbrd Once
1000h..+0xff = 'gh’

To execute the previous Memory Block_Operation Search command starting from
where it found the last match:

Memory Block Operation Search Wbrd Once

To search for the hexadecimal value '65666768’ in long format in the address
range 1000h through 10ffh and stop at the end of the address range:

Memory Block_Operation Search Long Repeatedly
0x1000..0x10ff=0x65666768

389

Chapter 11: Debugger Commands
Memory Block_Operation Test

Memory Block Operation Test

(Memory HBIock_Operotion)——(Test

=|| <Return>

\‘{ <addr>..<aoddr>

<expr_string>

The Memory Block_Operation Test command examines the specified memory
locations specified byaddr..addr>to verify that the value(s) defined kgxpr>

or <expr_string>exist throughout the specified memory area. When the debugger
finds a mismatch, it displays the mismatched address and value. The size qualifier
(Byte, Word, or Long) specifies the size of an expression or expression in a string.

If you enter a single expression value, the debugger tests the memory area for that
value. If you specify an expression string, the debugger tests the memory area to
verify that it is filled with the values found in the expression string.

You can specify expression strings either as ASCII characters enclosed in quotation
marks or as a list of values separated by commas. If they do not evenly fit the
specified size, all expressions in an expression string will be padded with
zero-valued bytes to the size specified by the size qualifier.

Once Qualifier

If you specify the Once qualifier, the test stops when a mismatch is found. If you
execute the Memory Block_Operation Test command with the Once qualifier
specified, subsequektemory Block_Operation Test . . . Orm®nmands that are
specified without parameters will continue testing through the address range
originally specified, beginning with the last address tested. A Memory
Block_Operation Test command given without parameters continues the test of a

390

Chapter 11: Debugger Commands
Memory Block_Operation Test

previous Memory Block_Operation test command given with the Once qualifier,
beginning with the last address tested.

Repeatedly Qualifier

If you specify the Repeatedly qualifier, the debugger continues testing the specified
value(s) for mismatches until the end of the block is reached, or until you enter
CTRL C.

Examples To test for the expression 'gh’ in the memory range from address 1000h through
address 10ffh and stop when a word not matching the expression is found:

Memory Block Operation Test Wird Once 1000h..+0xff =
lgh7

To execute the previous Memory Block_Operation Test command starting from

where it found the last mismatch:

Memory Block Operation Test Word Once

To test for the hexadecimal value '65666768’ in long format in the address range
1000h through 10ffh and stop at the end of the address range:

Memory Block Operation Test Long Repeatedly
0x1000..0x10ff=0x65666768

Mismatched values are displayed in the Journal window.

391

Chapter 11: Debugger Commands

Memory Display

Memory Display

< Memory)—{ Display >>

-

—={ Mnemonic < 7 <Return>

o

<addr>

NN

The Memory Display displays the contents of the specified memory locations.

Mnemonic Option

TheMnemoniooption displays memory in assembly language mnemonics starting
at the memory location specified bgddr>. If you do not specify an address, the
debugger displays memory beginning with the address pointed to by the program
counter. This command functions only in the assembly-level mode.

If you have executed the Debugger Options Symbolics Intermixed On command, C
source code lines will be intermixed with the assembly language code (when
applicable). If you have executed the Debugger Options Symbolics
Assem_Symbols On command, symbol references will be displayed with the
assembly language code.

ThePrey, Next Up, andDownkeys may be used when the Code window is active
to display instructions with higher or lower addresses. Note that the Prev and Up
keys do not function when disassembling addresses outside of the target program.

392

Chapter 11: Debugger Commands
Memory Display

Note If the Align_bp option is set tBn, the address of the first instruction in the
assembly Code window may be incorrect after executing the Memory Display
Mnemonic command.

Byte, Word, and Long Options

The byte, word, or long qualifier option displays the contents of memory locations
specified by<addr>..<addr> in the Journal window in both hexadecimal and

ASCII formats. The debugger represents nonprintable ASCII characters by a period
(). The debugger displays memory contents in the size specified by the size
qualifier (Byte, Word, or Long).

If you specify an address range, the debugger displays all memory locations in that
range.

If you specify a single address, the debugger displays two lines of data.

If you do not specify any parameters, the debugger displays the next 80 bytes (five
lines) of data after the previously displayed address range.

The memory contents are displayed in the Journal window.

See Also Expression Display_Value
Symbol Display

Examples To display disassembled memory in the Code window starting at the symbol
'_emeg_shutdown’ (this command works only in assembly-level mode):

Memory Display Mhemonic _emeg_shutdown

To display memory in word format in the Journal window starting at the symbol
'time’ and ending 15 bytes after 'time’:

Memory Display Word time..+0xf .

393

Chapter 11: Debugger Commands
Memory Hex

Memory Hex

<Memory>>< Hex >> = <Refurn>
XD G
Wt
)
*CAddress Ruﬂge> +<Dddr..oddr>‘
W=

The Memory Hex command allows you to work with memory image files.

\ I

= <fllename>

<offsef>

]

= No_Pc_Set

<filename>

N

Verify_File

b1473s02

<filemname>

N

Read

This command allows you to read a memory image file in Motorola S record or

Intel Hex format. The addresses in the file may be offset to generate the address in
the target. You may choose to not set the program counter to the transfer address
that may be in the file.

Verify

This command allows you to compare a memory image file in Motorola S record

or Intel Hex format to the current contents of memory. The addresses in the file

may be offset to generate the address in the target to compare against. Messages in
the journal window describe differences between the two. No messages will be
posted if the file and memory are identical.

Write

This command allows you to write a memory image file in Motorola S record or
Intel Hex format. You must provide a file name and address range to write out.

394

Chapter 11: Debugger Commands
Memory Hex

You may optionally generate a transfer address record with the current program
counter value.

The command displays memory address ranges mapped as Guarded (NOMEM),
Read_Only (ROM), or Write_Read (RAM) in the Journal window. The display
includes a list of sections loaded and their address ranges.

Write operations to the port will access file '/myproj/cmdout.dat’. You must
specify the file name in quotation marks.

395

Chapter 11: Debugger Commands

Memory Register

See Also

Examples

Memory Register

] j <Return>
@<reg_name> =<value>

The Memory Register command changes the contents of a register, status flag, or
other processor variables such as PC or sp. The new contents are defined by
<value>,

The PC is displayed or changed if you do not specify a register name.

If you do not specify a value in the command, values are entered interactively. You
can enter multiple register values interactively. The debugger displays contents of
the specified register in binary, hexadecimal, or decimal, as appropriate for the
register. You can change the existing value by entering any legal expression and
pressing th&®eturn key.

Pressing th®eturn key without specifying a register value terminates the
command.

All register names are preceded with an @ sign.

Memory Assign

To modify register values interactively:

Memory Register

The program counter (PC) is displayed in the Journal window. You can modify the
PC by entering a value (10a4h in this example) at the cursor prompt and pressing
Return. The PC will be modified, and the next register will be displayed:

@pc =0x000010B8 4280: 10a4h
@sp =0x00015DB4 89524:

396

Chapter 11: Debugger Commands
Memory Register

To set the value of register @d1 to 44h:
Memory Register @d1=0x44

To interactively change the value of register @d1:

Memory Register @d1

397

Chapter 11: Debugger Commands
Memory Unload_BBA

Memory

Memory Unload_BBA

Unload BBA

-} <Return>
Load_File <"load_file"> ’j LC H< 'dump_ flle“>}j

Note

Note

You must have the HP Branch Validator product for the processor you are
debugging code for installed on your system in order to use this command. If you
do not have the HP Branch Validator for your processor, the debugger will display
the following error message when you attempt to execute this command:

error code = 141
No valid BBA spec file for <processor> processor

The Memory Unload_BBA command unloads basis branch analysis (BBA)
information from program memory. The BBA preprocessor (-b option) must be
used at compile time in order for this information to exist in program memory. The
file namebbadump.datds the default dump file name.

Once this information has been unloaded, it can be formatted with the BBA report
generatorbbarep(see théHP Branch Validator for AXLS C User's Gujde

The Unload_BBA command is disabled when the debugger option Demand_Load
is On. If Demand_Load isFF but the program was loaded with Demand_Load

On, the Memory Unload_BBA command will generate a BBA file with incomplete
information. See the Debugger Option General command description in this
manual for more information on the Demand_Load option.

Memory Unload_BBA All

The Memory Unload_BBA All command unloads branch analysis information
associated with all absolute files loaded into thebfladump.data

398

Examples

Chapter 11: Debugger Commands
Memory Unload BBA

This command lets you ribbarepwithout specifying a file name. The file name
bbadump.datés used as the default name of all dump files.

Memory Unload_BBA All To <"dump_file">

The Memory Unload_BBA All To <"dump_file"> command unloads branch
analysis information associated with all absolute files loaded into <"dump_file">.

Memory Unload_BBA Load_File <"load_file">

The Memory Unload_BBA Load_File command unloads only basis branch
information associated with the specified absolute file (<"load_file">) into the file
bbadump.data

This command lets you rlobarepwithout specifying a file name. The file name
bbadump.datés used as the default name of all dump files.

Memory Unload_BBA Load_File <"load_file"> To <"dump_file">

The Memory Unload_BBA Load_File <"load_file"> To <"dump_file"> command
unloads only basis branch information associated with the specified absolute file
(<"load_file">) into the file <"dump_file">.

To unload all branch analysis information into file "bbadump.data™:

Memory Unload_BBA All

To unload all branch analysis information into file "mydata’:

Memory Unload_BBA All To "mydata”

To unload branch analysis information associated with absolute file a.out.x into file
"bbadump.data:

Memory Unload_BBA Load_file "a.out"

To unload branch analysis information associated with absolute file a.out.x int
"mydata":

Memory Unload_BBA Load_file "a.out" To "mydata”

399

Chapter 11: Debugger Commands
Program Context Display

Program Context Display

The Program Context Display command displays the current module, function, and
line number in the Journal window. The current module is the one pointed to by the
program counter.

This command will display both the view context, as set by a Program Context Set
command, and the context of the current program counter, if the two are different.

Example To display the current module, function, and line number:
Program Context