SIMH IBM 1130 Emulator

and

Disk Monitor System R2V12

Reference Guide

November 15, 2003
Release

This is a work in progress.

©Copyright 2002, Brian Knittel

www.ibm1130.org

Table of Contents
11.
Introduction to the IBM 1130

2.
The Emulated 1130
3
3.
Files Included with the Emulator
4
3.1. SIMH Users
4
3.2. Standalone Users
4
3.3. What's in the ZIP files
4
4.
Installing the Emulator
7
4.1. Installing on Windows
7
4.2. Installing and Building for Other Operating Systems
7
5.
Using the Emulator
9
5.1. Emulator Commands
9
5.2. DO Scripts
11
6.
Emulator Commands for Peripheral Control
12
6.1. The CPU
12
6.2. Line Printer
13
6.3. Disk Drives
14
6.4. Card Reader
15
6.5. Card Punch
17
7.
The Emulator Display
18
8.
IBM 1130 Disk Monitor System (DMS) Release 2 Version 12
21
8.1. Booting the Emulated IBM 1130
21
8.2. Cold Start Program Wait Codes
22
8.3. DMS Disk Basics
22
8.4. DMS Job Decks
23
8.5. Error Wait Codes
25
9.
Monitor Control Records
27
9.1. Supervisor Control Records
29
10.
Disk Utility Program (DUP)
30
10.1. DUP Control Records
31
10.2. Temporary Mode Restrictions
34
11.
IBM 1130 Fortran
35
11.1. Using Functions and Subroutines
35
11.2. Fortran Control Records
36
11.3. Fortran Declaration Statements
37
11.4. Fortran Program Statements
38
11.5. Fortran Subroutine Library
39
1.6. Plotter Library
41
1.7. Fortran Compiler Error Codes
41
1.8. Fortran Program I/O Error Wait Codes
45
12.
Macro Assembler
46
12.1. Assembler Control Records
46
12.2. Assembler Statement Format
47
12.3. Assembler Constants and Expressions
47
12.4. Assembler Directives and Pseudo-Ops
48
12.5. Instruction Opcodes
49
12.6. Macro Assembler Error Flags
50
13.
Loading a DMS Disk Image
52
13.1. Required Files
52
13.2. Required Utilities
52
13.3. Assembling DMS and Components
52
13.4. Building DMS for a 1132 Printer
52
13.5. Building DMS for a 1403 Printer
52
13.6. Building DMS for Alternate Memory Configurations
52
14.
Data Formats
53
15.
Character Codes
55
16.
Known Problems/Limitations
57

1. Introduction to the IBM 1130

The IBM 1130 minicomputer was introduced by IBM in 1965 to serve the needs of scientific and engineering customers too small to afford IBM's newly-introduced Series /360 computers. The 1130 found wide acceptance in the educational market as well, as attested to by the number of middle-aged programmers' resumes that a Google search will turn up.

The 1130 came with a macro assembler and Fortran and RPG compilers as standard software. Cobol and APL were available as add-on products. 1130 system configurations could include the following devices:

· IBM 1131 CPU with 4, 8, 16 or 32 K 16-bit words of 3.6μs or 2.2μs core memory, 512K word removable cartridge hard disk, integral Selectric printer and Hollerith keyboard

· IBM 1132 Printer—80 lpm with alphanumeric mix, 110 lpm numeric only

· IBM 1442 Card Read/Punch Model 6, 7—300 or 400 cards/min read, 80 cols/sec punch

· IBM 1442 Card Punch Model 5A or 5B - 80 or 160 cols/sec punch

· IBM 2501 Card Reader Model A1 or A2—600 or 1000 cpm

· Synchronous Communications Adapter—Bisync/STR

· IBM 1231 Optical Mark Page Reader—33 pages/min

· IBM 1055 Paper Tape Punch and IBM 1134 Paper Tape Reader—60 cps read, 14 cps punch

· IBM 1627 Plotter Models 1 or 2—.01" resolution, 1800 or 1200 steps/min

· IBM 1131 Storage Access Channel—interface for the following options:

· IBM 1133 Multiplex Control Enclosure—second SAC interface & multiplexer for disks

· IBM 1403 Printer Model 6 or 7—340 or 600 lpm

· IBM 2310 or 2311 Disk cartridge or Disk Pack—up to 5,120 KW additional storage

· IBM 2250 Graphical Display unit—21" CRT, 1024x1024 resolution, display-list processor with light pen & keyboard

· Interface to IBM System/7 real-time acquisition system

A typical small system might include the 1131 CPU with 8KW or 16KW memory and the internal hard disk, an 1442 card read/punch, and the 1132 printer, as shown below.

[image: image1.jpg]
[image: image2.jpg]
[image: image3.jpg]

1131 CPU and console printer
1442 Card Read/Punch
1132 Printer

It was not a screamingly fast machine, but it could serve the needs of a small civil engineering firm, or a community college's Fortran programming classes.

The 1130's CPU was built using the Solid Logic Technology (SLT) circuitry developed by IBM for the S/360 series computers. For these circuits, IBM developed a method of densely packing individual transistors, diodes and other circuit components on a small ceramic plate, rather than relying on the new and unproven monolithic integrated circuit technology that was just emerging at that time. Individual transistor and diode dice were placed upside down on the ceramic substrate onto tiny solder balls, and the assembly was heated to melt the solder. The 1130's CPU is built from an array of small plug-in circuit boards, each holding typically four or five discrete resistors or capacitors and four to eight half-inch square metal cans containing SLT circuits. The CPU and was not based on a modern ALU/microcode model but was hardwired to decode and implement each of its instructions.

[image: image4.jpg]
SLT Module card (about 2" (3") with four SLT circuit modules (square metal cans). Inset shows a close-up of the inside of a typical SLT circuit.

2. The Emulated 1130

The IBM1130 emulator is based on Bob Supnik's SIMH package as part of the Computer History Simulation Project (see http://simh.trailing-edge.com). The simulator and ancillary programs such as the cross-assembler are written in ANSI-C, and may be compiled on Unix, Linux, VMS and Win32 platforms. The program is a command line, text based program. A graphical user interface option is available on Win32.

The emulated system sports the following hardware devices:

· IBM 1131 CPU with internal disk, printer and keyboard

· Four additional disk drives

· IBM 1132 Printer or IBM 1403 Printer

· IBM 1442 Card Read/Punch Model 7

· IBM 2250 Graphical Display Unit (Windows builds only)

The default configuration provides 16 KW of memory, but this is adjustable.

The emulator software package includes the IBM 1130 Disk Monitor System Version 2 Release 12, which includes the Macro Assembler and Fortran compiler. RPG is not yet available. The disk image included in the standard download (dms.dsk) is built for a 16KW machine with the 1132 printer.

Note: You can find the most current version of the emulator and this documentation at http://www.ibm1130.org. Sign up for the ibm1130.org mailing list if you want to be notified of software updates or upcoming events.

Note: Windows builds of latest version of the emulator contains a new "drag and drop" interface that isn't well debugged yet, but it's getting there. There are notes about using this interface later in this manual.

3. Files Included with the Emulator

The emulator and software are distributed in two ways: one for users who have the entire SIMH package, and another for users who want to download just the IBM1130 emulator.

3.1. SIMH Users

Download ibm1130code.zip, which contains the files in the ibm1130 subdirectory in the main simh tree. This zip file does not contain any of the scp or sim source files.

Download ibm1130software.zip to get the Windows emulator, DMS image, DMS sources, sample jobs and ancillary programs.

3.2. Standalone Users

Download ibm1130.zip to get the source code for the emulator. This zip includes a several files which are part of the SIMH emulator package.

Download ibm1130software.zip to get the Windows version of the emulator, DMS image, DMS sources, sample jobs and ancillary programs.

If you want to use the Windows version of the emulator and do not wish to modify the emulator source code, you only need to download and install ibm1130software.zip

3.3. What's in the ZIP files

Files in ibm1130.zip (emulator sources):

1130consoleblank.bmp
background image for Windows GUI

1132empty.bmp
Drawings of the 1132 printer and 1442 card

1132full.bmp
 reader in their "full" and "empty" states, used

1442empty.bmp
 by the GUI.

1442full.bmp

1442eof.bmp

ibm1130_cpu.c
CPU emulation

ibm1130_cr.c
card read punch emulation

ibm1130_disk.c
disk emulation

ibm1130_gdu.c
2250 graphical display unit emulation

ibm1130_gui.c
emulator console GUI

ibm1130_prt.c
printer emulation

ibm1130_stddev.c
console printer and toggle switch emulation

ibm1130_sys.c
emulator helper routines

scp.c
simh main program

scp_tty.c
simh console IO routines1

sim_sock.c
simh network IO routines 1

sim_tmxr.c
emulator serial port emulation IO routines1

HAND.CUR
cursor for Windows GUI

dmsr2v12phases.h
DMS phase information for debugging purposes

dmsr2v12slet.h
DMS disk location information for debugging purposes

ibm1130_conin.h
ASCII to console keyboard code (hollerith) table

ibm1130_conout.h
console printer code to ASCII table

ibm1130_defs.h
emulator definitions

ibm1130_prtwheel.h
1132 and 1403 printer code sequence tables

ibm1130res.h
Windows GUI resource constants

sim_defs.h
simh definitions1

sim_rev.h
simh definitions1

sim_sock.h
simh definitions1

sim_tmxr.h
simh definitions1

ibm1130.mak
Windows VC2+ makefile for emulator with GUI

ibm1130.rc
Windows GUI resource definitions

makefile
makefile for emulator for other OS's

readme_update.txt
comments

readme1130.txt
comments

Files in ibm1130software.zip (DMS and sample files):

asm
emulator script for assembler job

for
emulator script for Fortran job

gdu
emulator script for GDU sample program

job
emulator script for generic job

list
emulator script for disk listing job

loaddms
emulator script for system load job

guijob
emulator script to boot DMS; useful with GUI

dbootcd.asm
source code for DMS boot card

fsysldr2.asm
edited version of system loader part 2

gdu.asm
sample program to demonstrate 2250 display

zcrdumpc.asm
copy of ZCRDUMPC with comments

zdcip.asm
copy of disk cartridge initialization program

mkdms.bat
Windows batch file to build DMS binary files needed for loaddms job

loaddms.deck
DMS initial load deck

ibm1130.doc
This manual

dms.dsk
Preloaded DMS bootable disk

asm1130.exe
Cross assembler (Win32 executable)

bindump.exe
assembler binary display utility (Win32 exec)

checkdisk.exe
disk dump utility (Win32 exec)*

ibm1130.exe
Emulator (Win32 executable)

mkboot.exe
assembler binary to boot card converter (Win32 exec)

viewdeck.exe
binary deck listing utility (Win32 exec)*

csort.job
sample job deck

for.job
generic Fortran job deck

gdu.job
job deck to run GDU.ASM

list.job
job deck to list disk contents

roots.job
job deck to print table of square roots

swave.job
job deck to plot sine wave on line printer

readme1130.txt
extra copy of readme file

utils/
sources for emulator utility programs

utils/asm1130.c
cross assembler source

utils/bindump.c
assembler binary display utility

utils/checkdisk.c
disk check utility source†

utils/diskview.c
disk dump utility source†

utils/mkboot.c
assembler binary to boot card converter

utils/viewdeck.c
binary deck listing utility†

utils/*.mak
Microsoft VC2+ makefiles

dmsr2v12/
sources for DMS

dmsr2v12/(a-d)*.asm
System loader modules

dmsr2v12/emonitor.asm
extracted part of PMONITOR (used to construct system load deck)

dmsr2v12/fsysldr2.asm
system loader part 2

dmsr2v12/j*.asm
DUP sources

dmsr2v12/kforph*.asm
Fortran compiler phases

dmsr2v12/n*.asm
Supervisor and Resident monitor

dmsr2v12/ocldbldr.asm
Core load builder

dmsr2v12/p*.asm
Resident monitor and device IO routines

dmsr2v12/pmondevs.asm
extracted part of PMONITOR (used to construct system load deck)

dmsr2v12/ptmasmbl.asm
Macro Assembler

dmsr2v12/r*.asm
Library routines

dmsr2v12/s*.asm
Library routines

dmsr2v12/t*.asm
Library routines

dmsr2v12/u*.asm
System library routines

dmsr2v12/v*.asm
Plotter routines

dmsr2v12/w*.asm
SCS (serial IO) routines

dmsr2v12/z*.asm
standalone utilities and coldstart cards

onecard/
coldstart-mode cards from Oscar Wyss

onecard/oc*.asm
coldstart-mode cards from Oscar Wyss

4. Installing the Emulator

4.1. Installing on Windows

To use the emulator on Windows, download ibm1130software.zip from www.ibm1130.org or www.quarterbyte.com and unzip it into a working directory, say \ibm1130. This directory will contain the Windows executables and the sample job files.

If you want to work with the emulator source code, follow the instructions for working with other operating systems as described in the next section. If you have a Microsoft compiler you can use the .mak files provided with the source code. If you use another compiler, you can use the standard makefiles.

4.2. Installing and Building for Other Operating Systems

If you have an operating system besides Windows, or if you wish to work with the emulator's source code, you can use one of two methods to build the emulator: you can build it as part of the SIMH package, or you can build it as a standalone program.

Building IBM1130 as part of SIMH

1. Get the most current SIMH source code package from simh.trailing-edge.com.

2. Expand the zip file, retaining the directory structure

3. Get the most recent 1130 subdirectory update from www.ibm1130.org/ibm1130code.zip, or if that fails, ww.quarterbyte.com/ibm1130code.zip
4. Expand the 1130 zip file into the ibm1130 directory under simh. This will give you the most current version of the 1130 emulator

5. Use the SIMH makefile to build the emulator. You may modify the makefile to specify an output directory for the executables that is in your path, or you may move the executables to a directory in your path after building.

6. In the ibm1130\utils directory, use the makefile to build the accessory programs. Move the executables to a directory in your path.

7. Download ibm1130software.zip from simh.trailing-edge.com or www.ibm1130.org or www.quarterbyte.com.

8. Unzip the software zip file into a directory that you want to use for your 1130 projects. You can delete all of the Windows .exe files.

Building IBM1130 as a Standalone Program

1. Get the most recent 1130 standalone emulator package from www.ibm1130.org/ibm1130.zip, or if that fails, ww.quarterbyte.com/ibm1130.zip
2. Expand the zip file into a source code working directory, say \ibm1130\source.

3. Use the supplied makefile to build the emulator. You may edit the makefile to specify an output directory for the executables that is in your path, or you may move the executables to a directory in your path after building. If you are using a Microsoft compiler on Windows, you may use the supplied .mak files instead of makefile.

4. In the ibm1130\utils directory, use the makefile or the .mak files to build the accessory programs. Move the executables to a directory in your path.

5. Download ibm1130software.zip from simh.trailing-edge.com or www.ibm1130.org or www.quarterbyte.com.

6. Unzip the software zip file into a directory that you want to use for your 1130 projects. Since you are using your own builds of the programs, delete all of the Windows .exe files that came with this zip file.

5. Using the Emulator

Start the emulator by typing the command

ibm1130

Later on , you may wish to run an emulator script directly from the command line by typing

ibm1130 scriptfile [arg1 arg2...]

While the program is running, the following control keys simulate certain 1130 keys and buttons:

Key
Corresponds to

Ctrl+E
Immediate Stop

Ctrl+P
Int Req

Ctrl+S
Program Stop

The following emulator commands perform the same function as certain 1130 control buttons:

Command
Corresponds to

go
Pressing Program Start

deposit ces xxxx
Setting the Console Entry Switches to hex value xxxx

deposit iar xxxx
Pressing Load IAR with console switches set to xxxx

reset
Pressing Check Reset

boot dsk
Pressing Check Reset, Program Load, Program Start with the DMS R2V12 cold start card in the card reader

boot cr
Pressing Check Reset, Program Load, Program Start to boot from the card reader. (The virtual card reader must be attached to a binary file containing the image of a cold-start card)

5.1. Emulator Commands

This is a list of the emulator's commands. Some will be described from a functional standpoint later in this manual. Commands and keywords can be abbreviated; the minimum abbreviations are show in boldface.

In this table, device refers to the name of a given device class, such as dsk for disk drives or cr for the card reader. Unit refers to a specific unit of the given class, for example, dsk0, dsk1, dsk2, etc. Where a unit name is expected, if the unit number is omitted, unit 0 is implied. So, as a unit name, dsk refers to dsk0.

Command
Description

attach [options] unit filename
attach file to simulated unit

backtrace [n]
list last n branches/skips/interrupts

boot unit
bootstrap unit

cgi
run emulator in CGI mode

cont
continue simulation

delete filename
remove named file

deposit list val
deposit in memory or registers

detach unit
detach file from simulated unit

do scriptfile [arg, arg ...]
process command script

dump filename [args ...]
dump binary file

echo arg ...
echo arguments passed to command

examine list
examine memory or registers

{exit | quit | bye}
exit from simulation

go [address]
start simulation, optionally specifying run address

help
type this table of commands

help command
type help for a specific command

ideposit list
interactive deposit in memory or registers

iexamine list
interactive examine memory or registers

load filename [args ...]
load binary file

phdebug {off | phlo phhi}
break emulation on phase load3

reset [ALL | device]
reset simulator or individual device class

{restore | get} filename
restore simulator from file

run [address]
reset and start simulation

save filename
save simulator to file

set {device | unit } parameter
set device/unit parameter

set device {OCT | DEC | HEX}
set device display radix

set log filename
enable logging to file

set nolog
disable logging

set notelnet
disable Telnet for console

set telnet port
enable Telnet port for console

show {device | unit}
show device parameters

show configuration
show current device configuration

show devices
show list of all devices

show log
show state of simulator logging

show modifiers
show all available options for all devices

show queue
show simulator event queue

show telnet
show console Telnet status

show time
show simulated time

show version
show simulator version

step [n]
simulate n instructions and halt

view filename
view a text file with Windows Notepad

where address
find phase and offset of a system address

5.2. DO Scripts

You may put frequently-used sets of commands into a text file and execute it as a script using the "do" command:

sim> do filename [argument1 argument2 ...]

Any arguments entered after the script filename are available to the script as tokens %1, %2, etc. These substitution tokens may also appear in deck files (see "Indirect (deck) files" on page 16).

5.3. Drag and Drop

The GUI window that appears in Windows has a new, relatively untested feature that allows you to use "drag and drop" to run scripts and insert card deck files into the virtual card reader. Here's how it to use it:

· To load a card deck file into the 1442 card reader, drag the file from an Explorer window and release it on the 1442 card reader icon. The emulator will automatically determine if this file is a binary card image file or an ASCII file. You can only attach one file at time this way.

· To load an indirect "deck file," that is, a file that lists the names files to be read, hold the Shift key down when you release the dragged file on the 1442 card reader icon. See "Indirect (deck) files" on page 16 for more information.

· To run a simulator "do" script, drag the script file and release it anywhere on the simulator window but on the 1442 card reader icon.

· To "tear off" and view printer output, click the 1132 printer icon picture. The file containing the print output is reset to an empty file after the Notepad window opens.

See "Running DMS Entirely from the GUI" on page 22 for instructions on using this GUI.

6. Emulator Commands for Peripheral Control

6.1. The CPU

The reset command resets the CPU and all hardware devices.

Modifying Registers

You can view and modify CPU the following CPU registers:

Register Name
Description

IAR
Instruction Address Register (program counter)

ACC
Accumulator

EXT
Accumulator Extension

Oflow
Overflow bit

Carry
Carry bit

CES
Console Entry Switches (Switch 0 = 8000, Switch 1 = 4000, ... Switch 15 = 0001).

The registers can be viewed and modified with the examine and deposit commands:

sim> examine register
Displays the contents of a CPU register. Most registers are also displayed on the GUI.

sim> deposit register value
Sets the specified register to the specified value.

You can also issue the command go address to set the IAR and start the processor at the same time. If you are using the GUI, you can enter values in the IAR and Console Entry Switches through the GUI switches. To load the IAR, enter a value in the switches and click Load IAR.

By default, values are displayed and entered in hex, although you can change this with the command set cpu oct or set cpu dec.

CPU Debugging

sim> attach cpu filename.log

sim> go
sim> detatch cpu
sim> view filename.log

Attaching a file to the CPU device creates a log showing CPU register values before each instruction and lists each instruction executed. This can create quite large output files, so it must be used arefully.

Configuring Memory

You can adjust the amount of memory in the emulated processor with the set cpu command. The default allotment is 16K words. The options are:

sim> set cpu 4K

sim> set cpu 8K

sim> set cpu 16K

sim> set cpu 32K

Note: The DMS operating system should be rebuilt before running with a different memory configuration. The DMS image dms.dsk provided in the distribution zip file is configured for the default 16K machine.

Enabling and Disabling the GUI

On Windows builds, you may turn the GUI display on and off with the set gui command:

set gui on

set gui off
You can start the emulator with the GUI turned off by running ibm1130 with the -g command line option.

6.2. Line Printer

The emulated system has one line printer, which can be specifed to be an 1132 or a 1403 printer. The default configuration uses the 1132. If you plan on running intensive print output runs, it may be worth altering the setup and reloading DMS to use the 1403, which is much faster in emulation, just as in real life.

Attaching an Output File

sim> attach prt filename
Viewing Printer Output

sim> detach prt
sim> view filename

The View command is available only in the Windows version of the emulator. In other operating systems, you'll have to use a separate console session to view the output file if you do not want to exit the emulator program.

Sending Printer Output to Stdout

sim> attach prt -

This can be useful if you want to set up batch processing scripts that process an input deck, send output to stdout and then quit. This turns the emulator into a filter rather than an interactive program.
Selecting the Printer Model

sim> set prt 1403
sim> set prt 1132
Default is 1132.

Note: If you change the printer mode, your programs must be modified, and you will have to rerun the DMS cartridge load procedure with the appropriate device configuration cards.

For an 1132 printer, Fortran requires an *IOCS (1132 PRINTER) card, and you must write to logical unit 3. For a 1403 printer, use an *IOCS (1403 PRINTER) card and write logical unit 5.

6.3. Disk Drives

The emulator supports up to five 512K word disk drives. Each drive is represented by a 1 Mb file on the host computer. Disk images must be initialized before they can be used by DMS.

Note: I have not yet tested the emulator with more than one disk drive.

Attaching a Disk Image file

sim> attach dsk filename.dsk

sim> attach dsk1 filename.dsk

...

sim> attach dsk4 filename.dsk

The emulator will create the image file if it does not already exist.

Detaching a Disk Image file

sim> detach dskn

Read-only Mode

sim> attach -r dsk filename.dsk
A disk drive may be attached in read-only mode by specifying the -r option. Write operations to the disk will fail.

Note: DMS will not tolerate a read-only boot drive

Memory Cache Mode

sim> attach -m dsk filename.dsk
The -m option directs the emulator to cache the disk image in memory. The file is read once when the attach command is issued, and is written back only when the disk is detached, or when the emulator terminates.

CGI mode

sim> cgi [maxsec]
sim> attach -m -r dsk filename.dsk
When -m and -r are used together in CGI mode, changes to the disk image are not written back out when the disk is detached or when the emulator terminates. This lets the emulation perform read and write operations without modifying the underlying file. The emulator opens the file in read-only mode to avoid access permission issues.

The optional argument maxsec on the CGI command sets a run time limit so that a runaway emulated program doesn't hang indefinitely. If the more than maxsec seconds elapse, the emulation is terminated gracefully with an appropriate error message.

DMS tracing

sim> attach -d dsk filename

The -d option instructs emulator to display a debugging trace printout of all disk reads and writes sector by sector, showing location, phase ID and phase name for DMS components. Output is written to stdout (the emulator console window).

Initializing a Disk Image

sim> attach dskn filename.dsk

sim> load zdcip.out

sim> go
Before an 1130 disk cartridge can be used by DMS, it must be initialized (formatted). This can be done by DMS, if it is running, or by the standalone program zdcip. Zdzip is provided with emulator package as a load-mode format file. The program prompts you to make Console Switch settings and press Program Start to indicate desired actions. You can use the GUI or the following commands to format a disk:

sim> deposit ces 0200

(switch 6)
sim> go
sim> deposit ces n

(drive number used in attach, e.g. 0)

sim> go

sim> deposit ces nnnn

(desired cartridge ID # in hex, e.g. 2222)
sim> go
sim> go
sim> reset

The disk image may now be used with DMS.

6.4. Card Reader

Attaching a File to the Card Reader

sim> attach cr filename
Inserts file filename into the virtual card reader. After one or more records have been read, you must detach the reader and reattach the file if you want to run your job again. There is no "rewind" command.

Detaching the Card Reader

sim> detach cr
Removes the current file from the card reader.

Binary vs ASCII decks

By default, the emulator assumes that files attached to the card reader are ASCII. The contents are converted to 029 keypunch Hollerith code on input. Unrepresentable characters (including ascii Tab) are replaced with blanks. Lines shorter than 80 characters are padded with blank to 80 characters. Lines longer than 80 characters are truncated.

You can select any of four alternate conversion formats:

sim> set cr 029
Input is ASCII, converted to 029 character set (default)

sim> set cr 026F
Input is ASCII, converted to 026 Fortran character set

sim> set cr 026C
Input is ASCII, converted to 026 Commercial character set4

sim> set cr binary
Input is binary

In binary mode, the input file must be consist of a sequence of fixed-length 160-byte records, one for each card. Each record consists of 80 words stored in "little-endian" order, that is, least significant byte first. The correspondence between card rows and the bits in each word are shown below.

MSB

LSB

12
11
0
1
2
3
4
5
6
7
8
9
-
-
-
-

Indirect (deck) files

sim> attach cr @filename

A series of files may be "stacked" into the card reader through the use of deck files. A deck file contains a list of filenames that are to be read in sequence. The following input lines are recognized:

· Blank lines and lines starting with * are ignored

· Lines starting with an exclamation point (!) are read as literal text cards after discarding the exclamation point.

· Other lines are taken to contain filenames. The filename may be followed with the letter a to indicate an ASCII text file (using the currently selected ASCII to hollerith conversion table), or the letter b to indicate a binary card image file.

By convention, deck files are named xxx.deck.

A sample deck file might look like this:

* A boot card, followed by a Fortran program and data

bootup.crd b

!// FOR

program.for a

!// XEQ

program.dat a

When you are using a "do" script, indirect files may also make reference to the do command's arguments using the tokens %1, %2, etc. This makes it possible to write scripts and construct deck files that can run arbitrary programs. For instance, a standard Fortran compile-and-run job might be run with the command

sim> do fortran myprogram.for

If you used the following script file named fortran:

* standard Fortran job - run with command

* do fortran sourcefile [datafile]

attach dsk dms.dsk

delete fortran.lst

attach prt fortran.lst

attach cr fortran.deck

boot dsk

detach prt

detach cr

view job.lst

and the deck file fortran.deck:

* deck file for script "fortran"

!// JOB

!// FOR

%1

!// XEQ

%2

the "do" argument myprogram.for will be substituted in the deck file, and the source program will thus be inserted between the // FOR and // XEQ cards. If a second argument is specified on the do command line, it will be read after the // XEQ card. If no second argument is specified, the substituted line will be blank and no error will result.
Reading Stdin

sim> attach -a cr -

This can be used to run the emulator as a filter, reading input decks from stdin and writing output to stdout. In this mode a script should be used to configure the emulator, attach stdin and stdout to the reader and printer respectively, run the job, and quit so that no user input is requested. In this case, the -q flag may be passed on the ibm1130 command line to prevent it from printing informational messages.

6.5. Card Punch

Punching Cards

sim> attach cp filename
The emulated card punch is not working yet.

7. The Emulator Display

Windows builds of the IBM 1130 emulator include a graphical display that indicates the state of the processor and permits manual control of the processor and Console Entry Switches. The display is shown in Figure 7.1.

[image: image5.png]
Figure 7.1 - Emulator GUI Display

The GUI display combines several parts of the IBM 1130 console in a non-standard arrangement. The upper part of the display reflects fairly accurately the 1130's console display lamps and the processor mode switch, which are located on the 1130's console pedestal.. Under the lamps are the console entry switches that on the real 1130 are found on the front of the console typewriter. At the bottom left and right of the display are the lamps and pushbuttons found to the left and right of the console keyboard. Between the lamps and buttons is a status display that shows the files attached to each simulated device. To the right of the buttons are images that show when the simulated card reader has cards in its hopper, and when print output has been generated. The "tear" button displays the contents of the printer output file and empties the file.

The indicators and switches are described in the following tables.

Indicators
Description

Instruction Address
The current instruction address register value (IAR)

Storage Address
The last memory location read or written

Storage Buffer
The last value read from or written to memory

Arithmetic Factor
(not displayed)

Accumulator
The CPU accumulator register

Accumulator Extension
The CPU accumulator extension; low 16 bits for mul/div and some rotate operation.

Operation Register
Last-executed instruction (high 5 bits of instruction word)

Operation Tags
(not displayed)

W
If illuminated, the processor is in a wait state

Index Register
Index register selected by last executed instruction

Interrupt Levels
Interrupt levels pending or active

Cycle Control Counter
temporary register used during shift operations

Condition Register
C = Carry bit, V = Overflow bit. V remains set until tested

Keyboard Select
When illuminated, CPU will accept input from the keyboard

Disk Unlock
When illuminated, the disk drive is inactive (detached)

File Ready
When illuminated, the disk drive is ready (attached)

Run
When illuminated, the CPU is running

Forms Check
Yellow = out of paper (detached)
Red = 1132 Scan check (software error)

Parity Check
(not used)

Power On
When illuminated, CPU is powered up

Switches/Buttons
Description

0 through 15
Console Entry Switches. Click to toggle setting.

Power
Toggles CPU power

Keyboard
(not used)

Program Start
Starts CPU in Run, Int Run or SI modes. Advances IAR in Disp or Load modes.

Imm Stop
Halts processor

Program Stop
Causes interrupt level 5, which usually ends current program.

Check Reset
Resets CPU and all devices.

Load IAR
Loads CES value into IAR.

Program Load
Reads a cold start card from the 1442 reader into core.

Mode
Sets CPU mode; click position to change setting.

Mode Settings
Description

Int Run
Generates interrupt level 5 after each instruction is executed (except when processing interrupts)

Run
Normal operation mode

SI
CPU executes one instruction for each Program Start press.

Disp
Displays memory contents of IAR address and advances IAR

Load
Stores CES value into memory address in IAR and advances IAR

SS, SMC
not implemented

The Interrupt Level indicators can tell you what hardware devices are active. The interrupt levels and the associated hardware activity are indicated in the following table.

Interrupt Level
Hardware Activity

0
1442 Reader and Punch per-column interrupt

1
1132 Printer and Serial interface per-character interrupt

2
Disk operation complete

3
Plotter, 2250 Graphical Display interrupt

4
Card read, card punch, console printer, console typewriter and paper tape operation complete

5
Int Run, Program Stop

8. IBM 1130 Disk Monitor System (DMS) Release 2 Version 12

Ibm1130software.zip includes a runnable version of Disk Monitor System Release 2 V12 (DMSR2V12, or DMS), as well as the operating system's source code. The package includes:

· DMS Executive

· Disk Utility Program (DUP)

· Fortran Compiler

· Macro Assembler

· Standalone programs including the formatting program ZDCIP

· Boot program ZCLDSTRT

Unfortunately, we do not have the RPG compiler at the present time. At a future date we hope to have RPG and APL available. (If anyone can help us find these in machine-readable, binary or source code form, we'd be very grateful. We'd also like to find the graphics and math libraries, Cobol, the original Forth, alternate Fortran compilers, and the IBM experimental mulitprocessing executive. If you have these sitting in a box in your attic, please let us know!)

Note: It's interesting to note that DMS cannot be maintained and rebuilt under DMS. The DMS source code uses assembler directives not supported by the its own assembler, and, more surprisingly, the Macro Assembler does not correctly assemble the floating point constants needed by the trig functions. IBM built DMS on the System/360 and possibly at a later date the /370. We built it with our cross assembler asm1103, which is provided with the emulator package. The loaddms script and mkdms batch file show how this is done.

8.1. Booting the Emulated IBM 1130

The normal procedure for booting an 1130 is to prepare the disk, place a binary cold-start card in the card reader, and then press the Check Reset, Program Load, and Program Start buttons in that order. On the emulator you can do this by typing, for example,

sim> attach dsk dms.dsk

sim> att cr coldsrt.crd

sim> set cr binary

sim> att prt -
and then clicking the three buttons. (Without the GUI, you'd type reset, boot cr, go). The processor will boot up DMS, simulate the receipt of a // JOB card, print the cartridge ID and memory size, then halt waiting for more input. To process a job, you'd then need to attach the card reader to your input file and restart the processor with the Program Start button.

The DMS cold start card reads the console entry switches to determine which disk drive to use as the boot drive. In most cases, this will be DSK0, so the console entry switches must be set all off before booting DMS.

However, to make life simpler, the emulator has a built-in shortcut: If the card reader is not attached to a file, pressing Program Load will load the standard DMS cold start program which is stored in the emulator.

Better still, type "boot dsk", which performs the reset/load/go operation using a built-in copy of the DMSR2V12 cold start card. This eliminates the need to precede your text card input with the binary cold start card.

Furthermore: "boot -a dsk" loads the standard APL\1130 cold start card, and "boot -a -p dsk" boots the APL\1130 privileged mode cold start card.

8.2. Running DMS Entirely from the GUI

If you are using a Windows build of the simulator that has the GUI built in, you can run jobs on the simulated 1130 without using the simulator's command line environment. To do this,

1. Start the simulator with the command "ibm1130 guijob". DMS boots and waits.

2. Create a job deck file (a text file starting with // JOB and ending with // XEQ and data cards, for example), and locate it in a Windows Explorer window.

3. Drag the file and release it on the card reader icon (shown at right). Notice that the card reader icon changes to its "full" state, as shown to the right:

4. [image: image6.png]Click the "Program Start" button. Wait until the lights stop flashing and the accumulator displays 1000 hex. The cards on the card reader icon will move to the stacker.

5. Click the printer icon to "tear off" and view the printer output.

6. Click the card reader icon once to reload the deck in the hopper, or click it twice to remove the deck from the reader so you can edit it.

You can repeat this process over and over as desired.

If you need to reboot the system:

· Click the card reader icon twice to remove any cards in it.

· Click Immediate Stop, Check Reset, Program Load* and Program Start in that order.

· Continue with step 3 above.

(*When Program Load is pressed with no card file attached, the simulator pretends that a DMS Cold Start card was present in the card reader. The other steps are exactly those you'd follow on a real 1130).

8.3. Cold Start Program Wait Codes

Error conditions during the cold start process may cause the processor to wait with one of the following values in the Instruction Address Register

IAR
Description

001F
Invalid disk drive number in console entry switches, or drive not ready

0046
Power is unsafe in disk drive or disk read error, or waiting for seek operation to complete

0048
Waiting for read operation to complete

If the processor halts with any of these error codes, perform another cold start

8.4. DMS Disk Basics

A DMS Disk is organized in roughly the following way:

Resident Monitor

System Area (System Program phases)

Optional Fixed Area (Saved user data)

User Area (Saved User Programs, routines and data)

Working Storage

System programs such as Fortran and DUP are broken into many small overlays or phases, so that the system can run on machines with as little as 4KW of memory. The location of each system program phase is stored in table called the SLET, System Logical Equivalence Table. This directory has no name entries, but simply associates hard-coded phase or overlay numbers to their location and size in the System Area. You'll never encounter the SLET as a day-to-day user.

After the System Area is an optional Fixed Area, which can hold user data files. These files are guaranteed never to change locations on the disk.

The User Area is the a familiar file and directory structure. The User Area holds system library routines and utility programs, as well as any data, subroutines or programs you have saved. Filenames have one to five letters. The User Area directory is called the Logical Equivalence Table, or LET.

Working Storage is all of the space between the last stored file in the User Area and the end of the disk.

Saving a file in DMS involves writing data to Working Storage, and then instructing the Disk Utility Program (DUP) to store and name the data. The User Area region is expanded to include the data in Working Storage, and Working Storage is now the rest of the disk. Graphically it looks like this:

Original configuration:

Monitor
System Programs
User Area
Working Storage

After data is saved in Working Storage (e.g. object code saved by Fortran compiler)

Monitor
System Programs
User Area
Working Storage

After WS is saved by the Disk Utility Program:

Monitor
System Programs
User Area
(Newly saved file)
Working Storage

There is a special "temporary job" mode provided by DMS in which the demarcation point between the User Area and Working Storage is automatically slid back to the original location at the end of the job, thus erasing any files stored by the job. This is handy when you are developing a program with subroutines. (More about subroutines later on).

When a saved file is deleted, all files after the deleted file are slid down sector by sector to close up the gap, so the space occupied by the file is returned to Working Storage. This can be quite time consuming on a real 1130. (It's also problematic for programs that depend on disk data staying put at a particular location on disk, hence the optional Fixed Area).

8.5. DMS Job Decks

An IBM 1130 DMS job deck consists of Monitor Control Records, utility control records and user data. Monitor control records begin with the characters slash, slash, space, and their appearance is never ignored by DMS; if one is encountered while reading data cards your program will be aborted.

A Basic Job Deck

A typical Fortran job deck might look like this:

// JOB

// FOR

*IOCS (1132 PRINTER)

*LIST SOURCE PROGRAM

 DO 20 I = 1, 20

 WRITE(3,10) I

 10 FORMAT(1X,'ITERATION NUMBER', I5)

 20 CONTINUE

 END

// XEQ

This job deck uses three Monitor Control records:

1. // JOB cancels any executing job and resets DMS for the upcoming job. A cold start issues an implicit // JOB, by the way.

2. //FOR runs the Fortran compiler. Initial cards starting with "* " are Fortran Control Records and define the compilation environment. Fortran reads cards up to an END statement, and writes the compiled machine code to Working Storage.

3. // XEQ executes the program in Working Storage

A slightly more complex job deck is required if your program requires subroutines or functions. Only one program or subprogram can be compiled at a time. You must compile each subroutine and save it from Working Storage as a named file before proceeding to the next. To complicate things, you have to delete any previous version of the subroutine from the disk before saving a new version. So, a Fortran deck might look like this:

// JOB

// FOR

*LIST SOURCE PROGRAM

 FUNCTION TRIPL (VALUE)

 TRIPL = VALUE*3.

 RETURN

 END

// DUP

*DELETE TRIPL

*STORE WS UA TRIPL

// FOR

*LIST SOURCE PROGRAM

*IOCS (1132 PRINTER)

 DO 20 I = 1, 10

 V = I+3.

 T = TRIPL(V)

 WRITE(3,10) I, T

 10 FORMAT(1X,'I = ', I3,' T =', F6.2)

 20 CONTINUE

 END

// XEQ

In this job, the result of the first compilation is saved as a file named TRIPL, after deleting any previous version. The second compilation is executed, at which time the Core Load Builder locates and links in the external function.

When a series of subroutines have been debugged, the compiled version can be left on disk and they do not need to be recompiled in subsequent runs. In fact, the main program can also be saved and run repeatedly without recompilation:

// FOR

...

 END

// DUP

*STORE WS UA MAINP

then,

// XEQ MAINP

will load and run the stored main program.

The following sections provide a reference for the DMS monitor control records and the control records for Fortran, DUP and the Assembler.

This section will grow eventually, but for now, here is a quick overview of the basics of constructing a job deck.

8.6. Error Wait Codes

A preoperative error is an error condition detected before an I/O operation is attempted. The following preoperative errors cause the monitor system to wait in $PRET at address /002A:

· device not ready

· error check in device

· illegal parameter or illegal specification in an I/O area

Postoperative errors may result in waits in an interrupt service routines, in $PST1 at /0083, in $PST2 at /0087, in $PST3 at /008B or in $PST4 at /008F. The accumulator indicates the device and condition. In may cases you can correct the condition and press PROGRAM START (go) to retry the operation.

ACC
Description

0000
Last card

0001
Card Feed check, read check or punch check; disk read error or write error

0003
Disk seek failure, printer detected channel 9

0004
Paper tape punch not ready or disk overflow; printer detected channel 12

0005
Paper tape reader not ready

1000
1442 card read/punch or 1442 punch: not ready or hopper empty. [emulator: attach a file to CR or CP and go]

1001
Illegal device, function or word count

100F
Occurs in a DUP operation after DUP error D112

2000
Keyboard/Console Printer not ready

2001
Illegal device, function or word count

3000
1134/1055 Paper Tape not ready

3001
Illegal device, function or word count, or invalid check digit

4000
2501 Card Reader not ready

4001
Illegal device, function or word count

5000
Disk not ready

5001
Illegal device, function or word count, or attempt to write in protected area

5002
Write select or power unsafe

5003
Read/write/seek failure after 16 attempts or disk overflow. Extension may display logical drive number in bits 0..3 and working storage address in bits 4..15. Program Start retries 16 more times.

5004
Same as above from routine DISK1 and DISKN, or, an uninitialized cartridge is online during a cold start.

6000
1132 Printer not ready or out of paper

6001
Illegal device, function or word count

7000
1627 Plotter not ready

7001
Illegal device, function or word count

8001
SCA Illegal function or word count

8002
STR mode: Receive or transmit operation not completed

BSC mode: Invalid start characters in the I/O area for a transmit operation

8003
STR mode: Failed to synchronize before attempt to read or write, or, attempted to receive before receiving INQ sequence

BSC mode: Invalid number of identification characters for an identification specification operation

9000
1403 printer no ready or out of paper

9001
Illegal device, function or word count

9002
Parity check, scan check or ring check

A000
1231 Optical Mark Reader not ready

A001
Illegal device, function or word count

A002
Feed check, last document was processed. Clear jam, do not refeed

A003
Feed check, last document not processed. Clear jam and refeed

9. Monitor Control Records

This section lists the available Monitor Control Records. Column numbers are shown above fields that have a fixed location.

 1 1 2 2 3 3 4 4 5 6
 1 4 8 1 6 1 6 1 6 1 6 1 0

// JOB T crt0 crt1 crt2 crt3 crt4 crtc crtw crtu hhhhhhhh ee
Begins a new job. The optional parameters are:

T
Specifies temporary job mode. If used, no permanent changes are made to system files or the disk directory.

crt0
Master cartridge ID (logical cartridge 0)

crt1
Cartridge ID for logical drive 1

crt2
Cartridge ID for logical drive 2

crt3
Cartridge ID for logical drive 3

crt4
Cartridge ID for logical drive 4

crtc
Cartridge ID for core image buffer

crtw
Cartridge ID for working storage

crtu
Cartridge ID for unformatted disk IO

hhhhhhh
Heading (date, time etc) to print on each page

ee
Number of EQUAT records following this JOB card

The T option indicates that no permanent changes are to be made to the system directory. This option is often used during the program development cycle to so that any subroutines compiled and stored during the job are removed from the disk at the end of the job. See Section 10.2, "Temporary Mode Restrictions" for more detail.

Note: This option is not necessary when using the www.ibm1130.org online (CGI) emulator, as the disk image is discarded at the end of each run.

The optional cartridge ID's indicate to DMS which of the mounted cartridges are to be used as logical drives 0 through 4, and which cartridges are to be used for temporary and I/O storage. These options are unnecessary if only one disk is mounted, or if the master cartridge should be used for all operations.

EQUAT records indicate substitutions for subprogram names. See the description of the *EQUAT monitor control record later in this manual.

Note: immediately after a cold start, DMS simulates a //JOB record. While another //JOB record can't hurt, it's not necessary to use one with the www.ibm1130.org online emulator as each job begins with a cold start.

// FOR

Runs the Fortran compiler. Fortran Control Records and Fortran source cards follow this record. The Fortran compiler reads source records up to the END statement. An // XEQ or // DUP monitor control record should follow the END statement.

// ASM

Runs the Macro Assembler. Assembler Control Records and Assembler source cards follow this. The assembler reads source records up to the END statement. An // XEQ or // DUP monitor control record should follow the END statement.

// RPG

Runs the RPG compiler (not currently available)

// COBOL

Runs the COBOL compiler (not currently available)

// DUP

Runs the Disk Utility Program. DUP Control records follow this record. See Section 10, "Disk Utility Program (DUP)" for more information.

// * REMARKS...

Prints remarks on the primary printer.

 1 1 1 2 2 2
 1 4 8 4 6 9 1 6 8

// XEQ pname L nn D cart X X
Executes a program from Working storage or the User area. The optional parameters are:

pname
Name of program to execute. If omitted, the program in working storage is run.

L
If L is punched in column 14, a core load map is printed

nn
Number (right-justified) of supervisor control records that follow

D
Disk routine to use: if blank or Z, DISKZ is used. If 0 or 1, DISK1 is used. If N, DISKN is used.

cart
If specified, the cartridge on which the program is to be found

X
If there is a punch in column 26, LOCALS may call other LOCALS

X
If there is a punch in column 28, the special ILS's are used, the routines with X in their names: ILSX4, etc.

// PAUS

Halts the processor until you press PROGRAM START [emulator: go]. This permits you to change cartridges, add cards, etc.

// TYP

Makes the console keyboard the principal input device

// TEND

Ends console keyboard input, and makes the card reader the principal input device.

// EJECT

Issues a form feed to the principal output device

// CPRINT

Makes the console printer the principal output device

// CEND

Ends console printer output and restores the primary printer as principal output device.

9.1. Supervisor Control Records

This section is not yet written.
*LOCALmain1,sub1,sub2,...,subn
x

*NOCALmain1,sub1,sub2,...,subn
x

*FILES(file1,name1),...,(filen,namen)[,]
*FILES(file1,name1,car1),...,(filen,namen,carn)[,]
*FILES(file1,,car1),...,(filen,,carn)[,]

x

*G2250pname U N N N N

x

*EQUAT(sub1,sub2),...,(subn,subm)
x

10. Disk Utility Program (DUP)

DUP performs file transfer and file directory maintenance operations. May DUP operations involve the transfer of files to and from Working Storage, the User Area on a disk, the Fixed Area on a disk, cards or paper tape. The corresponding DUP control records use a two character code to indicate the origin and destination of the file involved in such a transfer. The following codes are used:
Code
Location

UA
User area

FX
Fixed area

WS
Working storage

CD
Card device

PT
Paper tape

PR
Principal print device

DUP stores programs and data on disk, cards, paper tape and paper listings in any of several formats, whose abbreviations are listed below. The various dump and store operations listed below will indicate any format conversions that will apply.

Format
Description

CDC
Card core image format

CDD
Card data format

CDS
Card system format (absolute/relocatable object)

DCI
Disk core image format

DDF
Disk data format

DSF
Disk system format (absolute/relocatable object)

PRD
Printer data dump format

PTC
Paper tape core image format

PTD
Paper tape data format

PTS
Paper tape system format (absolute/relocatable object)

Filenames on disk may consist of up to five characters. The first character must be A-Z, $, # or @, and the name may not include blanks.

Numeric values, when required, are right-justified.

On records that may include a cartridge ID, if the cartridge is omitted, for "source" names the monitor searches all mounted cartridges for a file with the specified name. For "destination" names, the monitor uses the master cartridge.

Note: If the card reader becomes non-ready while DUP is reading control records, e.g. if the tail end of a job deck contains // DUP and some control records with no further monitor control records, DMS does not resume properly when more cards are inserted in the reader and PROGRAM START is pressed. We are not sure whether this is a simulator bug or a problem with DMSR2V12. At the present time, we recommend that if your job deck ends with DUP commands, that you put a // * comment monitor control at the end of the deck to terminate DUP and return to the monitor before the end of the deck.

10.1. DUP Control Records

 1 1 2 3 3
 1 3 7 1 1 7

*DUMP fm to fname fmid toid

Dumps data from location fm to location to. The program to be dumped is fname, which may omitted when dumping from WS to PR. The optional fmid and toid parameters specify the source and destination cartridges, if applicable.

The following format conversions will take place:

FM location
FM format
TO location
Resulting TO format

UA
DSF
WS
DSF

UA or WS
DSF
CD
CDS

PT
PTS

PR
PRD

UA or FX
DDF
WS
DDF

UA, FX or WS
DDF
CD
CDD

PT
PTD

PR
PRD

UA or FX
DCI
WS
DCI

UA, FX or WS
DCI
CD
CDC

PT
PTC

PR
PRD

 1 1 2 2 3 3
 1 3 7 1 7 1 7

*DUMPDATA fm to fname nnnnfmid toid

Like DUMP but the output is always in Data format. The count parameter nnnn indicates the number of sectors to dump.

The following format conversions will take place:

FM location
FM format
TO location
Resulting TO format

UA
DSF
WS
DDF

UA or WS
DSF
CD
CDD

PT
PTD

PR
PRD

UA or FX
DDF
WS
DDF

UA, FX or WS
DDF
CD
CDD

PT
PTD

PR
PRD

UA or FX
DCI
WS
DDF

UA, FX or WS
DCI
CD
CDD

PT
PTD

PR
PRD

 1 1 1 2 2 3 3
 1 1 3 7 1 7 1 7

*DUMPDATA E fm to fname nnnnfmid toid

Copies data in packed EBCDIC format (40 words per 80 card positions) from disk to card or printer. Copies data to WS without any conversion.

FM location
FM format
TO location
Resulting TO format

UA or FX
any
WS
same

UA, FX or WS
EBCDIC
CD
hollerith text

PR
printed text

 2 3
 1 1 1

*DUMPLET fname cart
Displays the location equivalence table (user area directory) of the specified cartridge, or if cart is omitted, all cartridges. The listing is limited to a specific file if a filename fname is specified, otherwise all files are listed. If a fixed area is listed, the FLET is listed as well.

 2 3
 1 1 1

*DUMPFLET fname cart
Displays the fixed location equivalence table (fixed area directory) of the specified cartridge, or if cart is omitted, all cartridges. The listing is limited to a specific file if a filename fname is specified, otherwise all files are listed.

 1 1 1 2 3 3
 1 1 3 7 1 1 7

*STORE s fm to fname fmid toid
Saves a file. Typically fm is WS for Working Storage, to is UA for the User Area, and fname is the name to be given to the file.

This section is not yet complete.
 1 1 1 2 3 3
 1 3 7 1 1 7

*STOREDATA fm to fname fmid toid
xxx

 1 1 1 2 2 3 3
 1 3 7 1 7 1 7

*STOREDATAE fm to fname nnnnfmid toid
xxx

 1 1 2 2 3 3
 1 3 7 1 7 1 7

*STOREDATACIfm to fname nnnnfmid toid
xxx

 1 1 1 2 2 3 3 4
 1 9 1 3 7 1 7 1 7 2

*STORECId XXfm to fname nnnnfmid toid N

xxx

 1 1 2 3 3
 1 3 7 1 1 7

*STOREMOD fm to fname fmid toid
xxx

 2 3
 1 1 1

*DELETE fname fmid
Deletes a specified file from the LET directory. Fname is the name of the file to delete. The optional cartridge id fmid specifies which cartridge contains the file.

 1
1 9

*DEFINE CORE SIZE xxx

Changes the system core size value in COMMA (the supervisor data storage area, which is kept in core and mirrored on the master cartridge). This value sets the upper limit of storage which the system is permitted to use. The value must be specified as "4K ", "8K ", "16K" or "32K", left adjusted.

 2 3 3
 1 7 1 7

*DEFINE FIXED AREA nnnn- cart
Creates a file storage area called the "fixed area" on the specified cartridge. (The fixed area is not automatically defragmented when files are deleted, as the normal file storage area is). The number of cylinders to reserve for the fixed area is specified in columns 27 through 30. The minimum number of cylinders is two.

If a fixed area already exists, this directive increases or decreases the fixed area by the specified number of cylinders. To decrease the size, punch a - sign in column 31.

 2
1 1

*DEFINE PRINC INPUT xxxx
*DEFINE PRINC PRINT xxxx
Defines the principal printer used for system output or the principal input used for card input. The argument to DEFINE PRINC PRINT can be 1403 to specify the 1403 printer, 1132 to specify the 1132 printer, or blank to specify the console printer. The argument to DEFINE PRINC INPUT can be 1442 to specify the 1442 card read/punch or 2501 to specify the 2501 reader.

These directives copy the appropriate device IO routines to fixed locations on the master cartridge, from where they are loaded when the monitor needs to perform I/O.

 1

*DEFINE VOID ASSEMBLER

*DEFINE VOID FORTRAN

Deletes the Assembler or Fortran compiler from the System Area on the master cartridge. The system area is then packed to recover the space occupied by the deleted program. (This must be done before defining a Fixed Area on the disk).

 1 2 2 3
 1 7 1 7 7

*DFILE to fname nnnn toid
xxx

3
 1 7

*DWADR cart
Writes sector addresses on each sector in Working Storage, used to repair the disk after an errant program has mangled these sectors. The contents of Working Storage are destroyed.

(The first word of each sector of a DMS disk must contain the sector address. This information is used to verify the position of the read head after track-to-track seeks. Fortran IO routines will not overwrite sector addresses, but it's possible for a program that does direct disk IO using assembly routines to do so; this renders the disk useless until it is repaired by DWADR or reformatting).

 *MACRO UPDATE

xxx

Note: A zero punched in column 35 of a DUP control record causes DUP to print core dumps during its execution, for debugging purposes. Other digits in column 35 cause core dumps to be generated when specific phases are in control. See "IBM 1130 Disk Monitor Programming System, Version 2 Program Logic Manual", File Number 1130-36, page 63.)

10.2. Temporary Mode Restrictions

When temporary mode was specified on the current // JOB monitor control record, the following DUP restrictions apply:

Dup Operation
Restrictions

STORECI
to UA only

STOREDATA
to UA and WS only

STOREDATACI
to UA only

STOREMOD
not allowed

DWADR
not allowed

DELETE
not allowed

DEFINE ...
not allowed

DFILE
to UA only

MACRO UPDATE
not allowed

At the end of the job, the dividing line between the User Area and WS is slid back to its original location, effectively deleting any files saved to UA during the job. This is convenient when developing programs with subroutines, as the subroutines will not accumulate on the disk between runs.

11. IBM 1130 Fortran

The Fortran compiler included with DMS R2 is a Fortran-66 compiler. Arithmetic if's, do's can't run backwards, one-trip do's, 5 letter variable names, etc.

11.1. Using Functions and Subroutines

blah blah
Function subprograms are strictly prohibited from producing "side effects" and may not modify dummy variables (parameters) or variables in COMMON.

In addition:

· Functions must have at least one argument. (Note: if you forget this and attempt to call a function with no arguments, you will get a syntax error, but the wrong statement will be flagged due to a bug in the compiler).
· Functions may not be called recursively.
· Calling a function or subroutine with the wrong number of arguments will cause a horrific crash.
Mainline programs and subprograms must be compiled separately. Functions and subroutines are compiled first and stored on the disk in the User Area. When the main program has been compiled, the // XEQ control card will invoke the Core Load Builder (linker) which will pull in the subprograms. The general order of a job deck looks like this:

// JOB T

// FOR
(first subprogram)

// DUP

*STORE WS UA subn1

// FOR

(second subprogram)

// DUP

*STORE WS UA subn2

// FOR

(mainline program)

// XEQ

(input cards, if any)

During initial development, you will probably want to recompile the subprograms with each run. In this case, use the // JOB T option to delete the routines from the disk at the end of the job, or use a *DELETE DUP control record before the *STORE record to delete the previous version from the disk before attempting to store a new one. In other words, the deck should follow the deck outline above, or omit the JOB T option and use *DELETE controls:

// JOB

// FOR
(first subprogram)

// DUP

*DELETE subn1
*STORE WS UA subn1
...

Once development has stabilized, you may use the compiled subroutines already stored on the disk and omit them from future compile and run jobs.

11.2. Fortran Control Records

Fortran compiler control records are placed at the beginning of a source deck just after the // FOR monitor control record and before the first line of Fortran source code.

*IOCS(name, name, ...)

(Mainline programs only.) Specifies hardware devices that the program will use. The IOCS record causes Fortran to include references to the required I/O device subroutines. The device names are listed in the following table.

IOCS Device Name
Generates support for
Subroutine Used
Logical Unit Number

DISK
Disk (direct access)
DISKZ
*

UDISK
Unformatted Disk I/O
DISKZ
*

TYPEWRITER
Console printer
TYPEZ
1

CARD
1442 Card Read/Punch Models 6 or 7 used as a reader
CARDZ
2

1132 PRINTER
1132 Printer
PRNTZ
3

PAPER TAPE
1134/1055 Paper Tape reader/punch
PAPTZ
4

1403 PRINTER
1403 Printer
PRNZ
5

KEYBOARD
Console keyboard
WRTYZ
6

PLOTTER
1627 Plotter
PLOTX
7

2501 READER
2501 Card Reader
READZ
8

1442 PUNCH
1442 Card Punch Model 5 or Read/Punch Models 6 or 7 used as a punch
PNCHZ
9

A Fortran program cannot use the 1442 as both a reader and a punch within the same program. [Emulator note: Since the emulator does not support the 2501 reader yet, if you need to read both read and punch cards, you'll need to store the information on disk with one program, and punch the cards with another].

*LIST SOURCE PROGRAM

Directs the compiler to list the Fortran source code as it compiles the program or subprogram.

*LIST SUBPROGRAM NAMES

Directs the compiler to list the names of all subroutines and functions referenced by the compiled program or subprogram.

*LIST SYMBOL TABLE

Directs the compiler to list the program's symbol table.

*LIST ALL

Directs the compiler to generate all of the optional listings.

*EXTENDED PRECISION

Directs the compiler to use 48-bit (three word) floating point numbers rather than the default 32 bits (two word). Extended precision numbers have a 31 significant bit fraction and an 8-bit binary exponent. Standard precision numbers have a 23 significant bit fraction and an 8-bit exponent.

*ONE WORD INTEGERS

Directs the compiler to use one word per integer rather than to have integers match the size of floating point numbers (2 words with standard precision, or 3 words with extended precision). 1130 Fortran uses only 16 bits of the allocated space in any case, so the integer range is always ‑32,768 to +32,767. If your application does not depend on having the size of integer and real numbers be equal, you can save core by specifying one word integers.

*NAME xxxxx

(Mainline programs only.) Specifies the name of the mainline program. The name may consist of one to five characters.
**title string...

Displays the title string in columns 3 through 72 at the top of each page of the listing. A new page is cranked up when the first statement of the program is read.

*ARITHMETIC TRACE

Directs the compiled program to print the value assigned to each variable during program execution while Console Entry Switch 15 is raised. A printer device must be specified in IOCS control record. The fastest specified printer is used. (Emulator note: use DEP CES 1 to raise switch 15, or DEP CES 0 to lower it). You may programmatically limit tracing with CALL TSTOP and CALL TSTART statements. By default, tracing is enabled (TSTART is assumed) . Each displayed value is preceded by an asterisk.

*TRANSFER TRACE

Directs the compiled program to print the expression value computed by each IF statement and computed GO TO statement during program execution. Output may be controlled by Console Entry Switch 15 and the TSTOP/TSTART subroutines as discussed above. Each displayed value is preceded by two asterisks.

*ORIGIN ddddd or
*ORIGIN /xxxx

(Mainline programs only) Directs the compiler to compile the program starting at an absolute address specified as ddddd in decimal or /xxxx in hexadecimal. The specified origin must past the end of the Disk I/O routine. The minimum ORIGIN values are 510 (/01FE) with DISKZ, 690 (/02B2) with DISK1 or 960 (/03C0) with DISKN.

11.3. Fortran Declaration Statements

COMMON var1[(n)][, var2[(n)], ...]
(There is no named common).

DATA var1[, var2, ...] /val1[, val2, ...]/

Data statements may not be used to initialize variables in COMMON.

DEFINE FILE n (nrec, recl, U, ivar)

x

DIMENSION var1(n) [, var2(n)]

x

EXTERNAL name1 [, name2 , ...]

x

EQUIVALENCE

x

FUNCTION name [(arg1[, arg2 , ...])]

The function's return value is set by assigning a value to the variable name.

INTEGER var1[(n)] [, var2[(n)]]

x

REAL var1[(n)] [, var2[(n)]]

x

SUBROUTINE name [(arg1[, arg2 , ...])]

x

11.4. Fortran Program Statements

BACKSPACE iunit

Not supported?

CALL name [arg1, arg2, ...]

CONTINUE

A no-op statement, usually carries a numeric statement label to serve as the closing statement of a do loop or the target of an IF or GOTO statement.

DO label var = i1, i2[, i3]
Value i1 cannot be zero, and i3 cannot be negative. The loop statements are executed at least once even if the condition test fails on the first iteration (hence the term one-trip do loops).

END

Ends compilation. Must be followed by a Monitor Control Record, usually // XEQ or // DUP. (Programs and subprograms must each be compiled and stored separately).

END FILE iunit

Not supported?

FIND (iunit'irec)

x

FORMAT (...)

x

GO TO label
GOTO label
Jumps to the indicated statement number.

GOTO (lab1, lab2, lab3...) ival

x

IF (expr) labn, labz, labp

Evaluates the integer or floating point expression expr and jumps to one of the three statement numbers: labn if the expression is negative, labz if the expression is zero, or labp if the expression is positive.

PAUSE [ival]
Halts the processor with the integer value ival in the accumulator and thus displayed on the console lamps. Ival must be between 0 and 9999, as it's converted to binary coded decimal (that is, 1234 would be displayed as 0001 0010 0011 0100). Pressing Program Start lets the program resume with the next statement.

READ (iunit) list...
READ (iunit,lab) list...
Implied do loops are permitted.

RETURN

x

REWIND iunit

Not supported?

STOP [ival]
Halts the processor with the integer value ival in the accumulator. (See the discussion of ival under PAUSE). Pressing Program Start returns control to the Disk Monitor System.

WRITE (iunit) list...
WRITE (iunit,lab) list...
Implied do loops are permitted.

11.5. Fortran Subroutine Library

The Fortran library is documented in the IBM publication IBM 1130 Subroutine Library, File no. 1130-30, Form C26-5929-2, which you can obtain as a PDF file from www.ibm1130.org. The library routines are summarized in this section.

Note

Note: Be very careful about the data type of arguments you pass to subroutines and functions. The compiler does not have enough information to automatically convert values you supply to the type expected by a subprogram, so if you pass an integer where a real value is expected or vice versa, the results will be incorrect or the program may crash.

Floating Point Functions

The following real-valued library functions may be called by 1130 Fortran programs.

ABS(X)

Returns the absolute value of X.

ALOG(X)

Returns the natural logarithm of X.

ATAN(X)

Returns the arctangent of X. The result is expressed in radians, in the range ±π/2.

COS(THETA)

Returns the cosine of angle THETA expressed in radians.

EXP(X)

Returns eX.

FLOAT(IVAL)

Converts integer IVAL to a real value.

SIGN(XVAL, XSGN)

Applies the sign of XSGN to value XVAL. For example, SIGN(3.5, -5.2) returns -3.5.

SIN(THETA)

Returns the sine of angle THETA expressed in radians.

SQRT(X)

Returns the square root of X. X must be nonnegative.

TANH(X)

Returns the hyperbolic tangent of X.

Integer Functions

The following integer-valued library functions may be called by 1130 Fortran programs.

IABS(IVAL)

Returns the absolute value of integer IVAL.

IFIX(X)

Converts real value X to an integer value by truncating the fractional part. The effect is to round down, so 1.5 is converted to 1 and -1.5 is converted to -2.

ISIGN(IVAL, ISGN)

Applies the sign of ISGN to value IVAL. For example, ISIGN(3, -5) returns -3.

Subroutines

The following library subroutines may be called by 1130 Fortran programs.

CALL CHAIN

xxx

CALL DVCHK(J)

Tests an error indicator to determine if previous floating point calculations resulted in an attempt to divide by zero. If a division by zero occurred, J is set to 1. If no division by zero occurred, J is set to 2. After the call, the error indicator is reset.

CALL DATSW(I, J)

Tests data entry switch (console sense switch) I, where I is in the range 0 to 15. J is set to 1 if the switch is on, or 2 if the switch is off.

CALL EXIT

Terminates the program and immediately returns control to the Disk Monitor System. (This is in contrast to the STOP statement which halts the processor and returns control to the monitor only after the operator presses Program Start.

CALL FCTST(I, J)

Tests an error indicator to determine if previous Fortran-supplied function subprogram resulted detected an error. If an error occured, J is set to 1. If no error occurred, J is set to 2. After the call, the error indicator is reset. Errors detected include arguments out of range, etc.

CALL OVERFL(J)

Tests an error indicator to determine if previous floating point calculations resulted in overflow or underflow. J is set to one of the following values:

Value
Interpretation

1
A previous calculation resulted in overflow (a result was greater in magnitude than 2127, approximately 1038).

2
There were no overflows or underflows since the last call to OVERFL.

3
A previous operation resulted in underflow (a result greater in magnitude than zero but less than 10-128, approximately 10-39).

After the call, the error indicator is reset.

CALL PDUMP(VAR1, VAR2, IFMT[, ...])

Dumps memory to the primary printer device. Storage addresses from the location of variable var1 to var2 are dumped. Integer values IFMT controls the data format: 0 displays values in hexadecimal format, 4 in integer format, or 5 in floating point format. (If the address of var2 is less than that of var1, PDUMP reverses the addresses). Multiple address ranges can be dumped by repeating sets of three arguments.

CALL SLITE(I)

Turns on sense light I, where I = 1, 2, 3 or 4. If I = 0, all sense lights are turned off.

CALL SLITET(I, J)

Tests the status of sense light I, where I = 1, 2, 3 or 4, and turns the light off. J is set to 1 if the light was on, or 2 if the light was off.

11.6. Plotter Library

CALL ECHAR(x0, y0, xs, ys, theta)

CALL EGRID(ictrl, x, y, delta, numbr)

etc.
11.7. Fortran Compiler Error Codes

Fortran compiler errors are listed after the source code listing, if any. Error codes are listed in the following format:

C errnum ERROR AT STATEMENT NUMBER stnum+offset
where errnum is a Fortran compiler error code, stnum is the number of the last numbered statement, and offset is the offset in lines from the numbered statement. Blank and comment lines are not counted. Before the first numbered statement, stnum is 0 and offset starts with 1. For example,

INVALID STATEMENTS

 C 36 ERROR AT STATEMENT NUMBER 00000+008

indicates error number 36 at the 8th line in the program (not counting blanks and comments). The message

C 36 ERROR AT STATEMENT NUMBER 00010+001

would indicate error number 36 at the first statement after statement number 10.

Error
Description

C01
Nonnumeric character in statement number

C02
More than 5 continuation cards, or continuation card out of sequence

C03
Syntax error in CALL LINK or CALL EXIT statement

C04
Unrecognizable, misspelled or incorrectly formed statement

C05
Statement out of sequence

C06
Unreachable statement

C07
Name longer than 5 characters, or name not starting with alphabetic character

C08
Incorrect or missing subscript within dimension information

C09
Duplicate statement number

C10
Syntax error

C11
Duplicate name in COMMON statement

C12
Syntax error in FUNCTION or SUBROUTINE statement

C13
Parameter (dummy argument) appears in COMMON statement

C14
Name appears twice as a parameter in SUBROUTINE or FUNCTION statement

C15
*IOCS control record in a subroutine or function

C16
Syntax error in DIMENSION statement

C17
Subprogram name in DIMENSION statement

C18
Name dimensioned more than once or not dimensioned in first appearance

C19
Syntax error in REAL, INTEGER or EXTERNAL statement

C20
Subprogram name in REAL or INTEGER statement, or a function contains its own name in an EXTERNAL statement

C21
Name in EXTERNAL that is also in COMMON or DIMENSION statement

C22
IFIX or FLOAT in EXTERNAL statement

C23
Invalid real constant

C24
Invalid integer constant

C25
More than 15 dummy arguments or duplicate dummy argument

C26
Right parenthesis missing from a subscript expression

C27
Syntax error in FORMAT statement

C28
FORMAT statement without statement number

C29
Field width specification greater than 145

C30
In a FORMAT specification, E or F conversion is wider than 127 or has more than 31 decimal places

C31
Syntax error in EQUIVALENCE statement

C32
Subscripted variable in a statement function

C33
Incorrectly formed subscript expression

C34
Undefined variable in subscript expression

C35
Number and/or range of subscripts does not agree with DIMENSION

C36
Invalid arithmetic statement or variable; or, in a FUNCTION subprogram the left side of the arithmetic statement is a dummy argument or in COMMON

C37
Syntax error in an IF statement

C38
Invalid expression in an IF statement

C39
Syntax error or invalid simple argument in CALL statement

C40
Invalid expression in CALL statement

C41
Invalid expression to the left of an equal sign in a statement function

C42
Invalid expression to the right of an equal sign in a statement function

C43
In an IF, GO TO or DO statement, a statement number is missing or is the number of a FORMAT statement

C44
Syntax error in READ, WRITE or FIND statement

C45
READ or WRITE statement requires an *IOCS record (mainline only)

C46
FORMAT statement number missing or incorrect in a READ or WRITE

C47
Syntax error in input/output list, or a list element is invalid, or in a FUNCTION subprogram an input item is a dummy argument or is in COMMON

C48
Syntax error in GO TO statement

C49
Index of a computed GO TO is missing, invalid or not preceded by a comma

C50
*TRANSFER TRACE or *ARITHMETIC TRACE or CALL PDUMP requires an *IOCS control record in a mainline program

C51
Incorrect nesting of DO statements, or terminal statement of DO is a GO TO, IF, RETURN, FORMAT, STOP, PAUSE or DO statement.

C52
More than 25 nested DO statements

C53
Syntax error in a DO statement

C54
Initial value in a DO statement is zero

C55
In a FUNCTION the index of DO is a dummy argument or is in COMMON

C56
Syntax error in BACKSPACE statement

C57
Syntax error in REWIND statement

C58
Syntax error in END FILE statement

C59
Syntax error in STOP statement

C60
Syntax error in PAUSE statement

C61
Integer constant in STOP or PAUSE statement greater than 9999

C62
Last executable statement before END is not a STOP, GO TO, IF, CALL EXIT, CALL LINK or RETURN statement

C63
Statement contains more than 15 different subscript expressions

C64
Statement too long because of subscript expansion or temporary storage use

C65
All variables undefined in an EQUIVALENCE statement

C66
EQUIVALENCE of an array element causes array to extend beyond end of COMMON

C67
Two variables or array elements in COMMON are EQUIVALENCED, or the relative location of two variables or array elements are assigned more than once, or a standard precision real number is assigned to an odd address by means of an EQUIVALENCE.

C68
Syntax error in an EQUIVALENCE statement, or invalid variable name used

C69
RETURN statement missing from subprogram or present in mainline program

C70
No DEFINE FILE statement found in a program that uses disk I/O statements

C71
Syntax error in a DEFINE FILE statement

C72
Duplicate or more than 75 DEFINE FILE statements, or DEFINE FILE in subprogram

C73
Syntax error in record number of disk READ, WRITE or FIND statement

C74
Defined file exceeds disk storage size

C75
Syntax error in DATA statement

C76
Names and constants in a DATA statement are not in a one-to-one correspondence

C77
Mixed mode in DATA statement

C78
Invalid Hollerith constant in DATA statement

C79
Invalid hexadecimal specification in a DATA statement

C80
Variable in a DATA statement not used, or argument appears in DATA statement

C81
COMMON variable loaded by a DATA statement

C82
DATA statement too long due to compiler limitations

C85
*ORIGIN record appeared in a subprogram

C86
*ORIGIN causes output to exceed address 7FFF hexadecimal

C96
Working storage on disk is too small to hold compiled program

C97
The program is too large to be compiled due to compiler limitations

C98
The code used to initialize the addresses of dummy arguments in a subroutine has exceeded the limit of 511 words. In general, the number of arguments plus the number of times arguments are used in the subroutine must not exceed 506.

C99
Total core requirements exceed 32767 words

11.8. Fortran Program I/O Error Wait Codes

Runtime errors in Fortran programs cause a processor halt. The program can be resumed by pressing PROGRAM START; the action taken is indicated in the following table by the following letters: X - program exits; N - execution continues with next statement; E - all remaining variables in the I/O statement will be treated as errors; Z - value is read or written as zero; A - the actual format specification will be used; u - UFIO not updated; U - UFIO updated.

ACC
Description
Action

F000
No *IOCS was specified but I/O was attempted
X

F001
Local unit defined incorrectly, or no *IOCS for specified device
N

F002
Requested record exceeds buffer size
E

F003
Illegal character encountered in input record
Z

F004
Exponent too large or too small in input
Z

F005
More than one exponent encountered in input
Z

F006
More than one sign encountered in input
Z

F007
More than one decimal point encountered in input
Z

F008
Read of output-only device, or write to input-only device
N

F009
Real variable transmitted with I format or integer transmitted with E or F
A

F020
Illegal unit reference
u

F021
Read list exceeds length of write list
U

F022
Record does not exist in read list
U

F023
Maximum length of $$$$$ area on disk has been exceeded
X

F024
*IOCS (UDISK) was not specified
X

F100
File not defined by DEFINE FILE statement
X

F101
File record number too large, zero or negative
X

F102
Read error on disk
X

F103
*IOCS(DISK) was not specified
X

F104
Write error on disk
X

F105
Length of a list element exceeds record length in DEFINE FILE
X

F106
Read-after-write failed
X

F107
Attempt to read or write an invalid sector address (may occur if a core image program is run with too little room in working storage)
X

F108
Seek error
X

F10A
Define file table and/or core image header corrupted, probably by an out-of-bounds array subscript
X

12. Macro Assembler

12.1. Assembler Control Records

*TWO PASS MODE

Requests that the assembler perform a two-pass assembly by reading the source deck twice.

By default the assembler stores intermediate output in WS, and actually does perform two logical passes, so TWO PASS MODE is not needed in most cases. It's only needed when you really NEED to physically run the source deck through twice, as when you want to punch the object code onto the source cards.

*LIST

Requests that the assembler print a source listing (with object code values).

*XREF

Requests that the assembler print a cross-reference listing after the assembly.

*LIST DECK

xxx

*LIST DECK E

xxx

*PRINT SYMBOL TABLE

Requests that the assembler print a symbol table listing after the assembly.

*PUNCH SYMBOL TABLE

xxx

*SAVE SYMBOL TABLE

Requests that the symbol table be stored to disk as the System Symbol Table after assembly. (The System Symbol table occupies a fixed location on the disk in one of the assembler phases, and so does not appear in the LET or FLET)

*SYSTEM SYMBOL TABLE

Requests that the System Symbol Table be read in prior to assembly.

*LEVEL n
xxx

*OVERFLOW SECTORS n1,n2,n3

xxx

*COMMON nnnnn

Requests that when linked, nnnnn words of common be allocated. Used when creating assembler modules that are to be linked with Fortran modules.

*MACLIB libnm
xxx

12.2. Assembler Statement Format

After any Assembler Control statements, Assembler coding statements are formatted in columns 21 through 72. Columns 1 through 20 and 73 through 80 are ignored. The statement fields are indicated below

 222222222333333333344444444445555555555666666666677777777778
 123456789012345678901234567890123456789012345678901234567890

 label opcd FT operarand(s)... comments sequence

Most instructions follow the following field conventions:

Field
Columns
Description

label
21-25
An optional symbolic address definition of up to five letters. The characters allowed are A-Z, 0-9, @, #, $ and the single quote '. The label must start with a non-numeric character.

opcd
27-30
An opcode or assembler directive.

F
32
The Format field controls the instruction mode and length and can be one of the following characters:

blank
Short—The instruction will be one word long (except as noted). The difference between the current location and the operand value will be as the instruction's displacement field.

X
Absolute short—The instruction will be one word long (except as noted). The operand value will be used directly as the instruction's displacement field.

L
Long—The instruction will be two words long. The operand value will be placed in the second word of the instruction (except as noted)

I
Indirect—The instruction will be two words long. The operand value will be placed in the second word of the instruction and will indicate the address from which the actual instruction data will be retrieved.

T
33
The Tag field indicates an index register for indexed instructions. The tag can be one of the following values:

blank
The instruction will not use an index register

1
The instruction will use index register 1

2
The instruction will use index register 2

3
The instruction will use index register 3

operands
35...
Any required operands begin in column 35. The first blank column usually terminates the operand field except in the case of DMES and in the case of the character constant (period blank).

comments
...72
Comments may follow the operand field after one or more blanks.

sequence
73-80
A sequence number may be punched in columns 73 through 80

12.3. Assembler Constants and Expressions

Format of constants and expressions:

/xxxx
hexadecimal value

.x
character value (EBCDIC code, in low byte)

label
label value

±nnn
decimal integer

±nnn.nnn
±nnn.nnnE±nn
floating point value

±nnn.nnnBnn
±nnn.nnnE±nnBnn
fixed point value

Arithmetic expressions use standard algebraic precedence. Are parentheses allowed?

12.4. Assembler Directives and Pseudo-Ops

 ABS
Absolute Assemble

label AGO dest
Unconditional Assembly Branch

label AGOB dest
Unconditional Assembly Branch Back

label AIF cnd,dest
Assemble If

label AIFB cnd,dest
Assemble If Back

label ANOP
Assembler No Op

label BES f nwords
Block Ended by Symbol

Reserves nwords words of memory. The label is defined as the address of the last word. If f is E, the memory block starts at an even address.

label BSS f nwords
Block Started by Symbol

Reserves nwords words of memory. The label is defined as the address of the first word. If f is E, the memory block starts at an even address.

label DC value
Define Constant

Places the value value in memory. Value can be a constant or an expression.

label DEC value
Define Decimal Constant

label DMES t message
Define Message

label DN xxxxx
Define Name

label DSA xxxxx
Disk Sector Address

label DUMP saddr[,eaddr]
Dump and Terminate Execution

label EBC .characters.
Extended Binary Coded Information

 EJCT
Eject Page

 END dest
End Assembly

 ENT dest
Define Subroutine Entry Point

 EPR
Extended Precision Assemble

label EQU value
Equate Symbol

label EXIT
Return Control to the Supervisor

label FILE unit,nrec,recl,U,dest

Define Disk File

 HDNG text...
Set Page Heading

 ILS nn
Define Interrupt Level Subroutine

 ISS nn dest
Define Interrupt Service Subroutine

 LIBF dest
Call Transfer Vector Subroutine

 LIBR
Define Transfer Vector Subroutine

label LINK xxxxx
Load and Execute Another Program

 LIST [ON|OFF]
Listing On / Off

 MAC [x]
Define Temporary Macro

 MEND
Macro end

label ORG value
Define Origin

label PDMP saddr[,eaddr]
Print Dump and Continue Execution

label PURG 'name'
Remove Macro Name from Library

label SET value
Set Symbol

 SMAC [x]
Define Stored Macro

 SPAC nlines
Space Listing

 SPR
Single Precision Assemble Mode

label XFLC value
Define Extended Floating Point Constant

12.5. Instruction Opcodes

label A ft operand
Add

label AND ft operand
Logical And

label B ft dest
Branch

label BC ft dest
Branch if Carry Set

label BN ft dest
Branch if Negative

label BNN ft dest
Branch if Not Negative

label BNP ft dest
Branch if Not Positive

label BNZ ft dest
Branch if Not Zero

label BO ft dest
Branch if Overflow Set

label BOD ft dest
Branch if Odd

label BOSC t cnds
label BOSC ft dest[,cnds]
Branch Out or Skip on Condition

label BP ft dest
Branch if Positive

label BSC t cnds
label BSC ft dest[,cnds]
Branch Out or Skip on Condition

label BSI t cnds
label BSI ft dest[,cnds]
Branch and Store Instruction Address Register

label D ft dest
Divide

label EOR ft dest
Logical Exclusive Or

label LD ft dest
Load Accumulator

label LDD ft dest
Load Double

label LDS value
Load Status

label M ft dest
Multiply

label MDM dest,incr
Modify Memory and Skip

label MDX ft incr
label MDX f dest,incr
Modify Index and Skip

label NOP
No Operation

label OR ft dest
Logical Or

label RTE ft nbits
Rotate Right Accumulator and Extension

label S ft dest
Subtract

label SD ft dest
Subtract Double

label SKP cnds
Skip on Condition

label SLA ft nbits
Shift Left Accumulator

label SLC ft nbits
Shift Left and Count Accumulator and Extension

label SLCA ft nbits
Shift Left and Count Accumulator

label SLT ft nbits
Shift Left Accumulator and Extension

label SRA ft nbits
Shift Right Accumulator

label SRT ft nbits
Shift Right Accumulator and Extension

label STD ft dest
Store Double

label STO ft dest
Store Accumulator

label STS ft dest
Store Status

label STX ft dest
Store Index

label WAIT
Wait

label XCH
Exchange Accumulator and Extension

label XIO ft dest
Execute I/O

12.6. Macro Assembler Error Flags

Flag
Description

A
An attempt has been made to specify a displacement outside the range -128 to +127.

C
A character other than +, -, Z, E, C or O was detected in the first operand of a short branch or in the second operand of a long BSC, BOSC or BSI

F
A character other than L, I or X was found in column 32, or L or I was specified for an instruction valid only in short form, or I was used inappropriately

L
An invalid character was detected in the label field

M
Multiply defined label

O
Operation code is invalid, or pseudo-op incorrectly placed. (An assembler bug makes LIBR and ILS invalid after a HDNG!)

Q
Questionable instruction, used on MDX with displacement of zero (which is valid but apparently suspect)

R
Relation error: an expression does not have a valid relocation, an absolute displacement was not specified, an absolute origin was specified in a relocatable program, a relocatable operand was specified as a BSS or BES parameter, the target of the END statement in relocatable program was not a relocatable value, or the operand of an ENT statement was not relocatable

S
Syntax error: An invalid expression was used, an invalid character was detected, END missing start address in a mainline program, EBC missing delimiter or has zero character count, invalid label in ENT or ISS, or label appears in more than one ENT

T
Tag error: column 33 contains character other than blank, 0, 1, 2, or 3. (Note: in ISS and ILS statements, columns 32 and 33 can contain other digits)

U
Undefined symbol

W
An X or Y coordinate or both is not within specified range, or invalid operand

X
A character other than R or I is in column 32 or a character other than D or N is in column 33

Z
An invalid condition was specified in a conditional branch or interrupt order

13. Loading a DMS Disk Image

This section is not yet written
Batch file mkdms builds the components

Job deck loaddms loads the components onto a cartridge

Probably will not work on unix/linux until all files are renamed in lowercase.

Interestingly, the 1130's assembler cannot be used for several reasons: no support for SBRK cards, poor floating point constant precision (!), and bugs which are tripped up by a LIBR directive after a HDNG directive.

13.1. Required Files

13.2. Required Utilities

13.3. Assembling DMS and Components

13.4. Building DMS for a 1132 Printer

13.5. Building DMS for a 1403 Printer

13.6. Building DMS for Alternate Memory Configurations

14. Data Formats

This section lists 1130 numeric data representations.

Single Word Integer Format

Single word integers are two's complement 16-bit values stored in one word. The format is:

0
1

15

Sign
MSB
integer value
LSB

Double Word Integer Format

Double-word integers are two's complement 32-bit values stored in two words. The first word must be stored at an even address. The most significant word is stored first. The LDD instruction loads the first word into the accumulator and the second word into the extension register. (Double word integers are used only by assembly language programs. Fortran programs always perform 16-bit integer arithmetic. When the *ONE WORD INTEGERS control record is not used, Fortran stores integers in two or three words to match the size of real numbers,, but uses only the first word for data).

even address A

0
1

15

Sign
MSB
integer value

odd address A+1

0

15

integer value
LSB

Standard Precision Floating Point Format

Standard precision floating point numbers are stored in two words. The first word must be stored at an even address. The 24-bit mantissa is stored as a two's complement signed value with an implied binary point between bits 0 and 1 of the first word. The characteristic (binary exponent) is offset by 128. Numbers are stored in normalized form so for positive numbers bit 1 is always 1 and for negative numbers bit 1 is always 0. Zero is represented as all 32 bits set to 0.

even address A

0
1

15

Sign
MSB
mantissa

odd address A+1

0

7
8

15

mantissa
LSB
characteristic (offset 128)

Extended Precision Floating Point Format

Extended precision floating point numbers are stored in three words with no address restrictions. The 32-bit mantissa is stored as a two's complement signed value with an implied binary point between bits 0 and 1of the second word. The characteristic (binary exponent) is offset by 128. Numbers are stored in normalized form so for positive numbers bit 1 is always 1 and for negative numbers bit 1 is always 0. Zero is represented as all 48 bits set to 0

address A

0

7
8

15

unused
characteristic (offset 128)

address A+1

0
1

15

Sign
MSB
mantissa

address A+2

0

15

mantissa
LSB

Fixed Point Format

Assembly language programs can specify fixed point real constants. These numbers are stored as two's complement numbers in two words with the first word at an even address. The position of the binary point is not encoded in the stored value, and must be tracked by the program. The assembler syntax for such numbers is (nnn.nnnBbb or (n.nnnE(eeBbb, where bb specifes the number of binary digits to the left of the implied binary point. The specifier B0 places the binary point between bits 0 and 1 of the first word; B31 places it after the least significant bit and results in a standard double word integer. The illustration below shows the interpretation of B5 format.

Even address A

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Sign
MSB
integer part
fractional part

Odd address A+1

0

15

fractional part
LSB

15. Character Codes

The following table lists the 1130 character codes. The console keyboard generates Card Code values. Card code values are stored in the uppermost 12 bits of a word according to the following diagram. Eight-bit codes are stored in the lower 8 bits of a word, or are packed two characters to a word. The 1403 printer codes are actually 6 bit codes with a parity bit to ensure odd parity.

Bit:
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Punch:
12
11
0
1
2
3
4
5
6
7
8
9

Character
EBCDIC
IBM Card Code
1132 Printer
Subset
Console
Printer
Paper Tape
PTTC/8
1403 Printer
Code

Dec.
Hex
Hex
Hex #
Hex
Hex
Hex

NUL
0
00
B030

PF punch off
4
04
8210

HT horiz tab
5
05
8110

41
6D

LC lower case
6
06
8090

6E

DEL delete
7
07
8050

7F

RES restore
20
14
4210

05
4C

NL new line
21
15
4110

81
DD

BS backspace
22
16
4090

11
5E

IDL idle
23
17
4050

BYP bypass
36
24
2210

LF line feed
37
25
2110

03
3D

EOB end of blk
38
26
2090

3E

PRE prefix
39
27
2050

PN punch on
52
34
0210

RS reader stop
53
35
0110

09
0D

UC upper case
54
36
0090

0E

EOT end of xmit
55
37
0050

space
64
40
0000

21
10
7F

¢
74
4A
8820

02
20 (U)*

. (period)
75
4B
8420
4B
00
6B (L)
6E

<
76
4C
8220

DE
02 (U)

(
77
4D
8120
4D
FE
19 (U)
57

+
78
4E
80A0
4E
DA
70 (U)
6D

|
79
4F
8060

C6
3B (U)

&
80
50
8000
50
44
70 (L)
15

!
90
5A
4820

42
5B (U)

$
91
5B
4420
5B
40
5B (L)
62

* (caret)
92
5C
4220
5C
D6
08 (U)
23

)
93
5D
4110
5D
F6
1A (U)
2F

; (semicolon)
94
5E
40A0

D2
13 (U)

¬ (not)
95
5F
4060

F2
6B (U)

- (dash)
96
60
4000
60
84
40 (L)
61

/
97
61
3000
61
BC
31 (L)
4C

, (comma)
107
6B
2420
6B
80
3B (L)
16

%
108
6C
2220

06
15 (U)

_ (underscore)
109
6D
2120

BE
40 (U)

>
110
6E
20A0

46
07 (U)

?
111
6F
2060

86
31 (U)

: (colon)
122
7A
0820

82
04 (U)

#
123
7B
0420

C0
0B (L)

@
124
7C
0220

04
20 (L)

' (apostrophe)
125
7D
0120
7D
E6
16 (U)
0B

=
126
7E
00A0
7E
C2
01 (U)
4A

" (quotation)
127
7F
0060

E2
0B (U)

a
129
81
B000

b
130
82
A800

c
131
83
A400

d
132
84
A200

e
133
85
A100

f
134
86
A080

g
135
87
A040

h
136
88
A020

i
137
89
A010

j
145
91
D000

k
146
92
C800

l
147
93
C400

m
148
94
C200

n
149
95
C100

o
150
96
C080

p
151
97
C040

q
152
98
C020

r
153
99
C010

s
162
A2
6800

t
163
A3
6400

u
164
A4
6200

v
165
A5
6110

w
166
A6
6080

x
167
A7
6040

y
168
A8
6020

z
169
A9
6010

(+ zero)
192
C0
A000

A
193
C1
9000
C1
3C or 3E
61 (U)
64

B
194
C2
8800
C2
18 or 1A
62 (U)
25

C
195
C3
8400
C3
1C or 1E
73 (U)
26

D
196
C4
8200
C4
30 or 32
64 (U)
67

E
197
C5
8110
C5
34 or 36
75 (U)
68

F
198
C6
8080
C6
10 or 12
76 (U)
29

G
199
C7
8040
C7
14 or 16
67 (U)
2A

H
200
C8
8020
C8
24 or 26
68 (U)
6B

I
201
C9
8010
C9
20 or 22
79 (U)
2C

(- zero)
208
D0
6000

J
209
D1
5000
D1
7C or 7E
51 (U)
58

K
210
D2
4800
D2
5B or 5A
52 (U)
19

L
211
D3
4400
D3
5C or 5E
43 (U)
1A

M
212
D4
4200
D4
70 or 72
54 (U)
5B

N
213
D5
4100
D5
74 or 76
45 (U)
1C

O
214
D6
4080
D6
50 or 52
46 (U)
5D

P
215
D7
4040
D7
54 or 56
57 (U)
5E

Q
216
D8
4020
D8
64 or 66
58 (U)
1F

R
217
D9
4010
D9
60 or 62
49 (U)
20

S
226
E2
2800
E2
98 or 9A
32 (U)
0D

T
227
E3
2400
E3
9C or 9E
23 (U)
0E

U
228
E4
2200
E4
B0 or B2
34 (U)
4F

V
229
E5
2100
E5
B4 or B6
25 (U)
10

W
230
E6
2080
E6
90 or 92
26 (U)
51

X
231
E7
2040
E7
94 or 96
37 (U)
52

Y
232
E8
2020
E8
A4 or A6
38 (U)
13

Z
233
E9
2010
E9
A0 or A2
29 (U)
54

0
240
F0
2000
F0
C4
1A (L)
49

1
241
F1
1000
F1
FC
01 (L)
40

2
242
F2
0800
F2
D8
02 (L)
01

3
243
F3
0400
F3
DC
13 (L)
02

4
244
F4
0200
F4
F0
04 (L)
43

5
245
F5
0100
F5
F4
15 (L)
04

6
246
F6
0080
F6
D0
16 (L)
45

7
247
F7
0040
F7
D4
07 (L)
46

8
248
F8
0020
F8
E4
08 (L)
07

9
249
F9
0010
F9
E0
19 (L)
08

16. Known Problems/Limitations

· The card punch is not yet working. This will be fixed soon.

· Several devices are not implemented: 2501 reader, paper tape reader/punch, plotter, and the serial communications adapter. It would probably be a good idea to add the 2501 reader so that reading and punching could be performed on separate devices. The plotter would probably be fun too; this may be added eventually. You cannot currently have both an 1132 and 1403 printer at the same time.

· The DMS Macro Assembler does not like some of the directives and fixed point constants in the DMS source code. This is not a bug in the emulator, but in the 1130's own assembler. IBM cross-assembled DMS on a 360 or 370. For this package, DMS must be assembled using the asm1130 cross assembler.

· There is a bug in the Fortran compiler: If you call a function with no arguments, it will flag the wrong statement with the C36 syntax error.

· Be very careful when calling subroutines and functions. The 1130's subroutine linkage is pretty fragile. If you pass the wrong number of arguments, the 1130 will end up executing data.

column 13

column 17

column 21

implied binary point

black ribbon

carriage return

red ribbon

� Not in ibm1130code.zip, which is packaged for simh users.

� These utilities are not terribly important. They were written mainly as debugging aids during development of the emulator and while learning how to build DMS.

� This is used to help debug DMS. You can happily ignore it.

� These probably don't work yet

any unlisted code will be printed as a space by the PRNT1 subroutine

* (U) or (L) mean that the code is defined in upper case mode or lower case mode, respectively

