
Remote Procedure Call

by Bruce Jay Nelson

Remote Procedure Call

by Bruce Jay Nelson

CSL·81·9 May 1981

CA
I.-

Node A NodeC

AB
Node B ABCl ABC1D Node D

..
I ABC2

... ..
.. ..

SA
CD ..

.... ... ,..

RECOVERING

Abstract, keywords, and CR categories: page iii

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto I California 94304

Remote Procedure Call

Report number CSL-81-9.

Copyright 1981 by Bruce Jay Nelson. All rights reserved.

This report reproduces a dissertation submitted to Carnegie-Mellon University in partial fulfillment of
the degree requirements for the Doctor of Philosophy. The CMU report number is CMU-CS-81-119.

The research in this dissertation was supported by the following sources: the Carnegie-Mellon
University Computer Science Department, the Hertz Foundation, the Xerox Corporation, and
the Defense Advanced Research Projects Agency under contract F3361S-78-C-1551.

The title illustration shows a four-node distributed computer system communicating with remote
procedure calls.

This dissertation was produced with Bravo. Graphs and illustrations were prepared with Plot and Sil.
Bribe and Scribe assisted with the reference list. Milt Mallory was the printer.

Abstract

Remote procedure call is the synchronous language-level transfer of control between programs in
disjoint address spaces whose primary communication medium is a narrow channel. The thesis of
this dissertation is that remote procedure call (RPC) is a satisfactory and efficient programming
language primitive for constructing distributed systems.

A survey of existing remote procedure mechanisms shows that past RPC efforts are weak in
addressing the five crucial issues: uniform call semantics, binding and configuration, strong
typechecking, parameter functionality, and concurrency and exception control. The body of the
dissertation elaborates these issues and defines a set of corresponding essential properties for RPC
mechanisms. These properties must be satisfied by any RPC mechanism that is fully and uniformly
integrated into a programming language for a homogeneous distributed system. Uniform
integration is necessary to meet the dissertation's fundamental goal of syntactic and semantic
transparency for local and remote procedures. Transparency is important so that programmers need
not concern themselves with the physical distribution of their programs.

In addition to these essential language properties, a number of pleasant properties are introduced
that ease the work of distributed programming. These pleasant properties are good performance,
sound remote interface design, atomic transactions, respect for autonomy, type translation, and
remote debugging.

With the essential and pleasant properties broadly explored, the detailed design of an RPC
mechanism that satisfies all of the essential properties and the performance property is presented.
Two design approaches are used: The first assumes full programming language support and involves
changes to the language's compiler and binder. The second involves no language changes, but uses
a separate translator-a source-to-source RPC compiler-to implement the same functionality.

Design decisions crucial to the efficiency of the mechanism are made using a set of RPC
perfonnance lessons. These lessons are based on the empirical performance evaluation of a
sequence of five working RPC mechanisms. each one faster than its predecessor. Some expected
results about the costs of parameter copying. process switching, and runtime type manipulation are
confinned; a surprising result about the price of protocol layering is presented as well. These
performance lessons, applied in concert, reduce the roundtrip time for a remote procedure call by a
remarkable factor of 35. For moderate speed personal computers communicating over an Ethernet,
for example, a simple remote can takes 800 microseconds; on a higher speed personal computer, the
same remote call takes 149 microseconds. In both cases the remote call takes about 20 times longer
than the same local call. This represents a substantial performance improvement over other
operational RPC mechanisms.

Key words and phrases: communication primitives, computer networks, distributed computing,
interprocess communication, message passing, naming and binding, procedure call, programming
languages, protocols, remote procedure call, software performance evaluation.

CR categories: 3.81, 4.12, 4.22, 4.6.

To the islands o/the South Pacific

Remote Procedu re Call

Isla de Pascua-Chile
27°06' S 109°21' W

The Dutch discover huge monoliths on the eastern edge of Polynesia, Easter Day, 1722

Table of Contents

List of Figures, Tables, and Algorithms xiii

Acknowledgements xv

1 Introduction 1
1.1 An Informal Perspective 1

1.1.1 Concurrent Systems 1
1.1.2 Distributed Systems 2
1.1.3 Messages in Operating Systems 2
1.1.4 Procedures in Programming Languages 3
1.1.5 Remote Messages and Remote Procedures 4
1.1.6 Data Transfer 5

1.2 The Thesis 6
1.2.1 Scope and Goals 6

2 Remote Procedure Call 9
2.1 Definitions, Examples, Primitives, and Models 9

2.1.1 Definition of Remote Procedure Call 9
2.1.1.1 Autonomy 10
2.1.1.2 Unreliable Communication 10
2.1.1.3 Coroutines, Exceptions, and other Transfers 11
2.1.1.4 Synchrony and Concurrency 11

2.1.2 A Remote Procedure Example 12
2.1.2.1 A File Server Example 12

2.1.3 An Abstract Machine RPC Primitive 13
2.1.3.1 Remote Transfer 15

2.1.4 An Language Translator RPC Primitive 15
2.1.5 A Model and Example of Communication Systems 17

2.1.5.1 An Abstract Communication Model 17
2.1.5.2 The Internetwork, a Physical Communication System 18
2.1.5.3 Pup Internetwork Levels 19
2.1.5.4 Protocol Levels in Conventional Systems 21

viii TABLE OF CO~TE~JS

2.1.6 A Crash and Failure Model 22
2.2 Overview of the Essential Issues 23

2.2.l Fundamental and N onfundamental Issues 23
2.2.2 Call Semantics 24

2.2.2.1 Exactly-once Semantics 25
2.2.2.2 Last-one Semantics 25

2.2.3 Binding and Configuration 26
2.2.3.1 Remote Interfaces 26

2.2.4 Typechecking 26
2.2.4.l Type Translation 27

2.2.5 Parameter Functionality 27
2.2.5.1 Marshaling Parameters 27

2.2.6 Concurrency Control and Exception Handling 28
2.3 A Glance at Important Peripheral Issues 28
2.4 Benefits 29

2.41 Resource Sharing 29
2.4.2 Load Splitting 30
2.4.3 Conversation 31
2.4.4 My Motivation 31

3 Survey of Existing Mechanisms 33
3.1 Background 33
3.2 Mechanisms 34

3.2.l . Sail's Message Procedures 34
3.2.2 The Arpanet's Distributed Programming System 35
3.2.3 Hamlin's Cages 36
3.2.4 Rochester's Intelligent Gateway 36
3.2.5 CMU'S Multi-Media Message System 37
3.2.6 Cook's StarMod 37
3.2.7 Clu's Guardians 38

3.2.7.1 Type Translation and Transmission 39
3.2.8 Spector's Remote Memory Operations 39

3.3 A Brief Evaluation 40

4 Ideal Properties of a· Transparent Mechanism 41
4.1 The Essential Issues 41

4.1.1 Call Semantics 42
4.1.1.1 At-least-once Semantics 42
4.1.1.2 Last-of-many Semantics 43
4.1.1.3 Crash Semantics 45
4.1.1.4 Extenninating Orphans 47
4.1.1.5 Immediate-return Semantics 48
4.1.1.6 Sequencing Semantics 49
4.1.1.7 Invocation Schemes 50

4.1.2 Binding and Configurations 51
4.1.2.1 The Spectrum of Binding Times 52
4.1.2.2 Binding Interfaces and Components 52
4.1.2.3 Remote Variables 52
4.1.2.4 Authentication and Authorization 53
4.1.2.5 Binding Heterogeneous Configurations 54
4.1.2.6 Load Control 54

4.1.3 Typechecking 55

TABLE OF COI\;lE~lS ix

4.1.3.1 The flexibility Spectrum 55
4.1.3.2 Type Authentication and Validation 56
4.1.3.3 Type Translation 57
4.1.3.4 Versions and Persistent Values 57

4.1.4 Parameter Functionality 58
4.1.4.1 VAR Parameters 58
4.1.4.2 Pointer Parameters 59
4.1.4.3 Procedure Parameters 61

4.1.5 Concurrency Control and Exception Handling 62
4.1.5.1 Concurrency 62
4.1.5.2 Exceptions 63
4.1.5.3 Aborts 63
4.1.5.4 Timeouts 63

4.2 The Pleasant Issues 64
4.2.1 Good Performance 64
4.2.2 Sound Remote Interface Design 64
4.2.3 Atomic Transactions 65
4.2.4 Respect for Autonomy 65
4.2.5 Type Translation 66
4.2.6 Remote Debugging 66

4.3 Summary of Ideal Properties 67
4.3.1 Essential Properties 67
4.3.2 Pleasant Properties 68

5 Design Approaches for a Transparent Mechanism 69
5.1 Emissary's Semantics 69
5.2 Design Overview 70
5.3 Orphan Algorithms 70

5.3.1 Algorithm Definitions 71
5.3.2 Orphan Definitions 71
5.3.3 Extermination 73

5.3.3.1 Mutually Interacting Crash Recoveries 74
5.3.3.2 Costs and Stable-storage Requirements 75
5.3.3.3 Incomplete Extenninations 79

5.3.4 Expiration 79
5.3.4.1 Costs and Clock Requirements 83

5.3.5 Epochs and Reincarnation 83
5.3.5.1 Weak Last-one Semantics 83
5.3.5.2 Regular Reincarnation 84
5.3.5.3 Gentle Reincarnation 85
5.3.5.4 Costs and Communication Requirements 86

5.3.6 A Comparison of Orphan Algorithms 86
5.3.7 Other Orphan Schemes 87

5.3.7.1 Reincarnation Only 88
5.3.7.2 Reliable Broadcasting 88
5.3.7.3 Deadlining with Postponement 88

5.3.8 Reflections 89
5.3.8.1 Transparency and the Essential Properties 90

5.4 Remote Call Mechanisms 90
5.4.1 Remote Call Machinery 90

5.4.1.1 Procedure Call Code Sequences 91
5.4.1.2 Local and Remote Transparency 92
5.4.1.3 Emissary's Runtime Mechanism 93

x TABLE OF COXTEl"TS

5.4.1.4 Some Fine Points of Emissary's Design 95
5.4.1.5 Omitted Details in Emissary's Algorithm 98
5.4.1.6 Perforrriance Considerations in Emissary's Design 100

5.4.2 General RTransfers 101 ..
5.4.3 Marshaling Parameters 103

5.4.3.1 Basic Operations 103
5.4.3.2 Marshaling Specific Types 103
5.4.3.3 Other Languages 107

5.4.4 Stubs 107
5.4.4.1 An Example 107
5.4.4.2 Stub Advantages 108
5.4.4.3 Marshaling Procedure and other Transfer Parameters 109
5.4.4.4 Stub Translator Design Issues III

5.4.5 Reflections 112
5.4.5.1 Transparency and the Essential Properties 113

5.4.6 The Emissary RPC Algorithm 113
5.5 Distributed Binding 123

5.5.1 Background 124
5.5.2 Dynamic Loading of Configurations 124

5.5.2.1 A Local Loader Model 124
5.5.2.2 A Remote Loader Model 125
5.5.2.3 Dynamically Mustering a Set of Programs 125

5.5.3 Static Binding of Configurations 126
5.5.3.1 Using a Remote Server 128
5.5.3.2 Commanding a Distributed Company 129

5.5.4 Reflections 131
5.5.4.1 Transparency and the Essential Properties 132

5.6 Summary 133

6 Performance Evaluation of a Family of Mechanisms 135
6.1 Family History 135

6.1.1 Processors 136
6.1.2 Communication 136
6.1.3 RPC Mechanisms 136

6.1.3.1 Envoy 136
6.1.3.2 Diplomat 137
6.1.3.3 Stubs 138
6.1.3.4 Liaison and PktStream 138
6.1.3.5 EtherPkt 138
6.1.3.6 EtherPktMC 138
6.1.3.7 Profile of Characteristics 138

6.2 Benchmark Description 139
6.2.1 Benchmark Procedures 139
6.2.2 Timing Methods 140
6.2.3 PC Histograms 141

6.3 Performance Evaluation 141
6.3.1 Dolphin Remote Call Times 141
6.3.2 Dorado Remote Call Times 142
6.3.3 Network Characteristics 143
6.3.4 Process Utilization 144
6.3.5 PC Histograms 145

6.4 Performance Lessons 146
6.4.1 Bytestreams are bad. 146

TABLE OF CONTE~lS xi

6.4.2 Watch for hidden protocol costs. 147
6.4.3 Special-purpose protocols are good. 148
6.4.4 Use microcode for exceptional performance. 148
6.4.5 Caches are very important. 149
6.4.6 Marshal by compiling inline, not interpreting out-of-line. 150
6.4.7 Marshal large blocks, not small ones. 151
6.4.8 Select your data protocol carefully. 151
6.4.9 Avoid copying whenever possible. 152
6.4.10 Summary of Perfonnance Lessons 153

6.5 Functionality Lessons 154
6.5.1 Named binding is important. 154
6.5.2 Clients want full parameter functionality. 155
6.5.3 Remote interfaces must be carefully designed. 155
6.5.4 eall-by-reference problems are tricky. 155
6.5.5 Summary of Functionality Lessons 157

6.6 Retrospective 158

7 Conclusion 159
7.1 Reviewing the Goals 159
7.2 A Critical E\'aluation 160

7.2.1 The Value of Transparency 160
7.2.2 The Need for Orphan Algorithms 161
7.2.3 The Role of Performance 162
7.2.4 The Trials of Implementation 162
7.2.5 The Nature of Processes 162

7.3 Future Directions for RPC 163
7.4 Contribution to Computer Science 164

Appendix 1. Some Mesa Details 165

Appendix 2. Examples of Envoy-Diplomat, Liaison, and EtherPkt 169
A2.1 Envoy-Diplomat 170
A2.2 Liaison 178
A2.3 EtherPkt 185

References 191

Rapa-Austral Seamount
270 36' S 1440 20' W

In this southern Polynesian enclave. women sometimes outnumber men six to one

List of Figures, Tables, and Algorithms

Figures
2.1 A simple remote procedure call from client C to server S. 12
2.2 The Transfer implementation of a procedure call from context C to procedure P. 14
2.3 A stub remote procedure call from client to server. 16
2.4 Fonnats of an Ethernet packet and of an encapsulated Pup' internet datagram. 19
2.5 The abstract levels in the Pup internetwork protocol hierarchy. 20
4.1 A two-machine last-of-many remote procedure call. 43
4.2 A three-machine nontransitive last-of-many remote procedure call. 44
4.3 An orphaned remote procedure call that violates last-of-many semantics. 44
4.4 Two invocation policies: concurrent via processes and serial via call queueing. 50
5.1 A distributed system with orphans originating at recovering node B. 72
5.2 A distributed system with orphans originating at crashed node G. 87
5.3 The compiled code sequences for a remote call of P by Q. 92
5.4 An overview of an Emissary remote call from Qnode to Pnode. 94
5.5 A remote FileOps.ReadPage call from client to server. 107
6.1 Dolphin remote call times. 142
6.2 Dorado remote call times. 143
6.3 TwentyArray execution profiles. 147
6.4 Performance comparison of the evaluated mechanisms. 153

Tables
6.1 Summary of main RPC family characteristics. 139
6.2 Dolphin remote call times. 141
6.3 EtherPkt and EtherPktMC remote call times. 143
6.4 Network characteristics. 144
6.5 Process machinery utilization. 144
6.6 TwentyArray execution profiles. 145
6.7 S tringD esc rip tor marshaling times. 150

Algorithms
4.1 Lampson's unabridged last-of-many remote procedure algorithm. 46
5.1 Emissary's orphan extennination algorithm. 76-78
5.2 Emissary's orphan expiration algorithm. 81-82
5.3 Emissary's high performance remote procedure mechanism. 114-22

Tofua-Tonga
19°46' S 175°04' W

Fletcher Christian and the mutineers cast Bligh adrift. 28 April 1789

Acknowledgements

Writing my dissertation was a voyage of discovery through a sea of detail. While the role of the

crew was important-navigation through shoals, reassurance during stonns, companionship in the

doldrums-I had to be the captain throughout. The commission demanded more than I expected,

and one of its rewards is the satisfaction I feel now that the voyage has ended. I call this success,

although the ultimate worth of my cargo can only be valued long after it's been to market.

My main crew, a committee of four, was superb. Their strong individual contributions in the

areas of call semantics, remote binding, and process failures are too numerous to mention. Bob

Sproull tirelessly read through endless drafts, ever insistent on clarity and conciseness. Bob was an

invaluable and uncompromising advisor who stuck to the helm in the heaviest of seas. Jim Mitchell

was an extremely persistent reader, and his ample comments-from small to large-significantly

increased the range, accuracy, and readability of the thesis. Jim was a patient coadvisor whose good

ideas and spirits lightened my few passages through the doldrums. Anita Jones carefully considered

all of my models, and her criticism and editing improved them manyfold. Rick Rashid suggested

some splendid organizational changes and pinpointed many unwarranted (and now eliminated)

generalizations.

In addition to my committee, Will Crowther, Craig Everhart, Paul Hilfinger, Andy Hisgen, Butler

Lampson, Roy Levin, Roger Needham, and Mike Powell contributed ideas to the dissertation.

Butler's continuing work on remote procedures kept me constantly on my toes; indeed, he was a

effectively a silent coadvisor. Craig, Paul, and Andy read critical sections of the thesis; their

insightful comments remedied several problems and clarified the presentation.

Other people contributed real work to the dissertation, actively helping me sail my ship. Jim

White launched Envoy-Diplomat by christening a special version of Envoy. Amy Lansky and Paul

Rovner wrote the first version of Stubs by building on top of Diplomat. Andrew Birrell wrote the

xvi ACK~OWLEDGE\'IENTS

PktStream code and help me tune and debug it as component of Liaison. Gene McDaniel wrote aU

of the EtherPktMC microcode and, in addition, Gene's wonderful Spy gathered the histogram data

appearing in chapter 6.

My voyage had two patrons, Carnegie-Mellon University's Computer Science Department and

Xerox's Palo Alto Research Center. In my mind, a joint degree was awarded by both. In

particular, eMU fostered the freedom that let me pursue my topic so single-mindedly, and Xerox's

marvelous computing environment let me accumulate so much detail for chapters 5 and 6. These

are two incomparable institutions. My highest compliment to them is that each was generous

enough to let me spend half my time at the other.

The logistics of any long voyage are formidable, and I was lucky to enlist some of the best

tacticians available. On the east coast, Sharon Burk's skillful ministrations allowed me the luxury of

a May graduation-with nanos to spare. Sharon'S love of students and mastery of CMU red tape

make her a small treasure. On the west coast, Sara Dake coordinated the· rapid passage of drafts

between Jim Mitchell and myself and assisted Gloria Wamer in dealing with Xerox's patent

attorneys. Sara is also a treasure, and her role in my life is simply too large for words.

A chronicler on a voyage of discovery necessarily writes for others. I began my voyage with good

writing skills, not realizing I'd spend many a dark night honing them further. My best English

tutor, Cynthia Hibbard, gave excellent and learned advice on all writing matters. I also persuaded

Cynth to critically review the final manuscript. My other tutors, fortunately, were able to be more

constant companions: A Handbook for Scholars by Mary-Claire van Leunen (Knopf, 1978), A

Manual of Style (University of Chicago Press, twelfth edition 1969), and The Elements of Style by

William Strunk Jr. and E. B. White (Macmillan, third edition 1979).

Bon voyage.

1

Manihiki-Cooks
10° 24' S 161°01' W

Nativesfree dive to a record thirty fathoms for mother-ofpearl

lntroduction

Network pioneers explored many approaches to intennachine communication as they built the first
distributed systems. This dissertation picks one promising approach-remote procedure call-and
develops it into a flexible and powerful tool for communication in distributed systems.

1.1 An Informal Perspective

Mechanisms for communication between programs have developed steadily since Konrad Zuse's
first high-level PlankalkiU proposals in 1945 [3]. Early programmers had their hands full dealing
with the complexities of exactly one process executing on exactly one processor. Today's
programmer still deals with sequential processes, but he is also often concerned about the

cooperative interactions of many such processes executing concurrently on one or more processors.

1.1.1 Concurrent Systems

The development of programming language mechanisms for communication and control in
concurrent systems has traditionally taken two paths: procedure calling and message passing.

Procedures. The procedural approach is characterized by independent single threads of
control, one per process. Sharing and synchronization, sometimes accomplished with global
variables and semaphores, are now more frequently (and abstractly) handled with Hoare
like monitors [10,37]. Interprocess communication occurs by procedure calls to monitors.
The degree of concurrency is controlled by creating and destroying processes. This
procedural approach tends to deemphasize concurrency and establishes a dominant theme
of sequentiality that reduces apparent program complexity.

Alessages. The message approach is characterized by multiple threads of control.
Interprocess communication is via messages explicitly sent between ports (mailboxes) that
are accessed by one or more processes. In pure message-passing systems there is usually no

2 REMOTE PROCEDCRE CALL

shared global data, and synchronization occurs automatically as messages queue at ports.
Concurrency is controlled by using independent Send and Receive operations on messages
so that a process is free to perform other computation-Le., send more messages-rather
than wait for a reply. The message approach emphasizes explicit concurrency.

1.1.2 Distributed Systems

In many computer systems, programs, processes, and processors are becoming increasingly more

autonomous (logically isolated) and distributed (physically separated). This is causing a significant

quantitative change in the problems faced by the programmers of these distributed systems.

Application programs have traditionally dealt with monolithic operating systems that coordinate all

services. But in network or multiprocessor environments, the same application programs often deal

with a collection of autonomous, decentralized services that execute on distinct physical or virtual

machines. This separation of resources has forced previously one-process applications to deal with

multiple-process interactions that were once managed by a host operating system. This places an

additional burden on the application programmer: Not only must his program be correct, but it

must also be reliable in the presence of failures that were often previously handled by a monolithic

operating system.

In a sense distributed systems have created no new burden at all. They have just exacerbated an

old one by shifting some of the responsibility for robust coordination of critical resources like file

systems from carefully armored operating systems to generally unprepared applications.

Alternatively, this shift can also be attributed to increased user expectations about the reliability of a

distributed system.

One way to achieve high reliability is to extend existing (robust) operating system facilities over

the distributed environment. This approach provides applications with a uniform high-level network

operating system [94]. While network operating systems have been built, most distributed systems

emphasize the independent and decentralized nature of their environments. Lower-level and more

loosely coupled communication is considered appropriate in these explicitly decentralized systems.

In practice, of course, applications will see a spectrum of resource functionality and reliability,

ranging from distinct autonomous services to fully integrated conventional systems. What

distributed systems have done is to widen an application's simultaneous view to include· this entire

spectrum of functionality and reliability-not just a narrow point or two. This widening of the

spectrum, especially at the distributed end of the scale, has created a demand for new language

level primitives to deal with the communication needs of programming distributed systems.

1.1.3 Messages in Operating Systems

A frequent operating-system response to this demand has been to provide message-passing

primitives. For example, Demos, the RC4000, RIG, StarOs, and Thoth are all message-oriented

operating systems [2,10,51,41,15].

1 I~TRODCCTIO;\ 3

The message-passing approach is a natural reflection of underlying implementations that usually

copy messages between processes, or transmit messages between processors in a network. Message

based interprocess communication has the advantages of simple and efficient implementation, direct

introduction of parallelism, and explicit notions of Send and Receive failure. The latter is especially

important in distributed environments where the partial failure of one, but not all, autonomous

services is commonplace.

On the other hand, this operating system approach can have several disadvantages from a

language design standpoint. The first is that messages introduce a control primitive that is quite

different from procedure-oriented mechanisms. This can be a problem for procedural (Algol-like)

languages where a message-passing operation is a new communication primitive. The second is that

messages are sometimes introduced into languages with an inconsistently typechecked structure.

This can cause type violations in strongly typed languages. Unfortunately, these two disadvantages

often combine to give message passing a different, confusing level of semantic support from

procedure call. (This is not to slight exclusively message-oriented environments like Xerox's

Smalltalk and Hewitt's Actors [26,35], which have provided elegant message semantics in single

machine systems for some time.) Fortunately, recent language-level message-passing distributed

system designs have overcome this problem (e.g., Hoare's Communicating Sequential Processes

(CSP), Feldman's Plits, and Liskov's Guardians [38,23,57]).

1.1.4 Procedures in Programming Languages

In programming languages, another response to the demand for distributed-system

communication primitives has been the remote procedure call, that is, one machine (or virtual

machine) "calling" another. Both Brinch Hansen's Distributed Processes and Cook's original

StarMod exemplify this approach [12,17].

The development of remote procedure call (RPC) is a natural outgrowth of work on the

abstraction of data, control, and concurrency in procedural languages. For RPC purposes this

evolution can be briefly summarized as follows: The basic procedure notions of Algol60 were

supplemented with type specifications in Pascal. Brinch Hansen extended Pascal with monitors and

processes in Concurrent Pascal [11]. Modules were added as an abstraction method in Mesa and

Modula [62,971. Finally, separate compilation of strongly typed modules and monitors appeared in

Mesa and Ada [91].

A crucial characteristic of all these languages is that their processes are tightly coupled and can

share memory. Because of this, interprocess communication in these languages usually occurs by

local procedure calls to monitors. When monitors are located in different address spaces from the

programs that want to to call them, however, local procedures no longer work and remote

procedures (with identical semantics) can be used. This remote environment of isolated processes

and monitors corresponds to distributed systems of distinct (virtual) machines.

4 RE\10TE PROCEDCRE CALL

An important property of remote procedures is that they can uniformly extend Algol-like naming

and binding into a distributed system: If the naming and binding of remote monitors and their

procedures conform to the same standards as their local counterparts, then programmers wi11 see a

consistent structure in distributed systems. This approach represents one logical evolution of the

single-machine languages described above into a multiple-machine distributed system.

While remote procedures may seem like an obvious communication primitive for use in

distributed systems, their language-level implementation has been hampered by the very strong

semantics of local procedures. For example, local procedure call has well-defined semantics for

parameters, concurrency, naming, and binding. In many languages procedures are also subject to

the scrutiny of strong typechecking. Consistently extending even a subset of these procedure

semantics into a loosely coupled distributed environment has been much harder than specifying an

orthogonal message scheme with different semantics.

A more fundamental semantic problem with remote procedures has been the "always returns"

property of local procedures. Guaranteeing that a remote procedure call always returns is extremely

difficult in a distributed environment where both computers and communication can-and do-fail

arbitrarily. Compounding these reliability problems, the lack of powerful concurrency and

exception-handling mechanisms in procedural languages has made difficult the extension of local

calls into remote ones without some combination of clumsy timeouts, error codes, or call-failure

traps. Fortunately, languages with sufficient concurrency and' exception facilities are now becoming

available (e.g., Ada and Mesa).

1.1.5 . Remote Messages and Remote Procedures

The preceding discussion of messages and procedures uncovered an interesting trend: operating

systems usually provide message-passing interprocess communication primitives, and programming

languages usually offer procedure-based primitives. The reason for this difference lies in the nature

of operating systems and programming languages themselves. Operating systems are typically

designed to support a variety of different programming languages and applications, and to support

them all reliably. Given the proliferation of message-based interprocess communication (IPC)

mechanisms in uniprocessors and multiprocessors, most operating system designers must feel that

message passing is a more reliable and adaptable IPC primitive than· procedure call. (Of course,

many operating systems are "impure" and have procedural interfaces to themselves. But this

discussion is about application-to-application IPC, even if it is invoked with procedures.) An

operating system that adopts RPC as its application-level IPCprimitive-for instance, Pilot

[73]-must apparently assume that all applications will be using the same (or related) high-level

languages. The ostensible conclusion here is that RPC is frequently easy to integrate into a

language-where uniform high-level primitives are wanted-but often hard to integrate into an

operating system-where universal low-level primitives are desired. But this conclusion is not

absolute: as noted above, full support for either message- or procedure-based communication is

found in at least one programming language or operating system.

1 I~TRODUCTION 5

This discussion has tried to show that neither message passing nor procedure calling is a panacea

for the problems of communication and control in distributed systems. Whether messages,
procedures. or entirely different mechanisms are the best language-level primitives for

communication between independent asynchronous programs is still an open question. What is

certain, however, is that the fundamental semantics of any communication primitive must cope with
the failure-prone nature of distributed systems.

Guarino's thesis [29] addresses the message-passing and procedure-calling question in depth and

concludes that either mechanism can be used to implement a very general model of control. In the

common case of intraprocessor communication, each scheme is represented well in present

programming environments-for example, CSP and Smalltalk use messages, and Mesa and Modula

use procedures. Lauer and Needham [52] discuss the same question in the much more concrete

setting of operating system structures and conclude that, under some mild restrictions, messages and

procedures have the same power. Although Guarino's review of Lauer and Needham's paper

exposes some fundamental flaws in their arguments, she does not dispute their following high-level

result: The decision to provide message-based or procedure-based control primitives should be

founded on considerations of machine architecture and programming environment rather than on

intrinsic properties of messages or procedures themselves. Again, each scheme is present in existing

single-machine operating systems (e.g., Demos uses messages and Pilot uses procedures).

The extension of Lauer and Needham's argument to distributed environments is not always

readily accepted. In a 1978 distributed computing workshop [69], Howard Sturgis's suggestion that

distributed systems be built with remote procedures provoked heated argument. In a later 1980
workshop [34], however, the benefit of several years of actual experience was clear: Workshop

participants responded favorably to reports about a number of operational RPC-based and message

based systems. This acceptance is to be expected, for the problems uncovered in the comparison

above share a common semantic thread in both schemes. Issues of call semantics, naming and

binding, system configuration, strong typing, parameter functionality, concurrency control, exception
handling, and error recovery are still being actively investigated for both mechanisms. Because

remote procedure call and message passing are both rubric for a convenient, powerful, and

semantically coherent communication primitive, we can fully expect that work on one mechanism

will directly benefit work on the other.

1.1.6 Data Transfer

Of course, there are situations in which neither messages nor remote procedures are the best

communication mechanism. These situations are characterized by extensive communication that

requires little or no programmer control. For example, bulk data transfers between machines are

supported quite handily by existing network bytestream mechanisms [8]. These network streams are

very similar to the untyped file and stream 110 that most programming environments supply

through the courtesy of their underlying operating systems. Digital voice transmission is another

situation where rapid but somewhat unreliable response is more important than slow but reliable

6 RE\;fOTE PROCEDCRE CALL

delivery. While messages and remote procedures are poor models for this bulk communication,

they can still be fruitfully used to control the initiation, mediation, and termination of these

communications.

1.2 The Thesis

The thesis of this dissertation is that remote procedure call (RPC) is a satisfactory and efficient

programming language primitive for constructing distributed systems. I studied remote procedures

for two reasons:

I believe in casting design problems in a concrete setting. My experience with the Alto
computers, Mesa programming language, and Ethernet local network lead quite naturally to
my studying remote procedures in the context of this strongly procedure-oriented
distributed environment.

As distributed computing comes of age, creating a suitable paradigm for programming
distributed systems is important. The system designers and programmers of most
conventional systems are already familiar with procedural languages-e.g., Ada, Algol, Bliss,
C, Interlisp, Maclisp, Mesa, Pascal, andPLl. Giving these programmers a primitive for
distributed communication that preserves the important notions of abstract datatypes can
make their transition to distributed systems reasonably straightforward. RPC is one such
primitive because it can have all of the desirable properties-and also the familiarity-of
local procedure call.

1.2.1 Scope and Goals

This dissertation investigates remote procedure mechanisms for homogeneously programmed

distributed systems using procedure-oriented programming languages. It explores the general

semantic issues of RPC and presents the detailed design of Emissary, a transparent remote

procedure mechanism. The concept of transparency is vital to the thesis. It is defined as follows:

Transparency. Two programming language mechanisms are transparent if they have
identical syntax and semantics. In particular, a transparent language-level RPC mechanism
is one in which local procedures and remote procedures are (effectively) indistinguishable to
the programmer.

The Emissary design, while unimplemented, is based on significant implementation experience

and performance evaluation of prototype mechanisms. As a result, Emissary is one of the most

complete language-level RPC mechanisms known at this time.

The target setting for Emissary is based on the Alto-Mesa programming environment and

Ethernet local network [61,62,89]. This particular choice of a concrete environment is good for two

reasons. First, Mesa is a state-of-the-art language that supports concurrency directly with its process

and monitor abstractions. Second, the Ethernet is an exemplary high-bandwidth communication

channel for local-area (say, one square kilometer) distributed systems. Because the Alto-Mesa

environment is so general, the Emissary-specific results of the thesis are readily applicable to similar

1 I~TRODliCTIOK 7

distributed systems (for instance, to eMU's Spice system [13]). Some design decisions will certainly

change for environments with different attributes, notably communication characteristics,

programming philosophies, and process structures. But the basic design principles and performance

lessons of this dissertation apply to most distributed systems that have loosely coupled processors

programmed with procedural languages.

This dissertation focusses primarily, but not totally, on homogeneous language systems. Because

real distributed systems are not homogeneous, many RPC-related issues of heterogeneous languages

and environments are discussed as well. The underlying philosophy of the dissertation is to survey

the entire area of remote procedures, even where demonstrating the thesis does not require detailed

exploration.

To prove its thesis the dissertation addresses three major goals.

Desirability of remote procedure call. Chapters 2 and 3 show that remote procedure call is a
desirable and satisfactory primitive for communication and control in distributed programs.

Transparency of remote procedure call. Chapter 2 introduces the important RPC issues and
emphasizes the need for a clear statement of remote procedure semantics in the presence of
machine crashes. Chapter 4 addresses these issues in detail and extracts a set of properties
that must be satisfied by any RPC mechanism that has syntactic and semantic transparency.
Chapter 5 presents Emissary-which has these properties-showing that remote procedures
are a realistic primitive for distributed programming.

Efficiency of remote procedure call. Chapter 6 contains a perfonnance evaluation of a large
family of operational RPC mechanisms. The empirical evaluation yields a series of general
performance lessons about communication in distributed systems. These lessons, which
increase the performance of the prototype mechanisms by a factor of 35, are incorporated
into Emissary's design.

2

Tarawa-Gilberts
1° 25' N 173°00' E

JVith just a knife, lagoon swimmers kill tiger sharks for sport

Remote P roced u re Call

Communication in distributed systems is characterized by transfers of infonnation and control

between autonomous programs executing in distinct (virtual) machines. This study of remote

procedure call is the result of a search for a suitable language-level communication primitive for use

in distributed systems. One approach to language-level communication is simply to make remote

procedure calls between distributed programs look and behave exactly the same as local procedure

calls in traditional programs. The thesis adopts this approach wholeheartedly, and the resulting

quest for syntactic and semantic transparency raises a number of fundamental RPC issues. This

chapter introduces these issues briefly; chapter 4 considers them in depth.

The desirability of RPC can be measured by its benefits. The end of this chapter characterizes

the benefits of remote procedures in three ways and then gives a few examples of each. The

examples are not comprehensive, nor are they suitable only for RPC, but they do demonstrate the

widespread utility of remote procedures in distributed systems.

2.1 Definitions, Examples, Primitives, and Models

2.1.1 Definition of Remote Procedure Call

Remote procedure call is the synchronous language-level transfer of control between
programs in disjoint address spaces whose primary communication medium is a narrow
channel.

The tenns remote procedure and remote procedure call have been used by members of Arpa's

Network Working Group to describe calling procedures through the Arpanet [32] for many years

[70].

10 REMOTE PROCEDCRE CALL

2.1.1.1 Autonomy

A key notion of "remoteness" is that the narrow channel is the primary medium used by
programs to communicate. This is why the definition explicitly excludes traditional communication
channels such as shared memory. Programs communicating with remote procedures are best viewed·

as isolated, autonomous entities whose preferred communication is along narrow and clearly defined
pathways-communication shortcuts are neither allowed nor desirable. This autonomous node
environment of distinct virtual memories and channeled communication is one instance of what
Saltzer [75] and others [53] have called a distributed system.

Because remote procedure calls take place between autonomous programs, a failure in one
program does not usually result in the failure of another and is usually detectable by another (e.g.,
when a remote call does not return). This isolation and detectability of failures is a fundamental

property of distributed programs, and it distinguishes distributed programs from local programs
(using local calls) where a failure usually stops everything (e.g., both caller and ca1lee).

2.1.1.2 Unreliable Communication

The notion of inherently unreliable communication is essential in distributed systems where
communication is often through error-prone channels. For example, one communication medium

frequently used in distributed systems is what Cerf and Kahn [14] and Postel [71] call an
internetwork (or internet), a highly but not totally reliable medium whose transmissions are subject

with nonzero probabilities to losses, duplications, errors, and delays. This unreliability can
distinguish remote procedure implementations from local procedure implementations. For instance,

procedure call in uniprocessors and shared-memory multiprocessors is almost always supported by

the hardware and is implicitly assumed to be totally reliable. In loosely coupled distributed
systems, on the other hand, there is usually no hardware support for intennachine procedure calls.

The software or firmware RPC implementation must cope with unreliable communication, not
error-free shared memory (which the hardware makes reliable). But while overcoming unreliable

communication is often an important consideration for an RPC implementation, it need not be a
factor when communication is reliable. For example, programs conversing with RPC can be

executing in autonomous virtual processors that are multiprogrammed on the same uniprocessor (or
multiprocessed on a multiprocessor). If an underlying kernel uses message-passing to provide
interprocessor communication, then not only is a narrow channel being used, but the channel is

probably totally reliable if the kernel uses memory-to-memory message copying.

It is important to observe that the reliability of communication usually has no qualitative ·impact
on RPC semantics. Whether the underlying remote procedure implementation uses a reliable or
unreliable channel, the autonomous programs at the ends of the channel can still fail independently.

Thus the key aspects of distributed programs remain autonomy and isolation of failure, although

communication characteristics-specifically. speed and reliability-are likely to have a marked
quantitative impact on RPC performance.

2 REMOTE PROCEDCRE CALL 11

In summary, the sole requirement of remoteness is that the primary communication medium

used by autonomous programs be a narrow channel. Furthermore, because the unreliability of

communication is a central theme in distributed systems, the remainder of the thesis uses the

unreliable internetwork as the standard channel model.

2.1.1.3 Coroutines, Exceptions, and other Control Transfers

A third important notion in the RPC definition is that the control transfer implied by RPC is not

limited to procedure call itself. While procedure call is the dominant control transfer discipline in

procedural languages, there are usually less frequently used language-level primitives as well. These

can include coroutine transfers, exceptions, and module initialization and finalization. Thus a

general RPC scheme must support arbitrary synchronous transfers such as those proposed by

Lampson, Mitchell, and Satterthwaite in their paper "On the Transfer of Control between Contexts"

[44]. The transfers described in the paper include all of those mentioned above, but specifically

exclude GOTO; this exclusion is adopted here as well. Always remember that while remote

procedure call is a popular and intuitive name, RPC is actually a misnomer that covers the

spectrum of remote transfers in procedural languages.

2.1.1.4 Synchrony and Concu"ency

The last essential notion in the definition is that synchronous transfers are required because high

level languages usually have only synchronous local communication primitives. For example,

calling a procedure, transferring to a coroutine, and raising an exception normally do not start a

concurrent activity that executes the caller and callee in parallel. The limitation to synchronous

remote transfers does not hinder overall concurrency. A language's synchronous transfer

primitives-including remote procedures, remote coroutines, and so forth-can always be composed

with the language's independent concurrency operators-COBEGIN, FORK, and so on-into parallel

activities. Of course, if a language does not have concurrency operators, then the synchronous

restriction prevents concurrency-just as the original language does.

If Guarino's general communication model [29] is used to evaluate the constraint of synchronous

transfers, the definition of RPC appears weak until the independent concurrency operations are

included. This apparent weakness occurs because Guarino demands that her model have the power

to express any control discipline whatsoever: the fundamental operations in her model create and

destroy program components dynamically, and these components communicate both synchronously

and asynchronously. Concurrency and dynamic instantiation are therefore central to her model so

that asynchronous, dynamic control primitives can be defined at the lowest level. As a result,

Guarino's model is wonderfully appropriate for specifying the abstract behavior of high-level

language primitives, but it is not appropriate for evaluating this dissertation's definition of remote

procedure call. This is because the definition of synchronous RPC is based on the high-level

language behavior of synchronous local procedure call, that incorporates parallelism with

independent concurrency operations.

12 RE\10TE PROCEDCRE CALL

2.1.2 A Remote Procedure Example

The prevalence of procedure call as a control primitive in most programming languages makes

RPC a very intuitive concept once one understands that the remote call is simply going through a

narrow channel such as a network. This is illustrated in figure 2.l with a suggested Mesa syntax.

In the example, procedure Pc in module Ale on machine C is calling procedure P s in module Al S

on server machine S. C transmits P s's arguments to S, where S computes P s and transmits P s's
results back to C.

Machine C Machine S

Call
"FS",x,y ...

MODULEMC
,..

MODULE MS

PROCEDURE Pel ...] PROCEDURE %[r,s]
.. . Return ...

z ~ rs[x,y] .. t RETURN[t]
~

Network

Figure 2.1: A simple remote procedure call from client C to server S.

The beauty of this example is that the programmers of modules Ale and M s do not know there
is a network between them. RPC, when done in the style proposed in this thesis, is transparent to

the programmers of both the client and server modules. The programmer does not have to leave

his usual programming environment to deal with the details of designing and implementing an

application-specific protocol each time his program is distributed over more than one machine.

2.1.2.1 A File Server Example

A file server [5,85,87] is a node that provides information storage services to clients. (Users are

often called clients when they can be either people or programs.) File servers usually store their

information in files, and clients access data through an abstract interface of operations such as

CreateFile, WritePage, CloseFile, and so forth. Because file servers typically execute in isolated

machines that are accessed remotely through a network, their operations are ideal candidates for

remote procedure call.

To illustrate this further, consider a concrete instance of figure 2.1 where C is a client reading

files and S is a file server offering its operations through remote interface M S' Client procedure Pc
now calls service procedure P S' where Psis the server's remote Read procedure, e.g.,

Read: PROCEDURE [file: File, start, stop: BytePosition] RETURNS [data: Buffer].

Of course, if Pc processes only one byte at a time, his ,call of Reafft,file, position, position + 1] will
have rather large overhead~ In this case it is likely that the server, S, will provide the client with

2 RE\lOTE PROCEDURE CALL 13

some local procedures that execute in C and access the server as necessary. For example, the

following local ReadByle routine could maintain a buffer in C and call Read remotely in S as

necessary to refresh it:

ReadByte: PROCEDURE (file: File, position: BytePosilion] RETURNS [byte: BYTE].

Observe that the client application on C need not know where Read and ReadByte reside. The

implementors of the file server declare these operations to be local or remote (relative to the client)

depending on their own policies for providing reasonable service to the client. Implementors can

change these policies at any time without programming impact on the client because the client's

abstract file interface is the same whether all, some, or none of the interface procedures are remote.

2.1.3 An Abstract Machine RPC Primith'e

The Transfer paper's description [44] of local program control is imponant because it defines a

low-level Transfer primitive, where Transfer is an abstract machine operation that is general enough

to express a rich collection of synchronous control disciplines. At the programming language

level-as the paper discusses at length-this collection usually includes at least procedure calls,

coroutine transfers, and exception handlers. In searching for a remote transfer primitive, then, the

desire for language-level uniformity requires looking beyond the intuitive but slightly misnamed

notion of remote procedure call for an abstract machiI}e operation at least as powerful as Transfer.

Fortunately, Transfer is flexible enough to extend naturally into the distributed domain.

Define a context to be a program with some local storage (including pc) and a binding rule

mapping the program's names into storage addresses. Let a port be the name of a context. Then as

defined in the Transfer paper, the Transfer operation

Transfer (destinationI nport, returnOutport, argumentPtr)

specifies that execution of the current context is suspended and that control, returnOutport, and

argumentPtr are delivered to the context named by destinationInport. This new context begins

executing at its previously suspended pc and retrieves arguments using argumentPtr. \Vhen the new

context finishes its work, it (usually) initiates another Transfer of control to the returnOutport

context with a new argumentPtr.

As an example of how Transfer is used to implement language-level pnmlUves, consider

procedure call. The context of a procedure is usually caned its activation record. In Algol-like

languages, a new activation record is created for each execution of a procedure and is destroyed

when the procedure returns. The Transfer procedure call implementation creates and destroys these

activation records with special, predefined contexts. Perfonning a procedure call involves

Transferring to these special contexts as intermediate steps of the call. Figure 2.2 demonstrates this

for a can from context C to procedure P. The Transfers, abbreviated Xferl-4, are explained below.

14 RE\10TE PROCEDCRE CALL

Caller C's Context Procedu re P's Context
Create Activation Context

ProcPPort
PC: caliP ~ CreatePort PC: start

~Inport~
-~lnportJ-- PC: create

Program: Program: Program:
create: .,.

··Make context start: ...
Xfer2 ..

··Call P[args] ··Work of P
callP: Xfer1 ..

Destroy Activation Context

ReturnPort DestroyPort

i InPort ~ PC: destroy ., InPortJ4-

··Retu rn[results)

Program: Xfer3 ~
destroy: ...

.. Dest roy context

Xfer4 ~

Figure 2.2: The Transfer implementation of a procedure call from context C to procedure P.

The call of P from context C uses four Transfers.

Xferl: Transfer(CreatePort, ReturnPort, (ProcPPort,args». C starts the call by Transferring
to the port of the create-activation-record context, CreatePort. The creator uses the
ProcP Port argument to construct the correct activation record.

Xfer2: Transfer(ProcPPort, ReturnPort, args). The creator Transfers to Ps context, passing
along the ReturnPort and args. P then executes the procedure body.

Xfer3: Transfer(DestroyPort, ProcPPort, (ReturnPort,results». P begins returning to C by
Transferring to the DestroyPort with the eventual ReturnPort and results. The destroyer
deallocates Ps activation record, which it identifies by the second ProcPPort argument.

Xfer4: Transfer(ReturnPort, NIL, results}. Finally, the destroyer Transfers to Cs ReturnPort
with results, completing Cs call to P. Since the destroyer is never resumed, the return link
is NIL.

Executing a procedure call with Transfer appears like a lot of work. In practice, extensive

optimizations streamline the four Transfers. For example, creating and destroying an activation

record can be done in just a few instructions: languages that use a stack need only adjust a stack

pointer; languages that use a heap (like Mesa) can use a microcoded frame allocator to obtain

similar efficiency. Hence, while creating and destroying activation records complicates the model in

figure 2.2, the Transfer implementation is nonetheless small and cheap for procedure calls.

2 RE\10TE PROCEDLRE CALL 15

Optimizing the common cases of the Transfer operation-and procedure call is certainly the most

common-is crucial for extracting the best perfOImance from a general mechanism like Transfer.

For less common cases, the efficiency of a straightforward Transfer implementation can be quite

adequate. The utility of Transfer lies in its versatility as a powerful descriptive tool: it can be used

to model procedure call, coroutine transfer. and other language primitives. Optimization is

necessary, but secondary. This vital theme is revisited throughout the thesis, especially in chapters 5

and 6.

2.1.3.1 Remote Transfer

Extending Transfer for remote use is straightforward. RTransfer is defined by making these

simple changes to Transfers arguments.

Inport and oufporl must now identify contexts in the distributed environment rather than
just within one node. This identification is extended by prefixing the name of each existing
context with the name of its host node. This presumes that contexts do not migrate, which
is a continuing assumption here. (If contexts do migrate, adding a level of indirection to
port names remedies the problem.)

ArgumentPtr receives the same treatment. Because it is a pointer, however, dereferencing it
in the destination address space does not work. This problem is overcome by insisting that
remote Transfer handle argumentPlr by passing argumentPtrt as a value parameter,
therefore copying it. This copy makes rempte Transfer use the actual argument record, not
a pointer to it. The Transfer paper suggests using this technique on short argument
records; remote Transfer must always use it.

This definition of RTransfer is readily implemented with messages. First, denote the node and

context parts of a port by port. node and port.context and rename argumenlPlrt to argumentRec for

clarity. Then

RTransfer (destinationI nport, returnOutport, argumentRec)

sends the message (destinationInport, returnOutport, argumentRec) to destination Inp 0 rt. node, where

destinationInport.node delivers control to destinationInport.context with argumentRec. The

relurnOutport always remains a fully qualified name because it can specify a return to any node at

all, not necessarily to the RTransfer's origin.

Observe that the four Transfers implementing local procedure calls above still serve-with

RTransfer-to implement remote calls as well. Xferl and Xfer4 are now RTransfers between

machines; Xfer2 and Xfer3 are sti1l1ocal Trawlers because they switch control between contexts that

are in the same machine.

2.1.4 A Language Translator RPC Primith'e

The RTransfer primitive is a concise and appealing abstract operation for implementing remote

transfers. The Mesa programming system actually uses the local version-Transfer-to implement

control transfers between programs, procedures, coroutines, and exceptions. But there are other

16 RE~10TE PROCEDCRE CALL

languages where Transfer is not available as an abstract machine operation, and indeed where the

compiler generates a different sequence of instructions for each control transfer-typically, for only

procedure call. Integrating an RPC primitive into these Transferless languages is not as easy as it is

for languages that use Transfer. Consider two possibilities:

Compiled RTransfers. Implement RTransfer directly with compiled remote transfer
instruction sequences. This has the advantage of efficiency and transparency, but may not
be feasible if the compiler cannot be changed.

Source-level stubs. A separate source-level RPC translator can augment the compiler by
generating stub routines that implement RTransfer in the language itself. This solution can
be inconvenient for application programmers, but it requires no compiler changes.

In the stub approach, the translator generates two source-level stubs for each remote

procedure-one for the client and one for the server. This is illustrated in the setting of the

previous file server example in figure 2.3. In the figure, the clienCs remote call to

FileOps.ReadPage is automatically intercepted by the local FileOps stub interface, which has a

declaration of ReadPage identical to the file server's real ReadPage.

Client File Server

MODULE Reader MODULE FileOps

buffer ... ReadPage[file,page] ReadPage: PROe [File, Page]

~
,

CaliMsg: .4 RETURNS [Buffer] ,
[ReadPageServer,

file, page]
...

··STUB·· MODULE FileOps ...
·STUB·· MODULE FileOpsServer

ReadPage: STUB [File, Page]
ReturnMsg: ReadPageServer: STUB [...]

RETURNS [Buffer] [ReadPage,buffer]
~

~

Figure 2.3: A stub remote procedure call from client to server.

The stub routines operate as follows: The client ReadPage stub packages the call into a CallAlsg

and sends it to the server's ReadPageServer stub. ReadPageServer unpackages the message and calls

the server's actual implementation of ReadPage, which does not know whether the call is local or

remote. When the real R eadPage procedure finally returns its Buffer, the server stub packages the

buffer in a RetunzAlsg and sends it back to the client. After the client stub receives ReturnMsg, it

unpackages the message and returns the buffer to the original invocation of ReadPage. Because the

call semantics are uniform, the client then proceeds as though the call had been local all along.

Notice a crucial property: The client and server programs-i.e., client module Reader and server

module FileOps-do not change for remote use. The code in these modules is the same whether it

is invoked locally or remotely because the physical location of the procedure implementations is

hidden from programmers behind the FileOps interface. All the RPC details are in the stubs, which

the stub translator creates automatically from a scan of the procedure declarations.

2 RE\10TE PROCEDCRE CALL 17

The stub approach to language-level RPC is typically less efficient than the RTransJer or

compiler approaches because it is not as well integrated into the language runtime environment.

But, in trading the efficiency of the latter methods for the translator's stub approach, procedure

calling unifonnity is still preserved: users write the same code for local and remote use, and no

program changes are necessary. Stubs are discussed again in chapter 5.

2.1.5 A l\1odel and Example of Communication Systems

The descriptions of both of the previous RPC primitives were deliberately vague about "sending

and receiving messages." Indeed, the reader may have wondered how call and return messages are

meaningfully exchanged with the unreliable communication media of section 2.1.1.2: What if the

call and return messages are lost; what if they are delivered many times; what if they have errors?

In a distributed system, understanding the reasons for these questions is as important as knowing

the answers because unreliable behavior is characteristic of intennachine communication primitives.

While any degree of robustness can be built on top of unreliable primitives, the cost of robust

operation can be extremely high. Achieving a cost-effective RPC design requires consideration of

all communication characteristics.

This section uses a two-step approach to study communication characteristics. It first presents an

abstract communication model. The purpose of the model is to capture the unreliable behavior of

physical communication media, where messages can be lost, duplicated, delayed, and delivered with

errors. Second, it presents a typical internetwork. lnternets are an excellent physical realization of

the communication model and are an appropriate example because they are so frequently used in

real distributed systems.

2.1.5.1 An Abstract Communication Model

The communication model consists of two functions, Send and Receive, that operate on a set of

messages, M, called the medium (AI represents messages in transit). Each message, m, is self

contained. If necessary, the identities of the sources that call Send and of the destinations that call

Receive are encoded in messages themselves (this is usually desired). Restating this formally,

AI essage: TYPE = ... ;
Send: PROCEDURE [m: Alessage];
Receive: PROCEDURE RETURNS [status: {good bad}, m: A-Iessage];
AI: SET OF AI essage.

The fonnal semantics of Send and Receive are stated below. The notation is conventional [36]:

If P and Q are logical expressions and S is a statement, then {P} S {Q} means that if P is true,

then after executing S, Q is true. In a concurrent program. the interpretation is that P and Q are

true immediately before and after S, respectively, treating S as indivisible.

{Af=M'} Senalm] {AI=Af' V Al=Al' U{m} };
{Af=l\t} [status, m] +- Receive[] {status=good 1\ (Al=Af' V Af=Af'-{m}) 1\ mEAl'

V slalus= bad 1\ (NI = At V 3mooJAl = M' -{mbad}» }.

18 RE\10TE PROCEDCRE CALL

Send always terminates (strongly satisfies the semantics) while Receive might not (weakly satisfies

the semantics).

This particular model is for unreliable communication. It has the following properties. When

Send completes, it has not necessarily added m to AI (messages can be lost). When Receive

completes, 111 can be any message in !vI (i\1'S messages are unordered). Furthermore, m is not

necessarily removed from M (duplicates can exist). If the status returned by Receive is bad. then m

is corrupted and should be ignored. If status is good, then m is identical to some message that was

sent (no corruption).

Observe that corrupted messages in this model always have bad status. In physical systems this

can never be absolutely true, although the probability of errors can be made arbitrarily small.

Catastrophes caused by the remaining nonzero probability are ignored by the model.

2.1.5.2 The Internetwork, a Physical Communication System

At the lowest level of physical communication, an internetwork [14] has all of the properties of

the preceding abstract model. To guarantee more attractive properties, however, an internetwork

usually includes extra information in messages so that sources, destinations, and errors are readily

identified. This section discusses these basic internet notions and also some useful higher-level

abstractions. The descriptions presented here are fairly comprehensive because internets are used

extensively later in the thesis.

A packet is the fundamental message exchanged between computers on a network. Packets are

usually several hundred to several thousand bytes long; they have identifying source and destination

addresses and usually contain error control infonnation for status checking. (The format of an

Ethernet packet [61] is illustrated in figure 2.4.) A network is a packet transport mechanism that

connects together a number of physically distinct computers (also called hosts, nodes, and

machines). The hosts of a network use Send and Receive to store and forward packets among

themselves as the packets are moved from source to destination: this is where packet switching gets

its name. An internetwork is a heterogeneous collection of networks connected by gateways, which

are hosts with two or more networks connected to them. Gateways contain routing algorithms that

route packets between networks as necessary.

A datagram is the fundamental message in an internetwork. It is a universal packet with

internet-wide source and destination addresses that allow the datagram to be sent between any two

nodes in the internet. To send a datagram between two nodes, it is first encapsulated in one or

more network-specific packets that are transmitted to the proper destination (more than one packet

is required when a datagram is larger than the maximum packet size). If a datagram must traverse

two or more networks to get to its destination, then the gateways along the path will deencapsulate

the datagram as it arrives from one network, and reencapus!ate it before routing it out. on the next.

(The format of a Pup datagram [8] and its encapsulation in a single Ethernet packet are shown in

figure 2.4.)

2 RE\10TE PROCEDCRE CAU

Ethe rnet Packet

2 bytes Destination I Sou rce

2 bytes Ethernet Packet Type

any size Data

2 bytes Ethernet CRC Checksull

Pup Internet Datagram

(encapsulated in
an Ethe rnet packet)

Length and Cont rol

Pup Identifier

Destination
Netwo rk, Host, Socket

Source
Network, Host, Socket

Data

Pup Sofware Checksum

4 bytes

4 bytes

6 bytes

6 bytes

o to 532
bytes

2 bytes

Figure 2.4: The formats of an Ethernet packet and of an encapsulated Pup internet datagram.

19

In this dissertation, the transmission of datagrams-sometimes simply called packets-is assumed

to be unreliable: they are delivered only with high probability, they can contain bit errors because

of corruption during transit, they can be duplicated (delivered many times), and they can be

delayed (delivered long after they are sent). Cooperating hosts that want to communicate reliably

must use reliable transmission to achieve properly sequenced, duplicate-free delivery of errorless

datagrams. Reliable transmission of datagrams is performed by application-level processes that use

end-to-end state information-such as sequence numbers and checksums-to keep track of their

transmitted datagrams. This type of reliable two-party connection is often called a virtual circuit.

2.1.5.3 Pup Internetwork Levels

Packet transport mechanisms, internet datagrams, and virtual circuits are just three levels in a

layered hierarchy of protocols. One simple system is the Pup protocol hierarchy, which is a part of

the Pup internetwork architecture described by Boggs et al. [8]. The Pup protocol levels, illustrated

in figure 2.5, are similar to the Arpanet TCP internet design and to the Open Systems Architecture

[71,98J. The level numbers, however, are different from one architecture to the next.

Each level in the Pup protocol hierarchy implements a different abstraction and has its own

characteristic properties and performance. It is worthwhile to review the layers carefully. This will

be especially useful for chapters 5 and 6.

20 RE\10TE PROCEDlRE CALL

Levels 4, 5, ...
Application-specific protocols

Level 3

Conventions for
data st ructu ring &
process inte raction

FTP Printing
service

File
service

Figure 2.5: The abstract levels in the Pup internetwork protocol hierarchy.

•••

Level 0: Network driver interface. The level 0 abstraction consists of packet transpon
mechanisms such as the Ethernet, the Arpanet, and packet radio. This level is used to
encapsulate unreliable datagrams as they transit the internet. It is also used to send private,
noninternet traffic on the local network. The software interface to level 0 is usually called
the network driver interface because it drives individual (unreliable) packets on the local
network.

Levell: Socket or datagram inteiface. The level 1 abstraction is the unreliable internet
datagram. Level 1 uses fixed datagram formatting, hierarchical addressing, and internet
routing to provide a common layer to all internet hosts. An internet address is the triplet
(network, host, socket), The socket is used for more specific addressing than just a host; it
usually identifies a particular process, or even a mailbox within a process, as the destination
of an internet packet. Because level 1 provides this end-to-end socket routing for
datagrams, its software interface is often called the socket inteiface or datagram interface.

2 RE~OTE PROCEDCRE CALL 21

Level 2: Illlerprocess communication or stream interface. The level 2 abstraction is
interprocess communication (lPC): protocols for exchanging structureless data between
processes. These protocols have different combinations of reliability and throughput. They
can be divided into two rough classes by the amount and duration of state information kept
by the end processes: COf1neclionless protocols are used to exchange a small and perhaps
even fixed number of unreliable packets that require little or no state-e.g., requesting the
date from a time server. Connection-based protocols are used to exchange an indefinite
number of packets that require significant state infonnation to coordinate properly-e.g.,
reliably transferring a transparent stream of data between two processes.

In figure 2.5, RTP is a connectionless rendezvous and termination protocol that is used to
establish connections, i.e., to create unique socket numbers that unambiguously identify the
two parties who wish to communicate. BSP is a bytestream protocol that blurs packet
boundaries by creating a totally reliable stream between processes (not shown is a similar
SPP-sequenced packet protocol-that gives a reliable stream of packets without blurring
the boundaries). RPC is a remote procedure protocol that maps reliable call and return
packets between interacting processes. RPC uses more state than connectionless RTP, but
less than sophisticated BSP. (RPC is shown here at level 2; it can higher in the
hierarchy-or, as we will see later, lower as well.) Because'level 2 has traditionally been
used for bytestream traffic, its software interface is usually called the stream interface or
virtual circuit interface.

Level 3 and above: Application interfaces. The level 3 abstraction adds structure and
assigns meaning to the data of level 2. For instance, FTP is a file transfer program that
uses R TP to create connections and BSP to move data over them reliably. The Printing
and File services use their own application-oriented protocols to implement their printer
and file abstractions. At levels 4 and above, application interfaces build on the lower levels
and the hierarchy often becomes indistinct. The high-level protocols used at these levels
can be quite complex [82]. Software interfaces at level 3 and above and above are usually
application- and function-specific.

2.1.5.4 Protocol Levels in Conventional Systems

The hierarchy of protocol layers described above has an excellent analog in uniprocessor and

multiprocessor systems. Level 0 represents the movement of raw data over bit-serial and bit-parallel

processor and memory busses. Level 1 represents the primitive structuring on raw data that allows

messages-datagrams-to be passed between processes. These level 1 messages also resemble

unreliable datagrams because messages are not always delivered reliably in systems with buffer

allocation quotas; messages usually are, however, delivered error free. Level 2 in a uniprocessor or

multiprocessor message system represents traditional IPe: connection and connectionless protocols,

reliable and unreliable behavior, and streams and other process coordination mechanisms. Levels 3

and above are the same in both conventional and distributed systems.

It is interesting that at level 2, RPC is usually absent from operating system protocol hierarchies.

The reason for this absence, as discussed in section 1.l.5, is that programming languages and

operating systems usually have different founding philosophies.

22 RE\10TE PROCEDCRE CALL

2.1.6 A Crash and Failure Model

The words crash and failure are used interchangeably in this dissertation. Their meaning is

complicated in distributed systems by the presence of -multiple machines and the unreliable

communication between them-links of networks and gateways. After the preceding review of

unreliable internet communication and its analog in conventional systems, it is useful to look at a

simple model for crashes and failures in distributed systems as well.

Node crashes can be classified in two ways.

AI achine failure is the complete halt of a machine and all of its processes because of a
hardware failure or because of a software error that affects all processes (e.g., operating
system "crash"). Furthermore, in some environments the degraded response of a crippled
machine can be tantamount to machine failure.

Process failure is the halt of one process because of a process-specific hardware problem
(e.g., parity error) or because of a process-specific software error.

These definitions of machine and process crash-or failure-apply to both conventional and

distributed systems. Serious communication failures, on the other hand, are usually a problem only

in distributed systems. For instance, if procedure-calling primitives break on a single machine it is

hard to imagine that the processor has not broken, crashing all processes. But in a distributed

system a broken link does not imply a broken processor, nor does the isolation _ of a process imply

that the process has failed.

Before taking a deeper look into this, three definitions of communication-related failure are

needed.

Communication loss is the destruction of infonnation because of unreliable transmission.
The duration of a communication loss can span many orders of magnitude, as the next two
definitions discuss.

Communication outage is the loss of a small amount of information-say, a few
packets-because of network or gateway errors. Communication outages are transient
errors analogous to correctable memory parity errors and are from milliseconds to minutes
in length. If the end-to-end communication mechanism is providing reliable transmission
as described in section 2.1.5.2, then short outages (milliseconds to seconds) are usually
masked from clients and no information is lost. As outages increase in length or frequency,
however, they become more serious.

Communication breakdown or network partitioning is when .no information at all can be
routed to the destination because of network breaks or gateway failures. Communication
breakdowns are hard failures analogous to hardware and software- crashes and are from
seconds to weeks in length. A reliable transport mechanism generally will not mask
breakdowns from clients and will- inform them when the duration of a partitioning is
minutes or longer. Deciding when an outage should be declared a breakdown is usually
system or application dependent. The choice -is roughly analogous to the machine failure
decision that is made when a crippled processor has substandard performance.

2 RE\10TE PROCEDLRE CALL 23

Handling communication breakdown is conceptually straightforward: the isolated nodes simply

wait until communication is reestablished and then retransmit their waiting information. There are

two difficulties with this ideal approach. The first is timing considerations. Real programs are

often not willing to wait even minutes. let alone hours or days, to complete their tasks. Rather than

wait for a particular remote service these programs will often try to take their business elsewhere.

This is, after all, touted as an ad vantage of decentralized computing. The second difficulty is the

nature of the failure. When communication fails it is often impossible to tell whether the failure is

occurring because of a partitioning or because of a remote machine or process crash. If the remote

machine has crashed then waiting will not usually aid recovery. Because of this, most distributed

programs elect to treat communication breakdown exactly like machine failure.

2.2 Overview of the Essential Issues

Behind the conceptual simplicity of the RPC examples in the previous section are a number of

thorny issues. The alert reader may have had an inkling of these issues when considering the

ramifications of the extended RTransfer definition. For instance, increasing the naming scope of

inports and outports raises two questions: What happens when RTransfer is unable to deliver

control to an isolated or unresponsive remote context? How are RTransfer's previously local context

names bound in the new global name space? In addition, the addressing problem with argumentPtr

is recursive-what happens when argumentRec contains pointers?

Behind these questions there are five essential issues. They are defined very briefly here and are

discussed in more detail below.

Call semantics define the abstract invocation behavior of a remote procedure mechanism.

Binding and configuration establish the naming and configuration (interconnection) of
programs communicating with RPC.

Typechecking enforces the type compatibility of interprogram bindings.

Parameter functionality determines the restrictions, if any, on the parameters passed by an
RPC mechanism.

Concurrency control and exception handling define the interactions between the RPC
mechanism and any independent parallel-processing and exception-handling mechanisms.

2.2.1 Fundamental and Nonfundamental Issues

The five issues listed above must be addressed by remote procedure mechanisms whose goal is

language-level local and remote transparency in a homogeneously programmed distributed system.

If the requirement of language-level transparency is relaxed, the issues can be split into two groups:

Fundamental invocation issues. Call semantics and concurrency control are fundamental to
any remote invocation mechanism, whether it is based on procedures, messages, or some
other communication discipline. These two issues are crucial because they determine the
low-level semantic behavior of an invocation primitive.

24 RE~OTE PROCEDCRE CALL

Language-level transparency issues. Binding and configuration, typechecking, and parameter
functionality are vital for the language-level transparency of local and remote procedures.
In this dissertation, these transparency issues merit the same attention as the fundamental
in vocation issues. This is because the· goal of overall local and remote transparency requires
defining more than the low-level semantic behavior addressed by the fundamental issues.
To obtain transparent high-level semantic behavior, the language-level issues must be
considered along with the more fundamental ones. Thus there are five essential issues in all.

The importance of the division into fundamental and nonfundamental issues is quite apparent in

the definitions of the TransJer and RTransJer primitives. In particular, the spirit of the TransJer

primitive is to be as fundamental (primitive) as possible and still get the job done. Thus TransJer

specifies only the basic semantics of intercontext control transfer, parameter passing, and

concurrency (none). Nonfundamental issues of port binding and typing, parameter typing, and

parameter restrictions are explicitly left to the encompassing programming language. As Lampson,

Mitchell, and Satterthwaite point out in the Transfer paper [44], however, the deferral of these

issues must stop at the language level because all the issues must be resolved in the language's

specification. This same principle is true in languages using the RTransJer primitive.

The thesis adopts this principle in the following form: the language-level issues of remote

procedures are resolved in precisely the same fashion as the language-level issues of local·

procedures. Thus, in figure 2.1, the example remote call is intentionally written to appear like a

local call even though the two implementations are worlds-machines-apart. Again, making these

local and remote calls transparent to the programmer is a fundamental requirement of this thesis'

RPC mechanisms.

Chapter three's study of existing RPC mechanisms will confirm this requirement, for one of the

strongest lessons to emerge from existing. schemes is that, to be successful, they must be fully

integrated into their host language environments. For example, if clients must use different

mechanisms for local and remote communication, then many locality decisions will be made early in

the design rather than when the resulting system is tested and tuned. In addition, statically

changing the location of an application's modules (before execution) will require client

reprogramming unnecessary in the presence of a transparent mechanism.

The five essential issues are now discussed in more detail. Chapter 4 considers them completely.

2.2.2 Call Semantics

Call semantics are the most critical behavioral issue of remote procedure call. There are two

cases to consider: RPC in the absence of crashes (the normal situation) and RPC in the presence

of crashes (a rare situation caused by a local or remote process failure or a communication

breakdown). Meeting the goal of local and remote transparency requires that local calls and remote

calls have the same semantics: otherwise, programmers have to adapt their code to both. This goal

is· clarified by separately considering normal call semantics (no crashes) and abnormal call semantics

(crashes).

2 RE\10TE PROCEDCRE CALL 25

2.2.2.1 Exactly-once Semantics

In the absence of crashes, meeting the transparency goal is straightforward. Local procedure call

is characterized by exactly-once semantics: the caller transfers arguments and control to the callee,

waits for the procedure computation to occur exactly once, and resumes execution when the callee

returns results. Remote procedure call easily achieves these exactly-once semantics by demanding

that RTransfer send and receive its control-passing messages reliably. Reliable transmission ensures

that each RTransfer message is exchanged exactly once, as desired.

2.2.2.2 Last-one Semantics

In the presence of crashes, obtaining transparency is complicated. First of all, local calls no

longer have exactly-once semantics. If procedure P performs a local call to procedure Q, their host

machine can crash any time during the transfer to Q, during the execution of Q, or during the

transfer back to P. A crash at any of these times violates exactly-once semantics because the call

does not complete. If the machine is booted and its crashed programs are restaned, either from

checkpoints or from scratch, then the call from P to Q will be repeated. In the face of crashes, this

repetition will continue until the call finally completes and the program either terminates or reaches

another checkpoint. In the presence of crashes, then, the call results and side effects that the

program actually uses are those of the very last call that executes. The results of intermediate

executions-partial or total-are ab-andoned, although the side effects of intermediate calls can

potentially influence the last one. We will say that local calls have last-one semantics in the

presence of machine crashes.

Crashes in distributed systems create new semantic difficulties because a remote procedure call

takes place between two independent parties, and a crash of one party usually leaves the other one

running. In addition, this qualitative semantic difference is often quantitatively magnified by

failure-prone networks that make loosely coupled remote calls more crash-prone than tightly

coupled local calls. For example, a remote call can fail when the machine executing the callee

crashes (leaving the caller running), when the machine executing the caller crashes (leaving the

callee running), or when the transport mechanism partitions sometime after the call message is sent

but before the return is received. The caller and callee of a local can almost never have this

problem when their machine crashes because both caller and callee are swept away together. It can

happen, however, during a local interprocess call when one of the two processes fails, and this is

especially true in multiprocessors. This type of crash, when one of the communicating parties

remains running, is considered further in chapter 4.

It is important to observe that the problems of failure, violated exactly-once semantics, and crash

recovery are not unique to distributed systems. They are just exacerbated in autonomous, loosely

coupled distributed environments.

26 RE\-10TE PROCEDCRE CALL

2.2.3 Binding and Configuration

A language-level RPC scheme must give programmers convenient mechanisms for declaring

distributed programs, or for specifying remote procedure bindings and module configurations. In

particular, the assignment of program modules to the nodes in a distributed environment should not

require programming. There must be a higher-order scheme, such as Mesa's configuration language

(for single machines) [62], which handles the details of module assignment and intennodule

procedure binding, linking, and loading. Reconfiguration of the modules and machines of a

distributed program should be easily specified in this configuration language and require no lower

level changes to the programs themselves.

One important function of a binder-a program that perfonns bindings-is to act as a

typechecking agent. Again considering the example of figure 2.1, the binder must ensure that the

procedure P s actually being called on machine S is the one that procedure Pc on machine C really

wants. The binder's responsibility now extends between machines, and the programmer is asking

the (remote) binder to typecheck these procedure types as well as link them together between

whatever machines are hosting them.

2.2.3.1 Remote Interfaces

This notion of procedure types can be extended a step further by requiring, following chapter 7

of the Mesa Manual [62], that the complete inter/ace of procedures exported by module M s be

typechecked and correctly bound to every module (such as Me) that imports the interface of

module M s This must happen for all machines that import or exportM s's interface. Mesa's

notion of an interface as a collection of related procedures and definitions incorporates remote

procedures nicely. Rather than deal with individual remote procedures, it is often much more

effective to talk about importing and exporting entire remote interfaces of remote procedures (or

coroutines or exceptions). The notion of binding a remote interface is crucial, and remote interfaces

are used from here on.

2.2.4 Typechecking

For remote procedures to be as typesafe as local procedures, the underlying programming

environment must guarantee that whatever type calculus is enforced on local machines is extended

completely into the distributed environment as well. In figure 2.1, this means that the types of x

and y must confonn to those of rand s, and similarly for t and z.

For weakly typed languages this guarantee will often simplify into (for example) a requirement

that t and z are both integers. This simplification may even extend to type translation between

heterogeneous environments of weakly typed languages like Bcpland Lisp, where Bcpl integers may

inherently confonn to Lisp integers. For strongly typed languages, on the other hand, the

guarantee may be much more strict. One can imagine, for example, languages where if t is a RED

INTEGER then z must be a RED INTEGER also.

2 REMOTE PROCEDCRE CALL 27

Whatever typechecking is necessary, efficiency or con\'enience may dictate that much of it be

done as early as possible (e.g., at compile time). But the only actual requirement is that remote

calls violating the type calculus be reported as errors before they execute.

2.2.4.1 Type Translation

Type translation is a fairly separate issue of typechecking, for example, deciding when to convert

a 32-bit ones-complement integer into a 36-bit twos-complement integer. This is a problem for

both heterogeneous language environments and heterogeneous processor environments. For

instance, in the Bcpl/Lisp example, both programs may run on identical machines, yet Bcpl may

use 16-bit integers and Lisp 32. On the other hand, there could be a distributed Pascal program

whose host environments support 36-bit integers on one machine and 32-bit integers on another.

These translation issues transcend remote procedure call although they are vital to its widespread

success.

2.2.5 Parameter Functionality

Permitting the argument and result parameters of remote procedures to have a full range of types

(Le., be as general as possible) is as important as typechecking. For languages with only simple

scalar and static array types this is easy. For variable length structures like strings, dynamic arrays,

and variant records the implementation is still straightforward, typically requiring extra dynamic

allocation-in the callee for arguments, and in the caller for results. The real problems occur when

parameters have implicit or explicit pointers: because the caller and callee have distinct address

spaces, pointers valid in one machine are not usually meaningful in the other. These problems,

including those of procedure parameters, are addressed further in chapter 4.

2.2.5.1 Marshaling Parameters

The process of packaging a parameter record into a call or return message is called marshaling.

Similarly, the inverse process of unpackaging the message is called unmarshaling. The neutral term

marshal has been chosen because it connotes a loose but ordered group. The density connotation

often associated with pack is too strong, as chapters 5 and 6 will show.

As noted above, marshaling is complicated by parameters with pointers because a pointer's

referent, not the pointer itself, is usually what must be transmitted. A parameter record containing

pointers is therefore a tree with the pointers as branches and the referents as leaves. The

marshaling procedure must traverse this tree and flatten it, placing all of the leaves into the

parameter portion of call messages (for arguments) or return messages (for results). Unmarshaling

performs the inverse operation, reconstructing the tree from the flattened representation.

As an example of marshaling, consider the argument record of the following OpenFile procedure.

Open File: PROCEDURE [name: STRING, access: {read write. update}]

28 RE\10TE PROCEDCRE CALL

In Mesa~ strings.are implemented with pointers:

STRING: TYPE = POINTER TO RECORD [

length. maxlength: CARDrNAL.

text: PACKED ARRAY OF CHARACTER 1.

To marshal OpenFile's argument record, then, simply sending (name, access) in a call message is

not sufficient. Instead; «name. length. name. text), access) must be transmitted. The order and

manner in which parameters are flattened and marshaled define a data protocol for the transmission

of parameters. Marshaling and data protocols are considered again in chapters 5 and 6.

2.2.6 Concurrency Control and Exception Handling

The goal of transparency demands that remote calls execute synchronously, just as local calls do.

Because a remote call (usually) involves a process switch, this implies that the caller automatically

blocks and waits until the remote callee returns-just as local calls do without the process switch.

For parallel execution of any activities-local or remote-the programmer must therefore use

whatever concurrency tools his language provides and not expect the RPC implementation to offer

hidden concurrency.

The desire for transparency also requires that remote procedure calls report errors in the same

fashion as local calls. This is straightforward as long as we remember that remote calls raise some

exceptions that local calls never do, for instance, NetworkPartitioned, CommunicationTimeout, and

RemoteCrash. The handling of these exceptions will of course depend on the particular call, but

their reporting must use the same mechanisms available to local calls-not any new ones.

2.3 A Glance at Important Peripheral Issues

Designing a flexible remote procedure mechanism and incorporating it into a rich programming

language will not ensure that RPC is properly or enthusiastically used. To promote the full spirit of

RPC programming a number of allied issues must be considered. These are issues . of the

programming environment rather than of the language. These issues are introduced briefly here

and addressed fully in chapter 4.

Good performance of RPC is vital, for a cumbersome mechanism will be sidestepped
whenever efficiency is important, and this is quite often.

Sound remote interface design is critical because poor remote interface designs, paying for
the higher costs of distributed communication, will suffer performance bankruptcies
unmatched in monolithic systems.

Atomic transactions are necessary for robust programming in the presence of crashes, but
are generally outside the scope of this dissertation.

Autonomy of individual nodes must be considered when the desires of transparency conflict
with the demands of decentralization.

Type translation of data representations between different machines and languages must· be
resolved for heterogeneous environments.

Remote debugging is essential so that programmers do not have to travel between physically
distinct machines to debug distributed programs.

2 REMOTE PROCEDCRE CALL 29

2.4 Benefits

Remote procedure call has many desirable properties. One way to characterize these properties

divides remote procedure applications into three classes: resource sharing, or accessing a common

resource like a file server; load splitting, or partitioning work for space or time advantages; and

conversation, or distributed interaction among closely-coupled processes. The boundaries between

these classes are elastic and many RPC applications fit naturally into more than one. The examples

below are intended to demonstrate the wide utility of remote procedures as a distributed system

building tool, not to categorize a specific system.

All of the following examples can also be programmed with message-passing primitives. But

because the examples are chosen from procedure-based languages and systems, RPC is a very

natural programming context. This is especially true when existing programs must be changed, not

rewritten from scratch. A system originally built from modules and procedures can be distributed

with virtually no changes to the program text if language-level remote procedures are used-the

distribution is largely transparent.

2.4.1 Resource sharing

In a distributed environment common resources are often made available to clients of the

environment by installing the resources in stand-alone machines (or perpetual processes) which

Crocker and his coworkers [19] have called servers. Typical servers include printers, special

purpose processors, file systems, and mail transport and delivery services. As White points out in

his pioneering RPC proposal [95], server clients have traditionally communicated with servers

through individual, application-specific protocols. While Haverty [31] and others have formulated a

general request-response protocol for most server interactions, a server communicating via remote

procedures entirely avoids the special-protocol problem by providing clients, at the outset, with a

procedural interface. If the interface is well defined, clients need not even know whether the

resource's server is actually on their host machine or in fact on another machine of the internet.

This implies that a modularly written service for a one processor system can be easily distributed if

the service's local and remote interfaces are equivalent.

Of course, these procedural server interfaces are exactly what many traditional uniprocessor

operating systems supply with their supervisor and monitor calls. Because they are monolithic,

operating system services are usually viewed differently from the distinct services available in a

distributed environment.

Distributed file services are a fertile area for resource sharing RPC. Most file servers present a

procedural interface that is actually supported with a manually programmed protocol underneath;

the WFS file server is a lucid example of this [87]. Gifford's thesis [25], on the other hand,

describes a transactional file service that builds upon language-level remote procedures for its

implementation. More importantly, Gifford also requires that his RPC have nearly transparent

semantics, especially in the areas of typechecking, parameter functionality, and exception handling.

30 REMOTE PROCEDCRE CALL

Another example of resource sharing RPC is provided by the Cambridge file server [5].

Needham [64] describes an unusual plan whereby personal computers on a local ring network will

transparently use remote procedures to access a universal file server rather than their own 'local file

stores. This conversion will be implemented by writing an inlerface lrans/alion sener. Executing

on its own machine, the translation server will, on one side, use RPC to give local machines exactly

the same interface as their local stores. On the other side, the server will send translated commands

to the central file store.

2.4.2 Load splitting

A common characteristic of many distributed computing environments is the modest processor

speed and memory size of individual host computers. Demanding applications that exceed the

capabilities of an individual machine are often restructured to run on several machines concurrently.

In most cases this means designing an application-specific protocol and then reprogramming to use

it. With remote procedures, however, just reconfiguring the modules of a system for the various

machines is often sufficient. Considerably less reprogramming is needed because these modules

present' the same procedural interfaces as they did before. The difference is that they now

execute-let us hope transparently-on a different machine.

One example of memory-reducing load splitting is where an application program's host machine

has sufficient memory for the program's code, or for its display bitmap, but not for both. A

description of this appears in section 2.4.4.

An example of time-reducing load splitting is given by Will Crowther's integrated circuit design

program [20]. This program uses hill climbing to optimize the layout of circuit elements. An easy

way to speed up the program is to split the search into several pieces and conduct each one on a

separate machine. Crowther's program is written with this optimization in mind. He claims that

with language-level remote procedures he could write a simple control program that partitions the

search space and uses RPC to farm out the layout work, which is already written as procedures.

Thus, by dividing the search space among n machines, the distributed version of the layout program

would complete n times faster than the current program. But Crowther also says that without

transparent RPC he would not seriously consider using multiple machines because of the protocol

programming details.

It is also easy to imagine system designs that exploit load splitting with remote procedures from

the beginning. When VLSI technology has advanced to the point where hundreds of processors exist

on a single chip, the ability to perform vast parallel computations will demand a flexible, high-level

communication strategy such as RPC. Such general high-level approaches have already been

advocated by Sutherland et al. [86]; the first implementations are even appearing in advanced VLSI

processors such as the Intel 432 [39]. In this setting, the complexity of VLSI is so gre'at that

application-level communication primitives must themselves have the power of remote procedures.

2 RE\10TE PROCEDCRE CALL 31

2.4.3 Conversation

Perhaps the largest application for RPC in distributed environments is straightforward

conversational interchange-machine-to-machine, machine-to-person, and person-to-person.

Examples of the first two have been presented above and are readily found in distributed system

literature. The use of distributed environments for intraprogram communication, on the other

hand, is not as widely explored.

The Worm programs of Shoch and Hupp [78] make a whole class of conversation programs

possible. A worm is a distributed program composed of independent segments, each running a

program in a different machine. Worms communicate over an internetwork and can self-replicate,

or automatically spawn new segments each of which boots an idle machine and executes a program

specified by the parent segment. The worm itself keeps a small amount of distributed control in

each segment so that it can manage the birth, replication, and death of segments. A user of a worm

simply supplies a program to be run in each segment. While worms carefully handle all of their

own intersegment activities, they do not supply user applications with any high-level intersegment

communication primitives. Shoch and Hupp report that the toy worm applications they tested all

handled their own communication directly by sending packets. For serious worm programming,

remote procedures are a suitable, higher-level primitive. RPC could also be used by the worm to

coordinate its own intersegment activities.

An example of conversation in a file server utility appears below in section 2.4.4.

Other examples of internetwork communication are given by Sproull and Cohen in their

discussion of high-level protocols [82]. They place particular emphasis on the application-specific

design and implementation of good protocols. They also conclude that for most applications an

RPC approach would be superior because remote procedures eliminate the tedious, error-prone

programming between the protocol specification and its procedural interface to clients.

2.4.4 My Motivation

My motivation to study RPC comes from my personal experience in distributed computing. I

have participated in the implementation of two major distributed programs, and both of these

efforts would have been significantly easier and less frustrating if a viable RPC scheme had been

available. Instead, I was forced in each instance to invent a specific protocol and mechanically

write code mapping the desired procedural interface into the internetwork bitstream implementing

the protoco1.

The first application I attacked was a software performance monitor for the Juniper distributed

file system [85]. Clients of the monitor insert probes into their programs. These probes generate

events that are collected by a monitor and processed and displayed to clients by a reporter. When I

joined the project, all client, reporter, and monitor programs executed on the same machine.

Because the memory and processor demands of the reporter were becoming significant, one of my

tasks was to make the reporter run on an independent machine that received events over a network

32 RE~OTE PROCEDCRE CALL

from the smaller and less-demanding client-resident monitor. This task, which falls into the load

splitting characterization defined above, would have been easy with remote procedures because the

reporter and monitor already had separate interfaces. Simply redefining the existing reporter

interface to be a remote interface consisting of the same (remote) procedures would have solved

80% of the conversion problems. Instead, a great deal of time was spent on "obvious" protocols,

mappings, and debugging.

The second distributed application I implemented was a representation translation service for

Juniper. This program is used whenever Juniper changes its internal representation for files; such

changes happen only when the file server software is updated at a new release. Because each server

runs on a different machine a very straightforward scheme for performing the translation suggests

itself: Use the existing server, running old software, to read its old format files and transmit them

through the internet to the new server, running new software and using the new representation.

(Conventional FfP programs are not suitable for this task because Juniper's representation of a file

and its related properties are quite different· from the file abstraction it presents to FfP.) This

potential RPC application, which falls into the conversation class, was again implemented by

inventing, programming, and debugging a specific protocol whose only purpose was to translate a

Read procedure call on the old server into a Write call on the new one, e.g., in Mesa,

FORjile IN Files DO FOR page INjile.pages DO new. Write[oldReaa!D-isk(page]]] ENDLOOP ENDLOOP.

3

Puluwat-C a rolin es
70 17' N 1490 13' E

Traditional navigation by wind, wave. star, and bird still survives in Micronesia

Su rvey of Existing Mechanisms

Remote procedure call is about ten years old. One of the earliest visions of remote procedure

calling in a network was by Larry Roberts, considered by many to be the father of the Arpanet. In

a 1970 paper now regarded as a classic, Roberts and Wessler [74] asserted:

Any program should be able to calIon the resources of other computers much as it would
calIon a subroutine. The resources which can be shared in this way include software and
data as well as hardware.

The passage of these ten years, however, has seen message passing dominate RPC both in the

Arpanet and elsewhere. Furthermore, most of these messages were not exchanged between high

level communication primitives, but between a small number of programs performing file, mail, and

terminal-traffic transfers. Because of the bulk transfer dominance, this chapter discusses not only

remote procedure mechanisms but allied language-level message-passing schemes as well. This is

fruitful because, as we have seen, the issues behind remote procedures and messages are quite

similar.

3.1 Background

The RPC mechanisms described in this chapter are restricted to implemented, operational,

language-level mechanisms that give the programmer the ability to define and call his own remote

procedures. This restriction excludes some elegant but unimplemented RPC designs:

Brinch Hansen's Distributed Processes [12] are a vertsatile distributed programming tool. To
call procedure Q in process P a programmer writes CALL P.Q(argumentExpressions,
result Variables}. The scheme prohibits shared variables so all interprocess communication
takes place via CALL.

34 RE~OTE PROCEDCRE CALL

Lampson's concise remote procedure model [49] is proposed for use in data storage systems
with atomic transactions. The scheme is unusual because it does not have exactly-once
semantics even in the normal, no-crash case. This RPC model is considered further in
chapter 4.

Schuman, Clarke, and Nikolaou's language-level RPC proposal for Ada [77] addresses most
of the essential issues. A primary objective of the scheme is making no changes to Ada
and, as a result, the RPC mechanism is somewhat unwieldy. In addition, it does not
address call semantics in the presence of crashes or parameter functionality.

The restriction to operational RPC mechanisms also excludes systems that, while advertising

remote procedure calls, actually implement them manually rather than with a general language-level

facility. The Juniper file system [85] and the intercommunication ponion of IBM's Customer

Information and Control System [27,40] are examples of such systems.

In addition to the previous procedure-based mechanisms, a number of message-based operating

systems offer invocation primitives that are useful for request-reply interactions. These primitives

are usually not integrated into the underlying programming language. For example, Demos, RIG,

Roscoe, and Simos have Cal! operations, Thoth has SendRequest, StarOS has Invoke, and Medusa

has VCal! [2,51,79,84,15,41,68]. The semantics of parameter passing and typechecking are different

for each of these mechanisms. In addition, the callee in these systems· is usually not a procedure

but rather a process that explicitly receives call messages and sends return messages. For this

reason, these message-based invocation primitives are excluded from the following discussion of

RPC mechanisms. RIG's Call, however, is included as a typical example of invocation in a

message-based operating system.

3.2 Mechanisms

The program samples used to illustrate each mechanism in this chapter are written in the

mechanism's own host programming language.

3.2.1 Sail's Message Procedures

An early system developed at Stanford by Feldman and Sproull in 1971 provides message

procedures [22]. The general form of a remote message procedure call is:

handle +- ISSUE (directive, source, destination, MESSAGE Procedure(argl,arg2, ... »

Because users of message procedures explicitly send messages (the ISSUE), this scheme is not

really RPC in the strong sense of the definition. It does, however, have several novel features.

Message procedures are integrated directly into the Sail language and have full compiler
support.

The syntax of the remote MESSAGE call is exactly local procedure syntax, i.e.,
Procedure(arg1 ,arg2, ...).

3 SCRVEY OF EXISTI1\G MECHA~IS\1S 35

The arguments of remote calls are typechecked and passed by value. Functions are illegal
because results are not supported.

Message procedures are used for communication between processes in (almost) disjoint
virtual memories.

The message procedure mechanism, while primitive, was an accurate harbinger of systems to

come.

3.2.2 The Arpanet's Procedure Call Protocol and Distributed Programming System

Early work on program communication in the Arpanet environment was generally described in

tenus of message-oriented interprocess communication (IPC). Walden's pioneering article [92] on

an extended IPC for the Arpanet raised various issues of remote procedures versus messages in

1972. Discussion about the "correct" network mechanisms for interprogram and interprocess

control ensued in Arpa's Network Working Group. Two opposing positions emerged: At SRI,

Postel and White [70] set forth a strong case for using a (remote) procedure call protocol as the

fundamental implementation tool of the National Software Works (NSW). The other camp, lead by

Schantz [76], attacked this ambitious RPC proposal as inappropriate for distributed computing. The

counter proposal by Schantz and Thomas was MSG [90], a simpler message-based IPC designed by

a group at BBN.

The message advocates prevailed in this discussion, and MSG became the underlying

communication mechanism of the NSW. The remote procedure group continued in its course,

however, and in 1976 various advanced proposals by White eventually found their way into a

distributed version of SRI's NLS text editor. While the Distributed Programming System (DPS) [96]

never included sufficient language support to make local and remote calls syntactically transparent,

much of the required functionality was present. Some relevant DPS primitives are illustrated by

the following system routines.

OpenPackage: PROCEDURE (package: STRING) RETURNS (handle: PACKAGE);

CallProcedure: PROCEDURE (handle: PACKAGE, procedure: STRING, arguments: LIST OF ANY,
argumentMask, resultMask: LIST OF BOOLEAN)

RETURNS (outcome: BOOLEAN, results: LIST OF ANY);

ReadVariable: PROCEDURE (handle: PACKAGE, variable: STRING) RETURNS (value: ANY).

Notable here is the PACKAGE concept, which allows DPS clients to construct simple remote

interfaces including both procedures and variables. Concern with the binding issue is shown by

the package concept and by the fact that packages, procedures, and variables are identified by a

string name. Clients concerned with efficiency can explicitly ask for certain arguments and results

to be ignored (not transmitted) via the corresponding parameterM asks. Exceptions are handled with

independent N oteProcedures, and DPS included a means of aborting remote procedures (processes).

36 RE\10TE PROCEDCRE CALL

3.2.3 Hamlin's Cages

Outstanding work in remote procedure call was done by Griffith Hamlin at the University of

North Carolina in 1975. Hamlin's thesis [30] discusses Cages, a system for configuring graphics

application programs between a host computer and a satellite graphics processor. In this context he

designed and built a preprocessor that scans PL/I (graphics) programs with special configuration

declarations and produces two PL/I output programs-one for the host, an IBM 360, and one for

the satellite, a DECPDPll. These two programs execute in Hamlin's augmented runtime

environment which provides RPC support for both machines.

The style of the configuration declarations is indicated in the following example. The SAtELLITE

and HOST keywords indicate which processor executes procedure. The optional USES and SETS

clauses define which, if any, of the .arguments are passed only for value or result.

DECLARE procedure ENTRY (argumentList) RETURNS (resultList)
SATELLITE or HOST SETS (argumentListSubset) USES (argumentListSubset)
CALLS (procedureList) ONS (onConditionList) EXTERNALS (globalVariableList) ...

DECLARE global Variable EXTERNAL •.•

It is clear that these declarations require information that is certainly known to the compiler, or .

could be determined by a more elaborate preprocessor. In spite of this lack of transparency, Cages

is a significant achievement. In particular:

Programmers use only procedures, and local and remote syntax are identical. The call and
return messages of the implementation are completely hidden.

In addition to procedures, Cages handles both remote global variables (which are migrated
back and forth on demand) and remote PL/I ON-conditions (a flexible exception
mechanism).

Translation between data representations on the 360 and PDPll is handled automatically.

Hamlin's thesis attacks the problem of how to write a single graphics application program that is

automatically compiled for two machines. In solving the basic graphics problem he creates an

outstanding RPC mechanism as well. By addressing a well-defined two-processor graphics

application, Hamlin achieves significant remote functionality and sidesteps the problems of

multimachine binding and crash recovery.

3.2.4 Rochester's Intelligent Gateway

Rochester's Intelligent Gateway (RIG) [51] is one of the first systems to supply a standard remote

procedure facility for internetwork clients. RIG's communication medium is a simple and elegant

message-passing mechanism that provides interprocess communication for all processes (and thus

machines) in the Rochester internet. As an adjunct to this message-oriented system RPC primitives

are supplied. A remote call looks like:

3 SCRVEY OF EXISTI~G MECHA~ISMS 37

Call (msg, procJd, arg/, arg2, ... , timeout) -) result.

Here msg is a message template, procJd is the procedure name, argJ and arg2 are its arguments,

and result is its result. A Call blocks until either the results come back Of the specified timeout

interval expires. For calls with no result the similar Instruct operation starts a remote call and

resumes the caller without waiting. The RIG scheme, while attractive, has these disadvantages:

Remote "calls" are message operations with opaque message syntax and not transparent
procedure syntax.

No typechecking is done, as the typeless Bcpllanguage is used throughout the RIG system.

No assistance is provided with binding or configuration. The process implementing remote
procedures must be running at the time of the call and be known to the caller.

On the positive side, RIG does have a stack-following Error-ErrorSet exception mechanism that

can be used by remote procedures to pass signals between machines. In addition, arg/ and arg2

can be used in conjunction with a type template mechanism to pass buffers containing string and

array· parameters.

3.2.5 CMU's Multi-Media Message System

Carnegie-Mellon's MMMS project is developing an electronic mail service that combines speech,

text, and graphics with a display-oriented user interface. The prototype system uses a DEC Vax for

processing and Altos as workstations. These machines communicate with a remote procedure

mechanism designed by Gene Ball [1]. The scheme, similar to Hamlin's, provides only for

unilateral calling from the Vax to the Altos.

Remote procedures are written in Bcpl on the Altos. The definitions file for a remote interface

is slightly annotated so that a postprocessor can read the definitions file and generate a file of stub

procedures (section 2.1.4). These stub routines, written in the Unix C language, implement the

remote interface on the Vax. Ball provides a suitable runtime environment on both machines. One

of the novel features of the mechanism is that intennachine communication does not build on

expensive level 2 streams. The reliable two-packet protocol used in their stead is very efficient for

the slower Altos.

3.2.6 Cook's StarMod

StarMod (also called *MOD) is a language for distributed programming developed by Robert

Cook at the University of Wisconsin [17]. Starting with Modula [97], Cook enhanced the basic

language using concepts from Distributed Processes [12]. StarMod introduces two new module

types for distributed programming-network modules and processor modules. Here is a simplified

example:

38 RE\10TE PROCEDCRE CALL

NETWORK MODULE ExampleDistributedSystem =
(Client, FileServer), (FileServer, AuthenticationServer);

PROCESSOR MODULE Client:
Processes, procedures, and data.
END Client;

PROCESSOR MODULE FileS erver;
Processes, procedures, and data.
END FileServer;

PROCESSOR MODULE AuthenticationServer;
Processes, procedures, and data.
END AuthenticationServer;

END ExampleDistributedSystem.

In this example there are three autonomous entItIes: a Client, a FileServer, and an

AuthenticationServer. Network modules define the topology of the communication system, and in

the example the FileServer can talk to both the Client and the AuthenticationServer, but the Client

and AuthenticationServer are unable to talk to each other directly. Processor modules define the

activities of a set of (virtual) machines with a common address space. Each process in a processor

module shares memory with all other processes in the same processor. Intraprocessor

communication is by local procedure and process calls. (A process call is basically the execution of

a procedure in a newly created process.) Interprocessor communication takes place by remote calls

(written in the same fashion as local calls) to other processors. Synchronization is accomplished

with interface modules and signals (Modula's monitors and condition variables).

StarMod is a significant achievement: Cook has built an operational (uniprocessor) system for

distributed programming with a compiler and binder that permit separate compilation. StarMod

addresses the important language-levels issues of uniform call semantics, syntactic transparency,

intennodule binding, and strong typechecking. On the other hand, it does not deal with call

semantics in the presence of crashes or parameter functionality. In addition, the close coupling of

module binding specifications and network topology information can lead to unnecessary rebinding

in realistic systems.

(In a later paper [18], Cook revises StarMod substantially, moving away from the procedure

orientation described above. The revised language includes explicit interprocess communication

ports that queue messages for program regions.)

3.2.7 elu's Guardians

Guardians are an extension to Clu [56] proposed by· Liskov [57]. Although not implemented,

Guardians are of special interest and merit inclusion in this discussion.

Communication between Guardians is by strongly typed messages. While separate SEND and

RECEIVE primitives are available to Guardian programmers, of particular interest is the CALL

primitive. Liskov has proposed the following syntax for CALL [34,59]:

3 SCRVEY OF EXISTI~G MECHA~lS\1S

CALL Operation(args) ON port
WHEN ResponseJ(formaIArgs): SJ

WHEN ResponseN(fonnaIArgs): SN
WHEN FAILURE(S: STRING): Sfailure
WHEN TIMEOUT(time): Stimeout
END.

39

Each ResponseN is a different reply to the called Operation, and the FAILURE and TIMEOUT

responses are for error handling. A port is a unique global name attached to the receiving

Guardian. (Observe that ports, when completely specified with formal parameters, have many of

the characteristics of a procedure interface.) The current semantics of CALL, which have changed

markedly from early proposals, is what Liskov calls at-mast-once [58]. This is exactly-once semantics

with atomicity and indivisibility, which means that the computation of a CALL completes totally or

not at all: the intermediate states that can happen in the presence of crashes (section 2.2.2) are

eliminated by integrating an atomic transaction mechanism [48] directly into the RPC scheme.

Guardians, a topic of current research, are of interest because they address the critical semantic,

binding, and error recovery issues of distributed program communication. At-most-once semantics

are discussed again in chapter 4.

3.2. 7.1 Type Translation and Transmission

Methods to transmit Clu's strongly typed objects between nodes are a vital part of the Guardian

work. Herlihy's enlightening thesis, "Communicating Abstract Values in Messages" [33], discusses

an operational scheme. Herlihy's method invokes user-written encode and decode operations to

convert a user's internal, concrete representation for a type back and forth between an external,

standard representation, or xrep. A highly desirable property of the scheme is that different

Guardians can use different concrete representations for the same abstract type; this concreteness is

hidden behind encode and decode and the fact that only xreps are communicated. The Clu runtime

implementation takes responsibility for transmitting xreps between Guardians, even those executing

on processors with different built-in type representations. Herlihy also discusses methods for

dealing with cyclic and acyclic sharing.

3.2.8 Spector's Remote Memory Operations

Intrigued by the megabit bandwidth of local networks, Alfred Spector [80,81] has added

synchronous high-speed remote memory operations to a network of personal computers. This work,

which uses message passing to implement a shared memory architecture similar to Cm* [24,41], is

important because it uses a general purpose internetwork as its transport mechanism. Spector

microcoded three new instructions for the Alto:

RLDA address, machine. Remote Load Address returns the contents of address on machine.

RSTA address, machine, value. Remote Store Address stores value in address on machine.

Res address, machine, valuel, value2. Remote Compare and Swap; this instruction is used
as a low-level semaphore.

40 RE\10TE PROCEDCRE CALL

Each instruction performs its operation synchronously and atomically. The implementation sends

two Ethernet packets in the usual case, more if errors occur. Each of these instructions executes in

total of 155 microseconds when machine is on the same Ethernet.

Spector's work is extremely valuable because it establishes that synchronous remote memory

operations are viable in a fast, low latency, loosely coupled network. Cm* [24] demonstrated this

result first, but the Cm * architecture is tightly coupled in the overall spectrum of distributed

systems. In one light, Spector's remote memory operations can be viewed as highly optimized

remote procedure calls that indicate an upper bound on the performance of RPC mechanisms in a

similar network.

3.3 A Brief Evaluation

Each of the remote procedure schemes just surveyed attacks and solves some particular problems

of remote calls. But none of these solutions-with the possible exceptions of StarMod and

Guardians-yields a uniform or transparent mechanism for remote procedures. Cages and MMMS

all have identical local and remote point-of-call syntax, but because of their two-machine nature

none addresses the multimachine binding problem. DPS has a general scheme for both binding

and calling remote procedures, but the local and remote syntax is different. Message procedures,

RIG, and Guardian CALLS all support remote invocation, but the calls are visibly embedded in

messages and do not necessarily invoke procedures. StarMod addresses many issues of local and

remote transparency, but does not deal with multimachine crashes. Spector's machine-level work

cannot be evaluated against language-level criteria.

4

Kauai-Hawaii
21 0 57' N 159°40' W

Cook discovers the "Sandwich Islands" near Waimea, 20 January 1778

Ideal Properties
of a Transparent Mechanism

The design of transparent remote procedure mechanisms requires paying attention to all of the

issues outlined in sections 2.2 and 2.3. This chapter divides these issues into two groups: essential

issues that must be addressed by RPC schemes that provide transparent local and remote semantics

in a homogeneous programming language, and pleasant issues that make remote procedures a

feasible and comfortable tool for programming distributed systems.

The issues are explored to varying depths. The first reason for this variation is that the

dissertation focusses primarily on the essential issues; the second is that some of the issues are more

complicated and less well understood than others. All of the issues, however, are addressed in

enough detail that a reasonable resolution for each one emerges. These resolutions are expressed as

a set of ideal essential and pleasant properties for transparent RPC mechanisms.

4.1 The Essential Issues

The first four-fifths of this chapter delve into the five essential issues: call semantics, binding

and configuration, typechecking, parameter functionality, and concurrency control and exception

handling. Following the philosophy set forth in the introduction, each issue is surveyed until the

fundamental problems and tradeoffs are exposed, although not all aspects of each issue are pursued

in the remainder of the thesis. The first topic, call semantics, is easily the most complicated. This

is because semantics are at the heart of any communication mechanism, and there is a wide

spectrum of choices for RPC.

Throughout this section, the reader who wants to regain his high-level perspective on the issues

can always tum to the end of the chapter, where a summary of essential properties captures the

salient points of each issue.

42 RE\10TE PROCEDCRE CALL

4.1.1 Call Semantics

In section 2.2.2 the semantics of local procedure call were characterized as exactly-once in the

absence of crashes and last-one in the presence of crashes. While transparency requires that remote
procedures have precisely these semantics, a number of nontransparent semantics have been

proposed for distributed communication primitives. Examining these alternative schemes is

worthwhile for two reasons:

They explore different assumptions about "good" primitives. This aids in understanding
the assumptions made for transparent semantics.

They deal with crashes in different ways. Considering them in order of robustness gives a
useful and· gentle introduction to providing last-one semantics in the presence of crashes.

Before considering other call semantics it is useful to review two important policies of exactly

once semantics for noncrashing remote calls. The first policy is reliable transmission. In chapter 2,

reliable transmission was suggested for each remote call to ensure that the call and return messages

that send arguments and return results are received exactly once at each end. The second policy is

blocking the caller. A local caller blocks for a synchronous remote call just as it waits for a

synchronous local call. These constraints are now relaxed so that we can investigate some resulting

call models.

4.1.1.1 At-least-once Semantics

The call and return messages of the RPC implementation can be sent and received multiple
times if reliable connections are no longer required. Thus, if the caller's communication policy is to

retransmit the call periodically until a return is received, it is possible that the callee will repeat the

execution. This is especially true in the presence of crashes: if the callee crashes after completing

the call's execution but before the caller receives the return, then the caller will again send the call

and the now-restarted callee will repeat its execution. Variations of this scenario apply when

messages are lost or delayed in the internet. With this mechanism, then, the receipt of a return by

the caller guarantees that the call happened at least once, but the caller does not know how many
times it happened or even which call his results are from.

The utility of at-least-once semantics to the distributed system designer is not clear. They are

certainly not equivalent to local call semantics, and the programmer must remember and use two

distinct methodologies for local and remote calls. In fact, at-least-once semantics are those of

unreliable messages-the "procedure call" is a disguised Send followed by a Receive for the very

first reply that is successfully received. Because at-least-once calls have the semantics of the level 1

datagram mechanism,they can be used to implement other semantics-such as exactly-once-in

exactly the same fashion that protocol levels 2 and above are built on level 1. Thus at-least-once

calls are a very flexible primitive, but only if transparency is sacrificed.

On the positive side, Liskov [58] points. out that at-least-once calls have the enjoyable property

that the caller need· not know whether the callee has crashed or not. The possibility of crashes is

inherent in the mechanism because the at-least-once semantics guarantee is satisfied (trivially) in

4 IDEAL PROPERTIES OF A TRANSPARE:\T MECHA:\IS\1 43

both the presence and absence of crashes. Liskov at one time proposed at-least-once semantics for

Guardian communication, but she now favors much stronger, atomic, at-most-once semantics [59].

This is done by including a transaction mechanism within the RPC scheme. Some intermediate

RPC semantics are described before we consider the implications of transaction schemes.

4.1.1.2 Last-ofmany Semantics

An interesting variation on the at-least-once model is one where the call can repeat any number

of times, but where the caller is guaranteed to receive the results of the very last one of the many

calls; this is called last-of many semantics. Basically, this scheme matches the sequence numbers in

call messages with those of returning return messages to discard the results of all but the last call.

Each call message is assigned a new sequence number, even when it is a retransmission of an

existing call. Figure 4.1 demonstrates this. Here three calls are sent from A to B before the right

return is received in time.

Machine A Machine 8

Client RPC RPC Client
Call First Call

-"-
""'" Fi rst Retu rn lost

Second Call

Time Wait
Third Call

Second Retu rn too late
""""-

Thi rd Retu rn successful
~

""'" Rehlrn

Figure 4.1: A two-machine last-of-many remote procedure call.

The simple last-of-many scheme works well in the two-machine case. Its most important

property is that it guarantees last-of-many semantics even in the presence of crashes on either

machine. The addition of a third machine, however, introduces situations that violate this propeny

whether there are crashes or not. The basic model does not guarantee transitive last-of-many

semantics across machines. The problem is that each client call on A can generate any number of

independently executing calls on B. If each of these calls on B must call machine C, the executing

calls on C can complete in any order. Thus B can return to A without using the last-of-many result

from C. This is illustrated in figure 4.2.

Transitivity is violated because A/s call to C completes after A2 's, yet it is A/s results that A
returns. to the client. Fortunately, a slightly more elaborate sequence numbering scheme that

attaches the numbers to the client calls rather than to the repeating call messages fixes this problem

in the absence of crashes. Lampson, who first proposed last-of-many semantics [46], has made this

44 RE\10TE PROCEDCRE CALL

revision to the basic model [49]. His algorithm, written in a cross of Pascal and Mesa, appears in

algorithm 4.1 for the stout-hearted reader. In the algorithm, individual call invocations (not call

messages) are uniquely identified by request numbers. Last-of-many semantics are achieved for

each request by using separate id sequence numbers for each call and return message. The Send

and Receive operations are unreliable.

Machine A Machine B Machine C

Client RPC RPC Client RPC Client
Call Fi rst call: A 1 A 1's 1 st call lost

....

Second call: A2 A2's 1 st call OK

Time Wait
~

~
A2's retu rn OK

.... A2's return OK
A1's 2nd call OK

Return
~ ...

"""""-
A1's return OK

A 1 's retu rn late
~

Figure 4.2: A three-machine nontransitive last-of-many remote procedure call.

Lampson's algorithm guarantees last-of-many semantics between two machines, even in the

presence of crashes. When there are more than two machines, however, the guarantee is void if

there are crashes. The desired transitivity is unobtainable when intermediate machines in the call

chain fail. These intermediate failures can leave outstanding calls that continue to execute even

though they were initiated by now-crashed machines. Lampson denotes such calls orphans. For

example, in figure 4.3, assume B 1 crashes and leaves outstanding calls executing on C.

Time

Machine A

Client RPC
Call Fi rst call: A 1

Wait Crash

Second call: A2

A2's return OK
Return

Machine B1

(81 crashes)

Machine B2

.... -
(82 su rvives)

Machine C

RPC Client
A 1 calls C before

t:51 c rasneS'"

A2's call OK
A2's retu rn OK

~

,
A 1 slate 0 rphan retu rn

lost or discarded by B1

Figure 4.3: An orphaned remote procedure call that violates last-of-many semantics.

4 IDEAL PROPERTIES OF A TRA~SPARE~T MECHA~ISM 45

If A decides to retry its call through another machine. B 2' and B 2 calls C, C can return results to

B2 and thus to A before B/s outstanding calls on C die out. The orphan, B], causes a violation of

transitive last-of-many semantics. Furthermore, B2 need not be a different machine: it could just

as well be B] after B] completes crash recovery. Orphans are discussed further below.

One crucial question to ask about last-of-many semantics is their utility to the application

programmer. Even this revised model does not have exactly-once semantics in the normal, no-crash

case. This is because communication between caller and callee is not reliable for the return

message. In the algorithm, after the return message is sent, the callee's RPC mechanism erases its

record of the call. If this message is lost (which can happen without a crash), then the caller must

repeat its call message and the procedure will be reexecuted and a new return message sent This

process will repeat until a return is received; the semantics are not exactly-once.

To be fair, in Lampson and Sturgis's transaction-oriented programming paradigm [46,48], last-of

many semantics are acceptable because all remote operations must be inherently restartable, that is,

capable of delivering the same results after repeated executions. When operating outside their

specific paradigm, however, exactly-once semantics are desirable in the absence of crashes.

Fortunately, achieving exactly-once semantics from the last-of-many scheme is straightforward if the

communication uses a reliable connection. One simple connection method is to have the callee

hang onto a return message until the next call message acknowledges that the return was

received-or, if it is a repeat call message, the waiting return is simply resent The details of this

scheme, which gives exactly-once semantics in the absence of crashes, are considered in chapter 5.

4.1.1.3 Crash Semantics

As we have seen, crash handling is exacerbated in distributed systems. An internetwork

environment intensifies the problem because apparent process failure can occur for two reasons.

The first is communication failure: This can happen when the internetwork breaks and the remote

process appears unresponsive. The second is bona fide process failure: This can happen because of

a specific mortal error in the process or because the process's machine crashes.

In the absence of crashes accomplishing exactly-once semantics is conceptually straightforward.

Now consider a crash.

In a single-machine environment, if a given procedure call is repeated after crash recovery we

know that all outstanding activity of the call has ceased. This is true because all processes are

recreated (either from a checkpoint or by a boot) and therefore all outstanding activity in any old

processes is terminated. In fact, operating systems usually extend this all-activity-ceased property

throughout their domain by reselling I/O channels, disk controllers, and other semi-autonomous

devices which can influence the processor's memory and state. Thus, in the presence of crashes,

single processor exactly-once local procedure semantics degenerate into the last-one semantics

discussed in section 2.2.2.2.

46 REMOTE PROCEDURE CALL

{ Remote procedures, using Send and Receil'e for messages, and Uniqueld for unique identifiers}
type ID = O .. 264~ tonst timeout = ... ;
type A:! essage = record

slale: (call, return); source, desl: Processor; id, request: ID; action: procedure; val: Value end;

{ The one process which receives and distributes messages}
var m: Message; var s: Status; while true do begin (s, m): = Receive(); if s= good then

if m. state = call and OKtoAccept(m) then StartCall(m)
else if m.stale= return then DoReturn(m) end;

{ Make calls}
monitor RemoleCall = begin
type CallOut = record m: Alessage; received: Condition end; var cal/sOut: set of tCallOut: = ();
entry function DoCall(d: Processor, a: procedure, args: Value): Value = var c: tCallOut; begin

New(c); with ct do with m do begin
source: = ThisAlachine(); request: = UniquelDO; dest : = d; action: = a; val: = args;
stale: = call; callsOut: = callsOut + c {add c to the callsOul set};
repeat id: = UniquelDO; Send(dest, m}; Wait(received, timeout) until state= return;
DoCal/: = val; Free(c} end end;

entry procedure DoReturn(m: Message) =
,'ar c: tCallOut; for c in cal/sOul do if ct.m.id=m.idthen begin

ct.m : = m;callsOut: = cal/sOut - c {Remove c from callsOut}; Signal(ct.received) end;
end RemoteCall

{ Serialize calls from each process, and assign work to worker processes}
type CallI n = record m: AI essage; work: Condition end
monitor CaliSe rver = begin var caUsln, pool: set of tCallln : = ();
entry procedure StartCallCm: Message) =l'ar w, c: tCal/ln; begin

w: = ChooseOne(pool) {waits if the pool is empty};
for c in callsln do if ct.m.request=mrequestthen begin ct.m.id: = id; return; end
pool: = pool- w; caUsln: = callsln + w; wt.m: = m; Signal(wt.work) end;

entry procedure EndCall(w: tCal/ln) = begin
Send(wt.m.source,wt.m); callsln: = callsln - w; pool: = pool + w; Wait(wt.work) end;

end CallS erver

{ The worker processes which execute remotely called procedures}
var c: tCallln; New(c); ct.m.source : = nil; EndCall(c); with ct.m do
while true do begin val: = action(val); state: = return; EndCal/(c) end;

{ Suppress duplicate messages. Needn't be a monitor, since it's called only from the receive loop_ }
type Connection = record from: Processor; lastlD: /D end; var connections: set of Connection: =();
function OKtoAccept(m: Message): Boolean =var c: tConneclion; with m do begin

for c in connections do if ct .from = source then begin
if id~ ct.lastlD then return false; ct.lastlD : = id; return true end;

{No record of this processor. Establish connection. }
if action = UniquelD then return true {Avoid an infinite loop; OK to duplicate this call.};

. { For good performance the next two lines should be done in a separate process. }
. New(c); ct from: = source; ct.lastlD : = DoCall(source, Unique/D, nil);
connections: = connections + c; return false { Suppress the first message seen. } end

Algorithm 4.1: Lampson's unabridged last-of-many remote procedure algorithm [49].

4 IDEAL PROPERTIES OF A TRA!\SPARE~T MECHA~ISM 47

Now consider a machine crash in a distributed environment. To provide last-one local procedure

semantics, all outstanding remote activity must cease before restarting. Conceptually, a distributed

reset must be issued to all the threads of control that the crashed machine has left outstanding on

other machines. But these threads are precisely the orphans discussed before. Therefore, to achieve

last-one semantics in a distributed system, crash recovery must ensure that all orphaned calls to

other nodes are extenninated. This guarantee must be met while the crashed machine is in recovery

and before it can repeat any of its calls that would violate last-once semantics. The process of

killing all of a node's orphans is called extermination.

These last-one semantics for a distributed system are quite similar to last-of-many semantics

discussed above. The main problem with last-of-many semantics was that they could leave orphans.

If an orphan extermination scheme is added to the last-of-many model, then the new algorithm will

have last-one semantics in the face of crashes.

Meeting the goal of identical local and remote call semantics is now possible because of the

orphan extermination requirement. Section 4.l.1.2 showed how to get exactly-once semantics from

the last-of-many algorithm in the absence of crashes; exterminating the algorithm's orphans gives

last-one semantics in the presence of crashes. The vital ingredient is orphan extermination.

4.1.1.4 Exterminating Orphans

One obvious and unacceptable method of exterminating orphans is to issue a master reset that

brings down the entire distributed system when any machine crashes. This is, of course,

unacceptable behavior, but it is just what many conventional systems do when a vital process

fails-restart everything.

A second solution is to crash just those machines containing orphans. If this improvement still

appears extreme, consider a further refinement that exterminates just those processes that are

executing orphaned procedure calls. This seems ideal and very similar to the single-machine case.

The difficulty with either of these two schemes, however, is tracking down all of the orphaned

processes-in effect, determining a crashed machine's domain of influence by following the call

stack from machine to machine. This becomes hard when these orphaned calls are themselves

executing on crashed processors, making stack-following impossible.

An additional problem with these selective schemes is that the set of outstanding remote calls at

any time must be kept in stable storage so that the set will survive crashes and be available for the

recovery phase that exterminates orphans. (Stable storage [48] is a storage medium that has an

extremely high probability of surviving machine crashes and media failures; it must also have an

atomic write operation. Some examples of stable storage include pair-redundant disk pages and

nonvolatile memory units.)

An entirely different approach from extermination is to let the orphaned calls continue executing

until completion. If these orphaned calls retain their results, fully expecting the crashed parent

machine to repeat its calls and adopt its orphans, then all is well and the semantics are last-one. An

48 REMOTE PROCEDCRE CALL

orphan is adopted when a postcrash instance of its parent node retransmits all of its orphaned call

messages in the hope of finding and reuniting with· all its orphans. The usual method of ensuring

that orphaned calls repeat is by check pointing the caller before each call.

Whether crashed calls repeat is a decision usually made above the remote procedure mechanism,

that is, it is a decision of crash recovery methodology. Building this decision into the RPC

mechanism involves expensive transaction mechanisms-such as doing a checkpoint for each remote

call-whose cost appears prohibitive. Furthermore, permitting the caller to change his decision and

abandon orphans could violate uniform semantics: if the caller does not repeat his call and the

orphan is not adopted (or exterminated), then even last-one semantics cannot be guaranteed.

The choice of appropriate orphan schemes is open. Either of the two presented here offers

exactly-once semantics in the normal case. Both, however, require special treatment of orphans

after crashes-the extermination scheme because it must wait until all orphaned activity has ceased

before restarting, and the adoption scheme because it must rendezvous with orphaned activities

before continuing. Extermination is the least expensive scheme giving transparent local and remote

semantics, and I select it for this reason. The details of some orphan extermination algorithms are

presented in chapter 5.

4.1.1.5 Immediate-return Semantics

Procedure call is not a· good analog to message passing for unilateral communication. Consider

an example where plotting commands are sent to a remote plotter: Each command is asynchronous

and can be sent independently, generating no response. If the commands are implemented as

remote procedures, then each command procedure can give an immediate return as soon as the

underlying call message is constructed and queued for delivery. There are no return messages.

These immediate-return semantics-easily and well-modelled with unilateral message

passing-are useful whenever communication is to a concurrent "output only" device or resource.

Here are the conditions and problems of immediate-return procedures.

Immediate procedures cannot return results-that is, there are no immediate-return
functions. Similarly, they can have no VAR arguments; all parameters must be called by
value.

Whether or not procedure parameters are permitted is unclear. In Algol-like execution
environments, there can be dangling reference problems with the procedure parameter's
environment.

Callers of immediate procedures can receive no synchronous exceptions. Handling the
remotely generated exceptions of immediate procedures is uncertain. Because the compiler
can distinguish immediate procedures (say, by the appearance of IMMEDIATE), it could
enforce a you-must-handle-'em policy on immediate procedures.

These problems are difficult. Apparently, immediate procedures must have totally inconsistent

semantics to meet their goal of increased efficiency. We now look at a consistent but less elegant

solution where clients program immediate-return semantics themselves.

4 IDEAL PROPERTIES OF A TRA~SPARE!\T MECHA~ISM 49

In a simplistic approach the programmer simply forks the remote call as a separate process. This

process performs the call, waits for the null return, and dies. The problems with this method are

twofold:

Creating a separate process for each operation corrupts the correct sequencing of the
operations. The concurrency causes this.

Spawning a separate process for each operation causes performance to suffer. Creating a
process is usually significantly more costly than performing a simple plotter call with two
integer arguments.

If the client is willing to do a bit more work then both of these problems can be circumvented:

The programmer creates a single, asynchronous, auxiliary process that receives plotter commands

from the main process. This second process performs normal, non-immediate remote calls to the

plotter-perhaps even batching them together-while the main process continues to "plot" with

abandon. The main process is, of course, scheduled to run while the second is blocked on a remote

call. (Notice that even this revised scheme is just a complicated restatement of the unilateral

message-passing model.)

There is a vital observation here: The client-programmed implementation outlined above is

exactly how most operating systems implement 110 resources. For example, consider file service on

a timesharing system. The client GelByle and PutByte routines almost always access a buffer in the

client's own address space. Even those operating systems that keep the buffer in the executive's

address space avoid an expensive context switch for these routines-the calls merely cross a

protection boundary. On the other hand, when the buffer is empty (or full), the operating system

usually communicates with a file service process to have the buffer handled asynchronously. Thus

short, inexpensive calls are performed locally and synchronously; long, expensive 110 is performed

remotely (in another process) and asynchronously.

There are two advantages of immediate procedures over normal, non-immediate ones: The first

and obvious one is their ease of use by clients-quick programming with good performance. 'fl?e

second and less obvious one is the typechecking that the simpler but efficient 110 stream approaches

do not perform. For example, operating systems typically assume no structure in the data they

handle; a PUIByle of a character on one day can be retrieved with a ReadByte of an array of eight

Booleans on the next. Immediate procedures, however, give good efficiency and a guarantee that a

plotter command sent by one host on the internet will be received only as a plotter command on

the next.

In the absence of immediate procedures, clients can always program their own variants of

immediate-return semantics as outlined above. This gives typesafety, efficiency, and semantic

consistency at the cost of some additional programming. This course is recommended.

4.1.1.6 Sequencing Semantics

As mentioned above, an allied issue of immediate-return calls is the proper sequencing of those

calls. For example, if a program is writing vectors to a remote graphics display, the order in which

50 REMOTE PROCEDURE CALL

the vectors are drawn usually does not matter. Each vector is independently specified (e.g., with a

pair of endpoint coordinates) so that the immediate call messages can arrive at the display in any

order. On the other hand, most local and remote calls-including the immediate calls on sequenced

resources like the plotter above-need to be properly ordered. This is occasionally true even in the

hypothetical vector example above: Clearing the display, for instance, is an operation that demands

proper sequencing with respect to the vectors that are drawn before and after it.

If the lack of sequencing is important to an application, it can always bracket appropriate

operations with COBEGIN and COEND, or it can resort to sending messages directly. Since

unsequenced language-level procedure calls introduce chaotic semantics, they cannot be permitted

when transparent semantics are the goal.

4.1.1.7 Invocation Schemes

Until now, "executing the remote call" has been an informal notion. The actual mechanism that

performs RTransfers between remote contexts has been unclear. Two possible schemes are now

presented in figure 4.4. In each diagram three machines-A, B, and C-are all transferring to

procedure (context) P in machine M.

Concu rrent Invocation Serial Invocation

A M A M

RPC Client RPC Client

B B

c c

Figure 4.4: Two remote invocation policies: concurrent via processes and serial via call queueing.

In the concurrent invocation diagram, each incoming R Transfer is immediately dispatched by the

_ RPC environment to a separate process that concurrently performs the transfer. In the serial

invocation diagram, each transfer is queued by the RPC environment and P is invoked serially

(without overlap) by C, A, and finally B. Here are some observations on the two methods:

Concurrent invocation. The concurrent scheme models Transfer semantics accurately. For
example, if A, B, and C were parallel processes executing on one machine, then procedure
P could be invoked by any of A, B, and C at the whim of the scheduler. Of course, if P
handles shared data then M should be a monitor . that synchronizes invocations of P (and
other procedures in M). The concurrent scheme extends this behavior to the multimachine
case by creating a separate process in machine M for each R Transfer. These remote

4 IDEAL PROPERTIES OF A TRANSPARE~T MECHANISM 51

processes correspond exactly to the calling processes and compete for P just as in the
single-machine case. The efficiency of these distinguished RPC-spawned processes may
benefit greatly from special treatment.

Serial invocation. The serial scheme, on the other hand. actually introduces strong message
passing semantics into the procedure-monitor world. Incoming RTransfer messages are
queued and their destination process-the one containing M-"receives" them one at a
time by virtue of the mediating RPC environment. This has the effect of serializing access
to AI and P. An advantage of this serialization is that P is automatically synchronized, just
as P is when it is a monitor entry procedure. A disadvantage is that deadlocks can occur
that will not happen in the concurrent invocation scheme. For example, a deadlock can
result if C waits on a condition variable that A or B would normally signal if they were
concurrent and not waiting calls. Furthermore, deadlock can occur even without
synchronization problems: imagine that C has called P, and P calls back to C
recursively-P's call to C will be queued awaiting completion of the one from C to PI

This deadlock problem is an indication that a hybrid invocation scheme is the wrong general

approach. Programs that use Transfer on a single machine should continue to work in exactly the

same fashion when their modules use RTransfer among multiple machines. Uniform local and

remote semantics-either procedure or message based-are desired because they present the same

concurrency model to the programmer. In the RTransfer (procedure) model the programmer must

always protect shared data with monitors; in the message model he is guaranteed serialization

because messages are explicitly received.

The reader may well ask why nontransparent invocation schemes are considered. The primary

reason is applications. For example, Ball's remote procedure mechanism [1] serializes calls because

processes are not cheap and because the Alto application is stream-oriented and will neither benefit

from the extra concurrency nor deadlock in its absence. Other invocation schemes between those

offering full concurrency and complete serialization are easily imaginable. It is possible to serialize

(or parallelize) a procedure, module, resource, or entire machine by choosing an invocation scheme

and applying it to the corresponding unit-procedure, module, resource, or machine. Each of these

schemes may have a place depending on the application programmer's needs and on the

programming environment's semantics for transfers and concurrency. While alternative invocation

schemes may be attractive in special situations, the thesis uses only concurrent invocation.

4.1.2 Binding and Configurations

In a distributed system, binding is the process of naming and connecting all of the modules of a

distributed program. A configuration is a set of modules that cooperate to implement a program.

The main goal of remote binding is making the specification of remote configurations syntactically

and semantically convenient, if not transparent. This convenience can be measured by watching

RPC users at work: It should be possible for them to configure, bind, load, and start the modules

of a distributed system just as easily as they can perform the same steps within their local

environment

52 REMOTE PROCEDURE CALL

4.1.2.1 The Spectrum of Binding Times

There is a broad spectrum of binding times in both conventional and distributed systems. Early

or static binding is usually very efficient~ but not very flexible; late or dynamic binding is extremely

flexible, but often causes a loss of space or time performance. There are four common binding

times, listed here in order of increasing flexibility:

Compile lime. Binding decisions are made when modules are compiled.

Link time. Binding decisions are made when modules are combined into predefined
configurations but before they have begun executing. Compile time and link time binding
are often called declarative binding because the binding relationships are written down, or
declared, in advance.

Static runtime. Binding decisions are made just before the modules (or configurations) first
execute and communicate.

Dynamic runtime. Binding decisions are made at runtime and can be changed at will.
Dynamic runtime binding is often just called dynamic binding.

4.1.2.2 Binding Interfaces and Components

While most of the preceding semantic discussion concentrated on procedures, real programs

communicate with more than procedure calls. Fortunately, the notion of an interface-a

compilable, abstract specification of a module's behavior-embraces other control structures quite

easily.

Interface components are instances of certain types, typically programs, procedures, coroutines,

exceptions, variables, and types. The interface components exported by a module are those abstract

operations and data that the module makes available to users of the module's abstraction [45,62,91].

Other modules can implement the same abstraction differently: these modules export different

instances of the same interface components. The local binder's job is to link together the users of

an interface (its importing clients) with its implementors (its exporters). The remote binder operates

similarly: binding control transfer components-programs, procedures, coroutines, exceptions, and

so forth-is straightforward. Since these components are all implemented by the RTransfer

primitive (section 2.1.3.1), the binder logically just assigns inports and outports according to the

programmer's static or dynamic configuration specification. Variables and types, which are outside

the definition of RPC, cannot be handled with RTransfer. Global variables, however, are so

frequently used for intermodule communication that it is worthwhile considering their problems.

4.1.2.3 Remote Variables

Whether or not RPC schemes should furnish transparent access to remote data is an open

question. The operational DPS and Cages mechanisms discussed in chapter 3 support remote data,

but Guardians and· the Downloader do not One of the arguments advanced in favor of global

variables is efficiency. Presumably, the cost of a memory reference is much less than the cost of a

procedure call to encapsulate a read or write of the same value. For remote global variables,

however, this cost argument. is largely vacuous because of communication expenses.

4 IDEAL PROPERTIES OF A TRANSPARE;\T MECHA~ISM 53

In light of current abstraction practice, it is strongly recommended that neither local nor remote

global variables be used. Instead, they should be encapsulated in a (remote) procedure interface, or

inside an object with a (remote) handle (section 4.1.4.2). Replication and sharing of global variables

become problems that are best solved with (remote) procedure calls to monitors anyway.

In systems where remote variables do have priority over methodology, however, a uniform

address space is the best approach. In local network environments, Spector's remote read/write

memory work demonstrates good perfonnance for remote variables. In shared memory

multiprocessor environments, even very loosely coupled systems such as Cm* offer rapid and

uniform addressing that inherently provides "remote" variables.

In systems with remote variables, caution must be exercised with special datatypes such as

condition variables and monitor locks (semaphores). Making remote instances of these variables can

lead to situations where monitored (synchronized) abstract objects are implemented or controlled on

multiple nodes. Whether or not such language-level resources should be spread across machines is a

topic of controversy [69].

4.1.2.4 Authentication and Authorization

Transparent RPC intentionally blurs the distinction between local and remote calls. In a real

distributed system, however, remote calls between autonomous nodes will often be subject to access

controls. For example, many resources provided by servers are controlled by accounting and

protection policies. Enforcement of these policies involves two procedures which can affect the

remote binding process. The first is exactly identifying the party requesting service: Authentication

procedures are used for this, and Needham and Schroeder [63] have successfully attacked this

problem for internetwork environments. The second procedure is deciding if the requesting party is

authorized to access the service: This access problem is solved by most multiuser operating

systems; the complexity of the authorization mechanism generally depends on the nature of the

resource. A file server is a good example of a controlled service requiring both these techniques to

institute its protection policies.

The role of the remote binder in these policy procedures is as a language-level agent connecting

two potentially suspicious parties. Here are two opposing models for this role:

Democracy "'Iode!. The binder should ignore access problems and let the two connected
parties negotiate after they have been properly bound. This approach is sound when a host
machine's overhead for binding is negligible. If the overhead is too great, the binder may
blindly commit too many of the server's resources to clients that will eventually be turned
away. This degrades the service of legitimate clients and violates the server's autonomy.

Autonomy Model. The binder should handle first-level authorization checking. This
approach is useful when a server wishes to completely exclude large classes of clients. It
also requires nonbinding machinery in the binder. Of course, the binder's typechecking
facilities can perform this authorization checking in the extreme case where types are
carefully distributed capabilities and not publicly available definitions.

54 REMOTE PROCEDURE CALL

The anarchy of the binder itself is the critical issue here. In the democratic model, the binder is

an extremely independent part of the system-like the judicial branch of government. It has the

power to create and connect processes on any machines whether those machines want them or not.

Clients are free to break unions only after they have been established. In the autonomous model,

the binder is a subservient element in the environment-like the press in many countries. Nodes

can throttle all outside communication simply by squeezing the binder.

The choice between these models and others will depend on characteristics of the actual

environment. Communication speeds, binding complexity, and mutual cooperation will be strong

factors. Authorization policies will change as distributed systems evolve. At this point in RPC

development, having remote binders provide at least the bare-bones mechanisms needed to

implement these policies is more important than enforcing any given policy. A breachless typesafe

environment supplies this skeleton in the democratic model.

4.1.2.5 Binding Heterogeneous Configurations

Binding together modules from different languages or for different machines requires that the

issue of type translation be resolved. The desire for easy reconfigurability in the presence of crashes

postpones translation decisions until this time; earlier, static decisions often restrict binding choices

so severely that uniformity is lost.

It is likely that a mixed language environment will have not one but multiple binders. Because

each binder and language will have different power, a common denominator of facilities will evolve.

Rather than restrict two powerful systems to the potentially weak common facilities, negotiation is

suggested. In this scheme, the binders communicate between themselves to determine the highest

level of support each can mutually offer the other. Actual binding then uses these less primitive

mechanisms. A conceptually .straightforward approach is for the binder to insert appropriate type

translation filters between the heterogeneous calls that it binds together. Other approaches are

discussed in section 4.1.3.3. Negotiation in the general context of internet communication is well

covered by Sproull and Cohen [82].

4.1.2.6 Load Control

Load control is a problem similar to authorization control: Using a declarative configuration

language to write binding requests for distributed services can be unrealistic when the eventual

(dynamic) binding is to heavily loaded servers. Even the most cooperative servers may have to tum

away potential c1ients~because the server is full, because it is broken, or because it has a high

priority task to perform. Denial of service because of load control, however, is rarely as absolute as

denial due to improper authorization. For· instance, a server may well respond to a request for

service by asking the requestor to retry in a few minutes. An important goal here is that a service

never appear dead due to overloading. It should always have the small reserve needed to inform

clients that it is (almost) saturated.

4 IDEAL PROPERTIES OF A TRA~SPARE~T MECHANISM 55

Because service denial is likely in realistic distributed systems, remote binding semantics are

different from local binding semantics when the local host's full resources are assumed to be

continuously available. This nontransparent behavior can be overcome only by repeated dynamic

binding attempts with overloaded servers. A sophisticated remote binder could. however. perform

these attempts automatically.

It is interesting to observe that load control in remote procedure schemes is analogous to flow

control in message-passing systems.

4.1.3 Typechecking

Extending single-machine typechecking into an internet is conceptually straightforward. The real

challenge is presented by the related efficiency and validity problems.

4.1.3.1 The Flexibility Spectrum

There is a flexibility versus efficiency spectrum for typechecking. At the top end, carrying

around the symbol table of each exported interface is possible. This allows full checking to occur at

runtime at the cost of both space for the table and time to do the check. At the other end of the

spectrum is a unique ID approach like Mesa's. Here each interface has a unique identifier

indicating when it was compiled. Mesa defines the typesafe use of an interface to require that all of

its importers be compiled with exactly the same interface-that is, the one with exactly the same ID.

This spectrum of tradeoffs is just that of Lisp's EQUAL test versus EQ test [88]. Performing

arbitrary checking at runtime requires an EQUAL test because the checker must walk the trees of all

user-defined types and compare the base types attached to each terminal node for equality.

Flattening these trees ahead of time provides some improvement, but does not approach Mesa's EQ

method where a single comparison of timestamps validates an entire interface of

components-types, procedures, and data.

This spectrum also reflects the delay of binding decisions as discussed in section 4.1.2.1. Delayed

binding gives increased generality, typically at the price of runtime checking. Early binding, on the

other hand, greatly reduces generality as well as . the cost of the binding. Mesa performs

intermodule typechecking during binding simply by checking that the interface IDS match. This

scheme, however, has the bad property that if the definition of an interface is recompiled just to

change an obscure component, then every program using that interface must be recompiled and

rebound. This recompilation problem is severe in a single-machine environment; it would be

untenable in a distributed system if the often-changing interface were that ofa public file server.

One solution to this difficulty is through an intermediate binding approach where each

component-rather than each entire interface-has a unique ID. At the cost of carrying these

additional IDS around, the RPC environment can still perform rapid EQchecks at runtime.

Recompilation is necessary only for those modules ·that actually use the changed interface

component, rather than for all modules that use the interface.

56 RE\10TE PROCEDCRE CALL

The style of remote typechecking adopted for a given environment can be expected to influence

the communication style. For example, supporting dynamically typed languages like some Lisp and

AIgol68 dialects requires the full EQt:AL typecheck. The cost of this checking is great enough that

the overhead of connections might be justified for remote calls. After opening a typesafe stream

and validating the procedure types once, argument and result records can be transmitted through

the stream without further checking. In untyped languages such as Bcpl, on the other hand, the

state information of connections may not be required: it may be cheaper just to send the

procedure name along with the parameters each time. The same might apply to Mesa, where the

unique ID would be sent along with the procedure name for fast EQ typechecking.

Communication decisions will also be influenced by the frequency of remote calls. A single call

to a time server, for example, does not have the same performance impact as calls to a file server in

an inner loop of a data base program. The underlying remote procedure implementation may want

to negotiate such decisions on the fly. For example, it might perform all initial calls in a reliable

but connectionless manner and then switch to connections if the same call repeats sufficiently often.

Such decisions should always be hidden from RPC clients because they are internal to th~ RPC

implementation. Transparent remote procedure mechanisms give a uniform view of the distributed

world that makes these efficiency considerations invisible.

4.1.3.2 Type Authentication and Validation

Whatever typechecking method is used, it is easily breached if malicious clients have access to

the communications medium. This is certainly the case with most internetworks. A knowledgeable

intruder can always forge the correct unique IDS, symbol table entries, or whatever type information

accompanies remote procedure calls to guarantee consistency of access. To be certain about type

safety in an internetwork stronger type authentication is needed. Here the type information is

encrypted and authenticated by the typechecking machinery. This authentication layer is of course

independent of the typechecking itself, and Needham and Schroeder [63] have discussed some

appropriate internet techniques. If the type information is sealed along with corresponding

instances of values, the resulting objects begin to resemble capabilities.

Another approach to type validation is supplying a legality procedure to each client of a type. A

legality procedure takes as its argument a bitstring purporting to be a valid value of the type and

returns an indication of whether it is valid or not. Of course, this is not the same as type

authentication, nor is it an exclusive problem of remote procedure call: a RED INTEGER'S bitstring is

probably the same as a BLUE INTEGER'S, and a legality procedure will doubtlessly tell us that both

are INTEGERS. Legality procedures can do is check that a client has not damaged-accidentally or

otherwise---a value of a type to the extent that it will compromise the implementor of the type.

Viewed in this way, a legality procedure guarantees the consistency of an object whereas type

authentication guarantees the structure of an object. These are independent notions with separate

strengths and weaknesses. The consistency problem is especially troublesome in heterogeneous

language environments where strong typechecking is impossible.

4 IDEAL PROPERTIES OF A TRANSPARE\T MECHANISM 57

Because validating the consistency of a type requires executing a legality procedure to check each

value, the scheme is not usually practical for performance reasons. In spite of this, the availability

of legality procedures is often useful because they can be called when unknown errors corrupt the

system. Legality procedures-even when explicitly written by users-can be real timesavers during

memory smashes and other hard-to-diagnose situations.

4.1.3.3 Type Translation

Type translation for heterogeneous machines and languages is a problem beyond remote

procedure call. This is not a quick dismissal of the importance of bridging dissimilar environments.

These translation issues must be on the mind of any remote procedure designer; otherwise,

retrofitting an existing RPC scheme into a heterogeneous environment could be impossibly difficult.

(See Cohen's enlightening discussion [16] of these principles.)

Fortunately, there is a body of existing work on translation schemes. Levine's thesis [55]

evaluates a number of interprocess communication (lPC) schemes that translate built-in types such

as integers, characters, and strings. His conclusion is that a standard intermediate representation is

best. Rashid's IPC mechanism [72] uses this approach to implement interlanguage type translation.

Rashid also includes extensions that handle user-defined types and record structures. Interlanguage

record translation work in the setting of network operating systems is described by Kimbleton,

Wood, and Fitzgerald [42]. Wallis [93] discusses translation between user-defined and external

representations in a portable programming language. The Clu-oriented type translation schemes of

Herlihy [33] were mentioned in section 3.2.7. By going a step further and translating abstract types

as well as built-in ones, Herlihy's scheme permits intralanguage translation of different concrete

representations of the same abstract type.

4.1.3.4 Versions and Persistent Values

An important problem related to typechecking and type translation is the treatment of persistent

values. A persistent value is a long-lived typesafe object that resides on secondary or tertiary storage

(e.g., disk or tape). The difficulties with persistent values are twofold:

Guaranteeing typesafety when the object is outside the domain of the implementing
environment, e.g., outside primary memory because of programmer 110;

Successfully retrieving values whose representations are obsolete, e.g., have been superseded
by new representations of the object's abstract type.

Persistent values are mentioned in the context of remote procedures because they bear on the

problem of software version changes. Since different versions of a system can have different

interfaces, version changes are a potential typechecking problem for remote procedure call.

Consider, for example, a distributed transport system for electronic mail where each user has a

personal computer running a distinct copy of the mail program [6]. These mail processing programs

communicate to mail servers-where mailboxes, distribution lists, and so forth are stored-via RPC.

New versions of the mail program are released periodically, and in a user community numbering in

58 REMOTE PROCEDURE CALL

the hundreds or thousands it is highly likely that many versions of the program will be in use

simultaneously. Imagine that some release adopts a new message format. If messages are persistent

values passed as parameters, then either the RPC mechanism or the mail servers must cope with

translating old messages (values) into new ones. Here are the three cases:

The old mail programs cannot do this because they have no knowledge of the new
represen tation.

The RPC mechanism can do it if each version of the mail program translates its messages
into a standard representation such as Herlihy's xrep. This works until the standard
representation changes.

The mail server can do it as long as it is programmed to handle all versions of messages.
Of course, it must be persistently prepared to do this.

The problems of persistent values and version changes are not further addressed by the thesis,

but real systems-and their RPC mechanisms-must consider them.

4.1.4 Parameter Functionality

The earlie; discussion of parameter functionality sidestepped several important problems.

Foremost among these were the handling of address-containing parameters, that is, reference,

pointer, and procedure parameters.

4.1.4.1 VAR Parameters

Semantically, passing an argument by reference is equivalent to replacing the formal parameter

with a (contextually dereferenced) pointer to the actual argument. (This actual argument must of

course be a variable and not a constant or expression.) For a remote call to a disjoint address

space, passing an address valid in the local address space does not usually work and is often

catastrophic. Fortunately, for calls with no aliasing, call-by-reference is equivalent to call-by-value

result [28]. (Actually, there can be differences during exception handling if an abstraction raising an

exception is not careful to restore any invariants that apply to its parameters.) For example,

axiomatic Pascal permits its VAR parameters to be implemented by either method because it leaves

aliasing behavior undefined. Remote. procedure call can easily support value-result VAR parameters

by transmitting back into the callee's VAR arguments the final values of the corresponding formal

arguments from the site of the remote invocation.

This value-result scheme works equally well when a chain of VAR parameters extends across

machines, even back to the original one. The inherent nesting of procedure calls guarantees that

chains have their results copied back properly, even for recursive calls. There are potential

synchronization problems if a VAR parameter is shared between processes, but this is just another

case of aliasing. These same synchronization difficulties exist for sharing among local procedures,

too, so the programmer must exercise identical cautions for both local and remote calls. Another

potential problem is with datatypes that do not admit full assignment, e.g., semaphores. In the

absence of aliasing-including unsynchronized sharing among processes-variables of these types

4 IDEAL PROPERTIES OF A TRA~SPARE:\T MECHA:\IS~ 59

still work correctly when called by value-result as long as only the assignable parts of the type are

copied back. Of course, these special types and their operations are probably better cast in the

object model discussed below.

The copy-back scheme provides uniform local and remote semantics for value-result VAR

parameters. The lack of call-by-reference will not be missed in view of the current trend toward

eliminating aliasing.

4.1.4.2 Pointer Parameters

Pointers offer harder problems than VAR parameters. Fortunately, these subproblems can be

attacked independently by examining the three ways that pointer parameters are used:

Efficiency. Pointers are used for efficiency in passing records and other bulky values by
reference. This is especially true in languages like Mesa where all parameters are passed by
value.

Object handles. Pointers are used as handles (capabilities) to objects (abstract aggregates of
operations and data).

List structures. Pointers are used to pass the roots of honest list structures, i.e., graph
structures containing other pointers. Included in this case are parameters that have
embedded pointers, e.g., arrays of pointers, records with pointers, and so forth.

Efficiency. The solution to the efficiency problem is easy: Just make the programmer tell the

truth and use VAR parameters instead of pointers. Of course, this will be inefficient when only one

component of a record or a few elements of an array are being changed. By leaving the

implementation of VAR in the hands of the language instead of the programmer, however, using

call-by-reference locally and call-by-value-result remotely is possible.

This use of VAR assumes that the argument will always be modified. Since VAR is being used to

replace this whole class of pointer usage, we must also consider the case of readonly references, i.e.,

where a pointer is used just to prevent the inefficiency of call-by-value. To handle this situation

consider a vAR-like extension to formal parameters called VAL (it could. also be called READONL Y

VAR). The semantics of VAL is call-by-value, but a smart compiler can use a reference to implement

VAL in local procedures if the programmer does not modify the formal argument. An even smarter

compiler can make VAL unnecessary by deducing which instances of VAR never modify their referent

and by substituting an implicit VAL. Of course, this is not a decidable problem, but some cases can

be handled quite well this way.

The introduction of VAR and VAL to solve pointer efficiency problems gives the programmer

sufficient expressive power to state his desires rather than force a realization of them. These

language features prevent him from being so "efficient" that he will find himself drastically

rewriting his programs for remote use rather than watching them distribute gracefully. This is

precisely what a transparent RPC mechanism tries to avoid, even at the cost of some additional

overhead.

60 REMOTE PROCEDCRE CALL

Object Handles. The solution to the handle problem is more difficult. A handle usually names

some abstract object which has an associated set of abstract operations. If a handle is used as a

remote argument, then the handle must not be dereferenced except in the context of its associated

object. This is somewhat analogous to call-by-name in Algol60, where every operation on a call-by

name formal parameter (e.g., the handle) causes the actual parameter to be reevaluated in the

environment of the caller (e.g., the object's context). For handles in remote address spaces, this

means that all attempts to access the object through the handle must be converted into remote calls

to the object's context. Fortunately, most languages already cause this trapping by requiring all

object references to occur as operations (procedure calls) qualified by the handle. These object

procedure calls can be easily converted into the proper remote calls by storing a unique

identification of the implementing context (say, (host, process, module» along with the object

pointer itself.

Some high-level languages, for example Clu [56], are completely object oriented and have no

language-level notion of pointer. This elegant approach is good for the programmer and-when

objects are not immutable-gives implementors latitude to find the implementations best suited for

local and remote use.

Other high-level languages, however, do not provide direct object support but allow programmers

to program them with idioms. Mesa is one such language, and a possible Mesa implementation of

objects is:

Handle: TYPE = PRIVATE RECORD [

object: POINTER TO Object,
context: ContextIdentifier];

Object: TYPE = PRIVATE RECORD [

operations: PUBLIC READONL Y POINTER TO Operations,
data: RECORD [...]];

Operations: TYPE = RECORD [

Read: PROCEDURE [•••] RETURNS [•••],

Delete: PROCEDURE [•••]].

An entirely different approach to handling objects is to actually transmit the object to the remote

client. This is especially feasible when the actual code of the operations' procedures is sent along

too. If the abstract operations are called frequently and their execution time is short compared with

the time of a remote call then large gains in performance are possible. Of course, objects moved in

this way must be transmitted in their entirety so that they contain no invalid pointers. Dynamic

migration of code between machines is not really within the definition of remote procedure call,

and there are many unstated problems here, but such migration may be attractive for some

homogeneous language systems.

List Structures. Solutions to the general list structure problem are hard because of the

computation costs. The transmission of graph structures usually requires extensive pointer chasing

and· storage allocation unless compact list encodings such as those proposed by Bobrow and Clark

4 IDEAL PROPERTIES OF A TRANSPARE~T MECHANISM 61

[7] are used in the user's or system's implementation. Furthermore, if parts of a graph are shared,

sharing in subgraphs can disappear when a remotely modified subgraph is copied back and

reallocated in the local address space-that is, when the parameter is a VAR list. Handling shared

list parameters in this way violates graph structure semantics and is not transparent.

Some uses of list and pointer parameters, on the other hand. are for the convenience of

implementation and not for sharing. Two trivial examples are Mesa's STRING and ARRAY

DESCRIPTOR types, both of which use pointers in their underlying representations (specific examples

appear in chapter 5). Handling acyclic call-by-value lists in this nonshared context is reasonable,

although keeping an eye on the computation costs is wise, as mentioned above. The main difficulty

with nonshared list parameters for RPC implementations is identifying the shared and nonshared

cases so that they can be handled appropriately-with an error or a call. The programmer's explicit

use of VAL can declare the latter.

The transmission of list structures in parameters does not receive much further attention in this

dissertation because Herlihy's thesis shows how both cyclic and acyclic graphs can be transmitted.

Remote access functions are an alternative approach to list parameters. The scheme gives lists

objectlike properties since callers do not pass entire lists. Rather, only a list's root (handle) and

appropriate list traversal and modification access function parameters are passed as arguments to the

remote callee. These functions are then used by the callee to cause remote manipulation of the list

back in its host machine. With this approach, the list is treated as an abstract type whose remote

access operations are permanently bound to it. The scheme is expensive if the access functions are

as trivial as, say, CAR and CDR, which are usually primitive operations on both host machines.

(Thus the desire to pass only the list itself, above, is a solution where the list's nodes are abstract

objects implemented on both machines.) The conclusion is that the abstract operations of a list

type should be sufficiently powerful that the overhead of remote calls is acceptable. This access

function approach is an obvious way to handle the shared graph parameters that were rejected by

the VAL scheme.

A different solution to the remote list problem is again provided by Spector's work and the Cm*

system. Their remote memory operations are fast enough that making CAR and CDR be local

operations using remote addresses is feasible.

4.1.4.3 Procedure Parameters

The potential problems with procedure-and other control transfer-parameters are illustra~ed in

the following Mesa example.

EnumerationProcedure: TYPE = PROCEDURE [...] RETURNS [...];

TakesOne: PROCEDURE [proc: EnumerationProcedure] = ... ;
GivesOne: PROCEDURE [reverseOrder: BOOLEAN] RETURNS [proc: EnumerationProcedure] = ... ;

UsesBoth: PROCEDURE = BEGIN TakesOntf. GivesOne{TRUE]] END.

62 REMOTE PROCEDCRE CALL

The main issue is that both TakesOne and GivesOne can have remote procedure (or program,

exception, and so forth) parameters. In the earlier discussion of binding it was (probably) assumed

that all remote procedures appear in an interface that could be specially handled-if necessary-by

a remote binder. In this example, however, the EnumerationProcedure can be either local or remote

and this knowledge must be kept from the programmer.

The problem is to make remote procedures full values in the language just as local procedures

are (in Bcpl and Mesa, anyway~ not in Ada). The solution, which is part of extending RTransfer,

requires three things:

Calls on procedure values that are bound to remote procedures must be invoked through
the RPC runtime environment.

The RPC runtime environment must maintain a mapping of local values that are remote to
actual remote procedures. This is a mapping into RTransfer's fully specified ports.

There must be a conversion from local procedure values to remote procedure values. This
conversion will establish the above mapping and will be applied whenever procedures are
initially passed as remote parameters. It will be used, for example, when GivesOne is a
remote procedure that returns a remote procedure value to TakeOne.

Notice that all of this information is available at compile time. For an EnumerationProcedure to

ever be remote, it must be a formal parameter of some top-level remote procedure-for example, as

a formal argument of TakesOne or as a formal result of GivesOne, or in their transitive closure up

to some remote interface. The compiler can therefore locate the local-to-remote transition of any

procedure value and perform any necessary local-to-remote conversions. This argument extends to

all other control transfer types as well.

4.1.5 Concurrency Control and Exception Handling

Section 2.2.6 stated that remote procedure mechanisms must have independent concurrency

control and exception handling to meet the goal of transparent semantics. This stipulation requires

that the host programming language have good facilities in these critical areas. We now consider

some particularly desirable features.

4.1.5.1 Concu"ency

To achieve parallelism in distributed programs, the programmer must use the process and

synchronization tools his programming language provides. In Mesa, for example, if a remote call

can proceed in parallel with local computation then the programmer should FORK the remote call

and JOIN the results later. Similarly, in Ada he would create a TASK and in Algol68 he would use

COBEGIN and COEND. If a remote call accesses shared data, then to prevent synchronization

problems with local tasks concurrently using the same data, the programmer must encapsulate that

data in a MONITOR or TASK-just as he would if two local processes were sharing it. In general,

having uniform local and remote semantics forces consistent use of existing concurrency machinery.

Furthermore, making the programmer explicitly create processes to handle remote parallelism

encourages him to be aware of synchronization problems with those processes.

4 IDEAL PROPERTIES OF A TRA~SPARE~T MECHANISM 63

4.1.5.2 Exceptions

To handle program- and system-generated errors in a distributed system, the programmer must

use the exception-handling tools in the language. Ada and Mesa, for example, have good

mechanisms for handling synchronous intraprocess exceptions. Mesa's scheme is more powerful

because it allows exceptions to take parameters (like procedures) and to be resumed. For

interprocess exceptions, unfortunately, neither language gives much assistance. Mesa has no scheme

for passing exceptions between processes; Ada's mechanism is better but is limited to passing

F AlLURE and ABORT signals.

Levin's thesis [54] talks about the importance of multiprocess exception mechanisms and

discusses how to implement them in procedural languages. The need for asynchronous exceptions

between processes has long been recognized and implemented in the message-passing world: Plits,

Medusa, and RIG [23,68,51] all provide some method of interprocess exception. The RIG

implementors, in particular, found tllis capability essential for designing reliable systems.

4.1.5.3 Aborts

Aborting a process-that is, forcibly halting its execution and destroying its computation-is

required by RPC implementations in order to exterminate orphans. This mechanism, which is a

part of the concurrency machinery, is needed by robust applications as well. The ability of a

process to finalize itself is a vital ingredient here: Aborted processes must be given a chance to

terminate cleanly. This means letting them carefully withdraw from any monitors they may have

entered so that the proper invariants-including monitor locks-can be restored before death. Both

Ada and Mesa have respectable process aborting mechanisms; each interjects a special asynchronous

exception that the dying process can catch and use to perform cleanup. Of course, a truly renegade

aborted process may try to regain control during finalization. Thus an absolute mechanism that

bypasses finalization is needed too. Ada's ABORT is just this mechanism; Mesa has no equivalent.

Machinery for aborting processes and forcing asynchronous exceptions may seem somewhat

violent to the gentle programmer of sequential abstractions. But realistic remote procedure

environments and, indeed, realistic applications will in fact require this machinery to provide robust

services and exploit the full performance of distributed systems.

4.1.5.4 Timeouts

Timeouts are important for reliability and responsiveness in distributed systems. Unfortunately,

timeouts are often abus~d by offering them as a general catch-all error that conveys no real

information to users. For example, assume A sends a call message to B with a ten-second timeout.

In the absence of any further interpretation, if the timeout expires then A does not know if the

message was lost, delayed, received, discarded, executed, returned, or anything else. Of course, low

level transport mechanisms usually deal with most of these uncertainties. The point is that timeouts

should not be used for general indications of trouble. Rather, a specific exception should be

generated that conveys the nature of the problem: NetworkPartitioned, CallRejected,

64 REMOTE PROCEDCRE CALL

CallStartedButIncomplete, and so forth. I am not advocating that these particular exceptions are

suitable for clients to handle; I am advocating that whatever abstract level intercepts exceptions

should have specific infonnation made available to it-not just timeout-for making intelligent

decisions about error-handling alternatives.

At the application level, remote procedures should be used with timeouts for just one purpose:

perfOlmance. For example, "I've waited two minutes for this operation and my human user is

getting frustrated-I'll abort this one and try somewhere else." In this case the programmer decides

to abandon the computation for perfonnance reasons. He is not using the timeout to look for

errors; he lets the RPC mechanism report these with exceptions.

4.2 The Pleasant Issues

Solutions to the problems posed by the essential issues are required for transparent RPC, but

procedure call-local or remote-is not a panacea for distributed programming. Issues of efficiency,

reliability, heterogenei,ty, and debuggability are also of concern. We now look at these pleasant

issues, so called because their solutions make RPC a pleasant as well as transparent programming

tool.

4.2.1 Good Performance

The struggle between elegant program structure and good program performance is unending.

The fundamental goal of transparent syntax and semantics allows programmers to write distributed

programs with the same elegance as local programs. But the price of this transparent structure, if

too great, will force RPC to the bottom of the programmer's toolbox: a programmer who needs a

balanced communication primitive is unlikely to use shiny-but-leaden RPC to build a distributed

system.

The search for good perfonnance within the framework of the essential issues, an important part

of this work, is the subject of chapter 6.

4.2.2 Sound Remote Interface Design

Just as the methodology of local procedure call has changed over the years, so the style of

remote procedure call will change and develop too. In one sense this is contrary to the notion of

transparency. In another, realistic programs will often know which of their modules and resources

are accessed remotely-or at least partially so. This knowledge may be motivated by any thing-a

desire to increase parallelism, a need to exploit the speed or efficiency of underlying

communications, or a requirement to provide atomicity in the presence of extremely long delays.

Most of this decision making will fall on the remote interface designer, for the division and

assignment of functions to remote interfaces detennines the overall structure of a distributed system.

Fortunately, these decisions are similar to the ones made in partitioning the work of any distributed

4 IDEAL PROPERTIES OF A TRANSPAREi\T :MECHANISM 65

system, whether it uses RPC or not. Thus basic interface decisions should continue to be guided by

non-communication primitive criteria, although the resolution of design details may use knowledge

of specific primitives. This is a cnlcial point, for remote interface designers must not be seduced by

the transparency of RPC. Using the descriptive power of remote procedures to design a wonderful

interface is acceptable only if the interface satisfies the primary design criteria: A clean interface

can still be an egregious performance catastrophe if the use and distribution of its functions are not

first taken into account.

The RPC-specific details and guidelines of remote interface design can be learned only through

actual experience with operational RPC mechanisms. While this chapter has covered many of these

details in a general way, there is insufficient experience to draw firm conclusions. Remote interface

design is revisited briefly in chapter 6.

4.2.3 Atomic Transactions

Maintaining data consistency and system reliability in the face of machine crashes is a topic of

current research. One emerging approach, well exemplified by Lalnpson and Sturgis [46,48], is to

provide transactions of atomic operations. In this scheme, programmers group restartable atomic

operations together into transactions that are guaranteed to have the atomic property: if the

transaction commits then all the operations happen; otherwise, if it aborts, none of them happens.

After a crash, recovery is initiated simply by continuing the system from the last checkpoint. The

intervening work of an uncommitted transaction is guaranteed to have had no side effects, and a

committed transaction is always completed. Of course, to use this and similar schemes effectively,

the application designer must structure his system to consist of operations that can be grouped into

atomic actions. A methodology is emerging for this.

There are two schools of thought on the relationship between remote procedures and

transactions: one believes that all remote calls should be atomic operations; the other maintains

that remote calls should be nonatomic, like local procedures. Liskov's Guardian work has

considered these two positions carefully and concludes that atomic RPC is necessary. She justifies

this position with the extremely robust applications that Guardians address: airline reservation

systems, bank accounting systems, and so forth. This thesis, however, covers a broader spectrum of

applications and takes the opposite position for two reasons: First, the policy and expense of

making each remote call atomic is too great a burden for many clients. Second, remote procedures

and atomicity are basically independent notions that require more investigation and experience

before being tied together. This completely acknowledges the importance of transactions, but takes

the stand that remote procedures with the same power as local procedures should be studied before

stronger semantics are added.

4.2.4 Respect for Autonomy

Respecting the autonomy of individual nodes is a basic requirement in many distributed systems.

The homogeneous and cooperative setting in which the essential properties are cast largely

66 REMOTE PROCEDURE CALL

overlooks this consideration. The previous sections on binding and typechecking are exceptions to
this: they explore some of the authentication, authorization, and load control issues that must be
resolved when desire for "transparent" binding encounters the realities of autonomous
environments. Turn back to those sections for more information.

4.2.5 Type Translation

Exploring the essential issues in a homogeneous environment also skips over important problems
of language and machine heterogeneity. The type translation issues of binding, typechecking, and
parameter functionality are covered in these same sections. Refer to those sections, and to Herlihy's
and Levine's theses [33,55], for more details.

4.2.6 Remote Debugging

Even if remote procedure call works perfectly, the programs using it will not. Facilities for
debugging multimachine configurations of modules are an essential part of a distributed
programming environment. These debugging facilities must give a user on one machine the ability
to control debugging on all of the others. This requires the means to start, interrupt, redirect, and
abort the execution of remote procedures and their processes. Similarly, the ability to examine and
modify data, set breakpoints, and perfonn all the operations of a local debugger must be provided.
On the other hand, certain cautions are called for. In a multiple process environment these
debugging actions must not disturb other processes. This is especially important for servers and
other autonomous nodes that manage important resources for other programs. Attempts by a
random debugger-that is, user-to "grab control" must therefore be carefully mediated to prevent
unwanted intervention.

Some work on remote debugging has been done by Arpa's Network Working Group [70]. Two
basic approaches are possible: The first is to include, as a nub in each machine, a simple interface
that starts and stops the processor and reads and writes memory. If the debugger uses only this
interface to access a machine-including itself-then remote debugging is readily implemented with
remote procedure call. This scheme can often be retrofitted into single-machine debuggers quite
easily. The remote Bcpl debugger on the Alto, for instance, was implemented with the nub
approach [89].

A second approach is to have separate, complete instances of the debugger in each machine.
These debuggers then communicate between themselves at a much higher level than read and write
memory when a user's command crosses machine boundaries. This approach decentralizes the
debugger's control and requires less internet traffic. It also requires very careful separation of the
debugger's user interface functions from the actual debugging primitives (i.e., those likely to be
called as remote procedures) .. In this sense it is just an extension of the first method with a higher
level nub.

Debugging programs of cooperating .modules written in different languages presents new
problems. Unfortunately, the most frequent approach is to use a "least common denominator"

4 IDEAL PROPERTIES OF A TRANSPARE:\T MECHA~ISM 67

assembly language debugger. As poor as such debuggers are, however, the presence of

heterogeneous machines can make even this approach impossible. Suitable layers of abstract

machines must be defined. and corresponding debuggers written. to overcome these problems.

Otherwise, the unattractive alternative of simultaneous, independent debugging on many machines

presents itself.

4.3 Summary of Ideal Properties

This chapter discusses a number of remote procedure issues. The essential issues deal directly

with the problem of providing transparent syntax and semantics in a homogeneous language. The

pleasant issues address other problems such as efficiency, autonomy, and heterogeneity. Each issue

is now resolved into a brief statement of ideal behavior. These statements are one set of essential

and pleasant properties for transparent RPC mechanisms.

4.3.1 Essential Properties

These five properties are essential to a remote procedure mechanism that is fully integrated into

a homogeneous programming language and that provides transparent local and remote procedure

semantics.

Uniform call semantics. In the absence of crashes, remote procedures must have the
exactly-once semantics of local procedures. In the presence of crashes, remote procedures
must have the last-one semantics of crashing local procedures. Atomic procedure call is too
expensive to be the standard RPC mechanism; the cheapest uniform semantics is obtained
by automatically exterminating orphans after crashes. Remote calls must be invoked via
concurrent invocation, not serial invocation.

Powerful binding and configuration. Programming language facilities for binding-i.e.,
specifying, linking, and loading-configurations of separately compiled modules must be
extended to handle modules that reside and execute on remote machines. The binder must
permit flexible machine naming, and binding facilities must be available both declaratively
and dynamically.

Str~ng typechecking. The type calculus of the standard programming environment must be
fully applied over the distributed system. Any operation that causes a type violation in the
local environment must cause the same violation in a remote environment.

'Excellent parameter functionality. Parameters to remote procedures must be passed by
value-result. Nearly all language- and user-defined datatypes allowed as parameters of local
procedures must be valid as parameters of remote procedures. This includes many
traditional uses of pointers, but excludes list structures: while Herlihy and others show how
to pass shared structures in parameters, automatic graph handling is not suggested here.
Global variables are disallowed as well.

Standard concurrency control and exception handling. The standard parallel-processing and
exception-handling facilities of the language must interact identically with local and remote
procedures. This may present performance problems for languages with poor (or no)
concurrency control. It may also make error handling more troublesome for languages
without good exception mechanisms, especially those without interprocess exception
mechanisms.

68 REMOTE PROCEDURE CALL

4.3.2 Pleasant Properties

These six properties are not fundamental for an RPC language mechanism but they do make any
proposed scheme much more palatable for real distributed programmers.

Good perjonnance of remote calls. To be a realistic tool, remote procedures must be
comparable in cost to the application-tuned protocols they are intended to replace. It is
well known that, in the limit, efficiency-minded clients will always trade abstraction and
elegance for direct manipulation of bits.

Sound remote interface design. Remote interface designers must always evaluate their work
in light of the increased cost of remote procedures. While transparency is wonderful for
implementors and users, the interface designer must be careful to distribute functions cost
effectively.

Atomic transactions. Robust applications demanding high reliability must use independent
transaction mechanisms. This is vital because the recommended RPC semantics are not
atomic in the presence of crashes.

Respect for autonomy. The binder must respect both the autonomy and the capabilities of
its host machine. This requires policy decisions based on the degree of cooperation in the
environment.

Type translation. The compiler and binder should cooperate to perform automatic type
translations in heterogeneous language and machine environments. Runtime negotiation
can optimize performance.

Remote debugging. A language-level debugger that deals with multimachine configurations
is vital for real programmers. Problems of heterogeneity and autonomy add complexity.

5

Nuku Hiva-AJarquesas
8°54' S 140°08' MV

Thefirst Polynesians sailfor Havai'i-ofthe-North, A.D. 750

Design Approaches
for a Transparent Mechanism

Three implementation approaches for remote procedure mechanisms were proposed in chapter 2:

the RTransfer primitive, compiled RTransfers, and source-level stubs. Chapter 4 showed that for

any of these approaches to define a transparent mechanism, the approach must satisfy the five

essential properties. Fully satisfying these properties, however, requires more than just a basic

mechanism. In particular, algorithms are required to exterminate orphans after crashes, and a

distributed binder is required to interconnect modules so that they can communicate with RPC.

In response to these requirements, this chapter develops Emissary, a design for a transparent

RPC mechanism that satisfies all of the essential properties. Emissary is also designed for high

efficiency; chapter 6 shows that Emissary satisfies the good performance property in addition to the

essential properties.

5.1 Emissary's Semantics

Emissary is a transparent RPC mechanism that satisfies the five essential properties defined in

chapter 4. Since Emissary's semantics are completely characterized by the essential properties, it is

well to restate them briefly here. Because Emissary's design is largely language-independent within

the general context of procedural languages, concrete details of (for example) typechecking,

datatypes, and exception handling are not given here. When specific examples in the chapter do

require a concrete language setting, Mesa is used.

Uniform call semantics. Emissary has identical local and remote call semantics: exactly
once in the absence of crashes and last-one in the presence of crashes.

Powerful binding and configuration. Emissary's binder permits the flexible specification and
assignment of program modules to the nodes of a distributed system.

70 REMOTE PROCEDuRE CALL

Strong typechecking. Emissary ensures that the compiler and binder perform the same
typechecking for remote calls that they do for local calls.

Excellent parameter functionality. Emissary's runtime mechanism permits nearly all
datatypes as parameters, including address-containing types that are not list structures.
Parameters are passed by value-result.

Standard concurrency control and exception handling. Emissary invokes and executes
remote procedures with no hidden concurrency-the caller blocks while the callee executes.
All exceptional conditions are reported with the standard exception mechanism.

5.2 Design Overview

Emissary's design is composed of three distinct parts: orphan algorithms, remote call

mechanisms, and distributed binding. The remainder of the chapter considers each in tum. The

following shows how the parts combine to satisfy the five essential properties:

Orphan algorithms. To obtain semantic transparency during crashes, the uniform call
semantics property demands that orphans be exterminated. This requires orphan
extermination algorithms that are reliable in the face of crashes. In addition, crash
notifications must be delivered using the standard exception-handling machinery of the
programming language.

Remote call mechanisms. Once a distributed program has been loaded and started on all of
its nodes, it executes normal, steady-state remote calls. To achieve local and remote
transparency for steady-state calls, they must satisfy the uniform call semantics,
typechecking, parameter functionality, and concurrency and exception control properties.
The compiler (or stub translator) and RPC runtime environment bear most of these
responsibilities.

Distributed binding. Before a distributed program can perform steady-state calls, it must
undergo a binding transient where modules are configured, bound, loaded, and started.
Transparency requires that remote binding schemes satisfy the strong typechecking and
powerful binding properties. Careful extensions to local binders can transform them into
distributed binders that meet this requirement.

All programs in this chapter are written in Mesa [62]. Readers unfamiliar with Mesa but versed

in Pascal will find appendix 1 useful for explaining some of Mesa's uncommon features.

5.3 Orphan Algorithms

The purpose of orphan algorithms is to exterminate orphans after node failures, therefore

guaranteeing last-once semantics in the presence of crashes. Since the Emissary remote call

mechanism to be discussed in section 5.4 guarantees exactly-once semantics in normal, noncrash

situations, Emissary's orphan algorithms act in conjunction with the remote call mechanism to

satisfy the uniform call semantics property.

5 DESIG:\ ApPROACHES FOR A TRA:\SPARE~T MECHANIS\1 71

The orphan algorithms presented in this section are unimplemented. In addition, some low-level

interactions between these algorithms and the underlying RPC machinery are not fully described.

These interactions are clarified in section 5.4.1.4 on call mechanism details.

Readers familiar with Lampson's orphan discussion [49] will notice some common threads

between this work and his. The work presented here discusses some new issues and elaborates a

few of Lampson's general points in much greater detail.

5.3.1 Algorithm Definitions

The following terms and techniques will be used throughout this section. The models for crashes

and stable storage are roughly those of Lampson's transactions model [48].

Nodes. Each independent processor in the distributed system is called a node.

Processes. Each node has some number of active processes. These processes can be
enumerated from the Processes set. A process's state contains information that identifies its
parent process and any remote call it may be executing.

Calls. To clarify internode communication, remote procedure calls will be explicitly
indicated. A remote call of procedure P in node n is written n.p[arguments); a local call is
simply p[arguments]. The declaration of a procedure that is usually called remotely is
flagged with the keyword REMOTE. If a procedure is not declared REMOTE, it can only be
called locally.

Exceptions. Exceptions are handled using Mesa's standard mechanism (appendix 1).

Crashes. A node has three cyclic phases in its life:
Normal is when the node is conducting its usual business;
Crashed or down is when the system is stopped;
Recovery is when a crashed node restarts and makes itself consistent before

declaring itself back to normal. While a node is recovering, it do~s not execute client
programs or accept any remote calls except those necessary for the special business of
recovery. Nodes are expected to be in the normal state except when they are down. The
length of a crash is often short (seconds), but can last indefinitely (e.g., when there are
hardware failures). Recovery is usually brief (seconds to minutes).

Stable storage. Each node has stable storage that survives crashes. In the algorithm,
information kept in stable storage is declared STABLE.

Communication. Internode crash-recovery communication takes place via remote procedure
calls (after this much work, it would be silly to use anything else). Because these remote
calls during recovery are to repair the normal RPC mechanism, they employ logically
different connections from those used for normal calls. They must be sent reliably-with
connections newly established during recovery (or equivalent}-because orphan
extermination messages that are lost, duplicated, or delayed can be catastrophic.

5.3.2 Orphan Definitions

Precise definitions of orphan-related terms clarify the algorithm descriptions and make the

algorithms more concise. The definitions that follow are illustrated with examples from figure 5.1.

72 RE\10TE PROCEDCRE CALL

In the figure, calls between nodes are shown with heavy directed lines. Each call is identified with

the names of its originating nodes (the nodes it is working for). For example, starting at the left,

call AB is from node A to node B. In B, the two processes executing call AB each make a subcall

to node C, ABCl and A BC2" C makes an yet another subcall to D, ABC]D. The thin lines within

nodes Band C indicate this genealogy. Calls with no intranode relationships (Le., thin lines) are

independent. Thus calls CA, BA, and CD are independent from each other and from AB and AB's

descendents.

CA
~

Node A ~ NodeC

AB
Node B ABC1 ABC1D Node 0

.. .. . ~
r

I ABC2
r r

.. ..
SA ...

CD

RECOVERING

Figure 5.1: A distributed system with orphans originating at recovering node B.

With the illustration in mind, here are the definitions.

Child processes. The child processes of a remote call P are the processes in a remote node
N that are servicing P. Initially P has only one child process in N, and it is invoked
concurrently with other processes in N as discussed in section 4.1.1.7. P acquires additional
child processes in N as the first process forks auxiliary concurrent processes, and they fork
more, and so on. All of P's child processes are in node N. In figure 5.1, there is initially a
single child process in node B resulting from call AB, and this child process spawns
another. These concurrent child processes of AB are represented by the intranode lines in
B, and they have initiated concurrent remote calls ABC] and A BC2.

Child calls. The child calls of P are the remote calls made by P's child processes. In the
figure, ABC] and ABC2 are child calls of call AB, and ABC]D is a child call of ABC],

Parent processes. The parent process of a remote call P is the process that invokes P. In
the figure, the parent process of call AB is the anonymous process in node A that invokes
procedure AB.

Parent calls. The parent call of remote call Q is the call, P, for which Q is a child call of
P. In the figure, the parent call of ABC 1 and ABC 2 is AB. AB has no parent call and is
called the root of the AB call tree. The transitive closures of the parent call and parent
process relations are never cyclic; the call tree is never a graph because a process can only
execute one remote procedure at a given time.

Child nodes and parent nodes. The child nodes of node N are the nodes executing any of
N's child calls. The parent nodes of N are the nodes that started all of N's parent calls. In
the figure, node A has parents Band C and child B; node B has parent A and children A
and C; node C has parent B and children A and D; and node D has parent C and no
children. Notice that the transitive closure of the child node and parent node relations can
be cyclic (e.g., nodes A and B because of calls AB and BA).

5 DESIG1\ ApPROACHES FOR A TRA~SPARE~T MECHA:\"ISM 73

Ancestors and descendents. The previous parent and child relationships always apply
between two directly connected nodes. Ancestor and descendent relationships are
represented by the transitive application of the parent and child relations. In the figure,
ABC/, ABC 2' and ABClD are the descendents of AB; ABCl and AB are the ancestors of
ABClD.

Remote work. The remote work of a distributed system-or of a given node, process, or
call-is the work being done by all remote calls and all of their child processes. All other
work is local and is therefore contained in one node and has no parent nodes, processes, or
calls. All seven calls in figure 5.1 are doing remote work; local work is not shown.

Orphans. An orphan (also called orphan call and orphaned call) is a remote call that has
some ancestor executing on a crashed node. In the figure, if node B has crashed and is
recovering, then calls BA, ABCl. ABCl' and ABClD are all orphans. Together, these four
calls are called the orphans of B. Individually, each call is an orphan of its parent node and
its parent call, if any. For example, ABClD is an orphan of node B and call A BCl, and
ABCl and ABC2 are orphans of A and AB. Since call BA is a root call and has no parent,
it is just an orphan of B.

5.3.3 Extermination

With this background, consider a crashed node N that is performing crash recovery. One of N's

recovery responsibilities is to ensure that all of its orphaned calls are exterminated before it returns

to normal operation. Section 4.1.1.4 suggested that one way to exterminate an orphaned call is by

tracking down all of its orphan processes and killing them. To accomplish this, N contacts all of

the nodes it called before the crash and tells them to exterminate N's orphaned calls. Each of these

machines, in tum, exterminates its orphans caused by the child calls that N's child processes have

made on behalf of N. This process repeats for all the descendents of N's orphans.

A recursive algorithm for this method is presented in algorithm 5.1. Basically, it works as

follows. Each node keeps two sets in stable storage: nodes! n contains the parent nodes of all

incoming calls, and nodesOut contains the child nodes of all outgoing calls (stable storage decisions

and requirements are explained in section 5.3.3.2). During crash recovery, these sets are used to

exterminate orphaned calls and to notify parents of the extermination (since the sets are stable they

survive crashes). After a crash, the recovery code at the end of algorithm 5.1 is called. The code

works in two steps (follow the algorithm as you read below).

Orphan extennination. The first part of recovery extenninates the recovering node's
orphans, including orphaned descendents, by calling RecoveryExtennination. For each child
node in nodesOut, RecoveryExtennination calls ExtenninateAll on the child. Assuming that
the child node is not itself in crash recovery (this is considered below), the child Aborts all
of the calling parent's child processes. In addition, for each child that is itself executing a
remote call, the Abort of the child process recursively Exterminates the child's orphan (this
latter call is a grandorphan, or second-level descendent of the recovering parent). This
extermination procedure repeats for all descendents. Note that Exterminate aborts only the
child processes of the parent process, not all the child processes of the parent node like
ExtenninateAll.

74 REMOTE PROCEDCRE CALL

Parent crash notification. The second part of recovery infonns the recovering node's parent
nodes that it crashed by calling RecoveryCrashNotification. For each parent in nodesIn, a
remote call of ChildCrashed is made to the parent. This raises the Crashed exception in
every parent process that had a remote call to the recovering node. Alternatively, a parent
application program could have already received a Failed exception and explicitly called
ClientAbort to abort and exterminate the failed (actually crashed) call. In this case,
ClientAbort's Exterminate call (via Abort) repeats until the child's crash recovery code
begins accepting remote Exterminate calls. It then succeeds and aborts the process. Abort
ignores the unwanted Crashed exception should it arrive during the extermination.

An example clarifies the algorithm's behavior. In figure 5.1, assume that node B is recovering as

indicated. B's nodesIn list contains A, and nodesOut has A and C. In the first pan of recovery, B's

RecoveryExtermination procedure calls ExterminateAll on A and C. Since A's remote work for B is

contained wholly in A, A just aborts the local child processes of call BA and makes no recursive

calls to Exterminate. Node C, however, has called D on behalf of B. Hence C not only aborts the

child processes of calls ABCl and ABC 2' but it also calls Exterminate on node D to kill ABClD's
child processes there. C's other calls, CA and CD, are unaffected. In the second part of recovery,

node B's RecoveryCrashNotification procedure makes a remote call to ChildCrashed on A. If A is

still waiting for call AB to complete-which is possible even though A earlier extenninated

independent call BA-then a Crashed exception notifies AB's caller of the crash. If the caller is

already aborting AB, the abort will complete when recovery is over.

5.3.3.1 Mutually Interacting Crash Recoveries

Extermination is more complex when two or more recovering nodes are participating in the same

extermination. The reason is that the "call tree" information stored in ProcessObjects and used by

Exterminate and ExterminateAll to track orphans is destroyed in a crash. For example, in figure

5.l, if both node A and node B are recovering, then when node A calls ExterminateAll on B, B will

have no explicit record of calls ABCl and A BC2. Instead, B has just its nodesOut list, which

contains both A and B. At first glance this problem can appear easy to solve: When either

Exterminate or ExterminateAll is called on a recovering node such as B, just make the call wait for

B's normal recovery to complete-that is, for B's call of RecoveryExtermination to finish. This

guarantees that all orphans, not just those requested by Exterminate or ExterminateAll, are

exterminated. Unfortunately, this waiting approach is ideal except when two recovering nodes are

in a child-parent node cycle, as are nodes A and B. When there is a cycle, deadlock results: if A's

call of B.ExterminateAll is waiting for B to finish extermination, and B's call of A.ExterminateAll is

similarly waiting for A, then the recoveries are deadlocked.

The solution to the problem of mutually recovering nodes is to not wait, but rather to carry on

an independent RecoveryExtermination. This is why, in algorithm 5.1, that both Exterminate and

ExterminateAll call RecoveryExtermination when they are invoked during the extermination phase

of recovery. Unfortunately, this extra call of RecoveryExtermination involves some wasted effort

since, for example, both A and B execute RecoveryExtermination twice (not all of

RecoveryExtermination's work is done twice, however). Furthermore, not waiting causes a new

5 DESIG;'\ ApPROACHES FOR A TRA~SPARE~T MECHANISM 75

problem: mutual RecoveryExtemlinations can get into an infinite recursion because node

information-which can be cyclic-rather than call information-which is acyclic-is used. These

cycles are detected and broken by using the recoveringAncestors parameter of all the extermination

operations. Basically, the recoveringAllces/ors set allows the call tree to be reconstructed from the

cyclic graph of nodesOut information.

This revised behavior is clarified by finishing the example where A and B are in mutual recovery

(this excludes all nodes and calls in figure 5.1 except A. B, AB, and BA). Considering just node B,

when B first enters crash recovery it calls RecoveryExtennination. RecoveryExtermination finds

node A in nodesOut (from call BA) and calls ExterminateAll on A. Node A, also in recovery, is

unable to do the ExterminateAll and calls its own RecoveryExtermination procedure instead. This

RecoveryExterrnination on A finds B in A's nodesOut list (from call AB) and calls ExterminateAll

back on B. Node B, of course, cannot perform an ExtenninateAll either, and calls its

RecoveryExtennination routine (recursively) for the second time. But B's RecoveryExtermination,

before doing anything else, checks recoveringAncestors and finds B in the list. This stops the

recursion, and the chain of extermination calls then backs out successfully. Node A performs a

symmetric sequence of calls as part of its recovery, although only checking is performed since all

processes in both A and B are aborted in their crashes.

5.3.3.2 Costs and Stable-storage Requirements

An important property of the Emissary extermination algorithm is that it costs nothing for

normal, steady-state calls except some small space. All information required for recovery is kept in

the nodesln and nodesOut stable sets, which can have a very compact bit-vector representation.

While updating these sets may be costly because of the stable storage operations required, the

expense is usually paid only once, when the first call is made between any two nodes. Further, any

necessary dynamic manipulation of these sets need not be completely accurate: Old nodes can

remain in the lists until removing them is convenient, say, with an aging scheme. Having the old

nodes in the lists causes extra exterminations to be attempted during recovery, but this is not

functionally harmful-it just degrades the performance of recovery. New nodes, however, must be

added immediately: For an outgoing call, nodesOut must be updated before the call is sent; for an

incoming call, nodesln must be updated before the call is accepted for execution.

An alternative scheme to using nodesln and nodesOut for extermination is to use only the

Process. worker and Process.parent state information. The advantage of this scheme is that orphans

can be precisely located through the family tree of descendents recorded in each child

process-there is no need for the complicated recoveringAncestors cycle detection used in algorithm

5.1. But the disadvantage is that, to work in the presence of crashes, worker and parent must always

be kept in stable storage. Since this requires writing the child process information to stable storage

for every remote call, it is probably an unacceptably expensive method.

76 REMOTE PROCEDCRE CALL

-- Emissary's recursive algorithm to extenninate orphans by having each node kill its own.
Node: TYPE = ... ; -- Internetwork address.
myNode: Node = ... ; -- The node that this variable lives in.
NodeState: TYPE = {startRecovery, ... , extenninating, notifying, ... , normal};
myNodeState: NodeState ~ startRecovery; -- Current processor state of myNode.
Process: TYPE = POINTER TO ProcessObject;
myProcess: Process +- ... -- Currently executing process.
ProcessI D: TYPE = RECORD [-- Indicates our internet-wide parent process.

node: Node, -- Home node of process; myNode iflocal.
process: Process];

ProcessObject: TYPE = RECORD [
... -- Other parts of a process object.
worker. Node, -- worker will be myNode iff executing in this node.
parent: ProcessID]; -- parent is the ProcessID of the parent if there is one;

if parent is a root process then parent is parent.process (circular).
Processes: SET OF Process +- ... ; -- Contains all active processes in this node.
nodesIn: STABLE SET OF Node +- EMPTY; -- Contains the nodes of all incoming calls.
nodesOut: STABLE SET OF Node +- EMPTY; -- Contains the nodes of all outgoing calls.

LocalRootProcessID: PROCEDURE [process: Process] RETURNS [root: ProcessID] =
-- Finds the local root process of process. If the root process is in this node, then the root's
parent is itself (first case checked by UNTIL). If the top-level local process has a remote root
(because of a remote call), then the top-level process's parent will name the root (second
case).

{ FOR root +- process, root.parent.process -- Follow the parent link.
UNTIL root.parent.process= root OR root.parent.node# myNode DO ENDLOOP;

RETURN[root.parent] };

Failed: SIGNAL = ... ; -- Exception indicating that a remote call has failed because the remote
callee refuses to respond (there is evidence that the child node has crashed or partitioned).
Failed is raised by the underlying RPC mechanism and is never explicitly raised in this
algorithm. Client programs that catch the Failed exception and decide to abort their remote
work (thereby guaranteeing last-one semantics) should call ClientAbort.

Aborted: SIGNAL = ... ; -- Exception indicating that the process in which Aborted is raised is
being aborted and should finalize itself if desired. Abortedis signalled by DestroyProcess.

Abort: PROCEDURE [p: Process, recoveringAncestors: SET OF Node +- EMPTY] =
-- Aborts process p and exterminates p's resulting remote orphan, if one. (1be
recoveringAncestors set is used only by Exterminate.) DestroyProces5fp] halts and destroys p
and preserves process family relations by making p's spawned processes have p.parent as
their parent. DestroyProcess SIGNALS Aborted IN p, and ignores any Crashed exceptions that
might be waiting from a remote call to myNode's ChildCrashed routine.

{IF p.worker # myNodeTHEN
p. worker. Exterminate[[myNode,p], recoveringAncestors

! Crashed =) CONTINUE];
DestroyProcessfp! Crashed =) RESUME] };

ClientAbort: PROCEDURE [p: Process] =
-- Aborts process p, but also ensures that extermination succeeds for the Abort. ClientAbort
is intended to be called by clients who decide to abort outstanding activity-including
remote calls-for some reason. This is why the Failed exception causes the Abort to be
retried until it succeeds. Note that as it is written, ClientAbort (via Abort) aborts an entire
process as well as exterminating the process's remote call (if any). Performing just the
extennination (leaving the process intact) can be done by writing a new ClientExterminate
operation that performs the first half of Abort. It's possible that clients may not want to
extenninate orphans for some reason; this is a policy decision that is not made here.

{ Abort[p ! Failed =) RETRY] };

5 DESIG~ ApPROACHES FOR A TRAl\SPARE~T MECHANISM 77

Exterminate: REMOTE PROCEDURE [parent: ProcessID, recoveringAncestors: SET OF Node] =
-- Exterminate the orphaned call myN ode has undertaken for the remote parent. How
myNode does this depends on whether myNode is in crash recovery or operating normally.
If myNode is in the extenninaling phase of recovery, the parent's process(es) are already
killed, as desired. As a consequence, however, it is impossible to recursively kill parent's
grandorphans because that grandorphan information was in the now-destroyed processes.
Thus myNode must call RecoveryExtermination to ensure that all orphans are killed. (It is
not sufficient to wait for myNode'scrash recovery to complete first, because waiting can
cause deadlock; see the text.) If, on the other hand, myNode is operating normally, then
myNode exterminates parent's call by aborting all of parent's child processes in this node. If
any of myNode's processes are performing remote work for parent, their orphaned calls (the
grandorphans) are automatically exterminated by Abort.

{ SELECT myNodeState FROM

exterminating =) RecoveryExtermination[recoveringAncestors];
IN [notifYing .. nomwij =)

FOR P IN Processes DO
IF LocalRootProcessI D[P] = parent THEN

Abort[p, recoveringAncestors] ENDLOOP;
ENDCASE =) ERROR};

ExterminateAll: REMOTE PROCEDURE [parentNode: Node, recoveringAncestors: SET OF Node] =
-- ExterminateAll operates similarly to Exterminate except that all calls myNode has
undertaken for parentNode are killed by aborting all of parentNode's processes in this node.

{SELECT myNodeState FROM

exterminating =) RecoveryExtermination[recoveringAncestors];
IN [notifYing .. nOl1na~ =) {

FOR P IN Processes DO
IF LocaIRootProcessID[p].node = parentNode THEN

Abort[p, recoveringAncestors] ENDLOOP;
nodesln ... nodesln - parentNode };

ENDCASE =) ERROR };

RecoveryExtermination: PROCEDURE [recoveringAncestors: SET OF Node] =
-- RecoveryExtermination is called by myNode during crash recovery. Because the precrash
process information is gone after a crash, RecoveryExtermination cycles through nodesOut,
calling ExterminateAll on each of our child nodes to ensure that all of myNode's orphans are
killed. The purpose of recoveringAncestors is to prevent infinite recursion by detecting child
node cycles. It works like this: Each node that performs an extermination during recovery
(via RecoveryExtermination) adds itself to the set of recovering Ancestors (this set includes
only ancestors in the exterminating phase, not those in normal operation). Later, during the
extermination initiated by myNode's call of child Ex term inateA ll, if myNode is asked to
exterminate one of its own calls, it notices itself in recoveringAncestors and immediately
returns, stopping the recursion.

{ IF myNode IN recoveringAncestorsTHEN RETURN;
FOR chi/diN nodesOut DO

child.ExterminateAI~myNode, myNode+ recoveringAncestors];
nodesOut ... nodesOut - child;
ENDLOOP };

Crashed: SIGNAL = ... ; -- Exception indicating that the remote call in which Crashed is raised
went through a crashed node. The crashed node has already recovered and the call been
exterminated. Crashed is raised only in C hildCrashed.

78 RE\10TE PROCEDCRE CALL

ChildCrashed: REMOTE PROCEDURE [child: Node] =
-- Tell myNode's processes-just in case they are waiting-that their remote calls to child
have crashed and been exterminated. Usually myNode will have given up and already
started exterminating child's orphans, but perhaps myNode decided to wait for a long time.
It is necessary to inform still-waiting processes of the crash so that their calls do not repeat
without an intervening Crashed exception.

{ FOR P IN Processes DO IF p. worker = child THEN SIGNAL Crashed IN p ENDLOOP:
nodesOut ... nodesOut- child };

RecoveryCrashNotification: PROCEDURE =
-- RecoveryCrashNotification is called by myNode during crash recovery. Tell each parent of
myNode that myNode has crashed and recovered. The crash recovery code below ensures
that each C hildCrashed call completes successfully.

{ FOR parent IN nodesI n DO

parent. C hildCrashe~ myN ode];
nodesIn'" nodesIn - parent;
ENDLOOP };

-- Extermination starts in two ways. First, application programs can call ClientAbort. This
exterminates the one remote call in the aborted process, if any. Second, a crashed node can
enter crash recovery. In this case, all orphan calls are exterminated. The code that performs
exterminations during recovery appears below.

-- If myNode is in crash recovery the following code is run to perform extermination. The only
emote calls allowed into myN ode during this part of recovery are Exterminate and
ExterminateAll. This allows two (or more) nodes that are in a child or parent node cycle to
avoid deadlock ifboth (or aU) are recovering from crashes simultaneously. The calls of
RecoveryExtennination and RecoveryCrashNotification must successfully complete before
ending recovery, otherwise there is no guarantee that all orphans are killed and all parents
are notified. (Retrying after the Failed exceptions causes these operations to repeat until
they succeed.)

BEGIN -- Crash recovery .
.. . ,
myNodeState ... extenninating;
RecoveryExtermination[EMPTY ! Failed => RETRY];
myN odeState ... notifying;
RecoveryCrashNotification[! Failed => RETRY];
... ,

END; -- Crash recovery.
myNodeState ... normal.

Algorithm 5.1: Emissary's orphan extermination algorithm.

5 DESIG:\ ApPROACHES FOR A TRA~SPARE~T MECHA~IS\1 79

Observe that the cost of the extermination algorithm during crash recovery is not a major issue.

Crashes are expected to be an infrequent event; putting off until crash recovery work that hinders

normal operation is usually a sound decision. This is why nodesIn and nodesOut are used for

extermination and not Process. worker and Process. parent: The former method complicates crash

recovery substantially and results in some wasted motion, but it has negligible steady-state overhead.

The latter method is cheaper in recovery, but has high steady-state overhead.

5.3.3.3 Incomplete Exterminations

An unfortunate disadvantage of the extermination algorithm is that recovery may never complete.

If any of the nodes executing orphaned calls are themselves crashed and down, a call to

Exterminate on the down node cannot complete. This prevents its orphans from being killed, and

recovery must wait indefinitely for the broken node to come to life in order to guarantee last-once

semantics. For example, if node C in figure 5.1 is down, then node B cannot complete recovery

because it is impossible to get C to exterminate B's orphans-in this case, call ABC ID. If node D
is down instead of C, then C faces the same dilemma because C must now discover that D has no

orphans. A partitioning of the network causes exactly the same problem because the nodes of the

isolated subnet are effectively down, e.g., if C and D were cut off from A and B. Furthermore, a

partitioning that isolates a parent node also prevents extermination from completing because

RecoveryCrashNotification cannot terminate.

Consider some solutions to this problem:

One solution is simply to wait on the assumption that the down nodes or broken
communication will eventually be repaired. But this is clearly unrealistic, especially on
performance grounds.

A second solution is to abandon extermination altogether for some other scheme, but the
low steady-state cost of extermination is too attractive for this.

A third solution is to modify the extermination scheme to deal with the problem of crashes
in orphan nodes. Even if the modifications are expensive, this course is sound as long as
the steady-state cost is negligible. This is true because the modified algorithm will need to
be used only when extermination itself fails, and this is expected to be rare.

The next two sections present solutions of the second and third type. The first solution is a

completely new scheme that can either augment or replace extermination; both possibilities are

discussed. The second solution is an enhancement to extermination that is primarily useful for

dealing with down nodes.

5.3.4 Expiration

If the nodes of a distributed system have synchronized clocks, then orphans can be killed simply

by establishing a time limit on each remote call. More precisely, an expiration time is associated

with each process. Strictly local processes-those doing no remote work-have a limit that never

expires. Processes that are doing remote work, however, inherit their expiration times from their

80 REMOTE PROCEDCRE CALL

parent processes. In this way, the root process of a remote call sets the time limit for all of call's

child processes. Whenever a process reaches its expiration time and is still executing, it is declared

a (potential) orphan and promptly aborted.

Notice that the expiration scheme requires no internode communication to detect or eliminate

orphans: since the expiration time of a given remote call arrives with the call, each node kills the

orphans of a given call independently and simultaneously (within the clock skew of the system).

This has two desirable properties:

First, it works equally in the presence of partitioned and down nodes. It therefore
overcomes the only drawback of extermination.

Second, it requires none of the complicated cycle-detection mechanism that is used by
extermination during mutual recoveries.

On the negative side, however, expiration has an extremely unpleasant property: If a call's

expiration time is too short, then the call can be declared an orphan and aborted before it has time

to complete. For this reason, expiration is best used in conjunction with extermination. The hybrid

extermination-expiration scheme works as follows: The expiration time for every remote call is set

into the future by a very large Expiration!nterval (for example, minutes). If a remote call fails

because of a crash or an explicit call to ClientAbort, extermination is tried first. Extermination will

usually succeed, and very quickly, unless there is a down node or a partitioning. In the latter cases,

extermination will fail and the exterminating node must simply wait for expiration-i.e., for

Expiration! nterval to pass-before continuing. This ensures that the now-expired orphans have

been killed.

There is another reason why Expiration! nterval must be longer than the time taken for a call to

receive the Failed exception. If Expiration! nterval were shorter, then the root process of a remote

call could repeat the call without knowing that its descendent calls had been aborted. This would

violate exactly-once semantics. For example, assume that a remote call has expired, all of its child

processes are aborted, and the root process is not notified of the expiration (virtual crash). If the

root process's RPC mechanism now retransmits the same call message without knowing that the call

expired, then the remote work of the call will start again because the child nodes have no record of

the now-expired call. An alternative method of root-process notification is to call explicitly a

ChildCrashed-like routine on the root node. This could eliminate the implicit notification that

results from making Expiration! nterval longer than the call failure time, but seems unnecessarily

complicated because Expiration! nterval needs a very large value for other reasons, as discussed

above.

The details of one expiration algorithm are given in algorithm 5.2. It operates basically as

described above: Every ProcessObject has an expiration Time that is set by CreateProcess to either

an inherited expiration Time or NeverExpires. There is a special CheckExpirationTimes process that

wakes up every Expiration!nterval and aborts any expired orphans. (Notice that this does not abort

a process precisely when its limit expires, but within one Expiration!nterval of the expiration. This

is discussed in the algorithm.) Finally, the ClientAbort procedure and crash recovery code must be

changed to wait for all orphans to expire when extermination fails.

5 DESIGI\ ApPROACHES FOR A TRANSPARE~T rvlECHA~ISM 81

As an example of expiration, assume that node B in figure 5.1 crashes and stays down. The

process making call AB eventually gets the Failed exception; assume that ClientAbort is invoked to

abort the call. Unfortunately, ClienlAbort's extermination of call AB also fails because B is down.

Now if node A relied on extermination alone, it would be forced to repeat the extermination of AB

until node B recovered. With expiration, however, A just waits for all of AB's orphans to expire

(the exact waiting time is explained in the algorithm): In node B, B's crash has already killed AB;

in node C, C's CheckExpirationTimes process aborts ABCl and ABC2; in node D, D's
CheckExpirationTimes process aborts ABClD. Finally, in node A, call BA is aborted by A's own
CheckExpirationTimes process.

-- Emissary's expiration algorithm to kill potential orphans by automatically aborting all
processes whose assigned time limits expire. Familiarity with the previous extermination
algorithm is assumed.
Time: TYPE = ... ; -- Monotonically increasing time; resolution of at least seconds.
NeverExpires: Time = LAsT[Time]; -- Distinguished time value; infinity is convenient.
Expirationlnterval: Time = ... ; -- Conveniently large value; probably at least minutes.
MaxClockSkew: Time = ... ; -- Upper bound on the error in all system Clocks (see text).
NodeState: TYPE = {startRecovery, ... , extenninating, notifying, ... , nonnal};
myNodeState: NodeState ... startRecovery; -- Current processor state of myNode.
Process: TYPE = POINTER TO ProcessObject;
myProcess: Process'" ... -- Currently executing process.
ProcessObject: TYPE = RECORD [

... -- Other parts of a process object.
expiration Time: Time, -- Deadline after which this process is to be aborted.
worker. Node, -- worker will be myNode iff executing in this node.
parent: ProcessID]; -- parent is the ProcessID of the parent if there is one;

if parent is a root process then parent is parent.process (circular).
Processes: SET OF Process'" ... ; -- Contains all active processes in this node.

Clock: PROCEDURE RETURNS [time: Time] = { ... };
-- Clock appears to be a built-in operation at this level. Clocks are assumed to be
synchronized system-wide, but some synchronization error (skew) is permitted; see the text.
The maximum error is assumed to be MaxClockSkew.

CreateProcess: PROCEDURE [parent: Process, ...] RETURNS [child: Process] =
-- CreateProcess is (logically) called by Spawn, FORK, or whatever process-creation primitives
a language provides. Shown here is the child's inheritance of the parent's expirationTime: If
parent is performing remote work, child's expiration is inherited to ensure that all child
processes have the same expiration time. If parent is performing local work, there is no
expiration time. (Of course, if crash recovery starts the system with the expiration Time of
the local root process set to NeverExpires, then simply assigning child.expirationTime ...
parent. expiration Time is sufficient (and desirable). The conditional assignment below is for
clarity.)

{... -- Other parts of process creation.
child expiration Time ... IF LocalRootProcessID[parent].node # myNode

THEN parent. expiration Time ELSE NeverExpires;
... };

82 REMOTE PROCEDURE CALL

CheckExpirationTimes: Process =
-- CheckExpirationTimes is a special high-priority process that periodically (every
Expirationlnterval) looks through Processes for any process that has exceeded its
expiration Time. Any process that has expired is aborted with LocalAbort. (LocaIAbort, not
shown, is identical to Abort except that any remote call of p is not exterminated (it will
expire too). LocalAbort is therefore the same as DestroyProcess.) Observe that an expired
process may not be aborted exactly when its limit expires, but rather within one
Expirationlnterval of the expiration Time. This delay is handled by the revised crash
recovery, below. Also, expired processes may not actually be killed until a short time after
CheckExpirationTimesstarts executing. This is not harmful since no (expired) process can
execute as long as CheckExpirationTimes is running.

{ SetProcessPrioritJihigh];
DO

SuspendProcess{Expirationlntervan;
FOR p IN Processes DO

IF p.expirationTime < Clock[] THEN LocaIAbort(p]; -- Time limit expired.
ENDLOOP;

ENDLOOP };

-- An extermination that fails can start a wait for expiration in two ways. First, ClientAbort in
the previous algorithm can get a Failed exception from Exterminate. In this case,
ClientAbort is changed to wait for expiration instead using RETRY in the catchphrase.
Second, RecoveryExtermination and RecoveryCrashNotijication can get Failed exceptions
from Exterminate and ChildCrashed, respectively. In this case, the crash recovery code
invoking them is also changed to wait and not RETRY. These changes are presented below.
The total waiting time of2* Expirationlnterval+ MaxClockSkew has three components:
The first Expirationlnterval component is for the orphans to expire (the expiration time of
any of myNode's remote calls cannot be more than Expirationlnterval into the future). The
second Expirationlnterval component is to ensure that the CheckExpirationTimes processes
on all nodes have had an opportunity to run (while their periods are identical, they are not
synchronized). The third MaxClockSkewcomponent is to compensate for any possible
Clock errors in the distributed system.

BEGIN -- Crash recovery with expiration .
.. . ,
myNodeState +- exterminating;
RecoveryExtermination[EMPTY ! Failed => GOTO WaitForExpiration];
myNodeState +- notifying;
RecoveryCrashNotijication[! Failed => GOTO WaitForExpiration];
.. "

EXITS

WaitForExpiration =>
SuspendProcess{2* Expirationlnterval+ MaxClockSkew];

END; -- Crash recovery with expiration.
myNodeState +- normal.

Algorithm 5.2: Emissary's orphan expiration algorithm.

5 DESIG~ ApPROACHES FOR A TRA~SPARE!\T MECHA!'ISM 83

5.3.4.1 Costs and Clock Requirements

The cost of the expiration algorithm is not great: a Time must be carried in every call message,

and a CheckExpiralionTimes process must run-in frequently-in every node. Furthermore, by

setting Expiration! nterval to a sufficiently large value, very little nonorphan work will be aborted by

premature expirations. This can be practically assured by setting Expiration! ntervallarger than the

expected maximum time that any remote caller is likely to wait for a return before aborting the call.

(A variation of expiration that permits shorter time limits without unnecessary aborting is discussed

later, in section 5.3.7.3.)

A hidden but significant cost of expiration is the work required to synchronize clocks. There are

two important observations here: First, any realistic system will' clearly have clocks, and they will

be synchronized to some reasonable degree. Second, the amount of error in the clocks-their

skew-does not have to be zero. If a bound can be established on the maximum skew in the

system (MaxClockSkew in the algorithm), this skew can be added to Expiration!nterval to bound

the total waiting time required. Lamport's excellent paper on time and clocks [43] gives both a

clock synchronization algorithm and an upper bound on its postsynchronization skew.

Readers unhappy with clock synchronization requirements will find a nonc1ock scheme below.

5.3.5 Epochs and Reincarnation

The existence of synchronized clocks is a critical assumption in the expiration algorithm.

Fortunately, in their absence, ensuring that all orphans are killed when an extermination fails is still

possible. The basic method is to synchronize nodes only very coarsely-just at the times when

extermination fails and outstanding orphans must still be killed-rather than very finely, with

clocks. Before discussing how to achieve this coarse synchronization, which occurs at the beginning

of epochs, it is first necessary to modify last-one semantics slightly.

5.3.5.1 Weak Last-one Semantics

To handle extermination failures, the following change to the last-one semantics guarantee is

proposed. Suppose that instead of exterminating orphans during recovery-an extremely selective

distributed reset-orphans are just exterminated when their execution first interferes with that of

new, nonorphan calls. Assume that a lost orphan in node N-that is, an orphan that N would have

killed had extermination succeeded-can be spotted and killed even though extermination failed. If

this lost orphan that is continuing to execute is killed before any of its parent's new calls begin to

execute in N, then transitive last-one semantics are not violated. Weak last-one semantics are when

orphans are killed in each node before any new parent calls can restart in that node. Compare this

with the original strong last-one semantics, where orphans are killed before their parent calls can

restart in any node. Thus the weak last-one guarantee ensures that orphans are killed before they

can interfere with any new work, but it does permit them to continue executing in realtime after a

recovery.

84 REMOTE PROCEDCRE CALL

5.3.5.2 Regular Reincarnation

Achieving weak last-one semantics is straightforward. When an extermination fails because of a

down node or a partitioning, the node that started the extermination declares a new epoch and

immediately reincarnates. To reincarnate, a node aborts all processes rooted in nodesln, stores the

new epoch, and then continues its local work (which will probably start new remote calls that

circumvent the down node). As a part of the epoch scheme, every node knows what epoch it is

operating in, and every message carries the epoch in which it was sent. (In expiration, the former

corresponds to Clocks and the latter to a call's expiration Time). Whenever a node receives a call

message from a new epoch, later than its own, it also reincarnates. Because reincarnation is an act

of crash recovery, all normal work ceases until it is complete.

After reincarnating, all of a node's remote calls will carry the new epoch. Furthermore, all calls

received from previous epochs receive a notification of the new epoch in reply and are otherwise

ignored. This causes any called or calling nodes-and thus their called or calling nodes, and so on

throughout the system-to reincarnate and abort all processes doing remote work: these are the

processes that might be orphans, and they must all be aborted. In this way, the propagation of a

new epoch eventually kills all possible orphans, thus guaranteeing weak last-one semantics.

(Readers who find this scheme too severe will find relief below.)

When all nodes in a network are in the same epoch, we say that the network is in equilibrium. If

desired, a new epoch can be heralded by broadcasting the epoch change rather than by waiting for

minstrel calls to slowly spread word of the new era. Because broadcasting is assumed to be

unreliable, however, each call must still carry its epoch for isolated hamlets.

As an example of reincarnation, assume that node B in figure 5.1 is down and unable to recover.

Further assume that call AB receives the Failed exception and decides to call ClientAbort. As it is

written, ClientAbort attempts extermination forever, but assume that it is changed to cause

reincarnation if extermination fails. When A finally reincarnates and declares a new epoch, it aborts

the child processes of calls CA and BA because Band C are in A's nodes!n list. The new epoch

can now spread in a number of ways; assume that call AB can be rerouted around B to C. When

node C receives the new epoch from A, it kills the remote work in its nodes! n list, which contains

node B. When C finishes reincarnation and calls D for A, node D reincarnates and aborts all of C's

old-epoch child processes. The new epoch has now reached every active node; the network will

regain equilibrium when B returns to service. Note that when B enters crash recovery after being

down, it will try to exterminate its orphans. B's first remote call of Exterminate will be rejected

and return the new epoch, however, so B reincarnates without delay.

Some unusual cases of epoch interaction deserve special attention. Consider the following

situations of down nodes and partitioned networks.

Returning to service. When a down node returns to service it will be in an old epoch until
either the first new-epoch call arrives or one of its new calls is rejected and returned with a
notification of the new epoch. In either case, when the node notices the new epoch it
reincarnates immediately. Since the node is returning to service, it can be executing no

5 DESIGX ApPROACHES FOR A TRAl'SPAREXT MECHAr\IS\1 85

orphan calls locally. If the node had outstanding remote calls when it crashed, then these
orphans are either already dead (if the rest of the network is in equilibrium) or will be
killed (not yet in equilibrium) .

. Merging partitioned networks. There are two possibilities when two partitioned subnets
merge with each other and each is in a local state of equilibrium. First, both may be in the
same epoch. In this case neither sub net is doing work for the other and they can merge
trivially. Second, both may be in different epochs. In this case again, neither subnet is
doing any work for the other, but this time the earliest subnet must reincarnate, albeit
unnecessarily. Finally, if one or both of the subnets is not in equilibrium, then the latest
epoch of both will eventually propagate throughout the network and bring the merger into
equilibrium. This could take arbitrarily long-indeed, a very large or crash-prone
distributed system might never reach equilibrium-but this does not matter since the
reincarnation guarantees only weak last-one semantics.

Merging independent epochs. In a large system, two or more separate exterminations can
fail at the same time. In this situation, each node that started an extermination declares a
new epoch. These nodes then spread the epoch to other nodes in the system. This case is
identical to the network merging situation described above.

5.3.5.3 Gentle Reincarnation

Unfortunately, declaring a new epoch is very close to a master reset that crashes the entire

distributed system. In particular, aborting all processes rooted in nodesIn kills all remote work

whether it is actually orphaned or not. Furthermore, without nodesI n or the family history in a

ProcessObject, all processes would have to be aborted because strictly local processes could not be

distinguished from those belonging to orphans. Back in section 4.1.1.4, this latter scheme was

judged unacceptably severe. Of course, this judgment is now invalid because epochs are declared

only when extermination fails, and exterminations can fail only after crashes; thus new epochs occur

seldom. Still, it is easy to change the epoch scheme to preserve as much remote work as possible,

that is, abort only orphan processes.

The revised extermination method that preserves as much work as possible is called gentle

reincarnation. It works roughly as follows: When a node reincarnates gently, it checks with the

parent nodes of all of its remote calls (in nodesIn). If a parent does not respond, the parent's calls

are declared orphans and exterminated. If a parent does respond, the parent is guaranteeing that he

is in the new epoch and has no remaining orphans. The parent asserts this because he has already

recursively checked with his parents, and so on for all ancestors. When the parent is alive, the child

preserves the parent's work intact. Notice that all remote work saved in this gentle way is aborted

by regular reincarnation. The process of checking ancestors in reincarnation is analogous to

tracking orphans (descendents) in extermination, except the search goes up the call chain instead of

down.

An example of gentle reincarnation is enlightening. In figure 5.1, assume that node B is down

and that A declares a new epoch because it cannot exterminate Failed call AB. A must check its

two parents Band C when it declares the epoch:

86 REMOTE PROCEDURE CALL

A's parent B. A finds parent B down, and exterminates call BA.

A 's parent C. When A checks with parent C, C discovers it is in an old epoch (because A's
check call carries the new epoch). While A waits, C recursively reincarnates and checks its
own parents. During its reincarnation, C finds its parent B down and exterminates both
calls ABC} and A BC2. (Gentle reincarnation has now killed two lost orphans that A's
Failed extermination abandoned.) C's extermination of call ABC} also recursively tries to
kill orphan ABC]D in node D:

C's child D. D is still in the old epoch and ignores C's Exterminate call,
reincarnating itself instead (because C's call carries the new epoch). D's
reincarnation simply checks back with C, which is already in the new epoch. D
then exterminates orphaned call ABC}D but preserves valid call CD. (This kills the
third lost orphan.)

Node C, now finished exterminating ABC}D, continues. Since C has exterminated all
orphans and reincarnated completely, it returns to A (because A asked C to reincarnate to
begin with). Because C returns in the new epoch, A preserves call CA.

Nodes A, C, and D are now in the new epoch, and nonorphaned calls CA and CD are still

executing. All other calls were orphans and were killed.

5.3.5.4 Costs and Communication Requirements

The extra per-node cost of gentle reincarnation over regular reincarnation is the time spent

checking with ancestors. The computation to do this is little in each node, but the waiting time is

potentially long because reincarnation cannot complete until all ancestors are traced to either a root

node or a crashed ancestor. Putting these small per-node costs aside, ~entle reincarnation has a

much more serious system-wide communication cost: An epoch declared by gentle reincarnation

must still propagate to all the nodes in a distributed system, even though it does not abort all the

remote work in them. Thus even gentle reincarnation does checking proportional to the size of the

whole distributed system, although it aborts only orphaned work. This problem is not serious in

small systems, but in those with thousands or millions of nodes checking ancestors can involve

enormous communication traffic: a three-node call can result in an extermination failure that

(eventually) causes thousands or millions of nodes to reincarnate. For this reason, reincarnation is

considered inferior to expiration.

5.3.6 A Comparison of Orphan Algorithms

Comparing the different activities of the four orphan algorithms gives clear insight into their

behavior. In extermination, only nodes with orphans are checked and only orphaned work is

aborted. In expiration, all nodes periodically check their own processes for orphans, and only

orphaned processes are aborted. In regular reincarnation, all nodes are checked and all remote

work is aborted. In gentle reincarnation, all nodes are checked but only orphaned work is aborted.

5 DESIG~ ApPROACHES FOR A TRA~SPARENT MECHAI\ISM 87

EAB CD
A CBA B CB C GCD 0

....L "" ...
~ ~ ~~ ~

EA GC FGH1D

FG FGH 1
-"- ...
r

I E F G FGH 2 H
CRASHED

Figure 5.2: A distributed system with orphans originating at crashed node G.

In figure 5.2 (notation from figure 5.1), assume that node G crashes as indicated and that node F
eventually notices the failure and tries to abort call FG. The four algorithms will then behave as

follows.

Extermination. Assuming that G enters crash recovery quickly and does not stay down, G
kills its own orphans by extenninating calls GC, FGHl' and FGH2 as the first part of
recovery. As a consequence, C and H recursively extenninate calls GCD and FGH]D on
D. Finally, G calls [Crashed on F to raise the Crashed exception. Notice that nodes A, B,
and E are never involved.

Expiration. If G remains down then F's extermination of call FG will fail. If node F
suspends recovery and waits for expiration to complete, then orphaned calls GC, GCD,
FGH1, FGH2 and FGH]D are killed by the orphan expiration tasks in nodes C, D, and H.

Regular reincarnation. If G remains down then F's extermination of call FG will fail. In
this case, node F performs a regular reincarnation. The new epoch declared by F
eventually arrives at the nodes A-H through alternate call paths not including G. As it
travels, all eleven remote calls and their child processes are aborted. In regular
reincarnation, all remote calls must be aborted because, when G is down, it is impossible to
tell which outstanding calls are on behalf of G. Thus calls EA, EAB, CBA, CB, and CD
are needlessly killed.

Gentle reincarnation. If node F uses gentle rather than regular reincarnation when G stays
down, then only orphaned calls Gc, GCD, FGH1, FGH2 and FGH]D are killed. But as the
new epoch is carried through the system, each node A-H has to check its parents, resulting
in wasted effort for nodes A, B, and E.

5.3.7 Other Orphan Schemes

The merit of Emissary's extermination and expiration algorithms is their low steady-state cost:

carrying the expiration Time with each remote transfer and checking it occasionally. There are,

however, other methods of killing orphans that have not been mentioned.

88 RE\10TE PROCEDCRE CALL

5.3.7.1 Reincarnation Only

Killing orphans is possible by using just reincarnation without extermination. The problem with

this, as discussed, is reincarnation's master reset characteristic. Resetting after every crash-rather

than just when extermination fails-is unacceptable because of the massive amount of aboned work.

Gentle reincarnation solves this problem by checking with parents and exterminating only when

necessary, but this still includes checking in proportion to the remote work of the entire distributed

system. Gentle reincarnation is attractive, however, when a system does not have synchronized

clocks.

5.3.7.2 Reliable Broadcasting

Orphans can be killed by a completely new method when all the nodes in a distributed system

can be reached with a reliable broadcast [9,21]. Assume that the root process of any remote call

assigns the call a unique identifier, uid. Require that any child processes working on a remote

call-direct or spawned-inherit this uid just as they inherit expiration Times in the expiration

scheme. When a node crashes, its recovery phase simply broadcasts (reliably) an abort message

with a list of its outstanding uids. When the broadcast finishes, all normal and recovering nodes

have killed their orphans. Down nodes are fine; orphans in them are killed when they receive the

(late) broadcast during recovery.

Reliable broadcasting is a simple and effective scheme, but it has two serious drawbacks. First, it

is not clear how much work is needed to perform a reliable broadcast; certainly stable storage is

needed. Second, partitions of the network cause the scheme to fail unless partitions carefully

coordinate their merging. This coordination seems remarkably similar to merging epochs (or

synchronizing clocks).

5.3.7.3 Deadlining with Postponement

Lampson has proposed an orphan scheme similar to expiration; he calls it deadUning [49]. His

scheme has a nice enhancement that allows very short deadlines (expiration times) to be used. If

the work of a call ever passes its deadline, it is not immediately aborted. Instead, the processes

whose deadlines have expired try to postpone the deadline first. To postpone a deadline, a process

asks its parent process if the deadline can be delayed; this checking is performed all the way up the

call stack to the root process. If some parent node has crashed, the deadline will not be postponed

and the orphan work is aborted. If the root node is reached and it postpones the deadline,

nonorphan work proceeds with a new deadline. Note that requesting a postponement in the

deadlining scheme is very similar to checking with ancestors in gentle reincarnation.

The main added cost of postponement is the extra internode communication. For this reason,

deadlines must be chosen carefully: setting them too early causes unnecessary postponement(s);

setting them too late causes delays during crash recovery. The expiration algorithm confidently sets

a very large deadline because, during most recoveries, extermination kills orphans immediately.

Thus expiration has no postponement overhead, and recovery is delayed only when there are down

nodes or network partitions.

5 DESIG::\ ApPROACHES FOR A TRA:\SPARE:\"T MECHA~IS~ 89

5.3.8 Reflections

Emissary's extermination and expiration algorithms have not been implemented. An operational

scheme will unquestionably vary from the schematic methods given here; dealing with the details of

a specific system's process machinery is enough to ensure this. In addition, an implementation for a

real distributed system will want to evaluate the following optimizations and difficulties in light of

the system's particular environment.

Fast stable storage. The availability of fast stable storage (Le., stable storage with read and
write times comparable to those of main memory) can change the orphan algorithms
significantly. In particular, with fast stable storage it is possible to record Process.parent
and Process. worker (call tree information) for every ~emote call. This greatly simplifies
extermination by removing the need for code that detects node cycles during mutual
recoveries. Expiration or reincarnation are still needed, however, to deal with prolonged
crashes and partitionings. Finally, fast stable storage can possibly eliminate orphan
algorithms altogether. Orphan algorithms guarantee only last-one semantics, but-with fast
stable storage-transaction-oriented at-most-once semantics may be feasible for every call.

Enumeration. In algorithm 5.1, the FOR loops are all elaborated serially. They could just as
well be done in parallel. This is especially useful in enumerations of l10desln and nodesOut
by RecoveryExtermination and RecoveryCrashNotijication, where great speedups are possible
because Exterminate, ExterminateAll, and ChildCrashed can truly execute in parallel.

Synchronization. Many synchronization details were omitted in the algorithms. For
instance, Abort removes a process from Processes at the same time that Exterminate is
enumerating this set. If Processes is represented as a linked list then care is needed to
maintain consistency. All process manipulation operations should be in a monitor to
prevent this and similar troubles, although this is not shown.

Bookkeeping. The straightforward statement of the algorithms causes them to undertake
some unnecessary work. The process tree, for example, is walked step-by-step in
LocalR00 tProcessI D when only the root is wanted. Additional bookkeeping, perhaps in the
simple guise of reorganized data structures, can eliminate most of this extra work. In some
cases, more complicated algorithms can perform necessary work only once, or in a better
order (e.g., eliminating redundant Recovery Exterminations during mutual recoveries).

The details, complications, and optimizations discussed here-and all the others that only an

implementation effort will discover-are left as essential future work.

While orphan algorithms are interesting in their own right, their fundamental purpose must not

be forgotten: to guarantee last-one semantics. The basic extermination algorithm meets this

guarantee with low cost, but it also has some probability of failure. When this probability is

unacceptable, the expiration and reincarnation algorithms reduce it to zero, but for a much greater

cost-system-wide synchronized clocks, or system-side gentle reincarnation. The important point is

that the cost of orphan insurance gets higher as the desired semantic coverage gets stronger. This

section has focussed on absolute orphan coverage, and this may be impractical for some

environments. Realistic distributed systems may want to underwrite specially tailored policies-with

appropriate premiums-by selecting combinations of orphan algorithms.

90 REMOTE PROCEDURE CALL

5.3.B.1 Transparency and the Essential Properties

The goal of this section was to develop orphan extermination algorithms that satisfy the uniform

call semantics and standard exception-handling properties in the presence of crashes. Emissary's

extermination algorithm eliminates orphans quickly and efficiently when none of the orphaned calls

are in down nodes. When nodes are down and crash recovery must proceed anyway, the expiration

algorithm ensures that orphans are killed after a suitable waiting period. Acting as a team,

Emissary's orphan algorithms guarantee last~one semantics in the presence of crashes; this satisfies

the uniform call semantics property. In addition, both algorithms raise Crashed, Failed, and Aborted

exceptions in orphan-related processes whenever possible; this satisfies the standard exception

handling property.

5.4 Remote Call Mechanisms

This section discusses the details of Emissary's actual remote procedure invocation and execution

machinery. The development proceeds in four steps:

Remote call machinery. An approach to compiling remote procedure calls is presented.
This includes code sequences for compiled calls and a complete program to handle all RPC
runtime operations. The Emissary runtime mechanism gives exactly-once semantics under
normal conditions and uses the orphan algorithms of section 5.3 to handle crashes.

General RTransfers. An implementation of general RTransfers (section 2.1.3.1) is described
in terms of the previous procedure machinery. A general mechanism for RTransfers is
necessary so that all language-level communication primitives-exceptions, coroutines, and
so forth-can be implemented.

Marshaling parameters. A scheme for marshaling common Mesa datatypes is presented.
(Marshaling was defined in section 2.2.5.1.) The result is an approach that compiles
parameter marshaling and unmarshaling code for most types, including allowable address
containing types. The proposed marshaling mechanism has excellent, but not complete,
parameter functionality.

Stubs. The remote procedure, RTransfer, and marshaling schemes developed in the
previous three steps assume that the compiler and runtime system can be changed. When
such direct changes are infeasible, the stub approach introduced in section 2.1.4 can be used
to retain high transparency at some cost in performance. This final step discusses the
transparent implementation of language-level stub mechanisms.

5.4.1 Remote Call Machinery

The Emissary remote procedure design has two components: the compiler changes needed to

generate the code that calls and returns from remote procedures, and the abstract machine

operations that support the generated code. The Emissary machinery described in this section,

while unimplemented, is directly derived from a series of five operational mechanisms. I

implemented three of these mechanisms (two were implemented by others); all five were studied

and tested thoroughly for the Emissary design.

5 DESIG:\ ApPROACHES FOR A TRA:\SPARE:\T MECHA~ISY1 91

5.4.1.1 Procedure Call Code Sequences

To understand the compiler changes required for Emissary's remote calls, first consider the

following code that is generated for a local call of procedure P by procedure Q.

The code in procedure Q that makes a local call to P:
[result l' ... , resultnl +- p[argumentl' ... , argumentnl;

Allocate an argumentRecord;
Compile and copy argument l' ... , argumentn into argumentRecord;
resultRecord +- InvokeProcedure[P, @argumentRecordJ;
Copy from resultRecord into result l' ... , resultn;
Deallocate resultRecord.

The body of local procedure P:
P: PROCEDURE [argument l' •.. , argumentnl RETURNS [result l' ... , resultnl

Copy argumentRecordto argument}, ... , argumentn in P's activation record.
Deallocate argumentRecord.

Do work of procedure ...

Allocate a resultRecord;
Compile and copy result l' ... , resultn from activation record into resultRecord;
ReturnFromProcedure[@resultRecordJ·

InvokeProcedure and ReturnFromProcedure are basic low-level hardware operations that use

registers for their arguments. Notice that Q's parameters are explicitly moved into separate records

(argumentRecord and resultRecord) before being copied into or returned from the activation record

of P. This is necessitated by the definition of Transfer, and Mesa (logically) performs this separate

copy operation. Compiler and runtime optimizations frequently reduce the number of copies for

local calls.

Now consider the code for an Emissary remote call. Because all the infonnation for a

call-procedure name, arguments, and other bookkeeping information-must be eventually put into

a message and sent to the remote callee, placing this information into a packet to begin with makes

sense. The code sequence for a remote call thus obtains a free packet, rather than an

argumentRecord, and marshals the parameters directly into it. The actual code that the compiler

generates for an Emissary call is given in figure 5.3. The code for a return, which is similar, is

shown as well. Q's code resides in node Qnode, P's is in Pnode. The details of the implicit packet

myProcess.pkt (shown explicitly in the figure) are discussed below.

The AllocPkt operation gets a free packet and declares it to be a call or return packet. For

efficiency, a pointer to the allocated packet is stored both in the ProcessObject of the executing

process and in a machine register. The packet is therefore always known to the compiler, although

its implicit use is explicitly indicated by myProcess.pkt in the example. The Marshal and

Unmarshal operations are shown as procedures, but in practice it is vital that they be open-coded,

i.e., compiled inline. Further discussion of marshaling is postponed until a later section. The

ClientCall.RemoteCall operation is an abstract machine function implemented by Qnode's RPC

92 RE~OTE PROCEDCRE CALL

mechanism. It causes a remote call of P by sending Q's call packet (myProcess.pkt) to Pnode. In

Pnode, P's procedure body is invoked by the corresponding RPC mechanism there, and P's RETURN

to Pnode's RPC mechanism causes a return packet to be sent back to Qnode. Q's RemoteCall then

completes. The exact details of these operations are explained shortly.

The code in procedure Q, in Qnode, that makes a remote call to P:
[result1, ... , resultnl ... p[argument1, ... , argumentn):

myProcess.pkt ... AllocPkt[myProcess, cam;
Alarsha4myProcess.pkt, argument1, ... , argumentJ;
ClientCall.RemoteCal4myProcess, P, myProcess.pkt);
Results come back in myProcess.pkt.
Unmarsha4myProcess.pkt, resultr ... , resultn);
FreePkt[myProcess, myProcess.pkt].

The body of remote procedure P, in Pnode:
P: REMOTE PROCEDURE [argument1, ... , argumentn] RETURNS [result1, ... , resultn)

Unmarsha4myProcess.pkt, argument]' ... , argumentn);

FreeP kt[my Process, myProcess.pkt];
...
Do work of procedure ...
...
myProcess.pkt ... AllocPkt[myProcess, return];
Marsha4myProcess.pkt, result l' ... , resultn);
RETURN.

Figure 5.3: The compiled code sequences for a remote call of Pby Q.

Notice that the procedure value used by Q to identify P must contain Pnode in the remote case.

The procedure descriptor for P is therefore a record with two components:

ProcedureDescriptor: TYPE = RECORD [
node: Node, -- Node that inport's procedure context lives in.
inport: Procedure! nport).

The node component is ignored in local calls (and, as an optimization, may not even be present

for them). The inportcomponent identifies the procedure to be called, e.g., in some

implementations it is just the address of the procedure body.

5.4.1.2 Local and Remote Transparency

Before elaborating the complete specification of Emissary's RPC runtime machinery, pausing to

consider the semantics and transparency of the suggested call sequences and their supporting

runtime operations is valuable. Doing this in terms of the relevant essential properties is a natural

approach.

Exactly-once semantics. The orphan algorithms of section 5.3 give last-one semantics in the
presence of crashes. In the absence of crashes, exactly-once semantics demand that the call
and return packets that are exchanged by the RPC mechanism be sent reliably. In the
previous example, this requires that Pnode execute Q's call only once-even though call
packets can be received many times-and that Pnode retain and retransmit the return
packet until Qnode acknowledges receipt of the return. This acknowledgement can happen

5 DESIG~ ApPROACHES FOR A TRA~SPAREXT MECHA~IS~ 93

implicitly, as the result of a later call from Q to Pnode, or explicitly, because Pnode's RPC
mechanism requests an acknowledgement from Qnode's mechanism.

Typechecking. The typesafety of Q's local calls to P is guaranteed by the local binder when
p's and Q's modules are bound together. The binder does this by checking that the
interface exported by P's implementation is of the exact type that Q imports. For remote
calls, typechecking is guaranteed by the remote binder, which performs precisely the same
checking for remote interfaces. Remote binding is covered in section 5.5.

Parameter functionality. For local calls, restrictions on the types of P's arguments and
results are determined solely by the programming language. For remote calls, however, the
restrictions are established by the !vI arshal and Unmarshal operations that will be discussed
in section 5.4.3. These restrictions are due primarily to address-containing types, and their
consequences were discussed in section 4.1.4.

Concurrency control. The remote call code sequences in the example satisfy the concurrent
invocation policy of section 4.1.1.7: In Qnode, the RemoteCall operation does not return
until the call is complete. Q is therefore blocked for the duration of the call, as intended.
In Pnode, the receiving RPC mechanism assigns a special process to execute P on behalf of
Q. This process competes for procedure P asynchronously with all other processes, as
intended.

Syntactic transparency. The suggested calling sequences for local and remote procedures
are incompatible. This violates transparency because it requires that the declaration of a
remote procedure carry the explicit attribute REMOTE. Notice, however, that this attribute
appears in precisely one place, the point of declaration. It does not appear anywhere the
procedure is called because the compiler, knowing the remote nature of the call from the
declaration, can compile the right code without any notification from the programmer.
Except. for the declarations, then, programs are written in a location-independent manner.
The only problem this non transparency causes is an efficiency loss when a REMOTE

procedure is called from within its own node. For example, if procedure R in Pnode calls
P, then the RPC mechanism is invoked needlessly. One way to overcome this problem is
to compile two entry points for remote procedures-one for local calls that use the stack,
and another for remote calls that use a packet. Analogously, each invocation of a remote
procedure is compiled to select the right entry point: by looking at the node field in the
procedure descriptor, either a local call is made or RemoteCall is used. This approach,
which is not developed further here, is valuable when the same procedures will be heavily
called both locally and remotely.

5.4.1.3 Emissary's Runtime AI echanism

With this background on call sequences and the constraints of transparency, we now tum

attention to the implementation of the RemoteCall operation. A complete Mesa program for

RemoteCall and all other Emissary runtime routines appears in algorithm 5.3, which is presented in

section 5.4.6. The program is divided into six parts.

Declarations. Type declarations set the stage for the program.

NetworkService module. NetworkService contains network 1/0 and packet buffer routines.

ChentCall monitor. ClientCall's operations manage the client node's half of a remote call.

ServerCall monitor. ServerCall's operations manage the activeCalls set of call and return
packets. ServerCall is mainly used by the server node.

94 RE\fOTE PROCEDCRE CALL

RpcServerProcesses. These processes actually execute remote calls in the server node.
RpcServerProcesses primarily use operations in ClientCall and ServerCall.

Connection monitor. Connection's operations manage the set of RPC connections with other
nodes.

At first glance the reader many find the Emissary program overwhelming. Its basic behavior,

however, can be readily understood by reading the description that appears below. The complete

algorithm is presented because RPC runtime machinery is at the heart of any remote procedure

scheme: the success and performance of an overall RPC system hinges on the crucial design

decisions made for the runtime machinery. A detailed specification of the algorithm is vital so that

potential RPC implementors can see exactly how to construct an efficient and transparent RPC

mechanism. On the other hand, readers uninterested in such precise details can skip the algorithm

with little loss of continuity.

Qnode-Client Pnode-Server

Q's Process: RPCSe rve rProcess:
{ Q: PROCEDURE [...] = Call Packet .. . _ ... { Receive call packet,

ClientCall.RemoteCall[P,· ..]i ~

check for duplicates; ... } + ...
I InvokeProcedu re[P , ...];

RPCSe rve rP rocess: Retu rn Packet
...

{ Receive retu rn packet; ~ Send retu rn and
~ keep it pending an Do checking ... ;

ClientCaII.RemoteReturn[...] } acknowledgement. }

Figure 5.4: An overview of an Emissary remote call from Qnode to Pnode.

A good understanding of Emissary's machinery is gained by tracing the flow of a single remote

call through the algorithm. Starting with the client remote call sequence in figure 5.3, a remote call

of procedure P proceeds as follows. Figure 5.4 gives a top-level overview of the call.

In Q's process in the client Qnode, Q assembles a call packet into myProcess.pkt and
invokes P by calling ClientCall. R em 0 teCall.

In Qnode's ClientCall monitor (in algorithm 5.3), RemoteCall ensures that P.node is in
nodesOut as required for extermination and crash recovery. The call packet (still in
clientProcess.pkt) is then transmitted to the server node, Pnode. If no return packet is
received (by ClientCall.RemoteReturn, below) within callRetransmitlnterval, the call is
retransmitted. If no return is received after retriesUntilFailure retransmissions, the Failed
exception is signalled.

In the server, Pnode, P's call packet is handled by a special RpcServerProcess (see
RpcServerProcessPro to type) whose only job is to execute remote calls quickly. In
RpcServerProcess, when the hardware receives an RPC packet in inPkt it NOTIFYS the
WAITing server process directly through the preinitialized rpcPktReceived condition variable.
This technique starts running an RpcServerProcess with only one process switch.

5 DESIG:\ ApPROACHES FOR A TRA:'\SPARE:,\T MECHA~IS:\1 95

Continuing in Pnode, the RpcServerProcess for P first sets up another RpcServerProcess
(called nextHandler) to receive the next RPC packet. P's server process then checks the
generation of the just-received call packet by calling Connection. Verify (generations are
discussed below). Verify discards old, delayed, and expired packets.

Continuing in P's RpcSenlerProcess, call packets that pass Verify's tests are checked for
duplicates and implicit acknowledgement by ServerCall.CheckDuplicatesAndAck. Finally, if
the call packet is new, InvokeProcedure invokes the body of procedure P in Pnode with
arguments passed in rnyProcess.pkt. (The code for P's body is in figure 5.3.)

Still in Pnode, when P returns to its RpcServerProcess, P's return packet is inlmediately
transmitted back to Qnode. A record of the return packet is kept in the activeCalls list of
the ServerCall monitor until P acknowledges the return (acknowledgements are discussed
below). This allows duplicate calls to be detected and ignored, and permits retransmission
of the return if it is not received by Qnode.

Back in the client, Qnode, the return packet is received by one of Qnode's
RpcServerProcesses. Preliminary processing of the return packet is exactly the same as the
call packet's was above. Once the return passes the Verify test, it is passed to
ClientCall.RemoteReturn.

Still in Qnode's RpcServerProcess, RemoteReturn checks to see if the original caller (in
RemoteCall) still wants the return packet. If yes, RemoteReturn stores it in clientProcess.pkt
for the caller and NOTIFYS RemoteCall (which is WAITing in Q's client process, not in
RemoteReturn's RpcServerProcess). If the return is not wanted, RemoteReturn assumes the
(old) return is a request for a return acknowledgement and transmits a returnAck packet
back to Pnode.

Finally, in Qnode, Q's RemoteCall ends its patient WAIT and passes the return packet (still in
clientProcess.pkt) back to the compiled invocation of procedure P (figure 5.3). Q's remote
call of P is complete, and under normal conditions exactly two packets were exchanged:
one call, and one return.

5.4.1.4 Some Fine Points o/Emissary's Design

The previous trace of Q's call to P necessarily left out some important details. Some finer points

are now discussed by retracing a few of the call's steps.

Serial Numbers. Every RPC pacKet contains a Packet.rpc.callID field that identifies the node,

process, and serial number of the packet. This information is sufficient to identify the packet in the

absence of crashes as long as the serial number does not overflow. This constraint on the

SerialNumber TYPE is necessary so that all of the call packets sent in a process's between-crash

lifetime are unique. Otherwise, delayed and duplicated call packets, or unacknowledged return

packets, could be mistaken for new call and returns (Le., those with overflowed serial numbers). In

practice, a call that has been outstanding for a very long time is assumed to be Aborted (expired),

and a packet that has been delayed for a similar length of time is assumed to be dead. This time

limit can be used to set a practical upper bound on the size of SerialNumber, but operational

experience indicates quite strongly that 16 bits is not sufficient-24 or perhaps even 32 are

recommended. (If a process makes a remote call every millisecond, a 16-bit SerialNumber will

overflow in about 1.1 minutes; 24-bit, about 4.5 hours: 32-bit, about 1200 hours.)

96 RE\10TE PROCEDURE CALL

Since serial numbers are kept in volatile storage, the scheme above will fail whenever a node

crashes. The Emissary algorithm uses the Packet.rpc.generation number to solve this problem. The

generation of a node is a STABLE counter that is increased after every crash of myNode. As with

SerialNumber, the Generation type must not overflow in the entire hardware lifetime of a node. In

practice, the lifetime of a remote call (or of a long-delayed packet) set a reasonable upper bound on

the size of Generation.

An important implementation trick often used to implement stable counters is simply to use the

system time. This works as long as the time is monotonically increasing, has a sufficiently fine

grain (at least seconds), and will not expire (overflow) sufficiently far into the future.

Composite Serial Numbers. The composite serial number of a Packet is the pair (rpc.generation,

rpc.callID.serial). The additional pair (rpc.callID.node, rpc.callID.process) identifies the process that

sent the packet. The advantage of the two-part (generation, serial) scheme is efficiency: serial is

volatile and is updated on each call at trivial cost; generation is stable and is updated expensively,

but very infrequently.

Node-to-node Connections. Most of the Connection monitor was not discussed in the Emissary

walkthrough. The function of Connection is to keep an accurate record of (node, generation) pairs

for all of the nodes in nodesln-that is, all of the nodes to which myNode has outstanding remote

calls. This set of pairs is called connections and is used by Verify (via CheckConnection) to identify

delayed RPC packets from previous generations. There is at most one connection in connections for

any pair of nodes, not one connection per call per pair. (More closely coupled process-to-process

connections, which are needed for reliable transmission and exactly-once semantics, are discussed

below.)

Emissary creates connections after communication is attempted, but before it is allowed to

proceed (unlike many schemes that establish a connection before communication can start). Verify

ensures this discipline as follows: When Verify receives a packet from a node, new, that is not in

connections, it ignores the packet and calls ESlablishConnection to create a connection with new.

EstablishConnection does this in two steps: it first makes a remote generationRequest call to new

that returns new's generation, and it then has AddConnection add the pair (new, new's generation) to

connections. The HandleTraffic routine in node new never ignores EstablishConnection's special

generationRequest call from myNode, even if new does not yet have a connection with myNode.

This bootstrapping method prevents deadlock when connections are first established. Once a

connection to new is complete, communication can proceed.

Acknowledgements. The Emissary algorithm acknowledges return packets in two ways

(acknowledgements are necessary for exactly-one semantics).

Implicit acknowledgement. An implicit acknowledgement of Q's call to P on Pnode occurs
when the client process (Q's process in Qnode) makes another call to the server node
(Pnode). In this case, ServerCall.CheckDuplicatesAndAck uses ServerCall.FindOtherCaller
to locate any oldCallPkt from Q's process which is waiting for an acknowledgement. If so,
CheckDuplicatesAndAck deletes the oldCallPkt from activeCalls since it is acknowledged by

5 DESIG~ ApPROACHES FOR A TRA~SPARE~T MECHA;\IS~ 97

the newC allPkt: the client's new call cannot have started until the old one finished because
remote calls are synchronous. (The oldCallPkt can also be an already-acknowledged return
packet that serves to maintain a process-to-process connection; this is discussed below.)

Explicit acknowledgement. Explicit acknowledgements are requested by the special
ReturnRetransmitter process. This process uses ServerCall.RequestAckljNeeded to
retransmit return packets that have not yet been implicitly acknowledged.
ClientCall.RemoteReturn handles these return packets as described in the first walkthrough.

Thus a typical remote call takes only two packets-call and return-because of the assumption

that there will be a succeeding call that implicitly acknowledges the earlier one. When there is no

later call, ReturnRetransmiller's explicit acknowledgement strategy sends two more packets: an

extra return, and its answering returnAck. This scheme places all of the state information needed

for return acknowledgement processing in the server, and it is symmetric in the following sense:

client nodes have responsibility for retransmitting calls until they receive a return; server nodes have

responsibility for retransmitting a return until they receive a returnAck (unless, of course, the return

is implicitly acknowledged).

This two-packet acknowledgement strategy can be replaced by a one-packet strategy that works

most of the time. In the one-packet scheme, the client node assumes responsibility for

retransmitting a returnAck to the server whenever the client does not implicitly acknowledge a call

within a given time. The problem with this scheme is that the client's returnAck can be lost, so the

server must still be prepared to handle the whole acknowledgement procedure from his end.

Because of this, the asymmetric three-packet scheme seems unnecessarily complicated and

unattractive.

Process-to-process Connections. The node-to-node connection scheme described above eliminates

only packets from incorrect generations. To ensure reliable transmission-and thus exactly-once

semantics-between calling processes and RpcServerProcesses, a finer grain connection scheme is

required. In algorithm 5.3, this is accomplished by having the server's RPC machinery keep a

record of the last call from each remote client process. The simple method used is to have

ServerCall.CallAck keep, in activeCal!s, the last return packet sent in response to each client call.

Because all packets in activeCalls have a complete CalllD in packet. callInfo. source, these CallIDs

serve as connection identifiers that allow SenerCall.CheckDuplicatesAndAck to eliminate duplicate

and delayed packets from client processes.

There is a problem with this method as it is implemented in the algorithm: Valuable packet

buffers are wasted because acknowledged, connection-maintaining return packets remain (largely)

unused. There are several attractive solutions to this space-efficiency problem:

Keep just the Call1D. One solution is to have ServerCall.CallAck release the return packet
and keep just packet.callInfo in activeCalls. This can be done by redeclaring PacketObject
to be a variant record with a possibly empty body (Le., empty non-callI nfo part).

Do not use activeCalls. Another solution is not to use activeCalls to keep track of process
to-process connections. Instead, a separate structure such as a processConnections set of
client-process Call1Ds can be used.

98 RE~10TE PROCEDCRE CALL

Use timed connections. A final solution is to continue to use activeCalls to hold the
connection identifiers, but to automatically delete both the return (or a shorter variant, as
above) and the connection after a suitable time interval. The interval must be sufficiently
large that duplicate or delayed packets from a client process can no longer exist. Section
5.4.1.5 discusses this further in the context of indefinite acknowledgements.

Orphan Algorithm Interactions. The interactions between Emissary's runtime machinery and the

orphan algorithms of section 5.3 merit explicit comment. There are several interchanges of

information and one interaction of control.

Infonnation-nodesIn and nodesOut. Extermination depends on the nodesIn and nodesOut
sets. The nodesIn set is updated by Connection. AddConnection, and the nodesOut set is
updated by ClientCall.RemoleCall. (The removal of nodes from these two sets is left to an
aging scheme as discussed previously.)

Infonnation-Process. worker and Process.parent. In addition to nodesIn and nodesOut,
extermination also depends on the Process. worker and Process.parent information in
ProcessObjects; this information is used by Extenninate to follow the multinode stack of a
remote call. The worker field in client processes is maintained by ClienlCall.RemoleCall,
and the parent field in server processes is maintained by the RpcServerProcesses.

Infonnation-Process. expiration Time. The expiration algorithm depends on
Process. expiration Time. The expiration Time of a call packet is set by
NetworkService.AllocPkt, and the expirationTime of an RpcServerProcess executing a remote
call is set by the RpcSen'erProcess. As an optimization, Connection. Verify also checks the
expirationTime of arriving call packets.

Control-RpcServerProcesses. Both extermination and expiration kill an orphaned remote
call by aborting all of the call's child processes. When an RpcServerProcess is
Aborted-during an extermination or expiration-it catches the corresponding Aborted
exception and finalizes itself before being destroyed. This finalization is shown in
RpcServerPrototype, where the server process deletes and frees its (potential) call packet
from activeCalls.

5.4.1.5 Omitted Details in Emissary's Algorithm

The Emissary mechanism presented in algorithm 5.3 has a few missing parts. These parts are

intentionally omitted to simplify the presentation and exposition of the algorithm; it is complicated

enough as it is. In a real implementation, however, these parts must be present for smooth RPC

operation. They are now briefly discussed.

Afultiple Packets. Most networks impose a limit on the maximum size of a packet, and hence

remote calls with sufficiently large parameter records will not fit into exactly one packet. Emissary's

algorithm has no provision for this situation. A sketch for one simple solution is the following:

Add two new packet types to RpcPacketType, longCall and longReturn. For a remote call (or

return) that takes n packets, the first n-1 are transmitted as longCall (or longReturn), and the last

packet as call (or return). These n packets are linked together and the head of their list is stored in

the ProcessObject, in place of (or in addition to) the Process.pkt field.

5 DESIG:\ ApPROACHES FOR A TRA~SPARE~T MECHA;\IS\1 99

Handling multiple packets is complicated and demands extremely careful design if the

performance of the vital one-packet case is not to suffer. Having two parallel internal

implementations-the existing fast one, and a general slow one-is a recommended starting

position.

Flow Control and Congestion Control. The transmission strategies used in algorithm 5.3 have no

provision for flow control or congestion control [8]. In the context of RPC, flow control is

controlling the rate at which call packets are sent to a given node, and congestion control is

controlling the rate at which RPC packets are sent over an internet. ClientCall.RemoteCall, in

particular, retransmits call packets every callRetransmitInterval whether the packet has been

received or not. When call retransmissions are actually unnecessary, this is precisely the wrong

strategy because it aggravates rather than alleviates the traffic problem. For example, when a call

has been received but its execution takes longer than callRetransmitInterval, flow control can

prevent redundant call packets from being resent and discarded as duplicates. Furthermore, if a

call packet has not been received because of transit delays due to slow or congested links, then

congestion control can prevent retransmissions from occurring too quickly and adding to the

congestion.

Adaptive retransmission schemes are the usual solution to flow control and congestion control

problems. These methods use dynamic delay measurements and low-level control messages to

determine appropriate retransmission intervals. While a discussion of adaptive retransmission is

beyond the scope of the dissertation, its complexity can be quite high, and it is typically found only

in level 2 (and above) mechanisms such as bytestreams. For this reason, any adaptive

retransmission mechanism for Emissary must be carefully designed not to interfere with the

performance of steady-state calls, especially local network calls where congestion is never a problem

(but flow control can be).

Indefinite Wait for Acknowledgements. As written, the ReturnRetransmitter process will resend

returns forever if no returnAck acknowledgements are received for them. Under normal conditions

this will never happen, and indeed even if a caller crashes the callee's return will be destroyed when

the caller's node recovers and exterminates the call (assuming the return was never received). But if

a caller stays down, or the network partitions, then the return will linger until communication is

reestablished with the down (partitioned) node.

In practice, returns consume valuable buffer /space and a large time limit may have to be set on

the time waited for a returnAck to be received. If this time limit expires and the return is destroyed

before the caller gives up and declares the call Failed, a retransmitted call packet cannot be detected

as a duplicate. This can violate exactly-once semantics. Instead, last-one semantics without crash

notification are given.

If the caller has crashed then destroying his return has no adverse affect. If, on the other hand,

the caller is patiently waiting for a temporary partitioning to end, destroying his return will have

disastrous last-one consequences. Making the acknowledgement time limit much longer than the

100 RE\·10TE PROCEDL"RE CALL

waiting time that elapses before Aborting a call is therefore imperative. In ClientCall.RemoleCall.

this elapsed time before Aborting-actually, before raising Failed, which precedes Abort-is fixed at

relriesUnlilCaIlFai!ure*callRetransmitlnterval. In a real system where clients can specify their own

call time limits. the acknowledgement time limit must be either dynamic or longer than any

(reasonable) call time limit.

The Failed Exception. When ClientCall.RemoteCall signals Failed because it has not received a

return, no information is conveyed to. the catcher of the exception other than the fact that the call

has timed out. In section 4.1.5.4 it was suggested that specific information should be returned with

exceptions, not just the low-level indication given by Failed. RemoteCall can easily be changed to

do this by calling a special DetennineAndSignalCallFailure routine instead of signalling Failed.

DelennineAndSignalCallFailure interrogates the network software, the server node (if possible), and

perhaps other entities to determine more specific information. It then signals

Failed: SIGNAL (failureCode: FailureCode];
Fa ilureCode: TYPE =

{networkPartilioned, serverDown, l1oCallsAllowed, clientTimeLimitExpired • ... , unknown}.

FailureCode provides the desired information.

5.4.1.6 Perfonnance Considerations in Emissary's Design

Emissary's RPC machinery is designed to be efficient as well as transparent. Some of the

performance considerations included in the design are directly integrated into the structure of

algorithm 5.3; other optimizations can be realized only in the actual low-level implementation of the

algorithm. This section discusses some important performance issues in the Emissary design.

Hardware Packet Demulliplexing. In the NetworkService module, the StartRpcReceive operation

controls only RPC packets-that is, only packets with Packet. transport. type = RPC or

Packet. internet. type = RPC. This is arranged by having the hardware or microcode implementation

of the network interface demultiplex predefined classes of packets automatically. Thus

StartRpcReceive controls the delivery only of arriving RPC packets; the delivery of other packet

types is controlled by analogous StarffypeReceive routines. This hardware demultiplexing is

essential because it removes the burden from software, where an expensive process switch is usually

required.

Afinimizing Process Creation and Process Switching. Emissary usually creates no new processes

for a remote call because both the client's and server's rpcHandlers caches will be nonempty.

Further, Emissary performs only three process switches for a roundtrip remote call: one in the

server node to receive and execute the call packet! one in the client node to receive the return

packet, and another in the client to restart the waiting caller. This small number of switches is

obtained by having the precreated RpcServerProcesses be started directly by the network hardware'S

rpcPktReceived interrupt. There are no intervening operating system processes; there is no

unnecessary demultiplexing. Even in Mesa, which has very efficient process machinery, process

creation is relatively expensive and process switching (WAIT-NOTIFY) is not cheap. For performance,

then, avoiding these operations is essential, and Emissary works hard to eliminate them.

5 DESIG\" ApPROACHES FOR A TRA\"SPARE\"T MECHA\"IS\1 101

l~!illimizing Dala Copying. Copying large blocks of data such as packets has significant overhead

in any high perfonnance system. Emissary itself perfonns no packet copying, and the l\farshal and

Unmarshal operations to be discussed in section 5.4.3 copy a parameter record only once, between a

procedure's activation record and a call (or return) packet.

Inline Implementation of Frequent Operations. Perfonnance improvements can be made when

the most commonly executed Emissary code is compiled inline or put into microcode. Some of

these situations are indicated in algorithm 5.3, where procedures such as FreePkt are declared with

INLINE bodies for inline expansion. More generally, algorithm 5.3 must have a microcoded

implementation of the instruction sequences that are executed by a typical roundtrip call. This

typical call Transmits exactly one call and return packet, is immediately dispatched by waiting

RpcServerProcesses in both the client and the server, and takes place between two nodes that

already have mutual connections established. If a call that begins its life by executing in this RPC

microcode violates any of these conditions, it immediately traps back to a software layer that

handles all of the nontypical conditions. Microcoding the typical case is especially attractive for

language systems that already have a microcoded implementation of the Transfer primitive.

Integrating the remote call microcode with the local Transfer microcode can produce an RTransfer

implementation that easily achieves high perfonnance.

Reduced Local Network Overhead. In the NetworkService module, the Transmit and

StartRpcReceive operations give special service to local network packets, i.e., those addressed to

other nodes on the directly connected network. Chapter 6 shows that for local network calls,

explicitly using the local network transport mechanism, rather than the general datagram

mechanism, is an extremely valuable optimization.

5.4.2 General RTransfers

The preceding section presented Emissary's approach for perfonning remote procedure cans.

Procedures were used as the basis of the runtime mechanism because they are by far the most

frequent control transfer primitive, and putting optimization effort into the most crucial common

case is the only sensible thing to do. But just as focusing on optimization is important for

perfonnance, developing a fully general RTransfer mechanism (section 2.1.3.1) is vital for

uniformity. Otherwise, remote exceptions, coroutines, and so forth cannot be implemented, and

remote versions of these primitives are necessary for transparency. Fortunately, RTransfers can be

built on top of remote procedures quite conveniently-RTrall5jer is simply implemented with a

remote procedure call.

For example, in the source node of an RTransfer,

RTransfer(destinationInport, returnOulport, argumentRec)

is readily compiled into the following. The implicit packet n1.vProcess.pkt is again shown explicitly.

102 RE\10TE PROCEDCRE CALL

myProcess.pkl +- AllocPkl[myProcess, cam;
AI arsha4myProcess.pkt. destinationI nporl.context. returnOutport, argumentRec];
ClienlCall.RemoteCall [

myProcess, [node: destillationlnporl.node, inport: RTransferHandler), myProcess.pkt):
FreePkl[myProcess, myProcess.pkt];
SuspendConlextAndProcess[].

In the deslinationInport node, the remote call is executed by a special RTransferHandler

procedure that performs the remote part of the RTransfer:

RTransferHandler: PROCEDURE =
{ Unmarsha4myProcess.pkl, destinalionlnport.context, relurnOutport, argumentRec);

Perform an asynchronous Transfer(destinalionInport.conlext, returnOutport, argumentRec);
RETURN}; -- Return immediately, before the Transfer finishes:

There are two important points to observe:

The asynchronous Transfer in RTransferHandler allows the caller's RemoleCall to complete
quickly so that the caller can suspend itself, pending a new RTransfer on its inport. This is
necessary because, in general, relUrnOulporl will not specify a return to the source of the
RTransfer. In this case, the caller must be prevented from waiting for a return message that
will never come. This asynchronous behavior does not violate the standard concurrency
property because the caller blocks (at SuspendContexlAndProcess) as soon as the
RTransferH andler call completes.

Each RTransfer requires a minimum of two packets-one for the RTransferHandler call,
and one for its null return. In a situation where node A RTransfers to node B, which in
turn RTransfers to C, this is the best possible behavior. It is most likely, however, that B
will transfer back to A. In this case, at least four packets will be sent when only two are
strictly necessary. This is precisely the reason that procedure call-the most common
RTransfer-was specially implemented. To perform efficient general RTransfers between a
pair of interacting machines, it is easy to build a synchronous two-packet RTransfer
mechanism using the Emissary procedure mechanism as a model. The basic change
required is that RPC PacketObjects, in addition to having a Packel.rpc.inport field
(destinationInport.context, above), are augmented with a Packet.rpc.outport field
(returnOutport.context). The outport field specifies the context in the caller's original
process which is to be resumed on return. In the previous procedure machinery, this
context is implicitly the one invoking ClientCall.RemoteCall, e.g., procedure Q in figure 5.4.

In most Algol-like programming languages, nonprocedural language-level communication-raising

exceptions, transferring between coroutines, initializing and finalizing modules-always occurs

between pairs of modules. In the remote case, then, the RTransfer implementation of these

primitives is between a pair of machines as in the latter point, above. In languages where

nonprocedural transfers are used extensively, it may be desirable to implement the special two

machine RTransfer mechanism rather than simply map the remote versions of other control

transfers into procedure calls.

For the same reason that remote procedures must be declared REMOTE, the remote versions of

other control transfers must also have the REMOTE attribute. For example, the declarations of

REMOTE SIGNALS, REMOTE PORTS (coroutines), REMOTE PROGRAMS, and so on. This allows the

compiler to treat them properly.

5 DESIG:\ ApPROACHES FOR A TRA:\SPARE:\T MECHA:\IS\1 103

5.4.3 l\larshaling Parameters

A simple example of marshaling parameters was given in section 2.2.5.1. This section elaborates

on that example by describing hO\\I to compile code for marshaling and unmarshaling general

parameter records. The scheme used is similar to the one used by compilers to compile arguments

and results for local procedure calls. The major differences for remote calls are that parameters are

compiled into a packet, not a stack or argumentRecord, and that address-containing types are

usually flattened. not transmitted as pointers.

The marshaling approach presented in this section is based on my experience in implementing

two operational marshaling mechanisms. Each mechanism is incorporated into a stub translator and

generates code that executes correctly.

5.4.3.1 Basic Operations

To move data between parameters and packets two copying operations are useful:

Copy ToPkt: PROCEDURE [pkt: Packet. paramAddress: POINTER, paramSize: CARDINAL];

CopyFromPkt: PROCEDURE [Pkl: Packet, paramAddress: POINTER, paramSize: CARDINAL].

CopyToPkt copies paramSize words starting at paramAddress into pkt. Since the base of the

parameter part of pkt is pkt.rpc.pararneters, and its next free location is at

pkl.1pc.parameters+ pkt.rpc.paramLenglh. CopyToPkt moves paramSize words to this latter location

and increases pkupc.paramLenglh by paramSize. By adjusting pkt.rpc.paramLength in this way,

each succeeding call of CopyToPkt packs its new parameter right after the preceding one in pkl.

Similarly, CopyFromPkt moves paramSize words from pkt to paramAddress, increasing

rpc.pkl.paramLength by paramSize. It is extremely important that these two copy operations be

efficient. If not completely implemented in microcode, they should at least compile open and use

the hardware's fastest block transfer instruction. A chain of CopyToPkt or CopyFromPkl calls

should be further optimized by keeping pkl's parameters and paramLength fields in special registers,

and storing them only at the end of the chain.

In this section, the details of large parameter records that require multiple packets are not

considered. Multiple packets can be handled easily by changing the implementations of CopyToPkl

and CopyFromPkt to detect packet boundaries and automatically switch to the next packet.

5.4.3.2 Afarshaling Specific Types

The marshaling of common Mesa datatypes is now described. Unless otherwise stated,

unmarshaling is performed in the same way as marshaling except that CopyFromPkt is called

instead of CopyToPkt. Since marshaling complexity lies in the treatment of pointers, this discussion

focuses attention on address-containing types. The general method used to marshal types which

compose new types from existing ones-e.g., records and arrays-is to marshal their subtypes

recursively. Since marshaling ahvays begins with a parameter record, the ,Harsha! and Unmarsha!

operations used in figure 5.3 actually take an argument or result record as input, not the indiddual

arguments or results themselves.

104 RE\10TE PROCEDCRE CALL

INTEGER, CARDINAL, UNSPECIFIED, Enumeration, Suhrange, BOOLEAN. Mesa's basic built-in
types are marshaled by calling CopyToPkt with their their bitstring representations. For
example, for an INTEGER i,

COPJToPkt[pkl, @:i, SIZE[INTEGER]].

ARRAY /ndexType OF ElementType. In Mesa, arrays have a fixed length that must be
manifest at compile time. Because this size is always known, arrays are represented by a
fixed block of storage. If an array's ElementType does not require marshaling, then it is
marshaled simply by treating it as an uninterpreted block. For example, for array:
ArrayType,

CopyToPktfpkt, @array, slzE[ArrayType]].

If an array's elements do require marshaling, then the array is marshaled with a loop that
handles each element. For example,

FOR element IN array DO AI arsha~ arraJ{ element]].

DESCRIPTOR FOR ARRAY OF ElementType. Dynamic-length arrays are implemented with
array descriptors in Mesa. The representation of a descriptor is given approximately by
DescriptorType record, below, although the BASE and LENGTH fields of the record are
accessed with the BASE and LENGTH operators.

DescriptorType: TYPE = RECORD [BASE: POINTER, LENGTH: CARDINAL].

If the ElementType of a descriptor does not need marshaling, then the descriptor is
marshaled by simply sending its length and elements in two parts. For example, for desc:
DESCRIPTOR,

CopyToPkt[pkt, @LENGTH[desc], SIZE[CARDINAL]];
C opyToPkl[Pkt, BASE[desc] , LENGTH[desc] *SIZE[Element Type]].

Unmarshaling must proceed in two steps since desc's length is dynamic: first, the length
must be retrieved and storage allocated for all the elements; second, the elements must be
read into the new storage. Inverting the previous marshaling thus proceeds as follows. The
base and length variables are assigned to registers.

base: POINTER; length: CARDINAL;
CopyFromPkt[pkt, @length, SIZE[CARDINAL]];
base +- AllocateStorage{length*slzE[ElementType]];
CopyFromPkt[pkt, base,length*slzE[ElementType]];
desc +- DESCRIPToR[base, length].

If a descriptor's elements do require marshaling, then a loop is required as with fixed
arrays. In addition, the receiver must still allocate the empty space that will be filled by the
element-by-element unmarshaling. These changes result in the following code:

-- Marshaling for an array descriptor with address-containing elements:
CopyToPkt[pkt, @LENGTH[desc], SIZE[CARDINAL]];
FOR element IN [O .. LENGTH[desc]) DO Alarsha~desc[element]].

-- Unmarshaling for an array descriptor with address-containing clements:
base: POINTER; length: CARDINAL;
CopyFromPkt[pkt, @length, SIZE[CARDINAL]];
base +- AllocateSlorage{length*slzE[ElementType]];
desc +- DESCRIPToR[base, length];
FOR element IN [O .. LENGTH[desc]) DO Unmarsha~desc[element]].

HANDLE. In its simplest form, a handle identifies an abstract object that is never changed
remotely (except, of course, by procedure calls on its abstract operations). The usual

5 DESIG~ ApPROACHES FOR A TRA~SPARE~T MECHAKISM 105

representation for a handle is an encapsulated pointer that is passed around remotely but is
never used (dereferenced) in any address space but its original one. Handles can therefore
be treated exactly like the UNSPECIFIED built-in type. A handle is an address·containing
type that does 1101 need marshaling.

PROCEDURE and other control transfer types. Procedures and other control transfers are
represented by full descriptors that specify their resident nodes as well as intranode inporls
(section 5.4.1.1). Control transfer types are therefore marshaled simply be sending their
uninterpreted descriptors (but these transfer types must have the REMOTE attribute. as
discussed in section 4.1.4.3). For example, for the procedure descriptor of procedure P,

CopyToPktfpkt, @P, slzE[ProcedureDescriptor]].

Marshaling transfer types is also discussed in section 5.4.4.3.

STRING. As covered in section 2.2.5.1, Mesa strings are represented by a pointer to a
StringBody:

StringBody: TYPE = RECORD [
length, maxlength: CARDINAL,
text: PACKED ARRAY [0 .. 0) OF CHARACTER].

The best way to marshal a string s: STRING (s: POINTER TO StringBody) is by calling

CopyToPktfpkt, @s, 2+ (s.length+ l)/CharsPerWordj.

This sends just the meaningful part of StringBody-s.length, s.maxlength, and
text[O .. s.length). Furthennore, it sends them all in one operation, not in the three pieces
length, maxlength, and text. This is very efficient. Unmarshaling a string is done similarly,
but space for StringBody must be dynamically allocated before StringBody is filled by
CopyFromPkt. The following sequence unmarshals s properly. In practice temp is assigned
to registers.

temp: RECORD [length, maxlength: CARDINAL];
CopyFromPktfpkt, @temp, 2];
s +- AllocateStorage[2+(temp.maxlength+ l)*CharsPerWordj;
s.length +- temp.length; s.maxlength +- temp.maxlength;
CopyFromPktfpkt, @s+ 2, (temp. length + l)*CharsPerWordj.

POINTER. As discussed in section 4.1.4.2, handling general pointers is difficult without
higher-level semantic knowledge of the intended representation. The previous DESCRIPTOR,

HANDLE, PROCEDURE, and STRING types all use pointers and are readily marshaled because
the nature of their representations is known. Marshaling other types containing pointers
must proceed on a similar case-by-case basis.

RECORD. A record is a fixed·size object containing a heterogeneous collection of
components represented in contiguous storage. To minimize computational overhead, a
record is marshaled by treating it as a block. For example, for record: RecordType,

CopyToPktfpkt, @record, slzE[RecordType]].

After marshaling the body of the record, any address-containing fields in the record (Le.,
those fields with referents outside the record proper) are marshaled separately as follows:

FOR field IN record DO IF recordfield needs marshaling THEN AI arsha~recordfieldj.

Unmarshaling these address-containing fields will again require dynamic storage allocation,
as described above for types represented with pointers.

106 REMOTE PROCEDCRE CALL

Records are marshaled as a block, rather than field-by-field, so that one large CopyToPkt
call is made rather than a number of smaller ones. This has a high payoff when a large
record has only a few components that need marshaling. (It does, however, waste some
space compared to the field-by-field method: the block method trades space for time.) For
example, in

many: RECORD [one, "', ten: INTEGER, string: STRING, eleven, "', twenty: BOOLEAN],

only many. string needs to be marshaled, and it is easily handled after many has been sent as
a block. Performing twenty separate calls of CopyToPkt for the integer and Boolean fields
would result in terrible waste motion. Consider, for a moment, the effect of separately
marshaling every field of every remote call's parameter records: this would be totally
unacceptab Ie.

Variant RECORD. The variant part of a variant record is a field whose type is the union of
a set of record types. The tag field of a variant pan identifies which record type the
variant part is currently bound to. For example:

VariantRecord: TYPE = RECORD [
commonPart: ... ,
variantPart: SELECT tag: {red, blue, green} FROM

red => [--The fields ofa red VarianlRecord.--],
blue = > [--The fields of a blue Varian tR ecord. --],
green = > [--The fields of a green VarianlR ecord. --]
ENDCASE].

Marshaling VariantRecord is similar to marshaling a standard record except that marshaling
the variantPart must dynamically choose whether to marshal a red, blue, or green variant.
This decision cannot be made at compile time, nor is it sufficient to marshal just the largest
variant: the pointers in a red record's variant will not in general occupy the same fields as
the pointers in a blue record's variant; each variant requires separate marshaling. Of
course, if none of the variants need to be marshaled, then the variantPart can be treated as
a plain, un interpreted record. But when variantPart does need to be marshaled, the
following code must be compiled for the variantPart field of VariantRecord:

WITH VariantRecordtagSELEcT FROM

red = > Al arshaI[red VariantRecordJ;
blue = > Marsha~blue VariantRecordJ;
green = > j\1arsha~green VariantRecordJ;
ENDCASE = > ERROR.

Unmarshaling is exactly the same, assuming that tag has already been unmarshaled. This
. should be the case because tag is actually in the commonPart of VariantRecord.

In Mesa, COMPUTED and OVERLAID variant records cannot be automatically marshaled
because they contain no explicit tag field. Of course, if the records contain no pointers and
therefore need no marshaling, they can be treated as plain records as mentioned above.

VAR parameters. For ~emote calls, VAR parameters are passed as call-by-value-result. This
involves no special handling for argument records, but it does mean that result records get
augmented with the VAR arguments. For example, consider the following procedure P:

P: PROCEDURE [a: VAR A, b: B, c: VAR C, d: D] RETURNS [q: Q, r: R, ...].

For marshaling purposes, the result record of P is redefined to be

RETURNS [a: A, c: C, q: Q, r: R, ...].

An important additional consequence of copy-back semantics is that the referents of
address-containing VAR parameters must not be allocated anew, but rather must be copied

5 DESIGN ApPROACHES FOR A TRAr\SPARE~T MECHA~IS\1 107

back over their original referents. For example, after a remote call that takes an s: VAR

STRING argument, the StringBody returned by the callee must be copied directly into
s.StringBody without changing the caller's value of the pointer s. The normal procedure of
copying StringBody into new storage, and readjusting s's pointer to the new storage, is
incorrect. Unmarshaling VAR parameters therefore involves slight changes to the
unmarshaling techniques given above. In particular, unmarshaling a VAR parameter's result
uses the corresponding VAR argument's storage, and unmarshaling all other address
containing results uses dynamic allocation as before.

5.4.3.3 Other Languages

This section described marshaling Mesa datatypes. In other programming systems, of course, the

details of particular type representations will change. But Mesa is a rich language, and the

marshaling techniques presented here extend quite naturally to other languages.

5.4.4 Stubs

Implementing remote procedures with language-level stubs generated by a stub translator is

nearly as easy as compiling them directly. The Emissary RPC runtime machinery does not change

at all, and the compiler's calling sequence for a remote procedure is identical to the sequence for a

local procedure-differences are hidden in the stubs, not compiled into the caller or callee as

before.

5.4.4.1 An Example

To illustrate the details of the Emissary stub approach, consider the ReadPage procedure in

figure 5.s.

Client File Server

MODULE Reader MODULE FileOps

buffer ~ ReadPage[file,page] ReadPage: PROC [File, Page]
l ~

CallMsg:
~ RETURNS [Buffer] ,

[ReadPageServer,

file, page]

··STUB·· MODULE FileOps ...
·STUB .. MODULE FileOpsServer

ReadPage: STUB [File, Page]
ReturnMsg: ReadPageServer: STUB [...]

RETURNS [Buffer] [Read Page, bUffe r]
~

~

Figure 5.5: A remote FileOps.ReadPage call from client to server.

The translator's "STUB" procedures for ReadPage are remarkably similar to the compiled remote

call sequences presented in figure 5.3. The difference is that the sequences are now contained in

the stubs and written in a high-level language. Consider the following ReadPage example, reading

the comments within each procedure:

108 RE\10TE PROCEDURE CALL

ReadPage: --CLIENT STUB-- PROCEDURE [file: File, page: Page] RETURNS [buffer: Buffer] =
-- This transparent stub implementation of FileOps's ReadPage procedure has the same
semantics as the real implementation of ReadPage. But rather than perform the actual call, this
client stub procedure communicates with the remote server's stub procedure, below, which
invokes the real implementation. The standard Emissary RPC runtime mechanism, invoked
via RemoteCall, perfonns the communication.

{pkt: Packet = AllocPk4caIn;
Marsha/[pkt, file, page];
ClientCall.RemoteCalftpkt, [node: serverNode, inport: ReadPageServer]];
--Results come back in pkt.
Unmarshalfpkt, buffer]; FreePkt[pkl];
RETURN [buffer] };

ReadPageServer: --SERVER STUB-- PROCEDURE [pkt: Packet] =
-- ReadPageServeris called by the server's RPC runtime mechanism whenever a call pkt for
ReadPageServer arrives. ReadPageServercalls the real ReadPage implementation and puts
ReadPage's results in a return packet that is sent back to the client's waiting ReadPage stub.

{file: File; page: Page; buffer: Buffer;
Unmarshal[pkl, file, page]; FreePkt[pkl];
buffer ~ FileOps.ReadPage[ftle, page); -- Perform the real work.
pkl ~ AllocPkt[return];
Marshalfpkt, buffer];
RETURN}. -- Return to the server's RPC machinery, which sends the returnpkt.

In this example, the call and return pkts are explicitly shown because source-level stubs will

usually handle them directly, not through implicit myProcess.pkt packets as before. Similarly, the

remote ProcedureDescriptor in RemoteCall is explicitly given as the pair [server Node,

ReadPageServer] because the language's runtime system does not implement remote procedure

descriptors, just local descriptors containing an inport. The Marshal and Unmarshaloperations are

again open-coded procedures that behave exactly as before, except that their code is now written in

a high-level language (but see below for procedure parameters).

As this example shows, implementing stubs is fairly straightforward. The key concept is that all

of the information needed to compile the stubs for a procedure P appears in the declaration of P,

i.e., the stubs depend only on the FileOps's interface and are completely independent of P's callers

and implementation.

5.4.4.2 Stub Advantages

In realistic systems with unusual parameter types, performance requirements, or heterogeneous

nodes, stubs and stub translators have some potential advantages over the compiled approach

discussed before.

Extensibility. Because stub translators generate language-level stub programs, the internal
operation of RPC stubs is clearly visible and changeable by applications. This modifiability
can be exploited to perform enhanced marshaling, to do special performance tuning, and so
on.

Flexibility. The perspicuous nature of stubs also allows them to be modified to work in
heterogeneous environments-that is, manually changed to have some of the pleasant
properties when the pleasant properties are not built in. This can be useful in several
situations: First, if different languages have different (homogeneous) RPC mechanisms,

5 DESIGN ApPROACHES FOR A TRAr\SPARE~l MECHAr\IS~ 109

their stubs can be changed to use an RPC protocol common to all of the languages.
Second, in heterogeneous processor environments, stubs can be changed to translate
automatically between primitive datatypes.

5.4.4.3 lHarshaling Procedure and other C onlral Transfer Parameters

Marshaling parameters with procedure and other control transfer types is not as easy as suggested

above. There are two problems to be solved:

Procedu reD esc rip tors. Complete PracedureDescriptors that include a node component are
usually not implemented in languages with stubs, and thus marshaling control transfer types
as discussed in section 5.4.3.2 will not work. A full descriptor for each control transfer
parameter must be anonymously fabricated and used instead.

Marshaling. Parameters with control transfer types must have their own parameters
properly marshaled for remote use. In the compiled Emissary approach, this was
accomplished by having the compiler automatically check all remotely used control transfer
parameters for the REMOTE attribute, as discussed in section 4.1.4.3.

A language-level stub translator must use somewhat circumspect solutions to these two problems.

The basic approach is to compile nested. stubs for all procedure and control transfer

parameters-one in the client and one in the server. As an example of this, the nested stubs for the

ItemProcedure parameter of the following Enumerate routine are presented below.

Item: TYPE = ... ;
ItemProcedure: TYPE = PROC [item: Item] RETURNS [stopEnumerating: BOOLEAN+-FALSE];
Enumerate: PROCEDURE [itemProcedure: ItemProcedure] RETURNS [lastItem: Item].

Enumerate works in this way: Enumerate steps through a data base of Items, calling a client

supplied itemProcedure for each item. To finish the enumeration early, itemProcedure returns with

stopEnumerating set to true. Enumerate always returns the last! tem enumerated.

Here is the flow of control in a remote call of Enumerate (read this while following the code

below): A client calls the Enumerate stub, which makes a remote call to EnumerateServer, which

calls the server's real Enumerate routine. Enumerate then calls the server's local item Procedure stub

for each item. Each call on the itemProcedure stu b actually calls nested stub

ItemProcedureServerConverter, which makes a remote call to nested stub

ItemProcedureClientConverter, which calls the client's real itemProcedure. The return sequence is

the reverse: the real itemProcedure returns to ItemProcedureClientConverter, which returns to

ItemProcedureServerConverter, which returns to the real Enumerate, which returns to

EnumerateServer, which returns to the client's Enumerate stub.

Note that the client and server roles are reversed in the nested stubs

ItemProcedureClientConverter and ItemProcedureServerConverter. This is because the server uses

itemProcedure to call the client, the reverse direction of the top-level Enumerate call. The

nested-not global-declarations of control transfer parameter stubs are necessary so that (for

example) itemProcedure and itemProcedureClientConverter are correctly and uniquely bound in the

client and server. This permits the proper operation of recursive or concurrent calls to Enumerate

110 RE\10TE PROCEDtJRE CALL

and EnumerateServer. Finally, although the stubs that marshal procedure and other control transfer

parameters are complicated, generating them is straightforward if the stub translator is designed to

be called recursively-i.e., to generate one stub in the middle of another.

Enumerate: --CLIENT STUB-- PROCEDURE [itemProcedure: ItemProcedure]
RETURNS [Jast/tem: Item] =

-- Client programmers call this transparent Enumerate stub and give it a local ilemProcedure
argument. The nested ItemProcedureClientConverterstub anonymously converts this local
procedure into a remote one that can be used by remote Enumerate.

{ItemProcedureClientConverter: --SERVER STUB-- PROCEDURE [itemPkt: Packet] =
-- ItemProcedureClientConverter is called remotely by ItemProcedureServerConverter
and converts the server node's stubbed itemProcedure calls into local calls on the real
itemProcedure procedure parameter.

{item: Item; stopEnumerating: BOOLEAN;

Unmarsha~itemPkt. item]; FreePkt[itemPkt]:
stopEnumerating +- itemProcedure[item]; -- Invoke the real proc. parameter.
itemPkt +- AllocPkt[return];
Afarsha~ilemPkt. stopEnumerating];
RETURN}; -- Return to RPC machinery and send a return to server.

pkt: Packet = AllocPkt[cam:
Marsha~kt. ItemProcedureClientConverter];
ClientCall.RemoteCal~kt. [node: serverNode, inport: EnumerateServer)];
-- Results come back in pkt.
Unmarsha~kt, lastItem]; FreePkt[pkt];
RETURN [last/tem]}; -- Return to the original client.

EnumerateS erver. --SERVER STUB-- PROCEDURE [pkt: Packet] =
-- EnumerateServeris called by the server node's RPC mechanism when a remote call of
EnumerateServeris received. The transparent nested ItemProcedureServerConverterstub
anonymously converts local itemProcedure calls into remote ones.

{itemProcedureClientConverter: PROCEDURE [pkt: Packet]; -- Set by Unmarshal below.
lastI tem: Item;
ItemProcedureServerConverter. --CLIENT STUB-- ItemProcedure =
-- ItemProcedureServerConverteris called by Enumerate and converts Enumerate's
local calls to the stubbed itemProcedure into remote calls to the
client node's ItemProcedureClientConverter.

{itemPkt: Packet = AllocPkt[cam;
Afarsha~ilemPkt, item];
ClientCall.RemoteCal~ itemPkt,

[node: elientNode. inport: ilemProcedureClientConverter]];
-- Results come back in pkt.
Unmarsha~itemPkl, stopEnumerating]: FreePkt[itemPkt];
RETURN[stopEnumerating]}; -- Return to local Enumerate procedure.

Unmarsha~kt, itemProcedureClientConverter]; FreePkt[pkt);
lastItem +- Enumeratt{itemProcedure: ItemProcedureServerConverter]; -- Do real call.
pkt +- AllocPkt[return];
Afarsha~kt, lastltem];
RETURN}. -- Return to the server's RPC machinery, which sends the return pkt.

5 DESIGN ApPROACHES FOR A TRA:\SPARE:\T MECHA~ISY1 III

5.4.4.4 Stub Translator Design Issues

The following points address some remaining issues of stubs and stub translators.

Symbol Table Infomwlion. The generation of the two stubs for a procedure P primarily needs

only the text of P's declaration; the text supplies the names of P, its arguments, and its results.

Marshaling, on the other hand, requires detailed knowledge of P's parameter types. In a language

with a rich type calculus, properly parsing, checking, and processing this type information is a

formidable task properly left to the compiler. Stub translators should therefore be designed to use

as much of the compiler's existing, precompiled symbol table information as possible. Indeed, if a

translator is being designed for a language that has separately compiled interfaces, using the

compiled interface as the sole input to the translator may be possible. This works exceptionally

well in Mesa because compiled interfaces have an elaborate symbol table, with type descriptions

that are more than adequate for marshaling.

Remote Binding. If remote procedures are implemented with a stub translator, it is unlikely that

the elaborate binding scheme to be presented in section 5.5 will be available. In lieu of that elegant

approach, the following simplistic binding method is suggested for expedient stub systems.

In figure 5.5, for the client's ReadPage stub to call ReadPageServer remotely, the stub must pass

ReadPageServer's procedure descriptor to RemoteCall. To obtain this descriptor in the first place,

assume that the client's FileOps implementation imports a record of FileOpsServer's server stubs by

making a special binding call, ImportS tubIn terjace, to the server's RPC mechanism. This call

returns FileOpsServer's stub procedure descriptors, which the client FileOps implementation then

uses.

To make this more concrete, here is a stub binding example in the setting of figure 5.5.

Exporting. When the server's FileOpsServer implementation is initialized, it calls

ExportStubInterjaC({FileOpsServer, FileOpsTypeID, [OpenFileServer, ... , ReadPageServer]].

This tells the server's RPC mechanism that import requests for FileOpsServer should be
given the interface of [OpenFileServer, ... , ReadPageServer] procedure descriptors in reply.
The FileOpsTypeI D argument is used to check that the FileOps version the client needs is
precisely the one the server is exporting.

Node binding. When the client's FileOps stub implementation is initialized, it first locates
server Node, the node where FileOpsServer resides. The client implementation can
determine this in a number of ways: by knowing it in advance, by receiving it as a
parameter of initialization, and so on.

Importing. Once the client's FileOps implementation has determined serverNode, it
performs the following remote call to serverNode:

[OpenFileServer, ... , ReadPageServer] +- ImportStubInterjaCf{FileOpsServer, FileOpsTypeID].

The serverN ode's RPC mechanism recognizes this call as a special binding operation and
returns the OpenFileServer, ... , ReadPageServer descriptors to the client after checking that
the client and server FileOpsTypeID's match.

112 RE~OTE PROCEDURE CALL

Interface binding. The remote binding process completes when each client stub such as
ReadPage has been given its remote ReadPageServer descriptor. This binding is easily
accomplished by using a readPageServer variable in RemoteCall and assigning
ReadPageServer to readPageServer at the end of initialization.

The binding scheme sketched above certainly does not satisfy the powerful binding and

configuration property. This explicit, procedure-driven import-export approach may, however, be

the only one feasible for modest stub implementations.

Perfonnance. There is a marked reduction in the efficiency of remote calls when Emissary's

compiled call sequences are abandoned in favor of translated language-level stubs. The

performance loss comes in three areas: First, stubs are themselves procedures that are invoked with

nonnal procedure calls. Since there is an extra layer of calls in both the client and the server, the

stub approach incurs an added overhead of two complete calls. Second, each of these additional

calls passes the stub's parameters a total of two more times. For large parameters-either

arguments or results-this extra copying .overhead can be significant. Third, the RPC runtime

mechanism of the stub approach is unlikely to be integrated into the underlying process machinery

and network software as well as Emissary's; The absence of this microcode support and close

network coupling will cause performance to suffer by a factor or two or more. This is an expected

result when an abstract machine-the RPC machine-is implemented with high-level software.

Other Control Transfer Prillzitives. Thus far this section has discussed only procedure stubs. For

overall transparency, the translator must generate stubs for other language-level communication

primitives as well. This is easy if the stubs for the other remote, primitives are implemented with

remote procedures as described in section 5.4.2. Since stubs incur performance losses anyway, this

approach can be quite acceptable.

5.4.5 Reflections

Emissary's RPC machinery is an evolutionary outgrowth of five closely related remote procedure

mechanisms that I have either built or tested. At the language level, all of these mechanisms are

accessed through stub translator. At the runtime level, they use a number of different

implementations, and features from all of them contribute to Emissary: this is discussed in chapter

6. Thus, while the exact Emissary mechanism presented in algorithm 5.3 has not been

implemented, it is the final product of substantial design, implementation, and evaluation.

This section has included a wealth of detail on the construction of transparent and efficient RPC

mechanisms. In particular, Emissary's runtime machinery is developed compl~tely, and marshaling

parameters is described in depth. Even with the focus on these areas, however, two of their

important components have been shortchanged. While both have been discussed before, they

deserve final mention here.

Large parameter records. The Emissary runtime machinery and marshaling mechanism
explicitly sidestep the problem of parameter records that are too large for one packet.
While adding multipacket functionality is conceptually quite simple, in practice. such

5 DESIG~ ApPROACHES FOR A TRASSPARENT MECHA~IS~ 113

changes must not reduce the performance of the frequent one-packet case. RPC designers
must heed this warning well.

Afarshaling list structures. The marshaling approach given in section 5.4.3.2 does not
handle general list structures. This restriction was carefully considered in chapter 4, but
sufficient client demand for automatic marshaling of trees and graphs could overrule this
decision.

5.4.5.1 Transparency and the Essential Properties

The section's goal was to develop approaches for the language-level compilation and runtime

execution of remote procedure calls and other language-level communication primitives. This goal

was met by designing both compiled and stub-translated approaches. A second and crucial goal

was that the call mechanisms must satisfy these four essential properties: uniform call semantics,

strong typechecking, excellent parameter functionality, and standard concurrency control and

exception handling. These properties are satisfied as follows.

Call semantics. Emissary's RPC runtime mechanism, which is used by both the compiled
and translated approaches, uses concurrent invocation and guarantees exactly-once semantics
in the absence of crashes. It relies on the previous orphan algorithms in the presence of
crashes. This satisfies the uniform call semantics property.

Typechecking. Section 5.4.1.2 discussed how the binder guarantees strong intermodule
typechecking by validating the importers and exporters of remote interfaces. In the
compiled Emissary approach, remote interface typechecking is performed by the remote
binder of section 5.5. In the stub translator approach, it is done by the runtime binding
routines described in section 5.4.4.4. Both of these methods satisfy the strong typechecking
property.

Parameter functionality. The parameter functionality of a remote procedure mechanism is
determined by the power of its underlying marshaling machinery. Section 5.4.3.2 shows
how to marshal most Mesa datatypes except list structures, which are specifically excluded.
Even with this restriction, Emissary's marshaling is very powerful; this satisfies the excellent
parameter functionality property.

Concurrency control and exception handling. Emissary uses concurrent invocation to
execute remote calls and reports all exceptions in the standard fashion. This satisfies the
standard concurrency control and exception handing property.

5.4.6 The Emissary RPC Algorithm

This separate section contains the text of Emissary's remote procedure mechanism, algorithm 5.3.

114 RE\10TE PROCEDuRE CALL

-- Type definitions, constants, and variables for the Emissary remote procedure algorithm. Familiarity
with the orphan algorithms is assumed, especially with the time-related definitions of expiration.

Generation: TYPE = ... ~ -- Monotonic counter increased after a crash; see text.
RpcPacketType: TYPE = {call, return, returnAck, generationRequest, generationAck • ... };
SerialNumber: TYPE = ... ; -- Must not overflow in expected process lifetime; see text.
myGeneration: STABLE Generation +- ••• ; -- Incremented after each crash.
myProcess: Process +- ••• ; -- Currently executing process.
myNode: Node = ... ; -- The node that this variable lives in.
nodesl n: STABLE SET OF Node +- EMPTY; -- Contains the nodes of all incoming calls.
nodesOut: STABLE SET OF Node +- EMPTY; -- Contains the nodes of all outgoing calls.

Node: TYPE = RECORD [-- Components of an internetwork address.
network: NetworkID, -- Network number.
host: HostlD]; -- Host number (mayor may not be unique across networks).

Process! D: TYPE = RECORD [-- Internet-wide process identifier, used for extermination.
node: Node, -- Node executing process, myNode iflocal.
process: Process]; -- Process number.

CallID: TYPE = RECORD [-- Compound, volatile (intracrash) identifier for a given call.
node: Node, -- Node issuing the remote call.
process: Process, -- Client process making the remote call.
serial: SerialNumber]; -- Serial number of process's current call.

ProcedureDescriptor. TYPE = RECORD [
node: Node, -- Node that inport's procedure resides in.
inport: Procedurelnport]; -- Identifies a procedure context in node.

Packet: TYPE = POINTER TO PacketObject;
PacketObject: TYPE = MACHINE DEPENDENT RECORD [

call1n/o: RECORD [-- Call bookkeeping information that is not transmitted.
state: {idle, pending, working, returnSenl, requestAck}, -- Server calls cycle through state.
source: CallID], -- For an unacked return packet, identifies the source of the original call.

transport: RECORD [-- Physical transport header (e.g., Ethernet).
source, dest: Node, -- Node, as before.
type: {internet, RPC, ... }], -- Transport packets have internet, RPC, and other types.

internet: RECORD [-- Internetwork header (e.g., Pup).
... -- Other fields of an internet packet.
type: { ... , RPC, ... }], -- Internet packets also have special RPC subtype.

rpc: RECORD [-- Fields used by RPC packets.
expiration Time: Time, -- Time that the call must be automatically aborted.
generation: Generation, -- Sending node's generation when packet sent.
caUID: CallID, -- For this generation, ID of current call.
type: RpcPacketType, -- Flavor of RPC message.
inport: Procedurel nport, -- Procedure to call in call! D. node.
paramLength: CARDINAL, -- Relative length of parameters.
parameters: RECORD [...]], -- Variable length record.

transportEnd: RECORD [...]]; -- Transport error control info, ifany.

Process: TYPE = POINTER TO ProcessObject;
ProcessObject: TYPE = MONITORED RECORD [

... -- Other parts of a procf!ss object.
expiration Time: Time, -- Time that the process expires (for expiration).
worker. Node +- myNode, -- Node doing myProcesses's remote call, if any (for extermination).
parent: Process! D+- [myNode, myProcess], -- Par~nt process of myProcess (for extermination).
rpcLock: MONITORLOC.K, -- For mutual exclusiort in ClientCall monitor.
serial: SerialNumber +- 0, -- Number of most recent remote call.
callState: {idle, return Wanted, returnReceived} +- idle, -- Client calls cycle through callState.
callDone: CONDITION, -- Used to synch callState with RPC machinery.
pkt: Packet +- NIL, -- Cached packet for RPC machinery.
pktlnUse: BOOLEAN +- FALSE]; -- Used by packet allocators to reclaim the cached pkt.

5 DESIG~ ApPROACHES FOR A TRA~SPARE~T MECHA~IS~1 115

NetworkService: MODULE = BEGIN
-- The NetworkService module contains network and packet buffer routines.

GetPacketBuffer. ENTRY PROCEDURE RETURNS [pkt: Packet] = { ... };
-- Gets a packet from the system's queue of packet buffers. (Should be in a PacketBuffer monitor.)

ReturnPacketBuffer: ENTRY PROCEDURE [pkt: Packet] = { ... };
-- Returns pkt to the system's free packet buffer queue. (Should be in a PacketBuffermonitor.)

AllocPkt: PROCEDURE [p: Process, type: RpcPacketType] =
-- AllocPkt is used by the compiler. It gets a packet buffer for process p and initializes it as much as
possible, including setting the expiration Time of a remote call packet For efficiency, a process may
already have a cached packet allocated to it. In this case, some fields are already initialized properly
and they are not touched here.

{ IF p.pkt = NIL THEN {
pkt: Packet +- p.pkt +- GetPacketBuffetfJ;
pkt.transport.t}pe +- pkt. internet. type +- RPC;
pkt.rpc.generation +- myGeneration; pkt.rpc.callID +- [myNode, myProcess,] };

p.pkt. rpc. type +- type; p.pktInUse +- TRUE;

p.pkt.rpc.expirationTime +- IF p.expirationTime = NeverExpires
THEN ClockD + Expirationlnterval ELSE p.expiralionTime;

p.pkt.rpc.callID.serial +- (p.serial +- p.serial + 1) };

FreePkt: PROCEDURE [p: Process] =
-- FreePkt is used by the compiler. It marks process p's cached packet as not in use but does not
deallocate it Instead, a daemon process (perhaps even garbage collector) will want to run frequently
and reclaim all the unused (,... pktlnUse) cached buffers. This keeps the cache meaningful, and the
buffer pool nonempty. The daemon must be cautious about synchronization.

INLINE {p.pktInUse +- FALSE };

Transmit: PROCEDURE [node: Node, pkt: Packet] =
-- Transmit sends pkt to node. For performance, it sends pkt directly if node is on the local network,
which is the most c01Vmon case. This bypasses the levell communication software overhead and
shortens the packet because the internet header can be eliminated. If the local network optimization
fails because the transport transmitter is busy, then the regular internet mechanism (which has
output queueing) is used. When internet transmission is used, some implementations may need to
copy pkt so that there is no interference between internet and client processes.

INLINE { IF node.network # myNetwork OR TryTransportTransmit[node.host, pkt].busy
THEN InternetTransmit[node, pkt] };

StartRpcReceive: PROCEDURE [rpcWakeup: POINTER TO CONDITION, buffer. Packet] =
-- StartRpcReceive sets up the 110 control registers so that the next RPC packet is received into
buffer. Since this packet can be either a transport RPC packet with buffer. transport. type = RPC (e.g.,
Ethernet packet), or an internet RPC packet with buffer. internet. type = RPC (e.g., Pup packet), the
implementation of the network device interface must look at both of these type fields and deliver
both kinds ofRPC packets to buffer. This low-level demultiplexing is necessary for performance.
When bufferis received, the device automatically performs a hardware NOTIFY on rpcWakeupt
(called a naked NOTIFV). The high-level logical operation of StartRpcReceive is shown below.

INLINE { -- Set up the local network device interface for these steps:
~- buffert +- NewRpcPacket;
-- NOTIFY rpc Wakeupt };

CheckReceive: PROCEDURE RETURNS [status: {ok, ... }] =
-- CheckReceive is called after every network input (initiated by StartRpcReceive) to ensure thatthe
packet is not damaged in any way. Any status but ok means that the packet should not be used.

INLINE { -- status +- IF ChecksumOK[NewRpcPacket] THEN ok ELSE ... };

END; -- of NetworkService module.

116 REMOTE PROCEDCRE CALL

ChelllCall: MONITOR LOCKS clienlProcess.rpcLock USING clienlProcess: Process = BEGIN

-- The ClienlCall object monitor synchronizes data in the RPC part of the ProcessObject.

RemoleCall: ENTRY PROCEDURE [clienlProcess: Process, dest: ProcedureDescriptor] =
-- RemoteCall is the operation used the the compiler to perfonn a remote call. Before starting a call,
RemoleCall makes sure that the destination node is in nodesOut for extennination purposes; it also
maintains worker for Extenninate as well. R emoteC all then sends the call packet in clientProcess.pkt
to dest.node. The call is re-sent at intervals of callRetransmitInterval up to retriesUntilFailure times.
Ifno valid return packet comes (via RemoteReturn, below), the Failed exception is raised. If a valid
return does come, then RemoteReturn puts the return packet in clientProcess.pkt for the compiler.
When RemoteCall returns to its caller, this return packet is ready for the caller.

{IF dest.node IN nodesOut THEN nodesOut +- nodesOut + dest.node;
clientProcess. worker +- dest.node; -- Record worker node for Exterminate.
clientProcess.pkt. rpc. inport +- dest. inport;
clientProcess.callState +- return Wanted;
THROUGH [O .. retriesUntilFailure) DO

Transmit[dest. node, clientProcess.pkt];
WAIT clientProcess.callDone; -- With timeout of callRetransmitInterval.
IF myProcess.callState = returnReceivedTHEN EXIT;

-- Repeat loop and retransmit the call packet if the WAIT timed out.
REPEAT

FINISHED =) SIGNAL Failed;
ENDLOOP;

clientProcess. worker +- myNode; -- No longer need worker for Extenninate.
clientProcess.callState +- idle};

RemoteReturn: ENTRY PROCEDURE [clientProcess: Process. returnPkt: Packet]
RETURNS [freePkt: Packet] =

-- RemoteReturn is called by an RpcServerProcess when a return packet arrives. RemoteReturn first
checks the state of the local process that originated the call. If the process is not currently performing
a remote call, then it is not expecting a return packet, and therefore the return packet must be a
duplicate or a request for an explicit acknowledgement of the return. In this case, a returnAck packet
is sent back to the source of the return. If the process is perfonning a call and does want a return,
then the return packet is stashed in clientProcess.pkt if the serial number matches. RemoteReturn
then NOTIFYS RemoteCall, above, so that the remote call can complete. In any case, RemoteReturn
always returns afreePkt to its caller.

{ freePkt +- returnPkt;
SELECT clientProcess.callState FROM

idle, returnReceived =)

{returnPkt.rpc.type +- returnAck;
Transmit[returnPkt.rpc.callID.node, returnPkt]};

return Wanted =)
IF clientProcess.serial = returnP kt. rpc. callI D.serial THEN

lfreePkt +- clientProcess.pkt;
clientProcess.pkt +- returnPkt;
clientProcess.callState +- returnReceived;
NOTIFY clientProcess.callDone };

ENDCASE =) ERROR };

END; -- of ClienlCall monitor.

5 DESIG!\ ApPROACHES FOR A TRA~SPARE~T MECHANISM

ServerC all: MONITOR = BEGIN

activeCalls: SET OF Packet ~ EMPTY:
-- ServerCall protects the activeCalls set ofRPC call (and call-turned-into-return) packets that are
being processed by the RpcServerProcesses.

AddCall: ENTRY PROCEDURE [callPkt: Packet] =

117

-- AddCall is called at interrupt level by an RpcServerProcess to atomically add a new callPkt packet
to the set of activeCalls. AddCall also sets callPkt's callInfo.state to pending for later use by
CheckDuplicatesAndAck, and source.callI D to callPkt's source callI D for the transmission of the
eventual return. In practice, it is probably necessary to make AddCall work even when the
ServerCall monitor is locked because some locked operations like FindOtherCaller take a long time.
It is not acceptable for interrupt-level calls of AddC all to wait very long for the monitor lock.

INLINE { caIlPkt.callInfo ~ [state: pending, source: caIlPkt.rpc.caIlID];
activeCalls ~ activeCaIls + callPkt};

DeleteCall: ENTRY PROCEDURE [callPkt: Packet] =
-- DeleteCall is called by RpcServerProcess to remove a callPkt that does not Verify. It is okay if
callPkt is not in activeCalls.

INLINE { activeCalls ~ activeCalls - callPkt};

CheckDuplicatesAndAck: ENTRY PROCEDURE [newCallPkt: Packet] RETURNS [execute: BOOLEAN] =
-- CheckDuplicatesAndAck is called by RpcServerProcess for every call packet. If newCallPkt is
from the same node and process as an existing call, then its serial number is examined. If
newCallPkt is an old duplicate call-i.e., is not the most recent call-it is ignored. If newCallPkt is a
duplicate for the most recent call-i.e., has the latest serial number-there are three cases to
consider: first, if oldCallPkt is in the idle state, then newCallPkt is a (long) delayed call and is
ignored; second, if oldCallPkt is in the pending or working states, then oldCallPkt's execution is in
progress and newCallPkt is ignored again; third, if oldCallPkt is in the returnSent or requestAck
states, then the call is complete and the (probably lost and never received) return is resent. If
newCallPkt is not a duplicate, then it is executed after implicitly acknowledging the oldCallPkt.
Because back-to-back call packets can pile up on activeCalls at interrupt level, there can be many
matching oldCallPkts for every newCallPkt. FindOtherCalleronly returns one, but this is fine since
C heckDuplicatesAndAck is called for each call packet in activeCalls, and thus all duplicates are
eventually eliminated.

{ oldCallPkt: Packet = FindOtherCalle7{newCallPkt];
IF oldCallPkt # NIL THEN

SELECT oldCallPkt. callInfo.source. serial FROM

>= newCallPkt.callInfo.serial = > {
IF oldCallPkt.callInfo.source.serial = newCallPkt.calllnfo.serial THEN

-- oldCallPkt is a recent duplicate.
SELECT oldCallPkt. call1nfo. state FROM

idle, pending, working = > NULL;
returnSent, requestAck => -- The return was lost; resend it.

Transmit[oldCallPkt.calllnfo.source.node, oldCallPkt]:
ENDCASE = > ERROR;

activeCalls ~ activeCalls - newCallPkt;
RETURN [execute: FALSE] };

< newCallPkt.calllnfo.serial = > CallAck[oldCallPkt, implicit]:
ENDCASE = > ERROR.

newCallPkt.callInfo.state ~ working;
RETURN [execute: TRUE] };

118 RE\-10TE PROCEDCRE CALL

ExplicitCallAck: ENTRY PROCEDURE [ackPkt: Packet] =
-- ExplicitCal!Ack is called when an RpcServerProcess receives a returnAck packet. A returnAck is
sent by the caller to the server whenever a caller sees the same return message more than once. The
returnAck acknowledges an outstanding return only if the return is still pending and the returnAck
has a matching serial number.

{ oldReturnPkt: Packet = FindOtherCalle!{ackPkt];
IF oldReturnPkt # NIL AND oldReturnPkt.callInfo.source.serial = ackPkt.rpc.callID.serial

THEN CallAck[oldReturnPkt, explicit] };

CallAck: INTERNAL PROCEDURE [oldCal!: Packet, kind: {implicit, explicit}] =
-- Cal!Ack is called when oldCal! has been acknowledged either implicitly or explicitly. (Note: at this
point, the oldCal! is actually the return packet sent back to the caller). Since the acknowledgement
guarantees that the return was received by the caller, oldCall moves into the connection-maintaining
idle state. The purpose of idle is to keep (in activeCalls) a CallID record of the last call from
oldCall.calllnfo.source; this connection ID permits the detection of duplicate calls even after an
explicit returnAck is received. (This is wasteful of packets; some simple and effective optimizations
are discussed in the text.) If oldCal! is being implicitly acknowledged by a new call, then the new one
replaces oldCal! and oldCal! is deleted from activeCalls.

INLINE { SELECT oldCall.callInfo.state FROM

idle = > NULL; -- Ignore duplicate acks, e.g., implicit after explicit.
returnSent, requestAck = > oldCall.calllnfo.state +- idle; -- Got ack, go into idle.
ENDCASE = > ERROR; -- Should never get an ack for a pending or working call.

IF kind = implicit THEN
{activeCalls +- activeCal!s - oldCal!;
NetworkService.ReturnPacketBuffe!{oldCam} };

FindOtherCaller: INTERNAL PROCEDURE [keyPkt: Packet] RETURNS [foundPkt: Packet+-NIL] =
-- FindOtherCal!er searches through activeCalls for afoundPkt from the same node and process as
keyPkt. There can be more than one suchfoundPkt, but only the first one found is returned. Since
keyPkt is itselfin activeCalls, it is not allowed to match itself. The implementation given below uses
a simple linear search. In practice, a much faster scheme such as hashing is needed, perhaps with a
microcode assist since FindOtherCal!ermust be invoked for each remote call.

{ FOR pkllN activeCalls DO

IF pkt. callInfo.source. node # keyPkt.rpc.callID.node
AND pkt.callInfo.source.process # keyPkt.rpc.callID.process
AND pkt # keyPkt

THEN RETURN[Pk I];
ENDLOOP };

FlushReturns: ENTRY PROCEDURE [toNode: Node] =
-- FlushRelurns is used by CheckConnection to delete old return packets destined for node toNode.
Explicit deletion is necessary after toNode has crashed and begins new calls in its next generation.
Idle returns must be deleted because they contain connection IDs for invalid connections.
ReturnSent and requestAck returns must be deleted because they are no longer needed and will
never be acknowledged.

{ FOR pkt IN activeCalls DO
IF pkt. callInfo. source. node = toNodeTHEN

SELECT pkt.calllnfo.state FROM

ENDLOOP };

idle. returnSent, requestAck => {
activeCalls +- activeCalls - pkt;
NetworkService.ReturnPacketBujJerfpkt] };

ENDCASE = > ERROR;

5 DESIG~ ApPROACHES FOR A TRA'!'\SPARE?\T MECHA~IS\1 119

RequestAckljNeeded: ENTRY PROCEDURE [returnPkt: Packet] =
-- RequestAckljNeeded is called by the ReturnRetransmitterprocess, below. RequestAckljNeeded
looks for return packets that have not been acknowledged-either implicitly or explicitly-by their
callers. It asks that all old return packets in the requestAck state be explicitly acknowledged by
resending the returns. This tells the callers to send returnAcks in reply. RequestAckljNeeded also
changes the state of fresh returns (in returnSelll) so that they will be handled as old returns the next
time around.

{ SELECT returnPkt.calIln!o.state FROM
idle = > NULL; -- Already acked; just maintaining a calling-process connection.
pending, working = > NULL; -- Still perfonning call, no return sent yet.
returnSent = > returnPkt.callln!o.state ... requestAck; -- Request ack next time.
requestAck = > Transmit[returnPkt.callln!o.source.node, returnPkt];
ENDCASE = > ERROR };

END; -- of ServerCall monitor.

ReturnRetransmitter: Process =
-- This background process cooperates with RequestAckljNeeded, above. It makes sure that all
return packets in activeCalls are received and acknowledged by their callers. Usually, returns are
implicitly acknowledged by the next call from the same process (see CheckDuplicatesAndAck). But
when this is not the case, explicit acknowledgements are requested (by resending returns) every
ac kn o wledgem en tIn terval. (The text explains what happens if a returnAck is never received). As it is
written, the FOR loop has a synchronization bug because activeCalls is in the ServerCall monitor. In
practice, this enumeration should take place outside the monitor for performance reasons but should
not make inconsistent use of activeCalls.

{DO
SuspendProcess{acknowledgementlntervan; -- A fairly long time, say, several minutes.
FOR pkt IN activeCalls DO ServerCall.RequestAckljNeedecftpkt] ENDLOOP;

ENDLOOP };

120 RE:\10TE PROCEDCRE CALL

-- RpcServerProcessesthat handle arriving RPC packets and execute incoming remote calls.

RpcServerProcess: TYPE = Process;
rpcHandlers: SET OF RpcServerProcess ... EMPTY: -- Software cache of RpcSen'erProcesses.
jirslHandler: NEW RpcSen'erPrototype; -- Create first handler and receive first packet.
NelworkService.StartRpcReceive[@firstHandler.lpcPklReceived.firstHandler.inPkl];

RpcServerPrototype: RpcSen'erProcess =
-- This process is a prototype for the rpcHandlers process pool. Each process in the pool receives and
processes RPC packets. Each RpcServerProcess starts by getting a packet buffer for itself. It then
waits for a naked NOTIFY telling it that an RPC inPkl has been received. If the inPkl is ok, and it is a
call, the call's parent process is recorded for extennination and the call is added to activeCalls. Then
a new RpcServerProcess is readied to receive the next packet. For perfonnance, the new process is
obtained from the rpcHandlers cache if possible. The preceding all happens very quickly, at
interrupt level, so that back-to-back packets can be received as fast as possible. Once inPkt is
received and the interrupt dismissed, Verify is called to check connections and other details. If Verify
says the inPkt is okay then it is acted on, otherwise it is discarded. If inPkt is a call packet and is not
a duplicate, then the call is executed with its specified expirationTime. This is accomplished by
invoking the local procedure specified by inPkt.rpc.inport. Arguments and results are passed
through myProcess.pkt, as explained in the text. A return packet for the call is sent, and the return's
state is set to returnSent so that the return will be retained until an acknowledgement is received.
This gives exactly-once semantics. If inPkt is a return packet then RemoteReturn completes the
remote call and continues the caller. If inPkt is an explicit returnAck then the acknowledgement is
handled in the ServerCall monitor.
{ rpcPktReceived: CONDITION;

inPkt: Packet ... NetworkService.GetPacketBuffetfJ; myProcess.pktInUse +- TRUE;
DO ENABLE Aborted =) -- This cleanup is done if myProcess is Aborted by the orphan algs.:

{ServerCall.DeleteCa/4inPkt); NetworkSen1ice.ReturnPacketBuf!er{inPkt] };
WAIT rpcPktReceived;
IF NetworkService.CheckReceivefJ # ok THEN

{NetworkService.StartRpcReceive[@rpcPktReceived, inPkt]; LOOP};
IF inPkt.rpc.type = call THEN { -- Record remote call's parent for Exterminate.

myProcess.parent ... [node: inPkt.rpc.callID.node, process: inPkt.rpc.callID.process];
ServerCall.AddCal~inPkt) };

nextHandler: RpcServerProcess = IF -EMPTY rpcHandlers
THEN TAKE FIRST rpcHandlers ELSE NEW RpcServerPrototype;

NetworkService.StartRpcReceive[@nextHandler.rpcPktReceived, nextHandler.inPkt];
SetProcessPriorit>f.nomla~; -- No longer at interrupt level.
IF Connection. Verif>f.inPkt]

THEN SELECT inPkt. rpc. type FROM
call =) {IF ServerCalI.CheckDuplicatesAndAck[inPkt].executeTHEN {

myProcess.expirationTime'" inPkt.rpc.expirationTime; -- Set time limit.
myProcess.pkt ... inPkt;
InvokeProcedure[inPkt.rpc.inport, NIL];
-- myProcess.pkt is now the returnPkt.
Transmi4 myProcess.pkt.calll nfo.source. node, my Process.pkt);
myProcess.pkt.callInfo.state +- returnSent;
myProcess.expirationTime'" NeverExpires; -- No more limit.
inPkt ... NetworkSen'ice.GetPacketBuf!erf.j };

myProcess.parent ... [myNode, myProcess] }; -- No parent any longer.
return =) inPkt +- ClientCall.RemoteReturn[inPkt.rpc.callID.process, inPkt];
returnAck =) ServerCall.ExplicitCallAck[inPkt];
ENDCASE =) ERROR

ELSE IF inPkt.rpc.type = call THEN ServerCall.DeleteCal~inPkt);
rpcHandlers +- rpcHandlers + myProcess;
ENDLOOP}

}; •• of RpcServerPrototype.

5 DESIG~ ApPROACHES FOR A TRA:\SPARE;\T MECHA~IS:v1

Connection: MONITOR = BEGIN

ConnectionRecord: TYPE = RECORD [node: Node, generation: Generation]~
connections: SET OF ConnectionRecord +- EMPTY~

121

-- The Connection monitor synchronizes access to the connections set, which is a record of the nodes
that myNode has open connections to. A node increases its generation each time it crashes. Since all
packets carry the generation they were sent in, delayed packets from previous generations can be
detected and discarded.

Verify: PROCEDURE [pkt: Packet] RETURNS [ok: BOOLEAN +- FALSE] =
-- Verify is called by RpcSenerProcesses to check the validity of each packet: Expired call packets
are ignored (old return and returnAck packets are okay because acknowledgements can use them
even after their call expires). Generation packets are always honored so that new connections can be
established. Packets from nodes not in nodesln are ignored until a connection is established (this
prevents out-of-order (delayed) packets from causing inconsistencies). Packets that are known to be
from old generations are ignored. If a packet passes all of these tests it is valid, and-on the
assumption that it will be sent back in reply-its generation is set to myGeneration. In practice all of
these tests except the last one using CheckConnection can be performed very efficiently.
CheckConnection is discussed below.

{ source: Node = pkt.rpc.callID.node;
SELECT TRUE FROM -- Any TRUE condition invalidates the packet.

pkt.rpc.type= call AND pkt. rpc. expiration Time<Clock[] = > NULL; -- Expired call packet.
pkt. rpc. type IN {generationRequest, generationAck} = > Connection. HandleTraffic[pkt];
source IN nodesln = > Connection. EstablishConnection[source];
-Connection.CheckConnection[[source, pkt.rpc.generation]] = > NULL;
ENDCASE = > {ok +- TRUE; pkt. rpc.generation +- myGeneration} }; -- Packet okay.

CheckConnection: ENTRY PROCEDURE [candidate: ConnectionRecordj RETURNS [found: BOOLEAN] =
-- CheckConnection is called by Verify to see if myNode has an existing connection with candidate.
In addition to looking for an existing connection, CheckConnection also sees if candidatets generation
is later than oldGeneration. If so, the new generation replaces the old one. This can happen because
nodesln is not kept completely accurate. But it can cause no problem for pending calls in activeCalls
because there can be none from candidate. node: If there were any calls, candidate. node would have
contacted myNode during its extermination Of expiration (candidate. node must crash to increase its
generation). This will have already caused myNode to increase candidate's generation and
exterminate the calls, so there can be no call packets left in activeCalls. ActiveCalls can, however,
contain oldGeneration return packets that candidate. node never acknowledged or that SenerCall used
to maintain process-to-process connections with candidate. node. In both cases,
SenerCall.FlushReturnsis called to flush any of these candidate-specific return packets.

{ oldGeneration: Generation;
[found, oldGeneration] +- FindConnection[candidate];
IF found AND oldGeneration < candidate. generation THEN {

connections +- connections - [node: candidate. node, generation: oldGeneration];
connections +- connections + candidate;
ServerCall.FlushReturns[candidate.node] } };

AddConnection: ENTRY PROCEDURE [new: ConnectionRecordj =
-- AddConnection is called by EstablishConnection to record new in connections ifit is not already
there. It also updates nodesln for extermination.

{ IF FindConnection[new]joundTHEN {
nodesln +- nodesln + new.node;
connections +- connections + new} };

122 RE\10TE PROCEDCRE CALL

FindConnection: INTERNAL PROCEDURE [candidate: ConnectionRecordj
RETURNS (found: BOOLEAN +- FALSE, generation: Generation] =

-- FindConnection is called by CheckConneclion and AddConnectioll to see if myNode has an existing
connection with candidate. In addition to just searching for myNode's record of candidate's node and
generation, FindConnection also returns candidate's recorded generation. The implementation of
FindC ollnectiol1 given below uses a simple linear search. In practice, since FindC onneclion is called
for every incoming packet, it must be implemented extremely efficiently. The microcoded hashing
approach suggested for ServerCall.FindOtherCalleris one method. Another is to use a hybrid
approach: For nodes on the local network, represent connections as a vector of generations indexed
by host. This requires no searching for packets exchanged on the local network, which is most of
them. For other networks, use a more space-conservative hashing scheme.

{ FOR old IN connections DO

IF old. node = candidate. node THEN RETURN (found: TRUE, generation: old generation];
ENDLOOP };

EstablishConnection: PROCEDURE [node: Node] =
-- EstablishConnection is called by Verify to make a connection with node. This is done by
peIforming a special generationRequest remote call to node. The special can is trivially completed by
HandleTraffic, below, since only node's current generation is desired. Because no actual procedure is
called, the procedure inport is NIL. Since mUltiple generationRequests from the same node can
complete, AddConnection ignores duplicate connection attempts. (A valuable but missing
enhancement to EstablishConnection is to exchange, compare, and adjust (via independent time
authorities) Clock values when connections are made. This extra synchronization insurance makes
the expiration algorithm much more reliable.)

{ NetworkService.AllocPk4myProcess, generationRequest];
ClientCall.RemoteCaI4myProcess, [node: node, inport: NIL]];
AddConnection[[node, myProcess.pkt.rpc.generation));
NetworkService.FreePk4myProcess] };

Handle. Traffic: PROCEDURE [genPkt: Packet] =
-- HandleTraffic is called by Verify to handle both connection requests from other nodes and
connection responses that myNode solicited. Generation requests always get myNode'scurrent
generation returned in response. In addition, the requestor's generation is returned in the inport
field so that obsolete responses can be discarded. Generation acknowledgements (responses) that are
not obsolete cause RemoteReturn to be called, completing the connection request made by
EstablishC onnection, above.

{SELECT genPkt.rpc. type FROM

generationRequest = >
{genPkt. rpc. type +- generationAck;
genPkt.rpc.inport +- genPkt.rpc.generation; -- Return caller's generation back.
genPkt.rpc.generation +- myGeneration;
Transmit[genPkt.rpc.callID.source, genPkt]};

generationAck = >
IF genPkt.rpc.inport = myGeneration

THEN C I ientC all.R em oteReturn[genP kt. rpc. callI D.process, genP kt];
ENDCASE = > ERROR };

END~ -- of Connection monitor.

Algorithm 5.3: Emissary's high performance remote procedure mechanism.

5 DESIG~ ApPROACHES FOR A TRA~SPARENT MECHANIS:\1 123

5.5 Distributed Binding

This section presents a scheme for binding the modules of distributed programs. In the overall

Emissary design of section 5.2, the role of distributed binding is to satisfy both the powerful

binding and configuration property and the strong typechecking property. In other words, the role

of distributed binding is to specify conveniently and assign in a typesafe manner the modules of a

distributed program to the nodes of a distributed system.

A distributed programming environment with separately compiled modules is ideal for studying

remote binding because each module is usually a self-contained abstraction. The purpose of remote

binding is to name these distributed abstractions, specify their communication relationships, and

connect them together in the way the programmer desires. One way to resolve these three naming,

specification, and connection issues is is with a configuration language in which programmers

declare module names and their hierarchical relationships. Examples of one particular language

appear below, but a rough analogy is provided by the linker or loader command files (Le.,

configuration descriptions) that are used to combine separately compiled programs into executable

units on most batch and timesharing systems.

The remote binder discussed in this section is constructed by extending a single-machine binder.

To make this approach maximally effective, a concrete environment with a powerful, existing binder

had to be chosen. The Mesa binder was selected because Mesa already supports a sophisticated

binding scheme for uniprocessor environments. Mesa's C/M esa configuration language is fully

described in chapter 7 of the Mesa Manual [62]. While some familiarity with C/Mesa is helpful, it

is not necessary. Readers familiar with Euclid [45], for instance, should have no trouble with

understanding the examples.

Despite the choice of C/Mesa as a concrete context for a remote binder design, I have not

implemented a remote binder and there is no algorithmic specification for a remote binder in this

section. There are two reasons for this decision.

Binder complexity. C/Mesa is a rich language whose compiler is a large and complicated
program. Reproducing the details of a redesigned, distributed binder is outside the scope
of this dissertation. Instead, appropriate models are presented for the critical parts of the
binding system. These single-machine models are then extended to perform similar remote
functions. The extensions are sketched in sufficient detail to convince the reader that the
design is sound.

Distributed C/Mesa. The main focus of this remote binding work is on how to gracefully
extend C/Mesa to specify distributed configurations of programs. Because C/Mesa is a
language, extending it is first a language design problem and second an implementation
task. Consequently, the C/Mesa extensions are presented as examples with descriptions of
behavior. This section strives to make modest proposals; fortunately, remote interfaces and
distributed programs come easily to Mesa.

124 REMOTE PROCEDCRE CALL

5.5.1 Background

Mesa's binding process has two distinct steps: binding and loading. Each step deals with

configurations of modules. Precise descriptions are given below: the location of each definition in
the binding-time spectrum of section 4.1.2.1 is indicated in italics.

Configurations. A configuration is either a single compiled Mesa module (a compile time
atomic configuration) or a group of configurations that has been previously bound into a
single configuration (a link time nonatomic configuration). A configuration is basically a
"relocatable" object program that has been linked together from compiled modules.

Binding. The Mesa binder is a link time compiler that reads a C/Mesa configuration
description and constructs the description's specified program by binding together existing
atomic and nonatomic configurations. The binder is responsible for typechecking all
intennodule interface requirements to ensure that all imported and exported interfaces
(abbreviated imports and exports) are satisfied in a consistent manner. (Interfaces were
defined in section 4.1.2.2.) The result of binding is another nonatomic configuration.

Loading. The Mesa loader is the static runtime program that loads configurations into
virtual memory by linking them together and resolving the last unbound symbols. The
loader typechecks configurations just as the binder does~ and it starts a fully bound
configuration by transferring to the configuration'S CONTROL module (a control module is
the first module in a configuration to be executed; it is explicitly specified by the
programmer). The loader can also be called by an executing program (at dynamic runtime)
to alter its configuration dynamically.

For full flexibility, both the binder and the loader must be callable at runtime. This is highly

desirable in a distributed system where crashes and partitioning may necessitate arbitrary dynamic

reconfigurations of programs that have demanding reliability or performance goals. The

programmer who must provide such robust service should obviously have as much power as

possible to solve his reconfiguration problems. Giving him the full capabilities of the binder and,

especially, of the loader are the first steps. Thus, while most of the following discussion takes place

in a pre-execution context, this temporal setting is for the convenience of exposition and is not a

restriction. The binder and loader must be runtime procedures as well as tools of the programming

environment. Mesa's own binder and loader are available at runtime, for example, although not

with the full generality required here.

5.5.2 Dynamic Loading of Configurations

Because the loader performs vital dynamic linking between running and soon-to-run programs, it

is essential to understand how it works. Having a good model of its local behavior is especially

valuable below, where extensions that make a local loader into a remote one are presented.

5.5.2.1 A Local Loader Model

The current loader's operation is easy to understand by explaining how its basic Load operation

loads a new configuration. Consider a Mesa program M, an atomic or nonatomic configuration,

with imports 11"",!n and exports E1, ... ,Em. When LoaatM] is called, each exported interface E is

5 DESIG:\ ApPROACHES FOR A TRA:\SPARE:\T MECHANISM 125

added to a master list of AvailableExports. In addition, the particular interface components (section

4.1.2.2) of E that Al provides are added to the interface record for E. (Mesa modules need not

export whole interfaces. This pennits a collection of modules to implement an abstraction
cooperatively by having each module supply just the interface components it implements. The

interface record of E is the record into which each module's exported components of E are put.

When the record is filled, Es abstraction has a complete implementation available.)

Each imported interface I of Al is put on the Needslmports list of all modules that still have

outstanding interface requirements. The Needslmports list is then scanned to fill (typesafely) as

many of those requirements as possible from AvailableExports. Because AvailableExports is usually

augmented by M's own exports, more modules than just M will (usually) have additional import

requirements filled during the scan. As soon as Afs interface requirements are completely satisfied,

M is removed from N eedsI mports. In this way, a set of modules with some imports and some

exports in common can be loaded (in any order) and bound together for execution. Note that the

loader acts as an incremental binder in the final part of loading any configuration. Another way to

view this is that there is a single runtime configuration into which the loader binds modules for

execution.

5.5.2.2 A Remote Loader !dodel

Extending the local loader to perform remote loading duties is not difficult. The basic scheme

just replicates the AvailableExports list and all remote interface records on all of the machines

participating in a distributed load. Only remote interfaces are included in the distributed version of

the list, which is called AvailableRemoteExports. As in section 5.3.1 on orphan algorithms,

communication between machines is by RPC.

The remote loader operates as follows. Call a set of cooperating distributed programs running on

potentially separate machines a company. Each machine in a company has a list that contains all

the company's members; this list of machines is called CompanyMembers. Adding new members to

a company is discussed below; for now, assume that the members of a company are fixed and

specified by CompanyMembers. Assume that a new module M is loaded on machine A, and that M

exports remote interface E that has remote procedures or other control transfer components.

Machine A's loader then transmits Es remote exports to the entire company with a remote call to a

NewRemotelnterface procedure on each machine in CompanyMembers. In each machine,

NewRemotelnterface adds E to AvailableRemoteExports and puts the new, remote transfer

descriptors to Es interface record. Each machine then performs a local binding pass to further

bind the modules remaining in Needsimports. In this way, all the machines in CompanyAfembers

participate in a remote Load on the member machines.

5.5.2.3 Dynamically Mustering a Set of Programs

To start and grow a company, assume that CompanyAlembers contains a single program, Captain,

that is in command. Captain may simply be the first program loaded, or it may be the machine

126 REMOTE PROCEDVRE CALL

that initiates connections with other machines such as servers, which are already loaded. (The

captain's role in a company is analogous to the CONTROL module's role in a local configuration: it

represents the company for initialization and startup purposes.) To muster a company of programs

dynamically, the captain first directs his loader to add all the component machines to the company.

To muster a machine A into the company, Captain makes a remote Recruit call to A. (How

Captain names and locates A is described in the next section.) Recruit[A] checks with host A to see

if its loader is running or if it is otherwise occupied. If not, Recruit invokes a primitive booting

operation on A. This booting operation is implemented by the network or other low-level software

that can give the breath of life to hibernating machines (e.g., a one-packet or single-sector bootstrap

program). The breath of life starts A and leaves its loader in command.

When Captain's Recruit call to A is finished, he adds A to his list of CompanyA.lembers and

remotely calls AddRecruit{A] on all CompanyMembers to replicate the list. Once a new member

machine is recruited, the Captain (or other C ompanyM embers) can load programs on it by calling

Load remotely. This Load eventually causes AvailableRemoteExports to be updated on all

CompanyM embers.

Whenever a new independent machine C wants to enlist the services of the company-e.g.,

import a file server company's remote client interface-it reports to the Captain. The Captain's

loader will automatically inform C of the company's AvailableRemoteExports and send along the

necessary remote interface records. Except for this initial dialog with the Captain, the members of a

company are indistinguishable. Eventually all the programs in a company will know of one another

and will be in the steady-state situation described above.

A natural extension of this scheme allows one to add an already existing company to another.

Basically, if captain A connects with captain B of another company, A needs only to add B to

CompanyMembers. Essentially, the (sub)captain A acts as a gateway between its company and the B

company to which it is connected. However, remote calls between members of A's and B's

companies are made directly because the AvailableRemoteExports lists that A and B exchange

specify the actual exporting machines, not the captains.

5.5.3 Static Binding of Configurations

Because of its anarchy and inefficiency, completely dynamic loading has been supplemented with

static configuration binding in Mesa. Similarly, dynamically mustering a company of programs can

often be pleasantly replaced with more declarative binding. The rewards of binding are several:

The hierarchical relationships between modules are declared in a language designed to
make those relationships explicit and visible: the structure is not hidden in a confusing
tangle of Load procedure calls. In addition, the binder can locate a great many errors, such
as missing or multiply defined imports or exports, that would otherwise cause errors at
runtime.

Much of the loader's work can be done in advance of actual execution by the binder. For
instance, sub configurations of modules that cooperatively export an abstraction can always

5 DESIG~ ApPROACHES FOR A TRA;\SPARENT MECHANISM 127

be bound in advance because the modules are a logical unit. In this case a client of the
abstraction never wants to deal with individual modules, just the whole unit.

Static binding, however, naturally tends to impose a static structure on a configuration. In a

distributed system, presuming a static structure for a remote configuration can lead to less robust

behavior in the presence of failures. This point was discussed earlier in section 5.5.1, but it is worth

making again: binding too tightly, in advance, can cause problems with reconfiguration.

Programmers must adjust the balance of static binding and dynamic loading according to the

characteristics of each application.

Despite this drawback, the rewards of binding are well worth pursuing. To make C/Mesa

describe distributed configurations two new abilities are needed:

Remote interface naming. The ability to name a remote interface is needed so that remote
imports and exports can be matched and satisfied. Fortunately, Mesa already attaches an
internet-wide unique identifier to each local or remote interface. The problem of naming a
remote interface thus boils down to locating the machine or company captain that exports a
remote interface with a matching identifier. The loader handles the rest.

Service and machine naming. The ability to name services and machines is an important
part of distributed resource location. Recognizing that service naming and machine naming
are independent but related tasks is essential. The name of a file service, for instance,
might be Juniper [85], but the Juniper service itself might be distributed over any number
of distinct servers such as JuniperA, JuniperB, and JuniperC. Each of these server names is
in turn bound to the internetwork address of its host machine. As an example, consider a
machine M that wants to use the Juniper file service. Machine M first contacts a
clearinghouse [67] or registration [6] service and inquires about the Juniper service. The
clearinghouse looks up Juniper in its data base and returns a list of Juniper's servers,
{JuniperA, JuniperB, JuniperC}. Machine M then asks the clearinghouse to lookup the
addresses of the servers, say, {A, B, C}. (Servers that just map machine names to internet
addresses are usually called name servers, or name lookup servers [8].) At this point M
contacts the Juniper service directly, using one of the addresses from the clearinghouse. In
the usual case M will simply use the first server and deal with machine A. But M can also
choose a particular Juniper server on the basis of performance, proximity, or some other
criterion. Further elaboration of the crucial role of clearinghouse services and indirect
name binding is beyond the scope of this discussion.

There are two prototypical examples of distributed configurations that exercise the naming

abilities described above. The following two examples will be used to explain the C/Mesa

extensions.

Using a remote server. A client program, Client, wants to keep company with a server of
the Juniper file service.

Commanding a distributed company. A program, Captain, wants to muster a company from
a set of programs to be loaded on a number of separate machines.

128 RE?\10TE PROCEDCRE CALL

5.5.3.1 Using a Remote Server

Assume that the client interface for Juniper is defined by luniperClientDejs, which will contain

interface components for both local and remote use. This allows some of the server's activities to

run on the client machine and some on the Juniper machine. (The reader might wish to glance

back at the file server example in section 2.1.2.1 at this time.) The module that provides the local

Juniper code and exports the local interface components is called luniperClientCode. The remote

Juniper components come from a Juniper server. A programmer might write the following

UseServer configuration to execute his ClientCode that calls Juniper. (The syntax in this and later

examples is not intended as a firm proposal for C/Mesa.)

MACHINE DIRECTORY
Juniper: FIND "Juniper";

UseServer: CONFIGURATION

BEGIN

IMPORTS remoteJuniper: REMOTE luniperClientDejsON luniper
CONTROL ClientCode =

loca/Juniper: luniperClientDefs ... luniperClientCode;
ClientCode; -- Uses interface components from both loca/Juniper and remoteJuniper.
END.

Now, luniperClientCode exports the luniperClientDejs interface (calling it loca/Juniper), providing

the local interface items. Juniper also exports luniperClientDefs (calling it remoteluniper), providing

the remote items. Getting part of the interface from within the UseServer configuration and part

from the outside is already supported by the binder and loader and requires no extra machinery:

the parts of the interface to come from the IMPORTed interface record are all those not provided by

luniperC I ientC ode.

FIND in the MACHINE DIRECTORY section means that when UseServer is eventually loaded, the

loader should use a clearinghouse service to map the service name "Juniper" to some server's

internet address. In this case, UseServer is willing to use any Juniper server. UseServer's loader

then contacts the server's loader to obtain the remote parts of the luniperClientDejs interface as

described above.

This simple example illustrates how a program gets in contact with the Juniper file service. The

same method is used by a program that requires any number of services: The standard name of

each service appears in the MACHINE DIRECTORY, and the desired abstract interface(s) from each

service appear in the IMPORTS clause. The loader uses a clearinghouse to locate the services and

then imports the interfaces from the servers themselves.

Here is a more complicated example where a local PrintFile configuration uses two Juniper

services-DirectoryOps and FileOps-to read and print a file using the Printing service's PagePrinter

interface. There is no local Juniper or Printing code in this example; all interface components are

remote.

5 DESIGl' ApPROACHES FOR A TRA~SPAREKT MECHA:\"ISM

MACHINE DIRECTORY
Juniper. FIND" Juniper",
Printer: FIND "Printing";

PrinlFile: CONFIGURATION
IMPORTS

BEGIN

REMOTE DirectoryOps, FileOps ON Juniper,
REMOTE PagePrinter ON Printer:,

CONTROL ReadAndPrintControl =

ReadAndPrintControl; -- Imports DirectoryOps, FileOps, and PagePrinter.
END.

5.5.3.2 Commanding a Distributed Company

129

Assume that Captain and Subordinate are two programs that want to form a company on two

separate machines. Neither Captain nor Subordinate is a regular server, so their host machines are

not known beforehand and are not registered with a clearinghouse. The C/Mesa configurations for

the two programs are:

MACHINE DIRECTORY

SubordinateM achine: ASK,
CaptainMachine: LOCAL;

Captain: CONFIGURATION

BEGIN

IMPORTS REMOTE SubordinateDefs ON SubordinateM achine
EXPORTS REMOTE CaptainDejsON CaptainMachine
CONTROL CaptainCode =

-- Various other modules ...
Captain Code; -- Imports SubordinateDefs and exports CaptainDefs.
END;

MACHINE DIRECTORY
SubordinateM achine: LOCAL,
CaptainMachine: ASK;

Subordinate: CONFIGURATION

BEGIN

IMPORTS REMOTE CaptainDejsON CaptainMachine
EXPORTS REMOTE SubordinateDefs ON SubordinateM achine
CONTROL SubordinateC ode =

-- Various other modules ...
SubordinateCode; -- Imports CaptainDefs and exports SubordinateDefs.
END.

These configurations are similar to the previous server example. The first difference is that

Captain and Subordinate each export remote interfaces. This allows each partner to call the other

remotely. (In the Juniper example, of course, the (missing) configuration defining the Juniper

program contained the line "EXPORTS REMOTE luniperClientDefs ON Juniper.") The second

difference is the use of the LOCAL and ASK keywords in the directory. The keyword LOCAL directs

the loader to use the machine on which the program is loaded. ASK tells the loader to query the

human user for a machine name or network address, but only if the loader needs to. For example,

130 REMOTE PROCEDCRE CALL

if the captain machine asks for SubordinateAfachine and it is supplied by the user, then the

subordinate machine will automatically know about the captain after the captain's loader makes its

Recruit call to SubordinateAfachine.

There is another useful keyword, CALL, that specifies a client module to invoke at load time to

return the desired machine address. For example,

MACHINE DIRECTORY
SubordinateMachine: CALL FindAVolunteer,
CaptainMachine: LOCAL.

The symmetry of these two configurations leads to some redundancy that can be eliminated.

C/Mesa requires that all the imports and exports of a configuration, both local and remote, be

completely specified. This requirement is for information hiding reasons. The machine directories,

however, can certainly be combined, and the ASK operation replaced with one substantially more

powerful. The example below presents the combined configurations, which are together called a

DISTRIBUTED CONFIGURATION to indicate that each component can execute on a separate machine.

Notice that this example uses nested configurations. This is for clarity; the nested configurations

could also be separate ones, independently bound, and included externally.

MACHINE DIRECTORY
SubordinateM achine: ANY,

CaptainMachine: LOCAL;

Company: DISTRIBUTED CONFIGURATION

CONTROL Captain =
BEGIN

Captain: CONFIGURATION
IMPORTS REMOTE SubordinateDe/s ON SubordinateM achine
EXPORTS REMOTE CaptainDe/sON CaptainMachine
CONTROL C aptainC ode =

BEGIN
-- Various other modules ...
C aplainC ode;
END;

Subordinate: CONFIGURATION
IMPORTS REMOTE CaptainDejs ON CaptainMachine
EXPORTS REMOTE SubordinateDe/s ON SubordinateM achine
CONTROL SubordinateCode =

BEGIN

-- Various other modules ...
SubordinateC ode;
END;

Subordinate;
Captain;
END.

In the Company distributed configuration, Captain and Subordinate are again to execute on

CaptainMachine and Subordinateltfachine. CaptainMachine is still the local machine, but

SubordinateM achine is now declared to be ANY machine. ANY means that, at load time, an available

5 DESIG~ ApPROACHES FOR A TRANSPARE:\'T MECHA:"ISM 131

idle machine should be located and recruited. Idle machines are located through standard means

such as a network broadcast or a clearinghouse that keeps a list of idle machines. If there are no

idle machines, ANY does an ASK operation instead. Once a free machine is contacted, its two

loaders communicate and transfer the Subordinate configuration from the CaplainAlachine to the

SubordinateMachine. This transfer uses a regular FrP package and need not occur if Subordinate is

already on the remote machine-say, from a previous execution of Company. Finally, the loaders

actually Load the modules in Company, exchange remote exports, and start each configuration's

CONTROL module.

The example above has only two machines and uses no remote services. In general, a statically

bound company can have any fixed number of machines and use arbitrary services such as Juniper

and Printing. Constructing these more elaborate distributed configurations is straightforward.

5.5.4 Reflections

The distributed extensions proposed for the the C/Mesa language cover the common cases of

using servers and mustering companies quite handily. Furthermore, the remote loader model of

section 5.5.2.2 is adequate for all of the necessary runtime operations: locating idle machines and

standard services with the help of clearinghouses, and typesafely satisfying all remote interface

requirements within a given cOlnpany. Covering just these two common cases, however, has left

some missing details:

Binding indefinite companies. The C/Mesa extensions discussed above do not permit a
company to be mustered from an indefinite number of members, a restriction which exists
for the local C/Mesa language also. The current solution to this problem in the local case
is to instantiate new configurations by calling the loader; this solution is recommended for
mustering remote configurations as well. Programmers name and use dynamic remote
configurations by qualifying operation names with the configuration handles returned by
the Load operation; this syntax is akin to that of the Emissary orphan algorithms.
Dynamically dispatching new members of a company resembles the action of the worm
program discussed in section 2.4.3.

Location transparency. The machine naming conventions suggested here give a reasonable
amount of location transparency because of the indirection through clearinghouses. For
instance, asking for "Juniper" can return any member of Juniper's company. While this
works well for starting companies, it gives no location transparency over crashes. If a
particular Juniper machine goes down, for example, any programs talking to it will get the
Failed exception. To handle Failed, each client program will probably recontact the
clearinghouse service and ask for another member of Juniper's company. Of course, if a
Juniper crash also crashes the client, then restarting (reloading) the client program will
automatically rebind Juniper. Thus, while some location transparency is available from the
remote binder, it gives no robust help with crashes.

Reconfiguration. Just as distributed C/Mesa offers no location transparency over crashes, so
it incorporates no notion of automatic reconfiguration after crashes either. Reconfiguration
is a hard research problem in itself; the C/Mesa extensions given here explicitly avoid this
problem by making unembellished single-machine binding facilities available in a
distributed environment. Programmers must achieve robust behavior by calling the remote
binder and loader at runtime to alter their companies on the fly.

132 RE\10TE PROCEDCRE CALL

Initialization and finalization. Not much attention has been paid to how distributed
configurations are started and destroyed. There are two reasons for this. First, Mesa and
C/Mesa have a standard initialization mechanism that uses CONTROL modules. This
mechanism works in the distributed case too. Second, for destroying either modules or
configurations, Mesa and C/Mesa give no help whatsoever. This is an oversight in the
language and language-level solutions should be designed that will extend naturally the
remote case. One possible solution is Euclid's INITIALL Y and FINALLY procedures [45].
These routines are automatically called when a module is created and destroyed; Mesa
module initialization and C/Mesa CONTROL modules are close to the former, but there is no
support of the latter. In the absence of these nice declarative methods, programmers can
always arrange the initialization and finalization of companies through explicit but tedious
procedure calls.

Interface components. This section deals with general interface components and not specific
items such as procedures. This is intentional; the remote loader and binder should handle
all the control transfer components that the local binder and loader do. All transfer types
are supported in C/Mesa except for PORTS (coroutines), and I have suggested a port
binding scheme elsewhere [65].

Heterogeneity. Finally, companies with machine-code mercenaries, Fortran legionnaires, and
other foreign language troops are possible. This problem was examined in section 4.1.2.5.

The remote binder and loader proposals made in this section are unimplemented high-level

designs. Some primitive binding and clearinghouse operations similar to those discussed in section

5.4.4.4 have been implemented for the testing described in chapter 6, but experience with these

operations does not seriously evaluate the overall remote binding approach. Only a full design and

implementation will uncover remaining problems.

- 5.5.4.1 Transparency and the Essential Properties

The goal of this section was to develop an approach to remote binding that satisfies the strong

typechecking and powerful binding and configuration properties. This goal has been achieved in

two steps.

Typechecking. The binder for distributed C/Mesa is just the local binder with naming
extensions that are checked either statically by the same binder or dynamically by the
remote loader. The implementation of the remote loader is sketched from a model of the
local loader; the runtime binding characteristics of the remote loader are unchanged from
the local one. Since the remote loader checks the types of interfaces and implementations
in precisely the same fashion as the local one, the strong typechecking property is satisfied.

Binding. The distributed C/Mesa configuration language is extended to specify remote
configurations. The justification for using the Mesa-specific setting in this work is Mesa's
status as a sophisticated, state-of-the-art programming environment. The C/Mesa language
changes allow the programmer to specify remote configurations with almost the same ease
that he can specify local ones. Since the suggested changes are in the spirit of C/Mesa, the
powerful binding and configuration property is satisfied.

5 DESIG:\ ApPROACHES FOR A TRA~SPARE~T MECHA~IS\1 133

5.6 Summary

This chapter presented design approaches for Emissary, a transparent remote procedure

mechanism whose semantics satisfy the five essential properties. Emissary's design was split into

three parts for this task: orphan algorithms, remote call mechanisms, and distributed binding. The

first and third parts, while described in detail, are unimplemented design approaches for performing

crash recovery and module binding in distributed systems. The second part, remote call

mechanisms, is also unimplemented, but is fully specified and is based on the implementation and

evaluation of several operational RPC mechanisms.

6

Mbengga-Fiji
18° 25' S 178°09' E

In an ancient ritual, Matanggalifirewalkers Ired red-hot stones hannlessly

Performance Evaluation
of a Family of Mechanisms

This chapter studies efficiency issues of remote procedure call; it addresses the good performance

property.

Empirical performance measurements are obtained by experimenting with a series of related,

operational RPC mechanisms. The performance analysis of one mechanism is used to hypothesize

optimizations which are then implemented and tested on the next. Each mechanism is programmed

in Mesa and executes on a personal computer communicating over the Ethernet. There are five

generations in this family of mechanisms: Envoy-Diplomat, Stubs, Liaison, EtherPkt, and

EtherPktMC, each much faster than its predecessor. The last three generations have multiple

members, and each succeeding member is refined and faster than its older siblings.

The discoveries and techniques used to tune and optimize these mechanisms are a vital part of

the thesis. No single, guiding optimization principle emerges. Rather, a set of principles emerges,

each of which significantly increases performance when applied appropriately. As a consequence of

this, the results of the performance evaluation are presented as a group of general performance

lessons. These lessons were incorporated into the Emissary design of the previous chapter.

6.1 Family History

Before discussing the performance evaluation, the RPC family is introduced with a brief

description of each member. The supporting cast of processors is described as well.

136 RE\10TE PROCEDCRE CALL

6.1.1 Processors

All of the software tests described in this chapter execute on experimental computers built by

research divisions of Xerox Corporation.

The Alto [89] is a medium-speed microprogrammed personal computer. It has a high resolution

display, 2.5 megabyte local disk, and an Ethernet interface. The Alto has emulators for a number

of languages, including Bcpl, Lisp, Mesa, and Smalltalk. No RPC testing was done with Altos; this

description is included only for completeness.

The Dolphin [60] is a successor of the Alto. The Dolphin processor executes Mesa with

performance comparable to the Alto, but it has a larger virtual memory and a display that steals no

memory bandwidth from the CPU. Typical Mesa intermodule procedure call times on a Dolphin

are as follows: null call, 40 microseconds; one argument/result call, 48 microseconds. Forking a

detached process takes 1.8 milliseconds.

The Dorado [50] is a high performance successor to the Alto and Dolphin. It uses caching and

pipelining to execute Mesa about 8-10 times faster than a Dolphin. Typical Mesa intermodule

procedure call times on the Dorado are as follows: null call, 6.5 microseconds; one argument/result

call, 7.1 microseconds.

6.1.2 Communication

The prototype Ethernet is a 2.94 megabit/second local packet network (the production Ethernet

has a 10 megabit bandwidth). It uses carrier sensing and collision detection to achieve very low

error rates-less than one percent-in normal operation. The Ethernet is a level 0 packet transport

mechanism in the Pup internet hierarchy of figure 2.5. The unreliable datagrams of levell,

bytestreams of level 2, and so forth can all be built using the Ethernet as a base. Familiarity with .

these levels, and the characteristics of their software interfaces as described in section 2.1.5.3, is

assumed in the rest of this chapter.

6.1.3 RPC Mechanisms

This section gives a sketch of the five RPC mechanisms. Each is based on a stub translator and

its associated runtime machinery, with Envoy-Diplomat taking the most unusual approach. The

names of these mechanisms can be somewhat confusing at first, but the mixture of diplomatic and

functional terms has a good historic basis and is superior to an enumerative naming such as,

Schemel, Scheme2, etc. A tabular summary of the mechanisms' important characteristics appears at

the end of the section.

6.1.3.1 Envoy

Envoy is a remote procedure call facility very similar to the Distributed Programming System

(DPS) of section 3.2.2. Envoy uses the bytestream interface-level 2-of the internet software. It

has its own marshaling scheme, described below, that can marshal most Mesa datatypes.

6 PERFORMA:'\CE EVALCATIO:\ OF A F A\lIL Y OF MECHA~IS\1S 137

Like DPS, Envoy does not provide syntactic transparency. Instead, Envoy provides clients with

very high-level primitive operations that can be used to implement and invoke remote procedures

easily. For example, Envoy's remote invocation operation is

CallRemoleProcedure: PROCEDURE [proc: RemoteProcedure, args, results: Parameters].

Envoy's RemoteProcedures are distinguished procedure values (similar to Emissary's

ProcedureDescriptors) that are defined in an exporting server and obtained at bind time by

importing clients.

Envoy's parameter marshaling scheme differs markedly from Emissary's precompiled approach; it

dynamically interprets procedurally encoded type descriptions to marshal and unmarshal data. For

example, consider a procedure with a pointer argument:

P: PROCEDURE [i: INTEGER, pc: POINTER TO CARDINAL].

The type information that Envoy needs to marshal P is supplied by the following auxiliary

description procedure that the programmer must supply:

DescriptionOfP: PROCEDURE [marshal: POINTER TO MarshalingRoutines] =
{ marshal.MarshalPointelfpc, SIZE[CARDINAL]] }.

DescriptionOjP tells Envoy that Ps argument record has one component, pc, that needs

marshaling in addition to the argument record itself. The description also tells Envoy the size (in

words) of pc's referent. Unmarshaling is handled with the same description procedure by binding

the marshal argument to a record of UnmarshalingRoutines, thus mapping the call of

MarshalPointer into one of UnmarshalPointer.

This example is a slight simplification, but it conveys the flavor of the scheme. Nested structures

are handled recursively; for instance, if pet were a record that contained other pointers. Envoy's

marshaling scheme is unwieldy and rapidly becomes difficult to read, but it is an alternative to

Emissary's approach that can be evaluated.

Envoy executes in an environment significantly different from its other RPC family members.

As a result, absolute speed measurements of Envoy are not comparable with most measurements of

this chapter. Fortunately, however, Envoy-related statistics are relevant in the marshaling

discussion.

6.1.3.2 Diplomat

Diplomat is a stub generator. Instead of generating the low-level stubs suggested by the Emissary

design, Diplomat writes an implementation with Envoy as its target machine. Together, the Envoy

Diplomat pair define a reasonably transparent RPC mechanism. Diplomat's stubs use Envoy's

marshal operations to perfofIJ). transparent marshaling of all types except procedure parameters and

recursive lists (that is, structures with pointers are marshaled to a bounded depth, but not to an

unbounded depth as required for general list structures). The design of this mechanism is much

different from Emissary, and its impact on perfonnance is discussed below.

138 RE~OTE PROCEDCRE CALL

6.1.3.3 Stubs

Stubs is another stub generator. The Stubs translator reads a Mesa interface and writes an

implementation that, like Envoy, uses a level 2 bytestream as its communication medium. Stubs

uses this bulk data transport layer rather than the lower level that Emissary uses or the higher one

that Envoy uses. Stubs's transparency is considerably less than Diplomat's because the marshaling

is not very -general. Strings and array descriptors are the only complex types that are handled.

Marshaling aside, the basic software structures of Envoy-Diplomat and Stubs are remarkably similar

because they both use a standard bytestream for communication.

6.1.3.4 Liaison and PktStream

Liaison is a translator refined from Stubs. Its target is a special PktStream bytestream

implementation that is significantly faster than Pup bytestreams. PktStream accesses the Pup

internet through the level 1 socket interface and provides highly RPC-tuned stream operations.

Liaison's marshaling is identical to Stubs's.

6.1.3.5 EtherPkt

EtherPkt (Ethernet packets) is a set of RPC stub modules that are manually derived from Liaison

counterparts. EtherPkt stubs send level 0 Ethernet packets-not level 1 Pup datagrams-using a

special interface to the Pup Ethernet drivers. ,EtherPkt eliminates all of the Pup overhead for

remote calls, but leaves the Pup package running for other clients. The EtherPkt stubs were written

by hand, not by a stub translator. Transparency is therefore poor, and marshaling nonexistent

6.1.3.6 EtherPktMC

EtherPktMC is a variant of EtherPkt whose stubs call microcode (Me) routines instead of

modified level 0 drivers. EtherPktMC runs on Dorados and, with microcode transliterated into

Mesa, on Dolphins. It does not coexist with the Pup package. EtherPktMC is an attempt to

explore the optimized case of RTrans/er microcode (section 2.1.3.1) sending call and return packets

directly.

6.1.3.7 Profile o/Characteristics

Table 6.1 captures the important characteristics of each family member in tabular form. The first

six characteristics are associated with the corresponding essential properties (the fifth property is

split into two characteristics-Standard Concurrency and Remote Exceptions). The last five

categories indicate some additional characteristics of the implementations.

6 PERFOR~.fANCE EVALCA nON OF A FAMILY OF MECHANISMS 139

Characteristic: Alechanism:
Envoy Diplomat Stubs Liaison EtherPkt EtherPktA1C

Call Semantics Exactly-once Exactly-once Exactly-once Last-one Exactly-once Exactly-once
Binding Method Explicit Explicit Automatic Automatic Automatic Automatic
Parameter Functionality Excellent Very Good Fair Fair Poor Poor
Uniform Typechecking No Yes Yes Yes Yes Yes
Standard Concurrency Yes Yes Yes Yes Yes Yes
Remote Exceptions Yes Yes No No No No

Client View of RPC Package Stubs (Envoy) Stubs (Mesa) Stubs (Mesa) Stubs (Mesa) Stubs (Mesa)
Communication Software By test ream Uses Envoy Pup stream PktStream Pup driver Ethernet
Pup Level of Comm. Soft. 2 3 2 1 0 0
Marshaling Method See text Uses Envoy Compiled Compiled Manual Manual
Overall Transparency None Very Good Good Good Poor Poor

Table 6.1: Summary of main RPC family characteristics.

Remarks on this table:

Binding Method. Explicit means that the machines executing the desired remote modules
must be explicitly named at runtime. Automatic means that the machines executing the
desired modules are implicitly located through a name server. The actual binding itself
uses the simple stub-oriented scheme described in section 5.4.4.4.

Parameter Functionality and Overall Transparency. The judgments expressed in these
categories are subjective. They are based on the previous descriptions and my personal
experience.

Remote Exceptions. Yes means that remote exceptions are available at the language leve1.
No means that they are not available because of implementation laziness, not because of
inherent difficulty.

6.2 Benchmark Description

The family of five RPC mechanisms discussed above was evaluated by measuring the behavior of

each mechanism as it executed a standard set of benchmark procedures. Two kinds of

measurements were made: remote call timings and program counter (pc) histograms.

6.2.1 Benchmark Procedures

The ParamTest program that defines the implementations of the benchmark procedures is

presented below. Since the goal of testing was to measure the overhead of a remote call, the body

of each procedure does nothing more than return its arguments. Because the StringDescriptor

procedure must convert between STRING and DESCRIPTOR types, it is actually more complicated than

indicated.

140 RE\10TE PROCEDCRE CALL

ParamTest: PROGRAM = {
Null: PROCEDURE = { NULL };

One: PROCEDURE [in: CARDINAL] RETURNS [echo: CARDINAL] = {RETURN[in] }:

Four. PROCEDURE [a.b,c,d: CARDINAL] RETURNS [W,x,y,z: CARDINAL] = {RETURN[a.b,c,dj };

TwenfyArray: PROCEDURE [in: ARRAY [0 .. 20) OF CARDINAL]

RETURNS [echo: ARRAY [0 .. 20) OF CARDINAL] = {RETuRN[in] };

StringDescriptor. PROCEDURE [string STRING]

RETURNS [desc: DESCRIPTOR FOR ARRAY OF CHARACTER] = {RETURN[string]} }.

6.2.2 Timing Methods

Two methods were used to time remote calls. For slow calls taking several milliseconds or more,

an averaging technique was used. The following timing program was used for slow remote calls of

Null.

-- Slow call measurement program.
starf +- Time1fl;
THROUGH [0 .. 5000) DO --remote call of-- Null[] ENDLOOP;

averageCallTime +- (Time1fl-start)/5000.

Because of network contention-that is, delays introduced by the hardware's carrier sense and

collision detection circuitry-all averaged times could change by a few milliseconds (0-2). In

general, several trials of between 5,000-20,000 calls were made of each test; the average time from

the fastest run is shown in the tables of section 6.3.

For fast calls taking less than a few milliseconds, individual call times were measured so that

network contention and other microcode task overhead could be factored out. The following timing

program was used for fast remote calls of Null.

-- Fast call measurement program.
FOR i IN [0 .. 5000) DO

start +- Time1fl;
Null[];
callTimcf. i) +- Timer[]- start;
ENDLOOP;

SortArray(caIlTime]. -- See text.

The time reported for a fast call test in section 6.3 is the median of the first ten call times in the

sorted callTime vector. This median represents the fastest time measured.

Two different Timers were used in the tests. On the Dolphin, time was measured with a high

precision realtime clock. This clock has 38 microsecond resolution, s~ the call timings are precise to

a tenth of a millisecond. On the Dorado, time was measured with one of the Dorado's special

hardware event counters. This counter has 64 nanosecond resolution, so the Dorado call timings

are precise to a microsecond.

6 PERFOR\1A:\CE EVALeATIO:\' OF A F A\lILY OF MECHA;-\IS\1S 141

6.2.3 PC Histograms

The Mesa Spy is a software performance monitor that constructs a symbolic execution histogram

by sampling the PC at frequent periodic intcr\'als. The Spy's histogram gives information about the

relative time spent at the module, procedure, and statement levels. The Spy was the main tool used

to formulate the optimizations that changed one RPC family member into a faster sibling.

6.3 Performance Evaluation

This section contains the results of performance testing. The results are quite dense, and readers

who feel overwhelmed may wish to skim this section now and return later when individual numbers

are discussed in the next (analysis) section.

The performance data presented here are derived from more comprehensive test results [66].

Abbreviated programs for the Envoy-Diplomat, Liaison, and EtherPkt timing tests appear in

appendix 2.

6.3.1 Dolphin Remote Call Times

Table 6.2 contains call timing tests that were performed between two distinct Dolphins under low

network load during the middle of the night. The Optimized and Original versions of Liaison and

Stubs identify important implementation stages in their performance enhancement. The details of

each stage are discussed later.

/1.1 echanism (on Dolphins)

Stubs Original (software checksums)
Stubs Original (byte operations)
Stubs Optimized (word operations)

Liaison Original (original PktStream)
Liaison Optimized (fast PktStream)

EtherPkt
EtherPktMC
Measurement Overhead

Roundtrip call times (milliseconds) for procedures:
Null One Four TwentyArray StringDescriptor

28.7 32.7 44.7 37.8 42.1
25.2 28.8 40.4 30J 35.2
24.3 27.3 37.5 28.8 33.4

11.4 11.8
10.l 11.0

2.0 2.1
0.8 0.9
0.1 0.1

12.8
12.5

2.l
0.9
0.1

14.2
13.1

OJ

16.8
15J

0.6

Table 6.2: Dolphin remote call times.

Remarks on this table:

Liaison. The Liaison numbers sho\\'n are for highly optimized stubs. In some preliminary
tests with original stubs and original PktStream, null calls took 15 milliseconds. Also, for
comparison, instantaneous Liaison Optimized null call times were 1.2 milliseconds on the
Dorado.

142 REMOTE PROCEDCRE CALL

ElherPkl and EtherPktl\fC. The array and string procedures were not timed with these
mechanisms because their more complicated parameters could not be marshaled; only
procedures Null, One, and Four were tested.

Afeasurement Overhead. Measurement overhead in this and succeeding tables indicates the
overhead incurred by the measurement program on a local call. This number can be
subtracted from the call times of individual mechanisms to give a more accurate estimate of
the remote call time. It cannot be used to compute a speedup factor; use the local call
times from section 6.1.1 for this calculation.

Figure 6.1 is a graphic presentation of table 6.2. The surprising hump in the Stubs's curves is

explained in section 6.4.7.

-;, 50
'tI r::
0
(,) 45 Q)
II) -! 40
Q)

.§
~ 35
(,)

.s.
'tI 30 r::
::J

~.
25

20

15

10

5

Stubs Original (software checksums)

Stubs Original (byte operations)

Stu bs Optimized

liaison Original

Liaison Optimized

EtherPkt

EtherPktMC

/Ji /1 ···A

Null One Four TwentyArray StringDescriptor
Remote Procedure (increasing parameter complexity)

Figure 6.1: Dolphin remote call times.

6.3.2 Dorado Remote Call Times

Table 6.3 gives EtherPkt timings that were performed on both Dolphins and Dorados. Notice

that the Dolphin times are repeated from above and are programmed entirely in Mesa (no special

microcode). The EtherPktMC implementations identified by BusyWait and ProCeSSWAIT are

discussed later; the AllMesa version is programmed entirely in Mesa and uses no microcode in spite

of the A,fC suffix.

6 PERFOR\1A~CE EVALCATIO~ OF A FA\lILY OF ~lECHA:\IS\1S 143

Alechanism (on Dorados and Dolphins)

EtherPkt (Dolphin)
EtherPktMC AllMesa (Dolphin)
Measurement Overhead (Dolphin)

EtherPkt (Dorado)
EtherPktMC AllMesa (Dorado)
EtherPktMC Processw AIT (Dorado)
EtherPktMC BusyWait (Dorado)
Measurement Overhead (Dorado)

Roundtrip call times (microseconds) for procedures:
Null One Four

2018 2056 2094
800 876 876

38 38 114

289 303 342
149 162 200
145 158 198
124 137 175
11 11 12

Table 6.3: EtherPkt and EtherPktMC remote call times.

Figure 6.2 is a graphic presentation of the Dorado data in table 6.3. The linearity and nearly

identical slope of the four curves indicate that the cost of marshaling and transmitting an additional

parameter is the same in all four mechanisms.

~
'0 c::
8
Q)
II)

0 ...
CJ

]
Q)

.§ --ca
CJ

.s. 150
...
~ c::

100 ::l

~
50

.._._._._._._._._._._.60

Is'_·_·-·-·-·-·-·-·-·Jt.·_·_·_·_·_·_·_·

.._0 _._.-._.

Null One

EtherPkt

EtherPktMC AIlMesa

EtherPktMC ProcessWAIT

EtherPktMC BusyWait

[Two] [Three] Four
Remote Procedure (increasing parameter complexity)

Figure 6.2: Dorado remote call times.

6.3.3 Network Characteristics

Table 6.4 shows how each RPC implementation uses the Pup internetwork. The numbers reflect

the total activity of a single, roundtrip, steady-state invocation of Null. These statistics do not tell

the whole story, such as the number of times the data is copied. The versions of Stubs and Liaison

that are not shown differed slightly in the number of words sent.

144 RE:-JOTE PROCEDCRE CALL

Mechanism Internet level and total number o/packets & words & xmit time/or a Null call:
Pup Level Packets Total words in packets: Call (Ack) + Return (Ack) Xmit time

Stubs Optimized 2
Liaison Optimized 1
EtherPkt 0
EtherPktMC (all versions) 0
Local Calls

Columns of this table:

4
2
2
2
o

61: 17 (14) + 16 (14)
30: 15 + 15
10: 5 + 5
10: 5 + 5
o

Table 6.4: Network characteristics.

332 J.Lsec.
163
54
54
o

Total words in packet. This number reflects all bits sent on the wire. In particular, for
EtherPkt and EtherPktMC it includes Ethernet encapsulation overhead of 3 words for
addresses, packet type, and cyclic redundancy check (CRC). For Liaison and Stubs it
includes Pup packet header overhead of 11 words (remember the checksum) plus the 3
word encapsulation. (See figure 2.4.) For Stubs Optimized, the numbers in parentheses are
the size of the acknowledgement packets sent by the bytestream implementation.

Xmit time. This is the on-the-wire transmission time for Total words assuming that there is
no deference (i.e., no waiting for packets already on the wire).

6.3.4 Process Utilization

Table 6.5 shows how the Mesa process machinery [47,62] is used by each mechanism. The data

are for steady-state calls and do not include the cost of binding and other initial transients. As in

table 6.4 on network characteristics, this one also presents biased statistics because the number of

process switches gives no indication of how much work each process performs. In Mesa, a process

switch occurs when one process WAITing in a monitor is NOTIFYed by another process.

Mechanism

Stubs Optimized
Liaison Original
Liaison Optimized
EtherPkt
EtherPktM C Processw AIT
EtherPktMC BusyWait
Local Calls

Remarks on this table:

Total number a/FORKs and WAIT-NOTIFY pairs for a single call:
FORKs

1
1
o
o
o
o
o

Process switches: Client (Ack processing) + Server (Ack)

18: 5 (4) + 5 (4)
12: 6 + 6
12: 6 + 6
4: 2 + 2
2: 1 + 1
o
o

Table 6.5: Process machinery utilization.

Stubs. The number of process switches in Stubs is primarily governed by those performed
by the Pup communication software. In particular, on input there are five switches per
packet: two in level 0 (one for the naked NOTIFY, or Mesa interrupt [47], and one for the
interrupt-to-router handshake), one in level 1 (router-to-socket handshake), and one in level

6 PERFOR'\1A~CE EVALCA TIO::" OF A FA.\1ILY OF MECHA~IS.\1S 145

2 (socket-to-stream transition). Acknowledgement packets, shown in parentheses. involve
one less switch because acknowledgements do not have the final socket-to-stream transition.

Liaison. Liaison's six process switches are split evenly between the Pup and PktStream
implementations. The three in Pup are described below (levels 0 and I). Of the three in
PktStream, only one is necessary; the other two happen because a nonstandard buffer
requeuing procedure must be called on output.

EtherPkt. EtherPkt's two extra switches are the price of cooperation with the Pup package.
The Pup driver is activated by a naked NOTIFY, which immediately switches to EtherPkt
when an RPC packet is received.

EtherPktMC. The ProCeSSWAIT version switches on the hardware's naked NOTIFY. The
BusyWait version performs no switches because it "knows" the call is a short one and thus
spins in a loop rather than blocking.

6.3.5 PC Histograms

Table 6.6 contains PC histogram results for a remote call of benchmark procedure TwenlyArray.

U nUke all previous tests, in this one the client and server are run on the same physical machine so

that both client and server execution data can be gathered simultaneously with the Spy. This

change in testing procedure perturbs the measurements slightly, but not enough to affect the results.

In addition, execution profiles change slightly from run to run since the Spy uses statistical

sampling. Finally, because of the wide range in absolute call times, both relative and absolute times

are given for each table entry.

TwentyArray: PROCEDURE [in: ARRAY [0 .. 20) OF CARDINAL] RETURNS [echo: ARRAY [0 .. 20} OF CARDINAL]

Mechanism (on same Dolphin) Execution profile of a TwentyArray call:
Time Total User Stubs RPClmpl Levels 0&1 Level 2 Other

Envoy-Diplomat Absolute no times
Relative 100.0% 0.9% 2.9% 21.0% 42.7% 13.6% 18.9%

Stubs Optimized Absolute 28.8 msec. 0.46 2.33 10.92 14.08 1.01
Relative 100.0% 1.6% 8.1% 37.9% 48.9% 3.5%

Liaison Optimized Absolute 13.1 msec. 0.25 0.76 6.35 5.46 0.28
Relative 100.0% 1.9% 5.8% 48.5% 41.7% 2.1%

EtherPkt (EtherPktMC) Absolute 2.0 msec. 0.03 1.75 0.20 0.02
Relative 100.0% 1.6% 87.5% 9.9% 1.0%

Local Calls Absolute OJ msec. 0.24 0.06
Relative 100.0% 80.0% 20.0%

Table 6.6: TwentyArray execution profiles.

Columns of this table:

User. User time is time spent in modules that call and implement the TwentyArray
procedure. In the Local Calls case this time is ideally 100%, but it is reduced by the
overhead of maintaining the driver program's small display and log file.

Stubs. Stub time is time spent in the client and server stub modules that map local calls to
remote calls.

146 RE~10TE PROCEDURE CAll

RPC Impl. Implementation time is time spent in the RPC mechanism when it is a separate
package like Envoy. For EtherPkt, Liaison, and Stubs there is no separate RPC
implementation and thus the RPC time is included in the Stubs column. Implementation
time includes relevant time spent in the storage allocator.

Levels 0&1. Level 0 and level 1 time is spent in the driver and socket software.

Level 2. Level 2 time is spent in the bytestream communications software. For Liaison,
level 2 time is spent in the PktStream code.

Other. Other time is a measure of Mesa's overhead to support the disk and display for the
test program.

Remarks on this table:

Envoy·Diplomat. Envoy-Diplomat times are not shown here because, as noted previously,
Envoy's execution environment is significantly different from that of the other family
members. This makes absolute time comparisons meaningless.

EtherPkt (& EtherPktMC). The EtherPkt execution profile measures different test
conditions, namely, just the client half of an EtherPkt One call on a Dorado. The· only
important thing to notice is the 87.5% stub time, which, because EtherPkt deals directly
with the Ethernet driver, includes levelland 2 communication time. EtherPktMC has a
similar profile.

Figure 6.3 is a graphic presentation of table 6.6. The unusual behavior of the relative-time

EtherPkt curve is explained in the remarks above.

6.4 Performance Lessons

By combining knowledge of the various RPC implementations along with the timing and

histogram results, we can draw some strong conclusions about the way RPC mechanisms should

conduct business. These lessons are presented below. A graphic summary appears in section 6.4.10.

6.4.1 Bytestreams are bad.

Bytestreams are an improper communication model for RPC. The excess data movement and

multiple process switches of a standard stream mechanism are much too expensive. In the Pup

world, these problems are exacerbated because the standard stream implementation is explicitly

streamlined for file transfer operations, which is at the far end of the latency-bandwidth spectrum

from RPC.

The best example of this poor perfonnance is given by Liaison Original and Stubs Optimized,

where figure 6.1 shows a factor of 2-3 improvement in abandoning Pup bytestreams. This speedup

is largely due to the fact that Liaison's PktStream protocol sends two packets per remote call,

whereas Pup bytestreams sends four. The extra process switching (table 6.5) and flow control

overhead of Pup streams accounts for much of the remaining time.

-30
II)

'0
t:
0
to) 25 Q,)

.!!!
~
! 20

Q,)

!
Q,) 15
~
'0
II)

.Q
oct

-~ 100 - 90 Q,)

~ 80
Q)

~ 70
.!
~ 60

50

40

30

20

10

6 PERFOR\1A~CE EVALLATIO:'\ OF A FA\1IL Y OF MECHA:\IS\1S 147

A
\

\

\
\

\

A
\ ,

\ ,
\ \

\
, ,

\ ,
6

'. \

\'
Total User

Total User

:
:

.~'"

Envoy· Diplomat (not shown)

Stu bs Optimized

Liaison Optimized

EtherPkt (& EtherPktMC)

..,.··-I:&-··_··_··_A

, ,

RPC Impl Levels 0& 1 Level 2

, , , ,
,

......... ,
.........

Ot er
Absolute execution profile of TwentyArray

Envoy· Diplomat

Stubs Optimized

Liaison Optimized

EtherPkt (& EtherPktMC)

Stubs RPC Imp/ Levels 0& 1 Level 2 Other
Relative execution profile of TwentyArray

Figure 6.3: TwentyArray execution profiles.

6.4.2 \Vatch for hidden protocol costs.

Stubs measurements uncovered two bytestream areas with unexpectedly bad performance

penalties. Any RPC implementation building upon high-level protocols must investigate and

consider such costs extremely carefully.

(Software) checksums. The significant cost of software checksums is demonstrated by the
Stubs Checksums and Byte Operations tests. The only difference between the two is that
Pup checksums were turned on in the former. Notice the large 25% and 20% penalties paid
in the TwentyArray and StringDescriptor big parameter cases (table 6.2 and figure 6.1).
Less costly microcode-computed checksums are, of course, the way of the future. While
abandoning checksums for end-to-end use in an internetwork is foolish, the reliability of
the Ethernet's CRC urges abandoning them for EtherPkt-like local network calls.

148 RE~10TE PROCEDCRE CALL

Byte operations. The penalty of byte-aligned operations on word-oriented machines is
demonstrated by the Stubs Byte Operations and Word Operations tests (figure 6.1). The
space saved by dealing with bytes is clearly negated by the cost of the slow ByteBlt (byte
block transfer) when large parameters are misaligned. The lesson is clear-pad out the odd
bytes as needed.

6.4.3 Special-purpose protocols are good.

As discussed above, a special-purpose request-response protocol like PktStream is essential for

performance that is modest to good. For good to excellent performance, EtherPkt-like

optimizations are required for simple local network calls.

While Liaison's performance is much better than Stubs's, Liaison's 10 millisecond Null call time

is still large. A look inside the Liaison Optimized implementation for the Null call case-not the

TwentyArray case shown in table 6.6 and figure 6.3-shows that 10% of the time is spent in the

level 0 Ethernet drivers, 53% in the level 1 Pup datagram interface, and 34% in the level 2

PktStream implementation. This 87% levelland 2 overhead-8.8 milliseconds-is a substantial

price to pay for stream and internet functionality that is infrequently used when most calls fit into

one packet that is sent to a server on the local network. Of course, Liaison's generality is still

needed for multipacket and internet calls, but optimizing the most frequent case is important.

EtherPkt and EtherPktMC explore these optimizations by reliably sending and sequencing their

own call packets directly over the Ethernet. By discarding both levels 1 and 2-87% in

Liaison-EtherPkt eliminates 8.1 of 8.8 wasted milliseconds and achieves a fivefold improvement

over Liaison Optimized (figure 6.l). This reclaims all of the 53% internet overhead and most of the

34% PktStream overhead (similar to TwentyArray in figure 6.3). EtherPktMC, which takes over the

Ethernet interface rather than sharing it with Pup as EtherPkt does, manages to do nearly three

times better: By cutting the number of process switches in half and further reducing overhead,

EtherPktMC achieves a twelvefold increase over Liaison.

In a working implementation, cooperation between the RPC mechanism and the internet

software is probably required. This can be obtained without sacrificing much of EtherPktMC's

speed by incorporating a microcoded Pup and RPC packet demultiplexor in the Ethernet interface

(i.e., implementing two logical Ethernet interfaces). Thus, while EtherPkt and EtherPktMC code

take some shortcuts that would be unacceptable in a real implementation, such level 0 local network

optimizations are clearly necessary for excellent performance.

6.4.4 Use microcode for exceptional performance.

Iv10ving more of these local network optimizations into microcode will yield extreme efficiency.

EtherPktMC experience on the Dorado· indicates that call times of close to 100 microseconds are

possible if stubs are abandoned and the compiled Emissary approach is used (table 6.3 and figure

6.2), The Emissary stub scheme may be acceptable, too, if more of the stubs' activities are

microcoded (EtherPktMC microcodes only Send and Receive).

6 PERFOR\1A:\CE EVALLATIO:\ OF A F A\lILY OF MECHA:\IS\IS 149

On the Dolphin, the 800-900 microsecond EtherPktMC Mesa "microcode" times can be

considerably reduced by microcoding. Using a conservative factor of five speedup for the Mesa-to

Dolphin microcode change, Dolphin times of around 200 microseconds are possible. (This scaling

is not linear-that is, not 800/S-because the Ethernet does not scale at all: Sending the ten words

that EtherPkt transmits for a complete null call takes 54 microseconds in any case. The ten words

(five for the call and five for the return) are [destinationAndSource, packet Type, serialNwnber,

p rocedu reD esc rip tor, etherC RC].)

This 200 microsecond estimate is reinforced by Spector's remote readlwrite memory work,

described in chapter 3. On the Alto, which is comparable to the Dolphin, he performs simple

"remote calls" of read and write in 155 microseconds with a completely microcoded

implementation. Spector's remote memory operations are simpler than our remote calls, but his

times easily establish the 200 microsecond ballpark.

Whatever protocol and optimizations are used by an RPC mechanism, it must always take

account of these two issues:

No "optimized" semantics. Any RPC optimizations must have semantics that are identical
to those of the standard mechanism (e.g., the one used for internet RPC). A microcoded
call failure must recoverably trap back to the Liaison (or equivalent) layer.

Alinimurn-stale idle connections. Attention must be paid to minimizing the information that
one machine needs to retain about its idle importers and exporters. RPC mechanisms will
probably not use bytestream-like connections, and whatever style of connection is used
must be designed to have a small quiescent state. For example, one hundred already
bound but infrequently used remote interfaces should have modest storage demands.

6.4.5 Caches are yery important.

The speedup of Liaison Optimized over Liaison Original (figure 6.1) is primarily due to caching

two expensive objects: processes and stream objects. In Liaison Original a stream object and

corresponding process were created for each call; these operations took 4% and 17% of the Null call

time, respectively. In the optimized version these were reused when possible, reducing the time to

less than 1%.

EtherPkt also uses a process cache. In addition, it keeps a cache of fixed packet buffers because

the Pup buffer queue machinery is too expensive, costing over 10% at times. EtherPktMC uses a

similar strategy that involves one less copy operation.

The caching concepts can, of course, be applied to any layer of the system. One way to get

EtherPkt-like speedups in Liaison is to keep a cache of prerouted packet buffers. This gives full

internet flexibility for slightly greater software cost and an extra 120 microseconds of transmission

time for the Pup header on the wire. In this case, a remote call pays for any gateway delay (several

milliseconds, when needed) but not for the 53% route-and-dispatch overhead on every' packet.

Suitable cache invalidation schemes must be used, but even the worst case is not too bad: If a

retransmission is necessary, perform it through the normal internet layer on the assumption that

150 RE~10TE PROCEDCRE CALL

routing changed. It has been suggested that gateways Inight assume more of the internet RPC

routing responsibilities, relieving the local machine of this overhead and thus speeding up this case

without local caching. This case will be difficult to press until remote procedure calls become vel)'

popular.

6.4.6 Marshal by compiling in line, not interpreting out-or-line.

Generating inline parameter marshaling code, as Emissary, Liaison, and Stubs do, is much more

time-efficient than the interpretive procedure-driven marshaling scheme that Envoy uses.

The marshaling data in table 6.7 are for a remote call of the StringDescriplor benchmark

procedure. The figures include the time spent allocating and deallocating the string and descriptor.

EtherPkt and EtherPktMC are excluded because they do not handle complicated parameters.

SlringDescriplor. PROCEDURE [string: STRING] RETURNS [desc: DESCRIPTOR FOR ARRAY OF CHARACTER]

Afechanism (on Dolphin)

Envoy-Diplomat (Standard Protocol)
Envoy-Diplomat (Tuned Protocol)
Stubs Optimized
Liaison Optimized

Relative lime for a StringDescriptor call:
Marshaling

11.4%
10.7
8.5
8.5

Table 6.7: StringDescriptormarshaling times.

These relative times are actually deceiving: Although Envoy-Diplomat's execution environment

is very different from Liaison's, some infonnal absolute comparisons show that Liaison's marshaling

is 3-5 times faster than Envoy-Diplomat's. This significant difference is not surprising since Envoy

is interpreting, at runtime, a marshaling description that Liaison efficiently compiles in advance. In

particular, the difference between the inline and out-of-line marshaling times is due to two factors:

The interpretive Envoy description scheme invokes tens of procedure calls (costing at least
50 microseconds each) that Liaison performs inline or not at all.

The Envoy approach defends itself against user errors that Liaison does not check because
it cannot commit them as long as its translation (compilation) is robust.

On the other hand, the interpretive out-of-line approach does have these advantages:

It can use significantly less code space, which is very important for some applications.

It is probably comparably efficient for complicated marshaling, such as a list whose nodes
are variant records that must be individually allocated anew in the remote machine.

6 PERFOR\1A:\CE EVALCATIOi\ OF A FAMILY OF MECHA:\ISMS 151

6.4.7 l\1arshallarge blocks, not small ones.

Stubs and Liaison handle one-word parameters individually by calling the stream's GetWord and

PUlU'ord operations once for each parameter. This takes 11% of the time even in the Liaison

Optimized Olle call case. Envoy, on the other hand, sends the entire parameter record with one call

to Put Block no matter what is inside it. This explains why the Liaison times increase so

much-from 10.1 to 12.5 milliseconds-in the first three columns of table 6.2. The corresponding

Stubs times increase from 24.3 to 37.5-an incredible 13.2 milliseconds-because the standard

stream's GetWord and PulWord are extraordinarily more expensive than the streamlined PktStream

operations that Liaison uses. (Look at the hump in the Stub's curves of figure 6.1). The lesson

here is to watch data partitioning very carefully. Stream operations are expensive; if they must be

used, move large blocks so the overhead is acceptable.

6.4.8 Select your data protocol carefully.

The two Envoy-Diplomat entries in table 6.7 indicate that using a data transmission protocol

tuned for homogeneous language RPC is faster than using a standard protocol for heterogeneous

use. This is an expected result" but the reason is informative and gives some hints on increasing

performance. The fundamental issue is the order in which parameters must be marshaled.

Different orders lead to different flattened representations-data protocols-and these

representations can be handled with different efficiencies.

Consider, for example, the parameter record

parameterRecord: RECORD [array: ARRAY ... , string: STRING, record: RECORD [...]].

Envoy's standard protocol, which is very similar to DPS's, requires a strictly depth-first

enumeration of the parameter structure. Because a Mesa string is implemented with a pointer, i.e.,

STRING: TYPE = POINTER TO --StringBody:-- RECORD [

length, maxlength: CARDINAL,

text: PACKED ARRAY [0 .. 0) OF CHARACTER],

Envoy-Diplomat Standard must traverse parameterRecord depth-first and send three separate

fragments: array, stringt', and record. Envoy-Diplomat Tuned, on the other hand, chooses to

traverse breadth-first and thus sends just the two fragments parameterRecord stringt'. The tuned

implementation therefore saves a call to PutBlock (or the setup cost of a third copy operation) for

the negligible expense of sending string's pointer in parameterRecord needlessly. Because

StringBody must be dyna!TIically allocated in the receiver during unmarshaling, string's pointer must

always be changed to point to the new storage. The standard protocol implementation does this

adjustment at the same time as it allocates StringBody; the tuned protocol version simply retrofits

the pointer into parameterRecord after both parameterRecord and StringBodyare in place.

At first glance the additional fragmentation incurred by the standard protocol appears costly only

because of the overhead for the extra PutBlock or copy. Inside the standard implementation,

however, there is another penalty: the type information that programmers (or Diplomat) give to

152 REMOTE PROCEDVRE CALL

Envoy via the type description procedures is barely adequate to perfonn remote unmarshaling.

Envoy-Diplomat Standard must build and search a nontrivial mapping structure that the tuned

version, with its breadth-first marshaling protocol, avoids entirely. (The implementation reasons are

beyond the scope of this discussion: see the last point, below.) I offer three observations here:

This parameterRecord example is a very simple one. More deeply embedded structures
increase this overhead exponentially, such as if record contains records of strings.

Standard representations and protocols are absolutely necessary for heterogeneous clients;
abandoning them in favor of homogeneously tuned ones such as Envoy-Diplomat Tuned's
is often not acceptable. A hybrid scheme that negotiates the data protocol-for example,
standard for interlanguage calls, tuned for intralanguage calls-is a higher-performance
solution. This negotiation should probably occur at remote interface binding time.

Finally, the previous inline lesson is well applied in this case: Inline marshaling, with its
statically compiled rather than dynamically interpreted type descriptions, eliminates all of
the standard protocol's mapping overhead no matter how many fragments are sent.
Negotiation can still be used to advantage, but it will be somewhat expensive in code space
since both kinds of marshaling need to be generated and an appropriate dispatch made.

The lesson about data protocols is this: Select a marshaling method and its corresponding

protocol only after careful consideration of both the external heterogeneity of the distributed

environment and the internal data representations used by the environment's programming

languages.

6.4.9 A ,'oid copying wheneyer possible.

Marshaling large blocks is not effective unless the blocks are manipulated with as little copying

as possible. Similarly, the nonparameter parts of an RPC mechanism's call and return packets

should be handled with little or no copying.

EtherPktMC performs exceptionally well in this regard because it constructs, sends, and receives

packets with no copying at all: parameters are moved (assigned) from the local frame of the stub

directly to and from the final packet. (This could, of course, be called one copy. To eliminate it

the compiler would have to push remote call arguments directly into the call packet and pop results

from the return packet. This approach was used by Emissary in chapter 5.) Further, the constant

parts of the packets are initialized only once; this saves additional time. EtherPkt uses a similar

technique, but input packets are copied once, from the Pup driver's input buffer into EtherPkt's

fixed input buffer.

An intermediate approach is used by Envoy. The header portions of call and return messages

are preallocated records. This record, when complete (requiring one copy), is sent with a single

PutBlock that is followed by a PutBlock of the entire parameter record (requiring no copying).

Any parameters requiring additional marshaling are sent immediately thereafter. The PutBlock and

Get Block operations themselves also involve a single copy into the packet. This is acceptable for

large blocks.

')

6 PERFOR\1A~CE EVALLA. TI0:\ OF A F A\11LY OF MECHA!\IS\1S 153

The worst copying approach is used by Liaison and Stubs. Both the RPC header and the

parameter body are sent piecewise with Pu/JVord and PUIB/ock. The data is copied only once, but

the overhead is unacceptable. Stubs also copies the argument record one additional time because of

an extra level of call-by-value procedure call.

The copying lesson is this: Almost always trade the increased storage cost of a whole buffer for

reduced computation. If possible, make the buffer be the final packet itself. Barring this, build an

image of the final buffer in the stub and then send it as a block. In either case, let this buffer be

the desired structure and perform all operations directly upon it.

6.4.10 Summary of Performance Lessons

Here is a recapitulation of the nine performance lessons. They are not ordered by importance.

1. Bytestreams are bad.
2. Watch for hidden protocol costs.
3. Special-purpose protocols are good.
4. Use microcode for exceptional performance.
5. Caches are very important.
6. Marshal by compiling inline, not interpreting out-of-line.
7. Marshal large blocks, not small ones.
8. Select your data protocol carefully.
9. Avoid copying whenever possible.

A graphic illustration of the performance lessons' impact on Dolphin RPC appears in figure 6.4.

The data are from the Null call times of table 6.2.

RPC Mechanism Lessons Applied

Stu bs Checksum 2

Stu bs 0 riginal 2

Stubs Optimized 1,3,8,9

Liaison Original 5

Liaison Optimized 3,5,6,9

EtherPkt ~ 4,9

EtherPktMC - (4)

• • • . • • • • • •
I I I • I •

o 3 6 9 12 15 18 21 24 27 30

Time (milliseconds)

Figure 6.4: Performance comparison of the evaluated mechanisms.

154 RE\10TE PROCEDCRE CALL

The details of each perfonnance step in figure 6.4 were discussed earlier. Looking at the whole

picture, a conclusion worth emphasizing is that each step is very important. For example, the 900

microsecond decrease between Stubs Original and Stubs Optimized appears inconsequential when

compared with its neighbor 12.9 and 3.5 millisecond decreases. But when compared against the

final 800 microsecond EtherPktMC complete call time, the 900 microsecond decrease is significant

indeed. To achieve a speed increase of an order of magnitude or more-in this case, a factor of

35-attention must be paid to even the smallest details.

Considered together, these perfonnance lessons define a set of rules that can be used to optimize

any communication mechanism that uses a narrow communication channel-and this certainly

includes remote messages as well as remote procedures. In a different light, these lessons can be

viewed as specific instances of general program optimization techniques. Bentley [4] describes a

comprehensive set of these techniques in his excellent study on writing efficient code. The

interested reader is referred there for more information.

6.5 Functionality Lessons

In the course of implementing and using these RPC mechanisms, four important functional

considerations emerged in addition to the previous performance lessons. These considerations,

presented here, serve as experimental verification of some of the essential remote procedure

properties.

6.5.1 Named binding is important.

A major difference between Liaison and Envoy-Diplomat is that Liaison's binding routines

implement an automatic binding between client and server. This is accomplished with a special

Pup name lookup service that operates in the serving RPC machine. A client RPC machine

attempting to import interface I asks the network name lookup services to locate a resource whose

name is Mesa's unique ID for I. The stripped-down lookup service in the RPC server answers this

question with its network address, completing the automatic binding without human assistance.

Envoy-Diplomat does not tackle automatic binding, and programmers must specify explicit

network addresses when they import or export a remote interface. This typically means that

humans must type in the addresses of host machines, although it is possible to wire-in the addresses

of well-known servers as long they do not change location. This leads to extreme inconvenience

during system development and checkout; even Liaison's very primitive binding scheme is superior

to Envoy-Diplomat's static method.

The lesson here is that the powerful binding and configuration property really is essential. Full

and flexible binding facilities require clearinghouse services so that names, rather than addresses, can

be used. Both the Liaison and Envoy-Diplomat schemes are inferior to the distributed binding

approach discussed in section 5.5.

6 PERFOR~1A:\CE EVALCA TIO~ OF A F A\lIL Y OF MECHA:\IS\1S 155

6.5.2 Clients want full parameter functionality.

A lesson quickly learned from Envoy-Diplomat is that RPC clients want complete support for all

Mesa datatypes. For example. while Envoy-Diplomat is designed to handle all datatypes. the

current implementation marshals everything except procedure types and recursive list structures.

One important client, however-a database system-is unable to use Diplomat exactly because the

database's remote interfaces make extensive use of both procedure parameters and tree-structured

data. There is no question that procedure types should be fully handled, although there is more

uncertainty about automatically flattening and transmitting list structures-an extremely expensive

operation, even for a database system.

At the other end of the spectrum, the Liaison and Stubs translators have intentionally severe

marshaling restrictions because their primary focus is not on marshaling. Serious client use of

Liaison is impossible because of these restrictions.

6.,5.3 Remote interfaces must be carefully designed.

When remote procedure call looks like local procedure call, most programmers reasonably expect

the semantics and functionality to be the same. On the other hand, performance considerations

dictate that programmers be aware of locality distinctions. Powerful marshaling tempts some

programmers into poor performance by handling complex structures without complaint; this is an

area of extreme danger for the hapless remote interface designer (consider the previous database

example). The upshot is that a few marshaling restrictions are acceptable. Marshaling

methods-and their client guidelines-are best derived only after more client experience and

implementor negotiation.

6.5.4 Can-by-reference problems are tricky.

Limited client experience with these working Mesa RPC mechanisms has uncovered an

unexpected amount of trouble with parameter allocation and deallocation. The trouble boils down

to misuse of call-by-reference (pointer) parameters. While the following discussion of this problem

may seem mundane to some, it is nonetheless important because it underlines the problem of

retrofitting an existing language with a uniform RPC mechanism. This task will be easy for some

languages and impossible for others. Mesa tends toward the former, but the lack of explicit VAR

parameters, coupled with the frequent use of pointers to pass multiword parameters, causes

headaches in remote interface design. By considering the problem and solution for this Mesa

specific example, light can be shed on overcoming similar idiosyncracies in other languages.

We introduce the problem by considering the current local and ideal remote implementations of

the Mesa string routine

Append: PROCEDURE [string, suffix: STRING].

156 REMOTE PROCFDLRE CALL

The Mesa system implementation of this procedure causes stringt to be modified even though

string itself is a call-by-value pointer. The (efficiency) advantage of this scheme is that the

implementor does not have to allocate any new strings. He simply modifies the existing ones.

However, this local Append fails miserably in the remote case-string will indeed be modified in the

remote machine, but the side effects never get reflected back in the caller.

As we have seen, the most satisfactory solution to this problem is to add VAR parameters to

Mesa. In this case our Append routine looks quite similar:

Append: PROCEDURE [string: VAR STRING, suffix: STRING].

This Append works properly whether it is called locally or remotely. Locally, VAR can be

implemented as call-by-reference for good performance. Remotely, the actual call-by-value-result

semantics of VAR cause the remotely modified string to be copied back to the caller, overwriting

slringt'. Notice that there is no new storage allocated in the caller.

Unfortunately, Mesa does not have VAR parameters, and we can illustrate the problems this

causes by considering a likely interface declaration for a remote Append routine:

Append: PROCEDURE [baseString, suffix: STRING] RETURNS [catenation: STRING].

A typical programmer concerned with efficiency would probably implement this interface with

the code

{ MesaSystem.Appenc4baseString, suffix]; RETURN[baseString]}.

This implementation will work both locally and remotely. Furthermore, the programmer would

even be quite happy with himself: He created no new storage and even built upon an existing

routine. His smile would fade, however, after a few minutes of debugging.

The problem he would encounter stems from the requirement of identical local and remote call

semantics. The cheap implementation above does not satisfy this property because, in the local

case, baseS tring and catenation refer to the same object whereas in the remote case catenation refers

to a completely new object allocated in the caller by the RPC machinery. This is the fundamental

problem with the cheap implementation. The thorns are felt when deallocation is considered:

If clients of this Append routine uniformly program in the local fashion they will expect
that Append performs no allocation. This assumption is fine in the server machine. In the
client machine, however, each remote call of Append allocates space for catenation and will
eventually exhaust the allocator since no catenations are ever freed.

If clients uniformly program in a remote fashion they will assume that Append allocates
storage for catenation. Now everything is fine on the client machine. In the server
machine, the RPC machinery will now (programming in the remote fashion) attempt to
deallocate catenation. Catenation was never allocated, however, and the basestring
argument has presumably already been deallocated, so some sort of allocator exception will
result

This is a simple example, and the reader must be careful not to conclude that the solution is for

the RPC machinery to be smart. Even if the RPC mechanism was smart, a client who used Append

6 PERFOR\1A:'\CE EVALCATIO:\ OF A F A\1IL Y OF MECHA~IS\1S 157

for local calls would get the same exception. The only wayan Append client can avoid a fault is to

know whether a call is being performed locally (return-by-reference so do not deallocate) or

remotely (return-by-value so do deallocate). This is, of course, exactly the situation we are trying to

avoid. TIle real problem remains the fundamental semantic inconsistency discussed above, and

RPC implementations cannot dance around it very easily.

Designers of remote interfaces must understand call-by-reference. An object's implementor must

not perform side effects on objects that might live outside his virtual memory. Changes on such

objects must simply return new objects whenever the VAR or HANDLE paradigms are not used.

Note that this lesson is unaffected by the presence of a garbage collector. A collector does, of

course, remove explicit deallocation responsibilities. This is a truly significant advantage, and the

clever reader may even convince himself that garbage collection enables the cheap Append

implementation to work properly. This is indeed true to the extent that no allocator exceptions will

occur, but it is false to the extent that identical local and remote semantics are guaranteed:

baseString and catenation still have different values in the local and remote cases.

In summary, unless VAR parameters are available or the object-handle paradigm is used, designers

of remote interfaces must be especially careful about allocation responsibilities and call-by-reference

parameters. An unavoidable copying penalty will always be paid to operate on remote objects, and

this penalty must be considered relative to the computational cost of the operation.

Application of this rule makes Appends implementation more costly, but also gives it correct

seman tics at last:

Append: PROCEDURE [baseSlring, suffix: STRING] RETURNS [catenation: STRING] = {
catenation ~ MesaSystem.NewString[baseString.length+suffix.length];
AI esaSystem. Appen~ catenation, baseS tring];
AlesaSystem.Appen~catenation, SUffix] }.

Of course, any remote implementation of Append is probably an unreasonable operation because

it is so inexpensive to perform locally.

6.5.5 Summary of Functionality Lessons

Here is a recapitulation of the empirical functionality lessons.

1. Named binding is important.
2. Clients want full parameter functionality.
3. Remote interfaces must be carefully designed.
4. Call-by-reference problems are tricky.

Lessons 1 and 2 verify the importance of the powerful binding and excellent parameter

functionality properties. Lessons 3 and 4 verify the need for sound remote interface design. Lesson

4 also reinforces the importance of excellent parameter functionality.

158 REMOTE PROCEDCRE CALL

6.6 Retrospective

This chapter focuses primarily and very narrowly on efficiency issues of remote procedure call.

While attention to these lessons is crucial for the success of a viable RPC scheme. keeping the

essential and pleasant properties in perspective is important. Good performance is a pleasant

property, not an essential one. To meet the overall goal of transparency none of the essential

properties must be compromised to achieve superior performance. Fortunately, chapter 5 presented

a mechanism that satisfies all of the essential properties and has excellent performance too.

Considered individually, the lessons in this chapter give good but not outstanding results. Acting

in concert, however, they result in a speedup of 35 times with no significant change in functionality.

A quantitative performance improvement of this magnitude makes a qualitative difference in the

value of remote procedure call as a language-level communication primitive. For instance, based on

the background of chapter 3 and the Stubs performance numbers in this chapter, assume that an

existing RPC mechanism has a 25-millisecond remote call overhead. If a distributed system

designer is willing to pay 10% for communication costs, then the remote operations of these slow

calls must take 250 milliseconds. This is a long time, longer than the time needed to use even a

very slow disk. If a remote call takes 1 millisecond, on the other hand, then IO-millisecond

operations are feasible. In this case, remote operations that involve only computation and no disk

activity are attractive. Emissary's exceptionally large quantitative performance improvement makes

a pronounced qualitative difference in the way that remote procedures can be used.

7

Aitutaki-Cooks
180 52' S 1590 46' W

The Pacific's best dancers whirl on sparkling sands

Conclusion

Emissary's remote procedure mechanism is now complete. The basic approach, derived from the

essential properties, was reinforced with orphan algorithms, promoted by a distributed binder, and

confirmed with a performance evaluation.

7.1 Reyiewing the Goals

The thesis of this dissertation is that remote procedure call is a satisfactory and efficient

programming language primitive for constructing distributed systems. Three goals were established

in the introduction to demonstrate this thesis. These goals have been met as follows.

Desirability. Chapter 2 divided remote procedure applications into three classes-resource
sharing, load splitting, and conversation. The utility of language-level RPC in each class
was shown with specific examples. All of the examples could be programmed with message
primitives as well as with remote procedures: there was no claim that RPC is a panacea for
communication in distributed systems. Instead, RPC emerged as one natural way to write
distributed programs in procedural languages. Chapter 3 continued the general discussion
of desirability by examining the strengths-and weaknesses--'of some existing RPC schemes.

Transparency-theory. Chapter 4 explored the semantic and syntactic ramifications of
transparency in great detail. For homogeneous language systems, there are five essential
properties that must be satisfied by any RPC mechanism that is fully integrated into a
programming language. These five properties are uniform call semantics, powerful binding
and configuration, strong typechecking, excellent parameter functionality, and standard
concurrency control and exception handling. In addition to the essential properties, there
are six pleasant properties that ease the work of constructing real distributed systems. The
pleasant properties are good performance, sound remote interface design, atomic
transactions, respect for autonomy, type translation, and remote debugging,

Transparency-practice. Chapter 5 used the semantic groundwork of chapter 4 to develop
Emissary, a Mesa-based remote procedure mechanism that satisfied all tive essential

160 REMOTE PROCEDLRE CALL

properties. The Emissary design has three major components: orphan algorithms to handle
crashes, call mechanisms to perfonn steady-state calls, and a distributed binder to link the
modules of distributed programs. Although unimplemented, the heart of Emissary-the
call machinery presented in algorithm 5.3-is based on the actual implementation and
testing of a series of operational RPC mechanisms.

Efficiency. Chapter 6 contained a performance evaluation of five working RPC
mechanisms, three of which I implemented: Envoy-Diplomat, Stubs, Liaison, EtherPkt,
and EtherPktMC. The results of the evaluation were a set of general performance lessons
that decreased the roundtrip time for a remote call by a remarkable factor of 35. These
lessons were incorporated into the Emissary design of chapter 5; Emissary therefore
satisfied the good perfonnance property in addition to the essential properties.

The upshot of meeting the desirability, transparency, and efficiency goals is this: Remote

procedures can and should be routinely used in applications where they have been previously

regarded as an extravagant luxury. Transparent RPC is appropriate for constructing distributed

systems because it is a good model for many distributed computations, is comfortable and familiar

to programmers, and has excellent perfonnance when properly implemented.

7.2 Critical Evaluation

7.2.1 The Value a/Transparency

This thesis made a very early commitment to focus on transparent remote procedure schemes,

that is, schemes with semantics neither weaker nor stronger than local procedure semantics. The

reasons for this decision have been expressed in many ways, but perhaps none is as important as

the following:

Transparent RPC provides a level of abstraction at which the programmer can ignore all
the details of both unreliable communication and crashes on multiple nodes. The
programmer deals with a uniform system that has completely familiar properties, including
last-one semantics during crashes.

While the qualitative truth of this statement is clear, the quantitative story can be substantially

different. For instance, the elapsed time taken by an inexpensive remote operation in a distributed

system can be an order of magnitude longer than its local counterpart. Furthermore, crash

exceptions really do force the programmer to· deal with crashes and last-one semantics in situations

where the booting was once an acceptable resort. Transparency, then, is a mixed blessing: it lies in

the middle of a semantic spectrum with at-least-once semantics at one end, and at-most-once

semantics at the other.

To their credit, transparent mechanisms such as Emissary offer all the performance advantages of

at-least-once schemes, but none of their semantic inconsistencies-as long as there are no crashes.

This makes Emissary a wonderful agent for building experimental distributed systems: modules can

be moved around, machines can be shuffled at will, and the whole business of constructing a

prototype system with decent performance can be extremely simplified. Furthennore, applications

that assume responsibility for their own data consistency can go even further: They can use the

7 COSCLCSIO:\ 161

last-once guarantee to program application-specific recovery operations just as they would for

nondistributed systems.

To their detriment, however, transparent semantics offer little assistance to production

programmers building a highly reliable system. Reasoning about crashes is very complex, and a

level of abstraction higher than transparent RPC can be very helpful. For these highly reliable

applications, at-most-once semantics-with built-in transactions yielding stronger than local

procedure semantics-are undoubtedly what programmers want. In these cases, the perfonnance of

Emissary-like RPC schemes is willingly traded for the crash-proof atomicity of extremely robust

RPC mechanisms. Of course, an intennediate approach to atomicity is using transparent remote

procedures for communication between crashes and transaction mechanisms for reliability across

crashes.

Emissary's position in the middle of the semantic spectrum has been rejected by some designers.

Until more distributed applications are built, however, using a variety of RPC and transaction

mechanisms, there will be insufficient experience to make firm conclusions about any preferred

points in the spectrum.

7.2.2 The Need/or Orphan Algorithms

Emissary's RPC mechanism, while transparent, must be used in conjunction with an independent

transaction mechanism for highly reliable applications. This method has the attractive property that

applications can define and use atomic operations-local or remote-in just the required situations.

Unfortunately, in a distributed system the use of both transparent RPC and a multinode transaction

mechanism usually leads to wasted motion in crash recovery: In guaranteeing atomicity, distributed

transaction schemes effectively eliminate all of their own orphans as a part of transaction-specific

crash recovery. In this case, using separate transactions to guarantee atomicity makes the work of

Emissary's orphan algorithms completely redundant. Notice, however, that if both regular and

atomic remote operations are used, then there is no redundancy for the regular operations because

they fall outside the sphere of the transaction scheme.

This redundancy raises a question about the need for orphan algorithms. In the previous

semantic spectrum, if real applications tend to lie at both ends, then orphan algorithms are not

needed at all: when programmers use RPC for transparent between-crash semantics, orphan

algorithms-are an unwanted expense; when programmers use transactions for all remote operations,

orphan algorithms are unnecessary.

All distributed applications do not fit precisely into these two extremes. Distributed programs

with modest reliability requirements will probably fit between the two, and for these applications

orphan algorithms and their last-one semantics are vital. Once again, more experience is required

before conclusive judgments can be made.

162 REMOTE PROCEDCRE CALL

7.2.3 The Role of Perfomwl1ce

In chapters 5 and 6, performance issues played a critical role in Emissary's design. The decision

to give performance considerations equal parity with abstract functionality is an important one. The

wisdom of this decision-or the folly of it-lays in the following remark by Bob Sproull [83]:

The structuralists are currently in vogue, and the performers are out of power now. ~ut

middle-of-the-road types, using the techniques of both, are the better designers.

At their polarized extremes, structuralists are designers who insist on general purpose, highly

layered design and implementation at all levels of a system; performers are designers who always

sacrifice as much functionality and structure as necessary to optimize an implementation to the

fullest extent. Sproull's thesis is, of course, that the best designers strike a balance between clean

structure and good performance. This thesis is quite evident in the following two areas of

Emissary's design.

Syntactic transparency. At the language level, absolute syntactic (structural) transparency is
blemished by the REMOTE attribute. But in yielding this transparency in declarations-and
only in declarations-Emissary's compiler is able to perform substantial space and time
optimizations for remote calls.

Semantic transparency. At the runtime level, Emissary's remote call mechanism is
optimized only for procedure calls. At the language level, however, the complete range of
control transfers is available to the programmer. Emissary invisibly maps the uncommon
transfers into procedures, giving full generality with a spectrum of performance.

The demands of structure and performance are carefully balanced in Emissary's design to result

in a practical and usable mechanism.

7.2.4 The Trials of Implementation

Two critical components of Emissary's design are not implemented: the orphan algorithms and

distributed binder presented in chapter 5. If the implementation and evaluation of either of these

pieces finds serious flaws, the integrity of the Emissary's approach will suffer. Thus, while the

orphan and binding approaches are developed in some detail, the trials of their implementation will

deliver the final verdict. Emissary's call mechanism is excluded from this discussion because its

detailed but unimplemented algorithm is based on several operational prototypes. These closely

related call mechanisms were successful.

7.2.5 The Nature of Processes

The Emissary design depends on Hoare-like monitors for interprocess communication. This style

of process interaction uses shared memory, although the sharing is captured in monitor data

structures and is completely hidden from clients behind the monitor's abstract operations. The

monitor model is well represented in languages like Ada and Mesa, which use inexpensive shared

memory tasks and processes (lightweight processes), In systems with processes that have separate

address spaces-for example, Unix and Multics-the remote procedure model is less natural unless

these robust processes (heavyweight processes) have a layer of lightweight process structure within

7 CO~CLCSIO~ 163

them. In this latter case, the heavyweight processes have the characteristics of logically distinct

nodes, with RPC supplying the communication between them. This characterization is also

confinned by experience, for in the absence of lightweight processes, heavyweight processes usually

communicate with message passing-just as the physically distinct nodes in an internetwork do.

Some operating systems even offer both kinds of processes. For example, a Thoth team or a

Medusa task force is a heavyweight process in which lightweight shared-memory processes are

supported (Medusa calls these lightweight processes activities).

Concluding that systems with heavyweight processes are unsuitable for RPC is incorrect. A vital

ingredient of Emissary's design is its language-level approach, and, in state-of-the-art procedural

languages, monitors and lightweight processes are language-level abstractions also. The benefit of

having all these features in a language is that the language's runtime environment is easily

encapsulated in a heavyweight process, as described above. Thus machine architectures and

operating systems that provide only heavyweight processes can easily support programming

environments that use remote procedures. The only drawback is that perfonnance will suffer if the

heavyweight processes have cumbersome interprocess communication. However, this same

perfonnance argument is true whether communication is between virtual nodes in one processor,

physical nodes in an internetwork, or some combination of the two.

7.3 Future Directions for RPC

In the short term, RPC mechanisms need detailed design and implementation. Since Emissary's

detailed design is complete (algorithm 5.3), the first step is to implement Emissary's (or an

Emissary-like) call mechanism. With this language-level communication backbone in place, detailed

design and construction of a distributed binder can follow, as can implementation of the orphan

algorithms. Both the Mesa and Ada languages are well suited for transparent language-level RPC

adaptation.

A full scale implementation of remote procedures in a homogeneous language environment

allows the RPC framework of the essential properties to be evaluated in an ideal context. This

evaluation is vital for two reasons: First, to test the ideas of this thesis in a more realistic setting

than has been attempted heretofore. Second, to discover what other directions language-level

distributed communication primitives should take. I believe speculation about the latter point is

inappropriate until the fonner has been resolved.

In the medium term, RPC mechanisms must acquire the pleasant properties. Heterogeneous

language and processor systems, rich distributed programming environments, and extremely robust

applications all require communication primitives that satisfy the pleasant properties. Fortunately,

independent work addressing some of these properties is either finished or in progress-for

example, Herlihy's type translation work for Clu, and Liskov's atomic transaction mechanism for

Guardians. Of the three remaining pleasant properties, sound remote interface design and remote

debugging present primarily engineering challenges, and questions of node autonomy are best

answered on a system-by-system basis.

164 RE\10TE PROCEDCRE CALL

In the long tenn, RPC mechanisms need to offer increased reliability and fault tolerance. The

use of transaction mechanisms to maintain data consistency in a distributed system is fairly well

understood. However, problems of network partitioning. location transparency over crashes, and

automatic system reconfiguration are less clear. Whether or not solving these reliability problems

will cause fundamental alterations in RPC mechanisms-and it seems certain that binding

approaches will change-RPC will be valuable in constructing systems that test any proposed

solutions.

Finally, RPC mechanisms must accommodate one trend of distributed systems

themselves-growing smaller. The physical example used for internode communication in most of

this dissertation is the Ethernet. With VLSI technology, however, tens or even hundreds of

physically distributed processors will soon be packed onto a single circuit board, or perhaps even

onto an integrated circuit This change in scale will undoubtedly change interprocessor transport

mechanisms, but, as long as individual processors do not share memory-or are strongly

discouraged from doing s()--'-RPC will continue to be a viable language-level communication

strategy. This will remain true for both on- and off-chip communication whenever high-level

procedural languages are a programming medium.

7.4 Contribution to Computer Science

This dissertation is a step toward the time when distributed computing is commonplace. Its

contribution isa genesis of two distinct lines of evolution: communication in distributed systems

and high-level programming languages.

The past fifteen years have seen networks and other communication media of distributed systems

move from myth to madness to moderation. Moderation came with protocol hierarchies that now

pennit programmers to completely ignore underlying transport mechanisms and their myriad

characteristics. These protocol layers provide a wonderfully flexible and unassuming

communication medium. But there's the rub-no assumed structure.

These same fifteen years-and the twenty before that-watched programming language evolution

move through these same stages: myth, madness, and moderation. Programming languages

attained moderation by layering data and control structures atop a myriad of machine architectures.

These structuring schemes are now very fonnal and abstract: the type,. data, and control notions of

modern programming languages are far removed from the characteristic concepts of most

intercomputer communication.

My work in remote procedure call joins these evolving lines. The dissertation describes the

additional layering-and, for efficiency, transparent delayering-needed to extend the disciplined

semantics of abstractly programmed machines into a universe populated with such machines.

Remote procedure call is one transparent ether for distributed program communication.

Appendix 1

Islas de Juan Fernandez-Chile
33°30' S 78°55' HI

Shipwreck legends help Defoe spin the yarn of Robinson Crusoe, J 719

Some Mesa Details

This appendix contains some details about the Mesa language [62]. Its purpose is to help readers

familiar with Pascal and similar procedural languages understand some unusual Mesa-specific

constructs used throughout the thesis, especially in chapter 5. The descriptions given here are not

comprehensive; only the necessary details are given.

Identifiers

Case is significant in Mesa identifiers. For example, in the two declarations squareBox:

SquareBox and squarebox: SquareBox, squareBox and squarebox are distinct variables of the same

SquareBox type.

The CARDINAL Type

A CARDINAL is an unsigned number. An n-bit cardinal can represent values in the interval [O .. 2fl).

Statement Brackets

In addition to BEGIN and END, Mesa allows { and } to enclose a series of statements. Do not

confuse this with Pascal's use of { and} to delimit comments (Mesa uses -- to begin a comment).

Block Exits

Blocks can be exited with GOTO statements. The optional part of a block where the exit clauses

are declared is introduced with EXITS. For example:

166

BEGIN

statements;
. •. GOTO Label~
statements;
laS1Slalement;

RE\10TE PROCEDCRE CALL

EXITS -- This line and the next are optional.
Label = > statement;

END;

nextStatement.

In the absence of GOTOS, a block exits by jumping from lastStatement directly to nextStatement.

Loop Statements

Loops have a number of control and termination options. They are illustrated in this example:

FOR variable IN interval UNTIL stopCondition DO -- WHILE goCondition is possible too.
loopS tatements;
.•• LOOP; -- This causes control to return immediately to the FOR.

loopS talemellts;
.•• EXIT; -- This causes control to resume at nextStatement, below.
loopS tatements;

REPEA T -- This line and the next are optional.
FINISHED =) normalTerminationSlatement; -- See text.

ENDLOOP;

nextStatement.

The FOR and UNTIL (or WHILE) clauses are optional and can have different forms from the ones

shown here. The only unobvious one is THROUGH, which is exactly like FOR except that it has no

control variable. The special LOOP statement starts the next iteration without finishing the current

one. The EXIT statement terminates the loop immediately, transferring control to nextStatement.

The optional REPEAT keyword ends the iterative part of the loop and introduces a series of exit

clauses, similar to block EXITS. The FINISHED label is a special exit; its normalTerminationStatement

is executed if and only if the loop terminates normally. Normal termination occurs when either the

FOR steps completely through interval, or when stopCondition is TRUE (or goCondition is FALSE).

Case Statements

Mesa's case statements are known as SELECT and have a fairly traditional syntax. For example:

SELECT expression FROM

0,3,5 = > statement; -- 0,3,5 is shorthand for = 0, = 3, = 5.
IN [27 .. bound] =) statement;
< -10 =) statement;
ENDCASE :=:) fina/Statement.

The first (and only the first) arm that matches expression is executed. The optional

jinalStatement is executed if and only if none of the arms match expression.

ApPE~DIX 1 SOME MESA DETAILS 167

Default Values for Parameters

In Mesa, the fonnal parameters of a procedure-both arguments and results-are local variables

of the procedure. These arguments and results can be assigned default values. For example:

Lookup: PROCEDURE [name: STRING, exactCaseAlalch: BOOLEAN"-FALSE] RETURNS [match: STRING"-""].

When Lookup is called, exactCaseAlatch is FALSE unless the programmer supplies an explicit

value (e.g., Lookup["BZ~1"] is the same as Lookup["BZ~", FALSE]). The return variable match has

the null string as its initial value.

MONITORS and CONDITION Variables

Monitors are a powerful language-level synchronization tool [47]. The following discussion is not

an introduction to monitors and gives only an overview of Mesa's mechanism, which is similar to

the one proposed by Hoare [37].

A MONITOR provides synchronized, mutually excluded operations on the monitor's shared global

data by associating a lock (semaphore) with the shared data. Monitors have three kinds of

procedures:

Normal PROCEDURES are unsynchronized, do not acquire the monitor's lock, and can
overlap each other in time.

ENTRY PROCEDURES are synchronized, must acquire the monitor's lock to run, and therefore
execute serially in time. (Concurrent calls to entry procedures are automatically queued
until the lock is released.)

INTERNAL PROCEDURES are synchronized, implicitly have the monitor's lock because they can
be called only from entry or internal procedures, and hence execute serially.

Fine grain monitor synchronization is provided by CONDITION variables and the WAIT and NOTIFY

operations. The basic sequence of actions is this: When an entry (or internal) procedure executing

in process p WAITS on condition c in monitor M, p is blocked and M's lock is released. Later, an

independent process q calls some entry procedure in M that NOTIFYS c. This NOTIFY unblocks

process p and schedules p to run, possibly as soon as process q releases Ars lock (by either exiting

the entry procedure or WAITing). This is illustrated in the skeleton monitor AI below, where

procedure P is called by process p, and procedure Q by process q.

M: MONITOR = {
synchronizedData: Type = ... ;
c: CONDITION;

P: ENTRY PROCEDURE [...] = { ... WAIT c; ... };
Q: ENTRY PROCEDURE [...] = { ... NOTIFY c; ... };
... }.

The NOTIFY operation is not queued, so that if a NOTIFY precedes a WAIT, the WAITing process will

block until a subsequent NOTIFY.

168 RE~10TE PROCEDCRE CALL

SIGNALS and Exception Handling

Exceptions are a powerful error-handling tool [54]. Once again, the following discussion is nol

an introduction to exceptions and gives only an overview of Mesa's mechanism.

An exception E is declared like a procedure without a body, e.g., E: SIGNAL (Exceptions

can have arguments and results, but parameters are not considered here.) An exception is signalled

(raised) in the current process by writing SIGNAL E; it is raised in process p by writing SIGNAL E IN

p. When an exception such as E is signalled, a search back up the call stack in the target process

looks for a procedure call or a block that is enabled to catch E. For each procedure or block that is

enabled, the corresponding catch statement is executed. Catches are written as follows:

P [arguments! E =) catchStatement]; -- Catch on a procedure call.
nextStatement.

BEGIN ENABLE E =) catchStatement; -- Catch on a block, can also be on a loop's DO.

statements;
END;

nextSlatement.

A catchStalemenl is an arbitrary statement, including a block. There are several special actions

that can be used in a catch to control how the exception is handled:

RESUME causes E to be ignored at the point it was raised. Execution continues immediately
after the SIGNAL E.

RETRY causes the procedure or block to be reexecuted. In the example above, P is recalled,
or the block is restarted at BEGIN.

CONTINUE continues execution at the statement after the catch. In the example, execution
continues at the respective nextStatements.

The following program is a poor but illustrative example of simple exception handling. It
attempts to deliver a telephone message until the line is not busy.

Busy: SIGNAL = ... ;
Dial: PROCEDURE [number: PhoneNumberJ =

{ ... ; IF noAnswerTHEN SIGNAL Busy; ... };
DeliverPhoneAlessage: PROCEDURE [number: PhoneNumber, message: Message} =

{ ... ; Dia4number}; SendAudioAfessage[message}; ... };
-- Main program:
DeliverPhoneMessage[NASA, ShuttleCongratulations ! Busy =) RETRY}.

Appendix 2

Examples

Upolu-Samoa
13°55' S 171°40' W

Natives bury Robert Louis Stevenson on !llount Vaea. 3 December 1894

of Envoy-Diplomat, Liaison, and EtherPkt

The family of remote procedure mechanisms evaluated in chapter 6 has five generations. Abridged

stub programs for three generations-Envoy-Diplomat~ Liaison~ and EtherPkt-appear here.

Examples of the remaining two generations are omitted because they resemble in character, if not in

performance, one of the included schemes: Stubs resembles Liaison, and EtherPktMC resembles

EtherPkt. Brief overviews of all these mechanisms appear in section 6.1.3.

The remote ParamTest interface implemented by each of these schemes is shown below.

ParamTest is shortened for clarity in this example by editing the full performance-testing version.

The three stub implementations have an Emissary-like stub structure: a client-resident stub

module exports ParamTest and transparently transmits calls to a server stub module; the server

resident stub actually calls ParamTest's implementation. A more comprehensive description

accompanies each example .

.. ParamTest.mesa last edited by B2M on October 21,1980 9:14 AM .

.. This is the primary test program. The implementation of each procedure

.. should echo its arguments back as results.

Pa ramTest: DEFINITIONS = BEGIN

Array20: TYPE = ARRAY [0 .. 20) OF CARDINAL;

Null: PROC;
One: PROC [one: CARDINAL] RETURNS [a: CARDINAL];
Fou r: PROC [one,two,three,four: CARDINAL] RETURNS [a,b,c,d: CARDINAL];
TwentyArray: PROC [in: Array20] RETURNS [out: Array20];
StringDescriptor: PROC [string: STRING] RETURNS [desc: DESCRIPTOR FOR ARRAY OF CHARACTER];
.. Procedures Two, TwoArray, FourArray, TenArray, and FortyArray have been deleted.

END.

170 RE\10TE PROCEDCRE CALL

A2.1 Envoy· Diplomat

This example contains Envoy-Diplomat's four generated stub programs for the simple ParamTesl

interface: Param TestEn voy. ParamTestEnvoyClient. ParamTestEnvoyServe~ and
Param TeslEn voyUtility.

To aid the reader's understanding of this code, here is the intermodule control flow for a single

steady-state call of ParamTest.Null.

On the client machine, ParamTestDriver, which performs the timing measurements, calls
ParamTest.Null.

ParamTestEnvoyClient, the client module exporting Null, catches the call and feeds it into
Call, which calls Envoy.CallRemoteProcedure.

In the client machine, Envoy marshals the arguments (if any-ParamTest has none) using
the type descriptions in ParamTestEnvoyUtility and sends a call message to the server
machine.

On the server machine, Envoy receives the call message and invokes the Dispatch routine in
Param TestEnvoyServer.

Dispatch unmarshals the arguments and invokes ParamTest.Null.

On the server machine, ParamTestImpl, which exports the real implementation of Null,
performs the work of the call and returns to Dispatch in Param TestEn voyS erver.

Dispatch marshals the results and returns to Envoy.

In the server machine, Envoy handles the completed call by transmitting a return message
back to the client machine.

On the client machine, Envoy receives the return message, unmarshals the results, and
returns from CallRemoteProcedure.

ParamTestEnvoyClient returns from Call, and then from its implementation of Null.

ParamTestDriver, which originally called Null, resumes at long last and completes its timing
of the call.

ApPE~DIX 2 EXA~1PLES OF E~VOY-DIPLOMAT, LIAISO:\, A1'D ETHERPKT

.. File ParamTestEnvoy.mesa was generated on 23·0ct·80 16:08:05 by Diplomat of 13·0ct·80 16:18:37 .

.. Source interface ParamTest came from file paramtest.bcd. created on 23·0ct·80 14:50:38 (3# 145 #)
from source of 21·0ct·80 9:17:05.

DIRECTORY Envoy. ParamTest;

Pa ramTestEnvoy: DEFINITIONS
SHARES ParamTest
= PRIVATE BEGIN

.. Runtime Error Exceptions
DiplomatRuntimeError: PUBLIC SIGNAL;

.. Remote Binding Interface

RemotelnterfaceVersion: PUBLIC Envoy.Version = 22607660056B; ··Compilation time of source interface.

InitAndExportRemotelnterface: PUBLIC PROCEDURE [
interfaceVersion: Envoy.Version +- RemotelnterfaceVersion.
interfacelmplementor: Envoy.lmplementor +- 0];

ImportAndBindRemotelnterface: PUBLIC PROCEDURE [
exporting Host: Envoy.SystemElement,
interfaceVersion: Envoy.Version +- RemotelnterfaceVersion,
interfacelmplementor: Envoy.lmplementor +- O. .
callTimeoutlnSeconds: LONG CARDINAL +- LAST[LONG CARDINAL]];

.. Remote Procedure and Error Definitions

RemoteProcedures: TYPE = ARRAY RemoteProcedurelndex OF Envoy.RemoteProcedure;
RemoteErrors: TYPE = ARRAY RemoteErrorlndex OF Envoy.RemoteError;

RemoteProcedurelndex: TYPE = {Filler, Null. One. Two. Four, TwentyArray, FortyArray, StringDescriptor};
RemoteErrorlndex: TYPE = {Filler};

.. Parameter Description Definitions

GetRemoteProcedureDescriptions: PROCEDURE RETURNS [procedures: RemoteProcedureDescriptionsHandle];
GetRemoteErrorDescriptions: PROCEDURE RETURNS [errors: RemoteErrorDescriptionsHandle);

RemoteProcedureDescriptionsHandle: TYPE = POINTER TO READONL Y RemoteProcedureDescriptions;
RemoteErrorDescriptionsHandle: TYPE = POINTER TO READONL Y RemoteErrorDescriptions;
RemoteProcedureDescriptions: TYPE = ARRAY RemoteProcedurelndex OF RECORD [arguments. results:
Envoy . Description];
RemoteErrorDescriptions: TYPE = ARRAY RemoteErrorlndex OF RECORD [arguments: Envoy.Description];

.. Parameter Record Definitions

171

MaxArgumentRecordSize: CARDINAL = MAX[1, SIZE[NuIlArguments]. SIZE[OneArguments]. SIZE[TwoArguments],
SIZE[FourArguments], SIZE[TwoArrayArguments], SIZE[FourArrayArguments]. SIZE[TenArrayArguments1.
SIZE[TwentyArrayArguments]. SIZE[FortyArrayArguments]. SIZE[StringDescriptorArguments]];

MaxResultRecordSize: CARDINAL = MAX[1. SIZE[NuIlResults]. SIZE[OneResults], SIZE[TwoResults],
SIZE[FourResu Its], SIZE[TwoArrayResults], SIZE[FourArrayResults], SIZE[T enArrayResults],
SIZE[Twenty Array Resu Its], SIZE[Forty ArrayResu Its]. SIZE[StringDescriptorResultsl1;

GenericArgumentRecord: TYPE = ARRAY [O .. MaxArgumentRecordSize) OF CARDINAL;
GenericResultRecord: TYPE = ARRAY [O .. MaxResultRecordSize) OF CARDINAL;

NullArguments; TYPE = RECORD 0;
NullResults: TYPE = RECORD [];
OneArguments: TYPE = RECORD [one: CARDINAL];
One Resu Its: TYPE = RECORD [a: CARDINAL];
FourArguments: TYPE = RECORD [one: CARDINAL, two: CARDINAL. three: CARDINAL, four: CARDINAL1;
FourResults: TYPE = RECORD [a: CARDINAL, b: CARDINAL. c: CARDINAL. d: CARDINAL];
TwentyArrayArguments; TYPE = RECORD [in: ParamTest.Array20];
TwentyArrayResults: TYPE = RECORD [out: ParamTest.Array20];
StringDescriptorArguments: TYPE ;= RECORD [string: STRING];
StringDescriptorResults: TYPE = RECORD [desc: DESCRIPTOR FOR ARRAY CARDINAL OF CHARACTER];

END.

172 REMOTE PROCEDCRE CALL

.. File ParamTestEnvoyClient.mesa was generated on 23-0ct-80 16:08:18 by Diplomat of 13-0ct-80 16:18:37 .

.. Source interface ParamTest came from file paramtest.bcd, created on 23-0ct-80 14:50:38 (3 # 145 #)
from source of 21-0ct-80 9:17:05.

DIRECTORY Envoy, ParamTestEnvoy, ParamTest;

Pa ramTestEnvoyClient: PROGRAM
IMPORTS ParamTest, Envoy, ParamTestEnvoy
EXPORTS ParamTest, ParamTestEnvoy,
SHARES ParamTest, ParamTestEnvoy
= PRIVATE BEGIN OPEN ParamTestEnvoy;

.• Remote Binding

alreadyBound: BOOLEAN +- FALSE;
remoteProcedures: RemoteProcedures;
ourServerProgram: Envoy. RemoteProgram;

InitAndExportRemotelnterface: PUBLIC PROCEDURE [
interiaceVersion: Envoy.Version +- RemotelnterfaceVersion,
interiacelmplementor: Envoy.lmplementor +- 0] = {SIGNAL DiplomatRuntimeError};

ImportAndBindRemotelnterface: PUBLIC PROCEDURE [
exporting Host: Envoy.SystemElement,
interfaceVersion: Envoy.Version +- RemotelnterfaceVersion,
interiacelmplementor: Envoy.lmplementor +- 0,
callTimeoutlnSeconds: LONG CARDINAL +- LAST[LONG CARDINAL]

BEGIN
remoteProgram: ARRAY [0 .. 0] OF Envoy.RemoteProgram;
remoteProgramlD: ARRAY [0 .. 0] OF Envoy.ProgramID;
IF alreadyBound THEN RETURN ELSE alreadyBound +- TRUE;
remoteProgramlD" [[interface: "ParamTest", version: interfaceVersion, implementor: interfacelmplementor]];
Envoy.lmportRemotePrograms [

systemElement: exportingHost,
programlDs: DESCRIPTOR [remoteProgramID],
remotePrograms: DESCRIPTOR[remoteProgram]];

ourServerProgram" remoteProgram[O];
callTimeout +- cal/TimeoutinSeconds;
FOR procedure: RemoteProcedurelndex IN RemoteProcedurelndex DO

remoteProcedures[procedure] .. Envoy.ComposeRemoteProcedure [
remoteProgram: ourServerProgram,

END;

procedureNumber: LooPHOLE[procedure, Envoy.ProcedureNumber]];
ENDLooP;

.. Remote Interface Errors

.. Remote Interface Procedures

Null: PUBLIC PROCEDURE [] RETURNS []
BEGIN
arguments: Nul/Arguments;
results: Nul/Results;
Call[RemoteProcedurelndex[Null], @arguments, @results];
RETURN[];
END;

One: PUBLIC PROCEDURE [one: CARDINAL] RETURNS [a: CARDINAL]
BEGIN
arguments: OneArguments +- [one];
results: OneResults;
Call[RemoteProcedurelndex[One], @arguments, @results];
RETURN[results.a];
END;

ApPE~DIX 2 EXA:\1PLES OF E:\vOy-DIPLOMAT, LIAISO~, A~D ETHERPKT

Four: PUBLIC PROCEDURE [one: CARDINAL, two: CARDINAL, three: CARDINAL, four: CARDINAL] RETURNS [a:
CARDINAL, b: CARDINAL, c: CARDINAL, d: CARDINAL] =
BEGIN
arguments: FourArguments [one, two, three, four];
results: FourResults;
Call [RemoteProced u rei ndex [F ou r], @ argu ments, @ resu Its];
RETURN[results.a, results.b, results.c, results.d];
END;

TwentyArray: PUBLIC PROCEDURE [in: ParamTest.Array20] RETURNS [out: ParamTest.Array20]
BEGIN
arguments: TwentyArrayArguments [in];
results: TwentyArrayResults;
Call [RemoteProcedu rei ndex[Twenty Array], @arguments, @ resu Its];
RETURN[results.out];
END;

173

StringDescriptor: PUBLIC PROCEDURE [string: STRING] RETURNS [desc: DESCRIPTOR FOR ARRAY CARDINAL
OF CHARACTER] =
BEGIN
arguments: StringDescriptorArguments [string];
results: StringDescriptorResults;
Call[RemoteProcedurelndex[StringDescriptor], @arguments, @results];
RETURN[results.desc];
END;

-- Remote Call Handler

procedu reDescri ptions: RemoteProced ureDescriptionsHand Ie = GetRemoteProced u reDescri ptions[];
errorDescriptions: RemoteErrorDescriptionsHandle = GetRemoteErrorDescriptions[];

callTimeout: LONG CARDINAL LAST[LONG CARDINAL];

Call: PROCEDURE [procedure: RemoteProcedurelndex, argumentList, resultList: POINTER] =
BEGIN

ENABLE BEGIN
-- Remote exception handling goes here.
END; -- ENABLE

IF - alreadyBound THEN ImportAndBindRemotelnterface[Envoy.LocaISystemElement[]];
Envoy.CallRemoteProcedu re [

remoteProced ure: remoteProced ures[proced ure] ,
arguments: [location: argumentList, description: procedureDescriptions1'[procedure1.arguments1,
results: [location: resultList, description: procedureDescriptions1'[procedure1.results1,
timeoutinSeconds: callTimeout];

END; --Call

-- Module Initialization

-- See ImportAndBindRemotelnterface.

END.

174 REMOTE PROCEDURE CALL

-- File ParamTestEnvoyServer.mesa was generated on 23-0ct·80 16:08:15 by Diplomat of 13-0ct-80 16:18:37.
-- Source interface ParamTest came from file paramtest.bcd, created on 23-0ct-80 14:50:38 (3# 145#)

from source of 21-0ct-80 9:17:05.

DIRECTORY Envoy, ParamTestEnvoy, ParamTest;

ParamTestEnvoyServer: PROGRAM
IMPORTS ParamTest, Envoy, ParamTestEnvoy
SHARES ParamTest, ParamTestEnvoy
= PRIVATE BEGIN OPEN ParamTestEnvoy;

-- Remote Binding

alreadyExported: BOOLEAN" FALSE;
remoteErrors: RemoteErrors;

ImportAndBindRemotelnterface: PUBLIC PROCEDURE [
exporting Host: Envoy.SystemElement,
interfaceVersion: Envoy.Version" RemotelnterfaceVersion,
interfacelmplementor: Envoy.lmplementor" 0,
callTimeoutlnSeconds: LONG CARDINAL" LAST[LONG CARDINAL]

InitAndExportRemoteinterface: PUBLIC PROCEDURE [
interfaceVersion: Envoy.Version" RemotelnterfaceVersion,
interfacelmplementor: Envoy.lmplementor" 0] =

BEGIN
remoteProgram: Envoy.RemoteProgram;
IF alreadyExported THEN RETURN ELSE alreadyExported +- TRUE;
remoteProgram +- Envoy.FabricateRemoteProgram[locaIProgram: Dispatch];
Envoy.ExportRemoteProgram [

= {SIGNAL DiplomatRuntimeError};

programlD: [interface: "ParamTest", version: interfaceVersion, implementor: interfacelmplementor],
10calProgram: Dispatch];

FOR error: RemoteErrorlndex IN RemoteErrorlndex DO
remoteErrors[error] ... Envoy.ComposeRemoteError [

remoteProgram: remoteProgram,

END;

errorNumber: LOOPHOLE[error, Envoy.ErrorNumber]];
ENDLooP;

-- Dispatching to Local Procedures

procedu reDescriptions: RemoteProced ureDescriptionsHand Ie = GetRemoteProced ureDescriptions[];
errorDescriptions: RemoteErrorDescriptionsHandle = GetRemoteErrorDescriptions[];

Dispatch: Envoy.LocalProgram --[procedureNumber: ProcedureNumber, arguments, results: PROC[Parameters]]-- =
BEGIN

ENABLE BEGIN
-- Exception handling goes here.
END; --ENABLE

procedure: RemoteProced urelndex = LOOPHOLE[procedureNumber1;
argumentList: POINTER TO GenericArgumentRecord = @argumentListRecord;
argu mentListRecord: GenericArgu mentRecord;
resultList: POINTER TO GenericResultRecord = @resultListRecord;
resu ItListRecord: GenericResultRecord;

arguments[[location: argumentList, description: procedureDescriptions1'[procedure].arguments]];
SELECT procedure FROM

Null => {
OPEN arg: LOOPHOLE[argumentList, POINTER TO NuIlArguments],

res: LOOPHOLE[resultList, POINTER TO NuIlResults];
ParamTest.Null[]; };

One => {
OPEN arg: LOOPHOLE[argumentList, POINTER TO OneArguments],

res: LOOPHOLE[resultList, POINTER TO OneResults];
[res.a] .. ParamTest.One[arg.one]; };

ApPE1\DIX 2 EXAMPLES OF E:\vOy-DIPLOMAT, LIAISO\", A:\D ETHERPKT

Four =) {

OPEN arg: LOOPHOLE[argumentList, POINTER TO FourArguments],
res: LOOPHOLE[resultList, POINTER TO FourResults);

[res.a, res.b, res.c, res.d] ~ ParamTest.Fou r[arg.one. arg.two, arg.three, arg.four]; };
TwentyArray =) {

OPEN arg: LOOPHOLE[argumentList, POINTER TO TwentyArrayArguments),
res: LOOPHOLE[resultList, POINTER TO TwentyArrayResults];

[res.out] ~ ParamTest.TwentyArray[arg.in]; };
StringDescriptor =) {

OPEN arg: LOOPHOLE[argumentList, POINTER TO StringDescriptorArguments].
res: LOOPHOLE[resultList, POINTER TO StringDescriptorResults];

[res.desc] ~ ParamTest.StringDescriptor[arg.string]; };
ENDCASE =) ERROR DiplomatRuntimeError;

results[[location: resultList, description: procedureDescriptionst[procedure].results]];

END; --Dispatch

.. Module Initialization

.. See InitAndExportRemotelnterlace.

InitAndExportRemotelnterface[
interfaceVersion: ,
interlacelmplementor: •
possibleParameterOverlap:] ;

END.

175

176 REMOTE PROCEDURE CALL

.. File ParamTestEnvoyUtility.mesa was generated on 23-0ct·80 16:08:09 by Diplomat of 13-0ct-80 16:18:37 .

.• Source interface ParamTest came from file paramtest.bcd, created on 23-0ct-80 14:50:38 (3# 145#)
from source of 21·0ct·80 9:17:05.

DIRECTORY Envoy, ParamTestEnvoy, ParamTest;

ParamTestEnvoyUtility: PROGRAM
EXPORTS ParamTestEnvoy
SHARES ParamTest, ParamTestEnvoy
= PRIVATE BEGIN OPEN ParamTestEnvoy;

•• Runtime Error Exceptions

DiplomatRuntimeError: PUBLIC SIGNAL = CODE;

•. Interface To Descriptions

GetRemoteProcedureDescriptions: PUBLIC PROCEDURE RETURNS[procedures:
RemoteProcedureDescriptionsHandle] =

{RETURN [@procedureDescriptions] };
GetRemoteErrorDescriptions: PUBLIC PROCEDURE RETURNS [errors: RemoteErrorDescriptionsHandle] =

{RETURN [@errorDescriptions] };

procedureDescriptions: RemoteProcedureDescriptions 4- [

[NULL, NULL],
INullArgumentsDescription, NuIIResultsDescription],
[OneArgu mentsDescription, OneResu ItsDescription],
[TwoArgumentsDescription, TwoResultsDescription],
[Four ArgumentsDescription, FourResultsDescri ption),
[TwoArrayArgumentsDescription, TwoArrayResultsDescription],
[Four Array Argu mentsDescription, Fou r ArrayResultsDescription],
[T enArray Argu mentsDescri ption, T enArrayResultsDescription],
[TwentyArrayArgumentsDescription, TwentyArrayResultsDescription],
[FortyArrayArgumentsDescription, FortyArrayResultsDescription],
[StringDescriptorArgumentsDescription, StringDescriptorResultsDescription]];

errorDescriptions: RemoteErrorDescriptions 4- [

[NULL]];

.. Description Procedures

NullArgumentsDescription: Envoy.Description ··[notes: Notes]·· =
BEGIN OPEN notes;
parameters: LONG POINTER TO NullArguments = noteSize[size: SIZE[NuIlArgumentsll;
END;

NullResultsDescription: Envoy.Description ··[notes: Notes]·· =
BEGIN OPEN notes;
parameters: LONG POINTER TO NuUResults = noteSize[size: SIZE[NuIlResults]];
END;

OneArgumentsDescription: Envoy.Description ·.[notes: Notes]·· =
BEGIN OPEN notes;
parameters: LONG POINTER TO OneArguments = noteSize[size: SIZE[OneArguments]];
END;

OneResultsDescription: Envoy.Description ··[notes: Notes]·· =
BEGIN OPEN notes;
parameters: LONG POINTER TO OneResults = noteSize[size: SIZE[OneResults]];
END;

FourArgumentsDescription: Envoy.Description ·.[notes: Notes]·· =
BEGIN OPEN notes; ,
parameters: LONG POINTER TO FourArguments = noteSize[size: SlZE[FourArguments]];
END;

ApPE~DIX 2 EXAMPLES OF E~VOY-DIPLO\1AT, LIAISO;\, A~D ETHERPKT

FourResultsDescription: Envoy.Description .. [notes: Notes]·· =
BEGIN OPEN notes;
parameters: LONG POINTER TO~FourResults = noteSize[size: SIZE[FourResults]];
END;

TwentyArrayArgumentsDescription: Envoy.Description ··[notes: Notes]·· =
BEGIN OPEN notes;
parameters: LONG POINTER TO TwentyArrayArguments = noteSize[size: SIZE[TwentyArrayArguments]];
END;

TwentyArrayResultsDescription: Envoy.Description ··[notes: Notes)·· =
BEGIN OPEN notes;
parameters: LONG POINTER TO TwentyArrayResults = noteSize[size: SIZE[TwentyArrayResults]);
END;

StringDescriptorArgumentsDescription: Envoy.Description ··[notes: Notes]·· =
BEGIN OPEN notes;
parameters: LONG POINTER TO StringDescriptorArguments = noteSize[size: SIZE[StringDescriptorArguments]];
BEGIN OPEN rec: parameters;
noteString[site: @rec.string, possibleOverlap: possibleOverlap];

END; ··OPEN parameters··
END;

StringDescriptorResultsDescription: Envoy.Description .. [notes: Notes] .. =
BEGIN OPEN notes;
parameters: LONG POINTER TO StringDescriptorResults = noteSize[size: SIZE[StringDescriptorResults]];

BEGIN OPEN rec: parameters;
noteArrayDescriptor[site: @rec.desc, elementSize: SIZE[CHARACTER), possibleOverlap: possibleOverlap];

END; .. OPEN parameters··
END;

.• No Module Initialization

END.

177

178 RE~OTE PROCEDCRE CALL

A2.2 Liaison

This example contains Liaison's two generated stub programs for the simple ParamTest interface:

ParamTestClientStubslmpl and ParamTestServerStubslmpl. The use of these programs in a single·

machine test environment is illustrated in the ParamTestCombined configuration (next page).

Liaison's remote binding interface, LiaisonBinder, is included as well.

To aid the reader's understanding of this code, here is the intermodule control flow for a single

steady·state call of ParamTest.Null.

On the client machine, ParamTestDriver, which performs the timing measurements, calls
ParamTest.Null.

ParamTestClientStubslmp/, the client module exporting Null, catches the call and transmits
a call message to the server machine.

On the server machine, ParamTestServerSlubslmp/ receives the call message and invokes
Par am Test. Null.

ParamTestImp/, which exports the real implementation of Null on the server, performs the
call and returns.

ParamTestSerl'erStubslmp/ handles the completed call by transmitting a return message
back to the client machine.

In the client machine, ParamTeS1ClientStubslmp/ receives the return message and returns
from its implementation of Null.

ParamTestDriver, which originally called Null, resumes at long last and completes its timing
of the call.

ApPENDIX 2 EXA\1PLES OF E~VOY-DIPLO:\1AT. LIAISO~. AKD ETHERPKT

.. ParamTestCombined.config edited by BlM on October 25,1980 12:07 PM .

.. Single machine test program that loops back in the Pup Package .

.. Run this with the Spy by typing 'Mesa ISpy ParamTestCombined'.

ParamTestCombined: CONFIGURATION
IMPORTS DisplayDefs, Inline, InlineDefs, IODefs, SpyDefs, Time,

TimeDefs, SystemDefs, StreamDefs, String, Process, MiscDefs,
ImageDefs, ProcessDefs, FrameDefs,
SegmentDefs, StringDefs

CONTROL ParamTestServerStubslmpl, ParamTestDriver
= BEGIN

.. Network support.
TinyPup;
PktStreamlmpl;
liaisonBinderlmpl;

.. Performance monitoring.
··ISpy;

.. Server modules.
serverParamTest: ParamTest +- ParamTestimplO; .
ParamTestServerStubslmpl[serverParamTest, LiaisonBinder, PktStreamDefs, String, SystemDefs];

.. Client modules.
clientParamTest: ParamTest +- ParamTestClientStubslmpl[];
ParamTestDriver[DisplayDefs, Inline, IODefs, clientParamTest, SegmentDets, SpyDets, StreamDefs, String,

SystemDefs, Time, TimeDefs1;

END .

.. LiaisonBinder.Mesa last edited by BlM on October 23,1980 12:16 PM

DIRECTORY
BcdDefs USING [VersionStamp1,
PupDefs USING [PupAddress, PupSocketID];

LiaisonBinder: DEFINITIONS =
BEGIN

.. Types

UniquelD: TYPE = BcdDefs.VersionStamp;
MsgType: TYPE = {noop, call, return, error, signal};
Message: TYPE = RECORD [type: MsgType +- noop, info: [0 .. 7777B1 +- 01;

.. ERRORs and SIGNALs

Problem: ERROR [reason: ErrorCode];
ErrorCode: TYPE = {importFailed};

.. Procedures

ExportRemotelnterface: PROC [interfaceID: UniquelD1
RETURNS [serverListenersSocket: PupDefs. Pu pSocketl D];

ImportRemotelnterface: PROC [interfaceID: UniquelD1
RETURNS [serversAddress: PupDefs.PupAddress];

END.

179

180 RE~10TE PROCEDCRE CALL

-- Stub file ParamTestClientStubslmpl.mesa was generated on 27-0ct-80 9:19:09
by Liaison of 27-0ct-80 9:11:25.

-- Source interface ParamTest came from file ParamTest.bcd,
created on 27-0ct-80 9:16:10 (3 # 145 #) from source of 21-0ct·80 9:17:05.

DIRECTORY
ParamTest,
LiaisonBinder USING [lmportRemotelnterface, Message, Problem],
PktStreamDefs USING [Call, Complaining, Complaint, EndCall, GetBlock,

GetWord, Handle, PutBlock, PutWord, Send Now],
PupDefs USING [PupAddress],
String USING [WordsForString],
SystemDefs USING [AliocateHeapNode, AliocateHeapString];

ParamTestClientStubslmpl: MONITOR
IMPORTS liaisonBinder, PktStreamDefs, String, SystemDefs
EXPORTS ParamTest
SHARES ParamTest
= BEGIN OPEN RPC: LiaisonBinder, Stream: PktStreamDefs;

-- Network stream trouble handler; do nothing for now.

StreamComplaint : PROC [complaint: Stream.Complaint] = {ERROR};

-- Stubbed public procedures.

Null: PUBLIC PROC n RETURNS [] =
BEGIN -- of procedure 1.
ENABLE BEGIN

Stream.Complaining = > StreamComplaint[complaint];
END;

ParamTestServer: Stream.Handle = GetCallHandle[];
paramSize: CARDINAL" NULL;
-- Code to send call message to server.
Stream.PutWord[ParamTestServer, RPC.Message[call, 1--our procedure #--]];
-- Code to send arguments (if any).
-- Tell server to execute the call.
Stream.SendNow[ParamTestServer];
SELECT LOOPHOLE[Stream.GetWord[ParamTestServer], RPC.Message).type FROM

return = > NULL;
ENDCASE = > ERROR;

-- Code to get results (if any).
ReturnCaIIHandle[ParamTestServer];
RETURN [];
END;

One: PUBLIC PROC [one: CARDINAL] RETURNS [CARDINAL]
BEGIN -- of procedure 2.
ENABLE BEGIN

Stream. Complaining = > StreamComplaint[complaint];
END·

ParamTestSe'rver: Stream. Handle = GetCaIlHandle[];
paramSize: CARDINAL" NULL;

a: CARDINAL;
-- Code to send call message to server.
Stream.PutWord[ParamTestServer, RPC.Message[call, 2--our procedure # --]];
-- Code to send arguments (if any).

Stream.PutWord [Param T estServer , one];
-- Tell server to execute the call.
Stream.Send Now[ParamTestServer);
SELECT LOOPHOLE[Stream.GetWord[ParamTestServer], RPC.Message).type FROM

return = > NULL;
ENDCASE = > ERROR;

-- Code to get results (if any).
a" Stream.GetWord[ParamTestServer];

ReturnCaIlHandle[ParamTestServer];
RETURN (a];
END;

ApPE1\DIX 2 EXA\1PlES OF E~VOY-DIPlO\1AT, LIAISO!', AND ETHERPKT 181

Fou r: PUBLIC PROC [one: CARDINAL, two: CARDINAL, three: CARDINAL, four: CARDINAL] RETURNS [CARDINAL,
CARDINAL, CARDINAL, CARDINAL] =
BEGIN -- of procedure 4.
ENABLE BEGIN

Stream.Complaining =) StreamComplaint[complaint];
END;

ParamTestServer: Stream.Handle = GetCaIiHandle[];
paramSize: CARDINAL+-NULL;

a: CARDINAL;
b: CARDINAL;
c: CARDINAL;
d: CARDINAL;

-- Code to send call message to server.
Stream.PutWord[ParamTestServer, RPC.Message[call, 4--our procedure # --]];
-- Code to send arguments (if any).

Stream.PutWord[ParamTestServer, one];
Stream.PutWord[ParamTestServer, two];
Stream.PutWord[ParamTestServer, three];
Stream.PutWord[ParamTestServer, four];

_. Tell server to execute the call.
Stream .Send Now[Param T estServer];
SELECT LOOPHOLE[Stream.GetWord[ParamTestServer], RPC.Message].type FROM

return =) NULL;
ENDCASE = > ERROR;

_. Code to get results (if any).
a .. Stream.GetWord[ParamTestServer];
b" Stream.GetWord[ParamTestServer];
c .. Stream.GetWord[ParamTestServer];
d .. Stream.GetWord[ParamTestServer];

ReturnCaIIHandle[ParamTestServer];
RETURN [a, b. c. d];
END;

TwentyArray: PUBLIC PROC [in: ParamTest.Array20] RETURNS [ParamTest.Array20]
BEGIN _. of procedure 8.
ENABLE BEGIN

Stream.Complaining = > StreamComplaint[complaint];
END'

ParamTestSe'rver: Stream.Handle = GetCaIlHandle[];
paramSize: CARDINAL" NULL;

out: ParamTest.Array20;
.- Code to send call message to server.
Stream.PutWord[ParamTestServer, RPC.Message[call, 8·-our procedure # ._}];
_. Code to send arguments (if any).

Stream.PutBlock[Param T estServer,
[@in. O. 2*SIZE[ParamTest.Array20]]];

_. Tell server to execute the call.
Stream.Send Now[ParamT estServer];
SELECT LOOPHOLE[Stream. GetWord [ParamT estServer]. RPC.Message] .type FROM

return =) NULL;
ENDCASE = > ERROR;

.- Code to get results (if any).

ReturnCaIiHandle[ParamTestServer];
RETURN [out];
END;

[] .. Stream.GetBlock[ParamT estServer,
[@out,O,

2*SIZE[ParamTest.Array20]]];

StringDescriptor: PUBLIC PROC [string: STRING] RETURNS [DESCRIPTOR FOR ARRAY CARDINAL OF
CHARACTER] =
BEGIN -- of procedure 10.
ENABLE BEGIN

Stream.Complaining = > StreamComplaint[complaint];
END;

ParamTestServer: Stream.Handle = GetCaIIHandle[];
paramSize: CARDINAL" NULL;

desc: DESCRIPTOR FOR ARRAY CARDINAL OF CHARACTER;
_. Code to send call message to server.
Stream.PutWord[ParamTestServer, RPC.Message(call, 10-·our procedure # _.]];

182 REMOTE PROCEDURE CALL

.. Code to send arguments (if any).
IF string = NIL

THEN Stream.PutWord[ParamTestServer, LAST[CARDINAL]]
ELSE Stream. PutBlock [Param T estServer,

[string, 0,
2*String.WordsForString[string.length]]);

.. Tell server to execute the call.
Stream.Send Now[Param T estServer];
SELECT LOOPHOLE[Stream.GetWord[ParamTestServer], RPC.Message].type FROM

return = > NULL;
ENDCASE = > ERROR;

.. Code to get results (if any).
paramSize" Stream.GetWord[ParamTestServer];
IF paramSize = 0

THEN desc .. DESCRIPTOR[NIL,O]
ELSE {desc .. DESCRIPTOR[

SystemDefs.AllocateHeapNode[paramSize*SIZE[CHARACTER]],
paramSize};

0" Stream. GetBlock[Param T estServer,
[BASE[desc], 0,

ReturnCaIIHandle[ParamTestServer];
RETURN [desc];
END;

.. Call handle management.

cacheEmpty: BOOLEAN;
cachedCallHandle: Stream.Handle;

InitCaliHandleCache: PRIVATE PROC =
INLINE BEGIN
cachedCa"Handle .. Stream.Call[

serversAddress

2* paramSize*SIZE[CHARACTER]]]};

! Stream.Complaining = > StreamComplaint[complaint] 1;
cacheEmpty .. FALSE;
END;

GetCallHandle: PRIVATE ENTRY PROC RETURNS [Stream.Handle] =
INLINE BEGIN
IF -cacheEmpty

THEN {cacheEmpty .. TRUE; RETURN[cachedCaIlHandle]}
ELSE RETURN[Stream.Ca"[

serversAddress
! UNWIND = > NULL]];

END;

ReturnCallHandle: PRIVATE ENTRY PROC [caIlHandle: Stream.Handle]
INLINE BEGIN
IF callHandle = cachedCa"Handle

THEN cacheEmpty .. FALSE
ELSE Stream.EndCall[

call Handle
! UNWIND = > NULL] ;

END;

-- Start server module by importing a call handle for the remote interface.

serversAddress: PupDefs.PupAddress = RPC.lmportRemotelnterface[
interfacetD: [3,101,25189677701
! RPC.Problem => REJECT];

InitCatlHandleCache;

END.

ApPE:\DIX 2 EXAvlPLES OF E~VOY-DIPLOMAT, LIAISO~, AND ETHERPKT

.. Stub file ParamTestServerStubslmpl,mesa was generated on 27·0ct·80 9:19:16
by Liaison of 27·0ct-80 9:11:25 .

.. Source interface ParamTest came from file ParamTest.bcd,
created on 27·0ct-80 9:16:10 (3#145#) from source of 21·0ct-80 9:17:05.

DIRECTORY
ParamTest,
LiaisonBinder USING [ExportRemotelnterface, Message, Problem],
PktStreamDefs USING [Complaining. GetBlock, GetWord, Handle,

Listen, PutBlock, PutWord, SendNow],
String USING [WordsForString],
SystemDefs USING [AliocateHeapNode, AliocateHeapString,

FreeHeapNode, FreeHeapString];

ParamTestServerStubslmpl: PROGRAM
IMPORTS ParamTest. LiaisonBinder. PktStreamDefs. String, SystemDefs
SHARES ParamTest
= BEGIN OPEN RPC: LiaisonBinder, Stream: PktStreamDefs;

ReceiveClientCalls: PROC [client: Stream. Handle] =
BEGIN
ENABLE BEGIN

.. Fill in your own Stream exception handler.
Stream. Complaining = > REJECT;
END;

msg: RPC.Message = Stream.GetWord[client];
SELECT msg.type FROM

call =>
SELECT msg.info··procedure # .. FROM

1 =>BEGIN
paramSize: CARDINAL+-NULL;
.. Perform the call.
o +- ParamTest.Null[];
.. Send RPC control message for the return.
Stream.PutWord[client, RPC.Message[returnll;
Stream.SendNow[client];
END; .. of procedure 1.

2 =>BEGIN
paramSize: CARDINAL +- NULL;
aD: CARDINAL;
rO: CARDINAL;
.. Get arguments (if any).
aD +- Stream. GetWord [client];
.. Perform the call.
[rO] +- ParamTest.One[aD];
.• Send RPC control message for the return.
Stream.PutWord[client. RPC.Message[return]];
.. Send results (if any).
Stream.PutWord[client, rO];
Stream.SendNow[client];
END; .. of procedure 2.

4 =>BEGIN
paramSize: CARDINAL +- NULL;
aD: CARDINAL;
a1: CARDINAL;
a2: CARDINAL;
a3: CARDINAL;
rO: CARDINAL;
r1: CARDINAL;
r2: CARDINAL;
r3: CARDINAL;
.. Get arguments (if any).
aD +- Stream.GetWord[client];
a1 +- Stream.GetWord[client];
a2 +- Stream.GetWord[client];
a3 +- Stream.GetWord[client];
.. Perform the call.
frO, r1, r2, r3] +- ParamTest.Four[aO, a1, a2, a3];
.. Send RPC control message for the return.

183

184 RE\10TE PROCEDCRE CALL

Stream.PutWord [client. RPC.Message[return]];
.. Send results (if any).
Stream.PutWord[client, rOJ;
Stream.PutWord[client. r1];
Stream.PutWord[client, r2J;
Stream.PutWord[client, r3];
Stream.SendNow[client];
END; ., of procedure 4.

8 =>BEGIN
paramSize: CARDINAL +- NULL;
aO: ParamTest.Array20;
rO: ParamTest.Array20;
., Get arguments (if any).

o +- Stream. GetBlock[client,
[@aO,O,

2* SIZE[Param T est.Array20]]];
., Perform the call.
frO] +- ParamTest.Twenty A rray[aO];
.' Send RPC control message for the return.
Stream.PutWord[client. RPC.Message[return]];
., Send results (if any).
Stream. PutBlock[client,

[@rO, 0, 2*SIZE[ParamTest.Array20]]};
Stream.SendNow[client);
., Free string and descriptor arguments (if any).
END; .. of procedure 8.

10 =>BEGIN
paramSize: CARDINAL+-NULL;
aO: STRING;
rO: DESCRIPTOR FOR ARRAY CARDINAL OF CHARACTER;
., Get arguments (if any).
paramSize +- Stream.GetWord[client];
IF paramSize = LAST[CARDINAL]

THEN aO +- NIL
ELSE {aO +- SystemDefs.AllocateHeapString[

Stream.GetWord[client]];
aO.length'" paramSize;

.. Perform the call.

o +-Stream.GetBlock[client,
[@aO.text, 0,

2*(String.WordsForString[paramSize]·2)]]};

frO] +- ParamTest.StringDesc riptor[aO);
., Send RPC control message for the return.
Stream.PutWord[client, RPC.Message[returnl1;
.. Send results (if any).
Stream.PutWord[client, LENGTH[rO]];
IF LENGTH[r01 # 0

THEN Stream.PutBlock[client,
[BASE[rO], 0,

2* LENGTH[rO]*SIZE[CHARACTER]J];
Stream.SendNow[client];
.. Free string and descriptor arguments (if any).
IF aO # NIL THEN SystemDefs.FreeHeapString[aO];
END; .• of procedure 10.

ENDCASE = > ERROR;
ENDCASE = > ERROR;

END; ., ReceiveClientCalis .

.. Start server stub module by declaring the remote interface for binding.

Stream. Listen (
IisteningSocket: RPC.ExportRemotelnterface[

listeningProc: ReceiveClientCalls
! Stream.Complaining = > REJECT 1;

END.

interfacelD: [3,101,2518967770]
! RPC.Problem = > REJECT],

ApPET\DIX 2 EXA!\1PLES OF E:\vOy-DIPLOMAT, LIAISO~, AND ETHERPKT 185

A2.3 EtherPkt

This example contains EtherPkt's two stub programs for the ParamTest interface:

EPParamTeslClientSlubs/mpl and EPParamTestSen'erSlubs/mpl. The ElherPkl interface, which is

the stubs' fast trapdoor into the Pup Ethernet driver, is included below as well (below).

The reader is advised to understand the preceding Liaison example before proceeding with this

one. The flow of control through EtherPkt's stubs is analogous to Liaison's, so reading the step-by

step description there-making the obvious module name substitutions-will be of great help here.

-- File EtherPkt.mesa last edited by BZM on November 7,1980 10:31 PM.

Ethe rPkt: DEFINITIONS =
BEGIN

Packet: TYPE = POINTER TO PacketObject;
_. Packet: [dest"source; etherPktType ; dataWords ... ; etherCRC]

PacketType: TYPE = RECORD [WORD];
RPCPktType: PacketType = [30303B];
VoidPktType: PacketType = [1B];

PacketHeaderSize: CARDINAL = SIZE[PacketObject] . PacketDataSize;
PacketDataSize: CARDINAL = 10;

PacketObject: TYPE = MACHINE DEPENDENT RECORD [
dest: [0 .. 377B],
source: [0 .. 377B].
type: PacketType.
serial: CARDINAL.
data: ARRAY [O .. PacketDataSize) OF UNSPECIFIED];

Control: TYPE = POINTER TO ControlObject;

Cont rolObject: TYPE = RECORD [
pktType: CARDINAL +- VoidPktType.
input: RECORD [

done: BOOLEAN +- FALSE.
packet: Packet +- NIL,
size: CARDINAL +- 0,
maxSize: CARDINAL +- 0,
condition: POINTER TO CONDITION +- NIL,
accepting: BOOLEAN +- FALSE],

output: RECORD [
done: BOOLEAN +- TRUE,
packet: Packet +- NIL,
size: CARDINAL +- 0]];

cont rol: PUBLIC Control;

GetCont rol: PROC [
pktType: CARDINAL,
inputCondition: PO!NTER TO CONDITION,
inputBuffer: Packet,
inputBufferMaxSize: CARDINAL +- SIZE[EtherPkt.PacketObject]]

RETURNS [control: Control];

ReleaseControl: PROC [control: Control] RETURNS [controINIL: Control];

Send: PROC [pkt: Packet, pktSize: CARDINAL] RETURNS [busyTryAgain: BOOLEAN];

END.

186 RE~OTE PROCEDURE CALL

-- Stub file EPParamTestClientStubslmpl.mesa generated on 27-0ct-80 9:19:09
by Liaison of 27-0ct-80 9:11:25.

-- Source interface ParamTest came from file paramtest.bcd,
created 27-0ct-80 9:16:10 (3# 145#) from source of 21-0ct-80 9:17:05 .

.. Changed to do EtherPkt protocol by BZM on November 11, 1980 1 :53 AM.

DIRECTORY
ParamTest,
EtherPkt USING[Control, GetControl, PacketHeaderSize,

PacketObject, PacketType, RPCPktType, Send],
LiaisonBinder USING [lmportRemotelnterface, Message, Problem],
Process USING[MsecToTicks, SetTimeout],
PupDefs USING [PupAddress, PupNameLookup];

EPParamTestClientStubslmpl: MONITOR
IMPORTS EtherPkt, LiaisonBinder, Process, PupDefs
EXPORTS ParamTest
SHARES ParamTest
= BEGIN OPEN RPC: LiaisonBinder; .

.. These are managed by SendRequestAndReceiveReply;
inPkt, outPkt: EtherPkt.PacketObject +- [dest:, source:, type:, serial:, data:];

.. Stubbed public procedures.

Null: PUBLIC PROC [] RETURNS [] =
BEGIN •. of procedure 1.
-- Code to send call message to server.
outPkt.data[O] .. RPC.Message[call, 1··our procedure # _.];
.- Code to send arguments (if any).
-- Tell server to execute the call.
SendRequestAndReceiveReply[dataWords: 1];
SELECT LOOPHOLE[inPkt.data[O], RPC.Message].type FROM

return = > NULL;
ENDCASE = > ERROR;

.. Code to get results (if any).
RETURN [];
END;

Two: PUBLIC PROC [one: CARDINAL, two: CARDINAL] RETURNS [CARDINAL, CARDINAL}
BEGIN .. of procedure 3 .
.• Code to send call message to server.
outPkt.data[O] +- RPC.Message[call, 3··our procedure # ..];
•. Code to send arguments (if any).
outPkt.data[1] +- one;
outPkt.data[2] +- two;
.. Tell server to execute the call.
Send RequestAndReceiveReply[dataWords: 3];
SELECT LOOPHOLE[inPkt.data[O], RPC.Message].type FROM

return = > NULL;
ENDCASE = > ERROR;

.• Code to get results (if any).
RETURN [inPkt.data[1], inPkt.data[2]];
END;

ApPENDIX 2 EXAMPLES OF E:,\\,OY-DIPLO.\1AT, LIAISOI'\, AND ETHERPKT

.. Handle transport of remote call messages.

inputWait: CONDITION;
ether: EtherPkt.Control;
ourAddress: PupDefs.PupAddress;
reTransmitTimelnMsec: CARDINAL = 10;
retriesUntilFailure: CARDINAL ~ 5··minutes··*(60*1000/reTransmitTimelnMsec);

getStats: BOOLEAN = FALSE;
total Calls: LONG CARDINAL'" 0;
total Retransmissions: LONG CARDINAL ~ 0;
Bump: PROC [counter: POINTER TO LONG CARDINAL] =
INlINE { IF getStats THEN countert ... countert + 1 };

NoCallResponse: ERROR = CODE;

InitSendRequestAndReceiveReply: PROC =
BEGIN
PupDefs.PupNameLookup[@ourAddress, "ME"L];
Process.SetTimeout[@inputWait, Process.MsecToTicks[reTransmitTimelnMsec]];
outPkt ... [

dest: servers Add ress. host,
source: ourAddress.host,
type: EtherPkt.RPCPktType,
serial: 0,
data:];

ether'" EtherPkt.GetControl[EtherPkt.RPCPktType, @inputWait, @inPkt];
ether.input.accepting ... TRUE;
END;

SendRequestAndReceiveReply: ENTRY PROC [dataWords: CARDINAL] =
INlINE BEGIN
Bump[@totaICalls];
outPkt.serial ... outPkt.serial + 1;
THROUGH [O .. retriesUntiIFailure) DO

END;

ether. input-done ... ether.output.done ... FALSE;
WHILE EtherPkt.Send[@outPkt,

EtherPkt.PacketHeaderSize +dataWords] busyTryAgain DO ENDLOOP;
WAIT inputWait;
IF ether.input.done AND inPkt.serial = outPkt.serial THEN EXIT;
Bump[@totaIRetransmissions];

REPEAT
FINISHED =) ERROR NoCallResponse;

ENDLOOP;

.. Start server module by importing a call handle for the remote interface.

serversAddress: PupDefs.PupAddress = RPC.lmportRemotelnterface[
interfacelD: [3,101,2518967770]
! RPC.Problem =) REJECT];

InitSendRequestAndReceiveReply;

END.

187

188 REYfOTE PROCEDCRE CALL

.. Stub file EPParamTestServerStubslmpl.mesa generated on 27·0ct·80 9:19:16
by Liaison of 27·0ct·80 9:11:25 .

.. Source interface ParamTest came from file paramtest.bcd,
created 27·0ct-80 9:16:10 (3 # 145 #) from source of 21·0ct·80 9:17:05 .

. - Changed to do EtherPkt protocol by BZM on November 11, 1980 1 :53 AM.

DIRECTORY
ParamTest,
LiaisonBinder USING [ExportRemotelnterface, Message, Problem],
EtherPkt USING[Control, GetControl, PacketHeaderSize, PacketObject,

PacketType, RPCPktType, Send],
Process USING[DisableTimeout),
PupDefs USING [PupAddress, PupNameLookup);

EPParamTestServerStubslmpl: MONITOR
IMPORTS ParamTest, EtherPkt, LiaisonBinder, Process, PupDefs
SHARES ParamTest
= BEGIN OPEN RPC: LiaisonBinder;

_. These are managed by ReceiveRequest and Send Reply;
inPkt, outPkt: EtherPkt.PacketObject ~ [dest:, source:, type:, serial:, data:];

ReceiveClientCalls: PROC =
BEGIN
DO ··Forever.
ReceiveRequest[];
SELECT LOOPHOLE[inPkt.data[O], RPC.Message].type FROM

call =>
SELECT LOOPHOLE[inPkt.data[O], RPC.Message] .info-·procedure # -- FROM

1 =>BEGIN o ~ ParamTest.Null[];
.. Send RPC control message for the return .
•. Done at Init: outPkt.data[O] ~ RPC.Message[return);
.. Send results (if any).
SendReply[1];
END; -- of procedure 1.

3 =>BEGIN
.. Get arguments (if any) .
.. Perform the call.
[outPkt.data[1], outPkt.data[2]]

+- ParamTest.Two[inPkt.data[1], inPkt.data[21J;
.. Send RPC control message for the return .
.. Done at Init: outPkt.data[O] +- RPC.Message[return];
.. Send results (if any).
SendReply[3];
END; -- of procedure 3.

2,4 = > NULL; ··Not included in this example

5,6,7,8,9,10 = > ERROR;

ENDCASE = > ERROR;
ENDCASE = > ERROR;

ENDLOOP;
END; .• ReceiveClientCalls.

ApPE7\DIX 2 EXA\1PLES OF E);VOy-DIPLO\1AT, LIAISO~, A~D ETHERPKT

.. Handle transport of remote call messages.

inputWait: CONDITION;
ether: EtherPkLControl;
ourAddress: PupDefs.PupAddress;
last8erial: CARDINAL;

get8tats: BOOLEAN = F AL8E;
requestsAccepted: LONG CARDINAL ~ 0;
requestsRejected: LONG CARDINAL ~ 0;
repliesResent: LONG CARDINAL ~ 0;
Bump: PROC [counter: POINTER TO LONG CARDINAL] =
INLINE { IF get8tats THEN countert ~ countert + 1 };

InitReceiveRequestAndSendReply: PROC =
BEGIN
PupDefs.PupNameLookup[@ourAddress, "ME"L];
Process.OisableTimeout[@inputWait];
outPkt +- [

dest: ,
source: ourAddress.host,
type: EtherPkt.RPCPktType,
serial: ,
data: [RPC.Message(return], """,,]];

lastSerial +- 0;
ether +- EtherPkt.GetControl[EtherPkt.RPCPktType, @inputWait, @inPkt];
ether.input.accepting +- TRUE;
END;

ReceiveRequest: ENTRY PROC
INLINE BEGIN
DO

ether.input.done +- FALSE;
UNTIL ether.input.done DO WAIT inputWait ENDLOOP;
SELECT inPkt.serial FROM

(lastSerial+-lastSerial + 1) =) EXIT;
(lastSerial+-lastSerial·1) = >

BEGIN
SendReply[ether.output.size-Et~erPl<t.PacketHeaderSize];
Bump[@repliesResentl;
END'

ENDCASE = > Bump[@'requestsRejected);
ENDLOOP;

Bump[@requestsAccepted);
END;

Send Reply: PROC [dataWords: CARDINAL] =
INLINE BEGIN
outPkt.dest +-inPkt.source;
outPkt.serial +- tastSerial;
ether .output.done +- FALSE;
WHILE EtherPkt.8end[@outPkt,

EtherPkt.PacketHeaderSize + dataWords}.busyTryAgain DO ENDLOOP;
END;

-- 8tart server stub module by declaring the remote interlace fer bind ing.

o +- RPC.ExportRemotelnterface[
interfacelD: [3,101,2518967770]
! RPC.Problem = > REJECT];

litReceiveRequestAndSend Reply;

ReceiveClientCalls;

END.

189

Kusaie-East Carolines
5° 19' N 163°02' E

The westernmost outpost/or American whalers and missionaries in the mid 1800s

References

[1] Gene Ball.
Alto as Terminal.
Internal memorandum, Carnegie-Mellon University, Computer Science Department, April,

1980.
A complete description ofCMU's Vax-Alto RPC environment.

[2] Forest Baskett, John H. Howard, and John T. Montague.
Task communication in Demos.
Operating Systems Review 11(5):23-31, November, 1977.
Designed for the Cray-I, Demos passes messages over links for all communication. The scheme is impure because

mechanisms for sharing memory-e.g., 110 buffers-are incorporated as well.

[3] F. L. Bauer and H. Wossner.
The Plankalkiil of Konrad Zuse: a forerunner of today's programming languages.
Communications of the ACM 15(7):678-85, July, 1972.
An overview of the two-dimensional language that Zuse-who is credited with building the first (nonelectronic) stored

program computer-designed after the war.

[4] Jon Louis Bentley.
Writing Efficient Code.
Technical Report, Carnegie-Mellon University, Computer Science Department, April, 1981.
A thorough presentation of language-independent programming optimization techniques. Measured speedups of 5-25

times are obtained for operational programs.

[5] A. D. Birrell and R. M. Needham.
A universal file server.
IEEE Transactions on Software Engineering SE-6(5):45Q-53, September, 1980.
A brief description of the file server used in the Cambridge Ring.

[6] Andrew D. Birrell, Roy Levin, Roger M. Needham, and Michael D. Schroeder.
Grapevine.
Communications of the ACM, should appear early in 1982.
Also available as a Xerox Palo Alto Research Center technical report.
A complete description of the Grapevine distributed mail transport system, including the registration service.

192 RE\10TE PROCEDURE CALL

[7] Daniel G. Bobrow and Douglas W. Clark.
Compact encodings of list structure.
Transactions onPrograrnming Languages alld Systems 1(2):266-86. October. 1979.
The benefits of compact encodings are discussed and several existing schemes are examined.

[8) David R. Boggs, John F. Shoch, Edward A. Taft, and Robert M. Metcalfe.
Pup: an internetwork architecture.
IEEE Transactions on Commul1icationsCom-28(4):612~24, April, 1980.
The simplicity of the Pup architecture and its fundamental end-to-end datagram approach is touted. Pup's

encapsulation within various networks-including the Ethernet, Arpanet, and Packet Radio-are discussed.

[9J David R. Boggs.
Internetwork Broadcasting.
PhD thesis, Stanford University, Electrical Engineering Department, 1981.
Boggs's thesis discusses the merits and problems of broadcasting in packet-switched internets. A number of excellent

examples are given and the problems of reliable broadcasting are presented.

[10] Per Brinch Hansen.
Operating System Principles.
Prentice-Hall, 1973.
Among its many achievements, this book introduces the notions of monitor and critical region, and has an excellent

discussion of the RC4000 message-based operating system.

[11 J Per Brinch Hansen.
The programming language Concurrent Pascal.
IEEE Transactions on Software Engineering SE-l(2):199-207, June, 1975.
Brinch Hansen's multiprogramming extensions to Pascal include monitors with queues, which are condition variables

that exactly one process can wait on.

[12] Per Brinch Hansen.
Distributed processes: a concurrent programming concept.
Communications of the ACM 21(11):934-41, November, 1978.
Brinch Hansen's language proposal for distributed processes-which share no memory-includes a clean RPC-like

mechanism.

[13] CMU Spice Committee.
Proposal for a Joint Effort in Personal Scientific Computing.
Technical Report, Computer Science Department, Carnegie-Mellon University, August, 1979.
This proposal outlines CMU's ambitious plans for a department-wide distributed environment of· personal and

powerhouse computers.

[14] Vinton G. Cerfand Robert E. Kahn.
A protocol for packet network interconnection.
IEEE Transactions on Communications Com-22(5):637-48, May, 1974.
This paper founds the idea of an internet and introduces gatm'ays as their interconnection portals.

[15] David R. Cheriton, Michael A. Malcolm, Lawrence S. Melen, and Gary R. Sager.
Thoth, a portable real-time operating system.
Communications of the ACAf 22(2):105-115, February, 1979.
Thoth is an elegant message-passing system written in a descendent of Bcpl. It has a small kernel and good

performance.

[16] Danny Cohen.
On holy wars and a plea for peace.
IEEE Cornputer 14, to appear, 1981.
Also available as USC Information Sciences Institute Internal Note lEN 137.

REFERENCES

An entertaining discussion of bit transmission and data representation issues.

[17] Robert P. Cook.
*~oD-a language for distributed programming.
In Proceedings of the First International Conference on Distributed Computing Systems, pages

233-41. IEEE, October, 1979.

193

Star:Mod (as *MOD has since been renamed) is derived from Wirth's Modula. It extends Modula's shared-memory
processes and interface modules (monitors) with network modules of processor modules that do not share memory.
The implementation that Cook describes runs on a single machine, not in a physically distributed system.

[18] Robert P. Cook.
Abstractions for distributed computing.
This is an unpublished position paper for the SIGPLAN-SIGOPS Workshop on Fundamental Issues

in Distributed Computing, held December 14-17, 1980. Cook is with the Computer Sciences
Department, University of Wisconsin, Madison, Wisconsin, 53706.

Cook describes ports and regions, which are message-oriented extensions to StarMod. The concept of scheduler modules
is developed as well.

[19] Stephen D. Crocker, John F. Heafner, Robert M. Metcalfe, and Jonathan B. Postel.
Function-oriented protocols for the ARPA computer network.
In AFIPS Conference Proceedings of the Spring Joint Computer Conference, pages 271....;79.

AFIPS Press, May, 1972.
In this early paper the word server is explicitly used to describe telnet and remote job entry services.

[20] William R. Crowther.
Private communication, February, 1981.
Crov.1her describes an IC layout program that could be easily optimized with language-level RPc.

[21] Yogen K. Dalal and Robert M. Metcalfe.
Reverse path forwarding of broadcast packets.
Communications of the ACM 21(12):1040-48, December, 1978.
Dalal and Metcalfe review five existing methods of broadcasting in a packet-switched network and propose a new

method of their own. The ability of each method to perform a reliable broadcast is evaluated.

[22] Jerome A. Feldman and Robert F. Sproull.
System support for the Stanford hand-eye system.
In Proceedings of the Second International Joint Conference on Artificial Intelligence, pages

183-89. IlCAl, London, September, 1971.
Sproull and Feldman talk about extensions to Sail and TopslO which allowed them to do !PC via message procedures.

While not really RPC in the true sense, their scheme did allow a remote call to have apparently normal syntax.

[23] Jerome A. Feldman.
High level programming for distributed computing.
Communications of the ACM 22(1):353-68, June, 1979.
Feldman discusses Plits, a Sail-based language with modules and messages. While control is message- rather than

procedure-based, the problems of parameter functionality, data translation, and machine failures are briefly
mentioned.

[24] Samuel Fuller, John Ousterhout, Levy Raskin, Paul Rubinfeld, Pradeep Sindhu, and Richard
Swan.
Multi-microprocessors: an overview and working example.
Proceedings of the IEEE 66(2):216-28, February, 1978.
A discussion ·of the Cm* hardware architecture.

194 RE\10TE PROCEDCRE CALL

[25] David K. Gifford.
In/onnation Storage in a Decentralized Computer System.
PhD thesis, Stanford University, Electrical Engineering Department, 1981.
Gifford's thesis develops a general transaction-oriented distributed file system \\ith uniform naming.

[26] Xerox Learning Research Group.
The Smalltalk-80 System.
BYTE 6(8):36-48, August, 1981.
This issue of BYTE is devoted to Smalltalk; only the introductory article is referenced here.
A discussion of Smalltalk, an object-oriented, message-passing programming language and environment.

[27] James N. Gray.
A Discussion 0/ Distributed Systems.
Research Report RJ2699(34594), IBM Research, San Jose, August, 1979.
Gray's discussion includes mention of the CICS remote procedure capability.

[28] David Gries and Gary Levin.
Assignment and procedure call proof rules.
Transactions on Programming Languages and Systems 2(4):564-79, October, 1980.
Gries and Levin include a good discussion of aliasing and its impact on verification.

[29] Loretta Rose Guarino.
Control and Communication in Programmed Systems.
PhD thesis, Carnegie-Mellon University, Computer Science Department, September, 1980.
Guarino's thesis develops a very general model of control which subsumes both procedure calling and message passing.

[30] Griffith Hamlin Jr.
Configurable Applications/or Satellite Graphics.
PhD thesis, Computer Science Department, University of North Carolina at Chapel Hill, 1975.
Hamlin's early Cages system includes novel uses of remote procedures in a special two-processor PLI environment. He

handles remote procedures, exceptions (ON-conditions), and global variables.

[31] Jack Haverty.
Thoughts on Interactions in Distributed Services.
Request For Comments 722, Network Working Group, SRI Augmentation Research Center,

September, 1976.
Haverty discusses network servers and the great utility of the request-response discipline for many classes of user-server

interactions.

[32] Frank E. Heart, Robert E. Kahn, Severo M. Ornstein, William R. Crowther, and David
C. Walden.
The interface message processor for the ARPA computer network.
In AFIPS Conference Proceedingso!theSpringJoint ComputerCon!erence, pages 551-67.

AFIPS Press, May, 1970.
This is the classic Arpanet reference. Discussion focuses almost exclusively on the IMP.

[33] Maurice Peter Herlihy.
Transmitting abstract values in messages.
Master's thesis, MIT Laboratory for Computer Science, April, 1980.
Herlihy's thesis discusses the transmission of strongly typed objects in messages, including shared and cyclic structures.

[34] Maurice Herlihy, Gerald Leitner, and Karen Sollins (editors).
Report on the workshop on fundamental issues in distributed computing.
SIGPLAN Notices 15(3):9-38, July, 1981.
At this workshop. researchers in systems and programming languages discussed their views on atomicity, protection,

naming. communications, and other practical issues in real distributed systems.

REFERE~CES

[35] Carl Hewitt.
Viewing control structures as patterns of passing messages.
Artificial Intelligence 8(3):323-64, June. 1977.
Hewitt provides an introduction to actors in this accessible but wordy paper.

[36] C. A. R. Hoare.
An axiomatic basis of computer programming.
Communications of the AC!d 12(10):576-80, October, 1969.

195

Hoare's paper defines the standard {P} S {Q} verification notation for preconditions and postconditions in Algol-like
programs.

[37] C. A. R. Hoare.
Monitors: an operating system structuring concept.
Communications of the ACAI17(10):549-57, October, 1974.
Hoare's classic paper elaborates Brinch Hansens's concept of monitor into that of a synchronized abstract data type.

Signals and condition variables are introduced for fine-grain synchronization.

[38] C. A. R. Hoare.
Communicating sequential processes.
Communications of the ACAI21(8):666-77, August, 1978.
Hoare presents a simple language-level message-passing model for interprocess communication.

[39] Intel Corporation.
Introduction to the iAPX 432 Architecture.
Intel Corporation, Santa Clara, CA 95051, 1981.
Manual order no. 171821-001.
An overview of the 432 architecture that only briefly describes the packet-switched inlerconnect bus.

[40] International Business Machines.
Customer Information Control System/Virtual Storage, Version 1, Release 5.
International Business Machines, White Plains, New York, 1980.
Fonn No. SC33-0068-2.
This CICS document includes a description of its brand of RPC in chapter 7.2.

[41] Anita K. Jones, Robert 1. Chansler Jr., Ivor Durham, Karsten Schwans, and Steven R. Vegdahl.
StarOs, a multiprocessor operating system for the support of task forces.
Operating Systems Review 13(5):117-27, December, 1979.
An overview of StarOs including its capability mechanism and message-passing primitives.

[42] Stephen R. Kimbleton, Helen M. Wood, and M. L. Fitzgerald.
Network operating systems-an implementation approach.
In AFIPS Conference Proceedings of the National Computer Conference, pages 773-82. AFIPS

Press, June, 1978.
The end of this paper includes a description of remote record access and translation via a third-party network translation

server.

[43] Leslie Lamport.
Time, clocks, and the ordering of events in a distributed system.
Communications of the ACAI21(7):558-65, July, 1978.
An excellent discussion of logical and physical clocks. Lamport gives a novel algorithm for synchronizing a set of

distributed clocks without setting any of them backward in time.

[44] Butler W. Lampson, James O. Mitchell, and Edwin H. Satterthwaite.
On the transfer of control between contexts.
In O. Ooos and 1. Hartmanis, editor, Lecture Notes in Computer Science, pages 181-203.

Springer-Verlag, 1974.

196 RE\10TE PROCEDCRE CALL

'Ibis paper develops a general, low-level model of control transfer using the Transfer primitive. An efficient
implementation for procedure call is demonstrated.

[45] Butler W. Lampson, James. 1. Homing, Ralph L. London, James G. Mitchell, and Gerald
J. Popek.
Report on the programming language Euclid.
SIGPLAN Notices 12(2):1-79, February, 1977.
The rather complicated specification for Euclid, a strongly typed system programming language.

[46] Butler W. Lampson and Howard E. Sturgis.
Crash recovery in a distributed data storage system.
Communications o/the ACA1, to appear-accepted for publication on 8 July 1977.
The underground classic in all its glory. Lampson and Sturgis define a model for a distributed system and show how to

build atomic actions that operate on stable storage (crash-proof storage). Lampson published an early version of
this paper in Distributed Systems: Architecture and Implementation, an Advanced Course (below).

[47] Butler W. Lampson and David D. Redell.
Experience with processes and monitors in Mesa.
Communications o/the ACAf 23(2):105-117, February, 1980.
A discussion of the design of Mesa's concurrency machinery.

[48] Butler W. Lampson.
Atomic transactions.
In Butler W. Lampson, editor, Distributed Systems: Architecture and Implementation, an

Advanced Course, chapter 11. Springer-Verlag, 1981.
Lampson's general discussion of transactions defines stable storage and uses remote procedures for the implementation.

[49] Butler W. Lampson.
Applications and protocols.
In Butler W. Lampson, editor, Distributed Systems: Architecture and Implementation, an

Advanced Course, chapter 14. Springer-Verlag, 1981.
Section 14.9 covers remote procedures.
Lampson discusses a last-of-many semantics RPC algorithm. An orphan discussion is included.

[50] Butler W. Lampson, Douglas W. Clark, Gene A. McDaniel, Severo M. Ornstein, and Kenneth
A. Pier.
The Dorado, A High-PerfOrinance Personal Computer: Three Papers.
Technical Report CSL-81-1, Xerox Palo Alto Research Center, January, 1981.
The Dorado processor, instruction-fetch unit, and memory system papers.

[51] Keith A. Lantz.
Unifonn Interfaces/or Distributed Systems.
PhD thesis, Computer Science Department, University of Rochester, May, 1980.
Lantz's thesis focuses on a number of issues in the RIG system design. An appendix covers the hierarchy of message

passing primitives.

[52] Hugh C. Lauer and Roger M. Needham.
On the duality of operating system structures.
Operating Systems Review 13(2):3-19, April, 1979.
Under some loose assumptions, messages and procedures are shown to have the same power for operating system

communication. The authors claim that the choice between these primitives should be based on considerations of
the programming environment.

[53] Roy Levin, John McQuillan, and Richard Schantz.
Distributed systems.
Operating Systems Review 11(1):14-19, January, 1977.

R EFERE:'\CES 197

The authors, discussing needed research in distributed systems. call for standardization of data and control descriptions
for internetwork communication.

[54] Roy Levin.
Program Structures for Exceptional Condition Handling.
PhD thesis, Carnegie-Mellon University, Computer Science Department, June, 1977.
Levin's thesis talks about the spectrum of exception-handling issues. Special attention is paid to the problems of passing

exceptions among cooperating processes.

[55] Paul H. Levine.
Facilitating interprocess communication in a heterogeneous network environment.
Master's thesis, MIT Department of Electrical Engineering and Computer Science, July, 1977.
Levine's thesis explores methods of translating data between communicating heterogeneous processors. Three main

methods are discussed and a "standard intermediate representation" approach is recommended.

[56] Barbara Liskov, Alan Synder, Russell Atkinson, and Craig Schaffert.
Abstraction mechanisms in Clu.
Communications of the ACAI20(8):564-76, August, 1977.
The authors discuss Clu and some implementation considerations.

[57] Barbara Liskov.
Primitives for distributed computing.
Operating Systems Review 13(5):33-42, December, 1979.
An extension to Clu called Guardians is defined. Guardians communicate via messages, not remote procedures, but Clu

does provide strong typechecking for messages. At-least-once semantics are favored.

[58] Barbara Liskov.
Remote Procedure Call.
DSG Note 64, MIT Laboratory for Computer Science, June, 1980.
Liskov discusses at-least-once, last-one (sequentiality), and at-most-once (atomic) invocation semantics. She rejects last

one and favors at-most-once.

[59] Barbara Liskov.
Linguistic Support/or Distributed Programs: A Status Report.
Computation Structures Group Memo 201, MIT Laboratory for Computer Science, October,

1980.
Liskov changes Guardian invocation semantics to at-most-once, adding a built-in transaction mechanism.

[60] Edward M. McCreight.
The Xerox Research personal computers.
This was a Distinguished Lecture about the Alto, Dolphin, and Dorado computers given at the

eMU Computer Science Department in January, 1981.
McCreight describes the detailed architecture and performance of the three processors.

[61] Robert M. Metcalfe and David R. Boggs.
Ethernet: distributed packet switching for local computer networks.
Communications of the ACAI19(7):395-404, July, 1976.
Metcalfe and Boggs explain one of the first high-speed local networks.

[62] James G. Mitchell, William Maybury, and Richard Sweet.
Al esa Language Manual.
Technical Report CSL-79-3, Xerox Palo Alto Research Center, April, 1979.
Mesa is a strongly typed implementation language descended from Pascal. Chapters 1-6 cover the basic language;

chapter 7 discusses modules, configurations, and binding; chapter 8 covers exceptions; chapter 10 talks about
concurrency.

198 RE\10TE PROCEDCRE CALL

[63] Roger M. Needham and Michael D. Schroeder.
Using encryption for authentication in large networks of computers.
Communications of the ACAf 21(2):993-99, December, 1978.
An excelIent investigation of encryption techniques for the security of network communications.

[64J Roger Needham.
Private communication, December. 1979.
~eedham describes an addition to the Cambridge Ring wherein a local procedure interface to the local file system will

be (transparently) replaced with a remote procedure interface to a file server.

[65J Bruce Nelson.
Thesis problems in remote procedure call.
Internal memorandum, Xerox Palo Alto Research Center, August, 1979.
This is a preliminary thesis study. It has a long section on local and remote Mesa ports.

[66] Bruce Nelson.
RpcLogs, the computer results of an RPC perfonnance evaluation, December, 1980.
These are the unprocessed call timings and PC histograms from chapter 6's performance evaluation.

[67] Derek C. Oppen and Yogen K. Dalal.
The Clearinghouse: A Decentralized Agentfor Locating Named Objects in a Distributed

Environment.
Technical Report OPD-T8103, Xerox Office Products Division, August, 1981.
You can write to Oppen and Dalal at Xerox OPD, 3333 Coyote Hill Road, Palo Alto, California

94304.
Dalal and Oppen develop a general approach to naming and locating objects in internetwork environments.

[68] John K. Ousterhout, Donald A. Scelza, and Pradeep S. Sindhu.
Medusa: an experiment in distributed operating system structure.
Communications of the ACM23(2):92-105, February, 1980.
An overview of Medusa including a brief discussion of its exception facilities.

[69] James L. Peterson.
Notes on a workshop on distributed computing.
Operating Systems Review 13(3):18-30, July, 1979.
The notes are interesting reading, especially the parts on procedures, transparency, and reliability.

[70] Jonathan B. Postel and James E. White.
Procedure Call Protocol Documents, Version 2.
Request For Comments 674, Network Working Group, SRI Augmentation Research Center,

December, 1974.
This report describes other documents that define the procedure call protocol developed by an SRI team for the

::\ational Software Works. Particularly notable is The Low-Level Debug Package, which describes a remote
debugger.

[71} Jonathan B. Postel.
Internetwork protocol approaches.
IEEE Transactions 011 CommunicationsCom-28(4):604-11, April, 1980.
An overview of leading internet protocols that contrasts datagrarns and virtual circuits.

[72} Richard F. Rashid.
An Inlerprocess Communication Facility for Unix.
Technical Report, Carnegie-Mellon University, Computer Science Department, June, 1980.
Rashid's IPe will be available in the C\fC internet, especially on the Vaxen (which run Unix) and the Perqs.

REFERENCES 199

[73] David D. Redell, Yogen K. Dalal, Thomas R. Horsley, Hugh C. Lauer, William C. Lynch, Paul
R. Melones, Hal G. Murray, and Stephen C. Purcell.
Pilot: an operating system for a personal computer.
Communications of the ACAf 23(2):81-92, February, 1980.
A description of a multiprogramming operating system for a single-user machine. Pilot is written in ~1esa and provides

virtual memory, files, streams, and internet communication.

[74] Larry Roberts and Barry Wessler.
Computer network development to achieve resource sharing.
In AFIPS Conference Proceedings of the Spring Joint Computer Conference, pages 543-49.

AFIPS, June, 1970.
Roberts discusses the motivation and goals of the Arpanet.

[75] Jerome H. Saltzer.
Research problems of decentralized systems with largely autonomous nodes.
Operating Systems Review 12(1):43-52, January, 1978.
Saltzer provides a good discussion of distributed computing issues in the context of the object model.

[76] Richard E. Schantz.
A Commentary on Procedure Calling as a Network Protocol.
Request For Comments 684, Network Working Group, SRI Augmentation Research Center,

April, 1975.
Schantz attacks RPC-specifically, RFC674-as an inadequate and improper model for IPe. He promotes a message

based model in its place.

[77] Stephen A. Schuman, Edmund M. Clarke Jr., and Christos N. Nikolaou.
Programming Distributed Applications in Ada: A First Approach.
Technical Report CADD-8103-3102, Massachusetts Computer Associates, March, 1981.
A deSCription of how to add remote procedures to Ada by making no changes to the language itself. The result is a nice

exposition, but it lacks much practical interest because the language-level mapping of local to remote calls is
burdened with excessive use of Ada's task machinery.

[78] John F. Shoch and Jon A. Hupp.
Notes on the "Wonn" programs-some early experience with a distributed computation.
Technical Report SSL-80-3, Xerox Palo Alto Research Center, May, 1980.
A good discussion of a self-replicating program structure for distributed computations.

[79] Marvin H. Soloman and Raphael A. Finkel.
The Roscoe distributed operating system.
Operating Systems Review 13(5):108-114, December, 1979.
Roscoe uses pure message passing for all communication between both kernel and user processes.

[80] Alfred Z. Spector.
Extending local network interfaces to provide more efficient interprocessor communication

facilities.
In Distributed Processing-New Directionsfora New Decade, pages 6-13. ACM, November,

1980.
Spector talks about synchronous remote memory operations, including his remote read/write work on the Alto.

[81] Alfred Z. Spector.
Perfonning Remote Operations Efficiently on a Local Computer Network.
Technical Report STAN-CS-80-831, Computer Science Department, Stanford University,

December, 1980.
In this report Spector introduces his remote reference model. The end of the paper includes the timing data for remote

instructions on the Alto.

200 REYlOTE PROCEDURE CALL

[82] Robert F. Sproull and Dan Cohen.
High-level protocols.
Proceedings of the IEEE 66(11):1371-86, November, 1978.
A good discussion of the relationship between high-level languages and high-level protocols. Remote procedures are

advocated for many internet interactions. The notion that an HLP definition is an HLL interface is almos/
developed. Binding and linking are discussed for both.

[83] Robert F. Sproull.
Private communication, December, 1980.
Sproull made his structuralists versus performers remark while commenting on the bulkiness of Liaison's stubs

(appendix 2).

[84] Bjarne Stroustrup.
An intermodule communication system for a distributed computer system.
In Proceedings of the First International Conference on Distributed Computing Systems, pages

412-18. IEEE, October, 1979.
Stroustrup describes an RPC-like remote invocation mechanism for use in a distributed system with uniform capability

addressing. Parameters are migrated between machines as necessary. A simulation of an operating system for a
(simulated) ring network is used to make some performance estimates.

[85] Howard E. Sturgis, James G. Mitchell, and Jay E. Israel.
Issues in the design and use of a distributed file system.
Operating Systems Review 14(3):55-69, July, 1980.
An oven'iew of the Juniper file server that does not have many real details.

[86] Ivan E. Sutherland, Charles E. Molnar, Robert F. Sproull, and 1. Craig Mudge.
The TriMosBus.
In Charles L. Seitz, editor, Proceedings of the Caltech Conference on Very.! Large Scale

Integration, pages 395-427. Cal tech Computer Science Department, January, 1979.
The end of the paper discusses the resemblance ofTriMosBus messages to high-level network protocols.

[87] ,Daniel Swinehart, Gene McDaniel, and David Boggs.
WFS: a simple shared file system for a distributed environment.
Operating Systems Review 13(5):9-17, December, 1979.
WFS is a high performance server that obtains much of its efficiency by using connectionless protocols.

[88J Warren T eitelman.
Inlerlisp Reference Alanual.
Xerox Palo Alto Research Center. 3333 Coyote Hill Road, Palo Alto, California 94304, 1978.
The complete lisp tome.

[89] Charles P. Thacker, Edward M. McCreight, Butler W. Lampson, Robert F. Sproull, and David
R. Boggs.
Alto: a personal computer.
In Dan Siewiorek, C. Gordon Bell, and Allen Newell, editor, Computer Structures: Readings

and Examples, Second Edition, chapter 33. McGraw-Hill, 1981.
Also published as Xerox Palo Alto Research Center report CSL-79-11.
The principal characteristics of Xerox's Alto personal computer are discussed.

[901 Robert Thomas and Stuart Schaffner.
JfSG: The Interprocess Communication Facility for the National Software Works.
Technical Report 3483, Bolt, Beranek, and Newman, December, 1976.
A discussion of the comprehensive message-based IPC used in the NSW implementation.

REFERE~CES

[91] United States Department of Defense.
Reference Manualfor the Ada Programming Language.
United States Department of Defense, 1980.

201

Ada is intended to be a powerful and universal language. Time will tell if these good intentions come to pass
constructing an efficient implementation for the full language is a formidable task.

[92] David C. Walden.
A system for interprocess communication in a resource-sharing computer network.
Communications o/the ACM 15(4):221-30, April, 1972.
One of the earliest descriptions of an IPC facility. Walden's pioneering scheme was an extension of the Arpanet's Initial

Connection Protocol.

[93] Peter 1. L. Wallis.
External representations of objects of user-defined type.
Transactions on Programming Languages and Systems 2(2):137-52, April, 1980.
Some problems of external representations are discussed in the context of the PPL portable programming language.

[94] Richard W. Watson and John G. Fletcher.
An architecture for support of network operating system services.
Computer Networks 4(1):33-49, February, 1980.
Watson and Fletcher develop a general framework for constructing network operating systems. The high-level goals of

network operating systems are covered, but the paper's emphasis is on the low-level internetwork and interprocess
communication layers rather than on transparent high-level services.

[95] James E. White.
A high-level framework for network-based resource sharing.
In AFIPS Proceedings %/the National ComputerConjerence, pages 561-70. AFIPS, June,

1976.
White develops a request-response protocol model (with arguments and results) as an alternative to the application

specific protocols used in the Arpanet. RPC is seen as a natural and straightforward extension of these request
response protocols.

[96] James E. White.
Elements of a distribu ted programming system.
Journal o/Computer Languages 2(4):117-34, April, 1977.
In this sequel to the NCC paper, White enhances his model to include a specific remote procedure call protocol (PCP).

Advanced problems such as communicating global variables, providing packages (interfaces), and performing
nonprocedural control transfers are discussed. Some important areas for further research are listed.

[97] Niklaus Wirth.
Modula: a language for modular multiprogramming.
Software-Practice and Experience 7(1):3-35, January, 1977.
Wirth's excellent description of Modula includes a discussion of interface modules and signals, which are Modula's

version of monitors and condition variables. Companion papers in the same issue have examples of Modula and
language implementation hints.

[98] Hubert Zimmermann.
OSI reference model-the ISO model of architecture for open systems interconnection.
IEEE Transactions on Communications Com-28(4):425-32, April, 1980.
The OSI internet architecture is discussed. Of special interest is the OSI protocol hierarchy.

· ,

