VS

Operating System
Services Manual

Operating
System Services

3rd Edition — August, 1981
Copyright © Wang Laboratories, Inc., 1977
800-11070S-03

WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL,MA 01851 e TEL: 617/459-5000, TWX 710-343-6769, TELEX 94-7421

Disclaimer of Warranties
and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing
this manual; however, nothing contained herein modifies or alters in any
way the standard terms and conditions of the Wang purchase, lease, or
license agreement by which this software package was acquired, nor
increases in any way Wang’s liability to the customer. In no event shall
Wang Laboratories, Inc., or its subsidiaries be liable for incidental or con-
sequential damages in connection with or arising from the use of the soft-
ware package, the accompanying manual, or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in accordance
with the terms and conditions of the Wang Laboratories, Inc. Standard
Program Products License; no ownership of Wang Software is trans-
ferred and any use beyond the terms of the aforesaid License, without the
written authorization of Wang Laboratories, Inc., is prohibited.

This Third Edition of the VS Operating System Services Manual
(800-11070S-03) documents Release 5.1 and succeeding releases until
replaced or revised. It replaces and obsoletes the Second Edition
(800-11070S-02) and its Release 4 Addendum (800-11070S-02.01).
Changes are noted in the “Summary of Changes” and indicated in the text by
single change bars in the margins.

WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 o TEL: 617/459-5000, TWX 710-343-6769, TELEX 94-7421

Summary of Changes
for the 3rd Edition of the
VS Operating System Services
(800-11070S8-03)

TYPE DESCRIPTION PAGES
NEW MACROS FREEHEAP (SVC 57) (Deallocate 4-36/4-37,
(AND SVCs) Memory Block) 6-79/6-80
GETHEAP (SVC 56) (Allocate 4-39/4-41,
Memory Block) 6-77/6-78
LINKPARM Macro (Supply 4-55/4-59
Program Parameters)
EXPANDED CHECK (TCIO & multiple event) 4-12/4-15
MACROS CREATE PORT (Return 12) 4-17
(and SVCs) | DISMOUNT (NODISPLAY option) 4-22
DISMOUNT (SVC 41) (NODISPLAY 6-73
option)
EXTRACT (System, job, device, 4-24, 4-26/4-31
etc., data)
EXTRACT (SVC 28) (System, job, 6-55/6-56
device, etc., data)
MOUNT (NSA, NODISPLAY, NOMES— 4-61, 4-63
SAGE)
MOUNT (SVC 30) (Return Codes) 6-58/6-59
OPEN (WP PLOG option) 4-66
READFDR (PLOG & PAREA options) 4-79
READFDR (SVC 24) (WP files) 6-46
RENAME (Renames libraries) 4-87
RENAME (SVC 26) (Libraries) 6-48
SET (JOB queue, class, CPU time) | 4-97, 4-100/4-101
UFBGEN (NODISPLAY, tape, PLOG) 4-123, 4-131/4-133
XIO (UCPRINT, DEVSTATUS) 4-136, 4-139
XIO (SVC 3) (Input parameters) 6-11
TECHNICAL CXT (Macro example) 4-138
REVISIONS Control Block Offsets 5-1/5-40
XI0 (SVC 3) (Tape and non- 6-13/6-14
standard diskette)
FREEBUF (SVC 6) (Interaction 6-19
with GET/FREEHEAP SVCs)
UNLINK (SVC 15) (Enhanced 6-22
processing)
CHECK (SVC 17) (IOSW in Regs 6-25/6-28
0 and 1)
CHECK (SVC 17) (TC event) 6-26/6-28
READVTOC (SVC 19) (Number of 6-29

unused blocks)

iii

TYPE DESCRIPTION PAGES
TECHNICAL MOUNT (SVC 30) (Parameter 6-57
REVISIONS extensions)
MOUNT (SVC 30) (Non-standard 6—59
addressing)
PUTPARM (SVC 33) (Extensive 6-23/6-67
revision)
SET (SVC 35) (JOB parameters) 6-68
DATANAME SUBBLOCK (FORTRAN B-18
fields)
EDITORIAL CHECK (MESSAGE option) 4-14
REVISIONS EXTRACT (Operand descriptions 4-26/4-28
EXTRACT (SVC 28) (Parameter 6-52
clarification)
File Status Codes moved to 7-48
Appendix C C-12/C-19

Miscellaneous Changes

4-25, 5-1, 6-21
6-53, B-15,
B~17/B-20

iv

TABLE OF CONTENTS
PAGE

CHAPTER]. INTRODUCTION 00 0060000006000000000000000000RBNELS 1_1

CIIAPTERz STANDARDS S0 00002000020 R 0PN NOBROOCOLBBBEEBOBEBNOESNPOSES 2—1

2.1 Programmingcecseessccecsecccsccssscascasss 2-1
User Programsceosceecceeaccasssscsassasaas 21
Constraints on Code and Data sseeeseseseecs 21
The Reentrant Program Segment ..eccececeees 2-2
The Modifiable Segment ...cecevsvecccacces 2=2
Creation of 'Static' Areas .eceossesccsscecs 23
Address Constantsccceeevcecccsnccacs 2=5
Using the Assembler for 2200VS Object
Code cevceevrcccsccnsnccnccnnrsnnsancnes 29
Transfer of Control ...cceeeecececsanssass 279
CALL 00 Q00 0506000 RP SO NSPLOOD O OSSP ONORE SN EDN 2-15
LINK ..vceeceesecscessosscssascsncasascssanss 2-16
Supervisor Interface .ceceesecssvsesasaass 2-17
Standard Argument Lists for CALL
OF LINK sivvivecsessssncascncasscananns 2=17
Use of Program-Level Parameters 2-18
Run-Time Device and File Assignment 2-18
Default File Specificationsccc0000. 2-19
Run-Time Specification of Options 2-19
Run-Time Command Interactionc..... 2-20
Standard Parameter-Reference—Names 2-20
Supervisor Call Routines ...ceeececesconcees 2-21
System Dialogue and Workstation Use 2-22
Error Handling ...cccceecvcvnccescscennssnese 2-23
2.2 Documentation ...eeievrssecstsccscescnssanssnes 2=25
Naming Conventions ..eeeeeccacscsssccscsscse 2-25
External Names in Code .ceeeeceaceccnccees 2-25
Names in System Data Structures 2-27
Macroinstruction Descriptionscec000... 2-28
Data Layouts and Descriptions ...csceecessss 2-28
Supervisor Call (SVC) Routine ‘
Descriptions ..ieeeceessccccnsasccssncnss 2-29

CHAPTER3 SYSTEM DESCRIPTION S0 s 0ccecosesr NP 00000 B0000 0 3-1

3.1 Virtual MemOYY ..cieoecesasscsssconsassassnssses 3-1
Relation of Virtual Memory to Physical
MEMOYY ceceeeeccvscsccaasscasacnncsscsnsssses 3—1
Address Translation, Pages and Page
FaultS ceveessseeosccossoncscasencssssscscses 372
User Program Efficiency and Paging ...cec000. 3-3

3.2

3.3

3.4

CHAPTER 4

4.1

TABLE OF CONTENTS (cont'd)

Supervisory FUNCtionscceveecveccccesscnsees 3
Task Scheduling and Timing ..cceceeecseccsacss 3=
WAIT and SEND Primitives .i.eccceceesccscsess 3
Intertask Message Primitives eceececeecccceee 3
Supervisor Call Interruptionscecaeees 3=
I/0 Initiation ..ieeveeececsccscccscasscesaee 375
I/0 InterruptionS ...ceecececsssccssssscnsass 375
Clock Interruptions ceecssessvssens ces 3-6
Program Interruptions (Other Than Page

FAaultS) ..vevecccscsesescescscssscsncanses 3—6
Program Normal Terminationcceeceeececes 3-6
Program Abnormal Termination .ceceveeceacases 3-6
Program Initiationeccececeeececcconcscee 37
Microcode Loading ...ec... cscsesscscscsaseses 3=7
LOBOEf sivieeenseesccccccsescncscnsessasasses 38

Data Management Functionscsvcescecccssscess 3-8
Top Level Data Management Function

11707 7e3 of o D
Data Management Support SVC'Scceveeaeees 379

XIO teveeeesccsosnnnccncsoscscscncasssosseanns 379

ALEX tceeveceenssocsesssscanscscasssonansa 3-9

CHECK ¢eeeesencscocscesnscccssssasssssanse 379

Disk Storage Description ...ecceeeessoacassesse 3-10
Volume Label .veivceeececcccccssenssccsossses 3—10
Extent Organization cececsccsncana . 3-10
Volume Table of Contents ...ccccevecececcases 3-11

SYSTEM MACROINSTRUCTIONS ..c.ceceesceccveescansees 4-1

Macroinstructions Available .ciceesscsccecsccnes 41
Allocate Extent (ALEX)ecececceccccacceee 4-3
Generate Alternate Index Descriptor Block

(A}{DGEN) e 00 0eessssrss o nsseNeR OIS OEBROEOSIEOESN 4_4
Generate a Buffer Pool Control Table

(BCTGEN) +evvsessnccscnsesensccnssnssanses 46
Call a Subroutine (CALL) ...ceeeevrencscesees 4-7
Cancel (CANCEL) teeveovcsscccsccasnoscoscesas 4—8
Cancel Exit (CEXIT) tececcaccaccans e 4-9
Check For Event Occurrence (CHECK) 4-12
Close File (CLOSE) ..c.vceesssccccccsassasas 4-16
Create Intertask Message Port (CREATE) 4-17
Return CEXIT 'RETURN' Information (CXT) 4-18
Delete Record From Indexed File (DELETE) ... 4-19
Destroy Intertask Message Port (DESTROY) ... 4-21
Dismount Disk or Tape Volume (DISMOUNT) 4-22
Extract Data From System Control Blocks

(EXTRACT) suvesecscsasccsososscnsasanases 4—24
Generate Selected Parameter Group Control

List Fields (FMTLIST) ...eeevevcccccccess 4-33
Free Buffer Space (FREEBUF) ...c.cececaseass 435
Deallocate Heap Storage (FREEHEAP) 4-36

vi

TABLE OF CONTENTS (cont'd)

Get Buffer Space (GETBUF)ccecceeeeees. 438

Allocate Heap Storage (GETHEAP) ceeeaes 4-39
Get Parameters (GETPARM) ..vvsvveescnssccans 442
Halt I/0 Operation (HALTIO)c.covvecases 4-45

Generate Parameter Group Control List

(REYLIST) cuovveececncscansenasanoncasaos G447
Link To Another Program or Subprogram

(LINK) siseoneconosnnnsssrssansonccanass 452
Supply Program Parameters (LINKPARM) 4-55
Log Off Interactive Terminal (LOGOFF) 4-60
Mount Disk or Tape Volume (MOUNT)c00.. 4-61
Generate Display Message (MSGLIST) 4-65
Open a File (OPEN)ceecveecscenncances 466
Modify Program Exception Exit Status

(PCEXIT) 4evevvecrncsnncnsasannascesnnes 4-68
Protect a Disk File (PROTECT) .vsvvececssees 4=70
Supply Program Parameters (PUTPARM) 4-73
Read a Record (READ) ...ceecosncssccsccnsaes 475
Read File Descriptor Record(s) (READFDR) ... 4-79
Read Volume Table of Contents (READVIOC) ... 4-82
Register Equation (REGS)ccecveveccneenn 4-86
Rename a Disk File (RENAME) ceesesnsass 487
Remove Timer Interval (RESETIME) 4-90
Return to Invoker (RETURN) ...ecveesesannes. 4-91
Rewrite a Record (REWRITE) .cieseseccsconees 4-92
Scratch a File (SCRATCH) ...cceccecacssacass G4-94
Set Task-Related Defaults (SET)eeceeees 4-97
Set Interval Timer (SETIME) eees 4102
Start File Processing in Specified Mode or

at Specified Record Location (START) .. 4-103
Submit Job or Print Requestcc000a... 4-111
Set Telecommunications Stream Options

(TCOPTION) «vvvveencnencesnnceonans eee. 4-119
Cet Date and Time (TIME) .c.cveecereveseoss 4-122
Generate a User File Block (UFBGEN) 4-123

Write a Record (WRITE) .ieecvsvonnccsasasss 4134
Execute Physical I/0 (XI0) ...ceeeevsacese. 4-136
Transmit Intertask Message (XMIT) 4-141

CHAPTER 5 CONTROL BLOCKSceveeeeen cesisenan cereseses 571

5.1 Introduction ...ceeeesesccctcesescstsssccnnns ceeses D1
AXD1 (Alternate Index Descriptor Block) 5-2
BCE (Buffer Control Entries) ..ccvieeescessces 35
BCTBL (Buffer Control Table)cceeesessas 56
EXTRD (Result Area of 'Extract' SVC)eea. 57
FDR1 (File Descriptor Record)eeeeeeesee 5=17
FDR2 (Additional Extents for a File) 5-20
IORE (I/0 Request Element)csceesscessss 5-21
OFB (Open File BloCK) .v.evecssssssscesocess 5=23

vii

CHAPTER 6

6.1

TABLE OF CONTENTS (cont'd)

TPLAB (Magnetic Tape File Header, Trailer,

and End~-of-Volume Labels) ..cccecvsseseas 3-25
TPLB2 (Magnetic Tape Secondary Header,

Trailer and End-of-Volume Labels) 5-26
UFB (User File BlOCK) :eccesoseasanscssneess 5=27
VOL1 (Standard Volume Label for Disk or

Magnetic Tape) cviveececcoscssssacnssanss 5=40

SUPERVISOR CALLS e e s s 000000000 PERIOIGERESIOTOSRTCOS 6—1

Intmduction 000 00000 PRI SISROEOIOESLBNDNOLOLOERIOSIOOSETCOEOETDS 6-1

Open File (OPEN)cvecerccccnssnsoscacanes 63
Close File (CLOSE) ...vcecevccecssacsccnsacss 6~8
Get Date and Time (TIME) ...eceecenscscnsses 6-10
Execute Physical I/0 (XIO) .eeceovonascceess 6-11
Link to Another Program (LINK)ccc0... 6-15
Get Buffer Space (GETBUF) .ecceecesccscesses 6-18
Free Buffer Space (FREEBUF) ccveseesscccesss 6-19
Halt I/0 Operation (HALTIO)cocecceeees 6-20
Allocate Additional Extent (ALEX)e00... 6-21
Return from Program Entered by Link

(UNLINK) coveeeeencoececanccancecncsnsess 6-22
Cancel Program (CANCEL) ...ceeecesvcccsscces 623
Check for Event Occurrence (CHECK) ...eees.. 6-25
Read Volume Table of Contents Block

(READVTOC) teiveeescnanccncssocnacsansens 629
Request Parameters (GETPARM)ccccaseess 6-33
Read File Descriptor Record (READFDR) 6-46
Rename Disk File (RENAME)ecoececesceacs 6-48
Scratch Disk File (SCRATCH) ..ceceececesease 6=50
Extract Data from System Control Blocks

(EXTRACT) +veeveeesecansaccscssosasnsaces 6-52
Mount Disk or Tape Volume (MOUNT) 6=57
Modify Program Exception Exit Status

(PCEXIT) suvvieeeeeeconaascacancnncanases 6-60
Set or Reset Timing Interval

(SETIME/RESETIME) ...eevesvecanscssscssss 6-62
Supply Program Parameters (PUTPARM) 6—63
Set Task-Related Defaults (SET)c..... 6-68
Transmit Intertask Message (XMIT)c...00. 6-69
Create Intertask Message (CREATE) 6~70
Destroy Intertask Message Buffer

(DESTROY) +eveevevsnsncaannsnnsnscannnees 6-71
Set Cancel Exit Options (CEXIT) ...cccseceee. 672
Dismount Disk or Tape Volume (DISMOUNT) 6-73
Protect File or Library (PROTECT) 6-74
Log Off Interactive Terminal (LOGOFF) 6-76
Submit Job or Print Request (SUBMIT) 6-77
Allocate Heap Storage (GETHEAP)ceeeeees 6-79
Deallocate Heap Storage (FREEHEAP) 6-81

viii

CHAPTER 7

7.1
7.2

7.3

TABLE OF CONTENTS (cont'd)

DATA MANAGEMENT SYSTEM SERVICEScccccceensces

Introduction ..c..cceeecccessceccosscconcncccscsce

VS DiSk Files @0 0000000000t e0 00 00RO LPIBOERLSESS

Record Access Method (RAM) - Disk Files
File Organization Definitions ..cceeeeesee
Consecutive Disk File Fixed-Length

Records (Blocked) ..ceeessssssccccccas
Indexed Disk File Fixed-Length Records

(Blocked) c.cieesscessssancsnsnnacnnes
Consecutive Disk File Variable-Length

Records (Blocked) ..ceececesaccaccnsas
Compression Option cesecces cecscases
Indexed Files with Variable-Length

RECOYAS ceveesecssccssncsesssnacssnsas
Function—-Requests and Function—Request

Modifiers (RAM)c.ec0cecccecnnns
Read File Status with UFBEODAD

Returnccee cessssscercacssas
WEite ceeevvssesncnsccnssvccassccnccnsesss
ReWrite ..cieeccecsastesoscsossnscscsascasanse
Delete seveevcscscesccensssncscsccasoscncs

Start CRCRUCSC A S N I) s eenovssesensoesasn e

Start Function UFBEODAD Returnsccce.
Notes for Record Access Method (RAM)
Block Access Method (BAM) - Disk Files
Function-Requests and Function-Request
Modifiers (BAM)ccecvevenccscnnss
Read Modifiers ..ceccevecsesacssnsnsnsnns
Read File Status Using UFBEODAD Return ..
Notes for Block Access Method (BAM)
Physical Access Method (PAM) Disk Files
Function-Requests and Function-Request
Modifiers (PAM)ccceveenenccccane
Notes for Physical Access Method (PAM) ..
Notes on 2200VS Disk FileS .cceceecsncescsnns
Notes on File Organizationcecceccese
2200VS Indexed File SUpPPOrt cecseececcsccssacece
Indexed File Creation ...cicccececcccscccncs
Accessing an Existing Indexed File
Buffer Options for Indexed Files ...cccvsees
Indexed File Structure ..eieeccesccscscccnes
Functional Overview of Alternate Indexed
File SUPPOTt cvievcecenrococcsososanonanes
Introduction secececesesacococosccansonana
New Fields for DMS Functions
(UFB and AXD1) teseeseseans ceees
DMS Functions ...ceceeeececcecccccconcnsans
READ FUNcCtioneveeseecscaccccncnscns
WRITE FUNCLioN .ieveecacccansessacssannnse
REWRITE Functionciecevceecccssseces
DELETE FUNCtion ..ceveeescecsccnvessoasscs

ix

7-9

7-9
7-10
7-10
7-10
7-11
7-11
7-12

7-13
7-13
7-13
7-14
7-15

7-16
7-17
7-17
7-20
7-21
7-21
7-22
7-23
7-24

7.4

7.5

7.6

7.7

7.8

TABLE OF CONTENTS (cont'd)

START FUNCtion .ieeeseesvccecscencsoscsans
OPEN Function - Existing File
OUTPUT Mode File Attribute
Specification .ceeeeescecesacecsnnese
Alternate File Error Log (OUTPUT Mode)
Using the Error Log to Correct Errors
Overview of Indexed and Altermate Indexed
File Structurescccececeecrscansssces
Indexed FileS .iiceevcerccscsssnsscssanse
Alternate Indexed FileS ...eceveccscescss
Internal Representation of Low-Level of
Primary-Tree (Data Records Within Data
BlOCKS) soesessnessocssscncassannssssanns
Initial Implementation Notesiceeeesasse
Internal DMS Record Formats for Alternate
Indexed FileS tieevessescssosccscsssnsnns
SVC OPEN - Existing Alternate Indexed
File seascccccssossssssesscassssocnccssna
SHARED MOA€ cescvvescscsccssnsosnnsecasocassccnscse
Log FileS seeeasecsossrssnensoncsasccnsscnsse
Log File Special FeatuUreS ...ccccceeocsscoess
Read-Only Access in SHARED Mode ...ccocecass
Advanced Sharing (Multiple Resources)
General NOteS cecevecsvscoccccsccccncassnnns
Detailed Functional Overview — SHARED Mode..
Summary of START Functions ...ccecececescacse
UFB Field UpdatesS seeveececcccccsccsssscscasne
DMS Function—RequestS ...ccccececscscecocccssoss
DMS Function—Request Entry cecese
DMS Function—Request Return ..v.ecevsecoccssse
Printer SUPPOTL ...cevecscncccescsasccccassonss
Write Function-Request (OUTPUT) ...cccvcceee
Workstation Supporteccceccecnccccccaccss
Read Function-Request (I/0) ..ccceeescsccncs
Rewrite Function-Request (I/0) ...vccccecnee
Start Function-Request (I/0) ..ccceecccccnne
Magnetic Tape SUPPOYt eevececcoscsccnsoccnsnccns
Mount/Dismount a Tape ..cceeessccrosccoccacs
Initialize a Tape Volume ..cceeeceencccnnccs
Open a Tape File s.cvceeccecccccnsvossconnne
READ Function — RequeStccccccoccecscanse
WRITE Function -~ RequesSt .v.evvcescoccassass
START Function -~ RequesSt .cecceacvscncocnccca
Close Tape File .vivsecessesssssnsancncncass
Multiple~Volume Tape File ..cceececocncvossse
To Read a Multiple-Volume Tape File
(INPUT mOdE) +vsvconosccoccanssscsnoonse
To Create a Multiple-Volume Tape File
(OUTPUT m0de) +vceecsecscaanncsanssnns
7-Track Tape SUPPOTL cecseecvcsscssscscssans

7-27
7-28

7-28
7-28
7-29

7-29
7-29
7-30

7-31

7-32
7-33
7-36
7-37
7-37
7-37
7-41
7-42
7-44
7-44
7-46
7-46
7-48
7-49
7-50
7-51
7-52
7-53
7-54
7-54
7-55
7-56
7-56
7-61
7-62
7-62
7-63
7-63

7-63

TABLE OF CONTENTS (cont'd)

7.9 Physical Access Method Functions ...e.eceececeeee 765

APPENDICES

Appendix
Appendix

Appendix

DOCUMENT HISTORY

UFB Field Definitions for Physical

Access Methodccvveeeecesccscsnsenees 7-65
Read Block Function-Request

(INPUT OF I/0) .vevevecccnnnncnncnnnns oo 7-66
Rewrite Block Function-Request (I/0) 766
Start Function-Request (INPUT, I/O, or

OUTPUT) teveecesocsnscssscccnncssnsnsssas 7—67
Write Block Function-Request (OUTPUT) 7-68

A - Data Area Macroinstruction Format A-1
B - User Programs in The Wang 2200VS B-1
The Program ...cceeceeessssscsscsssasscssssss B-l
The Program Skeletonccecve cecesessscas B-1
The Run BloCK .vieesevcvessncecosssncnsssseeas B=3
'Static’' BlOCK ssvsevsescsseveesscsssassassas B=5
The Symbolic Blockvcveevesceccacasaassss B9
The Symbolic Sections scieeeececcssscessasecs B-10
Statement Number Subblock s..cceeveeccescses B-13
Dataname Subblock ...ccceecscacsccsccceseess B-15
The Linkage Block ceesessssesesssrsess B—21
Code and 'Static' Section Blocks in the

Linkage ATEA .eeceeeessssnvesossosonsssses B=22
Relocation Reference BloCK ...cveeeceeceesss B~24
Translator Processing ...cceeececsscesscasss B=26
Linker ProcesSsSing .ciecescesesscccscssssesse B=27
Run ProcessSingcceeeeeeecececssnccssessss B-28
C - Data Management System MessagesS «........ C-1
SVC OPEN Cancel MeSSageS .scesecscocccssscsss G2
SVC OPEN Respecify MessSagesS cceceeesescescess C-4
DMS Function-Request Cancel Messages ..e.cee... C-8
SVC CLOSE Cancel MeSSageS ccseseccccsesseccsss C-10
File Status Codes for DMS and ADMS C-11

The First Edition LSRR A SR BTN I A IR B B B S S N R BB A B I B BB DH—l
Ttle Second Edition @as 00 s s 00 Ss606c00ss 8000000000000 DH-3

Addendum

to the Second EQition ..c.cevecceeccscccseeaess DH-4

INDEX 9 0800080060600 0000000008000680060000300c¢s0000000000000008DFTS IndeX"l

xi

CHAPTER 1: INTRODUCTION

The Wang VS Virtual Memory Operating System is intended as a
low-overhead multiprogramming system for a medium—sized business
machine configuration. As such, the design emphasis is on small
size and simplicity of operation. This is apparent in many of
the system's components: a simple scheduler, conventional 1I/0
system, limited segmentation and memory protection capability,
etc. On the other hand, facilities such as ANSI COBOL (1974),
indexed file support, hierarchical file directory structures, and
a large address space supported by an efficient paging mechanism
make the system competitive with many larger computers.

The programmer should understand what the various system
components are, how they interface with his program, what the
(virtual) memory is used for and how it is partitioned for
various purposes, and what certain operating system data
structures (control blocks) contain. The purpose of this
document is to provide this information.

Figures 1-1, 1-2, and 1-3 which follow are overall views of
virtual memory and of the operating system's control block
structure, and are provided for reference while reading the text
of the document.

1-1

Segment 0

End resident
area

End sometimes
resident area

Less than
256K

256K

Figure 1-1.

(SYSTEM SEGMENT - PROTECTED FROM USER MODIFICATION
- ADDRESSABLE FROM ALL TASKS)

0 | Fixed low storage

| (0l1d and new PCWs, I0CAs, IOSW, system work
| area)
l _______________________
| Directly addressable system area (to byte
| 4096), code and control blocks
= = = = e e e m e m e m e m— - — -
| Additional resident system code and control
| blocks (variable)

- | _______________________
| System Free storage pool, allocatable by
| GETMEM (ends on full page boundary)

- | _______________________
| System transient (paged)
| code and data
.
.
‘ L]

e i T T s
| Unused and unaddressable pages
|
l .
|

-->

Virtual Memory Map — Segment 0 (System Segment)

1-2

Segment 1

1024K+0
1024K+4
1024K+8

024K+8n+8

No more than
1024K+512K

Figure 1-2,

(USER REENTRANT PROGRAM SEGMENT - PROTECTED FROM
USER MODIFICATION - ADDRESSABLE FROM ONE OR MORE
TASKS)

-->

Length of program text area (8%n)

Length of 'static' initial values block
(4 bytes)

Run-time length of total 'static' areas (4
bytes)

- e e e Mm em am e e e Mm mE Am e e e e wma W e e e

Linkage block (variable)

Virtual Memory Map-Segment 1 (User Program Segment)

1-3

Segment 2 (USER MODIFIABLE SEGMENT - NOT PROTECTED
~ ADDRESSABLE FROM ONE TASK)

2048K | File buffer area (initially no space
| reserved - stack limit increased by full
| pages to acquire space)
2048K+2aK el e el
(stack limit) | Unused stack space (contents unreliable to a
| user program)
Stack top s EILIE I S IE i A B I R I R e R
pointer varies | Stack (grows downward — toward 2048K - may
| not pass stack limit)
Register R14 —-> |- - = - = = = - = = = = = = = = = = = - = - -
contains this | Static areas (some of which may be
address on | initialized), as addressed by user's program
program entry | through RCONs and register 14

| Preceding (LINKed-from) program invocations'
| stack and static areas

| A few words which should not be modified by
| a user's program (task-related system
| _information)

No more than -->
2048K+512K

Figure 1-3. Virtual Memory Map-Segment 2(User Modifiable Segment)

CHAPTER 2: STANDARDS

2.1 PROGRAMMING

This section describes conventions which must be followed in
writing code for the system in order to insure its successful
execution and maintainability.

2.1.1 User Programs

These include system utilities which do not require special
privileges, and data management routines which execute in an
environment similar to that of normal user programs. Programmers
writing entirely in a higher-level language (e.g., COBOL) need
not learn all the details of these conventions, but should be
aware of the standards for use of the workstation.

2.1.1.1 Constraints on Code and Data

For the following discussion, these definitions will be used:

Program - An entity either invoked by the command processor or by
a LINK. This may be composed of several modules.

Object Program - The representation of a program on the disk
after being processed by a compiler or linker.

Module - An individual assembled or compiled portion of a
program. A program consists of one or more modules.

'Static' Area - This is the special area that has the property of
appearing to be statically assigned space to a program using it.
This space is allocated on a program basis and released on the
same basis. The system will pre-initialize this area for the
program with initial values specified in the object program.

2.1.1.1.1 The Reentrant Program Segment

User programs in segment one will be reentrant (may not modify
themselves) . All programs activated by the RUN command on the
LINK SVC routine will be entered at the address specified in
virtual location 1024K+4 (segment one, page zero, displacement
four). Programs of up to 512K (K=1024) bytes (the full segment
one) can be supported. The reentrancy requirement suggests the
necessity of a separate modifiable area for variable data items,
and the necessity of dynamically initializing variables im this
modifiable area. This modifiable area is discussed in the
following paragraphs. The only other constraints on a user
program are that it must follow the standard conventions for
making requests of the supervisor, transferring control between
and within programs, and accepting and passing parameters. These
conventions are described elsewhere in this document.

2.1.1.1.2 The Modifiable Segment

Although more than one user of the system may be sharing the code
of the same program, each has a separate modifiable area. This
area is organized as a single linear pushdown list (stack) which
is entirely within segment 2 of the user program's virtual
address space and which extends to address 2048K+n (n < 512K).
The stack base (bottom-of-stack) is 2048K+n+l. The stack limit
(lowest allowed stack location, addressed by control register 2)
is 2048K plus a varying amount (between 0 and 128K) reserved for
I/0 buffers and other unprotected, 'heap'-allocated data areas.
The stack grows downward, (See the VS Principles of Operation,
Stack Oriented Instructions.) Proceeding downward, we have, on
entry to a program:

(1) An unspecified number of bytes of system information,
which should not be modified by the user program.

(2) An unspecified amount of information used by ‘UNLINK'
during final return from the program.

(3) 'Static' data areas as defined in the object format of
the program to be initiated (see below).

(4) A save area containing register contents and a return

point for final return from the program by means of the
'RETURN' macroinstruction or 'RTC 15°'.

NOTE:

The 'stack base' is defined to be the next
byte above (1).

2-2

Thus there may be many bytes of information on the stack when the
user program is entered. Before the program uses any of the
modifiable area other than the part containing this information,
it must use one of the PUSH-type instructions to decrement
general register 15 and thereby acquire additional space (this
space being "pushed onto the stack'"). Modifiable data items
which are not to be treated in a stack—oriented manner should
normally have space reserved for them at compilation time (by
defining them in a 'static' area) or immediately on program
initiation (either by pushing their initial values onto the stack
or by reserving space with the PUSHN instruction), so that the
rest of the stack may be used for stack—oriented data.

2.1.1.1.3 Creation of 'Static' Areas

The system supports a method for obtaining initialized or
uninitialized 'static' memory on the stack. This support is
invoked every time a new program is invoked by the RUN command or
by a LINK, and not at any other time. Basically the support will
assign an area of memory on the stack as the ‘static' area. The
size of the assigned area is determined by the size requested in
the object module. Locations in this area that are to have
initial values will then have them copied from the initial value
section of the program's object module. Note that this
allocation and initialization of memory will take place only when
the program is started by the command processor or when the
program is invoked by LINK. This means that program CALLs within
the object program will not cause memory to be allocated or
initialized.

When a program is initiated, either by the RUN command or LINK,
register 14 will point to the 1lowest address of that object
module's ‘'static' areas. Each program is expected to refer to
particular 'static' areas through the following convention:

A special type of address constant (RCON) may be written in a
program, naming a 'static' area, which is resolved to the
displacement of that 'static' area from the address passed to the
program in register 14. Thus the program can add the value in
such an address constant to the contents of register 14 and then
use the result to address a 'static' area.

When a LINK is performed, the issuer's 'static' areas are not
changed. When the issuing program is returned,its initialized
‘static’ area contents are still available. The LINKed-to
program, if it has a request in the object module for a ‘'static'
area, will receive a fresh area on the stack. This area will
remain for the LINKed-to program until it returns to the program
which issued the LINK. Addresses of locations in the LINK
issuer's ‘'static' areas will not be passed to programs invoked by
LINK except as the program itself passes such an address. If
LINK issuer wants, it can pass addresses in any of its ‘'static'
areas, but a LINKed-to program cannot either pass back
information in its 'static' areas or expect that values placed in
its ‘'static' areas will be maintained between its invocations by
LINK.
2-3

This system requires support on each of three levels:
(1) Compile or assemble time
(2) Linker (linkage editor) time (if binding is required)

(3) Program start-up time (either LINK or the RUN command
initiating the program).

The support required at each step is:
Compile Time

The compiler or assembler has the responsibility to supply
in the object program all information necessary to support
this feature, To do this, the compiler will have to
segment the program information and the data that is to be
in a 'static' area. If the program is to be runable
without having to bind (linkage edit), all references to
addresses in 'static' areas will have to be specified as
displacements into the block of ‘'static' areas for this
object program.

When data is to be used from the 'static' area, the program
will load a register with the value in the address constant
which contains the displacement of the desired data, and
will add the contents of register 14 to this value.

Binding Time

The linker (linkage editor) will collect the ‘'static' data
sections from all the subprograms. If two or more
subprograms have static sections with the same name, the
initial values from the first of these sections will be
used and the 1length of the resulting section will be the
length of the longest of these sections.

Program Start-up Time

The same mechanism will be used with programs started by
the command language and programs invoked by LINK. The
mechanism will perform the services only at the time of the
program invocation and not at any subsequent intermal CALLSs
or program RETURNs.

At program start-up time, the system will:

a. Push onto the stack an area equal to the total size of
'static’ sections as defined in the object program.

b. Copy values from the object program to the correct
locations in each new ‘'static' section. This is not a
simple move loop. The data is stored in the object
program in a compressed format. It has values only for
the areas that need initial values. Each initial value
in the object program has with it a displacement into
the whole block of 'static' sections.

c. Set register 14 to address the first byte of this area.
d. Perform additional program invocation processing.

2.1.1.1.4 Address Constants

There are three types of address constants permitted in a
program: A, V and R type.

The A type is used for addresses of items within the same
compilation or assembly. These may be the labels of instructions
or constants, or may be addresses relative to either of these.
Type A constants may be only in a program and refer to the
program itself, Some examples are:

L DC AQL) ADDRESS OF ITSELF
B DC A(L+2) ADDRESS RELATIVE TO ‘L'

The V type of address constant can be used to refer to locations
known only by their external names. These names are mnormally in
code areas or ‘'static' areas provided by another assembly or
compilation,

Both these types (A and V) can be used in the code area (segment
1) to point to other code areas, but cannot be in the code area
(segment 1) pointing to a 'static' area. (This restriction is
caused by the constraint that no location in segment 1 can be set
to a value differing from that on the program file from which it
will be paged. The starting address of a ‘'static' area is
unknown until the program starts running. For the address to be
relocated in the program, it would involve modifying locations in
the code area.) The system will, however, support address
constants in the 'static' area that reference locations in either
a code area or in other 'static' areas.

A CODE

B DC

C DC
ENTRY

D CODE

E DC

F STATIC
DC
DC
DC

G ° STATIC

Gl DS

G2 DS
ENTRY
END

H CODE

I STATIC
DC
DC
DC
END

F'123'
A(B)

A(B)

A(B)
A(F)
A(G2)

3F

V(F)
v(G2)
V(B)

Name of code area (external name)

Refer to location in same code area
Makes B an external name

Refer to location in another code area

Name of 'static' area (external name)
Refer to location in a code area

Refer to location in this 'static' area
Refer to location in another ‘static' area

Name of 'static' area (external name)

Makes G2 an external name

End of this assembly

Refer to a 'static' area in another assembly
Refer to a location in such a 'static' area
Refer to a location in a code area of
another assembly

End of this assembly

2-6

The R type address constant is used by the program to locate
'static' areas. Because the program does not know the starting
address of a 'static' area either when the program is compiled or
linked, a method is needed to calculate the absolute address of a
'static' area (or of a location within a 'static' area) wusing a
relative address in the program. When the program is initiated,
register 14 will have the absolute address of the start of the
block of static areas. Each R type address constant will contain
the displacement into the whole block of ‘static' areas (created
by program initiation or LINK) of the named 'static' area or
location within a ‘'static' area. The program will add the
displacement in the R type address constant to the value in
register 14. This will give the address of the item.

PROGR CODE
% INSTRUCTIONS TO ADDRESS A 'STATIC' AREA
LR R2,R14 STATIC BASE
AL R2,RDATA PLUS STATIC AREA DISPLACEMENT
GIVES ACTUAL ADDRESS OF
'STATIC' AREA
USING DATA,R2
RDATA DC R(DATA) DISPLACEMENT OF ' STATIC'
SECTION ‘'DATA'
DATA STATIC
DATAITEM DC F'5'
END

2-7

A more thorough example of assembler language source coding

utilizing a 'static' area follows:

PROG

*

* %k ¥

ST1

DAT1

PROG

ADDWORD -

CONT

RCON

REGS
CODE
BALR
USING

L
L

LR

AL
USING
ST

SR
RTC

STATIC

DS
DS

CODE
DC
DC

DC

END

R3,0
*,R3

R1,ADDWORD
R2,0 (R1)

R2,R14
R2,RCON
ST1,R2
R3,DAT1
RO,RO
15

A (CONT)
F'123'

R(ST1)

»,EQUATE REGISTERS
START A 'CODE SECTION
GET ADDRESSABILITY

GET ADDRESS OF CONSTANT
GET CONSTANT

FOLLOWING CODE USED TO
ADDRESS A 'STATIC' AREA

STATIC AREAS BASE
ADDRESS AREA 'ST1'

STORE CONSTANT IN 'STATIC' AREA
SET RETURN CODE TO ZERO
RETURN TO CALLER

ESTABLISH 'STATIC' AREA NAMED
'sT1’

RESUME THE CODE SECTION
ADDRESS OF DATA CONSTANT

DISPLACEMENT OF STATIC AREA
'ST1' WITHIN BLOCK OF ALLOCATED
STATIC AREAS

2.1.1.1.5 Using The Assembler for 2200VS Object Code

While the 2200VS Assembler language is closely modeled after the
IBM 360/370 Assembler language, there are some important
differences, the most obvious of which is the addition of several
instructions and the dropping of others. There are a few items
that have changed in the conventions beyond the instructions.

To assemble a program, the following conventions are to be
observed:

1. The first statement in a program should be a CODE
statement. This will cause the text following it to be
part of the reentrant program section named by the CODE
statement. The CODE statement can be used the same as
the IBM 360 assembler CSECT statement. The CSECT
statement is not used on this system.

2. If a static area is desired, the STATIC statement
should be used. The assembler allows any number of
these statements and will allow initial values to be
specified.

Rules for pseudo-instructions unique to the 2200VS are:
1. 1label CODE Not used; should be blank
The 1label is required and must be a maximum of eight
characters. It will be used as the external name of
this reentrant program section. Note: ENTRY symbols

in CODE or STATIC sections also are 1limited to eight
characters.

2, 1label STATIC Not used; should be blank
The label is required and must be a maximum of eight
characters. It will be used as the external name of

this 'static' section.

2.1.1.2 Transfer of Control

The modifiable area is also used in the course of transferring
control between routines and programs in three ways:

(1) The BAL, BALR, BALCI, BALS or JSCI instructions may be
used within a program to save a return point in a
register or on the stack and enter a subroutine. The
BC, BCR, BCS or RTC instructions are used to return.

2-9

2

3

¢

The SVC instruction is used to request services from
the supervisor, and save the general registers on the
stack before initiating the service routine. When the
supervisory service has been performed, return to the
user's program is effected by executing an SVCX
instruction (in the supervisor). The user's program is
concerned with nothing more than placing the address of
required arguments (or occasionally the arguments
themselves) on the top of the stack and issuing the SVC
instruction. Routines entered by svC instruction
normally remove their input arguments and leave outputs
on the top of the stack. Programmers interested in the
details of the resulting stack manipulations may
consult Figures 2-2 and 2-3. Figure 2-1 shows the
associated register conventions which a user program
must respect.

The JSCI instruction is used to initiate a transfer of
control between subprograms which have been bound
together into a single program by the 1linker program.
(Transfer of control between subprograms mnot bound
together may be effected by LINK, as in (4) below.)
The macroinstruction which generates the JSCI
instruction is referred to as 'CALL'. Figure 2-4 shows
the sequence of 1instructions (available as a
macroinstruction) which is used to effect this transfer
of control, and the resulting items pushed onto the
stack.

The LINK SVC is used to initiate a transfer of control
between programs not bound together by the 1linker
program. The LINKed~-to program should return to the
issuer by means of the same RETURN sequence (also in
Figure 2-4) used in conjunction with CALL. The user
should note that LINK will result in stack
modifications which do not occur with CALL. See
section 2.1.1.1.3, ‘'Creation of Static Areas', for a
discussion of this.

2-10

Registers

SP=15 Stack top pointer RESERVED (see Note 1)
Rl4=14 General (used to address 'static' areas)
R13=13}

General use

}
}
. } (R1 is argument list pointer for use with CALL or
} LINK, by convention)
}

Note 1. Register 15 (SP) must always address the lowest
location on the stack which contains usable data or
into which data may be placed by any non-PUSH-type
instructions. This constraint is imposed on all
programs.

Figure 2-1.

2-11

END ADDRESSABLE —3»

SEGMENT 2

SET BY
‘LINK’
ONLY

SAVE FOR
‘LINK’, ‘CALL’
OR SVC

S N

CONTROL REGISTER 1

SAVE AREA 4
FOR ‘LINK’

SAVE AREA
FOR ‘CALL’

.

Figure 2.2, 4

PRECEDING
STACK
IN USE

SVC SAVE AREA
FOR ‘LINK’ SVC

‘STATIC' AREA
FOR PROGRAM

Address of ‘UNLINK’ SVC

BACK CHAIN

REGISTERS 0-14
SAVE AREA

WORK AREA
PUSHED ONTO
STACK BY
PROGRAM

Address for Return

<1 SP ON PROGRAM ENTRY

A

REGISTERS 0-14
SAVE AREA

(BACK CHAIN HEAD)

ADDRESS 2,097,152 ~——3»

WORK AREA
PUSHED ONTO
STACK BY
CALLED
SUBPROGRAM

BACK CHAIN ‘

<t— SP ON SUBROUTINE ENTRY

“€— STACK TOP POINTER (SP)

1/0
BUFFER
AREA

(EXPANDS
UPWARD)

<€— STACK LIMIT POINTER
(CONTROL REGISTER 2)
ON PAGE BOUNDARY

2-12

Stack linkage item after SVC entry:

Byte

68 PCW (status)

64 PCW (return) with SVC number

60 Back chain to next outer-more SVC save area or CALL/LINK

save area

56 Reg 14 save

52 Reg 13 save

48 Reg 12 save

0-47 Regs 0-11 save

Entry to SVC: SvC (svcih
Exit from SVC: SVCX (Register)
Figure 2-3.

2-13

Stack linkage item after CALL:

Byte
64
60

0-59

CALL:

RETURN:

Address of return point
Back chain to previous CALL/LINK save area
Regs 0-14 save

JSCI 15,=A(Entry-point)

LA 0,return-code
RTC 15 (if unconditional)

Note that the value of register 0 saved by JSCI is not restored
to the register by RIC.

Figure 2-4.

2-14

CALL

Linkage by:

JSCI condition, indirect-word-address

register 1) | area pointer| pointer (same asl

I | sp) !

Exit by: LA 0,Return—code
RTC Condition

| | | | | I
| Registers | BEFORE ! ON ENTRY | BEFORE EXIT|AFTER RETURNI
| | | |] i
| I | | | |
I RO |Irrelevant |As BEFORE |Irrelevant |Return—-code |
R1	Argument list	As BEFORE	Irrelevant	As BEFORE*
	pointer			
[I			
R14	'Static' baselAs BEFORE	Irrelevant	As BEFORE*	
	pointer®*			
SP	Stack top	Updated stack toplIrrelevant	As BEFORE*	
]				
Other	Irrelevant	As BEFORE	Irrelevant	As BEFORE®
	l			
	I]		
(Control	[Previous save	New save area	As ON ENTRY	As BEFORE
I				

#¥ Not enforced by the system.

other purposes by the user program if appropriate.

Figure 2-5.

2-15

Unless current save area is modified before return.

Register 14 may be used for

LINK
Linkage by: SVC LINK

Exit by: LA 0,Return-code
RTC Condition

|
Registers | BEFORE | ON ENTRY | BEFORE EXIT|AFTER RETURNI

| | | | |
| | | |

RO | Irrelevant |As BEFORE¥ | Irrelevant |Return—code
| | | i

R1 |Argument list |As BEFORE |Irrelevant |As BEFORE
| pointer | | I
| | I |

R14 |'Static' base |New 'static' basel|Irrelevant |As BEFORE

| pointer®*¥** | pointer | |

- —— — e —— — — —— — —— —— — — — — ——— — ———

SP |Stack top (LINK|Updated stack |Irrelevant |As
| parameters) | top*¥*¥ | | BEFORE¥*¥ve¥
I | I I
Other |Irrelevant |As BEFORE |Irrelevant |As BEFORE
| ! | I
I [| I
(Control |Previous save [New save area |As ON ENTRY|As BEFORE
Iregister 1)| area pointer | pointer (same as| |
| l | SP) I l
I | l | |
* Program entry point address in register RO if LOADONLY

option specified.

Fedek New 'static’' areas, UNLINK information, register save
area, return address on stack.

Fedeicde But LINK parameters popped from stack (see SVC LINK
description).

Ficioick Not enforced by the system.

Figure 2-5. (continued)

2-16

2.1.1.3 Supervisor Interface

As mentioned briefly above, the SVC instruction is used as the
normal interface between user programs and supervisory routines.
In addition to the effect of the supervisory service request
saving status information on the stack, as in Figure 2.3 above,
there are four points which the writer of SVC routines and of
system programs in user program mode should be aware of:

(1) The top word of the stack should address an argument
list when the SVC is executed if the arguments for the
particular SVC are sufficiently many or sufficiently

long that passing them directly on the top of the stack
is infeasible.

(2) Register 15 (SP) is generally the only register which
must contain useful information when the SVC
instruction is executed.

(3) Corresponding to most valid SVC numbers are
macroinstructions which may be used in assembly
language programming to generate the SVC and pass its
arguments. These macroinstructions are described in
Chapter 4 of this document.

(4) All registers except register 15 (SP) are restored on
return from an SVC routine. When an argument list is
provided, results may be returned in one of the
arguments. In order to do this, the argument list must
be in a user's modifiable data area or in the system
area (segments 2 or 0). Otherwise results are returned
on the top of the stack, replacing all input arguments.

2,1.1.4 Standard Argument Lists for CALL or LINK

Communication between modular sections of programming is normally
effected through an argument 1list in standard format. Such a
list is constructed to pass parameters to a subprogram invoked by
the standard CALL sequence or LINK supervisor call.

The format is as follows:

| [. |
| Address of Arg (1) | | 1 . Address of Arg (Last) |

l I L. . I
0 4

2-17

Arg(l) through Arg(Last) are four-byte address values pointing to
the 1locations of the actual arguments. The high-order bit of the
last four-byte area should be set to one to indicate the end of
the 1list. Exceptionally, the arguments themselves may be placed
in the list in place of their addresses. Register R1 is loaded
to address this list before control is passed to the receiving
routine. Before initially invoking a program, the program
initiator (command processor) will set register Rl to binary
zeroes to indicate that no parameter list is being passed to the
program.

Note that a user program may return result values in an argument
list only if it can be guaranteed that the argument 1list is in
the user's modifiable area.

2.1.1.5 Use of Program Level Parameters

System conventions for communication between the user's program
interface (i.e., the command language) and the invoked programs
are not compatible with the use of standard argument lists. To
be runnable from the command language, programs must access all
run—time parameters using the GETPARM SVC. The GETPARM facility
is used to access run-time parameters in groups of
keyword—-identified values which are interpreted as:

(1) Run-time device or file assignments,
(2) Batch oriented run-time option lists, or
(3) Interaction oriented program command data.

Programs which require a more flexible level of interaction than
that provided by GETPARM should access the user workstation using
the standard data management facilities.

Parameters requested using GETPARM are usually accessed through
direct interaction at the user workstation. Alternatively, these
parameters can be prespecified within procedures using the
parameter specification statement. In addition, the PUTPARM
macroinstruction is available to allow a program to supply
parameters which are then available through GETPARM to the next
subprogram LINKed to by this program.

2.1.1.5.1 Run-Time Device and File Assignment

Parameter groups solicited by the OPEN routine are used to assign
actual devices or files to the internal filenames used within
programs for data transfer. All action related to device/file
allocation, file 1lookup, and control block generation is
performed by OPEN. OPEN uses a number of parameters which must
be specified by the union of information supplied in the User
File Block (the only explicit OPEN parameter) and the information
obtained using GETPARM. The User File Block is compiled into the
user's program.

2-18

Some of these parameters are suppliable only in the User File
Block (UFB). The other parameters are solicited using the
GETPARM facility with all solicited parameters defaultable to
values which can be supplied in the UFB. GETPARM enables the
user (or the command language) to modify the default values
specified; thus the GETPARM supplied values override UFB
information,

2.1.1.5.2 Default File Specifications

Default information for the specification of actual files at
run—time can be placed in the UFB anytime before a file is
OPENed. This facility should be used to minimize the amount of
information which must be acquired from the user. Information

which can be defaulted includes File Location Information and
File Size.

The disk space requirements of all output files (including
'print' files) should be specified in the UFB if possible. In
general, the size of an output file is related in some manner to
the size of an input file. Input file size is available in the
UFB for any OPEN input file located on a disk device. Thus, when
input files can be OPENed first, this size information may be
used to calculate default space requirements to be placed in the
output file UFB.

All information necessary to specify work files should be
presupplied in the UFB or elsewhere. Space requirements may be
developed in the mammer described for output files. File
location information, consisting of a filename and a volume
designation, should be developed as follows. The volume location
of the work files can be left blank in the UFB, to be supplied in
the ETCB by means of a command language 'SET' command. The
library name for work files is ignored in the UFB before OPEN.
It is set to a special user work library (associated with the
logged-on user) by OPEN processing. The default actual filename
should be formed by using characters '#' or '##' as a prefix to a
maximum four-character name which is unique to the program. OPEN
will place after the supplied name a four—character suffix
sufficient to guarantee temporary uniqueness. Work files whose
names begin with '#' are scratched when closed. Those whose
names begin with '##' are retained until run termination.

2.1.1.5.3 Run—-Time Specification of Options

Batch oriented lists of run-time options should be solicited
directly by the programs using the GETPARM facility. By
convention, the parameter-reference-name OPTIONS should be used
to identify this type of parameter group. Also by convention,
users of this facility are asked to specify reasonable defaults
for all keywords specified. :

2-19

2.1.1.5.4 Run—-Time Command Interaction

Programs which are inherently interactive may be able to use
GETPARM to solicit user directives and associated parameters.
Each format presented to the user must be labeled with a
parameter-reference-name. The programs using this facility can
be invoked and directed from procedures.

2.1.1.5.5 Standard Parameter—-Reference-Names

The parameter-reference-names (PRNAMEs) used to identify file
specifications and other parameter groups solicited through
GETPARM should be chosen to assist the user in easy
identification of parameter function. Within groups of related
programs, naming conventions should be established to enhance
recognition and predictability.

Standard PRNAMEs will be assigned for system utility programs and
compilers. The PRNAMEs which have been assigned to date are the
following:

INPUT - The basic input file (if only one).
INPUT1-INPUT (n) - Multiple input files used for
equivalent purposes.

OUTPUT - The basic output file.

LIBRARY - A library used for input purposes.

WORK - An I/0 file used for temporary storage
(if only one).

WORK1-WORK (n) - 1/0 files used for temporary storage.

OPTIONS - The batch oriented option list used to
define run-time parameters.

DISPLAY - The user's workstation.

PRINT - An output file containing data to be
printed.

2-20

2.1.2 Supervisor Call Routines

Routines are entered by SVC instructions to accomplish functions
vhich require:

. Modification of the system area of memory, which is
normally protected from the user, or

. Execution of privileged instructions, or

. Intimate knowledge of the operating system's
organization,

and which are not accomplished by non-supervisor—call coding in
dedicated system tasks such as the paging task. Among these
functions are:

. Initiation of physical I/0 requests.

. Opening and closing files, including allocation and
construction of Open File Blocks.

. Synchronizing tasks through semaphores.

. Performing service functions for wuse by other
supervisor call routines (such as allocating system
area memory space for control blocks).

The system programmer should note that the special ‘'paging task'’
cannot in the current implementation issue SVC instructions.

Supervisor call routines accept parameters on the top of the
stack. The lowest parameter address is at displacement 72
(decimal) from the stack top pointer on entry. They are entered
by means of the SVC instruction, which establishes a new save
area on the task's system stack as shown in Figure 2.3. These
routines may extend the stack in the user's modifiable area by
PUSHing items onto it. They need not POP all these items off
again before returning. Supervisor call routines should exit by
issuing an SVCX instruction, which restores all registers and the
Program Control Word from the user's stack and sets the stack top
pointer (register 15) to the address value in the register
specified in the Rl field of the SVCX instruction.

2-21

2.1.3

System Dialogue and Workstation Use

The workstation of the Wang 2200VS System must share the duties

of:

1)

(2)

the primary data-entry and display device used in a
program

a system console device for presentation of and
response to system messages, which may be:

(a) solicited (e.g., responses to commands)

(b) unsolicited (e.g., volume mounting requests, device
error information, etc.)

Special conventions and protocol are necessary to meet the
requirements of these multiple uses:

¢y

2

3

)

Supervisor call routines and unprivileged system code
(such as data management routines) must use the CANCEL
or GETPARM supervisor calls to send messages to the
workstation.,

Messages must be in the format specified in the
descriptions of CANCEL and GETPARM in Chapter 6 of this
document.

Messages relating to background program runs (programs
running without an associated workstation) will be sent
to the system console device.

When GETPARM processing is entered, the workstation
screen, its resident buffer contents, its status
(keyboard locked or unlocked, ‘'attentions' received,
etc.) and its tab settings are saved. Before resuming
user program processing, this screen and status are
restored. This saving and restoring also occurs when
the 'Help Processor' is entered as a result of the user
striking the HELP key on his workstation.

2-22

2.1.4 Error Handling

There are several classes of errors which the operating system
may encounter, and which require differing responses:

. Program exceptions in user programs

. Program exceptions and other uncorrectable errors in
system routines

. Invalid parameters passed to system routines
. I/0 errors

(1) Program exceptions in users' programs are of concern to the
operating system's program check interrupt handler, which
passes control to the HELP processor or to a
program-specified exception handler,

(2) Program exceptions and other uncorrectable errors in system
routines may result in message display by the CANCEL SVC
(disallowing continuation of the program's processing) if
their cause can be traced to the user's program (as may be
the case with certain exceptions in supervisor call
routines). Otherwise they must be considered probable
system failures, and result in an orderly system halt.

3) If a system routine receives invalid parameters, it should
be able to detect this during initial validation of the
parameters and before using them for further processing.
It then responds as in (2) above.

(4) 1/0 errors may be of three kinds:

. Soft errors, signifying that an I/0 operation was
successfully completed after retry by the separate I/0
Processor (IOP).

. Hard errors, signifying failure of an I/0 operation
(including memory parity errors detected on an I/0

operation) .

. Logical file processing errors which do not reflect any
errors occurring during an actual I/0 operation.

2-23

Soft error indications are passed to the CHECK supervisor
call routine (in the I/0 Status Word) to be logged in a system
error logging file, and otherwise ignored. Hard errors are
passed in the same way. The task responsible for the I/0 either
issues a CHECK to wait for completion of the associated 1/0
request or will make reference to the file again (by another Data
Management Function request, a CLOSE, or an implied CLOSE on
program termination). At that time, error indications are
examined and the user's 1/0 error routine entered for hard errors
if such a routine has been provided. In the absence of such a
routine, the user's program may be abnormally terminated at the
discretion of the Data Management routines, through issuance of a
CANCEL supervisor call. Memory parity errors detected by 1I/0
processors are logged just like other I/0 errors.

The user's I/0 error processing routine and his end-of-data and
invalid-key-condition routine are specified in the User File
Block (see Chapter 5). These routines are entered after
interpretation of the I/O Status Word (IOSW) by the Data
Management System routines. The I/0 error routine is entered on
logical file processing errors (such as invalid function
requests) as well as on actual hard I/0 errors.

These routines are entered from the unprivileged data management
routines as if the data management function had returned
normally, but with the return address modified to be one of these
addresses from the UFB. All register contents are restored
except register zero, which is set to contain the normal return
address from the function (next instruction after the JSCI
instruction by which the function was initiated). Register 1
continues to address the User File Block, which may be wused to
determine the nature of the unusual occurrence, as indicated in
fields UFBFS1 and UFBFS2 of this block (file status bytes). The
I/0 error ©processing routine is entered for all unusual
conditions, including end-of-data and invalid-key conditions, in
the absence of a separate routine. The end-of-data and
invalid-key routine address, when supplied, overrides the 1I/0
error routine in the case of end-of-data and invalid-key
conditions.

These routines are entered with the same addressability and
protection status as for any other part of the user's program.

2-24

2.2 DOCUMENTATION

2.2.1 Naming Conventions

No name in the system may be over sixzteen characters long. Thus
no control block label may be over fifteen characters 1long (to
allow for suffixing - see Appendix A). No external name
(appearing in the Linkage Section of an object module) may be
over eight characters long.

Uniform conventions for names of external entities (which may be
referred to in other parts of the system) are useful in order to
prevent conflicts of names as well as to make documentation more
intelligible. The standards to be maintained by programmers of
operating system routines are described in the following
paragraphs.

2.2.1.1 External Names in Code

Names which appear as entry names in object text must be unique
across the system. To insure this, a unique prefix for external
names is assigned to each separately assembled or compiled
portion of operating system text.

1. The first character of a name identifies WANG-supplied
programs:

W - WANG supplied

2. The second character of a name identifies the major
area of system code to which it belongs:

Central supervisor

- Supervisor call routines

- Initialization

- Command and HELP processing
- Data management

- System service tasks

- Operating system utilities
- Stand-alone utilities

- Linkage editors

Assembler

- COBOL

- RPG

- BASIC

- Text editors

- Other independent components
-~ FORTRAN

- Data base

- Word Processing

-~ File management utilities

OEXHM-mmPaOQPrrocHOTUOXZ2 <0
1

2-25

3. The third (and, for SVC routines, fourth) character
identifies the specific functional area into which the
code falls:

s) Task scheduler

Clock interrupt handler

I1/0 interrupt handler

Program check interrupt handler

SI0 routine

Pager

Page, SVC, or I/0 tracing

8-end Additional service subroutines

SNooubEs OO

(V) 00-end SVC routines by SVC number

) 1 System initialize (IPL)
2 Task reinitialize routines

(M) 0-end Command and HELP processing

(D) 0-end Data management vectored routines and

subroutines
®) 1 Operator's console program
2 File sharing handler
) 1 Disk volume analyze and label
2 Display and alter disk
3 Copy tape to disk
4 Copy file, library, or volume
5 Copy tape to disk (tape bootstrap)
6~end Assigned as needed
(™ 1 On-line disk volume initialize
2 Display file
3 Disk copy
4 Tape copy
5 Print listing file
6 List Volume Table of Contents
7 Sort
8 Print debugging dump from diskette
9 Copy unloaded IBM 0S/370 PDS
A Patch file
B System procedure interpreter
C COPY2200
D FLOPYDUP
E BACKUP
F VERIFY
G TAPEINIT
H SECURITY
I-end Assigned as needed

2-26

(L) 1l-end Linkage editors (binders)
(A) 1-end Assemblers

(C) 1l-end COBOL compiler and COBOL symbolic debugging

(R) 1 RPG compiler
(E) 1 COBOL and Assembler Language source text
editor

2-end Assigned as needed
(I) 1-end Other independent components

Common file management subroutines
CONTROL

DATENTRY

REPORT

INQUIRY

CONDENSE

KEYENTRY

©)

oWV P WD =O

(Programming in categories U, T, L, A, C, R, E and
I would not normally contain entry names. These
categories are included for completeness and to
provide a noncompulsory standard for coding.)

4. Four or five characters uniquely identify the name.
Some examples might be:

WS1SCHD

WS3STIM
WVO4LINK

WDSWRIT

2.2.1.2 Names in System Data Structures

These are external symbols in the sense that more than one data
structure description (control block definition) may be included
in an assembly or compilation, and therefore, names must be
unique across all these descriptions.

Each system data structure has a three—character to
five~character name, as defined in Chapter 5 of this document.
These names and any names formed by using these characters as a
prefix are considered reserved names in assemblies of system
code. Each label of a field within a system data structure
definition must begin with these characters.

2-27

2.2.2 Macroinstruction Descriptions

Descriptions of all supervisor service macroinstructions, in
alphabetic order by name, are collected in Chapter 4 of this
document. Each description includes:

1. A functional title for the macroinstruction.

2. A syntax specification on the first 1line of the
description, with optional operands displayed in
brackets.

3. A specification of the restrictions placed on the use
of the macroinstruction, such as 'for use by disk
management support only' or 'register Rl must contain
the active Task Control Block's address when this
macroinstruction is executed', or 'for use by disabled
routines only'.

4. A general functional description. This should describe
what the macroinstruction accomplishes, without
describing its internal workings in detail.

5. Descriptions of each operand and its effect on the
function of the macroinstruction. |

6. At least one example of code generated by this
macroinstruction.

Examples of the format required may be found in Chapter 4.

2.2.3 Data Layouts and Descriptions

The format for describing system data structures is presented by
example in Chapter 5 of this document. Note that the type of
data in each named field of a data structure or control block is
specified by the corresponding assembly language type designation
and length (e.g., BL1l, AL3, etc.), and that a brief description
of the function of each field is included.

2-28

2.2.4 Supervisor Call (SVC) Routine Descriptions

Descriptions of all supervisor call routines are provided, in SVC
number order, in Chapter 6 of this document. Each description
includes:

1. SVC number and name.

2. A description of all direct and indirect inputs to the
routine.

3. A description of all outputs (including ‘side~effects').

4. A functional description of the processing performed by
the routine.

2-29

CHAPTER 3: SYSTEM DESCRIPTION

3.1 VIRTUAL MEMORY

The user is not aware of the specific functions involved in
providing him with a virtual main storage 1larger than the
physical main storage of the hardware. However, an understanding
of the mechanism involved will aid in understanding the
protection mechanism and will be useful to the programmer who
feels he must understand the Operating System's intermals. Also,
a general awareness of how paging is carried out may help any
programmer write more efficient code for the machine.

3.1.1 Relation of Virtual Memory to Physical Memory

The physical main memory of the Wang 2200VS is 1limited to a
maximum of 512K (K=1024) bytes. A computer instruction can,
however, develop an address which refers to any of 16,777,216
(16,384K) memory locations. Thus a programmer could write a
program which would execute in Wang 2200VS' physical memory only
if a much larger memory were available. Being able to execute
such a program means considerable savings in coding time, since
the programmer then need not segment a large program into
overlays. A similar situation arises with respect to the areas
containing user-modifiable data. If the programmer must design
for a system in which these areas are severely 1limited, he must
make explicit use of secondary storage (disk, tape, etc.) to
temporarily save intermediate results. This may result in more
coding time, a more complex program, and considerable
inefficiency.

The foregoing problems can be alleviated if the Operating System
manages main memory in such a way that the user appears to have
one or more large addressable areas of memory available. Under
such a scheme, the Operating System overlays portions of the
user's program and data with other portions as necessary,
according to some rules which are sufficiently close to optimal
to allow the program to proceed at nearly the speed at which it
would execute if all of the program and all the work area for
data were in main memory constantly. The memory which the user's

3-1

program addresses is then referred to as a ‘'virtual memory' and
the actual main memory as the 'physical memory'. In the Wang
2200VS, one user's virtual memory includes a reentrant program
segment of up to 512K bytes, a modifiable segment of up to 512K
bytes, and a system code and data segment of up to 256K bytes.
The virtual memory exists in complete form only on a secondary
storage device (disk).

3.1.2 Address Translation, Pages and Page Faults

It is the relationship or ‘'mapping' between a 1large virtual
memory and a smaller physical memory which the paging management
routines of the Operating System provide. This is done as
follows:

The physical memory is partitioned into 'page frames' of 2048
(2K) bytes each. (A 128K system would have 64 page frames.)
Certain of these page frames are dedicated to contain Operating
System routines and data which must be resident at all times.
The other page frames may contain parts of any other programs or
data. As far as an executing program is concerned, it may
address any one of sixteen large contiguous areas of storage (up
to 512 pages each) referred to as 'segments'. The particular
segment addressed is selected by the four high-order bits of a
24-bit address. The user program code is in segment one, the
user modifiable data area in segment two, and supervisory
routines and data in segment zero. References to segments three
through fifteen are invalid, and are treated as program errors.
Actually, the hardware uses these four bits to select a ‘'page
table', each item of which in essence addresses a page frame in
the physical main memory. The nine bits of the original
('untranslated') address following the segment selection bits are
used to select one of up to 256 page table items within a page
table, and thereby to select a physical page. The last eleven
bits of the original address are then used to address a byte
location within this page. The resulting addressed location is
referred to as the 'translated' address. Note that although up
to 256 page table items may be addressed within a page table,
there is a maximum of 64 page frames available in the physical
memory of the 128K system hypothesized above. Some page table
items are therefore marked with a special indication that the
referenced page is missing from physical memory. The hardware,
finding this indication set during an address 'translation',
effects a particular type of program check interruption known as
a 'page fault', and supplies to the program interrupt service
routine the segment and page numbers of the missing page. A task
initiated by this interrupt service routine, the 'paging task’,
attempts to locate a page frame the contents of which may be
replaced with the required page from a disk file. When a page
frame containing a replaceable page has been selected, the paging
task reserves this page by indicating that it is in wuse for
page-in or page-out, and initiates the page-in, or page-out
followed by page-in, operations. The task which needs the page
is forced to wait on a queue of tasks attached to the page frame

3-2

being used for the paging operation, and will be reactivated
after the page-in operation completes and the paging task has
updated the page table to allow normal addressability of the page.

3.1.3 User Program Efficiency and Paging

Designing a program for a virtual memory environment requires a
new outlook toward program and data organization. Although the
user is freed from the onerous task of managing a small physical
storage by overlay or other manual segmentation techniques, he
cannot ignore the issue of program organization. A major aim of
the programmer should be to increase the locality of reference of
his program's code. That 1is, he should avoid referencing many
pages of code or data within a short span of program execution.
In this way he will reduce the likelihood of many page faults
occurring. One might also say, as a general rule, that it pays
to spend processor time to save space; the notion of a tradeoff
between the amount of storage area required and the speed at
which a program executes is not, however, as accurate in a
virtual memory system as in most previous systems.

3.2 SUPERVISORY FUNCTIONS

The following paragraphs describe briefly the most important
functions of the central supervisor. System programmers
requiring more detailed information should consult program logic
documents.

3.2.1 Task Scheduling and Timing

The operating system supports one or more tasks corresponding to
users' programs in progress, in addition to a paging task.
Determination of which task is to have control of the processor
at any time is made by the scheduler routine, which gains control:

(1) when a task WAITs on a semaphore (associated with an
event which. is expected to occur but has not yet
occurred) .

(2) when a task becomes ready as a result of a SEND on a

semaphore. (This 1is associated with the occurrence of
an event.)

(3) when an interrupt has occurred, and preliminary
processing of the interrupt has completed (e.g., on
exit from the I/0 interrupt service routine or clock
interrupt service routine).

(4) when 'System Must Complete' state is exited, and a

workstation HELP key had been received while in 'System
Must Complete' state.

3-3

The scheduler determines the highest-priority ready task, sets a
timer expiration value to insure that this task cannot monopolize
use of the processor at the expense of other tasks (most
obviously by looping), and loads the control registers, page
tables, general registers, floating-point registers, and the
program control word (PCW) associated with the task to be given
control. This task is allowed to run until one of (1) through
(4) above occurs.

3.2.2 WAIT and SEND Primitives

When a task is not available for scheduling, it is said to be
'blocked'. Blocking and unblocking of tasks is accomplished by
the WAIT and SEND primitives which execute DSEM or ISEM
instructions, respectively. The functions are as follows:

(1) WAIT - This function is always performed by a special
operating system WAIT routine. An addressed
semaphore's count field is decremented. If the result
is zero or greater, control returns to the invoking
program, If the result is less than zero, the
currently active (invoking) task is blocked and control
is passed to the scheduler. User programs must use the
CHECK SVC routine to gain access to this facility.

(2) Multiple WAIT - This function is similar in effect to
WAIT, but allows a task to await the occurrence of
one-out-of-several specified events, each represented
by a semaphore.

(3) SEND - This function is performed by a special
operating system SEND routine as requested by an SVC
call or special branch-type entry for interrupt
routines. The SEND routine increments an addressed
semaphore's count field (by executing an ISEM
instruction). If the result is less than or equal to
zero, a task has been unblocked by this instruction,
and the routine passes control to the scheduler. If
the result is greater than zero (no task unblocked),
control is simply returned to the invoker. (Interrupt
routines either pass control to the scheduler or to the
interrupted task at some time after a SEND branch type
entry.)

Users' programs do not have the ability to modify semaphores
except by invoking the CHECK routine through supervisor call.
After checking the request for validity, CHECK enters the WAIT
routine. All semaphores are in protected memory locations.

3.2.3 Intertask Message Primitives

The XMIT primitive allows a task to queue a message of up to 251
bytes for transmission to another task. The WAIT primitive
(through the CHECK MESSAGE macroinstruction) allows a task to
wait for receipt of such a message.

3-4

3.2.4 Supervisor Call Interruptions

Section 2.1.2 above describes the functions performed by SVC
routines. The reader may wish to refer to this section and to
Figure 2-3.

3.2.5 I/0 Initiation

Issuance of the actual SIO instruction to initiate either paging
or normal I/0 is localized in the system's Start I/0 routine. No
other system components issue SIO instructions. The Start 1/0
routine is passed a Request Element which describes the 1/0
operation to be performed and points to a semaphore on which the
I/0 interrupt service routine will perform a SEND when the
operation is complete. The Start I/0 routine is called by the
XIO supervisor call routine and the paging task. The Start 1I/0
routine itself queues the Request Element to the proper device's
physical request queue, and then attempts to address the first
element on this queue and perform its requested I/0 operation.
If the device is busy, this step is bypassed (I/0 will be started
later, when the current I/0 completes).

3.2.6 I/0 Interruptions

The I/0 interrupt service routine gains control on an I1/0
interruption. As well as 'unfixing' the I/0 area (removing the
page or pages it occupies from 'temporarily resident in memory'
status) on I/0 completions other than page faults, and saving all
necessary status of the interrupted task, it locates the I/0
Request Element associated with the operation which has
completed, performs a SEND operation on the semaphore addressed
by this element, and dequeues the element. It then calls the
system's Start I/0 routine to initiate I/0 for any requests which
may be pending. Exit is then made to the interrupted task, or to
the scheduler to restore the status of another task and dispatch
it. Interruptions indicating 'I/0 processor now ready' cause the
I/0 interrupt service routine to attempt to initiate operations
on all affected devices (those on the same I/0 processor) which
have request -elements queued for servicing. 'Attention’
interruptions are also processed by the I/0 interrupt service
routine, which performs special device-dependent processing of
'attention' interruptions from workstations.

3.2.7 Clock Interruptions

The system's clock interrupt handler receives control when a
clock interruption occurs. If a task 1is active and the
interruption indicates the end of its time slice, it is marked
'timeslice expired', placed last on the low priority scheduling
queue, and the scheduler is entered to schedule another task, or
the same task again if no other is ready. If the interruption
signals the expiration of a program-specified timing interval,
the clock interrupt handler performs a SEND operation on the
semaphore in the appropriate interval timing element (TQEL), and
then exits through the scheduler to schedule a task which may
have been unblocked by this SEND operation. If the interruption
signals a midnight crossing, the system date is updated and the
time-of-day reset.

3.2.8 Program Interruptions (Other Than Page Faults)

The program interrupt handler entered on a program interruption
will force entry to a program exception exit routine if one has
been specified for this type of exception, and otherwise to the
system's HELP processor., This will allow the user to request use
of a debugging routine, or to simply terminate the program.

3.2.9 Program Normal Termination

Normal termination processing is entered on RETURN from a program
originally entered from the command processor, or on execution of
an UNLINK supervisor call by such a program. The memory occupied
by the program is made available for other use. Open files are
closed and any logging information is written.

3.2.10 Program Abnormal Termination

Abnormal termination (processing '"cancellation') may occur in
response to one of the following:

(1) The user requested abnormal termination in response to
Help Processor prompting, the user having obtained the
services of the Help Processor by striking the
workstation's HELP Key.

(2) The program issued a CANCEL supervisor call or entered
the Debug Processor by virtue of a program check
(without having issued a PCEXIT supervisor call) and
the user requested abnormal termination in response to
Debug Processor prompting.

(3) The program issued a CANCEL supervisor call or program
checked (without having issued a PCEXIT supervisor
call) and the program itself had previously issued a
CEXIT supervisor call with the NODEBUG or DUMP option.

3-6

The abnormal termination processor (Cancel Command Processor)
will attempt to close files open to the program being
terminated. Assuming that the program has not issued a CEXIT
supervisor call specifying an address of a user ''cancel exit
routine," the program is removed from execution and control is
passed to the command processor to allow another program to be
initiated.

Programmed interception and analysis of abnormal termination
conditions is available to the user program via the CEXIT
supervisor call. The '"cancel exit" parameter of the supervisor
call specifies the address of a routine in the user's program
that 1is to receive control in the event of an abnormal
termination condition.

Upon entry to a user program's '"cancel exit routine,'' the program
name, PCW, general registers, and cancellation codes and message
are provided on the system stack for subsequent analysis. The
floating point registers reflect their value at the time of the
abnormal termination condition. The program may take any desired
corrective action and subsequently elect to either continue
processing normally or terminate. (See ''CEXIT Supervisor Call"
for additional details.)

3.2.11 Program Initiation

The initiation of user programs is a function of the system's
Command Processor and Procedure Interpreter, which issue LINK
SVCs to initiate programs.

3.2.12 Microcode Loading

When an IOSW is received that has bits PP (peripheral processor
code missing) or DP (device code missing) set, the I/0 interrupt
routine marks the UCB 'not busy' (UCBSTATBUSY reset) and 'no
code' (UCBSTATNOCODE set), increments the I/0 completion
semaphore, and leaves the IORE on the I/0 queue with the pages
used for the I/0 operation fixed. IOREREQFIVRQ is set to
simulate an IVRQ interrupt. SIOs are blocked by UCBSTATNOCODE.

The task waiting on the I/0 is restarted, and enters CHECK
completion code. CHECK finds IOREREQFIVRQ set and enters
'intervention-required' processing. It then finds PP or DP set
in the IOSW, and calls SVC LOADCODE to 1load the appropriate
microcode. If LOADCODE is successful, it will have marked the
UCB ‘code loaded' (UCBSTATNOCODE reset), and restarted the I/0
operation. CHECK then waits for I/0 completion.

If LOADCODE failed, CHECK calls HALTIO to remove the I/0
operation from the I/0 queue and unfix the data area. CHECK then
reports the IOSW as an error completion; if the device is a
Workstation, it marks the device 'turned off' (UCBSTATNOTOP set)
to block I/0 operations until the Workstation is turned on. When
the Workstation is turned on , the unsolicited interrupt will
mark the device 'turned on' (UCBSTATNOTOP reset) and 'loaded’
(UCBSTATNOCODE reset) to unblock I/0 operations. The next I/0
operation to the device will find the microcode not loaded and
reload it.

Receiving an I/0 completion interrupt with DP and PP both set may
indicate that the device configuration table is missing. This is
handled like an interrupt with 'DP' or 'PP' set.

3.2.13 Logoff

Logoff is defined as the termination of a user's current session
with the computer. It may be invoked in either of the following
manners:

(1) The user may request Logoff voluntarily by keying the
appropriate initiator function key. Imn this particular
case, the Logoff Processor permits the user to "escape
from Logoff by pressing the HELP key.

(2) The program may issue a LOGOFF supervisor call in
response either to an interactive user request or any
other specified conditions detected by programming.
Such a logoff is essentially handled as a program
cancellation, without entry to the Debug Processor,
unlinking all 1link levels, bypassing the Initiator,
logging off the current user, and displaying the Logon
Processor screen on the workstation. A message is
displayed indicating that the previous program was
logged off by ‘''program request.' Note: LOGOFF
supervisor calls may be intercepted by a program's
active "cancel exit routine," distinguished by message
0001 issued by SVC43.

The Logoff Processor, in both the above cases, prompts the user
for a response for each volume mounted by that user for exclusive
use. The user is provided with a choice of changing the mount
status from "exclusive" to ‘'shared" or, where appropriate,
dismounting the volume.

3.3 DATA MANAGEMENT FUNCTIONS

A general introduction to the implementation of Wang 2200VS data
management follows. The system primitive functions provided to
aid in processing I/0 requests are explained briefly in Section
3.3.2. For more detailed information, consult the appropriate
program logic documents.

3-8

3.3.1 Top Level Data Management Function Support

Entry to system code for processing data management requests.is
by indirect branch to routine addresses in a file's User File

Block. Most data management code is executed in unprivileged
mode as an extension of a user's program.

3.3.2 Data Management Support SVC's

Primitive I/0O services are provided through supervisor call
routines which are to be used by the data management system in
the process of servicing READ, REWRITE, WRITE, DELETE, START and
other requests. The XIO and CHECK services may also be used in
nonstandard I/0 programming.

3.3.2'1 m

The XIO service provides intermediate-level I/0 initiation
support. When called by SVC from data management programs, it
converts block numbers in a disk file to disk addresses,
validates that disk addresses lie within proper extents,
translates virtual data addresses (in I/0 Command Words) to
physical addresses, makes the required pages of virtual memory
temporarily resident ('short-term fixed'), and calls the
supervisor's Start I/0 routine to initiate the I/0 operation.

3.3‘2.2 ALEX

The ALEX service is requested by data management routines when a
primary or secondary extent on disk is exhausted and it is
necessary to either allocate another extent or, failing that, to
terminate processing.

3.3.2.3 CHECK

The CHECK service is used by data management routines to suspend
the operation of the issuing task until an I/O operation is
signalled complete (by a SEND function in the I/0 interrupt
service routine). The user-level data management routines must
use CHECK, since they are not allowed direct use of the WAIT
primitive function. Basically, the difference between these
functions is that CHECK will insure that a valid Open File Block
address has been passed to it, while WAIT cannot validate the
semaphore address which it receives. CHECK will also handle I/0
error logging and detection of 'intervention required' conditions
at the device. (See the CHECK supervisor call and
macroinstruction descriptions for additional functions of CHECK,
including its role in interval timing support and inter-task
message passing.)

3.4 DISK STORAGE DESCRIPTION

Disk volumes on the Wang 2200VS system are divided into logical
256-byte sectors, numbered from zero. Actual disk sectorization
is into 256-to-2048-byte sectors, depending on the device type.
Although each actual sector may be addressed by I/0 command, the
operating system XIO routine and paging routines always address
2048-byte areas referred to here as 'blocks' of disk storage,
which begin on 1logical sector addresses which are multiples of
eight. Files on such a volume are recorded in one or more
contiguous areas ('extents'). Each extent spans one or more
consecutively—numbered blocks. The presence of a file is
indicated in a volume table of contents which is organized to
allow a hierarchical naming scheme with one level of
qualification. This structure is 1located through the volume
label. All these items are discussed in the following paragraphs.

3.4.1 Volume Label

The volume label occupies sector 1 (the second sector) of any
disk volume. It contains the name of the volume (volume serial
number) , the location (extent descriptions) of the volume's table
of contents, and other descriptive information defining the size
and physical organization of the volume.

3.4.2 Extent Organization

Each block on a volume, with the exception of the first block
(sectors 0 to 7) and the blocks containing the volume table of
contents, is part of an ‘'extent' (defined contiguous area) of
either free space or file space. Extents of free space are
recorded in available space records of the volume table of
contents. Extents of file space are recorded in File Descriptor
Records (FDRs) in the volume table of contents, where each FDR is
associated with a particular file. The initial FDRs for files
are referred to as Type 1 FDRs. FDRs describing additional areas
occupied by a file are referred to as Type 2 FDRs.

When a file 1is initially allocated space, an attempt is made to
acquire a single extent of sufficient size on the specified
volume. If such an extent is not available, up to 3 extents may
be allocated.

When a file is enlarged so that it exceeds the capacity of
extents previously allocated for it, the system allocates an
additional extent. This may require that an additional FDR be
allocated to contain the additional extent information (a Type 2
FDR). A file may encompass a maximum of 13 extents (described in
one FDR1 record and one FDR2 record).

3-10

3.4.3 Volume Table of Contents

The volume table of contents on a disk volume has blocks
(8-sector areas) of four types. There are available space blocks
which record where free blocks are on the volume, high-level
index blocks which contain file name qualifiers and low-level
index block numbers, low-level index blocks which contain file
names and file descriptor block numbers and . file descriptor
blocks containing File Descriptor Records which contain attribute
specifications for particular files, including the 1location of
the file on the volume and the extents allocated for it.

The first block of the volume table of contents is an available
space block. Any search for available space on the volume (for a
newly-allocated file or an additional extent) begins by searching
this block, followed by its chained blocks, for a sufficiently
large area of space.

The second block of the volume table of contents is an index
block. It is the first block of the ‘top-level' index.
Additional top-level index blocks may be chained from this
block. This top-level index contains pointers to lower-level
index blocks, which in turn contain pointers to File Descriptor
Records. The name of a lower-level index, as recorded in each of
its index records, is used as a file name qualifier to define a
complete file name or 'path name'. For example 'DIRECTB.FILEA'
could be the name of a file whose File Descriptor Record is
located by a pointer in an index item containing ‘FILEA', where
this item is in a lower-level index record whose name is
'DIRECTB'., It is useful to refer to the file as member ‘FILEA'
in library 'DIRECTB'. The first high-level index block also
contains three linked-list head pointers, which are used to
maintain chains of

(1) available blocks,

(2) blocks containing available low-level index records, and

(3) blocks containing available File Descriptor Record
areas.

The third block of the volume table of contents 1is reserved for
use as the first lower—level index block. Each such block may
contain all or part of up to four 'libraries' as described above.

The fourth block of the volume table of contents 1is a block
containing File Descriptor Records.

The fifth and additional blocks of the volume table of contents

are used as required for available space blocks, index blocks, or
file descriptor blocks.

3-11

CHAPTER 4: SYSTEM MACROINSTRUCTIONS

4.1 MACROINSTRUCTIONS AVAILABLE

This chapter documents the Wang-defined macroinstructions
available for general programming use. A second set of
macroinstructions, designed for operating system development and
support and not intended for general use, are documented in a
separate manual,

The available macroinstructions are summarized in the following
list, arranged by functional category. The remainder of this
chapter consists of individual discussions of all general-purpose
macros, arranged alphabetically by keyword.

A. User program linkage

CALL, RETURN, LINK

Bl. User-level I/0

OPEN, CLOSE, READ, REWRITE, WRITE, DELETE, START,
RENAME, SCRATCH, UFBGEN, BCTGEN, AXDGEN, MOUNT,
DISMOUNT, READFDR, TCOPTION

B2. Data management routine use

XI10, GETBUF, FREEBUF, CHECK, ALEX, HALTIO

C. Synchronization and resource control

WAIT, SEND, SEIZE/RELEASE (Not available for general
programming use)

D. Resident block management

GETMEM, FREEMEM (Not available for general programming
use)

Timing
TIME, SETIME, RESETIME, CHECK

Program termination and debugging

CANCEL, (RETURN)

Workstation display, message log

GETPARM, KEYLIST, MSGLIST, FMTLIST, PUTPARM

Program structuring and control

REGS, EXTRACT, PCEXIT, SET
LOW (Not available for general programming use)

Intertask communication

XMIT, CHECK, CREATE, DESTROY

Allocate Extent

Syntax

[1abel] ALEX OFB=(register)

Restrictions

For use by Data Management System routines only.

Function

Attempts to allocate an additional extent for the disk file
whose Open File Block (OFB) is addressed. A file has to be
opened for exclusive use before ALEX is 1issued. The OFB

address

is stacked before issuing the Supervisor Call. On

completion of the function, the OFB address is removed from
the stack and a return code word is stacked, as follows:

0
4

8
12
16
20
24
28
32

Additional extent allocated

Invalid OFB address or OFB not open for this task;
no allocation

File in INPUT mode; no allocation

Wrong device class; no allocation

Extent limit would be exceeded; no allocation

All buffers in use, GETMEM failure; no allocation
Volume fullj; no allocation

No space in VTQOC for FDR2; no allocation

Disk I/0 error; VIOC unreliable

Operand Description

OFB=

Example

LAB1
+LAB1
o+

The address of an Open File Block for an open disk
file. It must be presented as a register
specification in parentheses, where the register is
assumed to contain the OFB address.

ALEX OFB=(R1)
PUSH 0,R1
SVC 14 (ALEX)

Generate Alternate Index Descriptor Block

Syntax

[1abel] AXDGEN [MASKSIZE=p1] [,ENTRIES=p2]

Function

[, (ORD=p3, KEYPOS=p4,
KEYSIZE=p5 [,NODUPS]
[,COMPRESS])]

Generates an alternate index descriptor block (AXD1l) to be
addressed by UFB field UFBALTPTR (ALTAREA operand of UFBGEN
macroinstruction) .

Operand Descriptions

MASKSIZE

ENTRIES

n

Must be 2 or omitted.

To use the AXD1l for OUTPUT mode processing,
must equal the number of positional operands
(in parentheses) which follow. Always must be
zero, omitted, equal to the number of
positional operands, or 0 to 16 if there are no
positional operands.

Positional suboperands:

ORD

KEYPOS

KEYSIZE

NODUPS

COMPRESS

Index (1 to 16) defining this alternate index
structure (access path). Required in all
supplied positional operands.

Key position in record. Required.
Key length. Required.

Duplicates not allowed if specified for OUTPUT
mode. Ignored in other modes.

Key compression if specified for OUTPUT mode.
Ignored in first version of alternmate indexing
support.

AXDGEN

Example:

LAB1 AXDGEN ENTRIES=1

+LAB1 DC F'0' BL
DC XL14'0" MASK, UFB, ALTINX, FLAGS
DC HL1'2' MSIZE
DC XL41'0" SPARE1l, BCB, PMASK, SPARE
*AXD ENTRY FOR ALTERNATE ACCESS PATH
DC AL1(0) XORD
DC BL1('10000000') FLAGS
DC H'O' LEVELS
DC AL2(0) KEYPOS
DC AL1(0) KEYSIZE
DC XL21'0" HXBLK, NRECS, PTRD, ESPARE

4=5

Generate a Buffer Pool Control Table

Syntax

[1abel] BCTGEN NBUF=expression

Function
Generates a skeleton buffer pool control table for use in
buffer pooling (UFBGEN macroinstruction, operands POOL and

BCT) .

Operand Description

NBUF= An absolute expression must be supplied, which must
evaluate to an integer not greater than 60. This
is the number of buffers to be included in the
buffer pool.

Example
LAB1 BCTIGEN NBUF=8
+LAB1 DS OF
+ DC AL1(8)
+ DC XL19'00'
+ DC (8)XL28'00'

Call a

Subroutine

Syntax

[label

[
] CALL EPLOC=Entry-address-word |,PARM={ (register)}
o { label }

|

| PARMLOC=parm—-address—word

[

[,COND=number]

Restrictions

A stack, with stack top addressed by general register 15,
must be available to the CALLer.

Functi

on

Loads the address of a parameter list (if specified) into
register Rl and branches (conditionally) to the specified
label or to the address contained in ‘entry-address-word"
by a JSCI instruction (leaving the return address on the
stack). The JSCI instruction saves the contents of control
register 1. The JSCI instruction also stores general
registers 0 to 14 on the stack and places the address of
the register 0 save area in control register 1 (as well as
in the stack pointer, general register 15). The lowest
address in any current 'static' area is (by convention)
passed in register R14,

Operand Descriptions

EPLOC= The address of a word containing the CALLed
routine's entry point address. This must be
specified in a form allowable in the D2(X2,B2)
fields of the RX-type assembler instruction

format.
PARM= The address to be passed in register Rl,
PARMLOC= The address of a word containing the address to

be passed in Rl (with format as for EPLOC).

COND= Specifies the condition codes under which the
routine is to be CALLed. If omitted, 'COND=15"'
is assumed.

Example

LAB1 CALL PARM=PADDR ,EPLOC=ENTRYWRD ,COND=8
+LAB1 LA R1,PADDR
+ JSCI 8 ,ENTRYWRD

4~7

]
|
|
|
|

[1abel]l CANCEL MSG={ (register)}
{ address }

Restrictions

Must not be issued while in System Must Complete state.

Function

To enter the Help Processor for cancellation of the issuing
program. The message provided is displayed, along with a
standard CANCEL message. The user may then use the Help
Processor's debugging facilities to examine the progranm
before issuing a CANCEL command to remove it from the
system, If the CANCEL supervisor call was issued from
within a user's program, the user may attempt to continue
processing by modifying the location to receive control and
invoking the "CONTINUE" command. A program terminated by a
CANCEL supervisor call from within privileged code cannot
be continued.

Operand Description

MSG= The address of a message to be displayed, contained
in the specified register, or at the specified
address. A register specification must Dbe

parenthesized as shown. The message must be in the
format generated by the MSGLIST macroinstruction.

Example

LA R5,LAB2

LAB1 CANCEL MSG= (R5)

+LAB1 PUSH 0,R5

+ sve 16 (CANCEL)

LAB2 MSGLIST 'C001','SUPVSR','MEMORY POOL
EXHAUSTED'

+LAB2 DC CL4'coo1’

+ DC CL6'SUPVSR'

+ DC AL2(21)

+ DC C'MEMORY POOL EXHAUSTED'

4-8

Cancel Exit

Syntax

(1) [label]l CEXIT CANCEL

(2) [1abell CEXIT SET [, ([NODEBUG][,NOHELP])]

Function

CANCEL -

SET -

[[buMp 1]]

[,ADDRESS={ (register) }]
[{ expression}]

[,MESSAGE={ (register) }]
[{ expression}]

Negates the effect of any previously issued
CEXIT supervisor call in the current 1link
level. Abnormal termination (cancel)
conditions will not be intercepted at the
current link level.

To specify user-program abnormal condition
handling for the current and any subsequent
link levels. The options specified may be
negated via the CANCEL option or reset via
another SET option at the current 1link level,
or may be temporarily overridden at subsequent
link levels via the SET option issued therein.

Operand Descriptions

NODEBUG -

NOHELP -

The Debug Processor is bypassed for abnormal
termination conditions. Control is passed
directly to the Cancel Command Processor
without direct user notification.

Similar to the NODEBUG option, this option also
provides a full program dump prior to entry
into the Cancel Command Processor.

Causes HELP key to be disabled at current link
level for the purposes of entry into the HELP
Processor. If NOHELP is specified, pressing
the HELP key in user mode has the following
effects: 1) If the workstation does not have
operator privileges, the alarm is sounded; 2)
If the workstation is a dual mode operator
console, operator mode is entered. This option
remains in effect until a CEXIT without the
NOHELP option is issued or until the program
unlinks back to either the Command Processor's
Initiator or a link level for which NOHELP was
not specified. Unless specifically disabled

4-9

CEXIT

therein, the NOHELP option is propagated to
higher 1link 1levels., The NOHELP option should
only be utilized in situations in which wuser
access to CANCEL and other system functions
must be 1limited, such as in the case of
critical sections of application programs
updating multiple file chains and pointers.
Such programs should be highly debugged prior
to use of this facility.

ADDRESS= - Specifies the address of a user-program
provided cancellation intercept routine. This
routine gains control from the Cancel Command
Processor in the following manner:

If the abnormal termination condition occurred within the same
link level, the Cancel Command Processor returns control to the
program at the address of the cancellation intercept routine.
(This routine may also gain control if the current or any
subsequent 1link 1level issues a LOGOFF SVC and this CEXIT option
is still active.) The registers are those at the time of either
the program check or entrance to the supervisor call resulting in
the abnormal termination condition. Thus, addressability should
not be assumed. If the abnormal condition occurred while Data
Management for either disk or tape was in control, an attempt is
made to complete that operation. All non-I/0 wait conditions are
removed. The Cancel Command Processor does not, in this case,
attempt to close any files.

If the abnormal termination condition occurred within a
subsequent link level, i.e., a "Linked-to" program, for which no
cancellation interception routine was specified, the Cancel
Command Processor successively attempts to complete I/0
operations and close files and then UNLINK each link level until
a link level with a cancellation interception routine (if any) is
found, at which point control is passed to that routine. In this
case, the registers are those at entry to the LINK supervisor
call. As in previous cases, all non-I/0 wait conditions are
removed.

In both cases, entry to the cancellation intercept routine
cancels the CEXIT options for the 1link 1level. They may, if
desired, be reset via a subsequent CEXIT supervisor call. On the
stack, the cancellation intercept routine finds the following
data (which may be accessed symbolically via the DSECT produced
by the CXT macroinstruction) :

CANCELLATION PCW - 8 Bytes
PROGRAM NAME - 8 Bytes
(Reserved) - 48 Bytes
GENERAL REGISTERS 0-15 - 64 Bytes
CANCEL MSGLIST - Variable Length

4-10

MESSAGE =

Example
LAB1

+ 4+ + + + +

CEXIT

Provides text to be used by both the Help Processor
and the Debug Processor in place of the '"CANCEL
PROCESSING" menu descriptions. Specification is of
a segment 2 location containing a one byte binary
length field followed by up to 27 bytes of text.
Specification of this option is independent of any
user cancellation intercept routine specification.

CEXIT SET,NODEBUG,ADDRESS=FIXPROBS ,MESSAGE=CANCELME
PUSHA 0,0

MVI 0(15) ,B'00000000"

MVI 1(15) ,B'00000000"

PUSHA 0,CANCELME

PUSHA 0,FIXPROBS

MVI 0(15) ,B'10100000'OPTIONS BYTE

SvC 39 (CEXIT)

4-11

Check For Event QOccurrence

Syntax

¥

&)

(4)

(5)

(6)

(1) [1label] CHECK {0OFB} = {address } [,ERREXIT= {address }]
{VCB} {(register)} [{(register) }]
[,I0SWREG=R0]
{1abell CHECK INTERVAL

[1abel] CHECK MESSAGE= {address } ,PORT= {address }
{ (register)} {(register)}
{'string' }

[1abell CHECK WSKEY = {address }

{ (register)}
[1abel]l] CHECK INTERRUPT= {address |} ,IOSWADDR= {address }
{ (register)} {(register)}

[label]l CHECK TCIO, OFB= {address }

{(register)}

[,IOSWADDR= {address }]

[{register }]

[1abel]l] CHECK MULTIPLE,PLIST= {address }

€))

{ (register)}

,COUNT= {self-defining term}
{ (register) }

Restrictions

CHECK OFB or VCB should be issued only after issuing an XIO call.

Function

D)

CHECK OFB or VCB waits for completion of an I/0 operation.
If 'intervention required' is indicated on completion, CHECK
issues an appropriate workstation message (if possible) to
inform the user, and proceeds when the ‘'intervention
required' condition has been cleared. (CHECK may reissue
the message if the condition has not actually Dbeen
corrected.) CHECK waits for completion again after the
condition has been cleared. If the operation has not
completed, CHECK suspends processing of the issuing program
until completion. If the ERREXIT operand is provided, CHECK
returns to the specified address in the event of a permanent
error completion (I0SW bit EC set, bits NC or IRQ not set).

4-12

CHECK

Otherwise CHECK returns to the next sequential instruction
address. CHECK logs I/0 errors by means of a nonresident
subroutine.

(2) CHECK INTERVAL waits for expiration of a timing interval as
set by the SETIME macroinstruction.

(3) CHECK MESSAGE waits for a message to be sent to the issuing
task.

(4) CHECK WSKEY waits for a Program Function Key to be struck on
the specified workstation, which must be reserved for use by
the issuing task. An un-CHECKed XIO request must not be
outstanding to this workstation when this CHECK is issued.

(5) CHECK INTERRUPT waits for an unsolicited interrupt from a
workstation, a printer, or a telecommunications device.

(6) CHECK TCIO waits for the occurrence of a TC I/0 event. This
event may be a completion of an I/0 operation which was
previously initiated by a call of the XIO SVC by the RECEIVE
or TRANSMIT macro. This event may also be an unsolicited
interrupt from a Data Link Processor (DLP) if no previous
I/0 command was issued.

(7) CHECK MULTIPLE waits for any one of several specified events
to occur. These can be any of (1) through (6) above. For
details of parameter list construction, refer to the CHECK
SVC description (SVC 17).

NOTE: A FORM=LIST operand may be used with functions 1-6 above
to build a multiple CHECK list on the stack. For example,

CHECK INTERVAL, FORM=LIST

CHECK WSKEY=(R1) , FORM=LIST

LR R9,SP

CHECK MULTIPLE, PLIST=(R9) ,COUNT=2

will build a multiple CHECK list which waits on a PF key or a
timer, in that order. After the call to CHECK MULTIPLE, the top
stack word will contain the offset into the parameter list of the
event that occurred. The parameter list remains on the stack.

Operand Descriptions

OFB= For the OFB option, the address of the Open File
Block (OFB) for a file previously OPENed. Must be
presented as an address expression, or as a
register specification in parentheses where the
register contains the address of the OFB.

4-13

CHECK

VCB=

ERREXIT=

IOSWREG=

MESSAGE=

PORT=

For the TCIO option, OFB= points to the address of
the Open File Block (0OFB) for the I/0 channel
device used in the I/0 operation initiated by the
corresponding RECEIVE or TRANSMIT call. The
address supplied in the OFB= operand is an address
pointing to a four-byte field containing the
address of the OFB in the low-order three bytes.

The address of a Volume Control Block (VCB). May
be used only if the caller is in System Mutual
Exclusion (SME) or the volume is mounted for
initialization. Must be presented as an address
expression, or as a register specification in
parentheses where the register contains the
address of the VCB. Note that the displacement
constant of +1 is added to the VCB address by the
macroinstruction code in order to distinguish the
CHECK VCB option from the CHECK OFB option.

Optional address of an instruction to receive
control in the event of an I/0 error. Must be
presented as an address expression, or as a
register specification in parentheses where the
register contains the error exit address.

If IOSWREG=R0 is specified, the completion IOSW
will be returned in general registers 0 and 1.

An address in segment 2, into which a received
message will be placed. The receipt area in
segment 2 must contain the total length of the
area, in binary, in its first two bytes. The
length must not be greater than 2016 bytes. The
message is placed in the specified area. If the
area length is less than the message length plus
two, the message will be truncated on the right.
The area length bytes are updated to reflect the
length of the message, plus two. (This 1is the
full length of the message, even if the message
was truncated.)

The four-character name of one of this task's
active message receipt ports, as established by
CREATE. May be specified as an expression
addressing a 4-byte field containing the port
name, as a register in parentheses pointing to the
4-byte field containing the port name, or as a
character string in single quotes which is the
port name.

4-14

WSKEY=

CHECK

A workstation device number. Specified in the
low-order byte of the 4-byte field pointed to by
an address expression, or in the low-order byte of
a register in parentheses.

INTERRUPT= The device number of a workstation, printer, or

IOSWADDR=

PLIST=

COUNT=

telecommunications device. May be specified in
the low-order byte of the 4-byte field pointed to
by an address expression, or in the low-order byte
of a register in parentheses.

An address in segment 2, into which the IOSW will
be placed, May be specified as an address
expression, or as a register in parentheses
containing the address of the IOSW receipt area.
This operand is required for the CHECK INTERRUPT
option and for the CHECK TCIO option if the CHECK
is for a TC unsolicited interrupt.

The IOSWADDR operand is not required for the TCIO
option if CHECKing for completion of an TC I/0
event.

Address of a parameter 1list for CHECK MULTIPLE.
May be specified as an address expression, or as a
register in parentheses containing the address of
the parameter list.

Number of events (PLIST entries) for CHECK
MULTIPLE. May be specified as a self-defining
term which 1is the number of events, or as a
register in parentheses containing the number of
events (in binary) in the low-order byte.

CHECK OFB=(R2) ,ERREXIT=ERROR
PUSHA O0,ERRCR

PUSH 0,R2

svC 17 (CHECK)

4-15

Close File

Syntax
[1abel]l CLOSE [REEL ,] UFB={ (register)}
[NOREWIND,] {expression}
[uNLOAD ,]
Restrictions
None.
Function

Closes a file (removes it from processable status). Places
the User File Block (UFB) in a state in which an OPEN can
be addressed to it to return the file to processable
status. This includes placing sufficient file location
information in the UFB so that a succeeding OPEN will refer
to the same file, volume, and device. If UFB bit UFBF1WORK
is set and the file is in a library named #xxxWORK (where
xxx 1is the USERID), the file will be SCRATCHed as well as
CLOSEd. (See the SCRATCH supervisor call for function.)

Operand Descriptions

UFB= The address of a User File Block for an open
file. It must be presented as a register
specification in parentheses, where the

register 1is assumed to contain the UFB address,
or as a UPB address expression not in
parentheses. If omitted, only the SVC
instruction is generated.

REEL If specified for a file on an appropriate
device (e.g., magnetic tape), the file will not
be closed, but rather will be positioned so
that the first record on the next volume (if
any) will be provided on the next READ, or
written on the next WRITE.

NOREWIND If specified for a magnetic tape file,
rewinding is suppressed when the file is closed.

UNLOAD If specified for a magnetic tape file, the tape
will be rewound, set to '"offline," and
effectively DISMOUNTed when the file is closed.

Example
LAB1 CLOSE UFB=(R3)
+ PUSH O,R3
+ SvC 1 (CLOSE)

4-16

Create Intertask Message Port

Syntax

[1abel]l CREATE PORT= { (register)} ,BUFSIZE= { (register)}

Function

{expression} {expression}
{'string' }

[,PRIVILEGED]

Activates an intertask message receipt port with the
specified port name, and with the issuing task as the valid
receiver. Optionally screens out messages not transmitted
by code in privileged state or dedicated system tasks.

Return codes are placed in the word on the stack top as
follows:

0 - Successful.
4 - Another task has activated the specified port name.
8 - Same task has already activated the specified port

name

12 - GETMEM failure.

Operand Descriptions

PORT=

BUFSIZE=

PRIVILEGED

Example

LAB1
+LAB1

CREATE
PUSHC
PUSH
MVI
SvC

The four-character name of a message receipt
port (chosen by the issuing program; any
characters are allowed). May be specified as a
register in parentheses pointing to the port
name, as a literal in single quotes which is
the port name, or as an expression addressing a
4-byte field containing the port name.

The space in bytes to be allocated for
buffering messages. May not be greater than
2016.

Causes only messages transmitted by tasks in
privileged code or by dedicated system tasks to
be received by the message receipt port being
created.

PORT=PORTNAME ,BUFSIZE= (RO)
0(4,0) ,PORTNAME

0,R0

0(15) ,x'00°*

37 (CREATE)

4-17

Return CEXIT 'RETURN' Information

Syntax

CXT [NODSECT] [,REG=expression] [,SUFFIX=character]

Function

The CXT macroinstruction allows the

user to symbolically

reference the information returned to a program's cancellation
interception routine.

Operand Descriptions

NODSECT - Specification of NODSECT results in the CXT
fields to be assembled as part of the current
CSECT, DSECT, or STATIC section. If not
specified, a DSECT with the name CXT (+ SUFFIX)
is generated.

REG= - Provides for the optional specification of a
register for which a USING statement for the
CXT fields is generated.

SUFFIX= - If provided, all labels are generated by the
concatenation of 'CXT', the user—-provided
SUFFIX (one ASCII character in length), and the
field name.

Example

CXT

+CXT DSECT

+¥ THE CEXIT RETURN INFORMATION BLOCK IS RETURNED TO

+%* A PROGRAM'S CEXIT ROUTINE FOR PROGRAMMED ANALYSIS

+¥% OF AN ABNORMAL TERMINATION CONDITION.

+CXTBEGIN DS OF (FULLWORD ALIGNMENT)

+CXTPCW DS CL8 CANCELLED PROGRAM'S PCW

+CXTPROGRAM DS CL8 NAME OF CANCELLED PROGRAM

+% (X'00' IF UNABLE TO OBTAIN

+% BUFFER DURING CANCEL

+¥ PROCESSING!)

+CXTFLAGS DS XL1 VALUE IN PFBCXTOPTS AT TIME

+% OF PROGRAM CANCELLATION

+CXTSPARE DS CL47 (RESERVED)

+CXTREGS DS CLé64 REGISTER'S OF PROGRAM

+% AT TIME OF PROGRAM CANCEL

+CXTMSGLIST DS OX CANCEL MSGLIST

+CXTMSGID DS CL4 MESSAGE IDENTIFIER

+CXTMSGISSUER DS CLé MESSAGE ISSUER

+CXTMSGLENGTH DS H MESSAGE LENGTH

+CXTMSG EQU ¥ MESSAGE BEGINS HERE

+ CSECT

4-18

Delete Record from Indexed File

Syntax
[1abel] DELETE UFB={ (register)} [,COND={integer }]
{expression} [{absolute expression}l]
Restrictions

The file specified must be open for IO or SHARED mode
processing. In I0 mode, the 1last function on this file
must have been a successful READ with the HOLD option. In
SHARED mode, the record to be rewritten must be held as a
result of a READ with the HOLD option.

Function

To delete the last record read from an indexed file on
disk. Normally, control is returned to the instruction
location following the DELETE macroinstruction. If the
record to be deleted is not held, if the file is not an
indexed file, or if the DELETE function is not allowed for
the current 'open mode', control is returned to the I/0
error return address as specified in the UFB, with the
normal return address in register O. If the I/0 error
return address in the UFB contains all binary =zeroes when
an error occurs, the program is abnormally terminated.

File status bytes in the UFB are set as follows for DELETE:

. Success UFBFS1=0, UFBFS2=0
. 1/0 error UFBFS1=3, UFBFS2=0
. Invalid function or UFBFS1=9, UFBFS2=5

function sequence

Operand Descriptions

UFB= The address of a User File Block. It may be
presented as a vregister specification, where the
register is assumed to contain the UFB address, or
as an expression not in parentheses, in which case
the word addressed is assumed to begin the UFB.

COND= If specified, the number or absolute expression
becomes the first operand of the JSCI instruction
by which the DELETE function is entered. Thus the
DELETE is made conditional. COND=15 1is the
default. Register 1 is loaded with the UFB address
in any case.

4-19

DELETE

Examples

LAB1
+LAB1

LAB2
+LAB2

DELETE

JSCI

DELETE

JSCI

UFB= (R2)
1,R2
15,12Q1)

UFB=DSKUFB ,COND=7

1,DSKUFB
7,12Q1)

4-20

Destroy Intertask Message Port

Syntax

[1abel] DESTROY PORT= { (register) }
{ expression}
{ 'literal' }
Function

Deactivates the intertask message receipt port with the
specified port name, which must have been activated by the
same task by means of the CREATE macroinstruction.

Return codes are placed in the word on the stack top as
follows:

0 - Successful.

4 - One or more messages were not received, and are
lost; otherwise successful.

8 - No such message buffer was allocated by this task.

Operand Description

PORT= The four-character name of a message receipt port.
May be specified as a register in parentheses
pointing to the port name, as a literal in single
quotes which is the port name, or as an expression
addressing a 4~byte field containing the port name.

Example
LAB1 DESTROY PORT=(R1)

+LAB1 PUSHC 0(4,0) ,0(R1)
+ SvC 38 (DESTROY)

4-21

Dismount Disk or Tape Volume

Syntax
[1abel] DISMOUNT VOLUME= {address } , TYPE = {DISK}
{ (register) } {TAPE}
{'string' }
,NODISPLAY= {YES}
{NO }
Restrictions
None.
Function

To request the dismounting of a disk or tape volume. If the
volume referenced is a tape volume, then it is also rewound and
unloaded.

DISMOUNT issues a return code to the user program in the stack
top word which indicates the success/failure/status of the
operation (see DISMOUNT SVC description for possible values).

Operand Descriptions

VOLUME= The name of the volume which is to be dismounted.
It may be specified as as a register in parentheses
pointing to the volume name, as a character string
in single quotes which is the volume name, or as an
expression addressing a 6-byte field containing the
volume name. This operand is required.

TYPE= Indicates whether the volume is a disk or a tape
volume. Valid values are DISK and TAPE. This
operand is optional and defaults to DISK.

NODISPLAY= If YES is supplied, indicates that no messages
are to be displayed on the user's workstation; the
operator console messages must be used to coordinate
physical dismounting. The default is NO.

4-22

Examples

LAB DISMOUNT VOLUME='VOL444' ,TYPE = DISK

+ LAB PUSHN 0,8 GET TWO WORDS ON THE STACK
+ MVC 2(6,15) ,*+10 SET VOLUME NAME
+ B *+10 BRANCH AROUND CONSTANT
+ DC CL6'VOL444 " VOLUME NAME
+ MVI 0(15) ,x'00’ SET FLAG FOR DISK VOLUME
+ MVI 1(15) ,x'00" SET BYTE 1 to ZEROES (RESERVED)
+ SVC 41 (DISMOUNT) ISSUE SVC
LAB DISMOUNT VOLUME=(R4)
+ LAB PUSHN 0,8 GET TWO WORDS ON THE STACK
+ MVC 2(6,15) ,0(R4) SET VOLUME NAME
+ MVI 0(15) ,x'00" SET FLAG FOR DISK VOLUME
+ MVI 1(15) ,x'00" SET BYTE 1 TO ZEROES (RESERVED)
SVC 41 (DISMOUNT) ISSUE SVC
LAB DISMOUNT VOLUME=TAPEVOL ,TYPE=TAPE
+ LAB PUSHN 0,8 GET TWO WORD ON THE STACK
+ MVC 2(6,15) ,TAPEVOL SET VOLUME NAME
+ MVI 0(15) ,x'80" SET FLAG FOR TAPE VOLUME
+ MVI 1(15) ,X'00" SET BYTE 1 TO ZEROES (RESERVED)
+ SVC 41 (DISMOUNT) ISSUE SVC

4-23

Extract Data From System Control Blocks

Syntax
[1abel]l EXTRACT FORM=

AREA=al,
SYSLIB=a5,
WS=a9,
WTFLGS=al3,
EXTPRIOR=al7,
CURVOL=a21,
SEG2S1ZE=a25,
 RUNLIB=a29,
OUTLIB=a33,
PROGVOL=a37,
PRTCLASS=a41,
DISKIO=a45,
POCOUNT=a49,
PTIME=a53,

OTASK=(a58,a59) ,

ATOETRT=a63,
VERSION=a68,
UEXFLGS=a7l,
JOBQUEUE=a75,

{LIST }
{BRIEF}
{FULL }
{PCPCW}

NRES=a2,
SYSWORK=a6,
STACK=alo0,
SEG2BUF=al4,
PCPCW=al8,
CURLIB=a22,
STATIC=a26,
INVOL=a30,
PRNTMODE=a34,
PROGLIB=a38,
FORM#=a42,
PRINTIO=a46,
SICOUNT=a50,

DEVICE=(a54,a55) ,
TAPEVOL=(a60,a61) ,

ETOATRT=a64,
SYSPAGE=69,
URDFLGS=a72,
JOBCLASS=a76,

DLPNAME=(a79,a80) ,

CDISKET=a83,

Restrictions

None.

Function

Retrieves

VOLVCB=(a84,a85)

useful to user programs.

DYVAL=a3,
VERSION=a7,
EXFLGS=all,
USERID=al5,
TASK#=al9,
WORKLIB=a23,
PRINTER=a27,
INLIB=a3l,
FILECLAS=a35,
WORKVOL=a39,
WSI0=a43,
0T10=a47,
SOCOUNT=a51,

VOLUME=(a56,a57) ,

DEVCNT=262,

SYSVOL=a4,
OCNT=a8,
RDFLGS=al2,
USERNAME=al6,
TASKTYPE=a20,
SPOOLIB=a24,
RUNVOL=a28,
OUTVOL=a32,
LINES=a36,
SPOOLVOL=a40,
TAPEIO=a44,
PICOUNT=a48,
ETIME=a52,

DEVLIST=(a65,a66,a67),

CPU=a69,
UWIFLGS=a73,
JOBLIMIT=a77,

HZ=a70,
CLUSTER=a74,
JOBNAME=a78,

DLPDEVi#= (a8l1,a82),

data from system control blocks

The following outputs for FORM = BRIEF, FORM
FORM = PCPCW are placed in the area addressed by the AREA=

operand, by ascending addresses:

that may be

FULL, or

FORM=BRIEF:
(¢)) Total physical area in bytes not currently
resident (4 bytes)
(2) Number of files which a task may have open

simultaneously (2 bytes)

4-24

FORM

FORM

(3)
(4)

FULL:
1)
(¢))
3)
(Y]
(5)
()]
¢))
(8
(9
(10)
(11)
12)
13)
14)
@15)
(16)
an
(18)
19
(20)

(21)
(22)

(23)
(24)

PCPCW

@

EXTRACT

Workstation number associated with requesting
task, or -1 if none (2 bytes)

Remaining stack space in bytes after return from
EXTRACT (4 bytes)

Total physical area in bytes not currently
resident (4 bytes)

Number of files which a task may have open
simultaneously (2 bytes)

Workstation number associated with requesting
task, or -1 if none (2 bytes)

Remaining stack space in bytes after return from
EXTRACT (4 bytes)

One day in clock units (4 bytes)

System default library's volume name (6 bytes)
System default library name (8 bytes)

Task's default printer number, or -1 if none (2
bytes)

User program library volume (6 bytes)

User program library name (8 bytes)

Current file-access bit map for 'execute' access
(from Program File Block (PFB)) (4 bytes)

Default non-output volume for 'OPEN' (6 bytes)
Default non-output library name (8 bytes)

Current file-access bit map for ‘'read' access
(from Program File Block (PFB)) (4 bytes)

Default output volume for 'OPEN' (6 bytes)

Default output library name (8 bytes)

Current file-access bit map for ‘'update' access
(from Program File Block (PFB)) (4 bytes)

Number of segment 2 buffer pages currently
available (2 bytes)

Print output mode (Spooled (S), Keep (K), Hold
(H), or On-line (0)) (1 byte)

Default output file-protection class, or blank (1
byte)

User logon identification (3 bytes)

Task current paging priority (from Task Control
Block) (1 byte)

Suggested lines-per-page for print files (1 byte)
Operating System version number (Packed number
'VVRRPP' wvhere VV is the version, RR is the
revision, and PP is the patch level) (3 bytes)

Program Control Word (PCW) at time of most recent
program exception for which a user exit was
specified (8 bytes)

4-25

EXTRACT

Operand Des

criptions

FORM=

BRIEF is used to request four items as described
above. Thus the output area must be at least 12 bytes
long. FULL is used to request all 20 items listed
above, and thus the output area must be at least 98
bytes long. PCPCW is used to request the value of the
Program Control Word (PCW) current when a program
exception occurred for which an exit routine was
provided, and 1is intended for use in such a routine.
(Its use at other times results in undefined and
irrelevant output.) The output area must be at least
8 bytes long. LIST is used when a 1list of needed
items is supplied.

Specifies the address of the output area, either as an
expression addressing that area, or as a register
expression in parentheses, where the register contains
the address of the area. Not valid with FORM=LIST.

The following operands are used with FORM = LIST only.. The

operand s

pecifies the address of an area to receive the

corresponding data item.

SYSTEM-WIDE INFORMATION:

NRES= Total physical area in bytes not currently
resident (4 bytes)

DYVAL= One day in clock units (4 bytes)

SYSVOL= System default library's volume name (6 bytes)

SYSLIB= System default library name (8 bytes)

SYSWORK= System work library (paging files, system task
queues, etc.) which BACKUP skips (8 bytes)

VERSION= Operating System version number (Packed VVRRPP,
where VV is the version, RR is the revision, and
PP is the patch level) (3 bytes)

SYSPAGE= System paging library name (8 bytes)

DEVCNT= Device number (=255) of highest-numbered I/0
device on the system (4 bytes)

ATOETRT= ASCII-to-EBCDIC translate table (256 bytes) .
See TR instruction in Principles of Operation
Manual for use.

ETOATRT= EBCIDIC-to-ASCII translate table (256 bytes).
See TR instruction in Principles of Operation
Manual for use.

CDISKET= Device number of system's central diskette (2
bytes)

CPU= Current CPU ID (2 bytes)

HZ= A/C line frequency (2 bytes)

4-26

OCNT=

Ws=
STACK=
EXFLGS=
RDFLGS=
WTFLGS=

UEXFLGS=
URDFLGS=
UWTFLGS=

SEG2BUF=
USERID=
USERNAME=
EXTPRIOR=
PCPCW=

TASKi#=
TASKTYPE=

CURVOL=
CURLIB=

WORKLIB=
SPOOLIB=
JOBNAME=

SEG2SIZE=
STATIC=

EXTRACT

TASK-RELATED INFORMATION:

Number of files which current task may have open
simultaneously, excluding files already open (2
bytes)

Workstation number associated with requesting
task, or -1 if none (2 bytes)

Remaining stack space in bytes after return from
EXTRACT (4 bytes)

Current file-access bit map for 'execute' access
(from Program File Block (PFB)) (4 bytes)
Current file—access bit map for 'read' access
(from Program File Block (PFB)) (4 bytes)
Current file—access bit map for ‘'update' access
(from Program File Block (PFB)) (4 bytes)
User's base file-access bit map for ‘'execute'

access (from user's Extended Task Control Block
(ETCB)) (4 bytes)

User's Dbase file-access bit map for 'read'
access (from user's Extended Task Control Block
(ETCB)) (4 bytes)

User's Dbase file-access bit map for
'update’access (from wuser's Extended Task
Control Block (ETCB)) (4 bytes)

Number of segment 2 buffer pages currently
available (2 bytes)

User logon identification (3 bytes)

User name (from system user list) (24 bytes)
Task's current paging priority (from Task
Control Block) (1 byte)

Program Check 0ld PCW for last program check (8
bytes)

Unique task identifier (4 bytes)

Task type ('F' for foreground, 'FS' for
dedicated foreground system task, 'B' for
background task, and 'BS' for dedicated

background system task) (2 bytes)

Volume where current program resides (6 bytes)
Library in which current program resides (8
bytes)

Work 1library name constructed from user ID or BG
task number (8 bytes)

Spool library name constructed from user ID or
BG task number (8 bytes)

Name of background job (8 bytes)

Length of segment 2, in bytes (4 bytes)

Pointer to beginning of static areas for current
program (May be useful in re-establishing
addressability in a CEXIT routine) (4 bytes)

4-27

EXTRACT

USER DEFAULTS (May be set by using the SET SVC or the SET Command
Processor function):

PRINTER=
RUNVOL=
RUNLIB=

INVOL=
INLIB=
OUTVOL=
OUTLIB=
PRNTMODE=
FILECLAS=

LINES=
PROGVOL=

PROGLIB=
WORKVOL=
SPOOLVOL=
PRTCLASS=

FORMit=

JOBQUEUE=
JOBCLASS=
JOBLIMIT=

RUN STATISTICS:

WSIO=
DISKIO=
TAPEIO=
PRINTIO=
OTIO=

PICOUNT=
POCOUNT=
SICOUNT=
SOCOUNT=
ETIME=

PTIME=

Task's default printer number, or -1 'if none (2
bytes)

User program library volume (used by Command
Processor RUN function) (6 bytes)

User program library name (used by Command
Processor RUN function) (8 bytes)

Default non—output volume for OPEN (6 bytes)
Default non-output library (8 bytes)

Default output volume for OPEN (6 bytes)

Default output library (8 bytes)

Default print output mode (1 byte)

Default output file—access protection class, or
blank (1 byte)

Suggested lines-per—page for print files (1 byte)
User program volume name used by LINK SVC (6
bytes)

User program library used by LINK SVC (8 bytes)
Default work volume (6 bytes)

Default spool volume (6 bytes)

Default print class for print files (A-Z) (1
byte)

Default form number for print files (0-254) (1
byte)

Default job status (Run (R) or Hold (H)) (1 byte)
Default job class (A-Z) (1 byte)

Default job CPU time limit (4 bytes)

Count of workstation I/0s this run (4 bytes)
Count of disk I/Os this run (4 bytes)

Count of tape I/0s this run (4 bytes)

Count of printer I/Os this run (4 bytes)

Count of I/0s for other devices not included
under WSIO, DISKIO, PRINTIO, or TAPEIO (4 bytes)
Program pagein count (4 bytes)

Program pageout count (4 bytes)

System pagein count (4 bytes)

System pageout count (4 bytes)

Elapsed time of run since command processor
initiation, in hundredths of seconds (4 bytes)
Processor time of run since command processor
initiation, in hundredths of seconds (4 bytes)

4-28

EXTRACT

The following operands are used with FORM=LIST only. Two

addresses are supplied. The first address specifies further
input, and the second address specifies as area to receive the

corresponding data.
DEVICE= Input:
Output:
(1)
(2
3
(4)

)

(6)

@
VOLUME= Input:

Output:

(6))

(2)

(3

)

(5)

(6)
@
(®
(9

10)
(11)

(12)
13)
OTASK= Input:

Output:
(6))

Device address (1 byte)

Device class (1 byte)

Device type (1 byte)

Usage — 'EX' (exclusive, 'SH' (shared)' or
'DT' (detached) (2 bytes)

Task identifier of device owner, or -1 if
none (4 bytes)

Volume name number of removable volume (disk
or tape only). Blank if nothing mounted. (6
bytes)

Volume name of fixed volume (disk only).
Blank if nothing mounted. (6 bytes)

4 bytes of binary zeroes (reserved)

Volume Name (6 bytes)

Device address, or -1 if volume not mounted
(1 byte)

Volume type: '‘F' for fixed, 'R' for
removable, or blank if not mounted (1 byte)
Label type: 'SL' (standard label), 'NL' (no
label) , or blank if not mounted (2 bytes)
Usage =~ 'SH' (shared), 'RR' (restricted
removal) , 'PR' (protected) , 'EX'
(exclusive) , or blank

Task identifier of volume mounter, or -1 if
none (4 bytes)

Blocks per cylinder (2 bytes)

Maximum transfer in bytes (2 bytes)

Cylinders per volume (2 bytes)

Cylinders per physical volume, including bad
or unused blocks (2 bytes)

Number of files open on this volume (2 bytes)
Sector type (diskette only): soft sector
(S8) , hard sector (H)

Addressing in effect (diskette only):
Non-standard (N), Standard (S)

Unused (2 bytes)

Task identifier (4 bytes)

Workstation device number of task specified,
or -1 if none (1 byte)

4-29

EXTRACT

TAPEVOL=

DLPNAME=

(2) Current user ID for task specified, or blank if
none (3 bytes)
(3) Current user name for task specified, or blank
" if none (24 bytes)
(4) Type ('F', 'FS', 'B', 'BS') of task specifed
(see TASKTYPE) (2 bytes)
(5) 18 bytes of binary zeroes (reserved)

Input: Volume name (6 bytes)

Output:

(1) Device address, or -1 if volume not mounted Q1
byte)

(2) 1 byte of binary zeroes (reserved)

(3) Density, BPI in binary: 556, 800, or 1600 (2
bytes)

(4) Label type: ‘AL' (ANSI), 'NL' (no label), 'IL'
(IBM label), or blank if volume not mounted (2
bytes)

(5) Usage: 'SH' (shared), 'EX' (exclusive), or
blank if not mounted (2 bytes)

(6) Task identifier of tape mounter, or -1 if none
(4 byts)

(7) Current file sequence number (2 bytes)

(8) 6 bytes of binary zeroes (reserved)

Input: Name of Data Link Processor (as specified in
the SYSGEN procedure)

NOTE:
The output area will be all zeroes if the specified
DLP name is invalid.

Output:
(1) Bit map of devices on DLP (4 bytes)
(2) First device on DLP (2 bytes)
(3) Type of DLP (1 = 22V06-1, 2 = 22V06-2, 3 =
22V06-3) (1 byte)
(4) Number of lines (RS-232) controllable by the DLP
(1 byte)
(5) Microcode file status (X'00' if stopped, X'80'
if loaded) (1 byte)
(6) Reserved for future use (3 bytes)
(7) Microcode file name (8 bytes, zero if not loaded)
(8) Microcode library name (8 bytes, =zero if not
laoded)
(9) Microcode volume name (6 bytes, zero if not
loaded)
(10) Reservation status of DLP (X'80' if
reserved, X'00' if not reserved)
(11) Task number of the task which reserved the
DLP (3 bytes)

4-30

EXTRACT

DLPDEV# Input: Device address (2 bytes)

NOTE:
For the DLPDEV# operand, the output area will contain
zeroes if the specified device address is invalid.

Output:

(1) Device status flag (X'80' if open, X'40' if
reserved, zero otherwise)

(2) Task number of the task which reserved the DLP, or
zero if device is unreserved (3 bytes)

(3) Name of the DLP on which the device is SYSGENed (4
bytes)

CLUSTER= Input: Device number (2 bytes)

NOTE:
This operand is used for obtaining the device number of
the archiver diskette on the same cluster as the device
number which is specified as input. (If more than one
archiver diskette is on the cluster, then the device
number that is returned belongs to the archiver whose
device number is next in sequence.)

Output:

(1) Device number of the archiver diskette, or zero if
none (2 bytes)

(2) Unused (14 bytes)

VOLVCB= Input: Volume name (6 bytes)

Output: Volume Control Block (VCB) address (4 bytes)

The DEVLIST operand has three suboperands. The first address
specifies further input, the second address specifies an area to
receive the corresponding data, and the third suboperand is the
length of the output area (specified as an expresssion or
register in parentheses). Note that the maximum number of device
addresses in the device list will be two less than the output
length specified.

DEVLIST= Input: Device class, as in EXTRDDEVCLASS (1 byte)
Output:
(1) Total number of devices for specified device class
(1 byte)
(2) Number of device addresses supplied (1 byte)
(3) Device address list (1 byte for each device address)

4-31

EXTRACT

Examples
LAB1 EXTRACT FORM=BRIEF,AREA=(R3)
+ LAB1 PUSH 0,R3 AREA
+ MVI 0(sP),0 FORM=BRIEF
+ SVC 28 (EXTRACT)

LAB2 EXTRACT INLIB=Al,INVOL=(R1)

+ LAB2 PUSH 0,R1 AREA FOR INVOL
+ PUSHA 0,11 IDENTIFIER
+ PUSHA 0,A1 AREA FOR INLIB
+ PUSHA 0,12 IDENTIFIER
+ PUSHA 0,2 COUNT OF ITEMS
+ MVI 0(15),3 FORM=LIST
+ SVC 28 (EXTRACT)
LAB3 EXTRACT OUTLIB=Al,VOLUME=(A2, (R1))
+ LAB3 PUSHA 0,A1 AREA FOR OUTLIB
+ PUSHA 0,15 IDENTIFIER
+ PUSHA 0,1 COUNT OF ITEMS
+ MVI 0(15),3 FORM=LIST
+ SVC 28 (EXTRACT)
+ PUSHA 0,A2 VOLSER ADDRESS
+ PUSH 0,R1 AREA FOR OUTPUT
+ PUSH 0(15) ,24 CURRENT OUTPUT LENGTH
+ PUSHA 0,51 IDENTIFIER
+ PUSHA 0,1 COUNT OF ITEMS
+ MVI 0(15) ,4 FORM=LIST WITH ADDITIONAL INPUT
+ SVC 28 (EXTRACT)
LAB4 EXTRACT DEVLIST=(A2, (R1),12)
+ LAB4 PUSHA 0,A2 DEVICE CLASS ADDRESS
+ PUSH 0,R1 AREA FOR OUTPUT
+ MVI 0(15),12 SPECIFIED OUTPUT LENGTRH
+ PUSHA 0,59 IDENTIFIER
+ PUSHA 0,1 COUNT OF ITEMS
+ MVI 0,(15) ,4 FORM=LIST WITH ADDITIONAL INPUT
+ SVC 28 (EXTRACT)

4-32

Generate Selected Parameter Group Control List Fields

Syntax

[1abel]l FMTLIST [LABELPFX='prefix',]
'Keyword' , ({ 'displayed-value'}
{ absolute-length }

[,1ine~advancel [,space—-advancel),

{TEXT, }
{textname,} ('displayed-text'

[,l1ine-advancel] [,space-advancel

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{ [,'CENTER'][, 'RIGHT'])

L e s el adin adie et adbnadin et adie o

['Keyword2',(...),...]

[,PREVIEW = {YES}]
{NO}

Function

Generates Field Format Control Blocks for use in a
Parameter Group Control List as addressed by SVC GETPARM
and SVC PUTPARM. The function is identical to that of the
KEYLIST macroinstruction, except that the first eight bytes
of the Parameter Group Control List are not generated.
Thus, a PRNAME may not be specified.

Operand Descriptions

As for the KEYLIST macroinstruction, except that PRNAME may
not be specified.

4-33

+XXXLIST
+
+

FMTLIST
TEXT1, ("HEADING'

LABELPFX="XXX',
),

TEXT, (' SUBHEADING') ,

'LIST', ("NO' ,AN)
EQU

3888888 AER

¥%*

HL1'0' PF KEY
HL1'3' FIELD COUNT
HL1'1,0,-1.6'
C'HEADING'
HL1'1,0,-1,9'

C' SUBHEADING'
HL1'1,0,0,1'
CL8'LIST'

C'NO*

4-34

L

Free Buffer Space

Syntax

[labell FREEBUF BUFLOC={ (register) }[,LENGTH=(register)]
{ expression}

Restrictions

For use by certain supervisor call routines and Data
Management System routines only.

Function

To deallocate a buffer area allocated by GETBUF. The
buffer area at the address (in segment 2, as provided by a
preceding GETBUF) specified by the BUFLOC operand and for
the 1length specified by the LENGTH operand is made
available for reallocation by GETBUF. The contents of this
area should be considered unreliable after the FREEBUF has
been issued.

A return code is left on the stack:
0 - Buffer deallocated
4 = Invalid buffer address
8 ~ Invalid buffer length

Operand Descriptions

BUFLOC= The address of a buffer allocated by GETBUF.
This must be presented as a register
specification in parentheses, where the

register is assumed to contain the buffer
address, or as a buffer address expression not
in parentheses.

LENGTH= A register specification in parentheses where
the register contains the buffer length. The
length must be a multiple of 2048, and must be
the same as that requested by GETBUF. LENGTH
of 2048 is assumed if no LENGTH= operand is

supplied.
Example
LAB1 FREEBUF BUFLOC=(R1)
+LAB1 PUSHA 0,2048
+ PUSH 0,R1
+ SVC 6 (FREEBUF)

4-35

Deallocate Heap Storage

Syntax

[1abel] FREEHEAP SIZE= (register)

Restrictions

,LINKLEV= address

,BUFLOC= { (register)}
{address }

,POOLNAME= {address }
{'string' }

[,ROOTLEV] [,SEARCH] [,DELETE]

A stack with the stack top addressed by the general
register 15 must be available.

Function

Deallocates heap storage previously allocated by the
GETHEAP SVC.

Operand Descriptions

SIZE=

BUFLOC=

The size of the block to be allocated. Specified
as a register in parentheses where the register
contains the size of the block in the low-order
three bytes. When the deletion of an entire
subpool 1is specified (i.e., the DELETE parameter
is specified), the SIZE parameter is ignored.

Start address of the buffer/block to be deleted.
Specified as a register in parentheses containing
the start address of the buffer/block in the
low-order three bytes, or as an address expression
pointing to a 4-byte field which contains the
start address of the buffer/block in the low—order
three bytes. When the deletion of an entire
subpool is specified (i.e., the DELETE parameter
is specified), the BUFLOC parameter is ignored.
BUFLOC must be specified if DELETE is not
specified.

4-36

LINKLEV=

POOLNAME=

ROOTLEV

SEARCH

DELETE

Example

FREEHEAP

Link level at which to start searching for the
specified subpool. A value of '0' indicates the
current link level, a value of 'l' is the parent,
and so on. Specified as an address expression
pointing to a one-byte field containing the 1link
level in binary. Default is 0 (i.e., current link
level).

Name of the subpool to be searched/deleted.
Specified as a 1- to 8~byte character string in
quotes which is the name of the subpool, or as an
address expression pointing to an 8-byte character
string not in quotes. Blank names are not
permitted. Trailing blanks are insignificant.
There is a system-defined default poolname for
each link level.

If specified, sets the LINKLEV parameter to 255
(X'FF'), which indicates the 1lowermost link
level. Any other value specified with LINKLEV= is
ignored if ROOTLEV is specified.

If specified, a backward search for the subpool is
to be initiated starting from the LINKLEV
specified. Default is no backward search.

If specified, asks for the deletion of an entire
subpool. The SEARCH parameter is ignored if
DELETE is specified. The BUFLOC parameter and
SIZE parameter are ignored if DELETE is specified.

LAB1 FREEHEAP SIZE=(3) ,POOLNAME=NAMLOC »BUFLOC=START ,ROOTLEV

+LAB1 PUSHN
XC
MVC
STCM
MVC
oI
SvC

+ 4+ + + + +

0,16 RESERVE STACK SPACE FOR PARAMETERS
(16,15) ,0(15) INITIALIZE PARAMETER SPACE
8(8,15) ,NAMELOC MOVE POOLNAME TO STACK
2,B'0111',1(15) MOVE SIZE PARAMETER TO STACK
5(3,15) ,START MOVE START ADDRESS TO STACK
4(15) ,X'FF' SET LOWERMOST LINK LEVEL

57 (FREEHEAP)

4-37

Get Buffer Space

Syntax

[1abel] GETBUF [LENGTH=(register)]

Restrictions

For use
Management

Function

To allocat

by certain supervisor call routines and Data
System routines only.

e a data management buffer area on a 2048-byte

(page) boundary. Buffer space is allocated from the
low-address end of segment 2. Control register 2 (the
stack 1limit word) may be modified by this function and by

FREEBUF,

Two words are stacked as output of this function:

If a buffer is allocated, the top word of the
stack contains binary =zero, and the next word
contains the buffer address.

If a buffer cannot be allocated, the top word of
the stack contains four in binary, and the next
word's contents are undefined.

If the requested length is not a multiple of 2K,
the top word of the stack contains eight in
binary, and the next word's contents are
undefined.

Operand Description

LENGTH=

Example

LAB1
+LAB1

A register specification in parentheses where the
register contains the buffer length. Only
lengths which are multiples of 2048 are valid.
If the operand 1is omitted, LENGTH of 2048 1is
assumed.

GETBUF
PUSHN 0,4

PUSHA 0,2048
SVC 5 (GETBUF)

4-38

Allocate Heap Storage

Syntax
[1abell GETHEAP SIZE= (register)
,LINKLEV= address

,POOLNAME= {address }
{'string'}

[,ro0TLEV] [,ALIGN] [,SEARCH] [,CREATE]

Restrictions

A stack with the stack top addressed by general register 15
must be available.

Function

This macro provides a user-level memory management feature
known as heap storage allocation. Heap storage is storage
independent of the system stack that can be allocated
dynamically, The GETHEAP facility is a generalization of
the GETBUF macro and SVC (for allocating page—aligned
buffers) with the following additional features:

1. Any size block can be allocated. It is not necessary
for the size to be a multiple of 2K. Any size is
automatically rounded up to the nearest 8-byte multiple.

2. Blocks may be put into different ‘'subpools'.
Advantages of subpooling are that clustering of areas
allocated from the same subpool will tend to occur, and
that blocks in a given subpool may be allocated in
separate calls of the GETHEAP macro and then
deallocated together by one FREEHEAP call.

3. All subpools associated with a specified link level are
released automatically on UNLINK for that level.

Because blocks are automatically released at program
termination, present GETBUF users are encouraged to convert
to GETHEAP.

4-39

GETHEAP

Operand Descriptions

SIZE=

LINKLEV=

POOLNAME=

ROOTLEV

ALIGN

SEARCH

CREATE

The size of the block to be allocated. Specified
as a register in parentheses where the register
contains the size of the block in the low-order
three bytes.

Link level at which to start searching for the
specified subpool. A value of '0' indicates the
current link level, a value of 'L' is the parent,
and so on. Specified as an address expression
pointing to a one-byte field containing the 1link
level in binary. Default is 0 (i.e., current link
level).

Name of the subpool to be searched/created.
Specified as a one- to eight-byte character string
in quotes, or as an address of an eight-byte field
containing an eight-byte character string not in
quotes. Blank names are not permitted. Trailing
blanks are insignificant, There is a
system—defined default poolname for each link
level,

If specified, sets the LINKLEV parameter to 255
(X'FF'), which indicates the ' lowermost 1link
level. Any other value specified with LINKLEV= is
ignored if ROOTLEV is specified.

When specified, requests 2K-alignment for all
blocks which are a multiple of 2K in size. This
parameter is ignored for blocks which are not a
multiple of 2K. The default is no alignment.

If specified, a backward search for the subpool is
initiated starting from the LINKLEV specified.
The default is to no backward search.

If specified, asks for the creation of a new
subpool with the name given by the POOLNAME=
parameter and at the link level given by LINKLEV.
The SEARCH parameter is ignored if CREATE is
specified.

4-40

GETHEAP
PUSHN
XC

MVC

STCM

MVC

01
SVC

GETHEAP

SIZE=(2) ,POOLNAME='POOL' ,LINKLEV=LEVL ,CREATE
0,16 RESERVE STACK SPACE FOR PARAMETERS

0(16,15) ,0(15)
8(8,15) ,%+10
*+12

CL8'POOL'
2,B'0111',1(15)
4(1,15) ,LEVL

0(15) ,x'40'
56 (GETHEAP)

4-41

INITIALIZE PARAMETER SPACE
MOVE POOLNAME TO STACK

MOVE SIZE PARAMETER TO STACK
MOVE LINK LEVEL PARAMETER TO
STACK

SET THE CREATE FLAG

Get Parameters

Syntax
[1abell GETPARM [I ,]FORM={REQUEST}
[1D,] {SELECT }
R ,] {ACK }
[rD,] {SYSHDR }
{OPR }
,KEYLIST={ (registerl) } ,MSG={ (register2)}
{expressionl} {expression?}
,DEVICE={ (register3)} [,PFKEYS={ (register4)}]
{expression3} [{expressiona}]

[{ (ENTER, expression4)}]

Function

To solicit formatted information from a procedure body or
from the user's workstation. Fields for which values are
requested are identified by a two-level name (PRNAME and
Keyword) specified in the Parameter Group Control List
addressed by the KEYLIST operand. The procedure body in
effect, if any, is the preferred source of values for a
type 'I' (initial) request. In the absence of a matching
name in a procedure, the user is solicited at the
workstation. A type 'ID' (initial defaulted) request
solicits from the procedure body only. A type 'R’
(respecification) request solicits from the workstation
only. A type 'RD' request normally solicits no information
from the workstation or from a procedure body, but updates
the procedure's temporarily stored information for wuse by
reference from a later procedure step.

The MSGLIST macroinstruction may be used to generate a
message for display. The KEYLIST macroinstruction may be
used to generate the Parameter Group Control List addressed
by the 'KEYLIST=' operand of GETPARM.

The total number of lines utilized by KEYLIST and MSGLIST
displays may not exceed 18. None of these lines may be
longer than 79 characters, excluding end-of-line characters.

The user should consult the GETPARM Supervisor Call
description and the KEYLIST macroinstruction description in
this document for details concerning the function of this
macroinstruction.

4-42

GETPARM

Operand Descriptions

I
Ib
R
RD

FORM=

MSG=

KEYLIST=

DEVICE=

Indicates the type of request. If not
specified, 'I' is the default value.

Valid options are shown in the syntax
specification; these are:

REQUEST - Request for information (default
option);

SELECT -~ Request for selection;

ACK - Request for acknowledgment;

SYSHDR - Request for information with no
PRNAME displayed;

OPR -~ Request for operator action.

For details, consult the GETPARM SvC
description.

The address of a message in the format
specified in the GETPARM Supervisor Call
description. This is the form of message
generated by the MSGLIST macroinstruction. It
may be presented as a register specification in
parentheses, where the register contains the
message address, or as an expression not in
parentheses, Wwhere the expression addresses the
message. A message is always required, but the
message text may be of length zero.

The address of a keyword specification and
display formatting list (format comntrol 1list),
in the format specified in the GETPARM
Supervisor Call description. This is the
format produced by the KEYLIST
macroinstruction. This operand may be
presented in the same ways as the 'MSG='
operand. A format control 1list is always
required, but may if desired have no Field
Format Control Blocks (Keyword or text
specifications) .

Device number in binary in the low byte of the
specified register or at the byte in memory
specified by the expression. Required if
FORM=OPR is specified; displayed when FORM=OPR
only.

4-43

GETPARM

PFKEYS=

Example

LAB1
+LAB1

LAB2

LAB3

If supplied as a single suboperand not in
parentheses or if supplied in parentheses with
the word ENTER (as shown in the syntax above),
the designated expression is to be used in a
4-byte A-type address constant indicating which
program function keys are to be accepted. The
high-order bit corresponds to program function
key 1, the low-order bit to program function
key 32. Bits on indicate keys to be accepted.
This expression may be preceded by ‘'ENTER,' in
which case the ENTER key 1is also accepted.
Otherwise, if the 'PFKEYS=' operand is
supplied, the ENTER key is not accepted.

May also be specified by designating a register
in parentheses where the register contains the
program function key map.

If the 'PFKEYS=' operand is not supplied, the
following keys are accepted:

FORM=REQUEST ENTER only

FORM=SELECT All PF keys and ENTER
FORM=ACK ENTER only

FORM=SYSHDR ENTER only

FORM=0PR ENTER and PF key 16 only

GETPARM KEYLIST=(R2) ,MSG=LAB2

PUSH 0,R2

LA 0,LAB2

PUSH 0,0

svC 20 (GETPARM)

MSGLIST '1234','TXTEDT' ,' OPTIONS AS FOLLOWS:'

KEYLIST PRNAME='0PT" , X
'LIST',('NO' ,AN,1,0), X
'DISPLAY', ('YES',AN,1,0), X
' LINECNT', ("50',INT,1,0)

4=44

Halt I/0 Operation

Syntax
1. [Labell HALTIO PRINTER (register) }
integer }
{ expression}

nun
-~

2. [Label] HALTIO OFB { (register) }

expression}

nn
—~

Restrictions

Intended for use by system routines and those user programs which
must control I/0 operations thru "XI0O" (Execute Physical I/0). NOT
to be used by programs using normal DMS for I/0.

HALTIO must not be issued unless an unCHECKed XIO is currently
outstanding. The user program must always wait for the HALTIO to
complete by issuing a subsequent CHECK I/0 macroinstruction,

Functions

1. To terminate multi-line (especially block-oriented) print 1/0
requests to a printer.

2. To terminate an outstanding I/O request to/from a file which is
not necessarily a printer output file (especially
telecommunications files).

3. To terminate an outstanding volume-oriented I/0 request to/from
a disk.

HALTIO issues a Return Code in the stack top word for the 'PRINTER"
form of the macroinstruction. This Return Code corresponds to the
condition code set by the HIO machine instruction (see "VS
Principles of Operation").

HALTIO does not issue a Return Code for the ''OFB" or '"VCB" forms of
the macroinstruction. The stack is cleared by the SVC.

Operand Descriptions

PRINTER - The device number of the printer whose current I/0 is
to be terminated. This number must be in the range 0 -
255 and may be specified as a register in parentheses
containing the device number in binary in its low-order
position as an integer which is the device number in
decimal, or as an expression addressing a one-byte
field containing the device number in binary.

4~45

HALTIO

OFB

NOTE:

Examples

+LAB

LAB
+LAB

- The address of the Open File Block for the outstanding
1/0. This form is used for file-oriented (regular) 1/0
and may reference any file/device pairing. This
operand may be specified as a register in parentheses
or as a four-byte data item defined in the user program.

The two operands are, of course, mutually exclusive.

HALTIO PRINTER=(R3)
PUSHA 0,0

STACK
STC R3,3(,15)
ORDER BYTE
SVC 12 (HALTIO)

HALTIO PRINTER=3
PUSHA 0,3
SVC 12 (HALTIO)

HALTIO PRINTER=PBLKID
PUSHA 0,0

STACK
mvec 3(1,15) ,PBLKID
SVC 12 (HALTIO)
HALTIO OFB=(R4)
PUSH 0,R4
MVI 0(15),X'80'
SVC 12 (HALTIO)

4-46

GET ONE WORD OF ZEROS ON THE
PUT PRINTER NUMBER IN LOW-
ISSUE SVC

PUSH PRINTER NUMBER ONTO STACK
ISSUE SVC

GET ONE WORD OF ZEROS FROM THE
PUT PRINTER NUMBER IN

LOW-ORDER BYTE
ISSUE SVC

PUSH OFB ADDRESS ONTO STACK
FLAG AS OFB/VCB TYPE PARMLIST
ISSUE SVC

Generate Parametér Group Control List

Syntax

[l1abel] KEYLIST PRNAME='name',[LABELPFX='prefix',]

{'Keywordl', ({ 'displayed-value'}, }
{ { absolute-length } }
{ }
{ [,CHAR] }
{ [,INT 1] }
{ [,NUM] }
{ [,AN] }
{ [,HEX] }
{ [,UCHAR] }
{ [,ANL 1] }
{ }
{ [,1ine-advancel [,space-advancel) , }
{ }
{ }
{ }
{ {TEXT, } }
{ {textname} ('displayed-text' }
{ [,line-advancel [,space—advancel }
{ [,'CENTER'][, 'RIGHT']) }

['Keyword2',(...),...]

[,PREVIEW = {YES}]
{NO}

Restrictions

Intended for use in conjunction with the GETPARM macroinstruction.

See that macroinstruction and the GETPARM Supervisor Call
description.

Function

Generates a data structure suitable for use as a parameter group

control list with SVC GETPARM (object of 'KEYLIST=' operand of the
GETPARM macroinstruction).

4-47

KEYLIST

Operand Descriptions

PRNAME=

LABELPFX=

'Keyword'

'displayed-value'

absolute-length

CHAR

INT

A name identifying the parameter
group. May be up to eight characters
in length; characters may be
alphabetic and/or numeric (first
character must be alphabetic).

A character string in quotes which
will be prefixed to each ‘'Keyword'
name and the resulting string used to
label each corresponding keyword
block. The label is placed on the
line-advance byte. Thus the flag byte
is at the 1location specified by this
label +2, and the receiving field
('displayed-value') is at this
location +12. This operand is
optional.

A name of up to eight alphabetic
and/or numeric characters enclosed in
single quotes, identifying a specific
parameter within the group.
Specification of 'Keyword' is mutually
exclusive with specification of TEXT
or text name.

A character string in single quotes
containing the default value for this
specific parameter. Single quotes to
appear in the string must be
represented by two consecutive single
quotes. The receiving field length is
then the length of this string.
Specification of ‘'displayed-value' |is
mutually exclusive with specification
of absolute-length.

An absolute expression must be
provided defining the 1length of the
receiving field for this parameter.
Specification of absolute-length is
mutually exclusive with specification
of 'displayed-value.'

Any character accepted in receiving
field.

Only unsigned integers accepted.

Numbers (with optional decimal point
and/or leading sign) accepted.

4-48

HEX

UCHAR

ANL

line—-advance

TEXT
Textname

KEYLIST

Letters (including national characters
#, @, and $) and numerals accepted.
GETPARM will convert letters to upper
case.

Only numerals and letters A-F
accepted. Letters A-F converted to
upper case.

(Leading and trailing blanks are
accepted in any format except
alphanumeric [AN], wherein only
trailing blanks are accepted.)

Any characters accepted. Lowercase
letters converted to uppercase.

Letters (including national characters
#, @, and &) and numerals accepted.
GETPARM will convert letters to
uppercase. The first character must
not be a number.

A positive number, 2zero, or omitted
(in which case 1 is assumed). If
nonzero, the keyword or text |is
displayed starting in column 2 (plus
the value in the space—advance
suboperand) of the 1line which is the
specified number of lines in advance
of the current 1line. If zero, line
advancing does not occur, and one
space (plus the number of spaces
specified by the space—advance
suboperand) appears on the workstation
screen between the previous displayed
values and this keyword or text.

Indicates that embedded text, rather
than a keyword and receiving field, is
supplied in the next operand. If a
nonquoted textname is provided, it may
be used to symbolically address the
beginning of the actual text field in
the Parameter Group Control List,
i.e., the 1label "textname" is
generated for the specified text field.

4-49

KEYLIST

space—advance

'displayed-text’

If specified as either an expression
with a value no less than zero or
greater than 78, or omitted (in which
case, zero is assumed), the value of
space—advance plus 1 is the number of
spaces that will appear on the
workstation screen between either the
previous field (if zero line~advance)
or the 1left side (if nonzero
line-advance) and the keyword or text
of the current field.

The space—~advance may also be
specified in three alternative formats:

'Ann'

"nn" represents one or two digits with
a value no less than '"2" and no
greater than "80" that indicate the
"absolute" colum in which the field
is- to Dbegin. - The appropriate
field-advance value is calculated and
placed in the control block.

' CENTER'

The appropriate field-advance value is
calculated (and placed in the control
block) such that the field is centered
within the 80 column workstation
screen line.

'RIGHT'

The appropriate field-advance value is
calculated (and placed in the control
block) such that the field is
right-justified on the 80 column
workstation screen line.

Regardless of how the space—advance is
specified, a MNOTE is generated if an
attempt 1is made to generate a
workstation line over 80 characters in
length or if an absolute, centering,
or right-adjust request cannot be
honored.

A character string in quotes to be
displayed as embedded text.

4-50

'Keyword2

PREVIEW

Example

LAB1

+LAB1

+

+

+ALIST

+

+
+ADISPLAY
+

+

+

+
+ALINECNT
+

+

[}
P)

KEYLIST

'LIST', (*NOb',AN),
'DISPLAY', ('YES',AN,0,5),
TEXT, ("NUMBER OF LINES'),

E88R8E88888888

KEYLIST

Any number of keyword or embedded text
operands may be supplied.

If YES is specified, the screen
display specified by the
macroinstruction operands will be
printed in the source listing. NO is
the default.

PRNAME='0PT' ,LABELPFX="A", X
X
X
X

'LINECNT', ("50',INT,0,5)

CL8'OPT' PRNAME

HL1'0' PF KEY

HL1'4' FIELD COUNT

HL1'1,0,0,2' LA,SA,FLAGS ,LGTH-1

CL8'LIST' KEYWORD

C'NOb' FIELD

HL1'0,5,0,2" LA,SA ,FLAGS ,LGTH-1

CL8'DISPLAY' KEYWORD

C'YES' FIELD

HL1'1,0,-1,14" LA,SA,FLAGS,LGTH-1

C'NUMBER OF LINES'

HL1'0,5,1,1" LA,SA,FLAGS ,LGTH-1

CL8'LINECNT'

c's50'

4-51

Link to Another Program or Subprogram

Syntax
[1abell] LINK [EP='literal’]
[EPLOC=Address of name]
[,SYSTEM] [,NOFAIL] [,LOADONLY]
[,LIBRARY={Address }]
{'literal'}
[,VOLUME ={Address }]
{'literal'}
Restrictions

A stack, with stack top addressed by general register 15,
must be available to the issuer.

Function

Pushes the name parameter and flag byte onto the top of the
stack and invokes the specified program by SVC LINK. If
the LIBRARY and VOLUME operands are specified, they
override the user program library and volume specified on
the SET or RUN command., The invoked program may return to
the invoker by means of the RETURN macroinstruction.
Execution of the LINK macroinstruction pushes status
information onto the stack, as well as the 'static' areas
of the LINKed-to program as described in section 2.2.1.1.3
of this document. Addresses on the stack to be passed to
an invoked program should be placed in a parameter list
addressed by register Rl. This parameter list may not be
in the reentrant program segment (segment 1). On entry to
a LINKed-to program, register R14 addresses the (new)
'static' area base (if any) as defined in Part I of this
document. Register Rl addresses the user's argument list
(that is, Rl is preserved across the LINK). Any user
program exception exit previously set by SVC PCEXIT is
eliminated, but is restored when an UNLINK is issued to
return to the LINKed-from program.

If the specified file exists but is not a program file, the
file, library, and volume names are pushed onto the stack
and LINK initiates execution of the system's Procedure
Interpreter, which then attempts to interpret the file as a
procedure.

4~52

Operand Descriptions

EP=

EPLOC=

LIBRARY=

VOLUME=

SYSTEM

NOFAIL

A name of up to eight characters, enclosed in
quotes, which is used in conjunction with the
current program library name (as a member name
in that 1library) to form a complete file name,
which is then sought and the corresponding file
invoked as a program if found. If not found,
the supplied name is used in conjunction with
the system library name, and the resulting file
name is sought.

A byte address, which must not be in a user's
program segment (segment 1), at which there is
a character string of length eight giving the
name of the member to be concatenated with the
current program library name or system 1library
name (as for the EP= operand). This must be
specified in a form allowable in the D2(B2)
fields of the SS-type assembler instruction
format.

A byte address at which there is a character
string of length eight giving the overriding
user program library name for use on this LINK
and LINKs nested below this 1link, or a
character literal in single quotes giving this
name. The previous default library name
becomes effective again upon UNLINK to this
LINK issuer,

Name of volume containing the overriding user
program library, specified as for the LIBRARY
operand.

Specifies that the user's program library is
not to be searched for the requested member.
Only the system library is searched.

Specifies that the program is not to be
terminated by the CANCEL SVC in the event that
the requested program is not found, or cannot
be acquired or executed, but rather that
control 1is to be returned to the address of the
LINK SVC instruction plus six bytes (next
sequential instruction address plus four).
This option is intended primarily for Command
Processor use. A code is returned in the top
word of the stack to indicate the specific
error condition (see LINK SVC description).

4-53

LINK

LOADONLY

Examples

LAB1
+LAB1

+LGOO1
+LG002

LAB2
+LAB2

Specifies that after the new program or
subprogram has been made addressable in segment
1, and all initialization of segment 2 areas
(including the Link Return List) has been
accomplished, control will be returned to the
address of the LINK SVC plus 10 bytes, instead
of being passed to the new program. The new
program's entry point address will be in
register zero when control is returned to the
LINK issuer. The LINK SVC must be issued from
segment 0 if this option is to be used.

LINK EP='PROG1"'
PUSHC 0(16) ,LGO01

B LG002

DC X'00',CL8'PROG1"' ,XL7'0’

svC 4 (LINK)

LINK EPLOC=PNAME , SYSTEM

PUSHN 0,16

MVI 0(sP) ,B"10000000" FLAG BYTE
MVC 1(8,SP) ,PNAME PROGRAM NAME
SVC 4 (LINK)

4-54

Supply Program Parameters

Syntax

(1) [label]l LINKPARM PUT,

, PRNAME=

,REFERLABEL=

,FMTLIST=

[,AID=

(2) [label]l LINKPARM CLEANUP [,REFERLABEL=
[
[

(3) [label]l LINKPARM REFER

,MERGE [, REMOVE] ,FMTLIST=

»NOMERGE JREFERLABEL=

Restrictions

None.

4-55

{DISPLAY}
{ENTER }

'string’

{address }
{'string' }
{ (register)}

{address }
{ (register) }

{address }]
{'string' }]
{ (register) }]

{ENTER}]
{1-32 }]

{address }]
{'string' }]
{ (register) }]

{address }]
{*string' }]

{ (register)}]
{NO 1
{YES }

{address }]
{'string' }]
{ (register) }]

{address }
{(register)}

{address }
{'string' }
{ (register) }

LINKPARM

Function

The LINKPARM macro accesses the functions of the PUTPARM SVC (SVC
33). The primary function (the PUT function) is to supply
parameters to another program's GETPARMs before issuing the LINK
SVC to invoke that program. The second function (the CLEANUP
‘function) 1is to deallocate the various internal data structures
created by the PUT function. The third function (the REFER
function) is to allow the calling program access to any parameters
which the user may have changed at GETPARM time (the MERGE
option), or to return the address of a previously created and
labelled FMTLIST (the NOMERGE option). See the PUTPARM SVC
description for further detail on each of these functions of the
PUTPARM SVC.

Note that both the PUTPARM macro and the LINKPARM macro call the
PUTPARM SVC (SVC 33). The PUTPARM macro allows only the
parameterization of another program (the PUT function), while the
LINKPARM macro accesses all the functions of the PUTPARM SVC.
Users of the PUTPARM macro are encouraged to use the LINKPARM
macro because of the more extensive functionality. The PUTPARM
macro is kept for compatibility with existing programs.

Operand Descriptions

PUT Enables a program to supply parameters to a GETPARM
issued by another program. The parameters to be
supplied to the GETPARM are contained in a format list
(FMILIST) , created with the FMTLIST macroinstruction.
The program issuing the LINKPARM PUT must link via the
LINK SVC to the program issuing the GETPARM. A
program may not use LINKPARM PUT to pass parameters to
its own GETPARM.

DISPLAY If DISPLAY is specified, requests a workstation

ENTER transaction when the FMTLIST supplied to the linked-to
program is accessed. If ENTER is specified,
suppresses a workstation transaction when this FMTLIST
is accessed. The default is ENTER.

PRNAME= A name of up to 8 alphanumeric characters which
identifies the PRNAME to be associated with the
FMTLIST being supplied to the linked-to program or the.
new PRNAME to be used if this 1is a backward
reference. Specified as a character string in quotes.

4-56

REFERLABEL=

FMTLIST=

AID=

PFKEY=

LABEL=

LINKPARM

A name of up to 8 alphanumeric characters which
identifies a previously labeled FMTLIST. This
parameter is used to "backward reference' a previously
created FMILIST, The backward reference facility
allows a program to reuse the (possibly updated)
parameters of a 1labelled FMTLIST. (See PUTPARM SVC
description for further detail regarding backward
reference facility). Specified as an expression
addressing an 8-byte field containing the name of the
FMTLIST, as a register in parentheses pointing to an
8-byte field containing the name of the FMTLIST, or as
a character string in quotes which is the name of the
FMTLIST. Note that, for the PUT function, REFERLABEL=
and FMTLIST= are mutually exclusive . For the CLEANUP
function, REFERLABEL= specifies a particular FMTLIST
to be deallocated. For the MERGE option, REFERLABEL=
contains the name of the source FMTLIST, while
FMTLIST= is the address of the destinmation FMTLIST.

The address of the FMILIST to be used. The FMTLIST

is created by the FMTLIST macro. (See the FMTILIST
macro description for further detail). Optionally the
address of a KEYLIST+8 may be supplied. Specified as
an expression addressing a FMILIST, or as a register
in parentheses containing the address of the FMTLIST.
Note that, for the PUT function, REFERLABEL= and
FMTLIST= are mutually exclusive.

The AID (Attention ID) character of a PFkey to be
passed to the GETPARM. AID characters are 'A‘'-'P'
(i.e., PFkeys 1-16, respectively), ‘a'~'p' (i.e.,
PFkeys 17-32, respectively), and '@' (i.e., the ENTER
key). Specified as an expression addressing a
one-byte field containing the AID character, as a
register in parentheses pointing to a one-byte field
containing the AID character, or as a character string
in single quotes which is the AID character. Note
that AID= and PFKEY= are mutually exclusive,

A PFkey to be passed to the GETPARM. PFKEY= may be

a number from 1 through 32, or the word ENTER. PFKEY=
must be a character string not in quotes. Note that
PFKEY= and AID= are mutually exclusive.

A FMTLIST may be labelled for later use by the

backward reference and override facilities. (See
PUTPARM SVC description for further detail.) A name
of up to 8 alphanumeric characters is used to label
the saved FMTLIST. May be specified as an expression
addressing an 8-byte field containing the label, or as
a register pointing to an 8-byte field containing the
label,

4-57

LINKPARM

REPEAT=

CLEANUP

REFER

MERGE

NOMERGE

REMOVE

Normally, no two GETPARM requests access the same
FMTLIST. A FMILIST may be declared to be for repeated
use via the macro parameter REPEAT=. If REPEAT=NO (or
is missing), the FMTLIST will be used only once. If
REPEAT=YES, the FMTILIST will be wused until it is
removed. If REPEAT=n, the FMTLIST will be used n+l
times (initial wuse + n repeats). May also be
specified as an expression addressing a 2-byte binary
repeat count or as a register in parentheses pointing
to a 2-byte binary repeat count. The value of the
repeat count can range from 1-32768.

If CLEANUP is specified, the various internal

structures created by the PUT function are
deallocated. If no REFERLABEL is provided, all
FMTLISTs created at this level and above are removed.
If a REFERLABEL is provided, only the labeled FMILIST
will be removed. If the CLEANUP option 1is wused,
REFERLABEL is the only other parameter which may be
suppplied.

Allows previously created and used FMTLISTs at the
current link level to be accessed.

The MERGE option of the REFER function allows the
"merging" of an updated 'used' labelled FMTLIST with a
program-designated FMTLIST in the user's address
space. The contents of the FMTLIST addressed by
REFERLABEL= (the source) are merged into the FMTLIST
addressed by FMTLIST= (the destination). Fields which
are present in the source, but not in the destination,
are ignored. Fields present in the destination but
not in the source are left unchanged.

Requests LINKPARM to return the address (in the

Segment 2 buffer) of the FMTLIST referenced by the
REFERLABEL= operand (i.e., a previously created and
labelled FMTLIST). The address is returned on the
stack.

Requests LINKPARM to remove (CLEANUP) the source

FMTLIST after performing the merge. This option is
only available with MERGE.

4-58

LINKPARM

Examples
LAB1 LINKPARM PUT,DISPLAY ,PRNAME='OLDPRNAM' ,FMTLIST=FMTL1,
LABEL='FO01',AID="A"
+LAB1 DS OH PLACE HOLDER FOR LABEL
+ PUSHC 0(8) ,=CL8'FOO1' FMTLIST LABEL
+ PUSHC 0(8) ,=CL8'OLDPRNAM' PRNAME
+ PUSHA 0,0 UNUSED
+ PUSHA FMTL1 FMTLIST
+ MVI FMTL1,C'A' AID CHARACTER
+ PUSHA 0,0 INITIAL FLAG BITS
+ 01 0(15) ,x'80' DISPLAY FLAG
+ SvC 33 (PUTPARM)

LAB2 LINKPARM PUT,PRNAME='NEWPRNAM',REFERLABEL='FO00l1"',PFKEY=1

+LAB2 DS OH PLACE HOLDER FOR LABEL
+ PUSHC 0(8),=CL8'' NULL LABEL FOR FMTLIST
+ PUSHC 0(8) ,=CL8'NEWPRNAM' PRNAME

+ PUSHC 0(8),=CL8'F001’ REFERLABEL

+ PUSHA 0,0 INITIAL FLAG BITS

+ MVI 1(15),65 AID CHARACTER

+ SvC 33 (PUTPARM)

LAB3 LINKPARM REFER,NOMERGE ,REFERLABEL='F001'

+LAB3 PUSHC 0(16),=CL16'' NULL LABEL AND PRNAME
+ PUSHC 0(8) ,=CL8'F001' REFERLABEL

+ PUSHA 0,0 INITIAL FLAG BITS

+ 01 0(15) ,X'40' REFER FLAG

+ SVC 33 (PUTPARM)

4-59

Log Off Interactive Terminal

Syntax

[1abel] LOGOFF

Function

The LOGOFF macroinstruction generates the code to issue the
appropriate SVC call and parameter list to effect a ''logoff by
program request."

Operand Descriptions

No operands are required.

Example
LAB?2 LOGOFF
+LAR? PUSHA 0,0 NULL
+ PUSHA 0,0 PARAMETERS
+ SVC 43 (LOGOFF)

4-60

Mount Disk or Tape Volume

Syntax
(1) [label]l MOUNT DISK=
,LABEL=
,VOLTYPE=
,NSA=
(2) [labell MOUNT TAPE=
,LABEL
,NOMESSAGE=
Restrictions
None.
Functions

1) To request the mounting of a disk volume on the

{ (register) }
{integer }
{address }

{SL } ,BLP= {NO }
{NL } {YES}
{R} ,SPOOL= {NO }
{F} {YES}
{NO } ,NODISPLAY= {NO }
{YES} {YES}

{(register)}
{integer }
{address }

{AL } ,BLP= {NO }
{NL } {YES}
{IL }
{NO }
{YES}

,VOLUME= { (register)}

{'string' }
{address }

,USAGE=

,WORK=

»,NOMESSAGE=

,VOLUME= { (register)}

{'string’ }
{address }

USAGE=

indicated

device with the specified label, usage, type, SPOOL file,
and Work file attributes.

2) To request the mounting of a tape volume on the indicated

device with the
attributes.

indicated device with the specified label

MOUNT issues a return code to the user program in the stack top

word which

4-61

indicates the success/failure/status of the operation
(see MOUNT SVC description).

{sH
{RR
{PR
{EX

B e ol adinad

{NO }
{YES}

{NO }
{YES}

{SH }
{EX }

MOUNT

Operand Descriptions

DISK=

TAPE=

A number between 0 and 255 which is the system—defined
device number of the disk unit on which the volume is to
be mounted.

A number between 0 and 255 which is the system defined
device number for the tape unit on which the volume is to
be mounted.

DISK and TAPE may be specified as a register in
parentheses containing the device number in binary in its
low-order position, as an integer not in quotes which is
the device number in decimal, or as an expression
addressing a one-byte field containing the device number
in binary. One of these operands is required and they
are mutually exclusive,

VOLUME= The name of the volume which is to be mounted. It may be

specified as a register in parentheses pointing to the
volume name, as a character string in single quotes which
is the volume name, or as an expression addressing a
6-byte field containing the volume name. This operand is
required.

#%**THE FOLLOWING OPERANDS ARE OPTIONAL*¥*

BLP=

LABEL=

USAGE=

This operand instructs the system to bypass 1label
processing/checking and should be specified with care.
Valid values are YES and NO. The default is to NO.

Denotes the type of volume 1label present on a volume.
Valid values are:

SL - Standard WANG VS labels.

NL - No labels are present on the volume.
AL -~ Standard ANSI-type labels.

IL - Standard IBM-type 1labels.

The default for a disk volume is to SL; for a tape
volume the default is to AL. Note that SL is valid for
disk volumes only and that AL and IL are valid for tape
volumes only,

Denotes volume access and dismounting restrictions. Note
that dismounting restrictions also apply to remounting
with different attributes. Valid values are:

SH =~ Shared: Volume may be accessed and
dismounted by any user.

4-62

MOUNT

RR - Restricted Removal: Volume may be accessed
by any user but dismounted by the mounting
user only.

PR - Protected: Files on the volume may be read
by any user but updated and dismounted by the
mounting user only.

EX - Exclusive: Volume may be accessed and
dismounted by the mounting user only.

Default is to SH for both disk and tape volumes. RR and
PR are valid for disk volumes only.

VOLTYPE= Denotes the type of disk volume being mounted as

SPOOL=

WORK=

NSA=

either fixed or removable. Valid values are F and R
respectively, with the default being to R. This operand
is valid for disk volumes only.

Denotes whether the volume is to be included in the list
of volumes scanned when the system creates a SPOOL
(Print) file for a user whose values are YES and NO, with
the default being to NO. This operand is valid for disk
volumes only.

Denotes whether the volume is to be included in the list
of volumes scanned when the system creates a Work file
for a user whose default work volume has not been SET.
Valid values are YES and NO, with the default being to
NO. This operand is valid for disk volumes only.

If YES 1is specified, indicates that the volume to be
mounted follows non-standard addressing conventions
(soft-sectored diskette only). The default is to NO.

NODISPLAY= If YES is specified, indicates that no messages

are to be displayed on the user's workstation; the
operator console messages must be used to coordinate
physical mounting. The default is to NO.

NOMESSAGE= If YES is specified, indicates that the volume to be -

mounted is already on the disk or tape drive. No MOUNT
message will be displayed, and the Volume Control Block
(VCB) information is updated from the volume label. The
default is to NO.

4-63

DISK=(R1) ,VOLUME='SYSTEM',LABEL=SL ,USAGE=SH,
VOLTYPE=F ,SPOOL=NO ,WORK=YES

0,8
R1,1(,15)
2(6,15) ,*+10
*+10
CL6'SYSTEM'

0(15) ,B*'00010001"

30 (MOUNT)

GET TWO WORDS ON THE STACK
SET DEVICE NUMBER

SET VOLUME NAME

BRANCH AROUND CONSTANT
VOLUME NAME

SET FLAGS

ISSUE SvVC

DISK=DISKVOL ,VOLUME= (R4)

0,8

1(1,15) ,DISKVOL

2(6,15) ,0(R4)

0(15) ,B'00000000"

30 (MOUNT)

GET TWO WORKDS ON THE STACK
SET DEVICE NUMBER

SET VOLUME NAME

SET FLAGS

ISSUE SVC

MOUNT TAPE=28,VOLUME=TAPEVOL,LABEL=IL ,USAGE=EX

Examples

LAB MOUNT
+LAB PUSHN
+ STC

+ MVC

+ B

+ DC

+ MVI

+ SvC
LAB MOUNT
+LAB PUSHN
+ MVC

+ MvC

+ MVI

+ svC
LAB

+LAB PUSHN
+ MVC

+ B

+ DC

+ MVC

+ MVI

+ SVC

0,8

0(1,15) ,*+10
*+6

AL1(28)

2(6,15) ,TAPEVOL
0(15) ,B'01010000°*

30 (MOUNT)

4~64

GET TWO WORDS ON THE STACK
SET DEVICE NUMBER

BRANCH AROUND CONSTANT
DEVICE NUMBER

SET VOLUME NAME

SET FLAGS

ISSUE SvC

Generate Display Message

Syntax

[1abel]l MSGLIST msg#,issuer,'message-segment—1'
[,'message-segment-2',...]

Restrictions
Intended for use in conjunction with the GETPARM and CANCEL
macroinstructions. See those macroinstructions and the
corresponding Supervisor Call descriptionms.

Function

Generates a data structure suitable for use as the object of
'MSG=' operands of the GETPARM and CANCEL macroinstructions.

Operand Descriptions

msgi Up to four characters enclosed in
single quotes, normally a message
number, to be displayed with the
message. The msg # is displayed on
row 1 of the workstation screen.

issuer Up to six characters enclosed in
single quotes, normally an
identification of the issuing

routine, to be displayed with the
message. The issuer is displayed on
row 1 of the workstation screen.

'message-segment—n' Message text in single quotes to be
displayed on a single line. May be
repeated as often as required, to
define additional 1lines to Dbe
displayed. No line may be over 79
characters 1long. The message may
contain single quotes (apostrophes).
Message text 1is displayed beginning
on row 3 of the workstation screen.

Example
LAB1 MSGLIST '123','ISSUER','LINE 1','LINE 2'
+LAB1 DC CL4,'123'
+ DC CL6'ISSUER'
+ DC AL2 (6+6+1)
+ DC C'LINE 1'
+ DC X'0D' NEW LINE
+ DC

C'LINE 2'

4-65

Open a File

Syntax
[label]l OPEN UFB= {(register)}
{expression}
[,MODE= {OUTPUT}]
{INPUT }
{10 }
{EXTEND}
{ SHARED}
[,{NOGETPARM}]
{NODISPLAY}
[,EXIT= { (register) }]
{absolute expression}
[,PLOG= {YES }]
{ NO }
Restrictions
None,
Function

Prepares a file for processing by Data Management System
functions. The User File Block (UFB) is normally created
prior to OPEN by means of the UFBGEN macroinstruction. The
OPEN macroinstruction includes provision for optional
modification of the 'Open mode' flags of the UFB. If the file
was already open to the issuing task, no additional OPEN
processing occurs. In this case the file remains open in the
mode specified in the Open File Block addressed by this UFB.

Operand Descriptions

UFB= The address of a User File Block, which must be
specified either as a register designation in
parentheses, where the register 1is assumed to
contain the UFB address, or as a UFB address
expression mnot in parentheses. If omitted,
only the MVI for open mode modification and the
SVC instruction will be generated.

MODE= Specifies a value to be placed in the UFB to
designate an open mode. This is done before

4-66

NOGETPARM

NODISPLAY

OPEN

the OPEN Supervisor Call is issued. This
operand is optional.

Causes a GETPARM type '"RD" to be issued rather
than a type "I". This suppresses user
interaction and causes procedure-supplied
parameters to be ignored. This option should be
used only when run—-time parameters have already
been obtained through a program-issued GETPARM.
In this case, the programmer should also use the
OPEN exits which enable the program to handle
error conditions.

Causes a GETPARM type '"'ID" to be issued rather
than a type “I". This suppresses user
interaction as long as the values supplied in
the UFB or through a procedure are not lexically
in error.

NOTE:

User interaction will occur even with the NOGETPARM or
NODISPLAY options if a field is semantically in error
(e.g., an invalid device type).

EXIT=

PLOG=

Example

LAB1
+LAB1

A value indicating which file assignment
problems should cause control to be returned to
the issuing program rather than cause generation
of a user interaction via a GETPARM (Type 'R").
See description of OPEN SVC for possible
values. May be specified as a register
designation in parentheses, or as an absolute
expression not in parentheses. The value in the
low-order byte of the register, or the value of
the expression, is stored in the high-order byte
of the QPEN parameter word on the stack.

If YES is specified, a file prologue will be
created when the file is OPENed. Valid only for
Word Processing files. This operand must be
specified when the file is OPENed in OUTPUT mode
(MODE=0QUTPUT) in order for the file prologue to
be identified with the file to be created. The
default is to NO.

OPEN UFB=(R2) ,MODE=INPUT

MVI 44 (R2) ,X'20' INPUT MODE
PUSH 0,R2

SVC 0 (OPEN)

Modify Program Exception Exit Status

Syntax

1. [1abel]l] PCEXIT SET, [(1ist) ,ADDRESS={ (register)}]

{expression}]

2. [1abel]l] PCEXIT ({RESET }

{CANCEL}

where 'list' may contain any of the following, separated by

commas

oP
PO
EX
PR
AD
Sp
DA
FIO
FID
DO
DD
SR
S0
FPO
FPU
SI
FPD

Operation

Privileged Operation
Execute

Protection

Addressing
Specification

Data

Fixed Point Overflow
Fixed Point Divide
Decimal Overflow
Decimal Divide
Supervisor Call Range
Stack Overflow

Floating Point Overflow
Floating Point Underflow
Significance

Floating Point Divide

To specify that all types of program exception interrupts
are to be intercepted, specify 'ALL' instead of a ‘'list’.

Function

SET

RESET

CANCEL

To specify user-program exception handling for
the listed program interruptions. The previous
program exception handling status, if any, is
saved for use by the RESET function.

Restores user—program exception handling status
to its state before the most recent SET
function, if there was a 'PCEXIT SET' issued in
the current program. The most recent status is
discarded.

Removes all user-program exception handling in
the current program (since a LINK from another
program or Command Processor program
initiation). All such status is discarded.

4—-68

PCEXIT

Operand Descriptions

ADDRESS=

See

above

This and the '(list)' operand may be specified
only with the 'SET' operand. A register
specification in parentheses signifies that the
register contains the exit address. An
expression not in parentheses is evaluated to
the exit address directly.

for other operand descriptions and 'list'

suboperand descriptions.

Example
LAB1

+LAB1
+

+
+
+
+

PCEXIT SET, (FPU,SI) ,ADDRESS=(R1)

PUSHC 0(4,0) ,*+10

B *+8

DC BL4 '0000000000000000110°' LIST
PUSH 0,R1 EXIT ADDRESS

MVI o(sp) ,0 SET

SvC 31 (PCEXIT)

4-69

Protect a Disk File

Syntax

(1abel]l] PROTECT PLIST = {expr }

{(reg)}

{

{

{

{ { LIBRARY } ,LIBRARY=expr
{ { PILE=expr }

{ »VOLUME=expr
{ [,OWNER=expr]
{
{

Nt Vgt gt Nt Vgt Nt Nt St gt

[,FILECLAS=expr]

[, {RETPD=expr }]
[{EXPRDT=expr}]

[,RESTRICT= NO]
[YES 1

Function

To update the protection information (protection class, owner of
record, and/or expiration date) for a disk file or a library of
disk files on a volume. The structure of the Volume Table of
Contents (VIOC) is not affected by the change. No file that is
to have its protection information modified may be open when the
PROTECT is attempted.

Return codes in binary in the top word of the stack indicate the
result of the request:

Return Code = 0 - Protection status successfully changed
Return Code = 4 - Volume not mounted

Return Code = 8 - Volume used exclusively by other user
Return Code = 12 - All buffers in use, no protection change
Return Code = 16 - Library not found

Return Code = 20 - File not found

Return Code = 24 - Update access denied, no protection
change

28 - (unused)

32 ~ File in use, no protection change

36 - VIOC error! FDX1 & FDX2 don't agree

40 - VIOC error! FDX2 & FDR don't agree

44 - Invalid argument list address

48 - I/0 error! VTOC unreliable!

52 - Open or protected files bypassed in
protecting library

56 - Invalid new protection data

Return Code
Return Code
Return Code
Return Code
Return Code
Return Code
Return Code

Return Code
Note: If the PLIST= option is not utilized, it is the program's

responsibility to pop 32 bytes off the stack beyond the
return code word on the stack.

4-70

PROTECT

Operand Descriptions

PLIST=

LIBRARY

FILE=

LIBRARY=

VOLUME=

OWNER=

FILECLAS=

The address of a PROTECT parameter list. (For
a description of the format of the parameter
list, please refer to the description of the
PROTECT SVC in Chapter 6.) If PLIST= s
specified, no other operand may be specified.
If PLIST= is not specified, the macro generates
code to dynamically build a parameter list on
the stack prior to issuance of the PROTECT SVC.

Indicates that the protection attributes of all
files within the 1library specified are to be
modified. Use of this operand is mutually
exclusive with the FILE= operand.

Specifies the address at which the file's name
is located. May be specified as a character
string delimited by single quotes, in which
case, a constant is assumed. Use of this
operand is mutually exclusive with the LIBRARY
operand descrbed above.

Specifies the address at which the 1library's
name is located. May be specified as a
character string delimited by single quotes, in
which case, a constant is assumed. This
operand is required if PLIST= is not specified.

Specifies the address at which the volume's
name is located. May be specified as a
character string delimited by single quotes, in
which case, a constant is assumed. This
operand is required if PLIST= is not specified.

1f specified, indicates that the 3 byte ''Owner
of Record" protection attribute is to be
modified and the address at which the new value
is located. May be specified as a character
string delimited by single quotes, in which
case, a constant is assumed.

If specified, indicates that the 1 byte "File
Class" protection attribute is to be modified
and the address at which the new value is
located. May be specified as a character
string delimited by single quotes, in which
case, a constant is assumed.

4~71

PROTECT

EXPRDT=

RETPD=

RESTRICT=

EE g

+ + +

1f specified, indicates that the ‘''Expiration
Date" protection attribute is to be modified
and the address at which the new value (3 byte
packed decimal, YYDDD+) is located. May be
specified as a character string delimited by
single quotes, in which case a constant is
assumed. Use of this operand 1is mutually
exclusive with use of the RETPD= operand.

If specified, indicates that the "Expiration
Date" protection attribute is to be modified
and the address at which a "Retention Period,"
in terms of days (3 byte packed decimal,
00DDD+) is located. May be specified as a
character string delimited by single quotes, in
which case a constant is assumed. Use of this
operand is mutually exclusive with use of the
EXPRDT= operand.

If NO 1is specified, or the operand is omitted,
the PROTECT -operation precedes utilizing
current file access rights. If YES is
specified, the operation is restricted,
assuming only the file access rights of the
user, ignoring any special access rights of the
program.

PROTECT FILE=PROFILE,LIBRARY=PROLIBR,VOLUME=PROVOLUME, X
OWNER="'DOV' ,FILECLAS=PROCLAS ,RETPD=PRORETPD
PUSHA 0,0

PUSHA 0,0

MVC 3(3,15) ,PRORETPD
Mvc 0(3,15),=CL3'DOV'
PUSHN 0,8

Mvc 7(1,15) ,PROCLASS
MVI 6(15),B'00001111"'
MVC 0(6,15) ,PROVOLUME
PUSHC 0(8) ,PROFILE
PUSHC 0(8) ,PROLIBR

SVC 42 (PROTECT)

4-72

RETENTION PERIOD
FILE OWNER OF RECORD

FILE CLASS
VOLUME

FILE
LIBRARY

Supply Program Parameters

Syntax
[1abel]l PUTPARM [pispLAY]
[ENTER 1]
, PRNAME = 'literal’
» FMILIST = { (register) }
{ expression }
[,LABEL = 'literal'l
Restrictions
None.
Function

PUTPARM enables a program to supply parameters to a GETPARM
issued by another program. The PUTPARM issuer must dynamically
link to the program issuing the GETPARM via the LINK SVC. (a
program may not use PUTPARM to parameterize its own GETPARMs.)

The parameters to be supplied to the GETPARM are contained
in a format list (FMTLIST), «created with a FMTLIST
macroinstruction. When PUTPARM is issued, it verifies that the
specified FMILIST is in the proper format, then saves it in a
Segment-2 buffer area for subsequent GETPARM use. PUTPARM also
constructs a Parameter Reference Block (PRB) to save the 1label,
PRNAME, display option, and certain other information.

When a GETPARM in the linked-to program is issued, it
searches through the FMTLISTs in the Segment-2 buffer area. If a
FMTLIST is found whose PRNAME matches the PRNAME of the GETPARM's
KEYLIST, the FMTLIST parameter values are copied to the KEYLIST,
thus supplying the required GETPARM parameters. A workstation
transaction is suppressed if the 'ENTER' option is selected;
otherwise, a GETPARM screen is displayed. PUTPARM returns to the
issuer eight bytes of output on the top of the stack:

Bytes 0-3 return code

0 success
8 Bad FMTLIST supplied to this SVC
12 Error detected in previously constructed

parameter reference blocks.
Bytes 4-7 Address of FMTLIST saved for GETPARM

4-73

PUTPARM

Operand Descriptions

DISPLAY

ENTER requests GETPARM to display or bypass
displaying the screen.

PRNAME= A name of up to 8 alphanumeric characters
enclosed in quotes, identifying the PRNAME of
the FMTLIST.

FMTLIST= The address of the FMTLIST in the format
specified in GETPARM SVC, (See the FMTLIST
macroinstruction.)

LABEL= A name of up to 8 alphanumeric characters
enclosed in quotes. The 1label of this
parameter reference block to be used by GETPARM.

Examples
LAB1 PUTPARM ENTER,PRNAME='ABCDE' X

»FMTLIST=ADDR1 ,LABEL="XYZ'

LAB PUTPARM PRNAME='ABCDE',FMTLIST=(R2)

4-74

Read a Record

Syntax

%
UFB={ (register) } [,COND=number]
{expression}

[
[1abel] READ [HOLD ,
|REL
|KEYED
|NODATA
| TABS
| MOD
| ALTERED
| CONNECTPARM
| STATUS
[

[=]

o] e e — —— — — — —

(* Various combinations in parentheses are allowed. See
below.)

Function

To read a record from any file or device for which READ is
supported by the Data Management System. This includes the
special workstation READ functions (READ TABS, READ MOD).
The function of the READ macroinstruction depends on the
value of its first operand. Valid first operands for
various device and file types are as follows:

. Fixed Length Consecutive disk files - omitted
HOLD
(HOLD ,NODATA)
REL
(REL ,HOLD)
(REL ,NODATA)
~ (REL ,HOLD ,NODATA)

. Variable Length Consecutive disk files - omitted
HOLD
(HOLD ,NODATA)

. Indexed disk files - omitted
HOLD
(HOLD ,NODATA)
KEYED
(KEYED ,HOLD)
(KEYED ,NODATA)
(KEYED ,HOLD ,NODATA)

. Telecommunications - omitted

CONNECTPARM
STATUS

4-75

. Workstation files - {omitted } treated
{REL } identically
{MOD treated

}
{ (MOD,REL) } identically

{ALTERED } treated
{ (ALTERED,REL) } identically

TABS

A file must have been opened in modes INPUT, IO or SHARED,
or placed in temporary IO mode by the 'START 1I0' function,
before attempting to READ the file. The record or
workstation line, fields, or tab position indications are
returned in the user's record area, as addressed by field
UFBRECAREA of the UFB. For 'READ REL' or any workstation
READ other than 'READ TABS', the records number within the
file, or line number on the screen (from 1) to be read is
taken from the word addressed by field UFBKEYAREA of the
UFB. For 'READ KEYED', the key value is taken from the
memory area beginning with the byte addressed by
UFBKEYAREA, and extending for the number of bytes specified
by UFBKEYSIZE. Descriptions of the functional effects of
the various allowable suboperands (HOLD, REL, KEYED,
NODATA, TABS, ALTERED, MOD) may be found in the Data
Management System description (Part IV of this document)
and in the operand descriptions below.

Invalid key and end-of-data conditions on a READ result in
return to the address in UFBEODAD with the normal return
point address in register 0 and file status bytes (UFBFS1,
UFBFS2) set to the following ASCII characters:

10 - End of data
23 - Invalid key (no record found) on 'READ REL' or
'READ KEYED'

Other exceptional and error conditions result in return to
the address in UFBERRAD with the normal return point
address in register 0 and file status bytes (UFBFS1,
UFBFS2) set to the following ASCII characters:

30 - Permanent I/0 error

34 - Order check on workstation

95 - Invalid function sequence for block-level I/0
96 - Invalid data area location or alignment

97 - Invalid length for device

98 - Magnetic tape trailer label error (block count)

If UFBEODAD contains binary zero, the address in UFBERRAD
is used for invalid key and end-of-data returns. If it too
is zero, these conditions and I/0 errors cause program
terminations.

4-76

READ

Operand Descriptions

REL

KEYED

HOLD

NODATA

CONNECTPARM

STATUS

TABS

Indicates that the record or workstation 1line
to be read is specified by the binary number
(from 1) in the word addressed by UFBKEYAREA.
Assumed for workstation files.

Indicates that the record to be read from an
indexed disk file is specified by the key value
in bytes Dbeginning at the address in
UFBKEYAREA, and extending for the number of
bytes specified in UFBKEYSIZE. The user's
program should not modify UFBKEYSIZE.

Indicates that the record read from a disk file
may be rewritten by REWRITE. Must be specified
in order to successfully complete a REWRITE of
this record. For SHARED open mode, indicates
that the record read from a disk file is not to
be made available to any other simultaneously
executing program which 1is sharing the file
until either the record is rewritten, it is
deleted, or another record in any shared file
is read with HOLD requested. Note that this
implies that a program may only HOLD one record
at a time, no matter how many files are being
shared.

Indicates that the record requested is to be
read from the file in the manner indicated by
other suboperands (including the HOLD
suboperand) , but that the record is not to be
placed in the user's record area as addressed
by UFBRECAREA, The address of the record in
the Data Management System buffer is placed in
register 1. This option is not valid in SHARED
open mode.

Indicates that telecommunication line
connection parameters are to be read.

Indicates that telecommunication device status
is to be read.

Indicates that current tab settings for the
specified workstation are to be placed in the
fifth through fourteenth bytes of the user's
record area as addressed by UFBRECAREA. Values
are column numbers 1-80 in binary. Zeroes
indicate unset tab positions.

4-77

MOD

ALTERED

UFB=

COND=

Examples

LAB1
+LAB1

LAB2
+LAB2

Indicates that the modifiable fields within the
specified workstation line are to be placed in
their corresponding positions in the user's
record area as addressed by = UFBRECAREA.
Protected fields may or may not be read and
placed in the user's record area, depending on
the workstation model. If protected fields are
not transferred, the corresponding positions in
the user's record area are not changed.

Indicates that only those fields with
selected-field tags set are to be placed in the
user's record area, in positions corresponding
to their screen positions. Other data on the
user's record area remains unchanged. Field
attribute characters of altered fields have
their selected—-field tags set on the
corresponding field attribute characters in the
user's record area.

The address of a User File Block (UFB), which
may be supplied as a register specification in
parentheses, where the register contains the
UFB address, or as an expression not in
parentheses, where the word addressed is
assumed to begin the UFB.

If specified, the number or absolute expression
becomes the first operand of the JSCI
instruction by which the READ function 1is
entered. READ is thus made conditional.
COND=15 is the default. Register 1 1is 1loaded
with the UFB address even when the condition is
not satisfied.

READ (REL ,HOLD) ,UFB=(R3)

LR 1,R3 SET REGISTER 1
MVI 0(1) ,B'00000101" MODIFIERS

JSCI 15,0(,1) READ FUNCTION
READ UFB=UFBADDR

LA 1,UFBADDR SET REGISTER 1
MVI 0(1) ,B'00000000" MODIFIERS

JSCI 15,0(,1) READ FUNCTION

4~78

Read File Descriptor Record(s)

Syntax

[1abel] READFDR PLIST={ (register)}
{ address }

[1abel]l READFDR LIBRARY={ (register)}, FILE={ (register)}, VOLUME={ (register)},

{'string' } {'string' } {'string' }

{ address } { address } { address }

AREA={ (register)} [,FDR={1 }] [,ALTLIB={ (register)},
{ address } {n } {'string' }
{BOTH} { address }

ALTVOL={ (register) }] [,PLOG={NO }, PAREA= { (register)}]
{'string' } {YES } { address }
{ address } {ONLY }

Restrictions

The area addressed by PLIST must not be in the user's
segment one (re-entrant code segment).

If any operand is specified by a string, the invoking user
program must allow for the generation of a literal pool.

With the exception of specification by character strings,
specifications of libraries and files must reference 8-byte
fields, those for volumes must reference 6-byte fields.

Function

Allows user programs to locate a disk file on the specified
volume and copy its File Descriptor Record(s) (label) into
the memory location denoted by the AREA operand; also reads

a WP file prologue and returns the file prologue into the
specified AREA,

If PLIST is not specified, then operands FILE, LIBRARY,
VOLUME, and AREA are required and the user program is
responsible for popping 36 bytes (50 if ALTLIB is
specified) beyond the FDR1 disk address word since the
parameter list is dynamically built on the stack.

If an alternate search library (ALTLIB) is specified, then
the values of the LIBRARY and VOLUME are modified as
required to indicate in which library the file was found.

READFDR issues a return code to the wuser program in the

stack top word which indicates the success/failure of the
operation, and the disk address of the FDR1l in the next

4-79

READFDR

stack word (this address 1is usable only if the read was
successful, i.e., the return code equals =zero). (See
READFDR SVC for return codes and address .)

Operand Descriptions

PLIST= A user—generated parameter list as described in the
READFDR SVC; specified as a register in parentheses
pointing to the parameter 1list, or as an expression
addressing the parameter 1list,. If this operand is
specified, then all other operands are ignored.

LIBRARY= The name of the primary library to be searched for the
file in question; specified as a register in
parentheses pointing to the library name, as a literal
in single quotes which is the library name, or as an
expression addressing a character string whose value is
the library name.

FILE= The name of the file in question. It may be specified
as for LIBRARY above. ’

VOLUME= The name of the volume on which the primary 1library
resides. It may also be specified as for LIBRARY above.

AREA= A user receiving area for the obtained file descriptor
record(s) ; 80 bytes if one FDR is requested and 160 if
BOTH is specified. It may be specified as a register
in parentheses pointing to the address of the receiving
area, or as an expression addressing a 4-byte field
containing the address of the receiving area.

FDR= This optional operand indicates which FDR(s) to read.
If omitted, the default is to 1 (read FDR1 only).

1 - Read the FDR1 only.

n - Read the (n-1)th FDR2 only where 'n"
is integer 2 or higher,. For
example, ''3" reads the second FDR2.

BOTH- Read both FDR1 and the first FDR2.

ALTLIB= The name of a library to be searched if the file in
question cannot be located in the library specified by
the LIBRARY operand. It may be specified as for
LIBRARY above. This operand is optional. However, if
specified, then ALTVOL must be specified as well.

ALTVOL= The mname of the volume on which the alternate search
: library resides. It may also be specified as for
LIBRARY above. This operand 1is valid only in

conjunction with ALTLIB.

4-80

READFDR

PLOG= If YES, then read the WP file prologue along with any
other options set. If ONLY, then the caller wants only
the file prologue to be read. If NO is specified, then
the caller does not request the file prologue be read.

If YES or ONLY is specified, then the caller must
specify in the PAREA operand a receiving area for the
file prologue.

PAREA= Indicates the address of the receiving area for the
file prologue. May be specified as a register in
parentheses containing the address of the receiving
area, or as an address expression pointing to a
four-byte area containing the address of the receiving

area.
Examples
LAB READFDR PLIST=(R&4)
+LAB PUSHA 0,0 GET ONE WORD OF ZEROES ON THE STACK
+ PUSH 0,R4 POINT TO PLIST WITH STACK TOP WORD
+ SvC 24 (READFDR) ISSUE SVC

LAB READFDR LIBRARY='SYSLIB',FILE=(R1) ,VOLUME=SYSVOL ,AREA=FDRAREA,X
FDR=BOTH,ALTLIB="'SYSLIB2' ,ALTVOL=SYSVOL

+LAB PUSHN 0,50 GET SPACE ON STACK FOR PLIST

+ MVC 0(8,15) ,=CL8'SYSLIB' SET LIBRARY NAME

+ MVC 8(8,15) ,0(R1) SET FILE NAME

+ MVC 16(6,15) ,SYSVOL SET VOLUME NAME

+ MVI 22(15) ,X'04" SET FLAG TO READ FDR1 AND 1ST FDR2
+ MVI 23(15) ,x'00' (THIS FIELD NOT USED FOR FDR=BOTH)
+ MVC 24(4,15) ,FDRAREA SET FDR RECEIVING AREA ADDRESS

+ XC 28(8,15) ,28(15) (THIS FIELD RESERVED)

+ oI 22(15) ,x'08’ SET FLAG TO INDICATE ALTERNATES

+ MvVC 36(8,15) ,=CL8'SYSLIB2' SET ALTERNATE LIBRARY NAME
+ MvC 44(6,15) ,SYSVOL SET ALTERNATE VOLUME NAME

+ PUSHA 0,0 GET ONE WORD OF ZEROES ON THE STACK
+ PUSHA 0,4(,15) POINT TO PLIST WITH STACK TOP WORD
+ SvC 24 (READFDR) ISSUE SVC

LAB READFDR LIBRARY='USERLIB',FILE=(R1) ,VOLUME=SYSVOL ,AREA=(R6)
+ LAB PUSHN 0,36 GET SPACE ON STACK FOR PLIST

+ MvC 0(8,15) ,=CL8'USERLIB' SET LIBRARY NAME

+ MVC 8(8,15) ,0(R1) SET FILE NAME

+ MvC 16(6,15) ,SYSVOL SET VOLUME NAME

+ MVI 22(15) ,x'00' CLEAR FLAGS

+ MVI 23(15),0 INDICATE READ FDR1 ONLY

+ ST R6,24(,15) SET FDR RECEIVING AREA ADDRESS

+ XC 28(8,15) ,28(15) (THIS FIELD RESERVED)

+ PUSHA 0,0 GET ONE WORD OF ZEROES ON THE STACK
+ PUSHA 0,4(,15) POINT TO PLIST WITH STACK TOP WORD
+ sve 24 (READFDR) ISSUE SVC

4-81

Read Volume Table of Contents

Syntax {ATTRIBUTES}
{EXTENTS }
[label]l] READVTOC OPTION = {LIBRARIES }
{FILES }
{BLOCKS }

[,PLIST= {(register) 1}]
[{ expression}]

[,VOLUME= { (register) }]
[{ expression}]
[{'literal' }]

[,LIBRARY= { (register) }]
[{ expression}]
[{'literal' }]

[,COUNT= {(register)}]

[{ number }]

[,START= { (register) 1}]
[{ expression}]
[{ 1 }]
{,0FB= {(register) }]
[{ expression}]

Restrictions

The area addressed by PLIST must be in the user's Segment 2.
If any operands are supplied as 'literals' (and in some other
cases) , the user must allow for generation of a literal pool.

Function

Provides information from a Disk Volume Table of Contents
(VIOC) . Specific functions are described under OPTIONS.

READVTOC issues a return code in the stack top word,

indicating success, or the reason for failure, of the
operation.

If PLIST is not specified, space for the parameter list is
obtained from the stack; the length of the area 1is returned
in General Register 1 (whose previous contents are lost).

If PLIST is specified, the designated area must be large
enough to hold the desired output.

4-82

READVTOC

Operand Descriptions

OPTION=

PLIST=

VOLUME=

EXTENTS

LIBRARIES

BLOCKS

One of the following, coded as shown, indicating
which type of information is desired. This
operand is required, unless PLIST is specified.

ATTRIBUTES - 1. VTOC extents in use.

Number of unused blocks in VTOC.

2. Number of Libraries on Volume.
Number of Files on Volume.

3. Number of Free Extents on Volume.
Total size of Free Extents.

4. Descriptions of m (m=COUNT)
largest Free Extents from nth
(n=START) Free Extent.

Descriptions of m (w=COUNT) Free
Extents from nth (n=START). Free
Extent.

Lists m (m=COUNT) Library names and
number of Files in each Library
listed, starting from nth (n=START)
Library name.

FILES - Lists m (n=COUNT) Filenames starting

from nth (n=START) File in specified
Library.

Reads m (m=COUNT) consecutive VTOC
blocks starting from nth (n=START)
block in VIOC and copies into File
specified by OFB=.

An expression, or a register in parentheses,
pointing to an area to be used as the READVIOC
parameter 1list. If PLIST is specified, nmo OPTION
is required, nor are any of the other operands
(in this case, it is assumed that the user has
placed values in the PLIST for operands that
would otherwise have been required).

An expression, a register in parentheses pointing
to a 6-byte name, or a literal in single quotes,
indicating the Volume from which VTOC information
is desired. Required for all OPTIONs (unless
PLIST is specified).

4-83

READVTOC

LIBRARY= An expression, a register in parentheses pointing
to an 8-byte name, or a literal in single quotes
indicating the Library about which VTOC
information is desired. Required when
OPTION=FILES (unless PLIST is specified).

COUNT= A number or a register in parentheses containing
a number, indicating how many items (one or more)
are requested (see OPTION descriptions).
Required for all OPTIONs unless 'PLIST" is
specified.

START= An expression, or a register in parentheses
containing a number, indicating which item (see
OPTION descriptions) is the first item
requested. Required for all OPTIONs (unless
"PLIST" is specified). START=1 is the default.

OFB= The address, or a register in parentheses
containing the address, of the Open File Block.
The file specified must be open for output with
enough space allocated to accommodate m VTOC
blocks (as specified in BLOCKS).

Return Codes

0 - Requested operation performed.

4 =~ 1Invalid argument PLIST address.

8 - VOLUME not mounted.

12 - VOLUME used exclusively by another user or job.
16 - Insufficient buffer space to perform operation.

20 - 1Invalid OPTION request.

24 - LIBRARY not found.

28 - VTOC error; FDX1 and FDX2 conflict.
32 - Disk I/0 error; VIOC not reliable.

Examples

FOOBAR READVTOC OPTION=ATTRIBUTES ,VOLUME='VOLVO',COUNT=32,START=(R8)
+FOOBAR DS OH

+ LA 1,222 SIZE OF PARAMETER LIST

+ PUSHN 0,0(,1) SPACE FOR PARAMETER LIST
+ MVC 8(2,15),=Y(32) SET COUNT FIELD

+ MVI 6(15),0 INSERT OPTION BYTE

+ STH R8,10(15) SET START FIELD

+ MvC 0(6,15) ,=CL6'VOLVO' MOVE IN VOLUME NAME

+ PUSH 0,15 PARAMETER LIST TO STACK
+ SVC 19 (READVTOC) ISSUE READVTOC SVC

4~84

O R R EE R R,

Ik K

++ A+

READVTOC

READVTOC OPTION=EXTENTS,VOLUME=VCBSER ,COUNT=(7)

COPY COUNT

TIMES ELEMENT SIZE

PLUS MINIMUM SECTION LENGTH
GET SPACE REQUIRED

SET COUNT FIELD

INSERT OPTION BYTE

SET START FIELD

MOVE IN VOLUME NAME
PARAMETER ADDRESS TO STACK
ISSUE READVTOC SVC

SIZE OF PARAMETER LIST
SPACE FOR PARAMETER LIST
SET START FIELD

INSERT OPTION BYTE

SET START FIELD

MOVE IN VOLUME NAME
PARAMETER LIST TO STACK
ISSUE READVTOC SVC

READVTOC OPTION=FILES,VOLUME='SYSTEM',LIBRARY='SYSS',COUNT=16

SIZE OF PARAMETER LIST
SPACE FOR PARAMETER LIST
SET COUNT FIELD

INSERT OPTION BYTE

SET START FIELD

MOVE IN VOLUME NAME

MOVE IN LIBRARY NAME
PARAMETER LIST TO STACK
ISSUE READVTOC SVC

READVTOC OPTION=BLOCKS ,VOLUME=VCBSER,COUNT=(3) ,START=(4) ,

SIZE OF PARAMETER LIST
SPACE FOR PARAMETER LIST
SET COUNT FIELD

INSERT OPTION BYTE

SET START FIELD

MOVE IN VOLUME NAME

SET OFB ADDRESS
PARAMETER LIST TO STACK

DS OH

LR 1,7

MH 1,=Y(6)

LA 1,4(,1)

PUSHN 0,0(,1)

STH 7,8(15)

MVI 6(15),1

MVC 10(2,15) ,=¥(1)

MVC 0(6,15) ,VCBSER

PUSH 0,15

SVC 19 (READVTOC)

READVTOC OPTION=LIBRARIES,VOLUME=(6) ,COUNT=32

DS OH

LA 1,340

PUSHN 0,0(,1)

MvC 8(2,15) ,=Y(32)

MVI 6(15) ,2

MVC 10(2,15) ,=Y(1)

MVC 0(6,15) ,0(6)

PUSH 0,15

SvC 19 (READVTOC)

DS OH

LA 1,148

PUSHN 0,0(,1)

MVC 0(2,15) ,=Y(16)

MVI 6(15),3

MVC 10(2,15) ,=Y(1)

MVC 0(6,15) ,=CL6"' SYSTEM'

MVC 12(8,15) ,=CL8'SYSS’

PUSH 0,15

SvC 19 (READVTOC)
OFB= (ROFB)

DS OH

LA 1,20

PUSHN 0,0(,1)

STH 3,8(15)

MVI 6(15) ,4

STH 4,10(15)

MVC 0(6,15) ,VCBSER

ST ROFB,12(,15)

PUSH 0,15

SvC 19 (READVTOC)

READVTOC PLIST=(RLIST) ,START=
DS OH

PUSH 0,RLIST

SVC 19 (READVTOC)

4-85

ISSUE READVTOC SVC

PARAMETER ADDRESS TO STACK
ISSUE READVTOC SVC

Register Equation

Syntax

REGS FP = {YES}

Restrictions

None.

Function

The REGS macroinstruction equates register numbers with the
standard symbolic names used by all other system
macroinstructions which refer to general registers. It should be
included in all program assemblies which make use of system
macroinstructions. Register names are as follows:

General Register Numbers Names

0 RO

1 R1,AP
2 R2

3 R3

4 R4

5 R5

6 R6

7 R7

8 R8

9 R9

10 R10
11 R11
12 R12
13 R13,EP
14 R14
15 R15,SP

Floating Point Register Numbers Names

0 FO

2 F2

4 F4

6 Fé

Operand Descriptions

FP= If NO is specified, symbolic names for the Floating-Point
Registers are not generated. The default is to YES.

4-86

Rename a Disk File

Syntax

1. [1abell RENAME PLIST= { address }
{ (register) }

2. [label]l] RENAME LIBRARY ,LIBRARY={ address }
{'string' }
,VOLUME={ address } ,NEWNAME={ address }
{'string' } {'string' }
[,RESTRICT={NO }] [,BYPASS={NO }]
{YES} {YES}
3. [label]l] RENAME FILE={ address } ,LIBRARY={ address }
{'string' } {'string' }
,VOLUME={ address } ,NEWNAME={ address }
{'string' } {'string' }

[,NEWLIB ={ address }] [,RESTRICT={NO }] [,BYPASS={NO }]
{'string' } {YES} {YES}

Restrictions

If any of the operands is specified as a character string in
single quotes, then the issuing program must provide for the
generation of a literal pool.

RENAME now examines all of the bits of the Option Byte in the
input parameter list. Previously, bits 3-7 were not examined.
Therefore, previously coded invocations of RENAME may fail or
produce undesirable results if bits 3-7 are set. Bits 5-7 of the
Option Byte are reserved and must be zeroes.

RENAME requires a minimum of 2K bytes of stack for buffer space
to rename a library or a file. RENAME requires a minimum of 9K
of stack for buffer space to rename both a library name and a
file name for a given file (“Full RENAME').

Function

To rename a disk file or a library on a volume. A '"Full RENAME"
(renaming both a library name and a file name for a given file)
may alter the Volume Table of Contents; otherwise, the structure
of the VTOC is not altered. No file that is to be renamed may be
open when the RENAME is attempted. Note that a "Full RENAME" is
equivalent to moving a file from one library to another on the
same volume.

4-87

RENAME

If the PLIST= option is not utilized, then RENAME dynamically
builds its parameter 1list on the stack, and it becomes the
invoking program's responsibility to pop 32 bytes (40 for "Full
RENAME") off the stack beyond the return code word.

Operand Descriptions

PLIST=

LIBRARY

FILE=

LIBRARY=

VOLUME=

The address of a user—generated parameter list, the
format of which is described in the RENAME SVC in
Chapter 6. If PLIST= is specified, no other operand is
allowed; if it is not specified, the macro generates
code to dynamically build a parameter list on the stack
prior to issuance of the RENAME SVC.

PLIST may be specified as a register in parentheses
containing the address of the user—-generated parameter
list, or as an expression addressing it.

Indicates that the library specified in the LIBRARY=
operand is to be renamed. Use of this operand is
mutually exclusive with the FILE= operand. Note that
this operation is equivaleat to "moving' all the files
in that library to a new library on the same volume.
Libraries may not, however, be merged in this manner:
the library specified by the NEWNAME= operand can exist
when the RENAME SVC is issued.

Specifies the name of the file to be RENAMEd. This
operand may be specified as a character string in
single quotes which 1is the name of the file, or as an
address expression containing the name of the file to
be renamed. Use of this operand is mutually exclusive
with the LIBRARY operand described above.

Specifies the name of the library to be RENAMEd or the
name of the library containing the file to be renamed.
This operand may be specified as a character string in
single quotes which is the name of the library, or as
an address expression pointing to an eight-byte field
containing the 1library name. This operand is required
if PLIST= is not specified.

Specifies the name of the volume containing the file
and/or library to be RENAMEd. This operand may be
specified as a character string in single quotes which
is the name of the volume, or as an address expression
pointing to an six-byte field containing the volume
name., This operand is required if PLIST= is not
specified.

4-88

NEWNAME=

RESTRICT=

BYPASS=

NEWLIB=

Example

LAB1

RENAME

Specifies the new name of the file or library being
RENAMEd. This operand may be specified as a character
string in single quotes which is the name of the
library or file, or as an address expression pointing
to an eight-byte field containing the library or file
name. This operand is required if PLIST= is not
specified.

YES specifies that the RENAME SVC is to ignore any
special access rights which may have been granted to
the invoking program, and thus restrict itself to the
user's LOGON access rights in determining whether the
user may RENAME the specified file(s). If NO is
specified, or the operand is omitted, the RENAME
operation proceeds, utilizing current file access
rights.

If NO is specified, or the operand is omitted, the
RENAME operation performs an expiration date check. If
the date is unexpired, the entire RENAME operation is
not performed. If YES is specified, the expiration
date check is bypassed.

The name of the library in which the renamed file is to
be placed. This operand is used only for the '"Full
RENAME" option, that is, for the renaming of both the
file name and the library name for a given file. The
library specified by the NEWLIB= operand can exist when
the RENAME SVC is issued. If omitted, then the same
library as specified by the LIBRARY= operand is
assumed. This operand may be specified as a character
string in single quotes which is the new file name or
library name, or as an address expression pointing to
an eight-byte field containing the new file name or
library name. Use of this operand 1is mutually
exclusive with use of the LIBRARY operand.

RENAME

FILE=RENFILE ,LIBRARY=RENLIBR ,VOLUME=RENVOLUME, X

+LAB1

+ 4+ + + + + 4+

NEWNAME=RENNEWNAME
PUSHN 0,8
MVI 0(15),0
MVI 6(15) ,B'00000000"'

MvVC 0(6,15) ,RENVOLUME VOLUME
PUSHC 0(8) ,RENNEWNAME NEW NAME
PUSHC 0(8) ,RENFILE FILE
PUSHC 0(8) ,RENLIBR LIBRARY

SVC 26 (RENAME)

4-89

RENAME

LAB RENAME PLIST=(R1)
+LAB PUSH 0,R1 POINT TO USER-DEFINED PARAMETER LIST
+ SvC 26 (RENAME)

LAB RENAME LIBRARY,LIBRARY=0OLDLIB,VOLUME='MYVOL',NEWNAME=NEWLIB

+LAB PUSHN 0,8 GET TWO WORDS ON THE STACK

+ MVI 7(15),0 RESERVED; MUST BE ZERO

+ MVI 6(15) ,B'01000000" SET OPTION FLAGS

+ MvC 0(6,15) ,=CL6"'MYVOL' CURRENT VOLUME NAME

+ PUSHC 0(8) ,NEWLIB NEW FILE/LIERARY NAME
PUSHN 0,8 RENAME LIBRARY (FILENAME OMITTED)
PUSHC 0,8,0LDLIB CURRENT LIBRARY NAME
PUSH 0,15 POINT TO PLIST WITH STACK TOP WORD
SVC 26 (RENAME)

4-89.1

4-89.2

Remove Timer Interval

Syntax

[label]l] RESETIME
Function

Cancels an interval timing request previously established
by 'SETIME' which has not been the subject of a 'CHECK
INTERVAL' or previous 'RESETIME'. A programming error is
assumed and the issuing program cancelled if there is no
such request.

Operand Description

There are no operands.

Example
LAB1 RESETIME
+LAB1 PUSHN 0,4
+ MVI 0(15) ,X'80' RESET
+ Sve 32 (RESETIME)

4-90

Return

to Invoker

Syntax

Restri

[

| ,CODE={ (register) }
[label] RETURN [UNLINK] | {expression}

[

A]
| ,COND=number |
| |
[]

lod —me wee e

ctions

(A CALL, LINK or program invocation must have occurred for
the issuing task.)

Functi

on

The RETURN macroinstruction is used to (conditionally) exit
from a program to the system when normal termination of the
run is required. It is also used to exit from a subprogram
and return to the calling program. The stack top pointer
(register 15) and control register 1 are restored to their
values before the CALL or LINK which effected entry to the
program or subprogram. General register 1-14 contents are
restored to their state before the CALL, LINK or program
invocation. A return code, if requested, is set in
register 0. Otherwise, register 0 is set to =zero. (Note
that "RETURN CODE=(0)'' leaves register 0 unchanged.)

Operand Descriptions

UNLINK Specifies return to the most recent LINK
issuer, Command Processor or Procedure
Interpreter, thus terminating all routines
invoked by a sequence of CALLs. ‘COND=' must
not be specified with this operand.

CODE= If the CODE= operand is supplied, register 0 is
loaded with the number specified or from the
register specified. In this case, the
instruction "LA O,number' or "LR O,Rn" is
generated.

COND= If supplied, specifies the condition codes

under which the return is to be made, as for a
machine instruction. If omitted, 'COND=15' is
assumed. Invalid if 'UNLINK' operand specified.

Example

LAB1 RETURN CODE=ZERO ,COND=7
+LAB1 LA RO,ZERO
+ RTC 7

4-91

Rewrite a Record

Syntax

[1abel]l REWRITE [TARS, JUFB={ (register) } [,COND=number]
[SELECTED,] {expression}

Function

Rewrites a disk record or workstation line. The file must
be open in IO or SHARED mode or placed in temporary I0 mode
by the 'START I0' function. In IO mode, the last
successful function addressed to the file must have been a
READ with HOLD option unless the file is a workstation
file. In SHARED mode, the program must be HOLDing the
record to be rewritten (as a result of a preceding READ
with the HOLD option not overridden by a later READ with
HOLD. Record or line is taken from the user's record area
as addressed by field UFBRECAREA of the specified User File
Block (UFB).

Additional control information (order area) precedes the
line to be written in the record area for workstation 1line
REWRITEs. Refer to the specific device description for
details on this area.

For indexed disk file REWRITEs, the key field in the record
to be rewritten is validated. REWRITE may not change this
field.

An error condition discovered on REWRITE will result in
nonzero ASCII digit settings of the file status bytes
(UFBFS1, UFBFS2) and return to the address in UFBEODAD or
UFBERRAD, with the normal return address in register O.
Possible file status codes indicating errors are:
Return to UFBEODAD:

23 - Block beyond end of file for block-level I/0
Return to UFBERRAD:

30 - Permanent I/0 error

34 - Order check on workstation

95 - Invalid function or function sequence (includes

key validation failure for indexed file REWRITE)

If UFBERRAD is binary =zeroes, these conditions cause
program termination.

4-92

REWRITE

Operand Descriptions

TABS

SELECTED

UFB=

COND=

Example

LAB1
+LAB1

Indicates that bytes 4-13 of the user's record
area contain tab position settings for the
workstation (in ascending order, terminated by
the first =zero item, binary column numbers
1-80), and that the purpose of the REWRITE is
to set these tabs.

Indicates that only those fields with
selected-field tags set in their field
attribute characters are to be writtem to a
workstation screen.

The address of a User File Block (UFB), which
may be supplied as a register specification in
parentheses, where the register contains the
UFB address, or as an expression not in
parentheses, where the word addressed is
assumed to begin the UFB.

I1f specified, the number or absolute expression
becomes the first operand of the JSCI
instruction by which the REWRITE function is
entered. Thus the REWRITE is made
conditional. COND=15 is the default. Register
1 is 1loaded with the UFB address even when the
condition is not satisfied.

REWRITE UFB=(R2)

LR 1,R2 SET REGISTER 1
MVI 8(1) ,B'00000000" MODIFIERS

JSCI 15,8(,1) REWRITE FUNCTION

4-93

Scratch a File

Syntax
1. [1abell SCRATCH PLIST= {expression}
{ (register) }
2. [1abel]l SCRATCH {LIBRARY } ,LIBRARY={expression}
{FILE={expression}} {'literal’ }
{ {'literal' }}
,VOLUME={ expression}

{'literal’ }

[,RESTRICT={ NO}]
[{YES}]

[,BYPASS={ NO}]
[{YES}H]

Function

To delete (‘'scratch") a disk file or a library of disk files on a
volume, making the space utilized by the file(s) available for
reallocation and removing all references to the file(s) from the
Volume Table Of Contents (VIOC). No file that is to be deleted
may be open when the SCRATCH is attempted.

Return codes in binary in the top word of the stack indicate the
result of the request:

Return code 0 -~ File or library successfully
scratched

Return code 4 ~ Volume not mounted

Return code 8 - Volume used exclusively by other user
Return code = 12 - All buffers in use, no scratch
Return code = 16 - Library not found

20 - File not found

24 - Update access denied, no scratch
(single~file scratch only)

28 - Unexpired file, no scratch
(single-file scratch only)

32 - File in use, no scratch

36 - VTIOC error! FDX1 and FDX2 don't
agree

40 - VTOC error! FDX2 and FDR don't agree

44 - Invalid argument list address

48 - I/0 error! VTOC unreliable!

52 - Open, protected, and/or unexpired
file bypassed in scratching library

Return code
Return code

Return code

Return code
Return code

Return code
Return code
Return code
Return code

If space on the volume is lost during SCRATCH because there is no
room in the VIOC to record released extents, the high—order three
bytes of the return code word contain the number of blocks lost.
Otherwise they are zeroed. ‘

4-94

SCRATCH

Note: If the PLIST= option is not utilized, it is the program's
responsibility to pop 24 bytes off the stack beyond the return
code word on the stack.

Operand Descriptions

PLIST=

LIBRARY

FILE=

LIBRARY=

VOLUME=

RESTRICT=

BYPASS=

- The address of a SCRATCH parameter 1list. (For a

description of the format of the parameter 1list,
please refer to the description of the SCRATCH SVC in
Chapter 6.) If PLIST= is specified, no other operand
may be specified. If PLIST= is not specified, the
macro generates code to dynamically build a parameter
list on the stack prior to issuance of the SCRATCH
SvC.

Indicates that all files within the library specified
are to be deleted. Use of this operand is mutually
exclusive with the FILE= operand.

Specifies the address at which the file's name is
located. May be specified as a character string

-delimited by single quotes, in which case a constant

is assumed. Use of this operand is mutually
exclusive with the LIBRARY operand described above.

Specifies the address at which the library's name is
located, May be specified as a character string
delimited by single quotes, in which case .a constant
is assumed. This operand is required if PLIST= is
not specified.

Specifies the address at which the volume's name is
located. May be specified as a character string
delimited by single quotes, in which case a constant
is assumed. This operand is required if PLIST= is
not specified.

If NO is specified, or the operand is omitted, the
SCRATCH operation proceeds utilizing current file
access rights. If YES is specified, the operation is
restricted, assuming only the file access rights of
the user and ignoring any special access rights of
the program,

If NO is specified, or the operand is omitted, the
SCRATCH operation performs an expiration date check.
For any unexpired file(s), the SCRATCH 1is not
performed. If YES is specified, the expiration date
check is bypassed.

4~95

SCRATCH

Example

LAB1 SCRATCH FILE=SCRFILE,LIBRARY=SCRLIBR,VOLUME=SCRVOLUME
+LAB1 PUSHN 0,8

+ MVI 0(15),0

+ MVI 6(15) ,B'00000000"

+ MVC 0 (6,15) ,SCRVOLUME VOLUME
+ PUSHC 0(8) ,SCRFILE FILE

+ PUSHC 0(8) ,SCRLIBR LIBRARY
+ SvC 27 (SCRATCH)

4-96

Set Task-Related Defaults

Syntax

[1abell

SET PROGVOL=

. ,INVOL=

,OUTVOL=

,POOLVOL=

»PRINTER=

,FILECLASS=

»PRTCLASS=

,RUNVOL=

,JOBQUEUE=

»2JOBLIMIT=

{ (register) }
{'string' }
{address }

{ (register)}
{'string' }
{address }

{ (register) }
{'string' }
{address }

{ (register)}
{'string' }
{address }

{ (register)}
{'string' }
{address }

{ (register)}
{'string' }
{address }

{ (register)}
{'string' }

{address }
{ (vegister) }
{'string' }

{address }

{ (register)}
{'string' }
{address }

{(register)}
{'string' }
{address }

4-97

,PROGLIB=

,INLIB=

,OUTLIB=

,WORKVOL=

,PRNTMODE=

,LINES=

,FORMit=

,RUNLIB=

»JOBCLASS=

{ (register)}
{'string' }
{address }

{ (register)}
{'string' }
{address }

{ (register)}
{'string' }
{ address }

{ (register)}
{'string' }
{address }

{ (register)}
{'string' }
{address }

{ (register)}
{'string' }
{address }

{ (register)}
{'string' }
{address }

{ (register)}
{'string' }
{address }

{ (register) }
{'string' }
{address }

SET

Restrictions

All library and volume name specifications (except literals) must
reference eight- and six-byte fields respectively, as the SET SVC
cannot determine the length of the character string and assumes
the maximum.

If any operand is specified as a literal or an integer, then the
user program must allow for the generation of a literal pool.

Function

Allows user programs to set default values according to the
operands specified. These values are used by the various system
utilities and SVCs. Note that none of the operands have defaults
and that any unspecified operands will be unaffected.

Operand Description

NOTES:

1 All operands are optional (although at least one should
be specified).

2) Operands may be specified as:

(a) A register in parentheses pointing to a
character string which is the desired value. If
the item is numeric (PRINTER, LINES, or FORM#),
then the value is assumed to be in binary.

() A character string in single quotes which is the
desired value, except for the numeric items
(PRINTER, FORM#, and LINES) which use an integer
(not in quotes) which is the desired value in
decimal,

© An expression addressing a character string
which is the desired value. If the item is
numeric (PRINTER, LINES, or FORM#), then the
value is assumed to be in binary.

PROGVOL= Default program/procedure volume name.

PROGLIB= Default program/procedure 1library name. This
pair of operands is used only in procedures, for
programs run by those procedures, and identify
default 1library and volume names for all such
programs.

4-98

INVOL=
INLIB=

OUTVOL=
OUTLIB=

SPOOLVOL=

WORKVOL=

PRINTER=

PRNTMODE=

FILECLASS=

SET

Default non-output volume name.

Default non-output 1library name. This pair of
operands is used primarily by the OPEN SVC to
locate files OPENed as input.

Default output volume name.

Default output library name. This pair of
operands is used primarily by the OPEN SVC to
assign files OPENed as output.

Default volume for assignment of SPOOLed (Print)
files.

Default volume for assignment of WORK files.

Default printer device number for on-line
printing. Note that this operand in no way
affects printer assignment for SPOOLed files.
This number must be in the range 0 to 255.

Default print mode. Permissible values and
their meanings are as follows:

0 ONLINE: Printing will be done using
the printer as a direct output
device; a Print file is NOT created.

S SPOOL: Print files will be created
and will be queued by the System
Task (@SYSTSK@) for printing at the
earliest opportunity,

K KEEP: Print files will be created
but will NOT be queued for printing
by the System Task.

H HOLD: Print files will be placed in
the user's Print Library and will be
queued by the System Task, but will
NOT be printed until requested by
the system operator or the user.

Default file protection class. The following
values are valid:

Accessible only by Security
Administrators and the
Owner-of-Record.

$ READ only files. READ access

granted to all users regardless of
the individual access privileges.

4-99

SET

LINES=

PRTCLASS=

FORMi=

RUNVOL=
RUNLIB=

JOBQUEUE=

JOBCLASS=

e EXECUTE only files. EXECUTE access
granted to all users as above.

A-Z Accessible by users with class
access privileges matching the type
of access desired.

(BLANK) Unprotected file. WRITE access
implied for all users regardless of
their individual access privileges.

Default number of lines-per—page. This operand
is used primarily by the Print functions of
system utilities. This number must be in the
range 0 to 255.

Default print class. This operand determines
the class to which print requests sent to the
system task will be assigned. Printer
assignment, scheduling priority, and header page
options are set for each class by the system
operator and, as such, may vary from time to
time. Valid values are the letters A-Z, or a
blank.

Default form number for Print files. The
association of a form number with a specified
form is installation-defined. Thia number
becomes part of the queue record for a Print
file and is examined by the System Task. This
number must be in the range 0 to 254.

Default program/procedure execution volume

and library name. This operand

pair is used by the Command Processor RUN
command to locate program/procedures to be
executed.

Default job status for a background job.
Determines when the submitted background job is
executed. Possible values are:

R - Run: The job is executed as soon as
possible.

H - Hold: The job is held in the job queue
until it is released for execution

Default job class for a background job.
Background jobs are processed according to the
job class priority hierarchy specified from the
Operator's Console. Within a given job class,
background jobs are processed in order of
submittal. Possible values are A-Z.

4-100

JOBLIMIT=
Example

LAB SET
+LAB PUSH
+ PUSHN
+ XC
+%

4%

+ ST
+%

+%

+ LA
+ ST
+¥*

+%¢

+ LA
+ ST
+%

+3%

+ LA
+ ST
+%

+%

+ ST
+ oI
+ sSvC
+ POP

SET

Default CPU time limit for job execution. The
time 1limit is specified in seconds. Possible
values are 0-35999 (thus the maximum time 1limit

is 99:59:59). If zero, then the job has no time
limit.

PROGVOL=(R2) ,PROGLIB="MYLIB' ,PRINTER=PRTID ,FORM#=(R5) ,LINES=55

0,0 SAVE REGISTER ZERO IN THE STACK
0,64 PUSH AREA FOR SVC PLIST

0(64,15) ,0(15) INITIALIZE AREA TO ZEROES

SET DEFAULT PROGRAM VOLUME NAME

R2,0(,15) PLACE ADDRESS IN PLIST

SET DEFAULT PROGRAM LIBRARY NAME

RO,=CL8'MYLIB' POINT TO LITERAL

RO,4(,15) SET ADDRESS IN PLIST

SET DEFAULT PRINTER NUMBER

RO,PRTID POINT TO DATA ITEM

R0,40(,15) PLACE ADDRESS IN PLIST

SET DEFAULT LINES-PER-PAGE

RO,=AL1 (55) POINT TO LITERAL

R0,52(,15) PLACE ADDRESS IN PLIST

SET DEFAULT FORM NUMBER

R5,60(,15) PLACE ADDRESS IN PLIST

60(15) ,X* 80" FLAG END OF PLIST

35 (SET) ISSUE SVC |

0,0 RESTORE REGISTER ZERO FROM STACK

4-101

Set Interval Timer

Syntax

[label]l SETIME {UNTIL}= { (register)}
{CSEC } {expression}

Functi

on

Sets a timer interval for the issuing task to expire at the
time specified, or after the number of 1/100 second units
specified. If a previous interval timing request was
active for this task, it is cancelled and the new one
instated.

Operand Descriptions

UNTIL= Either a register specification in parentheses,
where the register contains a binary time value
in 1/100 second units into a day (from
midnight), or an address expression, where the
four bytes starting at that address contain the
time as above. To request expiration at some
time tomorrow, the value supplied must be 24
hours plus the required time-of-day. A
requested time less than the current
time-of-day will result in immediate expiration.

CSEC= Either a register specification in parentheses,
where the register contains the number of 1/100
second units to delay processing, in binary; or
an expression, not in parentheses, for the
required number of 1/100 second units. May not
exceed one day.

Example
LAB1 SETIME CSEC=55
+LAB1 PUSHA 0,55
+ MVI 0(15),0 UNITS
+ SvC 32 (SETIME)

4-102

Start File Processing in Specified Mode or at Specified Record
Location

Syntax

{label] START {IO
{OUTPUT
{EXTEND
{BEGIN

} ,UFB={ (register) } [,COND=number]
}
}
}
{SKIP }
}
}
}
}
}

{expression}

{EQ

{6T

{GE

{ATTNT

{wAIT

{HOLD }

{RELEASE}

{TCWAIT [,MULTIPLE] [TIMEOUT={register }]}
{ [(MULTIPLE,ATTN)] [{expression}]}
{HALTIO}

Function
The function of START differs for various file types.

(1) Consecutive disk files (normal DMS):

START is valid in OQUTPUT or EXTEND open modes only.
'START I0' writes any remaining buffered records to
disk, and then enters temporary IO mode, with the next
record to be read set to the first record of the file.
'START OUTPUT' places the file in OUTPUT mode, after
effectively deleting all records in the file (but not
necessarily releasing space allocated for them on a
disk file). The next WRITE will then place a new first
record in the file. 'START EXTEND' places the file in
EXTEND mode (thus having significant effect only when
'START I0' has been previously issued). The next WRITE
will then add a record to the end of the file.
Possible error indications in the file status bytes
(UFBFS1, UFBFS2) are as follows:

30 ~ Permanent I/0 error
95 - Invalid function or function sequence

4-103

START

(2)

3

(4)

Consecutive disk files:
(variable-length records, normal DMS):

START BEGIN and START SKIP are valid in INPUT and IO
modes. A READ NEXT issued after START BEGIN will read
the first record of the file. A READ NEXT issued after
a START SKIP (with a signed binary number "n'" in the
word addressed by UFBKEYAREA) will skip over '"n"
records and read the record after them (n>0), will
merely read the next record (n=0), will reread the
current record (n=-1) or will read a preceding record
(n<-1) .

Consecutive disk and magnetic tape files (physical
access method) ¢

START WAIT is valid in INPUT, OUTPUT, or IO modes. The
program is paused until a preceding READ or WRITE
operation is completed. START IO and START OUTPUT have
the same function as for normal consecutive DMS.
Possible error indications in the file status bytes
(UFBFS1, UFBFS2) are as follows:

30 -~ Permanent I/0 error

95 - Invalid function or function sequence
(including START WAIT issued without preceding
block-level READ, REWRITE OR WRITE)

Indexed disk files:

START is valid in INPUT, IO or SHARED modes only.
Valid options are EQ, GT and GE. The START function is
essentially a READ (KEYED, NODATA) operation (key from
area addressed by UFBKEYAREA, with length UFBKEYSIZE)
with the following additional options:

EQ - If a record with the specified key is not
found in the file, invalid-key and
no-record-found conditions are indicated.
(This is like READ KEYED.)

GT - The first record with key greater than the
supplied key 1is sought. (Collating sequence
is normal ASCII.) If no such record is found,
invalid-key and boundary-violation conditions
are indicated.

GE - The first record with key greater than or

equal to the supplied key is sought.
Otherwise like the GT option.

4-104

5)

(6)

START

After a successful START function, a succeeding READ
(without KEYED option) will read the record located by
START. Successive READs will then read successive
records.

If UFBGKSIZE is not all binary zeroes, the binary value
in UFBGKSIZE is used as the key 1length for the above
searches, in place of UFBKEYSIZE. UFBGKSIZE may be set
by the user's program before issuing a START. It must
always be less than or equal to UFBKEYSIZE. If not, a
fatal error resulting in program termination will
occur. UFBGKSIZE is set to zero by every such START
function,

Possible invalid-key and error indications in the file
status bytes (UFBFS1, UFBFS2) are as follows:

23 - Invalid-key, no record found

24 - Invalid-key, boundary violation

30 - Permanent I/0 error

95 - Invalid function or function sequence

Workstation files:

The only valid option is 'ATINT'. Only the file status
bytes are modified. They are set as follows:

UFBFS1 - 0 ;

UFBFS2 - AID character as indicated on the most
recent interruption for this workstation;
hexadecimal values as follows:

20 - Keyboard unlocked.
21 - Keyboard 1locked by REWRITE
function or other write to

workstation.
3F - Display screen, tab positions,
or other workstation status
lost.
Other -— Indication of last AID
character (e.g., ENTER, PROGRAM
FUNCTION) received. See

specific device description.

Disk files (I0 or SHARED open modes only) :

START HOLD acquires temporary exclusive control of the
entire File addressed. It has no significant effect in
10 mode.

START RELEASE may be used to remove a record or File
from HOLD status without issuing a REWRITE, DELETE, or
another READ with the HOLD option. It has no
significant effect in IO mode.

4-105

START

For all START functions and all file types, an
invalid-key condition results in return to the address
in UFBEODAD, with the normal return point address in
register 0. Other exceptional and error conditions
result in return to the address in UFBERRAD, with the
normal return point address in register 0. If UFBEODAD
is zero, UFBERRAD is used in its place. If UFBERRAD is
zero as well, any exceptional condition results in
abnormal termination of the program.

(7) Telecommunication devices:

START TCWAIT waits for the completion of current 'READ’
or 'WRITE' operations issued on this TC file (this UFB).

START TCWAIT, MULTIPLE waits for completions on all TC
devices for which this program has an outstanding
'READ' or 'WRITE' operation.

START,TCWAIT, (MULTIPLE,ATTN) waits for unsolicited
interrupts for any TC lines, which this program
controls, in addition to START TCWAIT, MULTIPLE.

The TIMEQUT operand can be used in conjunction with
either of the above options. The expression field is
an unsigned integer with value less than or equal to
255. If ‘register' is specified, the right-most byte
of the register will be used. In either case, TIMEOUT
specifies the time interval in seconds.

4-106

The following table summarizes the uses of START:

START - MODES OF USE WITH DISK FILES

Open

for

Input
Fixed
Consecutive
RAM
Variabie Start SKIP
Length BEGIN
Consecutive
RAM
Indexed Start EQ
RAM GT

GE

BAM

Start WAIT
PAM

Open
for
Output

Start

Start

Start

Start

Start

I0
OUTPUT
EXTEND

10
OUTPUT
EXTEND

10
QUTPUT
EXTEND
WAIT

10
OUTPUT

4-107

Open
for
1/0

Start SKIP
BEGIN

Start EQ
GT
GE

Start WAIT

Open

for

EXTEND

Start IO
OQUTPUT
EXTEND

Start IO
OUTPUT
EXTEND

Start IO
QUTPUT
EXTEND

START

Open
for
Shared
10

Start EQ
GT
GE
Start HOLD
RELEASE

Operand Descriptions

10 As described above.

OUTPUT

EXTEND

BEGIN

SKIP

EQ

GT

GE

ATTNT

WAIT

HOLD

RELEASE

TCWAIT

HALTIO

UFB= The address of a User File Block (UFB), which may
be presented as a register specification in
parentheses, where the register contains the UFB
address, or as an expression not in parentheses,
where the word at the address designated |is
assumed to begin the UFB.

COND= If specified, the number or absolute expression
becomes the first operand of the JSCI instruction
by which the START function is entered. Thus the
START is made conditional. COND=15 is the
default., Register 1 is 1loaded with the UFB
address even when the condition is not satisfied.

Example
LAB1 START GE ,UFB=(R2)

+LAB1 IR 1,R2 SET REGISTER 1

+ MVI 16(1) ,B'00000011" MODIFIERS

+ JSCI 15,16(1) START FUNCTION

4-108

4-109
[deleted]

4-110
[deleted]

Submit Job or Print Request

Syntax

(1) [label]l SUBMIT JOB [,PLIST= {(register) }] [,PROCNAME={ (register)}]
{ expression}] [

[,LIBRARY= {(register) }]

[
[

[,JOBNAME= { (register) }]

[
[

[,STATUS=

C
[

[

{'literal’

[,VOLUME=
NI

{ expression}] [

{'literal’

NI

{ expression}] [

{'RUN'
{"HOLD'

{ expression}]

H [,DISP=
}

™ ™~

,CPULIMIT=({ (register) }
{ expression}

[,
L,
[,
L,

{
{
{
{

]
]
]

CANCEL'
PAUSE'
WARN'

{(register) }]
{'literal' 1}]
{ expression}]

[,JOBCLASS={ (register) }]

{'literal' }]
{ expression}]

{'REQUEUE' }]
{ expression}]

{'literal’ }]

{ }
}11 [,puMP={'YES' }]
11110 {'NO* }]
3 I I {'PROG' }]

expression} 1 1 [

{ expression}]

(2) [1abell SUBMIT PRINT[,PLIST={ (register) }] [,FILENAME={ (register) }]
{ expression}] [

Function

[
[

[,LIBRARY=
[
[

E,PRTCLASS=
(

[,COPIES=

[
[

{

{ (register) }]
{'1literal' }]
{ expression}]

{ (register) }]
{'literal' 1}]
{ expression}]

{ (register) }]
{'literal' }]
{ expression}]

{'REQUEUE' }]
{'SAVE' }]
{ expression}]

H I

{'1literal' }]
{ expression}]

[,VOLUME=
[
[

[, FORMi#=
[
[

[,STATUS=
[
[

{ (register) }]
{'literal' }]
{ expression}]

{ (register) }]
{'literal' 1}]
{ expression}]

{'SPoOOL* }1
{ "HOLD' H
{ expression}]

If initial parameter is JOB, SUBMIT requests the queuing of
a procedure file for execution as a non—interactive job.

If initial parameter is PRINT, SUBMIT requests
of a print file for printing.

the queuing

SUBMIT issues a return code

in the stack top word indicating the success/failure/status
of the operation.

4-111

SUBMIT

Operand Descriptions

PLIST= A 44-byte user-supplied parameter list (FULLWORD

ALIGNED)
follows:

for use by the SUBMIT SVC and constructed as

For "JOB" Requests:

Bytes 0~7:

Bytes 8-15:

Bytes 16-21:

Bytes 22-29:

Byte 30:

Byte 31:

Bytes 32-35:

Byte 36:

The name of the Procedure (PROCNAME) to be
run.

The name of the LIBRARY in which the
Procedure resides.

The name of the VOLUME on which the
Procedure resides.

A user-supplied JOBNAME or spaces.

The JOBCLASS to which this job is to be
queued.

The action to be taken in case of an
abnormal termination of this job:

X'C0' - Produce a DUMP for this job
('YES').

X'80' - Do NOT produce a DUMP for this
job (*NO').

X'00' - Produce a DUMP only if requested

by the abnormally terminating
program ('PROG').

The CPU Time Limit (in timer units) imposed
upon this job. If zero, then the job has no
time limit.

The initial STATUS of this job when it is
queued:

X'80' - HOLD - NOT eligible for scheduling
until released by the operator or the
submitter.

X'00' - RUN - eligible for scheduling upon
submission of the request.

4-112

Byte 37:

Bytes 38-43:

SUBMIT

Whether or not to check for a CPU Time
Limit, the action to be taken in case the
limit is exceeded, and whether or not the
job should be requeued after execution:

X'80' - Check for timer 1limit expiration
(IF a CPU Time Limit is specified
then this bit MUST be on).

X'40"' - CANCEL this job if the CPU Time
Limit is exceeded.

X'20' - PAUSE this job if the CPU Time
Limit is exceeded. (If neither
of these bits is on and a CPU
Time Limit has been set, then a
WARNing will be issued).

X'04' - REQUEUE this job after execution.

RESERVED (Should be ZEROS).

For "PRINT" Requests:

Bytes 0-7:

Bytes 8-15:

Bytes 16-21:

Byte 22:

Byte 23:

Bytes 24-25:

Byte 26:

The name of the File (FILENAME) to be
printed.

The name of the LIBRARY in which the file
resides.

The name of the VOLUME on which the file
resides.

The Print Class (PRTCLASS) to which this
file is to be queued.

The Form Number (FORM#) (in binary) of this
file to be printed.

The number of COPIES (in binary) of this
file to be printed.

The initial STATUS of this file when it is
queued:

X'80' - HOLD - NOT eligible for printing
until released by the
operator or the submitter.

X'00' - SPOOL - eligible for printing upon
submission of the request.

4-113

SUBMIT

Byte 27:

Whether or not this file should be
REQUEUEed, SAVEed, or scratched after
printing:

X'40' - REQUEUE this file after printing.

X'20' - SAVE this file after printing.

Bytes 28-43: RESERVED (Should be ZEROS).

"PLIST" may be specified either as a register in
parentheses pointing to the user-supplied parameter
list or as an expression addressing the
user-supplied parameter list.

If "PLIST" is specified, then the remaining
operands are optional and, if present, are used to
modify the parameter list IN PLACE. The default
values of any omitted operands are NOT recognized
so as not to override the value set in the user's
parameter list.

If "PLIST" is not specified, then the remaining
operands are used to build a parameter list on the
stack, The default values of omitted operands are
used in this case. The user is responsible for
POPping off the 44 bytes beyond the stack top word
(SVC Return Code) on return.

“PROCNAME /FILENAME" , “LIBRARY", "WOLUME",
"JOBCLASS/ PRTCLASS'", and '"FORM#'" are required by
their respective functions unless '"PLIST" is also
specified. All other operands are always optional.

PROCNAME /FILENAME= The name of the Procedure to be run or the

File to be printed.

LIBRARY= The name of the 1library in which the

Procedure/File reside.

VOLUME= The name of the volume on which the

Procedure/File reside.

JOBNAME= An optional user-supplied name for the job to

be submitted (limited to 8 characters).

JOBCLASS/PRTCLASS= The class to which the job/print request is to

be assigned. Valid values are the letters A-Z.

The above operands may be specified as a
register in parentheses pointing to the
required value, a literal in single quotes
which is the required value, or an expression
addressing a field containing the required
value.

4-114

FORMi=

COPIES=

CPULIMIT=

STATUS=

SUBMIT

The number of the form on which to print this file.
This number must be in the range 0-254.

The number of copies of this file to be printed. This
number must be in the range 1-32767. The default
value is 1.

"FORM#" and "COPIES' may be specified as a register in
parentheses containing the value in binary, an integer
not in quotes which is the value in decimal, or an
expression addressing a field containing the value in
binary.

The total amount of time that this job may use the CPU
(1st sub-operand) and the action to be taken if that
limit is exceeded (2nd sub-operand) .

The actual time may be specified as a register in
parentheses or an expression addressing a 4-byte field
containing the limit in timer units. A value of zero
implies that the job has no 1limit and any action
indicated by the 2nd sub-operand will be ignored. The
default is to zero (no limit).

The action to be taken upon completion may be
specified either as one of the following 1literals in
single quotes, or as an expression addressing a
one-byte field containing the appropriate flag value
(See "PLIST" entry for byte 37 ("'JOB'") above). The
default is to "WARN".

'CANCEL' - Force abnormal termination of the
Procedure.
'PAUSE' - Suspend execution of the Procedure until

resumed by the operator.
'WARN' - 1Issue a WARNing message to the operator.

NOTE: The time (1st sub-operand) may
always be specified by itself; the action
on expiration (2nd sub-operand) may only
be specified by itself if "PLIST" is also
specified.

The initial status of the request when it is placed on
the queue. It may be specified either as one of the
following 1literals in single quotes or as an
expression addressing a one-byte field containing the
appropriate flag value (see "PLIST'" entry for byte 36
("JOB") or byte 26 ("PRINT'") above). The default is
to 'RUN'/'SPOOL':

'RUN' - Eligible for scheduling upon submission
of the request ("JOB'" only).

4-115

SUBMIT

DISP=

DUMP

'SPOOL' - Eligible for printing upon submission of
the request (PRINT" only).
'HOLD' - NOT eligible for print/execution

scheduling until released by the operator
or the submitter.

The action to be taken at completion of the request.
It may be specified as a literal in single quotes or
as an expression addressing @ a one-byte field
containing the appropriate flag value (see 'PLIST"
entry for byte 37 ("JOB") or byte 27 ("PRINT")
above) . The default is to NOT set these options (do
NOT requeue or save).

'REQUEUE' - Place the request back onto the queue for
re—-execution/re~printing (for *"PRINT"
requests, this implies 'SAVE').

' SAVE' - Do not scratch this file after printing
("PRINT" only).

The action to be taken in the event of an abnormal
termination, It may be specified as a literal in
single quotes or as an expression addressing a
one-byte field containing the appropriate flag value
(see "PLIST" entry for byte 31 above). The default is
to 'PROG'.

'YES' - Produce a DUMP for this job.
'NO’ - Do NOT produce a DUMP for this job.
'PROG' - Produce a DUMP only if requested by the

program abnormally terminating.

4-116

SUBMIT

Return Codes

= 0 Successful

4 Volume Not Mounted

8 Volume in Exclusive Use

12 All Buffers in Use, Unable to Perform Verification

16 Library Not Found

20 File Not Found

24 Improper File Type (or Zero Records as Indicated in
Label

28 File Access Denied

32 VTOC Error, FDX1/2 Do not Agree

36 VTOC Error, FDX2/FDR Do not Agree

40 Invalid Specification of File/Library/Volume

44 VTOC Unreliable

48 System Task not Rumning,
NO SPOOLED PRINTING OR NON-INTERACTIVE JOBS

52 Error in Performing XMIT to System Task

56 Invalid Options Specified In Parameter List

Examples

LAB SUBMIT JOB,PROCNAME=‘'MYPROC',LIBRARY=PROCLIB,VOLUME=(RS5) , X
JOBCLASS='A"' ,CPULIMIT=((R3) ,"PAUSE') ,DISP='REQUEUE'

+LAB PUSHN 0,44 CET SPACE ON STACK FOR "PLIST"...

+ XC 0(44,15) ,0(15) ... AND CLEAR IT TO ZEROES

+ MVC 0(8,15) ,*+10 SET PROCEDURE NAME

+ B *+19 ‘ BRANCH AROUND LITERAL

+ DC CL8'MYPROC' PROCEDURE NAME

+ MVC 8(8,15) ,PROCLIB SET LIBRARY NAME

+ MVC 16(6,15) ,0(R5) SET VOLUME NAME

+ MVPC 22(8,15) ,%*+2(1),C' ' DEFAULT JOBNAME TO SPACES

+ MVI 30(15),c'A’ SET JOB CLASS

+% (STATUS OPTION DEFAULTED TO ‘RUN‘)

+ ST R3,32(,15) SET CPU TIME LIMIT

+ MVI 37(15) ,x'80"' FLAG CPU TIME LIMIT SET

+ o1 37(15),x'20' SET CPU LIMIT EXPIRE OPTION:

+¥% X'40' - CANCEL

+¥% X'20' - PAUSE

+% X'00' - WARN

+ 01 37(15) ,X'04' - SET JOB DISPOSITION TO 'REQUEUE'

+% (DUMP OPTION DEFAULTED TO ''ON

L PROGRAM REQUEST ONLY")

+ PUSHA 0,0(,15) POINT TO ‘'PLIST'" WITH STACK TOP

+% WORD

+ MVI 0(15),1 FLAG REQUEST TYPE: 1 = JOB

+¥% 2 = PRINT

+ SVC 46 (SUBMIT) ISSUE SVC

4-117

SUBMIT

+++++++++é g + +

e E R LR
* % % ¥ % %

SUBMIT
PUSHA
MV

MVC
MVC

MVC
oI

MVC
SvC

SUBMIT
PUSHN

XC
MVC

MVC
MvC
MVC
MVI
MVI

MVI

PUSHA

MVI

SvC

JOB,PLIST=MYPLIST,LIBRARY=PROCLIB,JOBNAME=MYJOB, X
JOBCLASS=(R5) ,CPULIMIT=(,'CANCEL') ,DUMP=DUMPOPT
0,MYPLIST POINT TO "PLIST" WITH STACK TOP
WORD
0(15),1 FLAG REQUEST TYPE: 1 - JOB
2 - PRINT
MYPLIST+8(8) ,PROCLIB SET LIBRARY NAME

MYPLIST+22(8) ,MYJOB SET JOB NAME
MYPLIST+30(1) ,0(R5) SET JOB CLASS
MYPLIST+37,X'40" SET CPU LIMIT EXPIRE OPTION:
~ X'40' - CANCEL
X'20' - PAUSE
X'00' - WARN
MYPLIST+31 (1) ,DUMPOPT SET DUMP OPTION
46 (SUBMIT) ISSUE SVC

PRINT,FILENAME="MYFILE" ,LIBRARY=PRINTLIB,VOLUME=(R5) , X
PRTCLASS=(R2) ,FORM{f=27 ,DISP="SAVE'

0,44 GET SPACE ON STACK FOR “PLIST"...
0(44,15) ,0(15) .+« AND CLEAR IT TO ZEROES
0(8,15) ,*+10 SET FILE NAME

#+12 BRANCH AROUND LITERAL

CL8'MYFILE' FILE NAME

8(8,15) ,PRINTLIB SET LIBRARY NAME

16(6,15) ,0 (R5) SET VOLUME NAME

22(1,15) ,0(R2) SET PRINT CLASS

23(15) ,27 SET FORM NUMBER

25(15),1 DEFAULT NUMBER OF COPIES TO 1

(HIGH ORDER BYTE ALREADY CLEARED)
(STATUS OPTION DEFAULTED TO

'SPOOL"')
27(15) ,X'20" SET DISPOSITION: X'40' - REQUEUE
X'20' - SAVE
0,0(,15) POINT TO "PLIST' WITH STACK TOP
WORD
0(15),2 ' FLAG REQUEST TYPE: 1 - JOB
2 - PRINT
46 (SUBMIT) ISSUE SVC

4-118

Set Telecommunications Stream Options

Syntax
[label]l TCOPTION UFB={(register)}[,STREAM={READER }]
{expression} [{PUNCH }]
[{PRINTER}]
[,DEVTYPE={2780 }]
[{3780 }]
[{TCDIAG}]
[,coMP={YES}] [,PRINT={NO }][,BLOCKED={YES}]
[{NO }1I {YES}IL {NO }]
[,RECSIZE=integer]
[,TRANSMISSION= ([TRANSPARENT,]]
[[NONTRANSPARENT,]]
[[BLOCKED, 1]]
[[UNBLOCKED,]]
[[UNPADDED,]]
[[PADDED,]]
[[COMPRESSED,]]
[[UNCOMPRESSED,]]
([EBCDIC]]
[[AsCII 1)]
Restriction
None.
Function

Sets the TC stream options 'in the UFB., The TC stream

options consist of 3 bytes, the data option,

transmit/receive option, and maximum record size. They are

stored in the UFBTCDATAOPT, UFBTCXMITOPT,

UFBTCMAXRECSZ. The stream options are defined as follows:

TC data option:

bit 0 = print format VS records in use
1 = 1 compressed VS record format
2 = 1 blocked VS record format

3-5 (reserved)

6-7 for card reader stream
for card punch stream
for printer stream
(reserved)

WN O

4-119

TCOPTION

TC transmit/receive option:

bit 0

1
2

v~ W

-7

1 perform code translation from
EBCDIC to ASCII

= 1 compress transmitted record data

= 1 pad transmitted records to exact
length with space codes

= 1 blocked transmitted records

= 1 transmit in transparent mode

(reserved)

The third byte in the TC stream option is equal to the
maximum or exact transmitted record length minus one.

Operand Descriptions

UFB =

STREAM

DEVTYPE

PRINT

BLOCKED

COMP =

TRANSMISSION

RECSIZE

The address of a User File Block (UFB), which
may be supplied as a register specified in
parentheses, where the register contains the
UFB address, or as an expression not in
parentheses, where the word addressed is
assumed to begin the UFB.

To identify the stream of the TC line, valid
values are READER for cardreader, PUNCH for
cardpuncher, or PRINTER for printer.

To identify the device type of the TC line,
valid values are 2780, 3780 for IBM-2780,
IBM-3780 batch TC stream, and TCDIAG for TC
diagnostic use. This option does not take
effect until the addressed UFB has been OPENed
again (unlike the other options of TCOPTION,
which are effective on the next DMS Function
request) .

If YES, the corresponding bit in the data
option will be set to 1j otherwise, to O.

If NO, the corresponding bit in the data
option will be set to 0; otherwise, to 1.

If NO, the corresponding bit in the data
option will be set to 0; otherwise, to 1,

The bits in the transmit/receive option will

be set according to the operand specified.
For example, if TRANSPARENT is specified, the
corresponding bit 4 in the transmit/received
option will be set to 1; if NONTRANSPARENT is
specified, the bit 4 in the transmit/received
option will be set to 0.

The 3rd byte in the TC stream option will be
set to the integer value minus 1.

4-120

TCOPTION

Example
LAB1 TCOPTION UFB=(R2) ,STREAM=PUNCH,BLOCKED=NO,RECSIZE=10, X
TRANSMISSION= (NONTRANSPARENT ,PADDED)
’ +LAB1 LR 1,R2 SET REGISTER 1
+ MVI 85(1) ,65 SET TC DATA OPTIONS
+ MVI 86(1) ,B'01111000' SET TC XMIT OPTIONS
+ MvVI 87(1),10-1 SET TC MAXIMUM RECORD SIZE

4-121

Get Date and Time

Syntax

[1abel]l TIME JUL

[JuL][
[wpIl,

2

«Q
&
| S -

Function

The current date is returned in the higher—~addressed word
(stack pointer plus four) of a two-word area pushed onto
the stack, in one of the following forms:

JUL - as a packed number OOYYDDDF, where YY 1is the
year, DDD the day in year, and F a hexadecimal
'F' (positive sign);

YMD - as a packed number OYYMMDDF, where YY is the

year, MM the month,
hexadecimal 'F'.

Db the day, and F a

If HMS is specified (or by default), the current time is
returned in the lower-addressed word of the two-word area
pushed onto the stack, in packed digits: HHMMSSth, where

HH is hours in day,

MM is minutes in hour,

SS is seconds in minute,

t 1is tenths of second in second,
h 1is hundredths in tenth.

- The minimum time wvalue is 00000000.
23595999.

The maximum is

If CIK is specified, the current clock value is returned in
the lower-addressed word of the two-word area pushed onto

the stack, in binary, in 1/100 second units from the
previous midnight.

Operand Descriptions

See the above function description. Omitted operands
default to 'JUL' and 'HMS’.
Example
LAB1 TIME JUL .
+LAB1 PUSHA 0,0 'JUL' REQUEST
+ PUSHA 0,0 'HMS' REQUEST
+ SvC 2 (TIME)

4-122

Generate a User File Block

Syntax

[label] UFBGEN [PRNAME=p1l]

[,MODE={0OUT }]
{IN }
{10 }
{EXTEND}
{SHARED}

[,CoMP={YES}]
{NO }

[,NRECS=p2]

[,BUFSIZE={integer}]

{2048
[,DEVNO=integer]

[,DPACK={100 }]
{1-100}

[,VERIFY={YES}]
{NO }

[,LIBRARY=p7]

[,NODISPLAY={YES}]

(O }

[,ERRAD=p11]

[,ALTCNT={0
{1-16}

[,BLKAL={YES} ,NBLKS=p13]

{NO }

[,FORG={CONSEC }1]
{ INDEXED}
{ANY }

[,PRINT={YES}]

{NO }
[,RECSIZE={integer}]
{0 }
{ANY }
[,FORM={0 H
{1-255}
[,KPOS=p4 1]

[,IPACK={100 }]
{1-109}

[,RELEASE={YES3}]
{NO }
[,VOLSER=p8]

[,RECAREA=p9]

[,EODAD=p12 1

} ,ALTAREA=p15]

4-123

[,DEVCLASS={DISK }]

{PRT }
{ws }
{MTAPE}

[,VLEN={YES}
{NO }

[,PROG={YES}]
{NO }

[,8LKSIZE={integer}]
{0 }

[,PRTCLASS={A }]
{B-Z}

[,KSIZE=p5]

[,NOVTOC={YES}]
{NO }

[,FILENAME=p6]
[,FILECLAS={0 H
{#,A-2}
[,KEYAREA=p10]
[,POOL={YES} ,BCT=pl4]
{NO }

[,{pAM}={YES}]
{BAM} {NO }

[,STREAM={READER }]
{PUNCH }
{PRINTER}

UFBGEN

[,TRANSMISSION=[{TRANSPARENT }] [,{BLOCKED }]

{NONTRANSPARENT} {UNBLOCKED}
[,{unpaDDED}] [,{COMPRESSED }]1 [,{EBCDIC}]]
{PADDED } {UNCOMPRESSED} {ASCII }
[,MCTYPE={2780 }] [,EOD=EOV]
{3780 } _
{TCDIAG} [,LaBEL= {[NL][,AL][,IL][,ANY]}]
[,DEN={556 }] [,FSEQ={integer}] [,VSEQ={integer}]
{800 } {1 } {1 }
{1600}
[,ALLOWTAPE={YES}] [,TRACK7={YES}] [,HEADER={PARTIAL}]
{NO } {NO } {FULL }
[,ALLOWNL={YES}] [,PARITY={EVEN}] [,PLOG={YES}]
{NO } {oDD } {NO }
Function

Generates a User File Block (UFB) with the specified fields
initialized. This macroinstruction does mnot produce
executable code.

Operand Usage

The following operands are only used for Physical or Block Access
Method:

PAM=YES
BAM=YES
BLKAL=YES
NBLKS=p13

The other operands are for the normally used Record Access
Method. The following table summarizes their use.

4-124

Operand Usage Table (Record Access Method)

Legend:

R = Required for Open processing. Can optionally be set
1 by the program prior to OPEN.

0 = Optional for Open processing. Can also be set by
1 the program before OPEN.

R = Required for DMS functions. Can be set by the pro-
2 gram before use.

0 = Optional for DMS functions. Can be set by the pro-
2 gram before use.

Underlines are used to identify default values.

4-125

9Z1-%

OPERAND USAGE TABLE (RECORD ACCESS METHOD)

Commonly used operands

PRNAME

DEVCLASS

MODE

FORG

VLEN

COMP

PRINT

PROG

2

NRECS

RECSIZE

BUFSIZE

New
Consecutive
Disk Files

value
R 1-8 char
1 alphanumeric
R DISK
1
R OUT
1
R CONSEC
1
0 VYES
1
0 VYES
1
0 VYES
1
0 YES
1
R numeric
1
R numeric
1

n¥%2k

New
Indexed
Disk Files

value
R 1-8 char
1 alphanumeric
R DISK
1
R OUT
1
R INDEXED
1
0 VYES
1
0 VYES
1
R numeric
1
R numeric
1
0 n*k2k

Existing

Disk
Files

-

value

1-8 char
alphanumeric

DISK

{IN,I0, }
{EXTEND, }
{SHARED }

{CONSEC, }
{INDEXED, }

{ANY }

YES

YES

YES

{ANY ,numeric}

n%2k

New

Work or Temp

- X

—

R

Files
value

1-8 char
alphanumeric

numeric

numeric

nk2k

—_

P

—

-

New Workstation
Print Files
Files
value values
1-8 char R 1-8 char
alphanumeric 1 alphanumeric
PRT R WS
]

ouT R 10
1

ONSE R ONSE

1

YES

YES

YES

(1,000,numeric)

{134,numeric} R {1924, numeric}

nk2k

(GOHLAX SSADOY @I0DTY) HIAVI HOVSN ANVIHJO

LT1-Y

Operands used for print files only

FORM

PRTCLASS

DEVNO

Operands used for new indexed files only

KPQOS
KPOS

KSIZE

DPACK

IPACK

Special purpose operands

3
NOVTOC

4
VERIFY

0
1

]

New
Consecutive
Disk Files

value

YES

YES

R
R

New
Indexed
Disk Files

value

numeric
numeric

numeric

numeric

1-100

numeric
1-100

YES

Existing
Disk
Files

value

0 VYES

-

New
Work or Temp
Files

value

0 VYES

New
Print
Files

value

0 {0,1-255}

0 {A,B-Z}

0 numeric

0 VYES

Workstation
Files

value

Operands used to default run-time assignments

8C1-%

New New Existing New New Workstation
Consecutive Indexed Disk Work or Temp Print Files
Disk Files Disk Files Files Files Files
value value value value value value
50 1-8 char 1-8 char 0 1-8 char R H#AAAA
FILENAME 1 alphanumeric alphanumeric 1 alphanumeric 1 or
#tAAAA
(See Note 5) where AAAA
is 1-4 char
alphanumeric
See NOTE (1)
5 0 1-8 char 1-8 char 6 1-8 char
LIBRARY 1 alphanumeric alphanumeric 1 ailphanumeric
S 0 1-6 char 1-6 char 0 1-6 char
VOLSER 1 alphanumeric alphanumeric 1 ailphanumeric
§ 0 {#A-Z} {#,A-2Z} R {#,A-2} R {#,A-2}
FILECLAS 1 1 1
6 0 YES YES 0 VYES R YES R YES R YES
NODISPLAY 1 1 1 1 1

6Z1~%

Operands used for DMS requests

RECAREA

KEYAREA

ERRAD

EODAD

New

Consecutive
Disk Files

value

address in
segment 2

instruction
address

instruction
address

New

Indexed
Disk Files

value

address in
segment 2

address in
segment 2

instruction
address

instruction
address

Existing
Disk
Files

value

address in
segment 2

address in
segment 2

instruction
address

instruction
address

New

Work or Temp

o

Files

valtue

address in
segment 2

instruction
address

instruction
address

New
Print
Files

value

address in
segment 2

instruction
address

instruction
address

Workstation

Files
value

R address in

2 segment 2

0 instruction

2 address

0 instruction

2 address

UFBGEN

Notes:

6D

(2

(3)

(@)

(5)

(6)

Q)

The escape characters # and ## are used to request
unique name generation and to identify work files ()
and temporary files () to the system. Work Files and
temporary files are placed in the user's workfile
library regardless of what is supplied for library and
volume. The work files are automatically scratched
when the file 1is closed. The temporary files are
automatically scratched at the end of the run.

NRECS should preferably be set by the program as a
value determined after opening the associated input
file(s) and learning its (their) size.

See the description of NOVITOC files. When NOVTOC is
used, FORG=CONSEC, VLEN=NO, COMP=NO, and FILENAME,
LIBRARY, and FILZECLAS are ignored.

The use of the VERIFY option significantly degrades
performance. Its use, unless specifically intended, is
not recommended.

These operands re@present run-time parameters wultimately
determined via GETPARM. {nless required to identify
WORK or TEMP files, thesz operands serve only to
provide default values. If left unspecified, defaults
are provided by OPEN using values supplied via the SET
command or via system conventions,

Causes a GETPARM type "ID" to be issued, thus
suppressing user interaction. Should be used to
minimize transactions for fixed file specifications
only.

Other file organizations including INDEXED, VLEN, COMP,
PRINT, and PROG, are supported but apparently not very
useful. If these organizations are used, other
supplied operands must be consistent.

Notes on operands

PRNAME=

FORG=

The parameter reference name is the fundamental
identifier used to locate or solicit run—-time parameter
information. The prnames used should be indicative of
function.

The file organization parameter is used for existing

files to verify file organization. If FORG=ANY is
specified, any file organization is accepted.

4-130

VLEN=
PRINT=
PROG=
NRECS=

RECSIZE=
BLKSIZE=

BUFSIZE=

DEVNO=

IPACK=
DPACK=

PAM=

BAM=

NOVTOC=

RELEASE=

RECAREA=
KEYAREA=
DEVCLASS=
VERIFY=

BLKAL=

UFBGEN

FORG=ANY can be specified for tape in INPUT mode. For
unlabelled tape, FORG is set to consecutive.

These attributes are used for existing files to
limit acceptance to files of the indicated
attribute.

The number of records is defaulted to 1000 for existing
files.

The record size (or maximum record size) and block
size are used for existing files to verify this file
attribute. A RECSIZE (BLKSIZE) of zero is used to
accept any record (block) size.

The buffer size option is used to increase efficiency
for sequential processing. See Chapter 7, DMS, for
details,

The device number option can be used for print files to
request printing on a specific printer.

These options are used to specify the relative
percentage of data to space (packing) desired on a new
indexed file. If not specified, system default values
are used.

Optional request for Physical Access Method support or
multiple-line printing. Defaults to PAM=NO.

Optional request to process a disk file as if it had
2048-byte 1logical records, irrespective of the record
size recorded in its file descriptor record. Defaults
to BAM=NO.

Optional file attribute for diskette only. Specify
only for unstructured diskette.

If set to YES in output mode, the unused disk space
allocated for the file will be released at file close.

These operands must be acceptable in "DC A(pn)
assembler statements. They may be written only when
the UFB is generated in a segment 2 'static' area.

Valid options are DISK, MTAPE, WS, TC, or PRT.
Requests read-after—-write verification on a disk file.
Allocate space for a new disk file in number of blocks,

as specified in UFBNBLKS (see NBLKS=operand), rather
than in number of logical data records.

4-131

UFBGEN

POOL=

ALTCNT=

ALTAREA=

STREAM=

Buffer pooling requested. The BCT operand addresses a
Buffer Control Table in the user-modifiable segment, as
created by the BCTIGEN macroinstruction.

An integer between 0 and 16. If not 0, ALTAREA operand
must be supplied. This is the number of alternate
indices processable for the file.

Address of AXDl1 block, as generated by the AXDGEN
macroinstruction.

Sets the TC STREAM DATA option in UFBTCDATAOPT.

TRANSMISSION= Sets the TC STREAM TRANSMIT/RECEIVE options in

UFBTCXMITOPT (see also TCOPTION macro) .

MCTYPE= Sets the microcode type for programmable devices.
Currently, valid options arz 2780 and 3780 for IBM-2780
and IBM-3780 batch telecommunications emulation, and
TCDIAG for telecommunications diagnostic use.

EQOD= Forces EOD exit when a data management operation
reaches the end of a tape volume in INPUT mode and an
EOV1 trailer label is detected.

LABEL= Magnetic tape 1label types allowed (NL for no-label, AL
for ANSI-label, IL for IBM-Label; none, one, oOr more
than one may be specified).

DEN= Magnetic tape density: 556 for 556 BPI tape, 800 for
800 BPI tape, and 1600 for 1600 BPI tape. The default
value is 1600 BPI,

FSEQ= Tape file sequence number,

VSEQ= Tape volume sequence number for multiple-volume tape
file.

ALLOWTAPE= If set to YES, OPEN will allow tape as an

alternative device for disk file.

TRACK7= If YES 1is specified, then 7-track tape is indicated.
The default is NO. The user must specify a non-zero
value for tape density in the UFB in the case of a
7-track tape.

HEADER= This operand supports IBM DOS labelled tapes. If FULL

is specified, then both HDR1 and HDR2 file labels are
present on the tape. If PARTIAL 1is specified, then
only HDR1 is present. If HEADER=FULL is specified, and
no HDR2 is found on the tape, OPEN will cancel with an
indication of an invalid label type. If HEADER=PARTIAL

4-132

UFBGEN

is specified, but a HDR2 label is found on the tape,
OPEN will proceed to open the file using structural
information from the HDR2.

When only HDR1l is present, the user must provide valid
information about file organization, record length, and
block size in the UFB.

ALLOWNL= Allows non-labelled tape. The default is NO.
PARITY= If EVEN is specified, then the tape uses even parity.
If ODD is specified, then the tape uses odd parity.
EVEN is the default.
NODISPLAY= If YES is specified, then the OPEN SVC will not
issue a GETPARM to the user's workstation for
CANCEL messages or for respecification messages.
PLOG= If YES is specified, indicates that a file prologue

will Dbe present. Valid only for Word Processing
files. This operand is applicable only when OPEN mode
is OUTPUT, and will be ignored for any other OPEN
mode. The default is to NO.

4-133

Write a Record

Syntax
[1abel] WRITE [EOM,] UFB={(register)} [,COND=number]
[EoT,] {expression}
Function

Writes the next sequential record to a consecutive or
indexed disk, magnetic tape, or printer file. The file
must be open in OUTPUT or EXTEND mode, or the specified
record (Key addressed by UFBKEYAREA) to an indexed disk
file open in I0 or SHARED mode. For indexed disk files,
open in OUTPUT or EXTEND mode, the key in the record to be
written is checked to insure that it is greater than any
key already in the file. If not, a record sequence error
is indicated.

A possible invalid-key condition which can be indicated in
file status bytes (UFBFS1, UFBFS2) is:

21 - Record sequence error (indexed files only)
22 - Duplicate Key (indexed files only)
24 - Boundary violation (primary extent size

exceeded in output mode - indexed files only)

Possible error conditions which can be indicated in file
status bytes are:

30 - Permanent I/0 error

34 - Boundary violation (consecutive files in output
or extend mode; indexed files in I/0 or shared
mode)

95 - Invalid function or function sequence

96 - Invalid data area location or alignment

97 - Invalid length for device

An invalid-key condition results in return to the address
in UFBEODAD, with the normal return address in register 0.
Other exceptional and error conditions result in return to
the address in UFBERRAD, with the normal return point
address in register O. I1f UFBEODAD is zero, UFBERRAD is
used in its place. If UFBERRAD is zero as well, any
exceptional condition results in abnormal termination of
the program,

4-134

WRITE

Operand Descriptions

EOM=

EOT=

UFB=

COND=

This option indicates that the data transmitted by
the WRITE function is to be followed with a
telecommunications end~of-message character.
(Pertains only to batch telecommunications devices.)

This option indicates that a telecommunications
end-of-transmission signal is to be transmitted,
following any data specified. (Pertains only to
batch telecommunications devices.)

The address of a User File Block (UFB), which may
be presented as a register specification in
parentheses, where the register contains the UFB
address, or as an expression not in parentheses,
where the word at the address designated by the
expression is assumed to begin the UFB.

If specified, the number or absolute expression
becomes the first operand of the JSCI instruction
by which the WRITE function is entered. Thus the
WRITE is made conditional. The default is
COND=15. Register 1 is loaded with the UFB address
even when the condition is not satisfied.

4-135

Execute Physical 1/0

Syntax

[1abel] Xi0 [OFB= {address }] [,COMMAND= {address }]
[{ (register) }] [{ (register) }]

[,MEMA= {address }] [,BLKNUM= {address }]
[{ (register) }] ({ (register) }]

[,BLKSIZE= {address }] [,PLIST= {address }]

[{(register)}] [{ (register) }]
[,RELEASE]
[,voLIO= {YES} ,VCB= {address }]
[{NO } { (register) }]
[,MLPRINT= {YES} ,FORM= {LIST}]
[{NO } {EXEC}]
[,UCPRINT= {YES}] [,DEVSTATUS= {CLEAR }]
[{NO }] [{CHECK }]
L {NOCHECK}]

Restrictions

XI10 is intended for use by Data Management System routines, XI10
with the VOLIO option is allowed only when requested from within
System Mutual Exclusion (SME) state or when addressed to a disk
volume placed in initialization state by the issuing task. It is
valid only for disk operations.

Function
Normal (without VOLIO option) :

Validates disk extents; acquires available physical pages of
memory for input operations if the virtual pages referenced
are not in main memory; '"'short-term fixes'" the virtual data
page or pages in physical pages during the I/0 operation;
constructs indirect data address 1lists for workstation and
disk operations; insures that the 'change' bit in the Page
Frame Table for each modified page is set when read-type 1/0
is accomplished; enters the System Start I/O Routine to
initiate the operation; returns to the issuer on completion of
its functions with a one-word return code field replacing the
input parameters on the top of the stack, as described below.

4-136

With VOLIO option:

Validates Volume Control Block address, disk block numbers,
and data address; validates that usage of the VOLIO option is
to be allowed; translates memory address; comnverts block on
volume to disk address; constructs IOCW (from COMMAND operand,
converted MEMA operand, converted BLKNUM operand) in the IORE
contained in this VCB; '"fixes" data page if required, as
described above; sets '"change'" bit if required; enters System
Start I/0 Routine to initiate the operation; returns to issuer
with return code field on the top of the stack.

Low-order halfword of return code field - binary return codes:

0 - Success

4 - Truncation at end-of-extent (non-VOLIO disk
only)

8 - Truncation at end—-of—-cylinder or
end-of-track (disk only)

12 - Starting block number beyond end-of-file
(non-VOLIO disk) or beyond end-of-volume
(VOLIO disk)

16 - Invalid data address or data length (Data
address for disk must be page-aligned; for
other devices word—-aligned. Virtual memory
area encompassed by data address through
data address plus block size minus one must
either be in the segment 2 I/0O buffer area
or entirely above the XIO parameter 1list on
the stack if the XIO is issued from
unprivileged state)

20 - Second XIO on file without intervening CHECK

24 - TC X10 attempted on an OFB that was not
created as the result of an 'IPOPEN' on an
IPCB

28 ~TC XIO attempted on a device reserved
exclusively by another task

32 -XI0 has Dbeen issued to an inoperative
workstation and the I/O has not been issued
(Bit 5 of option flag must be set for
issuance of this return code)

36 -~ TC XI0 attempted on a peripheral processor
(DLP) reserved exclusively by another task

40 - Write XI0 attempted to file opened in
"WPSHARE" mode, file not locked.

44 - Read XIO attempted to file opened in
"WPSHARE" mode, file locked by another user.

High~order halfword of return code field - residual block
counts:

Return codes 4, 8 - block size specified minus
number of bytes actually read or written. All
other return codes are always zero.

4-137

XI10

Note:

If return codes 0, 4, or 8 are set, the I/0 operation
is queued for initiation and a CHECK must be issued to
test for completion. If return codes 12, 16, or 20
are set, the operation has been suppressed. XI0O never
waits for I/0 completion.

Operand Descriptions

OFB=

COMMAND=

MEMA=

BLKNUM=

BLKSIZE=

PLIST=

RELEASE

The address of the Open File Block (OFB) for file
involved in the I/0 operation. The OFB is supplied
when the file is OPENed. This operand is not used in
conjunction with the VOLIO option.

The address of the value to be placed in the Command
Byte of the I/0 Command Word (IOCW) constructed by the
XI0 SVC. The command byte specifies the operation to
be performed. Possible values are contained in
descriptions of the IOCWs for the various commands.

The address of a 4-byte area containing a virtual data
address for the I/0 operation in its low-order three
bytes, to be translated to a physical address and then
placed in the IOCW, or as a register specification in
parentheses where the register contains the virtual
address.

For disk I/0, the address of a three-byte area
containing the block number (from zero) within the
file of the block to be read from the file. If the
'VOLIO' option is specified, or if an unstructured
diskette devcie is being referenced, this is to be the
block on volume, from block 0.

For all read or write operations, the address of a
halfword area containing the length in bytes for the
operation (or maximum length, as for magnetic tape)

The address of a l6-byte area containing the parameter
list for X10. If this operand is supplied, any other
operands are used to modify the parameter list after
it has been moved to the stack. The original copy is
not modified.

Specified on a disk or tape write operation when it is
desired to make the fixed page frames available after
the operation without preserving their contents (i.e.,
without pageout).

4-138

VOLIO=

VCB=

MLPRINT=

FORM=

UCPRINT=

DEVSTATUS=

XIi0

If YES is specified, then perform volume-oriented disk
I/0 without extent limitations, as described above.
Valid only for disk files, and only when requested by
system routines in System Mutual Exclusion (SME) state
or when the accessed volume is mounted for
initialization by the issuing task.

Address of Volume Control Block for a disk volume.
Required with VOLIO option unless PLIST= is supplied
or the FORM=EXEC option 1is specified. Allowed only
with VOLIO option. Register 1 will be modified if
this operand is written as an expression not in
parentheses.

If YES is specified, then requests a block-print
opeation of one or more lines. Record-length bytes
must be provided in the data area if this option is
not specified. Ignored if the operation is not
directed to a printer. Data must be 2K-aligned and is
not moved to the device's resident print buffer.

If EXEC is specified, the parameter list is assumed to
already be enstacked. The supervisor call is
generated. If other operands are supplied, they are
used to modify the existing parameter list. The

VOLIO=YES and RELEASE operands must Dbe
specified if required, even if the parameter
list already contained these options.

If LIST is specified, the parameter 1list is
created on the stack, but the supervisor call
is not generated. The RELEASE operand is
normally not useful on an XI0 macroinstruction
with FORM=LIST.

If YES is specified, then upper case printing is
used. The default is NO.

This operand is intended for the use of hardware
diagnostics personnel when simulating error conditions
on serial workstations and printers.

If CLEAR is specified, XIO will reset two
fields in the Unit Control Block (UCB), i.e.,
UCBSTATNOTOP and UCBSTATNOCODE, thus permitting
I/0 to a device which is being simulated to
malfunction.

If CHECK is specified and an XIO is issued to

an inoperative workstation, then a return code
of 32 is generated and the I/0 is not issued.

4-139

XI0

Examples
(1) LAB1
+LAB1
+
+
(2) LAB2
+LAB2
+
+
+
+
+
+
+
(3) LAB3
+LAB3

+
+
+

If NOCHECK is specified, then any attempts at
I/0 to a malfunctioning workstation will cause
the task to wait for the device to become
operational. NOCHECK is the default value.

XI0 COMMAND=RDCMD,PLIST=XIOPARM
PUSHC 0(16,0) ,XIOPARM

MVvC 5(1,SP) ,RDCMD

SsVC 3 (XI0)

XI10 OFB=R (1) ,MEMA= (R2) ,BLKNUM=UFBBUFBLOCK , X
BLKSIZE=UFBBLKSIZE ,COMMAND=WRCMD ,RELEASE

PUSHN 0,16

MVC 8(2,15) ,UFBBLKSIZE

MVC 12(3,15) ,UFBBUFBLOCK

ST R2,4(,15) MEMA

ST R1,0(,15) OFB

MVC 4(1,15) ,WRCBDM COMMAND
MVI 0(15) ,x'80" RELEASE
SVC 3 (XIO)

XI0 COMMAND=RDCMD,PLIST=XIOPARM,VOLIO=YES
PUSHC 0(16,0) ,XIOPARM

MVC 5(1,SP) ,RDCMD

01 0(SP) ,X'40' VOLIO

SVC 3 (XI10)

4-140

Transmit Intertask Message

Syntax

[1abel] XMIT MESSAGE = { (register)}

Function

{expression}
+PORT= { (register)}
{expression}
{'string' }

[,NOWAIT] [,OTHERTASK]

Queues the message at the specified address for receipt by
the owner of the specified message port. The CHECK
macroinstruction is used to accept receipt of a message.

Return codes are placed in the word on the stack top as

follows:

0

4

12

16

Successful

No receiving message port with the specified
name

Unable to insert message in receiving port's
message buffer ('NOWAIT' option only)

Unable to insert message in receiving port's
message buffer due to receiving port's use of
PRIVILEGED option

Message not transmitted; OTHERTASK option was
specified and the designated message port
belongs to the XMIT-issuing task

Operand Descriptions

MESSAGE=

The address of a message, which may be anywhere
in the issuer's address space. The first two
bytes of the message area must contain the
length of the message in binary, including
these bytes, and may not be greater than 2016.

May be specified as a register in parentheses

containing the address of the message, or as an
expression addressing the message.

4-141

MIT

PORT=
NOWAIT
OTHERTASK
Example

LAB1 XMIT
+LAB1 PUSHC
+ B
+ DC
+ PUSH
+ MVI
+ SvVC

The four—character name of the receiving
message port, which may be specified as an
address expression, or as a register
designation where the register contains the
address of the four characters in memory, or as
a literal value in quotes.

If specified, return to issuer immediately with
return code 8 if there is insufficient space in
the receiving port's message buffer to insert
the message.

If specified, return to issuer immediately with
return code 16 if the designated receiving
message port belongs to XMIT-issuing task.

PORT='DBMS' ,MESSAGE=(R2)
0(4,0) ,*+10

*+8

C'DBMS'

0,R2

0(15) ,B'00000000"

36 (XMIT)

4-142

CHAPTER 5: CONIROL BLOCKS

5.1 INTRODUCTION

This chapter documents the internal control blocks of the VS
Operating System which are of interest for the general user. The
following control blocks are described, in Assembler language
format, and with offset locations:

AXD1 IORE
BCE OFB
BCTBL TPLAB
EXTRD TPLB2
FDR1 UFB
FDR2 VoLl

Blocks FDR1 and FDR2 constitute part of the disk Volume Table of
Contents (VIOC), and normally are present on disk only. Blocks
TPLAB and TPLB2 are tape labels. Block VOL1 is the tape and disk
volume label. All other blocks are kept in the user's modifiable
segment (Segment 2), when present.

The control blocks change frequently. They can be assembled by
the user with the following lines of code:

<ctl block>
END

where <ctl block> is replaced by a block name.

A second set of control blocks, intended for operating system use
only, is 'kept in the protected system memory segment
(Segment 0). They consist of the following blocks: CMSG, DBTB,
DPT, ETCB, FLUB, FMSG, LCB, MCB, PFB, PFSA, PFT, PPB, PRB, PT,
PXE, RMSG, STMB, SVCT, TCB, TQEL, UCB, and VCB. These control
blocks are described in a separate document.

5-1

AXD1

AXD1
000000 AXD1 DSECT

THE ALTERNATE INDEX DESCRIPTOR BLOCK (AXD1) DESCRIBES THE
ALTERNATE INDEX STRUCTURES OF AN INDEXED FILE. AN INDEXED
FILE HAS AN AXD1 BLOCK IF AND ONLY IF FLAG FDR1FLAGSALTX

IS SET IN ITS LABEL (FDR1). THE AXD1 BLOCK CONTAINS

UP TO 16 (64) ALTERNATE INDEX DESCRIPTIONS (AXD1ENTRY). THE
NUMBER OF DESCRIPTIONS IS CONTAINED IN FDR1ALTXCNT OF THE
FDR1 RECORD.

* % b ¢ ¥ ¥

* N X

THE AXD1 IS LOCATED IN BLOCK NUMBER ZERO OF THE FILE.
THE AXD1 IS DIVIDED INTO 4 AREAS:
1. BLOCK DESIGNATOR AREA (AXD1BL)
2. DMS PROCESSING AREA (AXDIMASK TO AXD1ENTRY)
3. AXD ENTRIES (ONE AXD ENTRY PER ALT-INDEX)
4, SPARE AREA (UP TO END OF 2K BLOCK)
AREAS 1-3 ARE HELD IN THE AXD1-AREA (POINTED TO BY UFBALTPTR)
DURING FILE PROCESSING.

DATE 3/28/79
VERSION 4.0

¥ 3k % ok % X ¥ % % ¥ ¥

*

* BLOCK DESIGNATOR AREA:

000000 AXD1BEGIN DS OF
000000 AXD1BL DS BL4 BLOCK TYPE DESIGNATION
% AXDBL1 MUST EQUAL XL4'2'
%
* DMS PROCESSING AREA:
000004 AXDIMASK DS BL8 BITS ON INDICATE ALTERNATE
* INDEX STRUCTURES (NUMBERED
* 1 TO 16) PRESENT
* (INITIAL IMPLEMENTATION OF
* 2-BYTE MASK ONLY)
00000C AXD1UFB DS A POINTER TO UFB FOR THIS FILE
* AFTER THE FILE HAS BEEN OPENED
000010 AXD1ALTINX DS BL1 ORDINAL INDEX NUMBER FOR READ
000011 AXD1FLAGS DS BL1 DMS FLAG BYTE
AXD1FLAGSOK EQU X'80' ALTERNATE INDEX STRUCTURES HAVE
* BEEN CREATED WHEN FLAG SET
* THE FOLLOWING FLAGS ARE USED FOR DMS PROCESSING (0 IN LABEL)
AXD1FLAGSQ EQU X'04' START QUALIFIED OPTION
AXD1FLAGSTYPER EQU X'02' TYPE R SAVEAREA IN USE
AXD1FLAGSTYPEV EQU X'01' TYPE V SAVEAREA IN USE
TR
000012 AXDIMSIZE DS BL1 SIZE OF MASK PER FILE
* VALUE FROM 2-8 BYTES (MUST BE 2
* FOR FIRST IMPLEMENTATION)
000013 AXD1DUPINX DS BL1 ORDINAL INDEX NUMBER OF THE
* ALT-TREE HAVING DUPLICATED KEY

000014
000024

00002C
00002E
00002F
000032
000035

000038
00003A

00003C
00002C
000030
000032
00002C
00002D
000030
000032
000034
000037
000038

00003A

AXD1

* MINIMUM AXD1-AREA FOR SHARED MODE ENDS HERE.
* AXDIMASK, AXDIMSIZE, AND AXD1ALTINX ARE REQUIRED.

¥

AXD1BCB DS BL16 BCB FOR DMS PROCESSING (SEE UFB)
AXD1PMASK DS BL8 MASK OF VALID ALTERNATE ACCESS

* PATHS (SET AT FILE CREATION ONLY)

¥

* THE FOLLOWING FIELDS ARE INTERMEDIATE OUTPUT MODE FIELDS
%

AXD10RECSIZE DS H WORK RECORD - MAX LENGTH
AXD10FLAGS DS BL1 OUTPUT FLAGS (RESERVED)
AXD10START DS BL3 FIRST BLOCK CONTAINING WORK RECORDS
AXD10NRECS DS BL3 TOTAL COUNT OF WORK RECORDS
AXD10OEBLK DS BL3 LAST USED BLOCK NUMBER IN PRIMARY
* TREE (ALT-TREE TO AXD1EBLK+1)
DS H USED FOR AXD1ADMSMASK (SEE BELOW)

AXD10SPARE DS BL2 RESERVED IN OUTPUT MODE
v

ORG AXD1ORECSIZE
* THE FOLLOWING FIELDS ARE USED FOR DMS PROCESSING (EXISTING FILES)
X
AXD1SAVEADR DS A SAVE AREA ADDRESS (TYPE V)
AXD1SAVELTH DS H SAVE AREA LENGTH (TYPE V)

ORG AXD1ORECSIZE
% THE FOLLOWING 3 FIELDS ARE USED FOR SAVE AREA TYPE S
AXD1SKEYSIZE DS BL1 SAVED PRIMARY KEYSIZE
AXD1SHXBLK DS BL3 SAVED PRIMARY ROOT BLOCK NUMBER
AXD1SEREC DS H SAVED PRIMARY LEVEL COUNT
x
AXD1ENTOFF DS H OFFSET OF ACTIVE AXD1ENTRY (IN AXD1)
AXD1PTRN DS BL3 NEXT SEQUENTIAL BLOCK (ALT-TREE)
AXD1CURINX DS BL1 ORDINAL NUMBER -ASSOCIATED WITH
* BLOCK IN AXD1BCB
AXD1ADMSMASK DS H ALTERNATE INDEX PATH MASK WITHIN
* : THE VIEW (ADMS USE ONLY)
AXD1EXSPARE DS BL2 SPARE - ALL FILES
%

*
Fleviciaidiaciciiicicidnkidiadkiidddidalainicldiciiicidiciiiadiadsidlaidiaidaldiiiainiidiaaiiaidoicliiaididiaiiicieiciciok

% AXDIMASK AND AXDI1ALTINX ARE THE ONLY FIELDS IN THE AXD1-AREA WHICH
* MAY BE MODIFIED BY THE USER-PROGRAM WHILE THE FILE IS OPEN.
*

* FOR EXISTING FILES, NO FIELDS IN THE AXD1-AREA ARE USER-SUPPLIED
PRIOR TO ISSUING SVC OPEN.

AXDIMSIZE (THE ACCESS MASK PREFIX SIZE);
AXD1KEYPOS, AXD1KEYSIZE, AXD1EFLAGS, AND AXD1XORD

FOR EACH AXD1ENTRY (COUNT IN UFBALTCNT)
Feicdeiniiacindidiaddcdsidccnidaninidadacidadacnaanninidcidaicidaididaaiiiinaidiciddciaiciciciciok

%
*
* FOR OUTPUT MODE, USER-PROGRAM FILLS IN THE REQUIRED AXD1-AREA WITH:
®
*
*®

AXD1

00003C

00003C

00003D

00003E

000040
000042
000043

000046
000049

00004C

000058
00073C

%

* AXD ENTRIES:

AXD1ENTRY
*

*
%*

AXD1XORD
*

*
*

AXD1EFLAGS
AXD1EFLAGSDUPS
AXD1EFLAGSKCOM
*

DS

DS

DS

0XL28 UP TO 64 ENTRIES

HL1

BL1

(EACH A DESCRIPTION OF ONE
ALTERNATE INDEX STRUCTURE;
UNUSED ENTRIES ZERO-FILLED)
ORDINAL NUMBER (STARTING FROM 1)
IDENTIFYING THIS INDEX STRUCTURE
(CORRESPONDS TO BIT IN

AXD1MASK)

OPTION FLAGS

EQU X'80' DUPLICATE KEYS ALLOWED
EQU X'40' KEY COMPRESSION IN INDEX

(NOT IN FIRST VERSION)

* THE FOLLOWING FLAGS ARE USED FOR DMS PROCESSING (0 IN LABEL)
EQU X'02' INDICATES THIS ALT-TREE IS THE

AXD1EFLAGSACT
*

AXD1EFLAGSUP
*

%
AXD1XLEVELS
%
*

AXD1KEYPOS
AXD1KEYSIZE
AXD1HXBLK
*
AXD1INRECS

AXD1PTRD
*

¥*

AXD1ESPARE
AXD1ENTRYEND
AXD1ENTRYLENGTH
*

AXD1SPARE3
*

AXD1END
AXD1LENGTH

ACTIVE ALT-TREE DURING PROCESSING

EQU X'01' INDICATES AXD1PTRD, AXD1XLEVELS

DS

DS
DS
DS

DS
DS

DS

H

H
HL1
FL3

BL3
FL3

OR AXD1HXBLK HAS BEEN MODIFIED
DURING ALT-TREE PROCESSING
NUMBER OF LEVELS OF THIS
ALTERNATE INDEX STRUCTURE
EXCLUDING LOWEST LEVEL

KEY POSITION IN RECORD

KEY LENGTH

BLOCK-IN-FILE OF ROOT BLOCK

OF THIS ALTERNATE INDEX

ITEM COUNT - LOW LEVEL OF TREE
FIRST BLOCK OF LOW LEVEL

OF THIS ALTERNATE INDEX
(ALTERNATE KEY SEQUENCE)

BL12 (RESERVED IN EACH ENTRY)
EQU *
EQU AXD1ENTRYEND-AXD1ENTRY

ORG AXD1ENTRY+64%*L'AXD1ENTRY
DS XL196 (RESERVED)

EQU *
EQU AXD1END-AXD1BEGIN

000000

000000
000000
000004
000004
000008
000004
00000C

00000F

000010

00001C

00001D
00001E
00001F
000020

000024

000030

BCE

BCE DSECT

*

* THE BUFFER CONTROL ENTRIES (BCE) ARE CONTAINED IN THE BUFFER
% CONTROL TABLE (BCTBL). THERE IS ONE BCE PER 2K BUFFER IN A
* DATA MANAGEMENT BUFFER POOL. BCTNBUF (WHICH AGREES WITH

* OFBBCOUNT FOR AN ACTIVE BUFFER POOL) INDICATES THE NUMBER
* OF BUFFER CONTROL ENTRIES PER BCTBL.

%

bd DATE 3/28/79

* VERSION 4.00

*

BCEBEGIN DS OF (FULLWORD ALIGNMENT)
BCEOFB DS A OFB ADDRESS

BCEBUFCMD DS OBL1 COMMAND BYTE

BCEBUFADR DS A BUFFER MEMORY ADDRESS
BCEBUFDATAL DS H I0-LENGTH (2K)

BCESPARE DS H OFFSET (UNUSED IN BCE)
BCEBUFBLOCK DS FL3 BLOCK WITHIN

* FILE OF BUFFERED DATA
BCEBCBFLAGS DS BL1 FLAGS

BCEBCBFLAGSLOD EQU x'01° BUFFER CONTENTS VALID
BCEBCBFLAGSTOR EQU X'02' BUFFER TO BE REWRITTEN
BCEBCBFLAGSIO EQU X'04' BUFFER I/0 IN PROGRESS
BCEBCBFLAGSREF EQU x'80' REFERENCE BIT

* BIT=1 ON ANY READ/WRITE
BCEKEYHI DS CL12 TRUNCATED HI KEY VALUE

x

(TYPE D)

* BLOCK TYPE (BCETYPE) CONTAINS INTERNAL AND EXTERNAL VALUES
* DEPENDING ON FILE ORG (INDEXED FILES HAVE ¥*¥¥%k NO *¥k* BI,OCK TYPE
* BYTE IN THE BLOCK; THUS I,D,A BELOW ARE INTERNAL TYPES.)

BCETYPE DS CL1
* BLOCK TYPE VALUES (INTERNAL) FOR INDEXED
BCETYPEI EQU C'I'
*

BCETYPED EQU C'D'
%

¥*%

BCETYPEA EQU C'A’
*

®

BCETYPES EQU C'S'
*

BCEWT DS BLl
BCEAGEWT DS BL1
BCESPARE1 DS BL1
BCEIOCHN DS A

%

BCEKEYLOW DS CL12
BCEEXPAND DS BLS

BLOCK TYPE (ASCII CHAR)
FILES

INDEX BLOCK

(CONTAINS INDEX ITEMS)

DATA BLOCK

(CONTAINS DATA RECORDS)
BCEKEYHI/LOW SET IF TYPE = D
AVAILABLE BLOCK (CHANGED TO
TYPE I OR D IF USED

BY BLOCK SPLIT)

BLOCK FROM LOW-LEVEL OF AN
ALTERNATE TREE

STARTING WEIGHT VALUE

AGED WEIGHT VALUE

SPARE

CHAIN FOR BCE'S WITH I/0

IN PROGRESS

TRUNCATED LOW KEY VALUE
(TYPE D) :
BCE EXPANSION

* EXPANSION = 12 (TRUNC KEYS =12), PLUS 4 (CHN BCE PER UFB)+4 EXTRA

BCELENGTH

EQU *-BCEBEGIN

BCE LENGTH (=56)

BTCBL

000000

000000

000000
000000
000004
000008

000008
00000C
00000D

00000E

00000F
000010

000014

00001C
000014
000015
000016
000017
000018
000019
00001A
00001B
00001C

000020
000058

BCTBL
DSECT

THE BUFFER CONTROL TABLE (BCTBL) IS ADDRESSED FROM THE USER
FILE BLOCK (UFB) , AND CONTAINS A HEADER DEFINING A DATA
MANAGEMENT BUFFER POOL AND BUFFER CONTROL ENTRIES (BCE)
DEFINING THE CONTENTS OF EACH BUFFER IN THE POOL.

DATE 3-28-79
VERSION 4.00

*****%ﬂ-ﬂ'ﬂ'é
=

BCTBLBEGIN DS OF (FULLWORD ALIGNMENT)
x

*¥%% BUFFER CONTROL TABLE
*

BCTBLNBUF DS OHL1 COUNT OF BUFFERS (BCE'S)
BCTBLHITCT DS A HIT-COUNT (READ)
BCTBLLOCK1 DS A BCE LOCK1 (DMS INTERNAL)
BCTBLREPLNUM DS OHL1 CIRCULAR BCE NUMBER (SCAN)

% BCTBLHITCT AND BCTBLMISSCT INDICATE PERCENTAGE OF READ OPERATIONS
* HANDLED WITHIN THE BUFFER POOL (WITHOUT PHYSICAL IO OPERATION).

BCTBLMISSCT DS A MISS—-COUNT (READ)
BCTBLFILECT DS BLl COUNT OF FILES USING BCT
BCTBLFLAGS DS BL1 BCTBL FUNCTION FLAGS
BCTBLFLAGSEXT EQU X'80' INTERNAL FLAG FOR

% EXTRACT FUNCTION
BCTBLFLAGSRPL EQU X'40' GET REPLACEMENT BUFFER
* WITHOUT IO OPERATION
BCTBLTYPE DS CL1 BLOCK TYPE FOR FUNCTION
* (VALUE AS IN BCETYPE)
BCTBLSPARE DS BL1 SPARE

BCTBLIOHEAD DS A HEAD OF CHAIN FOR BCES
* WITH I/0 OUTSTANDING
BCTBLWTABLE DS XL8 TABLE OF WEIGHTS FOR REPL

* VALUE IN PAREN BELOW IS DEFAULT VALUE LOADED BY SVC OPEN.

ORG BCTBLWTABLE
BCTBLWDATA DS XL1 DATA BLOCK NO HOLD 1
BCTBLWDATAH DS XL1 DATA BLOCK HOLD @
BCTBLWINDEX DS XL1 INDEX BLOCK (PRIMARY) 3)
BCTBLWROOT DS XL1 INDEX ROOT (PRIMARY) (5)
BCTBLWADATA DS XLl LOW LEVEL ALT BLOCK)
BCTBLWAINDEX DS XL1 INDEX BLOCK (ALT) 3
BCTBLWAROOT DS XL1 INDEX ROOT (ALT) (5)
BCTBLWRES DS XLl RESERVED WEIGHT CLASS)
BCTBLEXPAND DS BL&4 EXPANSION AREA (BCTBL)
% END OF BCTBL HEADER; BCE'S BEGIN HERE
BCTBLBCE1 DS BL56 BUFFER CONTROL ENTRY
BCTBLBCE?2 DS BL56 BUFFER CONTROL ENTRY 2,ETC

000000

000000

000000
000000

000004

000006

000008

00000C
000000

000000
00000C
000010
000010
000016
000016
00001E
00001E

000020
000020
000026
000026
00002E
000032
000032
000038
000038
000040
000044
000044
00004A
00004A
000052

EXTRD

EXTRD DSECT

*

* SYMBOLIC DEFINITION OF THE RESULT AREA OF THE 'EXTRACT'

* SUPERVISOR ROUTINE, AND ID CODES FOR CLASS 3 AND 4 EXTRACT

* ITEMS

¥

% DATE 5/27/79

* VERSION 2.01 (INCLUDES 2246C WORKSTATION)

%

EXTRDBEGIN DS OXL1 (UNALIGNED)

*

EXTRDIDMAX EQU 73 MAX ID # CURRENTLY IN 114
* USE-FROM EXTRACT MACRO 114
WW#«*J#WAMWCLASS omwm*mwmmmmm**
EXTRDCLASSO DS OXL12 RETURNED FOR CLASS 0:
EXTRDNRES DS AL4 PHYSICAL MEMORY (BYTES)

* NOT PERMANENTLY RESIDENT
EXTRDOCNT DS HL2 NUMBER OF FILES WHICH

® CURRENT TASK MAY HAVE

* OPEN, EXCLUDING FILES

* ALREADY OPEN

EXTRDWS DS HL2 TASK'S ASSOCIATED

* WORKSTATION NUMBER, OR
* -1 IF NONE

EXTRDSTACK DS AL4 REMAINING STACK SPACE

*

FleiiekiclinidadelcloiiadddelicldinhQLASS 1 ¥dniidadaaicaivickiciairiiiaiididddainiiicidaicicicioiiicoiniaicioi

ORG EXTRDBEGIN
EXTRDCLASS1 DS 0XL98 RETURNED IN ADDITION
* FOR CLASS 1:

ORG EXTRDBEGIN+L'EXTRDCLASSO
EXTRDDYVAL DS FL4 ONE DAY IN CLOCK UNITS
EXTRDSYSVOL DS O0CL6 SYSTEM DEFAULT LIBRARY
EXTRDSCDVOL DS CLé6 VOLUME NAME
EXTRDSYSLIB DS 0CL8 SYSTEM DEFAULT LIBRARY
EXTRDSCDNAME DS CL8 NAME
EXTRDPRINTER DS (QHL2 DEFAULT ONLINE PRINTER
EXTRDDEFPRT DS HL2 DEVICE NUMBER,
* OR -1 OF NONE
EXTRDRUNVOL DS O0CLé
EXTRDUPDVOL DS CLé6 USER PROGRAM LIB.VOLUME
EXTRDRUNLIB DS O0CL8
EXTRDUPDNAME DS CL8 USER PROGRAM LIB.NAME
EXTRDEXFLGS DS BL4 'EXECUTE' ACCESS MASK
EXTRDINVOL DS OCL6
EXTRDVOL DS CL6 DEFAULT INPUT VOLUME
EXTRDINLIB DS O0CL8
EXTRDFILE1 DS CL8 DEFAULT INPUT LIBRARY
EXTRDRDFLGS DS BL4 'READ' ACCESS MASK
EXTRDOUTVOL DS OCL6
EXTRDVOLO DS CL6 DEFAULT OUTPUT VOLUME
EXTRDOUTLIB DS OCLS8
EXTRDFILE10 DS CL8 DEFAULT OUTPUT LIBRARY
EXTRDWTFLGS DS BL4 'WRITE' ACCESS MASK

EXTRD

000056

000058
000058

000059
000059

000054
00005D
00005D
00005E
00005F

00005F

000062
000000
000000

EXTRDSEG2BUF
*
%
EXTRDPRNTMODE
EXTRDPRTTYPE
%
EXTRDFILECLAS
EXTRDFPCLASS
¥
EXTRDUSERID
EXTRDTCBSCC
EXTRDEXTPRIOR
EXTRDLINES
EXTRDSPARE1
*
EXTRDVERSION
k3
*
deleriinididdaindddciadaddaladcdeQLAS S
ORG EXTRDBEGIN
EXTRDCLASS2
EXTRDPCPCW

DS

DS
DS

DS
DS

DS
DS
DS
DS
DS

DS

BL2

0CL1
CL1

0CL1
CL1

CL3
OHL1
HL1
HL1
OBL3

XL3

NUMBER OF SEGMENT 2
'BUFFER' PAGES
CURRENTLY AVAILABLE

PRINT OUTPUT MODE
(lsl, 'H', OR lol)

DEFAULT FILE PROTECT
CLASS

CURRENT USER LOGON ID

(DO NOT USE)

TASK'S PAGING PRIORITY

SUGGESTED LINES/PAGE

UNUSED PRIOR TO RELEASE 3.1

(WAS BINARY ZEROES)
SYSTEM VERSION NUMBER
(SEE EXTRDIDVERSION)

it it e e R R O R R O

DS
DS

0XL8
BL3

RETURNED FOR CLASS 2
PROGRAM OLD PCW FOR
LAST PROGRAM CHECK

FOR CLASS 3, ITEM ID CODES ARE SUPPLIED BY THE EXTRACT SVC
ISSUER AND RETURNED IN INDIVIDUAL AREAS SUPPLIED PER ITEM.

ITEM “ITEMID" MAY BE REFERENCED "L'ITEMID'. THE TYPE ATTRIBUTE

MAY BE REFERENCED AS '"T'ITEMID".

%
*
7
* THE FOLLOWING IS A LIST OF ITEM ID CODES. THE LENGTH OF AN
¥
*
¥

Seeiciiiaicidldadsieaidiliciciicddaidicidiainiddlaiciciviviniiciaidekiniaiaicioiiaiciainicieiaicirioiiaidicicieinicinlelialce

% SYSTEM-WIDE INFORMATION:

Felelcleicicialdaiddiaidiaiainiolaiciilaniciiciinicininicieicicdiainiaiiieiniaiainiaiaiiiniaiaiariciniaiiciiiciicicicinicicloiaintelak

x

EXTRDIDNRES
v
EXTRDIDDYVAL
EXTRDIDSYSVOL
%

EXTRDIDSYSLIB

”*

EXTRDIDSYSWORK
*

EXTRDIDSYSPAGE
v

EXTRDIDCPU
EXTRDIDHZ
EXTRDIDVERSION

il
b3
b4
*

EXTRDIDDEVCNT

5-8

EQU

EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU

EQU

0,4,A
4,4,F
5,6,C
6,8,C
24,8,C

60,8,C

6
6
2

Wi N =

2
2
3

R

2
?
b

56,4 ,F

PHYSICAL MEMORY (BYTES)

NOT PERMANENTLY RESIDENT

ONE DAY IN CLOCK UNITS

SYSTEM DEFAULT LIBRARY
VOLUME NAME

SYSTEM DEFAULT LIBRARY
NAME

SYSTEM WORK LIBRARY NAME

(BACKUP SKIPS)
SYSTEM PAGING LIB NAME
(BACKUP SKIPS)
CURRENT CPU ID
A/C LINE FREQUENCY
SYSTEM VERSION NUMBER

(PACKED VVRRPP, WHERE

'VV'
IRRI

IS VERSION
IS REVISION

'PP' IS PATCH LEVEL

OF DEVICES ON SYSTEM

L)
i
14
)5

EXTRD

EXTRDIDATOETRT EQU 57,256,C ASCII-TO-EBCDIC
* TRANSLATE TABLE
EXTRDIDETOATRT EQU 58,256,C EBCDIC-TO-ASCII
* TRANSLATE TABLE
EXTRDCDI SKET EQU 66,2,H DEVICE # OF SYSTEM'S 064
* CENTRAL DISKETTE 064

%

Yexdaieakildlniainialaddidolciolileliiclelelaial aieiaininiaidiciciclcialaiciiicicleaicivicvainiciviciaiaiciniciaiaiainiaiaaiaiciaialalede
* TASK-RELATED INFORMATION:

BT e e Ty e e e e e e e e e e e e Ve
*

EXTRDIDOCNT EQU 1,2,H NUMBER OF FILES WHICH

* CURRENT TASK MAY HAVE

* OPEN, EXCLUDING FILES
* ALREADY OPEN

EXTRDIDWS EQU 2,2,H TASK'S ASSOCIATED

* WORKSTATION NUMBER, OR
% -1 IF NONE

EXTRDIDSTACK EQU 3,4,A REMAINING STACK SPACE
EXTRDIDEXFLGS EQU 10,4,B 'EXECUTE' ACCESS MASK
EXTRDIDRDFLGS EQU 13,4,B 'READ' ACCESS MASK
EXTRDIDWTFLGS EQU 16,4,B 'WRITE' ACCESS MASK
EXTRDIDUEXFLGS EQU 63,4,B USER'S 'EXECUTE' ACCESS 24
EXTRDIDURDFLGS EQU 64,4,B USER'S 'READ' ACCESS 24
EXTRDIDUWTFLGS EQU 65,4,B USER'S 'WRITE' ACCESS 24
EXTRDIDSEG2BUF EQU 17,2,H NUMBER OF SEGMENT 2

* 'BUFFER' PAGES

* CURRENTLY AVAILABLE
EXTRDIDUSERID EQU 20,3,C CURRENT USER LOGON ID
EXTRDIDUSERNAME EQU 26,24,C USER NAME (FROM USERLIST)
EXTRDIDEXTPRIOR EQU 21,1,H TASK'S PAGING PRIORITY
EXTRDIDPCPCW EQU 23,8,X PROGRAM OLD PCW FOR

* LAST PROGRAM CHECK
EXTRDIDTASK# EQU 27,4,A UNIQUE TASK IDENTIFIER
EXTRDIDTASKTYPE EQU 28,2,C TASK TYPE:

* 'F ' FOR FOREGROUND

% 'FS*' FOR DEDICATED

* SYSTEM TASK (FG)

% 'B ' FOR BACKGROUND

* 'BS' FOR DEDICATED

* SYSTEM TASK (BG)
EXTRDIDCURVOL EQU 29,6,C VOLUME OF CURRENT PROGRAM
EXTRDIDCURLIB EQU 30,8,C LIBRARY OF CURRENT PROGRAM
EXTRDIDWORKLIB EQU 31,8,C WORK LIBRARY NAME

* CONTRUCTED FROM USER ID
* OR BG TASK #
EXTRDIDSPOOLIB EQU 32,8,C SPOOL LIBRARY NAME

* CONSTUCTED FROM USER ID
¥ OR BG TASK #
EXTRDIDJOBNAME EQU 71,8,C NAME OF BACKGROUND JOB 84
EXTRDIDSEG2SIZE EQU 33,4,F LENGTH OF SEG 2 IN BYTES
EXTRDIDSTATIC EQU 34,4,A ADDRESS OF START OF STATIC
% AREAS (R14 AT PROGRAM
% INVOCATION)

%

5-9

EXTRD

Icicidddedcdacnididiciccdacicniciiciicicnicddcnidcdaciciciaidckicnicicidcidicinidaiciciciciciciiniciciciok

* USER DEFAULTS. MAY BE SET USING SET SVC.
*

EXTRDIDPRINTER EQU 7,2,H DEFAULT ONLINE PRINTER

* DEVICE NUMBER,

* OR -1 IF NONE
EXTRDIDRUNVOL EQU 8,6,C USER PROGRAM VOLUME

* USED BY CP RUN COMMAND
EXTRDIDRUNLIB EQU 9,8,C USER PROGRAM LIBRARY

* USED BY CP RUN COMMAND
EXTRDIDINVOL EQU 11,6,C DEFAULT INPUT VOLUME
EXTRDIDINLIB EQU 12,8,C DEFAULT INPUT LIBRARY
EXTRDIDOUTVOL EQU 14,6,C DEFAULT OUTPUT VOLUME
EXTRDIDOUTLIB EQU 15,8,C DEFAULT OUTPUT LIBRARY
EXTRDIDPRNTMODE - EQU 18,1,C PRINT OUTPUT MODE

% ('S', OH!’ lol’ OR 'K")
EXTRDIDFILECLAS EQU 19,1,C DEFAULT FILE PROTECT

* CLASS

EXTRDIDLINES EQU 22,1,H SUGGESTED LINES/PAGE
EXTRDIDPROGVOL EQU 35,6,C USER PROGRAM VOLUME

* USED BY LINK SVC
EXTRDIDPROGLIB EQU 36,8,C USER PROGRAM LIBRARY

* USED BY LINK SVC
EXTRDIDWORKVOL EQU 37,6,C DEFAULT WORK VOLUME
EXTRDIDSPOOLVOL EQU 38,6,C DEFAULT SPOOL VOLUME
EXTRDIDPRTCLASS EQU 39,1,C DEFAULT PRINT CLASS FOR

¥ PRINT FILES (A-Z)
EXTRDIDFORM{# EQU 40,1,H DEFAULT FORM NUMBER FOR

* PRINT FILES (0-254)
EXTRDIDJOBQUEUE EQU 68,1,C DEFAULT JOB STATUS 84
% ('R' OR 'H') 84
EXTRDIDJOBCLASS EQU 69,1,C DEFAULT JOB CLASS 84
* ("A' TO 'z2") 84
EXTRDIDJOBLIMIT EQU 70,4,F DEFAULT JOB CPU TIME 84
* LIMIT (SECONDS) 84

%
eidcieiadieidadoriaaicdadeidaidddanidinnicadndnididniaicaaaaninidddannindnininiaddaniaioniaico
% RUN STATISTICS
R e e e
*

EXTRDIDWSIO EQU 41,4,F COUNT OF WORKSTATION IOS

* THIS RUN

EXTRDIDTAPEIO EQU 42,4,F COUNT OF TAPE IOS THIS RUN
EXTRDIDDISKIO EQU 43,4,F COUNT OF DISK I0S THIS RUN
EXTRDIDPRINTIO EQU 44,4,F COUNT OF PRINTER IOS
EXTRDIDOTIO EQU 45,4,F COUNT OF OTHER I0S
EXTRDIDPICOUNT EQU 46,4,F PROGRAM PAGEIN COUNT
EXTRDIDPOCOUNT EQU 47,4,F PROGRAM PAGEOUT COUNT
EXTRDIDSICOUNT EQU 48,4,F SYSTEM PAGEIN COUNT
EXTRDIDSOCOUNT EQU 49,4,F SYSTEM PAGEOUT COUNT
EXTRDIDETIME EQU 50,4,F ELAPSED TIME OF RUN SINCE
* COMMAND PROCESSOR

* INITIATION, IN

* HUNDREDTHS OF SECONDS

5-10

EXTRD

EXTRDIDPTIME EQU 51,4,F PROCESSOR TIME OF RUN

* SINCE COMMAND PROCESSOR
* INITIATION, IN

* HUNDREDTHS OF SECONDS

*
Ficldaiaieidicdeiciicieleideddliicli RN QLASS | G RiRIRRRiacIdiiainicisdsieiicininicieisieieiaiaiicidiaiaialeicies
*

* CLASS 4 ITEMS ARE SIMILAR TO CLASS 3 ITEMS, EXCEPT THAT
* ADDITIONAL INPUT IS REQUIRED PER ITEM.

%

EXTRDIDDEVICE EQU 52,24,B

% INPUT = DEVICE ADDRESS (1 BYTE)
* QUTPUT AS FOLLOWS:

000008 ORG EXTRDBEGIN

000000 EXTRDDEVCLASS DS HL1 DEVICE CLASS:
EXTRDDEVCLASSWS EQU 1 WORKSTATION 94
EXTRDDEVCLASSMT EQU 2 MAGNETIC TAPE oA
EXTRDDEVCLASSDK EQU 3 DISK 94
EXTRDDEVCLASSPR EQU 4 PRINTER 94
EXTRDDEVCLASSTC EQU 5 TELECOMMUNICATIONS 94

000001 EXTRDTYPE DS HL1 DEVICE TYPE:
EXTRDTYPE224 6P EQU 017 2246P WORKSTATION 94
EXTRDTYPE2246S EQU 018 2246S WORKSTATION 94
EXTRDTYPE2246R EQU 019 2246R WORKSTATION 94
EXTRDTYPE2246C EQU 020 2246C WORKSTATION 94
EXTRDTYPE224 6K EQU 021 2246K WORKSTATION 0494
EXTRDTYPE2266C EQU 022 ARCHIVER C W/S 3AAGA
EXTRDTYPE2266S EQU 023 ARCHIVER S W/S 3A494
EXTRDTYPE2246S1 EQU 024 IDEQGRAPHIC S W/S 7494144
EXTRDTYPE2246D EQU 025 IBM 029 S W/S 104
EXTRDTYPE2256C EQU 026 64K C W/S 124
EXTRDTYPE2276C EQU 027 ARCHIVER C 64K W/S 124
EXTRDTYPE22460 EQU 028 OKIDATA WORKSTATION 124
EXTRDTYPE2246CI EQU 029 IDEOGRAPHIC C W/S 144
EXTRDTYP2246SIK EQU 030 IDEOGRAPHIC/K S W/S 144
EXTRDTYPE224 6RK EQU 031 REMOTE KATAKANA W/S 144
*
EXTRDTYPE8021 EQU 033 8021 MAG TAPE (800 BPI)94
EXTRDTYPE2209V EQU 034 2209V MAG TAPE oA
* (1600 BPI)
EXTRDTYPE2209V2 EQU 035 2209V-2 MAG TAPE 94
* (800/1600 BPI)
EXTRDTYPE2209V3 EQU 036 2209V-3 7-TRACK MAG TAPE9A
EXTRDTYPE2260V EQU 050 2260V DISK (408CYL F/R) 94
EXTRDTYPE2265V1 EQU 051 2265V-1 DISK (823CYL REM) 94
EXTRDTYPE2265V2 EQU 052 2265V-2 DISK (823CYL REM) 94
EXTRDTYPE2270V EQU 053 2270V DISKETTE 94
*® (77CYL REM)
EXTRDTYPE2280V1 EQU 054 2280V-1 DISK (823CYL F/R) 94
EXTRDTYPE2280V2 EQU 055 2280V-2 DISK(823CYL F/R) 94
EXTRDTYPE2280V3 EQU 056 2280V-3 DISK(823CYL F/R) 94
EXTRDTYPE2270V1 EQU 057 2270V-1 DISKETTE 03494
* (HARD SECTORED) 034
EXTRDTYPE2270V2 EQU 058 2270V-2 DISKETTE 03494
* (SOFT SECTORED) 032

5-11

EXTRDTYPE2270V3 EQU 059 2270V-3 DISKETTE 03494
¥ (HARD OR SOFT SECTORED) 034
EXTRDTYPE9614 EQU 060 9614 FIXED DISK 4494
*

EXTRDTYPE2221V EQU 065 2221V PRINTER 94
* (200CPS MAT)
EXTRDTYPE2231V2 EQU 067 2231V-2 PRINTER 94
* (120CPS MAT)
EXTRDTYPE2261V EQU 068 2261V PRINTER 9
* (240LPM MAT)
EXTRDTYPE2263V1 EQU 069 2263V-1 PRINTER 91
* (300LPM TR)
EXTRDTYPE2263V2 EQU 070 2263V-2 PRINTER 94
* (600LPM TR)
EXTRDTYPES8047 EQU 071 8047 PRINTER 94
¥ (225LPM TR)
EXTRDTYPES8048 EQU 072 8048 PRINTER 94
% (450LPM TR)
EXTRDTYPE2281V EQU 073 2281V PRINTER (30CPS 94
% DAISY WHEEL)
EXTRDTYPE2231V6 EQU 074 2231V-6 PRINTER 94
* (120 CPS MATRIX)
EXTRDTYPE2263V3 EQU 075 2263V-3 PRINTER 94
* (430 LPM TR)
EXTRDTYPE2273V1 EQU 076 2273V-1 PRINTER 0194
* (REMOTE) 04
wTeN Jelcve

%¥% (SERIAL PRINTERS —- TENTATIVE PRODUCT NUMBERS) ¥k

stk Kick

EXTRDTYPE2221VS EQU 097 2221V-S PRINTER 94
* (200 CPS MATRIX)
EXTRDTYP2231V2S EQU 099 2231V-2S PRINTER 94
* (120 CPS MATRIX)
EXTRDTYPE2261VS EQU 100 2261V-S PRINTER 94
* (240 LPM MATRIX))
EXTRDTYP2263V1S EQU 101 2263V-1S PRINTER 94
* (300 LPM TR)
EXTRDTYP2263V2S EQU 102 2263V-2S PRINTER 94
* (600 LPM TR)
EXTRDTYPE2281VS EQU 105 2281V-S PRINTER (30CPS 94
* DAISY WHEEL)
EXTRDTYPE 6581W EQU 105 6581W PRINTER 0494
* (30 CPS DAISY) 04
EXTRDTYP2231V6S EQU 106 2231V-6S PRINTER 94
* (120 CPS MATRIX)
EXTRDTYP2263V3S EQU 107 2263V-3S PRINTER 94
* (430 LPM TR)

EXTRDTYPE 6581WC EQU 108 6581-WC WIDE PRINTER 0494
* (40 CPS DAISY) or
EXTRDTYPE5573 EQU 109 5573 PRINTER 019
% (300 LPM BAND) or
EXTRDTYPE5574 EQU 110 5574 PRINTER 0194
* (600 LPM BAND) oA
EXTRDTYPE5521K EQU 111 5521K KATAKANA PRINTER4494
* (200 CPS MATRIX) 4

5-12

000002

000004

000008

00000E

000014

000018

000000

000001

000002

000004

EXTRD

EXTRDTYPE55312K EQU 112 5531~-2K KATAKANA PRT 4494
* (120 CPS MATRIX) 4n
EXTRDTYPES5548Z EQU 113 5548Z TYPESETTER 4492
*®

EXTRDTYPEIP41D EQU 114 INTELLIGENT IMAGE PRT 5494
¥

EXTRDTYPES55211 EQU 115 IDEOGRAPHIC MAT PRT 7494
x

EXTRDTYPE5581WD EQU 116 DUAL-HEAD DAISY PRT 124
% 124
EXTRDTYPECP210 EQU 117 OKIDATA MATRIX PRT 124
* 124
EXTRDTYPE55211K EQU 118 IDEOGRAPHIC/K MAT PRT 144
* 144
EXTRDTYPE1022S EQU 119 180 CPS MAT PRT 144
* 144
deveke

EXTRDTYPETC EQU 081 BATCH TC DEVICE 94
*

EXTRDDEVUSAGE DS CL2 DEVICE USAGE:

EXTRDDEVUEX EQU C'EX' EXCLUSIVE USE o6A
EXTRDDEVUSH EQU C'SH' SHARED USE 064
EXTRDDEVUDT EQU C'DT* DETACHED 062
EXTRDDEVUSER DS AL4 TASK IDENTIFIER OF

* CURRENT DEVICE OWNER,

* -1 IF NONE

EXTRDDEVREM DS CLé6 VOLSER OF REMOVABLE VOLUME
* DEFINED ONLY FOR DISK AND

* TAPE. CL6' ' IF NOTHING

* MOUNTED.

EXTRDDEVFIXED DS CLé VOLSER OF FIXED VOLUME

* DEFINED ONLY FOR DISK.

% CL6' ' IF NOTHING MOUNTED.
EXTRDDEVSPARE DS CL4 (UNUSED)

*

B T s
*

EXTRDIDVOLUME EQU 53,24,B

* INPUT = VOLUME SERIAL NUMBER (6 BYTES)

* OUTPUT AS FOLLOWS:

ORG EXTRDBEGIN
EXTRDVOLDEV DS ALl DEVICE NUMBER, OR -1 IF
% VOLUME NOT MOUNTED
* NOTE: EXTRDVOLTYPE, EXTRDVOLLABEL,
% EXTRDVOLUSAGE, AND EXTRDVOLUSERID
* ARE ALL BLANK IF VOLUME IS NOT MOUNTED.
EXTRDVOLTYPE DS CIL1 VOLUME TYPE:
EXTRDVOLTYPER EQU C'R' REMOVABLE
EXTRDVOLTYPEF EQU C'F' FIXED
EXTRDVOLLABEL DS CL2 LABEL TYPE:
EXTRDVOLLABSL EQU C'SL’ STANDARD LABEL oenr
EXTRDVOLLABNL EQU C'NL' NO LABEL o6
EXTRDVOLUSAGE " DS CL2 VOLUME USAGE:
EXTRDVOLUSH EQU C'SH' SHARED USE oer
EXTRDVOLURR EQU C'RR' RESTRICTED. . oenr

5-13

EXTRD

000006
00000A
00000C

00000E
000010

000012
000014

000015

000016

000018

000000

000001

000004

00001C

00001E

000030
000000

000001

000002

* . .REMOVAL 062
EXTRDVOLUPR EQU C'PR' PROTECTED USE 064
EXTRDVOLUEX EQU C'EX' EXCLUSIVE USE o6
EXTRDVOLUSER DS AL4 TASK IDENTIFIER OF VOLUME
* MOUNTER, -1 IF NONE
EXTRDVOLBC DS HL2 BLOCKS PER CYLINDER
EXTRDVOLMAXTFR DS HL2 MAXIMUM TRANSFER IN BYTES
EXTRDVOLCV DS HL2 CYLINDERS PER VOLUME
EXTRDVOLCVP DS HL2 CYLINDERS PER PHYSICAL

* VOLUME, INCLUDING BAD
* AND UNUSED BLOCKS
EXTRDVOLOCNT DS HL2 NUMBER OF FILES OPEN
EXTRDVOLSECT DS CL1 SECTOR TYPE: 3B+
* —— DISKETTE ONLY -- 3B4
EXTRDVOLSECTS EQU C'S’ SOFT SECTOR 3BA 064
EXTRDVOLSECTH EQU C'H' HARD SECTOR 3B+ 064
EXTRDVOLADDR DS CL1 ADDRESSING IN EFFECT: 3BA
* —— DISKETTE ONLY -- 3B4
EXTRDVOLADDRN EQU C'N' NON-STANDARD 3B4 064
EXTRDVOLADDRS EQU C'S' STANDARD 3B+ 064
EXTRDVOLSPARE DS BL2 (UNUSED) 034
%

B e P a p e e e e e T e y y y r a U s U s g e e e ey Ve T L O
*
EXTRDIDOTASK EQU 54,48,B
% INPUT = TASK IDENTIFIER (4 BYTES)
* OUTPUT AS FOLLOWS:
ORG EXTRDBEGIN

EXTRDOTASKWS DS ALl WORKSTATION DEVICE NUMBER
* OF TASK SPECIFIED,

* OR -1 IF NOT FOREGROUND
* TASK

EXTRDOTASKUID DS CL3 CURRENT USER ID FOR TASK

* SPECIFIED, OR BLANK
EXTRDOTASKNAME DS CL24 CURRENT USER NAME FOR TASK
* SPECIFIED, OR BLANK
EXTRDOTASKTYPE DS CL2 TASK TYPE -

* SEE EXTRDIDTASKTYPE
EXTRDOTASKSPARE DS BL18 (UNUSED)

*
O e e I N e eI ek il i e inicicick e iiaiai il i ieveTieve il it cieieie el Nl e ieieds
x
EXTRDIDTAPEVOL EQU 55,20,B
% INPUT = VOLUME SERIAL NUMBER (6 BYTES)
* QUTPUT AS FOLLOWS:
ORG EXTRDBEGIN

EXTRDTAPEDEV DS ALl DEVICE NUMBER, OR -1 IF
* VOLUME NOT MOUNTED
EXTRDTAPESPAR1 DS BL1 (UNUSED)

¥

* NOTE: EXTRDTAPELABEL,

% EXTRDTAPEUSAGE, AND EXTRDTAPEUSER ARE ALL BLANK

* IF NO TAPE MOUNTED.

EXTRDTAPEDEN DS HL2 TAPE DENSITY IN BINARY
b BPI (556,800 OR 1600)

5-14

EXTRD

000004 EXTRDTAPELABEL DS CL2 LABEL TYPE: ~
EXTRDTAPELABAL EQU C'AL' ANSI LABEL o6n
EXTRDTAPELABNL EQU C'NL' NO LABEL oer
EXTRDTAPELABIL EQU C'IL' IBM LAREL o6r

000006 EXTRDTAPEUSAGE DS CL2 VOLUME USAGE:

EXTRDTAPEUSH EQU C'SH' SHARED USE oéer
EXTRDTAPEUEX EQU C'EX' EXCLUSIVE USE o6s

000008 EXTRDTAPEUSER DS AL4 TASK IDENTIFIER OF VOLUME
* MOUNTER, -1 IF NONE

00000C EXTRDTAPEFSEQ DS HL2 FILE SEQUENCE NUMBER

00000E EXTRDTAPESPAR2 DS BLé6 (UNUSED)

%
Fekieleinidieleiniiidalalnlniniciciicioioinlaiiiaiaiclaiiciieiiciiiciaicieieiaieicicivisicinieinicinicieicieiniciciciciciaiaicicike
*

EXTRDIDDEVLIST EQU 59,3,B

% INPUT = DEVICE CLASS, AS IN EXTRDDEVCLASS (1 BYTE)

* QUTPUT AS FOLLOWS:

000014 ORG EXTRDBEGIN
000000 EXTRDDLTOT DS HL1 TOTAL NUMBER OF DEVICES IN
* SPECIFIED CLASS
000001 EXTRDDLNUM DS HL1 NUMBER OF DEVICES
* ADDRESSES SUPPLIED
000002 EXTRDDLIST DS O0X DEVICE LIST
000002 EXTRDDLENTRY DS ALl DEVICE ADDRESS, OR X'FF'
* IF NO MORE DEVICES
E e e R r e g e s e y ey e e ey e i s e ey
%
* TC RELATED INFORMATION 114
EXTRDIDDLPNAME EQU 72,38,B 114
* INPUT = DLPNAME (4 BYTE CHAR. STRING) 114
* OUTPUT AS FOLLOWS: 112
* 114
000003 ORG EXTRDBEGIN 114
000000 EXTRDDLPDEVMAP DS XL4 BITMAP OF DEVS ON DLP 114
000004 EXTRDDLPDEV#1 DS XL2 1ST DEV ON DLP 114
000006 EXTRDDLPTYPE DS XL1 DLP TYPE 114
EXTRDDLPTYPE1 EQU 1 TYPE 22V06-1 114
EXTRDDLPTYPE?2 EQU 2 TYPE 22V06-2 114
EXTRDDLPTYPE3 EQU 3 TYPE 22V06-3 114
000007 EXTRDDLPLINECNT DS XL1 # OF LINES CONTROLLABLE 114
* - BY DLP 114
000008 EXTRDMCSTATUS DS XL1 MICROCODE FILE STATUS 114
had 0 - IF STOPPED 114
* HI BIT ON IF LOADED 114
000009 EXTRDDLPSPARE DS XL3 RESERVED FOR FUTURE USE 114
00000C EXTRDMCFILE DS XL8 MICROCODE FILE NAME 114
000014 EXTRDMCLIB DS XL8 MICROCODE LIB NAME 114
00001C EXTRDMCVOL DS XLé VOLUME NAME FOR MCFILE 114
* 114
000022 EXTRDDLPRSRV DS XL1 RESERVATION STATUS-DLP 114
* HI BIT ON IF RESERVED 114
000023 EXTRDDLPTASK# DS XL3 RESERVING TASK # 134114
000026 ORG , 114

5-15

EXTRD

000062
000000

000001
000004
000008

000062
000000

000002

000010

L a1 e e L SR WY

* 114
EXTRDIDDLPDEV# EQU 73,8,B 114
* INPUT = DEVICE NUMBER (2 BYTES) 114
* QUTPUT AS FOLLOWS: 114
* 114

ORG EXTRDBEGIN 114
EXTRDDEVSTATUS DS XL1 DEV RESERVATION STATUS 114
EXTRDDEVRSRV EQU X'40' DEVICE RESERVED 114
EXTRDDEVOPEN EQU X'80' DEVICE OPEN 114
EXTRDDEVTASK# DS XL3 RESERVING TASK # 134114
EXTRDDEVDLPNAME DS XL& DLPNAME FOR DEVICE 114

ORG , 114
Feddeleicielcloiiciiicieiicinkiniciciclniciciaiiiciaiciaiiniaieiialiaiaialelaiciaiaiaieiciaicieicicioiiciaicicinicvninicicinick
x
* DEVICE CLUSTER INFORMATION 06r
EXTRDIDCLUSTER EQU 67,16,B 064
* INPUT = DEVICE NUMBER (2 BYTES) o6r
* OUTPUT AS FOLLOWS: 064

ORG EXTRDBEGIN 064

EXTRDADISKET DS HL2 DEVICE # OF ASSOCIATED 064
* ARCHIVER DISKETTE, 06&*
* OR ZERO IF NONE 064
EXTRDSPARE DS BL14 (UNUSED) o6t
x

ORG

5-16

000000 FDR1

%

FDR1

FDR1 ,
DSECT

THE FORMAT 1 FILE DESCRIPTOR RECORD (FDR1) DESCRIBES THE

% ATTRIBUTES OF A FILE, INCLUDING THE FIRST THREE EXTENTS
* OF THE FILE. EVERY FILE ON A VOLUME (EXCEPT THE VTOC
% AND VOLUME LABEL/IPL TEXT AREA) HAS A FORMAT 1 FDR
* ASSOCIATED WITH IT. FORMAT 1 FDRS ARE LOCATED THROUGH THE
* FDX1 AND FDX2 BLOCKS. THERE ARE UP TO 25 80-BYTE
* FDR RECORDS PER VIOC BLOCK. THE 2045TH BYTE OF A BLOCK
* CONTAINING FDRS CONTAINS AN ASCII 'F'. ALL BLOCKS CONTAINING
% AVAILABLE 80-BYTE SLOTS FOR
b FDRS ARE CHAINED TOGETHER BY BLOCK NUMBERS (WITHIN VTOC,
* FROM 0) IN THE 2047TH AND 2048TH BYTES OF EACH SUCH
* BLOCK, EXACTLY AS ARE THE FDX2 BLOCKS.
* THE NUMBER OF AVAILABLE 80-BYTE SLOTS IN A BLOCK
* IS MAINTAINED IN BINARY IN THE 2043TH AND 2044TH
* BYTES OF THE BLOCK.
*
* DATE 5-17-77
* VERSION 2.02 (UPDATED FOR ALTERNATE INDEXING)
*
000000 FDR1BEGIN DS OF
000000 FDR1FORMAT DS CLl FORMAT OF FDR (ASCII '1')
* (‘N' FOR FDR RECORD NOT IN USE)
FDR1INUSE EQU C'1' FDR1 IN USE 11
FDRINOTUSED EQU C'N' FDR1 NOT IN USE 14
000001 FDR1XTNTCOUNT DS BL1 COUNT OF EXTENTS IN USE
000002 FDR1ORG DS BL1 FILE ORGANIZATION
FDR10RGCONSEC EQU X'01' CONSECUTIVE ORGANIZATION
FDR10ORGINDEXED EQU X'02' INDEXED ORGANIZATION
FDR1ORGWP EQU X'04' WORD PROCESSING FILE
FDR10ORGVLEN EQU X'20' VARIABLE-LENGTH RECORDS
FDR10RGPRINT EQU X'40' PRINT FILE
FDR10RGPROG EQU X'80' PROGRAM FILE
000003 FDR1FLAGS DS BL1 FLAGS FOR STATUS
FDR1FLAGSUPDAT EQU X'80' SET TO 0 BY CREATFDR,
% SET TO 1 BY UPDATFDR
FDR1FLAGSCOMP EQU X'40' COMPRESSED RECORDS
FDR1FLAGSRECOV EQU X'20' USE PREFORMAT AND RECOVERY
* PROCEDURES FOR THIS FILE
FDR1FLAGSALTX EQU X'10' INDEXED FILE HAS AN AXD1
* BLOCK AND ALT-INDICES IF SET
FDR1FLAGSLOG EQU X'08' CONSEC LOG FILE FLAG
FDR1FLAGSPART EQU X'04' PARTIAL BACKUP FILE
FDR1FLAGSADMS EQU X'02' ADMS FILE
FDR1FLAGSPRIV EQU Xx'01' PROGRAM FILE CARRIES
* ADDITIONAL ACCESS PRIVILEGES
000004 FDR1X1PTR DS H FDX1 BLOCK * 169 + FDX1
* ITEM IN BLOCK (FROM 0) 000006
FDR1FILENAME DS CL8 MEMBER NAME
00000E FDR1FILESECTION DS CL1 VOLUME IN A MULTI-VOLUME
* FILE (ALWAYS ASCII '1')
00000F FDR1CREDATE DS PL3 CREATION DATE (PACKED YYDDD+
000012 FDRIMODDATE DS PL3 LAST MODIFICATION DATE

5-17

FDR1

000015
000018
000019

00001C
00001E
000020
000023
000026
000029

00002C
00002F

000032
000034
000038
00003A
00003B

00003E

000040

00004C
000032
000033

000034
000040

000040
000044

000048

00004C

¥*

FDR1EXPDATE
FDR1FPCLASS
FDR1CREATOR
*
FDR1BLKSIZE
FDR1SECEXT
FDR1X1STRT
FDR1X1END
FDR1X2STRT
FDR1X2END
FDR1X3STRT
FDR1X3END

DS PL3
DS CL1
DS CL3

DS H

DS H

DS FL3
DS FL3
DS PFL3
DS FL3
DS FL3
DS FL3

(PACKED YYDDD+)

EXPIRATION DATE (PACKED YYDD
FILE PROTECTION ACCESS-CLASS
USER LOGON IDENTIFICATION OF
FILE CREATOR

PHYSICAL BLOCK SIZE (2048)
NO. BLOCKS SECONDARY EXTENT
PRIMARY EXTENT START BLOCK
PRIMARY EXTENT END BLOCK + 1
2ND EXTENT START

2ND EXTENT END

3RD EXTENT START

3RD EXTENT END

Fededeiicioiclaiaidadiciciiciiiiciiickividialiiciaiciaicicioicicioiicicioioiniiiciciaiiaiaiicicioieiicicick ik

% ORGANIZATION-DEPENDENT SECTION:
dedeiciciciclalciciiicicicidciciciinidciviciaicicieickiciciciaiidicaiaiaininicidadiaieiciccicicicicicicicicicl

FDR1SPARE2
*
FDR1NRECS
FDR1RECSIZE
FDR1SPARE3
¥

FDR1EBLK
%

FDR1EREC
¥
*
%
%

FDR1SPARE4
%*

DS BL2
DS F
DS H
DS BL1
DS FL3

DS H

DS BL12

(UNUSED FOR CONSECUTIVE
FILES)

NUMBER OF DATA RECORDS
LOGICAL RECORD SIZE

(UNUSED UNLESS
FDR1FLAGSALTX SET)

LAST RECORD'S BLOCK WITHIN
FILE

LAST RECORD'S NUMBER IN LAST
BLOCK FOR CONSECUTIVE FILES
WITH FIXED-LENGTH RECORDS
(FOR INDEXED FILES, NUMBER
OF PRIMARY INDEX LEVELS)
(UNUSED FOR CONSECUTIVE
FILES WHICH ARE NOT PROGRAM

% FILES)
Yeicicleiciiciciciaidniciaickicdeidiavicidiceicidclaisiciciciddcidniciciciiicdelnieiainiaiciaiiicicivicioiok
* FOR WORD PROCESSING FILES ONLY:
Ieiciciieicicicicicicidciicidviciieiicicidiciiidanicinicidaniciadaiiidaiciniciaiciciciaicicicicicicicicici

ORG FDR1SPARE2

FDR1WPBLKSIZE DS XLl WP FILE BLOCK SIZE
FDR1WPBLS DS XL1 BYTES IN LAST
* SECTOR

Yelaiaiddlaidcivickoiiiciiciiclaleiciciiiciolalicloiiioieiviallladalaieliainioialiolsindeidninisiciackeicidianiede

* FOR PROGRAM FILES ONLY:
T

ORG FDR1SPARE4

FDR1ACFLAGS DS OBL12 ADDITIONAL ACCESS
* PRIVILEGES:
FDR1WTFLAGS DS BL4 ADDITIONAL WRITE
hd PRIVILEGES
FDR1RDFLAGS DS BL4 ADDITIONAL READ

* PRIVILEGES
FDR1EXFLAGS DS BL4 ADDITIONAL EXECUTE
* PRIVILEGES

FeveiiieRIciaRiciiiciciiRioTckiciiiciiiaicieiieiaideiciaialeioiciaialaicialdicinioialdleicaiaiie ook

% FOR INDEXED FILES ONLY (FILEORG X'02'):
Yeicleinicinicidaicioiciniaidlaiicdadadciisiciciiicicinidciinicdniciainicinicicicinicicinicicicieinicicicick

ORG FDR1SPARE2

5-18

FDR1

000032 FDR1PKI DS HL1 PACKING FACTOR FOR INDEX
* ITEMS

000033 FDR1PKD DS HL1 PACKING FACTOR FOR DATA
* RECORDS

000034 ORG FDR1SPARE3

00003A FDR1ALTCNT DS HL1 NUMBER OF ALTERNATE INDEX
*

STRUCTURES DEFINED IN THE

* AXD1-BLOCK (UNUSED UNLESS
* FDR1FLAGSALTX SET)
00003B ORG FDR1SPARE4
000040 FDR1KEYPOS DS H PRIMARY KEY POSITION IN
* DATA RECORD
000042 FDRIKEYSIZE DS HL1 PRIMARY KEY LENGTH IN BYTES
000043 FDR1HXBLK DS FL3 BLOCK-IN-FILE OF ROOT BLOCK
* OF PRIMARY INDEX
000046 FDR1DABLK DS FL3 BLOCK-IN-FILE OF STARTING
* BLOCK OF AVAILABLE-BLOCK
* CHAIN
000049 FDR1PTRD DS FL3 FIRST DATA BLOCK IN FILE
* (PRIMARY KEY SEQUENCE)

eiciididdaiialdaidciicididaicidiaidloiaiciniclciciiiciiicicicicicicidiciaiidieiieliciciaTalaleiciciiciciciek

* FDR CHAIN - IN ALL FDR RECORDS:
FleiinidanideiddaiaiaidacadaiaicisiciaiddanieddainiciddcicidaiticiciciniciTiaiaicieiaiaieiciek

00004C FDR1CHAIN DS F (HL1,FL3) ADDRESS OF A FORMAT 2 FDR
* FOR THIS FILE'S ADDITIONAL EXTENTS,
* OR A FORMAT 3 FDR FOR THIS FILE'S
¥ ALTERNATE INDEXING DESCRIPTIONS,
* OR BINARY ZEROES. THE ADDRESS IS
* IN THE FORM:
* (HL1) NUMBER STARTING FROM 0
* OF FDR IN 1-PAGE BLOCK
* (FL3) BLOCK NUMBER IN VTOC FROM O
FDR1END EQU *
FDR1LENGTH EQU FDR1END-FDR1BEGIN
FDR1CNT EQU 25 # OF FDR1 RECORDS PER BLOCK I

5-19

FDR2

000000

000000
000000
000001
000006
00000E
000010

000013
000016
00004C

THE FORMAT 2 FILE DESCRIPTOR RECORD (FDR2) DESCRIBES UP TO
TEN (10) ADDITIONAL EXTENTS FOR A FILE (BEYOND THE FIRST
THREE) . IT IS CHAINED FROM THE FILE'S FORMAT 1 FILE
DESCRIPTOR RECORD. A FORMAT 2 FDR MAY BE CHAINED TO ANOTHER

OF FULLWORD ALIGNMENT

CL1 FORMAT (ASCII '2')

CL5 (UNUSED)

CL8 FILE NAME AS IN FORMAT 1 FDR

CL2 (UNUSED)

FL3 EXTENT 4 (OR 14, 24, ETC.)
STARTING BLOCK ON VOLUME (FROM 0)

FL3 EXTENT 4 ENDING BLOCK ON VOL

18FL3 EXTENT DEFINITIONS 5 TO 13

F (HL1,FL3) CHAIN TO NEXT FORMAT 2 FDR
FOR ADDITIONAL EXTENTS
(SEE FDR1CHAIN)

EQU *

FDR2
FDR2 DSECT
e
*
*
*
*
* FORMAT 2 FIR.
*
* DATE 3/28/79
* VERSION 4.00
FDR2BEGIN DS
FDR2FORMAT DS
FDR2SPARE1 DS
FDR2FILENAME DS
FDR2SPARE2 DS
FDR2X4STRT DS
%*
FDR2X4END DS
FDR2X5TOX13 DS
FDR2CHAIN DS
%
*
FDR2END
FDR2LENGTH

5-20

EQU FDR2END-FDR2BEGIN

000000

000000
000000

000001
000000
000004
00000C
000015
000014

000018
000019

00001A

00001B

IORE

I0RE

IORE DSECT

* THE 1/0 REQUEST ELEMENT (IORE) IS PASSED TO THE SYSTEM'S

* START 1/0 ROUTINE TO INITIATE AN OPERATION, IS QUEUED BY

* THAT ROUTINE TO REPRESENT A REQUEST FOR PHYSICAL I/O SERVICE,

* AND CONTAINS THE I/0 STATUS WORD ON COMPLETION OF THE

% REQUEST. IORES MUST BE RESIDENT IN THE SYSTEM

* ARFA. TASK CONTROL BLOCKS CONTAIN IORES FOR PAGING.

* OFBS ADDRESS IORES FOR OTHER I/O.

b 3

% DATE 3/28/79

* VERSION 4.00

*

IOREBEGIN DS OF

IOREREQF DS BL1 REQUEST FLAGS

IOREREQFNOUNFIX EQU X'80" SVC XIO DID NOT TEMPORARILY

* FIX THIS PAGE, SO ISR MUST

* NOT UNFIX IT

IOREREQFPAGEIN EQU X'40' THIS IORE IS BEING USED

* FOR DEMAND PAGEIN

IOREREQFPAGEOUT EQU X'20' THIS IORE IS BEING USED

* FOR DEMAND PAGEOUT

IOREREQFIOACT EQU X'10' IORE ON PHYSICAL I/0

* QUEUE

IOREREQFNOCHK EQU X'08' XIO ISSUED; SUCCEEDING

* CHECK NOT ISSUED

IOREREQFHALTQ EQU X'04' 'HALT I/0 QUEUE' OPTION OF

* XI0 PASSED HERE TO ISR

IOREREQFIVRQ EQU X'02° * INTERVENTION REQUIRED'

* INTERRUPT RECEIVED, BUT

* NOT YET NOTICED BY CHECK SVC

IOREREQFCIO EQU X'01' ISSUE CIO INSTRUCTION IF ON

* (ELSE ISSUE SIO INSTRUCTION)
ORG IOREREQF

IORECHN DS A CHAIN (FROM UCB) IN 3 LOW BY

IOREIOSW DS CL8 1/0 STATUS WORD SAVE AREA

IOREIOCW DS CL9 1/0 CONTROL WORD SUPPLIED BY
ORG *-1

IORESEMA DS A ADDRESS OF COMPLETION

* SEMAPHORE

* OR PAGING CODE

*

%

* FIELDS PRESENT IN NON-PAGING IORES ONLY:

*

TIORETALCNT DS HL1 COUNT OF IAL SLOTS

IOREIALUSED DS HL1 NUMBER OF IAL SLOTS USED BY

% THIS IO OPERATION

IORESCC DS HL1 SCAN CLASS FOR PAGE AFTER

% 'UNFIX' ON I/0 COMPLETION

IOREWSLEVEL DS HL1 STORE AID CHARACTER ON THIS

%

*

5-21

WORKSTATION LEVEL AFTER IO
COMPLETION

00001C IOREIAL DS 0A INDIRECT ADDRESS LIST
* IF IDA BIT IN COMMAND
* (VARIABLE LENGTH)
®
* SPECIAL FIELDS FOR PAGING IORES (IN TCBS) ONLY:
*
00001C ORG IOREIALCNT
000018 IOREPGFLG DS BL1 PAGING FLAGS
IOREPGFLGRECL EQU X'80' PAGE RECLAIMED DURING THIS
* PAGEQOUT IF SET ON PAGEOUT
* COMPLETION (DEFERRED USE)
000019 ORG IOREPGFLG
000018 IOREPGTCB DS A ADDRESS OF ASSOCIATED TCB
00001C IOREPGPAGENO DS BL1 PAGE NUMBER FOR REQUEST
00001D IOREPGFLUB DS AL3 FLUB ADDRESS FOR REQUEST
¥
IOREPGEND EQU *
IOREPGLENGTH EQU IOREPGEND-IOREBEGIN

5-22

000000

000000

000000

000000

000004
000008
00000C
000010
000018

00001C
000020

000021

OFB
OFB DSECT
%*

¢

*

*

¥

®

*

* (FLUB) .

*

*

*

OFBBEGIN

DS OD

OFB

THE OPEN FILE BLOCK (OFB) IS CONSTRUCTED WHEN A FILE IS
OPENED, AND CONTAINS INFORMATION FOR USE BY DATA MANAGEMENT
AND I/0 INITIATION ROUTINES WHICH MUST BE PROTECTED FROM
USER PROGRAM MODIFICATION. ALL OPEN FILE BLOCKS ARE RESIDENT
IN THE SYSTEM AREA. ALL OPEN FILE BLOCKS FOR A PARTICULAR
DISK FILE POINT TO THE SAME FILE LOCATION AND USE BLOCK

WHEN AN OFB IS CREATED, SPACE FOR AN IORE IS
ALLOCATED AS WELL, AND THE IORE ADDRESS IS PLACED IN
OFBIOREPTR.

(DOUBLEWORD ALIGNMENT REQD)

% Fervcickkiciiciciciidciciacividlaiaiorciiciciciaicicioiiiaiicininiaiciaiakieininiaaiaiaiciciaiaciaiciciale

* BASIC SECTION:

% deloiinidckinidoiivkiciadddciniviciiciioiciciiiniaiddlninicicickiciaiiaiciiicloicicciiciainicioicick

OFBFLAGS

* MODE FLAGS:
OFBFLAGSWPSHARE
OFBFLAGSOUT
OFBFLAGSIN
OFBFLAGSIO
OFBFLAGSEXTEND
OFBFLAGSSHARED

OFBFLAGSCPL2
*

%

OFBFLAGSIPCB

OFBUFB
*

%

*

¥ ok % %

OFBUCB

*
OFBIOREPTR
OFBTCB
OFBSEMA

x

OFBXIOCNT
%
OFBTASKCHN
OFBLINKLEV
%

OFBFLAG1
OFBFLAG1LOCKED
OFBFLAG1CAN

w

DS OBL1 FLAG BYTE

EQU X'80' OPENED FOR WP SHARE MODE 1B4

EQU X'40' OPENED FOR OUTPUT MODE

EQU X'20' OPENED FOR INPUT MODE

EQU X'10' OPENED FOR 10 MODE

EQU X'08' OPENED FOR EXTEND MODE

EQU X'04' OPENED FOR SHARED MODE

EQU X'02' FOR USE BY LEVEL 2 COMMAND
PROCESSOR - LEVEL 1 MUST
NOT USE

EQU X'OL' OPENED VIA "IPCB"

DS A UFB ADDR (USER FILE BLOCK)
(CONTAINS BINARY VALUE -1 IF
PRESUPPLIED OFB FOR
WORKSTATION USED BY COMMAND
PROCESSOR; CONTAINS 0 IF NO
UFB'S ARE CHAINED TO THE
OFB, OR IF THE OFB WAS
OPENED VIA "IPOPEN")

DS A UCB ADDRESS
(ZERO IF DUMMY)

DS A IORE ADDRESS (FOR XIO SVC)

DS A ASSOCIATED TCB ADDRESS

pS D (BL1,AL3,BL1,AL3)
1/0 COMPLETION SEMAPHORE

DS F NUMBER OF XI0S TO THIS
FILE SINCE OPENED

DS A NEXT OFB THIS TASK OR ZERO

DS HL1 LINK LEVEL ON WHICH
FILE WAS OPENED

DS BL1 FLAG1 BYTE 14

EQU X'80"' FILE LOCKED 14

EQU X'0O1' CLOSE ATTEMPTED BY CANCEL 14

5-23

OFB

000022 DS H ¥¥% SPARE (MUST BE ZERO) 1A4
*

OFBBASICEND EQU * END OF BASIC OFB BLOCK

* dekicioiciciccioiciockcicicieiciceiciekiciciccicidiaiaidicicieiciciniciciciciciciciniciciciaiciaivicicieicicis

% DISK-ONLY SECTION (DEFINED IN OFBS FOR DISK FILES)
% deliniciddadoiddcindadadaieiciciciisicddaidcininicicdiciniainiaiiciaidioiiciniddicinicicicici

000024 ORG OFBBASICEND

000024 OFBFLUBPTR DS A ADDR OF FLUB FOR THIS FILE

000028 OFBCFLAGS DS OBL1 OFB SPECIAL CLOSE FLAGS
OFBCFLAGSBYP EQU X'80' DENOTES DMS-CLOSE VECTOR
¥ SHOULD BE BYPASSED AT CLOSE
* TIME DUE TO OPEN OR CLOSE
* ERROR. (ALSO, NO LABEL
* UPDATE DONE IF SET)

000028 OFBFILECHN DS A CHAIN OF OFBS THIS FILE
* (HEAD IN FLUB)

00002C OFBBCOUNT DS OHL1 COUNT OF BUFFERS IN BUFFER
* POOL IF PRESENT

00002C OFBBCT DS A BUFFER POOL CONTROL TABLE
% ADDRESS, IF ANY

¥ dexicileiiiiiinidcinidnininidnianicialaliiniciciaiaiciiciiicinicloiiiciaiiialalaleXiiniciaidioiiciaicieiaiok

* OFB "IPCB' EXTENSION (DEFINED ONLY IF '"'OFBFLAGSIPCB'" SET)
% delcdeiccicicoidadiccicicdciniccicicieicidoicidicicciciciaicdidninicioioioioiocoiciaicicicicioiolcick

000030 ORG OFBBASICEND
000024 OFBIPCB DS A ADDRESS OF THE "“IPCB"
% CONTROLLING THIS DEVICE
000028 DS 2A (RESERVED)
R T T R L T iR T A G L L D L L L A L R AN i LR A LA RA LA LA T A T L E £ 1]
OFBEND EQU *
- OFBLENGTH EQU OFBEND-OFBBEGIN

5-24

000000

000000
000004

000015

00001B

00001F

000023

000027

000029

00002F

000035

000036

00003C

000049
00004C

TPLAB
TPLAB

&

¥ % ¥ ok ¥ * 3%

TPLABBEGIN
TPLABID
TPLABFILE

x

*
TPLABVOL1SER
k4

*

*
TPLABFILESECTION
*

E3
TPLABFILESEQ
%

k3

TPLABGENERATION
¥%*

TPLABVERSION
*

TPLABCREATION
*
®
*

TPLABEXPIRATION
%*

TPLABACCESS
*

TPLABBLKCOUNT
*

*

%

TPLABSYSTEM
*
TPLABCREATOR
TPLABSPARE1
TPLABEND
TPLABLENGTH

DSECT

DATE 3/28/79
VERSION 4.00

TPLAB

MAGNETIC TAPE FILE HEADER, TRAILER, AND END OF VOLUME
LABELS CONFORM TO ANSI STANDARDS, AND ARE AS DESCRIBED HERE:
ONLY ID AND BLKCOUNT FIELDS ARE REQUIRED IN EOV1 AND EOF1.

EQU *

DS
DS

DS

DS

DS

DS
DS

DS

DS

DS

DS

CL4 'HDR1', 'EOV1', OR 'EOF1’

CL17 UP TO 17 ASCII CHARACTERS,
LEFT ADJUSTED AND PADDED
WITH BLANKS, NAMING THE FILE

CL6 VOLUME SERTAL NUMBER MATCHIN
'VOL1SER' IN VOLUME LABEL (OF THE
FIRST VOLUME, IF A MULTI-VOLUME
FILE)

CL4'0001' ORDER OF VOLUME IN A MULTI-
VOLUME FILE (ASCII '0001' FOR A
SINGLE-VOLUME FILE)

CL4 FILE SEQUENCE NUMBER
ON MULTI-FILE VOLUME (1ST FILE
IS ASCII '0001')

CL4'0001' GENERATION NUMBER (CURRENTLY
ALWAYS '0001', USE DEFERRED)

CL2'00"' VERSION IN GENERATION,
CURRENTLY ALWAYS ZERO

CLé6 CREATION DATE IN THE FORM
BYYDDD, WHERE B IS A BLANK,

YY IS YEAR INTO CENTURY,
DDD IS JULIAN DAY (001 TO 366)

CLé6 EXPIRATION DATE IN THE
ABOVE FORMAT

cL1' ' ACCESS PROTECTION (FILE
PROTECTION CLASS OR BLANK)

CL6 BLOCK COUNT IN TRAILER LABEL
AS SIX ASCII DIGITS. ALWAYS
PLACED IN 'EOV1' AND 'EOF1’

LABELS. ASCII ZEROS IN HDR LABEL.

DS CL13 CHARACTERS IDENTIFYING
THE CREATING SYSTEM

DS CL3 FILE CREATOR ID OR BLANKS

DS CL4 RESERVED - MUST BE BLANKS

EQU *

EQU TPLABEND-TPLABBEGIN

5-25

TPLB2

TPLB2
000000 TPLB2 DSECT
*
* MAGNETIC TAPE SECONDARY HEADER, TRAILER, AND END OF
* VOLUME LABELS CONFORM TO ANSI STANDARDS, AS FOLLOWS:
*
¥ DATE 3/28/79
% VERSION 4.00
*
TPLB2BEGIN EQU *
000000 TPLB2ID DS CL4 'HDR2', 'EOV2', OR 'EOF2'
000004 TPLB2RECFM DS CL1 'F' - FIXED LENGTH RECORDS
*
* 'F' - FIXED LENGTH RECORDS
* 'D' - VARIABLE LENGTH RECORDS
* IBM FORMAT
* 'W' - VARIABLE LENGTH RECORDS
* WANG FORMAT
* 'X' - VARIABLE LENGTH COMPRESSED
* RECORDS WANG FORMAT
% 'U' - UNDEFINED LENGTH RECORDS
000005 TPLB2BLKL DS CL5 BLOCK LENGTH (ASCII)
00000A TPLB2RECL DS CL5 RECORD LENGTH (ASCII)
00000F TPLB20RG DS BL1 FILE ORGANIZATION
TPLB20RGCONSEC EQU X'01' CONSECUTIVE
TPLB20ORGPRINT EQU X'40' PRINT FILE
TPLB20RGPROG EQU X'80' PROGRAM FILE
000010 TPLB2SPARE1 DS CL34 RESERVED FOR OPERATING
¥* SYSTEM USE
000032 TPLB2BOFF DS CL2 BUFFER OFFSET
000034 TPLB2SPARE2 DS CL28 RESERVED - MUST BE ASCII BLA
TPLB2END EQU *
TPLB2LENGTH EQU TPLB2END-TPLB2BEGIN

5-26

UFB

UFB

000000 UFB DSECT

¥*
THE USER FILE BLOCK (UFB) IS SUPPLIED IN THE USER'S
MODIFIABLE AREA BY THE USER'S PROGRAM BEFORE OPENING
A FILE, AND IS ADDRESSED TO REQUEST EACH OPERATION
ON THAT FILE. THE ADDRESS OF THIS BLOCK IS PLACED
IN THE OPEN FILE BLOCK BY 'OPEN', AND THE ADDRESS OF
THE OPEN FILE BLOCK IS PLACED IN THIS BLOCK.

DATE 1-9-81
VERSION 5.4

000000 UFBBEGIN DS OF (FULLWORD ALIGNMENT REQUIRED

Yevciicioieieiicidiciiciiidiciiiciiicininiciaiciaiciiiaiciainiaiciniainiaialciciaiaiciciciaiciaicicicieioicicicke
ACCESS METHOD SECTION
NO FIELDS NEED BE SUPPLIED BEFORE 'OPEN', BUT UFBERRAD
UFBEODAD, UFBRECAREA, AND UFBKEYAREA MAY BE PRESET
IF DESIRED. AFTER 'OPEN', THE USER'S PROGRAM NORMALLY
HAS OCCASION TO MODIFY ONLY THIS SECTION OF THE UFB,
THE FIRST BYTES OF EACH OF UFBVREAD, UFBVWRITE, UFBVREWRITE,
UFBVDELETE AND UFBVSTART ARE ZEROED BY 'OPEN' AND SET
THEREAFTER TO FUNCTION MODIFIER VALUES BY THE USER'S PROGRAM.
THE SUCCEEDING BYTES OF THESE FIELDS CONTAIN ADDRESSES
SUPPLIED BY 'OPEN' WHICH SHOULD NOT BE ALTERED BY THE
USER'S PROGRAM WHILE THE FILE IS OPEN.
UFBFS1 AND UFBFS2 ARE SET TO X'30' BY 'OPEN' AND MODIFIED
THEREAFTER BY DATA MANAGEMENT FUNCTIONS.
KPoloinioiiniiakioiiaiciaiaiciciicieieiaiciciciaiaiaiaicinicicickiniciaiaiaiciciciqiciainicieelaiaivicdalnds
FBVECT DS 5A BRANCH POINTS TO ACCESS
METHOD ROUTINES
Jeicde Yekcke Yekek Jolck Yokl el Yedede dedck Ktk devek dedede devek Klode dekek Yoleke
THE FOLLOWING FUNCTION MODIFIER VALUES ARE PLACED IN THE FIRST
BYTE OF THE WORD CONTAINING THE ADDRESS OF THE FUNCTION TO BE
PERFORMED FOR A USER PROGRAM BEFORE BRANCHING TO THE ROUTINE
ADDRESS.
000014 ORG UFBVECT
000000 UFBV DS OF (PREFIX TO EQUATE LABELS)
* MODIFIERS FOR READ:
UFBVHOLD EQU X'01' (HOLD BLOCK EXCLUSIVELY)
UFBVREL EQU X'04° (RELATIVE READ)
UFBVKEYED EQU X'04' (KEYED READ)
UFBVNODATA EQU X'08' (DO NOT MOVE DATA TO WORK
* AREA ON READ)
* MODIFIERS FOR READ OR REWRITE (WORKSTATION ONLY) :
UFBVTABS EQU X'10' (READ OR REWRITE TABS - WS)
* MODIFIERS FOR READ (WORKSTATION ONLY) :
UFBVMOD EQU X'02' (READ MODIFIABLE - WS)
UFBVALTR EQU X'40' (READ ALTERED - WS)
* MODIFIERS FOR REWRITE (WORDSTATION ONLY) :

shosk g % % 3 ok % 3 % % ¥ %

% ¥ ¥ ¥ ¥

000000

*****G#*%*%**

%

UFBVSELW EQU X'40' (REWRITE SELECTED - WS)

5-27

000000
000000
000004
000008
00000C
000010

000014

000018

% MODIFIERS FOR START (INPUT, 10, SHARED MODES; INDEXED DISK ONLY) :

(EQUAL TO)
(GREATER THAN)
(GREATER THAN OR EQUAL TO)

% MODIFIER FOR START (SHARED MODE; IGNORED FOR INPUT & IO MODES) :

(HOLD FILE)

(RELEASE HELD FILE)

(HOLD REQUEST FOR A RANGE)
(HOLD CLASS IS RETRIEVAL)
(LIST OPTION)

* MODIFIERS FOR START (CONSECUTIVE OUTPUT & EXTEND MODES ONLY) :

UFBVEQ EQU X'01'
UFBVGT EQU X'02'
UFBVGE EQU X'03'
UFBVHFILE EQU X'80°
UFBVRLS EQU X'20'
UFBVRANGE EQU X'04'
UFBVRETRIEVAL EQU X'40'
UFBVLIST EQU X'10'
UFBVINPUT EQU X'04'
UFBVOUTPUT EQU X'08'
UFBVEXTEND EQU X'20'

(CHANGE TO TEMPORARY IO MODE
(CHANGE TO OUTPUT MODE)
(CHANGE TO EXTEND MODE)

* MODIFIERS FOR START (CONSECUTIVE FILES WITH VARIABLE~-LENGTH

* RECORDS, INPUT AND I/0 MODES ONLY):

UFBVBEGIN
UFBVSKIP
%*

EQU x'10'
EQU Xx'40'

¥

(BEGINNING OF FILE)
(FROM CURRENT RECORD
USING SIGNED WORD
ADDRESSED BY KEYAREA)

* MODIFIERS FOR START (PHYSICAL ACCESS METHOD ONLY) :

UFBVCMD EQU x'80'

UFBVWAIT EQU X'40'

UFBVWAITS EQU X'41'

*

UFBVWAITM EQU x'42'

%*

*

UFBVWAITA EQU X'43'

*

UFBVHALTIO EQU X'20'

% MODIFIERS FOR START (WORKSTATION ONLY) :

UFBVATTNT EQU X'10'

% ok deloi ook delcle dolck doiok doidle Yok Yok delek
ORG UFBVECT

UFBVREAD DS A

UFBVWRITE DS A

UFBVREWRITE DS A

UFBVDELETE DS A

UFBVSTART DS A

(***YAGUE NOTE*¥*)

(WAIT FOR 1/0 COMPLETION)
WAIT FOR TC 1/0 COMPLETION
ON THIS DEVICE ONLY

WAIT FOR TC I/0 COMPLETION
ON ALL DEVICES OPENED BY
THIS PROGRAM

WAIT FOR TC I/0 COMPLETIONS
AND TC UNSOLICIT INTERRUPTS
HALT TC IO OPERATION

(TEST FOR ATTENTIONS RECEIVE
i dedede Fedes Fedede delcic

..FOR READ

. .FOR WRITE
..FOR REWRITE
. .FOR DELETE
. .FOR START

% THE FOLLOWING FOUR FIELDS MAY BE SET BEFORE 'OPEN' OR

* BEFORE THE FIRST FUNCTION AFTER 'OPEN'. THEY MAY BE CHANGED

% BY THE USER'S PROGRAM BEFORE ANY FUNCTION. IF UFBEODAD IS O,

% UFBERRAD WILL BE USED FOR END OF DATA AND INVALID-KEY CONDITIONS.

* IF UFBERRAD IS 0O, ABNORMAL TERMINATION WILL OCCUR ON ANY

* ERROR (AND ON THE ABOVE CONDITIONS IF UFBEODAD IS 0 ALSO).

UFBERRAD DS A I!'0 UNUSUAL CONDITION USER
* ROUTINE ENTRY POINT, OR ZERO
UFBEQODAD DS A END OF DATA AND INVALID KEY
® USER ROUTINE

¥ ENTRY POINT, OR ZERO.

5-28

00001C

000020

000024

000025

UFB

ADDRESS IN USER-MODIFIABLE S

OF RECORD WORK AREA

ADDRESS OF AREA CONTAINING

SUPPLIED KEY OR RECORD NUMBER

FOR START OR READ FUNCTIONS

(IF ZERO FOR WORKSTATION FILES,
LINE NUMBER (ROW) TAKEN FROM ORDER

AREA)

FILE STATUS BYTE 1 FOR DMS
SUCCESSFUL COMPLETION

AT END

INVALID KEY OR RECORD NO.
PERMANENT I/0 ERROR

ADMS FUNCTION ERROR
CANCEL CODE STORED

FOR UFBF1NOMSG (OPEN,DMS,CLOSE); UFBFS2=C'0Q’
MSGID AT UFBVREAD FOR O/C; NO MSGID IF DMS

TIME-OUT CONDITION ON
SHARED MODE RESOURCE WAIT
FS FOR SHARER CONDITION
RESOURCE WAIT

OTHER CONDITIONS

FILE STATUS BYTE 2 FOR DMS
NO FURTHER INFO

UFBFS1INVKEY (X'32')
SEQUENCE ERROR
DUPLICATE KEY

NO RECORD FOUND
BOUNDARY VIOLATION

% THE FOLLOWING UFBFS2 VALUES ARE SET WITH UFBFS1ADMSERR (X'34')

ATTEMPT TO UPDATE FILE

WHILE NOT IN A TRANSACTION
MCC ERROR

ICK VIOLATION

UNABLE TO LOG RECORD IMAGE
INVALID VAB INFORMATION

FILE PREVIOUSLY CRASHED

ICK CHECK FAILED

ADMS FILE WITH RECOVERY, 044

% HAS ALTERNATE INDEX WITH NO DUPS; USER MUST HOLD ENTIRE FILE TO 044
* MAKE UPDATE, BUT DIDN'T HOLD WHOLE FILE. 044

* THE FOLLOWING UFBFS2 VALUES ARE SET WITH UFBS1SHARE (X'38')

UPDATE ACCESS DENIED FOR
USER WITH READ-ONLY RIGHTS
IN SHARED MODE

UFBRECAREA DS A

*

UFBKEYAREA DS A

%

x

%

¥

k3

UFBFS1 DS ClL1
UFBFS1SUCCESS EQU X'30"'
UFBFS1ATEND EQU X'31'
UFBFS1INVKEY EQU X'32°'
UFBFS1I0ERR EQU X'33'
UFBFS1ADMSERR EQU X'34'
UFBFS1CANCEL EQU X'36'
%

¥*

UFBFS1TIME EQU X'37'
%

UFBFS1SHARE EQU X'38'
.'l‘

UFBFS10THER EQU X'39'
ke

UFBFS2 DS CL1
UFBFS2NOINFO EQU X'30'
*x

* THE FOLLOWING UFBFS2 VALUES ARE SET WITH
UFBFS2SEQERR EQU X'31'
UFBFS2DUPKEY EQU x'32'
UFBFS2NOREC EQU X'33'
UFBFS2BYVIOL EQU X'34'
%* UFBFS2BDYVIOL IS ALSO USED WITH UFBFS1IOERR (FS = C'34')
k3

UFBFS2INTS EQU x'31'
*

UFBFS2MCC EQU X'32'
UFBFS2ICK EQU X'33'
UFBFS2L0G EQU X'34'
UFBFS2VAB EQU X'35'
UFBFS2CRASH EQU X'36'
UFBFS2DATA EQU X'37'
UFBFS2UNQERR EQU X'38'
*

UFBFS2ACC EQU X'35'
¥

x*

UFBFS2RESERR EQU X'36'

K%

RESOURCE CONTROL ERROR

% THE FOLLOWING UFBFS2 VALUES ARE SET WITH UFBFS10THER (X'39')

UFBFS2INVFUN

”*

EQU X'35'

INVALID FUNCTION OR

FUNCTION SEQUENCE

5-29

UFB

000026

000028

UFBFS2INVCMD EQU X'36' INVALID COMMAND (ALIGNMENT
* OR ADDRESS ERROR FOR DIRECT 1/0)
UFBFS2INVLTH EQU X'37' INVALID LENGTH

UFBFS2MASK EQU X'38' INVALID ACCESS MASK

¥

(ALTERNATE INDEXED FILES)

UFBFS2TRLERR EQU x'38' TRATLER COUNT NOT EQUAL

w

*

*

TO BLOCKS READ (SET BY SVC
CLOSE ONLY)

UFBFS2FMTERR EQU X'39' FORMAT ERROR (BLOCK PREFIX,

RECORD PREFIX,EXPANSION ERROR OR
INVALID CHAIN FIELD)

b

x
*

NOTE: UFBFS2 CONTAINS THE TERMINATING ATTENTION CHARACTER (AID BYTE)
ON WORKSTATION READ SUCCESSFUL COMPLETION.

kir

*x
x

¥

NOTE: THE FOLLOWING UFBFS2 VALUES ARE SET ONLY IF AN SVC OPEN
EXIT IS TAKEN. THESE VALUES ARE ALSO USED WHEN CREATING
THE OPEN EXIT MASK TO BE SUPPLIED TO THE OPEN SVC.

UFBFS2XFILE EQU X'80° DUPLICATE FILE OR

* ~ FILE NOT FOUND

UFBFS2XLIB EQU X'40' LIBRARY NOT FOUND
UFBFS2XVOL EQU X'20° VOLUME NOT MOUNTED
UFBFS2XSPACE EQU X'10' NO SPACE ON VOLUME
UFBFS2XVTOC EQU X'08' NO VTOC SPACE ON VOLUME
UFBFS2XTAPELD EQU X'08" WRONG TAPE LABEL/DENSITY
UFBFS2XP0S EQU X'04° POSSESSION CONFLICT
UFBFS2XPROT EQU X'02° PROTECTION CLASS VIOLATION
UFBFS2XFORMAT EQU X'ol' OPEN FORMAT ERROR - ERROR
* CLASS DESCRIBED IN UFBXCODE
UFBAMEND EQU *

UFBAMLENGTH EQU (UFBAMEND-UFBBEGIN)

w

*

* % ¥ N

*

IelaeicisiacicidnicicininidsiciiciciedcncidiindniaTieaRncRnaTIRRCRC R aeTI

FILE LOCATION AND ATTRIBUTE SECTION

ALL FIELDS IN THIS SECTION MUST BE SET (SOME OF THEM POSSIBLY

TO °‘NULL' VALUES) BY THE USER'S PROGRAM BEFORE INITIALLY
ADDRESSING AN 'OPEN' TO THE UFB.

ALL RELEVANT FIELDS AND FLAGS SET NULL BEFORE 'OPEN' ARE SUPPLIED
HERE BY 'OPEN' PROCESSING AND MAY BE EXAMINED BY THE USER'S
PROGRAM. THE PROGRAM SHOULD NOT MODIFY THESE FIELDS BETWEEN
'CLOSE' AND A SUCCESSIVE 'OPEN' IF THE SAME FILE IS REQUIRED

(WITHOUT REPROMPTING) .
Jexdrdccicianiciiiciidaddldleieiiiniciiiiclciciiinialiiaicialaiiniaiciaiaiiniaiaieiniairiaiaiadaie ik

UFBBLKSIZE DS H MAGNETIC TAPE - MUST CONTAIN

%*
*
ki
x
*

¥

"

1o
w

PHYSICAL BLOCK SIZE BEFORE OPEN
IF OQUTPUT MODE OR UNLABELLED
TAPE.

DISK OR DISKETTE - ALWAYS 2048
AFTER OPEN EXCEPT WHEN USING
PHYSICAL ACCESS METHOD (PAM)

UFBRECSIZE DS H LOGICAL RECORD SIZE

(MUST BE SUPPLIED BEFORE OPEN FOR
OUTPUT OPEN MODE)

5-30

000024

00002B

00002C

00002D

00002E

UFB

UFBFORG DS BL1 FILE ORGANIZATION
UFBFORGCONSEC EQU X'01' CONSECUTIVE
UFBFORGINDEXED EQU X'02' INDEXED

UFBFORGWP EQU X'04' WORD PROCESSING FILE
UFBFORGVIBM EQU X'08' IBM VARIABLE-LENGTH RECORDS
UFBFORGU EQU xX'10' UNDEFINED RECORD FORMAT
UFBFORGVLEN EQU X'20' VARIABLE-LENGTH RECORDS
UFBFORGPRINT EQU X'40' PRINT FILE

UFBFORGPROG EQU X'80' PROGRAM FILE

x*

UFBF1 DS BIL1 OPTION FLAGS

UFBF1NOGET EQU X'80° USE GETPARM = TYPE RD
UFBF1NODISP EQU X'40' USE GETPARM = TYPE ID

% UFBFLNOGET AMD UFBF1NODISP USED BY SVC OPEN ONLY; NOT RESET BY DMS

UFBF1PAM EQU X'20' PHYSICAL ACCESS METHOD
UFBF1BAM EQU X'10' BLOCK ACCESS METHOD
UFBF1PREVO EQU X'08" THIS UFB PREVIOUSLY OPENED
UFBF1WORK EQU X'04' SCRATCH THIS WORK FILE ON
* CLOSE IF SET & FILE HAS A
* TEMPORARY NAME

UFBF1POOL EQU X'02' BUFFER POOLING FOR RAM

* (UFBBUFSTART MUST CONTAIN
* BCT ADDRESS AT OPEN TIME)
UFBF10PEN EQU X'01' THIS UFB OPEN IF SET

UFBF2 DS BL1 OPEN MODE FLAGS

UFBF2ADMS EQU X'80°' TO OPEN IN ADMS MODE
UFBF20UT EQU X'40°' TO OPEN FOR OUTPUT MODE
UFBF2IN EQU X'20°' TO OPEN FOR INPUT MODE
UFBF2I0 EQU X'10* TO OPEN FOR IO MODE
UFBF2EXTEND EQU X'08"' TO OPEN FOR EXTEND MODE
UFBF2SHARED EQU X'04° TO OPEN FOR SHARED MODE
UFBF2DALT EQU X'02°' DELETIONS IN PROGRESS o004
* ON ALT-INDEX FILE 004
UFBDEVCLASS : DS BL1 DEVICE CLASS (REQUIRED

* BY 'OPEN')

UFBDEVCLASSWS EQU X'01' WORKSTATION

UFBDEVCLASSTAPE EQU X'02' MAGNETIC TAPE
UFBDEVCLASSDISK EQU X'03' DISK

UFBDEVCLASSPRT EQU X'04" PRINTER

UFBDEVCLASSTC EQU X'05' TC DEVICE

UFBDEVCLASSDUMM EQU X'FF' DUMMY FILE

UFBFLAGS DS BL1 FILE ATTRIBUTE FLAGS
UFBFLAGSUPDAT EQU X'80' FILE HAS BEEN CLOSED
UFBFLAGSCOMP EQU X'40' DATA RECORDS IN COMPRESSED

ot
w

FORMAT
% decicidciek UFBFLAGSRECOV — RECOVERY=YES FOR BIT = ZERQ ¥irriridcidiciok

UFBFLAGSRECOV EQU xX'20' USE PREFORMAT AND RECOVERY
* PROCEDURES IF ZERO (INDEXED ONLY)
UFBFLAGSALTX EQU X'10’ ALTERNATE INDICES IN FILE
UFBFLAGSLOG EQU X'08' CONSEC LOG FILE FLAG
UFBFLAGSALTP EQU X'08' ALTERNATE-TREE PROCESS FLAG

5-31

UFB

00002F

000030
000030

000031
000032

00003A

000040

000048

UFBFLAGSPART

% 3% % % %

UFBFLAGSADMS
UFBFLAGSPRIV

~

UFBDEVADDR

sk % %

%

UFBF3
UFBPRTCLASS
*
UFBFORMNO
UFBPRNAME

w*

*
UFBVOLSER

UFBDIRNAME
*

o

e o O % %

b3

UFBFILENAME

% %

%% % %

%

% 3%

EQU

EQU
EQU

DS

DS
DS

DS
DS

DS

DS

DS

5-32

X'04" PARTIAL BACKUP FILE
PROGRAM SETS BIT BEFORE OPEN OUTPUT
(BAM OR PAM) TO SET BIT IN FILE
LABEL, OR SETS BIT BEFORE NON-OUTPUT
OPEN (BAM OR PAM) IF ABLE TO PROCESS
PARTIAL FILES. INVALID FOR RAM.
X'02' ADMS DISK FILE INDICATOR
x'o1' PROGRAM FILE CARRIES
ADDITIONAL ACCESS PRIVILIGES
HL1 DEVICE ADDRESS (FOR PRINTERS
AND WORKSTATIONS ONLY.
USED IF SUPPLIED
AND PLACED HERE BY 'OPEN' IF
NOT SUPPLIED. HEX FF IF
NOT SUPPLIED.)
OBL1 (* NAME KEPT FOR COMPATIBILITY *)
CL1 PRINT CLASS (A-Z)

HL1 PRINTER FORM NUMBER (BINARY)
CL8 PARAMETER REFERENCE NAME
(MUST ALWAYS BE SUPPLIED HERE

FOR 'OPEN'‘)

CL6 VOLUME SERIAL NUMBER FOR
VOLUME-ORIENTED FILES (TAPE
OR DISK)

(IF 6 ASCITI BLANKS, TAKEN FROM
PROCEDURE SPECIFICATION OR
'OPEN'~TIME PROMPT. IF SPECIFIED
IN NEITHER OF THESE WAYS,

TAKEN FROM DEFAULT IN

ETCB)

CL8 DIRECTORY NAME (IF 8 ASCII
BLANKS, DIRECTORY NAME TAKEN
FROM PROCEDURE SPECIFICATION
OR 'OPEN'-TIME PROMPT.

IF SPECIFIED IN NEITHER PLACE
AND VOLUME SERIAL ALSO
OMITTED, DEFAULT IN ETCB
USED)

CL8 FILE NAME (UNDER DIRECTORY)
(IF 8 BLANKS, FILE NAME TAKEN
FROM PROCEDURE SPECIFICATION
OR 'OPEN'-TIME PROMPT.
WORK FILE SPECIFICATION IF
ASCII '#' OR '$' FOLLOWED BY
FOUR ALPHAMERICS - LAST
3 CHARACTERS THEN MUST BE
BLANKS — SEE WORK FILE
DOCUMENTATION)

000050

000051
000054

000054

000058
000054

000055
000056

000057

000058
000055

000058

UFBFPCLASS DS
®
*
*
*
UFBCREATOR DS
*
UFBALTCNT DS
*
UFBALTPTR DS
%
%

*

* FOR DEVICES OTHER THAN DISK,

ORG
UFBMCTYPE DS
UFBMCTYPE2780 EQU
UFBMCTYPE3780 EQU
UFBMCTYPETCD EQU
*

UFB

CL1 FILE PROTECTION CLASS
VALUE TO LABEL IF OUT-MODE;
TAKEN FROM USER 'SET' DEFAULTS IF
X'00' IS SUPPLIED;
VALUE FROM LABEL IF EXISTING FILE

FILE CREATOR FOR NEW OR
EXISTING DISK FILES

COUNT OF ALTERNATE INDICES
IN FILE AFTER SVC OPEN

POINTER TO AXD1-AREA FOR DMS
PROCESSING (ALL REFERENCE TO THE
AXD1-AREA MUST USE UFBALTPTR)

CL3

OBL1

A

THE ALTCNT FIELD IS FOR MICROCODE TYPE

UFBALTCNT

L1 DEVICE TYPE
x'o1' 2780 BATCH TC
x'02' 3780 BATCH TC
X'03' TC DIAGNOSTICS

* FOR TC2780, TC3780 FILES, THE ALTPTR FIELD IS USED FOR THE TC

* BATCH STREAM OPTIONS

UFBTCDATAOPT DS
UFBTCXMITOPT DS
*
UFBTCMAXRECSZ DS
%*

BL1 TC STREAM DATA OPTION

BL1 TC STREAM TRANSMIT/RECEIVE
OPTION

XLl TC STREAM MAXIMUM RECSIZE
MINUS 1

* FOR WORD PROCESSING WORKSTATIONS, THE ALTPTR FIELD IS USED FOR
* EXTENDED WS—ATTENTION INFORMATION

ORG
UFBWPAID DS
3
UFBF4 DS
%
UFBF4NOVTOC EQU
UFBF4RLSE EQU
%
UFBF4BLKAL EQU
¥
%*
UFBF4VERIFY EQU
*
UFBF4NOMSG EQU
*
*
*
UFBF4NOACK EQU
*
x
UFBF4PMSG EQU

*

%

5-33

UFBALTPTR+1
XL3 EXTEND WS—ATTN INFORMATION
BL1 ADDITIONAL DEVICE-DEPENDENT
FLAGS
X'80' UNSTRUCTURED DISKETTE
X'40' RELEASE UNUSED SPACE
ON CLOSE
X'20' ALLOCATE SPACE FOR NEW
DISK FILE IN BLOCKS,
FROM UFBNBLKS
X'10' VERIFY OPTION ON ALL
DISK WRITES
x'os8' NO RESPECIFY OR CANCEL
MESSAGE FOR SVC OPEN
ALSO NO CANCEL ON CLOSE; NO
ACK/CANCEL FOR DMS.
X'04' NO EXCEPTIONAL CONDITION
ACKNOWLEDGMENT MESSAGES
FOR DMS FUNCTIONS
x'02' FOR INTERNAL USE BY DMS -

CLOSE SENDS MESSAGE TO
UNSPOOLER IF SET

UFB

UFBF4ALLOWT EQU X'01' USED BY SVC OPEN. PROGRAM

* SUPPLIES BIT=1 TO ALLOW DEV=TAPE.

* (OPEN SETS=1 IF UFBDEV=TAPE ALSO)

* OTHERWISE, DEV=TAPE NOT ACCEPTED.
000059 UFBNRECS DS FL3 NUMBER OF DATA RECORDS IN

* FILE (EXAMINED BY 'OPEN' FOR

* OUTPUT OPEN MODE ONLY.

* EXCLUDES INDEX RECORDS, ETC)
00005C UFBLRECSAVE DS H RECSIZE SAVED HERE

* BY OPEN (BAM)
00005E UFBRETPD DS H RETENTION PERIOD IN DAYS

* (MAXIMUM 999)

UFBLOCEND EQU *

UFBLOCLENGTH EQU (UFBLOCEND-UFBBEGIN)

% Flkickeickiicicididiaiciaidicidididciaicidiinicliicicididcididcicicioiiiciniciciaiaiciaiaiaiiiciciaicieiciek

* DATA MANAGEMENT SYSTEM SECTION
R e e e o e s

000060 UFBBCB1 DS BL16 BUFFER CONTROL BLOCK
* (CORRESPONDS TO SVC XI0 PARAMETER
¥ LIST)
000070 ORG UFBBCB1
000060 UFBXIOFLAGS DS OBL1l FLAG BYTE FOR SVC XIO
UFBXIOFLAGSRLS EQU X'80"' RELEASE BUFFER AFTER WRITE
000060 UFBOFB DS A OFB ADDRESS
000064 UFBBUFCMD DS OBL1 COMMAND BYTE FOR OPERATION
" 000064 UFBBUFADR DS A BUFFER MEMORY ADDRESS
* (BLOCK ADDRESS WITHIN
* BUFFER IF BUFFER LARGER
* THAN 2K)
000068 UFBBUFDATAL DS H LENGTH IN BYTES FOR
* OPERATION
00006A UFBBUFOFFSET DS H OFFSET OF NEXT RECORD
* IN BUFFER
00006C UFBBUFBLOCK DS FL3 (STARTING) BLOCK WITHIN
* FILE OF BUFFERED DATA
00006F UFBBCBFLAGS DS BL1 FLAGS
UFBBCBFLAGSLOD EQU X'0O1' BUFFER CONTENTS VALID
UFBBCBFLAGSTOR EQU X'02° BUFFER TO BE REWRITTEN
UFBBCBFLAGSIO EQU X'04' BUFFER I/0 IN PROGRESS
UFBBCBFLAGSPROT EQU X'10° BUFFER IN PROTECTED MEMORY
UFBBCBFLAGSEOB EQU X'20°' END OF BLOCK REACHED
UFBBCBFLAGSEOF EQU X'40' EOF BLOCK IN BUFFER
wk
* THE FOLLOWING FIELDS ARE USED FOR THE TIME-OUT OPTION IN SHARED
% MODE ONLY.
000070 ORG UFBBUFDATAL
000068 UFBTIMEEXIT DS A EXIT ADDRESS FOR TIME-OUT
% RETURN (0 = NO TIME-OUT)
00006C UFBHOLDID DS CL3 INITIALS OF HOLDER OF
* RESOURCE
00006F UFBTIME DS XL1 WAIT TIME IN SECOND
* (0 = NO WAIT)

sk

5-34

000070
000072

000074
000077
000074
000077
000074

000077
00007A
000077
00007A
00007C

00007A
00007B

00007C

00007D

00007E
00007D

UFBBUFSIZE

UFBCHKSIZE
%

DS H
DS H

UFB

BUFFER SIZE
RESIDUAL COUNT FROM XIO
(DMS USE ONLY)

* UFBXDATE OR UFBOUTRECS IS AVAILBLE AFTER SVC OPEN AND BEFORE THE
* FIRST DMS REQUEST; UFBRES3 IS AN INTERNAL DMS FIELD AFTERWARDS.

RESERVED FOR INTERNAL DMS
EXPIRATION DATE (EXIST FILE)

NUMBER OF RECORDS REQUESTED
FOR OUTPUT MODE

NUMBER OF 2048-BYTE BLOCKS
IN THE FILE

STORED MSG-ID(DMS NOMSG EXIT)
MAXIMUM DATA TRANSFER IN
BYTES FOR DISK (SET BY OPEN)

FUTURE SPARE BYTE

INTERNAL OPEN FLAGS
PRINT-FILE ASSIGNMENT TO DISK
PF - USER SUPPLIED FILE NAME
WORK-FILE ASSIGNMENT BY OPEN
PF ~ USER SUPPLIED VOLUME

IN SCAN BIT (WORK/SPOOL)

LAST FUNCTION PERFORMED
OPEN

READ

WRITE

REWRITE

DELETE

START

CLOSE

LAST FUNCTION MODIFIER

(DOESN'T CHANGE ON 'REWRITE')
(SEE UFBV ABOVE)

EXTENDED OPEN EXIT CODE

NO FURTHER INFORMATION
DEVICE IN USE

DEVICE DETACHED

VOLUME EXCLUSIVE

FILE POSSESSION CONFLICT
PAGING FILE - SYSTEM ONLY
IMAGE FILE (INPUT MODE ONLY)
ALREADY OPEN - THIS USER

UFBRES3 DS BL3

ORG UFBRES3
UFBXDATE DS BL3

ORG UFBRES3
UFBOUTRECS DS FL3
*
UFBNBLKS DS FL3
x

ORG UFBNBLKS
UFBDMSGID DS BL3
UFBMAXTFR DS H
%

ORG UFBMAXTFR
UFBRES1 DS BL1
UFBOPFLAGS DS BL1
UFBOPFLAGSPFA EQU X'80'
UFBOPFLAGSPFS EQU X'40'
UFBOPFLAGSWKA EQU X'20°*
UFBOPFLAGSPVS EQU X'10'
UFBOPFLAGSSCAN EQU X'08'
*k
UFBLF DS BL1
UFBLFOPEN EQU X'00'
UFBLFREAD EQU X'04'
UFBLFWRITE EQU X'08'
UFBLFREWRITE EQU X'0C'
UFBLFDELETE EQU X'10'
UFBLFSTART EQU X'14'
UFBLFCLOSE EQU X'18'
UFBLFMOD DS BL1
®

ORG UFBLFMOD
UFBXCODE DS BL1
% UFBXCODE VALUES 1-8 SET FOR POSSESSION CONFLICT
UFBXCODENOINFO EQU X'00'
UFBXCODEUSE EQU X'01'
UFBXCODEDET EQU X'02'
UFBXCODEVOLX EQU X'03'
UFBXCODEPOSS EQU X'04'
UFBXCODEPAGE EQU X'05'
UFBXCODEIMAG EQU X'06'
UFBXCODEAOPEN EQU X'07'
UFBXCODEAUSE EQU X'08'

*

ALREADY IN USE ~ THIS USER

* UFBXCODE VALUES X'10' - X'1F' SET FOR OPEN FORMAT ERROR

UFBXCODETRACK

:i'

*

EQU X'10'

5-35

PROGRAM REQUIRES 7 TRACK
TAPE WHILE DRIVE IS 9 TRACK
OR VICE VERSA

UFB

00007E

000080
000081

000084

000088
00008A
00008C
00008A
00008B
00008C
000084

000088

UFBXCODEDNPRT EQU X'11°' UFB FORG=PRINT, WHILE LCK
* FDR FORG NOT= PRINT LCK
UFBXCODEDNPRG EQU X'12' UFB FORG=PROG, WHILE LCK
* FDR FORG NOT= PROG LCK
UFBXCODEDNCSC EQU X'13' UFB FORG=CONSEC, WHILE LCK
* FDR FORG NOT= CONSEC LCK
UFBXCODEDNWP EQU X'14' UFB FORG=WP, WHILE LCK
* FDR FORG NOT= WP LCK
UFBXCODEDNINX EQU X'15' UFB FORG=INDEXED, WHILE LCK
* FDR FORG NOT= INDEXED LCK
UFBXCODEDFGR EQU X'16' UFB FORG NEITHER CONSEC LCK
* NOR INDEXED---ERROR LCK
UFBEREC DS H LAST RECORD NUMBER WITHIN
* LAST BLOCK
UFBVERSION DS HL1 UFB VERSION NUMBER #¥¥icicick
UFBEBLK DS FL3 LAST BLOCK NO. WITHIN FILE
* FROM 0
UFBBUFSTART DS A BUFFER MEMORY ADDRESS;
* BUFFER CONTROL TABLE
* ADDRESS BEFORE 'OPEN'
* IF BUFFER POOLING
* SPECIFIED (UFBF1POOL SET)
UFBRDLTH DS H LENGTH IN BYTES OF
* DATA IN BUFFER
UFBPRTCOPIES DS H NUMBER OF PRINT COPIES
* (FOR PRINTER FILES ONLY)

ORG UFBPRTCOPIES
UFBWPBLKSIZE DS X WORD PROCESSING FILE CONTROL
UFBWPBLS DS X FIELDS, WP FILES BLKSIZE
* AND BYTES IN LAST SECTOR

ORG UFBBUFSTART
UFBPTRB DS FL4 FIRST BLOCK IN INDEX
* AREA OF PRIMARY EXTENT
* (INDEXED FILES)
UFBPTRC DS FL4 LAST BLOCK IN INDEX AREA
* OF PRIMARY EXTENT
* : (INDEXED FILES)
UFBDMSEND EQU *
UFBDMSLENGTH EQU (UFBDMSEND-UFBBEGIN)

¥ delckiciiiddddciicidickiicidciiciciiciaidiciniaiciaiiciiiciciniaiaidaiiininiiiaiaiaiciainicieiniialeiviciciek

* END OF UFB FOR ALL FILES/DEVICES EXCEPT TAPE FILES, INDEXED

DISK

* FILES AND ADMS(DATA AND RESTART) DISK FILES.

% dekicicieiciiiicioidiiiciiiciicieiiicieickiiciaciciniriciaiiialaniniaiaiaiciaiaiciaiaiaieinraiicioidiaiiok

’(‘

INDEXED DISK FILE EXTENSION SECTION:

* UFBKEYPOS AND UFBKEYSIZE SHOULD BE FILLED IN BY THE PROGRAM
'OPEN' FOR A NEW INDEXED FILE (UFBF20UT AND UFBFORGINDEXED SET).
FOR AN EXISTING INDEXED FILE.
WILL SET UFBGKSIZE TO ZERO. THE USER'S PROGRAM MAY SET IT NON-ZERO
'START' WILL ZERO IT AGAIN. THE

o+

st
-

THEY ARE SET BY 'OPEN’

¥

*

BEFORE A 'START' FUNCTION.
USER'S PROGRAM MUST NOT MODIFY ANY OTHER
UFBGKSIZE IN THIS SECTION WHILE THE FILE

* %

%

5-36

BEFORE

'OPEN'

FIELDS THAN
IS OPEN.

B ey e s T T e e e e s e T e

00008C
00008E
00008F

000090
000093
000096

000098

00009C

0000A0

0000A4%
0000B4

0000B6

0000B8
00008C
0000920

0000A0

0000A1

UFB

UFBKEYPOS DS H KEY POSITION IN LOGICAL RECO

UFBKEYSIZE DS HL1 KEY SIZE IN BYTES
UFBGKSIZE DS HL1 GENERIC KEY LENGTH OVERRIDE
% MAY BE SET BEFORE 'START';

* USED ONLY BY 'START' FUNCTION;

* RESET TO BINARY O BY 'OPEN' AND
%* EVERY 'START' FUNCTION

UFBHXBLK DS FL3 HIGHEST-LEVEL INDEX BLOCK
¥* ADDRESS FOR KEYED ACCESS
UFBDABLK DS FL3 FIRST DATA BLOCK ADDRESS
* (CURRENTLY ALWAYS 0)
UFBPKI DS H INDEX ITEMS PER BLOCK

* FOR OUTPUT MODE

UFBPTRD DS FL4 FIRST BLOCK BEYOND

* PRIMARY EXTENT

% (INDEXED FILES)

UFBPTRI DS F NEXT AVAILABLE INDEX

* ' BLOCK WITHIN PRIMARY EXTENT

¥ INDEX AREA

UFBPTRN DS F NEXT AVAILABLE INDEX

* OR DATA BLOCK IN A SECONDARY

* EXTENT (INITIALLY ZERO)
UFBBCBIOUT DS BL16 BCB FOR INDEX CREATION,
* OUTPUT MODE

UFBPKD DS H RECORDS PER BLOCK FOR
* OUTPUT MODE

UFBSPAREINX DS XL2 (RESERVED)

UFBINXDI SKEND EQU *

UFBINXDISKLGTH EQU (UFBINXDISKEND-UFBBEGIN)

% Yedelcicieiiidanickicidadcddidliiianiciainicidiaiciciciciainiciviciekiviciciciiclaiciniaaiaieiaiaicickok

% MAGNETIC TAPE FILE EXTENSION SECTION:
* FIELDS UFBTLABELS, UFBTDEN, UFBTSEQ AND UFBTFLAGS MAY BE SET
* BEFORE 'OPEN' TO REQUEST OUTPUT LABELING OPTIONS, DENSITY
% AND FILE POSITIONING.
% ALL RELEVANT FIELDS AND FLAGS NOT SET BEFORE 'OPEN' ARE SUPPLIED
* HERE BY 'OPEN' PROCESSING AND MAY BE EXAMINED BY THE USER'S
% PROGRAM,
LA 1t s 2 i i Y L R R N R i R i T A A R A AT i L AT A A L T i T XA T T ZAT Tl

ORG UFBDMSEND
UFBTSPARE1 DS BL4 (RESERVED)
UFBTBCB DS BL1lé6 ADDITIONAL BUFFER CONTROL
* BLOCK FOR TAPE DOUBLE
* BUFFERING
UFBTLABELS DS BL1 REQUESTED LABELING (OUTPUT)
* OR LABEL TYPE ON TAPE
% (INPUT)
UFBTLABELSNL EQU X'0O1' UNLABELLED
UFBTLABELSANY EQU X'02° ANY TYPE OF LABEL
UFBTLABELSAL EQU X'04' ASCII LABELS
UFBTLABELSIL EQU X'08' IBM LABELS
UFBTDEN DS BL1 TAPE DENSITY
UFBTDEN800 EQU X'01° 800 BPI
UFBTDEN1 600 EQU X'02' 1600 BPI

5-37

UFB

0000A2

0000A4

0000A5
000046

0000AC

0000AD

0000B8

0000B3

0000BC
0000BE
0000CO
0000C2
0000C4

0000C4

UFBTDEN556
UFBTSEQ
x*

%
*

UFBTFLG
UFBTFLGALLOWNL
UFBTFLGSWITCH

<

UFBTFLGEODEOV
x

UFBTFLG7TRACK
%
UFBTFLGNOHDR2

UFBTVOLSEQ
%*

*

UFBTSAVEVOL
*

E

UFBTPARITY

*
UFBTPARITYODD
UFBTPARITYEVEN
UFBTSPARE?2
UFBTAPEEND
UFBTAPELGTH

UFBADMSFLG
UFBADMSFLGRS
UFBADMSFLGBI
UFBADMSFLGAI
UFBADMSFLGCRASH
%*
UFBADMSFLGCUPD
*
UFBADMSFLGEXTCK
%*

UFBMCCPTR

%

UFBMCC#
UFBSCHEMAID
UFBVIEWID
UFBRECORDID
UFBADMSLOG

*

UFBADMSSPB

o

& %

v

oL
b,

EQU X'03’
DS H

DS BL1
EQU X'80°'
EQU X'40'
EQU Xx'20'
EQU X'10'
EQU X'08'
DS BL1
DS CLé6

DS BL1

EQU X'01'
EQU X'02'
DS BL11
EQU *

556 BPI 024
TAPE FILE SEQUENCE NUMBER
(SET BEFORE OR DURING

OPEN TO REQUEST POSITIONING
AND AVAILABLE AFTER OPEN)
TAPE-RELATED FLAGS

#*% QBSOLETE ¥¥%

TAPE VOLUME SWITCH REOPEN
IN PROGRESS

TAKE EOV1 TRAILER LABEL AS

EOF1 LABEL

USE 7 TRACK TAPE DRIVE FOR
THIS FILE

NO HDR2 FILE LABEL o1

TAPE VOLUME SEQUENCE NUMBER
(ORDER OF VOLUME IN A
MULTIPLE VOLUME FILE)
VOLUME NAME OF FIRST
VOLUME OF A MULTI-VOLUME
FILE SAVED HERE

TAPE PARITY (7 TRACK TAPE
ONLY)

ODD PARITY

EVEN PARITY

(RESERVED ~ MUST BE 0)

EQU (UFBTAPEEND-UFBBEGIN)
% denideidacdadddidaideidaddaaininiaiddaciaidoiniciddninininciaicidiiiaiiianiciaidciaiiininicioidcick

* ADMS DISK FILE EXTENSION SECTION:
* deleiiaccddddninddnnidadnidadniciddnadeininicdaaaadacidaaaiadddaiadincieicicioiciok

DS OBL1
EQU X'80'
EQU X'40'
EQU X'20'
EQU X'10'

EQU X'08’
EQU X'04'
DS A

DS XL2
DS XL2
DS XL2
DS XL2
DS OXL1

DS A

5-38

ADMS FLAG

RESTART FILE

KEEP BEFORE IMAGE

KEEP AFTER IMAGE

SOFT OR HARD CRASH OCCURED
ON THIS FILE

INDICATE CONSECUTIVE FILE
SIZE CHANGED

INDICATES FIRST WRITE 034
TO EXTENDED FILE 034
POINTER TO MCC CONTROL
BLOCK (MAP—CONVERSION-CHECK)
OF MCC ENTRIES

SCHEMA 1D

VIEW ID

RECORD TYPE ID

RECORD IMAGE LOG TYPE ON
THE AUDIT TRAIL FILE
RESERVED USE BY SHARING
TASK ONLY. ADDRESS OF THE
SHARED FILE POSITION BLOCK
(SPB) OF THIS USER/FILE

0000C8

0000CC
0000B38

0000B9
0000BA
0000BC
0000C4

UFB

UFBADMSREC DS A ADDRESS OF THE DEFAULT
* RECORD FOR THIS SCHEMA
UFBADMSEND EQU *

UFBADMSLGTH EQU (*-UFBBEGIN)

* Ilcldclaicidcicinidaicaldiciidiciniciiciaiviaicidiniciciciniaidalaididiciciainiaicininiaiaiciaiaiaiicicicicicieicie

* RESTART DISK FILE EXTENSION SECTION:
* deedeidicicindcddadaciddadnidanicddnidcinidandaiddoiniaidaidaiairidciokiciciicicicicicicdcicn

ORG UFBADMSFLG

DS XLl
UFBADMSFLGND EQU X'40°* RESTART FILE EMPTY
UFBADMSFLGNEXT EQU X'20°' RESTART FILE READ NEXT
UFBADMSFLGPRIOT EQU X'10' RESTART FILE READ PRIOR
UFBRSUSCNT DS XLl COUNT OF RESTART USER
UFBRSCURR DS XL2 RESTART CURRENCY POINTER 054
UFBRSFILENAME DS CL8 PSEUDO-RESTART FILE NAME
UFBRSSPAR2 DS BL8 (RESERVED)
UFBRSEND EQU *
UFBRSLGTH EQU (*~UFBBEGIN)
UFBEND EQU *

5-39

VOL1

000000

000000
000004
00000A

00000B
000025

000028
000025

000033
00004F
000050
000058

00005B

00005E

000061

000064

000067

00006A

00006D
00006F
000070
000072
000074
000076
000078

VOL1
VoLl
* THE VOL1 RECORD IS THE STANDARD VOLUME LABEL FOR DISK OR
* MAGNETIC TAPE. ALL FIELDS ARE IN ASCII CHARACTERS.EXCEPT THE
* FDIR EXTENTS AND CREATION DATE. THIS RECORD ON DISK IS AT
* ADDRESS F'1', FOLLOWING THE IPL TEXT RECORD.
%
* DATE 11-12-74
* VERSION 1.01
x
VOL1BEGIN EQU *
VOL1ID DS CL4'VOL1' CHARACTERS 'VOL1'
VOL1SER DS CL6 VOLUME SERIAL NUMBER
VOL1ACCESS Ds ¢'' FILE PROTECTION CLASS
* OR BLANK
VOL1RESRV1 DS BL26 RESERVED - ASCII BLANKS
VOL1CREATOR DS CL3 FILE CREATOR ID OR BLANKS
* FOR MAGNETIC TAPE ONLY

ORG VOL1CREATOR

VOL10OWNER DS CL14 OWNER ID (OPTIONAL)
* FOR DISK AND TAPE VOLUMES
VOL1RESRV2 DS BL28 RESERVED - ASCII BLANKS
VOL1LEVEL DS cCLi'i' MUST BE AN ASCII 'l1' FOR TAP
VOL1TAPEEND EQU *
VOL1TAPELENGTH EQU VOL1TAPEEND-VOL1BEGIN
VOL1SYSTEM DS CL8 SYSTEM IDENTIFICATION
VOL1CREDATE DS PL3 VOLUME INITIALIZATION DATE
¥ (PACKED YYDDD+)
VOL1X1STRT DS FL3 VOLUME TABLE OF CONTENTS 1ST
* EXTENT STARTING BLOCK ON
* VOLUME FROM 0O
VOL1X1END DS FL3 FDIR 1ST EXTENT ENDING BLOCK
% PLUS 1
VOL1X2STRT DS FL3 VOLUME TABLE OF CONTENTS 2ND
* EXTENT STARTING BLOCK ON
* VOLUME FROM O
VOL1X2END DS FL3 FDIR 2ND EXTENT ENDING BLOCK
* PLUS 1
VOL1X3STRT DS FL3 VOLUME TABLE OF CONTENTS 3RD
* EXTENT STARTING BLOCK ON
* VOLUME FROM 0O
VOL1X3END DS FL3 FDIR 3RD EXTENT ENDING BLOCK
* PLUS 1
* (EXTENTS 2 AND 3 RESERVED. X2STRT THOUGH X3END MUST CONTAIN
* BINARY ZEROES.)
VOL1RESRV3 DS BL2 RESV'D IN DISK VOL1 LABEL OA
VOL1UCBTYPE DS ALl UCB TYPE or
VOL1VCBBC DS AL2 BLOCKS PER CYLINDER or
VOL1VCBMAXTFR DS AL2 MAX TRANSFER (BYTES) oA
VOL1VCBCV DS AL2 CYLINDERS PER VOLUME oA
VOL1VCBCVP DS AL2 CYLINDERS PER PHYS VOLUME O4
VOL1RESRV4 DS BL136 RESV'D IN DISK VOL1 LABEL 04
¥ ASCII BLANKS
VOL1DISKEND EQU *
VOL1LENGTH EQU 256

5-40

CHAPTER 6: SUPERVISOR CALLS

6.1 INTRODUCTION

This chapter describes the input parameters, outputs, and
function of each supervisor call (SVC) which is directly
accessible to normal user programs. SVC descriptions are ordered
by SVC number, beginning with SVC 0. The following 1list is a
summary of all available SVC's. Those with names in parentheses
are normally not accessible to user programs and so are not
described in this manual.

Name Number Residency Innexr SVC Only
OPEN SVC 0 (NR)

CLOSE svC 1 (NR)

TIME svC 2 (NR)

XI0 svCc 3 (R)

LINK SVC 4 (NR)

GETBUF SVC 5 (NR)

FREEBUF SVC 6 (NR)

(WAIT) svC 7 (R) I
(SEND) SVC 8 ®) 1
(FIX/UNFIX) SVC 9 (NR) 1
(GETMEM) SVC 10 ®) I
(FREEMEM) SVC 11 ®) 1
HALTIO SVC 12 (NR)

(DTI) SVC 13 R)

ALEX SVC 14 (NR)

UNLINK SVC 15 (NR)

CANCEL SVC 16 (NR)

CHECK SvC 17 (R/NR) *

(SEIZE/RELEASE) SVC 18 R) 1

* 'Intervention required' handling and I/0 error logging
facilities of CHECK may be non-resident.

6-1

READVTOC SvC 19 (NR)

GETPARM SVC 20 (NR)

(GETDISK) sve 21 (NR) 1
(FREEDISK) SVC 22 (NR) I
(CREATFDR) SVC 23 (NR) 1
READFDR SVC 24 (NR)

(UPDATFDR) SVC 25 (NR) 1
RENAME SVC 26 (NR)

SCRATCH SVC 27 (NR)

EXTRACT SVC 28 (NR)

(PLEASE) SVC 29 (NR)

MOUNT SVC 30 (NR)

PCEXIT SVC 31 (NR)

SETIME/RESETIME SVC 32 (NR)

PUTPARM SvC 33 (NR)

(MWAIT) SVC 34 ®) I
SET SvVC 35 (NR)

XMIT SVC 36 (R)

CREATE svc 37 (NR)

DESTROY SVC 38 (NR)

CEXIT sSvC 39 (NR)

GETDIAG/FREEDIAG SVC 40 (NR)

DISMOUNT SVC 41 (NR)

PROTECT SVC 42 (NR)

LOGOFF SVC 43 (NR)

reserved SVC 44

(LOADCODE) SVC 45 (NR)

Where input parameters to an SVC routine are supplied on the
stack, they are removed before returning to the issuer, leaving
only the specified output values.

6-2

Open File

OPEN

Inputs:

Outputs:

(svCc 0) NON-RESIDENT

The top word of the stack addresses a User File Block
(UFB) containing:
Reference name (UFBPRNAME)
Optional parameter indicators (UFBF1)
Mode flags (UFBF2)
Device class (UFBDEVCLASS)
Device dependent flags (UFBF4)
A new workstation file or printer file must contain:
File organization (UFBFORG)
Logical record size (UFBRECSIZE)
A new indexed disk file must contain:
Key position (UFBKEYPOS)
Key size (UFBKEYSIZE)
A new magnetic tape file must contain:
Physical block size (UFBBLKSIZE)
Tape sequence number (UTBTSEQ)
And a new disk file must contain:
Disk space requirement UFBNRECS
A new or existing file may optionally contain:
Complete actual file name and volume
(UFBVOLSER ,UFBDIRNAME ,UFBFILENAME) , or device
number, or unqualified name of member within
library or volume (UFBFILENAME). For an existing
tape or disk file, if UFBFORG or UFBRECSIZE are
supplied, they must agree with the values in the
file label. Also, for tape files, either filename
must be supplied or UFBTSEQ must be non-zero. For
disk files, UFBBUFSIZE may be supplied as the
maximum buffer size required.
Fields which may be preset, but are not wused during
‘OPEN' (except for TC files):
UFBERRAD, UFBEODAD, UFBRECAREA, UFBKEYAREA.
For TC files, UTBRECAREA contains the address of the TC
connection parameters.

The high-order byte of the top word of the stack may be
set for the OPEN exit option as described below.

Open File Block (OFB) created in protected memory.
Device indication placed in OFB (OFBUCB). Mode flags
copied to OFB from UFB (UFBF2). File Location and Use
Block (FLUB) created for disk file if not already
present (for another task). Extent information placed
in FLUB for disk files. Length of extent list placed
in FLUB for disk files. File Descriptor Record (FDR1)
block and record numbers placed in FLUB for disk
files. Sharing mode flags set in FLUB.

OPEN (SVC 0)

Addresses of I/0 function processing routines placed in
UFBVREAD through UFBVSTART. Number of records in file
placed in UFBNRECS for disk files or for magnetic tape
files opened in EXTEND mode. Sequential record pointer
initialized to first record of file (last record of
file plus one record if EXTEND mode). Buffer addresses
and lengths placed in buffer control fields of UFB
(UFBBUFADR, UFBBUFSIZE), and these buffers marked
'contents not valid' (in UCBBCBFLAGS) and 'buffer in
protected memory' when required. The file status bytes
(UFBFS1, UFBFS2) are set = '00'; UFBLF is set = Open.

For existing files only:
File organization indicated (UFBFORG)
Logical record size supplied (UFBRECSIZE)
Block size supplied (UFBBLKSIZE)
For disk files only:
File attribute flags indicated (UFBFLAGS)
Record size from label supplied (UFBLRECSAVE)
Last block number in file supplied (UFBEBLK)
Last record number in this block supplied (UFBEREC)
Number of 2K blocks within file extents supplied

(UFBNBCKS)
For indexed disk files only:
First data block number (relative - within file)
supplied (UFBDABLK)
Highest-level index block number (relative - within

file) supplied (UFBHXBLK)

For existing indexed disk files only:
Key position supplied (UFBKEYPOS)
Key size supplied (UFBKEYSIZE)

The Volume Control Block (VCB) for a volume containing a
disk file is updated to indicate that an additional file
is open on this volume (VCBOCNT).

For disk or tape files, buffers are allocated from the
user-modifiable segment and their allocation recorded in
the task's extended Task Control Block. For disk or
tape files, no buffers are allocated when physical
access method functions are used (UFBF1PAM set).

Program-supplied file, volume, and device information
(as supplied through the 'Open Parameters' sections of
the UFB) remains in the UFB, or is replaced with
information acquired by OPEN through GETPARM.

For device = dummy, an OFB is set up to indicate that a
null file has been opened. There is no IORE, and
OFBIOREPTR and OFBUCB are zero. A null file is valid in
INPUT mode only and all DMS read requests to the file
return with file-status='10' (end-of-file). UFBRECSIZE
and UFBFORG are not set by OPEN for a null file.

64

OPEN (SVC 0)

For device = disk and UFBF4NOVIOC set, a disk volume
without a Volume Table of Contents (VIOC) is indicated.
In this case, the unique filename in the FLUB is created
by setting FLUBFILENAM1 and FLUBFILENAM2 = blanks;
FLUBFDRR and FLUBFDRB are zerd; and the volume (through
FLUBVCB) will have VCBFLAGSNOVTOC set. The FLUB
contains one extent which allows access to all blocks on
the volume. For NOVIOC, the file organization is
consecutive and the record size is 2K unless the user
program supplies a record-size. Extend and Shared Modes
are not supported for NOVTOC volumes.

For output mode, UFBF4RLSE is set. This setting may be
overridden by the user when the OPEN-GETPARM is issued
or the bit may be cleared by the program after OPEN.
The bit causes unused space in the file to be released
by CLOSE.

The OPEN exit option is available by setting the high-
order byte of the top word of the stack. This byte can
indicate the conditions 1listed below. If a condition
arises for which the corresponding bit is set, then
control returns to the program at the next instruction
in sequence, rather than SVC OPEN issuing a GETPARM
(RESPECIFY)., If the exit is taken, UFBFS1 = X'39',
UFBFS2 = a mask for the appropriate condition; and
UFBPREVO is set. The SVC OPEN may be reissued after an
OPEN exit has been taken.

OPEN exit conditions:
UFBFS2XFILE (X'80') - Return if the file is not found

(non-OUTPUT) or if a duplicate
file name is found (OUTPUT

mode) .

UFBFS2XLIB (X'40') - Return if the 1library 1is not
found (non—-OUTPUT mode) .

UFBFS2XVOL (X'20') - Return if the volume is not
mounted.

UFBFS2XSPACE (X'10') - Return if there is insufficient

space on the volume for a new
file (OUTPUT mode) .

OPEN (SVC 0)

UFBFS2XVTOC (X'08') -~ Return if there is no VIOC space
on the volume (OUTPUT mode).

UFBS2XTAPELD (X'08') - Return tape label type or tape
density is not acceptable to
the program.

UFBFS2XPOS (X'04') - Return for possession con-
flict, which 1includes file
already open by current pro-
gram, file opened by other
program and open modes con-—
flict and volume possession is
exclusive for another user.

UFBFS2XPROT (X'02') - Return if the user does not
have access rights required to
open the file.

UFBFS2XFORMAT (X'01') - Return if there is an error in
specification of file format.
Error class 1is described in
UFBXCODE.

A NO-MESSAGE option is also available such that control
will return to the program (at the next instruction in
sequence) vwhenever any condition arises for which a
RESPECIFY (or CANCEL) message would normally be returned.

If UFBF4NOMSG is set, then the MSG-ID (4 bytes) of any
RESPECIFY or CANCEL message is stored in the first 4
bytes of the UFB and UFBFS1=X'36' and UFBFS2=X'0'. The
NO-MESSAGE option is checked after any open—exit checking
is performed. (Open—exits provide a more exact
indication of the problemj; the NO-MESSAGE option is
useful for tasks with special processing requirements.)

Note 1: This 1list of indirect outputs of 'OPEN',
although extensive, is not intended to be
completely exhaustive.

Note 2: When creating an indexed file in OUTPUT mode,
the ‘packing density' for both index blocks and
data blocks may be set by the user. ‘For exam-
ple, if 20 records at 100 bytes each would nor-
mally fit into a data block, then at 80 percent
packing, each data block would be loaded with
only 16 records. UFBPKD (data) and UFBPKI
(index) are settable by the user before Open;
OPEN will use the binary value as a percent-
age. A value of 50-100 will be accepted as the
percentage value for packing. Any value
outside this range will be ignored; the default
used will produce full packing. UFBPKD and
UFBPKI should not be modified after OPEN.

66

Function:

OPEN (SVC 0)

Note 3: For OUTPUT MODE DISK FILES, UFBOUTRECS
contains the record count used when allocating
file space. This value is available immedi-
ately after SVC OPEN. UFBNRECS=0 after OPEN.

Note 4: A complete description of Work files and Print
files (including SVC OPEN processing) is
included in Chapter 2 of this document.

Prepares a file for processing by Data Management
System functions. Information from the file label is
brought into memory. Devices and volumes are allocated
and reserved as required. Control blocks are set up.
Buffer space 1is allocated. The OPEN function may
interface with a conversational user's workstation to
request information which has not been supplied.

6-7

Close File

CLOSE

Inputs:

Outputs:

(svC 1) NON~-RESIDENT

The top word of the stack addresses (open) User File
Block (UFB). The high-order byte of this word may have
the following flag bits set:

Bit 0 = 1 Force end-of-volume REEL.
Bit 1 = 1 No rewind (magnetic tape).
Bit 2 =1 Rewind and unload (magnetic tape).

The other bits of this byte must be zeroed.

Open File Block (OFB) in protected area is deallocated,
and unchained from the task's TCB (OFBTASKCHN) and the
FLUB for the file (OFBFILECHN). File Location and Use
Block (FLUB) in protected area is deallocated if the
file is no longer open to any task.

Volume Control Block (VCB) for volume containing disk
file is updated to indicate that the file has been
closed (VCBOCNT) . Unit Control Block (UCB) for
nonshared devices marked 'deallocated'.

Any records which remain to be written from buffers are
written (as specified by UFB buffer control fields),
and then these buffers are deallocated and marked as
such in the Task Control Block (TCBAVBUF) .

For a TC file, a DISCONNECT operation is performed for
the associated line if no other files remain open which
are associated with that line.

For disk and tape files, the file label is rewritten if
the file was being processed in 10, SHARED, OUTPUT or
EXTEND modes (FDR1 for disk, trailer labels for tape).
The updated number of records in the file is placed in
this 1label (from UFBNRECS or as calculated from UFBEBLK
and UFBBUFOFFSET) .

For OUTPUT mode (consecutive files only), unused. blocks
in the file are released when UFBF4RLSE is set.

For disk files, these additional 1label fields are
updated when required:
Date of last modification (FDR1MODDATE)
Last record's block within file (FDR1EBLK)
Last record's number in block (FDR1EREC)
Highest-level index block number (FDR1HXBLK)
First data block number (FDR1DABLK)

CLOSE (SvVC 1)

Function: Removes a file from processable status. Information
remaining in memory is written to the secondary storage
device containing the file or discarded. Memory areas
allocated for processing this file are released and may
be used for other purposes. The User File Block (UFB)
is returned to a state in which another OPEN can be
issued on the file. The file status reflects the last

operation performed on the file by Close (if any) or by
DMS.

Get Date and Time

TIME

Inputs:

Outputs:

(svc 2) NON-RESIDENT

The top word of the stack contains a binary 0 if the
time is to be returned in hours, minutes, seconds, and
hundredths of seconds (packed decimal), or a binary 1 if
the time is to be returned in hundredths of seconds
(from midnight) binary.

The next word contains a binary 0 if the Julian day is
to be returned, or a binary 1 1if the date as
year-month-day is to be returned.

Time returned in the top word of the stack as either:

(a) Packed decimal 'HHMMSSth' where HH is hour (on
24-hour clock), MM 1is minute-in-hour, SS is
second-in-minute, t is. tenth of second and h is

hundredth of second, or

(b) Binary hundredths of second from preceding midnight.

- Date returned in the next word as packed digits in one

Function:

of these formats:

(a) '00 YY DD DF', where YY is year-in-century, DDD is
day-in-year, F is hexadecimal 'F' for unpacking.

(b) '0Y YM MD DF', where YY is year—in-century, MM is
month-in-year, DD is day-in-month, F is hexadecimal
'F' for unpacking.

Supplies the current date and time to users' programs or
system routines in the forms described above.

Stack on entry and return:

| OTHER |
ENTRY: | DATA |
I |
| |
| 0or 1 |
| |
Sp —> | |

OQor 1l Sp ——>

6-10

Execute Physical 1/0

XI0

Inputs:

(sve 3) RESIDENT

The top 16 bytes of the stack are a parameter list

containing:
Byte 0:
Bit1=1
Bit 2 =1
Bit 3 =1
Bit 4 =1
Bit 5 =1
Bit 6 =1
Bit 7 =1
Bytes 1-3 -
Byte 4 -
Bytes 5-7 -
Bytes 8-9 -
Bytes 10-11 -
Bytes 12-14 -
Byte 15 -

Flags
Special block-on-volume-oriented disk
I/0 request - “VOLIO" - valid only when

requested by system routines in System
Mutual Exclusion state or when the
accessed volume is mounted for
initialization by the issuing task.

Block print operation. Data must be
2K—-aligned and is not moved to the
device's resident print buffer.

'Halt I/0 Queue' option (for Disk Mount
operation) .

Reset UCBSTATNOTOP and UCBSTATNOCODE to
allow I/0 device being simulated to
malfunction.

Issue Return Code = 32 if I/0 issued to
inoperative workstation.

Force uppercase printing.
Telecommunications Option--TRANSMIT or
RECEIVE.

Address of Open File Block (OFB) for
file with the following exceptions:
When flag bit 7 =1 (TC option), the OFB
address is for the VS~DLP communication
path; when flag bit 1 = 1 (VOLIO option),
the address of the Volume Control Block
(VCB) for the disk volume.

Command byte for I/0 Command Word (IOCW).
Memory address (virtual) for IOCW if
read or write command in byte 4.

Length in bytes for operation (read or
write command, all devices).

Unused.

For disk files only. Block number
within file (in binary) of the first
block to be read or written (where the
first block of a file is block 0). With
the following exceptions: If VOLIO
option is selected, the block number
within the volume (in binary) of the
first block to be read or written (where
first volume block is block 0); if TC
option is selected, bytes 12-14 contain
bytes 6—-8 of the IOCW.

Unused

6-11

XI0 (SVC 3)

Outputs: Return codes in the top word of the stack (replacing the
input parameters).

Low-order halfword of return code field ~ binary return

codes:

0 - Success

4 - Truncation at end-of-extent (non-VOLIO disk only)

8 - Truncation at end-of-cylinder or end-of-track (disk

12

16

20
24

28

32

36

only)

Starting block number beyond end-of-file (non-VOLIO
disk) or beyond end-of-volume (VOLIO disk)

Invalid data address or data length. (Data address
for disk must be page—aligned; for other devices
word-aligned. Virtual memory area encompassed by
the area from data address through data—-address plus
block-size-minus-one must either be in the segment 2
1/0 buffer area or entirely above the XI0O parameter
list on the stack if the XIO0 is issued from
unprivileged state. The specified length must not
imply spanning of more pages than there are Indirect
Address List entries for the device.)

Second XI0 on file without intervening CHECK

TC XI0O attempted on an OFB that was not created as
the result of an 'IPOPEN' on an IPCB.

TC XIO attempted on a device reserved exclusively by
another task.

XI0O has been issued to inoperative workstation and
1/0 has not been issued (bit 5 of option flag must
be set for issuance of this return code).

TC XIO attempted on a peripheral processor (DLP)
reserved exclusively by another task.

High-order halfword of return code field - residual block

counts?

Return codes 0, 12, 16, 20 - Always zero.
Return codes 4, 8 - Specified block size minus number of

Note:

bytes actually read or written.

If return codes 0, 4, or 8 are set, the I/0
operation 1is queued for initiation and a CHECK must
be issued to test for completion. If return codes
12, 16, or 20 are set, the operation has been
suppressed. XIO never waits for I/0 completion.

6-12

XI10 (SvC 3)

Function: Initiates 1I/0 operations for the Data Management System,
as requested by its parameter list.

The following restrictions on general I/0 capability are
enforced by the XI0 routine:

All -

Disk -

(1) All memory addresses for a read or write oper-—
ation must be valid (present in main memory or
page faulted) and, wunless the requesting
routine is privileged, must be in the
user-modifiable segment and either:

(a) in the I/O buffer area, or
(b) entirely above the XIO parameter list on
the stack. ‘

(1) A block to be read or written must fall within
the current extent limits of the specified file
(except for "VOLIO" disk requests).

(2) The specified memory address must be on a page
boundary.

(3) The "VOLIO" option (flag bit 1 = 1) is allowed
only when requested from within System Mutual
Exclusion state.

(4) The length specified for a READ or WRITE oper-
ation must be a multiple of the page size.

(5) Indirect data addressing is always used for
disk I/0.

Diskette - Library-Structured

(1) All restrictions as for other disk.

Diskette -~ Unstructured

NOTE:

(1) A block to be read or written must fall within
the bounds of the diskette platter (blocks O
through 153); otherwise, return code 16 is set.

(2) The "VOLIO" option is ignored.

A non-standard addressing option 1is now supported
that allows the user to format a soft-sectored
diskette in any combination of sector size and
density. The use of this option is intended to be
limited to specialized utilities. User programs
which employ this option are responsible for per-
forming direct and sequential I/0O on a physical-
sector basis. The user program must calculate the
sector size and addresses, set mode, and set den-
sity. When non-standard addressing is specified,

6-13

X10 (SvC 3)

Tape - (1)
Printer-
1)
(2
Workstation
)
2

(3)

the XI0 SVC will not perform extent validation or
address translation, but simply passes the address
to the firmware via the I/0 Control Word (IOCW).

Maximum size permitted for tape records is 32K
bytes.

Bit 2 of the first byte of the XI0 parameter
list distinguishes between print operations
through a resident print buffer and multiple-
line ('block') print operations. The data
length for single~line print operations must be
not less than 2 or more than 134. The data for
a block print operation must be on a single
page.

The data for a block print operation must in-
clude record length bytes. The data for single-
line print operations through a resident buffer
should include only the printer control char-
acters and the characters to be printed.

An Attention Identification (AID) character is
stored in the current status portion of the
device Unit Control Block (UCB) on successful
completion of each I/0 operation. (Refer to VS
Principles of Operation Manual or VS Operating
System Services Pocket Guide for a listing of
these characters.) The AID character also
serves to indicate whether the workstation
keyboard is in locked or unlocked state after
the operation.

If the device's UCB indicates 'Keyboard
unlocked' when a READ operation is requested,
the XIO0 routine will wait for an attention
interruption from this device. When such an
interruption is received, the interrupt service
routine will mark the UCB 'Keyboard locked' and
then will allow XIO0O to initiate the read
operation.

Indirect data addressing is always used by XIO
for workstation I/0.

6-14

Link to Another Program

LINK

Inputs:

(SVC 4) NON-RESIDENT

The top 16 or 32 bytes of the stack contain a parameter
list as follows:

Byte 1 -
Bit 0 =1
Bit 1 =1
Bit 2 =1
Bit 3 =0
Bit 4 = 1
Bits 5-7
Bytes 2-9 -
Bytes 10-16 -
Bytes 17-22 -

Flags, as follows:
Search only system library for member
(see below).
Report failure to find the specified
member, member not executable, member
already opened (other than Shared
Read-only) , or password for member or
directory not provided, or other error
by returning to location of SVC
instruction plus 6 (next instruction
plus 4), rather than by entering the
Help Processor. See outputs below for
return codes in these cases.
Branch to location of LINK SVC plus 10
(next instruction plus 8) after
setting up to enter new program or
subprogram, with entrypoint address of
new program in register O. (See
LOADONLY operand description of LINK
macro in Chapter 4.)
Must be zero.
Overriding user program library and
volume specified in parameter list
bytes 17-30.
Must be zero.
Character string (ASCII) containing name
of program to be LINKed to. This name is
used with the current program library
specification as a member name within a
library or volume, and the resulting
complete filename is sought. If such a
file is not found, the member name is
used with the system library
specification, and the resulting complete
filename is sought. If flag bit O above
is set, only the system 1library
specification is used. If flag bit 1 |is
not set, failure to find the program in
either library causes abnormal
termination of the issuing task.
Not examined.
Character string containing overriding
user program library's volume serial.
Totally absent unless flag bit 4=1.

6-15

LINK (SVC 4)

Outputs:

STACK TOP (SP) - - - -

Bytes 23-30 ~ Character string containing overriding
user program library. Totally absent
unless flag bit 4=1,

Bytes 31-32 -~ Not examined. Absent unless flag bit 4=l.

Register Rl by convention addresses a standard argument
list to be passed to the program invoked as a result of
the LINK.

A new Program File Block is built and chained to the
active TCB, indicating that a program has been
entered. A new Program Exception Element is built and
enstacked from TCBPXE, indicating that no program
exception exits are set. Register Rl4 addresses the
first (doubleword-aligned) address of the newly created
group of ‘'static' areas (see below). Register R1
addresses the argument list passed by the issuer (if
provided), Other register contents (except register
15) are unchanged. Static storage areas for the
LINKed-to program are pushed onto the stack. A single
word of control information (address of UNLINK' routine
to be executed on RETURN) follows. This is followed by
a save area chain word and register save area suitable
for use with the RETURN macroinstruction (RTC
instruction). Control register 1 contains the address
of this save area (as does general register 15) on
completion of the LINK. The stack on entry to the
LINKed-to program is as follows:

ISSUING PROGRAM'S STACK

| |
| |
| AREA | VARIABLE
| |
| 'LINK' SVC SAVE AREA | 72 BYTES
| USER PROGRAM LIBRARY |
| AND VOLUME BEFORE 'LINK') | 16 BYTES
| (RESTORED BY ‘UNLINK') |
| LIBRARY, MEMBER, VOLUME |
| OF PROCEDURE FILE I 24 BYTES
| IF PROCEDURE INTERPRETER I
| INITIATED I
| |
| 'STATIC' AREA FOR LINKED-TO |
(R14) - - - - | PROGRAM | VARIABLE
| |
| SAVE AREA FOR 'RTC' TO I
| 'UNLINK® SVC | 68 BYTES

If no linkage can be made to the specified member, the
above does not occur; but if parameter byte 1, bit 1
was set, control passes to the location of the LINK SVC
instruction plus 6 with binary return codes in the top

6-16

LINK (SVC 4)

word of the stack (replacing the input parameters) as

follows:
Return code
Return code
Return code

Return code

Return code
Return code

Return code
Return code
Return code

Return code
Return code

Return code
Return code

Return code
Return code

Function: To pass

0

4
8
12

16
18

20
24
32

nuwmn

36
40

44
48

52

= 56

Not a program file, and the procedure
interpreter cannot be invoked.

Volume not mounted

Volume in exclusive use by another user
All buffers in use when one was required
by LINK

Directory not found

Access to program's file~-protection
class denied

File not found

Unused

FDX1 and FDX2 conflict detected Dby
READFDR ‘

FDX2 and FDR conflict detected by READFDR
Invalid parameter passed to READFDR
(including NL volume type)

1/0 error on VTOC

Unable to read FDR2 record (additional
extent specifications)

Invalid program file; unable to complete
LINK

File open other than shared read-only

control to a user—-level program or subprogram
not linkage-edited with the issuing program. Also used
by the command processor to initiate exrecution of a
requested

interpreter.

program, or of the system's procedure

User parameters to be passed to the invoked program
must not be in the reentrant program area (segment 1).

'Static areas', as defined, are static only within a
group of program modules linkage-edited together, and
will be removed (popped) from the stack by execution of
the 'UNLINK' supervisor call routine.

6-17

Get Buffer Space

GETBUF

Inputs:

Outputs:

(SvC 5) NON-RESIDENT

4 2-word parameter 1list on top of the stack. The
lower-addressed word <contains the buffer length
requested, which must be a multiple of the page size
(2048). The second word of the parameter list is
ignored on entry.

A zero return code and the starting address of the
allocated buffer OR a nonzero return code placed on top
of the stack:

Return code
Return code
Return code

A buffer area is allocated (Figure 1).
All buffers in use (Figure 2).
Requested length is not a multiple of
2K (Figure 2).

I | |

e N
oo &, O
i

| preceding data [| preceding data |

I

I

| buffer start. addr. | 4 bytes | ignored | 4 bytes

(SP)

| return code = 0 | 4 bytes | non—-zero return | 4 bytes

code

(Figure 1) (Figure 2)

Function: To allocate a buffer area as requested. Buffer space

is taken from the low address end of segment 2. Value
in control register 2 (the stack limit) may be modified.

6—-18

Free Buffer Space

FREEBUF

Inputs:

Outputs:

Function:

(svC 6) NON-RESIDENT

Address of the buffer to be returned in the top word of
the stack. Length of the buffer area to be returned in
the next word above. This length must be a multiple of
the page size (2048).

NOTE:
In the case of calls by the GETHEAP/FREEHEAP SVC, the
high~order byte of the word specifying the length of
the buffer area is set to X'04'. In the case of such
calls, GETHEAP/FREEHEAP places the address of the
corresponding subpool block (SPB) in the third word
from the top of the system stack.

A return code in the top word of the stack replacing
inputs:

Return code = 0 - Buffer deallocated.
Return code = 4 - Invalid buffer address.
Return code = 8 — Invalid buffer length.

To de-allocate a buffer area allocated by GETBUF (SVC

5). Value in control register 2 (the stack 1limit) may
be modified.

6-19

Halt I/0 Operation

HALTIO (SVC 12) NON-RESIDENT

(1) PRINTER OPTION (retained but made obsolete by "General

Option', below):

Inputs:

Outputs:

Function:

word on top of stack

byte 0: X'00'

bytes 1-2: ignored

byte 3: device number of a printer

HIO instruction issued to the specified device, if a
valid printer which is in use by the issuing task. If
an "I/0 processor busy" response is received, the
corresponding Unit Control Block (UCB) is marked, and
the HIO instruction reissued when an "I/0 processor now
ready" interrupt is received. The issuing task must
still wait for any outstanding I/0 to complete (see SVC
CHECK). The condition code from the HIO instruction 1is
returned in the word on the stack top.

To speed termination of multiline print operations
which are to be aborted.

(2) GENERAL OPTION

Inputs:

Outputs:

word on top of stack
byte 0: X'80"
bytes 1-3: OFB address, or VCB address + 1

none (parameters removed from stack).
HALTIO should be issued only if an XIO has been issued,
but the CHECK has not been done. CHECK should be

issued after HALTIO (as in a normal
wait—for-completion) .

6-20

Allocate Additional Extent

ALEX

Inputs:

Qutputs:

Function:

Note:

(SVC 14) NON-RESIDENT (No longer available.)

The top word of the stack addresses an Open File Block
(OFB) for the file.

An additional extent is allocated for the given file.
Subsequently the entries containing extent information
in FLUB and FDR records of the file are modified to
record the allocation. A return code is placed on top
of the stack replacing the inputs:

Return code
Return code
Return code

0 - Additional extent allocated

4 - Invalid OFB address; no allocation
8 - File in INPUT mode; no allocation
2
6

non o onon

Return code = 12 - Wrong device type; no allocation

Return code = 16 - Extent limit exceeded; no
allocation

Return code = 20 - All buffers in use; no allocation

Return code = 24 ~ Volume fullj; no allocation

Return code = 28 - No space in VTOC for FDR2; no
allocation

Return code = 32 - Disk I/0 error; VIOC unreliable

To allocate an additional extent for a disk file. The
extent size to be allocated is found in FDR1SECEXT of
the FDR1. If an extent of the size specified in Field
FLUBSECEXT of the corresponding FLUB is not available
on the volume, the 1largest available extent is
allocated.

A file has to be opened for exclusive use before ALEX
is issued. :

6-21

Return From Program Entered By Link

UNLINK

Inputs:

Outputs:

Function:

(SVC 15) NON-RESIDENT

Field ETCBPFB of the task's Extended Task Control Block
(ETCB) addressing save areaz and control information for
'UNLINK' use as pushed onto the stack by LINK (SVC 4).

The program which issued the LINK (SVC 4) to enter the
issuing program is restored to the reentrant program
area (segment 1) of the task's virtual address space.
The previously active program's PFB and all its PFEs
are released. UNLINK closes shared files OPENed on the
link 1level it 1is destroying, if the user fails to do
so. UNLINK releases any devices reserved on the level
it is destroying, if the calling program fails to do
so. The save area and control information 1is removed
(popped) from the stack. The LINKed-to program's
'static' area is popped from the stack. UNLINK
attempts to close those files which were opened at the
Link level being unlinked (UNLINK determines which
files should be CLOSEd by comparing a byte in the OFB
(OFBLINKLEV) , which was set at OPEN time, with the
current link level being UNLINKed (ETCBLINKLEV)).
Control is then passed to the program which issued the
LINK, at the instruction address folllowing the LINK
sve.

To return from a LINKed-to program. This SVC is
normally issued by code in the system area (segment 0)
entered as a result of a RETURN sequence in the
LINKed-to program. The 'UNLINK' SVC may, however, be
issued directly by a program.

6— 22

Cancel Program

CANCEL

Inputs:

Qutputs:

Function:

(8VC 16) NON-RESIDENT

Word on top of stack containing address of message to
be displayed. .

Help Processor entered with no return to issuing
program. Program abnormally terminated when the wuser
issues the 'CANCEL' command to the Help Processor.

To terminate a program in the event of uncorrectable
program failure, such as:

(a) exhaustion of a system resource,

(b) illegal or invalid parameters to an SVC routine or
other system service program,

(c) a program-detected condition which cannot be
satisfactorily resolved within the program.

A standard message is generated to notify the user of
the error situation. The supplied message 1is also
displayed. The user cannot immediately resume program
execution by the 'CONTINUE' command. He may, however,
examine the program by means of the Help Processor's
debugging facilities, modify the current instruction
address by means of the ‘'CHANGE' command, and then
attempt to resume program execution. A program
terminated by a CANCEL SVC issued by another SVC
routine cannot be continued.

The message at the specified address is in the
following format:

(1) Four-byte message number in ASCII characters.
Always required.

(2) Six-byte issuer identification in ASCII characters.

(3) Two-byte message length in binary. This is the
length of the text which follows as (4) here.

(4) Message text in ASCII characters. If the message
is of more than one line, an end-of-line is
indicated by an ASCII 'new 1line' character. No
line may contain more than 79 characters, including
the end-of-line indicator. The last (or only) line
does not require an end-of-line character.

6-23

CANCEL (SVC 16)

Message format:

Message number |

Issuer ID

| |
| Length |
| |

|
|
I !
0 4

6—24

10 12

Check For Event Occurrence

CHECK

Inputs:

(svc 17) PARTIALLY RESIDENT

Eight-byte parameter items. For single-event CHECK,
the single item is on top of the stack. For multiple-
event CHECK, the top word of the stack contains the
address of the list of items. The high-order byte of
this word (bits 1-7) contains a count of the number of
items, and bit 0 of this byte is set to 1; the next
word on the stack 1is not examined in this multiple-
event case. For multiple-event CHECK, if the option
flag (byte 0) in the input parameter list for the event
is set equal to X'FF', then the particular event is
bypassed, i.e., no WAIT is done for the event.

The FORM=LIST option of tha2 CHECK macro can be used to
build a multiple-event CHECK 1list on the stack (see
CHECK macro description for further details).

Each eight-byte item is as follows.

@

2

(3)

%)

Normal I/0 check (OFB) item:

Byte 0 Zero,

Bytes 1-3 OFB address.

Bytes 4-7 Alternate return address to be used in case
of 1/0 error, or zero. If the low-order
bit of Byte 7 is on, then completion IOSW
is returned in general registers O and 1.

VOLIO I/O check (VCB) item:

Byte 0 Zero.

Bytes 1-3 VCB address plus 1.

Bytes 4-7 Alternate return address to be used in case
of 1I/0 error, or =zero. If the low-order
bit of Byte 7 is on, then completion IOSW
is returned in general registers 0 and 1.

Timer check item:
Byte 0 X'10'
Bytes 1-7 Ignored.

Intertask message check item:

Byte 0 X'20'

Bytes 1-3 Address of an area in segment 2 in which to
receive a message. The first two bytes of
this area must contain its length in bytes
(binary) including these bytes. This
length must not be greater than 2016. The
message (not including its length bytes) is

6-25

CHECK (SVC 17)

(5)

(6)

@

Outputs:

Function:
1,2

moved to the area following these bytes and
truncated if too 1long for the specified
area. The area's length bytes are adjusted
to reflect the 1length of the message,
including these bytes.

Bytes 4-7 The name (CL4) of one of this task's active
message receipt ports, as established by
CREATE.

Workstation program function key check item:
Byte 0 X'40'

Bytes 1-3 Workstation device number

Bytes 4-7 Ignored

Unsolicited interrupt:

Byte O X'08'

Bytes 1-3 Number of any device on line

Bytes 4-7 Address of 8-byte area to receive IOSW
(nust be in user—modifiable buffer area or
in stack as validated by MCBRWTST)

TC event:

Byte O: x'o1'

Bytes 1-3: The OFB address of the TC device on which
XI0 was issued

Bytes 4-7: The address of an eight-byte receiving area
for the completion I0SW, or binary zeroes
if the IOSW is not desired

Single—~Event CHECK)
Inputs popped from stack. For I/0 completion CHECK, a
workstation message is displayed if possible on
'intervention required' conditions. See the XMIT SVC
description for the format of intertask messages after
a ‘'message' CHECK.

Multiple—Event CHECK

One word of inputs popped from stack. Second word
replaced by displacement within parameter item list of
item corresponding to the event which has occurred.
(Displacement is from O, by 8.) Device 'intervention
required' conditions must be handled by the CHECK
issuer, who must re-issue a CHECK (single- or
multiple-event) to wait for I/0 completion.

Waits for completion of an I/0 operation initiated by
means of the XIO supervisor call. In the event of a
permanent error completion (IOSW bit EC set, bits NC
or IRQ not set), returns to the alternate return

6-26

(3)

@)

(5)

(6)

@

CHECK (SVC 17)

address. Otherwise returns to the next sequential
instruction address. If 'intervention required' (IOSW
bit IRQ) is indicated on completion, issues an
appropriate workstation message if possible, expecting
either an unsolicited interrupt from the device when
it becomes ready, or a response when the condition has
been corrected; may reissue the message if the
condition has not been corrected; then waits for
another completion indication. Writes an I/0 error
logging record in the event of a device malfunction or
main memory parity error. The Volume Control Block
address option is available only to routines in System
Mutual Exclusion (SME) state, or which have exclusive
use 'for initialization' of the disk volume to which
the VCB refers. (The VCB option is intended for use
in conjunction with the VOLIO option of the XIO
supervisor call.)

Waits for expiration of a timing interval. The
issuing program is cancelled if no interval is set.

Waits for receipt of a message directed to the
specified port name, which must have been established
by the issuing task by means of the CREATE SVC.

Waits for a program function key to be struck at the
specified workstation. The issuing program is
cancelled if an un—-CHECKed I/0 operation (XI0O) has
been issued to the specified workstation, or if that
workstation is not reserved for use by this task.

Waits for an unsolicited interrupt from a workstation
or printer. For a workstation, this CHECK option
waits for a program function key whether the keyboard
is 1locked or not. The issuing task will be cancelled
if the device is not reserved for use by the issuing
task or an unCHECKed I/0 is outstanding. The IOSW of
the unsolicited interrupt will be moved to the 8-byte
area specified in the input parameter list.

Waits for telecommunications reception or trans-
mission. Also waits for unsolicited interrupt from
telecommunications device. If the TC I/0 completes
with an error because of missing device microcode or
missing peripheral processor microcode, the error is
logged but the microcode is not loaded.

Sequencing rules for alternation of RECEIVE/TRANSMIT
followed by CHECK TCIO are enforced by the XIO SVC
routine. XIO also checks that the device and DLP are
not exclusively reserved by another task, and that the
device is currently open (IPOPENed by this task).

6-27

CHECK (SvC 17)

CHECK TCIO may be issued without any previous I1/0
being issued provided the device 1is reserved by the
calling task. In this case the CHECK is taken to be
for an unsolicited interrupt from the DLP on the
specified device. To receive an unsolicited interupt
from the DLP, at least one of the devices on the DLP
must have been IPOPENed and reserved by the caller.
For this option, an IOSWADDR must be provided for the
transfer of the IOSW to the caller.

If an unsolicited IOSW was returned by the DLP and the
user has issued an XIO and is awaiting the completion
I0SW to that I/0, the unsolicited I0OSW does not cancel
the effects of that condition. That is, the user is
able to receive the unsolicited IOSW, and allowed to
reissue the CHECK TCIO to receive the IOSW in response
~to the XIO. The general status byte of the IOSW
returned will indicate to the wuser that it is an
unsolicited IOSW rather than a normal IOSW in response
to an XIO. If the user has received an wunsolicited
I0SW while waiting for the completion of an
outstanding XIO, he must wait for the completion of
the XIO by resubmitting the CHECK TCIQO before issuing
another XIO on the specified VS/DLP I/0 channel.

The issuing task will be cancelled if the device is

not reserved for use by the issuing task or an
unCHECKed I/0 operation is outstanding.

6—-28

Read Volume Table Of Contents Block

READVTOC (SVC 19)

Inputs: The top

NON-RESIDENT

word of the system stack

following argument list:

addresses the

Input Argument List | volume name

preceding data
size depends
| not used | on options
| directory name/ |
OFB ptr (First 4 bytes) /not used | 8 bytes
starting item number = n >= 0 2 bytes
count number = m >= 0 2 bytes
not used 1 byte
option number = 0, 1, 2, 3, or &4 1 byte
| 6 bytes

Option number =

0 - To read VIOC attributes:

Option number =

Option number

i. VTOC extents in usej; no. of
unused blocks in VTIOC. 255
is returned if the number of
unused blocks is greater than
or equal to 255.

ii. Total no. of directories on
volume; total no. of files on
volume.,

iii. Total no. of free extents on
volume; total size of free
extents.

iv. m largest free extents on

volume.

nth (from 1) free extent

=2 - To 1list m directory
corresponding no. of
directory starting

1 - To list m free extents starting from

in VTOC.

and
in

nth

names
files
from

directory name (from 1) in VTOC.

6-29

READVTOC (SVC 19)

Option number = 3 - To 1list m file names starting
from nth file (from 1) in
specified directory.

Option number = 4 = To read in m consecutive VTOC

Control blocks starting from nth
block in VIOC and copy into a
file specified by the given OFB
pointer.

Outputs: A return code on top of system stack replacing inputs.
Return code

Return code
Return code

0~ Requested function performed.
4 - Invalid argument list address.
8 - Volume not mounted.

2

Return code = 12 - Volume used exclusively by other
user.

Return code = 16 - All buffers in use.

Return code = 20 - Invalid option request or OFB
address.

Return code = 24 - Directory not found.

Return code = 28 - VIOC error; FDX1 and FDX2 do not
agree. :

Return code = 32 = Disk I/0 error; VITOC unreliable.

When return code = 0, the input argument 1list is

replaced by one of the following output argument 1lists
depending on the option specified.

mth largest free extent start & end block

I I
| number. | 6 bytes
l . '
| . |
1st largest free extent start & end block
| number. 6 bytes
I
Total size of free extents. 4 bytes
| Total no. of free extents. 4 bytes
I
| Total no. of files on volume. 2 bytes
l .
| Total no. of directories on volume, | 2 bytes
! !
Option | 3rd VTOC extent start & end block numbers. | 6 bytes
Number 0 | |
| 2nd VTOC extent start & end block numbers. | 6 bytes
| |
Output | 1st VIOC extent start & end block numbers. | 6 bytes
Argument | !
List | Number of VTOC extents in use. | 1 byte
| |
| Number of unused blocks in VTOC. | 1 byte

6-30

Option
Number 1

Output
Argument
List

Option
Number 2

Output
Argument
List

Option
Number 3

Output
Argument
List

READVTOC (SVC 19)

(n+m-1)st free extent start & end block no.

nth free extent start & end block no.

Total no. of free extents listed <= m

Total no. of free extents on volume

No. of files in directory name (n+m-1)

directory name n+m-1

No. of files in nth directory name n

Directory name n

Total no. of directories listed <=m

Total no. of directories on volume

Filename n+m—-1

Filename n

Total no. of files listed <= m

Total no. of files in directory

6-31

bytes

bytes
bytes

bytes

bytes

bytes

bytes
bytes
bytes

bytes

bytes

bytes

v bytes

bytes

READVTOC (SVC 19)

Option | |
Number 4 | |
I not used | 16 bytes
Output | |
Argument |
List # of blocks read (<m) 2 bytes
Total VIOC size in blocks 2 bytes

Additional Output for option number 4: nth through
(ntm-1)st VIOC control blocks copied to the file
specified by the given OFB.

Function: To read the specified information from VIOC of a
specified volume.

Note: The size of the input argument list must be big enough
to hold the desired output argument list for successful
operation.

6-32

Request Parameters

GETPARM

Inputs:

(sve 20)

NON-RESIDENT

Parameter list of eight or twelve bytes on stack top:

(1) One-byte Request Type Indicator:

Bits 0-3:

0

[
]

w
L}

F g
il

Bit 4:

Bit 5:

Header ’.Iype/Acceptable Response Designator

Request for Information. Acceptable
response is modification of variable fields
with completion signaled by pressing the
ENTER key or any enabled PROGRAM FUNCTION
KEY. By default, all PFKs are disabled.

Request for Selection. Acceptable response
is selection indicated and signaled by
pressing the ENTER key or any enabled
PROGRAM FUNCTION KEY. By default, all PFKs
are enabled.

System Request for Information. Reserved
for use by OPEN and SYSTEM INITIALIZATION.
The generated display header is different
from that for type O. Acceptable response
is the same as that for type O.

System Request for Device Action. Reserved
for use by OPEN, MOUNT, and CHECK.
Acceptable response involves performance of
machine operator duties with completion
signaled by an interrupt from the indicated
device, or by pressing the ENTER or any
enabled PROGRAM FUNCTION KEY. By default,
only PFK #16 is enabled, and by convention,
it is used to allow the user to request
termination of the device action request.

If set, indicates that the ENTER key will be
accepted as a response to the GETPARM (ENTER
key disabled), in addition to any keys
specified in the PF key mask. This bit is
ipnored unless bit 5 is set.

PFK Mask Present Indicator.
Default Mode. PFK's are enabled or disabled

according to default values. The PFK mask
should not be present in the parameter list.

6-33

GETPARM (SVC 20)

1 = Override Mode. PFK's are disabled as
indicated by the PFK mask which must be
present in the parameter list.

Bit 6: Request Sequence Identifier

0=TYPE I - Initial request for specification
of information, selection among
alternatives, or response.

1 =TYPE R - For correction of information,
selection, or response just received as a
result of the previous request.

Bit 7: User-Interaction Suppressor
0 = Normal Mode

(This mode will generate a workstation interaction
even if the default data in the receiving fields of
all Field Format Control Blocks satisfy lexical
requirements for correctness. The workstation
interaction is suppressed only if the
procedure-specified data supplied is lexically
correct and is sufficient in conjunction with the
default data to completely satisfy the request.)

1 = Default Mode
(This mode is intended for use by OPEN only. This
mode accepts procedure-supplied data if available,
but will not generate a workstation interaction

unless a field default value is lexically in error.)

(2) Three-byte address of message to be displayed.
(See format,)

(3) One-byte zero, or for Device Action request only,
the device number of the device requiring service.

(4) Three-byte address of Parameter Group Control
List. (See format.)

6-34

GETPARM (SVC 20)

(5) Optional four-byte Program Function Key Mask. Each
indicates whether the corresponding PFK should

bit

be enabled or not.

to PFK.

8(SP)

4(SP)

0(5P)

4 (SP)

0(sp)

[y
[|

The high-order bit

PFK enabled
PFK disabled

corresponds

Optional Program Function Key Mask

| | I
Device	
no. or 0	A(Control List)
Req. Type	A (Message)]
Device	
no. or 0	A(Control List)
Req. Type	A (Message) I

6—-35

GETPARM (SVC 20)

The

message at the specified address 1is in the

following format:

I I

| Message Number | Issuer ID | Length | Text l

I I | | I

0 4 10 12 end

The fields in this format are:

(1) Four-byte message number in ASCII characters. This
number is displayed in the GETPARM header on any
associated screen transactions.

(2) Six-byte issuer ID in ASCII characters. This ID is
displayed in the GETPARM header on any associated
screen transactions.

(3) Two-byte message 1length in binary. This is the
length of the text which follows.

(4) Message text in ASCII characters. If the message

is longer than 79 characters, an end-of-line can be
indicated by an ASCII '‘new-line" character.

No line may be longer than 79 characters excluding
the end-of-line indicator. The message text is
displayed beginning in column 2 of 1line 7. Each
new line begins in colum 2 of the next line.
Lines longer than 79 characters are truncated. The
last line does not require an end-of-line indicator.

6-36

GETPARM (SVC 20)

The Parameter Group Control List is in the following
format:

+0

PRNAME

|
+8 PF key field | # of fields

FIELD N FORMAT
CONTROL BLOCK

|

|

|

I

|

|

|

|

|

|

|

+10 | |
| |

| FIELD 1 FORMAT |

! CONTROL BLOCK |

| |

I |

| |

I I

| |

| |

| |

I |

+10 + BL | |
1 | I

| FIELD 2 FORMAT |

| CONTROL BLOCK |

| |

| I

| |

I |

| |

| |

| |

| |

I |

I |

| |

n-1 | |
|]

+10 + BL | |
i | |
i=1 I |
I |

| |

| |

| I

| I

|]

6-37

GETPARM (SVC 20)

The

¢))

(2)

(3)

@)

fields in this format are:

Eight-character, left-justified Parameter Reference
Name (i.e., PRNAME).

One-byte receiving field for AID character of
program function key response. (This field may be
set by procedure specification of a function key
number.)

One-byte binary count - number of Field Format
Control Blocks.

following is repeated for each displayable field.
"o (ﬂ)

Variable length Field (display and entry) Format
Control Block. There are two formats for the Field
Format Blocks: one for control of the
keyword/receiving field pairs, and the other to
control the use of displayable imbedded text.

6-38

GETPARM (SVC 20)

The Field Format Control Blocks for the
keyword/receiving field pairs are in the following
format:
| | |
+0 | LINE ADVANCE | SPACE ADVANCE |
COUNT | COUNT |
| |
+2 | ERROR FLAG & | RECEIVING |
RESTRICTIONS |FIELD LENGTH -1
|
+4 | |
I]
| KEYWORD |
| |
| |
| |
| |
| |
+12 | |
| |
| |
! |
f |
| RECEIVING FIELD |
{ |
| |
| |
| |
| |
| |
| |
The fields in this format are:

@

(2)

3

One-byte binary Line-Advance—Count for display
control.

One-byte binary Space-Advance-Count for display
control. (Line advance takes place before space
advance. Both take place before display of keyword
and receiving field.)

One-byte binary Field Error Flag and Receiving
Field Entry Restriction Indicator:

Bit 0: Field Error Flag (1 = error) (Set by
program to draw attention to fields in
error — Reset by GETPARM.)

Bits 5-7: Entry restrictions

6-39

GETPARM (SVC 20)

Character-string

No restrictions on content; maximum usable
field length is 68 characters.

Positive integer

Nonblank response need not be justified,
but must consist entirely of the numerals
0-9 with 1leading and trailing blanks
ignored. All blanks will be treated as a
legitimate NULL specification. Field
length is restricted to 16 characters.

Numeric

Response must consist entirely of the
numerals 0-9 optionally containing one
decimal point and optionally preceded by a
+ or =, Leading and trailing blanks will
be ignored. All blank response will be
treated as a 1legitimate NULL response.
Field length is restricted to 16 characters.

Uppercase alphanumeric

All entered letters will be converted to
uppercase, A 1legal nonblank response must
be left-justified and consist entirely of
the numerals 0-9, the 1letters A-~Z, the
national characters (@, #, or §$), and
trailing blanks. An all blank response
will be treated as a 1legal NULL response
indicator. Maximum usable field length is
68 characters.

Uppercase hexadecimal

All entered letters will be converted to
uppercase. A 1legal nonblank response need
not be justified, but must consist entirely
of the numerals 0-9, and the letters A-F
with leading and trailing blanks ignored.
All blanks will be treated as a legitimate
NULL specification. Maximum usable field
length is 68 characters.

Uppercase Character String
All letters are converted on entry to

uppercase; maximum usable field 1length is
68 characters.

6-40

7

GETPARM (SVC 20)

Alphanumeric Limited

All entered letters will be converted to
uppercase. Legal nonblank response will
be left—-justified, begin with a letter
A-Z, or one of the national characters
@, #, or $, and consist entirely of the
numerals 0-9, the letters A-Z, the
national characters, and trailing
blanks. An all blank response will be
treated as a legal NULL response
indicator. Maximum usable field length
is 68 characters.

(4) One-byte binary receiving field 1length minus one
(in characters).

(5) Eight-character, left-justified keyword used for
display purposes (and to support noninteractive
access via the Procedure Interpreter).

(6) Variable-length receiving field with default or
current value in place.

The Field Format Control Blocks for imbedded text are in
the following format:

+0

+2

+

LINE ADVANCE | SPACE ADVANCE

COUNT | COUNT
|
-1 | TEXT LENGTH
| MINUS ONE
TEXT

The parameters in this format are:

(1) One-byte binary Line-Advance-Count for display
control.

6—-41

GETPARM (SVC 20)

Outputs:

(2) One-byte Dbinary - Space—Advance—Count for
display control. (Line advance takes place
before space advance. Both take place before
display of keyword and receiving field.)

(3) -1 (=255).

(4) One-byte binary text field 1length minus one
(in characters).

(5) Variable-length text field.

(1) Receiving fields as modified by user
interaction or procedure specified data.

(2) Program Function Key Receiving Field set to
accepted AID byte or procedure specified value.

(3) Field error flags in control 1list reset to
ZERO.

4 Input parameters popped from stack upon return.

Function: The GETPARM SVC enables user programs (and OPEN) to

solicit and accept run—-time parameter information, and
to display and wait for acknowledgment of run—time
messages. The requested information (or response) is
gathered either through direct interaction with the user
(at the workstation) or by calling prespecified data in
the procedure which invoked the program. The program
issuing the GETPARM SVC need not be aware of the data
source; any interactive program that communicates with
the user exclusively using GETPARM requests which can be
identified and anticipated, can also be run in batch
mode from a procedure. The parameters supplied to
CETPARM are primarily related to the generation of a
meaningful display.

When displayed at the workstation, the GETPARM request
generates a header section, followed by the program-
supplied message, followed by the keyword identified
receiving fields and imbedded text section. These
requests are divided into three functional types. A
request for information should be indicated whenever one
or more receiving fields are present. The expected user
response is to modify one, all, or none of these fields
and to signal when ready by pressing the ENTER Kkey.

A request for selection should be indicated when a 1list
of valid choices has been displayed (rather than
modifiable receiving fields) and the expected user
response is to identify and signal his choice by
pressing one of the program function keys or the ENTER
key. A request for acknowledgment should be indicated
when the user has been asked to take some operator

6-42

GETPARM (SVC 20)

action, or merely acknowledge receipt of an infor-
mational message. In this mode, the expected user
response is to press the ENTER key as a ready signal.

When the issuance of a GETPARM SVC results in a screen
display, the contents of the screen (if in wuse) are
saved and are restored vwhen the user indicates
completion of his response.

GETPARM parameters should always be encoded with the
assumption that they must be capable of generating an
acceptable display. Lines 1 through 6 of the displays
are reserved for system-generated headers which assist
the user in responding to the GETPARM request. The
headers are varied according to request type with spe-
cial handling given when the issuer is OPEN. These
lines include display of the message number and the
issuer ID in the fixed format section of the message.
The message text is placed on the screen beginning with
colum 2 of line 7. One additional 1line beginning at
column 2 is displayed for each line—feed encountered.
The line-feed is not displayed and does not use a char-
acter position. The maxzimum length for a line of text
is 79 characters. The message section is completed with
a blank line.

The receiving field display section begins with column 2
of the mnext 1line after the message section. Each
receiving field is displayed with its associated keyword
as follows:

(a) The screen line position advances the indicated num-
ber of lines from the current position. If line ad-
vancement takes place, column position is set to 2.

(b) The screen column position advances the indicated
number of spaces from the current position.

(c) The eight-character keyword, followed by a blank,
followed by an "=" character, followed by a blank,
followed by the receiving field, followed by a blank
is displayed. If any part of the receiving field is
not on the screen, the keyword and field will not be
displayed and will not be validated. Fields flagged
as being in error will be blinked to attract user
attention.

Each imbedded text field is displayed as follows:
(a) The screen line position advances the indicated num-—
ber of lines from the current position. If line ad-

vancement takes place, column position is set to 2.

(b) The screen column position advances the indicated
number of spaces from the current position.

6-43

GETPARM (SVC 20)

(c) The variable length text is displayed followed by a
blank, If any part of the text 1is not on the
screen, no text is displayed.

The message text plus the receiving field display will
be truncated if it exceeds 18 1lines of displayable
information,

Default or current information in the receiving fields
is displayed as is without regard for entry control
information. However, this information will be flagged
for user correction if the format does not match when
the user presses the ENTER key.

After the display is generated, the cursor is placed at
the beginning of the first receiving field, or on type
"R" request, to the beginning of the first keyword field
which has an error flag set. A read is then issued to
wait for a legal user response. Upon a signal from the
user, the receiving fields are checked for legal con-
tents and, if all are correct, are moved into the pro-
gram's receiving fields. If any are in error, an error
message is generated in the display header, the field in
error 1is blinked, and another read is issued. When the
user has successfully supplied the information of his
choosing, control is returned to the user's program, and
if the screen was in use, its contents are restored.

The user can suspend GETPARM processing and enter the
Help Processor by pressing the HELP key. The screen
will be saved as is, and the issuance of a CONTINUE
command will return control to GETPARM with a restored
screen. The user can then reenter his program by
completing his response to GETPARM.

The program using GETPARM cannot assume that the user's
response (or the accessed procedure data) will be
valid. Consequently, the displayable parameters
presented to GETPARM include a parameter-group receiving
section with imbedded explanatory text, and a separate
message section. The GETPARM user 1is expected to
initiate a sequence of repeated requests until an
acceptable response is received. During this sequence
the requested information should be the same, while the
message changes to best explain the difficulties
encountered in the previous responses.

The request sequence indicator 1is used by GETPARM to
differentiate between an initial request and a request
for correction of material which the program did not
find satisfactory. An initial request (Type "I') will
be satisfied using procedure-specified data (located
using the keywords and the parameter reference name) 1if
available, generating a user—interaction only if all

6-44

GETPARM (SVC 20)

such data has been exhausted. (Each initial request
with a given PRNAME will consume one equivalent
specification statement in a procedure.) A request for
respecification (Type "R") will always generate a
user—interaction.

If user-interaction suppressor bit is set, initial re-

quests will access procedure-specified data if available,
but will not ordinarily generate a user—interaction.

6-45

Read File Descriptor Record

READFDR (SVC 24) NONRESIDENT

Inputs: Two words on the top of the stack, as follows:

Bytes 0-3: Address of the parameter 1list, in the format
given below.
Bytes 4-7: Ignored on input but used for output.

Parameter List Format:

Bytes 0-7:
Bytes 8-15:
Bytes 16-21:

Byte 22:
bits 0-3
bit 4 =1
bit 5 =1
bit 6 =1
bit 7 =1
Byte 23:

Bytes 24-27:
Bytes 28-31:

Bytes 32-35:
Bytes 36-43:
Bytes 44-49:

Primary search library name (LIBRARY)
File name (FILE)
Volume name for primary search library
(VOLUME)
Option flags:
Reserved
Alternate search library and volume (last
two entries in parameter 1list) are
present.
Read both the FDR1 and the first FDR2 (if
any), in ascending order, into the
160~-byte area specified by the FDR
receiving area. The FDRn field is
ignored.
Read the file prologue along with other
options that are set.
Read the file prologue only.
FDR record number:
FDRn = 0 if 80 bytes of FDR1l are to be
read; = 1 if 80 bytes of first FDR2
are to be read; = 2 if 80 bytes of
second FDR2 are to be read, etc.
Address of FDR receiving area (AREA)
Address into which to read the file
prologue. (Used only when bit 6 or 7 is
set in option flag.)
Reserved; should be zeros.
Alternate search library name (ALTLIB)
Volume name for alternate search library
(ALTVOL)

Note: The parameter list for READFDR may not be located in
segment 1 (user program reentrant segment).

Qutputs: A return code in the top word of the stack replacing

inputs:

6-46

Function:

READFDR (SVC 24)

Return code
Return code
Return code

0 - File label copied into memory

Volume not mounted

Volume exclusively used by other

user, no read

Return code 12 - All buffers in use, no read

Return code = 16 - Library not found

Return code = 20 - File label not found

Return code 24 - Attempt to read a file prologue
when none was present.

28 - Unused

32 - VIOC error. FDX1 and FDX2 do not
agree

36 - VIOC error. FDX2 and FDR do not
agree

49 - Invalid input parameters

44 - Disk I/0 error. Volume Table of
Contents unreliable

noan
o
[

Return code
Return code

imn

Return code

Return code
Return code

If returm code=0 only, the next word on the stack
contains the disk address of the FDR record read, in
the following format:

Byte 0 (high-order) - Record on block, from 0.
Bytes 1-3 - Block on volume, from O.

If return code nonzero, the contents of this word are
irrelevant on output.

When the alternate 1library name 1is supplied, the
library name and volume name entries in the parameter
list are modified if required to indicate the library
in which the specified file was found. The alternate
library is searched after the normal (Filenamel)
library.

To locate a disk file in the Volume Table of Contents
of the specified volume and copy its 1label (File

Descriptor Record) into the specified 80-byte memory
area.

Also to read the file prologue (only supported for

Word Processing files) and return the prologue to the
caller in the specified area.

6—-47

Rename Disk File

RENAME

Inputs:

Outputs:

Return code

(SVC 26)

NONRESIDENT

The top word of the stack addresses an argument list of
the following format:

Bytes 0-7:
Bytes 8-15:
Bytes 16-23:

Bytes 24-29:

0ld library name

0l1d file name or ignored

New library mname (if only library is to
be renamed) or new file name. (For 'Full
RENAME," the new file name.)

Volume name

Byte 30: Option flag
bit 0 =1 Bypass expiration date check
bit 1 =1 Rename a library (Bytes 16-23 of the
parameter list then contain a new library
name) .
bit 2 =1 File access rights for this request to be
limited to user LOGON rights.
bit 3 =0 Reserved; must be zero.
bit 4 =1 "Full RENAME" (i.e., rename both file and
library —— Bytes 32-39 must contain the
new library name.
bit 5-7 Reserved; must be zero.
Byte 31: Not used.

Bytes 32-39:

New library name (for ''Full RENAME").

The file or library identified by the old name is
renamed (old file name is ignored for rename of just a
library). Consequently the contents of the file name
or library name entries of the file index records
and/or file descriptor record in the Volume Table of
Contents are replaced by the new file name and/or
library name.

A return code is placed in the top word of the stack
replacing inputs:

]

0o - File or library renamed.

Return code = 4 - Volume not mounted.

Return code = 8 — Volume used exclusively by other user.

Return code = 12 - All buffers in use, no rename.

Return code = 16 ~ Library not found.

Return code = 20 - File not found.

Return code = 24 - Update access to some fileprotection
class denied, no rename.

Return code = 28 - Unexpired file, no rename.

Return code = 32 -~ File in use, no rename.

Return code = 36 - VIOC error. FDX1 and FDX2 do not
agree.

Return code = 40 - VIQOC error. FDX2 and FDR do not agree.

Return code = 44 -

Invalid argument list address.

6—-48

Function:

RENAME (SVC 26)

Return code = 48 - I/0 error. Volume Table of Contents
unreliable. :

52 - New file name or library name already
exists, no rename.

56 -~ New file name invalid (or first
character '#'), no rename.

Return code = 60 -~ The VIOC is currently full --
insufficient space exists for the new
FDX1/FDX2 ("Full RENAME" only).

64 - Reserved bits in the Parameter 1list
Options Byte are non—zero.

Return code

Return code

Return code

To change the name of a disk file or library on a
volume. The structure of the Volume Table of Contents
may be affected in the case of a '"Full RENAME." The
file must not be in use (open) when the RENAME is
attempted, or it will fail (with return code 32).
Similarly, no file in a library to be renamed may be in
a file protection class for which the issuer does not
have update access rights. Likewise, no file in such a
library may be unexpired unless option flag bit 0 is set.

6-49

Scratch Disk File

SCRATCH

Inputs:

(sve 27 NONRESIDENT

The top word of the stack addresses an argument list of

the following format:

not used

| 1 byte

option flag

1 byte

volume name

6 bytes

file name or ignored

8 bytes

Argument list | library name

| 8 bytes

The option flag indicates whether password checking is

to be bypassed:

'1' if file access rights

for this request

|
I
I to be limited to user logon rights

'1' to scratch all closed and expired files

(scratch library if all files are closed,
expired, and update-accessible).
'1' to bypass expiration date check.

I
l
|
|
| in library for which update access is allowed
!
!

File name: When specified, indicates the specific

member in the library to be deleted.
bit 1 (scratch entire library) is set.

6-50

Ignored if option

Outputs:

Function:

SCRATCH (SVC 27)

The file descriptor record of the file specified by the
given filenames is scratched from the Volume Table of
Contents of the specified volume and the disk space
occupied by the file 1is deallocated. If an entire
library is to be scratched, the file descriptors for
all included files are eliminated and all space 1is
deallocated.

A two-field return code on top of the stack replacing
input:

Byte 1 Byte 2 Byte 3 Byte 4

I |
| |
| return code field
|

Lost extent size in blocks during scratch
file or 1library (size equals zero for no
extent lost)

Return code
Return code
Return code
Returmn code
Return code
Return code
Return code

0 - File or library scratched from volume
4 - Volume not mounted
8 - Volume used exclusively by other user
12 - All buffers in use, no scratch
16 - Library not found
20 - File not found
24 - Update access to file protection
class denied (singlefile scratch
only)
28 - Unexpired File, no scratch
(singlefile scratch only)
32 - File in use, no scratch
36 - VIOC error. FDX1 and FDX2 do not
agree
40 ~ VIOC error. FDX2 and FDR do not
agree
44 - Invalid argument list address
48 - I/0 error. Volume table of contents

Bouw o onowowouon

Return code

Return code
Return code

Return code

Return code
Return code

unreliable

Return code = 52 -~ Open, protected, and/or unexpired
file(s) ©bypassed in scratching
library

To delete a disk file or library from a volume.

Note: Scratching the only file in a library
(directory) eliminates the library itself.

6-51

Extract Data From System Control Blocks

EXTRACT (SVC 28) NONRESIDENT

Inputs: A variable-length parameter list on the stack top. The
high-order byte of the lowest—-addressed word designates
the class of data required.

Class codes are:

Binary 0 - Limited output

Binary 1 = Full output

Binary 2 ~ Program exception PCW

Binary 3 - User-supplied list of items
requested

Binary 4 - User-supplied list of items
requested with additional input
required

Binary 5 to 255 - Reserved

For classes 0, 1, and 2, a one-word parameter is supplied.
The high-order byte of the word designates the class code
(i.e., binary 1, 2, and 3, respectively). The three 1low-
order bytes contain the address of a segment 2 area to
receive the data (which must be on the existing stack or in
the I/0 buffer area).

For class 3, the parameter list consists of a header word
and a list of 8-byte entries corresponding to the requested
entries. The high-order byte of the header word designates
the class code (i.e., binary 3), the next 1lower byte is
reserved and should be zero, the two 1low-order Dbytes
contain a count of the item entries that follow. Each
8-byte entry is in the following format:

Bytes 0-3 - Item identifier code. See EXTRD macro for a
list of possible codes.
Bytes 4~7 - Address of a segment 2 area to receive the item.

For class 4, the parameter list consists of a header word
and a list of 8-byte entries corresponding to the requested
entries. The high~order byte of the header word designates
the class code (i.e., binary 4), the next 1lower byte is
reserved and should be zero, the two low-order bytes con-
tain a count of item entries that follow. Each 12-byte
entry is in the following format:

Bytes 0-3 - Item identifier code. See EXTRD macro for a
list of possible codes.

Byte 4 - Length in bytes of area to receive the data.

Bytes 5-7 - Address of a segment 2 area to receive the data.

Bytes 8-11~ Address of additional input for this item. See
EXTRD macro for a description of these items.

6-52

EXTRACT (SvVC 28)

Outputs: For classes 0-2, data in area addressed by word on
stack, as follows, by ascending addresses:

Class 0:

(1) Total physical area in bytes not currently
resident (4 bytes).

(2) Number of files which current task may open
simultaneously (2 bytes).

(3) Workstation number associated with requesting
task, or -1 if none (2 bytes).

(4) Remaining stack space in bytes after return
from 'EXTRACT' (4 bytes).

Class 1:

(1) Total physical area in bytes mnot currently
resident (4 bytes).

(2) Number of files which current task may open
simultaneously (2 bytes). ’

(3) Workstation number associated with requesting
task, or -1 if none (2 bytes).

(4) Remaining stack space in bytes after return
from 'EXTRACT' (4 bytes).

(5) One day in clock units (4 bytes). '

(6) System default library's volume name (6 bytes).

(7) System default library name (8 bytes).

(8) Task's default printer number, or -1 if none
(2 bytes). :

(9) User program library volume (6 bytes).

(10) User program library name (8 bytes).

(11) Current file-access bit map for ‘'execute'
access from Program File Block (PFB--4 bytes).

(12) Default nonoutput volume for 'OPEN' (6 bytes).

(13) Default nonoutput library name (8 bytes).

(14) Current file-access bit map for ‘'read' access
from Program File Block (4 bytes).

(15) Default output volume for 'OPEN' (6 bytes).

(16) Default output library name (8 bytes).

(17) Current file-access bit map for 'update' access
from Program File Block (4 bytes).

(18) Number of segment 2 buffer pages currently
available (2 bytes).

(19) Print output mode (1 byte).

(20) Default output file-access protection class, or
blank (1 byte).

(21) User logon identification (3 bytes).

(22) Paging priority from TCBSCC (1 byte).

(23) Suggested lines-per-page for print files
(1 byte).

(24) Operating System version number (A packed
number VVRRPP, where 'VV' is the version, 'RR'
is the revision, and 'PP' is the patch level)
(3 bytes).

6-53

EXTRACT (SVC 28)

Class 2:

@

Class 3:

Program Control Word (PCW) at time of most
recent program exception for which a user exit
was specified (8 bytes).

Data is returned as specified in the parameter
list. (See EXTRACT macroinstruction description
for possible values.)

Class 4:

ID=EXTRDIDDEVICE:

¢))
@
&)
Y]
(5)
(6

@

Device class (1 byte).

Device type (1 byte).

Usage - 'EX' (exclusive), 'SH' (shared), or
'DT' (detached) (2 bytes).

Task identifier of device owner, or -1 1if none
(4 bytes).

Volume name of removable volume (disk or tape
only) . Blank if nothing mounted. (6 bytes).
Volume name of fixed volume (disk only). Blank
if nothing mounted (6 bytes).

4 bytes of binary zeros (reserved).

ID=EXTRDIDVOLUME :

@
2
3
)

(5)
(6)
0))
(8
9

(10)
11)

(12)

(13)

Device address, or -1 if volume mnot mounted
(1 byte).

Volume type: 'F' for fixed, 'R' for removable,
or blank if not mounted. (2 bytes).

Label type: 'SL' (standard 1label), 'NL' (no
label) , or blank if not mounted. (2 bytes).
Usage-—'SH' (shared), 'RR' (restricted re-
moval), 'PR' (protected), 'EX' (exclusive), or
blank if not mounted..

Task identifier of volume mounter, or -1 if
none (4 bytes).

Blocks per cylinder (2 bytes).

Maximum transfer in bytes (2 bytes).

Cylinders per volume (2 bytes).

Cylinders per physical volume, including bad or
unused blocks (2 bytes).

Number of files open on this volume (2 bytes).
Sector type (diskette only): soft sector (S),
hard sector (H)

Addressing in effect (diskette only):
Non-standard (N), Standard (S)

Unused (2 bytes)

654

EXTRACT (SVC 28)

ID=EXTRDIDOTASK:

(¢}
¥)]
(3
(4)
(5)

Workstation device number of task specified, or
-1 if none (1 byte).

Current user ID for task specified, or blank if
none (3 bytes).

Current user name for task specified, or blank
if none (24 bytes).

Type ('F', 'FS', 'B', 'BS') of task specified
(see TASKTYPE) (2 bytes).

18 bytes of binary zeros (reserved).

ID=EXTRDIDTAPEVOL:

(1)

(2)
(3

(@)

(5)
(6)

)
(8)

Device address, or -1 if volume not mounted
(1 byte).

1 byte of binary zero (reserved).

Density, BPI in binary: 556, 800 or 1600
(2 bytes).

Label type: ‘'AL' (ANSI), 'NL' (no label), 'IL’
(IBM label), or blank if volume not mounted.
(2 bytes) .

Usage--'SH' (shared), 'EX' (exclusive), or

blank if not mounted. (2 bytes).

Task identifier of tape mounter, or -1 if none
(4 bytes).

Current file sequence number (2 bytes).

Six bytes of binary zeros (reserved).

ID=EXTRDIDDEVLIST:

@

(2)
(3)

Total number of devices for specified device
class (1 byte).

Number of device addresses supplied (1 byte).
Device address list (1 byte for each device
address) .

ID=EXTRDIDDLPNAME:

)
(2)
(3)
(@)
(5)

(6)
@

€:))

Bit map of devices on DLP (4 bytes)

First device on DLP (2 bytes)

Type of DLP (1 = 22V06~1, 2 = 22V06-2,
3 = 22v06-3) (1 byte)

Number of 1lines (RS=232) controllable by the
DLP (1 byte)

Microcode file status (X'00' if stopped, X'80'
if loaded) (1 byte)

Reserved for future use (3 bytes)

Microcode file name (8 bytes, zero if not
loaded)

Microcode library name (8 bytes, zero if not
laoded)

6-55

EXTRACT (SVC 28)

(9) Microcode volume name (6 bytes, =zero if not
loaded)

(10) Reservation status of DLP (X'80' if reserved,
X'00' if not reserved)

(11) Task number of the task which reserved the DLP
(3 bytes)

ID=EXTRDIDDLPDEV#:

(1) Device status flag (X'80' if open, X'40' if
reserved, zero otherwise)

(2) Task number of the task which reserved the DLP,
or zero if device is unreserved (3 bytes)

(3) Name of the DLP on which the device is SYSGENed
(4 bytes) :

ID=EXTRDIDCLUSTER:

(1) Device number of the archiver driver, or zero
(zero may indicate that there are no other
devices on the cluster, or that among the
devices there is no archiver drive)

(2) Unused (14 bytes)

ID=EXTRDVOLVCRB:
(1) Volume Control Block address (4 bytes)

Function: Extracts data from system control blocks which may be
of interest to user programs.

6-56

Mount Disk Or Tape Volume

MOUNT

Input:

(svCc 30) NONRESIDENT

The input 1list is 8 bytes long, unless the high—order
bit of the first byte in the Volume Name field (Bytes
2-7) is set to 1, in which case the parameter list is 16
bytes long., The parameter 1list on top of the stack
contains:

Byte 0 - Flags

For disk mount, the flags are used as follows:

= 1 - To mount an unlabelled volume.
= 0 -~ To mount a standard labelled volume.
Bits 1-2 - Two bits used for volume usage description:
=00 - Mount for shared use.
=01 - Mount with restricted removal.
=10 ~ Mount with protected use, and restricted
removal.
1 - Mount for exclusive use.
1 - Mount a fixed volume.
= 0 - Mount a removable volume.
1 - 'No message' option (see function below).
1 - Mount volume for bypass-label-processing
(see function below).
Bit 6 = 1 - The volume to be mounted allows spool files.
Bit 7 = 1 - The volume to be mounted allows work files.

For tape mount, the flags are used as follows:

Bit 0 = 1 - To mount an unlabelled volume.
= 0 - To mount a standard labelled volume.
Bit 1 = 1 - Volume mounted for exclusive use.
= 0 - Volume mounted for shared use.
Bit 2 = 1 - Unused.
Bit 3 = 1 - Mount an IBM tape volume.
= 0 - Mount an ANSI tape volume.
Bit 4 = 1 - 'No message' option (see function below).
Bit 5 =1 - Mount volume for bypass—label-processing
(see function below).
Bit 6-7 - (Unused).

Byte 1 - Device number in binary (0-255).

Bytes 2-7 - Volume name (if high—order bit is set to 1,

then an 8-byte extension is added to the
parameter list).

6-57

MOUNT (SVC 30)

Parameter List Extension

Byte 8

Bit 0 = 1 - Non-standard addressing in effect (for
soft-sectored diskettes only).

Bit 1 =1 - 'No display option': do not display message
on user's workstation.

Bits 2-7 - (Unused - must be zero)

Bytes 9-15 - (Unused ~ must be zero)

Outputs:

Binary Return Code in the top word of the stack,
replaces the input parameter.

The following return codes are set when the new volume
is physically mounted on the drive, and the
corresponding VCB updated with the mounter TCB address,
new volume 1label type, volume name and VIOC Block
address (for labelled volume only). The sharing status
('shared' or 'exclusive') and the initialization status
are updated as specified in the 'MOUNT' input parameter.

0 - Success.

4 - Successful mount, but new volume label type does
not agree with input parameters

8 - Successful mount, but new volume name is not the
volume name requested

12 - Disk or tape 1I/0 error detected while reading the
new volume label or the new volume has a bad VTOC.
VCBSER 1is set to blank. This return code is set
when the new volume is physically mounted on the
drive, but the VCB cannot be filled in.

The following return codes are set without the mount
message being shown on the workstation. The VCB for the
volume is unchanged by the mount attempt.

16 - Device 1is not a disk or a tape, or device number is
invalid.

20 — Device is detached.

24 - Disk does not have the requested volume type (fixed
or removable) .

28 - Request to mount an unlabelled volume on a disk
unit other than an 2270V diskette.

32 - Input volume name is blank.

36 - Requested volume is already mounted on a disk
unit. Also set for a duplicate volume name.

40 - Volume currently in use (by the operating system or
user) .

44 - Currently mounted volume reserved by another user
for exclusive use.

48 - I1/0 buffer space insufficient to perform mount.

52 - Cannot allocate space for Tape 1/0 control blocks.

6—58

MOUNT (SVC 30)

56 = Invalid request: work and/or spool filing requested
in a non—labelled volume.

60 - Invalid request: non—-standard addressing attempted
with standard label option or on a hard-sectored
device.

64 - Wrong media: soft-sectored diskette inserted into
a device for hard-sectored diskettes only.

68 — Wrong media: hard-sectored diskette inserted into
a device for soft-sectored diskettes only.

72 - Wrong media: hard-sectored diskette inserted for a
non-standard addressing request.

76 — Wrong addressing mode: MOUNT request is for
standard addressing but diskette is non—standard.

80 - Device reserved by another user.

84 MOUNT failed: aborted by user or operator request.

Function:

To mount a disk or tape volume. The input parameters are first
validated, and if successful, a mount message will be displayed on
the workstation to direct the user to mount the proper volume,
unless the NODISPLAY option is chosen, in which case the message
will appear only on the operator console. When the volume is
mounted and the device is ready, the new volume label will then be
read and checked, and the information in VCB is updated.

The NO MESSAGE option indicates that the volume to be mounted is
already on the drive. No mount message will be displayed, and the
VCB information is updated from that volume label.

The BYPASS-LABEL~PROCESSING option is used by the disk or tape
initialization program and the floppy copy program (FLOPYDUP). At
SVC EXIT, the VCB information is updated as follows:

VCBSER is set to input bytes 2-7.

VCB is set to be NOVTOC to allow non—labelled processing.

VCB is set for exclusive use by the user.

VCBFLAGSINIT = 1 to indicate that the VCB information could be
inconsistent with the volume label.

NOTE:

A non-standard addressing option is now supported which allows the
user to format a soft-sectored diskette in any combination of
sector size and density. The use of this option is intended to be
limited to specialized utilities. User programs which employ this
option are responsible for performing direct and sequential I/0 on
a physical-sector basis. The user program must calcu- 1late the
sector size and addresses, set mode, and set density. When
non-standard addressing is specified, the XIO SVC will not perform
extent validation or address translation, but simply passes the
address to the firmware via the I/0 Control Word (IOCW).

6-59

Modify Program Exception Exit Status

PCEXIT

Inputs:

(SvC 31) NONRESIDENT

One or two words on stack top. The lower-addressed
word contains class codes (0, 1 or 2 in binary) in its
high-order byte. For class 0 only, the three low-order
bytes of this word contain the specified exit address.
The higher-addressed word, present for class O only,
contains a bit map of exceptions for which the user
exit is to be taken.

Class codes are:

0 - Establish new program exception exit address
and conditions (exception list) , saving the old
status if any.

1 - Restore previous program exception status,
discarding current status.

2 - Cancel all program exception exits for the
current program, discarding all status.

The bit map of exceptions is as follows:
Bit 0 - Unused
Operation
= Privileged Operation
- Execute
- Protection
Addressing
- Specification
- Data
- Fized Point Overflow
~ Fixed Point Divide
10 - Decimal Overflow
11 - Decimal Divide
12 - Supervisor Call Range
13~15 - Unused
16 — Floating Point Overflow
17 - Floating Point Underflow
18 - Significance
19 - Floating Point Divide
20-23 - Unused
24 - Stack Overflow
25-31 - Unused

Lo NP WLWNOFHO
I

6-60

PCEXIT (SVC 31)

Outputs:

Program exception element(s) chained or removed from
chain rooted in TCBPXE of the issuer's Task Control
Block. Input parameters removed from stack.

Function: To modify the handling of program exceptions occurring

Note:

in unprivileged user code, supplying or eliminating a
current user exit address to receive control in the
event of such an exception.

When a program issues a LINK supervisor call, any
current user program exception exit is eliminated, but
the current status 1is preserved for restoration by
UNLINK. (Execution of PCEXIT SVC Class 1 will not

restore a program check exit status existing prior to a
LINK.)

6-61

Set Or Reset Timing Interval

SETIME/RESETIME (SVC 32) NONRESIDENT

Inputs:

Outputs:

Function:

Word on top of stack. The high-order byte of the
lower-addressed word contains a class code in binary as
follows:

X'40' - Set timing interval to expire at time of day
specified in the three low—-order bytes of
parameter word, where this time is in 1/100
seconds into a day, from midnight. To request
expiration at some time tomorrow, the value
supplied must be 24 hours plus the required
time of day. A requested time less than the
current time of day will result in immediate
expiration.

X'00' - Set times interval to expire after the number
of 1/100 second units in the three low-order
bytes of parameter word have elapsed.

X'80' - Remove timing interval previously established
~ (can require removal of a TQEL from the time
queue) .

A Timing Queue Element (TQEL) is placed in
time-sequenced order on the timing queue (from MCBTIMQ)
or is removed from that queue. The clock comparator
value is modified if required. The input word is
removed from the stack. The issuing task continues.

To establish a timer interval, which may then be

awaited by means of the CHECK supervisor call, or to
remove an unCHECKED interval.

6-62

Supply Program Parameters

PUTPARM (SVC 33) Non-Resident

Inputs: The top 28 bytes of the stack contain the parameter

list as foll

OoWs:

Byte 0: Flags

Bit 0

Bit 1
Bit 2
Bit 3

Bit 4
Bit 5

S N N =

Bits 6-7

Byte 1:

Bytes 2-3:

Bytes 4-11:

Bytes 12-19:

Bytes 20-27:

DISPLAY option

ENTER option

REFER option

CLEANUP option

MERGE option

NOMERGE option

Enable Repeat Count

CLEANUP labelled FMTLIST (Bit 2 must
also be set)

Reserved, must be zero

The AID character of a PFkey to be passed to
the GETPARM if this is a backward reference;
otherwise, not used and must be zero.

Repeat count as follows (if flag bit 4 is
on):

X'0000' Never repeat
X'1'-X'7FFF' Repeat n times
X'8000' Repeat indefinitely

If flag bit 4 is off, field is not used and
must be zero.

If REFER NOMERGE or labeled CLEANUP option,
bytes 4-11 contain the label of the FMTLIST
to be referenced. If REFERLABEL is used in
PUT option, ©bytes 4-11 contain the
REFERLABEL., For unlabelled CLEANUP option,
bytes 4-11 are all blanks. Otherwise, byte
4 must be =zero, bytes 5-7 contain the
address of the supplied FMTLIST (the
destination FMTLIST for the REFER MERGE
option), and bytes 8-11 are unused and must
be zero.

The PRNAME to be associated with the

FMTLIST.

The label of the FMILIST to be created or
accessed. Blanks indicate that no label is
specified. If the MERGE or MERGE,REMOVE
option is being used, bytes 20-27 contain
the label of the source FMTLIST.

6-63

PUTPARM (SVC 33)

Outputs:

PUTPARM returns to the issuer eight bytes on the
top of the stack:

Bytes 0-3: Return Code:

0 - Successful.

4 =~ Backward reference label not
found.

8 - Bad FMTLIST supplied.

12 - Error found in previously
constructed Parameter
Reference Blocks (PRBs).

16 - 1Invalid input parameter
while using CLEANUP option.

20 - Invalid input parameter

while using MERGE option.

Bytes 4-7: If Return Code is 0, address of
FMTLIST specified in the input or
backward referenced.

Function: The PUTPARM SVC has three major functions. The primary

PUT

function (PUT function) is to supply parameters to
another program's GETPARMs before issuing the LINK SVC
to invoke. The second function (the CLEANUP function)
is to cleanup the various internal data structures
created by the PUT function. The third function (the
REFER function) is to allow the calling program access
to any parameters which the user may have changed at
GETPARM time (the MERGE option), or to return the
address of a previously created and labelled FMTILIST
(the NOMERGE option).

Both the PUTPARM macro and the LINKPARM macro call the
PUTPARM SVC. The PUTPARM macro allows only the
parameterization of another program (the PUT function),
while the LINKPARM macro accesses all the functions of
the PUTPARM SVC.

PUTPARM's primary use is to enable a program to supply
parameters to a GETPARM issued by another program (the
PUT function). The program supplying the parameters
must link to the program issuing the GETPARM via the
LINK SVC. A program may not wuse PUTPARM to pass
parameters to its own GETPARMs.

6-64

'PUTPARM (SVC 33)

The parameters to be supplied to the GETPARM are
contained in a format list (FMTLIST), created with the
FMTLIST macroinstruction. (A FMTLIST is identical to a
KEYLIST, except that a FMTLIST contains no PRNAME.)
When a PUTPARM is issued, it verifies that the specified
FMTLIST is in the proper format, then saves the FMTILIST
in a segment 2 buffer for subsequent GETPARM use.
PUTPARM also constructs a Parameter Reference Block
(PRB) to save the label, PRNAME, display option, and
certain other information. The PRB is constructed in
the segment 2 buffer area allocated by the PUTPARM SVC
and chained to the previously constructed PRBs.

When a GETPARM in the linked-to program is issued, it
searches through the current link level's saved (and
unused) PRBs for one whose PRNAME matches the PRNAME of
the GETPARM's KEYLIST. If one is found, the value for
the keywords in the FMILIST will be copied to the
GETPARM KEYLIST (left-aligned and truncated). To
solicit modifications by the user, A GETPARM workstation
transaction may be requested by selecting the DISPLAY
option; otherwise, a workstation transaction is
suppressed. The KEYLIST (possibly modified by the user)
is merged back into the FMTLIST for later backward
reference.

If more than one GETPARM is issued with the same PRNAME,
the PUTPARM-saved FMTLISTs will be used in the order in
which they were supplied to the PUTPARM SVC. Normally,
no two GETPARM requests access the same FMTLIST. A
FMTLIST may be declared to be for repeated use via the
macro parameter REPEAT=,

A FMTLIST may be labeled (via the LABEL= parameter) for
later use. The backward reference facility allows a
program to reuse the (possibly updated) parameters of a
labeled FMTLIST. If a backward reference 1label is
supplied to the PUTPARM SVC rather than a FMTLIST (e.g.,
via the REFERLABEL= parameter of the LINKPARM macro), a
pointer to the 1labeled FMTLIST will be stored thus
causing GETPARM to reuse the labled FMTLIST.

As an example of the backward reference facility,
suppose that the program being parameterized requests
the same set of parameters several times and that the
calling program is suppressing the workstation trans-—
actions. The calling program could issue LINKPARM PUT
several times, each specifying fully the GETPARM
parameters. If one of the parameters was in error, the
user would be forced to correct each transaction. 1f
instead, only the first LINKPARM PUT specified the
parameters (and was labeled) and the others referred
back to the first, the user would only have to correct
the first transaction.

6-65

PUTPARM (SVC 33)

CLEANUP

The PUTPARM SVC also supports an override facility., If
the PRNAME specified by the linking program matches the
LABEL of a FMTLIST specified by the linked—~to program,
the parameter values in the 1linking program's FMTLIST
will override those of the linked-to program's FMTLIST.
Parameters not specified by the linking program retain
the values specified by the linked-to program.

For example, suppose program 1 issues the following
LINKPARM (FMTL1 sets KEY2 to 'PROG1'):

LINKPARM PUT, PRNAME='OVERRIDE',FMTLIST=FMTL1

and then links to program 2. Now suppose that program 2
issues the following LINKPARM (FMTL2 sets KEY1 and KEY2
to 'PROG2'):

LINKPARM PUT,PRNAME='DEMO',LABEL='OVERRIDE',
FMTLIST=FMTL2

and then links to program 3. A GETPARM for PRNAME
'DEMO' by program 3 will set KEY1l to 'PROG2' and KEY2 to
'PROGL'.

As well as passing parameters to GETPARMs, PUTPARM may
also pass a PFkey. This may be done in one of two ways,
via either the PFKEY= or AID= parameter. Both can pass
the full range of 32 PFkeys plus ENTER. PFKEY= takes
either the actual key number (1-32) or the keyword
ENTER. AID= takes the 'AID' character of the PFkey,
where 'A'-'P' correspond to PFkeys 1-16 respectively,
'a'~'p' correspond to PFkeys 17-32 respectively, and @
corresponds to the ENTER key. Both methods have the
same result (PFKEY= values are translated into AID=
values for the SVC by the macro). The way in which the
PFkey is passed to GETPARM depends on whether the
LINKPARM is a normal or a backward reference.

In the normal case, the PFkey is placed into the first
byte of the FMTILIST addressed by FMILIST= by the
LINKPARM macro. Note that the original FMTLIST is
modified. In the case of a backward reference, the
PFkey is placed onto the stack and then into the FMTLIST
buffer. The original FMTLIST is not modified in this
case.

The CLEANUP option is used to deallocate all the PRBs
(and their associated FMTLISTs) chained to the Program
File Block (PFB) of the current link level and above.
This option enables the user to free the segment 2
buffers allocated for PUTPARM use. If no REFZRLABEL is
provided on the call, all PRBs and FMTLISTs at the

666

REFER,
NOMERGE

REFER,
MERGE

PUTPARM (SvC 33)

current link level and above are removed. If a
REFERLABEL is provided, only the PRB and associated
FMTLIST vreferenced by REFERLABEL is removed. The
CLEANUP option may be used concurrently with the REFER
option via specification of the REFER,REMOVE option in
the LINKPARM macro (see below). The CLEANUP function is
useful for programs which loop executing a large number
of LINKPARMs to prevent FMTLIST buffers from becoming
full.

The REFER,NOMERGE function of the PUTPARM SVC is to
return the address (in the segment 2 buffer) of a
previously created and 1labeled FMTLIST without the
overhead of creating a new FMILIST or a reference
pointer, This function 1is used primarily by the
Procedure Interpreter.

This feature is used primarily by programs which desire
to keep track of any GETPARM parameters which a user
might have overridden. This option allows the user of
the LINKPARM macro to specify both a FMITLIST and a
REFERLABEL. The contents of the FMTLIST addressed by
the REFERLABEL= (the source) are merged into the FMTLIST
addressed by FMILIST= (the destination). Fields which
are present in the destination but not the source are
left unchanged. Fields which are present in the source
but not the destination are ignored. The MERGE option
may be combined with the CLEANUP option (the MERGE
option is performed first) via the REMOVE operand.

6—67

Set Task-Related Defaults

SET

Inputs:

(SVC 35) NONRESIDENT

A variable-length parameter 1list omn the stack top,
consisting entirely of address pointers or words
containing binary zeros. The last word of the list
must have its highest bit on ('1'). Nonzero words
address data items which replace corresponding task
defaults as follows:

Index of Parameter Length Corresponding
List Address Default of Item Procedure Keyword

0 ETCBLINKVOL 6 PROGVOL
4 ETCBLINKNAME 8 PROGLIB
8 unused - -

12 ETCBDEFVOL 6 INVOL

16 ETCBDEFFILEl 8 INLIB

20 unused - -

24 ETCBDEFVOLO 6 OUTVOL

28 ETCBDEFFILE10 8 OUTLIB

32 ETCBDEFVOLS 6 SPOOLVOL

36 ETCBDEFVOLW 6 WORKVOL

40 ETCBDEFPRT 1 PRINTER

44 ETCBPRTTYPE 1 PRNTMODE

48 ETCBFPCLASS 1 FILECLAS

52 ETCBLINEAGE 1 LINES

56 ETCBPRTCLASS 1 PRTCLAS

60 ETCBFORMNO 1 FORM##

64 ETCBUPDVOL 6 RUNVOL

68 ETCBUPDNAME 8 RUNLIB

72 ETCBJOBSTATUS 1 JOBQUEUE

76 ETCBJOBCLASS 1 JOBCLASS

80 ETCBJOBLIMIT 4 JOBLIMIT

Outputs:

Function:

is modified as
removed from the

The task's Extended Task Control Block
requested. The parameter 1list is
stack.

To allow programs (especially the system's Procedure
Interpreter) to modify default values. Most of these
can also be modified by means of the ‘'SET' command.

Fields ETCBLINKVOL or ETCBLINKNAME modified by means of

this SVC routine will be restored to their previous
values when the issuing program UNLINKs.

6—68

Transmit Intertask Message

XMIT

Inputs:

Outputs:

SVC 36 RESIDENT

Two words on top of the stack as follows:

Byte 0, Bit O

[
(=]

Wait if not enough buffer space.
1 NOWAIT option, return if not
enough buffer space.
1= 0 OTHERTASK option, transmit only
to other tasks.)

2-7= 0 (Reserved)
Bytes 1-3 Address of a message to Dbe
transmitted.
Bytes 4-7 Name (any characters) of receipt

port for messages.

The supplied message is placed in a system message
buffer. This is copied to the address specified by the
receiver as a result of the CHECK SVC routine with the
MESSAGE option. The first two bytes of the supplied
message indicate its length, including those bytes, and
must be not greater than 2016.

Return codes are placed in a word on the stack . top,
replacing the inputs:

0 - Successful.
4 - No receiving port with the specified name.

8 - Unable to insert message in receiving port's
message buffer -- insufficient remaining space
in message buffer (NOWAIT option only).

12 - Unable to insert message in receiving port's
message buffer due to receiving port's use of
PRIVILEGED option.

16 - Message not transmitted; OTHERTASK option was
specified and the designated message port
belongs to the XMIT-issuing task.

Function: To communicate between user tasks, or between a user

task and a specific subsystem of the operating system.

6—-69

Create Intertask Message

CREATE (SVC 37) NONRESIDENT

Inputs:

Outputs:

Function:

Two words on top of stack, as follows.

Byte 0, Bit 0 = 0 Receive all messages.
1 Privileged Option.
1-7= 0 (Reserved)

Byte 1 Reserved (X'0').

Bytes 2-3 Space to be allocated in buffer
to receive messages (not greater
than 2016).

Bytes 4-7 Name (any characters) of receipt

port for messages.

Resident buffer with specified name created to receive
intertask messages.

Return codes are placed in a word on the stack top,
replacing the inputs.

0 -

4 -

12 -

Allows
sent by

Successful.

Another task has activated the specified port
name.

Same task has already activated the specified
port name.

GETMEM failure.

the issuing task to receive intertask messages
XMIT (SVC 36) to the specified port name,

rejecting any messages from non-privileged state code

or from

tasks that are not dedicated system tasks if

the port was created with the PRIVILEGED option.

6~-70

Destroy Intertask Message Buffer

DESTROY (SVC 38) NONRESIDENT

Inputs: One word on top of stack, containing name of one of
this issuer's message receipt ports.

Outputs: The message buffer associated with the specified name
is eliminated. If no such message buffer has been
CREATEd by this task, the issuer is informed by a

return code.

Return codes are placed in a word on the stack top,
replacing the inputs:

0 - Successful.

4 - One or more messages were not received and are
lost; otherwise successful.

8 -~ No such message buffer was allocated by this
task.

Function: To remove from the issuing task the ability to receive
messages directed to the specified name.

6-71

Set Cancel Exit Options

CEXIT

Inputs:

Outputs:

(SVC 39) NONRESIDENT

One or three words on stack top. For the CANCEL
option, a word of binary zeros 1is on the stack.
Otherwise, three words of the following format:

Byte 0 Flags
Bit 0 = 1 SET Option.
Bits 1-2 = 00 Debug enabled.
= 01 NODEBUG Option.
= 11 DUMP option.
Bit 3 0 HELP Key enabled.

1 HELP Key disabled.

Bytes 1-3 Address of User Cancel Exit Intercept
Routine, or zero.

Bytes 4-7 Address of User-Supplied Message to be used
in place of the "CANCEL PROCESSING'" Menu
descriptions, or zero.

Bytes 8-11 Reserved (must be zero).

PFB updated with CEXIT options as specified with
parameters., Input parameters removed from stack.
Abnormal termination occurs if either an invalid Cancel
Intercept Address is provided (Message 0001 by SVC39)
or an invalid Cancel Menu Message Mask Address is
provided (Message 0002 by SVC39).

Function: To set CEXIT options in the current link level PFB.

6-72

Dismount Disk or Tape Volume

DISMOUNT (SVC 41) NONRESIDENT

Inputs: 8 bytes on top of stack:

Byte 0
Bit 0 = 0
=1
Bit 1 =1
Bits 2-7
Byte 1
Bytes 2 ~ 7

-~ Dismount disk volume.

-— Dismount tape volume.

-- No display option: do mnot write to
caller's workstation.

-~ Reserved; must be zero.

-- Reserved; must be zero.

-~ Volume name.

Outputs: 4 bytes of Return Code on stack top, replacing input:

0
4

8

12
16
20
24
28
32

Succes
Input

input

Volume
Volume
Device
Volume
Volume
GETMEM
Device

sful

volume name is blank, or bytes 0-1 in
are nonzero

not found

not dismountable

detached

in use by a user or the operating system
reserved by another user

failure

is reserved by another task

Function: To perform disk and tape dismount operations for the
volume specified in the input.

6-73

Protect File or Library

PROTECT (SVC 42) NONRESIDENT

Inputs: The top word of the stack addresses an argument list of
the following format:

| New Expiration Date | 3 Bytes
or Retention Period
New ID of Owmer 3 Byte
New Protection Class 1 Byte
Option Flag 1 Byte
Volume Serial 6 Bytes
File Name or Igmored 8 Bytes
Argument List Library Name 8 Bytes

The Option Flag indicates which protection data is to
be changed and whether to protect a file or a full
library:

I
| = '1' To Set Owner ID

|

= '1' To Set Protection Class

'l' If Expiration Date Supplied
(YYDDD+)

'1' If Retention Period Supplied
(00DDD+)

'1' If File Access Rights are to be limited
to User Logon Rights

'1' To Protect a Library

Bits 0 and 3 should have values of 0.

6-74

Outputs:

Function:

PROTECT (SVC 42)

The protection attributes for the file or library
identified is modified. Return codes in binary in the
top word of the stack indicate the result of the request:

]
o

Return Code ~ Protection status successfully

‘ changed

4 - Volume not mounted

Volume used exclusively by other user

12 ~ All buffers in use, no protection
change

16 — Library not found

20 - File not found

Return Code
Return Code
Return Code

nounon
Co
}

Return Code
Return Code

Return Code = 24 - Update access denied, no protection
change
Return Code = 28 - Unused

Return Code
Return Code
Return Code
Return Code
Return Code
Return Code

32 - File in use, no protection change

36 - VIOC error! FDX1 & FDX2 don't agree

40 - VIOC error! FDX2 & FDR don't agree

44 - Invalid argument list address

48 - I/0 error! VTOC unreliable!

52 - Open or protected files bypassed in
protecting library

56 — Invalid new protection data

Return Code

To update the protection information (protection class,
owner of record, and/or expiration date) for a disk file
or a library of disk files on a volume. The structure
of the Volume Table of Contents (VIOC) is not affected
by the change. No file that is to have 1its protection"
information modified may be open when the PROTECT is
attempted.

6-75

Log Off Interactive Terminal

LOGOFF

Inputs:

Outputs:

(SVC 43) NONRESIDENT

Two words on stack top. These words are reserved for
future use and currently must contain binary zeroes.

PFB updated with the CEXIT option of NODEBUG and the
logoff flag in the ETCB is set (ETCBFLGLOGOFF) for
subsequent inspection by the appropriate Command
Processor routines. A CANCEL SVC is issued with Message
0001 by SVC43. If the input parameter words are not
binary zeroes, a CANCEL SVC is issued (Message 0002 by
SVC43) and the logoff flag bit is not set,

Function: To effect logoff by program request.

6-76

Submit Job or Print Request

SUBMIT (SVC 46) NONRESIDENT

INPUTS: Accepts a parameter list of one word on the stack top:

Byte 0: Operation (Binary value, 1-255)
=1 Submit job for processing.
=2 Request printing of print file.

Bytes 1-3: Address of a 44-byte parameter list
(word-aligned) for the operation.

Operation: Submit Job for Processing

Parameter List Format:

Bytes 0-7 Procedure name
8-15 Library name
16-21 Volume name
22-29 Job name or blanks (optional)
30 Job class (A-Z)
31 DUMP options:

X'80' User has specified DUMP or NODUMP on
CANCEL (ETCBBGDUMPOPT)
X'40' Force DUMP on CANCEL (ETCBBGDUMP)

32-35 CPU time 1limit in timer units; if zero is
supplied, then there is no time limit.
36 Initial status of job when queued:

X'80' Hold Not eligible for scheduling
until released by the
operator or submitter.

X'00' Active Eligible for scheduling upon
submission of the request.

37 X'80' Test for time 1limit wup —- must be
set of a time 1limit is specified
(TCBTIMLIMCHK) .

X'40' Force CANCEL if limit is up

(TCBTIMLIMCNCL) .
X'20' Force Pause/HELP if 1limit is up
(TCBTIMLIMPAUSE) .

(1f neither TCBTIMLIMCNCL nor
TCBTIMLIMPAUSE is set and a CPU time 1limit
is set, then a warning will be issued.)

X'04' Disposition after job processing:
Requeue after execution.

38-43 Reserved (should be zeros).

677

SUBMIT (SVC 46)

Outputst A return code is returned in the stack top word, with
the following meaning:

48

52
56

Successful

Volume not mounted

Volume in exclusive use

A1l buffers in use -- unable to perform
verification

Library not found

File not found

Improper file type (or zero records as
indicated in FDR1INRECS) .

File access denied

VIOC error, FDX1 and FDX2 do not agree

VIOC error, FDX2 and FDR do not agree

Invalid specification of file, library, and
volume

System task not running, no spooled printing or
interactive jobs

Error in performing XMIT to System task

Invalid options specified in parameter list

Operation: Request Printing of Print File

Parameter List Format:

Bytes

0-7 Print file name
8~15 Library name
16-21 Volume name

22 Print class (4-2Z)

23 Form # in binary (0-255)

24-25 Number of copies in binary

26 Initial status of this file when queued:

X'80' Hold Not eligible for print
scheduling until released by
the operator or the
submitter.

X'00' Spool Eligible for printing upon
submission of the request.

27 Disposition after printing:

X'40' - Requeue after print

X'20' - Save after printing

X'02' - Collective print

28-43 Reserved (should be zero)

Outputs: A return code is returned in the stack top word with
the same meaning as above for the SUBMIT job processing
function.

6-78

Allocate Heap Storage

GETHEAP (SVC 56)

NONRESIDENT

Inputs: The top 16 bytes of the stack contain a parameter 1list

as follows:

Byte 0: Option flags:

Bit 0

Bit 1

Bit 2

Bits 3-7

Bytes 1-3:

Byte 4:

Bytes 5-7:

1

SEARCH flag. Search backward for the
subpool name specified in the 'POOLNAME'
parameter of the GETHEAP macro (Bytes 8-15
of this input parameter 1list), starting
from the 1link 1level specified in the
'LINKLEV' parameter of the GETHEAP macro
(Byte 4 of this input parameter list) and
going backwards until the subpool 1is found
or all the link levels are exhausted.

Search only at the link level specified in
the 'LINKLEV' parameter of the GETHEAP
macro (Byte 4 of this input parameter list).

CREATE flag. Create a new subpool with the
name specified in the 'POOLNAME' parameter
of the GETHEAP macro (Bytes 8-15 of this
input parameter list) and at the link level
specified in the 'LINKLEV' parameter of the
GETHEAP macro (Byte 4 of this input
parameter 1list). A backward search is
never initiated if the CREATE flag is set,
and the SEARCH flag, if specified, is
ignored.

ALIGN flag. A 2K-aligned block 1is
requested by the user. Useful only when a
multiple of 2K bytes is requested; ignored
otherwise.

Reserved; must be zero.

SIZE Size of the block. All sizes are

allowed, but they will be rounded up to
their nearest 8-byte multiple.

LINKLEV Link level from which to start

searching for the subpool. '0' means
the current link level, 'l' its parent,
and so on. A value of 255 (X'FF') in
this field represents the lowermost
link level.

Reserved; must be zero.

6-79

GETHEAP (SVC 56)

Bytes 8-15: POOLNAME 8-byte character string

Qutputs:

12

16

20

24

28

representing the subpool name. Blank names are
not allowed. Trailing blanks are insignificant.

A return code is returned in the stack top word. If
Return Code = 0, the next word in the stack contains the
starting address of the block; if Return Code = 4, the
next word in the stack contains the size of the largest
block available. Return codes have the following
meanings:

A buffer area has been allocated. The next word on
the stack contains the block starting address. If
requested, a subpool has also been created.

- Not enough space in segment 2. The next word on the
stack contains the size of the largest block
available. If requested, a subpool has also been
created.

~ Nonexistent link level specified.
~ Nonexistent subpool name specified.

- User has overwritten area used by GETHEAP. User
should CANCEL at this point.

- Error in parameter list. 'POOLNAME' all blank or a
nonzero value in reserved fields.

- GETMEM failure. A new subpool cannot be created.
This however does not prevent the user from
allocating space from an existing subpool.

- CREATE failure. A subpool with the same name
already exists at this link level.

Function: To allocate a block as requested. All Dblock sizes

including zero are legal. If, however, the block size
is not a multiple of 8 bytes, the size is rounded up to
the nearest 8-byte multiple. Maximum size is restricted
only by the caller's segment 2 size less the size used
by the system stack. The space is taken from the 1low
end of segment 2. The value in control register 2 may
be modified. Both the creation of a new subpool and
allocation of a block out of the subpool can be
accomplished in a single GETHEAP call. Successful
creation of a subpool does not guarantee that a block of
proper size can be allocated. There is no fixed space
associated with the creation of a subpool; the space is
allocated as and when requested.

6-80

Deallocate Heap Storag

e

FREEHEAP (8VC 57)

NONRESIDENT

Inputs: The top 16 bytes of the stack contain a parameter list

as follows:
Byte 0:

Bit 0

Bit 1

Bits

Bytes 1-3:

Byte 4:

Bytes 5-7:

¢

Option flags:

=1 SEARCH flag. Search backward for the

n

2-7

SIZE

subpool name specified in the
'POOLNAME' parameter of the FREEHEAP
macro (Bytes 8-15 of this input
parameter 1list), starting from the
link level specified in the 'LINKLEV'
parameter of the FREEHEAP macro (Byte
4 of this input parameter list) and
going backwards until the subpool is
found or all the 1link 1levels are
exhausted.

Search only at the link level
specified in the 'LINKLEV' parameter
of the FREEHEAP macro (Byte 4 of this
input parameter list).

DELETE flag. Delete an entire subpool
with the name specified in the
'POOLNAME' parameter of the FREEHEAP
macro (Bytes 8-15 of this input
parameter 1list) and at the link level
specified in the 'LINKLEV' parameter
of the FREEHEAP macro (Byte 4 of this
input parameter 1list). A backward
search is mnever initiated if the
DELETE flag is set, and the SEARCH
flag, if specified, is ignored.

Reserved; must be zero.
Size of the block. All sizes are

allowed, but they will be rounded up
to their nearest 8-byte multiple.

LINKLEV Link level from which to start

searching for the subpool. '0' means
the current 1link level, '1' its
parent, and so on. A value of 255
(X'FF') in this field represents the
lowermost link level.

BUFLOC Starting address of the block to be

deleted.

6-81

FREEHEAP (SVC 57)

Outputs:

Function:

Bytes 8-15: POOLNAME 8-byte character string
representing the subpool name. Blank
names are not allowed. Trailing

blanks are insignificant.

When the deletion of an entire subpool is desired, the
SIZE and BUFLOC parameters have no meaning and are
ignored.

A return code on the top word of the system stack with
the following meaning:

0 - A buffer area has been deallocated or an entire
subpool has been deleted.

4 = Invalid buffer address specified.
8 - Nonexistent link level specified.
12 - Nonexistent subpool name specified.

16 -~ User has overwritten area used by FREEHEAP.
User should CANCEL at this point.

20 -~ Error in parameter list. ‘POOLNAME' all blank
or nonzero value in reserved fields.

To de-allocate a block as requested. All block sizes,
including zero, are legal, but they will be rounded up
to their nearest 8-byte multiple. An entire subpool
can also be deleted in a single FREEHEAP call, through
the use of the DELETE flag. The value in control
register 2 may be modified.

On UNLINK, all the subpools belonging to that 1link
level are automatically deleted.

6-82

CHAPTER 7: DATA MANAGEMENT SYSTEM SERVICES

7.1 INTRODUCTION

The Data Management System (DMS) 1is described from the user
program viewpoint in this section. The user program communicates
with DMS routines through the User File Block (UFB). A user
program has one UFB for each file it can process. When a UFB is
connected to an OFB by SVC OPEN, the file is considered OPEN and
may be processed through function requests to the Data Management
System using the UFB. The system enforces a limit on the number
of files a user program can have OPEN at any one time. A file is
removed from the OPEN state by using SVC CLOSE. A user program's
UFBs are located in the user's modifiable data area (Segment 2).
SVC 0 (OPEN) and SVC 1 (CLOSE) are described in Chapter 6.

DMS function-routines are reentrant routines and are located as
part of the system code (Segment 0). They execute in User State
and use SVCs (XIO, CHECK, ALEX, UPDATFDR, DTI) to perform
privileged I/0 operations and to modify protected control blocks
(OFB, FLUB, etc.). DMS function-routines can be used by multiple
users; they perform as if they were an extension of the user
program,

The UFB is logically divided into four sections as follows:

a. Access Method Section - This section contains some
basic information used by the DMS function—-routines.

i. Five function vectors, corresponding to the five
function-requests allowed on a file. A function
vector consists of a modifier byte and the
address of a DMS function—-routine (loaded by
OPEN) .

ii. 7Two wuser-supplied function-routine error—exit
addresses.

iii. The record-area pointer (user supplied).

iv. The key-area pointer (user supplied).

7-1

v. Two File Status Bytes (UFBFS1 and UFBFS2) used to
return an ASCII-character code to the user for
each function-request.

File Location and Attributes Section - This section
contains various information (assembled by SVC OPEN)
about the file.

Data Management System Section - This section contains
an Open File Block (OFB) pointer for the file,
buffer-related information (including two Buffer control
Blocks), and other data used by the Data Management
System.

Indexed Disk File Extension = This Section is present
for indexed disk files only; it contains information
regarding the file index, etc.

7.2 VS DISK FILES

This section describes the DMS functions, open-modes, and access

methods

for disk files residing on a disk volume with a VIOC. DMS

does not distinguish between disk volumes and diskette volumes.

a.

There are
System:

The VS
such as:

a.
b.
c.
d.

A disk file resides on a disk volume. A disk file is
fully contained within a disk volume (a file cannot span
a volume) .

Each file has an associated file 1label in the VTOC.
File 1label format 1is described by the FDR1 and FDR2

control blocks.

The physical block size for a disk file is 2048 bytes.

Records in a disk file are always blocked (in 2K

physical blocks).

three access methods supported by the VS Data Management

Record Access Method (RAM).
Block Access Method (BAM).
Physical Access Method (PAM).

DMS access methods are characterized by several factors

unit of data transfer,

buffer supportj blocking and deblocking support by DMS.
physical I/0 support provided by DMS.

file-organization dependence.

7-2

The following pages within this section describe each of these
access methods in detail for disk devices and disk files. Other
files (on other devices) are also processed under one or more of
the access methods. The other devices are described separately.

The pages at the end of this section (Notes on VS Disk Files)
describe certain specific UFB and FDR (file label) fields that
may be of interest to the assembly language programmer. Other
topics such as NOVTOC diskettes are also noted.

7.2.1 Record Access Method (RAM) - Disk Files

The unit of data transfer is the logical record as indicated in
UFBRECSIZE. This Access Method is the normal (default) access
method assigned by SVC OPEN. Files are accessed in a file
organization dependent manner. This access method includes:

a. random and sequential access of consecutive files
(fixed length or variable length records).

b. sequential and keyed access of consecutive files (data
records) .

¢. indexed file sequential creation.
d. sharing files for update.
Open Modes supported under RAM

a. Output mode — This mode supports the creation of a
file. Records are presented by the user program in
sequential order. For indexed files, each record must
have a greater key value than the preceding record.
The WRITE function request causes the record from the
user-record-area to be the last record in the file.

The following modes are used with existing files.

b. Input mode - This mode supports the retrieval of
records from a file. Records may be read (random,
sequential or keyed) but may not be modified. Multiple
user—programs can access the same file in Input mode
since no modification is allowed. The READ function
request causes a record from the file to be read into
the user-record-area.

7-3

Input/Output mode (I/0 mode) - This mode supports
retrieval and modification of records in a file. Only
one user-program (at a time) can access a particular
file in I/0 mode. The REWRITE function request is
available to rewrite the (updated) record from the
user-record-area to the file. The REWRITE function
request accesses the last record read from the file by
the program; REWRITE must be preceded by a READ(HOLD)
function request. If the file is an indexed file,
records may also be added (keyed, WRITE) or removed
(DELETE) from the file in I/0 mode.

Extend mode - This mode supports the addition of new
records to the end of an existing disk file. Only one
user program (at a time) can access a particular file
in Extend mode. SVC OPEN positions the 1logical record
pointer so that all WRITE function-requests add records
to the end of the file. Extend mode is valid for
consecutive files only (for indexed files, I/0 mode
provides the ability to add records to the files).

Shared mode - This mode supports all the functions
supported in I/0 mode except READ NODATA. However,
shared mode also provides an update—interlock system
which allows multiple user-programs to update the same
file concurrently. DMS grants exclusive control of a’
record to a program to insure that concurrent file
updates are processed correctly. DMS provides all
shared file support.

FUNCTION REQUESTS PROVIDED FOR DISK FILES UNDER THE DMS RECORD
ACCESS METHOD

FILE ORGANIZATION - CONSECUTIVE
RECORD FORMAT - FIXED LENGTH RECORDS

| Input | Output | I/0 | Extend | Shared
.Read X X
Write X X |
Rewrite X
Start X | I X
Delete | | | |

FILE ORGANIZATION ~ INDEXED
RECORD FORMAT — FIXED LENGTH RECORDS

Input | Output | I/0 | Extend | Shared
Read X | X X
Write X X X
Rewrite X X
Start | x| X | X
Delete | | I x 1 X

FILE ORGANIZATION - CONSECUTIVE
RECORD FORMAT - VARIABLE-LENGTH RECORDS*

Input | Output | I/0 | Extend | Shared
Read X X
Write X X X
Rewrite | | X
Start X X | X X
Delete I

* Shared mode is supported for consecutive log files. a
consecutive log file must have variable-length records.)

File Organization Definitions

Consecutive Disk File
Fixed Length Records (Blocked)

Disk Block (2K)

| Record 1 | Record 2 | Record 3 | Record 4 | /// |

The fixed-length records are blocked; block size is 2048. Each
block in the file except (possibly) the last block contains the
same number of records. Records do not span blocks. A 2K disk
block contains unused space at the end if the record size is not
an even divisor of 2K.

Record Format

Record length is fixed. The file 1label contains fields
indicating the number of records in the file (FDRINRECS) and the
number of records in the last block of the file (FDR1EREC).

The 1length of the record is a fixed value (UFBRECSIZE). This
value is set when the file is created (OUTPUT mode) . This value
is held in UFBRECSIZE and used for data transfer between the
user—-record-area and the file when an existing file 1is processed
under RAM. Valid record length is 1-2048.

Indexed Disk File
Fixed Length Records (Blocked)

Disk Block (2K)

BL	Record1	Record 2	Record 3	///	Data
					Level
	I			Chain	

Record Format

| | Key I I
I | field | I

fixed length record

Records are fixed length. Each record has a key field upon which
the records are ordered. The record length can range from 1-2040
bytes. The key length can range from 21-55 bytes. The key
position can range from 1 up to any value such that the whole key
fits within the length of the record. The key position field is
numbered from 0 internally (UFBKEYPOS is numbered from 0).

The file label contains a record count (FDR1NRECS) .

An indexed file contains both data blocks and index blocks. The
index blocks form a tree structure by which data blocks may be
located. Only DMS routines manipulate index blocks. Under RAM,
the user program has access only to data records. Index blocks
have a chain field and a block prefix (BL) similar to data
blocks. The block prefix field (BL) is described in the next
section on variable length records.

Consecutive Disk File
Variable-Length Records (Blocked)

Disk Block (2K)

| BL | Record1 | Record 2 | Record 3 | [//// |
i | I | | |

The two-byte block prefix (BL) indicates the length of the block
(i.e., sum of record lengths plus 2). DMS blocks records as
tightly as possible during file creation (OUTPUT mode) .

Record Format

| RL | data portion of record I

The two-byte record prefix indicates the length of the record
(i.e., data portion of record plus 2). UFBRECSIZE at SVC OPEN
(QUTPUT mode) is the maximum record size; this value is stored in
the label. Valid record length is 1-2024.

For OUTPUT mode, UFBRECSIZE indicates the length of the record in
the user-record-area. The record prefix (RL) is not included in
this length; the record prefix is not present in the
user-record-area. UFBRECSIZE may be varied by the user program
in order to write different sized records. The data management
system supplies the BL and RL prefixes.

For existing files, UFBLRECSAVE equals the maximum record size
(from the file label). UFBRECSIZE is set by DMS to equal the
length of the record in the user—-record-area after each read.
The RL is not moved to the user-record-area (i.e., UFBRECSIZE is
set to RL2). There are two minor restrictions for variable
length consecutive files (as opposed to fixed lengths);

1. Read relative is an invalid function-request for
variable length consecutive files. The START SKIP and
START BEGIN function-requests are available for
positioning within a variable length consecutive file.

2. The record size (UFBRECSIZE) may not be changed when
REWRITING a record (flagged as invalid function-
request) .

Compression Option

A compression option is available for variable length con-
secutive files. This option can allow significant saving in disk
space. The option is requested when the file is created. In this
case, the data portion of the record is stored in compressed for-
mat (as described by the COMPRESS and EXPAND machine instructions).

Record Format

| RL | compressed data I

The use of the compress option is transparent to the user program
under RAM*; however, the REWRITE function is mnot allowed for
consecutive files with compressed variable-length records. DMS
performs compression on OUTPUT (WRITE) and expansion on INPUT
(READ) . The value of UFBRECSIZE, UFBLRECSAVE and the file label
is always the length of the noncompressed record (i.e., for a
READ, UFBRECSIZE is set to the noncompressed length regardless of
the value of RL)., For compressed format, the maximum record size
(established at file creation) is 2024.

NOTE:

Print records are stored as compressed variable
length records when directed to a disk file,

* If Read Nodata 1is used, the user receives a pointer to the
compressed data portion of the record (in a buffer). In
this case, the user program must expand the record directly.

Indexed Files with Variable Length Records

The indexed filed organization is available with variable length
records. In this case, UFBRECSIZE is used to indicate the length
of the record read for existing files. The full range of
function-requests available with indexed files (fixed~length
records) 1is also available for indexed files with variable-length
records. The compress option is also available. The 1length of
the record may be changed when rewriting a variable—length record
to an indexed file. DMS will handle any index updating required.

Function-Requests and Function—Request Modifiers - RAM

There are five DMS function-requests (READ, WRITE, REWRITE,
DELETE, and START). Macroinstructions have been provided for
these function-requests. The macroinstructions also provide for
all the possible function-request modifiers. The preceding charts
illustrate which of these function-requests are available under
RAM for a particular Open Mode/Disk File Organization combination.

Read (NEXT, RELATIVE RECORD NUMBER or KEY) - The indicated record
is read into a system buffer by DMS if not already present. The
record is moved from the buffer to the user record area
(addressed by UFBRECAREA). For fixed-length records, the record
length is taken from UFBRECSIZE.

Read Modifiers

a. NEXT - The desired record is the next record in the
file. After OPEN, READ NEXT yields record number 1.

b. REL -~ The desired record is indicated by the relative
record number in the fullword addressed by the
UFBKEYAREA, REL is only available for consecutive
files with fixed length records.

c. KEYED - The desired record is indicated by the key
starting at the location addressed by UFBKEYAREA. The
length of the key is UFBKEYSIZE. KEYED is only
available for indexed files.

d. NODATA - The record is not moved to UFBRECAREA;
instead, the address of the record in the buffer is
returned in general register 1.

e. HOLD - The HOLD modifier is used in I/0 or Shared mode
to indicate that the record just read may be rewritten
or deleted. In this case, DMS will retain the current
block for the record so that the rewrite or delete may
occur., The HOLD modifier is required in all cases
where the record is to be rewritten.

Read File Status With UFBEODAD Return

The following file status conditions cause a return to the
program at the address in UFBEODAD. These conditions arise when
the indicated record cannot be found.

FS='10' - End-of-data. A READ NEXT function request
attempted to read past the end of the file.

Fs='23" - Record not found. A READ REL function supplied a
relative record number equal to =zero or greater
than the highest record number in the filej; or a
READ KEYED function-request supplied a key value
which was not equal to any key value in the file.

Write
For OUTPUT mode (file creation) or EXTEND mode, the record is
moved from the user-record area to the file. The record be-

comes the last record in the file. For indexed files, the key in
the record written must be greater than the preceding key value.

7-9

For indexed files in 1/0 or SHARED mode, the record is moved from
the user-record area to the file. The key field of the record
must not be the same as a key already in the file. There are no
modifiers for the write~function request.

Write file status with UFBEODAD return.

The following file status conditions may occur when using the
WRITE function-request to process an indexed file under RAM.

FS='21' - Record key out of sequence - OUTPUT mode
FS='22' - Duplicate key - I/0 or SHARED mode
FS='24' - End of primary extent—--OUTPUT mode. Insufficient

space was provided; the file may be CLOSED;
additional records may be added in I/0 mode.

Rewrite

The last record must have been read with the HOLD option. The
record is moved from the user-record area to the file. For
variable length records, the 1length must be wunchanged. For
indexed records, the key field of the record must be unchanged.
There are no modifier values for rewrite.

Delete

The 1last record must have been read with the HOLD option. The
record is removed from the file (indexed files only). The
content of the user-record area is not used.

Start

The start function can be used for three different purposes under
RAM:

a. Switch Processing Mode——this option 1is available for
consecutive files, fixed 1length records, open mode of
OUTPUT or EXTEND. The modifiers are START OUTPUT (sets
the number of records in the file to zero), START
EXTEND (allows the file to be extended by subsequent
WRITES) or START 1I/0 (allows READ and REWRITE
operations after setting temporary end-of-file
indicator); functions available are READ, REWRITE, and
START OUTPUT and START EXTEND.

If Start I/0 is used, an additional option is available. If
UFBVAM is set in the modifier byte, then the Access Method will
be switched. If switching from BAM to RAM, UFBNRECS may be
provided to allow exact setting of the end-of-file indicator.

7-10

Position to a Record within the File--this is the common
usage of START under RAM. Positioning within an indexed
file is accomplished using modifiers EQUAL, GREATER
THAN, or GREATER THAN OR EQUAL. Positioning within a
variable-length consecutive file uses START SKIP where
the word addressed by UFBKEYAREA indicates a signed
number of records to be skipped. START BEGIN is also
available to position to the first record of a consec-
utive variable-length file. The HOLD modifier is
available for START on an indexed file. The generic
keysize feature (UFBGKSIZE) is also available with the
START request on an indexed file.

HOLD a file, or release a file or record f£from HOLD
status (shared mode - ignored in IO mode).

START HOLD acquires protected update (HOLD) rights to the entire
file., This HOLD status is released by START RELEASE, which
removes any file or record from HOLD status for the issuer.

Start Function UFBEODAD Returns

These UFBEODAD returns may occur when START is used to position
within a file.

FS='10'
FS='23'
FS='24'

-~ end-of-file. End of file can occur when the value
in UFBKEYAREA for START (SKIP) causes the end-of-file
(positive value) or start-of-file (negative value)
to be exceeded.

~ record not found when START EQUAL issued.
- record not found when START (GREATER THAN) or START

(GREATER THAN OR EQUAL) issued; key value is greater
than any key in the file.

Notes for Record Access Method (RAM)

10

File size specification for file creation (OUTPUT MODE) :
The amount of disk space allocated for a file is deter-
mined by DMS. DMS uses a record number count supplied by
the user program (UFBNRECS). For indexed files, DMS also
calculates the additional space required for the index.
Extra space can be released when the file is closed.

Buffers - The user program can specify the buffer size
to be allocated under RAM. A large buffer size can
represent a significant performance improvement for
sequential access of the file. The buffer size is
supplied in UFBBUFSIZE before SVC OPEN. The buffer size
must be a multiple of 2K (otherwise the default size is
used). The buffer size may also be adjusted by DMS
depending on the maximum data transfer size supported by
the device. Default buffer size is 2K.

7-11

3. Record size at SVC OPEN (NonOUTPUT mode) - For existing
files, UFBRECSIZE is used to request a file with a
specific record size. UFBLRECSAVE is filled in from
the record size field in the file 1label. If
UFBRECSIZE = 0 at SVC OPEN, the field is simply filled
with the value from the file label.

4. Anticipatory buffer priming is automatically performed
under RAM. Also, sequential rewrites (or deletes) are
blocked.

7.2.2 Block Access Method (BAM) - Disk Files

The unit of data transfer is the physical disk block; the 1length
of a disk block is always 2K (2048 bytes). This Access Method
can be selected by setting UFBF1BAM before SVC OPEN. Files are
accessed in a file-organization-independent manner. This access
method supports:

a. random or sequential access of any disk file using
relative block number in file (from 1). The unit of
transfer is 2K bytes.

b. creation of new disk files by copying existing disk
files in a file—organization-independent manner.

c. user program blocking or deblocking of records.
The Open Modes supported under RAM are also supported under BAM.
The only significant difference is the unit of data transfer
(always 2K under BAM).

FUNCTION REQUESTS PROVIDED FOR DISK FILES UNDER THE DMS BLOCK
ACCESS METHOD

FILE ORGANIZATION - ANY
RECORD FORMAT -~ ANY

| Input | Output | I/0 | *Extend | Shared |

| Read x| | x | | |

Write | | X | | X | |
Rewrite | | X | |
Start | | X | X |

Delete | | | | I |

* - Extend Mode is not supported for indexed files under BAM.

Function—-Requests and Function—Request Modifiers — BAM

The preceding chart indicates the function-requests available
under BAM for a particular open mode. The Block Access Method
allows the user program to access any disk file in a file
organization independent manner.

Read - The indicated 2K disk block (NEXT or RELATIVE BLOCK
NUMBER) is read into a system buffer by DMS if not already
present. The block is moved from the buffer to the user-record
area as addressed by UFBRECAREA; the length is 2048 bytes.

Read Modifiers

a. NEXT - The desired block is the next block in the
file. After SVC OPEN, READ NEXT yields block number 1.

b. REL - The desired block is indicated by the relative
block number in the full-word addressed by UFBKEYAREA
(from one).

c. The NODATA and HOLD modifiers are available under BAM
in the same way as described in RAM, (The KEYED
modifier is not used under BAM.)

Read File Status Using UFBEODAD Return

The end of file (FS='10') and record not found (FS='23')
conditions occur under BAM the same as they occur under RAM.

Write - The 2K block is moved from the user-record area to the
file. The block becomes the last block in the file. There are
no modifiers; the UFBEODAD return is not taken for a write
function-request under BAM.

Rewrite - The last block must have been read with the HOLD
optionj i.e., the preceding function-request must have been a
READ with the HOLD modifier. The block is moved from the user
record area to the file. No modifiers are used with the rewrite
command.

Start - The start function is used to switch processing modes in
BAM. This function is available in OUTPUT or EXTEND modes. The
modifiers allowed a START OUTPUT, START EXTEND and START 1/0. No
UFBEODAD returns are taken when switching modes.

7-13

Notes for Block Access Method (BAM)

1'

File size specification for file creation (Output
Mode): The amount of disk space to be allocated for a
file may be specified using a record number count (from
UFBNRECS) as in RAM. However, under BAM, the user
program may optionally specify file size as a number of
2K blocks (UFBNBLKS) by setting UFBF4BLKAL. In this
case, UFBNBLKS contains the number of blocks to be
allocated; UFBNRECS is not used for disk space allo-
cation. If UFBNBLKS is used and sufficient disk space
is not available, the program will be cancelled (unless
an OPEN EXIT has been supplied). The program will also
be cancelled if UFBF4BLKAL is set and UFBNBLKS is zero.

Buffers - The user program can specify the buffer size to
be allocated under BAM by supplying an appropriate value
in UFBBUFSIZE before SVC OPEN. A larger buffer can
improve performance for sequential access of the file.

Record Size at SVC OPEN - For Output mode, the value of
UFBRECSIZE will be placed in the file label. For other
modes, UFBRECSIZE may be used to specify the particular
record size desired. After SVC OPEN, UFBLRECSAVE
contains the record size (from the file label);
UFBRECSIZE is set to 2048 after OPEN.

Anticipatory buffer priming is automatically performed
under BAM,

Setting Number of Records in File at Close =~ The Block
Access Method operates in a file organization
independent manner. Therefore, at SVC CLOSE, additional
information may be required in order to update the file
label correctly for OUTPUT or EXTEND mode.

The number of the last block in the file is maintained by DMS in

UFBEBLK.

The additional information required at CLOSE is

dependent on the file organization.

a.

Fixed Length Consecutive - The total record count
(UFBNRECS) should be supplied (this includes the number
of records in the last (perhaps partial) block). The
default is a DMS supplied count based on a full last
block. The user supplied value (UFBNRECS) is ignored if
it is inconsistent with UFBEBLK.

Variable Length Consecutive - The record count should be
supplied (UFBNRECS). Otherwise, DMS will set a record
count assuming that all records are maximum size. This
approximate DMS default value is only used 1if no other
value has been supplied (i.e., UFBNRECS=0).

7-14

c. Indexed Files - The following fields are required before
SVC CLOSE: UFBEREC, UFBNRECS, UFBHXBLK, UFBPTRD, and
UFBDABLK. These values should be taken from the Input
file for the file copy application. (Other than the
file copy application, it is not recommended that
indexed files be created under BAM.)

7.2.3 Physical Access Method (PAM) - Disk Files

The unit of data transfer is defined by the user-program. No
buffer support is provided by PAM. This Access Method can be
selected by setting UFBF1PAM before SVC OPEN. Files are accessed
in a file organization independent manner. This access method
supports:

a. random and asynchronous access of any disk file.

b. wuse-initiated physical 1I/0 operations of more than one
physical disk block.

c. user-implemented buffering strategies.
The following Open Modes are supported under PAM:

a. Output mode - This mode supports the (sequential)
creation of a file. The user-program controls the units
of data transfer; the block number in file is adjusted
by DMS for the length transferred. The data is written
to the end of the file.

b. Input mode - This mode supports retrieval of data from
the file., Data retrieval is random; the user-program
supplies both the data length and the block number in
file. The user-program may pass through the file
sequentially by updating the block number appropriately.

c. I/0 mode ~ This mode supports retrieval and modification
of records in the file. The REWRITE function is random;
the user—program supplies the data length and block
number in file, In PAM, the REWRITE function need not
be preceded by a read function.

FUNCTION-REQUESTS PROVIDED FOR DISK FILES UNDER THE DMS PHYSICAL
ACCESS METHOD

FILE ORGANIZATION - ANY
RECORD FORMAT - ANY

| Input | Output | I/0 | Extend | Shared
Read | x| X | |
Write | | X | I |
Rewrite | | | x | |
Start | x| X 1 X i |
| Delete | | | | |

7-15

Function-Requests and Function-Request Modifiers — PAM

The function-requests used in the Physical Access Method have two
common characteristics:

a. The data length desired is set in UFBBLKSIZE.
UFBBLKSIZE is 2 bytes 1long; it is considered as a
positive number. The data length specified must be a
multiple of 2K. After the data transfer is initiated,
UFBBLKSIZE is set to the data 1length actually
transferred. The data length actually transferred may
be less than the requested data 1length due to
end-of-file truncation, end-of-extent truncation or
end-of-cylinder truncation.

b. The user-program must issue a START(WAIT) function-
request in order to wait for I/0 completion. DMS does
not wait for I/0 completion in PAM.

Read - The data as indicated by the block number in the fullword
addressed by UFBKEYAREA (block number from 0) and the contents of
UFBBLKSIZE (data length) is read into the user-record-area
addressed by UFBRECAREA. UFBBLKSIZE is adjusted, if necessary, to
reflect the 1length of the actual data transferred. There are no
modifiers., UFBEODAD return with FS='23' is taken if the starting
block number is beyond the end of the file.

Write - The indicated data is written to the end of the file.
UFBBLKSIZE 1is updated to indicate the 1length of the data
transfer. DMS also updates the next block number for the data
blocks transferred. After OPEN, the block number is 0. There are
no modifiers.

Rewrite =~ The data as indicated by UFBRECAREA and UFBBLKSIZE is
written to the file starting with the block number from the word
addressed by UFBKEYAREA. UFBBLKSIZE is then adjusted to reflect
the 1length of the data actually transferred. There are no
modifiers. UFBEODAD return with F$='23' may be taken for Record
Not Found (as in Read).

7-16

Start - The start function is primarily used with the WAIT
modifier to wait for I/0 completion for the preceding READ, WRITE
or REWRITE command. In QUTPUT mode, the modifiers OUTPUT, EXTEND
and I/0 are available for mode switching (as in the other access
methods) .

Notes for Physical Access Method (PAM)

1. File size specification for file creation (Output
mode) . The amount of disk space to be allocated may be
specified as in BAM (record count or block count).
Record size at SVC OPEN is also handled as in BAM.

2. PAM uses no buffers, all 1I/0 is performed using the
user-record-area directly.

3. Setting the number of records in the file at SVC Close
requires the same file-organization—-dependent
information as in BAM.

7.2.4 Notes on 2200VS Disk Files

1. File labels - The VIOC holds the file labels (File
Descriptor Record - FDR) for all the files on a disk
volume. The FDR fields defined below are of particular
interest for DMS routines.

a. FDRIRECSIZE - size of logical record. This field
indicates 1logical record size for fixed—length
records. For variable-length records, this field
is the maximum record size for the file. This
field is only set at file creation.

b. FDR1BLKSIZE - blocksize; always 2048.

c. FDRINRECS - record count. This field indicates the
number of logical records in the file. This field
is not used by DMS as the end-of-file indicator.

d. FDRIEBLK - last block in file. This field contains
the block number (in file from 0) of the 1last used
block in the file. This field is set for the last
block number in file regardless of the file
organization. This field (in conjunction with
FDR1EREC if necessary) is used by DMS as the end of
file indicator. '

FDR1EBLK is a sufficient end-of-file indicator for
variable-length records since in this case the end-of-block
condition is determined by the contents of the block. Indexed
files use the data chain for end-of-file detection; FDR1EBLK
(plus 1) serves as a free space pointer in this case.

7-17

For fired-length records, FDR1EREC is used as a count of the
records in the last file block; i.e., for fixed-length records,
the end~of-file indicator is FDRIEBLK with FDR1EREC.

FDR1EREC is 1 for variable-length records. For indexed files
FDR1EREC is used as an index level count (used by DMS only).

FDRINRECS, FDR1EREC an FDR1EBLK are always updated as a group by
CLOSE. They are updated under RAM for OUTPUT and EXTEND modes
and for indexed file SHARED and I/0 modes.

FDR1RECSIZE 1is never changed by SVC CLOSE. DMS does not support
the use of different logical record sizes under RAM, FDR1RECSIZE
always indicates the noncompressed maximum record size for files
containing compressed variable-length records.

2. UFB fields - The following fields are availble to the
user-program for inspection during DMS processing. The
uses of other UFB fields should not be assumed. For
disk files, no fields other than the modifier bytes,
UFBRECAREA, UFBKEYAREA, and the error addresses should
never be changed by the user program while the file is
open (except for setting required yalues in certain
fields immediately before closing the file when using
BAM or PAM). Also, UFBRECSIZE and UFBGKSIZE (indexed
files) are modifiable in certain circumstances.

a. UFBLF, UFBLFMOD - these fields contain the last
function and last modifier value.

b. UFBLRECSAVE - this field contains FDRIRECSITE after
a file is QPENED,

c. UFBRECSIZE - this field contains the record size
for fixed~length records under RAM. This field
contains the current record length under RAM for
variable-length records. This field contains 2048
under BAM.

Note that UFBNRECS is not always maintained during DMS
processing. Also, UFBNRECS is always set to 0 by SVC OPEN for
OUTPUT mode. UFBNRECS is available after OPENING an existing
file (equals FDRINRECS). UFBRES3 contains the UFBNRECS value
(used for space allocation) after SVC OPEN - OUTPUT MODE.
(UFBRES3 may be re-used during DMS processing.)

7-18

Access Method notes - VS disk files can be accessed or
created by any access method. (However, creation of an
indexed file under BAM or PAM is generally restricted to
the file copy case, since no index building support is
supplied.) Selection of an Access Method will gener—
ally depend on the unit of data transfer desired or the
file-organization support desired <(e.g., indexed files
under RAM). RAM provides the fullest DMS support. BAM
can be used to advantage for consecutive files to reduce
DMS overhead by performing user—-program blocking and de-
blocking. Significant sequential performance improve-
ments may be accomplished in RAM or BAM by requesting a
larger buffer at OPEN. PAM offers the most flexibility
and the least DMS support} it is recom— mended primarily
when data movement is to be minimized or when a flexible
user-supported buffering scheme is desired.

NOVIOC diskettes — This section has dealt with disk files
which reside on a volume with a VIOC (i.e., disk files
which have an associated disk file label). The diskette
without a VTOC is used primarily as a medium for exchang-
ing information between the VS system and other computer
systems. The DMS support for NOVITOC diskettes includes
all three access methods. In addition, the user—program
can select any logical record size from 1-2048 since
there is no file 1label information available. The
following restrictions do notapply to NOVTOC volumes.

1. indexed files are not supported
2. extend mode and shared mode are not supported.

In order to have the full range of VS system support and utility
support, it is recommended that NOVTOC volumes be copied to

standard
in place.

5.

disk files before processing rather than being processed

Specification of File Organization and Record Size at
SVC OPEN.

The fields UFBFORG and UFBRECSIZE may be supplied by the
user program in order to request a specific file organ-
ization or record size. If these fields are zero, then
any file organization or record size is allowed. These
fields are both required (non-zero) for OUTPUT mode in
which case the values are stored in the file label.

The following file organizations are supported. (The
only valid organizatons allowed in the file label.)

a. Consecutive file; fixed-length records UFBFORGCONSEC.
b. Program file; fixed-length records as described in

VS Object format (1024 nominal record size)
UFBFORGCONSEC + UFBFORGPROGRAM,

7-19

Notes on

c. Consecutive files variable length records
UFBFORGCONSEC + UFBFORGVLEN,

d. Indexed files; fixed records UFBFORGINDEXED.

e. Indexed files; variable length records
UFBFORGINDEXED + UFBFORGVLEN,

f. Print file; variable length records (compressed)
UFBFORGCONSEC + UFBFORGVLEN + UFBFORGPRINT.

File Organization

a.

For OUTPUT MODE, if UFBFLAGSCOMP is set (i.e.,
compression option), then SVC OPEN will force
UFBFORGVLEN=1 so that a file with compressed variable
length records will be created.

For nonOUTPUT mode, any consecutive file will be
accepted if UFBFORG = UFBFORGCONSEC at SVC OPEN.

For any mode, if UFBFORG = UFBFORGCONSEC + UFBFORGPRINT,
SVC OPEN will set UFBFORGVLEN and UFBFLAGSCOMP in order
to generate a standard print file. (UFBFORGPRINT
indicates that the user program has supplied a two-byte
print control field for each record.)

Note
FDR10ORGCONSEC + FDR1ORGPRINT is not a valid value
for the file label (FDR1ORG).

The following 1list indicates the valid range of values for
UFBRECSIZE when a file is being created in OUTPUT mode. (These
same values also apply when UFBRECSIZE is specified at SVC OPEN
for nonOUTPUT mode.)

Consecutive filej; fixed-length records 1-2048.
Indered filej; fixed-length records 1-2040.

Variable length records with or without the compress
option - 1-2024 (represents noncompressed size).

The compress option may be set using UFBFLAGSCOMP when

creating

a file in OUTPUT mode. This flag is ignored for fixed

length records. This flag is not considered to be part of the
file organization.

7-20

7.3 2200VS INDEXED FILE SUPPORT

This section describes 2200VS Indexed Files and the access level
support provided by the 2200VS Data Management System (DMS).
Indexed files provide efficient sequential access and random
access by primary key. The record formats available are fixed
length, variable length, and compressed. The topics covered in
this section are:

Indexed File Creation

Accessing an Existing Indexed File

Buffer Options for Indexed Files

Indexed File Structure

Functional Overview of Alternate Indexed File Support
Alternate File Error Log

Overview of Indexed and Alternate Indexed File Structures
Internal DMS Record Formats for Alternate Indexed Files
Shared Mode

Log Files

Advanced Sharing (Multiple Resources)

Detailed Functional Overview for Shared Mode

Summary of START Functions

This section describes file access using the Record Access Method
(RAM) . It is intended as a detailed guide to 2200VS DMS support
of Indexed Files. This section also includes descriptions of
actual 2200VS file structures. While an in-depth understanding
of the file structure is not required to effectively access
indexed files, the sophisticated programmer should be able to use
the file structure information for performance and packing
considerations and for lowlevel debugging.

Indexed File Creation

An 1Indexed file is created using OUTPUT mode. The number of
records to be supplied in OUTPUT mode is used for initial file
allocation. There is no restriction on the number of records
which may be added later; also, no additional space for file
expansion need be included at file creation. The format of a
record in an indexed file is:

| | Primary Key Field | | Data
|] | | Record
|Position|8izel

Primary key size and position is determined by the user. This
information is stored in the file label. All records in the file
must have a unique primary key value (duplicates not allowed).
(For variable-length records, the minimum record size = position
plus key size.) Primary key size can be from 1-255 bytes.
Primary key position can be from 1 up to the maximum value (MAX =
Record size minus key length). If data records are compressed,
it is somewhat advantageous to have the Primary Key position be
near the beginning of the record.

7-21

Records are added to the file in OUTPUT mode using the WRITE
function. Each record must have a higher primary key value than
the preceding record. The records are blocked and written to the
file in OUTPUT mode. (The 1low-level index is also built as
records are added; the full index structure is created only when
the file is CLOSED (QUTPUT mode). This last feature (index
creation at CLOSE) is used only in OUTPUT mode, i.e., in I0 or
SHARED mode the index structure is maintained for each
function-request and no additional index update at all is
required at CLOSE for these modes.

OUTPUT mode provides very fast sequential loading (creation) of
an Indexed file, However, it is possible to create an indexed
file containing no records (record count = 0); in this case,
records could be later added randomly in I0 or SHARED MODE. The
WRITE function-request in OUTPUT mode is significantly faster
than the dynamic WRITE request available in I0 or SHARED modes.

A file packing option is available in OUTPUT mode. This option
allows data blocks and index blocks to be filled to 100%
capacity. The default is 100% packing. Loose packing may allow
subsequent random record additions to be processed without
requiring a block to be split. Loose packing also has a slight
effect on efficient allocation of Data Base Key values (to be
described later). It should be noted that loose packing is never
required and that loose packing has no significant effect on the
number of records which may be added to the file at a later time.

Accessing an Existing Indexed File

An existing Indexed file can be accessed in INPUT, I0 or SHARED
MODE. The functions available in INPUT MODE are:

READ NEXT (next in primary key sequence from current
position)

READ KEY (primary key value supplied)
START (KEY) (modifiers and generic keysize options; START

KEY used to establish file position for READ
NEXT)

7-22

These functions allow records to be read; record modification is
not allowed.

The additional functions available in I0 MODE are:

REWRITE must follow READ w/HOLD

DELETE allows current record to be rewritten or deleted

WRITE add record to filej} record has unique primary
key value.

The functions available in SHARED mode are the same as those
available in I0 mode.

The HOLD option for the READ function — READ NEXT and READ KEY
may be used with the HOLD modifier (i.e., READNEXTHOLD and
READKEYHOLD). The HOLD modifier bit has no effect in INPUT
MODE. In IO mode the HOLD bit has two effects:

1. A REWRITE or a DELETE may be issued for this record.

2. The buffer containing the record will not be used for
sequential buffer priming.

Buffer Options for Indexed Files

When an indexed file is OPENED buffers are assigned; these
buffers are used by DMS when performing the user's function-
requests. The three buffer options available are discussed here.

1. Fired Buffer Strategy - This strategy is used 1if
neither of the two options below are indicated (i.e.,
this is the default strategy). Two buffers are

allocated. For Read functions, one buffer can hold the
Index ROOT block while the other is used for subsequent
index levels and the data block itself. The two
buffers are used effectively when the Block Split
operation is required for file growth.

2. Buffer Pool ~ This strategy may be selected by the
user. The user creates a Buffer Control Table (BCTBL
using BCTGEN) which is filled in by OPEN and maintained
by DMS. All 1indexed files per task may be accessed
from the same buffer pool. Also, more than one buffer
pool can be used within the same program.

A buffer pool consists of a group of 3 to 60 buffers;
each buffer is 2048 bytes (2K) and is acquired from the
Segment 2/task using GETBUF. The BCTBL requires 56
bytes/buffer for buffer management.

7-23

There is no restriction of the order of opening and
closing files using a buffer pool.

The Buffer Pool is managed using an LRU approach; all
write operations are initiated directly (rather than
being initiated at buffer replacement time, e.g.,
pageout by page). The internal features of DMS buffer
pool maintainence are adjusted for performance in an
interactive environment.

3. Large Buffer Strategy - This strategy may be selected
by the user. In general, two buffers are assigned;
however, one of these is a large buffer (large buffer
size can be from 4K to 18K). This strategy is
available for INPUT mode. For INPUT mode and
sequential access, this strategy can save many IO
operations.

These three strategies may be combined within a program if
required., The use of buffer pooling for general indexed file
random operations will certainly be helpful in significantly
reducing the total number of I/0 operations. The sharing task
also makes use of the buffer pool to provide access to a number
of SHARED files with efficient performance.

Indexed File Structure

Indexed files contain a number of 2K blocks. However, the
relationship between blocks is established using chain fields and
pointer fields. (In an indexed file, block (n) and block (n+l)
are not necessarily accessed in order.)

Logical View of Blocks in a sample Indexed File

ROOT
I

The above figure shows 3 1levels. The first level is the ROOT
block. The ROOT block is used when a primary key is supplied and
a record is to be read. In the above figure, the ROOT contains
POINTERS to 3 low-level index blocks. In turn, each of these
index blocks contains POINTERS to the lowest level block - the
structure. These lowest level blocks contain the data records in
the indexed file.

7-24

The above figure shows 2 index levels and the lowest level of the
structure (the record 1level). All blocks on one level are

chained forward wusing a 3-byte CHAIN field at the end of each
block.

Type I blocks (above) contain index items. An index item
consists of a key field and a 3-byte pointer to a block on the
next lower level. The key field in the item is equivalent to the
highest key in the block pointed to.

Functional Overview Of Alternate Indexed File Support

Introduction

The alternate indexing facility for Wang 2200VS Indexed
Files allows the creation of up to sixteen (extendable to 32 or
64) alternate access paths to records in a file. A program may
specify on WRITE and REWRITE functions the access paths through
which a particular record is to be accessible, and on READ and
START functions may specify the access path to be used.

Each alternate access path is implemented as a
tree-structured index defined on a field (starting position and
length) within the data record, and referenced within the file's
label (and by programs) as an ordinal between 1 and 16. The Data
Management System maintains a map with each record of the file,
indicating the access paths through which that record may
currently be accessed.

New Fields for DMS Functions (UFB and AXD1)

In discussing the Data Management functions, fields have
been added to the User File Block; also a new block (AXD1l) is
used. The AXDl is described in detail later; for the purpose of
this section, it can simply be regarded as a UFB extention-type
block.

(1) AXDIMASK - A two-byte field into which a bit map is
placed as a result of READ functions, indicating the currently
available access paths for the record read. This field is to be
set by the program before REWRITE or WRITE requests to 1indicate
the access paths to be made available for accessing the record
written, (A variable mask size from 1-8 bytes is a planned
additional feature.)

(2) AXDIALTINX - A one-byte field containing a binary
number from 0 to 16. This indicates the access path (index
structure) to be used on READ and START functions. Zero (0)
indicates the primary index structure. One (1) through sixteen
(16) select alternate index structures. The field contains O
when the file is opened.

7-25

(3) UFBALTCNT - One byte, containing in binary the number
of alternate index structures which can be processed using this
User File Block. A file with more alternate access paths than is
specified in this field will require that the Data Management
System allocate additional storage (in the requestor's segment 2
buffer area) at OPEN time in which to keep alternate index
structure descriptions. Compilers are expected to supply a
proper value in this field and in UFBALTPTR, and to reserve
sufficient space at the location addressed by UFBALTPTR to hold
the index structure descriptions; they should not rely on the
Data Management System to allocate buffer space, since that is a
relatively inefficient use of memory. (Also see notes on
AXD1-AREA at end of chapter.)

(4) UFBALTPTR - Three-byte address of an area (User File
Block appendage or other segment 2 area) to contain alternate
index structure descriptions (from AXD1ENTRY). If zero, space in
the segment 2 buffer area will be allocated.

DMS Functions

READ Function

A READ by key value uses AXDIALTINX to determine the proper
access path. If the requested record can be found, it is placed
in the record area. AXDIMASK is set to indicate the available
access paths to that record. If duplicate key values are allowed
on the specified access path, all other records with the same key
value can be retrieved by repeatedly issuing READ NEXT requests.
AXDIALTINX is unchanged. If the access path specified by
AXD1ALTINX does not exist, an invalid key condition occurs (as if
the access path existed, but no records were accessible through
it).

A READ NEXT uses A¥DI1ALTINX to determine the current access
path. It reads the next record in sequence by the key field
associated with that access path. (Immediately after OPEN, this
is the first record on the primary access path.) AXDIMASK is set
as for READ by key. The established key of reference access path
corresponds to the AXDIALTINX path (where AXD1ALTINX was set by a
previous function request). If AXDIALTINX is changed by the
program between an OPEN, READ, or START, and a following
READ-NEXT, that READ-NEXT will fail and ‘Invalid Function
Sequence' will be reported in the UFB file-status bytes; in this
case, the UFB error exit is taken if present.

Invalid-Key and End-Of-File conditions occur under the same
circumstances as for primary key access. (Notice, for example,
that if 10 records are accessible through the first alternate
access path of a file, End-Of-File status will be set after not
more than 10 successive READ NEXT requests on that access path,
no matter how many records are in the file.)

7-26

WRITE Function

A WRITE request does not use AXDIALTINX, but sets it to
zero (indicating the primary access path) when the WRITE
completes. The new record becomes accessible through alternate
access paths corresponding to the bits on (1) in AXDIMASK. If
bits not corresponding to any defined access path are set, the
WRITE operation fails with file status indicating 'Error, Invalid
Mask' and the error exit is taken. Unless duplicate key values
are allowed for an access path, an attempt to WRITE or REWRITE
(I0 mode) a record containing such a value results in the same
file status as for a WRITE with duplicate primary key (22), and
the entire operation fails. (The file is not changed.)

Duplicate key errors for output mode are not detected until
CLOSE, at which time only the first of the records involved in
the duplication is recorded in the alternate index structure for
this access path and the CLOSE proceeds; the file status in the
UFB is set to 'Invalid Key, Duplicate (22)' and is available
there for examination by the program after CLOSE (an error-log
file can be optionally created; this feature is described later).

REWRITE Function

REWRITE does not use AXDIALTINX. It affects the current
record, after READ WITH HOLD. The replaced record becomes
accessible through the alternate access paths corresponding to
the bits on (1) in AXDIMASK (as for WRITE). The record is no
longer accessible through the access paths corresponding to zero
(0) bits in AXDIMASK. (In this sense, REWRITE is equivalent to
DELETE followed by WRITE.) The REWRITE operation fails with
‘Invalid Mask' if any invalid mask bits are set (as in WRITE), or
with 'Invalid Key, Duplicate (22)' if an alternate key field for
which duplicates are not allowed contains a duplicate key.

DELETE Function

DELETE affects the current record, after READ WITH HOLD.
AXDIALTINX and AXDIMASK are not used. The deleted record is no
longer available on any access path.

START Function

AXD1ALTINX determines the key to be compared for equal
(eq), greater-than (gt), or greater-than-or—equal (ge)
conditions. When duplicate keys are allowed on the specified
access path, START positions the conceptual current-record-pointer
to the first of these, so that successive READ NEXT requests will
retrieve them all in primary key order.

7-27

OPEN Function - Existing File

AXDIALTINX is zero after OPEN, thus indicating that the
primary key 1is the current key of reference, and AXDIMASK
indicates the existing index structures (as indicated in the file
label). A READ NEXT retrieves the first record in primary key
sequence.

OUTPUT Mode File Attribute Specification

UFBALTCNT and UFBALTPTR must be supplied in OUTPUT mode.
UFBALTPTIR must address an AXD1 control block with AXDIMSIZE
supplied (2 in binary for the first implementation), and
containing alternate index structure description entries (as
defined in control block AXDl) for each alternate access path to
be defined.

The key field ordinal (AXDIXORD), key location
(AXDIKEYPOS) , key length (AXDIKEYSIZE), and selectable options
(AXD1EFLAGS) must be supplied in each entry. Selectable options
in AXDIEFLAGS are: duplicate keys allowed and key compression in
index structure.

Alternate File Errorlog (QUTPUT Mode)

When an alternate indexed file is created in OUTPUT mode,
the user program presents records in ascending primary key
sequence to DMS. (Each record has an associated user-supplied
access mask.) The primary index structure is created as records
are added. The alternate key information is held in a group of
work records until the file is closed.

At SVC CLOSE, a program (BUILDALT) is called to create the
alternate tree structures using these work records. The work
records are sorted and the alternate tree structures are built.

Only during this 1last phase is it possible to detect the
following error condition:

An alternate access path which does not support duplicates
has duplicates (i.e., two or more records have the same altermate
key value for the particular access path).

In this case, the record with the lowest primary key value
will be accessible through the access path while other duplicates
are not. (However, no masks in the records are updated.)

If this error occurs, the program (BUILDALT) will issue a

message giving the user the choice of creating an error log file
or not.

7-28

If an error-log file is to be created, BUILDALT will use
filename = ‘ERRORLOG' in the library (and volume) containing the
alternate file. This consecutive file will contain fixed 1length
records in the following format:

BYTES 1-2 = 2 unpacked decimal digits representing the
ordinal number of the access path (e.g.,
X'3031').

BYTE 3 = ASCII blank (X'20').

BYTES 4-N = primary key value of record in error (i.e.,

record not accessible through the access
path) .

Using The Error Log To Correct Errors

1. Records in error can be rewritten with appropriate mask
and/or alternate key values. This would require a separate user
program (in COBOL).

2, If the access path definition was in error (i.e.,
duplicates should have been allowed), then the file should be
re-created using a correct definition.

Notes:
1. Getting an error-log is always recommended.

2. The alternate file can be read sequentially with
the access masks intact in order to recreate the
file. All functions on the file will perform
correctly although records in error will not be
accessible through access paths where an invalid
duplicate condition occurred.

3. Fixing all errors before further use of the file is
recommended.

Overview Of Indexed And Alternate Indexed File Structures

Indexed Files

. Consist of a primary-tree structure with data blocks at
the lowest level.

. Each data block contains records in ascending key
sequence; the data records may be in one of the 3
DMS~record formats.

. Each data record contains a unique fixed—-length
imbedded primary key.

. Blocks on levels other than the lowest level are index
blocks; these index blocks have item size = PK size + 3
(a 3 byte pointer to a block on the next lower level).

7-29

. All blocks in the primary tree (or any alternate tree)
structure have a 2-byte block length (BL) prefix
(DISP=0) and a 3-byte chain field (DISP=2045).

Alternate Indexed Files

. Contain a primary-tree structure.
. Contain one or more alternate tree structures.

. Contain a label block for alternate tree description
and processing.

The primary-tree structure is the same as for indexed files

except that each data record has a 2-byte access mask.

Internal Representation 0Of Low~Level Of Primary-Tree (Data
Records Within Data Blocks)

The record size in the file label (FDR1RECSIZE) does not include
the mask length., Internally, however, the mask is always stored
with the record and is reflected in the RL prefix for variable-
length records or an adjusted internal record size (SRECSIZE plus
MASKSIZE) for fixed length record processing.

The access mask indicates through which alternate paths the
record may be accessed. The access mask is not referenced as
part of the record; it is present in AXDIMASK (through UFBALTPTR)
and is never present in the user-record area. For variable-
length data records, the record size supplied in UFBRECSIZE by
the user (for REWRITE or WRITE) does not include the mask lengthj;
likewise, the value returned in UFBRECSIZE by DMS after a READ
request does not include the mask length,

There 1is one tree structure for each alternate index (access

path). The lowest level of an alternate tree structure contains
items of the form:

l |

Alternate Key | Primary Key |
Value (&K) | Value (PK) |

| |

This item indicates that the data record with Primary Key = PK
has the particular alternate field with value = AK. This
fixed-length item will be wused for the initial implementation
(see note 2 below).

Blocks on levels other than the 1lowest 1level are index Dblocks
within the alternate-tree structure. These index blocks have
item size = AK size +3.

7-30

An alternate indexed file also has an alternate index descriptor
block (AXD1l) as the first block in the file (block number 0).

Initial Implementation Notes:

1. For access mask = 2 bytes, 16 (max) alternate trees are
allowed. All DMS related control blocks contain space
for possible expansion to access mask size of 4 or 8
bytes (with 32 or 64 maximum alternate trees).

The access mask size is defined as 2 bytes for initial
implementation.

2. The 1low-level items are fixed length for a given
alternate tree (size = PK size plus AK size); this fact
is indicated in the information describing that tree.
Variable-length, low-level items are a later extention
(VLEN items will be useful for duplicates).

Internal DMS Record Formats For Alternate Indexed Files

The internal DMS record formats for data records and for
work records are briefly listed here. Naturally, the formats for
data records apply to all data records in the file regardless of
open mode.

The three DMS record formats are listed here for alternate
indexed files. Note that the access mask is stored at the end of
the record and that the mask is always maintained with its
associated data (i.e., the mask length 1is included in the RL
prefix for variable length records).

Fixed Length

Format | | |
| Data | Mask |
| | I
Variable Length
Format | | [|
| RL | Data | Mask |
| | |]
Compressed
Format | | | |
| RL | Data | Mask |
(| (Compressed) i I
| | | |

Note that for compressed format, the 1length of the compressed
data is RL minus 2 minus mask-size; the compressed data begins at
RL+2 as usual. Note that the mask is not compressed.

7-31

Work records are created from data records during OUTPUT mode DMS
WRITE functions. These work records are sorted during CLOSE
processing and used to create the low-level part of each
alternate tree structure.

Work Record
Format

I | I I
| XORD | Alt-key value | Primary Key |
| | | Value |
I | I |

The 1length of each work record = 1 plus max (alt—key size) plus
primary key size. (Stored in AXD1ORECSIZE.)

XORD refers to the ordinal tree structure number (AXD1ORD). For
a work record containing an alternate key smaller than the
maximum size, the work record contents beyond the end of the
primary key field are undefined. Using fixed—length work records
allows all records to be sorted on the same record size.

SUC OPEN - Existing Alternate Indexed File

The user supplies an AXDl-Area addressed by UFBALTPTR; the
length is indicated by UFBALTCNT (length = (AXD1ENTRY-AXD1BEGIN)
plus (UFBALTCNT * L'AXDIENTRY)). If either field is zero (or if
the area is invalid as flagged by MCBRWTST), then no
user—-supplied AXDl-Area is used by SVC OPEN. This case is not an
error; SVC OPEN allocates the appropriate AXDl-Area from the user
buffer space. (No AXDl-Area is used for BAM or PAM.)

The SVC OPEN requires almost no changes from normal indexed
file support until the end of the routine when the UFB 1is set
up. At this point, the appropriate DMS function vector addresses
are placed in the UFB; also a third buffer is allocated
(AXD1BCB). Block 0 in the file is the AXD1-Block; this block is
read to a buffer area by SVC OPEN and then it 1is moved to the
AXDl1-Area. The information in each AXD1ENTRY ('label'
information) 1is verified as in output mode (key size, key
position and ordinal tree value). AXDIMASK is also verified as
follows:

a. Create existing tree mask while checking ordinal number
values (for duplicate or invalid ordinal tree
structure-AXD1XORD) .

b. This existing tree mask must equal AXD1PMASK.
If AXDI1PMASK is invalid, or if any field within an AXD1ENTRY is
invalid, a cancel message indicating invalid label information is

displayed. The AXDl-Area which is loaded is either user-supplied
or allocated directly by SVC OPEN.

7-32

After SVC OPEN, the following fields are set:

a. AXDIALTINX = 0; AXDICURINX = 0

*b. AXDIMASK = AXDIPMASK (indicating all trees)
(AXDIPMASK is validated as part of label
information verification)

*c. UFBALTCNT = FDR1ALTCNT (this is true after BAM
and PAM OPEN also.)

d. UFBALTPTR = address of AXDl-Area

e. AXD1UFB = address of UFB

f. AXDIBCB = buffer address and OFB pointer set

For SHARED MODE, any user—supplied AXDl-Area is ignored.
*After an alternate indexed file is opened in SHARED MODE,
UFBALTCNT is zero and AXDIMASK is zero in the wuser's AXDl-Area
(from UFBALTPTR).

7.4 SHARED MODE

SHARED MODE is an OPEN MODE which allows multiple user programs
(in effect) to access the same file through I0 MODE type
functions (i.e., multiple realtime requests for record addition,
deletion or modification are supported.) The function-requests
available to the user-program in SHARED MODE are identical to
those in I0 MODE (some situations do occur in SHARED MODE, based
on the need for exclusion between concurrent requests for the
same record, which do not occur in I0 MODE). The user may have
multiple files open in SHARED MODE.

SHARED MODE is implemented on the 2200VS System through a SHARING
TASK. This task has exclusive control of the file; it processes
requests from user-programs one at a time and resolves any record
conflicts. This task uses IO mode functions (with buffer
pooling) for all file access. A mapping facility is provided by
the 2200VS operating system (see SVC DTI) to allow efficient
record transfer between a user task and the SHARING TASK.

The SHARING TASK is a separate task (which does not require a
workstation). It has its own Segment 1 and Segment 2 and runs
unpriviledged. It (currently) has no special privileges (i.e.,
it must adhere to all the restrictions of unprivileged
operation). The only distinguishing feature it has is a port for
intertask messages whose name is "@SHR'. SVC OPEN and SVC CLOSE
identify the SHARING TASK solely by PORT=@SHR.

The two following figures show the general steps in a request for
one user accessing a record in one SHARED file.

7-33

intertask

boundary

[

[

(|
l] 1 i [| | | |
| USER | request | DMS | Pl | SHARING |_1/0 MODE |IFILE]
| PROGRAM | i Interface | I IFMSG| TASK | request | 1
! | | { I | ! 1 |

[

The user-program's request is packaged as a function message
(FMSG) by the 'called' DMS interface vector. (Interface vector
addresses are placed in the user's UFB by SVC OPEN.) The FMSG is
sent to the SHARING TASK. The SHARING TASK issues corresponding
10 MODE request(s) using DMS on the file.

intertask
boundary
[
I
| i | | [| I] |
1 USER | File Status! DMS 1 i IRMSG! SHARING |_(record) | FILE |
| PROGRAM | | Interface | [I TASK 1] |

The SHARING TASK receives file status as a result of the I0 MODE
operation. The SHARING TASK sends a response message (RMSG) to
the interface vector. The interface vector moves the file status
to the UFB. All OPEN, DMS, and CLOSE messages use the same
message format: function message (FMSG) and response message
(RMSG) .

The steps for MAPPING THE RECORD AREA involve virtual memory
mapping such that the record area in the SHARING TASK Segment 2
(which, for example, receives a record on a READ request) can be
mapped to (and from) the USER'S SEGMENT 2 without any actual data
movement.

In a general environment, we have the following:

IFiles opened byl

| the SHARING

I} TASK in IO MODE|

IMany {_Call DMS |DMS | intertask messages [SHARING| DMS | (exclusive I
luser | for SHARED!|INTERFACE| (FMSG+RMSG) | TASK | i possession) |
Iprogramsifile ! | and mapping i | lavailabte for
| irequest {SHARED access

7-34

The number of user programs able to have SHARED FILES open, the
number of SHARED FILES per user, and the total number of SHARED
FILES supported by the SHARING TASK are restricted only by the
amount of space available in the SHARING TASK's segment 2 for
control blocks and mapping areas.

In this structure, a high degree of protection is automatically
achieved since:

1. User programs cannot access the file directly.

2. File buffers are in the SHARER'S segment 2 and are
unavailable to any user program.

The HOLD mechanism in SHARED MODE -~ The READ HOLD
function-request is required if a record is to be rewritten or
deleted. The HOLD mechanism in SHARED MODE is maintained by the
SHARING TASK. The SHARING TASK allows each user program to HOLD
one record (in any shared file) through READ HOLD. While this
record is HELD, no other user may access it with READ HOLD; 1i.e.,
other READ HOLD requests will be forced to WAIT until the record
desired is released by the user.

A HELD record in a file is released (removed from HELD state)
only when one of the following occurs:

1. The user (holding the record) issues another READ HOLD
on any SHARED file

2. The user issues a REWRITE, DELETE, or START RELEASE on
this file.

3. The user CLOSES the file or abnormally terminates
processing.

The HOLD mechanism provides lockout on a record basis so that
concurrent requests for the same record can be handled
correctly. A program should attempt to HOLD records for the
shortest possible time in order to improve concurrency with other
users. Extensions to provide a fuller capability for multiple
record updates are to be added at the SHARING TASK level.

7-35

Additional functions available to the user program in SHARED mode
are:

1. START RELEASE - This function is available to
specifically release a HELD record (or HELD file as
below). Thus, the general rule for avoiding record
conflict is that a READ HOLD should be followed by a
REWRITE, DELETE or START RELEASE as quickly as possible.

2. START HOLD - This function allows a user to gain
control of a file for the purpose of modifying several
records or insuring that the file remains consistent
while an update is made. It insures that no records
are HELD by other users. This function mnaturally
increases the possibility of forcing other users to
wait. The FILE HOLD is removed by START RELEASE. A
START HOLD is invalid if issued when already holding
any record or any file.

The above functions are considered as null operations if 1issued
in I0 mode (i.e., at the DMS level).

The READ KEYED and START KEYED functions in SHARED Mode return
with FS = 80 if UFBKEYAREA does not point to the key embedded in
the record.

Log Files

A Log-File is a consecutive file which can be opened in
SHARED mode. A Log-File has records in variable 1length or
compressed format.

When a consecutive file is opened in SHARED mode, the
sharer will use an existing Log-File (in EXTEND mode, if found).
Otherwise, the sharer will <create a Log-File with the
user-supplied file name. When a Log-File 1is created, the
compress flag and the record count can be supplied by the user
program (default record count = 1000). The record size for the
file (maximum) must be supplied when the file is created. (When
a Log-File is created by the sharer, file protection class is set
to blank (any user); Log-Files created by a user program and
subsequently used in SHARED mode will have normal file protection
class validation.)

Multiple users can write records to a Log-File once it is
opened in SHARED mode. Each record is added at the end of the
file. The sharer will support more than one Log-File opened at a
time. Log-Files are accessed as normal consecutive files (with
variable-length or compressed records) in INPUT, IO, OUTPUT, and
EXTEND modes.

7-36

Log-File Special Features:

1. Recovery Feature - A Log-File will ©be opened
successfully even if it was not closed due to a system crash.
The recovery is automatic during the next SVC OPEN issued on the
file (in any mode). Both record count and EOF indicator are
recovered; no message is issued.

2. Write-Through Feature - Even with recovery, the last
block of data in the DMS buffer will be lost if the system
crashes. This can be avoided if a disk write operation is
performed for every logical record WRITE operation (i.e., the
Write-Through feature).

If the first character of the filename = (C'@', then the
Write-Through feature will be in effect for all writes to that
file (for OUTPUT, EXTEND, or SHARED mode) .

Read-Only Access In SHARED Mode

Opening a file for shared update requires full (write)
access rights. This new feature will allow a user having only
read—access rights (to a file) to open the file in SHARED mode.
However, the sharer will flag as invalid any REWRITE, DELETE, or
WRITE function by that user. (411 READ and START functions are
allowed.) A file status value of 85 1is returned if such an
invalid function is attempted.

Advanced Sharing (Multiple Resources)

The current sharing facilities <(e.g., READ-HOLD, START
HOLD-FILE, START RELEASE) will be expanded to support the
following additional features:

1. Two hold classes (hold for update/hold for
retrieval)

2. Explicit resource control by range or list

3. Extension rights

4. Timeout option for wait on resource

These new features will be available using the standard DMS
START vector and a UFB timeout field (value/exit—address) for
SHARED mode processing. The features are designed for ease of
use by the application programmer while providing powerful
functions and being expandable. A general description of each of
the features is provided below. These new features apply to both
indexed files and alternate indexed files opened in SHARED mode.

These features do not apply at all to log files opened in SHARED
mode.

1. Hold For Update / Hold For Retrieval

7-37

When Hold For Update is used, no other user will be allowed
to hold the particular resources for either update or retrieval
until the current holder releases them. Hold For Update is
always implied when a READ-HOLD function request is 1issued; in
this way, the user can then rewrite the record without conflict
in the shared environment.

When Hold For Retrieval is used, more than one user |is
allowed to hold the particular resources; however, a file or
record held for retrieval will not be granted to a user who
wishes to hold it for update. Hold for Retrieval is useful when
a file is to be scanned (for a report for example) and no updates
are to be made on the file during the time of the operation.

Switching between the two hold classes is not supported
under advanced sharing. When a user is ‘'explicitly' holding a
resource for update, a request to hold that same resource for
retrieval is always flagged as an invalid function sequence. The
same 1is true when a user ‘'explicitly' holding a resource for
retrieval requests that it be held for update.

2. Explicit Resource Control By Range Or List

A resource may be held ‘explicitly' without extension
rights by using one of the following function requests:

START HOLD FILE - Hold the whole file
START RANGE - Hold a range of records (primary key)

These functions support hold for update or retrieval (set
by user; default = update). They also support a list option such
that repeated requests to hold file or range are gathered into a
list by the sharer; the resources are only obtained (held) when
the user issues a request to end the 1list and hold all the
resources in one operation. Thus the 1list option allows any
variety of resources within multiple files to be held in one
operation; since the operation is indivisible with respect to
other hold requests, deadlock cannot occur.

The START RANGE request and the list option are discussed
in detail in the following paragraphs.

a. The START RANGE Request - this request does not
affect file position. The request describes a range of primary
key values by supplying parameters in the UFBKEYAREA and
UFBGKSIZE., UFBGKSIZE is used to specify the effectve key size of
the range; a value of zero or a value greater than primary key
size causes the primary key size to be the effective key size for
the range.

If the effective key size is the primary key size, then the
range contains only one record (since primary keys are unique).
The following examples illustrate the range specification rules:
(GK = UGBGKSIZE, PK = primary key size, let key field contain
'ABCDEFG') .

7-38

1. PK=7, GK=4 Range = all PK where first 4 chars = ABCD
2. PK=7, GK=2 Range = all PK where first 2 chars =

When a range is specified, no record may be added within
that range by a WRITE request from another user. Thus the range
notation is similar to the hold file concept where a range is
merely a contiguous logical subset (by primary key value) of the
whole file. When ranges overlap for the same hold class, the
largest limits of the range are used. When ranges overlap with
opposite hold classes, then the last function (which caused the
overlap) is invalid.

It is possible and even practical to hold a range which
contains no records. The number of records within a range does
not affect the function of the range request or other DMS
requests.

b. The List Option - The list modifier bit is
available with the START HOLD-FILE and START RANGE function
requests. A value of zero indicates the end of the list (default
value). A value of 1 indicates that the current hold request
should be added to any pending hold list for this user. The
pending hold list will expand until a START function with
End-0f-List causes all resources in the list to be held. As each
entry is added to the list, it is checked against the other 1list
entries for validity (no overlap of different hold class on the
same resource) and for compaction (if several entries on the list
may be combined). The order of the 1list is never of any
significance since all resources on the 1list must be acquired
together.

When a list is pending, it will remain pending until it is
ended by a START HOLD-FILE or START RANGE with list = 0 (END) or
until a START-RELEASE (or SVC CLOSE) is issued on any shared file
by this user. (START RELEASE (ALL) and SVC CLOSE cause the
pending list to be erased).

All DMS functions other than START (as above) are flagged
as invalid if issued while a list is pending.

3. Extension Rights

Extension rights are requested using the
START-EXTENSION-RIGHTS function request. In order to avoid the
possibility of deadlock, only one user at a time may have
extension rights and a user may not hold any resources when the
request for extension rights is issued.

START XRIGHTS may be issued while 'implicitly' holding a

record; in this case, the function is valid and the record is
automatically released at the beginning of the function request.

7-39

Extension rights provide the only way a wuser may acquire
more resources when already holding resources. When a user has
extension rights, he may issue READ-HOLD, START HOLD (file) and
START RANGE in order to accumulate as many resources as desired.
Each resource request is performed immediately when issued while
having extension rights (the 1list option is ignored when
extension rights are active).

Immediately after the user has obtained all the desired
resources, extension rights (only) should be released so that
another user might acquire these rights,

4, Timeout Option

A user-supplied error exit specifically for timeout while
waiting for a resource will be provided. A specific file status
value for timeout will be used and RO will contain the address of
the function request if the timeout exit is taken (same as
EODAD/ERRAD exit) . ’

Note - File position remains unchanged after a time-out
exit has been taken (i.e., a READ-NEXT HOLD with time-out could
be repeated if the record was unavailable when first issued).

The UFB fields UFBTIME (1 byte for timeout wait period in
seconds) and UFBTIMEEXIT (user supplied exit address) will be
available in order to set a time value. Time values will remain
in effect for all function requests until changed by the
user—program. A time value = 0 implies an immediate return
through the timeout exit if the resource is unavailable (i.e.,
wait zero seconds). If UFBTIMEEXIT (timeout exit address) is
zero, then no timeout option 1is to be used (i.e., the program
will wait as long as required until the desired resource becomes
available).

The timeout exit may be taken as a result of any of the following
DMS functions issued on a file opened in SHARED mode:

1. READ HOLD (next or by key)
2. START HOLD-FILE, START RANGE
3. START XRIGHTS

4. WRITE

(The timeout exit would be taken whenever the resource required
was unavailable within the given time period (UFBTIME) and
UFBTIMEEXIT was not equal to zero).

The timeout option should be very useful and easy to use
for application programmers. Other fields in the UFB have been
provided so that the resource held and the current owner are
available after a timeout exit has been taken. This information
allows the application programmer to create an exact message to
the user whenever a resource 1is unavailable. For example, a
message containing primary key value and current owner's initials
might be:

"THE JONES RECORD IS BEING USED BY ABB"

7-40

New UFB fields (SHARED mode) for time—out option:
(Note - these 3 fields are all set = 0 by SVC OPEN.)

1. UFBTIME - One-byte wait time in seconds (0 = no
limit)

2. UFBTIMEEXIT - Exit address for timeout return

3. UFBHOLDID - Initials of holder of resource

When a timeout exit is taken, a file status value of C'70' is
set. UFBHOLDID is always set. UFBKEYAREA will be set with the
primary key value of the record in conflict if the function was
'READ NEXT HOLD'. For all other functions, UFBKEYAREA is
unchanged vhen the timeout exit is taken.

General Notes

1. The File-Hold Feature

A file may be held for retrieval or update by using the
START HOLD function. Holding a file is a logical concept and is
not equivalent to holding all the records in the file
individually. When a file is held for retrieval, a WRITE
function on the file will not be executed until the file is
released. When a file is held for update, only the user holding
the file may issue a WRITE (to add a record to the file). When
holding a file, attempting to hold a range of records within the
file (in the same hold class)* has no affect. Likewise, a READ
HOLD issued on a file one holds for update will proceed without
affecting the hold status on the whole file. (A subsequent
REWRITE or DELETE would also not affect the hold status on the
whole file.)

* If the hold class for the range is different than that for
the file, the start range function is flagged as an invalid
function-request. Also, a START HOLD-FILE request would be
flagged as invalid if issued while holding a range within
that file of the opposite hold class.

2. Releasing Resources

When a record is held for update by issuing a READ-HOLD
" function request, the record is said to be held 'implicitly'. 1In
all other cases, a resource record (or file) is said to be held
‘explicitly'.” (If a wuser holds a file or range and issues a
valid READ-HOLD, or if a user issues a READ-HOLD function while
having extension rights, the resource is still considered to be
held 'explicitly’.)

If a record is held implicitly, it will be released by any
one of the following actions:

7-41

a. Issue REWRITE or DELETE on held record

b. Issue another READ W/HOLD on a shared file

¢c. Issue any START function other than positioning
d. Issue CLOSE (this file)

e. Issue WRITE on any shared file

Case B above must include the automatic release of the
'implicitly' held record before the other record is read with
hold. For cases A,C,D,E, no resource is held after the request
completes. By definition, if a record is held 'implicitly', it
will be the only resource held by the program at that time.

If a resource is held 'explicitly', it must be explicitly
released by using START-RELEASE or closing the file. The START
RELEASE-FILE function is also available; it releases all
resources within one file only. (Closing a file also causes
release of the resources in that file only.)

If a program fails to release an explicitly held resource
before 1issuing a READ-HOLD, etc. for another resource, this would
be flagged as an invalid function (assuming the program did not
have extension rights). This means that there is never any
automatic release for an explicitly held resource.

Detailed Functional Overview ~ SHARED Mode

The following function descriptions assume that the user
program does not have extension rights.

1. READ HOLD -~ A READ HOLD involves holding one record for
update. A READ HOLD may have to wait if the required record is
held by another user.

A READ HOLD may be issued when holding no resources. In
this case, the record will be held for update by the user after
the function-request completes. If a READ HOLD is issued while
‘implicitly® holding any record, that record will be
automatically released at the start of the function request.

If a READ HOLD is issued while ‘explicitly’ holding one or
more resources, several situations may occur. If the user is not
holding the indicated record for update, then the READ-HOLD is an
invalid function (the user may be holding the whole file (or an
appropriate range) for update in which case the READ-HOLD is
valid) . If the record is held for retrieval by this user, the
READ-HOLD is flagged as an invalid function.

2. REWRITE and DELETE - These functions require that the
record to be processed be held for update. The record will be
automatically releasd after the function if the record was held
‘implicitly'; the record will remain held for update if it was
held 'explicitly'. There is never a wait for resource for these
functions.

7-42

3. READ NO-HOLD and START For Positioning - These
functions are not affected by the sharing mechanism.

4, WRITE Function - A WRITE function may be successfully
issued when holding no resources. The WRITE function may have to
wait if the file is held (for retrieval or update) by another
user; a wait is also required if the nev record would fall within
the range of records held by another user.

If a WRITE function is issued while 'implicitly' holding a
record, that record will be automatically released at the start
of the WRITE function-request. A WRITE function-request will be
flagged as invalid if it is issued while 'explicitly' holding any
resources (unless the file involved or an appropriate range (held
for update) is included in those resources).

5. Resource Control Commands (START Function) - All
resource control START commands are valid if issued while holding
no resources; the user program must wait if the resource request
conflicts with resources held by other users.

All resource control START commands cause an automatic
release of any 'implicitly' held record.

The START HOLD commands (with or without the 1list option)
are invalid if issued while 'explicitly' holding any resource.

The START RELEASE (ALL) and the START RELEASE-FILE commands
are always valid; no operation occurs if no resource can be
released.

The following functional descriptions assume the user has
extension-rights. Under extension rights, the wuser can
continually hold more resources; all resources are released along
with extension rights when the program issues a START RELEASE or
terminates.

1, READ HOLD - The READ HOLD function can be used to hold
records explicitly (for update) while the user has extension
rights. If the user already holds the record for update (e.g.,
by holding the file or a range containing the record), the record
remains held within the larger group and the READ HOLD is
successful. If the user holds the record for retrieval, the READ
HOLD request 1is flagged as an invalid function. The user may
have to wait if the record is held by another user. :

2. REWRITE and DELETE Functions - These functions must be
issued on a record which is held for update. When the user has
extension rights, there is no 'automatic release' on the record
after a REWRITE or DELETE (i.e., the record was held explicitly).

3. WRITE Function - The WRITE function may be issued at
any time if the user has extension rights; the only error
condition results if the file (or record range) is held for
retrieval by the user.

7-43

4. Resource Control Commands (START Function) - These
commands can be issued while having extension rights.
Overlapping requests are handled such that more resources may be
obtained; requests for records already held have no effect if the
hold class agrees. Any request which would require changing a
hold class for resources already held by this user is flagged as
invalid (i.e., changing between update and retrieval classes is
not supported). The START EXTENSION-RIGHTS command is also
flagged as 1invalid if issued when the user already has those
rights.

Summary Of START Functions (‘#' Indicates New Feature)

START EQUAL, START EQUAL OR GREATER, and START GREATER THAN
positioning functions are unchanged.

START HOLD (80) Hold file for update

START HOLD RETRIEVAL (CO) # Hold file for retrieval

START RANGE (84) # Hold range for update

START RANGE RETRIEVAL (C4) # Hold range for retrieval

(The 4 functions above have the list option also (10).)

START RELEASE (20) Release all resources (this
user)

START RELEASE FILE (24) # Release all resources in
this file

START RELEASE XRIGHTS (21) # Release Xrights only

START HOLD XRIGHTS (81) i Obtain extensions rights

UFB Field Updates

The new fields UFBTIME, UFBTIMEEXIT, and UFBHOLDID will be added
for SHARED mode only.

The following equated values will also be added:
START modifier bits indexed files -
Existing values remaining unchanged are UFBVEQ (01) , UFBVGT (02)

and UFBVGE (03). The following two values are unchanged although
their meaning is slightly altered.

UFBVHFILE (80) - START function = HOLD

UFBVRLS (20) START function = RELEASE

New Values:

UFBVRANGE (04) Request is for a range
UFBVRETRIEVAL (40) Hold class = retrieval if set
UFBVXRTS (01) Extension rights for hold/RLS
UFBVLIST (10) List option (hold range or

file)

7-44

New File Status Values:
UFBFS1TIME EQu Cc'7'

UFBFS1SHARE EQU ('8’

UFBFS2ACC EQU C'5'

UFBFS2RESERR EQU C'6'

FS value for time-out on
resource

FS class for sharer
conditions
Update access denied

(FS=C'85') for user with
read-only rights in SHARED
mode

Resource control error
(FS=C'86"')

In using FS=86 for all invalid resource control commands, some
FS=95 should be updated. FS=95 for record not held would remain
valid for IO mode; however, for SHARED mode this case would be

changed so that FS = 86 was used.

7-45

7.5 DMS FUNCTION-REQUESTS

This section contains a brief list of the UFB values used by
DMS. An extensive list of all DMS filestatus conditions is also
included, along with a description of the various DMS error
returns.

7.5.1 DMS Function-Request Entry

The performance of a DMS function-request on a file is effected
by calling a DMS (function-request) routine. The DMS routine
addresses are available in the UFB (after OPEN). The DMS
routines define the access method to be used in processing the
file; functions not supported for a particular filetype OPEN mode
combination are indicated by a DMS routine address (in the UFB)
which returns an INVALID FUNCTION error indication.

DMS routines are entered using the CALL macroinstruction (JSCI)
with the following registers loaded:

a. Rl - UFB pointer
b. R15 - Stack pointer (updated by CALL)

Several standard operations are taken at the start of all DMS
routines.

a. Establish addressability, etc.

b. Verify that the file has been opened by checking that
OFBUFB (UFB pointer from indicated OFB) equals UFB
pointer in Rl. (This check insures that a valid OFB
exists, Failure will cause a 'fatal error' with a
meaningful error indication.) The OPEN Mode
(processing mode) is established through OFBFLAGS.

T1-46

The following UFB fields are generally used during a function-

request. The
described later.

iv.

vii,

viii,

ix.

specific UFB fields per function-request are

UFBOFB - Pointer to OFB for this UFB.

Modifier byte from function vector — used by some
DMS routines.

UFBRECSIZE - Length in bytes used for all record
movement and for maintaining the sequential
record pointer (SRP).

UFBBUFDATAL - Length in bytes for physical I/0
data transfer.

UFBRECAREA - Pointer to user—-record—area (loaded
from UFB for each function-request).

UFBBCBFLAGS, UFBBUFOFFSET - buffer control
information.
UFBEODAD, UFBERRAD - Error and exceptional

condition exit address (loaded from UFB as
required) .

UFBFS1, UFBFS2 - File Status (bytes) set by all
DMS routines on return.

UFBLF =~ Last function on file, loaded by each DMS
routine (also UFBLFMOD - last modifier byte).

UFBKEYAREA -~ Pointer to user supplied key or
relative record number.

Common UFB Input Parameters — Available for all consecutive disk

file operations.

UFBEODAD (May be supplied by user prior
UFBERRAD to function-request)

UFBLF

UFBLFMOD

UFBBUFSIZE

The following UFB fields are used as 16-bit positive numbers
rather than halfwords (15 bits and sign). These fields are used

only by DMS for

most cases: UFBBLKSIZE, UFBBUFSIZE, UFBCHKSIZE,

UFBBUFDATAL, UFBBUFSIZE, and UFBMAXTFR.

7-47

7.5.2 DMS Function-Request Return

DMS returns to the user program using the RETURN macro-
instruction. User registers 2 through 15 are always restored.
Register 0 (RO) is restored unless UFBEODAD or UFBERRAD is used
== RO then contains the normal return address. Register 1 (R1)
is restored unless the Read-No-Data option has been used, in
which case Rl contains the record address.

DMS indicates the result of the function-request through the file
status bytes UFBFS1 and UFBFS2. These bytes generally contain a
value of X'30' - X'39' corresponding to the ASCII characters O
through 9. This value is called the File Status (FS) Code.
Refer to Appendix C for a list of the DMS and ADMS File Status
Codes.

Return Address Usage (Return to User-Program)

1. Normal return - The RETURN instruction causes
registers to be restored and the program
continues at the instruction after the DMS call.

2. UFBEODAD return (UFBEODAD not = 0) - The address
in UFBEODAD is used. The program continues at
this address; file status is set to the
appropriate value and R0 = the normal return
address.*

3. UFBEODAD return (UFBEODAD = 0 and UFBERRAD not -
0) In this case, the address in UFBERRAD is
used. The program continues at this address;
file status is set and RO = the normal return
address.¥

4, UFBERRAD return (UFBERRAD not = 0) — The address
in UFBERRAD is used. Before returning to the
program, an acknowledge-type GETPARM message is
issued by DMS. This message indicates the UFB
address, the DMS function-request address, the
-file status value and a brief description of the
significance of the file status. The user may
continue or CANCEL at this point. If the program
is continued, return is made to the address in
UFBERRAD with file status set and RO = the normal
return address.®* If UFBF4NOACK is set, the
acknowledge message is not issued and return is
made using UFBERRAD.

% - The high-order byte of RO is set to zero

7-48

DMS Fatal Errors

A fatal error causes DMS to issue an SVC CANCEL. The CANCEL
message describes the situation and gives the UFB address,
function-request address and PRNAME of the file. The
user—-program cannot be continued after a CANCEL is issued.

1. Fatal errors for file status error conditions - If
UFBERRAD is zero (for file-status greater than or equal
to C'30') or if both UFBEODAD and UFBERRAD are zero
(for file—status less than C'30'), then the user has
not supplied a return address for file-status error
conditions. In this case, the CANCEL message will
include the file status value and a description of the
file status significance.

2. Other fatal errors - In the course of performing a
function—-request, DMS uses several UFB fields. If any
of these fields is inconsistent or invalid, DMS will
recognize this and CANCEL the program. The CANCEL
message Wwill indicate which field had the invalid
value. These errors are generally caused by the
user-program incorrectly modifying DMS fields in the
UFB.

3. Program check during DMS function-request - If a
program check occurs in DMS, the most likely reason is
an invalid address in UFBRECAREA or UFBKEYAREA. (These
fields are not checked since the general DMS
requirement is efficiency.) A program check in DMS can
be identified by inspecting the save area trace
(available as a debugging command in HELP); register R1
in the DMS save area contains the UFB address.

7.6 PRINTER SUPPORT

Records output to a printer file are variable-length (P-type)
records as described in Section 4.2.1., Data may be written to a
printer using either the Record Access Method (RAM) or the
Phsyical Access Method (PAM). The Write function—request under
RAM is described in this section. The Physical Access Method (as
described in Section 4.8) is available to write a block of P-type
records to a printer.

The user program views a printer file as an output—-only file
containing an unlimited number of variable-length records. A
printer file record contains a 2-byte user-supplied control field
and a variable number of data characters (depending on record
size). DMS routines are available to write a user record to the
printer file. The maximum record size for the file is
established by the value of UFBRECSITE at SVC OPEN. File Status
= '97' (invalid length) is returned if the value of UFBRECSITE
for a function-request exceeds this value.

7-49

A printer file always has UFBFORGPRINT set. (This implies that
the wuser program has supplied the 2-byte printer control field as
part of the record®.) UFBBUFDATAL (length used for physical 1/0)
is set from UFBRECSIZE. (UFBBUFDATAL is maximum 134 for a
printer file using RAM.) For expanded characters, the device
will truncate any line after 68 characters; no error reported.

The only valid OPEN mode for a printer file is OUTPUT mode. The

only valid function-request for a printer file is WRITE.

% If UFBFORGPRINT is set for a disk file, a consecutive file
with variable-length compressed records is created. 4 large
buffer size may be set for a printer file prior to SVC OPEN.
This buffer size will have no effect if the output is
directed to a printer. However, if the sequential output is
directed to a disk file, the large buffer will result in
fewer physical I/0 operations.

7.6.1 Write Function-Request (OUTPUT)

Inputs: a. Common UFB Input Parameters

b. UFBRECAREA - Location of the user record area (any
Segment 2 address).

c. UFBRECSIZE - Length of record. This 1length is
moved to UFBBUFDATAL for each Write

function-request.

DMS routine operations: The record (as indicated by UFBRECAREA
and UFBBUFDATAL) is moved to a protected buffer (by SVC
XI0) and then the printer I/0 write operation is
initiated. The operation is waited on (at the DMS
level) before the next record is moved to the buffer.
(The modifier byte is ignored.) Trailing blanks are
stripped from the record by DMS before calling SVC XIO.

Since the file has been successfully opened there are
no (I/0) error conditions returned to the user other
than invalid length or invalid command (FS='96' or
'97'). (Out-of-paper, deselected, power-off, or device
not operational are handled by SVC XIO.)

Outputs: UFBFS1, UFBFS2 stored in UFB.

Record written to printer file.
UFBLF is set to indicate WRITE.

7-50

7.7 WORKSTATION SUPFORT

A workstation on the 2200VS system is defined as a CRT and a
keyboard. All workstation processing by DMS is performed under
the Record Access Method (RAM) in IO mode.

The user program views a workstation file as an interactive file
containing a fixed number of records (i.e., CRT rows) of a fixed
maximum length (i.e., CRT columns). A workstation record (in the
user~record—area) contains a 4-byte order-area followed by a
variable number of data characters (mapping area). Workstation
records are written to the CRT by the user program. The user
program can read CRT records which can be modified by the
workstation operator (through the keyboard).

UFBBUFDATAL (length used for physical 10) is set from
UFBRECSIZE. Workstation Read or Rewrite operations are performed
directly on the record area in Segment 2. The record area must
be word aligned; otherwise, File Status indicating the error will
be returned. Each workstation has an associated unit control
block (UCB) which contains the ‘'current' AID character and
keyboard status (locked or unlocked).

A workstation file can only be OPENED in I0 Mode. The
function-requests available are READ, REWRITE, and START.

An order check is returned as C'34'. An order check is detected
by examining the IOSW; however, it is not considered an 1/0 error

for logging purposes. (Power-off, deselected or device not
operational are handled by SVC XI0.) Other error conditions are
incorrect length and record area not aligned (File Status = '97'

and '96' respectively).

The input for workstation function-requests is the common UFB
(workstation) Input Parameters. This includes the Common UFB
Input Parameters, UFBRECAREA (an address pointing to the
user-record-area), and UFBKEYAREA for address of word containing
the Relative Record number (i.e., row number, not used for START
function-request) .

Workstation operations use UFBRECSIZE as the 1length of the
record. UFBRECSIZE less than 4 results in the Order Check error
condition, The user may set UFBRECSIZE ©before any
function-request. UFBRECSIZE is moved to UFBBUFDATAL by the DMS
vector routine before initiating the physical I/0 operation.

7-51

7.7.1 Read Function-Request (1/0)

Inputs:

a. Common UFB (WS) Input Parameters
b. Modifier byte at UFBVREAD
MODIFIABLE option
TABS option (nonCOBOL)
c. UFBRECSIZE - Length of record

DMS routine operations: The relative record number (at the word

pointed to by UFBKEYAREA) is moved to the first byte of
the order area. (RRN other than 124 causes an order
check return to the issuer.) If UFBKEYAREA=0, the row
number already in the order area is left unchanged.
The DMS routine then calls SVC XIO to initiate the read
I1/0 operation (the modifier byte is reflected in the
command byte sent to SVC XI0). SVC XIO will issue the
command when the keyboard is locked (or when it becomes
locked through operator action). After the wait for
I/0 completion, the following information is available:

a. The record (at order area +4) is available in the
user-record-area.

b. Order area bytes 2-3 in the user—record—area
receive the current cursor position.

c. UFBFS? receives the AID character (from the UCR).

MODIFIABLE option* - This option causes the following
actions:

a. The modifiable fields within the record are loaded
from the corresponding workstation CRT positions.

b. Protected fields within the record are either
skipped (leaving those relative 1locations within
the user-record-area unchanged) or moved from the
workstation to the user-record-area (depending on
workstation model). In the 1later case, the
protected fields will receive the characters
present when that 1line was last written to the
screen.

~ ¢. Pseudo-blank characters on the screen are changed

to blanks before transmission; therefore, they are
also represented as blanks within the
user—record—-area.

d. Blinking characters within the range of the READ
operation will be <changed to high-intensity
nonblinking characters (by changing the associated
field attribute character both on the screen and in
the user's record area).

7-52

Outputs:

s

e. Order area bytes 2-3 in the user-record-area receive
the current cursor position.

f. UFBFS2 receives the AID character (from the UCB).

UFB¥S1 stored.

UFBFS2 stored (equal AID character).

Order check (UFBFS1, UFBFS2 = 34) is a possible
exception (return through UFBERRAD, no logging of 'I/O
error').

Record is available in user-record—area.
UFBLF, UFBLFMOD set.

(Keyboard is locked.)
The recommended sequence of workstation

function-requests involves Read Modifiable rather than
Read.

Recommended sequence (one user-record—area)
1. Rewrite record to workstation.

2. Read modifiable; data entered by workstation
operator is now available in the user-record-area.

3. The user-program may change fields within the
user-record-area based on the data received.

4. Rewrite record to workstation (for additional
information, error correction (reentry), etc.).

It is important to note that protected fields within the
user-record-area should be changed after the Read
Modifiable function-request (rather than before the Read
Modifiable function-request).

7.7.2 Rewrite Function-Request (I/0)

Inputs:

a. Common UFB (WS) Input Parameters

b. Modifier byte at UFBVREWRITE
TABS option (nonCOBOL)

c. UFBRECSIZE - Length of record

DMS routine operations: The relative record number (at UFBKEYAREA,

indicating row number) is moved to the first byte of the
order area (user-record-area). (RRN greater than 24
causes an order check return to user.) If UFBKEYAREA=0,
the row number already in the order area is left
unchanged. The second byte of the order area is a
user-supplied Write Control Character (WCC)3; the third
byte is a user-supplied column number (for optional
cursor positioning); these bytes are not used by the DMS
routine.

7-53

The DMS routine initiates the physical I/0 write
operation and waits for completion. After completion,
the DMS routine returms control to the user—program.

Qutputs: UFBFS1, UFBFS2 set for operation successful.
(Order check is also possible.)

The workstation record is written (including actions
directed by the WCC). UFBLF, UFBLFMOD are set.

7.7.3 Start Function—Request (1/0)

Inputs: Common UFB (WS) Input Parameters

DMS routine operations: The DMS routine inspects the UCB for the
current state of the workstationj it then sets the file
status bytes accordingly.

UFBFS1 = C'0' - Operation successful

UFBFS2 = AID character - If AID character = blank, then
the keyboard is unlocked; otherwise, the keyboard is
locked and UFBFS2 = current AID character.

(The Start function-request can be issued (prior to a
Read function-request) to determine whether a
subsequent Read function-request would wait (for
keyboard to be locked) or would process immediately.)

Outputs: UFBFS1, UFBFS2 set
UFBLF, UFBLFMOD set.

7.8 MAGNETIC TAPE SUPPORT

Wang magnetic tapes are processed through the Data Management
System, using OPEN, DMS functions, and CLOSE.

Two tape densities, 800 and 1600 BPI, are supported. At tape
mount, a physical I/0 will test the tape density and indicate it
in the UCB Tape Density Field. At OPEN, the density will be
checked against the user-specified value.

Tape labels supported in the first release are ANSI-Label (AL),
IBM-Label (IL), and No-Label (NL). They are described in our
Tape Label Control Blocks. Tape labels are written in ASCII code
for AL, and EBCDIC for IL. Tape data structure and labels are
compatible with the industry standard (see the IBM O0OS Tape
Manual, for example), with the following restriction and
extensions:

(1) The label-handling routines will always skip existing User

Header and Trailer labels, and will not create them on new
tape files.

7-54

(2) Only 80-byte labels are accepted.

(3) Five kinds of record formats are supported:

'F' - fixed-length format

'V' - variable-length IBM format
'W' - variable-length Wang format
'X' - compressed Wang format

‘U' - undefined-length format

Tape data blocks of format 'W' and ‘X' are to contain a
block length prefix (like the corresponding disk blocks) in
order that short blocks (less than 18 bytes) can be padded
to prevent their being interpreted as 'noise' blocks.

Tape files in 'V' format have IBM variable-length record
blocking format. Short blocks are padded, as above, if
less than 18 bytes long.

For 'U' format files, each block is considered as a
record. Short 'U' format blocks are never padded.

Receipt of a block of less than 12 bytes (in INPUT mode) is
treated as a length error.

(4) Minimum block size is 12 bytes for INPUT, and 18 bytes for
OUTPUT.

(5) For IBM-label tape, EXTEND mode is not supported.

Tape files may be positioned by file-sequence number. The
program specifies file sequence in UFBTSEQ before opening the
file. For NL tape, each file is separated by tape marks. For an
existing 1labelled tape file being opened in INPUT or EXTEND mode,
positioning can also be done by 1library and file names (see
below).

The Wang Data Management System supports tape access in INPUT,
OUTPUT, and EXTEND modes, through the RAM, BAM, and PAM access
methods. CLOSE allows a user to rewind, rewind and unload, or
not rewind the tape.

For an existing labelled tape file, DMS will use 1label
information to determine the buffer size. For a new tape file or
NIl tape file, the program must supply the buffer size in
UFBBLKSIZE,

Multiple-volume tape files are also supported in this release.
Double buffering is always used for tape I/0 processing.

7.8.1 Mount/Dismount a Tape

Tape can be mounted through the 'MOUNT' command or during
'OPEN'. The MOUNT SVC and command are described elsewhere and
will not be repeated here.

7-55

The tape drive density 1is set to 1600 BPI for
bypass—label-processing (BLP) type mount, and set to the physical
tape density for normal mount.

If the tape volume is not found at OPEN, the OPEN SVC will issue
a respecification message directing the user to mount the tape
volume, much 1like the disk mount respecification. The only
difference is that tape mount through OPEN is always for
Exclusive use.

A tape volume mounted for SHARED use can be opened by all users.
However, once the tape is opened, it will become mounted for
Exclusive use and will remain so until remount or dismount.

To dismount a tape, the DISMOUNT SVC must be used or the file
must be CLOSEd with Rewind—-And-Unload specified.

7.8.2 Initialize a Tape Volume

The VS utility program TAPEINIT is used to initialize a new
labelled volume. TAPEINIT first mounts the new tape using BLP
option. The MOUNT SVC positions the tape at the Load Point
Marker, and sets the Label Type to UNLABELLED. TAPEINIT then
opens the NL tape in OUTPUT mode with File Sequence Number 1, and
with Tape Density chosen. OPEN sets the drive density, and
writes the VOL1 LABEL (in ASCII for ANSI label and EBCDIC for IBM
label) . At CLOSE, two tape marks are written by the CLOSE SVC to
indicate that no file is on the tape. TAPEINIT then uses the
Mount With No-Message option to tell the system the new tape
volume name and its label type.

7.8.3 Open a Tape File

Input to OPEN SVC includes the following UFB fields:
UFBBLKSIZE (Tape Block Size):

For NL Tape, UFBBLKSIZE is the maximum block size
of the tape file.

For labelled tape, VFBBLKSIZE is interpreted
differently for different OPEN modes. In OUTPUT
mode, it is the maximum block size of the tape
file, and is the block size recorded in the tape
label., In EXTEND mode for all access methods or in
INPUT mode using BAM or PAM, UFBBLKSIZE is the
maximum block size acceptable, unless it is set to
0, meaning that the maximum block 1is size
unknown.

Maximum size is 32K in all cases. Minimum size is
12 bytes for existing files, 18 bytes for new files.

7-56

UFBRECSIZE (Tape Record Size):

UFBFORG:

UFBF1:

UFBF2:

UFBDEVCLASS:

UFBFLAGS:

UFBPRNAME :

UFBVOLSER:

Ignored in BAM or PAM. In RAM, UFBRECSIZE is used
as follows: for NL tape with fixed-length records
specified, UFBRECSIZE is the record size expected.
For NL tape with variable-length or undefined-
length records, it 1is the maximum record size
expected. For 1labelled tape (AL/IL) in OUTPUT
mode, it is the record size to be recorded in the
label. For labelled tape in INPUT mode, it is the
maximum record size acceptable, unless it is set to
0, meaning that the maximum record size is
unknown, For labelled tape in EXTEND mode,
UFBRECSIZE is ignored. Tape record size must be
less than or equal to BLKSIZE (no record may span
two or more blocks). For RAM with fixed-length
records, the UFB is considered to be in error if
BLKSIZE is not a multiple of RECSIZE.

Maximum record size in 32K in all cases.

Indexed files are not supported. If UFBFORGVLEN is
set, OPEN will accept a variable-length record
format (W-format) tape file only. I1f UFBFORGU is
set, OPEN will accept an undefined record format
(U~-format) tape file only. If UFBFORGVIBM is set,
OPEN will accept an IBM variable-length record
format (V-format) tape file only. If none of the
above flags 1is set, OPEN will cancel the program
with an error indicator.

All options are supported.

For AL and NL tapes, INPUT, OUTPUT, and EXTEND
modes are supported. For IL tapes, only INPUT and
OUTPUT modes are supported. PAM in EXTEND mode is

not supported.

Set to X'02' to indicate tape (but see UFBF4ALLOWT,
below) .

Only the 'COMPRESS' option is used.

OPEN prname.

Tape volume name. If the volume is not found, OPEN
will either display a respecification message to

request that the tape volume be mounted or take the
specified OPEN Exit.

T1-57

UFBFILENAME
and
UFBDIRNAME:

UFBF4:

UFBTLABELS:

UFBTDEN:

UFBTSEQ:

The library name and file name are ignored for NL
tape. For AL or IL tape, they must be specified
in OUTPUT mode. In these cases, the specified
names are entered into the tape label in the form
'library.file' (for example, YKW.TEST). For 1IL
tape, translation to EBCDIC is performed. For an
existing labelled file, if file sequence is
supplied in UFBTSEQ, UFBFILENAME and UFBDIRNAME are
nonblank and OPEN uses the library and file names
to position the tape. The tape file mname in the
HDR1 is decoded according to the format
'library.file', and will be treated as blank
otherwise. If the file sequence is supplied, OPEN
positions the tape by File Sequence Number and then
checks the file name (if nonblank) against the file
label. File and library mnames in IL 1labels are
translated to ASCII for comparison with the
corresponding UFB fields.

UFBF4NOMSG and UFBF4ALLOWT are used. In order to
open a tape file, either UFBDEVCLASS must indicate
'"TAPE' (X'02) before OPEN, or UFBF4ALLOWT must be
set.

Tape label type (NL,AL,IL,ANY). If ANY is
specified, OPEN will allow any 1label type tape
file. If more than one type is specified, OPEN
will accept tape files with the specified 1label
types.

Tape density (800 BPI, 1600 BPI). If UFBTDEN is
set to binary zeroes (tape density not specified),
OPEN will set the UFBTDEN to the density found in
the UCB. If UFBTDEN is specified, and the tape
volume is not mounted for '"Bypass Label Processing'"
(BLP), OPEN will check the UFBTDEN against the
actual tape density, and will respecify or take the
OPEN Exit if they do agree. If BLP is in use, the
tape drive density will be set to the density
according to UFBTDEN, and will be recorded in the
UCB.,

File sequence number. OPEN uses this number to
position the tape. It must be specified for NL
tape and for 1labelled tape in OUTPUT mode. For
existing files on a labelled tape, one can also
position by file name.

7-58

OPEN EXIT
FLAGS:

Tape OPEN Exits are handled exactly as disk OPEN
Exits, The OPEN Exit masks are set up in the first
byte on the top of the stack in the SVC input
parameter. Currently supported OPEN Exits are:

(1) Volume not found

(2) File not found, or sequence number out of range

(3) No space available on tape volume to create new
file

(4) Possession conflict

(5) Wrong label type or wrong density

No other fields in the UFB are used as 'OPEN' input.

Output of the OPEN SVC includes the following UFB fields:

UFBVREAD
and
UFBVSTART:

UFBFS1
and
UFBFS2:

UFBBLKSIZE:

UFBRECSIZE:

UFBFORG:

UFBFLAGS:

UFBF1:

Set to DMS routine entry address.

Set to OPEN Return Code. If UFBF4NOMSG is

requested and OPEN is not successful, a 4-byte
message ID is set at the beginning of the UFB, just
as for Disk OPEN. If OPEN Exits are set, UFBFS2 is
the exit flag. (The exit flag indicates which OPEN
Exit condition is taken, just as for Disk OPEN
Exit.)

For 1labelled tape, existing file (INPUT and EXTEND
mode) , UFBBLKSIZE is set to the tape block size
from the file label. This is the maximum allowable
block size for DMS operations.,

For an existing file on labelled tape, (INPUT and
EXTEND modes), using RAM, UFBRECSIZE is set to the
record size from the file label, and is the maximum
acceptable record size for DMS operations. For an
existing file on 1labelled tape, using RAM with
undefined record format, it is set to the block
size from the tape 1label, and is the maximum
acceptable record size for DMS.

Set to actual tape file organization in INPUT and
EXTEND modes.

Compress flag set for an "X" format file in INPUT

and EXTEND modes.

UFBF1PREVO and UFBF10PEN flags are set.

7-59

UFBDEVADDR: Set to the device number of the device on which the
tape volume is mounted.

UFBFILENAME For a labelled tape in INPUT and EXTEND modes, OPEN

and will decode the tape file name in the HDR1l and put

UFBDIRNAME: it in these fields. The name in the label must be
in the form 'library.file' in order to be decoded.
Otherwise, these fields are left blank.

UFBNRECS : Set to 0.
UFBLRECSAVE: Set to the same value as that in UFBRECSIZE.

UFBTLABELS: Will be set to the actual tape label type after
successful OPEN.

UFBTDEN: Will be set to the actual tape density after
: successful OPEN.

UFBTSEQ: Will be set to the tape file sequence number after
successful OPEN.

UFB fields in the DMS section are initialized. No other fields
are used.

OPEN SVC functions - Existing File (INPUT and EXTEND Modes) :

OPEN issues a 'GETPARM' to obtain the volume name, file name, and
file sequence number. If the volume is not mounted, a message is
displayed requesting the user to mount the volume. The tape is
then positioned by file sequence number or file name.
Information in the file label (fér labelled tape) is then
extracted and placed in UFB fields and control blocks are
allocated. UFB fields are initialized and the tape positioned to
the first data block for INPUT mode to the tape mark following
the last data block for EXTEND mode. Two I/0 buffers of the size
specified in UFBBLKSIZE are allocated in the Segment 2 buffer
area.

7-60

OPEN SVC Functions - New File (OUTPUT MODE) :

OPEN issues a 'GETPARM' to obtain the volume name, file name, and
file sequence number. If the volume is not mounted, a message is
displayed requesting the user to mount the volume. The tape is
then positioned by file sequence number. For labelled tape, the
file labels HDR1 and HDR2 are constructed and written on the tape
(and followed by a tape mark). Library and file names are
converted to the form (lib.file) and placed in the HDR1 file.
(No labels are written for NL tape.) Control blocks are
allocated. UFB fields are initialized, and the tape is
positioned to the first data block. 7Two buffers are allocated
(as for INPUT mode).

7.8.4 READ Function Request

INPUTS: The following UFB fields are used:

UFBEODAD,

UFBERRAD: Error Exit address.

UFBVREAD: Function modifier.

UFBRECAREA: Record area for the record read.

Outputs: The following UFB fields are set:

UFBFS1,

UFBFS2: File status after DMS functioms.

UFBRECSIZE: Set to record size after READ in RAM.
Set to block size after READ in BAM. For "U"
format file, in RAM, RECSIZE is the block size of
the block which was read.

UFBNRECS: Number of records processed.

DMS Routine The next record on the tape file is moved to

Operations: user-specified record area. For multiple-volume
tape files, volume switching may be performed (see
7.8.8 below). If the NODATA option is wused, the
record is not moved to the record area. Instead,
the record pointer is returned in general

register 1,

7-61

7.8.5 WRITE Function-Request

Inputs:
UFBEODAD
and
UFBERRAD:
UFBRECAREA:
UFBBLKSIZE:

UFBRECSIZE:

Outputs:

UFBFS1,
UFBFS2:

UFBNRECS:

DMS Routine
Operations:

7.8.6 START

The following UFB fields are used:

Error Exit address.

Record area of the record to be written.
Tape block size to be written. (Used in PAM only.)
Record size, specified when writing records for
variable-length-record files (record formats V, W,
X, and U).

The following UFB fields are set:

File status after DMS functioms,
Number of records processed.
The record addressed by UFBRECAREA is written to

the tape. For multiple-volume tape files, volume
switching may be performed (see 7.8.8 below).

Function—-Request

Inputs:

UFBEODAD,
UFBERRAD:

Outputs:

UFBFS1,
UFBFS2:

DMS Routine
Operations:

The following UFB fields are used:

Error Exit address.

The following UFB fields are set:
File status after DMS functions.

To wait for the completion of a previous READ/WRITE
request (in PAM only).

7-62

7.8.7 Close Tape File

Inputs: UFB fields used by CLOSE:

All UFB fields left from previous DMS functions will be used by
CLOSE. No unauthorized modifications should be made to the UFB.
Options supported are 'NOREWIND', °'UNLOAD', and 'REEL'.

Output: UFB fields used by CLOSE:

UFBFS1,

UFBFS2: Return Code.

UFBF1: UFBF10PEN flag turned off

CLOSE In OUTPUT and EXTEND modes, CLOSE writes out data
svC in buffers. For labelled tape, the trailer labels
Functions: EQOF1 and EOF2 are constructed and written to tape,

followed by two tape marks. For NL tape, only two
tape marks are written; trailer 1labels are
written. In INPUT Mode, CLOSE completes the last
1/0 operation. CLOSE then deallocates control
blocks and buffers, cleans up UFB fields, rewinds
the tape, and returns unless the ‘'NOREWIND' or
'UNLOAD' options are specified. For the 'NOREWIND'
option, CLOSE positions the tape to the tape mark
following the processed tape file, rather than
rewinding it. For the 'UNLOAD' option, the tape is
rewound, unloaded, and logically dismounted.

The 'REEL' option asks CLOSE to terminate the
current volume with an 'End Of Volume' 1label and
continue the tape file on next volume (see 7.8.8
Multiple-Volume Tape File, below).

7.8.8 Multiple—-Volume Tape File

The multiple volume tape processing is supported by DMS for AL
and IL tape files, as described below.

To Read a Multiple-Volume Tape File (INPUT Mode)

When end-of-tape is reached, DMS reads the trailer 1label (if
neither EOF1 nor EOV1 is found, a warning message will be
displayed, and the End-Of-Data exit will be taken) , compares the
tape block count with the actual number of tape blocks read, and
warns the user if the counts are inconsistent.

If the trailer label is an EOF1 block (indicating end-of-file
reached) , the End-Of-Data exit is taken with File-Status = 10.

If the trailer label is an EOV1 block (indicating file to be
continued to next volume), and if the user has specified the
NOMSG option or EOD=EOV option, the End-of-Data Exit is taken
with File-Status = 11.

Otherwise, the tape file is continued to the next volume. A
volume switch message 1is displayed, directing the user to mount
the next volume. The newly mounted volume is checked for the
correct volume sequence number and the 'READ' operation continues
from the new volume.

To Create a Multiple-Volume Tape File (QUTPUT Mode)

When end-of-tape is reached, DMS checks the NOMSG flag and EOD =
EOV flag. If either of these flags is set, the Boundary
Violation Exit is taken with File-Status = 34, Otherwise, the
EOV1 and EQV2 blocks are written on the tape followed by two tape
marks, and DMS displays a message asking the user to specify the
next volume and device. A MOUNT SVC is issued asking the user to
mount the next volume and the WRITE operation continues on the
next volume.

7.8.9 7-Track Tape Support

The 7-track tape records only six bits of data for each byte.
Thus, only the six low-order bits of each byte are written on
tape and, during a read, the two high-order bits are set to =zeros
in main memory.

Data can be recorded on the tape using odd or even parity. Note,
however, that a data pattern of X'00' cannot be recorded on tape
with even parity; instead, it is recorded as X'OA'. 1If it is
recorded with odd parity, it is recorded as X'00'.

Data Management supports only unlabelled tape files for 7-track
tape. The tape mount function is the same as for 9—-track tape;
tape density is set to 800 bpi (the only density supported).
System control blocks always indicate label type 'NL'.

When opening a 7-track tape file, the user must specify the
parity of the file in UFBTPARITY, even for an existing file. All
other UFB fields are used as for 9-track tape. In RAM, only
fixed-length and undefined-length records can be used for 7-track
tape. BAM and PAM are supported as for 9-track tape.

All DMS functions as well as CLOSE are then same as four 9-track
tape.

71-64

7.9 PHYSICAL ACCESS METHOD FUNCTIONS

Any disk file can be accessed under the Physical Access Method
(PAM) when UFBF1PAM is set in the UFB (at OPEN.) In this case,
the file 1is the accessed by block number (from zero) rather than
record number. SVC OPEN does not allocate I/0 buffers when
UFBF1PAM is set. All I/O is performed by reading or writing
directly from a user-supplied address. The length of the data
transfer is also set by the user-program.

NOTE: The Physical Access Method (PAM) provides the user with
asynchronous waits for I1/0 operation completions. A
physical I/0 operation is initiated by a read, rewrite
or write function request. The data area for the
physical I/0 operation is defined by UFBRECAREA and the
data length (UFBBLKSIZE) as returned in the UFB by the
DMS routine. This data area should not be wused until
the 1I/0 operation has been completed successfully; ie.,
it should not be used until a wait for I/0 completion
(START (WAIT) function-request) has been executed.

7.9.1 UFB Field Definitions for Physical Access Method

1. UFBMAXTFR is a 2-byte positive number which
indicates the maximum data length which may be
transferred per I/0 request on a particular disk
drive. This field is available after OPEN and will
be a multiple of the disk block size (2048 bytes).
UFBMAXTFR is 2048 if the device is a printer.

2. Common PAM Input Parameters

a. UFBERRAD, UFBLF, UFBLFMOD and the UFB
BCBsection are used as in the Common UFB Input
Parameters. UFBEODAD is taken when File status
= '23' (record not found) is returned.

b. UFBKEYAREA - Pointer to word containing the
beginning block number of the data to be read
or written. The first block in the file is
block number zero.

c. UFBRECAREA - Address (Segment 2) of data. Data
areas are completely —controlled by the
user-program. The data address must Dbe
properly aligned; otherwise, file-status = '96'
will be set for invalid command. (Page
alignment is required).

7-65

d. UFBBLKSIZE - This 2-byte field indicates the
length for the data transfer desired. DMS
function-requests will set UFBBLKSIZE equal to
the length of the data actually read or written
when end-of-extent, end~of—-cylinder, or
end-of-file cause the data transfer to be
truncated. UFBBLKSIZE must be a multiple of 2K

or file status = '96' will be set for invalid
command.

UFBBLKSIZE may equal UFBRECSIZE = 2K for
appropriate files, In this way, files with
block size = record size may be accessed

without record movement and without any extra
user-program support. In this case, UFBBLKSIZE
will never be reset by DMS (i.e., the data
transfered will always = one disk block.)

7.9.2 Read Block Function-Request (INPUT or I/0)

Inputs:

a. Common PAM Input Parameters

b. UFBEBLK - block number of last block within file

DMS routine operations: The desired block(s) as indicated by

Outputs:

Note:

UFBKEYAREA and UFBBLKSIZE is read into the user area
(UFBRECAREA) . The read block function is random (block
number required) and asynchronous. (START 1is used to
wait for completion.) File status is set equal '95' if
there is 1/0 in progress (invalid function sequence).
File status is set equal to '23' (record not found) if
the block number supplied is greater than UFBEBLK or if
the file contains no records (UFBEREC=0 and
UFBEBLK=0) . UFBEODAD is taken for file status = '23'.

UFBFS1, UFBFS2 stored (operation initiated ok or errors
as above).

BCB updated for read operation initiated.

UFBLF set for read.

UFBBLKSIZE set equal to actual length of the transfer.

UFBEREC and UFBRECSIZE are available in the UFB and may
be wused by the user-program to determine the last
record in the last block (end-of-file). (UFBEREC
equals the number of records in the last block of the
file; UFBEREC=0 only when the file contains zero
records (null-file.)

7.9.3 Rewrite Block Function—~Request (I/0)

Inputs:

a. Common PAM Input Parameters

b. UFBEBLK - block number of last block within file.

7-66

DMS routine operations: The desired block(s) as indicated by

Output:

UFBKEYAREA and UFBBLKSIZE is written from the user area
(UFBRECAREA) to the disk file. The rewrite block
function-request is random and asynchronous (see 'Read
Block", Subsection 4.9.1). The rewrite block
function-request does not require a prior read block
operation. File status errors ('23' or '95') may occur
(as in Read block). UFBBUFSIZE is set following the
initiation of the write operation. (No extents are
allocated in I/0 mode.)

UFBFS1, UFBFS2 stored

BCB updated for write operation initiated.

UFBLF set for REWRITE |

UFBBLKSIZE set equal to the actual length of the
data transfer

7.9.4 START Function-Request (INPUT, I/0, or OUTPUT)

Inputs:

a. Common PAM Input Parameters
b. UFBEBLK - block number of last block within file
c. Modifier byte at UFBVSTART

DMS routine operations: This function-request has two different

operations depending on the value of the modifier byte:

START (WAIT) - The last I/0 operation is waited on for
I/0 completion. File status = '95' if there is no 1I1/0
in progress. The file status of the completed I/0
operation is available in UFBFS1, UFBFS2 after START
(WAIT); the record area is also available to the
user-program after I/0 completion.

The START (WAIT) function-request is required for
waiting on I/0 completion for all the asynchronous PAM

operations,

START OUTPUT/START IO - This request is available only
in OUTPUT mode and in temporary I/0 mode. It is
similar to the START request for consecutive disk files
(Subsection 4.4.4)

START I0 - The last I/0 operation (if any) is waited
on. Then the vectors are modified to provide the Read
block and Rewrite block function-requests. The size of
the file is determined by UFBEBLK.

START OUTPUT - The last I/0 operation (if any) is
waited on. Then the vectors are modified to provide
the write block function-request. UFBEBLK is set equal
zero for no records in file.

START EXTEND - This option is similar to START OUTPUT
except that UFBEBLK is adjusted so that subsequent
WRITES will add blocks to the end of the file.

7-67

Outputs (START OUTPUT and START I/0):

UFBFS1, UFBFS2 stored
BCB section updated (no I/O in progress)

For Start I/0- UFBVWRITE set for invalid functions;
UFBVREAD and UFBVREWRITE set for I/0 mode functions.

For Start Output - UFBVREAD and UFBVREWRITE set for
invalid function. UFBVWRITE set for OUTPUT mode write
function.

UFBFS1, UFBFS2 stored in the UFB; UFBLF and UFBLFMOD
set.
BCB section updated for no I/0 in progress.

7.9.5 Write block function-request (QUTPUT)

Inputs:

a. Common PAM Input Parameters
b. UFBEBLK - block number of last block within file

DMS routine operations: The desired block(s) as indicated by

Outputs:

UFBBUFBLOCK and UFBBLKSIZE are written from the user
area (UFBRECAREA) to the disk file. UFBBUFBLOCK is the
number of the next highest block beyond the current end
of the file. UFBBUFBLOCK 1is maintained by DMS and
allows a file to be created sequentially; it should not
be modified by the user program. The write block
function-request is thus sequential and asynchronous.
The file status for Invalid function ('95') occurs if
the last write has not been waited on. UFBBLKSIZE is
set to indicate the 1length of the data transferred
after 1/0 initiation. Also, UFBEBLK and UFBBUFBLOCK
are updated for the number of blocks transferred.
Additional extents are added as necessary; file status
= '34' when an additional extent is required and none
can be allocated.

UFBFS1, UFBFS2 stored

UFBBLKSIZE set equal to the actual length of the data
transfer

UFBBUFBLOCK and UFBEBLK updated for number of blocks
tansferred.

BCB section updated (write initiated)

UFBLF set for write.

7-68

APPENDIX A - DATA AREA MACROINSTRUCTION FORMAT

Corresponding to each system data structure is a macroinstruction
which may be used freely by system and user's programs to define
standard labels for fields within the structure. If only the
macroinstruction name is written, a dummy section (DSECT) of that
name is generated. If a register specification (e.g., UFB
REG=R1) is included, a USING pseudo-operation is also generated
(e.g., USING UFB,Rl). If the 'SUFFIX='" operand is provided, each
label is generated to contain the SUFFIX character immediately
following the block name (e.g., for "UFB SUFFIX=#", the label
""UFBF1" becomes "UFB#F1"). Only a one-character suffix should be
specified. If "NODSECT" is specified (e.g., "UFB NODSECT,
REG=R1"), the DSECT (and termination CSECT) pseudo—operations are
not generated. The block name is not included as a label name in

this case. The general format of these macroinstructions 1is as
follows:

MACRO
blockname &NDS,®=,&SUFFIX=
GBLB &NODS ,&blockname
AIF ('&SUFFIX' NE'') .LO
AIF (&blockname) .L3
&blockname SETB 4}
.LO ANOP
AIF ('&NDS' EQ 'NODSECT' OR &NODS) .L1
blockname&SUFFIX DSECT
L1 ANOP
¥
* BLOCK DEFINITION FITS IN HERE
*
AIF ('&NDS' EQ 'NODSECT' OR &NODS) .L2
&SYSECT &SYSTYP
L2 ANOP
AIF ('®' EQ '*).L3
USING blockname&SUFFIX ,®
.L3 ANOP
MEND

APPENDIX B - USER PROGRAMS IN THE WANG 2200VS

THE PROGRAM

A program 1is an entity invoked by the command processor or by a
LINK SVC. The name of the program is the two—level name of its
disk file. There is only one program in a file., A program file
is a consecutive file with 1K (1024) byte records and the
'program’' flag set in its file descriptor record. The object
program is originally built by a language translator (compiler or
assembler). It then may be modified by a linker program.

THE PROGRAM SKELETON

A program is partitioned into blocks of information. Each block
represents common information that will be needed either when the
program is rumnning or when the program is processed by the linker
program. To describe the skeleton at this 1level and for the
lower 1levels, a special notation will be used. Each item to be
described will be listed in a table. To the left of the item's
description will be its 'level' number and its length. The level
number is a designation of the relationship of this item with the
preceding items in the table. The start of the table will be the
program with a level number of zero. Then to describe structures
within the program, there will be one or more level one items
listed under the level zero item. The first of the items with
the next higher level number will be assumed to be located at the
start of the item specified with the lower level number. To help
see how this system works, take a look at the following example:

Level Number Length Description
0 var A
1 5 B
2 3 C
2 2 D
1 var E
Example 1

In this example, the whole is 'A'. The first level below 'A' is
level 1. There are two parts to this level: 'B' and 'E'. The
start of B corresponds to the start of A. At the next level,
level number 2, there are also two parts. These are 'C' and
'D'. The start of C corresponds to the start of B and also the
start of A, A slightly more general use of this notation would
specify that there can be any number of replications of B. If
this was the case:

Level Length Description
0 var Object program
1 var The RUN block
1 var The SYMBOLIC block
1 var The LINKAGE block

THE RUN BLOCK

This contains the information needed by the system to run a
program. The block will be used by the operating system as a
paging file when the program is running. It contains the actual
instructions to be run and the information needed to format the
'static' area on the stack when the program is started.

Level Length Description
1 var The RUN block

(First location has an assumed address
of 1,048,576 (or 1024K).)

2 var CODE and PROLOG block
3 8 PROLOG block
4 4 Length of CODE and PROLOG block

(This value is used to find the start
of the 'STATIC' AND LENGTHS block.)

4 4 Entry point address

This is the point to which control
will be passed when the program is
started. It will be the address of
any external name in the CODE
sections., If the high-order bit is 1,
the program has been assembled to run
in segment 0 (as for standalone
utilities and operating system
routines) .

3 var CODE block

This may contain any number of CODE
sections. This block contains all of
the executable instructions in the
program and may contain nonmodified
data. It is composed of any number of
sections, where a section is
contiguous area of code that can be
moved by the linker program as whole.
There 1is no requirement for a
particular order of the sections
within the CODE block.

Level

4

Length

var

16

var

Description
CODE section

L]

This is a block externally identified
by its name, It is an independent
contiguous area of code supplied by
the 1language translator. The first
location will be on a double word
boundary, and the 1length will be
divisible by eight. All address
constants that are resolvable will be
resolved so that the program can be
run without changing any locations in
the section.

LENGTHS block

Length of ‘'static' block in Dbytes
(object time).

This 1length reflects the 1length of
data in the STATIC area. If the
length is not divisible by 4, up to
four bytes of slack will be added
after the end of the block to make the
following block start on a word
boundary. These slack bytes are not
counted in the length,

Length of 'static' area in bytes (run
time).

Reserved, must be zero

Reserved, must be zero

'Static' block

This block contains sections of
initial value records. There can be

any number of 'static' sections in
this block (including zero).

B-4

' STATIC' BLOCK

This block contains initial value records that are to be processed
by the program startup facility in the operating system. These
records will cause initial values to be assigned to 1locations in
the 'static' area. There can be any number of 'static' sections
within this block. All address constants in the static sections
that reference locations in the CODE sections will be resolved by
linker or translator programs as if they were in a code section.
Address constants that address locations within the 'static'
sections will be resolved as if the start of the ‘static' block
were location zero.

Level Length Description
2 var ‘Static' block

This may contain any number of 'static'
sections (including zero).

3 var 'Static' section

A 'static' section can be any 1length,
including =zero. The section contains
only the compressed 1initial value
records for this section. If no
locations in the static section are to
have initial values, there will be no
records for that section and the object
time 1length will be zero. It should be
noted that the length of these ‘'static'
sections does not correspond to the
length of the expanded 'static' section
at run time. In order to distinguish
between the two, the following naming
convention will be used. Locations in
the object code (the disk file) will be
referred to as object time locations or
will be specified by their object time
address. Locations that are used
during running of a program will be
referred to as run time locations or
will be specified by their run time
addresses. Because the CODE block is
used without change at run time, this
distinction will normally not be made
for any locations of the code block.
When descriptions apply to both static
and code areas, 'run time' and ‘'object
time' may be used interchangeably to
refer to the code area.

Level

4

Length

5-2054

o4

Description
Initial value records

These records specify 1locations that
are to have initial values in the
named 'static' section and the values
the program startup mechanism is to
assign to these locations. There are
five types of initial value record:

1) The origin record, which specifies
how far from the start of the expanded
run time static area this section will
start.

2) The value record which specifies
the value to be placed into the static
area.

3) The relocation record which
specifies that program startup is to
supply the address of a run time
location in a static area.

4) The repeated record which specifies
a value and a repetition factor to
indicate how many occurrences of the
value are to be placed in the static
area.

5) The compressed record which
specifies the compressed value to be
expanded and placed into the static
area.

Length ‘of data within the data field
in this record minus one (this field
is not used for the compressed record
type) .

Record type.

= 0 Value

=1 Origin

= 2 Relocation
= 4 Repeated

= 8 Compressed

Run time displacement

This field has two interpretations.
For origin records (record type - 1),
this indicates the displacement from
the start of the static area of this
static section. For all other record
types, this indicates the run time
displacement from the start of the
static section of the record's data.

5

1-256

Data field. The length and format of
this field varies depending on the
record type as follows:

Data field of value type record

Level

5

Length

1-256

Description

Data to be moved to the 'static’
section.

This data is moved unchanged to the
run time static area.

Data field of origin type record

Level

5

Length

1

Description

One byte of dummy data.

Data field of the relocation type record

Level

5

Length

4

.3

Description
Relocation item

These are similar to the relocation
entries in the 1linkage block of the
program. Each one represents an
address constant in the static section
and the initial value the 1location is
to have. Every address constant in a
STATIC section must be initialized by
a relocation item.

Reserved, must be zero

Base for relocation

0 Relocate relative to the static
area

= 1 Relocate relative to the current

static section

Length of target address constant

= 0 Three bytes
1 Four bytes

Direction of relocation

0 Positive
1 Negative

B-7

.1

.25

Do not relocate flag

0 Relocate the address constant

1 Move the address constant to the
specified 1location but do not
relocate with respect to the
static area.

This flag is used if the address is
unresolved, if the address referenced
a code location, or if this is an R
type address constant.

Initial value of the address constant

If the target is three bytes long,
only the 1last three bytes will be
moved to the target area and the
high-order bit will be ignored. If
the target 1is four bytes long, the
high-order bit will be propagated
through the seven remaining bits of
the high-order target byte.

Data field of repeated type record

Level

5

5

Length
2

1-256

Description
Repetition factor (2-32767)

Data to be repeated wthin the static
area.

Data field of compressed type record

Level
5

5

Length
2

1-2048

Description
Length of compressed data. (1-2048)
Compressed data

This data 1is expanded before being
moved to the static area.

THE SYMBOLIC BLOCK

The symbolic block is a pool of information to be used by the
system's debugging support. The block is partitioned into a
length field and any number of section related blocks.

Level Length Description

1 var The SYMBOLIC block

This contains all of the program's
special debugging information.

2 4 Fullword Aligned Length of SYMBOLIC
block.

(If there are no symbolic sections,
the length will be 4.)

2 var Section area

This can contain any number of
SYMBOLIC sections.,

3 var SYMBOLIC section

Every CODE section can have a SYMBOLIC
section. If it does, these sections
will be in the same order as the
corresponding CODE sections.

THE SYMBOLIC SECTIONS

The SYMBOLIC section contains information used by the system's
debugging support for the named code section. It 1is partitioned
into a part at the start of the block that contains all of the
external labels that are referenced, followed by any number of
subblocks of specialized debugging information. Each of these
subblocks will contain information grouped by type (i.e., one of
the blocks may be the 'statement' number block with the list of
locations of each line of source code's generated object code).

Level Length Description
3 var The SYMBOLIC section.

This is the pool of debugging
information for the system debugging
support for the named section.

4 4 Length in bytes of data in this
symbolic section (including this word).

This 1length reflects the 1length of
data in the area. If the 1length is
not divisible by 4, up to three bytes
of x'00' filler will be added after
the end of the section to make the
following section start on a word
boundary. These slack bytes are not
counted in the length,

4 8 External name of corresponding CODE
section,
4 4 Doubleword aligned object time length

of the corresponding section block in
the RUN block.

4 22 Location of source file at compilation
time.

5 8 Source filename.

5 8 Source Library Name.

5 6 Source Volume.

B-10

Level

4

Length

22

var

var

12

Description

Location of listing file at
compilation time (or blank).

Listing filename.
Listing Library name.
Listing Volume.

External reference pool.

This 1lists all labels that are
externally referenced. Each 1label 1is
listed only once, no matter how many
times it is used in the program.
There is no order in the list, but the
position of an entry in the 1list
represents the internal number used
for referencing that label. This
structure allows modules to be added
or dropped by a linker program without
changing any locations in SYMBOLIC
section (other than adding or dropping
the whole section).

Length of external reference pool (in
bytes), including this word.

Any number of external Reference
Entries.

External Reference Entry.

External name (ASCII with trailing
blanks) .

Displacement within code section to
4-byte RCON.

B-11

Level

Length

var

var

var

Description
SYMBOLIC subblock area.

This may contain any number of
subblocks. Each subblock is composed
only of one type of debugging
information (i.e., 'statement number'
block).

SYMBOLIC subblock.
Subblock type.

The types are language independent
codes and are interpreted the same for
all languages.

Length of data in subblock.

This 1length reflects the length of
data in the subblock.

This includes the first four bytes of
the subblock.

If this length is not divisible by 4,
up to 3 bytes of X'00' filler will be
added at the end of the subblock to
make the following subblock start on a
fullword boundary. These filler bytes
are not counted in the length.

Collected information about this
section. These subblocks are
processed by a common language

independent program.

B-12

STATEMENT NUMBER SUBBLOCK

This subblock is generated by all high-level language
translators. It contains language independent information
identifying individual statements in the program's section.
Exactly one statement number subblock must be present in each
symbolic section.

Level Length Description
5 var STATEMENT NUMBER subblock.
6 1 = 1 (STATEMENT NUMBER type subblock).
6 3 Length of data in the subblock

including this word. If this length
is not divisible by 4, up to 3 bytes
of X'00' filler will be added to the
end of the subblock to make the
following subblock start on a fullword
boundary.

6 var Any number of statement entries.

Each entry represents one 'statement'
in the source program. The definition
of statement 1is language dependent,
but is consistent within any one
language (i.e., in COBOL there will be
one entry per verb in the COBOL
source). The entries will be in order
of increasing displacements.

7 10 Statement entry.

8 2 Line number in binary (no negative
values) or =zero to indicate 1inline
nonsymbolic code.

The exract definition of this entry is
language dependent, but normally will
indicate the statement line number.

8 5 Character string (in ASCII with
trailing blanks), or XL5'00' to
indicate COBOL, perform paragraph
header linkage.

The use of this field is language
dependent, but can be used either for
the statement 1label or the command
starting at the specified
displacement. (In COBOL this will be
used for an abbreviation of the COBOL
verb.)

B-13

Level

Length

Description

Displacement (run-time) into the code
SECTION.

This 1is the run-time displacement into

the section of the start of the
statement.

B-14

DATANAME SUBBLOCK

This

subblock is generated by all high-level language translators

to support symbolic access to data items at runtime through
command language facilities. Exactly one dataname subblock must
be present in each symbolic section.

Level

5

6

Length

var

1

3

var

var

var

Description
DATANAME SUBBLOCK
=2 (Data name type subblock).

Length of data in subblock (including
this word).

If this length is not divisible by 4,
up to 3 bytes of X'00' filler will be
added at the end of the subblock to
make the next section start on a
fullword boundary,

DATANAME INDEX

This index contains compiler
dependent information used to
efficiently search the subblock or a
given symbol.

Number of index items.
Any number of positional index items.

Index item = displacement within
symbolic section to first Dataname
Entry with the compiler dependent
indexed attribute.

(For COBOL and BASIC, the index is by
alphabetical order and points to
groups of Dataname Entries for
symbols beginning with the same
character. This implies that there
are exactly 26 Dataname Index entries
for COBOL and BASIC.)

Any number of data name entries.

These can be in any order. It is
expected that any one compiler will
order these such that when the
compiler 1is identified they can be
efficiently searched.

B-15

Level Length Description

7 var Data name entry.

8 1 Length of entry minus one.

8 5 Path to the data.

9 1 Index of the external section that

the displacement references. This is
the number of the entry in the
external reference pool in the
symbolic section.

9 1 Type of path to the data item;

0= Displacement locates the data
constant in the corresponding
code section

1= Displacement locates the data
item in the references
external section.

2= Displacement locates a
four-byte ACON in the
referenced external section
which should be used as a base
address. The displacement
from this address is found in
the offset field.

3= Displacement equals value
(right-justified)

9 3 Displacement from the indexed
external section to the data item
(for type 2 path this is the
displacement to the address constant).

8 3 Data description.
9 1 Type of variable.
10 .1 Indicator - referenced item (whether

referenced using subscripts or not)
is an elementary data item if = 1.

10 .1 Indicator - Subscripts required if =
1.

B-16

Level

10

Length

.6

Description

Format Indicator;

0=

10

11

12

13

Mixed (applies to
nonelementary items only
and implies that the scale
is to be used as the
high~-order byte of the
variable-length field).

Character (this implies
that the scale is to be
used as part of the
variable length).

Binary.
Packed decimal.

Bit string (value always
interpreted as full bytes).

Floating point.

Display Field Attribute
Character

Zoned number with no high
or low order sign 2zones
but may contain either a
leading or trailing sign
character and one deciaml
point character.

Binary COBOL halfword
index value (length per
occurrence number is in
item 1length - length is 2
bytes) .

Zoned Numeric with
High-Order Sign Zone.

Zoned Numeric with
Low-Order Sign Zone.

Zoned Numeric with Leading
Sign Character.

Zoned Numeric with
Trailing Sign Character

Level

Length

Description
Format Indicator:
14 = Unsigned Zone Numeric

Note: Zoned numeric fields
contain all numeric characters,
0-9, except for sign. Scale
factor indicates decimal point
location.

15 = BASIC array.

16 = COBOL group item.

17 = BASIC string scalar.

18 = Binary COBOL fullword
index value (Length per
occurrence number is in
item 1length. Length 1is
two bytes) .

19 = Logical (FORTRAN)

20 = Complex (FORTRAN)

Scale

This is a signed binary number
indicating how far 1left of the
rightmost digit the decimal point
is to be relocated (relocation is
to the rigth fro negative
numbers) . (For character type 1
fields, this byte will be
considered part of the item
length.)

Data item length.

This specified the 1length of the
data time. If the data is
character type, both this and the
preceding byte will be used for
the length.

Length of data name minus one.

B-18

Level Length

8 var
8 2
8 var
9 1
9 var
10 4
11 2
11 2

Description

Data name.

If the data mname must be
qualified, all necessary levels of
the name are to be 1listed with
highest level first and the
levels of qualifications separated
by points ('.'). If the name is
qualified but is wunique in the
program, only the lowest 1level of
the name should be listed.

Optional offset (present with data
path 2 only).

Array descriptor.
Number of subscripts required.

There will be one dimension
description for each subscript.

Indicated number of dimension
descriptions.

Dimension description.

There will be one entry for each
subscript indicated in the maximum
subscript value (entry for 1leftmost
subscript first). The first element
of each dimension of the array will be
assumed to be 1.

High bound of subscript

Length of Subscript Item.¥

+* For the general aI‘I‘ay: A[loooul,loo ou2,-o. ,lto oun]’ the
"Length of Subscript Item" for the Jjth subscript (LSIj) is

defined as follows:

For Row Major Ordering,

n
j L up 1l =j =n-

ISI
k=j+1

1

B-19

1

1 3=1

For Column Major Ordering, LSIJ- = j-1
w up 2 =j =n

k=1
The Length of Subscript Item entry is used by internal routines of the
Symbolic Debugger to efficiently locate array elements in a storage

independent manner. The following formula is used to locate element
A[il,iz.;..-oo,in]:

n
LOC Alij,ipeseeees,in] = 10C A[11.....1p] + 37 LSI *(ij-1)

J=1

B-20

THE LINKAGE BLOCK

This is a pool of information required for the linker program to
add or delete sections of the program. It is partitioned into a
length field and then any number blocks of section information.

Level

1

2

Length

var

4

var

var

var

var

Description
The LINKAGE block.

Fullword aligned length of the LINKAGE
block.

CODE section block area.

This is composed of exactly one
section block for each CODE section.
The blocks are in the order in which
the CODE sections appear in the CODE
block of the RUN block.

CODE section block.

'Static' section block area.

This is composed of exactly one
section block for each 'static’
section. The blocks are in the order
in which the 'static' sections appear
in the 'STATIC' block.

'STATIC' section block.

B-21

CODE_AND ‘'STATIC' SECTION BLOCKS IN THE LINKAGE AREA

These blocks have sufficient information so that sections can be
added to or deleted from a program, and so that all addresses can
be correctly resolved after this operation is complete. With
minor exceptions both the CODE and the STATIC blocks have the
same basic skeleton. One skeleton will be presented, and the
differences will be noted in the skeleton.

Level Length Description
3 var Section block (CODE or STATIC).
4 4

Length of data in this section block in bytes.

This 1length reflects the 1length of data in the area. If the
length is not divisible by 4, up to three bytes of X'00' filler
will be added after the end of the block to make the following
block start on a word boundary. These filler bytes are not
counted in the length.

4 8
External name of section (in ASCII with trailing blanks).

4 1 Type of block:
= 0 for code and = 1 for static.
4 3

Doubleword aligned object time 1length of the corresponding
section block in the RUN block.

4 4
Compiler name or designation (ASCII with trailing blanks).

4 1

Version and modification level of the compiler (packed decimal)
VM.

4 3
Date of compilation of this section (packed decimal) YYDDD.

B-22

Level

4

Length

4

var

var

var

Déscription

For a CODE section block:
Fullword aligned 1length of the
corresponding SYMBOLIC section
(or =0 if there 1is no
corresponding SYMBOLIC section).
For a STATIC section block:

Doubleword aligned run time
length of section block in the
RUN block.

ENTRY POINT list.

(This is a 1list of all names in this
section that are known outside of the
section.) This 1list may have any
number of names.

Length of ENTRY POINT 1list (including
this word).

The list.

This may contain any number of names
and address pairs. They may be in any
order, but must not be repeated.

ENTRY POINT name (ASCII with trailing
blanks) .

Runtime displacement into the section
of this ENTRY POINT.

RELOCATION REFERENCE BLOCK.

This 1lists all 1locations within the
section that will need to have
addresses changed if the relative
location of the section within the
program is changed or if the location
of specified external labels changes.

B-23

RELOCATION REFERENCE BLOCK

All address constants in the section that would be relocated if
either the starting location of the section or the location of an
external name was changed will be listed in this block. The
block 1is composed of two main parts: a list of external names
and a list of addresses in the section to be relocated.

Level Length Description
4 var RELOCATION REFERENCE BLOCK.

This block contains all of the
information required to relocate
address constants in this sectiom.

5 4 Actual length in bytes of the
RELOCATION REFERENCE BLOCK.

This includes this word, the EXTERNAL
NAMES BLOCK, and the relocation
items.

5 var EXTERNAL NAMES BLOCK.

This block contains a 1list of all
external names referenced by this
section. An external reference is an
address constant that references a
label that is not part of the current
section. The label must be the mname
of a section or an ENTRY type symbol
in a section.

6 4 Length of external names block
(including this word).

6 var List of external reference names.

These names can be in any order, but
they will be referenced by their
position in the list. The first name
is number one.

7 8 External name (ASCII with trailing
blanks) .
5 var List of relocation items.

This 1list is in order of increasing
displacements. There can be any
number of entries in this list.

B-24

Level

Length
5
1
.2

.1

Cl

Description

Relocation item.

Flag byte.

Reserved, must be zero.
RCON if = 1,

The referenced name must be in a
STATIC section. If the address
constant is in a STATIC section, the
relocation record will have the do not
relocate bit set.

Address is a relocation record (8
bytes) . (If this 1is set, the
following bit of 1length of target is
ignored.) All items in a ‘STATIC'
section except origin records and none
in a CODE section will have this bit
set.

Length of target address constant:

0 Three bytes.
1 Four bytes.

Direction of relocation:

= 0 Positive (add the address of the
start of the section to the
specified location.

= 1 Negative (subtract from the
location).

Unresolved flag if set to =1 (if set,
the address will be resolved relative
to an address of X'F00000').

Reserved, must be zero.

Object time displacement into the
section of the address constant.

Number of external name referenced.

This number is either zero if the item
is to be relocated relative to the
start of this section or is the number
of the external name in the EXTERNAL
NAMES BLOCK (the first name in the
list is one).

B-25

TRANSLATOR PROCESSING

The object program is produced by a language translator. At this
time, all address constants will be resolved, or marked as
unresolved. The program can then optionally be processed by the
linker program. It will add, rearrange or delete sections in the
program. After either a language translator has produced an
object program or a linker program has processed it, the program
can be invoked by the operating system. ‘

The language translator creates a complete object program that is
runnable by the operating system (if no sections are unresolved
at translation time). This program must have linkage information
for the linker program to resolve addresses after adding or
deleting sections. The translator also has the responsibility to
generate the symbolic section of information for debugging.

1. The RUN block - This contains all of the information
required to run the program. The operating system will
use this part of the file for segment one of the
running program. This area contains the code sections
and the initial value records used to initialize the
static areas when the program is started.

2. The SYMBOLIC block = This contains information to aid
in run time debugging of the program. This area is
used by the debug facilities in the HELP processor.

3, The LINKAGE block - This information is used by the
linker program. After adding or deleting sections, the
linker program will relocate the address constants in
the program using this information.

B-26

LINKER PROCESSING

When the

perform
program:

1.

linker program processes an object program, it will
the following operations to the basic parts of the object

The RUN block -~ It can add new sections to either the
code or the static areas. These must be added as a
whole section. It can also delete whole sections or
reorder the sections, again only as whole sections,
never as a part of a section. Locations within the
sections will not be inspected or changed other than
relocatable address constants having their values
adjusted by the 1linker. In some circumstances, the
linker may have to change a flag in one of the
relocation records. When a section is deleted from a
program, all relocation records that reference that
section must have the flag turned off. If a static
section 1is added, all references to it must be
examined. If the reference is in a code section, it
must be an R type (relocation address constant) of
address constant. If not, it will be flagged as an
error.

Only the terms add or delete have been used. Although
the 1linker can be used to replace a section, this
should be considered a deletion of the current section
and an addition of the new section.

The LINKAGE block - When a code or static section is
added or deleted, the linker will add or delete the
corresponding 1linkage section. It will also adjust the
object time and run time starting address of the
sections that follow. When adding a section, all
references to it are marked as resolved and relocated.
If a section is deleted, all references are marked as
unresolved and are relocated relative to hexadecimal
F00000.

The SYMBOLIC block - If a section is added or deleted,
the 1linker will add or delete the corresponding
symbolic section. It will not inspect or change any of
the records within a section for any reason.

B-27

RUN PROCESSING

A program is invoked by the command processor or by another
program using the LINK facility of the operating system. First,
the run portion of the program is made addressable as segment 1.
(The first location will be location 1,048,576.) The system will
then double word align the stack, find out the run time length of
the static area and push this much space onto the stack. The
start of this area will be passed to the program in register 1l4.
The initial value records will then be processed. When an origin
record is encountered, the origin displacement will be added to
the value in register 14 and this will be used as the starting
location of the section. When either text or relocation records
are read, their displacement will be added to this value and
moved to the location calculated. If a relocation record has the
relocate flag on, the value in register 14 is to be added to the
initial value in the record.

B-28

APPENDIX C DATA MANAGEMENT SYSTEM MESSAGES

Appendix C contains the following types of messages, listed in
the order they appear in the appendix:

SVC OPEN Cancel Messages.

SVC OPEN Respecify Messages.

DMS Function-Request Cancel Messages.
SVC CLOSE Cancel Messages.

. File Status (FS) Codes for DMS and ADMS.

wm P wn -

The following types of messages are not included in this appendix:

1. Messages issued by program 'BUILDALT' for OUTPUT mode
creation of alternate indexed files (acknowledge and
cancel messages).

2. Miscellaneous acknowledge messages from SVC OPEN and
DMS function requests.

VS DMS No-Message Option

The No-Message Option is available in SVC OPEN, SVC CLOSE, and
DMS. This option causes the suppression of messages normally
appearing on the workstation screen.

If UFBF4NOMSG = 1, the file status for the operation is set equal
to C'60'. For S8VC OPEN and SVC CLOSE, the message ID is stored
in the first four bytes of the UFB. Return is made using the
address in UFBERRAD; if this address is zero, UFBF4NOMSG is
ignored.

1. SVC OPEN Cancel Messages

These messages deal primarily with invalid information supplied in the
UFB. Some also refer to unusual conditions that rarely arise during normal
SVC OPEN usage; for example, UPDATFDR SVC errors, 1/0 errors when reading AXD1
blocks, etc.

NOTE

There is no continuation possible when these messages are issued.

ERROR

NUMBER _ MESSAGE

E000 INVALID UFB ADDRESS PRESENTED TO SVCOPEN.
E001 DEVICE CLASS (XX) = INVALID OPEN MODE (XX) = INVALID FILE
ORCANIZATION (XX)= INVALID RECORD SIZE = INVALID RECORDS ARE FIXED
LENGTH. KEY SIZE = XXX KEY POSITION = INVALID

E002 FILE ALREADY OPEN (UFBF1OPEN SET)

EQ06 TASK WORKSTATION NOT AVAILABLE.

EQ07 MAXIMUM NUMBER OF FILES ALREADY OPEN

EO11 REQUIRED BUFFER(S) NOT AVAILABLE FOR FILE PROCESSING

EO014 UNEXPECTED DEALLOCATION ERROR FOR MAGTAPE DEVICE.

EO16 BACKGROUND TASK ATTEMPTED TO OPEN WORKSTATION. THE WORKSTATION MAY
BE OPENED IN FOREGROUND ONLY.

E017 INVALID OPEN MODE FOR PHYSICAL ACCESS METHOD. (EXTEND AND SHARED

MODES ARE INVALID.)
EO18 THE PROGRAM IS REQUESTING AN INVALID OPEN MODE (SHARED, EXTEND) FOR
A FILE RESIDING ON AN UNSTRUCTURED DISKETTE VOLUME.

EO19 THE PROGRAM IS REQUESTING AN INVALID MODE (EXTEND MODE) FOR INDEXED
FILE PROCESSING.

EO021 THE PROGRAM IS REQUESTING AN INVALID FILE ORGANIZATION (INDEXED)
FOR A FILE RESIDING ON AN UNSTRUCTURED DISK VOLUME.

E023 INVALID ACCESS METHOD SPECIFICATION IN UFB (UFBF1).

E024 BLOCK ALLOCATION ERROR. SPACE NOT AVAILABLE ON VOLUME AND
EXIT-OPTION NOT IN USE.

E025 THE PROGRAM IS REQUESTING AN INVALID MODE (SHARED MODE) FOR FILE
PROCESSING UNDER THE BLOCK ACCESS METHOD (BAM).,

EQ27 SHARING TASK NOT ACTIVE.
EQ28 UNABLE TO GET UNIQUE PORT NAME.
E029 SHARER RESPONSE CODE = XX-YYYY. UNEXPECTED ERROR HAS OCCURRED
WHILE OPENING A FILE FOR SHARED ACCESS.
E030 INVALID BUFFER POOL SPECIFICATION. (ACCESS METHOD SUPPLIED I%

INVALID.) BUFFER POOLING CAN ONLY BE USED WITH INDEXED FILES IN
INPUT OR IO MODE.

EQ31 THE BUFFER POOL TABLE ADDRESS SUPPLIED (IN UFBBUFSTART) IS INVALID.

E032 THE BUFFER POOL TABLE HAS NOT BEEN CORRECTLY INITIALIZED.

E033 THE BUFFER COUNT SUPPLIED BY THE PROGRAM IS TOO SMALL. THE MINIMUM
BUFFER COUNT IS 3.

E034 AN UNEXPECTED ERROR HAS OCCURRED WHIE UPDATING THE FILE LABEL. THE
FILE CANNOT BE SUCCESSFULLY OPENED FOR UPDATE.

E035 THE ALTERNATE INDEX BLOCK (AXD1) ADDRESS SUPPLIED IS INVALID.

ERROR

NUMBER MESSAGE

E036 THE ALTERNATE INDEX COUNT IN UFBALTCNT IS INCORRECT.

EQ37 ALTERNATE INDEX INFORMATION FOR FILE CREATION IS INCORRECT.

E038 UNABLE TO READ AXD1 BLOCK FROM FILEBLOCK O.

E039 FAIL TO FREE THE BUFFER AFTER READING AXD1 FROM FILE BLOCK O.

EQ40 ALTERNATE INDEX KEYSIZE PLUS PRIMARY KEYSIZE TOO LARGE.

E050 UNABLE TO ALLOCATE SYSTEM MEMORY--GETMEM FAILURE.

EQ55 UNABLE TO SET UP THE MAPPING CONTROL TABLE (MCC) FOR THE ADMS FILE
IN SHARED MODE.

E056 THE ADDRESS OR SIZE OF THE MAPPING CONTROL TABLE (MCC) FOR THIS
ADMS FILE IS INVALID.

E057 UNABLE TO EXTRACT INFORMATION FROM DATA DICTIONARY TO SET UP THE
UFB FOR THIS ADMS FILE.

EO58 THE PROGRAM HAS ATTEMPTED TO PROCESS AN ADMS FILE, BUT THE VIEW OF
THE FILE IS NOT OPENED.

E059 THE VIEW OF THIS FILE DOES NOT HAVE THE EXLCUSIVE ACCESS RIGHT TO
OPEN IT IN NON-SHARED MODE.

E060 THE PROGRAM HAS ATTEMPTED TO OPEN AN ADMS FILE, BUT THE FILE
SPECIFIED IS NOT AN ADMS FILE.

E061 ADMS DATA DICTIONARY ERROR—-INCORRECT FILE ATTRIBUTE FQUND.

E062 THE PROGRAM HAS ATTEMPTED TO OPEN AN EXISTING ADMS FILE IN A
DATABASE WITH RECOVERY. BUT THE DATABASE HAS NOT BEEN BACKED UP,
AND RECOVERY CANNOT WORK WITHOUT THE BACKUP. PLEASE RUN DATABASE
BACKUP.

E063 THE PROGRAM HAS ATTEMPTED TO CREATE AN ADMS FILE IN A DATABASE WITH
RECOVERY BUT OUTPUT MODE WITH RECOVERY IS NOT ALLOWED AFTER SCHEMA
BACKUP. THE SCHEMA MUST BE RE-ACTIVATED W/O RECOVERY.

EO64 ADMS FILE CREATION ERROR--UNABLE TO RECORD THE CREATION OF THIS
FILE IN THE DATA DICTIONARY.

E0Q65 THE ADMS FILE TO BE OPENED IS NOT YET LOADED INTO THE DATABASE.

EQ82% UNABLE TO COMMUNICATE WITH SHARER TASK TO OBTAIN SCHEMA STATUS.

E083% THIS FILE IS PART OF AN ADMS DATABASE WHICH HAS ENCOUNTERED A CRASH

CONDITION. RESTORE MUST BE RUN BEFORE THE FILE CAN BE SUCCESSFULLY
OPENED IN ADMS MODE.

* This is a new error message added to 0S Release 5.1. Older 0S releases do
not generate this error.

c-3

2. SVC OPEN Respecify Messages

These messages deal with situations where the user may successfully
continue either by supplying additional information or by correcting
information already supplied. Situations involving possession conflicts or
volume mounting are also handled by these respecification messages. The user
may always continue after a respecify message.

ERROR
NUMBER _ MESSAGE
ROO1 FILE IDENTIFICATION INFORMATION IS INCOMPLETE. PLEASE SUPPLY THE

MISSING INFORMATION BELOW.
ROO02 PLEASE SUPPLY THE APPROXIMATE NUMBER OF RECORDS IN THE DISK FILE TO
BE CREATED. THIS VALUE WILL BE USED FOR INITIAL DISK~SPACE

ALLOCATION.

RO0O3 DEVICE SPECIFIED IS UNKNOWN OR NOT SUPPORTED. PLEASE RESPECIFY.

ROO4 DEVICE SPECIFIED IS INVALID FOR THIS PROCESSING MODE. PLEASE
RESPECIFY.

RO0O5 THE PROGRAM IS NOT REQUESTING A CONSECUTIVE-PRINT FILE. THEREFORE,
THE FILE CANNOT BE ASSIGNED TO A PRINTER. PLEASE SPECIFY ANOTHER
DEVICE TYPE. '

RO06 DEVICE NUMBER INCORRECTLY SPECIFIED. PLEASE RESPECIFY DEVICE (E.G.
PRINTER 3). (NOTE--DEVICE NUMBER IS OPTIONAL AND MAY BE OMITTED).

ROO7 DEVICE NUMBER DOES NOT CORRESPOND TO DEVICE CLASS. PLEASE
RESPECIFY DEVICE.
R0O0O8 NO PRINTER CURRENTLY AVAILABLE. ASSIGN OUTPUT TO DISK OR FREE

PRINTER FOR ALLOCATION.
RO13 THE FILE BELOW IS ALREADY OPENED BY THIS PROGRAM. PLEASE SPECIFY

ANOTHER FILE.

RO14 UNEXPECTED READFDR SVC ERROR.

RO14 FILE SPECIFIED NOT FOUND IN LIBRARY. PLEASE RESPECIFY FILENAME.

RO14 LIBRARY NOT FOUND IN VOLUME TABLE OF CONTENIS. PLEASE RESPECIFY
LIBRARY.

RO16 THE FILE SPECIFIED IS IN USE AS A SYSTEM-ONLY PAGING FILE. PLEASE
RESPECTFY.

RO18 THIS FILE IS CURRENTLY IN USE AS A PROGRAM FILE. THEREFORE, IT CAN

ONLY BE OPENED IN INPUT MODE. PLEASE RESPECIFY THE FILE.
RO20 UNEXPECTED CREATFDR SVC ERROR.

R0O20 FILE SPECIFIED ALREADY EXISTS. PLEASE RESPECIFY FILE.

R0O20 VIOC FULL, NO ROOM FOR FILE LABEL. PLEASE SPECIFY ANOTHER VOLUME.

R0O20 VOLUME FULL, NO ROOM FOR FILE. PLEASE SPECIFY ANOTHER VOLUME OR
USE A SMALLER FILE SIZE.

R0O21 INVALID INFORMATION IN FILE LABEL. PLEASE RESPECIFY FILE.

R022 THE TAPE SPECIFIED BELOW IS AN NL-TAPE, BUT PROGRAM REQUIRES A TAPE
WITH A DIFFERENT LABEL TYPE. PLEASE RESPECIFY.

R0O24 THE FILE AT POSITION XXX WITHIN THE TAPE VOLUME IS XXCOOKKKHXKKXXX.
THIS DOES NOT AGREE WITH THE FILE SPECIFIED BELOW. PLEASE
RESPECIFY.

RO25 THE DEVICE SPECIFIED IS ALREADY IN USE BY THIS PROGRAM. PLEASE
RESPECIFY.

RO26 THE DEVICE SPECIFIED HAS BEEN LOGICALLY DETACHED AND IS THEREFORE
NOT AVAILABLE. PLEASE RESPECIFY.

RO27 THE PROGRAM REQUIRES XXXXXXXXXX. THE FILE SPECIFIED BELOW IS XXXXX
XOXX. PLEASE RESPECIFY,

C-4

ERROR
NUMBER

MESSAGE

RO28

THE PROGRAM REQUIRES A FILE CONTAINING XXXXX-CHARACTER RECORDS.
THE FILE SPECIFIED BELOW CONTAINS XXXXX—-CHARACTER RECORDS. PLEASE
RESPECIFY.

R0O29

A FILE SEQUENCE NUMBER OF ZERO IS INVALID. PLEASE RESPECIFY.

RO30

TAPE I0 ERROR OCCURRED DURING TAPE POSITIONING OR LABEL
PROCESSING. I0SW = XXXXOOXX XOOOOXXX. PLEASE RE-MOUNT THE TAPE
VOLUME IN ORDER TO TRY AGAIN.

RO31

THE TAPE VOLUME IS WRITE-PROTECTED, AND THEREFORE CANNOT BE
PROCESSED IN QUTPUT OR EXTEND MODE. PLEASE PUT A WRITE-ENABLE RING
ON THE TAPE, AND RE-MOUNT THE VOLUME, OR USE (ENTER) TO RESPECIFY.

RO32

THE UNSTRUCTURED DISKETTE VOLUME SPECIFIED FOR OUTPUT IS CURRENTLY
IN USE. PLEASE RESPECIFY.

RO33

THE PROGRAM IS REQUESTING A FILE THAT RESIDES ON AN UNSTRUCTURED
DISK VOLUME. THE FILE SPECIFIED BELOW RESIDES ON A DISK VOLUME
WITH A VIOC. PLEASE RESPECIFY.

R0O34

THE INDEXED FILE SPECIFIED BELOW CAN NOT BE PROCESSED IN EXTEND
MODE. PLEASE RESPECIFY. (EXTEND MODE IS ONLY SUPPORTED FOR
CONSECUTIVE FILES.)

RO35

THE 1INDEXED FILE SPECIFIED BELOW WAS NOT CLOSED AT FILE CREATION.

THE FILE IS CURRENTLY NOT USEABLE AND SHOULD BE RE-CREATED. PLEASE
SPECIFY ANOTHER FILE.

RO36

THE FILE SPECIFIED BELOW WAS NOT CLOSED AT FILE CREATION.
THEREFORE, THE FILE LABEL INDICATES THAT THE FILE CONTAINS NO
RECORDS. IF YOU WISH TO ACCESS THE WHOLE FILE SPACE (MAXIMUM
NUMBER OF RECORDS) , USE PF2 AND THE END-OF-FILE INDICATOR WILL BE
SET ACCORDINGLY, OTHERWISE, PLEASE SPECIFY ANOTHER FILE.

RO37

CODE = XX; UNEXPECTED OUTPUT-FILE SCRATCH ERROR. PLEASE SPECIFY
ANOTHER OUTPUT FILE NAME IN ORDER TO CONTINUE.

RO38

UNABLE TO FIND FILE SPACE ON ANY ELIGIBLE VOLUME. PLEASE SPECIFY A
SMALLER FILE, USE A PRIVATE VOLUME, OR RELEASE (THROUGH SCRATCH)
THE REQUIRED DISK SPACE.

RO39

THE DISKETTE VOLUME SPECIFIED BELOW IS WRITE~PROTECTED. PLEASE
RE~-MOUNT THIS DISKETTE WITH WRITE-ENABLED, OR SPECIFY ANOTHER FILE.

RO40

THE FILE SPECIFIED BELOW ALREADY EXISTS. USE PF3 IF YOU WISH TO
SCRATCH THE EXISTING FILE AND CONTINUE. OTHERWISE, PLEASE SPECIFY
ANOTHER FILE NAME.

RO41

THE FILE SPECIFIED BELOW IS CURRENTLY IN USE AND CANNOT BE
SCRATCHED, PLEASE SPECIFY ANOTHER OUTPUT FILE NAME.

RO45

ENTER KEY USED WITH INVALID DEVICE SPECIFICATION BELOW. USE PF4
KEY FOR MOUNT OPERATION. IF A MOUNT OPERATION IS NOT REQUIRED,
PLEASE USE THE ENTER KEY WITH DEVICE = DISK.

RO47

SHARER RESPONSE CODE = XX~YYYY. CONSULT SHARER ERROR LIST FOR
EXPLANATION. PLEASE SPECIFY ANOTHER FILE IN ORDER TO CONTINUE.

RO48

INVALID VALUE ENTERED FOR PRINTER OPTION. FORM # MUST BE LESS THAN
256. PRTCLASS MUST BE A LETTER (A-Z). COPIES MUST BE A NUMBER
BETWEEN 1 AND 32,767, PLEASE RESPECIFY.

R049

THE FILE SPECIFIED BELOW IS A PROGRAM FILE WITH SPECIAL ACCESS
RIGHTS. ONLY A SECURITY ADMINISTRATOR MAY MODIFY THIS FILE.
PLEASE RESPECIFY.

R0O49

FILE SPECIFIED BELOW. PLEASE RESPECIFY.

THE CURRENT USER DOES NOT HAVE THE REQUIRED ACCESS RIGHTS FOR THE

C~-3

ERROR

NUMBER MESSAGE

RO50% THIS FILE IS A PARTIAL FILE CREATED BY BACKUP, AND MAY BE OPENED IN
BAM OR PAM, WITH THE PARTIAL FILE FLAG SET. PLEASE RESPECIFY.

RO51 THE SHARER HAS RUN OUT OF MEMORY FOR ITS CONTROL BLOCKS. THIS FILEH
MAY BE OPENED SUCCESSFULLY AFTER ENOUGH MEMORY HAS BEEN RELEASED
(BY OTHER SHARED USERS).

R052 THE FILE BELOW IS ALREADY OPENED IN SHARED MODE BY THIS PROGRAM.
PLEASE SPECIFY ANOTHER FILE.

RO53 FILE SPECIFIED NOT FOUND IN LIBRARY. PLEASE RESPECIFY FILENAME.

RO54 LIBRARY NOT FOUND IN VOLUME TABLE OF CONTENTS. PLEASE RESPECIFY
LIBRARY.

R0O59 THE VOLUME SPECIFIED IS MOUNTED FOR EXCLUSIVE USE. A FILE ON AN(
EXCLUSIVE VOLUME MAY NOT BE SHARED. PLEASE SPECIFY ANOTHER FILE
(OR RE-MOUNT THIS VOLUME).

RO60 THE PROGRAM REQUIRES A FILE WITH A DIFFERENT FILE-ORGANIZATION FROM
THE FILE SPECIFIED BELOW. PLEASE RESPECIFY.

RO61 THE PROGRAM REQUIRES A FILE WITH A DIFFERENT RECORD SIZE FROM THE
FILE SPECIFIED BELOW. PLEASE RESPECIFY.

R062 THE DISK VOLUME SPECIFIED IS NOT MOUNTED. PLEASE MOUNT THE DISK
VOLUME OR RESPECIFY.

R063 THE FILE SPECIFIED BELOW IS CURRENTLY IN NON-SHARED USE. PLEASE
RESOLVE THIS POSSESSION CONFLICT OR RESPECIFY,

RO64 THE CURRENT USER DOES NOT HAVE THE REQUIRED ACCESS RIGHTS TO
SCRATCH THE FILE SPECIFIED BELOW. PLEASE SPECIFY ANOTHER FILE.

RO65 THE RETENTION PERIOD FOR THE FILE SPECIFIED BELOW HAS NOT EXPIRED.
THE FILE CANNOT BE SCRATCHED UNLESS THE EXPIRATION DATE 1S
MODIFIED. PLEASE SPECIFY ANOTHER FILE OR USE THE COMMAND PROCESSOR
TO MODIFY THE EXPIRATION DATE AND SCRATCH THIS FILE.

RO66 THE CONSECUTIVE FILE SPECIFIED BELOW CAN NOT BE OPENED IN SHARED
MODE. PLEASE RESPECIFY,.

RO67 THE FIRST CHARACTER OF A LOG-FILE BEING OPENED IN SHARED MODE MAY
NOT BE “#'". PLEASE RESPECIFY

R068 THE PROGRAM WILL NOT ACCEPT THIS FILE FROM TAPE. PLEASE RESPECIFY.

R069 END OF TAPE REACHED WHILE POSITIONING TAPE BY FILE SEQUENCE NUMBER.

RO70 VOLUME FULL, UNABLE TO ADD ANOTHER FILE ON THE TAPE. PLEASE
RESPECIFY.

RO71 THE TAPE FILE SPECIFIED BELOW IS NOT ON THE TAPE VOLUME. PLEASE
RESPECIFY.

RO72 THE DEVICE SPECIFIED IS NOT A TELECOMMUNICATION DEVICE. PLEASE
RESPECIFY.

R0O73 CONTROL BLOCKS (PPB, LCB) FOR THIS TC DEVICE ARE NOT PROPERLY SET
UP. PLEASE RESPECIFY.

RO74 UNABLE TO LOAD THE MICROCODE FOR THIS TC DEVICE. PLEASE RESPECIFY.

RO75 UNABLE TO CONNECT THE TC LINE, OR INCORRECT CONNECT PARAMETERS
SUPPLIED. PLEASE RESPECIFY.

RO76 THE PROGRAM HAS SUPPLIED AN INVALID ADDRESS FOR THE CONNECT
PARAMETER. PLEASE RESPECIFY.

RO77 THE TAPE VOLUME IS NOT THE CORRECT SEQUENTIAL VOLUME FOR THIS TAPE
FILE. PLEASE RESPECIFY.
EXTEND MODE PROCESSING FOR IBM LABELED TAPE IS NOT SUPPORTED.

RO78

PLEASE RESPECIFY,

ERROR
NUMBER _ MESSAGE

RO80 THE PROGRAM HAS ATTEMPTED TO OPEN A RE~RESTART FILE, BUT THE FILE
SPECIFIED IS NOT A RESTART FILE. PLEASE RESPECIFY.
RO81 THE PROGRAM HAS ATTEMPTED TO MODIFY THE ADMS FILE NAME AND ITS

ATTRIBUTES. BUT THESE ATTRIBUTES ARE ASSIGNED BY THE DATA
DICTIONARY AND CANNOT BE CHANGED AT OPEN. THEIR CORRECT VALUES
ARE DISPLAYED BELOW, PRESS (ENTER) TO CONTINUE.

* With the introduction of 0S Release 5.1, the text for error number R050 is
modified as follows:

THIS FILE IS A PARTIAL FILE CREATED BY BACKUP FOR USE BY RESTORE. IT MAY

BE OPENED ONLY IN BAM OR PAM, WITH THE PARTIAL FILE FLAG SET. PLEASE
RESPECIFY.

8-0

3. DMS Function-Request Cancel Messages

The file status message (ID = 000) covers all
significance of the FS value is determined by additional factors such as current function request and file

organization. The file status message appears as a cancel message if UFBERRAD = 0.
acknowledge

file status values including cases where the

Otherwise, an

message is issued before taking the error exit. (The acknowledge message may be masked out by
using UFB4NOACK.)

Other DMS cancel messages reflect unusual conditions caused mainly by incorrect user modification of
UFB fields, unexpected errors, or invalid block contents for indexed file processing.

These messages may be issued as a result of any one of the five DMS function requests or by the DMS
CLOSE vector (for the last 10 operation on the file).

ERROR
NUMBER MESSAGE POSSIBLE CAUSE
000 ERROR DETECTED AND USER ERROR EXIT NOT IN USE. Check meaning of File Status code for cause of
. FILE STATUS = XX. error message. (Refer to page 354.3.)
001 INVALID FIELD FOUND WHILE PROCESSING FILE X Invalid buffer status flags in the UFB.
(UFBBCBFLAGS) .
002 INVALID BLOCK NUMBER DETECTED BY SVC XIO UFBBUFBLOCK contains invalid data. Can be
(UFBBUFBLOCK) WHEN ATTEMPTING DISK I/0. caused by invalid data in Data Link Chain of the
hprior block.
003 INVALID FIELD FOUND WHILE PROCESSING FILE X Cannot have files with record lengths of zero.
(UFBRECSIZE=0) .
004 INVALID BUFFER POOL INFORMATION DETECTED AT There is an error in the Buffer Control Entry.
BEGINNING OF FUNCTION REQUEST.
005 INVALID OFB POINTER FOUND (UFBOFB). OFB Pointer in the UFB contains an address which
is not an OFB.
006 UNEXPECTED ERROR FOUND WHILE ATTEMPTING TO SVC return code is incorrect. This is an indi-
ALLOCATE ADDITIONAL DISK SPACE. cation of a3 serious DMS problem.
007 VTOC I/0 ERROR OCCURED DURING SVC ALEX. A VTOC IO error occurred while trying to obtain
an additional extent. ALEX is an acronym for
Allocate Extent. :
008 UNABLE TO ALLOCATE DISK EXTENT SINCE ALL ALEX return code = 20. No work space available
BUFFERS OR GETMEM POOL IN USE. for UPDATFDR.
009 MAG TAPE READ OPERATION FAILEDj; NO DATA WAS Residual count greater than or equal to block
TRANSFERRED. size--probable IOP firmware error.
010 FUNCTION-REQUEST ISSUED ON NON-OPENED FILE, Before performing a task within a file, the file
must first be opened.
011 SECOND PHYSICAL I/0 OPERATION ISSUED ON FILE Occurs when two XIO's in a row were performed
WITHOUT WAITING FOR PREVIQUS I/0 COMPLETION. with no CHECK operation between them.
012 UNUSED
013 ERROR FOUND WHILE READING FILE INDEX. THIS Invalid ¢ondition exists in the index block
FILE SHOULD BE REORGANIZED IN ORDER TO GENERATE | currently being read.
THE _INDEX CORRECTLY.

ERROR

NUMBER MESSAGE . POSSIBLE CAUSE

014 INVALID RECORD FORMAT DETECTED. ERROR OCCURRED | A record within a block contains garbage.
WHEN EXPANDING COMPRESSED DATA RECORD.

015 INVALID BLOCK NUMBER FOUND WHILE BUILDING OR Occurs when contents of a Data Link Chain in a
UPDATING THE FILE INDEX. data block contains incorrect data. This error
FILE INDEX. generated when data length in block exceeds 7FC.

016 RESIDUAL COUNT NOT ZERO AFTER REWRITE OPERATION | On a rewrite all bytes are subtracted from the
(LARGE BUFFER). block 1ength, the difference must equal zero.

This error occurs when it is not.

017 INVALID UFB FIELD FOUND FOR REWRITE OPERATION User damaged segment 2 (UFB) data.
(OFFSET=0) .

018 BUFFER POOL ERROR DETECTED. LOCKED BUFFER User damaged segment 2 (UFB or BCT) data.
(BCE) IN CONTROL TABLE DOES NOT AGREE WITH
CURRENT BUFFER (BCB).

019 BLOCK TYPE (BCE) IN BUFFER POOL DOES NOT AGREE Buffer Control Entry in the buffer pool is
WITH CURRENT READ REQUEST. invalid,

020 BUFFER POOL ERROR DETECTED. BLOCK TYPE (BCE) Block Type in the buffer pool is invalid.
IS INVALID FOR IO INITIATION.

021 BUFFER POOL ERROR DETECTED. BUFFER (BCE) WITH User damaged UFB or BCT.
IO IN PROGRESS NOT ON BCTBL CHAIN OR INTERNAL
LOCK OTHER BCE QPERATION FAILED,

022 ERROR DETECTED IN THE ALTERNATE INDEX DATA Alternate index block contains a primary key
STRUCTURE , UNABLE TO LOCATE THE RECORD. value which is not in_any data block.

023 TRACE ROUTINE FOR DUPLICATE KEY VALUES FAILED. The offset into the alternate index block is
ALTERNATE TREE NOT MODIFIED. invalid for a user.

024 UNEXPECTED ERROR OCCURED DURING FILE RESTORE On 3@ WRITE or REWRITE to an alternate-indexed

OPERATION. WRITE OR REWRITE FUNCTION FOR
ALTERNATE INDEX FILE FAILED DUE TO DUPLICATE
KEY ERROR, AND ATTEMPT TO RESTORE FILE WAS
UNSUCCESSFUL.

'l attempts to delete the record from the primary

file, if a duplicate key is encountered on a
path with no duplicates allowed, the system

alternate trees on which it has
This error occurs if the attempt
User should attempt

tree and al1l
been written.
fails unexpectedly.
COPY/REORG.

4‘

SVC CLOSE Cancel Messages

These messages refer to unexpected error conditions that rarely occur.

ERROR

NUMBER MESSAGE ’

E001 SVC CLOSE ISSUED FOR NON-OPENED FILE.

E002 DEALLOCATION ERR; OFB NOT FOUND.

E003 DEALLOCATION ERR; IORE QUEUED.,

E004 CODE = ; UPDATFDR SVC ERR. NO DEALLOCATION.

E005 UNABLE TO DEALLOCATE BUFFER DUE TO INVALID BUFFER ADDRESS OR
BUFFER LENGTH IN UFB.

E006 INVALID UFB POINTER RETURNED AFTER LAST DMS OPERATION.

E007 CODE = XX; SCRATCH SVC ERROR. FILE CLOSED OK, BUT NOT SCRATCHED.

E008 INVALID UFB ADDRESS PRESENTED TO SVC CLOSE.

E009 UNEXPECTED ERROR OCCURRED WHILE ATTEMPTING TO CLOSE FILE (SHARED
MODE) .

E010 UNABLE TO DEALLOCATE BUFFER WITHIN BUFFER POOL DUE TO INVALID
ADDRESS OR LENGTH IN BUFFER CONTROL TABLE ENTRY.

E012 FAIL TO LOCATE PROGRAM BUILDALT. UNABLE TO BUILD ALTERNATE INDEXES.

E013 FILE LABEL NOT UPDATED (). USER PROGRAM HAS INCORRECTLY
MODIFIED THE UFB.

E0l4 FILE LABEL NOT UPDATED (). VTOC FERROR DETECTED.

E015 THE PROGRAM TRIED TO CLOSE THE ADMS FILE WHILE IN THE

TRANSACTION STATE.

c-10

T1-0

§. FILE STATUS (FS) CODES FOR DMS AND ADMS

DMS and ADMS return to the user program by means of the RETURN macroinstruction. User registers 2 through
1§ are always restored. Register 0 (R0O) is also restored unless UFBEODAD or UFBERRAD is used--RO then
contains the normal return address. Register 1 (R1) is also restored unless the Read-No-Data option has
been used--R1 then contains the record address.

DMS and ADMS indicate the result of the function request through file status bytes UFBS1 and UFBS2. These

bytes generally contain a value of X'30' - X'39', corresponding to the ASCII characters 0 through 9, called

the File Status (FS) Code. File Status Byte 1 (UFBS1) indicates the general type of file status and File

Status Byte 2 (UFBS2) indicates a specific item within the group. The various groups are defined as follows:

- Successful Completion.

- End of File.

- Record Not Found (Disk File).

- I0 Error or Boundary Violation.

- ADMS Codes.

Cancel.

- Time-Out.

-~ Special Shared Mode Errors.

- Miscellaneous - This Group includes errors caused by incorrect user-supplied information;
e.g., Invalid Function, Invalid Mask, Invalid Length, or Invalid Format.

O 0N PWN—~O
]

Following is a list of File Status codes with a description of each code and the conditions under which it
can occur.

FILE STATUS FOR NORMAL RETURNS

FS FUNCTION FILE

CODE MEANING REQUEST DEVICE ORGANIZATION MODE CAUSE

00 Successful N/A Disk, N/A N/A N/A
Completion. Tape,

Printer

124 Successful N/A Workstation | N/A N/A UFBFS2 ('X' in code field)
Completion. contains the AID byte.

02 Successful Read Disk Alternate N/A After successfully complet-
Completion. Indexed ing a READ KEYED or READ

NEXT on an alternate key
path, the return code is 02
indicating at least one more
record exists with the same
alternate key value.

FILE STATUS FOR UFBEQODADRETURN

FS FUNCTION FILE
CODE MEANING REQUEST DEVICE ORCANIZATION MODE CAUSE)
10 End of File READ NEXT Disk or N/A Input, End of file was reached.
Reached. Tape 1/0, or
Shared

SHA x03 S°po) (SJd) snielg BITd

¢1-0

FILE STATUS FOR UFBEODADRETURN {(cont'd)

FS FUNCTION FILE
CODE MEANING REQUEST DEVICE ORGANIZATION MODE CAUSE
n €nd of Volume. READ NEXT | Tape N/A N/A This code is returned if the|
user program indicates (b
UFBTFLGEODEOV) that no auto-
matic volume switch is
desired.

21 Record Key Out of WRITE Disk Indexed Output The current record key is
Sequence or Duptli- not greater than the pre-
cate Key Found ceding record key.

During Indexed
File Creation.

22 Duplicate Key WRITE Disk Indexed I/0 or The record to be added to

Value, Shared the file has the same key as
an existing record in the
file.

23 Record Not Found READ Disk Consecutive Input or The supplied record number
in File. RELATIVE 1/0 is equal to zero or greater

than the highest record num-
ber in the file.

23 Record Not Found READ KEY Disk Indexed Input, There is no record in the
in File. or START 1/0%, or file containing a key equal

(Equal) Shared to the supplied key.

23 Record Fot Found READ or Disk N/A I/0 The supplied block number is
in File,. REWRITE beyond the end of the file.

24 Primary Extent WRITE Disk Indexed OQutput Primary extent exceeded.
Exceeded (Indexed The record cannot be added
File Creation). to the file. The file may be

closed successfully and then|
opened in I/0 Mode to add
more records.

24 Record Not Found. START Disk Indexed Input, The supplied key is greater
Key Supplied (Greater I/0, or than the highest key value
Greater Than Key Than) or Shared in the fite.

Value in File. (Greater
Than or
Equal)

'Q

SHQ 203 s8po) (S4) snielg o4

¢I-0

FILE STATUS FOR UFBERRAD RETURN

FS
CODE

MEANING

FUNCTION
REQUEST

DEVICE

FILE
ORGANIZATION

MODE

CAUSE

30

Permanent IO Error
IOSW = XO000XX
JOOKAXXX

N/A

N/A

N/A

N/A

A physical 1/0 operation was
attempted and a hardware
error occurred. The error]
is logged separately by SVQ
CHECK. This file status i
returned for hardware errorj
only; it is not returned for
program related errors.

34

Workstation Order
Check.

READ or
REWRITE

workstation

N/A

1/0

Invalid information supplied
in the workstation order!
areaj i.e., Invalid Cursor
Position: Row 25 Column 10,

34

Boundary Violation
(Extent Cannot Be
Obtained).

WRITE

Disk

Consecutive

Output
or
Extend

There is no more space in

the file for additional re-
cords. An additional extent]
is unavailable becausj
either the maximum number o
extents are already allo-
cated or the extent size is
not_available on volume.

34

Boundary Violation
(Extent Limit of
13 Has Been
Reached).

WRITE

Disk

Indexed

I/0 or
Shared

There is no more space in

the file for additional re-
cords (as above) due to ex-
tent limit (13) exceeded or
no available extent onh vol-
ume. For Shared mode, an
additional extent may also
be unavailable due to maxi-
mum number of additional ex-
tents per run already
allocated.

60

OMS Cancel Condi-
tion Occurred;
Cancel Message
Suppressed.

N/A

Disk or
Tape

N/A

Shared

User requested suppression

of all DMS-Cancel messages.
Process the file in non-
Shared mode to set the error
message flag. If a OMS|
error condition code with
FS=60-019 occurs, refer to
OMS error code 019 in
Appendix C.

70

Shared Time-Out
Condition.

N/A

N/A

N/A

N/A

This feature will be avail-
able with the Advanced
Sharer.,

'S

SHQ 103 S3POD (S4) SMIEIS OTTd

#1-0

FILE STATUS FOR UFBERRAD RETURN (cont'd)

FS FUNCTION FILE
CODE MEANING REQUEST DEVICE ORGANIZATION MODE CAUSE

80 Invalid Key Area READ KEYED | N/A Indexed Shared UFBKEYAREA does not point to
Found for Read Key | or START the key embedded in the rec-
or Start Key. KEYED ordy i.e., specifies the ke

has a value of one for
length of five but it actu-
ally has a value of two for

3 length of five.

81 Invalid Read No- READ NO- Disk Indexed or Shared Attempting to do a Read No-
Data Issued. DATA Consecutive Data in Shared mode which is

an _invalid function request.

82 Label Update Oper- | N/A N/A N/A Shared Internal error by DMS. The
ation after Last file 1abel (FDR1) is updated
Function Was Un- whenever any of the follow-
successful. ing fields are modified by

DMS : Root Block Number;
First Data Block Number; or
Count of Levels in the (Pri-
mary) Index. If UPDATFODR i
unsuccessful, FS equals 82 7
is returned.

83 The Sharing Task N/A N/A N/A Shared Sharing task is functioning
Has Terminated and incorrectly. Must IPL the
Must be Restarted. System_to restart Sharer.

84 Invalid Record N/A N/A N/A Shared User Attempted to rewrite a
Size or Area Sup- variable length record whose
plied for Shared length is greater than the
Request. maximum record size speci-

fied in the VTOC.

85 Update Access WRITE, N/A N/A Shared User Attempted to update a
Denied. REWRITE, file in Shared mode but has

or DELETE Read-Only access.

86 Resource Control N/A N/A N/A Shared Incorrect sequence of Shared
Error. function requests; e.g., At-

tempting to do a Start Hold
on a file while another file
is already heild.

95 Invalid Function REWRITE, Disk Indexed 10 or Invalid function sequence
Sequence. DELETE, or Shared similar to consecutive file

READ NEXT case above occurred. Also

HOLD returned if Read Next Hold
issued without a file block
HELD (invalid seguence).

95 READ RELATIVE In- READ RELA- | Disk Consecutive Input, Read Relative is only valid
valid for Variable | TIVE or IO for fixed-length consecutive
Length Records. files.

'S

SWa a03 s8po) (S4) snielg °T114

ST-D

FILE STATUS FOR UFBERRAD RETURN (cont'd)

FS FUNCTION FILE
CODE MEANING REQUEST DEVICE ORGANIZATION MODE CAUSE

95 Invalid Function N/A N/A N/A N/A valid function requests are

Request. described for the given com-
binations of device c¢lass),
open mode and file organiza-
tion supported by DMS .
After a file has been
opened, an invalid function
request is flagged with FS§
equals 95. Example:
attempting to write a record
while the file is opened in
Input mode.

95 Invalid Function, REWRITE Disk N/A Shared Record was not read with the

Sequence. HOLD option. For Shared
Mode, an intervening READ
with HOLD on another fileg
may have released the HOLD.
A function sequence error
exists since the record can-
not be rewritten unless it
is 'HELD'.

95 REWRITE Function REWRITE Disk Consecutive 10 Consecutive files can be re-
Invalid for Con- written only for fixed-
secutive File with length records.

Compressed Records.

95 Invalid Function N/A N/A N/A N/A N/A

- Issued on Alter-

nate Indexed File.

95 READ NEXT Issued N/A N/A N/A N/A N/A
on Indexed File
when Current Posi-
tion Was Undefined.

95 Invalid Function N/A N/A N/A N/A N/A
Issued in Shared
Mode.

95 Invalid START START Disk Consecutive Input, START function modifier byte
Function {(Modifier or Indexed 10, or does not correspond to a
Byte Error) Shared valid START option.

95 Primary Key Value REWRITE Disk Indexed or 10 or Attempted to change the val-

: Was Changed when Alternate Shared ue of the Primary Key while
Rewriting an Indexed rewriting a record.

Indexed Record.

‘S

SWA 103 SSPO) (Sd) SNILIS OTTd

91-0

FILE STATUS FOR UFBERRAD RETURN (cont'd)

FS
CODE

MEANING

FUNCTION
REQUEST

DEVICE

FILE
ORGANIZATION

MODE

CAUSE

96

Invalid Disk Add-
ress Detected.

N/A

N/A

N/A

N/A

Error usually not caused by
user program. Error can
occur for invalid disk ad-
dress in the extent 1list
(possibly caused by incor-
rect device arrangement at
SYSGEN) . This file status
is returned only if the IOSW
indicates invalid command or
data address. Under RAM,
DMS supplies the buffer area
and command; thus, FS = 96

is a rare error_under RAM,

96

Write Operation
Attempted on Write-
Protected Disk.

N/A

N/A

N/A

N/A

An attempt was made to write
to an open write-protected
diskette (this can occur if
a user remounts a diskette
changing it to write-pro-
tected but not using the
MOUNT command) .

96

Invalid Data Area
Location or Align-
ment (IO Command
error).

READ,
REWRITE,
or WRITE

N/A

N/A

Input,
10, or
Output
(Block
Level)

Data area location is inval-
id or alignment is not on a
page boundary. Data area
location is checked with

data area length to ensure
that only the stack, static
area, or buffer area is

being used.

926

Same as 96 above.

READ or
REWRITE

Workstation

N/A

10

Invalid data area location
or alignment (word align-
ment required.

97

Invalid Length

when Rewriting

Variable Length
Record.

REWRITE

Disk

Indexed

N/A

Invalid length is indicated
when attempting to rewrite a
variable-iength record whose
length is 1longer than the|
value established in
UFBRECSIZE.

97

Same as 97 above.

REWRITE

Disk

Consecutive

10

Invalid, cannot change re-
cord length of a consecutive
file.

97

Invalid Length
Supplied when
writing Variable-
Length Record.

WRITE

N/A

Output,
Shared,
10, or
Extend

Invalid length is indicated
when attempting to write a
variable-l1ength record whose
length is greater than the
value established in

UFBRECSIZE.

°S

SWd J03 sopo) (Sd) sniels oTtd

L1-D

FILE STATUS FOR UFBERRAD RETURN (cont'd)

FS
CODE

MEANING

FUNCTION
REQUEST

DEVICE

FILE
ORGANIZATION

MODE

CAUSE

97

Invalid Record-
Prefix Found in
Variable-Length
Record.

N/A

N/A

N/A

N/A

Error encountered while DMS
is attempting to extract a
variable-iength record from
its buffer. Error should
not normally be encountered
by the user.

97

Invalid Length
Specified for IO
Operation.

N/A

Printer,
Tape, or
Workstation

N/A

N/A

Length specified is not val-
id for the device. For the
printer, length is invalid
if it equals zero or is lar-
ger than the 1length speci-
fied at SVC OPEN. For the
workstation, length iJ
invalid if data 1length and
starting row cause screen
overflow. Ffor <tape, length
is invalid if a long block
or a short block (with non-
integral number of records)
is _read.

98

Invalid Alternate
Tree Mask Supplied
on Write or Re-
write Function.

WRITE or
REWRITE

Disk

Alternate
Indexed

Output,
10, or
Shared

Alternate key mask refer-
ences a nonexistent alter-
nate key. For wWrite or Re-
write, the user-supplied
mask must indicate valid
ALT-trees and the alternate
key fields must fall within
the record; otherwise, FS=98
is returned. NOTE: A mask
of zero is always valid.

99

Invalid Format
Found for Current
File Block.

N/A

N/A

N/A

N/A

A block within a variable-
length record file has an
invalid prefix, a VLEN
record has an invalid
prefix, or a compressed
record has an invalid form~t

when expanded.

'S

SHA 103 S8Poy (§d) SNILIS OT1d

81-0

A1l file status codes peculiar to ADMS fall within the range of FS=40 to
FS=49, These codes and their meanings are as follows:
FS FUNCTION FILE
CODE MEANING REQUEST DEVICE ORGANIZATION MODE CAUSE

41 Attempt to Update | WRITE, Disk ADMS N/A User error in order of
an ADMS File while | REWRITE, operation.
Not in Transaction | DELETE
State.)

42 ADMS Mapping Con- READ, Disk ADMS N/A Internal error in MCC table;
trol Table (MCC) WRITE, unable to perform data
Error Detected. REWRITE, mapping.

DELETE

43 ADMS Data Item WRITE, Disk ADMS N/A Data item failed Integrity
Integrity Violated.| REWRITE Check (ICK).

a4 Unable to Log Re- WRITE, Disk ADMS N/A DTI SVC failed while at-
cord Image for REWRITE tempting to map the record
ADMS Recovery. image to sharer for logging

to audit file.

45 View Access Block N/A Disk ADMS N/A VAB improperly set up
(VAB) Information (System error).

Not Consistent
with UFB.

46 Unable to Do Oper- | N/A Disk ADMS Shared A crash condition has been
tion, File Previ- detected for the data base.
ously Crashed. No request except CLOSE will

be honored.

47 Unable to Perform WRITE, Disk ADMS N/A Unable to perform data map-
ADMS Data Conver- REWRITE ping due to invalid data.
sion Due to Inval- Example: attempt to convert
id Data Format. signed ASCII to binary but

sign byte is invalid.

48 Entire ADMS File WRITE, Disk Alternate- Shared Error in user's hold logic.
Must Be Held for REWRITE, Indexed ADMS file with recovery has
Shared Update with | DELETE ADMS ALT index with no dupsj; user
Unique ALT Key. failed to hold entire file

when making update.

°S

SWa@ 103 sepo) (g4) snIelS BTTg

Summary of Changes

For 1st Edition of VS Operating System Services*

Type Description Affected Pages
NEW FEATURES Labelled tape support: 305-315
- Changes to DMS functions
and OPEN and CLOSE
Telecommunications Support
- New Macro: TCOPTION 127
~ Changed Macros: READ
START, UFBGEN, WRITE 100, 121, 131, 142
~ Changed SVCs: OPEN
CLOSE, CHECK 177, 182, 199
. New Macrointructions
-~ DISMOUNT 63
- HALTIO 77
- MOUNT 87
- READFR 104
-~ SET 116
- TCOPTION 127
DOCUMENTATION | . Documentation of the follow- See VS System
CHANGES ing macroinstructions is not Development Guide

included in this manual:
~ FREEMEM

- GETMEM

- LOW

- SEND

- WAIT

Documentation of the follow-
ing SCVs is not included in
this manual:

- WAIT -~ GETDISK

- SEND - FREEDISK
- FIX/UNFIX = CREATFDR
- GETMEM - UPDATFDR
- FREEMEM - PLEASE

- DTI - MWAIT

- SEIZE/RELEASE

(800-1108SD-01)

See VS System
Development Guide

(800-1108SD-01)

* This manual replaces the VS System Programmer's Guide. The
summary of changes refers to differences between this manual and

the last

edition of the System

Programmer's Guide

(Pub. #800-1103SP-03).

DH-1

Type

Description

Affected Pages

. Documentation of the follow-

ing control blocks is not
included in this manual:

See VS System
Development Guide
(800-11085D-01)

- CMSG - PRB

- DBTB - PT

- DPT - PXE

- ETCB - RMSG

~ FLUB - STMB

- FMSG - SVCT

- IORE - TCB

- MCB - TQEL

- OFB - UCB

- PFB -~ VCB

- PFSA

- PFT
TECHNICAL . Changes to EXTRACT Macro and 64, 226
CHANGES SvC

Changes to HALTIO SVC 194

Revisions and clarifications

of DMS messages 348 —- 354

Changes to EXIRD control

Block 156
EDITORIAL Miscellaneous Editorial
CHANGES Changes

DH-2

SUMMARY OF CHANGES FOR 2ND EDITION OF

VS OPERATING SYSTEM SERVICES MANUAL

TYPE DESCRIPTION AFFECTED PAGES

RELEASE 4 SUPPORT CHANGES CEXIT 53 through 54.1
CHECK 55 through 56.1
CLOSE 57
CREATE 58
DISMOUNT 63, 63.1
EXTRACT 64, 67 through 69.1
FMTLIST 70
HALTIO 77 through 73.1
KEYLIST 79 through 81.1
MOUNT 87 through 89
READVTOC 106.1 through 106.4
REGS 107
SET 116 through 119
SUBMIT JOB 126.1 through 126.6
RETURN CODES 126.7, 126.8
XMIT 148, 148.1

EDITORIAL CHANGES

IORE (I/0 Request Element)
OFB (Open File Block)

UFB (User File Block)
READVTOC SVC

MOUNT

STATIC BLOCK

DATANAME SUBBLOCK

171.1, 171.2

171.3, 171.4°

173.1 tﬁrough 173.12
204, 205 |
231

326, 327, 328

338

DH-3

VS Operating System Services Addendum

Summary of Changes
for the

(800-110705-02.01)

TYPE DESCRIPTION PAGES
NEW Index 355-367
FEATURE
TECHNICAL Chapter 2
CHANGES
External Names in Code 29, 30,
31, 32,
32.1
Chapter 4
BCTGEN Buffer Pool 49
CEXIT 54
CHECK Operand 55, 56.1
CXT Suffix 59
DELETE Syntax 60
DESTROY Operand 62
EXTRACT 65, 69
FREEBUF Return Code 72
GETBUF 73
GETPARM Operand 74, 76
MSGLIST Operand 20
OPEN Syntax and Operand 91, 92
RENAME Syntax, Operand, 108, 109
Return Code 109.1
REWRITE Coding Example 113
SCRATCH Syntax 114
SET Operand 117
SUBMIT Syntax 126.1
XI0 Coding Example 147

Chapter 5

OFB Fields and Flag
TPLAB

171.3, 171.4
172

DH-4

TYPE DESCRIPTION PAGES
TECHNICAL UFB Open Format Error 173.4
CHANGES WP and Workstation 173.5, 173.7
UFBFPCLASS & UFBFILENAME 173.7
UFBXCODE 173.10
WP File Control 173.10
7-Track Tape 173.12
Chapter 6
OPEN File & Volume Names 177
UFBFS2XFORMAT 180
XI0 Halt I/0 Queue 185
Return Codes 186
GETBUF Return Codes 192
FREERUF Return Code 193
HALTIO Input 194
CHECK Input 199
Unsolicited Interrupt 200
Function 6 201
READVTOC Return Code 203
GETPARM Uppercase Alphanum 213
Alphanumeric Limited | 214
RENAME Return Code 223
EXTRACT 0S Version Number 227
EXTRDIDTAPEVOL 229
MOUNT Input Parameter 230
Return Code 231
SET Procedure Keyword 239
XMIT NOWAIT & OTHERTASK 240
CREATE Privileged & GETMEM 241
CEXIT NODEBUG & HELP 243
DISMOUNT GETMEM 244
EDITORIAL Miscellaneous 53, 58, 74,
CHANGES Editorial Changes 76, 83, 90,
93, 97, 98,

106.2, 106.3,
106.4, 109,
109.1, 110,
113, 114, 115,
126.3, 126.4,
126.5, 126.6,
173.10, 202,
203, 222, 241,
327

DH-5

INDEX

Access Methods
BAM (Block AccesS) . . « v o« ¢ o o .

PAM (Physical AccesS). « « « « « o &

RAM (Record ACCESS) s + o « + o« o o o
Selection Criteria . . « « + « + +
Additional Extents for a File (FDR2) .
Address Translation. e s s
Allocate Memory Storage (GETHEAP) ..
Alternate File Error Log . + « « + « .

Alternate Index Descriptor Block (AXD1).

Alternate Indexed File
AXD1 B1oCK « & ¢ « v o ¢ o o o o o &
Compared with Indexed File ,
Error Log. « « ¢« ¢« v v ¢ ¢« v s o o« &
Fields in UFB. . « « ¢ ¢ ¢ « « o o &
Internal Representation.
1/0 Functions
Delete. + v v v ¢ ¢ o o o o o o &
Open. « ¢« « ¢« v v s o ¢ « o o o &
Read. « ¢« v ¢ ¢ ¢« v o ¢ ¢ o o o &
Rewrite « o ¢« v ¢« v o ¢« ¢ o « s &
Start . + v ¢ o b e h e e e e e e

Write . . “ e e s e e e s
Output Mode Flle Attributes
Error LOg « « o « « o« o o « o o

Specification
AXD1 (Alternate Index Descriptor Block)
.AXDGEN Macro . . « « ¢« ¢ ¢« ¢« ¢ « s o &

BAM (See '"Block Access Method')

BCE (Buffer Control Entries)

BCTBL (Buffer Control Table)

BCTGEN Macro s e e

Block Access Method (BAM) F11es
Buffer Size Specification.
File Size Specification.
Function Requests and Modifiers. . .
General Description.
Information Needed at CLOSE.
Record Size Specification.

Blocks (See "Control Blocks'')
Disk File. e e s e e
VIOC & & v v v v e 4 o o o o o o o

INDEX-1

7-12/7-15
7-15/7-20
7-3/7-12
.. 7719
. . 5-20
... 32

4-39, 6-79

. o 7-28
L] . - 5-2

7-15/7-16
7-19/7-20
7-18/7-19
7-15/7-16
7-20/7-22

« o 71717
. . 7-18
.« o 116
o o 71717
« o 1-17
o o 7717

7-18/7-19
. . 7-18
« « o+ 52
. . . 4-4

.
.
.
£ v
o o b

. . 7-14
. . 7714
7-12/7-13
« o 7712
7-14/7-15
. o 7114

. . 3-10
. . 3-11

Buffer Control Entries (BCE)
Buffer Control Table (BCTBL) . . « . .
BUILDALT Program to Fix Error Log. . .

CALL Macro
Call a Subroutine (CALL)
Argument Lists
CANCEL Macro . « « « « &
CANCEL (SVC 16). . » . &
Cancel Program (CANCEL).
Cancel Exit (CEXIT). . .
Cancel Messages
DMS Function Request .
SVC CLOSE. . . . « . &
SVCOPEN

- CEXIT Macro. « « « « o »

CEXIT (SVC 39)
CHECK Macro. « « « « « &
CHECK (SVC 17) . . « . &

Check for Event Occurrence (CHECK) . .

Clock Interruptions. . .
CLOSE Macro. « « « o+ « &
CLOSE (SVC 1).
Close File (CLOSE) . . .

.
.

* o e
3
.
.
3

e o & o o o o

CLOSE SVC Cancel MessageS. « « « « « &
Compression Option for RAM Files . . .
Consecutive Disk File Records

Figed Length
Variable Length., . . .
Control Blocks

s e o o

(AXD1) Alternate Index Descriptor Block.
(BCE) Buffer Control Entries
(BCTBL) Buffer Control Table
(EXTRD) Extract SVC Result Area. . .
(FDR1) File Descriptor Record Format
(FDR2) File Descriptor Record

Format 2 -- Additional Extents., .
(IORE) I/0 Request Element

(OFB) Open File Block.
(TPLAB) Tape Labels. .
(TPLB2) Tape Labels —-
(UFB) User File Block.
General Description
(VOL1) Volume Labels .
CREATE Macro . . « « . .
CREATE (SVC 37).
Create Intertask Message

Secondary . .

Port (CREATE)

INDEX-2

.

e o @ o e ® o s o

* e ® ® 8 ® © s & o e o

e o 6725
4-12, 625
. . . 3-6
« o« 4-16
« o . 6-8
4-16, 6-8
. . . C-8
N]

. . 5-20
.. 5-21
. . 5-23
. . 525
. . 5-26
. . 5-27
... 71
. . 5-40
« o 4-17
.. 6-70

4~-17, 6-70

Data Area Macroinstruction Format. « ¢« « ¢+ ¢« ¢« o « « . A-1
Data Management Support SVCs: CHECK, XI0O « « « « . « 3-9
Data Management System (See "DMS')

Dataname SubblOoCK: « « o « o « o s o o o « o s o s » o o o o B-15
Deallocate Memory Storage . . ¢« « o« o ¢ o« ¢ « o o « o 4—36, 681
Default File Specifications. . « ¢« ¢« ¢« ¢ v ¢ ¢ ¢ ¢« ¢« ¢« « o o« 2-19
DELETE MAacCYO . « « « o ¢ o o o s o o o s s o s s o s o o o » 419
Delete Function (DMS RAM). . ¢ « & o« o o s o o s o« » « s o o 7-10
Delete Function (DMS Indexed). . + « & « ¢ o « o o o o« o o o 1-27
Delete Record from Index (DELETE). . +« ¢« « ¢« o« « « & o &« « « 4-19
DESTROY MacCro. « « « « o« « o ¢ o o o o o o e e e o e o & G4=21
DESTROY (SVC 38) &+ 4 ¢ ¢ o o o o o o o & e o e o o 26-71
Destroy Intertask Message Port (DESTROY) . .« . 4-21, 6-71
Disk Storage Description e s ¢ s o« 310

Extent Organization. . . « ¢« ¢« o ¢« « « & o« o e o o« «» 310
Volume Label . & &+ v ¢ o ¢ o « o o o ¢ s s ¢ o s a s o » o 3-10
Volume Table of ContentsS « « » « o o o = o o o o 2 s » o «» 3-11
DISMOUNT Macro « « « &+ o o o o « o o s o o o s a s o o o o o 422
DISMOUNT (SVC 41): o ¢ o ¢ o o o o o o o o o o a s s o o o« o 673
Dismount Disk or Tape Volume (DISMOUNT). . . . « . » o 4=22, 6-73

DMS (Data Management System)

Fatal Errors .« « v ¢ o o o o o o o s s o o s o o o o o o o 1=49
Function Requests
Cancel MeSSAgES + « « o o o o« o o s s o s o s s s o o o« o C-9
ENEYY « v v v v v v e b e e e e e e e . . . T-46/7-47
File Status Return CodeS. « + « « « « o « s & & » « C-12/C-19
Magnetic Tape Support. « « « « « « « « & & e « o 7-54/7-64
Close File. . « v o o o o o o o o « o « e ¢« o o « 1-63
Initializing, . . &« &« ¢« ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o T1-56
LabelS. v o « o s o o s o o ¢ o o o o o o s o o o o 1-54/7-55
Mount/Dismount. + « « o « « o o o o « ¢« o o o o o« o 7=55/7-56
Multiple Volume . « 4+ « « o « « o s o « o o o« o « o« 7-63/7-64
Open File « ¢ v v 4 ¢« ¢ ¢ ¢« o o o o ¢« ¢« o s s o o« « 7-56/7-61

Read. ¢ ¢« ¢« ¢ ¢ o ¢ ¢ o o o s 2 o o o o o o o o s o o o 1761
Start & & ¢ it i e et e s e e s e s e s e s e e s s s 162
Wreite &+ v 4 o o ¢ o o o o o o o o e o o o o o o o o o o 1762
T7-Track ¢ o« « o ¢« o ¢« o o o ¢« 2 o s o o s o s o o o o o {164
Messages

SVC CLOSE Cancel MessagesS . « « « « + « & e s e o e Cc-11

Function Request Cancel . . « + + ¢ ¢+ ¢ ¢« o s o « « « « « C9
SUC OPEN Cancel MeSSageS. « « « » s « o o o 2 o o o o & o« C=2
SVC OPEN Respecify MeSSages + « + « ¢« « o o o s « s o o o« C-4
Printer Support. . « « ¢ + « 4+ ¢ ¢« o « s ¢« o o o s o o 7749/7-50
Workstation SUPPOrt. « « o« « ¢ ¢« &« o o ¢ o« o o o o o o 1-51/7-54
Read Request. . « « 2 o+ ¢ « o o o o « o o o s« s o o o o« 1=52
Rewrite . & « ¢« ¢« & 4 o 4« ¢ ¢« o o o o o s o o s o o o & 1-53
Start Function Request. . « . « « &« « ¢ &+ ¢« « « « &+ « o 154

INDEX-3

Error Handling
Classifications. . . . « .
I/OErrors « « « « « o o o

Hard Errors . . « « « « &

e o o s s »

Logical File Processing Errors.

Soft Errors « « ¢« « « « &

¢ o o o o o

Program Exception Errors + « + «
User's 1/0 Error Processing. . « « « + + &
Error Log, Alternate Indexed File.

Using to Correct Errors. . .
Execute Physical I/0 (XIO) . .
Extent Organization. s e e e e
EXTRACT Macro.
EXTRACT (SVC 28)

Extract Data from System Control
EXTRD (Result Area of "Extract" SVC)

¢ o o e o .

Blocks (EXTRACT).

FDR Fields in VIOC, of special DMS interest. . . .
FDR1 (File Descriptor Record Block).

FDR2 (File Descriptor Record Block —- Additional

File Extents . « « « v « s o« &

File Organization Definitions (RAM).
File Organization and Record Size at SVC OPEN. . .
File Specifications, Default

FMTLIST Macro. . « « « o s o
FREEBUF MaCro. « « o o ¢ ¢ o &
FREEBUF (SVC 6) . . L] L] . . L] .

s e s s s 0

Free Data Management Buffer Space (FREEBUF)

FREEHEAP Macro

FREEHEAP (SVC 57) . . .« « « .

Function Requests and Modifiers
BAM) 0000 ..
PAM) . .. v i e e e e e
®RaM)00 0. .

Generate a User File Block (UFBGEN).
Generate Alternate Index Descriptor Block (AXDGEN)
Generate Display Message (MSGLIST)
Generate Parameter Group Control List (KEYLIST). .
Generate Parameter Group Control List Fields

GETBUF Macro . « o« « o ¢ ¢ o o

e o 8 e ® e

GETBUF (SVC 5) * & & & o 8 e s & e s ¢« o o
Get Data Management Buffer Space (GETBUF) .

Get Date and Time (TIME) . . .
GETHEAP Macro . « . ¢« ¢ « o &
GETHEAP (SVC 56) . . « « + .

.

INDEX—4

. . .

(FMTLIST)

. . .

. o« . 2-23
e« o 2-23
« o o 2-23
e o o« 223
e« o o 2=23
e s &« 2=23
e o o 224
e o o« 1-28
« o« o 129
4-136, 6-11
e« « o 3-10
e« o o 4=24
« o« o« 6-52
4-24, 6-52
e o o« « 5-8
« 7-17/7-18
.« . 5-17
Extents). . 5-20
e« « o 3-10
« e o o« 16
« 7-19/7-20
e s o 2-19
« o« o« 4-33
e o« o« 4-35
« « o 619
4-35, 6-19
e o o 436
« + « 6-81

. 7-12/7-13
. 7-15/7-16
. 7-8/7-12

o o o 4-123
e o o . 44
« o o 4-65
e o o 4-47
. o« 4-33
.« . . 4-38
. .« + 6-18

4-38, 6-18
4-122, 6-10
. o« 4739
« o o 6779

GETPARM Macro. » . . Ll » L] * L] . L] . L] o [] . . L] L] L] L] L]
GETPARM (SVC 20) . L] L] L] L] L] L] L] L] . . - L] L] . L] L] . L] L]
Get Parameters (GETPARM) . . ¢ v v v ¢ o ¢ o o o o =

Halt I/0 Operation (HALTIO). . « ¢« « ¢ & « o + o o o
HALTIO Macro . . + « ¢ o « o o o o o o o o o o o =

IIALTIO (SVC 12)0 * s & o s & s e s o s & e o

I/O Initiation . & ¢ v ¢ v ¢ 4 & o o o o o o s o o o o &
I/O InterruptionS. « « o « o o o o & o o o o o o o s o
I/0 Request Element (IORE) + & « ¢ ¢ « o « o o o o o o o
Indexed Disk Files (RAM)

Fizxed Length Records . . o+ « « o« « s o s o s+ o o s o @

Variable Length Records. « . « « &« « o o o« o« « o o o &
Indexed RAM Files

Access of Existing Files . . . ¢« . v o ¢ ¢« ¢ ¢ o o o« &

Buffer Options and Strategies. . « + « « &+ ¢« o & & & &

Creation Oof. ¢ « & & 4 s 4 ¢ ¢ o o o o o o s o o 2 o &

Indexed File Structure . . + « + v ¢ ¢« « o « o » o o &
Indexed and Alternate Indexed Files; General Comparison.
Internal DMS Representation of Alternate Indexed Files .
Interruptions

Clock Interrupt Service Actions. . . « « ¢ « o & o o

I/0 Interrupt Service Actions. . . . « . +« ¢ ¢« « + . .

Program Interrupt Service Actions. . . . « + « +« « « .
IORE (I/0 Request Element Block) . « « « ¢ ¢ o o « o o

KEYLIST MaCrO. ¢ « v ¢ o « o s o o o o o o o o o s o o »

LINK Macro « ¢« v« v 4 ¢ ¢ o o o o o o o o o o o o o s o
LINK (SVC 4) © v v v v v v v v e e s s o o o s o o o o &
LINK Argument ListS. . « ¢ ¢« ¢ « ¢ &+ ¢ o o o 2 o « o o &
Link to Another Program or Subprogram (LINK)
Linkage Area, Code and Static Sections in.
Linkage Block., e s s e s s s e 4 & e & o e o
Linker Processing. . +« + v v 4 ¢ ¢ ¢« s o« o o o o s o o &
LINKPARM Macro . o o ¢ o &+ o o o o o o o s o o o s o o
Log Files (See "Error Log")
Recovery o s 4 s e s s s e e s e s e
Shared
Special Features . « v v « o o o o ¢ o o ¢ o o o o o
Write-through. « « ¢ v ¢ ¢ ¢ o ¢ ¢ ¢ o ¢ o o s o o o &
Logoff e e s s e s e e s e e e e
LOGOFF Macro . « v « « 4 ¢ o o o o o« s o s o « o o o o @
LOGOFF (SVC 43). e s s s s e o s e s e s e

INDEX-5

. . 4-42
. . 6-33
4-42, 6-33
4=45, 6-20
. . 4-45
. . 6-20
. . .35
« « .35
.. 521
.. .76
.. .78
7-22/7-23
7-23/7-24
7-21/7-22
7-24/7-25
7-29/7-30
7-30/7-32
. . . 36
. . .35
. . . 3-6
.. 521
. . 4-47
. . 4-52
. . 6-15
.. 217
4-52, 6-15
. . B-22
. . B-21
. . B-27
. . 4-55
. 7-37
7-37/7-38
.. 7-37
. . 7737
. . .38
. . 4-60

« +» 676

Macroinstructions and SVCs
Alphabetical List

AXDGEN ()
BCTGEN ()
CALL 0
CANCEL (16)
CEXIT (39)
CHECK (17)
CLOSE (1)
CREATE (37)
CXT O
DELETE ()
DESTROY (38)
DISMOUNT (41)
EXTRACT (28)
FMTLIST O

FREEBUF (6)
FREEHEAP (57)
GETBUF (5)
GETHEAP (56)
GETPARM (20)
HALTIO (12)
KEYLIST (
LINK (4)
LINKPARM ()
LOGOFF (43)
MOUNT (30)
MSGLIST O
OPEN (0)
PCEXIT (31)

PROTECT ()
PUTPARM (33)
READ ()
READFDR (24)
READVTOC (19)
REGS ()
RENAME (26)
RESETIME (32)
RETURN ()
REWRITE ().
SCRATCH (27)
SET (35)
SETIME (32)
SUBMIT (46)
START ()

TCOPTION ()
TIME (2)
UFBGEN ()
WRITE ()
XI10 (3)
XMIT (36)

Generate Alternate Index Descriptor

Generate Buffer Pool Control Table

Call a Subroutine
Cancel Program. . « « . . .
Cancel Exit . . . « .« ¢« « &
Check for Event Occurrence.
Close File. « + v o ¢ o« o &
Create Intertask Message Port
Return CEXIT Information. . .

e & o e o

e ® o o o

.

Delete Record from Indexed File
Destroy Intertask Message Buffer.

Dismount Disk or Tape Volume,

e o o @

Extract Data from Control Blocks.

Generate Selected Parameter
Group Control Block Fields. .

Free Data Management Buffer Space

Deallocate Memory Storage . .

Get Data Management Buffer Space.

Allocate Memory Storage . . .
Get Parameters. . « « « « o &

Halt I/0 Operation. . . « « « « o
Generate Parameter Group Control List . .

Link to Another Program . . .
Supply Program Parameters . .
Log Off Workstation
Mount Disk or Tape Volume . .
Generate Display Message. . .
OpenmaFile . . + « ¢« ¢ « o« &
Modify Program Exception Exit
Status. o . e e . .
Protect a Disk File
Supply Program Parameters . .
Read a Record
Read File Descriptor Record .
Read Volume Table of Contents
Register Equation
Rename Disk File.
Reset Timing Interval
Return to Invoker
Rewrite a Record.
Scratch a Disk File
Set Task~Related Defaults . .
Set Timing Interval
Submit Job or Print Request .

Start File Processing in Specified

Mode or Record Location . . .

Set Telecommunications Options.

Get Data and Time
Generate a User File Block. .
Write a Record. . . « . « « &
Execute Physical 1I/0.
Transmit Intertask Message. .

INDEX-6

Block

. 4_8 ,
. 4-9,
4-12,

. 4~4
. 4-6
. 4-7
6-23
672
6-25

. 4-16, 6-8

4-17,
4-21,
4~-22,
4=24 ,

4-35,
4-36,
4-38,
4-39,
4=-42,
4=45,

4-52,
4-61,

6-70
4-18
4-19
6-71
6-73
6-52

4-33
6-19
6-81
6-18
6~79
6-33
6-20
4-47
6-15
4-55
6-76
6-57
4-65

. 466, 6-3

4-68,
4-73,
4-79,
4-82,
4-87,
4-90,
4-94,
4-97,
4-102,
4-111,

4-122,

660
4-70
6-63
4-75
646
6-29
4-86
6-48
6—62
4-91
4-92
6-50
6-68
6-62
6-77

4-103

. 4-119

6-10
4-123
4-134

4-136, 6-11

4-141,

6-69

Macroinstructions and SVCs: Functional Group List
Data Management Routine Use
CHECK: « ¢ ¢ ¢ o o v o o ¢ s ¢ a s s o o o« « &« G612, 6-25
FREEBUF. . . & ¢+ v 4 « o 2 o « s s o o« o o« + « 435, 6-19
FREEHEAP & 4 ¢ ¢« ¢« ¢ ¢« o s o« s « s » « 4-36, 6-81
GETBUF . . « ¢« &+ ¢ ¢ ¢ o ¢« ¢ s o s 2 ¢« o« « « « 4-38, 6-18
GETHEAP . . . 4 v v ¢ ¢« ¢ « s o o o « o « « « 4-39, 6-79
HALTIO & ¢ ¢ ¢ v ¢ 4 o o o o o o« o s o o« o« o« o« 4-45, 6-20
XIO: 4 ¢ ¢ ¢ o o 4 o o o o o s o s s ¢« o « « « 4-136, 6-11
Intertask Communication
CEXIT. . . . « « « & e s s e 4 s e s e e e e e . -9, 6~72
. o o G4-12, 6-25
« o « 417, 6-70
CXT. e v 6 6 v e v o o o 2 s s o o s o o o s o o « 418
DESTROY. ¢ o e e s s s e s s s e . b-21, 671
LINKPARM . ¢ ¢« ¢ ¢ ¢ 4 o ¢« o o 2 o ¢ s ¢ o o s o o « 455
RMIT ¢ & ¢ ¢ ¢ o o o o o o o s o o s o o o « « 4-141, 6-69
Program Structuring and Control
EXTRACT. © & ¢ ¢ ¢ o ¢ o s o s o ¢« s o« o o o« o« 4~24, 6-52
PCEXIT . . & ¢ v ¢ ¢ o ¢« ¢« s o o s ¢« s o o« o o 4—68, 6-60
REGS ¢ & ¢ v v ¢ 4 ¢ o 4 o o 4 2 o o s ¢« s o s o « « 4u-86
SET, v v ¢ ¢« ¢« ¢« ¢ o+ o s o s s o a o ¢« o« o o o« 497, 6-68
Program Termination
CANCEL . & & v ¢« 4 ¢« ¢ 4 s s o o o s o« s o o o« » 48, 6-23
RETURN . . ¢ & ¢ ¢ ¢ o ¢« o o o o o s « o o s o o« o &« 491
Timing _
CHECK.« .« . « o o o s o e o s s e o o G-12, 6-25
SETIME ., e e e s s s e e e s e e e e . 4=102, 6-62
RESETIME « . &+ o ¢ o « o « o o s s o o o o o o 6-90, 6-62
TIME . . ¢ ¢t i i 6 b e e e s o s s o« o o o « 4-122, 6-10
User-Level I/0
AXDGEN © t o o s o s s o s s e s s o o o b=4
BCTGEN . & ¢ 4 ¢ ¢ o 4 4 o o o o o o o o s o s o o o« « 4-6
CIOSE. e ¢ & o s s s s o e o o« o o » 416, 6—-8
DELETE . . « ¢ ¢ ¢ 4 s o o o s o o o o s o » o« o « « 46-19
DISMOUNT . . & & ¢ & o o « o o o o s s o o« o« o« 4=22, 6-73
MOUNT. . . & & ¢ 4 v o « o o o s o« o s o o o« » 4—61, 6-57
OPEN . . & v ¢ ¢ o 4 o 4« o s o o o s o« o o o o « 4—66, 6-3
PROTECT. . . v ¢ ¢« v ¢ ¢« ¢ ¢ ¢ ¢« ¢ s ¢« o« o« « o« 470, 6~74
READ . & ¢ 4 ¢ 4 ¢ ¢ o o o o o o o ¢ o s s o a o o o 475
READFDR. . & &+ 4 ¢ ¢ &+ o s o ¢ o ¢« s s o o o« « 4-79, 6-46
READVTOC . « ¢ ¢ o ¢ ¢ ¢ o o s o ¢« o s o« o« o« « 46-82, 6-29
RENAME . . . &+ ¢ ¢ ¢ ¢« 4 o o s s 2 s o s » « « 4—87, 6-48
REWRITE. . . 4 4 ¢ 4 o ¢ 4 e ¢ o o s s o o o« o o « o 4-92
SCRATCH. . & & 4 2 ¢ o 4 o o s o e s ¢« ¢« o o« « G-94, 6-50
SUBMIT v v v 4 o o o o o & e v s+« « » 4-111, 6-81
START. . ¢ v v v v ¢ & ¢« o o o s o s s s o o o« « « « 4-103
TCOPTION . . & v v 4 4 4 o o o o o o ¢ o o o o « « « 4-119
UFBGEN . & v ¢ 4 v v 4 4 o s s o o o s ¢ o o s o o « 4-123
WRITE: . & v ¢ ¢ ¢ o 4 o o o s o s s o o o o o o« o « 4-134
User Program Linkage
CALL « v ¢ 4 ¢ ¢ 4 6 ¢ 4 4 o o o s o o o o o o o o o+ b7
LINK . 4 4 ¢ 4 6 v o 4 4 s o o o e« o o o o o o« 4=-52, 6-15
RETURN . . & & 4 v v 6 4 s o o o o s o o s o o o & o 4791
UNLINK . & ¢ o o ¢ ¢ s o o o o o s s o o o« o« o « o« o 6~-21

Workstation Display, Messages

FMTLIST.
GETPARM. . , . .
LOGOFF
KEYLIST.
MSGLIST.
PUTPARM. N

Magnetic Tape File Header,
and End~of-Volume Labels

7-Track Tape Support .

Creating.,
Reading

Open a Tape File . . .
Read Function Request.
Start Function Request
Write Function Request
Microcode Loading. . . .
Modify Program Exception

MOUNT (SVC 30)

MSGLIST Macro. . . « «

Naming Conventions

Trailer,
(TPLAB)
Magnetic Tape Secondary Header,

Trailer, and End-of-Volume
Magnetic Tape Support (DMS).

Close Tape File.
Initialize a Tape Volume .
Mount/Dismount a Tape. . .
Multiple Volume Tape Files

.

Labels (TPLB2).

Exit Status (PCEXIT?
MOUNT Mac ro 1 [] L] L] L] L] L] [] L[] L] . L]] L] L] L] L]

o e o » e o & o o

Mount Disk or Tape Volume (MOUNT? s e e e

Label Names. « « « + & « &
System Data Structures . .

NOVTOC Diskettes

Object Program, Definition of. . . . + « . .
OFB (open File Block) . . L[] e . . . L] L L] . L]

OPEN Macro . « « « « &
OPEN (SVC O)

s 5 8 & o & 8 e s o+

s e e o o o o o

open a File (OPEN) L] L] L] L] . . L] . L] L] L] L] L]

Open File Block (QFB). .

. o . . o

Open Function (DMS Existing Indexed F11e). .
OPEN SVC Cancel Messages . + « « o o o o« o &
OPEN SVC Respecify MessageS. « « « o« + o o« &

INDEX-8

. .. 4-33
4-42, 6-33
4-60, 6-76

. . . 4-47
. « . 4765
4-73, 6-63
. . . 525

.. 5-26

. 7-54/7-64

. .. T-64

. .. 7-63

. .. 7-56

« . . 7-55

... T-64

... 7763

. . . 7-56
... 7-61

. .. 7762
. .. 7-63
. . 3-7/3-8
4~68, 6-60

. .. 461

. .. 6-57
4-61, 6-57
. . . 4-65
2-25/ 2-217
... 2727
. .. 7719
c e e .21

. .. 523
. . . 4-66
. e .. 6-3
. 4-66, 6-3
. .. 5-23
. .. 7-28
. .. .C2
. ...C-3

Packing DensSity. « « « ¢« ¢« ¢ ¢ « ¢ ¢ ¢ s ¢ ¢ s o ¢« o o o« 6-6, 7-22
Pages and Page FaultS. . « « o o & 5 o ¢ o o ¢ o o s o s o o o« 372
PAM (See '"Physical Access Method'’)
Parameter Passing
Default File Specifications. . . « « ¢« ¢ + &+ o o s o o o o 2-19
Run-Time Device and File Assignment. . . . « « &+ « « « « o 2-18
Run-Time Specification of Options. « + « o« + ¢« « & &« o « « 2-19
Standard Argument Lists for CALLor LINK « 2-18
Standard Parameter-Reference Names . . . + + o « o o » « o 2-20
User Program Parameter Passing . . « « « ¢« ¢ o« ¢ & o « « o 2-18
PCEXIT MAaCrO . « + o « o o s o 2 o o o o o o o s o s o« o« o » 4-68
PCEXIT (SVC 31). 4 v v v 4 o o o o s o s s o« s o o o s « « o 6-60
Physical Access Method (PAM) Files
File Size Specificat}on. P ' Y
Function Requests and Modifiers. . « « « « « o o « « o 7-15/7-16
General Description. . . « « ¢« ¢« 4« ¢ ¢« o« ¢ ¢ o« 2 o« &« o« &« o 71-15
Read BIlOCK . & « v ¢« s ¢« o o o s s o s o s s o o s o o o « 1-66
Rewrite BlocK. « ¢« « ¢« ¢ o ¢ 4o o o o o ¢« s & o o o o « 1-66/7-67
Start. « v ¢ v 4 4 4 s s e 4 s s s e e s e s e e s s o I-67/7-68
Write BloCK. « o « 4 « o o o o « s o s o« s « o a s o o o o« 1-68
Printer Support (DMS). + v &+ ¢« ¢ ¢« &« &+ ¢ « s o« o o o o o 7-49/7-50
Program
Abnormal Termination . . « ¢« « ¢ ¢« ¢ ¢ ¢ ¢ o+ o o o « o & 3-6/3~-7
Dataname Subblock. . + & &« « « ¢ « « ¢ s ¢ s o« ¢« o« o o« « o« B-15
DefinitionsS. .+ ¢« v v o o o ¢ o o s o o s o o o a s s o+ o & o 2-1
Efficiency + ¢ + « o v o o o o o ¢ o o s ¢« 2 o o o o s « o « 373
Initiation . o ¢« ¢ & ¢ 4 ¢ o ¢ o s o o e o o o o s s o o o o 377
InterruptionS. . « « ¢ o o+ ¢« o o s & o o o o o o s o o « 3-5/3-6
Linkage BloCK. « « &+ o o o o o o o o s o« s s o o « » o o« » B-21
Linker Processing. . « « « « o« ¢« o o o o o o« o o o o o o » B=27
Normal Termination . « o & & ¢ 4 ¢« ¢« ¢ o o o o o s o« o o o o« 376
Program Skeleton « . « o « o o o « 2 s s 2 o o o s » o &« o« o« B-1
Relocation Reference Block +. + « ¢ v ¢« 4 ¢ &« ¢ o « o s o » B=24
Run Block. s e & o 4 o 4 s a 4 s 4« a o s o o o o« « B=3
Run Processing . . . « « + ¢« ¢ « ¢ o« « o« s « o« o« o« « « » » B-28
Static BIOCK 4 « ¢« 4 2o « ¢ o o & ¢« o o s « 2 o s o o o o« w o« B=5
Statement Number Subblock. . « + ¢ ¢« « « + ¢« o o o o« « ¢« o B-13
Symbolic BIloCK « « v « &« & 4 « « o 4 o o « a o o« s o « o o o« B9
Symbolic SectionS. . . + « ¢ 4 ¢ 4 ¢+ ¢« ¢ ¢« « o » 2 + » o« o« B-10
Translator Processing. .« « + &+ « ¢+ « o o s « o o o o « » « B-26
PROTECT MaCrO. « 4 o o o o s o o o s o « s s s o o« s o o o o« 470
PROTECT (SVC 42) . & v v « « s o 2 o s o s o s a o s s « o« o 6-74
Protect a Disk File (PROTECT). « « + « « « « « « « = - 4=70, 6-74
PUTPARM MacCro. « « o+ o o « o o o o o s o s s o o o o o o o o 4=73
PUTPARM (SVC 33) 4 v 4 o o o o s o o o o « s s o o s s o s o 6-63

RAM (See ''Record Access Method")
READ Macro L] L] . L] L] . . [] . L] . . . L] . - . . L] - L] L] L] L] . 4-75
Read a Record (READ) . & « + 4 =« o « o o o s s o« = o o o « « 475

INDEX-9

Read File Descriptor Record(s) (READFDR) . .
Read File Status
(BAM) UFBEODAD Return. . . + &« « ¢ « & o &
(RAM) UFBEODAD Return. . + « « & « & « o &
Read Function (DMS Indexed). + o « o ¢ o o o
READFDR MaCrO. + v o o 5 o« o o o o o o s o o
READFDR (SVC 24) ¢ « 4+ ¢ o+ o « o ¢ o o o o
Read Modifiers (BAM)
Read Volume Table of Contents (READVTOC) ..
READVTOC Macro . + « o o « o o o 2 s o o o o
READVTOC (SVC 19). & v ¢ o o o o o o o o o »
Record Access Method (RAM) Files
Buffer Size Specification.
Consecutive Files, Definitions
Fized-Length Records. . . « + « « « . &
Variable-Length Records
Compression Option . . . + « « « . &
File Size Specification.
Function Requests
Read and Read Modifiers
Write, Rewrite, Delete, Start
Summary of Requests . + + « ¢ &+ « &+ . &
Indexed Files, Definitions
Fired Length. . « ¢« ¢« ¢« ¢« ¢ « ¢ ¢ o o &
Variable Length « « ¢« + ¢« & « &
Record Size Specification. . . .« . . « . .
REGS MacCro « v+ v 4 4 ¢ v o o o ¢ o o o o o &
Register Conventions . « « + ¢ &+ ¢ « s o o o
Register Equation (REGS) . + &« « ¢ « o & & &
Relocation Reference Block « « « « « « « .+ &
RENAME MaCrO « « o o o« s o o o s o o o o o
RENAME (SVC 26) ¢ « + ¢ ¢ « o ¢ « o « o o o o«
Rename a Disk File (RENAME). . e v e e e s
Remove Timer Interval (RESETIME) e e e e
Request Parameters (GETPARM)
RESETIME Macro . « « « 4 « o s o o o s o o »
RESETIME (SVC 32). « v v « o« + & & v e e e
Result Area of "Extract' SVC (EXTRD)
Return from Program Entered by LINK (UNLINK)
RETURN Macro « o« o o &+ + o o o o s o o o o o
Return to Invoker (RETURN) + « « .« &
REWRITE MacCro. « « ¢« « s+ ¢ o s o o s o o« o o
Rewrite a Record (REWRITE) . . + « « o o & &
Rewrite Function (DMS RAM) . . . v & ¢ « .+ &
Rewrite Function (DMS Indexed) . « « « . . .
Run Block, + ¢« ¢ v o ¢ ¢ o o o s o o o o o o
Run-Time Device and File Assignments
Run Processing + ¢« ¢ ¢ ¢« ¢« ¢ & o « &

INDEX-10

4-79, 6-46
e o o 1713
« o s o 179
« o s 126
e o« o 479
« « « 6746
e s . 7-13
4-82, 6-29
« o o 4-82
e o« 6729
e o o I1-11
« o e o 176
Y e
I
« o o 7-11
. 7-8/7-9
. 7—9/7 11
« o o o 775
Y A
« e s . 71-8
o o o 71712
. « .« 4-86
* o e 2-11
.« « o 4-86
« » o« B-24
. o o 4-87
. . . 648
4—-87, 6-48
¢« o 4-90
4-42, 6-33
. e . 4-90
¢ o o 662
« « o .« 5-8
e o+ o 6-22
e o o 4-91
.« o o 491
e« o 4-92
e o o 492
« o« o 1=-10
.« o o 71727
¢ » « « B-3
« o o 2-18
.« « o B-28

Scratch a File (SCRATCH)

SCRATCH Macro. . .

SCRATCH (SVC 27)

Segments, Program
Segment 0 (System) .

e & o o o e

Segment 1 (User Program Re-entrant).
Segment 2 (User Modifiable). e e e e e

SET Macro.

SET (SVC (35). . « + o « .+ &

a & » 8 e & e o o+ e o

* e o 0 .

Set Cancel Exit Options (CEXIT).
Set Interval Timer (SETIME).
Set Task-Related Defaults (SET). . . .
Set Telecommunications Stream Options (TCOPTION)
SETIME Macro « + « « o s s o ¢ o o s &

SETIME (SVC 32).
Shared Mode. . .
Detailed Overview.

e & ¢ 5 e o o & e o

e ¢ e & e s & s e o

START Functions (Summary) e e e
UFB Field Updates. « « « « « o « o &

Sharing, Advanced

Explicit Resource Control e s e e e
Extension Rights

CGeneral Notes

Timeout Option . « +« + v « « ¢ & + &

Sharing Task

General Description. . + + « « & « &

HOLD Mechanism . . .

e & o o e s o+ o

Hold for Update/Retrieval.
Statement Number Subblock.
Static Areas (see Segments)

Assembler Language Conventions . . .

Creation of. . « + ¢« v ¢« 4 ¢ & o o« &

Definition .
Example usage. « « + « « o« o « & &
Support during Complling, Llnklng,
Static Block . .
START Macro. + « . &

Start File Processing in Specified
Mode or at Specified Record Location (START)

Start Function (DMS RAM) .
Start Function (DMS Indexed) . .

Start Function UFBEODAD (RAM) Returns.
Submit Job or Print Request.

Supervisor Calls
Alphabetical List (See 'Macroinstructions')

General Introduction

(OPEN)
(CLOSE)
(TIME)
(X10)
(LINK)
(GETBUF)

Ve wnn -=o

Open File

Close File.
Get Date and Time .

.

Execute Physical I/O.
Link to Another Program .
Get Data Management Buffer Space.

INDEX-11

.

.

2-17, 2-21,

494, 6-50
494
6-50

S)
. 1-3, 2-2
. 1-4, 2-2
4-97
6-68
. .. 6-72
4-102, 6-62
4-97, 6-68
. . . 4-119
. 4-102
. . . 6-62
. 7-33/7-45
. 7-42/7-45
.. . T-44
. 7-44/7-45
. 7-37/7-41
. 7-38/7-39
. 7-39/7-40
7-41
7-40

o o .

. . .

. 7-34/7-36
. 7-35/7-36
. 7-37/7-38
B-13

T
w v

e e 271
. . 2-6/2-8
. 2-4, 2-5
.« « .« . B-5
« « o 4-103
4-103
7-10
7-27
7-11
6-77

4-111,

6~-1
. 6-3
. 6-8
6-10
6-11
6-15
6-18

6 (FREEBUF)
12 (HALTIO)
15 (UNLINK)
16 (CANCEL)
17 (CHECK)
19 (READVTOC)
20 (GETPARM)
24 (READFDR)
26 (RENAME)
27 (SCRATCH)
28 (EXTRACT)
30 (MOUNT)
31 (PCEXIT)

33 (PUTPARM)
35 (SET)

36 (XMIT)

37 (CREATE)
38 (DESTROY)
39 (CEXIT)
41 (DISMOUNT)
42 (PROTECT)
43 (LOGOFF)
46 (SUBMIT)
56 (GETHEAP)
57 (FREEHEAP)

Free Data Management Buffer Space .

Halt I/0 Operation.

Return from Program Entered by Link

Cancel Program. . . . « . .« .
Check for Event Completion. .
Read Volume Table cf Contents
Request Parameters.
Read File Descriptor Record .
Rename Disk File. «
Scratch Disk File

Extract Data from System Control Blocks .

Mount Disk or Tape Volume . .

-

Modify Program Exception Exit Status. . .
32 (SETIME/RESETIME) Set/Reset Timing Interval . . . « . &

Supply Program Parameters to GETPARM.

Set Task-Related Defaults . .
Transmit Intertask Message. .

Create Intertask Message Buffer
Destroy Intertask Message Buffer

Set Cancel Exit Options . . .
Dismount Disk or Tape Volume.
Protect File or Library . . .
Log Off Workstation
Submit Job or Print Request .
Allocate Memory Storage . . .
Deallocate Memory Storage . .

Supply Program Parameters (LINKPARM)
Supply Program Parameters (PUTPARM) e e e e

Symbolic Block . .
Symbolic Sections.

Tape Support (See "

e & & e s 8 e e 2 e & o . . .

Magnetic Tape'’)

Task Scheduling and Timing . . . « ¢« « « « « « &
Intertask Message Primitives
WAIT and SEND Primitives . .« . « . . «

TCOPTION Macro . .
TIME Macro
TIME (SVC 2) . . .

s e & 8 e * e o e 2 o s o . .

® & 8 8 8 e e & e e o o o . .

TPLAB (Magnetic Tape File Header,
Trailer, and End-of-Volume Labels) e e e e .
TPLB2 (Magnetic Tape Secondary Headers) e e

Transfer of Control.

CALL

LINK

e * e e o ¢ 2 " e s e . .

Translator Processing. . . e o s e e e

Transmit Intertask

Message (XMIT) e e e e e

UFB Fields of special DMS interest . . « « . .+ .
UFB (User File Block) Control Block.

INDEX-12

4—73

. . .

6-19
6—20
6—22
6—23
6-25
6—29
6—-33
6-46
6—48
6-50
6—52
6-57
6—60
6—62
6—-63
6-68
6-69
6-70
6-71
6-72
6-73
6-74
6-76
6-77
6-79
6-81
4~55
6-63

B-9
B-10

. « 3-3/3-4

3-4
3-4

e+ . 4-119
e o » 4-122

6-10

5-25
5-26
2-10
2-15
2-16
B-26
6-69

UFBGEN Macro . « « « o o o o
IINLINK (SVC 15) . e o & e . .
User File Block (UFB): . . .

Virtual Address Components .
Virtual Memory
Address Translation. . . .
Definition
Paging, description of . .
Program Efficiency

Relation to Physical Memory.

VOL1 (Standard Volume Label for Dlsk

Volume Label « . &

.

.

Standard Label for Disk or Magnetic Tape
Volume Table of Contents (VTOC).
VIOC (Volume Table of Contents).

Workstation Messages and Response

(Introduction) . .
Workstation Support (DMS) .
Read Function Request. . .
Rewrite Function Request .
Start Function Request . .
WRITE Macro. « « « s « « o &
Write a Record (WRITE) . . .
Write Function (DMS RAM) . .
Write Function (DMS Indexed)

on Macro . L] . . » . L] * . L[]
XI0 (V€ 3).
XMIT M3Cro « o« « o ¢ o o o &

INDEX-13

or Magnetic

. e 4-123
. . 6-22
« 0 5-27

. 3-1/3-2

... 32
3-1, 3-2
. 3-2/3-3
.. .33
« .. 31
. . 5-40
. . 3-10
. . 5-40
.. 3-11
.. 311

. o 2722
7-51/7-54
« « T7-52
.« . 7153
« o 71754
« o 4-134
.« o 4-134
e o o 79
. o 1727

. . 4—136
. . 6-11
. o 4-141

VS OPERATING SYSTEM

Customer Comment Form Title SERVICES MANUAL
WANG itle

Publications Number

800-11070S-03

Help Us Help You . ..

We’ve worked hard to make this document useful, readable, and technically accurate. Did we succeed? Only you can tell us!

Your comments and suggestions will help us improve our technical communications. Please take a few minutes to let us
know how you feel.

How did you receive this publication? How did you use this Publication?

O Supportor O Don'tknow 0O Introduction OO0 Aid to advanced
Sales Rep to the subject knowledge

O Wang Supplies O Other 0O Classroom text O Guide to operating
Division (student) instructions

O From another O Classroom text O Asareference
user (teacher) manual

O Enclosed 0O Self-study O Other
with equipment text

Piease rate the quality of this publication in each of the following areas.
EXCELLENT GOOD FAIR POOR
Technical Accuracy — Does the system work the way the manual says it does? O] a 0O

Readability — Is the manual easy to read and understand?

Clarity — Are the instructions easy to follow?

Organization — Was it logical? Was it easy to find what you needed to know ?

a
a
Examples — Were they helpful, realistic? Were there enough of them? O
]
lliustrations — Were they clear and useful? O

O

O O o o o O
O O o o o A

O O o o o 0O

Physical Attractiveness — What did you think of the printing, binding, etc?

VERY
POOR

[m]

O O o o o A

Were there any terms or concepts that were not defined properly? 00 Y O N If so, what were they?

After reading this document do you feel that you will be able to operate the equipment/software? 0 Yes [0 No
O Yes, with practice

What errors or faults did you find in the manual? (Please include page numbers}

Do you have any other comments or suggestions?

Name Street

Title City

Dept/Mail Stop State/Country

Company ZipCode__________ Telephone
Thank you for your help.

All comments and suggestions become the property of Wang Laboratories, inc. Printedin US.A. 14-3140 3-82-5C

Fold

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 16 LOWELL, MA

POSTAGE WILL BE PAID BY ADDRESSEE

WANG LABORATORIES, INC.

CHARLES T. PEERS, JR., MAIL STOP 1363
ONE INDUSTRIAL AVENUE

LOWELL, MASSACHUSETTS 01851

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Fold

T G D I D i e —— oow—m v — i i e — e ——— — — — — ——— —" —————— — — — — —— ——— — — — — — — — —— — — — — — — — — — — — t—

Cut along dotted line.

ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851
TEL. (617) 459-5000

TWX 710-343-6769, TELEX 94-7421

. Printed in U.S.A.
800-11070S-03
8-82-8M

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-001
	4-002
	4-003
	4-004
	4-005
	4-006
	4-007
	4-008
	4-009
	4-010
	4-011
	4-012
	4-013
	4-014
	4-015
	4-016
	4-017
	4-018
	4-019
	4-020
	4-021
	4-022
	4-023
	4-024
	4-025
	4-026
	4-027
	4-028
	4-029
	4-030
	4-031
	4-032
	4-033
	4-034
	4-035
	4-036
	4-037
	4-038
	4-039
	4-040
	4-041
	4-042
	4-043
	4-044
	4-045
	4-046
	4-047
	4-048
	4-049
	4-050
	4-051
	4-052
	4-053
	4-054
	4-055
	4-056
	4-057
	4-058
	4-059
	4-060
	4-061
	4-062
	4-063
	4-064
	4-065
	4-066
	4-067
	4-068
	4-069
	4-070
	4-071
	4-072
	4-073
	4-074
	4-075
	4-076
	4-077
	4-078
	4-079
	4-080
	4-081
	4-082
	4-083
	4-084
	4-085
	4-086
	4-087
	4-088
	4-089.0
	4-089.1
	4-089.2
	4-090
	4-091
	4-092
	4-093
	4-094
	4-095
	4-096
	4-097
	4-098
	4-099
	4-100
	4-101
	4-102
	4-103
	4-104
	4-105
	4-106
	4-107
	4-108
	4-109
	4-110
	4-111
	4-112
	4-113
	4-114
	4-115
	4-116
	4-117
	4-118
	4-119
	4-120
	4-121
	4-122
	4-123
	4-124
	4-125
	4-126
	4-127
	4-128
	4-129
	4-130
	4-131
	4-132
	4-133
	4-134
	4-135
	4-136
	4-137
	4-138
	4-139
	4-140
	4-141
	4-142
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	6-69
	6-70
	6-71
	6-72
	6-73
	6-74
	6-75
	6-76
	6-77
	6-78
	6-79
	6-80
	6-81
	6-82
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	7-53
	7-54
	7-55
	7-56
	7-57
	7-58
	7-59
	7-60
	7-61
	7-62
	7-63
	7-64
	7-65
	7-66
	7-67
	7-68
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	DH-01
	DH-02
	DH-03
	DH-04
	DH-05
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	replyA
	replyB
	xBack

