
(q(4s)¥))

PASCAL
S stem II ""0
Userls

Manual
March 1979

~~ nslltute for

I"---~ nforMa.lLon

ysteMs

* UCSD (MINI-MICRO C~PUrER) PASCAL *
* VERSION 11.0 MARCH 1979 *
* Institute for Infonnation Systans *
* UCSD Mailcode C-021 *.
* La Jolla, CA 92093 *
* (714) 452-4526 *

Release serial number: 3612

* Copyright (c) 1978 Regents of the University of California, *
* San Diego Campus. This software, its source, object, and *
* all other fonns, is the property of the Institute for *
* Infbrmation Systems and may be used or copied by others *
* only with written authorization from the Institute for *
* Infonnation Systems. All rights reserved. *

JI.3CLAIMER: These doc\.lTlents and/or the software they describe
are subject to change and/or correction without
notice. The UCSD Pascal Project cannot be held
responsible for ~plementations on processors where
the ~plementation work was not done at UCSD. Users
with systems obtained from sources other than UCSD
must contact their supplier for support. UCSD does
not support users who have obtained their copy of
the software from other than UCSD.

ACKNCHlLEDGEMENTS:

The ~rk. de·scribed in these notes has been supported
significantly by the following organizations:

United States Navy Personnel Research and Development
Center, Sperry Univac MinicOOlputer Operations, EDUCCl1,
Digital Equipnent Corporation, Processor Technology
Inc., Springer-Verlag, Terak Corporation, General
Automation Corporation, The UCSD Computer Center,
grants from the University of California Instructional
Improvement Program, Tektronix Corporation, Micropolis
Inc., Phillips Research Labs, Lawrence Livermore Labs,
Pascal Computing.

The work described in these notes has been made possible
by the drive and direction of the Director of the lIS:

Kenneth L. Bowles

Documentation Authors:

Gillian M. Ackland, S. Dale Ander, Lucia A. Bennett,
Paymond S. Ca usey, Charles "Chip" Chapin,
J. Greg Davidson, Gary J. Dismukes, JUlie E. Erwin,
S1awn M. Fanning, Mary K. Landauer, J. Raoul Ludwig,
Joel J. iv1cCorrnack, Mark D. Overgaard,
Keith A. Shillington, David A. Smith, Roger T. Sumner,
Dennis J. Volper.

Sbftware Authors:

Lucia A. Bennett, Marc Bernard, J. Greg Davidson,
Barry Demchak, Gary J. Dismukes, William P. Franks,
Julie E. Erwin, Robert J. Hofkin, Albert A. Hoffman,
Richard S. Kaufmann, Peter A. Lawrence, Joel J. ~~Gormack,
Robert A. Nance, Mark D. Overgaard, David A. Reisner,
Keith A. Shillington, David M. Steinore, Roger T. Sumner,
Steven S. Thompson, David B. Wollner.

Collected and Editai by:

Keith 'Allan Shillington and Gillian M. Ackland.

With special thanks to:

Tracy Barrett and the entire support staff.

* TABLE OF CONTENTS *

Version 11.0 March 1979

SECTION PAGE

o ADDENDA, ERRl\T~ AND NOTES

1 NOTES ON OTHER ~lATERIALS AVAILABLE • • • • • • • • i
2 BRINGING UP THE PASCAL SYSTEM

1 ON PDP-11 . • • • • • • • • • • • • • • • • • iii
2 ON 8080/Z80 SYSTEM WITH CP/M AND 3740 DISKS. v

3 DIFFERENCES AMONG IMPLEMENTATION~ FOR DIFFERENT PROCESSORS •• viii
4 CHliNGES IN RB:EHT RELEASES • • • • • • • • • • • • • • • •• ix

1 THE UCSG PASCAL SYSTEM

1
2
3

4
5
6
7
8
9

INTRODUCTION .Il.ND OVERVIEW •
FILE HANDLE R • • • • •
SCREEN ffiIENTED EDITOR
1 INTRODUCTION • • • • •
2 GETTING STARTED • • •
3 DElAILED DESCRIPTION OF COMMANDS
4 REFERENC E • • • • • • • • • • • • •
5 EXPERr1ENTAL LARGE FILE VEfiSIJN (L2)
YET ANOTHER LINE OR IENTED EDITOR - YALOE
DEBUGGER • • • •
PA5:AL CrnPILER •
BASIC CQv1PILER
LINKER • • • • .
ASSEJ~BLER

1
7

31
33
37

55
1;:,,'1
./.

63
. . • • 75
. . . . 77

25
91
95

2 THE UCSD PASCAL LANGUAGE

2

INTRINSICS • . • •
STRING • • •

2 INPUT/OUTPUT •
3 MISCELU NECUS •
4

• • • • • • 115
117

. . • • • • • . • 121
127

5 CHARACTER ARRAY MANIPULATION ••• • • 131
133
133

DIFFERENCES BETIlEEH UCSD'S PASCAL AND STANDARD PASCAL •
1 CASE STATEMENTS • • • • • • •••
2 CQ'1MENTS • • • • • • • •
3 DYNAi"1IC ME!v10RY ALLOCATION " ..
4 EOF............
5 ECLN • " • • • • • • • •
6 F ILES ~ . . . • • • • • . • •
7 GOIJ AND EXIT STATEt~ENTS •
8 PACKED VARIABLES • • • • • • • • •
9 PARA"1ETRIC PRCC EDURES AND FUNCTIONS

• 134
. 134

136
. 13 f

137
,- 140

• • • . 142
. . .. ;46

10
1 1
12
13
14
15
16
17
18
19
20
21
22

PROGRA~ HEADINGS
READ AND READU~
RESET ...•. .•.•
REtlRITE•••.
SEG1ENT PROCEDURES . • . .
SEw
STRINGS
WRITE AND WRI TELN
IMPLEMENTATION SIZE LIMITATIONS
EXTENrED CCMPARISONS • • . .
LONG INTEGERS • • .
UNITS
TABLE CF UCSD INTRINSICS

• • •• • 146
• • • • 146

148
149

• • • • • • • • • • 149
150
151

• · • . 153
• 154
· 155

155
• • • • 155

• 155

3 IivfPLE~ENTORS' GUIDES

D RAWLINE • • • • • • • • • 159
2 FILE FORMATS

SPECIAL UCSD PASCAL SYNTAX (USE OF)
• • • • • 163-

3

4
5
6

1 SEGMENT PROCEDURES •
2 UNITS..............
3 LONG INTEGERS • . . .
INTERPRETER NOTES
INTRODUCTION TO THE PASCAL ?sEUDO~~ACHINE .
BITE SWAPPING • • • . . • . . .

4 UTILITY PROGRA~S

1
2 LIBRARIAN · . · . . . · · 3 SETUP - SYSTEi-l RECONFIGURATION
4 BOOTSTRAP COPIER . . · . · . .
5 PA1CH/DUMP . . . · · · 6 RT11 TO PASCAL CONVERSION KIT . · . . .
7 GOTOXY PROCEDURE BINDER
8 DUPLICATE DIRECTORY · · . · .
9 P-CCCE DISASSEMBLER .

10 LIBRARY MAP
5 TABLES

EXECUTION ERRCRS
IORESULTS . . • .
UNITNUMBERS • . .
RESERVED WORD LIST
SYNTAX ERRORS . . . •
ASSEMBLER SYNTAX ERRORS
AMERICAN STANDARD CODE for INFORMATION INTERCHANGE
P~~ACHINE OP-CCDES . •
UCSD PASCAL SYNTAX DIAGRAMS • • . .

· 165
• 167

lSi
• • • . 125

· 203
· 217

· · 221

· · 225
· · ~

c...Jj

· · · 235
· · 239

· 241

· · 245

· · · 247
· 253

... 263
• • 265

· 257
• • • 269

• • 271
. 275
· 279

. • . . 28 1

• • . ~-. 255

A INDEX • • • • . • . • • • • • . •. 283

******************* **** *********** ****
* MATERIALS AVAILABLE * * Section A.1 *
*********************** ***************

As the UCSD Pascal system has grown, we have found that to
distribute all of the software which is useful to all users for all
systems, has become a.n unbearable task. To attempt to alleviate the
large number of diskettes the release software requires, and to
alleviate the number of pages of doclJJJentation sent to each subscriber,
we have started to split the s~ystem into a number of seperately
available sections.

The major section is the section which contains the operating
sy~tem and all the support routines that go with it. We include a
number of useful utilities which should enable the subscriber to do all
types of developmental work. The master release (as from herein it
shall be named) contains the interpreter for the initial system
ordered, the UCSD Pascal operating system, the Pascal compiler, two
text editors (one for screen devices, one for general purpose), a
BASIC compiler, the Linker, the Assembler for the appropriate machine
(at least). Other utilities include: a generalized file utility (the
File handler),a generalize patch and dump routine, a set of programs
to enable the subscriber to configure the systen to run most
intelligently with any terminal, a desk calculator, and a librarian.

Software which is not included in the master release is
generally available from the lIS as a supplemental package at a nominal
handling charge (dependent on the amount of material involved with the
package). The sorts of software available are: interpreters for
machines other than the machine the master release was ordered for,
which will be accompanied by the assembler for that machine, in some
cases we have assemblers for machines for which we do not yet have
interpreters, program and data management systems, specifically a cross
referencer, and a pretty-printer.

Page i

- Notes -

Page ii.

************************** *****************
* THE FIRST TIME THROUGH * * Section A.2. 1 *
************************** *****************

Version 11.0 March 1979

Welcome to UCSD PASCAL. If you put the Adva,nced System I
diskette in your booting drive l w'ent through your normal boot
strapping procedure, and were greeted in a. similar fashion, you do not
need to read this section.

If this is not the case then here are a few of the prcblems we
encountered with 1.4, and 1.5 coming up in strange and f~reign lands:

1.) Some revisions of the LSI-11 refuse to boot wi th the clock
running. If you have a switchable clocK, turn it off to
bootstrap; if and when the system greets you wi th the welcome
message and the date, turn the clock back on.

2.) You do rot have enough memory. The minimum requirement for
memory is 24K 16-bit words.

3.) You have a system configured for RK-05 hard-disk and you have
an unformatted disk on line. The system will hang waiting for
a reply from the disk which cannot be generated if the disk is
unfonnatted. Take the disk off-line and try again.

4.) You have a system configured for RK and RX anj the RX or RK is
not present. Both must be present at the standard DEC UNIBUS
or QBUS addresses for these devices.

5.) We haven't encountered your problem before. Call:

The number listed on the front page of this doc unent.

Page iii

- Notes -

Page iv

*********************************** *****************
* 808e/Z80 WITH CPIM & 3740 DISKS * * Section A. 2.2 *
*********************************** *****************

Version 1.5 Septanber 1973

THE CPIM IMPLEMENTATION Of UCSD PASCAL

BOO1ING PASCAL

To get Pascal running und.er your version of CP ltv:, a two-disk
bootstrap is used. First, boot CP 1M in the usual manner. On the CP I tvi
disk distributed with the Pascal system is a file called PASCAL.COM.
PIP this file over to the booted disk, then execute it.

When the program asks for a Pascal disk, put the disk labeled
PASCAL: in drive A and any disk in drive B. The system may not boot if
there is no disk in drive B, or if you have a 1-drive system and your
CPIM drivers wait on a request to drive B. Then hit [return]. In
about 15 seconds the Pascal welcoming message should appear. (Note: we
have discovered that some drives, possibly as a resul t of being double
buffered, cannot keep up with a 2 to 1 interleaving and hence are
extremely slow. The bootstrap then may take about 30 or 40 seconds.
We intend to alleviate this problem in the next release, but persons
with such drives will have to bear with slow disk accesses for the
present.)

If all has gone well, Welcome to the Wonderful World of Pascal.
If not, please call to notify us of your problem.

~1CI)IFICATIONS TO CPIM

The Pascal systan will operate under an Lnmodified CP/rv1 system,
but it is advisable to create a special CPIM for use with Pascal in
order to have Pascal running in the environment for which it was
des igne:i .

1. If there is no disk in a drive and an access is made from
that 1isk, the driver should not wait to perform thnt access until a
disk is inserted, as the Pascal system often attempts to reaj from
empty drives when searching for a particular disk. Instead, simply
return_a 1 to indicate a bad I/O operati.on"

2. If you have a· keyboard interrupt handler, it should
recognize the character [cntrl-fJ as a "flush-output" toggle and signal
the character-out routine to gobble any characters until signaled
again. When it receives another [cntrl-fl the keyboard handler should
signil the output handler causing the output handler to resune
outputting characters sent to it.

Page v

The ke~oard interrupt handler should also recognize the
,iaracter [cntrl- s] as a "stop output" toggle and wait until it
receiv~s another [cntrl-s] before allowing program execution to
continue.

If your keyboar1 has no alphalock, the input driver can use any
charac~er not used for some other purpose as an alphalock toggle.
[Cntrl-p], [return], [cntrl-i], [cntrl-s], [cntrl-fJ, [cntrl-cl or any
character in SYSCOMA.CRTINFO should be excluded fram consideration. We
suggest [cntrl-a].

Pascal expects the tab character ([cntrl-i]) to cause the
terminal cursor to advance to the nearest eight column. If the
terminal does not d0 this itself, then the driver in the BIOS should.

CREATING A BOOTSTRAP ON A PASCAL DISK

Note: These instructions are for a standard BIOS with 512-byte
olocks. For instructions for a non-standard BIOS, reference file
READ.ME on the CP/M disk in the distribution packet.

On the CP/M disk are two programs, PGEN.COM and ?INIT.AS~. 'The
?rogram PGEN.COM is a program usej to write out a buffer (Which will be

: lIed by boot code and BIOS) to track O. PINIT. A.S-1 is the boot code
~t reads SYSTEM.MICRO from a Pascal disk, loads the BIOS into the
~rect place, and starts the interpreter's boot routine.

You must create a file PBCCT.HEX, which will require a slight
modification of your current BeCT program. PBOOT will reside on track
0, sector 1 and, when executed, will load track 0, sectors 2 thru , 3
into memory starting at location (~SIZE-48)*1C24 + CEAOOH, and jump to
that location.

You then need to edit PINIT.AS~, changing MSIZE to match your
system. Assemble the file, creating PINIT.HEX.

The next step is to stitch together the one-sector coot,
?ascal int~rpreter loader, EIOS, and the program to wr:te this
information out to sector O. The following is a session with DDT
perfonos all this. This session was used to create a 4eK system.
input is in lowercase, and comments are off to the right.

the

that
User

A)ddt pgen.com load PGEN.COM into memory. PSOOT, PINIT,
and BIOS will be overlayed into PGEN's
data area, after which a memory L~a~e will
be saved.

DDT VERS 1.3
NEXT PC
~400 0100

':boot48.hex set PBOOT48.HEX as input file

Page vi

-h900 0

ogoO 0900
-r900
NEXT PC
0980 0000

-ipinit48.hex
-h980 BAOO

C380 4F80
-r4f80
NEXT PC
OA7d BACe

-ibios48.hcx
-hd8) beOO
C380 4F80
-r4fcO
NEXT PC
OF76 0000
-[cntrl-cJ

A>sav€ 16 pgen48.com

A>pgen48

PGEN VI.O

PUT BOOTER?(Y/N)y

PBOOT starts at location 0, and we want to
read it in at location 900H

re ad in PIDOT

set. t PINIT48. HEX'; as input file
PINIT starts at loc:ation: BAOoo in a 43K system

(in general (MSlZE-48)*1f)24 + BAOOH), anj we
want it at location 980H

rEa]: it i.n

and lastl y reod BICS into location D80H

leave DDT •••

... and save the program.

sample execution of the program ...

WRITING BOOTER TO DRIVE A, TYPE RETURN put a Pascal disk (preferably a
copy of the master) in drive A
before hitting [return].

A GAIN? (Y IN) n
GET BCOTER?(Y/N)n
REBOOTING CP/~, TYPE RETURN

A>

put the CP/M disk back in drive A
before hitting [return].

pc;ge vii

************************************* ***************
* !)IFFERENCES AMO~ IMPt.F.MENTATIONS * * Section A.3 *
************************************* 1**************

Version II.O March 1979

The following is a list of differences between PDP11 Pascal and
8080/Z80 Pascal, the items describe the way it is on the
8080/Z80, and how that differs from the documented system.

1. The definition of div is different (thereby changing the values
returned by rood):

a div b = floor(a/b)
a mod b = a - b*(a div b) -- --

2. The I/O drivers are all written for synchronous operation. This
means that [break] has no effect. [Cntrl-s] and [cntrl-f] will
not perform as described unless you have a keyboard interrupt
handler, and this handler is modified as specified below in
Modifications to CPM.

Tnis also means that UNITBUSY, UNITCLEAR, and UNITtiA IT are
meaning less. (In the future it may be possib le to uSe the
UNITBUSY and UNITCLEAR operations on th~ keyboard, but this is
~urrently infeasible.)

3. The interpreter is called SYSTD1. MICRO instead of SYSTEM. PDP-l1.

4. T.~e CPIM implementations have bootstiaps that are not ac~essible to
Pascal, hence the program BOOTER will not worK. See the
3ppropr iate section of this docunent for instruc tions~n
copying and/or creating a bootstrap.

5. Tnere are no long integer functions available with the Z801808C
system. They will be available in a later release.

Page viii

*********************************** ***************
* CHANGES MADE IN RECENT RELEASES * * Section A.4 *
f**~******************************* ***************

Ver'sion 11.0 March 1979

SUMMARY OF DIFFERENCES BETWEEN UCSD PASCAL RELEASES 1.5 AND II .0

The following additions, improvements and/or corrections apply
to Version 11.0. Reference the (section II) preceding each entry for a
more detailed description. For information regarding differences be
tween previous releases refer to the system documentation for those
releases.

(1. 1)
OPERATING SYSTEM

(1. 1) C(ompile will now prompt the user for the file to
compile, as well as the output file, if the workfile
is empty.

(1.2) FILE HANDLER

Substantial modifications have been made in the syntax of user
responses to filer prcm.pts. The symbol "$" means t same name'. This
symbol may be used on the right-hand side of a transfer command
expression. If the filer detects as some time that two volumes on
line have the same name, the warning message:
Warning: units N & M have the same name'
will appear beneath the prompt line. This messcge will remain until
some action is taken to convince the filer that this is no longer true.

R(emove command prompts for verification always.

K(runch command allows space to be opened anywhere on
the disk.

Tr~ ~ad block scan allows for scanning of any number of
b10:i<s.

EDITORS (Sections 1.3 and 1.4)

Page lX

Three different editors are currently provided with the UCSD
PASCAL system: YALOE, "EDITOR"(E.6) , and the new L.2 EDITOR. EDITOR is a
substantially more powerful (and even easier to use) editor than YALOE,
but it makes some assumptions about the run-time environment.
The L.2 EDITOR (eventually to become the standard release editor) will
handle files of arbitrary size, however it is in its experimental form
and-recommended for brave users only.

EDITOR requires a reasonably powerful CRT terminal with the following
features:

XYADRESSING go directly to a given row and column on the screen

NDFS - non-destructive forward space (the inverse of back-
space)

I..F - doW1 on e line (and if at the bot tom of the screen

RLF

scrolls up)

- reverse 1 ine feed (up one 1 ine; not reauirej t~

reverse scroll)

Typing "E" at the main command level will execute the file
SYSTEM. EDITOR. Selection of either YALOE or EDITCR(E.6 or L.2) as
~he system editor is made in the Filer by C(h~nging the selected fi:e's
arne to SYSTEM.EDITOR.

Proper use of EDITOR requires that the system disk be left
on-line ~hile editing.

~hen prompted wi th the no work file prompt, typing <esc ope ...
return> will return you to the system comnand level.

Page x

'l"lt :nain purpose of release 11.0 is to establish compatibil i ty 3t
tr~ P-code level among all the interpreters maintained by the Pascal
Pr~cj€:ct. This requires changing the P-rrJC:lchine supported on the PDP-11
and ZHO/8080 processors, Lhereby invalidating all 1.5 or earlier
cO,defiles. No functional enhancements in the system software have
been pl anned for II. C, although a number of evolutionary improvements
have been made. Chly two changes have been made which '!lay affect 1.5
level s()urce progra-ns;

1) the volt..rne 'REMOTE:' has be"en spl i t. into tt,..o volumes -
'R81IN:' anj 'REi"10lIT:'. Programs using 'RE1~OTE:' ~-Jill have to be
zrodifiei to reflect this change.

2) Us€'r programs (rather sophisticated ones presumably) ~klich
c211ed the system procedure FBLCCKIO must be changed to accomocE.te an
additional param€tcr. Uses of BLOCKREAD and BLOCKWRITE are unaffected.

Evolutionary enhancements provided in 11.0 2re intended lar~ely
to improve the ability of the system to operate in in small memory
(4bK), and small disk (160 block mini-floppy) environments. Thes2
irqJrovements include:

1) T:1e Pascal compiler will run in swapping mode ~utomati·~ally
(without th-= (*$3+*) directive) if it determir'les that no useful prograrn
could be compiled without swapping.

2) Codefiles for system programs ~re no longer required to reside
on the system disk. The operating system will, at initialize time,
(looking first on '*' volune) scan on-lne volunes f:>r the files:
SYSTEM. EDITOR, SYSTF11.FlLER, SYST8'l.CCl1PILER, SYSTEvLLIHKE:R, :;3(),j

3YSTEM.AS3~BLER, and remember where they were faun1. Furt~er~ore, if
cnc of these files cannot be found when it is actually i:1v:>i<ed "Jy the
user, the system will look 3gain at that time.

]1e issue of byte-sex - (high ot~d€r byte nLmlbEred 0 or 1?) r;2s
al so be:en addressGd. If the programmer wishes to have the compiler
gelE.r&te code for a machine of the opposite sex to t.he one he is
running on, the pseudo-canment (*$F+*) (flip) will cause thE codefil€
to be generated f~r a machine of the opposite sex. (See section 3.6)

TIl~ rest of this document concerns only those users vmo
find themselves concerned with the P...,~achine in~ernal s. i\
few 1nstructions have been removed, a few have been
replaced. The problems solved are tho se concernirg word
addressed machi~es, specifically: Addressing 128K bytes,
~"ord boundary troubles "vi th strings and packed arrays, and
byte-sex difficulties.

Byte addresses, which are specified by a 16 bit quantity
in 1.5 systans, are now specified with an address couple. A
~.J:)rd base and a byte' offset, each of wh ich are 16 bits.

,;PCCU:: Changes:

Decimal val 1je I.5 II.O

157 S2P unused
1cC LeA LSA Load String Address
167 LOO unu~~
16S MVB LDO Load Global

2CB S1P LPA Loc:d Packed array Address
209 IXB unused
210 BIT unused

Cperators with new or changed functional behavior:

1) LSA - puts address of length byte of string constant, whi~h
compiler has aligned to a word, on top-of-stack.

2) LPA - puts address of first data byte of string constant,
',-vnich compiler has aligned to a ~rd, on top-of -stack.

;) INC now adds its parameter (II of Y.Ords) to the top of stack,
~ is now used only for addresses.

4) Other operators/standard procedures affected: LDB, 518, MVR,
i"iVL, SCN, FLC, UNITREAD, UNIT~RI1E, BLOCKIO. These now use address
~oupl€s, wherevEr one word byte addresses were used in 1.5.

rage xii

****** ***** *** *** **** *** *** ** * ** ** **** **** **
* INTRODUCTION AND OVERVIEW * * Section 1.1 *
••••• _*********************** ***************

Version 11.0 February 1979

The UCSD Pascal system described in this document is a system
intended to run on stand alone micro- and mini-computers. This system
is highly machine independent since it runs on a pseudo-machine
interpreter corrrnonly referred to as the nP-machinen • All systell
software is written in Pascal, except for the P-machine interpreter
and a few run-t~e support routines written in assembler for
efficiency, resulting in relatively straightforward software
maintenance and enhancement.

The system is designed to be used primarily with a CRT terminal
acting as the CONSOLE device; however, the system is flexible enough
to be reconfigured for slower hard-copy terminals. The system does
require some kind of fast mass storage such as a floppy disk system or
better. For further information regarding compatability between
various types of equipment and this system see the "SETUP" docLlTlent in
Section 4.3. This document is intended for programmers who are
familiar with the Pascal programming language and have some experience
in writing computer programs. Some additional reading suggestions
follow: .

Tne following is a tutorial book on PASCAL:

Kenneth L. Bowles,
(Microcomputer) Problem Solving Using PASCAL
Springer-Verlag, New York, (c)1977

We suggest the following book as a PASCAL reference guide:

Kathleen Jensen and Niklaus Wirth,
PASCAL User Manual and Report
Springer-Verlag, New York, (c)1975

For documentation concerning the differences between UCSD
Pascal and Standard Pascal see Section 2.2.

1.1.1 THE UCSD PASCAL SYST~: AN OVERVIEW

The structure of the UCSD Pascal system is best conceptual ized in
terms of the "tree-like" structure diagram figure O. 1.

The diagran in figure O. 1 depicts the outermost level af the ?~
system. In tenns of a "tree" or structure diagram, the "root"
corresponds to the outermost level, while the "leaves" (i.e. the boxes

Page 1

wi ttl no branches to lower levels) correspond to the lower levels of
the system. While a user is in a particular level, the system
displays a list of available canmands called the "prompt-line". If
the system is running on a CRT screen type terminal, then the prampt
line will usually appear at the top of the screen. Commands are
usually invoked by typing a single character from the CONSOLE device.
For example, the prompt-line for the outermost level of the system is:

COmmand: E(dit, R(un, F(ile, C(amp, L(ink, X(ecute, A(ssem, D(ebug, ? [II.OJ

By typing "F" the user will "descend" a level wi thin the
structure diagran into a level called the "Filer". Upon entering the
Filer, another prompt-line detailing the set of commands available at
the Filer level of the system is displayed. The Q(uit command causes
the user to exit frem the Filer and "ascend" back to the outermost
command level of the system. Now the user is back at the level in the
system from which he started after bootstrapping the machine. Some
commands within the system prompt the user for the name of some file.
L~ these cases, the user enters the name of the file followed by a
carriage return. If an error is made in typing a portion of the file

. name, the backspace key (or equivalent key depending upon the system
configuration) may be used to "back over" and erase the erroneous
part. The line delete key (rubout key) may be used to erase the
entire file name, thereby allowing the user to completely start over.
If the user decides not to accept any file name whatsoever, "escape"
from this command is by entering a file name of zero characters, i.e.
type <cr>.

Somet~es there are more commands than will fit on the screen.
If this is true, a question mark (?) will appear at the end of the
line, typing "'?" will cause a different prcmpt to appear, such that
more of the available commands will be displayed to the user.

A concept central to the design of the entire UCSD Pascal
system ccmmand st.ructur e is the concept of the "workfile". A workfile
can be thought of as a "scratch-pad" area used for development of
programs and only one workfile is allowed at anyone time. !f a user
wishes to begin a new workfile, the contents of the old one can be
saved, under a separate file name, for later reference by usi~g tte
S(ave ccmmand in the Filer level of the system. when that file ~s
later retrieved fer further wor~ on the contents, it is possible that a
number of files (usually source and code) will be retrieved together
and in total they comprise the work-file.

1. 1.2 OUTERMOST LEVEL COr+1ANDS: AN OVERVIEW

A. E(dit

Typi~ "Ett while at the outermost command level of the system
causes the editor program to be brought into memory from disk. The
user may, while in the editor, alter text inside his workfile or:.-any

Page 2

textfile. See Section 1.3 for details. The \.o.t)rkfile text (if present)
is read into the editor buffer, otherwise the Editor prompts for a
file.

B. F(iler

"F" places the. user in a level of the system called the Filer.
-This section of the system contains commands uSed primarily for
-maintenance of the disk directory. For more documentation on the
Filer level including canmands associated with the "getting",
"s aving", and "clearing" of the user's workfile see Section 1.2.

C. C(omp

This command initiates the system compiler to compile the users
workfile. If there is no work-file currently the user is askej for a

source text file name. If a syntax error within the source is
detected, the compiler will stop and display the error number and the
surrounding text of the program. By typing a space, the user can
cause the compiler to continue the compilation. Typing an <esc> C!3uses
the compiler to abort & return to Command level. Typing 'E' will,
call the editor placing _the cursor, if the system editor is the
screen editor, near the offending symbol. If the compilation is
successful, (i.e. no compilation errors were encountered) a codefile
called *SYSTEM.WRK.CODE is written out onto the user's disk and
becomes part of the workfile. For more documentation on the use of
the UCSD Pascal compiler see Section 1.6.

D. R (un

This command causes the codefile associated with the current
workfile to be executed. If no such code file currently exists, the
compiler is called in the same manner as described in C above. If the
compilation requires linkage to separately compiled code the linker
will automatically be invoked and will assume the use of the file
*SYSTEM.LIBRARY. After a successful compilation, the program is
executed.

E. X(ecute

This command prompts the user for the filename of a previously
compiled codefile. If the file exists, the codef'ile is executed;
o~herwise the message "can" t find filellt is returned. (Note: the
".CODE" suffix on such a file is implicit.) If all code necessary to
execute the codefi.le has not been linked in, the message "must L(ink
firstt~ is r'eturned. It is convenient to X(ecute other programs which
have alre'ady been compiled because otherwise the user would have .-to
enter the Filer, G(et the file, Q(uit the Filer, and then R(.un the
program.

Page 3

F. A(ssem

Just like C(omp except the system assembler is invoked rather
than the system compiler. See Section 1.9 for more information on the
system assembler.

G. D(ebug

This command causes the current workfile to be executed. If
the program in the workfile has not been compiled, the compiler will be
called as in the case of the R(un command. However if a run-time error
occurs, or a user-defined break-point or halt is encountered, the
Debugger program is called. The Debugger is a program which allows the
user to examine the contents of variables within the program. See
section 1.5 Debugger for more details.

H. L(ink

This command starts the system linker program explicitly to
allow users to link routines from libraries other than
*SYSTEM.LmRARY. See section 1.8 for more infonnation on the Linker.

1.1.3 UTILITY PROGRAMS

There are many functions needed by users of any operating
system. To attempt to make all these functions system functions would
result in a terrible proliferation of command letters at the base node
level. In order to keep the COMMAND line Simple, we have restricted
the functions available on it to what we feel is the bare minimum for
program and text development. The other useful, but much less often
used functions are available through the X(ecute command. The sort ~f
fLmct"ions which are available are the desk calculator, the patch/dump
utility, the terminal configuration setup program, a bootstrap mover, a
librarian and many others. For a complete list of the utility pr·:grams
now available with the UCSD Pascal system, reference Section 4 in the
Table of Contents. Any programs' which you write and feel woul: be a
useful addition to our library of utilities will be wel~ome
contributions.

1.1.ll AN INTRODUCTION TO THE UCSD PASCAL SYSTEM

r.5 is the first release which contains the fully intergrated
and implemented concept of separate compilation and assembly. 1.40 was
the first to support multiple types of processors. 1.3 was the fi~st

'releasable system.

The great bulk of the system software is written in Pascal and
runs on a relatively simple pseudo-machine. If this pseudo-machine is
emulated by a machine language program on a new real machine, tht;-

Page 4

P~sc3l software will also run on that new real machine.

One class of differences among versions of the system is due to
aspects of the pseudo-machine that are not identicaly emulated by the
implementations for different types of processors. Section A contains
a chart of differences between processors the system currently runs
on.

Another class of differences stems fran variations in the
. system 1/0 environments rather than in the host processor. Included

here are differ'ence in system console terminal types (Le. hard-copy vs
CRT vs storage tube) or comnand conventions and capabilities (eg.
"intelligent" vs "dumb" CRT's). The system is intended to be able to
cope with this sort of variation.

In the PDP-11 world these mass storage variations are not too
serious, primarily because there is considerable motivation to be
compatible with DEC devices and media. We have written and support
drivers for a few DEC incompatible devices but make no claim to
support users who want to develop their own such drivers. See section
A for warnings about problems you might encounter.

The situation in the 8080/Z80 world is much more chaotic.
Since is would not be practical for the Project to write and support
drivers for the vast mul titude of 808'0/Z80 I/O environments that exist,
we have chosen to take advantage of the widespread implementation of
Digital Research's CP/M operating system by structuring the pseudo
machine'S 1/0 operations as calls on CP/M's Basic I/O Subsystem (BIOS)
primitives. Therefore, any I/O configuration on which CP/M has been
implemented should also be able to support the Pascal system. We do
not guarantee this. For example, Intel MDS disk controllers cannot
read disks generated here and some BIOS's we have encountered do not
completely meet all the requirements specified for CP/M. UCSD plans to
support some of the larger distribution 8080-based machines directly.

Our dominant mode of distribution is on 3740 compatible diskettes.
One of the distribution diskettes for Z80/8C80 systems will be CP/M
oriented. This disk will be used, via a somewhat awkwa~d two- step
process, to bring up UCSD Pascal on a particular CP/M configuration.
Look to section A for details on this process. It also describes the
configuration of a modified BIOS, which will bett€r support the needs
of the Pascal system. Finally, directions are given for making it
possible to boot directly to Pascal rather than indirectly through a
CP/M program.

A_ number of files on the disk start with ·SYSTEM." speci.fically:

SYSTEM~PDP-11
S¥Slm~MICRO
SlSTEM.Pf;\SCAL
SYSTEM.SYNTAX
SYSTEM. ASSMBLER

Page 5

Sf STEM • CQo1PlLER
SYSTEM. ED ITO R
S15 TEM • FILER
SYSTEM. LINKER
SYSTEl-i.STARTUP
SYSTEM. SW AID ISK
SYSTEM.CHARSET
SYSTEM. LIBRARY .
SYSTEl-i. WRK. TEXT
SYSTEM.WRK.CODE
SYS TEM • WRK • U.f' a
SYSTEM.LST.1EXT

In most cases these files contain the system segment of the
name they carry. That is to say that the EDITOR, FILER, LINKER,
CCMPlLER, ASSEMBLER are the files that are invoked by the main level
of the system when 'E', 'F', etc. is typed. Some of the files are
machine specific. PDP-11 and MICRO are-the files which contain the
interpreters for the particular machine being used. CHARSET is a file
which appears on disks meant for TERAK computers only and contains the
definition f~r the soft character set, and the data for the Triton
logo prompt. LIBRARY is a file containing separately assembl~j or
compiled routines for use by the Linker in producing executable code
files. PASCAL contains the operating system, and the Debugger.
SWAPDISK is a file used by some of the system segments during
open/close operations on files if a memory shortage exists. It is a
2048 byte file which gets a portion of memory swapped to it when a
directory needs to be read into core. When the directory work is
complete, the memory is restored to its original state. STARTUP is a
file which can be created at the user's option. If it exists on a
disk, the operating system considers it a runnable code-file, and
executes it at initialize time. This allows the user to have a
program that runs before the main command prompt comes up, and will
run anytime the I(nitialize command is typed. WRK.TEXT and wRK.CCDE
are the current work-file after some action has occurred to the work
file. They appear after having done some text editing on a ~ork-fi:e
(SYSTEM.WRK.TEXT) or compiling a work- file (SYSTEM.WRK.CSDE). To
crange the edi t.or which is invoked by "E", one s imply names the
codefile which is to respond to the 'E(dit' command SYST2~.E~::~R.
This is true for all system segrrents which have named :iles associated
with their command. .

All other files on the disk are user generated (in one :ashicn
or another). The other important parts of a disk are relatively
invisible to the user. The directory resides at block 2 on the disk
and extends for 4 blocks if it is a single directory, 8 blocks if it is
a dupliceted (backed-up) directory. The bootstrap can reside at any of
a number of places on the disk, depending on the host machine. In most
cases, blocks 0 and 1 are reserved for the bootstrap.

Page 5

1 .2. 1 FILES

*************** ***************
* FILEHANDLER * * Section 1.2 *
*************** ***************

Version 11.0 February 1979

A fil e is a collection of information which is stored on the
disk and referenced by a filename. Each disk has a directory which
contains the filenCJTles. a'nd locations of each file on the disk. The
Filehandler, or Filer, uses the information contained in the disk
directory to manipulate files.

One of the attributes of a file is its type. The type of the
file determines the way in which it can be used. File types 3re
assigned based on part of the file na~e.

Reserved type suffixes for filenames are:

1.2.2 VOLUMES

• TEXT
.BACK

. CODE

• DATA

. FOTO

. GRAF

. BAD

• INFO

Human readcble text .

Machine executable cod e .

Data .

A file containing one graphic screen-image .

Intended to be a file containing a
compressed graphic L~age. Currently unused .

An unmovable file covering a physically
damaged area of a disk.

Debugger infor~ation .

A volume is any 1/0 device, such as the printer, the keyboard,
or a disk. A "block-structured" device is one that can have a
directory and files, usually a disk of some sort. A non- block
structured device does not have internal" structur e; it simply produces
or consumes a stream of data. The printer and the keyboard, for
example, are non-block-structured. The table below illustrates the
reserved volume names used to refer to non-block- structured devices,
the 'unit number' associated with each device, and the unit numbers
associated with the system (booted) disk and any alternate disks.

Page 7

- - --------------------------------- ------
:!n it Number

1
2
3
4
5
6
7
8

9-12

Vol LITle ID

CONSOLE:
SYSTERM:
GRAPHIC:

<vol LIIle nane):
<volLllle name):

PRINTER:
REMIN:
REMOUT:

<volLlTle name):

rescription

screen and keyboard with echo
screen and keyboard without echo
the graphic 'side' of the screen
the system disk
the alternate disk
the line printer
serial line input
serial line output
additional disk drives

FIGURE 1

1.2.3 THE 'WORKFILE'

The workfile is a scratch-pad copy of the file being worked
with. It is used by the Filer, in the Editor, and by the Compiler.
When the text part of a workfile is charged, the system stores it on
,jisk under the nane '*SYSTEM.WRK. 'lEXT', and when a code version is
first created, it is named '*SYSTEM.WRK.CODE'. T.~ere may at times
exist other portions of the work-file, with appropriate names.

1.2.4 FILE SPECIFICATION

Many Filer commands require the user to respond with at least
one file specification. The diagram below illustrates the syntax of
file specification.

<r~~~ speclrLc~llon)

'/O~!.JMe ID

I
I -_._-----------------------_.1

{

I

.r0------. . _--
1 I '-------0--~_..J

J
- ._- - . _._'.' -,.

?age 8

FIGURE 2

Vo lune i.d. syntax can be expanded thusly:

'-_.- ._--_.

FIGURE 3

Volume names for block-structured volumes ca1be assigned by
the user. A volume name must be 7 or less characters long and may not
contain ':', '$', '?' or ','. Reserved volume names for non- block
structured devices are given in Figure 1. The character ,*' is the
volune ID of the 'system disk', the disk upon which the system 1,laS

booted. The character ':', when used alone, is the volume ID of the
'default disk'. The system disk and default disk are equivalent
unless the default prefix (see material on P(refix) has been changed.
'#<unit number>' is equivalent to the name of the volume in the drive
at that time.

A legal filename can consist of up to 15 characters. In order
for the file to be run the last 5 characters must be .TEXT, or .CODE.
Without these suffixes the file may be executed but not put in the
workfile. Lower-case letters are translated to upper-case, and blanks
and non-printing cha:racters are removed. fran the filename. Legal
characters for filenames are the alphanumerics and the special
characters t - " '/', t \ t, ' " and '.'. These special characters may
be -used to indicate hierarchic relationships among files and/or to
distinguish several related files of different types. Currently the
system does not support hierarchical directories.

Page 9

tJARNING:

The 11.0 Filer will not be able to access filenames contai~ing
the characters '$', ':', ':', '?', and' ,4. If filenames contain
these characters, then they should be changed before attempting to uSe
those files with the II.O System.

The wildcard characters, ':' and '?', are used to specifY
- subsets of the directory. The Filer performs the requested action on
- all files meeting the specifications. A file specification containing

the subset-specifying string 'DOC=TEXT' notifies the Filer to perform
the requested action on all files whose names begin with the string
'DOC' and end with the string 'TEXT'. If a '?' is used in place of an
'=', the Filer requests verification before affecting each file
meeting the specified criteria. Either or both strings may be empty.
For example, a subset specification of the form '=<string>' or
'<string>=' or even ':' is valid. This last case, where both subset
specifying strings are empty, is interpreted by the Filer to specify
every file on the volume, so typing ':' or '?' alone causes the Filer
to perform the appropriate action on every file in the directory.

EXAMPLE:

Given an example directory for volume MYDISK:

NAUGiTYBITS
MOLD. TEXT
USELESS. COtE
MOLD.COCE
NEVERMORE. TEXT
GOONS

6 23-Jun-54
4 29-Jun-54

10 19-May-54
4 29-Jun-54 .

12 5-Apr-54
5 1C-Sep-52

Prompt: Remove what file?

Response: Typing 'N:' generates the message:

MYDISK: NAUGiTYBI 'IS
MYDISK:NEVERMORE.TEXT
Update directory?

removed
removed

(At this point the user can type 'Y' to r~ove or type '~', ir.
which case the files will not be removed. The Filer always requests
verification on any wildcard removes.)

Page 10

Typing 'N?' generates the message:

Remove NAUGHTYBITS: ?

After the user types a response, the Filer asks:

Remove NEVERMORE. lEX!: ?

. EXAMPLE:

Prompt: Dir listing of What vol?

Response: Typing '=TEXT' causes the Filer to list

MOLD.1EXT 4 29-Jun-54
NEVERMORE. TEXT 12 5-Apr-54

The subset-s~cifying strings may not 'overlap'. For example,
GOON=NS would not specify the file GOONS, whereas GOON=S would be a
valid (although pointless) specification.

The size specification information is predominantly useful in
the commands T(ransfer section 1.2.5.11 and M(ake section 1.2.5.17.

1.2.5 COMMANDS AND USE

Type "P' at the Command level to enter the Fil er and the
following prompt is displayed:

Filer: G(et, S(ave, W(hat, NCew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit [A]

Typing '?' in response to this prompt displays more Filer
commands:

Filer: B(ad-blks, Eext-dir, K(rnch, MCake, P(refix, V(els, X(amine, Z(ero

The individual Filer commands are invoked by typing the letter
found to the left of the parenthesis. For example, 'S' would invoke
the Save command.

Page 11

In the Filer, answering a Yes/No question with any~haracter
other than 'Y' constitutes a 'No' answer. Typing an <esc> will return
the user to the outer level of. the Fil ~ .

For each command requiring a file specification, refer to the
file specification diagram (Figure 2). In many cases, the entire file
specification is not necessary, and in some cases, certain parts of
the file specification are not valid. Follow the specification with
<carriage return>. See the required ccmmand in the following section.

W1enever a Fil er command requests a file specification, the
user may specify as many files as desired, by separating the file
specifications with commas, and terminating this 'file list' with a
carriage return. Commands operating on single filenames will keep
reading filenames from the file list and operating on them until there
are none left. Commands operating on two filenames (such as C(hange
and T(rans) will take file specifications in pairs and operate on each
peir until only one or none remains. If one filename remains, the
Filer will prompt for the second member of the pair. If an error is
detected in the list, the remainder of the list will be flushed.

1.2.5.1 G(et

Loads the designated file into the workfile.

The entire file specification is not necessary. If the volume
ID is not given, the default disk is assumed. Wildcards are not
allowed, and the size specification option is ignored.

EXA'-1PLE :

Given the example directory:

FlLERDCC2. TEXT
ABSUR D. C OCE
HYTYPER. CODE
STAS IS. TEXT
LETTER 1 • TE XT
FILER. roC. TEXT
STASIS. CODE

?rompt: Get what file?

Response: STASIS

The Filer responds with the message

'Text & Code file loaded'

Page 12

since both text and code file exist. Had the user typed
'·STASIS. '!EXT' or 'STAS1S« CODE', the result would have been the same -

both text and code ver·sions w::>uld have been loaded. In the event that
only one of the versions exists, as in the case of A.OlIT, then that
version w:Juld be loaded" regardle.ss o'f whether text or code was
requested. Typing 'ABSURD .. TEXT" in respon.se to the prompt VtOuld
generate the message: "Code file loaded' e. Working with the file may

.~ cause the fil es SYSTEM. WRK. xxxx to be created I' as part of the
workfile. These files will go away when the S(ave command is used.
If the system is rebooted before the S(ave command is used, the name
of the workfile will be forgotten.

1 .2. 5. 2 S (ave

Saves the workfile under the filename specified by the user.

The entire file specification is not necessary. If the volume
ID is not given, the default disk is assumed. Wildcards are not
allowed, and the size specification option is ignored.

EXAMPLE:

Prompt:

Save as what file?

Response: Type a filename of 10 or less characters, observing
the filename conventions in section 1.2.4 'FILES' . This causes the
FILER to automatically remove any old file having the given name, and
to save the workfile under that nane. For example, typing "X" in
response to the prompt causes the workfile to be saved on the default
disk as X.TEXT. If a codefile has been compiled since the last update
of the workfile, that codefile will be saved as X.CODE.

Page 13

The FILER automatically appends the suffixes .TEXT and .CODE
to files of the appropriate type. Explicitly typing AFILE. TEXT in
response to the prompt will cause the FILER to save this file as
AFILE.TEXT.TEXT. Any illegal characters in the filename will be
ignored, with the exception of ': '. If the file specification
includes volume id, the Filer assumes that the user wishes to save the
workfile on another volume. For example, typing:

RED: EYE

in response to 'Save as W1at file?' will generate

MYDISK:SYSTEM.WRK.TEXT -> RED: EYE. TEXT

RED:EYE constitutes a file specification, and a 'Y' answer to
this prompt will cause the Filer to attempt a transfer of the workfile
to the specified volume and file. (see section 1.2.5.11 T(ransfer.)

1.2.5.3 N(ew

Clears the workfile. Creating a blank, unnamed workfile. It
will remain unnamed until it is saved.

If there is already a workfile present, the user is prompted:

Prcxnpt:

Throw aW'ay current workfile?

Response: 'Y' will clear the workfile wtlile 'N' ret lrn s the
user to the outer leve~ of the FILER.

If <workfile narne).BACK exists, then the user is prompted:

Prompt:

remove <workfile narne).BACK ?

1.2.5.4 Q(uit

Returns the user to the outermost command level.

Page 14

1.2.5.5 W(hat

Identifies the name and state (saved or not) of the workfile .

. 1.2.5.6 V(olumes

Lists volunes currently on-line, with their associated unit
(device) numbers~

A typical display mjght be:

Vo lumes on-line:
1 CONSOLE:
2 SYSTERM:
4 II MYDISK:
6 PRINTER:
8 REMOTE:
9 II BIG:

Root vol is - MYDISK:
Prefix is - MYDISK:

The system volume is the default volume unless the prefix (see
P(refix) has been changed. Block-structured devices are indicated by
, II ' •

1.2.5.7 L(dir

Lists a disk directory, or some subset thereof, to the volume
and file specified (de fault is CONSOLE:).

The user may list any subset of the directory, using the
'wildcard' option, and may also write the directory, or any subset
thereof, to a volume or filename other than CONSOLE. File
specification will therefore be discussed in terms of source file
specification and destination file specification.

Source file specification consists of a mandatory volume ID,
and optional subset-specifying strings, which may be empty. Source
file specifications are separated from destination file
specifications by a comma (' ,').

Page 15

Destination file specification consists of a volume ID, and,
if the volume is a block-structured device, a filename.

The most frequent use of this command is to list the entire
directory of a volume. The following display, which represents a
complete directory listing for the example disk MYDISK, would be
generated by typing any valid volume ID for MYDISK (see Figure 2) in
response to the prompt,

Dir listing of what vol?

MYDISK:
FILERDCC2. TEXT 28 1-Sep-78
ABSURD. CODE 18 1-5ep-78
HYTYPER.CODE 12 1-Sep-78
STASIS. TEXT 8 1-5ep-78
LETTER1.TEXT 18 1-Sep-78
ASSEMDOC.TEXT 20 1-5ep-78
FILERDCC1.TEXT 24 1-Sep-78
STASIS. CODE 6 1-Sep-78
10/10 files <listed/in-dir>, 144 blocks used, 350 unused, 200 in largest

(The bottom line of the display informs the user that 10 files
out of 10 files on the disk have been listed, that 130 disk blocks
have been used, that 364 disk blocks remain unused, and that the
largest area available is 200 blocks.)

EXAMPLE:

L(dir transaction involving wildcards:

Prompt: Dir listing of what vol?

User response: #4:FIL:TEXT

generates the following display:

MYDISK:
FILERDCC2. TEXT 28 1-Sep-78
FILEROCC 1. TEXT 24 1-5ep-78
2/10 files <listed/in-dir>, 62 blocks used, 432 unused, 2CC in larges:

Page 16

EXAMPLE:

L(dir transaction involving writing the directory subset to a
device other than CONSOLE:

Prompt: Dir listing of what vol?

User res}X)nse: *FTI.=TEXT, FRINTER: causes

MYDISK:
FlLERDOC2.TEXT 28 1-Sep-78
FlLERDOC1.TEXT 24 1-Sep-78
2/10 files <listed/in-dir>, 62 blocks used, 364 unused, 200 in largest

to be written to the Printer.

EXAMPLE :

L(dir transaction involving writing the directory subset to a
block-structured device:

Prompt: Dir listing of what vol ?

User response: H4:FIL=TEXT,#5:TRASH creates the file TRASH on
the volume associated with unit 5. TRASH would contain:

MYDISK:
FlLERDOC2.TEXT 28 1-Sep-78
FILERIXX: 1. TEXT 24 1-Sep-78
2/10 files <listed/in-dir>, 62 blocks used, 364 unused, 200 in largest

1.2.5.8 E(xtended list

Lists the directory in more detail than the L(dir command.

All files and unused areas are listed along with (in this
order) their block length, last modification date, the starting block
address, the number of bytes in the last block of the file, and the
filekind. All wildcard options and prompts are as in the L(dir
command. An example display is shown below.

MYDISK:
FlLERDOC2. TEXT 28 1-Sep-78 6 512 Textfile
ABSJRD. CODE 18 1-Sep-78 34 512 Codefile

- <UNUSED> 10 52
ABSURD 4 1-Sep-78 62 512 Datafile
HYTYPER. CODE 12 1-Sep-78 66 512 Codefile
STASIS. TEXT 8 1-Sep-78 78 5,12 Textfile
LETTER 1 • TEXT 18 1-Sep-18 86 512 Textfile
ASSEMOOC. TEXT 20 1-Sep-78 104 512 Textfile
FlLERDOC1. TEX! 24 1-Sep-78 124 512 Textfile

Page 17

<UNUSED> 200 148
STASIS.COCE 6 1-Sep-78 348 512 Codefile
<UNUSED> 154 354
10/10 files <listed/in-dir>, 138 blocks used, 364 unused, 200 in largest

1.2.5.9 C(hange

Changes file or volune name.

Th is canmand requi res tw::> fil e specificat ion s. The first of
these specifies the file to be changed, the second, to what it will be
changed. The first specification is separated from the second
specification by either a <ret> or a comma (','). Any volume ID
infonmation in the second file specification is ignored, since
obviously the 'old file' and the 'new file' are on the same volume!
Size specification information is ignored.

Given the eKample file F5.TEXT, residing on the volume
occupying unit 5:

Prompt: Change what file?

Us~ Response: tl5 :F5.TEXT ,HOOHAH

changes the nane in the directory from 'F5. TEXT' to 'HOCHAH'.
Filekinds are originally determined by the filename, the C(hange
command does not affect thefilekind. In the above case, HOOHAH ~uld
still be a text file. However, since the G(et command searches for
the suffix '.TEXT' in order to load a text file into the workfile,
HOOHAH would need to be renamed HCOHAH. TEXT in order to be loaded into
the workfile.

Wildcard specifications are legal in the C(hange command. If
a wildcard character is used in the first file speCification, the~ a
wildcard must be used in the second file specification. Tne subset
specifying strings in the first file specification are replaced by the
analogous strings (henceforward called replacement strings) given in
the second file specification. The Filer wi-II not change the filename
if the change would have the effect of making the filename too long
(>15 characters). Given a directory of example disk NOTSANE:
containing tne files:

Page 18

EXAMPLE:

POEMS. TEXT
MAUNDER. TEXT
MALPRACTICE
MAKEJ. .. ISTS. TEXT

Prompt: Olange what file?

User response: NOTSANE :MA=T EXT , XX:GAACK,
causes the Filer to report

NOTSANE:MAUNDER.TEXT
NOTSANE:MAKELISTS.TEXT

-> XXUNDER.GAACK
-> XXKELISTS. GAACK

1he subset-specifYing strings may be empty, as may the
replacement strings. The Filer considers the file specification '='
(Where both subset-specifying strings are empty) to specify every file
on the disk. Responding to the C(hange prompt with '=,Z=Z' would cause
every filename on the disk to have a 'Z' added at front and back.
Responding to the prompt with 'Z=Z,=' would replace each terminal and
initial 'Z' with nothing. Given the filenames:

EXAMPLE:

THIS. TEXT
THAT. TEXT

Prompt Change what file?

User Response: T=T,=

The result would be to change. 'THIS.lEXT' to 'HIS. TEX', and
'THA T . TEXT' to ' HA T . TEX' .

The volume name may also be changed by specifying a volume ID
to be changed,. and a volune ID to change to.

EXA~PLE:

Prompt Charge what fi Ie?

User Response: NOTSANE:,WRKDISK:

NOTSANE: --> WRKDISK

Page 19

1.2.5.10 R(emove

Removes file entries from the directory.

This command requires one file sPecification for each file the
user wishes to remove. Wildcards are legal. Size specification
information is ignored. Given the example files (assuming that they
are on the default volume):

EXAMPLE:

AARD V AR K. TEXT
ANDROID. CODE
QUINT. TEXT
AMAZING. CODE

Prompt: Remove what file?

User Resp'nse: AMAZING. CODE

removes the fil e Ar..1AZING. CODE from the volLme directory.

Note: To remove SYSTEM.WRK. TEXT and/or SYSTEM.WRK. roDE the
N(ew command should be used, or the system may get confused.
Fortunately, before finalizing any wildcard removes, the Filer prompts
the user with

Prompt: Update directory?

Response: 'Y' 'causes all specified files to be re'Tloved. ,~,
returns the user to the outer level of the Filer without any removes
havil'l!; occurr~.

EXAMPLE :

As noted before, wildcard removes are legal.

Prompt: Remove what fi Ie?

User Response: A=CODE

Page 20

causes the Filer to remove AMAZING. CODE and ANDROID.CODE.
WARNING: Remember that the Filer considers the file specification t_t

(where both subset- specifying strings are empty) to specify every
file on the volume. Typing an ':' alone will cause the Filer to
remove every file on your directory!!

1.2.5.11 T(ransfer

Copies the specified file to the given destination.

This command requires the user to type two file
specifications, one for the source file; and one for the destination
file, separated with ej. ther a comna or <ret>. Wildcards are
pennitted, and size specification infonnation is recognized for the
destination file.

Assume that the user wishes to transfer the file FARKLE.TEXT
from the disk MYDISK to the disk BACKUP.

EXAMPLE:

Prompt: Transfer what file?

User Response: MYDISK:FARKLE.TEXT

Prompt: To where?

(Note: en a one-drive machine, DO NOT remove your source
disk until you are prompted to insert the destination disk)

User Response: BACKUP:NAME.TEXT

Prompt: Put in BACKUP:
Type <space> to continue

The user should remove the source disk, insert the destination
disk and type a <space>. The Filer then notifies the user:

MYDISK:FARKLE.TEXT -> BACKUP: NAME. TEXT

The Filer has made a copy of FARKLE and has written it to the
disk BACKUP giving it the name NAME. TEXT. If the specified file is
large, the user may be prompted to alternately insert the source and
destination disks until the transfer is completed ..

Page 21

It is often convenient to transfer a file without changing the
name, and without retyping the file name. The Filer enables the user
to do this by allowing the character '$' to replace the filename in
the destination file specification. In the above example, had the
user wished to save the file FARKLE.TEXT on BACKUP under the name
FARKLE. TEXT, she could have typed:

MYDISK:FARKLE. TEXT ,BACXUP: $

WARNING: Avoid typing the second file specification with the
filename completely omitted! For example, a response to the Transfer
prompt of the form:

MYDISK:FARKLE. TEXT ,BACKUP:

generates the message:

Destroy BACKUP: ?

'Y' answer causes the directory of BACKUP to be wiped out!

Files may be transferred to volumes that are not blocK
structured, such as CONSOLE: and PRINTER:, by specifying the
appropriate volume ID (see Figure 1) in the destination file
specification. A file name on a non- block-structured device is
ignored. It is generally a good idea to make certain that the
destination volume is on-line.

EXAMPLE:

Prompt: Transfer wnat file?

User Response: FARKLE. TEXT

Prompt: To where?

User Response: PRI~TER:

causes FARKLE.TEXT to be written to the printer.

The user may also transfer from non-bleck-structured devices,
providing they are input devices. Filenames accompanying a ~on- ':)locK
structured device ID are ignored.

Page 22

The wildcarti capability is allowed for T(ransfer. If the
S0urce file specification contains a wildcard character, and the
destination file specification involves a block-structured device,
then the destination file specification must also contain a wildcard
character. The subset-specifying strings in the source file
specification will be replaced by the analogous strings in the
destination file specification (henceforward known as replacement
strings). Any of the sUbset-specifying or replacement strings may be

. empty. Reulember that the Filer considers the file specification ,-,

. to specify €'Jery file on the volune.

EXAMPLE:

Given the volume MYDISK containing the files PAUCITY, PARITY
and PENALTY, and the destination ODDNAMZ:

Prompt: Transfer what file?

User Response: P=TY,ODDNAMZ:V=S

would cause the Filer to reply:

MYDISK: PAUCITY
MYDISK:PARITY
MYDISK:PENALTY

--) ODDNAMZ:VAUCIS
--> ODDN~~Z:VARIS
--> ODDNAMZ:VENALS

Using '=' as the source filename specification will cause the
Filer to attempt to transfer every file on the disk. This will
probably overflow the output buffer. (There are easier ways to
transfer whole disks. If you wish to do this, please refer to the
material in this section on volume- to- volume transfers.)

Using ':' as the destination filename specification will have
the effect of replacing the subset-specifyir~ strings in the source
specification with nothing. A brief reminder: '?' may be used in
place of '='. The only difference is that '?' causes the user to be
asked for verification before the operation is performed.

A file can be transferred from a volume to the same volume by
specifying the same volune ID for both source and destination file
specifications. This is frequently useful when the user wishes to
relocate a file on the disk. Specifying the number of blocks desired
will cause the Filer to copy the file in the first-fit area of at
least that size. If no size specification is given, the file is
written in the largest unused area.

Page 23

If the user specifies the sane filename for both source and
destination on a same-disk transfer, then the Filer rewrites the file
to the size-specified area, and removes the older copy.

EXAMPLE:

Prompt: Trans fer what fi Ie?

User Response: n4:QUIZZES.!EXT,#4:QUIZZES.TEXT[20]

causes the Filer to rewrite QUIZZES. TEXT in the first 20-block
area encountered (counting up from block 0) and to remove the previous
version of QUIZZES. TEXT.

It is also possible to do entire.volume-to-volume transfers.
The file specifications for both source and destination should consist
of volume ID only. Transferring a block-structured volume to another
block- structured volume causes the destination volume to be 'wiped
out' so that it becomes an exact copy of the source volume.

Assume that the user desires an extra copy of the disk MY9ISK:
and is willing to sacrifice disk EXTRA:

EXAMPLE:

Prompt: Transfer what file?

User Response: MYDISK:,EXTRA:

Prompt: Destroy EXTRA: ?

WARNING: If the user types 'Y', the directory of EXTRA: will
be destroyed! An 'N' response will return the user to the outer-revel
of the Filer, and a 'Y' will cause EXTRA to become an exact ~opy of
t-1YDISK. Often this. is desirable for backup purposes, since it is
relatively easy to copy a disk this way, and the volume name can be
changed (see C(hng) if desired.

Although it is certainly possible to transfer a voL.me Cd isk)
to another using a single disk-dri ve, it is a fairly tedi:?us process,
since the in-core transfer reads up the information in rather small
chunks, and a great deal of disk juggling is necessary for the
complete transfer to take place.

Page 24

1 . 2. ,. 12 D (ate

Lists current system date, and enables the user to change the
date.

Prompt: Date Set: <1 .. 31 >-<JAN .. DEC>-<OO .. 99>
Today is 19-Aug-78
New date?

The user may enter the correct date in the format given.
-After typing <ret>, the new date will be displayed. Typing only a
"return does not affect the current date. The hyphens are delimiters
for the day" month and year fields, and it is possible to affect only
one or two of these fields. FQr example, the year could be changed by
typing '--79', the month by typi.ng '-Sep', etc. The entire month
name can be entered, but will be truncated by the Filer. Slash ('I')
is also acceptable as a delimiter. The most common input will be a
single number, which will be interpreted as a new day. For example,
if yesterday was the 19th of August, the user would want to type
D20<ret>, which would have the desired effect of changing the date to
the 20th of August. The day-month-year order is inviolate, however.

This date will be associated with any files saved during the
current session and will be the date displayed for those files when
the directory is listed.

1.2.5.13 PCrefix

Changes the current default t~ the volume specified.

This command requires the user to type a volume ID. An entire
file specification may be entered, but only the volume ID will be
used. It is not necessary for the specified volume to be on-line.

To determine the current default volume, the user may respond
to the prompt wi th ':'. To return the prefix to the booted or "Roo tIT
volume, user may respond with H*"

1.2.5.14 BCad bloCKS

Scans the disk and detects bad blocks.

This command requires the user to type a volume ID. The
specified volume must be on-line.

Page 25

Prompt: Bad block scan of what vol?

Response: <vol1.JT1e ID>

Prompt: Scan for 494 blocks ? <yIn>

Response may be "Y" for yes if you want to scan for the entire
length of the disk. If you only wish to check a smaller portion of
the disk, type "N" and you will then be prompted for the nunber of
blocks you want the filer to scan for. The purpose of this part of
the command is for disks where the filer has no idea of how 'long'
the device is.

Checks each block on the indicated volume for errors and lists
the number of each bad block. Bad blocks can often be, fixed or marked
(see eX(amine).

1.2.5.15 eX(amine

Attempts to physically recover suspected bad blocks.

This command requires the user to type a volume I~. The
volume must be on-line.

EXAMPLE:

Prompt Examine blocks on what volume?

Response : <volume ID> generates the

Prompt: Block-range?

The user should have just done a bad block scan, and should
enter the block number(s) returned by the bad block scan. If any
files are endangered, the following pr,~pt should appear:

Prompt: File(s) endangered:
<filenane)
Fix them?

Response: 'Y' will cause the FILER to examine the blocKs and
return either of the messages:

Page 26

Blcxk <block-number> may be ok

in which case the bad block has probably been fixed, or

Block <block~umber > is bad

in which case the FILER will offer the user the option of
marking the block(s) BAD. Blocks which are marked BAD will not be

-shifted during a K(runch 1 and will be rendered effectively hannless.

An '~p respon.se to. the 'fix them? 1 prompt returns the user to
the outer level of the FILER.

WARNING: A block which is 'fixed' may contain garbage. 'May
be ok' should be translated as 'is probably physically ok'. Fixing a
block means that the block is read, is written back out to the block
and is read again. If the two reads are the same, the message is
'may be ok'. In the event that the reads are different, the block is
declared bad and may be marked as such if so desired.

1.2.5.16 K(runch

Moves the files on the specified volume so that unused blocks
are ccxnbined.

This command requires the user to type a volume ID. The
specified volume must be on-line. It is recommended that the user
perform a bad block scan of the volume before K(runching in order to
avoid writing files over bad areas of the disk. If bad blocks are
encountered, they must be either fixed or marked before the K(runch
(see eX(amine).

As each file is moved, its name is reported to the console.
If SYSTEM. PASCAL is moved, the system must be reinitialized by
bootstrapping. Do not touch the disk, the boot-switch or the disk
drive door until K(runch tells you it has completed its task. To do
otherwise may cause irreversible damage to the disk.

EXAMPLE:

Prompt Crunch what vol?

Page 27

Response : (volLllle ID>

causes Filer to prompt with:

Prompt: From end of disk, block 493 ? (yin)

Response: 'Y' initiates the K(runch. Typing an 'N' will cause
the prompt:

Prompt: Starting at block # ?

Response: The block number at which you wish the filer to
open a space on the disk.

1.2.5.17 M(ake

Creates a directory entry with the specified filename.

This corrmand requires the user to type a file specification.
Wildcard characters are not allowed. The file size specification
option is extremely helpful, since, if it is omitted, the Filer
creates the specified file by consuming the largest unused area of the
disk. The file size is detennined by following the filenane with the
desired number of blocks, enclosed in square brackets '[' and ']'.
Some special cases are:

[0] - equivalent to omitting the size specification. The file is
created in the largest unused area.

[*J - the file is created in the second largest area, or half the
largest area, whichever is larger.

EXAMPLE:

Prompt Make what file?

Response: MYDISK:FARKLE.TEXT[28J

Creates the file FARKLE.TEXT on the volume MYDISK: in the
first unused 28-block area encountered.

Page 28

~ . .:. 5. 18 Z (ere

Reformats the specified volume. The previous directory is
rendered irretrievable.

EXAMPLE:

Prompt: Zero dir of what vol?

Response: <volume ID>

Prompt: Destroy <volune name> ?

Response: A 'Y' response generates

Prompt: Duplicate dir ?

Response: If a 'Y' is typed, then a duplicate directory will
be maintained. This is advisable because, in the event that the disk
directory is destroyed, a utility program called COPYDUPDIR can use
the duplicate directory to restore the disk.

Prompt: Are there 494 blks on the disk? (yin)

Response: 'N' generates

Prompt: # of blocks on the disk?

Response: User will type number of blocks desired. The table
following this section gives the correct nunber of blocks for several
types of disks.

'Y' gener ates

Prompt: New vol name?

Response: User types any valid volume name.

Prompt: <new volume name> correct?

Res ponse: 'Y' causes the Filer, if it could indeed write the
new directory on the disk, to respond wi th the message:

<new volune name> zero-ed

Page 29

MACHINE

Terak

Northwest
Micro

Zilog

North Star

DEC

DISK TYPE II OF BLOCKS

Single-density soft-sectored 8" floppy 493

Ibuble-densi ty soft-sectored 8" floppy 1101

Single-densi ty hard-sectored 8" floppy 607

Single-density hard-sectored 5 , /4" floppy: 167

RK05 / per vollll1e 4871

Thue. a/te the. numbe.'L6 tha.t one. type,.~ when tIle. ~'('le,'t Mk..~ 6~1.'t a. numbe·'t c~

b.e.oc.k,.,~, a.6 the. b.e.oc.~ cl.t'te. nwnbe'te.d 6Jtom :e:to. ed.

Page 30

************************** *********f*******
* SCREEN ORIENTED EDITOR * * Section 1.3.1 *
************************** *****************

Version 11.0 February 1979

Thi s introduction d.escribes the idea behind the Editor,
and is the first sectioo.. The se:cond section is a tutorial for
the novice. While the Editor is designed to handle any files, the
tutorial section uses a sample program to demonstrate how to use the
most basic commands to modify a file. The third section contains a
detailed description of each command, with examples, and the fourth is
a quick reference guide.

THE CONC EPT (F A 'WINDCNl' INTO THE FILE

The Screen Orien ta::i Editor is specifically designed for us=
with Video Display Tenninals. On entering any file, the Editor
displays the start of the file on the second line of the screen. If
the file is too long for the screen, only the first portion is
displayed. This is the concept of a 'window'. The Whole file is
there and is accessible by Editor commands, but only a portion of it
can be seen through the 'window' of the screen. When any Editor
command takes the user to a position in the file which is not
displayed, the "window" is updated to show that portion of the file .

lliE CURSOR

The cursor represents the exact position in the file and can be
use:! to move to any position. The window shows that portion of the
file near the cursor. To see another portion of the file, move the
cursor. Action always takes place at the cursor. Some of the
canmands permit additions, changes or deletions of such length that
the screen cannot hold the whole portion of the text that has been
changed. In those cases, the portion of the screen where the cursor
stopped is displayed. In no case is it necessary for the user to
operate on portions of the text not seen on the screen, but in some
cases it is optional. In this document, examples are shown in
uppercase, the cursor is denoted by an underline or lower case
character.

THE CONCEPT OF A PROMPT LINE

The Editor displays a prompt line as a reminder to the user of
the current mode and the options available for that mode. Chly the
most commonly used options appear on the prompt line as the following
displ ay shows:

>Edit: A(djust C(py D(lete F(ind l(nsrt J(mp Rplace Q(uit X(chng Zeap [E.6J

Page 31

NOTATION

The notation used in this section corresponds to the notation
used to prompt the user in the editor. Any input that is enclQsed
between a < and> is requesting that a particular key be used, not that
the particular word be typed out. For example, <RET> means that the
return key should typed at that point. When a particular sequence of
key strokes is required they will be contained within quotes. For
example, "Fn..ENAME", <RET> refers to the typed sequence "FILENAME"
followed by typing the return key. Lower or upper case may be used
when typing Editor commands.

ENVIRONMENT

In order to establish the correct environment, depending on
whether text or a program is to be edited, see the options available
under Environment in the Miscellaneous commands section.

Page 32

******************* *****************
* GETTING STARTED * * Section 1.3.2 *
******************* *****************

ENTERING THE WORKFILE AND GETTING A PROGRAM.

On en teri ng the Ed i tor

-No wor kfile is present.. File? <ret> for no file <esc-re t> to ex it)

appears.

1h ere are three ways to answer this question :

1) With a name, for example "STRING1 <ret>". The file named
STRING1 will now be retrieved. The file STRING1 could contain a
program, also called STRING1, as in Fig. 2.1. After typing the name,
a copy of the text of the first part of the file appears on the
screen.

Figure 2. 1

PRCGRAM STRING 1 ;
BEGIN

WRITE('TOO WISE');
WRITE ('YOU ARE');
WRITELN(' , ');
WRITEU~ ('TOO WISE');
WRITELN('YOU BE')

END.

2) With a <return>. This implies that a new file is to be
started. The only thing visible on the screen after doing this is the
editor prompt line. A new workfile is opened and currently has
nothing in it. Type "I" to begin inserting a program or text.

3) With <escape + return>. This causes the editor to drop you
back to the system command level. Useful when you didn't mean to type
'E' .

Workfiles: No questions are asked if a workfile already exists.
Tne workfile is displayed and can be modified or can be cleared, in
order to start a file, by using the N)ew command in the Filer.

Page 33

w~v LNG rrlE ~URSOR

In order to edit, it is necessary to move the cursor. On the
keyboard are four keys with arrows,(which may look like triangles),
which move the cursor. The <up-arrow> moves the cursor up one line, the
<right-arrow> moves the cursor right one space and so forth. On
terminals which do not have cursor keys, the system will have to be
set up with a set of control keys to act as vector keys. Refer to
section 4.3 for more information on setting control keys.

The cursor does not like to be outside of the text of the
program. For exanple, after the "N" in "BEGIN" in Fig. 2.2 , push the
<right-arrow> and the cursor moves to the "W" in "WRITE". Similarly
at the "W" in "WRITE ('TOO WISE ');", use <left-arrow> to move to after
the "N" in "BEGIN".

Figure 2.2

BEGIN
WRITE ('TOO WISE ');

BEGIN
wRITE('TOO WISE ');

If it is necessary to change the "WR lTE ('TOO WISE ');" found in
the third line to a "WRITE ('TOO SMART ');", the cursor must first be
moved to the right spot.

For example: if the cur sor is at the "P" in "PROGRAM STRING 1 ;" ,
go down two lines by preSSing the down arrow 2 times. To mark the
positions the cursor occupies, labels a,b,c are used in Fig. 2.3. "a"
is the initial position of the cursor; "b" is where the cursor is
after the fir st <down-arrow>; "cn , after the second <down-arrow>.

Figure 2.3
-~---
aROGRA"1 STRING 1
bEGL~
c WRITE ('TOO WISE ');

Now, using the <right-arrow>, move until the cursor sits on
the "W" of "WISE". Note that wi th the use of <down-arrow> the cursor
appears to be outside the text. Actually it is at the "W" in "WRITE",
so do not be surprised when on typing the first <left-arrow> the
~ursor junps to the "R" in "WRITE". The point being that when the
cursor is outside the text, it is conceptually on the closest
character to the right or left.

Page 34

USING INSERT

The Edit level prompt line shows that to I(nsrt (insert) an
item, type "I". The cursor must be in the correct position before
typing "I". Earlier, the cursor was moved to the "W" in "TOO WISE";
now, on typing "I", an insertion will be made before the "W". The rest
of the line from the point of insertion will be moved to the right hand
side of the screen. In the event that the insertion is lengthy, that
part of the line will be moved down to allow room on the screen. After

-typing "I" the following pranpt line should appear on the screen:

>lnsert: text f<bs> a char,<del) a line} [<etx> accepts, <esc> excapes]

If that prcmpt line did not appear at the top of the screen it
is NOT insert mode and a wrong key may have been typed.

If the cur s:>r is at the "W" in "WISE", and on typing "I" the
insert pranpt line appeared, "3-1ART" may be inserted by typing those
five letters. They will appear on the screen as they are typed.

There remains one more important step. The choice at th= end
of the prompt line indicates that pushing the <etx> key accepts the
insertion, while pushing the <esc> key rejects the insertion and the
text ranains as it was before typing "I".

Figure 2.4 (Screen after typing "SMART')

BEGIN WRITE ('TOO St'1ART WISE ');

Figure 2.5 (Screen after <etx»

BEGIN
WRITE('TOO 5'1ARTWISE ');

Figure 2.6 (Screen after <esc»

BEGIN
WRITE('TOO WISE ');

It is legal to insert a carriage return. This is done by
typing <return> while in the INSERT mode and causes the Editor to start
a new line. Notice where carriage return places the cursor. This is
intended as a programming aid.

Page 35

us LNG DELETE

The IELETE mode "-Orks like the INSERT mode. Having inserted
the 'SMART' into the STRING1 program and having pushed <etx>, 'WISE'
must be deleted. ~ve the cur sor to the first of the items to delete
and type "0" to put the Editor into !ELETE mode. The following prompt
line should appear:

>Delete: < > <Moving commands> {<etx> to delete, <esc> to abort}

Each t~e <space> is typed a letter disappears. In this
example typing 4 spaces will cause "WISE" to disappear. Now the same
choice must be made as in insert. Type <etx> and the proposed deletion
is made or type <esc> and the proposed deletion reappears and remains
part of the text.

It is legal to delete a carriage return. At the end of the
line, enter DELETE mode, and <space> until the cursor moves to the
beginning of the next line.

These are sufficient canmands to edit any file desired. The
next section describes many more commands in the Editor which ~ake
editing easier.

LEAVING THE EDITOR AND UPDATING THE WORKFILE

When all the changes and additions have been made, exit the
Editor and "save" a copy of the modified program. This is done by
typing "Q" which will cause the pranpting display shown in Fig. 2.7.

Figure 2.7
- .. _-------------------------~--.-.-.------ --------------- ------_ ... _---
>Quit:

U(pdate the workfile and leave
E (xit wi thout up:lating
R(eturn to the editor without updating
W(rite to a file name and return

---------------------------------------~-------~-----------------~-----

Tne most elementary way to save a copy of the modified file on
disk is to type nun for U(pdate which causes the workfile to be saved
as SYSTEM.WRK.TEXT. With the workfile thus saved, it is possi~le to
use the R(un command, provided of course the file is a program. It is
also possible to use the S(ave option in the Filer to save the
modified file before using the Editor to modify or create another
file.

Miscellaneous commands, in the next section, explains in
\

greater detail the options available at >Quit.

Page 36

*** **** **** *** **** ** **** *** ********* *****************
* DETAILED DESCRIPTION OF COt+1ANOO * * Section 1. 3.3 *
************************************ *****************

CCMMAND AND MODE

At the Edit level there are many options, some of which are
referred to as comnands and sane as modes depending upon the appearance
of the pranpt .. If an option executes a task and returns control to the
Edit level, that option is called a corrmand. If an opti.on issues a
prOOlpt and gives the user another level of options, it is called a
mode. On entering or returning to the Edit level, the Editor redisplays
the " Ed it:" prompt 1 ine ..

REPEAT -FACTORS

"Most of the commands allow repeat-factors. A repeat-factor is
applied to a command by typing a number ~ediately before issuing the
command which is then repeated for the number of times indicated by the
repeat-factor. For example: typing "2 <down-arrow>" will cause the
<cbwn-arrow) coomnand to be executed twice, moving the cursor down two
lines. Commands which allow a repeat-factor assume the repeat-factor
to be 1 if no number is typed before the command. A 'I' typed before
the command tmplies an infinite number.

THE CURSOR

It should be pointed out that the cursor is never really" at" a
character. The cursor is only allowed to be "between" characters. For
instance, if the cursor looks as though it is at the letter "R", it is
actually between the letter "R" and the letter in front of it. This is
noticed most clearly on the insert command as it inserts in front of
the character the cursor was "at". On the screen the cursor is placej
"at" "R" to make it easier to display_

DIRECTION

Certain commands are affected by direction. If the direction is
forward, then they operate forward through the file, that being the
standard direction of reading English. Backwards is the reverse
direction. When direction affects the cOl1Illand it is specifically
noted •

~OVING CCMMANDS

Page 37

<.:bwn-arrow>
<up-arrow>
<right-arrow>
<left-arrow>
"<" or "t" or "-"
">" or "." or "+"
<space>
<back-space>
<tab>

<return>

Moves oown
Moves up
Moves right
Moves left
Change s the dir ection to backward
Changes the direction to forward
Moves direction
Moves left
Moves direction to the next position which is a mUl:i~le
of 8 spaces from the left side of the screen

Moves to the beginning of the next line

The arrow, n<" or n>", in front of the prompt line always
indicates direction; "<,, for backward and ">,, for forward. en
entering the Editor, the direction is forward. The direction can be
changed by typing the appropriate canmand whenever the "Edit:" pranpt
line is present. The period and the comma can also be used because on
many standard keyboards, "." is lower-case for n>" and "," is the
lower- case for ,,<".

Repeat-factors can be used with any of the above commands.

For user convenience, the Editor maintains the column poSition
of the cursor when using <up-arrow> and <down-arrow>. '~en the cursor
is outside the text, the Edi tor treats the cur sor as tho ~h it were
Lmmediately after the last character, or before the first, in the
line.

JUMP

JLt-1P mode is reached by typing "J" for J(mp while at the Edit
level. en entering JUMP mode the following prompt line appears:

>JUMP: B(eginning E(nd M(arker <esc>

Typing "8" (or "En) moves the cursor to the beginning (or the
end) of the file, displays the edit prompt line and the first (or last)
page of the file. Typing "M" causes the Editor to display ':.he prompt
line:

JLITlP to what narker?

Miscellaneous commands.

PAGE

PAGE coomand is executed by typing "P" while at the Ed it
~level. Depending on the direction of the arrow at the beginni~g of the
prompt line, PAGE command moves the cursor one whole screenf~l up or
down. The cursor always moves to the start of the line. A <repeat
factor> may be used before this command for moving several pages.

Page 38

EQUALS
EQUALS
EQUALS corrmand is executed by typing ":" while at the Edit

level. It causes the cursor to jump to the beginning of the last
section of ' text which was inserted, found or replaced from anywhere in
the file. Equals works from anywhere in the file and is not direction
sensitiv~. An INSERT, FIND or REPLACE cause the absolute position of
the beginni.ng of the insertion, find or replacement to be saved.

-Typing ":''1 causes the cursor to junp to that position. If a copy or a
-deletion has be::n made betleen the beginning of the file and that
absolute position, the cursor will not junp to the start of the
insertion as that absolute position will no longer be correct.

TEXT CHANGING COMMANDS

INSERT

INSERT mode is reached by typing "Itt for "I(nsrt" while at the
Edit level. On entering INSERT mode the following prompt line appears:

>]nsert: Text {<bs> a char, a line} [<etx> accepts, <esc> escapes]

One of the options here is to type in text followed by <esc> or
<etx>. It is possible to delete a character without leaving the INSERT
mode by back-spacing over it. To delete the entire line just typed,
type . The INSERT prompt line indicates these by "<bs> a char"
and " a line".

Typing <return> INSERT starts a new line at the level of
indentation specified by the options turned on in Environment section
of the SET mode. See the section on the SET mode in order to set these
options.

AUTO-INDENT

If Auto-indent is True, a <return> causes the cursor to start
the next line with an indentation equal to the indentation of the line
above. If Auto-indent is False, a <return> returns the cursor to the
first position in the next line. Note: if Filling is True, the first
position is the Left-margin. Unless the lne above is blank, in which
case the first position is that of Paragraph margin.

FlLLING
FILLING
If Filling is True, the Editor forces all insertions to be

between the right and left margins by automatically inserting
<return> t s between "words" W1enever the right margin w:)uld have been
exceeded' and by indenting to the Left-margin whenever a new line _is
started. The Editor considers anything between two spaces or between a

Page 39

s pace and a hyphen to be a word ·

If both Auto-indent and Filling are True, Auto-indent controls
the Left-margin while Filling controls the Right-margin. The level of
indentation may be changed by using the <space> and <backspace> keys
UDmediately after a <return>.]mportant: This can only be done
~ediately after a <return>.

Example 1: With Auto-indent true, the following sequence
creates the indentation shown in Figure 3.1.

"ONE" ,<return>, <space>, <space>, "TWO" ,
<return>, "THREE" ,<return>, <backspace>, "FOOR" •

Figure 3.1
-----------~---~--------------~--------~----------~----------------
ONE

TwO
THREE

FOUR

Original indentation
Indentation changed by <space> <space>
<return> causes auto-indentation to level of line above
<backspace> changes indentation from level of line above

Example 2: With Filling True (and Auto-indent False) the
following sequence creates the indentation shown in Figure 3.2:

"ONCE UPON A TIME THERE- WERE".

(Very narrow margins have been u:Ed for simplicity.)

Figure 3.2

ONCE UPON A
TIME THERE
'N'ERE

Auto-returned when next wor~ would exceed margi~
Auto-returned at hyphen

Level of left margin

T~e cursor may be forced to the left ~argin of the screen ~y
typing the ASCII control code DC1. (Generated by <CTRL-Q»

Filling also causes the Editor to adjust the margins on the
portion of the paragraph following the insertion. Any line beginning
with the Command character (see SET mode) is not touched when filling
does this adjustment and that line is considered to terminate the
paragraph.

Page 40

The direction does not affect the INSERT mode, but is indicated
by the direction of the arrow on the prompt line.

If an insertion is made and accepted, that insertion is
available for use in the COpy mode. However, if <esc> is used, there
is no string available for COPY.

DELETE

DELETE mode is reached by typing "D" for "D(lete" while at the
Edit level. On entering DELETE mode the following prompt line appears;

>Delete: < > <Moving commands> {<etx> to delete, ,<esc> to abort}

In order to delete, the cursor must be in position at the
first character to be deleted. en typing "D" and entering DELETE, the
Editor remembers where the cursor is. That position is called the
anchor. As the cursor is moved from the anchor using the normal
moving commands. Text in its path will disappear. To accept the
deletion, type <etx>; to escape, type <esc>.

Ex anple:

In Figure 3.3:
1) Move the cur sor to the "E" in END.
2) Type"<" (This changes the direction to backward)
3) Type "D" to enter IELETE mode.
4) Type <ret> <ret>. After the first return the cursor moves to

before the "W" in WRlTELN and "WRITELN('TO BE.');"disappears. After
the second return the cursor is before the "W" in WRITE and that
line has disappeared.

5) Now press <etx>. The program after deletion appears as is shown in
Figure 3.4.

The two deleted lines have been stored in the copy buffer and
the cursor has returned to the anchor position. Now use the COpy mode
to copy the two deleted lines at any place to which the cursor is
moved.

Figure 3.3
----~---
PROGRAt"1 STRING2;
BEGIN

WRITE('TOO WISE ');
WRITELN ('TO BE. ')

-END.
----------------~---

Figure 3.4
-----------... -,---.-.._-_ ... _-------_._-------....,------_-.._---.-.-.-------------------
PROGRAM STRING2:
BEGIN
END.
--

Page 41

The <repeat-factor> may also be used to delete several lines as
once by prefacing a <return> or any other of the moving commands with a
<repeat-factor> while in delete mode.

ZAP

The ZAP ccmnand is executed by typing "Z" for Zeap while at the
Edit level. This command deletes all text between the start of what
was previously found, replaced or inserted and the current position of
the cursor. This canmand is designed to be used immediately after one
of the FIND, REPLACE or INSERT commands. If more than 80 characters
are being zapped the editor will ask for verification.

The pesi t:ion of the cursor where what was previously found 1

replaced, or inserted is called the "equals mark". Typing the n:" key
will place the cursor exactly there.

Repeat-factors and Zap: If a FIND or a REPLACE is made with a
repeat factor and then ZAP, only the last find or replacement will be
zapped. All others will be left as found or replaced.

Whatever was deleted by using the ZAP command is available for
use with the COPY mode, unless the editor has stated otherwise.

COpy

The COpy mode is executed by typing "C" for C(py ¥mile at the
Edit level.

On entering the Copy mode the following prompt line is
displayed:

>COPY: B(uffer F(ile (esc>

To copy text fran another fil e, type "F" and another prompt
will appear:

>COPY: FROM WHAT FILE[MARKER,MARKER]?

Any file may now be specified, .TEXT is assumed. In order to
copy part of a file, two markers can be set to bracket the desired
text. If [,marker] or [marker,] is used, the file will be copied
from the start to the marker or fram the marker to the end. Use of
the copy command does not change the contents of the file being copied
fran.

Page 42

To copy the text in the copy buffer, type "B" and the Editor
irrrnediately copies the contents of the copy buffer into the file at
the location of the cursor when "e" ~s typed. Use of the copy
command does not change the contents of the copy buffer.

On the completion of the copy command in either mode the
cursor returns to immediately before the text which was copied.

The copy buffer is affe'ct,ed by the fo llowi ng command s :

1)DELE1E: Cl1 accepting a deletion, the buffer is loaded with
the deletion; on escaping from a deleti,on the buffer i~ loaded with
what would have been deleted.

2)INSERT: Cl1 accepting an insertion the buffer is loaded with
the insertion; on escaping from an insertion the copy buffer is empty.

3)ZAP: If the ZAP command is used the buffer is loaded with
the deletion.

The copy buffer is of l:imited size. Whenever the deletion is
greater than the buffer available, the Editor will issue a warning
upon typing <etx> with the line:

There is no roam to copy the deletion. Do you wish to delete anyway? (yin)

EXCHANGE

EXCHANGE mode is reached by typing "X" while at the Edit level.
On entering EXCHANGE mode the following prompt line appears:

>eXchange: TEXT {<bs> a char} [<esc> escapes; <etx> accepts]

EXCHANGE mode replaces one character in the file for each
character of text typed. For example in the file in Figure 3.5 with
the cursor at the "W" in WISE, typing "X" , followed by typing "SM"
will replace the "W" with the "sn and then the "I" with the "M" leaving
the 1 ine as shown in Figure 3.6 with the cur sor be fore the second "S".

Figure 3.5 Figure 3.6
----------.-.... -.---.. -~-.....

WRITE('TOO WISE 1); WRITE ('TOO SMSE ');

Typing a <back-space) «bs» will back the cursor one character
and cause the original character in that position to reappear. As with
most other commands, when in EXCHANGE mode, <esc> leaves the mode
without making any of the changes indicated since entering the mode,
while <etx) makes the changes part of the file.

Page 43

Note: Exchange does not allow typing past the end of the line
or typing in a carriage return.

FIND AND REPLACE

In both modes the use of a <repeat-factor) is valid and must be
typed before typing "F" or "R". The <repeat-factor) appears in
brackets on the prompt line.

Strings: Both modes operate on del~ited strings. The Editor
has two string storage variables. One, called <targ> by the prompt
lines, is the target string and is referred to by both commands while
the other, called <sub) by the prompt line, is the substitute and is
used only by REPLACE. The following rules apply to both these strings.

Del~iters: Both del~iters of the string will be the same.
For example: When in REPLACE mode the following command is valid and
will repl ace the first occurrence of the character "[" ;.;i th the
character "]": n<[<)])". Here n<" and ")" are the del~iters.

The Editor considers any character which is not a
letter or a number to be a delL~iter.

Direction: Both modes operate from the posi~ion of the cursor
to scan the text in the direction indicted by the arrow on the prompt
line. The target pattern can only be found if it appears in that
section of the text. See the section on direction on order to change
the arrow.

Literal and Token mode: In Literal mode, the Editor will lOOK
for any occurrences of the target string. If you are in Token mode the
Editor will l()ok for isolated oc~urrences of the target string. The
Editor considers a string isolated if it is surrounded by any
combination of delimiters. For example, in the sentence "P1.lt the bOOK
in the bookcase.", using the target string "book", literal llode will
find tv..o occurrences of "book" while token mode will find only one, the
word "book" isolated by the del imi ters <space> <space).

To use token mode, type "T" after the ~rompt :i:1e and before
the target string; to use 11 teral mode, type "L". The defaul t value
found in the Environment may be over-ridden by typing ttL" or "T" as
appropriate. Token mode ignores spaces within strings so that both
"(',')" and "(',')" are cons idered to be the same str-ing.

The- Same option: In both ccmmands typing "S" indicates to the
-Editor that it is to use the same string as used previously. For
exanple, typing "RS/<any-string)/" causes the REPLACE mode to USe the
previous target string, while typing "R/<any-string)/S" causes the
previous substitute string to be used.

Page 44

NOTE: The S(et-E(nvironment mode displays the current target
and substitution strings.

FIND

FIND mode is reached by typing "'P" W1ile at the Edit level. en
entering Find mode one of the prompt lines in Figure 3 .. 7 appears.

Figure 3.7

>Find[1]: L(it <target> =>

>Find[1]: T(ok <target> =>

The FIND mode finds the n-th occurrence of the <target> string
starting with the current position and moving in the direction shown by
the arrow at the beginning of the pranpt line. The number "n" is the
<repeat-factor) and is shown on the prompt line in the brackets "[]".

Example 1: In the STRING1 program with the cursor at the first
"P" in PROGRAM STRING 1 type ttF". When the pranpt appears type
It 'WRITE'''. The single quote marks MUST be typed. The prompt line
should now appear as:

>Find[1]: L)it <target> =>'WRITE'

After typing the last quote mark the cursor jllllps to immediately after
the "E" in the first WRITE.

Example 2: In the STRING1 program with the cursor at the "E" of
"END." type: "<,, "3" "F". This will find the 3rd ("3") pattern in the
reverse ("<") direction. When the prompt line appears type IWRITELN/.
The prompt line should read:

<Find[3]: L)it <target) = >IWRITELN I

The cursor will move to immediately after the "N" in WRITELN.

Page 45

Figure 3.8
--~-----~~--------~--PROORAM STRING1;
BEGIN

WRITEC'TOO WISE ');
WRITE C 'YOU ARE');
WRlTELNC' ,'); C·CURSOR FINISHES IN THIS LINE*)
WRlTELN ('TOO WISE ');
WRlTELNC 'YOU BE. ')

END. (.CURSOR STARTS IN THIS LINE*)
---~------~--~--------------------------------------~--------------

Example 3: en the first find we type "F IWRITE/". This locates
the first "WRITE". Now typing "FS" will make the prompt line flash:

>Find[1]: L)it <target> =>S

and the cursor will appear at the second WRITE.

REPLACE
REPLACE
REPLACE mode is reached by typing "R"nile at the Edit level.

On entering REPLACE mode one of the two prompt lines in Figure 3.9
appears. In this example, a <repeat-factor> of four is assumed.

Figure 3.9

>Replace(4]: L(it VCfy <targ> <sub> =>

>Replace(4]: T(ok V(fy <targ> <sub> =>

Example 1: Type "RL/QXIIYZ/" which make the prompt line appear as:

>Replace(1]: L)it V)fy <targ> <sub> =>L/QXIIYZI

This comnand will change: "VAR SIZEQX: I~TEGER;" to "VAR
SIZEYZ:INTEGER;". Literal mode is necessary because the stri::g ~X is
not a token but is part of the token SIZEQX.

Example 2: L~ Token mode REPLACE ignores spaces betNeen tokens
when finding patterns to replace. For example, using the lines on the
left hand side of Figure 3.10 and typing: "2RT/C',')/.LN." The prompt
line should appear as:

> Replace: L) it V)fy- <targ> <sub> =>/(f , ,) I • LN.

Page 46

]mmediately after the last period was typed those two lines
would change to those on the right hand side.

Figure 3 .. 10
--------~-~~~~----~--

WR lTE (t , ' } ;
WR ITE (1,')-;

WRlTELN;
WRITELN;

V)fy: The verify option pennits, exanin.ation of the <targ>
string (up to the limit set by the repeat factor) and deciding if
it is to be replaced. The following prompt line appears Whenever
REPLACE mode has found the <targ> pattern in the file and verification
has been requested:

>Replace: <e sc> aborts, 'R' replaces, ' , doesn't

Typing an "R" at this point will cause a replacement while
typing a space will cause the REPLACE mode to search for the next
occurrence provided the <repeat-factor> has not been reached. The
<repeat-factor> counts the number of times an occurrence is found, not
the number of times you actually type "Ru. Use "I" as a <repeat
factor> in order to examine every occurrence of the target string.
If the Editor can not find the target string the number of times
specified, the prompt:

ERROR: Pattern not in the file Please press <spacebar> to continue.

appears.

FORMA TIING C~MANDS

ADJUST

ADJUST node is reached by typing "A" while at the Edit level of
Command. On entering ADJUST mode the following prompt line appears:

>Adjust: L(just R(just C(enter <left ,right ,up ,down-arrows> {<etx> to leave}

The ADJUST mode is designed to make it easy to adjust the
indentation. On any line the <right-arrow> and <left-arrow> commands
move the whole line. Each time a <right-arrow> is typed the whole line
moves one space to the right. Each <left-arrow> moves it one to the
left. When the line is adjusted to the desired indentation press
<etx>, (esc) cannot be used.

Page 47

In order to adjust a whole sequence of lines, adjust one line,
then use <up-arrow> «down-arrow» commands and the line above (below)
will be automatically adjusted by the same amount.

Repeat-factors are valid when used before any of the <arrow>
conmands while in ADJUST mode, imlu:1ing '/'.

ADJUST mode can also center or justify text. Typing "L" while
in ADJUST mode will cause the line to be left-justified to the margin
set in the Environment. Similarly typing "Rtf right-justifies to the set
margin and typing "C" will cause the line to be centered between the
set margins. Typing <up-arrow> (or <down-arrow» will cause the line
above (below) to be adjusted to the same specification (left-justified,
right-justified or centered) as the previously adjusted line.

MARGIN

MARGIN command is executed by typi-ng "M" W1ile at the Edit
level. MARGIN is an Environment dependent command, that is, it may only
be executed when Filling is set to True and Auto-indent is set to
False. The prompt for the MARGIN c.cmnand does not appear on the
">Edi t:" line.

There are two parameters used by the command: Right-margin,
Left~argin and Paragraph~argin. MARGIN deals with one paragraph and
realigns the text to compress it as much as possible without violating
the above three margins. See the Environment option under the SET
mode for how to set the margin values.

Example: The paragraph in Figure 3.13 has been MARGINed with
the parameters on the left while the same paragraph in Figure 3. 14 nas
been MARGINed with the parameters on the right.

Left~argin 0
Right-margin 72
Paragraph-margin 8

Left-marg in 1 0
Right-margin 70
?aragraph-margin 0

Page 48

F ig~re 3.13
----------------~---

This quarter, the equipment is different, the course materials
are substantially different, and the course organization is different
from previous quarters. You will be misled if you depend upon a friend
who took the course previously to orient you to the course.

--------------------------------------~-------------------------------

Figure 3.14
- --------------------~~--~---~---

This quarter, the equipment is different, the course materials are
substantially different, and the course organization is
different from previous quarters. You will be misled if
you depend upon a friend who took the course previously to
orient you to the course.

A paragraph is defined to be something occurring between two
blank lines beginning or end of file, or a line which starts with the
canmand charager. To MARGIN a paragraph move the ctrsor to anywhere
in that paragraph and type "M". When doing an exceptionally long
paragraph it may take several seconds before the routine is ready to
redisplay the screen. Margin works with blanks and hyphens to do its
splitting. All other characters in sequence are considered words.
It does not know how to hypenate words itself.

COMMAND CHARACTERS

Portions of the text can be protected from being MARGINed by
the use of the Command character. If the Command character appears as
the first non-blank character in a line then that line is protected
from the MARGIN command. The MARGIN command treats a line beginning
with the command character as though it were a blank line, that is, it
will consider that line to terminate (begin) the paragraph.

warning: Do not use the MARGIN command when in a line
beginning with the Command character.

MISCELLANEOUS COMMANDS

SET

SET mode is entered by typing "S" while at the Edit level.
The prompt for the SET command does not appear on the ">Edit:" prompt
line due to space limitations. On entering the SET mode the following
prompt line appears:

>Set: M(arker E(nvironment <esc>

Page 49

~ (arker:

When editing, it is particularly convenient to be able to jump
directly to certain places in a long file by using markers set in the
desired places. Once set, it is possible to jump to these markers
using the M(arker. option in the JlMP mode. When in the SET mode, type
"M" for M(arker and the following pranpt line appears:

Name of marker?

The name may be up to 8 characters followed by a <return>.
Marker names are case sensitive so that lower and upper cases of the
same letter are considered to be different characters. The marker will
be entered at the position of the cursor in the text; therefore, first
move the cursor to the desired position before setting the marker. (If
the marker already existed, it will be reset.)

Only a limited number of markers are allowed in a file at anyone
time. If on typing "s-1", the prcmpt:

Figure 3. 15

Marker ovflw.
Which one to replace.
0) name1
1) name2

9)name10
---~----------~~--

appears, it is necessary to el~inate one in order to replace it.
Choose a number 0 thru 9, type that number and that space will now be
available for·use in setting the desired marker.

If a copy or deletion is made between the beginning of the
file and the position of the marker, a jump to that ~arker ~ay not
subsequently return to the desired place as the absolute position has
changed .

E (nv ironment:

The Editor enables the user to set the environment whi~h the
user determines to be most convenient for the editing being done. Woen
in the SET mode type "ETt for E(nvironment, the screen display is
replaced with the following prompt shown in Figure 3.16.

?age 50

F i ~;ure 3. 16

--------~---
"Environment: {options} <etx> or <sp> to leave

ACuto indent True
F(illing False
L(eft margin 0
R(ight margin 79
P(ara margin. 5
C(armand cn
T (oken d ef True

7436 bytes used, 12020 available

Patterns:
<target>: txyz t, <subst>= t abc'

Date Created: 4-13-55 Last Used: 12-28-78

By typing the appropriate letter, any or all of the options
may be changed. The options shown are the default options for the
Editor on most screens.]mplementations for other machines may have
different defaults.

TIiE OPTIONS:

ACuto indent:

Auto-indent affects only the INSERT mode of the Editor. Auto
indent is set to True (turned on) by typing" AT" and to False (turned
off) by typing "AF".

Fe illing:

Filling affects the INSERT mode and allows the MARGIN command
to function. Filling is set to True (turned on) by typing "FT" and to
False by typing "FF".

L(eft margin
R(ight margin
P(ara margin:

When Filling is True the margins set in the Environment are the
margins which affect the INSERT mode and the MARGIN command. They also
affect the Center and justifying ccmmands in the ADJUST mode. To set
t_he Left-margin, type "L" followed by a positive integer and a (space>.
The positive integer typed replaces the old value for the LCeft margin
in the pranpt shown in Figure 3. 16. All positive integers with less
than four digits are valid margin values.

Page 51

C (armand ch:

lhe Command character affects the MARGIN command and the
Filling option in the INSERT mode as described in those sections.
Change Command characters by typing "C" followed by any character. For
example typing "C","·" will change the Coamand character to n." This
change will be reflected in the prompt.

T(oken def:

This option affects FIND and REPLACE. Token is set to True by
typing "TI" and to False by typing "'IF". If Token is True, Token is
the default and if Token is False, Literal is the default.

VERIFY

The VERIFY command is executed by typing "V" while at the Edit
level. The status of the Editor is verified by redisplaying the
screen. The Editor attempts to adjust the window so :hat the cursor
is at the center of the screen.

QUIT

QUIT mode is reached by typing "0" while at the Edit level. en
entering QUIT mode the screen display is replaced by the following
prompt:

Figure 3. 17
~---------~-~------~~--------------~-------------------------------->Quit:

U(pdate the workfile and leave
E(xit without updating
R(eturn to the editor without updating
W(rite to a file name and return

--
One of the four options must be selected by typing U,E,R or W.

U(pdate:

Tnis causes the Editor to write the file just modified
into the workfile and store it as SYSTEM.NRK.TEXT. It is available
for either the Compile or Run options or for the Save option i~ the
Filer. The Filer treats SYSTEM.WRK.TEXT as text file.

Page 52

Eexit:

This causes the Editor to leave without making any changes in
SYSTEM.WRK.TEXT. This means that any modifications made since entering
the Editor are not recorded in the permanent workfile. All editing
during the session is irrecoverably lost.

R(etum:

This option returns to the Edi.tor without updating. The cursor
- is returned to the exact place in the file it occupied when "Q" was
- typed. Usually this ccmnand is used after unintentionally typing "Q".

W(ri te:

This option puts up a further prompt:

Figure 3. 18

>Quit:
Name of output file «cr> to return) -->

The modified file may now be written to any file name. If it
is written to the name of an existing file, the modified file will
replace the old file. This command can be aborted by typing <return>
instead of a file name and return will be to the Editor. After the
file has been written to disk, the Editor will display the following:

Figure 3. 19

>Quit
\-Iri ting
Your file is 1978 bytes long.
Do you want to E(xit from or R(eturn to the Editor?

Typing "E" exits frem the Editor and returns to the Command
level while typing "Rft returns the cursor to the exact position in the
file as when "Qtt was typed.

Page 53

-- Notes --

ige 54

<down-arrow>
<up-arrow>

. <right-arrow>

. <left-arrow)
<space)
<back -space)
<tab) \
<return)

********************* *****************
* REFERENCE SECTION * * Section 1.3.4 *
********************* *****************

moves <repeat-factor> lines down
" " lines up
" " spaces right
n " spaces left
11 " spaces in direction
If tf spaces left

moves <repeat-factor> tab positions in direction
moves to the beginning of line <repeat-factor> lines

"<" "," "-" chang e direction. to backward
">,, "." n+" change direction to forward

in directio

":" moves to the beginning of what was just found/replaced/inserted/
exchanged

<repeat-factor> is any number typed before a canmand. Typing a / is the
infinite nunber.

A(djust: Adjusts the indentation of the line that the cursor is on. Use
the arrow keys to move. Moving up (down) adjust line above
(below) by same anount of adjustment on the line you were on.
Repeat-factors are valid.

C(opy: Copies what was last framed in insert/delete/zap into the file at
the position of the cursor.

D(elete: Treats the starting position of the cursor as the anchor. Use
any moving commands to move the cursor. <etx> deletes
everything between the cursor and the anchor.

F(ind: Operates in L)iteral or T)oken mode. Finds the <targ> string.
Repeat-factors are valid, direction is applied. "S" : use same
string as before.

I(nsert: Inserts text. Can use <backspace> and <del) to reject part of
your insertion.

J(ump: Jumps to the beginning, end or previously set marker.

M(argin: Adjusts anything between two blank lines to the margins which
have been set. Command characters protect text from being
margined. Invalidates the copy buffer.

P(age: Moves th.e curs,\)r one page in direction. Repeat-factors are
valid, direction is applied.

Q(uit: Leaves the editor. You may U)pdate, E)xit, W)rite, or R)e~urn.

Page 55

R(eplace: Operates in L(iteral or T(oken mode. Replaces the <targ)
string with the <subs) string. V(erifyoption asks you to
verify before it replaces. "S" option uses the Sane string as
before. Repeat-factors replace the target several t~es.
Direction is valid.

S(et: Sets M(arkers by assigning a string name to them. Sets
ECnvironment for ACute-indent, F(illing, margins, T(oken, and
C(ommand characters.

V(erify: Redisplays the screen with the cursor centered.

eX(change: Exchanges the current text for the text typed while in this
mode. Each line must be done separately. <back-space) causes the
original character to re-appear.

Z)ap: Treats the starting position of the last thing
found/replaced/inserted as an anchor and deletes everything
between the anchor and the current cursor position.

Page 56

************* *****************
* L2 EDITOR * * Section 1.3.5 *
************* *****************

Version 11.0 February 1979

The L2 Editor is being released on an experimental basis. Not
all options are yet fully implemented so this section may not be.

·complete. The main advantage of this version is that it is able to
·handle files larger than can fit into the main memory buffer at one
time; the upper limit being determined by the space available on disk.
It also automatically makes a backup copy of the file be.ing edited. In
many respects this Edi.tor MOrks exactly as this release and displays
the sane prompt lines. Where the versions are the sane, the user is
directed to read the main Editor section.

Entering the Workfile and Getting a Program

If, on typing E, there is not enough room on the disk;

ERROR: Not erough room for backup!

will be displayed. This disk must then be K(runched in order to
provide room if that is possible, a file removed or another disk must
be used. The backup file is always 'written' to disk with the
original file data in it.

The same prompt line is displayed; see section 1.3.2.

1) With a name. If a file is chosen, a backup copy will be
made before the file is available for editing.

Figure 5. 1

Copying to filename.back.
>Edit
Reading
-~-~--~~~~--~~-------~--~--~--------------~-~-~------~----------~--------

After this series of prompt lines, the first par t of the tex t
will appear on the screen.

2) With a return. A new file is created in the same manner as
in section 1.3.2.

The p:iragraphs on moving the cursor, Jnsert and Delete in
~ection 1.3.2. should be read and are applicable here.

Leaving the Editor and Updating the workfile

Page 57

When all changes and additions have been made, the Editor is
exited by typing "Q" and the following prompt is displayed.

Figure 5.2
----------~---~----------~->Quit:

U(pdate the workfile and leave
E(xit (but workfile not updated)
R(eturn to the Editor without doing anything.

--
Notice that the Write option is no longer available. One of

these three options must be chosen. See also Miscellaneous commands
in section 1.3.3.

U(pdate:

This works in the same manner, however additional information
is supplied indicating the name of file updated and the length.

When a new file is created, the following appears:

Figure 5.3

Writing.*
The workfile, *SYSTEM.WRK.TEXT, is n blocks long.

When an existing file has been used, this example shows the extra
information now given:

Figure 5.4
--
Writing.*
The workfil e ,*X: F 1. TEXT, is 44 blocks long.
The backup file is X:F 1. BACK.
--
The neWly edited file is referred to as . TEXT , while the .BACK file
contains the original file with no modifications.

E(xit:

This causes the Editor to return to the ccrrmand 1 evel wi thou t
making any changes in the workfile. No .BACK file is made ar.d ~he
existing .BACK is removed. For example, if F1.TEXT is the file belng
used, then a copy F1.BACK will be made on entering the eeitcr ar.d on
leaving by using the E option, F1.BACK will be removed and only F1.TEXT
will remain. However, since F1.TEXT is a copy of the orig:nal, it
will be in different place in the directory.

R(etum:

This is the same. See section 1.3.3.
Page 58

MOVING C<l4MANDS

JUMP

Jump mode displays the same prompt line as before. In this
case "B" and "E" refer to the beginning(end) of the buffer not the
beginning(end) of the file.

Typing "M" causes the Editor to display:

Jump to what marker?

It is now possible to use 20 markers and these will be set in
the same way as in section 1.3.3. To jump to the desired marker, type
in the name. If the marker is present, the Editor will jump to that
position, otherwise, the Editor will jump to the last position of the
cursor in the file. If Find needs to search a section of the file,
other than the buffer, Leaping .•.•.. will be displayed.
BANISH

This is a new command and is reached by typing "B" at the Edit
level. This is the prompt that will appear:

>Banish: To the L(eft or R(ight <esc>

Prior to doing a large insertion or copy, in order to provide
more room in the buffer and avoid buffer overflow, it is possible to
move characters from the buffer into the stack. There is a left and a
right stack; left being ahead of the cursor and right, behind the
cursor. The user can make the choice according to the current
si tuation . In general, "some text" is saved after a banish, the
screen is a rough boundary for this text.

NEXT

In order to move beyond the bounds of the buffer, type "N".
The following pranpt will then be displayed:

Next: F(orwards, B(ackwards in the file; S(tart, E(nd of the file. <esc>

Choose one of the five options available. When using "F" or
"B", an implicit banish occurs using the cursor as the point of
reference. For example, when "F" is typed, everything above the top of
the screen is banished to the left stack. More characters are added to
the bottom of the screen to extend the buffer in the forward
direction. w'hen "B" is used the characters below the cursor are
banished to the right stack and part of the screen will become blank.
More characters are added above the 'window' of the screen.

?age 59

Figure 5.5 SYMBOLIC FILE

: left stack
: BackWBrds
: Start

BUFFER
right stack
Forward
End

~--

PAGE

See section 1.3.3.

EQJALS

See section 1.3.3.

TEXT CHANGING CO+1ANDS

INSERT

See section 1.3.3.

DELETE

See section 1.3.3.
ZAP

See section 1.3.3.

COpy

See section 1.3.3.

EXCHANGE

See section 1.3.3.

FIND

Read section 1.3.3. The Editor will display: Finding
and if the pattern is not in the buffer:

_End of buffer encountered. Get more frcm disk? (YIN)

Page 60

On typing "Y", the Editor will move another section of the file
into the buffer to continue searching. Find is still directional. If
the pattern is not found, in a full-file search, the cursor is left in
an arbitrary position in the file.

REPLACE

See section 1.3.,3"

FORMATIING CCM-iANDS

ADJUST

See section 1.3.3.

MARGIN

See section 1.3.3.

MISCELLANEOUS COMMANDS

SET

See section 1.3.3. The same prompt line is displayed.

M(arker:

Read section 1.3.3. The names of the markers can be seen by
typing "SElf for Set Environment while at the Edit level. To set the
marker, type ,t:::M". In the event that 20 markers have already been set,
this will be indicated by:

Marker overflow. Which one to replace? (Type in the letter or <sp>

E(nvironment:

To set the environment, type "SE". The following is an example
of the prompt displayed:

Figure 5.5

>Environment: options <etx> or <sp> to leave
A(uto Indent False' ,
F(illirg True
L(eft margin 4
R(ight margin 70
P(ara margin 1
C(cmmand eh
S(et tabstops
T(oken def True

Page 61

11582 bytes used. 2754 available.

There are 0 pages in the left stack, and 10 pages in the right stack.
You have 86 pages of roan, and at me st 13 pages worth in the buffer.

Markers:

<P1 P2 >P3

Created August 15, 1978: Last updated August 15, 1978 (Revision 1).

~----~~---

By typing the appropriate letter, any or all of the options can
changed. See section 1.3.3. The arrow before the marker name
indicates the relative position of the marker in the file to the
buffer. No arrow indicates that the marker is in the current buffer.

It is now possible to vary the tabstops. Type "S"mile in the
environment and the following prompt will appear:

Set tabs: <right,left vectors> C(oID N(o R(ight L(eft D(ecimal stop <etx>

At present, these are not yet fully implemented so that the effect of
using any of them is to have a variable tabstop instead of being set at
eight characters apart.

VERIFY

See section 1.3.3.

Page 62

** *******1*******
* YET ANOTHER LINE ORIENTED EDITOR - YALOE * * Section 1. 4 *
** ***************

Version Il.O February 1979

This text editor is intended for use on systems that do not
"have powerful screen terminals. It is designed to be very similar to
. the text-editor 'Wh.l.ch accaopanies DEC's RT-11 system. Its name is
pronounced: Yaw-loo-ee.

The editor assumes, but is not dependent on, the existence of
the workfile text. Upon reading it YALOE will proclaim 'workfile
STUFF read in'. If it does not find such a file, it will proclaim 'No
work file read in'. This means that you entered YALOE with an empty
workfile. From this point you may create a file in YALOE; and when
you exit by typing 'QU', your workfile will no longer be empty.

The Editor operates in one of tw:> modes: Command Mode or Text
Mode. In command mode all keyboard input is interpreted as commands
instructing the editor to perform some operation. When you first
enter the editor you will be in the Command Mode. The Text Mode is
entered whenever the user types a command which must be followed by a
text string. After the command F(ind, G(et, I(nsert, M(acro define,
R(ead file, W(rite to file, or eX(change has been typed, all
succeeding characters are considered part of the text string until an
<esc> is typed. Note: when typed <esc> echoes a '$'. The <esc>
terminates the text string and causes the editor to re-enter the
Command Mode, at which point all characters are again considered
cOl11Tlands.

NOTE: Follow command strings in YALDE with <esc><esc> to
execute them. (This is unlike the rest of the systems 'immediate'
comnands.)

1 .4. 1 SPECIAL KEY COv1MANDS

Various characters have special meanings, as described below.
Some of these apply only :~ YALOE. Many have similar effects in the
rest of the system; for tr~(;3e the ASCII code to which the system
responds as indicated can be changed using the program SETUP,
described in Section 4.3. «esc> is the most particular anomaly to
YALOE.)

<esc> Echoes a '$'. A single <esc> terminates a
text string. A double <esc> executes the
cCfmland string.

Page 63

R ll30trr
<linedel)

CTRL H
<chardel)

CTRL X

CTRL 0

CTRL F
<flush)

CTRL S
<stop>

Deletes current line. en hard-copy terminals
ecooes '<ZAP' and a carriage return. Cl1
others, it clears the current line on the
screen. In both cases the contents of that
line are discarded by the editor.

Deletes character from the current line. Ch
hard-copy tenminals it echoes a percent sign
followed by the character deleted. Each
succeeding CTRL H the by the user deletes and
echoes another character. An enclosing percent
sign is printed when a key other than CTRL H
is typed. This erasure is done right to left
up to the beginning of the command string.
CTRL H may be used in both Command and Text
mode.

Causes the editor to ignore the entire command
string currently being entered. r.~e editor
responds with a <cr> and an asterisk to
indicate that the user may enter another
command. For example:

*IrALE AND
!<E I'IH <CTRL X>
*

A <linedel> would cause deletion of only
KEI'IH; CTRL X would erase the entire command.

Will switch you to the optional character set
(i.e. bit 7 turned on). This works only on
the TERAK 8510A. The CTRL 0 is used as a
toggle between the character sets. NOTE: You
may find While in the editor that ~eird
characters are showing up on the te~inal
instead of normal ones. It ~ould be ~ecause
ypu accidentally typed CTRL Q. 70 get ~ack
just type CTRL 0 again.

All output to the tenninal is discar'Jed ~y the
system until the next CTRL F is typed.

All out out to the terminal is held until
another'CTRL S is typed.

All other control characters are ignored and discarded by
YALOE.

1.4.2 COMMAND ARGUMENTS

Page 54

A commrnand argument precedes a command letter and is used
either to indicate the number of t~es the command shoUld be performed
or to specify the particular portion of text to be affected by the
command. With some commands this specification is implicit and no
~rgument is needed; other commands, however, require an argument.

Corrmand arguments are as follows:

n n stands for any integer. It may be preceded
by a + or -. If no sign precedes n, it is assumed
to be a positive number. Whenever an argument is
acceptable in a command, its absence implies an
argument of 1 (or -1 if only the - is present).

m m is a number 0 .. 9.

o '0' refers to the beginning of the current
line.

/ 'I' means 32700. '-II means -32700. It is
useful for a large repeat factor.

= ' =' is used only with the J, D and C coomand s
and represents -n, where n is equal to the length
of the last text argument used, for example
*GTHIS$=D$$ finds and removes THIS.

1.4.3 COMMAND STRINGS

All EDIT command strings are terminated by two successive
<esc>s. Spaces, carriage returns and tabs (CTRL I) within a command
str ing are ignored unless they appear in a text string.

Several commands can be strung together and executed in
sequence. For example:

*B GTHE INSERTED$ -3CING$ 5K GSTRING$$

The "B" sets the cursor v~sition.
The "G" looks for the string "THE INSERTED" and places the cur sor on

the character which follows the "D".
The "-3CINGtt replaces the string "TED" with It ING" •
-The "5K" deletes text fran the cursor to the 5th successive end-of

line.
-The "GSTRING" finds the first occurance of "STRING" in the file and

places the cursor just after the G.

Page 65

· As a rule, commands are separated from one another by a single
<esc). This separating <esc> is not needed, however, if the command
requires no text. Commands are terminat~ by a single <esc>; a second
<esc> signals the end of a command string, which will then be
executed. ~en the execution of the command string is complete, the
edi tor prompts for the next ccmnand wi th '*'.

If at any point in executing the command, an error is
encountered, the command will be tenminated, leaving the command
executed only up to that point.

1.4.4 'mE TEXT BlFFE R

The current version of your text is stored in the Text Buffer.
This buffer's area is dynamically allocated; its size and the room
left for expansion may be ascertained by using the? command.

The editor can only work on files that fit entirely within the
Text Buffer.

1.4.5 THE CURSOR

The "cur so r" is the position in your text where the next
command will be executed. In other words it is the current "pointer"
into the Text 1 Buffer. Most edit commands function with respect to the
cursor:

A,B,F,G,J: Moves it.
D,K: Remove text from where it is.
U,I,R: Add text to where it is.
C,X: Remove and then add text at it.
L,V: Print the text on the terminal from it.

1.4.6 INPUT/OUTPC7 COMMANDS

L(ist, V(erify, W(rite, R(ead, Q(uit, E(rase.

The L(ist command prints the specified number of lines on :he
console terminal without moving the cursor.

*-2L$$ Prints all characters starting at the second
preceding line and ending at the cursor.

Page 66

*4L$$

*OL$$

Prints all characters beginning at the cursor
and terminating at the 4th <cr>.

Prints from the beginning of the current line
up to the cursor.

The V(erify command prints the current text line on the
.terminal. The position of the cursor within the line has no effect
.and the cursor is not moved. Argunents are ignored. The V(erify
command is equivalent to a OLL (list) command.

The W(ri te canmand is of the form

*w< file ti tle>$

File title is any legal file title as decribed in Section 1.2
less the file type. The editor will automatically append a '.TEXT'
suffix to the file title given unless the file title ends with'.',
']', or '.TEXT'. If the filename ends in a '.', the dot will be
stripped fram the filename. Refer to Figure 2 in section 1.2.4 for
details on filename specifications.

The W(rite command will write the entire Text Buffer to a file
with the given file title. It will not move the cursor nor alter the
contents of the Text Buffer.

If there is no room for the Text Buffer on the volume
specified in the file title given, the message:

OUTPUT ERROR. HELP!

will be printed. It is still possible to write the Text
Buffer out by wr i ting it to anotrer vol une ·

The R (ead command is of the form

*R<file title>$

The editor will at ~pt to read the file title as given. In
the event no file with that ti tIe is present, a '. TEXT' is appended
and a new search is made.

The R(ead command inserts the specified file into the Text
Buffer at the cur sor • The cur sor remains in the Text Buffer before
the text inserted. If the file read in do·es not fit into core buffer,
the entire Text Buffer will be undefined in content, i.e. this is an
unrecoverable error ..

Page 67

The Q(uit command has several forms

QU Quit and update by writing out a new SYSTEM.~RK.TEXT
QE OJi t and escape session; do not alter SYST8-1. ~RK. TEXT
QR Dontt quit; return to the editor
Q A prompt will be sent to the terminal giving all the

above choices; enter option mnemonic (U, E, or R) only.

Executing the QU command is a special case of the write
command, and the at tempt to write out SYSTEM. WRK. TEXT may fail. In
this case use the W command to write out your file and then QE to exit
the editor.

The QR command is used on the occasions when a Q is
accidentally typed, and you wish to return to the editor rather than
leave it.

The E(rase command (intended for CRT terminals) erases the
screen.

1.4.7 CURSOR RELOCATION COMMANDS

J(ump, A(dvance, B(eginning, G(et, F(ind

When using character and line oriented commands, a positive (n
or +n) argument specifies the number of characters or lines in a
forward direction, and a negative argument the number of characters or
lines in a backward direction. The editor recognizes a line of text
as a unit when it detects a <cr> in the text.

Carriage return characters are treated the same as any other
character. For example assume the cursor is positioned as i:1dicated
in the following text (A represents the current position of the cursor
and does not appear in actual use. It is present here only for
clarificat ion) :

THERE ~AS A CROOKED ~NA<CR>
AND HLMPTY DUMPTY FELL ON HD1<CR>

The J (urnp canmand maves the cursor over the specified number
of characters in the Text Buffer. The edit command -4J moves the
cursor back 4 characters.

THERE ilAS A CROOKED'"' f'AAN<CR>
AND HUMPTY DUMPTY FELL ON HIM<CR>

Page 58

The carmand 10J moves the cursor forward 10 character sand
places it between the 'H' and the 'U'.

THERE WAS A CROOKED MAN<CR>
AND HAUMPTY DUMPTY FELL ON HIM<CR>

The A(dvance command moves the cursor a specified number of
lines. The cursor is left positioned at the beginning of the line.

Hence the command OA moves the cursor to the beginning of the
current line ..

THERE Vi.AS A CiOOKED MAN < CR >
A AND HUMPTY DUMPTY FELL ON HIM<CR>

The canmand -1A (or -A) moves the cursor back one line.

ATHERE WAS A CROOKED MAN<CR>
AND HUMPTY DUMPTY FELL ON HIM<CR>

The B(eginning command moves the cursor to the beginning of
the Text Buffer. Use /J to move to the end of the buffer.

Search commands are used to locate specific characters or
strings of characters within the Text Buffer.

The G(et and F(ind commands are synonymous. Starting at the
position of the cursor, the current Text Buffer is searched for the
nth occurrence of a specified text string. A successful search leaves
the cursor ~ediately after the nth occurrence of the text string if
n is positive and ~ediately before the text string if n is
negative. An unsuccessful search generates an error message and
leaves the cursor at the end of the Text Buffer for n positive and at
the beginning for n negative.

*BGSTRING$=J$$ This command string will look for the string
STRING starting at the beginning of the Text
Buffer; and if found it will leave the cursor
immediately before it.

1.4.8 TEXT MJDIFICATION ::G1MANDS

I(nsert, D(elete, K(ill, C(hange, eX(change

The I(nsert command causes the editor to enter the TEXT mode.
Characters are inserted immediately following the cursor until an
<esc> is type:i. The cursor is positioned immediately after the last
character of the insert" Ckcasionally with large insertions the
temporary insert buffer becomes full. Before this happens a message
will be printed on the console terminal, 'Please finish'. In response

Page 69

type two successive <esc>s. To continue, type I to return to the Text
mode.

NOTE: Forgetting to type the I command will cause the text
entered to be executed as commands.

The D(elete command removes a specified number of characters
from the Text Buffer, starting at the position of the cursor. Upon
completion of the command, the cursor's position is at the first
character following the deleted text.

*-2D$$ Deletes the two characters ~ediately preceding
the cursor.

*B$FHOSE $=0$$ Deletes the first string 'HOSE' in the Text
Buffer, since =0 used in combination with
a search command will delete the indicated
text string.

The K(ill command deletes n lines from the Text Buffer,
starting at the position of the cursor. Upon completion of the
command, the cursor's position is the beginning of the line following
the deleted text.

*21<$$

*IK$$

Deletes characters starting at the current
cursor position and ending at (and including)
the second <CR>.

Deletes all lines in the Text Buffer after the
cursor.

The C(hange command replaces n characters, starting at the
cursor, with the specified text string. Upon completion of the
command, the cursor ~ediately follows the changed text.

*OCAPPLES$$ Replaces the characters from the beginning of
the line uo to the cursor with 'APPLES',
(equivalent to using OX).

*SGHOSE$=CLIZARD$$ Searches for the first occurrence of
'HOSE' in the Text Buffer and replace it ~i:h
'LIZARD' •

The eX(change command exchanges n lines, starting at the
cursor, with the indicated text string. The cursor remains at the end
of the changed text.

Page 70

*-5X1EXT$$

*OX1EXT$$

*/XTEXT$$

1 .4. 9 OTHER COMMANDS

Exchanges all characters beginning with the
first character on the 5th line back and ending
at the cursor with the string 'TEXT'.

Exchanges the current line from the beginning to
the cursor with the string 'TEXT', (equivalent
to using OC).

Exchanges the lines from the cursor to the end
of the Tex.t Buffer with the text 'TEXT',
(equivalent to using Ie or ID1),

S(ave, U(nsave, M(acro, N (macro execution) and '?'

The S(ave command copies the specified number of lines into
the Save fuffer starting at the cursor. The cursor position does not
change, and the contents of the Text Buffer are not altered. Each
time a S(ave is executed, the previous contents of the Save Buffer, if
any, are destroyed. If executing the S(ave command would have
overflowed the Text Buffer, the editor will generate a message to this
effect and not perform the save.

The U(nsave command inserts the entire contents of the Save
Buffer into the Text Buffer at the cursor. The cursor remains before
the inserted text. If there is not enough room in Text Buffer for the
Save Buffer, the editor will generate a message to this effect and not
execute the unsave.

The Save Buffer may be cleared with the command OU.

The M(acro corrmand is used to define macros. A maximum a f ten
macros, identified by the integer (0 .. 9) preceding the 'M', are
allowed. The default number is 1. The M(acro command is of the form:

mM%command string%

This says to store the command string into Macro Buffer number
m, where m is the optional integer 0 .• 9. The delimiter t '%' in this
example, is always the first character following the M ccmnand and may
be any character which does not appear in the 'macro command string
itself. The second occurr'el'lce of the del imi ter terminates the macro.

All characters except the delimiter are legal Macro command
string characters, including single <esc>s. All commands are legal in
a macro command string. Example of a macro definition:

Page 11

This defines macro number 5. When macro number 5 is executed,
it will look for the string 'BEGIN', change it to 'END BEGIN', and
then display the change.

If an error occurs when defining a macro, the m essa ge

'Error in macro definition'

will be printed, and the macro will have to be redefined.

The execute macro command, N, executes a specfied macro
command string. The fonn of the command is:

Here n is s~ply any command argument as previously defined; ~
is the macro number (an integer 0 •• 9) to be executed. If m is
omitted, 1 is assumed. Because the digit m is technically a command
text string, the N command must be terminated by an <esc>.

Attempts to execute undefined macros cause the error message
'Unhappy macnum'. Errors encountered during macro execution cause the

message 'Error in macro'. Errors encountered in macro command syntax
cause the message 'Error in macro definition'.

The ? ccmman:i prints a list ·~f all the ccmmands and the sizes
of the Text Buffer, Save Buffer, and available memory left for
expansion. It also lists the numbers of the currently defined macrQs.

Page 72

1.4.10 SUMMARY OF ALL COMMANDS

n - an argument m - macro number

nA: Advance the cursor to the beginning of the n th line from
the current position.

B: Go to the Beginning of the file.
nC: Change by deleting n characters and inserting the following

text. Terminate text with <esc>.
nD: Delete n characters.

E: Erase the screen.
nF: Firrl the n th occurrence from the current cursor position

of the following string. Term inate string wi th <esc>.
nG: Get - ditto -

H: - invalid -
I: Insert the following text. Terminate text with <esc>.

nJ: Jump cursor n characters.
nK: Kill n lines of text. If current cursor position is not at

the start of the line, the first part of the line remains.
nL: List n lines 0 f text.
mM: ~fine macro number m.

nNm: Perfonnmacro number m, n times.
0: - invalid -
P: - invalid -
Q: Quit this session, followed by:

U:(pdate Write out a new SYSTEM.WRK.TEXT
E: (scape Escape from session
R:(eturn Return to editor

R: Read this file into buffer (insert at cursor);
'R' must be followed by <file name> <esc>;

WARNING: If the file will not fit into the buffer, the
content of the buffer becomes undefined!

nS: Put the next n lines of text from the cursor position into
the Save Buffer.

T: - invalid -
U: Insert (Unsave) the contents of the Save Buffer into the

text at the cursor; does not destroy the Save Buffer.
V: VerifY: display the current line
W: Rrite this file (from start of buffer);

'W' must be followed by <filename> <esc>.
nX: ~lete n lines of text, and insert the following text;

terminate with <esc>.
Y: - invalid -
Z: - invalid -

Page 73

-- Notes --

Page 74

****'****"*'****"'**** '*'**""*"*'*
, INTERACTIVE DEBUGGER' , Section 1.5 '
'*'***"""*'*"""**' ""**""'*"*

Version 11.0 February 1979

To facilitate the debugging of Pascal programs, an interactive
debugger was included in the system in ea!r1.i.er relea ses. In order to
use it, it required more memory· than was available with any
meaningfully sized program.. We renoved the debugger from the system
as it was more of a thorn in the side of progress than a statement of
progress itself. We are l«>rking on a new debugger and hope to have it
in a useful state soon. The current changes in the P~achine may make
the task of writing the debugger somewhat easier, and therefor
quicker. Please do not inquire as to when the debugger will be ready
for release, as the answer you will get will be "soon".

Thank-you for your patience and cooperation in this matter.

Ed.

Page 75

-- Notes __

Page 76

*********-******** *******- *** ***
* PASCAL CCMPILER * * Section 1.6 *
******************* ***************

Version 1.5 5:ptember 1978

The UCSD Pascal compiler, a one-pass recursive descent based on
-the P2 per·table compiler frem Zurich, is invoked by using the C(ompile
or R(un command of the outermost level of the UCSD Pascal system. If a
WJrkfile exists, it compil.es tha,tO' Otherwise, it prompts the user for
a source file name. rt generates codefiles to run directly on the
Pascal interpretive machine.

Unless the HAS SLClrl TERMINAL boolean inside the system
communication area (see section 4.3) is true, the compiler, during the
course of compilation, will display on the CONSOLE device output
detailing the progress of the compilation. This output can be
suppressed with the Q+ compiler option (see section on compiler
options below). Below is an example of the output which appears on the
CONSOLE device:

PASCAL compiler [l.5 unit compiler]
< 0> •••••••••••••••••••
P1 [7050]
< 19> .. .
P2 [3040]
< 61 >••••......•.........................
< 11.1> •••••••
TEST [3003]
< 119> .••........•...•..•...•...........•...•.......

The identifiers appearing on the screen are the identifiers of
the program and its procedures. The identifier for a procedure is
displayed at the moment when compilation of the procedure body is
started. The numbers within [] indicate the number of (16 bit) words
available for symbol table storage at that point in the compilation.
The numb6'"s enclosed wi thin < > are the current line numbers. Each
dot on the screen represents 1 source line compiled.

If the compilation is successful, that is, no compilation
errors were detected, the compiler writes a codefile to the disk
called *SYSTEM.WRK.CODE. This is the codefile which is executed if
"the user types the R(t.m command. See Section 1. 1 INTRODUCTION AND
OVERVIEW for a global description of the system commands.

Should the compiler detect a syntax error, the text surrounding
the error and an error number together with the marker ,«« , will
point to the symbol in the source where the er r·or was detected. In
the event that both the Q and L options are set, the compilation will
continue, with the syntax error going to the listing file, and the
console remaining undisturbed. Otherwise the compiler will the give
the user the option 0 f typing a space, an <esc> or 'E'. Typing a _~

Page 77

space instructs the compiler to continue the compilation, while escape
causes.tennination of the compilation, and "E" results in a call to
the editor, which automatically places the cursor at the symbol where
the error was detected.

The syntax errors detected by the UCSD Pascal compiler
are listed in Table 5. All error numbers will be accompanied by a
textual message upon entry to the editor if the file *S YSTEM.SYNTAX is
available.

1.6. 1 CCl-1PILE TIME OPTIONS

Compile ttme options in the UCSD Pascal compiler are set
according to a convention described on pages 100-102 of Jensen and
Wirth, W'lere compile time options are set by means of special "dollar
sign" conments ins ide the Pascal progran text. The syntax used in
UCSD's compiler control comments is essentially as described in Jensen
and Wirth. The actual options and the letters associated with those
options bear little resemblance to the options listed on pages 101 and
102 of Jensen and Wirth. Following is a description the various
options currently available to the user of the UCSD Pascal compiler.

B:

Byte-flip. Causes the compiler to generate code for a machine
which is byte-flipped fram the one upon which it is running.

C:

Places the line following the C character for character
somewhere in the codefile. The purpose of this is to have a copyright
notice imbedded in codefiles.

D:

This option causes the compiler to issue break?Oi~t
instructioris into the codefile during the course of the compilation i~
order that the interactive Debugger can be used more effectively. See
Section 3.2 "DEBUGGER" for details

Default value: D-

0-: causes the compiler to omit breakpoint instructions
during the course of the compilation.

D+: causes the compiler to emit breakpoint instructions.

Page 78

G:

Affects the bool eal variable GOrOOK in the compiler. This
boolean is used by the compiler to detennine whether it should allow
the use of the Pascal GOTO statement wi thin the program.

Default value: G-

G+: allows the use of the GOTO statement.

G-: causes the compiler to generate a syntax error upon
encountering a GOTO statement.

The G-option has been used at UCSD to restrict novice
programmers from excessive uses of the GOTO statement in situations
where more structured constructs such as FOR, WHILE, or REPEAT
statements would be more appropriate.

I:

When an 'I' is followed immediately by a '+' or '-', the
control comment will affect the boolean variable IOCHECK within the
compiler. An alternative use of 'I' in a compiler control comment
causes the compiler to include a different source file into the
compilation at that point. See section INCLUDE-FILE MECHANISM for
syntax.

IOCHECK OPTION

Default value: I+

1+: instructs the compiler to generate code after each statement
which performs any 110, in order to check to see if the IIO
operation was accomplished successfully. In the case of an
unsuccessful 110 operation the program will be terminated
with a run time error.

1-: instruc~s the compiler not to generate any 1/0 checking
code. In the case of an unsuccessful 1/0 operation the
program is not terminated with a run time error.

Page 79

The I-option is useful for programs wtlich do m;ny I/O
operations and also check the IORESULT function after each I/O
operation. The program can then detect and report the I/O errors,
without being terminated abnonnally with a run time error. However
this option is set at the expense of the possibility that IIO errors,
(and possibly severe program bugs), will go undetected.

INCLUDE FILE MECHANI5~

The syntax for instructing the compiler to include another
source file into the compilation is as follows:

(*$IFlLENAME*)

The characters between 'I' and '*)' are taken as the filename of the
source file to be includ ed. The corrment must be closed at the end of the
filename, therefore no other options, such as G+, or L., etc. can follow :~e
filename. Note that if a file name starts with '.' or '-' as the firs~
character of the filename, a blank must be inserted between '(*$1' and
'FILENAME'. For example, the canment:

(*$ITURTLE. TEXT *)
w:>uld cause the file TURTLE. TEXT to be compiled into the progr am at
that point in the compilation.

(*$I .tf ARKLE. STUFF*)

would cause the source file +FARKLE.STUFF to be incltXied into the
compilation.

If the initial attempt to open the include file fa ils, the
compiler concatenates a ". TEXT" to the file-name and tries agai!1. If
this second attempt fails, or some 1/0 error occurs at some point wni:~

-reading the include file, the compiler responds with a fatal syntax
error.

Toe compiler accepts include files wtlich contain C0NST, TY?~,
VAR, PROCEDURE, and FUNCTION declarations even though the original
program has previously completed its declarations. To do so, the
include compiler control comment must appear between the original
program's last VAR declaration and the first of the original program's
PROCEDURE or FUNCTION declarations. NOte that an include file may je
inserted into the original program at any point desired, provide: ::,e
rules governing the normal ordering of Pascal declarations will not be

- violated. Only when these rules are violated does the above procedure
apply.

Page 80

1he compiler cannot keep track of nested include comments, i.e.
an include file may not have an include file control comment. This
results in a fatal syntax error.

The include file option was added to the compiler at U.C.S.D in
order to make it easier to compile large programs without having to
have the entire source in one very large file which in many cases would
be too large to edit in the existing editors' buffer.

L:

Controls whether the compiler will generate a program listing
of the source text to a given file. The default value of this option is
L-, which implies·that no compiled listing will be made. If the
character·"following""L" 'is "+", then the ccxnpiled. listing will be sent
to a diskfile with the title '*SYSTEM.LST.TEXT'. The user may override
this default destination for the compiled listing by specifying a
filenane following "L". For ecanple the following control corrment will
cause the compiled listing to be sent to a diskfile called
"DEMO 1. lEXT" :

(*$L DEMO 1.1EXT*)

To specify a file-name inside a control comment, see the
section describing the include file mechanism.

Note that listing files which are sent to the disk may be
edited as any other text file provided the filename which is specified
contains the suffix ".TEXT". Without the ".TEXT" suffix the file will
be treated by the system as a datafile rather than as a text file.

The compiler outputs next to each source line the line number,
segment procedure number, procedure number, and the number of bytes or
words (bytes for code; words for data) required by that procedure's
declarations or code to that point. The compiler also indicates
whether the line lies within the actual code to be executed or is a
part of the declarations for that procedure by outputing a "D" for
declaration and an integer 0 .. 9 to designate the lexical level of
statement nesting within the code part. If the D+ option is set then
the listing file will include an asterisk on each line where it is
appropriate for a user to specify a breakpoint while in the interactive
Debugger. This information can be very valuable for debugging a large
program since a run time error message will indicate the procedure
number, and the offset where the error occurred.

Page 81

P:

Page. Pages listing file.

Q:

The Q compiler option is the "quiet comp ile" option which can
be used to suppress the output to the CONSOLE device of procedure names
and line numbers detailing the progress of the compilation.

R:

Default value: is set equal to current value of the SLONTERM
attribute of the system communication record
SYSCOMA

• (actually SYSCOMA.MISCINFO.SLOWTERM)

Q+: causes the compiler to suppress output to CONSOLE dENice .

Q-: causes the c~iler to send procedure nane and line number
output to the CONSOLE device.

1his option affects the value of the boolean variable
RANGECHECK in the compiler. If RANGECHECK is true, the compiler ~ill
output code to perform checking on array subscripts and assignments to
variables of subrange types.

Defaul t value: R+

R+: turns range checking on.

R-: turns range checking off.

Note that programs compiled with the R-option set will run
slightly faster; however if an invalid index occurs or a invalid
assign-nent is merle, the program will not be terminated °Nith a run- t.ime
error. Lhtil a program has ~een completely tested and ~ncwn t~ be
correct, it is strongly advised to compile with the ~+ option left on.

s:

This option determines ~ether the compiler operates in
"swapping" mode. There are two main parts of the compiler: one
processes declarations; the other handles statements. In swapping
mode, only one of these parts is in main menory at a time. This mal<es
about ~OO additional words available for symbol table storage at t~e

:cost of slower compilation speed due to the overhead of swapping the
compiler segmer.t in fram disk. On fullsize, single density floppy
disks this amounts to a factor of two reduction in compile speed. Tnis
option must occur prior the the compiler encountering any Pascal
syntax.

, Page 82

Default value: S-

S+: puts compiler in swapping mode.

S-: puts compiler in non-swapping mode.

U:

USER PROGRAM 0 PrION :

This option sets the boolean variable SYSCG1P in the compiler
which is used by the cOnl:piler to determine whether this canpilation is
a user program compilation, or a compilation of a system program.

Default value: U+

U+: informs the compiler that this compilation is to take place
on the user program lex level.

U-: informs the compiler to compile the program at the system lex
level. This setting of the U compile time option also causes
the following options to be set: R-, G+, I-.

NOTE: This option will generate programs that will not behave
as expected. Not recommended for non-systems \\Ork wi thout knowing its
method of operation.

USE LIBRARY OPTION:

In this version of the 'U' option, the U is followed by a file
name. The named file becomes the library file in which subsequent
USEed UNITs are . sought • The default file for the library is
·SYSTEM.LIBRARY. (see section 3.3.2 for more details on UNITs)

option:
Following is an example of a valid USES clause usi~g the 'J'

USES UNIT1,UNIT2, { Found in ·SYSTEM.LIBRARY }
{$U A. COrE}

UNIT3,
{$U B.UBRARY}

UNIT4, UNIT5;

. Page 83

-- ~tes --

Page 84

1*1***1**************** *****1*********
* UCSD BASIC COMPILER * * Section 1.7 *
*********************** *****1*********

Versi on I. 5 September 1978

This section is designed for programmers who are already
familiar with Basic. Its intent is to describe to those experienced
users the details of UCSD Basic in a manner sufficiently detailed so
as to enable the writing or modification of programs to be compatible
with the UCSD Basic Compiler.

The first section contains a brief descr'iption of the features
included in UCSD Basic; the second, the descriptions of the features
unique to UCSD Basic, and the third a list of those features which we
intend UCSD Basic to allow, but which are not yet implemented.

The UCSD Basic Compiler has been written in the Pascal
language. Some of the intrinsics of the Pascal language, which are not
found in standard Basic, are found within the UCSD version of Basic.
Many of these are noted in the first section, all of them are noted or
recapped in the second.
: IX SYSTEM. CCMPILER

The UCSD BASIC Compiler is invoked just like the Pascal
compiler, provided the compiler code is named *SYSTEM.COMPILER.
Originally it will be named BASIC. COMPILER. If you want a disk to be
BASIC oriented, you must change the name of, or remove, the Pascal
compiler, and change the name of BASIC.COMPILER to *SYSTEM.COMPILER.
That disk, and any copies of it, will now compile BASIC programs as a
result of the C(ompile or R(un command.

DESCRIPTION OF FEATURES INCLUDED

The Basic compiler has only real and string variables. l .. lhen
applying a real to indexing or other integer purposes the rounded value
of the number is used. In the functions below x and y can be real
variables or expressions which evaluate to real values. Similarly s1
and s2 can be string variables or expressions which evaluate to 3

string.

VARIABLE NAMES .'
Real variables: letter(digit).
String variables: letter(digit)$. The digit is optional.

INTRINSIC ARITHMETIC FUNCTIONS

ATN(x) Returns the angle in radians whose tangent is x.

Page 85

EXP(x) Returns the base of the natural logarithms raised to the power x.

INT(x) Returns the value of x rounded to the nearest integer.

LOG(x) Returns the log (base 10) of x.

LN(x) Returns the natural log of x.

MOD(x,y) Returns x modulo y.

SIN(x) Returns the sine of the angle x. Where x is in radians.

CCS(x) Returns the cosine of an angle x. Where x is in radians.

INTRINSIC STRING FUNCTIONS

CAT.$(s1,s2, •••) Returns a string which is equal to the concatenation of
all the strings in the paraneter list.

CO?$(s1,x,y) Returns a copy of the portion of the string s1, y
consecutive characters, starting with the character at position x.

DEL$(s1,x,y) Returns the contents of the string s1 with y consecutive
characters deleted. The deletion starts with the character a~
position x.

INS$(s1,s2,x) Returns the contents of string s2 with string s1 inserted
inrnediately before the character which is at position x.

LEN(s1) Returns the length of the string s1.

?OS(s1,s2) Returns an integer which is equal to the position of the
first character in the first occurrence of the string s1 in the
string s2.

OTHER FUNCTIONS

ORD(s) Returns the ASCII value of the first character of the string s.

STR$(x) Returns the string containing the character associated with the ASCII
value x.

GET$ Reads a Single character from the keyboard without prompt or echoing,
and returns it as a .string. GET$ requires no arguments.

OLD(c,s)
N~~(c,s) c is a numeric constant without a fraction part, which becqmes

Page 86

associated with the disk file whose name is in s. OLD expects that
file to already exist, NE'tI creates a new one with the name s, remo'Jing
any previous file of that name. These functions must occur before
associated print or input statements. The numbers may not be
reassigned and must be in the range 1 •. 16. For best results, use only
at the top of a program. In order that a file created by NBN be
editable with either of the system editors, '.text' must be appended to
the file title.

These functions return IORESULT as described in section 2.1.

PROGRA~ING STATEMENTS

Arithmetic statem"ents and operations
, + subtract ,add

/ , * divide ,multiply
A ** exponentiation

Relational operators

INPUT list
or

INPUf lic list

=
<> ><
)

<
>= , =>
<= =<

equals
not equals
greater than
less than
greater than or equal
less than or equal

Inputs from the main system device, usually the keyboard. If the
optional #c is present, INPUT inputs from the disk file number
c. The input list may contain any combination of real variables and
string variables. When a program expects input the prompt "?" is
printed. Input of real nunbers may be terminated wi th any non-numeric
character. Input of strings must be terminated with a return.

PRINT list
or

PRINT #c list

Writes to the main output device the list following the PRINT command.
If the optional #c is present, PRINT outputs to the diskfile number c.
The output list ma~ contain any variable, subscripted array variable,
any arithmetic or string expression, or any literal text. The list may
be separated by commas or semi-colons. If the list ends in a semi-colon
the carriage return is suppressed. Literals may be enclosed in either
type of quotation marks. Double quotation marks' prints a single
quotation mark. " .

FOR var = exp1 TO exp2 STEP exp3

Page 87

NEXT var

Each execution of the loop increments the loop counter "var" by the
anount of expression 3. If the SlEP is omitted it is asslmed to be i.
Only increasing STEP values are allowed. Evaluation of l~its and
increments is done at the beginning of the loop. Note that R~URN's into
or GOTO' s into a FOR loop may cause the loop to be undefined.

IF exp1 (relation operator) exp2 THEN (line number)
GOTO

Either the reserved word THEN or GOTO can be usej in this statement. If
the relation between the exp1 and exp2 is found to be true the branch
occurs. A string is considered to be less than another string if it is
lexicographically smaller.

ON exp GOTO(ln1,ln2 •.)

If the expression, when rounded, evaluates to 1 it goes to the first
line number (ln1) if it evaluates to 2 it goes to ln2, etc. T.~is is the
only form of the computed GOTO which is aV3ilable. If the ex~ression is
out of range an error occurs.

DEF FNname(list)=~pression or DEF FNname(list)

FNEND

Single line and mUlti-line functions are allowable. The function name
must be a legal variable name 'for the type of value returned. Functions
may be defined recursively. The.parameter list is called by value, that
is, changes inside the function don't affect the value of the exter~al
par ameters •

LET var=exp
or

var=exp

This ccmnand assi.gns a new value to the variable. If the vari::bl: is ...
string, the expression must evaluate to a string, and if a real,
evaluation must be to a real.

DIM var (n 1 ,n2, •••)

A single or multidjrnensional array may be declared with this c~rrr.1and .•
The variable name determines the type of the array. The array i~dices
are 0 •• n1,0 •. n2, ••• Both real and string multid~ensional arrays can be
used. If no dimensions are declared the dimensions are assumed to be
0 •• 10, 0 •• 10, 0 •• 1, 0.~.1 ••• Th~ number of dimensions automatically
declared depends on the nLlllber,"of di'llensions which are used in the
program, but must be cons~stant over all uses of any given array.

Page 88

GOSUB linenumber

f£TURN

Executes a subroutine call. The calling address is placed on the
subroutine stack. Subroutine calls may be recursive.

Returns to the line after the last GOSUB which is still pending. It pops
the top address off the stack and uses it as the return address. A
return when no GOSUB's are pending is an error.

GOTO I inenumber

Program execution jumps to the given line number.

REM text

This line is a renark.

UNIQUE FEATURES OF UCSD BASIC

Arithmetic

For loops: Note that var=exp1 is done before exp2 or exp3 are evaluated.

Continuation of statements is allowed. Any line not beginning with a
line number is assumed to be the continuation of the line above.

Functions: All parameters of functions are call by value. You are not
allowed to use the parameters to return values from a function.
Function calls are allowed to be recursive.

Strings: The string functions and procedures are those found in the
UCSD Pascal language.

Arrays: Arrays of more than two dimensions are allowed.

Print: Tab stops are not allowed. All list elements are printed without
spaces between them. The carriage return can be suppressed by ";"
as the last symbol in the line.

Subroutines: Subroutines may be recursive.

Comments: In line comments may be inserted. The portion of any line
following the @ symbol is ignored by the compiler.

PASCAL FUNCTIONs: The code of PASC~~ FUNCTIONs may be added to the
BASIC compiler as new standard BASIC funct~ons. This is
accomplished by a straight-forward addition to the BftBIC compiler.

Page 89

FEATURES TO BE ADDED

Certain features of the UCSD Basic compiler are still in the
process of being ~plemented. !he most ~portant of these are listed
below.

Data and Read: The standard initialization statements.

Matrix statement for standard matrix operations.

Integer variables.

More standard functions.

RUNNING A BASIC PROGRAM

Create the BASIC program using one of the system text editors.
Once you have ensured that the BASIC compiler has been named
SYSTEM.COMPILER, you can use the commands C(ompile and R(un at the
COMMAND level, just as if you were using Pascal on a disk wnich has the
Pascal compiler as its SYSTEM.COMPILER. For a more detailed
description of COMMAND see Section 1.1.

Page go

************** ***************
* THE LINKER * * Section 1.8 *
************** f****f*********

Version 11.0 February 1979

The UCSD LINKER allows the user to combine pre-compiled files,
which may have been wr i tten either in PASCAL or in assem bly langu age,
into the system workfile. The user may wish to incorporate certain
useful routines into programs without having to rewrite or even
recompile these routines. For example, one might wish to use a fast
assembly language routine for some "real-time" application. This
routine could be assembled separately, stored in a library, and
eventually accessed via the LINKER.

To link in routines (either procedures or functions), the
calling program declares those routines to be EXTERNAL, much as
PROCEDURES or FUNCTIONS may be declared FORWARD (see Section 3.3.1).
This notifies the compiler that the routines may be called, but are
not provided yet. The compiler will inform the system that linking is
required .before execution.

The LINKER is also used to link in UNITs. A UNIT is a group of
related routines which will be used together to perform a c~on
task. UCSD TURTLEGRAPHICS is an example of a UNIT containing
procedures and functions with which a "turtle" can be moved on the
screen. A UNIT can be used by typing the reserved word USES
<unitname) directly after the PROGRAM <identifier). For more
information on UNITs, see Section 3.3.2.

Any files which reference UNITs or EXTERNAL routines and have
not yet been linked may be compiled and saved, but will need to be
linked before they can be executed.

1.8. 1 USING THE LINKER

If the program in the workfile contains EXTERNAL declarations,
or uses UNITs, typing R(un will automatically invoke the LINKER after
the compiler. The LINKER will search the file .SYSTEM.LIBRARY for the
routines or UNITs specified, and will link them into the workfile. If
the UNIT or EXTERNALly declared routine is not present in
*SYSTEM.LIBRARY, the LINKER will respond with an appropriate message:

Unit,
Proc,
Func,
Global,

or Public <identifier> undefined

Page 91

The LINKER may also· be invoked explicitly, and, in fact, must
be invoked explicitly in cases where

(1) the file into which UNITs or EXTERNAL routines are to be
linked is not the workfile, or

(2) the external routines to be linked reside in library files
other than *SYSTEM .UBRARY.

In order to explicitly invoke the LINKER, the user types 'L' at
Command level and receives the prompt:

Host file?

The hostfile is the file into which the routines or UNITs are to be
linked. !he LINKER appends .CODE to all file names typed in eKcept f~r
*<ret>. Typing a <ret> in response to the pr~pt ~auses the LINKER :~
use the w:>rkfile as the hostfile. The LINKER then asks for :he name(s)
of the library files in which the UNITs or EXTERNAL routines are to be
found:

Lib file? <codefile identifier>
Lib file? <codefile identifier>

Up to eight library files may be referenced. Typing ,*, in
response to a request for a libfile name will cause the LINKER to
reference *SYSTEM. UBR.~.RY. The user will be notified about each
library file that is successfully opened.

Example: Lib file? * <ret>
Opening *SYSTEM.LIBRARY

For information on LIBRARIES and the LIBRARIAN see Section 4.2.

~hen all relevant libfile names have been entered the user
must type <ret> to proceed. The L!NKER ~ill now prompt wi:h:

Map file? <file identifier> <ret>

The Ln~KER writes the map file to the file requested by the
user. Toe map file contains relevant LINKER it1fo regarding the link:.~g
process. Responding with <ret> to this prompt will suspend this opti~n.
Note that . TEXT is appended unless a '.' is the last letter of the
filename.

. The LI~KER now reads up all segments required to ~nable :'he
linking process. The user is now prompted to enter the destination
file for the linked code output (this will often be the same file name
as that of the host file).·· Linking will commence 9fter the <ret>
f~llowing the output file name ha~f been typed. An empty line, <ret>
only, causes the output file to be placed in the workfile e.g.
*SYSTEM.WRK.CODE.

Page 92

During the linking process the linker will report on all
segments being linked as well as all external routines being copied
into the output codefile. The linking process will be aborted if any
required segments or routines are missing or undefined. The user will
be informed of their absence with messages as described at the
beginning of this section.

1.8.2 LINKER CONVENTIONS AND IMPLEMENTATION

Codefiles may contain up to 16 segments. Block D of a codefile
contains information regarding name, kind, relative address and length
of each code segment. This information is called the segtable, and
is represented asa record:

RECORD
DISKINFO: ARRAY[D .• 15J OF

RECORD
CODELENG, CODEADDR:INTEGER

END;

SEGNAME: ARRAY[O .• 15] OF PACKED ARRAY[D .. 7] OF CHAR;

SEGKIND: ARRAY[D .. 15] OF (LINKED,HOSTSEG,SEGPROC,UNITSEG,
SEPRTSEG) ;

TEXTADDR : ARRAY [D • • 15 J Cf INTEGER;
END;

CODELENG and CODEADDR give, respectively, the length of the
code segment in bytes, and the block address of the code segment. A
description of SEGKINDs follows:

LINKED: The codesegment is fully executable. Either all external
references (UNITs or EXTERNALs) have been resolved, or
none were present.

HOSTSEG: the segkind assigned to the outer block of a PASCAL
program if the program has external references.

SEGPROC: the segkind assigned to a PASCAL segment procedure.

UNITSEG: the segkind assigned to a compiled SEGMENT. (see Se~tion
3.3. 1)

Page 93

SEPRTSEG: This segkind is assigned to a separately cOO1piled
procedure or function. Assembly language codefiles are
always of this type, as well as Pascal UNITs which are
not SEGMENT UNITs.

For an unlinked code segment (that is, a segment containing
unresolved external references) the compiler generates linker
infonnation. This information is a series of variable-length records,
one for each UNIT, routine or variable which is referenced in, but not
defined in the source. The first 8 words of each record contain the
following information:

LITYPES = (EOFMARK, UNIT REF , GLOBREF', PUBLREF, PRIVREF, CONSTREF,
GLOSDEF, PUBLDEF, CONSTDEF, EX!PROC, EXTFUNC, SEP?ROC,
SEPFUNC, SEPPREF, SEPFREF);

LIENTRY=RECORD
NAME: ALPHA;
CASE LITYPE: LITYPES OF

UNITREF,
GLOB REF ,
PUBLREF,
PRIVREF ,
SEPPREF,
SEPFREF ,
CDNSTREF:

(FORMAT: OFfORMAT;

NREFS: INTEGER;

NtiORDS: LCRANGE);
GLOBDEF: .

(format of lie~try.name can be
any of BIG, BYTE or WORD.)

(# of references to lientry.name in
compiled code segment)
(size of privates in wor·js)

(HOMEPROC: ?ROCRANGE; (which procedure it occurs i~)
ICOFFSET: ICRANGE); (byte offset in p-code)

PUBLDEF:
(3ASEOFFSET: LCRANGE); (compiler assigned word ~ffse~)

CONSTDEF:
(CONSTVAL: INTEGER); (users defined value)

EXTPRCC, EXTFUNC,
SEPPROC, SE?FUNC:

(SRCPROC: PROCRANGE; (procedure n~~ber in source segment)
NPARAMS: INTEGER); (number of paramete~s expected)

ECFMARK:
(NEXTBASELC: LCRANGE) (private var allocation info:i

END(lientry) ;

If the LITYPE is one of the first case variant, then following
this portion of the record is a list of pointe~s into the code
segment. Each of these pointers is .the absolute byte address withi~
the code segment of a reference to ··'the variable, UNIT or routine named
in the lientry. These are 8 word records, but only the first NREFs of
them are val id •

Page 94

*********************** ***************
* ADA PI' ABLE ASSEMBLER * * Section 1. 9 *
*********************** ***************

Version II. 0 February 1979

Users of UCSD Pascal occasionally need to write and execute
small assembly routines written in the larguage of the host machine.
These routihes would be used within a Pascal program to provide low
level or time critical facilities. The UCSD Adaptable Assembler (in
conjunction with the UCSD Linker) has been designed to meet those
needs. The UCSD Pascal Project will be maintaining all our Pascal
interpreters using this assembler in the near future. By this process
the users of the 'UCSD Pascal system will be independent of any
manufacturer's system software.

This assembler was modeled after The Last Assembler (TLA)
developed at the University of Waterloo. The basic concept behind
both the TLA and the UCSD Adaptable Assemblers is the use of a central
machine independent core that is canmon to all versions of the
assembler. This central core is augmented with machine specific code
to handle the peculiarities of each individual machine.

This document is intended for a reader who is already fluent in
at least one assembly language.

1. 9. 1 USAGE

Before attempting to execute the assembler program for a
specific machine, an opcodes file (Z80.0PCODES or 11.0PCODES) must be
located on the system disk. The errors file (Z80.ERRORS or 11.ERRORS)
contains the error messcges that are used for error flagging during the
assembly. This file is optional; if used, it must also appear on the
system disk.

To use the UCSD assembler, type A(ssem from the Command line.
This will execute SYSTEM.ASS~BLER. (The user should arrange that the
right version of the assembler (PDP-11 or Z80) have that title.)

The program displays, the version of the asssembler being
executed and assumes that the current workfile is the one to be
assembled; If there is no current workfile then the program asks which
file is to be assembled.

The next prompt line is:

Page 95

Output file for the assembled listing (<CR> for none):

As usual for a console or printer output the words CONSOLE or
PRINTER must be followed by a colon, i.e. CONSOLE:. If the colon is
neglected the output is sent to a file of the name given. At this
point, the program reports whether or not the·output device (if any) is
on line. The assembled code is written out to a file called
*SYSTEM.WRK.CODE which cannot be executed by itself but must be changed
to link in with a host file.

The program then starts assembling the workfile, flagging
errors as they are found. If an a error, other than an 1/0
error, is found, a general message indicates the nature of the error
and also gives the option to continue or exit. The error message will

·.ge taken fran the ERRORS file if possible. If that is not possible, due
to space l~itations or the absence of the errors file, the error
message number is given. The assembly is aborted if the IIO error
encountered is not due to data typed in by the user, otherwise the user
is prompted to try again. (See the complete list of Assembler syntax
errors and machine specific errors in Table 6.)

The console displays, on the left hand side of the screen, one
dot for each line of code assembled and a line counter every 50 lines.

When an include file is started, the console displays:

• I NCLUr:e: <FILE, ID>

indicating which file has been included.

At the end of the assembly the assembler program indicates that
it is finished and tells the user how many errors were found. In
addition an alphabetic symbol table is' generated.

The reference symbol table consists of three parts. The first
column represents the symbol identifier, the second, the symbol type,
and the third, the location that it is defined or the value it has.
Actual values are given for the symbols representing absolutes and
definition locations are given for the symbols representing labels.
The location number is given as a hi-byte first number and corresponds
to the index numbers on the left hand side of the listing. Only symbols
which have definition locations or absolute values have numbers in the
third column; other types have dashes.

table.
Following is an example of an assembled listing IHi th symbo 1

Page 96

Page 97

Pa.ge. l'!Umbe.,ung e.,'V'tOJt... e.d.

Page 98

PAGE - 1 PRIMAR yz FILE: 115: PRIMAR Y. Z

0000: • PROC PRIMARYl
Memory after initialization: 6068
0000:
0000'
0000
0000
0000
0000
0000
DODO.
0000:
1000:
1000 1 FD 21 ****
1004 CD FDOB
1001 FD 21 ****
100B CD FDOB
100E FD 21 ****
1012 CD FOOB
1015 C3 0090
1018
1002* 1810
1018:
1018: 00
1019: OA
101A: 0090
101C 0002
101E 0000
1020 0010
1022 00
1023 0817
1025
1009* 2510
1025 :
1025: 00
1026: OA
1027: 0093
1029: 0002
102B: 0000
102D: 0010
102f: 00
1030: 1017
1032:
1010* 3210
1032:
1032: 00
1033: OA
1034: 0095
1036: 0002
1038: 0000
103A1 0010
103C: 00
1030: 1811
103F1
103F:

FLOPPY .EQU OBFIl-l
SECMEM .E~ 9000H
SECENT .EQU 9000H
SECIlSK .EQU OBH + 170a;
B1DSK .EQU HE + 1700H
B2DSK .EQU 18H + 17000

.ORG 1000H

PRIMARY LD IY,SECREAD

SECREAD

B1READ

B2READ

CALL FLOPPY
LD IY,B1READ
CALL FLOPPY
LD IY,B2READ
CALL FLOPPY
JP SECENT

.BYTE $-$
• BYTE OAH
.WORD SECMEN
.WORD 200H
.WORD $-$
.WORD PRIMARY
.BYTE $-$
.WORD SECDSK

.BYTE $-$
.BYTE OAH
.WORD SECMEN+300H
.WORD 200H
.WORD $-$
· WORD PR IMARY
.BYTE $-$
.WORD B1DSK

.BYTE $-$

.BYTE OAH
• WORD SECMEN+50OH
.WORD 200H
.WORD $-$
.WORD PRIMARY

... BYlE $-$
.WORD S;mSK

• END

jRom-based floopy driver.
jFirst location in memory
;Entry point of bootstrap
jSector start of 2nd bootstrap
jSector start of BIOS part 1
;Sector start of BIOS part 2

j Pr imar y boo t for Z ILOG IDS

;Get block for second bootstrap

;Get block for part 1 of BIOS

;Get block for part 2 of BIOS

jJump into second bootstrap

; Unused
; Re ad command
;Memory loc. for second boot
;Number of bytes in boot
;Completion return address
;Error in return address
;Completion result code
jDisk block of second boot

; Unused
jRead conrnand
jMemory location or BIOS part
;Number of bytes in BIOS part
;Completion return address
;Error return address
;Completion result code
jDisk block of BIOS part

; Unused
jRead command
;Memory location of BIOS part 2
;Number of bytes in BIOS part 2
;Completion return address
;Error return address
;Completion result code
jDisk block of BIOS part 2

Page 99

PAGE- 2 PRn-1ARYZ FILE: 115: PRIMARY.Z SYMBOLTA8LE DUMP

AS - Absolute LB - Label UD - Undefined MC - Macro
RF - Ref IF - De! PR - Froc FC - Func
PB - Public PV - Private CS - Constant

B1DSK
FLOPPY
SECENT

AB 1710 I B 1 READ
A8 OBFDI PRIMARY
AS 9000: SEQv1EM

NOTES:

La 1025:
La 1000:
AS 9000:

B2DSK AS 1718: B2READ
PRIMARYZ P R ---: SECDSK
SEC READ LB 1018:

The location values in the s~bol table dump refer to the
locations in the listing.

The ****'s in the listing call attention to the use of a label
not yet defined.

LB 1032:
AS 1708:

If a star (*) appears after the location number at the left of
the listing, it indicates that a forward reference occurring earlier in
the assembly has been reso 1 ved • The nlnber to the 1 eft 0 f the '* , is
the location where the reference occurred while the number to the right
is the new contents of that location.

1.9.2 HIGH-LEVEL SYNTAX

All objects declared before the first .PROC or .FUNe are
available for use throughout the assembly. No code is allowed to be
generated before the first .PRce or .FUNC. The symbol table is reduced
at the beginning of each .PROC or .FUNC to the point where it was at
the start of the first .PROC or .FUNC.

Only labels may begin in the first column and may optionally
be followed by a colon. Local labels must have '$' in the first
column and may be up to 8 digits long. If the statement has no label,
the first column_ must contain a space.

All assemblies must end with a .END. However each .?ROC or
.FUNC need not because they are ended by the occurrence of the next
.PROC or .FUNe. Only the last one needs a .END.

A general railroad diagram for all assembly files looks like:

Page 100

~ .PROC h

a.ny non-code
~enera.ltn~ 7' ~

opera.t.tor'ls

"--* .FU~C ~

I

f
J

I c:ode genera.t.ln

1

opera. t.t ot'\s a.n~
dtrec:ttves

t----..--.... END

J

The non-code generating operations are:

.EQU, .DEF, .REF, • PAGE, .TITLE, .LIST, .MACRO, .IF

The code generating operations are any other pseudo-ops and all
assembly code for the program.

1.9.3 E~RESSIONS (one-pass restrictions)

Since the Adaptable Assembler makes only one pass through the
source, something must be assumed (upon encountering an undefined
identifier in an expression) about the nature of the identifier in
order for the "assembly to continue. It is therefore assumed that the
undefined identifier will eventually be defined as a label, which is
the most probable case. Any identifier which is not a label must be "
defined before it is used.

Labels may be equated to an expression containing either labels and/or
absolutes. One must define a label before it is used unless it will
stmply be equated to another label. Local labels may not occur on the
left hand side of an equate (.EQU).

Local labels are mainly used to jump around within a small
segment of code without having to use up storage area needed by regular
labels. The local label stack may hold up to 21 labels. These are cut
back every ti~e upon encountering a regular label and are thus rendered
invalid. An example of the use of local labels is shown below, the
jump to label $04 being illegal.

Page 101

$03 STA 4

JP NZ, $03

JP NZ,$04
REAL LAB .EQU $

$04 .EQU $

;LEGAL USE r::E LOCAL LABEL

; ILLEGAL USE CF LOCAL· LABEL

Identifiers are character strings starting with an alpha
character. Other characters must be alphanumeric or the ASCII
underline C'_'). Only the first 8 characters are meaningful to the
assembler even toough more may be entered.

The following operators can be used in expressions processed
by this assembler.

For unary operations:
,+, plus
'-' minus
,-, ones complement

For binary operations:
,+, plus
'-' minus
,A, exclusive or
'*' multiplication
'I' truncating division (DIV)
'~, remainder division (MOD)
, : ' bit wise OR
'&' bit wise AND
':' equal (valid only in .IF)
,<>, not equal (valid only in .IF)

All constants must start with an integer 0-9.
All operations are applied to whole words.

The defaul t radix is Hex for the Z80 version and Octal for the ?GP-11.

1.9.4 ASSEMBLER DIRECTIVES: OVERVIEW

Assembler directives (also referred to as "pseudo-ops") allow
the programmer to instruct the assembler to do various functions other
than provide direct executable code. The following directives are
common to all UCSD versions but may differ from manufacturer's standard
syntax.

Page 102

In the following pseudo-op descriptions square brackets, [],
are used to denote optional elements. If an element type is not
listed it cannot be used in that situation. Angle brackets,<>, denote
meta symbols.

For example: [label] • ASCII "<charcater string>"
indicates that a label may be given but is not necessary
and that between the double quotes must go the character
string to be converted (not necessarily the words
"character string").

The following terms represent general concepts in the
explanation of each directive:

. value = any nunerical value, label, constant, expression.

valuelist = is a list of one or more values separated by commas.

idlist = a list of one or more identifiers separated by commas.

expression = any legal.expression as defined in Section 1.9.3.

identifier:integer list = a list of one or more identifier-integer
pairs seperated by commas. The
COlon-integer is optional in each pair
and the default is 1.

Small examples are included after each pseudo-op definition to
supply the user with a reference to the specific syntax and form of
that directive. The larger example, included in section 3.3.2, is used
to show the combined use and detailed examples of directive operations.

1.9.4.1 DELIMITING DIRECTIVE FOR ROUTINES

Every assembly must include at least one .PROC or .FUNC, and
one .END, even in the case of stand-alone code which will not be linked
into a Pascal host(i.e. an interpreter). The most frequent use of the
assembler, however, will be small routines intended to be linked with a
Pascal host. In this case, • PRCCs and .FUNCs are used to identify and
delimit. the : assembly code to be accessed by a Pasc al external procedure
or function.· . The . END appears at the end of the last routine and
serves as the final delimiter.

References to a .PROC or .FUNC are made in the Pascal host by
use of EXTERNAL declarations. At the time of this declaration the
actual paraneter names must be giv,en. For example, if the Pascal
declaration is:

Page 103

ffiOCEDURE FARI<I..E(X, Y:RFAL) jEXTERNAL;

the associated declaration for the .PROC would be

. PRCC FARI<I..E, 4

A • PRCC, . FUNC, or any assembly routine shoul d be inserted into
the *SYSTEM. LIBRARY (execute LIBRAR IAN) so that it can be re ferenc ed by
the .SYSTEM.UNKER and linked in at rll'l time. An alternate method would
be to execute the LINKER and tell it what files to link in. Either
method works. However, if the Pascal host is updated and the assembly
routines aren't in the *SYSTEM. LIBRARY, the linker will have to be
executed after each update. Therefore, we suggest that the routines be
inserted into the .SYSTEM.LIBRARY to avoid this repetition. If the
linker is called automatically using the Run command, it will search
the *SYSTEM. LIBRARY for the appropriate definition of the assembly
routine and link the two together •

• FROG Identifies a procedure that returns no value. A .PROC is
ended by the occurrence of a new .PROC,.FUNC, or .END •

.FUNC

FORM:

EXAMPLE:

• PROC <identifier>[,expression]

[expression] indicates the number of words
of parameters expected by this routine.
The default is O.

.FROC DLDRIVE,2

Identifies a function that returns a value. Two words of
space to be used for the function value will be placed on
the stack after any parameters. A .FUNC is ended the same
way as the .PROC.

FO~~: . FUNC <identifier>[,expression]

EXAMPLE:

[expression] indicates the number of wo;~s
of parameters expected by this routine.
The default is O.

. FUNC RANOCM,4

• END Used to denote the physical end of an assembly.

1.9.4.2 LABEL DEfINITIONS AND SPACE ALLOCATION DI~ECTIVES

.ASCII Converts character values to ASCII equivalent byte

Page 104

constants and places the equivalents into the code stream.

FORM:

EXAMPLE :

[label] .ASCII "<character strinOg>"
where <character string> is any string of printable
ASCII characters, including a space. The length
of the string must less than 80 characters. The
double quotes are used as delimeters for the
characters to be converted. If a double quote is
desired in the string, it must be specifically
inserted using a .BYTE .

• ASCII "HELLO"

for the insertion of AB"CD the code must be
construe ted as:

• ASCII
• BYTE
.ASCII

" AB"
34

"CD"
42 octal

Note: The 34 is the ASCII nLltlber for a double quote in hex.
The representation actually used will depend on the default.
radix of the particular machine in use .

• BYTE Allocates a byte of space into the code stream for each
value listed. Assigns the associated label, if any, to the
address at which the byte was stored. Expression must
have a value between -128 and +255. If the value is
outside of this range an error will be flagged.

. BLOCK

FORM: (label] .BYTE [valuelist]

the default for no stated value is O.

EXAMPLE: TEl-1P .BYTE 4

the associated output would be: 04

Allocates a block of space into code stream for each value
listed. Amount allocated is in bytes. Associates the label
(if present) ° with the starting address of the block
allocated •

FORM: (label] . BLOCK <length>[,value]

Page 105

.WCRD

(length) is the the number of bytes to hold the <value>
specified. The defaul t for no stated value is o.

EXAMPLE: TEMP .BLOCK 4, 6

the associated output would be:
06
06 (four bytes with the value 06
06
06

Allocates a word of space in the code stream for each value
in the valuelist. Associates the declaration label with
the word space allocation.

FORM: (label] .WORD <valuelist>

EXAMPLE: TEMP .WORD 0,2,4, •..

the associated output would be:
0000
0002
0004 (words with these values in them)

EXAMPLE: L 1 .WORD ·L2

L2 .EQU $ $ represents the LC on the Z80
.WORD 5.

if LC was 50 at the .EQU
the associated output would be:

0050 (* assignment due to t~ L2 value *)

0005 (* assignment due to the .WORD 5 *)

.EQU Assigns a value to a label. Labels may be equated to an
expression contai'ning ei~er lables and/or absolutes. One
must define a label before it is used unless it will si~ply
be equated to another label. A local label may not appe~r
on the left hand side of an equate (.EQU). .

Page 106

FORM: <label>

EXAMPLE: BASE

.ECU

.EQU

<value>

R6

.ORG Sets the current location counter (LC) to the value of the
.ORG. It would normally be used in a stand-alone program.
For example, there is one .ORG in the 8080/Z80 interpreter.
The current implementation allows one to .ORG only in the
forward direction.

1.9.4.3 MACRO FACILITY DIRECTIVES

A macro is a named section of text that can be defined once and
repeated in other places simply by using its name. The text of the
macro may be parameterized, so that each invocation results in a
different version of the macro contents. The parameters to the macro
are separated by commas.

At the invocation point, the macro name is followed by a list
of parameters which are delimited by commas or spaces (except for the
last one, which is terminated by end of line or the comment indication
(';'». At invocation time, the text of the macro is inserted
(conceptually speaking) by the assembler after being modified by
parameter substitution. Whenever %n (where n is a single decimal digit
greater that zero) occurs in the macro definition, the text of the nth
parameter is substituted. Leading and trailing blanks are stripped
from the parameter before the substitution. If a reference occurs in
the macro definition to a parameter not provided in a particular
invocation, a null string is substituted.

A .mac ro .~~nition may not co~t~!:.fl._.§'~19~h~r~.~rTl§"9.rQ,_.ft~f.ini t~Q~t. A
definition can certafnry~~nowever, lrlclude macro invocations. This
"nesting" of macro invocations is limited to five levels deep.

The expanded macro is always included in the listing file (if
listing is enabled at the point of invocation). Macro expansion text
is flagged, in the listing, by a 'n' just left of each expanded line.
Comments occurring in the macro definition are not repeated in the
expansion •

• MACRO Indicates the start of a macro and gives it an identifier.

• ENrM Indicates the end point ~f a MACRO •

Page 107

1 .9.4.4

FOR-1 :

EXAMPLE:

.MACRO <identifier>

(macro bod y)

• ENIl1

.MACRO HELP
STA S1
LDA S2

.ENI:t-1

< comment >
< conment >

The listing where the macro call is made may look like:

I£LP FIRST ,SECOND
STA FIRST
lOA SECOND

The statement HELP, calls the macro and sends it two
parameters, FIRST and SECOND. These parameters are in turn
referenced inside the macro using the identifiers $1 for the
variable FIRST, and ~2 for the variable SECOND.

CONDITIONAL ASSEMBLy DIRECTIVE S

Conditionals are used to selectively exclude or include
sections of code at assembly t~e. When the assembler encounters an
.IF directive, it evaluates the associated expression. In the sDnplest
case, if the expression is false, the assembler simply discards the
text until a .ENDC is reached. If there is an .ELSE directive between
the .IF and .ENDC directives, the text before the .ELSE is selected if
the expression is true, and the text after the .ELSE if the condition
is false. The unassembled part of the conditional will not be
included in any listing. Conditionals may be nested.

The conditional expression takes one of two forms. The first
is the normal arithmetic/logical expression used elsewhere in the
assembler. This type of expression is considered false if it
evaluates to zero; true otherwise. The second form of conditional
expression is comparison for equality or inequality (indicated by':'
and '<>', respectively). One may compare strings, characters, or
arithmetic/logical expressions •

• IF

.ENOC

• ElSE

Identifies the beginning of the conditional.

Identifies the end of a conditional .IF

Identifies the 'a-lternat~' to the . IF. If the conditional
expression is egual to 0 then the else is used.

Page 108

FORM: [label] .IF <expression)

• ELSE (* only if there is an else *)

.ENDC

where the expression is the conditional expression to be met.

EXAMPLE: .IF LABEL1-LABEL2 ;arithmetic expression
Th is text assembled only if subtraction
result is~rrQ~ zero

.IF "%1" ="STUFF" ;comparison expression
; This text assembled if subtraction above
; was true and if text of first parameter
; (assune we are in macro) is equal to "S7UFF"

.ENDC ;terminate nested condo

.ELSE
, This text assembled if subtraction result
; was zero

.ENOC ;terminate outer level
;condi tional

1.9.4.5 PASCAL HOST COMMUNICATION DIRECTIVES

The directives .CONST, .PUBLIC, and .PRIVATE allow the sharing
of infonmation and data space between an assembly routine and a Pascal
host. These external references must eventually be resolved by the
Linker. Refer to Section 1.8 Linker, for further details.

.CONST Allows access of globally declared constants in the PASCAL host
by the assembly routine •• CONST can only be used in a program
to replace 16 bit relocatable objects.

Page 109

.PUBUC

FO~: .CONST <idlist>

EXAMPLE: (* see example after . PRIVATE *)

Allows a variable declared in the global data segment of
the PASCAL host to be used by an assembly language routine
and the host progran.

FORM: • PUBLIC <idlist>

EXAMPLE: (* see exanple after .PRIVATE *)

• PRIVATE Allows variables of the assembly routine to be stored in the
global data segment and yet be inaccessable to the Pascal host.
These variables retain their values for the entire execution of
the pr og ran .

FORM:

EXAMPLE:

.PRIVATE <identifier:integer list)

the integer is used to communicate the number of
words to be allocated to the identifier.

(* for • CaNST, • PRIVATE, .PUBLIC *)

Given the following Pascal host program:

PROGRAM EXAMPLE;
CaNST SETSIZE=50; LENGTH=80;

VAR I,J,F,HOLD,COUNTER,LDC:INTEGER;
LSTi:ARRAY[O •• 9] OF CHAR;

BEGIN

END.

and the following section of an assembly routine:

.CONST
• PRIVATE
• PUBLIC

Lt'NGTH
PRT,LST2:9
LDC,I,J

This will allow the const LENGTH to be used in the assembly
routine almost as if the line LENGTH .EQU 80 had been
written. (Recall the limitation mentioned above for the use
.CONST identifiers.) roe variables LDC,I,J to be used by both
the Pascal host and the assembly routine, am the variables
PRT,. LST2 to be used only by the assembly routine. Further,

Page 110

1.9.4.6

the LST2:9 causes the variable LST2 to correspond with the
beginning of a 9 word block of space in the global data
segment.

EXTERNAL REFERENCE DIRECTIVES

The use of .DEF and .REF is similar to that of .PUBLIC .. DEFs
and .REFs associate labels between assembly language routines rather
than between an assembly routine and a Pascal host program. Just as
with .PRIVATE and .PUBLIC, these external references must eventually be
resolved by the Linker. If such resolution cannot be accomplished, the
Linker will indicate the offending label. Naturally, the assembler
cannot be expected to flag .these errors,. since it has no knowledge of
other assemblies .

• DEF Identifies a label that is defined in the current routine
and available to be used in other • PROCs or .FUNCs.

FORM: .DEF <identifierlist>

EXAMPLE: (* see listing in section 3.3.2.3 for example *)

• REF Identifies a label used in this routine which has been
declared in an external .PROC or .FUNC with a .DEF.
During the linking process, corresponding .DEFs and .REFs
are matched.

FORM: .REF <identifierlist>

EXAMPLE: (* see listing in sectiqn 3.3.2.3 for example *)

Note: The .PROC and the .FUNC directive also generates
a .DEF with the sane name. This allows assembly
procedures to call .PROC and .FUNCs if they have
been defined in a .REF.

1.9.4.1 LISTING CONTROL DIRECTIVES

If no listing output file is specified then all .LIST and
• NOLIS! directives. are simply ignored.

• LIST
&
• NOLIST

Allows selective listing of assembly routines .
If no output file is declared then the default is CONSOLE:
when a .LIST is encountered. The .NOLIST is used to turn off
the . LIST option. Listing may be turned on and off repeatedly
within an assembly.

Page 111

• PAGE

FORM: • UST or • NOLIST

Allows the programmer to explicitly ask for top of form
page breaks in the listing .

FO~: • PAGE

The title is only cleared at the start of the file. In
section 1.9.1 the title SYMBOLTABLE DUMP was not set by a .TITLE
directive. That heading is always used on pages containing
symboltable dunps. Upon assembling a further procedure the heading
printed returns to what it was before the symboltable dunp .

• TITLE· Allows the titling of each page if desired. The title may be up
to 80 characters in length. At the start of each procedure the
titl~ is set to blanks and must be reset if title is desired.
The title,

INTERP SYMBOLTABLE DUMP

shown in Section 1.9.' ~s caused by a . TITLE directive.

FORM .TITLE <title>
where <title> is a string

EXAMPLE • TITLE QRC 12 in terpret er

1.9.4.8 FTI.E DIRECTIVES

• INCLUDE Causes the indicated source file to be included at that point.

FORM: .INCLUDE <file identifier. TEXT> where the file
identifier is any file to be included. Only spaces
are'allowed between the end of the file name and the
end of the Include line .

CORRECT EXAMPLE:

C CR RECT EXAMPLE:

. INCLUDE SHORTSTART.TEXT

.INCLUDE SHORTSTART.TEXT
; calls starter

IN-OORRECT EXAMPLE: .INCLUDE SHORTSTART.TEXT calls starter

For a list of general errors and also notes on the Z80 and PCP-11 based
machines see Table 6.

machines see Table 6.

Page 112

WARNING

********************* ***************
* SYSTEM INTRINSICS * * Section 2.1 *
********************* ***************

Version 11.0 February 1979

Most of the UCSD intrinsics assume that users are fluent in the
use of PASCAL and are experienced in the use of the system. Any
necessary range or validity checks are the responsibility of the user.
Since some.of these intrinsics do no checking for range validity, they
may easily cause the· system to die a horrible death. Those intrinsics
which are particularily dangerous are noted as such in their
descr.iptions. _.

PARAMETERS

Required parameters are listed along with the function/procedure
identifier. Optional parameters are in [square brackets]. The
default values for these are in {metabrackets} on the line below
them.

Following are some definitions of terms used in these documents.
They tend to take the place .of formal parameters .in the dunmy
declaration headers that preface each description of a particular
routine, or set of routines.
ARRAY a PACKED ARRAY OF CHARacters
BLOCK one disk block, {512 bytes}
BLOCKS an INTEGER nunb~r of blocks
BLOCKNUMBER an absolute disk block address
BOOLEAN any BOOLEAN value
CHARACTER any expression which evaluates to a character
DESTINATION a PACKED ARRAY OF CHA Racters to wr i te into or

EXPRESSION
FlLEID

INDEX

NUMBER

RELBLOCK

SIMPL VAR IABLE .

a STRING, context dependent
part or all of an expression, to be specified
a file identifier, must be

VAR fileid: FILE Of <type>;
or TEXT;
or INTERACTIVE;
or FILE;

an index into a STRING or PACKED ARRAY OF CHARacters,
context dependent or as specified.

a literal or identifier whose type is either INTEGER
or REAL.

a relative disk block address, relative to the start
of the file in context, the first block being
block zero.

any declared PA$C~L variable which is of one 0 f the
following TYPEs·:

BOOLEAN CHAR REAL STRING

Pa.g u 11 3 and 114 - - nwnbe,ung eJr.JtOft.... ed.
Page 115

SIZE

SOURCE

SCREEN
STRING

TITLE
UNITNUMBER

VOLID

or PACKED ARRAY [••] OF CHAR
: an INTEGER n\.lJlber of bytes or characters; any

integer value
a STRING or PACKED ARRAY OF CHARacters to be used

~s a read-only array, context dependent or as
specified. In the case of string intrinsics, it
must be STRING.

an array 9600 bytes long; or as needed.
any STRING, eall-by-value unless otherwise specified,

i.e. may be a quoted string, or string variable
or function which evaluates to a STRING

a STRING consisting of a file name
physical device number used to determine device

handler used by the interpreter
a volume identifier, STRING(7J

P~e 116

********************* *****************
* STRING INTRINSICS * * Section 2.1.1 *
********************* *****************

Version II.O February 1979
FUNCTION LENGTH (STRING) : INTEGER·

Returns the integer value of the length of the STRING.

Example:

GEESTRING := '1234567';
WRITELN(LENGTH(GEESTRING),' ',LENGTH("»;

Will print:

7 0

FUNCTION POS (STRING , SOURCE) : INTEGER

This function.returns the position of the first occurrence of
the pattern in SOURCE to be scanned. The INTEGER value of the position
of the first character in the matched pattern will be returned; or if
the pattern was .not found, zero will be returned. Example:

S'IUFF : = 'TAKE THE BOTTLE WITH A METAL CAP';
PATTERN := 'TAL';
WRITELN(POS(PATTERN,STUFF));

Will print:

26

FUNCTION CONCAT (SOURCEs) : STRING

There may be any number of source strings separated by commas.

Thfs function returns a string which is the concatenation of
all the strings passed to it. Example:

SHORTSTRING := 'THIS IS A STRING';
LONGSTRING := 'THIS IS A VERY LONG STRING. ';
LONGSTRING : = CONCAT('START " SHORTSTRING, '-' , LONGSTRING) ;
WRITELN(LONGSTRING);

Will print:

Page 117

Sl'ART THIS IS A STRING-THIS IS A VERY LONG STRliJG.

FUNCTION COPY (SOURCE , INDEX , SIZE) : STRING

This function returns a string containing SIZE characters
copied from SOURCE starting at the INDEXth position in SOURCE.
Example:

TL := 'KEEP SOMETHING HERE';
WRITELN (KEPT);

KEPT : = COpy (TL, PCS(1 S ' , n..) ,9) ;

Will print:

SCl-1ETHI NG

PROCEDURE tELETE (DESTINATION , INIEX , SIZE)

This procedure removes SIZE characters from DESTINATION
starting at the INDEX specified. Example:

OVERS'IUFFED : = 'THIS STRING HAS FAR TOO MANY CHARACTERS IN
CELETE (OVERSTUFFED, PCS ('HAS' ,OVERST-uFFED). 3,8) ;
WRITELN(OVERSTUFFED) ;

Will print:

THlS STRING HAS MANY CHARACTERS IN IT.

PROCEDURE INSERT (SOURCE , DESTINATION , INDEX)

T"!" , •
... .1.. ,

This inserts SOURCE into DESTINATION at the INDEXth position in
DESTINATION.

Example:

ID := 'INSERTIONS';
MORE := ' DEMONSTRATE';
DELETE(MORE,LENGTH{MORE),1);
INSERT(MORE,ID,PCS('IO',ID»;
WRITELN(ID);

Will print:

lNSERT DEMONSTRATIONS

PROCEDURE STR (LONG , DESTINATION)

Page 118

1his converts the long integer LONG into a string. The
resulting string is placed in DESTINATION. See section 3.3.3 for more
about the use of long integers.

Example:

INTLONG := 102039503;
STR(INTLONG,INTSTRING);
INSERT('.' ,INTSTRING,PRED(LENGTH(INTSTRING»);
WRITELN ('$' ,INTSTRIt{;) ;

Will.print:

$1020395.03

Note about using strings and string functions:

In order to maintain the integrity of the LENGTH of a string,
only string functions or full string assignments should be used to
alter strings.. Moves and/or Single character assignments do not affect
the length of a string which means it probably becomes wrong. The
individual elements of STRING are of type CHAR and may be lndexed
1 •• LENGTH(STRING).. Accessing the string outside this range will have
unpredictable results if range-checking is off or cause a run-time
error (1) if range checking is on.

Page 119

-- Notes --

Page 120

******************************* *******1*********
* INPUT AND ourpur INTRINSICS * * Section 2.1.2 *
******************************* *****************

Version 1.5 September 1978

PROCEDURE RESET (FILEID [, TITLE]);
PROCEDURE REWRITE (FlLEID, TITLE);

These procedures open files for reading and wTiting and mark the
file as open. The FlLEID may be any PASCAL structured file as
defined in Section 2.1, and the TITLE is a string containing any legal
file title as defined in Section 1.2 Figure 2.

The difference between them is that REWRITE creates a new file on
disk for output files; RESET marks an already existing file open for
I/O. (Note: if the device specified in the title is a non- directory
structured device, e.g. PRINTER: , then the file is opened for input,
output, or both in either case.) If the file was already open, and
another RESET or REWRITE is attempted to it, an error will be returned
in IORESULT. The file's state will remain unchanged.

RESET (FILEID) without optional string parameter "rewinds" the
file by setting the file ~inter s back to the beginning (zer~ th
record) of the file. The boolean functions ECf and EOLN are set by
the ~plied GET in RESET.

These procedures behave differently with files of type
INTERACTIVE. RESET on files of types other than INTERACTIVE will do
an initial GET to the file, setting the windol,oJ variable to the first
record in the file (as described in Jensen & Wirth). RESET on a file
of type INTERACTIVE will not do an initial GET.

Note that RESETting a file to an output only device, such as the
lineprinter may cause an non-zero IORESULT as a result of the implied
GET caused by t~e RESET.

PROCEDURE UNITREAD (1JN!TNU:~BER, ARRAY, LENGTH, [BLOCKNUMBER], [INTEGER]);
PROCEDURE UNI1WRITE (UNITNtJMBER, ARRAY, LENGTH, [BLCCKNU~1BER], [INTEGER]);

{ sequential } { 0 }

THESE ARE DANGEROUS INTRINSICS

These procedures are the low-level procedures which do liDs to
various devices. The UNITNUMBER is the integer name of an 1/0 device.
Unitnumber is the index into the physical device table, Table 3
describes these numbers. The AR~Y is any declared packed array,
which may be subscripted toindicat~ a starting position some machines
may be sensitive to having the starting position be on a word
boundary. This is used as the starting address to do the transfers
fromVto. The LENGTH is an integer value designating the number of

Page 121

bytes to transfer. The BLOCKNLMBER is required only when using a
block-structured device (i.e. a disk) and is the absolute blo~knumber
at which the transfer will start from/to. If the BLOCKNUMBER is left
out, a is assumed. The INTEGER value is optional (assumed 0) and
irxiicates (if 1) that the transfer is to be done asynchronously. T.'1e
blocknumber is not necessary. A', ,INTEGER' will be sufficient.
(See UNITBUSY and UNITWAIT.)

FUNCTION UNITBUSY (UNITNUMBER) : BOOLEAN;

This function returns a BOOLEAN value, indicating if TRUE that
the device specified is waiting for an I/O transfer to complete.

Example:
UNITREAD(2{non-echoing keyboard} ,CH[O],

1 {for one character}, {no block no.},l{asynchr~nous});
WHILE UNITBUSY(2){While the READ has not been completed:)0

WRITEL~ (OtJrPtJr, 'I am waiting for you to type somethlr~g 1 ~ ;

WRITELN(OUTPUT,'Thank you for typing a ',CH[O]);

Execution of this example will continuously type out the line
'! am waiting for you to type something' until ~ character is struck or.
the keyboard. Suppose a '!' were typed. ?le message '7~ank you :')!.

typing a !' will then appear, and program ~xecution will proceed
normally.

Currently implemented only on DEC computers.

PROCEDURE UNI1WAIT (U NITNUM8ER);

This waits for the specified device to complete the 1/0 i~
progress. It can be simulated by:

NHlLE UNITBUSY(n) DO {waste 3 small =mount of time!;

Currently :mplemented only on DEC ~ompute!"'s .

PROCEDURE UNITCLEAR (UNITNL~BER);

UNITCLEAR cancels all I/Os to the specified unit anc :-::sets "!";'2

hardware to its power-up state. Sets !ORESULT non-zero if un i ~ is ~r,:
present.

Fage 122

FUNCTION BLOCKREAD (FILEID, ARRAY, BLOCKS, [RELBLOCK]) INTEGER;
FUNCTION BLOC~IlRITE (FlLEID, ARRAY, BLOCKS, [RELBLOCK]) INTEGER;

{ sequential }

These functions return an INTEGER value equal to the numbe: of
blocks of data actually transferred. The FILE must be an untyp~ fil~
(i.e. FILEID: FILE;). The length of ARRAY should be an integer
multiple of 512. ARRAY may be indexed to indicate a starting position
in the array, however care must be taken as some machines may be
sensitive to having the I/O take place to a word boundary. BLOCKS is
the number of blocks you want transferred. RELBLOCK is the blocknumber
relative to the start of the file, the zeroeth block being the first
block in the file. If no RELBLOCK is specified, the reads/writes will
be done sequentially. Specifying RELBLOCK for an I/O moves the file
pointers. CAUTION should be exercised when using these, as the array
bounds are not heeded. EOF(FlLEID) becomes true when the last block in
a file is read.

PROCEDURE CLOSE (FlLEID OPTION);

OPTION may be null or " LOCK', or " NORMAL', or' PURGE', or
',CRUNCH'. (Note the commas!)

If OPTION is null then a NORMAL close is done, i.e. CLOSE
simply sets the file state to closed. If the file was opened using
REWRITE and is a disk file, it is deleted from the directory.

The LOCK option will cause the disk file associated with the
FILEID to be made permanent in the directory if the file is on a
directory-structured device and the file was opened with a REwRITE;
otherwise a NORMAL close is done.

The PURGE option will delete the TITLE associated with the
FILEID fran the directory. The un.it will go off-line if the device is
not block structured.

The CRUNCH option LOCKs the file to the point of last access.
i.e. the position of the last GET or PUT to the file is where the file
will end.

All CLOSEs regardless of the option will mark the file closed
and will make the implicit variable FILEID undefined. CLOSE on a
CLOSEed file causes no action.

FUNCTION EOF (FILEID) : BOOLEAN;
FUNCTION EOLN (FILEID) : BOOLEAN;

If (FILEID) is not present, the fileid INPUT is assumed (e.g.
IF EOF THEN •••). EOLN and EOF return false after the file specified is
RESET. They both return true on a closed file. When EOF (FILEID) is
true, FILEIDA is undefined.'· When OP' (F ILEID) sets FILEIDA to the EOLN
character or the EOF character, EOLN (FILEID) will return true, and
FILEIDA (in a FILE OF CHAR) will be set to a blank. If, while doing

Page 123

puts or writes at the end of a file, the file cannot be expanded to
accommodate the PUT or WRITE, EOF(FILEID) will return true.

FUNCTION IORESULT : INTEGER;

After any 1/0 operation, IORESULT contains an I~ITEGER value
corresponding to the values given in Table 2. If the compiler is
allowed (i.e. (*$1-*) has not been used), it will generate checks
after each 1/0 operation, causing the program to get a run-time
error on an y bed 1/0 operation. These are not generated any time
after any UNITREAD or UNITWRITE.

PROCEDURE GET (FlLEID);
PROCEDURE Pur (Fn..EID);

These procedures are used for operations on typed files. A tyqed
file is any file for which a type is specified in the variable
declaration, ie. 'FILEID : FILE CF <type>'. This is as opposed to
untyped files which are stmply declared as: ' FILEID: FILE;'. In a
typed file each logical record is a memory image fitting the
description of a variable of the associated <t:,r;e>.

GET (FILEID) will leave the contents of the current logical
record pointed at by the file pointers in the tmplicitly declared
"window" variable FILEIDA and increment the file pointers.

PUT (FILEID) puts the contents of FILEIDA into the file at t~Q
location of the current file pointers and then updates those pointers.
The actual physical disk access may not occur until the next time the
physically. associated block of the diskis no-longer considered the
current '...orking block. The kinds of operation whi::~ tend to force th-=.
block to be written are: a SEEK to elsewhere in the file, a RESET, and
CLOSE. Successive GETs or PUTs to the file 'Nill cause the physical
1/0 to happen when the ~lock boundaries are c~~ssed.

PROCEDURE RE.!\D{L'O (FILEID, SOURCE);
PROCEDURE NRITE{LN} (FILEID, SOURCE);

These procedures may be used only on TEXT (FILE CF CHAR) or
INTERACTIVE files for 1/0. If 'FILEID, ' is omitted, INPU: or O!_··:":-· ':
(wtlichever is appropriate) is assuned. A READ(STRING) will re:~..l up :,~
and not including the end-of -line character «a carriage return» ~.r"
leave EOLN(FILEID) true. This means that any subsequent REArs of
STRING variables will return the null string until a READLN or
READ(chararacter) is executed.

Page 124

There are tlTee files of tYIE INTERACTIVE which are
predeclared: INPUT, OUTPUT, and KEYBOARD. INPUT results in echoing 0 f
characters typed to the console device. KEYBOARD does no echoing and
allows the programmer complete control of the response to user typing.
OUTPUT allows the user to halt or flush the output.

PROCEDURE PAGE (FlLEID);

This procedure, as described in Jensen & Wirth (ibid.), sends a
top-of-form (ASCII FF) to the file.

PROCEDURE SEEK (FILEID, INTEGER);

This procedure changes the file pointers so that the next GET
or PUT from/to the file uses the INTEGERth record of FlLEID. Records in
files are numbered from o. A GET or PUT must be executed between
SEEK calls since two SEEKs in a row may cause unexpected, unpredictable
junk to be held in the window and associated buffers. Sets ECF and
EOLN to fal se .

move optimization in the section on MOVELEFT.
The notes about MOVELEFT also apply to FILLCHAR.

The intrinsic SIZEOF (Section 2.1.6) is meant for use with these
intrinsics; as it is convenient not to have to figure out or remember
the number of bytes in a particular data structure. (Which may change
at the programmers whim.)

Page 125

-- Notes -_

Page 126

•• *.*****.*.*****.** •• **** *.**.*.**.*******
* MISCELLANEOUS ROUTINES • * Section 2.1.3 *
.** •• **.**.* •••• ** •• *.*.** ** •• ******.******

Version 11.0 February 1919

FUNCTION SIZEOF (VARIABLE OR TYPE IDENTIFIER) : INTEGER;

This function returns the nt.mber of bytes that the "item"
passed as a parameter occupies. SIZECF is particularly
useful for FILLCHAR and MOVExxxx intrinsics.

FUNCTION LOG (NUMBER) : RErul;

This function returns the log base ten of the NUMBER passed as
a parameter.

PROCEDURE TIME (VAR HIWORD, LCl\TORD: INTEGER);
(* may not be rmplemented in all machines *)

This procedure returns the current value of the system clock. It is in
60ths of a second. (This is somewhat hardware-dependent; we assume a
16-bit integer size and 32-bit clock word. The HIWORD contains the
mst significant portion. WARNING! The sign of the LGlORD may be
negative since the time is represented as a 32-bit unsigned number.)
BJth HIWORD and LONORD must be VARiables of type INTEGER.

FUNCTION ?vJRtFTEN (EXPONENT: INTEGER) : REAL;

This function returns the 'value of 10 to the EXPONENT power.
EXPONENT must be an integer in the range 0 •. 37.

PROCEDURE MARK (VAR HEAPPTR: "INTEGER}
PROCEDURE RELEASE (VAR HEAPPTR: "INTEGER);

These procedures are used for returning dynamic memory
allocations to the system. HEAPPTR is of type "INTEGER. MARK sets
HEAPPTR to the current top-of-heap_ RELEASE sets top-of-heap pointer
to HEAPPTR.

PROCEDURE HALT;

This procedure generates a HALT opcode that, when executed,
causes a non-fatal run-trme error to occur. At this point in
execution, the Debugger is invoked, therefore, if the Debugger is not
in core when this occurs, a fatal run~time error, #14, will occur.

PROCEDURE GOTOXY (XCOORD , YCOORD: ·INTEGER);

Page 127

This procedure sends the cursor to the coordinates specified by
(XCOORD, YCOORD). The upper left corner of the screen is assumed to be
(0,0). This procedure is written to default to a Datamedia-type

terminal. If your system uses other than a Datamedia or Terak 8510a,
you will need to bind in a new OOTOXY using the GOTOXY package
desc ribed in Sec tion 4. 7.

FUNCTION MEMAVAIL: INTEGER;

This function returns the number of words currently between
the top-of -stack and top-of -heap. This can be interpreted as the
amoLllt of menory available at that time. Qle must take into
consideration the size of evaluation stacks, and error-procedure
calls.

Page 128

******************* *****************
* 0 0 P S * * Section 2. 1.4 *
******************* *****************

Version I.5 September 1978

Out Of Place Section

Page 129

- Notes --

Page 130

** *****************
* CHARACTER ARRAY MANIPULATIONS INTRINSICS * * Section 2.1.5 *
..* ••• **.* ****.* •• **** ••••• * •• *******. **.*** •• * •• **.***

Version 1.5 September 1978

CAUTION

These intrinsics are all byte oriented. Use them with care.
Read the descriptions carefully before trying them out as no range
c recking 0 f any sort· is perfonned on the paraneters passed to these
routines. The programmer should know exactly what he is doing before
he does it since the system does not protect itself from these
operations. There may lurk some machine dependencies in the
implementations of these, beware of byte/word and byte-sex problems.

FUNCTION SCAN (LENGTH, PARTIAL EXPRESSION, ARRAY) : INTEGER;

This function returns the number of characters from the
starting position to where it tenninated, i.e. the number of
characters scanned. It terminates on either matching the specified
LENGTH or satisfying the EXPRESSION. The ARRAY should be a PACKED
ARRAY OF CHARACTERS and may be subscripted to denote the starting
point. If the expression is satisfied on the character at which ARRAY
is pointed, the value returned will be zero. If the length passed was
negative, the number returned will also be negative, and the function
will have scanned backward. The PARTIAL EXPRESSION must be of the
fonn:

n<>" or ":" followed by <character expression>

Examples:
Using the array:
DEM := ' .•.•• THE TERAK IS A MEMBER OF THE PTERODACTYL FAMILY. ';

SCAN(-26,=':',DEM[30]);

SCAN (, 00, <>, . ' , DEM) ;

SCAN (15, =' " De-1 [0]) ;

will return -26

will return 5

will return 8

PROCEDURE MOVELEFT (SO~RCE', [ESTINATION, LENGTH);
PROCEDURE MOVERIGHI' (SOURCE, DESTINATION, LENGTIi);

Page 131

These functions do mass moves of bytes for the length specified .
MOVELEFT starts from the left end of the specified source and moves
bytes to the left end of the destination. MOVERIGHT starts from the
right ends of both arrays and also moves byte by byte.

Some ~plementations of these intrinsics may do optimization of
such a move for the specific hardware involved.

In short: MOVELEFT starts at the left end of both arrays and
copies bytes traveling right. MOVERIGHT starts at the right end of
both arrays CI'ld copies bytes traveling left. TIle reason for having
both of these is if you are working in a Single array and the order in
which characters are moved is critical. The following chart is an
attempt to show W'bat happens if you use the procedure which moves in
the wrong direction for your purposes.

VAR ARAY: PACKED ARRAY [1 .• 30J OF CHAR;

(*123456789a123456789b123456789c*)
ARAY: :THIS IS THE TEXT IN THIS ARRAY i

M OVER IGiT (ARAY[10], ARAY[1 J , ~C);
ARAY: :HE TEXT INE TEXT IN THIS ARRAY:

MOVELEFT(ARAY[1],ARAY[3J,10)
ARA Y: : HEHEHEHEHEHETEXT IN THIS ARMY:

MCVELEFTCARAY[23J,ARAY[2],S);
AHA Y: : HIS ARRA YENETEXT DJ THIS ARFAY:

PROCEDURE FILLCHAR (DESTINATION, LENGTH, CHARACTER);

T.~is procedure takes a (subscripted) PACKED ARRAY OF CHARACTERS
and fills it with the number (LENGTH) of CHARACTERs specified. This
can be done by:

Ace] := <character expression>;
tv1CVELEFT(A~-J J, A[' J, LENG7H-1) ;

but FILLCHArt is t~i ce as fast, as no memory reference :'3 nee'J e-:: ~::~ a
source .

See the note about move optimization in the section on MOV~LEF:.
The notes about MOVELEFT also apply to FII .. LCHAR.

The notes about MOVELEFT also apply to FILLCHAR.
The intrinsic SIZECF (Section 2.1.6) is meant for use with ~h~Sf

intrinsics; as it is convenient n:::>t to have to figure out or r~·:.mt:;
the nunber of bytes in a parti~ular data structure. (which r.£3y oar,·:e
at the programmers whim.)

Page 132

**************************.*************************** ***************
* DIFFERENCES BETWEEN UCSD PASCAL AND STANDARD PASCAL* * Section 2.2 *
** ***************

Version 11.0 February 1979

This section is a summary and quick referrence guide which
notes the areas in which UCSD Pascal differs from Standard Pascal,
and refers the user to the appropriate documents which explain various
aspects of UCSD Pascal. The Standard Pascal referred to by this
section is defined in PASCAL USER MANUAL AND REPORT (2nd edition) by
Kathleen Jensen and Niklaus Wirth (Springer-Verlag, 1975).

Many of the differences lie in the area of FILES and I/O in
general. It is recommended that the reader first concentrate upon the
sections which describe the differences associated with the standard
procedures EOF, EOLN, READ, WRITE, RESET, and REWRITE.

2.2.1 CASE STATEMENTS

Jensen and Wirth on page 31, state that if there is no label
equal to the value of the case statement selector, the result of the
case statement is undefined. UCSD Pascal defines that if there is
no label matching the value of the case selector then the next
statement executed" is the statement following the case statement. For
example, the following sample program will only output the line "THAT'S
ALL FOLKS" since the case statement will "fall through" to the WRITELN
statement following the case statement:

PROGRAM FALLTHROUGH;
VAR CH:CHAR;
BEGIN

CH: =' A';
CASE CH OF

'B': WRlTELN(OUTPUT, 'HI THERE');
'C': WRITELN (OUTPUT, 'THE CHARACTER IS A "e"')

END; ,
WRITELN (OlTl'pur, 'THAT' 'S ALL FOLKS');

END.

Page 133

2.2.2 COMMENTS

The UCSD Pascal compiler recognizes any text appearing
between either the symbols tt(*" and "*),, or the symbols u{" and "}" as
a comment. Text appearing between these symbols is ignored by the
compiler unless the fir~t ~haracter of the comment is a dollarsign, i~
which case the comment 1S 1nterpreted as a compiler control comment.
See section 1.6 "Pascal Compiler" for details on compiler control
comments.

If the beginning of the ccmment is delimite:i by the "(*"
symbol, the end of the comment must be delimited by the matching "*)"
symbol, rather than the "}" symbol. When the comment begins ',.nth the
tt{" symbol) the cooment continues until the matching "}" symbol
appears. This feature allows a user to "canment out" a section of a
program which itself contains comments. For example:

XCP := XCP + 'j; (* ADJUST FOR SPECIAL CASE ••• *)

The compiler does not keep track of nested comne") ts. w'hE:n 3
comment symbol is encountered, the text is scanned for the matching
carment symbol. The following text will result in a s:mtax e!"'rcr:

(* TH:S IS A CQv1MENT (* NESTED C:MMENT~) EUD CF FIRST CCt·1MEN7 *:.
"'err·.~l'" here.

2.2.3 DYNAMIC MEMORY ALLOCATION

The standard procedure DISPOSE defined on page 158 of Jensen
and Wirth is not implemented in UCSD Pascal. I-bwever, the function
of DISPOSE can be approx imated by a combined use of the UCSD
intrinsics MARK and RELEASE. The process of recovering memcry space
described below is only an appr~x~~ation to the ·functi~n of :rS?JSE a~
one cannot explicitly ask that the storage cccupi:d by one par:icular
variable be released by the system for other uses.

The current ij·:SD implementation allocates storage fo:
variables created by :..lse of the standard procedt.,;re ~~E'h in a s:'2ck-li>:e
structure called the "heap". The following ?rcgram is :; s:'~pl.:
demonstration of how r~ARK and RELEASE can be used to ·:hangr? in :t.: .::::e
of the heap.

PROGRAM Sv!ALLHEAP;

TYPE PERSCN =
RECORD

NAME: PACKED ARRAY[O •• 15] OF CHAR;
ID: INTEGER

END;

Page 134

VAR P: "'PERSOO;(* ,,"'n means "pointer to" as defined in J&W *)
HEAP: "'INTEGER;

BEGIN
MARK (HEAP) ;
NEW (P);
P"'.NAME:='FARKLE, HENRY J.t;
PA.ID:= 999;
RELEASE (HEAP);

END.

The above program first calls MARK to place the address of the
current top of heap into the variable HEAP. HEAP must be declared to
be a pointer to an INTEGER. The parameter supplied to MARK must be a
pointer to an INTEGER. This is a UCSD restriction. This is a
particularly handy construct for deliberately accessing the contents
of memory which is otherwise inaccessable. Below is a pictorial
description of the heap at this point in the program's execution:

TOP CF HEAP --)

contents of heap at
start of program

<--- HEAP

Next the program calls the standard procedure NEw and this
results in a new variable pA which,is located in the heap as shown in
the diagram below:

TOP Cf HEAP -->

contents of heap at
start of program

After the RELEASE the heap is as follows:

TOP OF HEAP ~-->

contents of heap at
start of program

<--- HEAP

<--- HEAP

Page 135

Once the program no longer needs the variable P'" and wishes to
"release" this memory space to the system for other uses, it calls
RELEASE which resets the top of heap to the address contained in the
variable HEAP.

If the above sanple program had made a series of calls to the
standard procedure NEW between the calls to M~qK and RELEASE, the
storage occupied by several variables would have been released at
once. Note that due to the stack nature of the heap it is not possible
to release the memory space used by a Single item in the middle of the
heap_ It is for this reason the use of MARK and RELEASE can only
approx~ate the function of DISPOSE as described in Jensen and Wirth.

Furthennore, it should be noted that careless use of the
intrinsics :-1.~qK and RELEASE can leave "dangling po:nters", pointing ::)
areas of memory which are no longer par~ of the defined heap space.

2.2.4 EOF(F)

To set EOF to TRUE for a textfile F beir.g USe: as an input fi2.e
from the CGNSOLE device, the user must ty~,e the E()~ character. T.'1e
ECF character can be altered by a sui tab:e re~Y.)ntig·..lr ation of the
system variable SYSCOM A

• CRTINFO. EOF using SE:'~? For f'urtr.er'
information concerning system configuration anJ the SETUP program see
Section ~.3.

If F is closed, for any FILE F, EOF(F) will return the value
TRUE. If EOF(F) is TRUE) and F is a FILE of type TEXT, EOLN(F) is
also TRUE. After a RESET(F), EOF(F) is FALSE. If EOF(F) becomes ~~UE
during a GET (F) or a READ(F, •••) the data obtained thereby is net
val id.

when a user program starts execution, toe system perf)r.1'1s a
RESET on the predeclared files INPul, CVTpfJ7, anj KEYBOARD. See
section 2.2. 11 READ for further details conce!"'nir.g the prejecl.arej :- i.:.:
KEYBOARD.

As defi~e·j in Jensen and Wirth, ECF and :::CL~ by jef3~..L.:' .. i:.~
re fer to the file l~IPUT if no file identifier :'5 sneci fie~.

2.2.5 EOL.'J(F)

EOL~ (F) is defi.:led only if the <type> of t.he ',.;indo;,.. ·!ar:'3b2. e :
FA, is of type CHAR. EOLN becomes TRUE only a fter ~"~ad ing ti~e end r:::'
line character. :he end of line character is a car:-iage ret.ur~. :·.1
the example program below, care must be taken as regards wnen tte
carriage return is typed while inputing data:

Page 136

PROGRAM ADDLINES;
VAR K,SLM: INTEGER ;

BEGIN
WHILE NOT EOF (INPUT) DO

BEGIN
SLM: =0;
READ(INPUT ,K) ;
WHILE NOT EOLN(INPUT) DO

BEGIN
SLM : :SUM+K;
RFAD(INPUT ,K);

END;
WRlTELN (OUTPUT);
WRITELN(OUTFUT, 'THE SUM FOR THIS LINE IS' SUM);

END ;
END.

In order for EOLN(F) to be TRUE in the above program, the
carriage return must be typed ~ediately after the last digit of the
last integer on that line. If instead a space is typed followed by the
carriage return, EOLN will remain FALSE and another READ will take
place. See Section 2.2.11 for details on the behavior of
READ(integer).

2.2.6 FILES

A. INTERACTIVE FILES

Files of <type> INTERACTIVE behave exactly as files of <type>
TEXT. The standard predeclared files INPUT and OUTPUT will always be
defined to be of <type> INTERACTIVE. All files of any <type> other
than INTERACTIVE, are defined to operate exactly as described in Jensen
and Wirth. For files which are not of <type> INTERACTIVE, the
definitions of EOF(F) , EOLN(F) , and RESET(F) are exactly as presented
in Jensen and Wirth. For more details concerning files of <type>
INTERACTIVE see section 2.2.11 "READ AND READLN" and section 2.2.12
"RESET" and section 2. 1.2 ••

B. UNTYPED FILES

UCSD Pascal has one type of file declaration which in not
found in the syntax of Jensen and Wirth. This type and its use is
demonstrated in the sample program 'below:

Page 131

(-*$I..I)
PROGRAM FlLED~~O;

VAR
BLOCKNUMBER,BLOCKSTRANSFERRED:INTEGER;
BADIO: BOOLEAN;
G,F: FILE;
BUFFER: PACKED ARRAY[O .. 511] OF CHAR;

(* This program reads a diskfile called 'SOURCE. DATA' and
copies the file into another diskfile cal~ed 'DESTINATION'
using untyped files and the intrinsics BLOCKREAD and
BLCCKWR lIE *)

BEGIN
BADIO:=FALSE;
RESET (G, 'SO URC E • DATA ') ;
REWRITE(F, 'DESTINATION');
BLOCKNUMBER: =0 ;
BLCCKSTRANSFERRED: =BLOCKREAD(G, BLFFER, 1, BLCCKi'!UMBER);
WHILE (NOT EOF(G» AND (IORESULT=O) AND (NOT BADIO) AND

(BLOCKSTRANSFERRED=1) DO
"BEGIN

BLOCKSTRANSFERRED: =BLOCKilRITE(F ,BUFFER, 1 ,BLOCK.'HJM9ER);
BADIO::«BLOCKSTRANSFERRED<1) OR (IORESULT<>O»);
BLOCKNLMBER: :BLOCKNUMBER+ 1 ;
BLOCKSTRANSFERRED::BLOCKREAD(G,BUFFER,1,BLOCKNUMBER) ;

END;
CLOSE (F, LOCK) ;

END.

The two files which are declared and used in the cDove sample
program are both untyped files. An untyped file F can be thought of as
a file without a window variable F~ to which all 1/0 must be
accomplished by using the functions BLOCKREAD and BLCCi\r'iRIT::. Note
that any number of blocks can be transferred using either BLOCKRS~D or
BLOCKWRITE. The functions return the actual nunber of bloc!<3 read. A
somewhat sneaky approach to doing a quick transfer 'NOuld be:

WHILE BLOCKWRlTE(F,BUFFER,BLOCKREAD(G,BUFFER,BUFBLCCKS) »0 ::0 (*17*);

This is, however considered unclean. Tne program above has
been compiled using the (*$1-*) Compile Time Option, thereby requiring
that the function IORESULT and the number of blocks ~ransferred be
checked after each BLOCKREAD or BLCCKWRITE in order to detect any IIO
errors that might have occurred.

Page 138

C. RANDOM ACCESS OF FILES

The UCSD implementation of structured files supports the
ability to randomly access individual records within a file by means
of the intrinsic SEEK. SEEK expects two parameters, the first being
the file identifier, and the second, an integer specifying the record
number to which the window should be moved. The first record of a
structured file is nLlTlbered record O. The following sample program
demonstrates the use of SEEK to randomly access and update records in
a file:

PROGRAM RANDOMACCESSj
VAR

RECNUMBER: INTEGER;
CH: CHAR;
DISK: FILE OF RECORD

NAME: STRING[20];
DAY,MONTH,YEAR: INTEGER;
ADDRESS: PACKED ARRAY[O .. 49J OF CHAR;
ALIVE: BOOLEAN

END;

BEGIN

RESET (DISK, 'RECORDS.DATA');

WHILE NOT EOF(INPUT) DO
BEGIN

END.

WRITE (OUTPUT , 'Enter record number --->');
READ(INPUT, RECNUMPER);

SEEK(DISK,RECNUMBER);
GET(DISK) ;

wrrn DISK" 00
BEGIN

WRITELN(OUTPUT,NAME,DAY,MONTH,YEAR,ADDRESS);
WRITE (OUTPUT , 'Enter correct name --->');
READUi (INPUT, NAME) ;

END;

(* Must point the window back 'to the record
since GET (DISK) advances the window to
the next record after loading DISK" *)

SEEK(DISK,RECNUMBER);
Pur (DISK);

END;

Page 139

Attempts to PUT records beyond the physical end of file will
set EOF to the value TRUE. (The physical end of file is the point
where the next record in the file will overwrite another file on the
disk.) SEEK always sets EOF and EOLN to FALSE. The subsequent GET or
PUT will set these conditions as is appropriate. See Section 2.1.2.

D. READ AND WRITE FRG1 ARBITRARILY TYPED FILES

It is not currently possible to READ or WRITE to files of type
other than TEXT or FILE OF CHAR.

2.2.7 GOTO AND EXIT STATa-1ENTS

UCSD has a more limited fonn of GOTO statement than is defined
as the standard in Jensen and Wirth. UCSD's GOTO statement prohibits
a GOTO statement to a label which is not within the same procedure
block as the GOTO statement itself. The examples presented on pages
31- 32 of Jensen and Wirth are not legal in UCSD Pascal.

EXIT is a UCSD extension which accepts as its single paraneter
the identifier of a procedure to be exited. The use of an EXIT
statement to exit a FUNCTION can result in the FUNCTION returning
undefined values if no aSSignment to the FUNCTION identifier is made
prior to the execution of the EXIT statement. Below is an example of
the use of the EXIT statement: .

PROGRAM EXITDEMO;
VAR T: STRING;

eN: INTEGE R ;

PR<l:EDURE Q; FORWARD;'

PROCEDURE P;
BEGIN

READLN(T) ;
WRITEL~(T) ;
IF T[l]='#' THEN EXIT(Q);
WRITELN ('LEAVE P');

END;

Page 140

PROCEDURE Q;
BEGIN

P;
WRITELN('LEAVE Q');

END;

PROCEDURE R;
BEGIN

IF CN <= 10 THEN Qj
WRITELN ('LEAVE R');

END;

BEGIN
CN::O ;
WHILE NOT ECF DO

BEGIN
CN: =CN+ 1;
R ;
WRITELN;

END;
END.

If the above program were supplied the following input

THIS IS THE FIRST STRING
II
LAST STRING

the following output will result:

THIS IS THE FIRST STRING
LEAVE P
LEAVE Q
LEAVE R

II
LEAVE R

LAST STRING
LEAVE P
LEAVE Q
LEAVE R

The EXIT(Q) statement causes the PROCEDURE P to b~ terminated
followed by the PROCEDURE Q. Processing continues following the call
to Q inside PROCEDURE R. Thus the only line of output following "II" is
"LEAVE R" at the end of PROCEDURE R. In the two cases where the
EXIT(Q) statement is not executed, ~rocessing proceeds normally through
the terminations of procedures P and Q.

Page 141

If tM procedure identifier passed to EXIT is a recursi'/e
procedure, the most recent invocation of that procedure will be
exited. If, in the above example, one or both of the procedures? and
Q declared and opened some local files, an tmplicit CLOSE(F) is done
when the EXIT(Q) statement is executed, as if the procedures P and Q
terminated normally.

The EXIT statement may also be used to exit a Pascal program
by EXIT(PROGRAM) or EXIT(programnane).

The creation of the EXIT statement at UCSD was inspired by the
occasional need for a straightforward means to abort a complicated and
possibly deeply nested series of procedure calls upon encountering an
error. An example of such a use of the EXIT statement can be found in
the recursive descent UCSD Pascal compiler. The routine use of the
EXIT statement is, nevertheless, discouraged.

2.2.8 PACKED VARIABLES

A. PACKED ARRAYS

The UCSD compiler will perform packing of arrays and
records if the ARRAY or RECORD declaration is preceded by the word
PACKED. For example, consider the following declarations:

A: ARRAY[O •• 9] OF CHAR;

B: PACKED ARRAY[O •. 9] OF CHAR;

The array A will occupy ten 16 bit words of memory, with each
element of the array occupying 1 word. The PACKED ARRAY 8 on the other
hand will_occupy a total of only 5 wordS, since each 16 bit word
contains two 8 bit characters. In this manner each element of the
PACKED ARRAY B is S bits long.

PACKED ARRAYs !"leed not be restric ted to arrays of type CHAR,
for example:

C: PACKED ARRAY(O .. 1] OF 0 •• 3;

D: PACKED ARRAY(1 •• 9] OF SET OF 0 •. 15 ;

D2: PACKED ARRAY[O •• 239,O •• 319J OF BCOLEAN;

Each element of the PACKED ARRAY C is only 2 bits long, sir.ce
only 2 bits are needed to represent the values in the range C .. 3.
Therefore C occupies only one 16 bit word of memory, and 12 of the bits
in that word are unused. The PACKED ARRAY D is a 9 word array, since
each element of D is a SET which can be represented in a mintmum of 16
bits. Each element of a PACKED ARRAY OF BOO~~N, as in the case of J2
in the above exanple, occupies only"one bit.

Page 142

The following 2 declarations are not equivalent due to the
recursive nature of the compiler:

E: PACKED ARRAY[O .. g] OF ARRAY[0 .. 3J OF CHAR;

F: PACKED ARRAY[O .. 9,0 .• 3J OF CHAR;

The second occurrence of the reserved word ARRAY in the
declaration of E causes the packing option in the compiler to be turned
off E becomes an unpacked array of 40 words. On the otherhand, the
PACKED ARRAY F occupies 20 total words because the reserved word ARRAY
occurs only once in the declaration. If E had been declared as

E: PACKED ARRAY[D •• 9] OF PACKED ARRAY[O •. 3] OF CHAR;

or as

E: ARRAY[D .. g] OF PACKED ARRAY[D .. 3J OF CHAR;

F and E would have had identical configurations.

The reserved word PACKED only has true significance before the
last appearance of the reserved word ARRAY in a declaration of a PACKED
ARRAY. When in doubt a good rule of thumb when declaring a
multidimensional PACKED ARRAY is to place the reserved word PACKED
before every appearance of the reserved word ARRAY to insure that the
resultant array will be PACKED.

The resultant array will only be packed if the final type of
the array is scalar, or subrange, or a set which can be represented in
8 bits or less. The final type can also be BOOLEAN or CHAR. The
following declaration will result in no packing whatsoever because the
final type of the array cannot be represented in a field of 8 bits:

G: PACKED ARRAY[O .. 3J OF 0 •• 1000;

G will be an array which occupies 4 16 bit words.

Packing never occurs across word boundaries. This means that
if the type of the element to be packed requires a number of bits which
does not divide evenly into 16, there will be some unused bits at
the high order end of each of the words which comprise the array.

Note that a string constant may be assigned to a PACKED ARRAY
OF CHAR but not to an unpacked ARRAY OF CHAR. Likewise, comparisons
between an ARRAY OF CHAR and a string constant are illegal. (These are
temporary implementation restrictions which will be removed in the next
major release.) Because of their different sizes, PACKED ARRAYs cannot
be compared to ordinary unpacked ARRAYs. For further information
regarding PACKED ARRAYs OF CHARacters see section 2.2. 16 "STRINGS".

Page 143

A PACKED ARRAY OF CHAR may be output with a single write stateme~t:

PROGRAM VERYSLICK;
VAR T: PACKED ARRAY[O •• 10] OF CHAR;
BEGIN

T: = 'HELLO THERE t ;

WRITELN (T) ;
END.

Initializatio~ of a PACKED ARRAY OF CHAR can be accomplished
very efficiently by using the UCSD intrinsics FILLCHAR and SIZECF:

PRCXiRAM FIllF AS! ;
VAR A: PACKED ARRAY[0 •• 10] OF CHAR;
BEGIN

FILLCHAR(A[O),SIZEOF(A),' ');
END.

The above sample program fills the entire PACKED ARRAY A ~ith
blanks. For further documentation on FILLCHAR, SIZEOF, and the other
UCSD in trinsics see section 2. 1. 5 "OiARACTER ARRAY MANIPULATION
INTRINSICS".

S. PACKED RECORDS

The following RECORD declaration declares a RECORD with 4
fields. The entire RECORD occupies one 16 bit word as a result of
declaring it to be a PACKED RECORD.

VAR R: PACKED RECORD
I,J,K: 0 •. 31;
B: BOOLEAN

END;

The variables I, J, K each take up 5 bits in the word. The
boolean variable B is allocated to the 16'th bit of the same ~ord.

In much the same manner that PACKED ARRAYs can be
multidimensional PACKED ARRAYs, PACKED RECORDS may contain fields which
themselves are PACKED RECORDS or PACKED ARRAYS. Again, slight
differences in the way in which declarations are made will affect the
degree of packing achieved. For example, note that the following two
declarations are not equivalent:

VAR A: PACKED RECORD
C: INTEGER;
F : PACKED RECORD

R: CHAR;
K: BOOLEAN

END;
H: PACKED ARRAY[O .• 3] OF QiAR

END;

VAR B: PACKED RECORD
C: INTEGER;
F:RECORD

R : CHAR ;
K:SOOLEAN

END;
H:PACKED ARRAY[O •• 3] OF CHAR

END;

Page 144

As with the reserved word ARRAY, the reserved word PACKED must
appear with every occurrence of the reserved word RECORD in order for
the PACKED RECORD to retain its packed qualities throughout all fields
of the RECORD. In the above eKample, only RECORD A has all of its
fields packed into one word. In B, the F field is not packed and
therefore occupies two 16 bit words. It is important to note that a
packed or unpacked ARRAY or RECORD which is a field of a PACKED RECORD
will always start at the beginning of the next word boundary. This
means that in the case of A, even though the F field does not
completely fill one word, the H field starts at the beginning of the
next word boundary.

A case variant may be used as the last field of a PACKED
RECORD, and the amount of space allocated to it will be the size of the
largest variant amoung the various cases. The actual nature of the
packing is beyond the scope of this document.

VAR K: PACKED RECORD
B: BOOLEAN;
CASE F: BOOLEAN OF

TRUE: (Z:INTEGER);
FALSE: (M: PACKED ARRAY[O .. 3J OF CHAR)

END
END;

In the above example the Band F fields are stored in two bits
of the first 16 bit word of the record. The remaining 14 bits are not
used. The size of the case variant field is always the size of the
largest variant, so in the above example, the case variant field will
occupy tw::> words • Thus the entire PACKED RECORD will occupy 3 words.

C. USING PACKED VARIABLES AS PARAMETERS

No elanent of a PACKED ARRAY or field of a PACKED RECORD may be
passed as a variable (call-by-reference) parameter to a PROCEDURE or
FUNCTION. Packed variables may, however, be passed as call by value
parameters, as stated in Jensen and Wirth.

D. PACK AND UNPACK STANDARD PROCEDURES

UCSD Pascal does'not support the standard procedures PACK
and UNPACK as defined in Jensen and Wirth on page 106. If a type or
variable is declared as packed, the packing and unpacking in UCSDs
Pascal system is implicit. '

Page 145

2.2.9 PARAMETRIC PROCEDURES AND FUNCTIONS

UCSD Pascal doe s not support the construct in which
PROCEDURES and FUNCTIONS may be declared as formal parameters in the
parameter list of a PROCEDURE or FUNCTION.

list>.
See Section 5.9 for a revised syntax diagran of <parameter-

2.2.10 PROGRAM HEADINGS

Al though the UCSD Pascal compiler will permit a list of
file parameters to be present following the progran identifier, these
parameters are ignored by the compiler and will have no affect on the
progran being compiled. As a result the following two program headings
are equivalent:

PROGRAM DEMO (INPUT, OUTPUT); and PROGRAM Da-10;

With either of the above program headings, 3 user program will
have three files predeclared and opened by the system. These are:
INPUT, OUTPUT, and KEYBOARD and are defined to be of (type)
INTERACTIVE. If the program wishes to declare any additional files,
these file declarations must be declared together with the program's
other VAR declarations.

2.2.'1 READ AND READLN

Given the following declarations:

VAR CH:CHAR;
F: TEXT; (* TYPE TEXT = FILE OF CHAR *)

the statement READ(F, CH) is defined by Jensen and Wirth on page a5 to
be equivalent to the two statement sequence:

CH: =F";
GET(F) ;

J & W
method

In other words, the standard definition of the standard
procedure READ requires that the process of opening a file load the
"window variable" F witH the first character of the file. In an
interactive programming environment, it is not convenient to require a
user to type in the first character of the input file at the time ~hen
the file is opened. If this were the case, every program t,..Ould "hang"
until a character was typed, whether or not the program performed any
input operations at all. In order to overcome this problem, UCSD
Pascal defines an additional file <type) called INTERACTIVE. Declaring
a file F to be of <type> INTERACTIVE is equivalent to declaring F to be
of type TEXT, the difference being that the definition of the statement
READ(F,CH) is the reverse of the sequence specified by the standard

Page 146

definition for files of <type> TEXT: i.e.

GET(F);
CH:=F"';

UCSD
method

This difference affects the way in which EOLN must be used
within a program when reading fram a textfile of type INTERACTIVE. As
in section 5, EOLN becomes true only after reading the end of line
character, a carriage return. When this is read, EOLN is set to true
and the character returned as a result of the READ will be a blank.
In the following example, the left fragment is taken from Jensen and
Wirth; only the RESET and REWRITE statements have been altered. The
program on the left will correctly copy the textfile represented by
the file X to the file Y. The program fragment on the right performs
a s~iliar task, except that the source file being copied is declared
to be a file of <type> INTERACTIVE, thereby forcing a slight change in
the program in order to produce the desired result.

PROGRA~ JANr:w;
VAR X,Y:TEXT;

CH: CHAR;
BEGIN

RESET (X, 'SOURCE. TEXT') ;
RewRITE(Y, 'SOMETHING. TEXT');

WHILE NOT ECf (X) DO
BEGIN

WHILE NOT EOLN(X) DO
BEGIN

READ (X , CH) ;
WR ITE (Y ,CH) ;

END;
READLN (X);
WRITELN (1);

END;
CLOSE (Y, LOCK);

END.

PROGRAM UCSDVERSION;
VAR X,Y:INTERACTIVE;

CH:CHAR ;
BEGIN

RESET (X, 'CONSOLE: t) ;
REWRITE (Y, 'SOMETHING. TEXT t) ;

READ (X,CH);
WHILE NOT ECf(X) DO

BEGIN
WHILE NOT EOLN(X) DO

BEGIN
WRITE (Y, CH);
READ (X, CH) ;

END;
READLN (X);
'tlRITELN (Y) ;

END;
CLOSE (1, LOCK);

END.

Note that the textfiles X and Y in the above two programs had
to be opened by using the UCSD extended form of the standard
procedures RESET and REWRITE.

The CLOSE intrinsic was applied to the file Y in both versions
of the program in order to make it a permanent file in the disk
directory call ed "Sa1ETHING. TEXT". Likewise, the textfile X could
have been a diskfile instead of coming from the CONSOLE device in the
right hand version of the program.

There are three predeclared t'extfiles which are automa tically
opened by the system for a user program. These files are INPlJI' ,
OUTPUT, and KEYBOARD. The file INPUT defaults to the CONSOLE device~

Page 147

and is always defined to be of <type) INTERACTIVE. The statement
READ(INPUT,CH) where CH is a character variable, will echo the
character typed from the CONSOLE back to the CONSOLE device. WRITE
statements to the file OUTPUT will, by defaUlt, cause the output to
appear on the CONSOLE device. The file KEYBOARD is the non-echoing
equivalent to INPUT. For ecample, the tw) statements

RFAD(KEYBOARD,CH) ;
WRITE (OUTPur , CH) ;

are equivalent to the Single statement READ(INPUT,CH).

Reading the type intEger causes preceding blanks and end-of
lines to be flushed until a non-blank character is observed. Reading
the type BOOLEAN is not implenented.

For more documentation regarding the use of files see sections:
2.2.6 "FILES"
2.2.4 "EOF"
2.2.5 "EOLN"
2.2. 17 "WRITE AND WRITELN"
2.2. 12 "RESET"

See section 2. 1.2 "INPUT/OUTPUT INTRINSICS" for more details
on the UCSD intrinsics.

2.2.12 RESET (F)

The standard procedure RESET, as defined on page 9 of Jensen
and Wirth, resets the file window to the beginning of the file~. The
next GET(F) or PUT(F) will affect record nunber 0 of the file. In
addition, the standard definition of RESET(F) states that the ~indow
variable FA be loaded with the first record in the file. The UCSD
implementation of RESET(F) operates exactly as the standard definition,
unless the file F is declared to be of <type> INTERACTIVE in which ~ase
the statement RESET(F) points the file window to the start of the file,
but does not load the window variable FA. Thus, for files of <~ype>
INTERACTIVE, the UCSD equivalent of the standard definition of
RESET(F) is the two statement sequence:

RESET(F) ;
GET(F) ;

makes INTERACTIVE
look like tEXT

UCSD Pascal defines an alternative form of the standard
procedure RESET which is used to open a pre-existing file. In it,
RESET has two parameters, the first being the file identifier; the
second, either a STRING constant or variable which corresponds to the
directory filename of the Jile being opened. See section 2.1.2
"INPUT/OUTPUT INTRINSICS" for more!' infonnation on this use of RESET.

Page 148

2.2.13 REWRITE(F)

The standard procedure REWRITE is used to open and create a
new file. REWRITE has tw:> parameter'), Lh:' rl r'~~t, 'Jeing the file
identifier, the second corresponds to the directory filename of the
file being opened, and must be either a STRING constant or variable.
For example, the statement REWRITE(F,'SOMEINFO.TEXT') causes the file
F to be opened for output, and, if the file is locked onto the disk,
the filenane of the file in the directory will be "SOMEINFO. TEXT" •
See section 2. 1.2 "INPl1I'/OUTPur INTRINSICS" for further doc\.lTlentation
regarding the use of REWRITE to open a file.

2.2.14 SEGMENT PROCEDURES

The concept of the SECMENT PROCEDURE is a UCSD extension to
Pascal, the prtmary purpose of which is to allow a programmer the
ability to explicitly partition a large program into segments, of which
only a few need be resident in memory at anyone time. The UCSD
Pascal system is necessarily partitioned in this manner because it is
too large to fit into the memory of most small interactive computers
at one time.

The following is an exanple of the use of SEG1ENT PROCEDURES:

PRCX:;RAM SEGMENTDEMO;

(* GLOBAL DECLARATIONS GO HERE *)

PROCEDURE PRINT(T:STRING); FORWARD;

SEGMENT PROCEDURE ONE;
BEGIN .

PRINT('SEGMENT NUMBER ONE');
END;

SEGMENT PROCEDURE TWO;
SEGMENT PROCEDURE THREE;

BEGIN
Ol'E;
PRINT('SEGMENT NUMBER THREE');

END;
BEGIN (* SEa~ENT NUMBER TWe *)

THREE;
PRINT('SEmENT NUMBER TWO');

END;

PR OC EDUR E PR INT ;
BEGIN

WRITELN(OUTPT,T);
END;

BEGIN
1"110;
WRITELN ('I "M OONE');

END.
Page 1\\9

The above program will give the following output:

SEGMENT NUMBER ONE
SEGM ENT NLMBER THREE
SEG1ENT NLMBER TWO
I'M OONE

For further documentation on SEGMENT PROCEDURES, their use and
syntax governing their declaration, see Section 3.3 - 'SEGMENT PROCEDURES'.

?. 2. It; SETS

UCSD Pascal supports all of the constructs defined for sets
on pages 50-51 of Jensen and Wirth. Sets (of enumeration values) ar~
limited to positive integers only. Space is assigned, rounding up to
word boundaries, in a bitwise fashion, starting at zero, up to 4079,
inclusive. Tnerefor a set can be at most 255 words in size, and have
at most 4080 el ements .

Comparisons and operations on sets are allowed only between
sets which are either of the same base type or subranges of the same
underlying type. For example, in the sample program below, the base
type of the set S is the subrange type 0 •. 49, while the base type of
the set R is the subrange type 1 •• 100. The underlying type of both
sets is the type INTEGER, which by the above definition of
compatability, implies that the comparisons and operations on the sets
Sand R in the following program are legal:

PRCGRA'1 SETCa.1 PARE;
VAR S: SET OF 0 .. 49;

R: SET OF 1 .. 100;

BEGIN
S:= [0,5,10,15,20,25,30,35,40,45];
R:= [10,20,30,40,50,60,70,80,90];
IFS='RTHEN '

WRITELN(, ••• oops' ••. ')
ELSE

WRITELN('sets work');
S := S + R;

END.

In the following example, the constf'uct I = J is not legal since the
two sets are of two distinct underlying types.

Page 150

PROGRAM ILLEGALSETS;
TYPE STUFF=(ZERO,ONE,TWO);
VAR I: SET (F STUFF;

J: SET OF 0 •• 2;

BEGIN
I: = [ZERO];
J:= [1,2];
IF I = J THEN

END.

2.2.16 STRINGS

«« error here

UCSD Pascal has an additional predeclared type STRING.
Variables of type STRING are essentially PACKED ARRAYs OF CHAR that
have a dynamic LENGTH attribute, the value of which is returned by the
intrinsic LENGTH. The defaul t maximum LENGTH of a STRING variable is
80 characters but can be overridden in the declaration of a STRING
variable by appending the desired LENGTH of the STRING variable within
[] after the reserved type identifier STRING. Examples of
declarations of STRING variables are:

TITLE: STRING; (* defaults to a maximum length of 80 characters *)

NAME: STRING[20]; (* allows the STRING to be a maximum of 20
characters*)

Note that a STRING variable has an absolute maximum length of
255 characters. Assignments to string variables can be performed using
the assignment statement, the UCSD,STRING intrinsics, or by means
of a READ statement:

TITLE: =' THIS IS A TITLE

or

RE ADLN (TITLE) ;

or

NAME: = COpy (TITLE, 1, 20) ;

, . ,

The individual characters within a STRING are indexed from 1 to
the LENGTH of the STRING, for example:

TITLE [1] : = ' A ' ;

Page 151

TITLE(LENGIH(TITLE) J:= 'Z';

A variable of type STRI~ may not be indexed beyond its current
dynanic LENGTH; beware of strings of length zero! The following
sequence will result in an invalid index run t~e error:

TITLE: = '1234';
TITLE [5 J : = '5';

A variable of type STRING may be compared to any other variable
of type STRING or a string constant no matter what its current dynamic
LENGTH. Unlike comparisons involving variables of other types, STRING
variables may be compared to items of a different LENGTH. The
resulting comparison is lexicographical. The following program is a
demonstration of legal comparisons involving variables of type STRING:

PROGRAM CCM PARESTRINGS ;
VAR S: STRING;

T: STRING [40] ;

BEGIN
S: = 'SOMETIiING';
T:= 'SOMETHING BIGGER';
IF S = T THEN

WRITELN('Strings do not work very well')
ELSE

IF S > T THEN
WRITELN(5,' is greater than ',T)

ELSE
IF 5 < T THEN

WR ITEL"J (S,' is less than ',T);
IF 5 = 'SOM ETHING' THEN

WRITELN (5, , equals ' ,5) ;
IF S > 'SAMETHING' THEN
WRITEL~(5,' is greater than SAMETHING');

IF 5 = 'SCMETrlING ' THEN
WRITEL~ ('BLANKS DON' 'T COUNT')

ELSE
'tlRITELN ('BLANKS APPEAR TO :-1AKE A DIFFERENCE');

S: ='XXX';
T: = ' ABC DEF ' ;
IF S > T THEN

WRITELN(5,' is greater than ',T)
ELSE
WRlTEL~(S,' is less than ',T);

END.

Page 152

The above program produces the following output:

SOMETHING is less than SOMETHING BIGGER
SOMETHING equals SOMETHING
SOMETHING is greater than SAMETHING
BLANKS APPEAR TO MAKE A DIFFERENCE
XXX is greater than ABCDEF

One of the most ccxnmon uses of STR ING varicbles in the UCSD
Pascal system is reading file names from the CONSOLE device:

PRcx}RAM LISTER;
VAR BUFFER: PACKED ARRAY[O .. 511] OF CHAR;

FILENAME: STRING;
F: FILE;

BEGIN
WRITEC'Enter filename of the file to be listed --->');
READLN(FILENAME) ;
RESET(F,FlLENAME);
WHILE NOT EOF(F) DO

BEGIN

END;
END.

When a variable of type STRING is a parameter to the standard
procedure READ and READLN, all characters up to the end of line
character (a carriage return) in the source file will be assigned to
the STRING variable. Note that care must be taken when reading STRING
variables, for example, the single statement READL~(S1,S2) is
equi valent to the two statement sequence READ(S 1); READLN (S2) . In both
cases the STRING variable S2 will be assigned the empty string.

For further information concerning the predeclared type STRING
see Section 2.1.1 "STRING INTRINSICS".

2.2.17 WRITE AND WRITELN

The standard procedures WRITE and WRITELN are compatible with
Standard Pascal, except with respect to a WRITE or a WRITELN of a
variable of type BOOLEAN. UCSD Pascal does not support the output
of the words TRUE or FALSE when writing out the value of a BOOLEAN
variable.

Page 153

For a description of WRITE statements of variables of type
STRING see Section 2. 1. 1 "STRING INTRINSICS".

UCSD's WRITE and WRITELN do support the writing of entire
PACKED ARRAYs OF CHAR in a single WRITE statement:

VAR BUFFER: PACKED ARRA Y[O •• 10) OF CHAR;
BEGIN

BUFFER:: 'HELLO THERE'; (* contains exactly 11 characters *)
WRI1ELN (OUTPUT, BUFFER);

END.

The above construct will work only if the ARRAY is a PACKED
ARRAY OF CHAR. See section 2.2.8 PACKED VARIABLES for further
infonnation.

The following progr3T1 denonstrates the effects of a field width
specification within a WRITE statement for a variable of type STRING:

PROGRAM WRITESTRINGSj
VAR S:STRINGj

BEGIN
S::'THE BIG BROWN FOX JUMPED ••• ';
WRITELN (S);
WRITEI..."J (S: 30) ;
WRITELN (5: 10) ;

END.

The above program will produce the following output:

THE BIG BROWN FOX JUMPED •.•
THE BIG BROtiN FOX JUMPED •••

THE BIG BR

Note that when a string variable is written without specifying
a field width, the actual number of characters written is equal to the
dynamic length of the string. If the field width specified is longer
than the dynamic length of the string, leading blanks are inserted and
written. If the field width is smaller than the dynamic length of the
string, the excess characters will be truncated on the right.

2.2.18 IMPLS~ENTATION SIZE LIMITS

1he following is a list of max~um size limitations imposed
upon the user by the current implementation of UCSD Pascal:

Page 154

2.2.19

1. Maximllll nllllber of bytes of object code in a PROCEDURE or
FUNCTION is 1200. Local variables in a PROCEDURE or FUNCTION
can occupy a max imUll of 16383 words of memory.

2. Maximum number of characters in a STRING variable is 255.

3. MaximLlll number of elements in a SET is 255 * 16=4080.·

4. Maximum number of SEGMENT PROCEDUREs and SEGMENT FUNCTIONs
is 16. (9 are reserved for the Pascal system, 7 are
available for use by the user program)

5. Maximum number of PROCEDUREs or FUNCTIONs within a segment
is 121.

EXTENCED Ca-1PARISONS.

UCSD Pascal allows = and (> comparisons of any array or
record structure.

2.2.20 LONG INTEGERS.

UCSD Pascal allows integers of up to 36 digits. See section
3.3.3 for details regarding long integers.

2.2.21 UNITS.

UCSD Pascal now supports the modularity concept of UNITs. See
section 3.3.2 for detail~ regarding UNITs.

2.2.22 SLMMARY OF UCSD INTRINSICS

INTRINSIC

BLOCKREAD

BLOCKWRITE

CLOSE

CONCAT

DELE'IE

EXIT

SECTION # DESCRIPTION

2.1.2 Function which reads a variable number of blocks
fran an untyped file.

2.1.2 Function which writes a variable number of blocks
from an untyped file.

2.1.2 Procedure to close files.

2.1.1 STRING intrinsic used to concatenate strings together.

2. 1. 1 STRING intrinsic used to delete characters from
STRING variaoles.

2.2.3 Intrinsic used to exit PROCEDURES cleanly. ~

Page 155

GOrOXY

FlLLCHAR

HALT

I DSEARCH

INSERT

IORESULT

LENGTH

MARK

MEMAVAIL

MOVE LEFT

r-DVERIGHT

R2.iRITE

RESET

POS

P,.JRCFTEN

RELEASE

SEEK

SIZE<1='

STR

2. 1 • '9

2.1.5

2.1.3

Procedure used for cursor addressing whose two
parameters X and Yare the column and line numbers
on the screen where the cursor is to be placed.

Fast procedure for initializing PACKED ARRAYs OF CHAR.

Halts a user program which may result in a call to
the interactive Debugger.

Routine used by the Pascal compiler, and the PDP-11
assent>ler.

2.1.1 STRING intrinsic used to insert characters in STRING
variables.

2. 1.2 Function returning the resul t of the prev ious I/O
operation. (See Table 2 for a list of values)

2.1.1 STRING intrinsic which returns the dynamic length
of a STRING variable.

2.1.3 Used to mark the current top of the heap in dynamiC
memory allocation.

2.1.3 Returns number of words between Heap and Stack.

2.1.5 -Low level intrinsic for moving mass amounts of bytes.

2. 1.5 Low level intrinsic for moving mass amounts of bytes.

2.1.2 Procedure for opening a new file.

2~ 1.2 Procedure for opening an existing file.

2.1.1 STRING intrinsic returning the position of a
pattern in a STRING variable.

2.1.3 Function which returns as a REAL result the number
10 raised to the power of the integer parameter
supplied.

2.1.3 Intrinsic used to release memory occupied by
variables dynamically allocated in the heap.

2.1.2 Used for random accessing of records withing a fi:e.

2.1.3 Function returning the number of bytes allocated
to a variable.

2. 1. 1 Procedure/'to convert long integer in to string.

Page 156

TIME

TREESEARCH

UNITBUSY

UNITCLEAR

UNITREAD

UNI'NAIT

UNI'IWRlTE

2. 1.3

2.1.2

2.1.2

2. 1.2

2. 1.2

2. 1.2

Function returning the time since last bootstrap
of system. (returns zero if microcomputer has
no real time clock)

Routine used solely by the Pascal compiler.

Low level intrinsic for determining the status of
a peripheral device.

Low level intrinsic to cancel I/O from a peripherql
device .

Low level intrinsic for reading from a peripheral
device.

Low level intrinsic for waiting until a peripheral
device has completed an I/O operation.

Low level intrinsic used for writing to a peripheral
device.

device.

Page 151

- Notes --

Page 158

*********************************** ***************
* IMPLEMENTATION NOTES - DRAWLINE * * Section 3.1 *
*********************************** ***************

Version 11.0 February 1979

The DRAWLINE intrinsic uses an incremental technique to.plot
line segments on a point-addressable matrix. The algorithm guarantees a
best (least squares) approximation to the desired line. In general this
approximation is not unique. DRAWLINE may pick different
representations for a line depending on the starting point. (This could
be corrected by always starting at the same end of the line.) No range
checking is performed on parameters passed to this intrinsic.

The algorithm is essentially the one described in Newman and
Sproul, Principles of Interactive Computer Graphics as the Digital
Differential Analyzer. It has been modified to perform only integer
arithmetic. Pascal source code is included below. The procedure first
determined whether the line will be more horizontal or vertical. In the
discussion below, we assume the horizontal case; vertical is similar.

There will be DELTAX points plotted with horizontal increment
of 1 each. The vertical increment will be ASS (DELTAY / DELTAX) <= 1.
The Y coordinate arithmetic is scaled by DELTAX to eliminate fractions.
An additional savings in execution time has been gained by maintaining
the address of the previous point, and doing only addition and
subtraction to reach the next point to be plotted.

The RADAR function is ccmplicated as t1,.O intersecting lines may
have no plotted points in cammon. The detection condition is either (1)
the computed point is TRUE, or (2) both the next horizontal and the
next vertical points are TRUE. Condition (2) could be weakened: when
the line is more horizontal, only the next vertical point need be
checked. .

Refer to Section 2.1.4 for a description of the parameter calling sequence.

A PASCAL implementation follows:
PROCEDURE DRAWLINE (VAR RANGE: INTEGER; VAR SCREEN: SCREENTYPE;
ROWWIDTH, XSTART, YSTART, DELTA X , DELTAY, INK: INTEGER);

VAR X, Y, XINC, YINC, COUNT: INTEGER ;

PROCEDURE DRAWDOT;

Page 159

PROCEDURE RADAR;
VAR GOTIT: BOOLEAN;
BEGIN

GOTIT : = FALSE;
COUNT := COUNT + 1;
IF SCREEN [Y, X] THEN GOTIT : = TR UE (*LANDED ON TIiE POINT*)
ELSE (*WE MIGHT GO THROUGH A LlNE*)

IF SCREEN [Y+1, X] THEN
GOTIT := SCREEN [Y, X.1];

IF CDTIT THEN
BEGIN

RANGE : = COUNT;
EXIT (DRAWLlNE)

END;
END (*RADAR *) ;

BEGIN (*DRAWOOT*)
CASE INK OF

o (*NONE*): EXIT (DRAWLlNE); (*MY HAD NO BUSINESS HERE*)
1 (*WHITE*):
2 (*BLACK*):
3 (*REVERSE*):
4 (*RADAR*):
END (*CASE*)

END (*DRAWOOT*);

SCREEN (Y, X] := TRUE;
SCREEN (Y, XJ := FALSE;
SCREEN [Y, XJ : = NOT SCREEN [Y, XJ;
RADAR

PROCEDURE DOFOR:<; (*MORE HORIZONTAL*)
VAR ERROR, I: INTEGER;
BEGIN

IF DELTAX = 0 THEN EXIT (DRAWLINE); (*THEY'RE GOING NOWHERE*)
ERROR : = DELTAX DIV 2;
I : = DELTAX;
REPEAT

ERRCR := ERROR + DELTAY;
IF ERR CR >= DEL TAX

THEN BEGIN ERROR := ERROR - DELTAX; Y:= Y + YINC END;
X : = X + XINC;
DRAWOOT;
I := I - 1;

UNTIL I = 0;
END (*DCFORX*);

PROCEDURE DeFORY; (*MORE VERTICAL*)
VAR ERROR, I: INTEGER;
BEGIN

ERROR := DELTAY DIV 2;
I : = DELTAY;
REPEAT

ERROR := ERROR + DELTAX;
IF ERROR >= DELTAY

TIiEN BEGIN ERROR : = ERROR '.:' DELTAY; X: = X + XING END;
Y : = Y + YINC;

Page 160

DRAWDOT ;
1:=1-1;

UNTIL I = 0;
END (*DOFORY*);

BEGIN (*DRAWLINE*)
X := XSTART;

. IF DELTAX < 0
THEN BEGIN XINC : = -1; DELTAX: = -DELTAX END
ELSE XINC : = 1;

Y := YSTART;
IF DELTAY < 0

THEN BEGIN YINC : = -1; DELTAY: = -DELTAY END
ELSE YINC : = 1;

COUNT : = 0;
IF DELTAX >= DELTAY THEN DOfORX ELSE DOfORY;
IF INK = 4 (*RADAR*) THEN RANGE : = COUNr; (*HIT THE LIMIT GIVEN *)

END (*DRAWLINE*);

Page 161

- Notes --

Page 162

•••• **.***.**.** *.**.**********
I FILE FORMATS • * Section 3.2 *
1.111.**111 •• 11. 11 •• 1",***,,*,

Version 11.0 February 1979

Text files are of the format:

<1024 bytes> header page, information for editors. This space
is reserved for use by the text editors, and is respected by all
portions of the systan. When a userprogran opens a TEXT file, and
REWRITEs or RESETs it with a title ending in '.TEXT', the I/O
subsystan will create and skip over the initial page. This is done to
facilitate users editing their input and/or output data. The file
handler will transfer the header page only on a disk-disk transfer,
and will omit it on a transfer to a serial device. (i.e. transfers to
PRINTER:, and CONSOLE: will omit the header page)

<1024 byte pages> where a page is defined:
<[DLE][indent][text][CR][DLE][indent][text][CR] ... [nullsJ>

Data Link Escapes are followed by an indent-code, which is a byte
containing the value 32.(# to indent). The nulls at the end of the
page follow a [CR] in all cases, and are a pad to the end of a page.
Because the compiler wants integral numbers of lines on a page. The
Data Link Escape and corresponding indentation code are optional. In
a given text file some lines will have the codes, and some won't.

space ..

Fote files are declared in PASCAL as follows:

TYPE SCREEN = PACKED ARRAY[O .. 239,O •. 319] OF BOOLEAN;
VAR FOTCFlLE: PACKED FILE OF SCREEN;

or something Similar, which takes up the same dimensional

Data files are up to the user.

Code files have one block of information which describes the
code kept in the file. First is an array of 16 word pairs, the first
word in the pair describes the block which starts the code of the
segment which is numbered as the position in the array. The second
word is the number of bytes in that segment. For example if the third
word in the first block of a code file is an 8, and the fourth work is
1084, you now know that segment 1 of this code file starts on block 8
of the file, and has 1084 bytes of code. See Sections 3.4 and 3.5 for
notes on codefiles.

Page 163

Following this array is an array of arrays of characters. The
array is an array of 8 character arrays which describe the segments by
name. These 8 characters are those which identify the segment at
compile time. Here again, the position in this array corresponds to
the segment number.

Following the array of names is an array, again 16 words· long,
of state descriptors. The values in this array indicate what kind of
segment is at the described location. The values for this array, at
present, are: LINKED, HOSTSEG,SEGPROC, UNITSEG,SEPRTSEG.

The remainder of the block, 144 words, is reserved for future
use by later versions of the system. The format of the first block
will most probably change completely for version 11.0.

Page 164

*************************** *****************
* SEGMENT PROCEDURE NOTES * * Section 3.3.1 *
*************************** *****************

Version 1.5 September 1918

Declarations of SEGMENT procedures and functions are identical
to standard Pascal procedures and functions except they are preceded by
the reserved VoK)rd 'SECMENT', for example:

SEGMENT PROCEDURE INITIALIZE;
BEGIN

(* PASCAL code *)
END;

Program behavior differs, however, as code and data for a
SEGMENT procedure (function) are in memory only while there is an
active invocation of that procedure.

Mvantages and b.enefi ts :

The user may now put large pieces of one-time code, ego
initialization code, into a SEGMENT procedure. After performing the
initialization, for example, the now-useless code is taken out of
memory thus increasing the available memory space.

Furthermore the user may now compile his/her program in chunks,
specifically in SEGMENTS. The LIBRARIAN program (described in Section
4.8) can be used to link together the separate segments to produce one
large code file.

Requirements and limitations:

!he disk which holds the codefile for the program must be on
line (and in the same drive as when the program was started) whenever
one of SEGMENT procedures is to be called. Otherwise the system will
attempt to retrieve and execute whatever information now occupies that
particular location on the disk, usually with very displeasing and
certainly unexpected results.

Page 165

A max~um of seven (7) SEGMENT procedures are ordinarily
available to the user, including the main body segment.

SEGMENT procedures must be the first procedure declarations
containing code-generating statements.

For further details and ~xamples see Section 3.5, INTRODUCTION
TO THE PASCAL PSEUDO MACHINE.

Page 166

•••••••••••••••• **.*************** *****************
* LINKAGE TO EXTERNALLY COMPILED * * Section 3.3.2 *
* AND ASSEMBLED ROUTINES * * *
********************************** *****************

Version 1.5 September 1978

EXTERNAL COMPILATION UNITS

The UCSD Pascal 1.5 system supports a facility for integrating
externally compiled and assembled routines and data structures. Use of
separately compiled structures allows the user to create files of
frequently used routines. After a structure is compiled, the user adds
it to a library, using the librarian. Files that reference that
structure need not compile it directly into their code file, rather,
the linker copies the existing code into the host code file. Separate
compilation or assembly is supported in these areas: between portions
of programs written in Pascal; between assembly language routines and
Pascal hosts; and finally, between assembly language routines. Each
of these areas is discussed in turn by the following sections.

3.3.2.1 PASCAL TO PASCAL LINKAGES -- UNITS

A UNIT is a group of interdependent procedures, functions, and
associated data structures which perform a specialized task. Whenever
this task is needed within a program, the program indicates that it
USES the UNIT. A UNIT consists of two parts, the INTERFACE part, which
declares constants, types, variables, procedures and functions that are
public and can be used by the host program, and the IMPLEMENTATION
part, which declares constants, types, variables, procedures and
functions that are private. These are not available to the host program
and are used by the UNIT. The INTERFACE part declares how the program
will communicate with the UNIT while the IMPLEMENTATION part defines
how the UNIT will accomplish its task.

TURTLEGRAPHICS (example B) is a UNIT which enables the user
to draw pictures using a graphics turtle. The INTERFACE consists of
procedures like MOVE, TURN, and PENCOLOR, which allow the user to move
the turtle and change colors. TURTLEGRAPHICS also employs DRAWLINE, an
externally assembled procedure, to draw the lines and the turtle.

Page 167

A program that uses TURTLEGRAPHICS has no need for DRAWLINE,
and, consequently, DRAWLINE is private to that UNIT.

PROGRAM DRAWPOLYGON;
USES TURTLEGRAPHICS;
VAR I:INTEGER;

S JZE, NOOIDES: INTEGER;

BEGIN
INITTURTLE; (* Initialize the UNIT's variables *)
WRITE('What size polygon?');
READLN (SIZE) ;
WRITE ('H::>w many sides?');
READLN (NUMSIDES) ;
FOR I: = 1 TO NUMSIDES 00

BEGIN

END.

MOVE (SIZE) ;
TURN(360 DIV NLMSIDES);

END;

EXAMPLE A

A crogram must indicate the UNITs that it USES before the LABEL
declaration part of the program. At the occurrence of a USES
statement, the compiler references the INTERFACE part of the UNIT as
though it were part of the host text itself. Therefore all public
constants, types, variables, functions, and procedures are global. Name
conflicts may arise if the user defines an identifier that has already
been defined by the UNIT. Procedures and functions may not USE UNITs
locally.

UNIT TURTLEGRAP~ICS;
INTERFACE

TYPE
TGCOLOR= (NONE, WHITE, BLACK, REVERSE);

PROCEDURE INITTURTLE;
PROCEDURE TURN(RELANGLE: Integer);
PROCEDURE MOVE(RELDISTANCE: Integer);
PROCEDURE MOVETO(X, Y: Integer);
PROCEDURE TURNTO(ANGLE: Integer);
PROCEDURE PENCOLOR (peOLOR: TGCOLOR);

Page 168

IMPLEMENTATION

CONST

TERXSIZE = 319;
TERYSIZE = 239;
RADCONST = 51.29518;

TYPE

SCREEN = Packed
Array [O .• TERXSIZE, O .• TERYSIZE] of Boolean;

VAR
(* Private variables *)
TGXPOS: Integer;
TGYPOS: Integer;
TGHEADING: Integer;
TGPEN: TGCOLOR;

I, J: Integer;
S: SCREEN;

(* Externally assembled procedure *)
PROCEDURE DRAWLINE(Var RADAR: Integer; Var S: SCREEN;

ROW, XO, YO, DX, DY, PEN: Integer);

EXTERNAL; (* External declaration *)

PROCEDURE INITTURTLE;
BEGIN .

Fillchar(SCREEN, Sizeof(SCREEN), 0);
Unitwrite(3, SCREEN, 63);
HEADING : = 0;
TGXPOS : = 0;
TGYPOS := 0;

END;

PROCEDURE MOVE;(* Public procedure, parameters declared above *)
££GIN

MOVETO(Round(TURTLEX + DIST*Cos(TURTLEANGLE/RADCONST),
Round(TURTLEY + DIS!lSin(TURTLEANGLE/RADCONST));

END ;

Page 169

PROCEDURE MOVE1O;
VAR R: Integer;

BEGIN
DRAWUNE (R, S, 20, 160+TURTLEX, 120-TURTLEY,

X-TURTLEX, TURTLEY -Y, ORD (TURTLEPEN))-;
END;

PROCEDURE TURN;(* Public procedure, parameters declared above *)
BEGIN

fiEADING : = (HEADING+RELANGLE) mod 360;
END;

PROCEDURE TURNTO;
BEGIN

HEADING : = ANGLE;
END;

PROCEDURE PENCOLOR;
BEGIN

TGPEN := PCOLOR;
END;

END. (* End of unit *)

EXAMPLEB

Example B is a skeleton for a TURTLEGRAPHICS UNIT. Note that
the procedures MOVE, TURN, and INITTURTLE, and the TYPE TGCOLOR, are
declared in the INTERFACE part and are available for use by the host
program. Since the procedure DRAWLINE is not part of the INTERFACE, it
is private, and may not be used by the host. The syntax for a UNIT
definition is shown below. The declarations of routine headings in the
INTERFACE part are similar to forward declarations; therefore, when the
corresponding bodies are defined in the IMPLEMENTATION part, formal
parameter specifications are not repeated.

A UNIT may also USE another UNIT, in Which case the USES
declaration must appear at the beginning of the INTERFACE part. In
example C, PICTJREGRAPHICS indicates in the INTERFACE part that it,
USES TURTLEGRAPHICS. Note that the program USEGRAPHICS, which USES
PICTUREGRAPHICS, indicates that it USES TURTLEGRAPHICS before using
PICTUREGRAPHICS. It is important that the INTERFACE part of
TURTLEGRAPHICS be defined before PICTUREGRAPHICS makes references to
it, therefore this ordering is required.

Page 170

NOTE: Variables of type FILE must be declared in the INTERFACE
part of a UNIT. A FILE declared in the IMPLEMENTATION part will cause
a syntax error upon compilation. This is due to the nature of
generation of initialization code for FILEs.

PROGRAM USEGRAPHICS;

UNIT PICTUREGRAPHICS;
INTERFACE

USES TURTLEGRAPHICS; (* TURTLEGRAPHICS is defined in the *)
TYPE C* *system.library see section III below *)

PVECTOR=AVECTCR;
VECTOR=RECORD

DELHEADING:INTEGER;
DELDISTANCE:INTEGER;
PENDOtJN: BOOLEAN;
NEXTVEC: PVECTOR

END; (* record *)

VAR
START:PVECTOR; (* Head of list of lines *)
HEAP: "INTEGER;

PROCEDURE MAKESUBPICTURE ;

PROCEDURE DRAWSUBPICTURE;

IMPLEMENTATION

PROCEDURE MAKESUBPICTURE;
BEGIN

(* Calculates next subpicture and stores on heap *)
END;

PROCEDURE DRAWSUBPICTURE;
BEGIN

LPVEC: :START; (* Start at beginning of list *)
WHILE LPVEC<>NIL DO (* and draw each that's there *)

·wITH LPVEC" DO
BEGIN

TURN(DELHEADING);
MOVECDELDISTANCE);
IF PENDOWN THEN TGPEN:=WHITE

ELSE TGPEN:=NONE;
LPVEC: =NEXTVEC ;

END;
END; (* drawsubpicture *)

P~e 171

END;

USES TURTLEGRAPHICS,PICTUREGRAPHICS;

BEGm

(* picturegraphics uses *)

INITTURTLE;
REPEAT

MARK CHEAP) ;
MAKESUBPICTURE ;
DR AWSUB PIC TUR E ;
RELEASE (HEAP);

UNTIL START=NIL;
END.

<Compilation unit >

< Unit definition>

< Unit heading >

< Unit identifier>

< Interface part >

< Implementation part>

< Uses part >

(* turtlegraphics

EXAMPLE C

::= < Program heading> ; { < Unit definition>
< Uses part > < Block > :

*)

< Unit definition> { ; < Unit definition> }.

::= < unit heading >;
< Interface part >
< Implementation part >
End

::= Unit < Unit identifler > :
Separate unit < Unit identifier>

: : = < Identi fier >

: : = Interface
< Uses part >
< Constant definition part>
< Type definition part >
< Variable declaration part >
< Procedure heading > : < Function headir.g >

.. -.. - Imolenentation
< Label declaration part >
< Constant definition part >
< Type definition pert >
< Variable declaration part >
< Procedure and Function declaration ?art >

::= Uses < Unit identifier>
{ , < Unit ident.i fier> } < Empty >

See Section 5.9 for Syntax diagrans.

DIAGRAM D
Page 172

The user may define a UNIT in-line, after the heading of the host
program. In this case the user compiles both the UNIT, and the host
program together. Any subsequent changes in the UNIT or host program
require the user to recompile both. The user may also define and
compile a UNIT (or a group of UNITs) separately, and use the library
manager to store it (or them) in a library. After compiling a host
program that uses such a UNIT, the user must link that UNIT into the
code file by executing the LINKER. Trying to R(un an unlinked code
file will cause the LINKER to run automatically, trying to X(ecute an
unlinked file causes the system to remind you to link the file .

Changes in a host program require only that the user recompile
the program and link in the UNIT. Changes in the IMPLEMENTATION part
of a UNIT only require the user to compile the UNIT, and then to
relink all compilation units that use that UNIT. Changes in the
INTERFACE part of a UNIT require that the user recompile both the UNIT
and all compilation units that use that UNIT. In th:s case all these
compilation units must again be linked. For more information see
section 1.8 LINKER or section 4.2 LIBRARIAN.

The compiler generates LINKER information in the contiguous
blocks following the code for a program that uses UNITs. This
information contains locations of references to externally defined
identifiers. Section 1.8 explains the format of this information.

3.3.3.2 PASCAL TO ASSEMBLY LANGUAGE LINKAGES -- EXTERNAL PROCEDURES

External procedures are separately assembled assembly language
procedures or separately compiled procedures, stored in a LIBRARY on
disk. Host programs that require external procedures must have them
linked into the compiled code file. Typically the user writes external
procedures in assembly language, to handle low-level operations that
Pascal is not designed to provide. External assembly language
procedures are also used for their comparative speed in 'real time'
applications.

Page 173

A host program declares that a procedure is external in much
the same way as a procedure is declared FORWARD. A standard heading
is provided, followed by the keyword EXTERNAL. Calls to the external
procedure use standard Pascal syntax, and the compiler checks that
calls to the external agree in type and number of parameters with the
external declaration. It is the user's responsibility to assure that
the assembly language procedure respects the Pascal external
declaration. The linker checks only that the nunber of ~rds of
parameters agree between the Pascal and assembly language
declarations. For more information see section 1.8 Linker and 1.9
Assenbler(s).

The conventions of the surrounding system concerning register
use and calling sequences must be respected by writers of assembly
language routines. These conventions for the PDP-11 and Z80/8080
~plementations are given here.

First, for the PDP-11, registers RO and R1 are availab~e for
use; any others affected by a routine must be saved on entry and
restored on exit. The following call and return sequence is
recommended for procedures. It has the advantage that calls can be
made directly fram assembly language as well as fram Pascal .

PARAM 1
PAR AM 2
RETADDR
OLDR5
LOCAL 1
LOCAL 2

EXIT:

. PRCC ENTRY, 2

.EQU 6 ;Offset for first parameter

.EQU 4 ; Offset for second paramter
• EQU 2 ;Offset for return address
.EQU 0 iOffset for original value of R5
.EQU -2 ;Offset for first local
.ECU -4 ; Offset for second local

MOV R5,-(SP) ;Save contents of R5
MOV SP,R5 ;Use R5 to get at locals and parameters
CLQ -(SP) ;Reserve and Initialize
CLR -(SP) ;Two local variables

jInside routine
MOV PARAM (R5) , LOCAL 1 (R5) ;Sample statement

MaV
MOV
MOV
ADD
JMP @RO

R5,SP
(SP)+, R5
(SP)+,RO
iINPARA'-1S, SP

; Cut back to entry SP
;Restore previous R5
jGet return address
jDiscard parameters, number of bytes
;Return to caller

P age ~74

In Z80 assembly language routines, all registers are available
for use, and the recommended interface sequence follows: (This code
would work for both 8080's and ZBO's. Optimizations are possible if
the Z80 instructions are available.)

. PROC ENTRY, 2

. PRIVATE RETADDR,LOCAL 1 ,LOCAL2, PARAM 1, PARAM2
;Reserve static storage for this routine. Much easier to
;reference objects like this rather than relative to
;register as on PDP-11
POP HL
LD (RETADDR),HL
FOP HL
LD (PARAM2),HL
FOP HL
LD (PARAM1),HL

LD
LD

EXIT: LD
JP
• END

HL, (PARAM2)
(LOCAL 1) ,HL

HL, (RETADDR)
(HL)

;Get return address
;and save it
;Get and save PARAM2

;Get and save PARAM1

;Move PARAM2
;to LOCAL 1

;Get return address

For assembly language functions (.FUNC's) the sequence is
essentially the same, except that:

1) Two words of zeros are pushed by the compiler after any
parameters are put on the stack.

2) After the stack has been completely cleaned up at the
routine exi~ t~e, the .FUNC must push the function result on the
stack.

Here is an examPLe of an external assembly language procedure,
and a program that uses it. This example takes a very primitive
approach to interrupt handling (which might still be useful in some
applications). There is no provision for handling interrupts from the
device where a collected buffer is being written to disk. Support for
continuous interupts would be more complex, involving multiple buffers
and exclusion mechanisims to assure that buffer switching would occur
reliably. The Project intends eventually to provide synchronization
capabilities at the Pascal level, so that interrupt handling can be
accomplished with greater convenience and safety.

P~e 175

• ?ROC
.CONST
• PUBLIC

DRADDR .EQU
DRVECT .EQU

MOV
MOV
MOV
i"10V
BIS

LOOP: TST
6NE
BIC
RTS

HANDLR: HOV
DEC
RTI

PROGRAM COLLECTDATAj
CONST

DRBUFLENG : 256;

TYPE

DRCOLLECT, 0 Nane of routine for use by linker.
DRBUFLENG Public constant.
DRBUFFER Public variable.

167770
140
HHANDLR,@HDRVECT ;Load address of interrupt
1I340,@IIDRVECT+2 jhandler and set priority.
IIDRBUFLENG, R 0 ;Load RO with size of buffer.
liDRBUFFER , R 1 ;Load R1 with address of buffer.
11100 , @IIDRADDR ;Enable interrupts on DR interface.

RO ;Exit loop when buffer full.
LOOP
1I100,@IiDRADDR ;Disable interrupts.
PC jReturn to PASCAL host prog;am.

@fiDRADDR+2, (R 1)+ ;Load buffer with next word,
RO ;incrernent R1, decrement RO.

;Return fram interrupt.,

DATABUFFER : Array [1 •• DRBUFLENG] of integer;

VAR
I: Integer;
DRBUFFER: DATABUFFER;
DATAFILE: File of DATABUFFER;

PROCEDURE DRCOLLECT;
External;

BEGIN (*of ColI ect Data*)
Rewrite(DATAFILE, 'SAMPLE. rATA');
For I::1 to 10 do

BEGIN
DRCOLLECT;

DATAFILEA::DRBLFFERj
Put(DATAFILE);

END;
Close(DATAFILE, Lock);

END.

Page 176

3.3.2.3 ASSEMBLY LANGUAGE TO ASSEl1BLY LANGUACL LINKAGES

The third way in which separate routines may share data
structures and subroutines is by linkage from assa~bly language to
assembly language. This is made possible through the use of the .DEF
and .REF pseudo-ops provided in the UCSD assemblers. These generate
link information that allows two separately assembled procedures to be
L(inked together. One possible use for this will be the linking of
separate routines and drivers in constructing new UCSD interpreters.

The following are very abbreviated versions of two assembly
language routines which make separate references. They are used
externally by the UNIT PSGRAPHICS:

The first routine declares three public variables and declares
a .DEF for a label to be referenced by the second routine (Note that
this is only a skeleton of the actual MOVETO routine):

• PROC MOVETO, 6 THE 3 REAL PARA~ETERS OCCUpy 6 WORDS

PROCEDURE MOVETO(X, Y, Z: REAL);

CQv1PUTES A NEW PSXPOS & P SYPOS FR01 PSMATP AND
AN ASSUMED 1.0 AS THE INPlJI' VECTOR H~OGENOUS
COORDINATE •..

(X Y Z 1) dot PSMATp A = (X' Y' Z' W')
PSXPOS : = X' /W';
PSYPOS : = Y' tfl' ;

; THESE ARE GLOBALS IN THE PASCAL HOST
· PUBLIC P SXPCS
• PUBLIC PSYPOS
• PUBLIC PSMATP

MOVETO ENTRY POINT

MOl
MOV
MOV

R5, -(SP)
SP,R5
@#PSMATP,RO

R5 USED AS FRA~E POINTER

RO IS TOS MATRIX POINTER

PARAMETER DISPLACEMENTS FR~ R5 FRAME POINTER
X .EQU 14
Y .EQU 10
Z .EQU 4
W .EQU-4

C(}1PUTE W', H(}10GENEOUS COORD
AND LEAVE IT ON STACK

Page 177

(l)1PUTE PSXPOS

NOlI C()1PUTE PSYPOS

CLEAN UP STACK AND RETURN

ROUND: ROUND REAL ON STACX TO INTEGER
; IF < 0 THEN SUBTRACT o. 5 ELSE
; ADD 0.5, THEN TRUCATE •

• END

The second routine references the first routine as well as the
separately assembled CRAWLINE routine. MOVETO must be linked into
LINETO before the routine can be linked in as an external procedure to
a PASCAL UNIT or PROGRAM •

• PROC LINETO,6 ; PARAMETERS OCCUpy 6 WORDS

PROCEDURE LINETO(X, Y, Z: REAL);

DRAWS A LINE FRCM TI£ LAST POINT CONTAINED IN
PSXPOS & PSYPOS TO THE NB~ TRANSFORMED POINT
GIVEN BY X, Y, & z ...
SAVEX := PSXPOS; SAVEY := PSYPOSj
MOVE!O(X, Y, Z);
DRAWLINE(JUNK, PSBUFp A

, 20, 160+SAVEX, 120-SAVEY,
PSXPOS-SA VEX, SA VEY -PSYPOS, 1);

.PUBLIC PSXPOS
• PUBLIC PSYPOS
• PUBLIC PSBUFP
• PRIVATE RANGE

• REF MOVETO
• REF DRAWLINE

; LINETO ENTRY POINT

Page 178

SAVE X
SAVEY
X
Y
Z

.END

MOV
MOV
.ECU
.EQU
.EQU
.EQU
.EQU

R5,-(SP)
SP,R5
-2
-4
14
10
4

USE R5 AS STACK FRAME POINTER

SAVEX := PSXPOS; SAVEY := PSYPOS;

MOVETO(X, Y, Z);
· ,
JSR PC,@fMOVETO
· ,
; DRAWLINE(••.);
· ,
JSR PC,~/DRAWLINE
,
; ALL DONE •.. RETURN
· ,
JMP @RO

For examples and more information see section 1.9 ASSEM

Page 179

-- Notes --

Page 180

***************** ******* •••• * •• ***
* LONG INTEGERS • * SECTION 3.3.3 *
* •• *******.****** *******.***.** •• *

Version 1.5 September 1978

With the predeclared type INTEGER the optional use of a length
attribute constitutes a new type and will, in the remainder of this
document, be referred to as LONG INTEGER. The LONG INTEGER is
suitable for business, scientific or other applications which
need extended number lengths with complete accuracy. This
extension supports the four basic standard INTEGER arithmetic
operations (addition, subtraction, division and multiplication) as
well as routines facilitating conversion to strings and standard
INTEGERs. Strong type checking is enforced throughout in the Pascal
spirit. Input/Output, in line declaration of constants and inclusion
in structured types are all fully supported and are analogous to the
usage of standard INTEGERs.

LONG INTEGERs are declared using the standard identifier
INTEGER followed by a length attribute in square brackets. This
length is an unsigned number, not larger than 36, denoting the minimum
number of dec~al digits representable by the LONG INTEGER. For
example, a" variable called 'X' capable of storing at least an eight
dec~al digit signed number would be created by:

VAR X: INTEGER[8J;

Constants are defined in the normal manner:

CONS! RYDBERG = 10913131;

In the above example RYDBERG would be by default a LONG INTEGER
and could be used anywhere a LONG INTEGER could be used.

In general LONG INTEGERs may be used anywhere it is
syntactically correct to use REALs, however care must be taken to
ensure that sufficient words have been allocated by the declared
length attribute for storage of the result of assignment or arithmetic
expression statements (see note in next subsection for complete
details). INTEGER expessions are implicitly converted as required
upon assignment to, or arithmetic operations with, a LONG INTEGER.
The reverse is not true.

Page 181

Examples:

VAR I: INTEGER;
L: INTEGERN; {where N is an integer constant

<= 36 }
s: REAL;

I:= L; {syntax error, see TRUNC(L) below}
L:=-t; {correct, with the usual exception}
L:= I; {always correct}
L:= S; {never accented}
S:= L; {will be implemented with II.O}

Arithmetic operations which may be uSed in conjunction with LONG
INTEGERs are any or all from the set {+,-s.,DIV,unary plus/minus}. On
assignment the length of the LONG INTEGER is adjusted (during
execution) to the declared length attribute of the variable, therefore
overflow may result. Overflow occurs only when the intermediate
result exceeds the number of words required to store (as a mi~imum)
thirty-seven decimal digits, or when the final result is assigned to a
variable with insufficient length attribute. A length attribute of 5
thru 9 may store up to and including 2147483647, length attributes of
10 thru 14 may store thru 140737488355327, 15 tnru 18 ..
9223372036854775807. It is left to the interested reader to compute
any larger length attribute storage capacities. 1"Oi5 range of length
attributes all having the same upper bound i3 a result of the
allocation of a full word as the least amount of additional storage,
i.e. 5 thru 9 represent a two word INTEGER.) All of the standard
relational operators may be used with mixed LONG INTEGER and INTEGER.

The function TRUNC(L), where 'L' is a LONG INTEGER, will convert
'L' to an INTEGER (i.e. TRUNC will accept a LONG INTEGER as well as a
REAL as an argument). Overflow will result if L is greater than
;.1 AXI NT .

The procedure STR (L, S) converts the INTEGER or LONG INTEGER
'L', into a string (complete with minus sign if needed) and places ~t
in the STRING'S'. :he follo\-ling program segment will provide a
suitable dollar and cent r~utine:

STR (L,S); INSERT (' • ' ,S, LENGTrl (S)-1); ilR lTEL'l (S) ;

Where 'L' and'S' are appropriately declared. TRUNC and STR are
the only two routines which currently will accept LONG INTEGE~ as
parameters. An attempt to declare a LONG INTEGER in a parameter list
will result in a syntax error, which may be circumvented by creating a
type which is a LDNG I~!EGER. For example:

Page 182

TYPE LONG = INTEGER18;
PROCEDURE BIGNUMBER(BANKACX::T: LONG);

The LONG INTEGER is stored as a multi-word, twos complement
binary number. System and interpreter routines do the I/O conversions
as required. Maximum storage efficiency is achieved by dynamic·
expansion and contraction of word allocation as required. During
LONG INTEGER operations the length is placed on the stack above the
number itself, the declared length attribute need not be the same and
can be less than this length.

Page 183

- Notes --

Page 184

******************************* ***************
* PSUEDO-MACHINE ARCHITECTURE * * Section 3.4 *
******************************* ***************

Version 1.5 September 1978

The UCSD Pascal P-machine, designed specifically for the
execution of Pascal programs on small machines, is an extensively
modified descendant of the P-2 pseudo-machine from Zurich. It
supports variable addressing, including strings, byte arrays, packed
fields, and dynamic variables; logical, integer, real, and set top-of
stacK arithmetic and comparisons; multi-element structure comparisons;
several types of branches; procedure/function calls and returns,
including overlayable procedures; miscellaneous procedures used by
systems programs; and basic I/O subsystem.

This Section, to be used in conjunction with Section 3.5,
describes the P-machine "hardware," canmunication with the operating
system, exceptional condition handling, the instruction set, the I/O
system, and the bootloading process.

3.4.1 HARDWARE (emulation)

The P-machine uses 16-bit words, with two 8-bit bytes per
word. It has several registers and a user memory, in which are kept a
stack and a heap. All registers are pointers to word-aligned
structures, except lPG, which is a pointer to byte-aligned
instructions. The registers are:

SP: Stack Pointer is a pointer to the top of the execution stack. The
stack starts in high memory and grows toward low memory. It
contains code segments and activation records, and is used to pass
parameters, return function values, and as an operand source for
many instructions. The stack is extended by loads and procedure
calls, and is cut back by stores, procedure returns, and arith~etic
operations.

NP: New Pointer is a pointer to the top of the dynamic heap. The heap
starts in low memory and grows upward toward the stack. It
contains all dynamic variables (see Jensen and Wirth, Chapter 10).
It is extended by the standard procedure 'new', and is cut back by
the standard procedure 'release'.

JTAB: Jump TABle pointer is a pointer to the procedure attribute table
of the currently executing procedure. (See Section 3.5, figure 5.)

SEG: Segment Pointer points to the procedure dictionary of the segment
to which the currently executi~~ procedure belongs. (See Section
3.5, figure 6.)

Page 185

MP: Most recent Procedure is a pointer to the activation record of the
currently executing procedure. (See Section 3.5, figure 7.)
Variables local to the current procedure are accessed by indexing
off MP.

SASE: BASE Procedure is a pointer to the activation record of the most
recently invoked base procedure (lex level 0). Global (lex
level 0) variables are accessed by indexing off BASE.

3.4.2 OPERATING SYSm~/p-MACHINE COt+1UNICATION - SYSCOM

It is sanetimes necessary for the operating system and the P
machine to exchange information. Hence there exists a variable SYSCOM
in the outer block of the operating system, and a corresponding area in
memory known to the hardware. The fields in SYSCCM actually relevant
to this communication are:

IORSLT: contains the error code returned by the last activated or
terminated IIO operations. (See IIO section below, and ope;ati~g
system read and write procedures.)

XEQERR: contains the error code of the last run-tUne error. (See
exception handling below.)

SYSUNIT: contains the unit nunber of the device the operating system
was booted from (usually 4 or 5).

BUGSTATE: contains the current bugstate. (See BPT instruction bel:;w.)

GDIRP: contains a pointer to the most recent disk jire~tory read in,
unless dynamic allocation or deallocation has taken place si~ce tnen.
(See MRK, RLS, and N~w instructions beloW.)

STKBASE, LAS'IMP, SEG, JTAB: copies' ~f the BASE, MP,SEG and J'TA3
registers.

BOMBP: contains a pointer to the activation record 0: the ~pe;ating
system routine EXECERROR when a runt~e error occurs. (See
exception handling.)

SOMIPC : contains the value of IPC when a run-time error occ~rs.

HLTLINE: contains the line number of the last conditional halt exec~tes.
(See BPT instruction.)

BRKPTS: contains up to four line numbers of breakpointed statements.
(See BPT instruction.) ..

CRTINFO. ECF :
driver) •

contains the end-of-file character (see console input

Page 186

CRTINfO.FLUSH: contains the flush-output character (see console input,
output drivers).

CRTINFO.STOP: contains the stop-output character (see console output
and input drivers).

CRTINFO.BREAK: contains the break-execution character (see console
input driver).

SEGTABLE: contains the segment dictionary for the pascal system.

3.4.3 E)tEPTION HANDLING - XEQERR

Whenever a run-time error occurs, the P-machine stops executing the
current instruction (ideally leaving the evaluation stack in as nice a
condition as possible) and transfers control to the XEQERR routine.
This routine

1) enters the error code into SYSCOMA.XEQERR.
2) calculates what MP will be after step 4; and sets SYSCOMA.BOMBP to

that. (The size of EXECERROR's activation record must be known
by the P~achine.)

3) stores the current value of IPC into SYSCOMA.BOMIPC.
4) points IPC to a CXP 0,2 (call operating system procedure

EXECERROR) instruction.
5) resumes execution of interpreter code, starting with the CXP.

3.4.4 0 PERAND FORMATS

Although an element of a structure may occupy as little as one bit,
as in a PACKED ARRAY OF boolean, variables in the P-machine are
always aligned on word boundaries. All top-of-stack operations expect
their operands to occupy at least one word, even if not all the
information in a word is valid. The least significant bit of a word is
bit 0, the most significant is bit 15.

EOOLEAN: One word. Bit ° indicates the value (false=O, true=1), and
this is the only information used by boolean comparisons. However,
the boolean operators LAND, LOR, and LNOT operate on all 16 bits.

INTEGER: One word, two's complement, capable of representing values in
the range -32768 .. 32767.

SCALAR (user-defined): On~ word, in range 0 •. 32767.

CHAR: One word, with low byte containing character. The internal
character set is "extended" ASCII, wi thO .. 127 representing the
standard ASCII set, and 128 •• 255 as a user-defined character set.

Page 187

REAL: T1"o.O words, with fonnat implementation dependent. T~ system
is arranged so that only the interpreter needs to know the detailed
internal fonnat of REALs (beyond the fact that they occupy two
words) Following are the two detailed formats for the CPUs we now
(as of I.4) support.

PDP 11:
15 o

--
word 1: low mantissa

~---

15 14 7 6 o

word 0: ! s ! exponent high mantissa

Z80/8080:
15 8 7 o

word 1: low mantissa middle mantissa

15 14 8 7 o
-----------~~~---------------------~---~-----word 0: !s! high mantissa exponent

Both representations have an excess-128 exponent, a fractional
mantissa that is always normalized, exponent base 2, an implicit
24th mantissa bit, and zero represented by a zero exponent. (See
PDP11 processor manual or Z80/8080 interpreter listing for greater
detail.)

POINTER: One or three words, depending on type of pointer.
Pascal pointers, internal word pointers: one word, containi:1g 3 ',Jor:j

address.
Internal byte pointers: one word, containing a byte address.
Internal packed field pointers: three worjs.

word 2: word pointer to word field is in.
word 1: field width (in bits).
word 0: right:bit_number of field.

SET: 0 .. 255 words in data segment, 1 .• 256 words on stack. Sets are
implanented as bit vectors, always wi th a lower index of zero. A
set variable declared as set of m •. n is allocated (n.15) div 16
words. When a set is", in the ,data segment, all words allocated
contain valid information. "/

Page 188

When a set is on the stack, it is represented by a word
containing the length, and then that number of words, all of which
contain valid information. All elements past the last word of a
set are assumed not to be elements of the set. Before being stored
back in the data segment, a set must be forced back to the size
allocated to it, and so an ADJ instruction must be issued.

RECORDS and ARRAYS: any number of words (up to 16384 words in one
dimension). Arrays are stored in row-major order, and always have
a lower index of zero. Only fields or elements are loaded onto the
stack - never the structure itself. Packed arrays must have an
integral number of elements in each word, as there is no packing
across word boundaries (it is acceptable to have unused bits in
each word). The first element in each word has bit 0 as its low
order bit.

STRINGS: 1 .• 128 words. Strings are a flexible version of packed
arrays of char. A string[n] occupies (n div 2)+1 words. Byte 0
of a string is the current length of the string, and bytes
1 •• length(string) contain valid characters.

CONSTANTS: constant scalars, sets, and strings may be imbedded in
the instruction stream, in which case they have special formats.

All scalars (excluding reals) not in the range 0 .. 127: two bytes,
low byte first.

Strings: all string literals take length(literal)+1 bytes, and
are byte aligned. The first byte is the length, the rest are the
actual characters. This format applies even if the literal should
be interpreted as a packed array of char (see S1? and S2?
below) .

Reals and sets: word al i@1ed, and in reverse word order.

3.4.5 INSTRUCTION SET FORMA T

Instructions on the P-machine are one or two bytes long, followed
by zero to four parameters. Most parameters specify one word of
information, and are one of five basic types.

UB unsigned byte: high order byte of parameter is implicitly zero.
SB signed byte: high order byte is sign extension of bit 7.
DB don't care byte: can be treated as S8 or US, as value is always in

the range 0 •. 127.
8 big: this parameter is one byte long when used to represent values in

the range 0 •• 127, and is two bytes long when representing
values in the range 128 .• 32767. If the first byte is in
0 •. 127, the high byte of the parameter is implicitly zero.
Otherwise, bit 7 of the first byte is cleared and it is used as the
high order byte of the parall~ter. The second byte is used
as the low order byte. -/

W word: the next two bytes, low byte first, is the parameter value.

Page 189

Any exceptions to these formats are noted in the instructions where
they occur.

3.4.6 ENGLISH INSTRUCTION SET DESCRIPTION

In the follow~ng section, references to an element on the stack are
context-dependent, and can mean anywhere from ~ne word t~ 25(: words.
Also, unless specifically noted to the contrary, 0perands are popped off
the stack - they ~re not left around.

Jobbreviations are used widely, but IJse fairly simple conventions.
Paraneters are written as X or X n, where X is UB, SB, DB, 8, 'Jr W, and
n is an integer indicating the parameter position in the instruction.
Tos means the operand on the top of stack, tos-1 the next Qperand,
etc. Mark Stack Control Word is abbrev iated t~ MSC~-I.

Many instructions refer to the activation record of :3 orocedure, 3;'::

this docunent assunes the reader has a gener:al ~owled~e of procedure
calling in stack machines, and the concept ~f stack frames. {!_'1

activation record ~s defined in this document specifically consists Jf:
1) the local data segment of the procedure, dud
2) the MSCW, containing addressing information (static links), and

infonnation on the calling procedures environme:i:' when the procedure
was called.
(See Section 3.5, figure 7.)

The dynamic chain refers to the calling chain, traversed using th~
MSCil .MSDYN links. Tne static chain refers to the lexical or ancestor
chain, traversed ·using the MSCtJ • MSSTAT links.

~NEHONIC OP-CODE PAR .. ;METERS F:'1LL i.:Al~E AND C:·PERATION

5.A VAR IABLE FETCH:NG, INDEXING, STCRING, ;'.NC ':RANSF::~HIG
S.A.1 ONE WORD LOADS AND STORES

5.A.1.a CONSTANT ONE WORD LOADS

SLDC 0 •• 127

LDCN 159

LOCI 199

Short load word constant. Pushe~ the
cpccrle, with high byte zero, tJnto stn:;k.

Load constant nil. Pushes the
implementation-dependent value of nil.

~ad constant word. Pushes W.

Page 190

5.A. 1.b LOCAL ONE WORD LOADS AND STORE

SLDL1

SLDL16

LDL

LLA

STL

216

231

202

198

204

B

B

B

Short load local word. SLDLx fetches
the word with offset x in MP activation
record and pushes it.

Load local word. Fetches the word with
offset B in MP activation record and pushes it.

Load local address. Fetches address ~f
the w::>rd with 0 ffset B in MP activation record
and pushes it.

Store local word. Stores tos into word
with offset B in MP activation record.

5.A.1.c GLOBAL ONE WORD LOADS AND STORE

SLID 1

SLOO16

LOO

LAO

SRO

232

241

167

165

171

.

B

B

B

Short load global word. SLDOx fetches
the worU with offset x in BASE activation
record and pushes it.

Load global word. Fetches the word with
offset B in BASE activation record and pushes
it.

Load global address. Pushes the word
address of the word with offset B in BASE
activation record.

Store global word. Stores tos in to the
word with offset B- in BASE activation record .

5.A.1.d INTERMEDIATE ONE-WORD LOADS AND STORE

LaD

LDA

STR

182

178

184

DB,B

DB,B

DB,B

Load intermediate word. DB indicates the
number of static links to traverse to find the
activation record to use. B is the offset
within the activation record.

Load intermediate address.

Store intermediate word.

5.A.1.e INDIRECT ONE~ORD LOADS AND STORE

S10 154
" •· •• If

Store indirect. Tos is stored into the
word pointed to by tos-1.

Page 191

SINCO 248 Load indirect.

5.A.2 MULTIPLE ~ORD LOADS AND STORES (SETS AND REALS)

LOC 179

188

SD1 189

5.A.3 BYTE ARRAYS

BYT 210

LDB 190

STS i 91

169

209

5. A. 4 STRINGS

LCA 166

UB,<block) Load multiple word cons:anc. US is ~~e
number of words to l~ad, 3r:d <block> is ~
word aligned blocK Jf US words, in ~everse
word order. Load the bIocl< 'Jnt.? the st;)c:<.

US

UB

3

Load multiple words. Tos is ~ ;:>'Ji:;~er
to the beginning of a bluck of US '..icrds.
Push the blo~k onto the stac~.

Store mul tipl e worj s. 'lOS 1.3 ~ ~ lJC~ :~:
UB words, tos-1 is a ~vorj pci",ter to 3

similiar block. Transf-2"" t~;'? blJC;< fr:)m :'n~
stack to the dest:nat:on jloc~.

Byte conversion. Cv:1V~;'c, wor:.! ;;:) i~te~
tos to a byte pointer. (NO P on tne ?!)P 1 i =3r. j
Z80/8080 implenentat ior~s.)

L~ad byte. ?~sh the ~yte (after zer:)i~~
high byte) pointed to by byte po:nter :o~.

St~re byte. St,:)re ') yte tc s i;: t:) ':1-: e
l.cczt'ion specified by bite pJinte: ~~.:;-:.

~4ove bytes. :~.s is ~ jy:e 5JL.i!''':e

pointer to a bIoct< ,:)f 2 ~yt,es, ~s-: :'3 ~

byte destinati'Jn ;:')i~te; ':: a s:'n::~::r
jlock. Transfer :n2 SOi.Ji~e j::)c~ t-:: ~7;e

desti~ation bl:)c;<. (:his :':-:S7,;UC::;~ ~_s

redundant due to ~crd aligr~ent, ;~~ ~i::
be replaced by MOV in the fut~re.j

Index byte array. Push == byt.e ~ i!1ter
formed from the integer ir.dex tos .:::r.d ::-:e byt-:
;0 inter tos-1.

UB,<chars) Load constant strin~ address. Push a
byte -tiointer to the : ~cat:'.')n UB is ~ontai:ie:
in, and skip IPC past <~hars>.

in, 3nd skip !?C past <chars>.

Page 192

SAS 170

S1P 208

S2P 157

IXS 155

us String assign. Tos is either a sourC2
byte pointer or a character. (Characters
always have a high byte of zero, while
pointer never do.) Tos-1 is a destination
byte pointer. UB is the declared size of
the destination string. If the 1eclared
size is less than the current size of the
source string, a run-time error occurs;
otherwise all bytes of source containing
valid infonnation are transferred t:J the
destination string.

String to packed conversion on tos. TJS
is a byte pointer to a string, and is
incremented by one byte in order to point to
the first character of the string.

String to packed conversion on t:Js-1.
Tos and tos-1 are byte pointers, and tos-1 is
incremented by one byte.

Index string array. Performs the sa~e
operation as IXB, except before indexing th~
index is checked to see if it is in the r3nge
1 .. current length. If not, a run-ti~e error
occurs.

5.A.5 RECORD AND ARRAY INDEXING AND ASSIGNMENT

MOV

SINDO

SIND7

IND

INC

IXA

168

248

255

163

162

164

B

B

B

B

Move words. Tos is a source pointer to
a block of B words, tos-1 is a destination
pointer to a similiar block. Transfer the
block from the source to the destination.

Short index and load word. SINDx ind exes
the word pointer tos by x words, anj pushes
the word pointed to by the result.

Static index and load word. Indexes t~9
word pointer tos by B words, and pushes th8
word pointed to.

Increment field pointer. The word
pointer tos is indexed by B words ~nd the
resultant pointer is pushed.

Index array. Tos is an integer index,
tos-1 is the array base word pointer, and B
is the,/size (in words) of an array ~lement.
A word pointer to the indexed element is
pushed.

Page 193

IXP 192

LDP 186

STP 187

UB 1 ,UB 2 Index packed ar~ay. lOS ~s an i~teger
- - index, tos-1 is the array base word pointe:.

DB 1 is the m.mber of element per ~orj, ~n.j
DB-2 is the field width (in blts)~ C~nput~
ana push a packed-field pointer.

Load a packed field. Push t:1e fiel-:i
described by the packed field p~ir.te: tos.

Store into a packed field. T~s is t r;~
data, tos-1 is a packed field poi~ter. St~ie
tos into the field described by tos-1.

5. A.6 DYNAMIC VARIABLE ALLOCATION AND DE-ALLOCATION

NEW 158 1

~RK 158 31

RLS 158 32

New variable allocati::m. T,)3:.5 ~:-;.:: s:z':
(in words) to allocate the var i '3: 1 =, 2!'1.1

tos-2 is a word po inter to '3 :1 yna-,i-::
variable. If GDIRP is 10n-ni1. cu~ ~?
back to GDIRP and set GDI~ pta ~i 1. .;~: -;r'-=
NP into word pointed to oy t~s~a~1
increment NP by ~os wor1s.

increnent ~p by tos wor--jes.
Mark heap. Release GDIRP anj 3~t :~ ~i:

if necessary, then store NP intJ wo:j ~~d
to by tos.

Release heap. Set GDIR? :0 ~il, the~
store word pointed t~ by t~s tnt: ~l~.

5.B IDP OF STACK ARIT~E7IC AND CCMPARISONS

5. E. 1 LCGICAL

LAND 132

LOR 14 i

LNOT 147

EQUBOOL 175
NEQBOOL 183
LEQBCOL 180
LESBOOL 181
GEQBCOL 176
GTRBCCL 177

6
6
6 ,.
')

6
6

Logical and. And :~s i~~J ~:s-·.

Logical or. 'Jr tos i:;~" ~~3 .. "

Logical net. Take one's CQ11P:-:!!1E"-:: " ::,~.

Soolean :,
<>,

<:,
< ,

>:,
ar.d > co!nparis:~s.

Compare bit Q of tos-i :'0 bit: of ':..JS anj ~\,.js~

true or fal se .

?age 194

5.B.2 INTEGER

ABI

ADI

NGI

S8I

MPI

SQI

DVI

MODI

CHK

EQUI
NEQI
LEQI
LESI
GEQI
GTRI

128

130

145

149

143

152

134

142

136

195
203
200
201
196
197

Absolute value of integer. Take absolute
value of integer tos. Result is un1efined if
tos is initially -32768.

Add integers. Add tos and tos-1.

Negate integer. Take the two's
complement of tos.

Subtract integers. Subtract tos from tos-1 .

Multiply integers. Multiply tos and tos-1.
This instruction may cause overflow if resul t
is larger than 16 bits.

Square integer. Square tos. !'13y cause
overflow.

Divide integers. Divide tos-1 by ':.cs 8nj
push quotient. (PDP 11 quotien t define1 as in
Jensen and Wirth; Z80/8080 quotient jefinej
by floor(tos-1/tos).)

Modulo integers. Divide tos-1 by tos am
push the remainder (as define1 in Jenserl a~j

Wirth) .

Check against subrange bounds. Insure
that tos-1 <= tos-2 <= tos, leaving tos-2 on
the stack. If conditions are not satisfiej
a run-time error occurs.

Integer =,
<>,

<=,
< ,

>=,
and >

comparisons. Compare tos-1 to tos ani push
tru: or fal se.

Page 195

5.B.3 REALS

Allover/underflows cause a run-time error.

FLT 138

FLO 137

TNC 158 22

RND 158 23

ABR 129

ADR 131

NGR 146

SBR 150

MPR 144

SQR 153

DVR 135

POT 158 35

SIN 158 24
COS 158 25
ATAN 158 27
EXP .l?§ .. ~29_
L~ 158 28
LCG 158 26
SQT 158 30

EQUREAL 175 2
NEQREAL 183 2
LEQREAL 180 2

Float top-of-stack. The integer tos is
converted to a floating point number.

Float next to top-of -stack. Tos is a real,
tos-1 is an integer. Convert tos-1 ~o a real
nunber.

Truncate real. The real tos is truncated
(as defined in Jensen and Wirth) and
converted to an integer.

Round real. The real tos is rounded (~s
defined in Jensen and Wirth), then truncated
and converted to an integer.

Add reals. Take the absolute value ~f
the real tos.

Add reals. Add tos and tos-1.

Negate real. Negate the real t')s.

Subtract reals. Subtract tos from tos-l.

Multiply reals. Multiply tos and tos-1.

Square real.

Divide reals. Divide tos-1 by ~os.

Power of ten. The integer tus is che~ke~
for 0 <= tos <= 38, a run-ti~e error
occurring if the conditions aren't satisfie:.
The implementat:'on dependent value 10 ... ':.05

is pushed. This facility allows t~e r~st ~f
the system to be independent of f::ati~g
po int fo r:nat .

Sine. Take the sin~ ·~f the resl :OS.

Cosine.
Arctangent.
Exponential. e A tos .
Natural logari th.'i1.
Log base 10.
Square root.

Re~l =,
<>,

<=,

Page 196

LESREAL
GEQREAL
GTRREAL

181 2
176 2
177 2

5.B.4 SETS

ADJ

SGS

SRS

INN

UNI

INT

DIF

EQUPOWR
NEQPOtlR
LEQPOWR
GEQPOtlR

160

151

148

139

156

140

133

175 8
183 8
180 8
176 8

5.B.5 STRINGS

EQUSTR
NERSTR
LEQSTR
LESSTR
GEQSTR

175 4
183 4
180 4
181 4
176 4

UB

.< ,
>=,

and> comparisons.
Push TRUE or FALSE.

Adjust set. The set tos is forced to
occupy UB words, either by expansion (putting
zeroes "between" tos and tos-l) or
compression (chopping of high words of set),
and its length ~rd is discarded.

Build a singleton set. The integer tos
is checked to insure that 0 <= tos <= 4079, a
run-time error occurring if not. The set
[tosJ is pushe:i.

Build a subrange set. The integers tos
and tos-1 are checked as in SGS, and the set
[tos-1 •• tos] is pushed. (The set [] is
pushed if tos-1 > tos.)

Set membership. See if integer tos is
in set tes, pushing TRUE or FALSE.

Set union. The union of sets tos and
tos-1 is pushed. (Tos or tos-1.)

Set intersection. The intersection of
sets tos and tos-1 is pushed.
(Tos and tos-1.)

Set difference. The difference of sets
tos-1 and tos is pushed.
(tos-1 and not tos.)

Set =,
<>,

<= (subset of),

(superset of) comparisons.

String =,
<>,

<=,
<,

>=,

and >=

Page 197

GTRSTR 111 4

5.B.6 BYTE ARRAYS

EQUB YI'
NEQBYT
LEQBYT
LESBYT
GEQBYT
GTRBYT

175 10
183 10
180 10
181 10
176 10
177 10

and>
comparisons. The string pointed to by wor~
pointer tos-1 is lexicographically compare:
to the string pointed at by tos.

Byte array =,
<>,

<= ,
< ,

>= ,
and >

comparisons. <=, <, >=, and> are only
emitted for packed arrays of char.

5.B.7 ARRAY AND RECORD COMPARISONS

ECUWORD 175 12
NEQ..JORD 183 12

5.C JUMPS

Word or mul tiv.om structure =
and <>

comparisons.

Simple (non-case statement) jumps are all two bytes long. The
first byte is the op-code, the second is a 58 jump offset. If tnis
offset is non-negative, it is s1rnply added to IPC. (A value of zero
for the jump offset will make any j~~p a tWO-byte nop.) If SB is
negative, then sa div 2 is used as a word offset into JTAB, and !PC
is set to the byte-adCress(JTABA [S8 div 2]) - JTA3[Sa div 2~.

UJP 185

FJP 161

EFJ 211

NFJ 212

XJP 112

sa

58

sa

Uncond i tional j I.m'lp. Jump ,; s desci:'oej
above.

False jump. Jump if tos is false.

Equal false jump. Jump if integer :os <)

tos-1. Not implenented in I.4.

Not equal false jump. Jump if integer
tos = tos-1. Not iIllplenented in I. U.

Page 198

Case jump. W 1 is word-aligned, and is
the minimum index-of the table. W 2 is the
maximun index. W 3 is an unconditional
jump instruction past the table. The case
table is W 2-W 1+1 words long, and contains
self-relatIve locations.

If tos, the actual index, is not in the
range W 1 .. W 2, then IPC is pointed at
W 3. otherwIse, tos-W 1 is used as an
index into the table, and IPC is set to
byte address(casetableTindex-min indexJ)-
'casetable[index-min index]. -- \

5. D· PROCEDLRE AND FUK:TION CALLS AND RETURNS

CLP

CGP

elP

The general scheme used in procedure/function invocation is

1) Calculate the data size and parameter size of the called
procedure by using the in10nmation in the current procedure
dictionary (pointed to by SEG).

2) Extend stack by data size bytes.
3) Copy parameter size bytes from the old top-of-stack to the

beginning of the space just allocated.
4) Build a MSCW, saving SP, IPC, SEG, JTAB, MP, and a pointer

to the most recent activation record of the called procedure's
~ediate parent.

5) Calculate new values for SP, IPC, JTAB, MP, and if necessary,
SEG. Check for stack overflow.

6) If the called procedure has a lex level of -1 or 0 save BASE
and calculate a new BASE.

206 UB

207 UB

174 UB

Call local procedure. Call procedure UB,
which is an immediate child of the currently
executing procedure and in the same segment.
Static link of MSC~ is set to old MP.

Call global procedure. Call procedure
UB, which is at lex level 1 and in sa~e
segment. The static link of the MSC~ is set
to BASE.

Call intermediate procedure. Call
procedure VB in same segment as the
currently executing procedure. The stati8
link of the MSC~ is set by looking up the
call','chain until an activation record is
found whose caller had a lex level one 1
less than the procedure being called. Use
that activation record's static lin~ as the

Page 199

CBP

CSP

RNP

REP

EXIT

194 us

static link of the new ~SC~.

Call base procedure. Call procedure UB,
which is at lex level -1 or O. The static
link of the MSCW is set to the static link
in BASE's activation record. The BASE is
saved, after which it is point:d st the
activation record just created.

205 DB 1, lIB 2 Call external procedure. Use·j to call
- - any procedure not in the same segment as

158

173

193

158 4

DB

DB

~calling procedure, incl~ding procedures
at lex level -1 or O. It works as follows:

1) Is desired segment in memory? This
is determined by traversing up the call
chain until an activation record of a
procedure in the desired segment is found,
or the operating system's resii-=~t
activation record is encountered.

2a) no: read in segment fr~ jiSK usi~g
the information in the segment dictionary,
then build an acti~Jation record. However,
extend stack by data sizs+paramsize in step
2. -

2b) yes: build activation record nornally.
3) calculate the ·jynarnic link for the

MSC~: If the called procedure has a lex
level of -1 or 0, set as in CS?, othen~'ise
set as in CIP.

Scan this document for op of 158.

Retur~ fr::Y.Tl non-base procedur~. :'E is
the number of worjs that shoulj be ;etur~ed
as a func~ion value (J for ?rocedures, 1 for
non-real functions, and 2 for ;e::: functi'Jrls:.
DB words are copied from t;,e oo:t-:m of tn-=
data segment and "pushed" ont: :.~e ~a:' :er' s
top-of-stack. The i!"lfor.nation :'n tile 'I;SC:~
is then used to restore the :aller's
correct environment.

Return frem base procedure. The saved
base is moved into BASE, after whi:h thi~gs
proceed as in the RNP instruction.

Exit from procedure. 70S is :he
procedure number, tos-1 is the segment
number. Tnis operator sets I?C to point to

.. the exit code of the currently executing
procedure, then sees 11 the curre~t
procedure is the one to exit from. If it

?age 200

is, control returns to the instruction
fetch loop.

Otherwise, each MSCW has its saved IPC
changed to point to the exit code of the
procedure that invoked it, until the
desired procedure is found.

If at any time the saved IPC of main bo:iy
of the operating system is about to be
changed, a run-time error occurs.

5. E SYSTEMS PROGRAMS SUPPORT PROCEDURES

See Section 2.1 for description of these procedures.

BYTE ARRAY PROCEDURES

FLC

SCN

MVL

MVR

158 10

158 11

158 02

158 03

Fillchar(dst, len, char).

Scan(maxdisp, start, forpast, char, mask).

Moveleft(src, dst, numbytes).

Moveright(src, dst, numbytes).

COMPILER PROCEDURES (still undocumented)

TRS 158 08 Treesearch.

IDS 158 07 Idsearch.

DEBUGGER

BPT 213 Breakpoint (conditional HALT)

M IS:ELLANEOUS

TIM 158 09 Time.

XIT 214 Exit.

NOP 215 No operation.

Page 201

-- Notes --

, Page 202

*** ***************
* INTRODUCTION TO THE PASCAL PSEUDO-MACHINE * * Section 3.5 *
*** ***************

Version 11.0 February 1979

UCSD uses an interpret,er based implementation of Pascal. This
means that the compiler emits code for a pseudo-machine which is
emulated at run time by a program written in the machine language of
the host. The compiler, program editor, stand-alone operating system,
and various utilities are themselves written in Pascal and run on the
same interpreter. Thus the entire system can be moved to a new host
machine by rewriting the interpreter for the new host. This document
describes the Pseudo-machine codefiles as they were in version 1.3.
Many of the segments mentioned are no longer resident in the codefile
used as an example. This does not affect the functionality of the
description of the mechanisims put forth by this document.~ '"~

Figure 3.5.10 (the last page of this document) is a skeleton
version of a large Pascal program, here-in-after referred to as "The
Program". This docunent is a top-down description of the realization
of that program on the UCSD Pascal system. We will make occasional
use of a helpful coincidence: The Program is the framework of the
portion of the UCSD Pascal environment that's written in Pascal.

If The Program were expanded to a complete Pascal system, it
would consist of at least 6000 lines of Pascal and compile to more
than 50,000 bytes of code--too big to fit all at once into the memory
of a small machine (by our current definition of small). We have
therefore extended Pascal so that a programmer can explicitly
partition a program into segments; only some of which need be
resident in main memory at a time. The syntax of this extension is
shown in figure 3.5.1. (Any syntactic objects not defined explicitly
there retain their standard interpretation as defined by Jensen &
Wirth: Pascal User Manual and Report.) See Section 5.9 for revised
syntax dlagrams.

<program> ::= <program heading> <segment block> .

<segment block> ::= <label declaration part>
<constant declaration part> <type definition part>
<variable declaration part> <segment declaration part>
<segment body>

<segment declaration part> ::= SEGMENT <procedure heading>
<segment block>; \ SEGMENT <function heading>
<segment block>;

<segment body>!!: <procedure and function declaration part>
<statement part>

FIGURE 3.5.1. SEGMENT DECLARATION SYNTAX.

P~e 203

Segment declaration syntax (figure 3.5.1) requires that all nested
segments be declared before the ordinary procedures or functions of
the segment body. Thus, a code segment can be completely generated
before processing of code for the next segment starts. This is not a
functional l~itation,since forward declarations can be use1 to allow
nested segments (CG1PILER in The Progran) to reference procedures in
an outer segment body (CLEARSCREEN). Similarly, segment prt)cedures
and functions can thensel yes be declared forward.

Segmenting a program does not change its meaning in any
fundanental sense. When a segment is called (e.g. the C(}1PILER
segment in line A), the interpreter checks to see if it is present in
memory due to a previous invocation. If it is, control is transferred
and execution proceeds: if not, the appropriate code segment must be
loaded fran disk before the transfer of control takes place. When no
more active invocations of the segment eKist, its code is removed from
memory. For instance, in The Progran, the code for the C(}1 PINIT
segment is not present in memory either before or after the execution
of line A. Clearly, a progran should be segmented in such a way that
(non-recursive) segment calls are infrequent; otherwise, much time
could be lost in unproductive thrashing (particularly on a system with
low performance disk).

high address

-----------~~---~-------------~--~-------~------l-> DEBUGGER 10
not

:-> FILER 17
shown t

t

EDITOR 12
in

C()v1PINIT 7
th~

Ca-1PILER U1
program t

I ~-----------------~----------~------------------:-> INITIALIZE 3
~---~---USER PROGRAM

PASCALSYSTEM 17

---------------------------------------~-------~-SEGMENT DICITONARY

low address

FIGURE 3.5.2. PASCAL SYSTEM CODE FILE.

Page 204

The code file resulting from compilation of The Program is
diagrammed in figure 3.5.2*. The file is a sequence of code segments
preceded by a segment dictionary. The size of each segment is noted
in blocks, the 512-byte disk allocation quantum used on most PDP-11
operating systems. The sizes indicated are representative of a full
Pascal system. Each code segment begins on a block boundary. The
ordering (from low address to high address) is determined by the order
that one encounters segment procedure bodies in passing through The
Progran.

* An overview of the relationship between figures 3.5.2 through
3.5.8 (to be discussed in the following pages) is given in figure 3.5.9
at the end of this section. It is helpful to study figure 3.5.9 at this
point for a better understanding of the section.

The segment dictionary in the first block of a code file contains
an entry for each code segment in the file. The entry includes the
disk location and size(in bytes) for the segment. The disk location
is given as relative to the beginning of the segment dictionary (which
is also the beginning of the code file) and is given in number of
blocks. This information is kept in the system communications area
(also called SYSCCM) during the execution of the code file, and is
used in the loading of non-present segments when they are needed.
Figure 3.5.3 details the layout of the table and shows representative
contents for the Pascal system code file.

location
PASSALS YSTEM

size 8500

18
USER PRO dRAM

variable

22

20932

63
- - - - - ~ - - - - - - - - Ca1PINIT

3480
----------~~---------------

70
~ - - ~ - - - ~ - - ~ - - - DEBUGGER

5880

FIGURE 3.5.3. tHE SEGMENT DICTIONARY
Page 205

A code segment contains the code for the body of each of its
procedures, including the segment procedure,itself. Figure 3.5.4 is a
detailed diagran of the code segment of The Program (Pascalsystem).
Each of a code segment's proced ures are assigned a procedure nunber,
starting at 1 for the segment procedure, and ranging as high as 255
(current temp::>rary limit of 127). All references to a ~rocedure are
maie via its nl.lllber. Translation from procedure nLlDber to location in
the code segment is accomplished with the procedure dictionary at the
end of the segment. This dictionary is an array indexed by the
procedure number. Each array element is a self-relative pointer to the
code for the corresponding procedure. Since zero is not a val id
procedure number, the zero'th entry of the dictionary is used to store
the segment number (even byte) and number of procedures (odd byte).
Observe that CLEARSCREEN is the first procedure for which code is
generated and that it appears at the beginning of the segment. The
outer block code is generated and appears"last.

high addresses
odd even

;------~--~---------------------~-------\ Number of procedures : Segment Number
: in dictionary :
I ,---Procedure #1' PASCALSYSTEM

----I Procedure #2 CLEARSCREEN
: - - - - - - - rest of - - - - - - - - -

:--: - - - - procedure dictionary - - - - -
: :-------~-----~--~----------------------,

I
I
I
I

\->

:->

I
I

PASCALSYSTE4's outer block code <-

----------------------~------------~---other procedures of the Pascal system

PR OCEDURE 113 code

PROCEDURE #2 (clearscreen) code
-------~-----------~---~~-------------

low a:idresses

FIGURE 3.5.4. A CODE SEGMENT

?age 206

A more detailed diagram of a single procedure code section is
seen in figure 3.5.5. It consists of two parts: the procedure code
itself in the lower portion of the section) and a table of attributes
of the procedure. these attributes are:

LEX LEVEL: This odd byte is the depth of absolute lexical nesting
for the procedure. (i.e. Lex Level (LL) Pascalsystem=-1, LL COMPILER
or CLEARSCREEN=O, LL CCMPINIT=l, etc.).

PROCEDURE NUMBER:This even byte refers to the number given in the
procedure dictionary of the parent segment procedure. For example,
the Procnum of CLEARSCREEN is 2. (see figure 3.5.4).

ENTER IC:This is a self-relative pointer to the first instruction
to be executed for this procedure.

EXIT IC:This is a self-relative pointer to the beginning of the
block of procedure instructions which must be executed to terminate
procedure properly.

PARAMETER SIZE : The pararn size is the number of bytes 0 f
parameters passed to a procedure fram its caller.

and DATA SEGMENT SIZE:The data size is the size of the data
segment (See below) in bytes, excluding the markstack and PARAM SIZE.

Between these attributes and the procedure code there may be 3n
optional section of memory called the "junp table". Its entries are
addresses within the procedure code. JTAB is a term commonly applied
to the six attributes just discussed and the jump table itself.

high addresses
odd even

i
t ______________________________ ~1

1 1 1

, Lex Level I Procedure # :<-------1------------------1 : ________________ ~ _______________ : : PASCALSYSTE~'s :

I Enter Ie ' __ : Procedure
Dictionary

~--~-----------------------------: __ : Exit IC : Pointer :
I :------------------1 :-----------------------~--------

Parameter Size
,--------------------------------: Data Segment Size
l--------------------------------
:_ - - - - Jump Table - - - - - -
:--------------------------------

->1
l--------------------------------!

CLEARSCREEN
CODE

I ,
I ,
I

, :<-,
I I

:--------------------------------1 low addresses

FIGURE 3.5.5. PROCEDURE CODE SECTION (OF CLEARSCREEN)

Page 207

high addresses
I , 1---------.--------1
: System Resident Segment :
I , 1---------------------------.
: System Data Segment
I , ,- - - - - - - - - - - -,

mark stack
--------------------------;

Compiler Code Segment , -------------------,
Compiler Data Segment , - - - .. - - - - -,

mark stack ,
-----------------------~ Compinit Code Segment ,
----------~---------------t Compinit Data Segment

mark stack
------~---------~---------CLEARSCREEN Data Segment
,- .. - - .. - - -

, , ,

mark stack
----------~---~------------I temporaries

I--~-------~---------------

, , ,
H E A P

I----~---------------------Interpreter
I ,-- - -- - -- - -- - -- - --I
I , S Y S COM : <- <segment dicti:)nary>
I ,-- I - -- - -- - -- .. -- - --,
I I

1-------------------~------1

low addresses

FIGURE 3.5.6. SYSTEM ME}10RY DLRING CLEARSCREEN EXECUT!IJN

Page 208

Figure 3.5.6 is a snapshot of system memory during the execution of a
call to procedure CLEARSCREEN from line C in COMPINIT. The Pascal

interpreter occupies the lowest area in memory. In it is the system
communications area(also called SYSCOM) ,which is accessible both to
assembly language routines in the interpreter and (as if it were part
of the heap) to system routines coded in Pascal. It serves as an
rrnportant communication link between these two levels of the system.
The Pascal heap is next in the memory layout; it grows toward hig~
memory. The single stack growing down from high menory is used for 3
types of items: 1) temporary storage needed during expression
evaluation; 2) a data segment containing local variables and
parameters for each procedure activation; and 3) a code segment for
each active segment procedure. (See figure 3.5.6)

Consider the status of operations just before COMPINIT is called
in line B. Conceptually, there are six pseudo-variables which point
to locations in memory:

a STACK POINTER (SP) :which points to the current top of the stack,

a MARK STACK POINTER(MP) :which points to the "topmost" markstack
in the stack,(remember that the the stack grows down!),

a SEGMENT(SEG) variable:which points to the base of the procedure
dictionary for the currently active segment procedure. For example,
just before CCMPINIT is called, SEG points to the COMPILER segment's
procedure dictionary,

an INTERPRETER PROGRAM COUNTER(IPC):which contains the address of
the next instruction to be executed in the code segment of the current
procedure,

Page 209

a JTAB pointer:which points to the collection of procedure
attributes and junp table entries in the body of the current procedure
code section,

and a NEN POINTER (NP) :which points to the current top of the
heap.

When segment procedure CCM PINIT is called in line B, its code
segment (including all compiler initialization procedures) is loaded
on the stack. The COMPINIT data segment is built on top of the stack.
Figure 3.5.7 is a diagram of the data segment for CGMPINIT.

I I
1----1

: MP l->
I I ''''---1

high addresses

I I

I-----------~~--------------I Other COMPINIT variables :
, I

1--------~-~--------------1
BOOL

I I

t---~----------------------I I

:~---------~--------------I J

------~---~--------------- <--MSSP

MSIPC

MSSEG
-> markstack

MSJ1'AB

MSDYN

MSSTAT
<-

low addresses

FIGURE 3.5. 7. A DATA SEGtENT

In the upper portion of the data segment, space is allo~ated fer
variables local to the new procedure. For example,COMPINIT's data
segment allocates space for integer variables I and J, as well as
boolean BOOL.

Page 210

In the lower portion of the data segmen t is a "markstack". When
a call to any procedure is made, the current v alues of the
pseudo-variables, which characterize the opera ting env ironment 0 f the
calling procedure, are stored in the markstack of the called
procedure. This is so that the pseudo-variables may be restored tQ
pre-call conditions when control is returned to the calling procedure.

For example, the call to COMPINIT causes conditions in COMPILER
just before the call to be stored in COMPINIT's markstack in the
following manner:

Mark Stack
" "
" "
" "
" "

DYNamic link (MSDYN) <-- MP
IPC(MSIPC) <-- IC
SEGment Pointer(MSSEG) <-- SEG
Jump TABle (MSJTAB) <-- JTAB
Stack Pointer (SP) <-- SP

. In addition a Static Link field becomes a pointer to the data
segment of the lexical parent of the called procedure. In particular,
it points to the Static Link field of parent's markstack. After the
building of the data segment new values for IC, SEG, SP, MP, and JTAB
are established for the new procedure.

When the call to CLEARSCREEN is made on line C, another data
segment is added to the stack and again the pseudo-variables are
stored in the new markstack, as well as the appropriate Static Link,
and updated. Note that now the SEG no longer points to the COMPINIT
procedure dictionary, but to. the Pascalsystem dictionary.

No code segment for CLEARSCREEN is added to the stack before
the data segment since the code for CLEARSCREEN is already present in
segment Pascalsystem. Its invocation causes only a data segment to be
added to the stack. When CLEARSCREEN and INIT are completed, the
CQ~PILER data segment will again be the top element on the stack.

Figure 3.5.8 is a detailed diagram of the stack during
execution of an instruction in CLEARSCREEN, including appropriate
pointers for static, dynamic, etc. links of CLEARSCREEN's markstack.
Note where the pseudo-vatiables point in the stack. In particular,
JTAB points inside CLEARSCREEN code section which is in the
Pascalsystem code segment, IC points inside that CLEARSCREEN code, and
SEG points to the base of the Pascalsystem code segment.

Page 211

I

to PASCA~SYSTEM ~.5ident code segment

:-------- high .dd~.il.5 ---------: : -~-._---------....... -----1
CDMPIL£R code $~gment

:-- -- -----------~-------~---------:

1- - - - - - - - - - - - - - - - - -:

I ... -~---~---~-... -----i

A

SEQ r<- in
JTAB :<-PASCA~SYSTEM
IPC :<-:od. segment

:---->; 20 4 ------;

-+---

1--- .. ----------._------------.. ----:
Pointer to COMFINIT code 1--:

I-----~-----~~-~-------~------~--;
;--+-1

---------.... -------------------~ S

> ~-------~-~~~------~-~----------: :--> CCMPt~IT coda

, , ,

-----------_ _ _----._------....-... _--- :
I <:--i

-~-------------~~~------~-~~:
ceMPINI! ''',,1' iab las

.~--------~--~~~--~---------------~~
MS5P

; ... ----------------------....-.---~-:
MSIPC

: ... -------.... ------------.-.--------- i

~SSEG

MS~TAS

:------------~--------------~----:
~5DYN

,-------~-~--~--~~~----~-~~~-----:
l'!SSTA7' :<:-1

: ------------~ ... --.• -.----~-.. ---..... - ... - i

~-->l----~-~--~---~-----~--~------~----,
CLS:ARSCREE:~~

:-~-----~-----~--------~~-~-~~--~~.

t-------~-~------~-~~---~-~---~~:
:----: M5IPC

t ---.. -~---..... --.----------...~--------... - ! 1-----48
-:

: -.... -----------_._-----------_ ... _------.. :
: ... -------i

; --... ----... ---~ .. ~--------.. ---~---.. ---------- ~
,.,SOYN . .

'-I
: -...--~------....... ---.. ---.... --......... --------~ I

cuo"
··umlfnc

o~

CC"1PIN!7

........ ---._.

d.t.

~"gC1l.nt

"f
COHrINIT

... ----~:

G.a't.a
,ttgment .,.,.

C!..£~.R SC~ t:E:',:

--.--...-.-.---- t MS5TAT :<:--~ MP :
i .. -------...... -~--.. ---....... ----.--... --... --.---- : .. -----~1
:-

:-

evalu.tton ~tacl

v

H E A P

top 0' ~tactt
- -1<:----: SP

t
- - - -1<----1 NP

tOR ;~ "epA
: .. ----.. -----------.--------------....--- t

FIQURE :J. ~.e THE STAC~ OURINQ CLEARSCREEN

Page 2i2

Figure 3.5.9 illustrates a top-down process by showing the
relationships anong diagrans 2 through 7.

code file
figure 3.5.2

------------:
PASCALSYSTEM 1--->: figure 3.5.4:

--------------:

1 --------------,
segment 1

dictionary 1--> \
1 1 --------------, ,

system memory

figure 3.5.8

1
I

CLEARSCREEN :--->\ figure 3.5.5\
code detail: : proc. code

detail

figure 3.5.3
segment dictionary detail

I code segment 1--->: figure 3.5.4
1 1 t-------------, , .

I
1 1 1-------------, I CCMPINIT :
: data segment \--->:
1 I'

t----~---------1 I
figure 3.5.7

data segment detail

FIGURE 3.5.9. RELATIONSHIP CE OOCLMENT FIGURES

PR(XjRAM PASCALSYSTEM;
VAR

SYSCOM: SYSCOMREC;
CH:CHAR;

FIGURE 3.5.10. THE PROGRAM

Page 213

PROCEDURE CLEARSCREEN:FORW AID;

SEGMENT PROCEDURE USERPROGRAM;
BEGIN

END;
SEGMENT PROCEDURE C(}1PILER;
VAR

SY ,OP: INTEGER;
S~~CURSOR:1NTEGER;

PROCEDURE INSYMBOL; FORWARD;

SEGMENT PROCEDURE COMP1NIT;
VAR

1,J:1NTEGER;
BOOL: BOOLEAN;

BEGIN

1::1;
CLEARSCREEN; --------------------------------LINE C
1NSYMBOL;

END;

PROCEDURE 1NSYMBOL;
BEGIN .•• END;

PR OCEDURE BLOCK;
BEGIN •.. END;

SEGIN (*CCMP!LE.~*)

CCMP1N1T; -----------------------------------LINE 3
1NSYMBOL;

END; (*CCMPILER*)

SE'3v1ENT PROCEDURE EDITOR;
3EGIN ... END;

PR OCEDURE C LLARSCREEN
BEGIN

WRITE(-------------------);

END;

BEGIN (*PASCALSYSTEM*)
REPEAT

READ(CH) ;
CASE CH CF

C:CCMPILER; --------------------------------LINE A

Page 214

E:EDITrn ;
U:USERPROJRAM

END(*CASE*)
UNTIL CH = 'H'

END.

Page 215

- Notes --

Page 216

***************** ***** ** H ******
* BYTE-SWAPPlt{; * * Section 3.6 *
***************** ***************

Version 11.0 February 1919

Byte-swapping problems occur when code generated on one machine
is transferred to another or programs which directly interface with
memory (e.g. the Patch utility) are written on or for one machine and
transferred to another which has a different ordering for its memory.

There are two different ways to order bytes in a given memory:

A) Byte Zero is the byte containing the least significant
half of the word. Byte One contains the most significant
half.

B) Byte Zero is the byte containing the most significant
half of the word. Byte One contains the least significant
half.

The difference between these is the way Byte quantities are
read and stored in merrory. Word qU3ntities, suc h as integers, will be
read and looked at in the sane way on both types of machines. rbwever,
byte quantities such as P-code or characters will be reversed within
each word.

An example:

DEFINITION (A) (B)
Is* ms* ms* ls*

VALUE (Hex) 04 01 07 04

BYTE o 1 o

least/most significant bit, thereby least/most significant byte

If both of the words shown above were read as an integer , a
word quantity, they would give the value 3,588. However, if the value
of byte Zero was wanted (as in: C: PACKED ARRAY[O .• 1] OF CHAR;) then
Definition A would show a value of 04H and Definition B would show a
value of 07H. Both definitions would show the value 07H if the most
significant byte were specified.

Byte-swapping is not a hard problem to solve, it just requires
a little thought. The Patch utility has type declarations for both
types of machines and a study of it should suffice to show how to
satisfy your programming needs.

Page 211

-- Notes --

Page 218

* 0 0 P S *

* Section 4.1 *

Out Of Place Section

Page 219

- Notes --

Page 220

********************* ***************
* LIBRARIAN UTILITY * * Section 4.2 *
********************* ***************

Version 11.0 February 1979

LIBRARY.CODE is a utility program that allows the user to link
separately compiled PASCAL units and separately assembled subroutines
into a LIBRARY file. It is based upon the original pre-I.5 utility
LINKER. CODE and operates in basically the same way.

To add a segment to *SYSTEM.LIBRARY it is necessary to create a
new file into which each segment that is wanted from the original
*SYSTEM.LIBRARY is first linked. It is then possible to add segments
by linking from another code file into the new file being created.

E~lPLE

Consider the case of adding a segment called TURTLE to the
already existing file *SYSTEM.LIBRARY which is assumed to contain the
segments PSGRAPHICS and MOVETO.

On executing LIBRARY.CODE, the user is prompted for the name 0 f
the output codefile. For this example, respond with the na~e
NEW. LIBRARY. The progran now asks for a 'Link Code File'. The
response here is.*SYSTEM.LIBRARY. The names of all segments currently
linked into the input library, i.e. *SYSTEM.LIBRARY, as well as their
length in bytes is now displayed. Currently there are a maximum of 16
segments in any PASCAL program or LIBRARY.

0- MOJETO
1- PSGRAPHI
2-
3-

2398
864

o
o

4-
5-
6-
7-

The following pramptline appears:

o
o
o
o

8-
9-

10-
11-

o
o
o
o

10-
11-
14-
15-

Segment # to link and <space>, N(ew file, Q(uit, A(bort

o
o
o
o

lhe user now enters the number of a segment within the link
code file that is to be linked into the new library file, followed by
<space>. Next, the number of the segment in the output file to be
linked into (i .e. NEW. LIBRARY) is typed followed by <space>. For each.
segment linked the librarian reads that segment from the input file and
writes it to the output file at the segment requested. It then
displays the segment table for the current state of the output library
file. In this example, respond with the following:

Page 221

O<space)
Seg to link into? O<space)
1 <sp:lce)
Seg to link into? 1<space)

When all needed segments have been linked a new input file is
requested by typing 'N' for N(ew file. In this example, a separately
canpiled PASCAL UNIT called TURTLE is asst.ltled to exist in a codefile
called TGRAPHICS.CODE. See section 3.2, UNITS. On entering the name
of this file the following display appears:

0-
1-
2-
3-

o 4-
o 5-
o 6-
o 7-

o 8-
o 9-
o 10- TURTLE
o 11-

o 10-
o 11-

230 14-
o 15-

The Unit TURTLE occurs in segment 10 and is to be linked into
se gnent 2 wi thin NE'Ii. LIBRARY. The user respond s :

10<space)
Seg to link into? 2<space)

The final display of the output library segment table is thus:

0- MOVETO
, - PSGRAPHI
2- TURTLE
3-

2398
864
230

o

4-
5-
6-
7-

o 8-
a 9-
o 10-
a 11-

a . 10-
a 11-
o 14-
o 15-

The output library codefile length is displayed and in this
example is 16 (blocks long).

o
o
o
o

Cl
o
rJ
o

Once the needed segments from all input fil~s have been li~ked
in the user locks the output file by typing 'Q' followed by a ret~rn,
(unless a copyright notice is desired within the codefile). Type 'A'
to abort the linking process. The old *SYSTEM.LIBRARY should either be
removed or its name changed if it resides upon the same disk and the
nane NEw.LIBRARY must be changed to *SYSTEM . LIBRARY in order to be
used.

P~e 222

NOTE

In response to the initial pranpt "CAJtput Code File ->" we
could have just as easily said .SYSTEM.LIBRARY followed by another
·SYSTEM . LIBRARY in response to the prompt "Link Code File ->".
However, in this case the origin~l *SYSTEM.LIBRARY will be removed
automatically upon completion of the linking process. Typing just *
is a sufficient abbreviation for .SYSTEM.LIBRARY.

Page 223

- Notes --

Page 224

********************************** ***************
* SETUP - SYSTEM RECONFIGURATION * * Section 4.~ *
********************************** ***************

Version 11.0 March 1979

The UCSD Pascal Operating System keeps certain information
about the user in a file called SYSTEM.MISCINFO. During each system
initialization this file is read into memory, and from there it is
accessed by many parts of the system, particularly (if the user has a
terminal suitable for it) by the screen oriented editor.

Much of this infonmation needs to be initially set up by the
user to confonm to his particular hardware configuration or his taste
or convenience. Most of this information concerns the nature of his
terminal and keyboard, although there are a few miscellaneous fields.

SETUP is run like any other compiled Pascal program, by
entering the Command level of the system, typing X for eXecute and
typing the filename SETUP followed by a carriage return. You should
see the following (user input underlined):

Execute what file? SETUP
INITIALIZ ING .•.•.......••..••...
SETUP: C(HANGE) T(EACH) H(ELP) Q(UIT) [C3J

If this does not happen it may be because the setup program is
not on the disk. If so, the system will display the message

no file SETUP. CODE

If neither of the above happens, something is drastically wrong.
Contact UCSD. Assuming all is well, continue.

All commands to the SETUP program are invoked by typing a
single letter chosen from the promptline·.

SETUP: C(HANGE) T(EACH) H(ELP) Q(UIT)

Type 'H' to find out what the commands at this level do. The
program is self teaching, so the rest of this document explains the
information SETUP was designed to change.

SETUP does not tell the system how to do random access cursor
addressing on the user's terminal (for those terminals which have this
capability). To allow the system to use that feature, please refer to
Section 4.7 of this document package.

Page 225

4. 3. 1 MISCELLANEOUS INFORMATION

It is interesting to note that on all PDP-11 systems, the key
which generates ASCII DC1 (or control-R); functions as an alpha-lock.

HAS CLOCK
Values: TRUE, FALSE
A real t~e clock is available. A real t~e clock module, such

as the DEC KW 11, may be found on many processors. It is assumed to be a
line frequency (60 cycle) clock. If available it is used by the PASCAL
system to opt~ize disk directory updates. See section 2.1.6 TIME intrinsic.

STUDENT
Values: TRUE, FALSE
If true, tells the system to s~plify certain parts of the

system for novice use. E.g., an error detected while compiling sends
student back to the editor without choice.

HAS 8510A
Values: TRUE, FALSE
The system is running on a Terak 8510a hardware configuration.

HAS BYTE FLIPPED MACH INE
Val ues: TRUE, FALSE
True if low order byte is in bits 0-7 of words on your

processor. (PDP11, 8080, 6502, FALSE. 9900, 6800, GA440, TRUE)

HAS WCRD ORIENTED MACHINE
Values: TRUE, FALSE
True if sequential addresses address sequential 16 bit words,

False if sequential addresses address sequential 8 bit bytes.

4.3.2 GENERAL TERMINAL INFORMAT ION

HAS SLOtl TElt'1INAL
Values: TRUE, FALSE.
When this field is true, the system issues abbreviated

promptlines and messages.
Suggested setting: 600 baud and under -- True, ')ther'..rise False.

HAS RANDOM CURSOR ADDRESSING
Values: TRUE, FALSE
Only applies to video terminals. See Section ~.7 in orjer to

allow the system to make use of this feature.

HAS LCWEE CASE
Values: TRUE,FALSE

SCREEN WIDni
The number of characters per line of a te~inal.

SCREEN HEIGHT
The number of lines per display screen of a video terminal.

Set to 0 for a hard copy terminal or other terminal in which paging is

Page 226

not appro priate .

NONPRINTING CHARACTER
Values: ~~y printing character.
What soould be displayed by the terminal to indicate the

presence of a non-printing character.
Reccmnended setting: ASC II "?".

VERTICAL MOVE DE LA Y
The number of nulls to send after a vertical cursor move. Many

types of terminals require a delay after certain cursor movements which
enables the terminal to complete the movement before the next character
is sent. This number of nulls will be sent after carriage returns,
ERASE TO END OF LINE, ERASE TO END OF SCREEN and MOVE CURSOR UP.

4.3. 3 CONTROL KEY INFORMATION

The user may choose which control keys suit his particUlar
keyboard arrangement and his taste. .

Some keyboards generate two codes when some single key is
pressed. If that is the case for any of the keys mentioned here, it
must be noted in the field PREFIXED [<fieldname>J which has either the
value TRUE or the value FALSE. The prefix for all such keys must be
the same and must be noted in the field LEAD IN FR01 KEYBOARD. This
feature may also be used to access control functions with two
character sequences if a user's keyboard is unable to generate many
control characters. As an example, suppose the user's keyboard had a
vector pad which generated the value pairs ESC "U", ESC "0", ESC "L"
and ESC "R" for the keys for Upar,row, Ibwnarrow, Leftarrow and
Rightarrow, respectively. Assume also that all other keys on the
keyboard generate only single codes. Then the user WJuld give the
following fields the following values:

KEY FOR MOVING CURSOR UP
KEY FOR MOVING CURSOR DOWN
KEY FOR MOVING CURSOR LEFT
KEY FOR i40VING CURSOR RIGHT
LEAD IN KEY FOR KEYBOARD
PREFIXEO[KEY FOR MOVING CURSOR UPJ
PREFlXED[KEY FOR MOVING CURSOR DOWN]
PREFIXED[KEY FOR MOVING CURSOR LEFT]
PREFIXED[KEY FOR MOVING CURSOR RIGHT]

KEY FOR STOP

ASCII "U"
ASCII "0"
ASCII "L"
ASCII URn

ESC
TRUE
TRUE
TRUE
TRUE

Console output stop character. The STOP character is a toggle;
when pressed, the key will cause output to the file 'OUTPUT' to cease.
When the key is depressed again, the write to file 'OUTPUT' will resume
where it left off. This function is very useful for reading data which
is being displayed faster than one' can read.

Suggested setting: ASCII DC3

Page 227

KEY FOR FLUSH
Console output cancel character. Similar in concept and usage

to the STOP key, the FLUSH key will cause output to the file 'OUTPUT'
to go undisplayed until FLUSH is pressed again or the system writes to
file 'KEYBOARD'. Note that, unlike the STOP key, processing continues
uninterrupted while output goes undisplayed.

Suggested setting: ASCII ACK

KEY FOR BREAK
Typing the character BREAK will cause the progran currently

executing to be terminated with a run-time error immediately.
Suggested setting: Something difficult to hit accidentally.

KEY TO END FILE
Console end of file character. When reading from the files

KEYBOARD or INPUT or the unit 'CONSOLE:', this key sets the Boolean
function ECF to TRUE. See section 2.2.4 EOF intrinsic.

Suggested setting: ASCII ETX

KEY TO CELETE CHARACTER
Each time you press this key one character is removed frem :'~1e

current line, until nothing is left on that line.
Suggested setting: ASCII BS

KEY TO rELETE LINE
Depressing LINE DELETE will cause the current line of input to

be erased.
Suggested setting: ASCII DEL

The rest of this section contains information
only of interest to users who are using video
display terminals with a selective erase
capability and may be safely ignored by users
having any other kind of terminal, such as
hardcopy terminals or storage t~be terminals.

KEY TO '-10VE CURSOR UP
KEY TO MOVE CURSOR DOtlN
KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT

T.~ese keys are used by the screen oriented editor to contrQl
the basic motions of the cursor. If the keyboard has a vector ~ad, set
these fields to the values it generates, otherwise, we suggest.
chOOSing 4 keys in the pattern of a vector pad and use the contr~l
codes ~ich corresoond to them, for example the keys '0', '.', 'K' and
'j' on most keyboards encircle an imaginary vector pad. You ~ay wish
to use a prefix character before such keys as described above.

Page 228

EDITOR ESCAPE KEY

The key which, in the system screen oriented editor, is to be
used to escape from commands, reversing any action taken.

Suggested setting: ASCII ESC

EDITOR ACCEPT KEY
The key which, in the system screen oriented editor, is to be

used to accept commands, making permanent any action taken.
Suggested setting: ASCII ETX

4.3.4 VIDEO SCREEN CONTROL CHARACTERS

1his section describes the characters which, went sent to the
terminal by the computer, controls the terminals actions. Yoou should
consult the manual for your terminal to find the appropriate values.
If a terminal does not have one of these characters, the field should
be set to 0 unless otherwise directed.

Sane screens require a two character sequence to exercise some
of their functions. If the first character in all of these sequences
is the same, it can be set as the value of the field LEAD IN TO SCREEN
and for each <fieldname) which requires that prefix, the user must set
the field PREFIX[<fieldname)] to TRUE. For example, suppose ERASE TO
END OF LINE and ERASE TO END OF SCREEN were respectively performed by
the sequences ESC "L" and ESC "S" but all the other screen controls
were single characters. The user would then set the following fields
to the following values:

LEA D IN TO SCREE N
ERASE TO END OF LINE
ERASE TO END OF SCREEN
PREFlXED[ERASE TO END Of SCREEN]
PREFlXED[ERASE TO END OF LINE]

ERASE TO END OF SCREEN

ASCII ESC
ASCII "L"
ASCII "S"
TRUE
TRUE.

The character which erases the screen from the current cursor
position to the end of the screen.

ERASE TO END Of LINE
The character which, when sent to the screen, erases all

characters from the current cursor position to the end of the line the
cursor is on.

ERASE LINE
The character which, when sent to the screen, erases all the

characters on the line the cursor is currently on.

ffiASE SCREEN
The character which, when sent to the screen, erases the entire

screen.

BACKSPACE
The character which, when 'sent to the screen, causes the cursor

to move space to the left.

Page 229

MOVE CURSOR HQ-1E
The character which moves your cur sor to the upper left of tre

current page. IMPORTANT: If your terminal does not have such a
character, set this field to CARRIAGE RETURN, ASCII mnemonic CR.

MOVE CURSOR UP
MOVE CURSOR LEFT

The characters which move your cursor non-destructively one
space in those directions.

4.3.5 QUIT

The quit mode of SETUP gives many options: Memory update, which
places the definitions in the memory cells which are appropriate.
Disk update, which creates the file NEw.MISCINFO. Return, which takes
the user back to setup, and Exit, which returns the user to the Pascal
canmand level.

4.3.6 QUICK REFERENCE SUMMARY

BACKSPACE
EDITOR ACCEPT KEY
EDITOR ESCAPE KEY
ERASE LINE
ERASE SCREEN
ERASE TO END OF LINE
ERASE TO END OF SCREEN
HAS 8510A
HAS BYTE FLIPPED MACHINE
HAS CLeeK
HAS LCNlER CASE
HAS RANID1 CURSOR ADDRESSING
HAS SLOW TERMINAL
HAS 'NORD ORIENTED MACHINE
KEY FOR BREAK
KEY F"OR FLUSH
KEY FOR STOP
KEY TO DELETE CHARACTER
KEY TO DELETE LINE
KEY TO END FILE
KEY TO tv10VE CURSOR DGiN
KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT
KEY TO MOVE CURsOR UP
LEAD IN FRQ1 KEYBOARD
LEAD IN TO SCREEN
MOVE CURSOR HOME
MOVE CURSOR RIGHT
MOVE CURSOR UP
NON PRINTING CHARACTER

Page 230

PREFIXED [r€LETE CHARACTER]
PREFIXED [EDITOR ACCEPT KEY]
PREFIXED [EDITOR ESCAPE KEY]
PREF IXED [ERASE LINE]
PREFIXED [ERASE SCREEN]
PREFIXED [ERASE TO END OF LINE]
PREFIXED [ERASE TO END OF SCREEN]
PREFIXED [KEY FOR BREAK]
PREFIXED [KEY FOR FLUSH]
PREF IXED [KEY TO MOVE CURSOR DCJ.oIN]
PREFIXED [KEY TO MOVE CURSOR LEFT]
PREFIXED [KEY TO MOVE CURSOR RIGHT]
PREFIXED [KEY TO MOVE CURSOR UP]
PREF IXED [KEY FOR STOP]
PREFI XED [KEY TO r€LETE CHARACTER]
PREFIXED [KEY TO DELETE LINE]
PREFIXED (KEY TO END FILE]
PREFIXED [MOVE CURSOR HCME]
PREFIXED [MOVE CURSOR RIGHT]
PREFIXED [MOVE CURSOR UP]
PREFIXED [NON PRINTING CHARACTER]
SCREEN HEIGHT
SCREEN WIDTH
STUDENT
VERTICAL MOVE CELAY

Page 231

-- Notes --

Page 232

******************** ***************
* BOOTSTRAP COPIER * * Section 4.4 *
******************** ***************

Version 1.5 September 1978
The bootstrap copier BOOTER.CODE asks for the unitnumber of the

volume on which to write the bootstrap. Refer to Table 5 for a list of
volume numbers. It will then ask for a file name to write as the
bootstrap. It writes the first two blocks of that file, so in order to
copy the bootstrap from an existing disk, give it the diskname, and it
will copy the bootstrap fram the disk named to the unit numbered.

To execute the BOOTER program, type X BOOTER to Command level
(assuming that there a copy of BOOTER.CODE on the disk).

Page 233

- Notes --

Page 234

********* ***************
* PATCH * * Section 4.5 *
********* ***************

Version 1.5 September 1978

PAlCH is a utility which was written as a personal piece of
software, and has became part of the soul of the system. Even in the
wonderful world of Pascal programming, it seems that the need to see
disk blocks in the not so wonderful world of HEX remains. The
usefulness of this proves itself over and over again. Usually this
pertains to studying the output of a Pascal program which has created
a file of some structured type, however the data in the output file
just doesn't seem right. Patch comes to the rescue. Patch lets you
see just exactly what bits are where, and even lets you change them to
be the way they should be.

an X(ecuting PATCH, the prornptline is

C(onsole, P(atchwrite, W(holewrite, Q(uit

The options available are:

Working with, and altering the file in the C(onsole mode.

Dumping the file in a Hex, Decimal, Octal, or ASCII format, in
the P(atchwrite mode.

Dumping/concatenating and/or moving blocks in files with the
W(holewrite mode.

Leaving PATCH with the Q(uit command.

In the C(onsole mode, the promptline changes with each command.
The pramptline always reflects the commands available at any given
time, and no more. The full promptline is:

Patch: R(ead, S(ave, H(ex, M(ixed, G(et, Q(uit [nn]

The number in square brackets at the end of the prompt is the current
block being patched. The first command to use is G(et. G(et will
prompt

Filename: <cr for unit i/o)

Page 235

Respond to this prompt with the nane 0 f the file to be
patched. If the disk/device has no directory, or has some problem with
the directory, reference it by its Pascal unitnumber. Type a carriage
return to this prompt, and the prompt is:

Unitnum to patch [4,5,9 •• 12] (0 will Quit)

Having typed a successful entry to one of the two above prompts, the
prompt will now be extended by the R(ead command. R(ead will read up a
block from the file/unit. The prompt on entering R(ead command is

BLOCK:

Respond with a block nlJllber in the fil e/unit specified. There
is no range checking provided on this read, so exercise care in the
number typed. The pramptline is now extended with HCex, MCixed and
the block number in square brackets. H(ex and M(ixed display the
block read. Using the H(ex command displays the block entirely in
hexadecimal characters, using the M(ixed command will display printing
ASCII characters where poSSible, and hexadecimal values elsewhere.
The promptl ine is·:

Alter: H(ex, TCext, S(tuff, QCuit

The vector keys on the terminal causes the cursor to move
around in the data, notice that there the cursor will remain only on
the data, and will not move off the data. On terminals without vector
keys, or poorly done setups, the character - motion table is as
follows:

U - up
Z - down
L - left
R - right

Typing a hexadeci~al character changes the character the cursor
is over provided that Qnly one or more of the data positions is
changed, when Q(uitting from Alter mode, the Patch promptline will be
extended with the S·C ave command. Typing SC ave writes the changed data
back to from where it was read. In the Alter ~ode, there is one
optional command: S(tuff. Typing the S(tuff command displays the
prcmptline:

Stuff for how many bytes:

Key a number from 0 to 512. Type carriage return to cause
patch to accept the number, the promptline c~anges to:

Page 236

Fill with what hex pair:

Key a byte value in hexadecimal. The data reappears on the
screen, with the number of bytes specified, from the position of the
cursor filled with the data value specified, to the hex pair prompt.

Using the Patchwrite command causes a full screen prompt to
appear:

--~--------

This procedure writes out sequential blocks to any file as a patch
dump. Type the prefix character of the option to be changed. Type 'PI
to PRINT, 'Q' to QUIT.

A(Input File
B(Begin Block II
C(rilm. of Blocks

E(Output File

G(Hexadecimal
H(ASCII
I(Decimal
J(Octal
K (Decimal Bytes
L(Octal Bytes
Me Krtmch
N (rouble Space

Following each of the fields is the current value of that
field. Typing the character in front of the field places the cursor
after the field, and removes the current value. Typing 'Y' or 'T' sets
a boolean value to True, any other character sets the field t~ False.
The Input File and Output File fields require a filename to be typed
followed by carriage return. The integer fields (Begin Block, and Num.
of Blocks) require a number to be typed followed by carriage return 0:
space. Any other character sets the value of the field to some
unspecified value.

The other options at the Patchwrite level are Print and Quit.
Both cause Patch to return to the outer level. Quit does it straight
away, Print dumps out the file in the requested format on the way. The
options available for the dump need to be selected, the default is
none. The options Krunch and Double Space affect the formatting of the
output. Krtmch, when true, removes blank lines between logical output
lines. Double Space when true, double spaces all output.

Page 237

Using the W(holewrite command causes the full page prompt:

--------~---

This procedure writes any number of blocks from an existing file
to a new file, unchanged. Simply specify the necessary parameters
Type 'P' to PlJl', 'Q' to QUIT

I(nput File
S(tart Block
N(umber of Blcks

O(utput File

The protocol for changing the fields at this level is the same
as that for the Patchwrite level. The Wholewrite level is that which
allows one to mix/match and mingle files. ·Put and Quit both cause
Patch to return to the outer level, Put writes to the file on its way,
C).Ji t does not.

Notice that the Patchwrite and Wholewrite levels remember their
vital parameters across sessions (while remaining in Patch). The
Console level will clear all memory of the session. The Pat~hwrite
level paginates its output, after each block written, a form-feed is
generated. (Specifically PAGE(OUTPUTFlLE».

Page 238

********************************* ***************
• RT11 to PASCAL CONVERSION KIT * * Section 4.6 *
**************~*****.***.******** ***************

Version 1.5 September 1978

The util i ty file labeled RT11TOEDIT is intended for use wi th
RT-11 disks. It assumes the presence of an RT-11 directory spanning
blocks 6-7. ~en the file is executed it asks the user to specify the
Pascal system unitnumber of the volume of which the user wants to view
the directory. (hce a legal on-line unit has been specified,
RT11TOEDIT reads each entry on blocks 6-7. The program uses the
UNITREAD intrinsic to read the directory and does not open the file in
the usual manner. It lists on the screen the entire contents of the
directory. For each entry it specifies the file title, file kind, the
size of the file in blocks, and the starting block location of the file
(in base 10). All unused portions are identified as such. The user
will be prompted for an RT-11 file name, a Pascal system file name, and
finally a mode of transfer.

Page 239

-- Notes --

Page 240

***************** H*************
* GOIDXY BINDER * * Section 4.7 *
***************** ***************

Version 1.5 September 1978

This program alters the SYSTEM.PASCAL on the default P(refix
disk. It prompts for 'local GOTOXY', a procedure which must be
created and bound into the system (only once) in order to make the
system communicate correctly with the screen.

An ex ample of a GOTOXY proca:iure for a relatively stupid
termin~l follows. More intelligent terminals will require less effort
to have the proper cursor addressing happen. It is suggested that you
might want to fill an array or string with the appropriate characters
to cause your terminal to do its absolute addreSSing, and then
UNITWRITE the strea~ all at once. This will improve the perfonmance
of the screen editor noticably. An example of this for the Datamedia
1520 follows the example for the DECscope VT-50.

If the GOTOXY cursor-addressing scheme for the terminal is not
there, create one. The procedure may not be named GOTOXY because
this identifier is predeclared at the""$IT-" level of compilation.

Poss ible error:

Nil memory reference at
compil e time

Value range error when executing
BINDER

Assunptions:

1.) A screen terminal

2.) A PASCAL system

Fix:

Remove the program heading
and try again

(*$U-*) should be the first
thing in the GOTOXY file

3.) The upper left-hand corner of the screen is X=O, Y=O.

4.) GOTOXY corrects for bad input data.

See Section 2.1.2 for more information on GOTOXY.

EXAMPLE:

(*$U-,S+*)(* the psuedo comments inform the compiler of the correct
state to be in for compiling this little routine *)

Page 241

PROCEDURE MYGOTOXY (X, Y: INTEGER);
(* the procedure must NOT be called GOTOXY *)

BEGIN
(* check the input data to see that it is within the screen

dimensior:ls , on ::orne smarter tenninals, if a cursor position
command is sent for a position that does not exist, the
results are unpredictable *)

IF X < a THEN X := a
ELSE

IF X > 79 THEN X : = 79;
IF Y < a THEN Y : = 0
ELSE

IF Y > " THEN Y := 11;
(* for a DECscope vr-50, GOTOXY needs to be implemented by: *)
(* send the cursor home, 0,0 *)
WRITE (CHR (ZT) , 'H ');
(* while TAB is meaningful, use it to move the cursor *)
WHILE X > 8 00

BEGlN
WRITE(CHR (9» ;
X : = X-8;

END;
(* finish off what portion of the x coordinate could ·not be absorbed

wi th rAB characters *)
WHILE X > 0 DO

BEGIN
WRITE(CHR(27),'C') ;
X : = X-1

END;
(* send line-feeds to access the y coortiinate *)
WHILE Y > 0 DC

END;

BEGIN
WRITE (CHR (1 0)) ;
Y := Y-1

END

BEGIN
(* this dummy body of the operating system is needed to keep the

Pascal compiler happy about having complete programs to compile.
The method used for 'binding' the GOTCXY procedure is somewhat
unclean, and only the code for the above procedure is used by
the binder to add to SYSTEM.PASCAL *)

END.

(*$U-, S+*)

PR a: EDURE ITSGO'ID Y:! (X, Y: INTE GER) ;
VAR

T: PACKED ARRAY[O •• 2] r:F CHAR;
BEGIN

r[O] := CHR(30); (* RS is Datamedias absolute cursor address flag *)

Page 242

(* set appropriate character for x coordinate *)
IF X < 0 THEN T[1] := CHR(32)
ELSE

IF X > 19 THEN T[1] := CHR(32+79)
ELSE

T [1] : = CHR (X.32) ;
(* set appropriate character for y coordinate *)
IF Y < 0 THEN T[2] := CHR(32)
ELSE

IF Y > 23 THEN T[2] := CHR(32+23)
ELSE

T [2] : = CHR (Y + 32) ;
(* send the cursor where it belongs •.••• WHAPPO! *)
UN I 1WR IlE (1 , T , 3)

END;

BEGIN
(* same comment applies *)

END.

Page 243

-- Notes --

Page 244

CDPYDUPDIR

********************************* ***************
* DUPLICATE DIRECTORY UTILITIES * * Section 4.8 *
********************************* ***************

Version 1.5 September 1 978

This program will copy the duplicate directory into the primary
directory location. If the disk is not currently maintaining a current
directory the program will tell you so. To use this program e(x)ecute
COPYDUPDIR. The program will ask for the drive in which the copy is to
take place (4 or 5). If no duplicate directory is found it will tell
you after you indicate the drive unit. If the duplicate is found then
it will ask you if you are sure you want to destroy the directory in
blocks 2-5. A 'Y' will execute the copy, any other character will
abort the program.

MARKDUPDIR

This progran will mark a disk that is currently not maintaining a
duplicate directory so that it will. Caution must be exercised to be
sure that blocks 6-9 are free for use. If they are not one must re
arrange the files as to make them free. One can tell if there
available by getting an E)xtended listing in the Filer and checking to
see where the first file starts. If the first file starts at block 6
or the first file starts at block 10 but there is a 4 block unused
section at the top, then the disk has not been marked. If however, the
first file starts at block 10 and there is no unused blocks at the
beginning of the directory then the disk has been marked.

SYSTEM. PASCAL

<unused>
SYSTEM. PASCAL

31 30-Aug-78

OR

4
31 30-Aug-78

6

6
10

Codefile

Codefile

Both of the above cases indicate disks that have not been
marked. Below is the directory of a properly marked disk.

Page 245

SYSTEM. PASCAL 31 30-Aug-18 10 Codefile

To execute this program e(X)ecute MARKDUPDIR. The program will
ask you which unit contains the disk to be marked (4 or 5). The
program will check to see if it thinks that the blocks 6-9 are free. If
the program doesn't think so it will ask you if you are sure they are
free? Typing 'Y' will execute the mark, any other character will abort
the program. Be sure that the space is free before marking it as a
duplicate directory.

Page 246

••••••• *******.********* ***************
* P-COCE DISASSEMBLER. * Section 4.9 *
* •• **********.*.*.****** ***************

Version 1.5 September 1918

The disassembler reads a standard UCSD code file and outputs
symbolic psuedo-assembly (P-Code) along with various statistics
concerning opcode frequency, procedure calls, and data segment
references. The disassembler was originally written to collect
statistics on opcode frequency, etc. as an aid in making architecture
improvements. It has since been found helpful in debugging
interpreters, opttmizing programs, and provides a source of further
information regarding some of subtleties of our implementation of
Pascal. All statistics gathered are collected by making a pass
through the code file instead of collecting them while the code file
is actually running.

4.9.1 DISASSEMBLY

The Disassembler reads a code file that has been generated by
the UCSD Pascal Compiler. If a program USES a UNIT the disassembly
will include the UNIT only if the code file has been linked. Assembly
routines linked into a Pascal host will never be included in the
disassembly.

The Disassembler is invoked by eXecuting DISASM.I5 and requires
the file OPCODES.I5 to be on the system disk. The Disassembler will
first prompt for an input code file, the suffix .CODE being assumed
and thus not required. The next question refers to the byte sex of
the machine the code file is intended to run on, that is whether the
first Physical byte (byte 0) of a machine word is the most significant
byte of the word. For more information, see section 3.6 BYTE
SWAPPING. For the PDP-11 and the 8080 families, physical byte 0 is
the least significant byte. Next the prompt will be for 3n output
file for the disassembled output. Since the output file is untyped,
CONSOLE: or PRINTER: (if it is on-line) may be used. The final
question at this stage is whether the user wishes to take control of
the disassembly, i.e. decide which procedures are disassembled as
opposed to all the procedures in the file.

The following question regards the collection of statistics on
references to a particular Procedure's Qata segment. Should you
decide to control the disassembly you will be warned that all
statistics gathered are only gathered on those procedures which are
disassembled. Next you will be taken into the Segment Guide. This
level displays the segments you have by nane and lets you decide on
v.hich one you are interested in • ./ The Procedure Guide follows to let
you decide on the particular procedure(s) that you wish to
disassemble. Typing an "L" at this point will list the procedure(s)

Page 241

contained in this segment. A more complete description of this step
occurs in the next section. the Segment Guide may be re-entered by
typing "Q" in the Procedure Guide. Thus in this manner you may
disassemble several procedures in several different segments without
disassembling the entire file. The Segment Guide is exited by typing
"Q".

,
I

1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

10 1
11 1
12 1
13 1

o (*$L CONSOLE:*)
1 PROGRAM DISASMDEMO;
3 VAR I: INTEGER;
4 TOMORROW:BOOLEAN;
5 COMMENT: STRING;
o BEGIN
o I::O;
5 TOMORRCM: :FALSE;
8 REPEAT
8 I: :1+1;

1: D
1 :D
1: D
1:D
1: D
l:C
1: C
1:C
1: C
l:C
1: C
1:C
1: C

13 WRITELN('Disassembly -- a step backwards ... ');
74 UNTIL TOMORROW;
77 END.

FIGURE 1 SA~PLE PASCAL PROGRAM

BLOCK II 1 CFFSET IN BLOCK: 0
I SEQ1ENT PRCC <FFSETII HEX CODE

1 1 O(000): BPI' 7 D507
1 1 2(002): SLOC 0 00
1 1 3 (003): SRO 3 AB03
1 1 5(005) : SLOC 0 00
1 1 6 (006): SRO 4 AB04
1 1 8(008): SLOO 3 EA
1 1 9 (009): SLOC 1 01
1 1 10(OOA) : ADI 82
1 1 11 (OOB): SRO 3 AB03
1 1 13(00D) : LOO 1 3 B60103
1 1 16(010): LCA 42 'Disassembly -- a step backwards ..

1 1 60 (03C): SLOC 0 00
1 1 61(030): CX? WRITESTR CD0013
1 1 64(040) : CSP ICCHECK 9EOO
1 1 66(042) : LOO 1 3 B60103
1 1 69 (045): CXP WRITELN CD0016
1 1 72(048): CSP rCCHECK 9EOO
1 1 74(04A) : SLOO 4 EB
1 1 75(04B): FJP 8 A1F6
1 1 77 (040): RBP 0 Cl00

FIGURE 2 SAMPLE PROGRAM DISASSEMBLED

Page 248

Figure 1 displays a sample Pascal program that has been listed
during compilation. Figure 2 displays the disassembled code of the
file generated by the compiler. The left 3 columns in figure 2
correspond to the 3 columns to the right of the line number in figure
1. They are segment number, procedure number, and offset within
procedure, respectively. The offset is also given in hex in
parentheses. A complete description of UCSD P-Code mneumonics is given
in section 3.4. The actual code that exists in the file is given in
hex in the rightmost column. The parameters to CXP's and CSP's are
converted to the procedure name if it is a known system procedure or
function. WRITESTR, WRITELN, and IOCHECK are some examples. The
string operand for LCA is printed as a string as evidenced by the line
with offset 16. Jumps have their operand(s) converted to an offset
from the start of the procedure so that the offset may act as a label.
Thus the 8 displayed in the operand field of the FJP at offset 75
really means a jump to the SLOO"at offset 8. This is also true of case
jumps (XJP's). The block number and byte offset of the start of the
procedure are given relative to the start of the code file. Thus this
procedure starts at block 1, offset 0 of the code file. The segment
dictionary resides in block 0 for all code files .•

4.9.2 DATA SEGMENT REFERENCE STATISTICS

The fourth prompt the Disassembler provides is a question
asking if you would like to keep track of all references to a
particular procedure's data segment. The most common use of these
statistics is in optimization of a given procedure's code file. By
re-arranging the order of declaration of variables one may change the
offset within a data segment that applies to a given variable. For
p-machine architecture reasons the first 16 words offset into the data
segment are the fastest and have optimized 1 byte instructions. Offsets
from 17 to 127 result in instructions as least 2 bytes long, while
references to greater than 127 require at least 3 bytes. By making the
most frequently used variables have the smaller offsets one may save
considerable code file space and possibly time during execution.

IData Segment size:
I
I
I
I

IFor segment DlSASMDE
IOffset(word)

3
4

45 Data references:

Procedure # 1
%

60.00
Total

3
2 40.00

5 Lex level

FIGURE 3 SAMPLE PROGRA~'S DATA SEGMENT STATISTICS

Page 249

o

Figure 3 shows the data segment statistics for our sample
program. Clearly there is little to be gained frem optimizing such a
small program but the general idea can still be presented. By using
the compiled listing shown in figure 1 one can match offsets to
variables as such:

variable

I
. TG10RR~

CC»1ENI'

offset

3
4
5

Now by using the figures in figure 3 one can see that offset 3
or the variable I occurs most frequently and thus deserves it's
position. This same idea carried out on a large program may result in
substancial size savings. Notice that offset 6 nevers occurs and thus
is not included in the statistics in figure 3.

The prompt for the output file for these statistics occurs
after the disassembly has been completed. If you elect to collect
these statistics you will be taken into the Segment and Procedure
Guides as described in the previous section except that the prompt
requests the selection of a data segment on which to collect
statistics. In the Procedure Guide, "L" gives a listing of all the
procedures in the selected segment by number, lex level, and data
segment size. After the selection of a data segment, processing
continues, as described in the previous section, from the point after
the data segment question.

4.9.3 OPCODE, PROCEDURE CALL, AND JUMP STATISTICS

These statistics are collected as an aid in opti~izing the
architecture of P-Code and although they are interesting to look at
they are of no real use to the typical user. For this reason they will
be described only superficially.

Each opcode is given with a complete breakdown of which bit was
most significant for each operand on any given occurrence of the
opcode. These are presented in terms of totals and percentages of the
number of occurrences of the opcode. In addition a histogram of the
opcode occurrence as a percentage of the total number of opcodes
disassembled runs along the righthand margin. There is also a table of
jumps in terms of the number of bits required to represent the distance
of the jump for both positive and negative jumps. Finally there are
counts of all procedure calls listed by segment and procedure number.

Page 250

The last prompt of the program is the file to which these
statistics are to be written.

Page 251

-- Notes --

Page 252

*********************** ***f************
* LIBRARY MAP UTILITY * * Section 4.10 *
*********************** ***f************

Version 1.5 SeptembEr 1978

The program LIBMAP produces a map of a library (or code) file
and lists the linker information maintained for each segment of the
file. In the case of segments which are Pascal Units the map file
will also contain the interface section of the Unit. See section
3.3.2 for greater detail.

The program first prompts for a library file name. As in the
linker t this may be an asterisk to indicate "*SYSTEM. LIBRARY". The
".CODE" suffix may be suppressed by appending a period to the full
file nane.

Example

typing

* FARKLE
OLD. LIBRARY.

re ferences file

*SYSTEM. LIBRARY
:FARKLE.CODE
:OLD.LIBRARY

Typically, the map utility will be used to list library
definitions but the option is available to include intra-library symbol
references. S10uld this feature be desired, type a "Y" when queried
for a reference list. A space (or carriage return) is considered a
"N" .

The user is now prompted for an output file name. (" . TEXT"
will be appended unless an extra period is used.) Typing just
carriage return defaults outpt to CONSOLE:. Several libraries may be
mapped at the same time. To quit, type a carriage return when
prompted for any file name.

A sample map follows

LIBRARY MAP FOR *SYSTEM.LIBRARY

Segment II 0: PASCALIO separate procedure segment
PASCALIO separate proc P #1
'FSEEK separate proc P #1
FSEEK separate byte reference (once)
FREADREA separate proc P 112,.
FREADREA separate byte reference (once)
FREADDEC separate proc P #4

Page 253

FREADDEC separate byte reference (once)
FWRITERE separate proc P #3
FWRITERE separate byte reference (once)
FWRITEDE separate proc P tl5
FWRITEDE separate byte reference (once)
DECOPS separate byte reference (8 times)

---~~--~~----------------------

Segment # 1:
DECOPS
DECOPS
GDEC

DECOPS separate procedure segment
separate proc P #1
global addr P #1, I #0
global addr P #1, I #0

--
Segment 11 3:

POtiER
PCWER

MAGIC separate procedure segment
separate proc P #1
separate byte reference (once)

--

Page 254

<uns~cned ~~~eoer>

<ideY\tlri~r>

<unslgned constnnt)

J I cons c.n 1, en '- \,er t t' d t'r'

_ .. unsLgned

_.-

I
i

i
1
L---....... ~O

nUMber

1
._----._ ... _- _ ... _ ...

J

~-.-- ----

-- ,
I
I
I

-~

.-

Page 255

<c:o."sla.." t>

Ur'\S L 9ru~ d r'\uMber

<u~~tg"'Qd ~u~bQr>

-1 unst~ned t~le~~ [0~-c~~t~t0~)1-or-1 -r~~
1 I

I . d' t. ~--~-------.-~~ u."s~g~e ~~ eger

Page 256

<fl,,\d \i.s;t..)

. --·---.... 0 ... ----
" I

type~-....----··--··~··· -,-~
i
\

r·· -
I

<SlMp\e: l.ype:)

!
I

__ -------__ , i

'ts;t.~
J

r·· I
.----.------~ .. ~~._:det'\l~_~Ler j_.""_.' .. ~.- -- -r---'

I
Ldel'ltlt'Ler J---rO-1

i

!
I

I

l------..i cOflsla.l'lt i-I----' G ~ -./ - ... F~st.QJ'It i-! __ J

Page 257

<fa.c:tor>

--rl--------~1 unsl91"1ed c;ol"lst.o.nt. 1-- ---.-.---r--

~------------------1varlab'el~----------- __ A

, .. -- -.------.-
~--, fu"c:t~on ~dent~f~er

I
express~on

L--_ .. _______ ---'

- - ._..J'I;

----... 0 ---...1 expre,;,;i. on 1~-""0t-----~

r--- ---{NaT)-~o.c;t.;~-' --

I i

~
'~J .J I. .. - .,..~

--_ .. "'-l I
I :-. . ---; (:- - i
~~:,~eSSi.o~J.o:~pressio~1
; \
: ~ J L. ..~ - --._---

<l~r;-1>

--~~;~ctcr~----------~--~~---r----~--~

,
L ___ ------~-~~~~-

Page 258

<e~pr~sslDn>

------sl~p'e expresslon ~-------------------- r ~

(

I
I
i
I
!

I
i i

sl~p\e e~presst~~------~

<par~eter 'lst)

.~--- - -"---"--.' .. _---,
!
I

1
!

: i . I

. Jt~ \
type ldenllrler~-.-~

Page 259

r .., r--i uns~gned ~n~eger

expres
! s;tcn

c:cnsla.t'1l

expres
si.Ot'1

....... ---- .. ---.,.

;

+-----;1,
i

,----------------~ ,----
st.a.t.e

Menl
I~t.a.te-~
; Met"'ll i

!

~
,/

-----"

i
! , I

1 I
I i
l ---.JII~HIu:)--1 expressLcn f---@--1st.o.t.eMel'lt.H

+--...... sto.teMent express L Ol'l H
-----' ,

va,rl,a.ble
LdentL rl.'er ~pr-'!':ssi.Cr1

,-____________________________________ ~J!

q expresslCl'l ~ :Sto.t.eM~;-l ------~
st~teMentp--------'

I
I

I

I
I ul'Islgl'led Ll'lteger 1~----1

I J '---------..; Page 260

t---.... c:anst.QJ1t. ----

~--- LdentLfler""'--" : \------t.ype ----~

+-----111 procedure too-----'

1-----.. procedure --

Page 261

uses c:'Cluse

~-----..... b\oc:k ~-----. ----...

<procedure>

Page 262

o System error

\

••• ******** ****" "************
* TABLE 1 * * EXECUTION ERRORS *
*********** ********************

Version 1.5 September 1918

1 Invalid index, value out of range (XINVNDX)

2 No segment, bad code file (XNOPROC)

3 Procedure not present at exit time (XNOEXIT)

4 Stack overflow (XSTKOVR)

5 Integer overflow (XINTOVR)

6 Divide by zero (XDIVZER)

FATAL

7 Invalid memory reference (bus timed out> (XBADMEM)

8 User break (XUBREAK)

9 System 1/0 error (XSYIOER) FATAL

10 . User 1/0 error (XUIOERR)

11 Unimplemented instruction (XNOTIMP)

12 Floating point math error (XFPIERR)

13 String too long (XS2LONG)

14 Halt, Breakpoint (without debugger in core) (XHLTBPT)

15 Bad Block

All fatal errors either cause the system to rebootstrap, or if
the error was totally lethal to the system, the user will have to
reboot. All errors cause the system to re-initialize itself (call
system procedure INITIALIZE).

Page 263

- Notes -

Pa.ge 264

************ *************
* TABLE 2 * * IORESULTS *
************ *************

Version 1.5 September 1918

o No error

1 Bad Block, Parity error (CRC)

2 Bad Unit Number

3 Bad Mode, Illegal operation

4 Undefined hardware error

5 Lost unit, Unit is no longer on-line

6 Lost file, File is no longer in directory

1 Bad Title, Illegal file name

8 No room, insufficient space

9 No unit, No such volune on line

10 No file, No such file on volume

11 rtlplicate file

12 Not closed, attempt to open an open file

13 Not open, attempt to access a closed file

14 Bad format, error in reading real or integer

15 Ring buffer overflow

Page 265

- Notes --

Pa.ge. 266

*********** ***************
* TABLE 3 * * UN1TNUMBERS *
*********** ***************

Version 1.5 September 1918

NUMBER ~LUME NAME

o (empty>

CONSOLE

2 SYSTERM

3 GRAPHIC

4 floppyO

5 floppy 1

6 PRINTER

1 REMIN

8 REMOur

9 block 1

10 block2

11 block3

12 block4

Devices 9 - 12 are block-structured devices, in most cases (RK-05).

Page 267

-- Notes __

Pa.ge. 268

• ••••••• *** *** •• *************
• TABLE 4 * * RESERVED wORDS *
.**** *****.*******.****

Version 1.5 September 1978

STANDARD PASCAL RESERVED WORDS

AND

UCSD RESERVED 'NORDS

ARRAY
BEGIN
BOOLEAN
CASE
CHAR
CONST
DIV
DO
DCWNTO
ELSE
END
FILE
FOR
FUN:TION
GO TO
IF
IN
INTEIJER
LABEL
MOD
NIL
NOT
OF
OR
PACKED
PROCEDURE
PROGRAl\1
REAL
RECORD
REPEAT
SET
STRING
THEN
TO
TYPE
UNTIL
VAR
WHILE
WITH

SEGMENT
SEPERATE

UNIT
INTERFACE
IMPLEMENTATION

Page 269

- Notes --

Pa.ge 270

*********** ********************************
* TABLE 5 * * SYNTAX ERRORS IN UCSD PASCAL *
*********** H H*****H* ******** H**H*** ***

Version 1.5 september 1978

The syntax errors this compiler gives are not the best it can
do. When t~e comes available to do so, the error generation of the
compiler is going to be seriously re-vamped.

1: Error in simple type
2: Identifier expected
3: 'PROGRAM' expected
4: ')' expected
5: ': ' expected
6: Illegal symbol
7: Error in parameter list
8: 'OF' expected
9: '(' expected

10: Error in type
11 : '[, expected
12: ']' expected
13: 'END' expected
14: ';' expected
15: Integer expected
16: ':' expected
17: 'BEGIN' expected
18: Error in declaration part
19: error in <field-list>
20: '.' expected
21: ,*, expected
22: 'Interface' expected
23: 'Implementation' expected
24: 'Unit' expected

50: Error in constant
51: ': :' expected
52: 'THEN' expected
53: 'UNTIL' expected
54: 'DO' expected
55: 'TO' or 'DO~NTO' expected in for statement
56: 'IF' expected
57: 'FILE' expected
58: Error in <factor> (bad expression)
59: Error in variable

101: Identifier declared twice
102: Low bound exceeds high bound'
103: Identifier is not of the appropriate class
104: Undeclared identifier

Page 271

105: sign not allowed
106: Number expected
101: Incompatible subrange types
'08: File not allowed here
109: Type must not be real
1'0: <tagfield> type must be scalar or subrange
11i: Incompatible with <tagfield> part
112: Index t.ype must not be real
113: Index type must be a scalar or a subrange
114: Base type must not be real
"5: Base type must be a scalar or a subrange
1'6: Error in type of standard procedure parameter
1'1: Unsatisified forward reference
118: Forward reference type identifier in variable declaration
119: Re-specified params not OK for a forward declared procedure
120: Function result type must be scalar, sub range or pointer
121: File value parameter not allowed
122: A forward declared function's result type can't be re-specified
123: Missing result type in function declaration
124: F -format for r eals only
125: Error in type of standard procedure parameter
126: Number \)f parameters does not agree with declaration
121: Illegal par3meter substitution
128: Result type does not agree with declaration
129: Type conflict of operands
130: Expression is not of set type
131: Tests on equality allowed only
132: Strict inclusion not allowed
133: File comparison not allowed
134: Illegal type of operand(s) .
135: Type of operand must be boolean
136: Set element type must be scalar or subrange
137: Set eleme~t types must be compatible
138: Type of variable is not arr~y
i39: Index type is not compatible with the declaration
140: Type of variable is not record
141: Type of 'Jariable must be file or pointer
142: !llegal parameter solution
143: Illegal type of loop control '"ariable
144: Illegal type of expression
145: Type conflict
146: Assignment of files not allowed
147: Label type incompatible with selecting expression
148: Subrange bounds must be scalar
149: Index type must be integer
150: Assignment to standa~d function is not allowed

151: Assignment to formal function is not allowed
152: No such field in this record
153: Type error in read
154: Actual parameter must be a variable
155: Control variable cannot be formal or non-local

age Z72

156: Multidefined case label
157: Too many cases in case statement
158: No such variant in this record
159: Real o~string tagfields not allowed
160: Previous declaration was not forward
161: Again forward declared
162: Parameter size must be constant
163: Missing variant in declaration
164: Substition of standard proc/func not allowed
165: Multidefined label
166: Multideclared label
167: Undeclared label
168: Undefined label
169: Error in base set
170: Value parameter expected
171: Standard file was re-declared
172: Undeclared external file
174: Pascal function or procedure expected
182: Nested units not allowed
183: External declaration not allowed at this nesting level
184: External declaration not allowed in interface section
185: Segment declaration not allowed in unit
186: Labels not allowed in interface section
187: Attempt to open library unsuccessful
188: Unit not declared in previous uses declaration
189: 'Uses' not allowed at this nesting level
190: Unit not in library
191: No private files
192: 'Uses' must be in interface section
193: Not enough room for this operation
194: Comment must appear at top of program
195: Unit not importable .

201: Error in real number - digit expected
202: String constant must not exceed source line
203: Integer constant exceeds range
204: 8 or 9 in octal number
250: Too many scopes of nested identifiers
251: Too many nested procedures or functions
252: Too many forward references of procedure entries
253: Procedure too long
254: Too many long constants in this procedure
256: Too many external references
257: Too many externals
258: Too many local files
259: Expression too complicated

300: Division by zero
301: No case provided for this value
302: Index expression out of bounds
303: Value to be assinged is out of bounds
304: Element expression out of range

Page 273

398: lmplementation restriction
399: Implementation restriction

400: Illegal character in text
401: Unexpected end of input
402: Error in writing code file, not enough room
403: Error in reading include file
404: Error in writing list file, not enough room
405: Call not allowed in separate procedure
406: Include file not legal

age 27u

*********** ***************************
* TABLE 6 * * ASSE}1BLER SYNTAX ERRORS *
*********** ***************************

Version 1.5 September 1978
Tois section lists all the general errors found in the ERRORS

file, specific machine errors are found in the sections below
dealing with machine specifics.

1: Undefined label
2: Operand out of range
3: Must have procedure name
4: Number of parameters expected
5: Extra garbage on line
6:]mput line over 80 characters
7: Not enough ifs
8: Must be declared in ASECT before use
9: Identifier previously declared

10: Improper format
11: EQU expected
12: Must EQU before use if not to a label
13: Macro identifier expected
14: Word addressed machine
15: Backward ORG not allowed
16: Indentifier expected
17: Constant expected
18: Invalid structure
19: Extra special symbol
20: Branch too far
21: Variable not PC relative
22: Illegal macro parameter index
23: Not enough macro parameters
24: Operand not absolute
25: Illegal use of special symbols
26: Ill-formed expression
27: Not enough operands
28: Cannot handle this relative
29: Constant overflow
30: Illegal decimal constant
31: Illegal octal constant
32: Illegal binary constant~
33: Invalid key word
34: Unexpected end of input - after macro
35: Include files must not be nested
36: Unexpected end of input
37: Bad place for an include file
38: Only labels & comments may occupy column one
39: Expected local label
40: Local label stack overflow
41: String constant must _,be on 1 line
42: String coo.stant exce€ds 80 chars
43: Illegal use of macro parameter

Page 275

44: No local labels in ASECT
45: Expected key word
46: String expected
47: Bad block, parity error (crc)
48: Bad unit nunber
49: Bad mode, illegal operation
50: Undefined hardware error
51: Lost unit, no longer on-line
52: Lost file, no longer in directory
53: Bad title, illegal file name
54: No roam, insufficient space
55: No unit, no such volumn on-line
56: No file, no such file on volunn
57: Duplicate file
58: Not closed, attempt to open an open file
59: Not open, attempt to ~cess a closed file
60: Bad format, error in reading real or integer
61: Nested macro definitions not allowed
62: ':' or ,<>, expected
63: May not ECU to undefined labels

Z80 Based machines

For constants, Hex is the default type,
a 'B' defines binary ex. 10010B ,
at.' defines decimal ex. 5674 •.

Location Counter (LC) : $

All reserved words may not be used for any other purpose
such as an identifier. For example, the reserved word "C"
currently is being used as a register and in a condition
code, therefore it may not be used for any other purpose
(this is contrary to usual Zilog assembly language, but is
restricted in the UeSD assembler).

Specific error messages:

76: Incorrect operand fonnat
77: Close paren ")" expected
78: Corrma "," expected
79: Plus "+" expected
80: Open paren "(" expected
81: Stack po inter "SP" expected
82: "HL" expected
83: Illegal "ce" condi ticn code
84: Register "C" expected
85: Register "Rn expected
86: Register "A" expected

age 276

PDP 11 Basej machines:

For constants, Octal is the default type
and output,
a 'H' defines hexadecimal
a '.' defines decimal
a 'B' defines binary

Location CoUlter (LC) = *
Specific error messages:

76: Closing paren n)" expected
77: Register expected
78: Too many special symbols
79: Unrecognizable operand
80: Register reference only
81: First operand must be a register
82: Comma ex pected
83: Unimplimented instruction
84: Must branch backwards to label

for both input

ex. 056H,
ex. 546.
ex. 1001B .

Page 277

- Notes -

Pa.ge 278

*********** f*********************ff**f******************f********
* TABLE 1 * * American Standard Code for Information Interchange *
f****** f************f**

Version 1.5 September 1978

o 000 00 NUL 32 040 20 SP 64 100 40 @ 96 140 60 ,

1 001 01 SCl1 33 041 21 65 101 41 A 97 141 61 a
2 002 02 srx 34 Ol:2 22 " 66 102 42 B 98 142 62 b
3 003 03 E.1'X 35 043 23 1/ 61 103 43 C 99 143 63 c
4 004 04 EOT 36 044 24 $ 68 104 44 D 100 144 64 d
5 005 05 ENQ 37 045 25 % 69 105 45 E 101 145 65 e
6 006 06 ACK 38 046 26 & 70 106 46 F 102 146 66 f
7 007 07 BEL 39 047 27 , 71 107 47 G 103 147 67 g
8 010 08 BS 40 050 28 72 110 48 H 104 150 68 h
9 011 09 HT 41 051 29 73 111 49 I 105 151 69 i

10 012 OA LF 42 052 2A * 14 112 4A J 106 152 6A j
11 013 OB VT 43 053 2B + 75 113 4B K 107 153 6E k
12 014 DC FF 44 054 2G , 76 114 4C L 108 154 6C 1
13 015 OD CR 45 055 2D - 77 115 4D M 10g 155 6D m
14 016 OE SO 46 056 2E . 78 116 4E N 110 156 6E n
15 017 OF S1 47 057 2F / 89 117 4F 0 111 157 6F 0

16 020 10 DLE 48 060 30 0 80 120 50 P 112 1EO 70 p
17 021 11 DC1 49 061 31 1 81 121 51 Q 113 161 71 q
18 022 12 DC2 50 062 32 2 82 122 52 R 114 162 72 r
19 023 13 DC3 51 063 33 3 83 123 53 S 115 163 73 s
20 024 14 DC4 52 064 34 4 84 124 54 T 116 164 74 t
21 025 15 NAK 53 065 35 5 85 125 55 U 117 165 15 u
22 026 16 SYN 54 066 36 6 86 126 56 V 118 166 76 v
23 027 17 E'IB 55 067 37 7 87 127 57 W 119 167 77 w
24 030 18 CAN 56 070 38 8 88 130 58 X 120 170 78 x
25 031 19 EM 57 071 39 9 89 131 59 y 121 171 79 y
26 032 1A SUB 58 072 3A 90 132 5A Z 122 172 7A z
27 033 1B ESC 59 073 3B ; 91 133 58 [123 173 78 {

28 034 lC FS 60 014 3C < 92 134 5C \ 124 174 7C
29 035 1D GS 61 075 3D = 93 135 5D] 125 175 7D
30 036 1E RS 62 076 3E > 94 136 5E A 126 176 7E -
31 037 1F US 63 077 3F ? 95 137 SF 127 177 7F DEL

Page 279

- Notes --

Pa.ge. 280

*********** **********************
* TABLE 8 * * P-MACHlNE OP-CODES *
*********** **********************

Version II.O February 1979

o 000 00 SLDC 0
1 001 01 SLOC 1

. . .
126 176 7E SLOC 126
127 177 7F SLDC 127
128 200 80 ABI 171 253 AB SRO 214 326 D6
129 201 81 ABR 172 254 AC XJP 215 327 D7
130 202 82 ADI 173 255 AD RNP 216 330 D8
131 203 83 ADR 174 256 AE CIP 217 331 D9
132 204 84 AND 175 257 AF EQU 218 332 DA
133 205 85 DIF 176 260 BO GEQ 219 333 DB
134 206 86 OVI 177 261 B1 GRT 220 334 DC
135 207 87 DVR 178 262 B2 LDA 221 335 DD
136 210 88 CHI< 179 263 B3 LOC 222 336 DE
137 211 89 FLO 180 264 B4 LEQ 223 337 DF
138 212 8A FLT 181 265 B5 LES 224 340 EO
139 213 8B INN 182 266 B6 LOD 225 341 E 1
140 214 8C IN! 183 267 B7 NEQ 226 342 E2
141 215 8D lOR 184 270 B8 STR 227 343 E3
142 216 8E MOD 185 271 B9 UJP 228 344 E4
143 217 8F MPI 186 272 BA LDP 229 345 E5
144 220 90 MPR 187 273. BB STP 230 346 E6
145 221 91 NGI 188 274 BC LIM 231 347 E7
146 222 92 NGR 189 275 BD S1M 232 350 E8
147 223 93 NOT 190 276 BE LDB 233 351 E9
148 224 94 SRS 191 277 BF sm 234 352 EA
149 225 95 SBI 192 300 CO IXP 235 353 EB
150 226 96 SBR 193 301 C 1 RBP 236 354 EC
151 227 97 SGS 194 302 C2 CBP 237 355 ED
152 230 98 SQI 195 303 C3 EQUr 238 356 EE
153 231 99 SQR 196 304 C4 GEQI 239 357 EF
154 232 9A STO 197 305 C5 GRTI 240 360 FO
155 233 98 IXS 198 306 C6 LLA 241 361 F 1
156 234 9C UNI 199 307 C7 LOCI 242 362 F2
157 235 90 200 310 C8 LEOI 243 363 F3
158 236 9E CSP 201 311 C9 LESI 2~4 364 F4
159 237 9F LOCN 202 312 CA LDL 245 365 F5
160 240 AO ADJ 203 313 CB NEQI 246 366 F6
161 241 A 1 FJP 204 314 CC STL 247 367 F7
162 242 A2 INC 205 315 CD CXP 248 370 F8
163 243 A3 IND 206 316 CE CLP 249 371 F9
164 244 A4 IXA 207 317 'cF CGP 250 372 FA
165 245 A5 LAO 208 320 DO LPA 251 373 FB
166 246 A6 LSA 209 321 D1 252 374 FC

XIT
NOP
SLDL 1
SLDL 2
SLDL 3
SLDL 4
SLDL 5
SLDL 6
SLDL 7
SLDL 8
SLDL 9
SLDL 10
SLDL 11
SLDL 12
SLDL 13
SLDL 14
SLDL 15
SLDL 16
SLOO 1
SLOO 2
SLOO 3
SLOO 4
SLOO 5
SLDO 6
SLOO 7
SLOO 8
SLOO 9
SLOO 10
SLOO 11
SLOO 12
SLOO 13
SLDO 14
SLOO 15
SLOO 16
SIND.O
SIND 1
SIND 2
SIND 3
SIND ;4

Page 281

167 247 A7 210 322 D2
168 250 A8 MOV 21' 323 D3 EFJ
169 251 A9 LDO 212 324 D4 NFJ
170 252 AA SAS 213 325 D5 BPT

170 252 AA SAS 213 325 D5 BPT

253 375 FD SIND 5
254 376 FE SIND 6
255 377 FF SIND 7

age 282

************** *********
* Appendix A * * Index *
************** *********

ARRAY, 115
ASSEMBLER, 4, 97, 98, 111
nt~D BLOCK SCAN, 25

·:NISH, 59
BASIC, 85
BLOCK, 115
BLOCKNUMBER, 115
BLOCKREAD, 122, 138, 155
BLOCKS, 30
BLOCKWRITE, 122, 138, 155
BCOTSTRAP, 233
BOWLES, 1
CASE STATEMENTS, 133
CHANGE, 18
CHARACTER, 115
CLOSE, 123, 147, 155
CQ~MENTS, 133
COMPILED LISTING, 81
COMPILER, 3, 77, 85
CO NCA T , 11 7, 155
CONDITIONAL ASSEMBLY, 108
~CNTROL CHARACTERS, 63
:oPY, 55, 118
CP/M, 5
CURSOR, 31, 37, 66, 68
DATE, 24
DEBUGGER, 4, 75, 78

FUNCTION,
GENERAL ERRORS,
GET,
GO TO ,
GOTOXY,
GRAPHICS,
HALT,
HEAP,
IDSEARCH,
IMPLEMENTATION,
INCLUDE,
INDENTATION CODE,
INDEX,
INITIALIZE DISKS,
INPUT ,
INSERT,
INTERACTIVE,
INTERFACE,
INTRINSICS,
IO-ERRORS,
I OR ESULT ,
JUMP,
KEYBOARD,
KRUNCH,
L2 EDITOR,
LENGTH,

DELETE, 35, 41, 42, 55, 56, 69, 118, 155
DESTINATION, 115
DIRECTIVES, 102
DIRECTORY, 15, 17
DISK ERROR, 25
DISK SIZE, 30
DISK SPACE, 27
DLE, 163
DRAWLINE, 159
EDITOR, 2, 31
EOF, 123, 136, 140
EOLN, 123, 136, 140, 147
EXAMINE, 26
EXCHANGE, 69
EXECUTE, 3
EX!T, 140, 155
EXPRESSION, 115
EXTENDED LIST, 17
EXTERNAL, 91, 100, 173
FILE, 121, 124, 146
FILEID, 115
FILENAMES, 7, 9, 32
FILER, 2, 3, 7
FILES, 137
FILLCHAR, 132, 144, 156
FIND, 44, 45, 55, 68
FORWARD, 47, 173

LIBRARY,
LINKER,
LIST DIRECTORY,
LOCK,
LCG,
LONG INTEGERS,
MACRO,
MACROS,
MAKE,
MARK,
MARKERS,
MEMAVAIL,
MEMORY ALLOCATION,
MEl-10R Y MANAGEl-1ENT,
MOVE LEFT ,
MOVERIGHT,
NEW ,
NEXT,
NORMAL,
NUMBER,
OUI'PUl' ,
PACK,
PACKED ARRAYS,
PACKED -RECORDS,
PACKED VARIABLES,
PAGE,

104
275
12, 124
79, 88, 89, 140
127, 156, 226, 241
159
127, 156
134
156
167
79, 98, 112
163
115
28
136, 147
34, 39, 55, 69, 11 e, 156
147
167
155
124, 263, 265
79, 124, 156, 186
55
136, 147
27
57
117 ~ 152, 156

173
4, 91, 173
15, 17
123
127
118, 181
101
71, 107
28
127, 156
38, 49, 55, 5f:
128, 156
134
127
131, 156
131, 156
14, 136
59
123
115
136, 141
145
142
144
142
125

PASCAL,
PDP- 11,
PDP 1 1,
POS, .
PREFIX,
PROCEDURE,
PR CGRAM HEAD INGS ,
PSEUDO CCl1MENTS,
PSEUOO-OPS,
PURGE,
PlJ1' ,
PNROFTEN,
QUIET,
QUIT,
RADAR, ~~~
RANGECHECK,
READ,
READLN,
RELBLCCK,
RELEASE,
RBv!OVE,
REPLACE,
RESET,
RESTR ICTIONS,
REwRITE,
RT-'1,
R'jN,
~AVE,
SCAN,
SCREEN,
SCREEN CCNTRCL,
SCREENCCNTROL,
SEEK,
SeGMENT PROCEDURE,
SeT,
SETS,
SIMPLVARIABLE,
SIZE,
SIZECf,
SOURCE,

STRING,
STRINGS,
S.JAPPING,
SYNTAX ERRORS,
SYSCOM,
SYSTEM COMPILATION,
SYSTEM. CQv1PILER,
SYSTEM. LIBRARY,
SYSTE}!.WRK. CODE,
TEXT,
T:ME,

Pa.ge 284

1
97
5, 188
117, 156
25
104
146
78
102
123
124
127, 156
82
14, 52, 55, 66
159
82
124, 146, 153
146
115
127, 156
20
44, 46, 56
121, 147, 148, 156
154
121, 147, 148, 156
239
3
13
131
116
5, 82, 127
225, 241
125, 138, 156
149, 165
Ll9
150
115
116
127, 144, 156
116
118, 156, 182
86, 116, 117
i51
82
271
77
83
85
4,81,83,91,104
3, 36, 77, 93, 98
146, 163
127, 157

TITLE,
TOKEN,
TRANSFER,
TREESEARCH,
TRUNe,
UNIT,
UNITBUSY,
UNITCLEAR,
UNITNUMBER,
UNITREAD,
UNI'IWAIT,
UNITt/RITE,
UNPACK,
UNTCLEAR,
USE LIBRARY,
USES,
VCLID,
VOLLME,
VOLUME NAMES,
VOLUME NUHBERS,
VOLLMES,
WHAT,
WILOCARDS,
WCRD PROCESSING,
WORKFILE,
WRITE,
WRITELN,
YALOE SUM-1ARY,
Z8C,
ZERO,

116
U4
21
157
182
e 3 , 94 , 167, 168
122, 157
122
116, 267
121, 157
122, 157
121, 157
145
157
83
168
116
25
7
267
15
15
10
39, 4e, 49, 55
2, C, 33, 36, 63, 77, 93, 92
124, 153
153
73
5, 97, 188
28

	000000
	000001
	000002
	000003
	000004
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284

