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NOTICE

Effective with the BOO/E0O8 software release, Tandem introduced a more formal nomenclature for its software
and systems.

The term “NonStop 1+™ system” refers to the combination of NonStop 1+ processors with all software that
runs on them.

The term “NonStop™ systems” refers to the combination of NonStop I'™ processors, NonStop TXP™ processors,
or a mixture of the two, with all software that runs on them.

Some software manuals pertain to the NonStop 1+ system only, others pertain to the NonStop systems only,
and still others pertain both to the NonStop 1+ system and to the NonStop systems.

The cover and title page of each manual clearly indicate the system (or systems) to which the contents of the
manual pertain.
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NEW AND CHANGED INFORMATION

This manual is the second edition of the TAL Reference Manual. It
incorporates the TAL Reference Manual Addendum, Part Number 82182.

The manual is reorganized and rewritten and includes the following new
information:

e EXTENSIBLE procedure description

e Compiler directives--ABORT, DEFEXPAND, LINES, GMAP, PRINTSYM, and
WARN

e Additional error messages
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PREFACE

This manual provides reference information for the Transaction
Application Language (TAL) used on Tandem systems. This manual is
intended for:

Systems programmers writing operating system components, compilers,
interpreters, special subsystems, drivers for non-standard
input/output devices, and special routines that support data
communications activities.

Applications programmers writing code for server processes used
with the PATHWAY transaction processing system and other data
management software supplied by Tandem, conversion routines that
facilitate transfer of data between Tandem software products and
various applications, specialized procedures callable from COBOL
or FORTRAN programs, and other applications software where optimal
performance has high priority.

The following manuals provide additional information:

“4 82581 A00 3/85

Introduction to Tandem Computer Systems for an overview of the
system hardware and software.

System Description Manual for the NonStop or NonStop 1+ system for
details about the hardware aspects of the system and the process
oriented organization of the GUARDIAN operating system.

System Procedure Calls Reference Manual for the syntax for calling
operating system procedures.

GUARDIAN Operatlng System Programmer's Guide for 1nformat10n about
using the operating system procedures.

BINDER Manual for information about binding modules.,
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SYNTAX CONVENTIONS IN THIS MANUAL

The following list summarizes the conventions for syntax notation
in this manual.

Notation

UPPERCASE
LETTERS

<lowercase
letters>

Brackets []

Braces {}

Vertical
Bar |

Ellipsis

o e 0

Percent
Sign %

Spaces

Punctuation

44 82581 AQ0 3/85

Meaning

Uppercase letters represent keywords and reserved words;
you must enter these items exactly as shown.

Lowercase letters within angle brackets represent
variables that you supply.

Brackets enclose optional syntax items. A vertically
aligned group of items enclosed in brackets represents a
list of selections from which you can choose one or none.

Braces enclose required syntax items. A vertically
aligned group of items enclosed in braces represents a
list of selections from which you must choose only one.

Two horizontally aligned items separated by a vertical
bar represent a pair of selections surrounded by either
brackets or braces.

An ellipsis immediately following a pair of brackets or
braces indicates that you can repeat the enclosed syntax
items any number of times.

Precedes a number in octal notation.

If two items are separated by a space, that space is

required between the items. 1If one of the items is a
punctuation symbol, such as a parenthesis or a comma,
spaces are optional.

Parentheses, commas, semicolons, and other symbols or
punctuation not described above must be entered precisely
as shown. 1If any of the punctuation above appears
enclosed in quotation marks, that character is not a
syntax descriptor but a required character and you must
enter it as shown.
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SECTION 1

INTRODUCTION

The Transaction Application Language (TAL) is a high-level, block-
structured language used to write systems software and routines that
support transaction-oriented applications. The TAL compiler compiles
source programs written in TAL into executable object programs. The
TAL compiler and the object programs it generates execute under
control of the GUARDIAN operating system.

APPLICATIONS AND USES

TAL is most often used for writing systems software or transaction-
oriented applications where optimal performance has high priority.
You can, for example, use TAL to write:

e Operating system components, command interpreters, source-language
compilers and interpreters, and special subsystems

e Input/output processes, drivers, and protocols that support
nonstandard devices and integrate them into the operating system

e Data communications routines for interfacing with the ENVOY data
communications manager or message-switching functions

e Special procedures callable by COBOL or FORTRAN programs

e Server processes used with the PATHWAY transaction processing
system and other data management software produced by Tandem

TAL works efficiently with the hardware to provide optimal object
program performance. Many software products supplied by Tandem are
written in TAL.

4482581 ADO 3/85 1-1



INTRODUCTION
Processes

PROCESSES

Object programs execute as individual processes. While a program is a
static group of machine instructions and initialized data residing in
a file, a process is a dynamically running program. Thus, the same
program can execute concurrently many times, and each execution
comprises a different process.

Each process has its own user code space and user data space. The
code space consists of one or more code segments; the data space
consists of a data segment and one or more extended segments. For
each executing process, the system maintains two physical areas in
memory, the current user code segment and the current user data
segment, as shown in Figure 1-1.

The code segment is not modifiable by a user process but is sharable
among processes. The data segment is modifiable but private to the
running process. Thus, many processes can execute the same code, but
the data on which the code operates remains exclusive to each process.

Current Current
Code Segment Data Segment
Instructions Variables
Nonmodifiable, Modifiable,
Sharable Private

S$5013-001

Figure 1-1. Code and Data Segments of a Process
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INTRODUCTION
Major Features

MAJOR FEATURES

The major features of TAL are:

e Procedures--The code space for each program contains one or more
procedures. A procedure is a block of machine instructions that
performs a specific task. It exists once in the program but is
callable from anywhere in the program.

When the current procedure invokes another procedure, the system
automatically saves the current process environment. When the
called procedure terminates, the system restores the environment of
the previous procedure. Thus, each procedure executes in its own
environment and is not affected by the actions of other procedures.

Each activation of a procedure has its own local data area. That
is, the system allocates and initializes a new local data area each
time a procedure is entered. When each activation completes
execution, it relinquishes its local data area. Thus, the memory
space that a program requires is continuously held to a minimum.

e Recursion--Because each activation of a procedure has its own local
data area, a procedure can call itself. This feature, called
recursion, can enhance programming efficiency for certain
applications.

® Parameter Passing--You can declare optional or required parameters
for procedures.

e Subprocedures--A procedure can contain subprocedures, callable
only from within the same procedure. Since each activation of a
subprocedure has its own private data, subroutines can be
recursive.

e Six Data Types--You can declare and reference six types of data:

--STRING 8-bit integer byte

--INT 16-bit integer word

--INT(32) 32-bit integer doubleword
-—-FIXED 64-bit fixed-point quadword
--REAL 32-bit floating-point doubleword
--REAL(64) 64-bit floating-point quadword

e Data Structures--You can describe and reference sets of related
data variables such as records and arrays.
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INTRODUCTION
Interface With Operating System

» Data Operations--You can move a contiguous group of words or bytes
and compare one group with one another. You can scan a series of
bytes for the first byte that matches (or fails to match) a given
character.

e Bit Operations--You can perform bit deposit, bit extraction, and
bit shift operations.

e DPointers--Pointer variables can contain byte addresses or word
addresses. You can use pointers to access locations throughout
memory. You can initialize them when you declare them or at any
time during program execution.

e Modular Programming--TAL supports modular programming with
separate compilation and relocatable global data blocks. You can
compile each module that contains one or more procedures as a
separate compilation unit. The compile-time binder cooperates with
the TAL compiler to build a bound object file from each module.

INTERFACE WITH OPERATING SYSTEM

Object programs run under the control of the GUARDIAN operating
system. It provides an environment that allows your program to ignore
many things such as the presence of other programs and whether your
program fits into memory. For example, the operating system loads
programs into memory, brings absent pages from disc into memory as
needed, and allocates CPU time.

The operating system performs all file system functions for programs.
It treats all devices as files including disc files, disc packs,
terminals, printers, and processes running on the system. Programs
can reference a file by its symbolic name without regard for its
physical address or confiquration status. File system procedures
provide a single, uniform file access method that masks the
peculiarities of devices from applications.

Process control system procedures let processes activate and terminate
other processes in any processor on the system. Processes can monitor
the operation of any process or processor. If a process stops or a
processor fails, your program can determine this fact.

Operating system procedures are described in the System Procedure
Calls Reference Manual and GUARDIAN Operating System Programmer's
Guide.
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INTRODUCTION
Machine Dependencies

MACHINE DEPENDENCIES

The TAL compiler is a disc-resident program on each Tandem system and
runs under the control of the GUARDIAN operating system.

For previous versions of the operating system, the same version of the
TAL compiler executes on all Tandem systems. Operating system version
B00 requires TAL compiler version B00. Operating system version E08
requires TAL compiler version E08.

Certain features, such as extended pointers, extended data segments,
user library segments, and multiple user code segments, are not
available on the NonStop 1+ system. A summary of machine dependencies
appears in Appendix A.

SYSTEM REQUIREMENTS

Some object programs require optional microcode such as:

e Decimal arithmetic option for operations with quadword operands and
arithmetic operations

e Floating-point option for doubleword and quadword (extended)
floating-point arithmetic and related operations

Some object programs require other software products such as the
PATHWAY transaction processing system.

PROGRAM DEVLOPMENT TOOLS

Other Tandem utilities that provide additional program development
features are:

e EDIT--a full text editor with screen and conversational editing
features, described in the EDIT Manual, that can help you create
TAL source programs

e CROSSREF--a process that creates a cross-reference listing of
variables, functions, and keywords in a program, either as an
interactive process described in the CROSSREF Manual or a
compiler-driven process as described in this manual

e INSPECT--an interactive debugger that lets you stop and start
program execution and display and modify program values
symbolically as described in the INSPECT Interactive Symbolic
Debugger User's Guide
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INTRODUCTION
Compilation Cycle

e DEBUG--an interactive debugger that lets you stop and start
program execution and display and modify program values by location
as described in the DEBUG Manual

e BINDER--an interactive binder that lets you examine, modify and
combine object files and produce optional load maps and
cross-reference listings as described in the BINDER Manual

COMPILATION CYCLE

The object file is the output of the compiler or BINDER. The output
of each compilation is an object program that is either an entire
executable program or a part of a modular program. You can compile
each part (module) of a program separately, then bind the resulting
object files into a new object file called the target file.

Figures 1-2 and 1-3 show the compilation cycle of a nonmodular
program and of a modular program, respectively.

Source Object
Code TAL File

y

A

$5013-002

Figure 1-2. Compilation Cycle of Nonmodular Program
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INTRODUCTION
Example Program

Interim
Source = TAL »| Object
Code File
Target
> BIND > Object
File
s Interim
ource » TAL »| Object
Code File
or
Interim
Source - TAL »| Object
Code File
Target
> TAL = Object
File
Source
Code
$5013-003

Figure 1-3. Compilation Cycle of Modular Program

EXAMPLE PROGRAM

Figure 1-4 shows an example of a TAL source program. The program
opens the home terminal, then loops forever. Each iteration of the
loop consists of the following actions:

1. The program displays the prompt "ENTER STRING" and accepts
a character string of up to 72 characters.

2. The program scans the input string for an asterisk. If one
occurs, it displays a circumflex at the position of the asterisk.
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INTRODUCTION
Example Program

INT hometerm, !File number of home terminal
left~side, !sbuffer address of lst character after prompt
num~xferred, !Number of bytes transferred by file system
count, !General-purpose variable
asterisk, 'Location of asterisk

buffer(0:40]; !Input/output (I/0) buffer

STRING
.sbuffer := @buffer '<<' 1, !STRING pointer to I/0 buffer
blanks[0:71] := 72 * [" "]; !Blanks for initialization

?SOURCE $SYSTEM.SYSTEM.EXTDECS (MYTERM, OPEN,WRITEREAD,WRITE, STOP)
! Operating system procedure declarations

PROC main~proc MAIN;

BEGIN
CALL MYTERM(buffer); !Get name of home terminal
CALL OPEN(buffer, hometerm); !0pen home terminal
WHILE 1 DO !Infinite loop
BEGIN
sbuffer ':=' "ENTER STRING" -> left”~side;
CALL WRITEREAD(hometerm, buffer, 12, 68, num~xferred);
sbuffer(num~xferred] := 0; 'Delimit the input
SCAN sbuffer UNTIL "*" -> asterisk: tScan for asterisk
IF NOT $CARRY THEN 'Asterisk found
BEGIN
sbuffer ':=' blanks FOR
(count := asterisk '-' @sbuffer +
(left~side '-' @sbuffer));
sbuffer(count] := "~";
CALL WRITE(hometerm, buffer, count + 1):
END; 'End of IF
END; 'End of WHILE
END; 'End of procedure
Figure 1-4. Example Source Program
1-8
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SECTION 2

PROGRAM STRUCTURE

This section summarizes the structure of a TAL source program. The
source code for a program consists of one or more compilation units.
Each compilation unit contains all declarations, statements, and
compiler directives needed for a single compilation but does not
necessarily contain everything needed for an executable program.

The overview describes:
e The components and structure of a nonmodular source program

e Additional components and the structure of a module of a modular
source program

PROGRAM COMPONENTS

Program components are parts of the source program that define objects
and specify operations on these objects. The primary components of a
nonmodular program are:

e Global Declarations

e Procedure Declarations

* Local Declarations

e Subprocedure Declarations

e Sublocal Declarations

e Statements
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PROGRAM STRUCTURE
Program Components

Each primary component in turn can contain other components such as
variables, pointers, numeric constants, character strings, reserved
words, operators, delimiters, and other symbols. These are discussed
in later sections.

Global Declarations

Global declarations define identifiers you can reference throughout

the program. Global identifiers are accessible for the duration of

the compilation.

Declarations that can have global scope are:

e Data Declarations--These associate identifiers with memcry
locations and allocate memory for storing values and the results of
computations.

» LITERAL Declarations--These associate constant values with
identifiers.

e DEFINE Declarations--These associate text with identifiers.

e FORWARD Procedure Declarations--These specify that the declaration
for the procedure body occurs later in the source file.

e EXTERNAL Procedure Declarations—--These specify that the declaration
for the procedure body occurs in another compilation.

Procedure Declarations

Procedure declarations specify discrete portions of source code within
a program. They define the executable parts of the program.

A procedure can contain local declarations and subprocedure
declarations.
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Program Components

Local Declarations

Local identifiers are accessible only during execution of the
encompassing procedure. They can be accessed only by statements and
subprocedures within the procedure in which they are declared, unless
the procedure passes them as parameters to another procedure.
Declarations that can have local scope are:

e Data Declarations

e LITERAL Declarations

e DEFINE Declarations

e Label Declarations—--These reserve identifiers for later use as
names of locations in the procedure.

e Entry-Point Declarations--These specify additional entry points
into a procedure or subprocedure body.

e FORWARD Subprocedure Declarations—--These specify that the
declaration for the subprocedure body occurs later in the same
procedure.

The system allocates and initializes a separate local data area for

each activation of a procedure. When each activation completes
execution, the system deallocates its local data area.

Subprocedure Declarations

Subprocedure declarations specify discrete blocks of source code
within a procedure. A procedure can contain any number of
subprocedures, all nested at the same level.

A subprocedure can contain sublocal declarations, but it cannot
contain other subprocedures.
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PROGRAM STRUCTURE
Program Components

Sublocal Declarations

Sublocal declarations define identifiers that are accessible only
during execution of the encompassing subprocedure. Sublocal
identifiers can be accessed only by statements within the
subprocedure, unless the subprocedure passes them as parameters to
another subprocedure or procedure.

Declarations that can have sublocal scope are:

e Data Declarations

e LITERAL Declarations

e DEFINE Declarations

e Label Declarations

e Entry-Point Declarations

The system allocates and initializes a separate sublocal data area for

each activation of a subprocedure. When each activation completes
execution, the system deallocates its sublocal data area.

Statements

Statements request specific actions. Local statements appear within a
procedure. Sublocal statements appear within a subprocedure.

Local statements in a procedure can invoke any procedure previously
declared in the program and any subprocedure previously declared
within the same procedure. They can reference global identifiers and
local identifiers in this procedure but not those in other procedures
or in subprocedures.

Sublocal statements in a subprocedure can invoke any procedure
previously declared in the program, or any subprocedures previously
declared within the same procedure. They can reference global
identifiers, local identifiers in the encompassing procedure, and
sublocal identifiers in this subprocedure but not those declared in
other subprocedures.

2-4 482581 A00 3/85



PROGRAM STRUCTURE
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PROGRAM STRUCTURE

The TAL compiler expects source declarations and statements in the
following order:

1. All global declarations must appear before the first procedure
declaration.

2. A procedure declaration comes next.
3. All local declarations for this procedure come next.

4. A subprocedure declaration, if any, appears next, followed in
order by:

--All sublocal data declarations for this subprocedure
--All sublocal statements for this subprocedure

5. For each subsequent subprocedure, the primary components listed in
item 4, if present, appear in the order given

6. All local statements for the encompassing procedure follow the
last subprocedure contained in this procedure. If no
subprocedures appear in this procedure, all local statements
follow the local data declarations for this procedure.

7. For each subsequent procedure, the primary components listed in
items 2 through 6, if present, must appear in the order given,

You must declare procedures and subprocedures before you reference
them in statements unless you use FORWARD declarations. For further
information, see Section 16, "Procedures and Subprocedures."”

Figure 2-1 shows the structure of a nonmodular program that has three
procedures, one of which contains a subprocedure.

In the figure, the scope of the declarations in each box is inward
only. That is, global data is accessible to all items in the program.
Local data is accessible only to items in the procedure in which it
appears. Sublocal data is accessible only to items within the
subprocedure in which it appears.
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PROGRAM STRUCTURE
Program Structure

Global Declarations

Procedure Declaration

Local Declarations

Subprocedure Declarations
Sublocal Declarations
Sublocal Statements

Local Statements

Procedure Declaration
Local Declarations
Local Statements

MAIN Procedure Declaration
Local Declarations
Local Statements

$5013-004

Figure 2-1., Structure of a Nonmodular Source Program
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Modular Structure

MODULAR PROGRAMMING

Modular programming provides several advantages. For example, it
allows you:

e To divide a large program into smaller, more manageable modules

e To work independently on a module, while other programmers work on
other modules

e To bind new code to existing debugged object code including
general-purpose library routines

e To code different procedures for the same program in different
languages

Compiler and binder support for modular programming is described
in Section 22, "Separate Compilation." The differences between
modular programs and nonmodular programs are summarized below.

Modules can have the following additional components:
e NAME Declaration--This declaration assigns a name to the module.

e BLOCK Declarations--These group global data declarations into
relocatable global data blocks. Each module can have one private
data block and any number of user-named data blocks. The private
block is global only to that module. The named blocks are global
to all modules in the program.

Any global data declarations not contained in a BLOCK declaration must
appear before the first BLOCK declaration. TAL treats the unblocked
declarations as an implicit data block that is global to all modules
in the program.

Modular Structure

The structure of a source module is shown in Figure 2-2. The NAME,
unblocked, and BLOCK declarations, if present, must appear in the
order shown in the figure.
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PROGRAM STRUCTURE
Modular Structure

NAME Declaration
Unblocked Global Declarations (Implicit Data Block)
BLOCK Declarations (Private Block and'Named Blocks)

Procedure Declaration

Local Declarations

Subprocedure Declarations
Sublocal Declarations
Sublocal Statements

Local Statements

Procedure Declaration
Local Declarations
Local Statements

MAIN Procedure Declaration
Local Declarations

Local Statements

§5013-005

Figure 2-2, Structure of a Source Module
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SECTION 3

LEXICAL ELEMENTS

This section describes the format you can use for source code and
lists the lexical elements that make up the TAL language.

Elements include the character set supported, components, reserved

words, identifiers, constants, variables, indirection symbols, address
base symbols, delimiters, and operators.

FORMAT OF SOURCE CODE

The maximum line length is 132 characters.

TAL allows almost a free format for source code. This flexibility
lets you design a format that is readable and maintainable. The
following example shows a legal format:

INT a,
b,
c;
STRING charl,
char2,
char3;

PROC format”~example MAIN;

BEGIN
a := 1;
b := 2;
c := a + b;
charl := "A";
char2 := "B";
char3 := "C";
END;
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LEXICAL ELEMENTS
Format of Source Code

BEGIN-END Construct

The BEGIN-END construct is an integral part of the TAL language. For
example:

e It encloses the body of a procedure, as in the following example:

PROC a;
BEGIN

END;
e It forms a compound statement, as in the following example:

IF a < b THEN
BEGIN

.

END
ELSE
BEGIN

END;
Comments

Comments begin with an exclamation point (!) and terminate with either
another exclamation point or the end of the line. Valid examples are:

CALL calc; !Comment
CALL calc; ! Comment !
! Comment

{Comment! CALL !Comment! calc; !Comment!

CHARACTER SET

TAL supports the complete ASCII character set including uppercase and
lowercase alphabetics, numerics 0 through 9, and special characters.
The ASCII character set appears in Appendix E.
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LEXICAL ELEMENTS
Components

COMPONENTS

TAL program components consist of declarations and statements.

Declarations associate identifiers with data variables and other
declarable objects in a program:

-~Variable objects such as simple variables, arrays, structures,
pointers, and equivalenced variables
labels, and

--Other objects such as procedures, literals, defines,

entry points

Statements specify operations to be performed on declared objects.
Statements are summarized in Table 3-1 and described in Section 15,

Table 3-1. TAL Statements
Statement Meaning
ASSERT Conditionally calls error-handling procedure.

Assignment
CALL

Stores value in variable.
Invokes procedure or subprocedure.

CASE Executes statement based on index value.

CODE Specifies machine codes for inclusion in object code.

DO-UNTIL Executes posttest loop until true condition.

DROP Frees index register or removes label from symbol table.

FOR-DO Executes pretest loop for <n> times.

GOTO Unconditionally branches to label within procedure or
subprocedure.

Move Moves group of elements from one location to another.

IF-THEN-ELSE

Executes THEN statement for true state or ELSE statement
for false state.

RETURN Returns from procedure or subprocedure to caller. For
functions, also can specify returned value.

RSCAN Searches scan area, right to left, for test character.

SCAN Searches scan area, left to right, for test character.

STACK Loads value on register stack.

STORE Stores register stack element in variable.

USE Reserves index register for user manipulation.

WHILE-DO Executes pretest loop during TRUE condition,
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Reserved Words

RESERVED WORDS

Reserved words are keywords that have predefined meanings when you use

them in declarations and statements. Table 3-2 lists the reserved
words in alphabetic order. You cannot use reserved words for
user—-defined identifiers unless noted otherwise below.

Table 3-2. Reserved Words

AND END LITERAL RSCAN
ASSERT ENTRY LOR SCAN
BEGIN EXTENSIBLE ** MAIN STACK
BLOCK * EXTERNAL NAME * STORE
BY FILLER **%* NOT STRING
CALL FIXED OF STRUCT
CALLABLE FOR OR SUBPROC
CASE FORWARD OTHERWISE THEN
CODE GOTO PRIV TO
DEFINE IF PRIVATE * UNTIL
DO INT PROC USE
DOWNTO INTERRUPT REAL VARIABLE
DROP LABEL RESIDENT WHILE
ELSE LAND RETURN XOR

* %

k% k

NAME is reserved only when used in the first declaration in a

compilation unit.
compilation unit.

BLOCK and PRIVATE are reserved in a named
In an unnamed compilation unit, you cannot

declare data blocks using BLOCK declarations, but you can use

BLOCK and PRIVATE as user-defined identifiers.

Section 22, "Separate Compilations."

For details, see

EXTENSIBLE is a procedure attribute, as described in Section 16,

"Procedures and Subprocedures."

EXTENSIBLE as a user-defined

However,
identifier.

you can also use

FILLER is a reserved word only within the scope of a structure

declaration,

as described

in Section 11,

"Structures."
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Identifiers

IDENTIFIERS

Identifiers are symbolic names you use for objects in declarations
and statements. The following rules apply when forming identifiers:

e They can be up to 31 characters in length.

e They must begin with an alphabetic character or a circumflex ().

e They can consist only of alphabetics, numerics, and circumflexes.

e You can use lowercase characters, but TAL treats them as uppercase.
The following examples show valid identifiers:

az2
number~of~bytes

TANDEM
~23456789012~00
Name~with~exactly~31~characters

The following examples show invalid identifiers:

2abc !Begins with number
ab%99 !Illegal symbol
Variable !Reserved word
This~name~is~too”~long~so~it~is~invalid !Too long

Identifier Classes

Each identifier is a member of an identifier class. TAL determines
the identifier class based on the declaration of the identifier and
stores the information in the symbol table.

Table 3-3 summarizes the identifier classes and the sections in
this manual in which each class is described.
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LEXICAL ELEMENTS

Constants
Table 3-3. Identifier Classes
Class Meaning Section
Block Global data block 22
Code Read-only (P-relative) array 9
Constant Unnamed numeric or character string constant 4
Variable Simple variable, array, pointer, structure, 8-11
substructure, or structure data item

DEFINE Named text 6
Function Procedure or subprocedure with a return value 16
Label Statement label 7
LITERAL Named constant 6
PROC Procedure or subprocedure with no return value 16
Register Index register (R5, R6, or R7) (See USE statement) 15
Template Structure template 11
CONSTANTS

A constant is a value you can store in a variable, declare as a
LITERAL, or use as part of an expression. Constants can be numbers or
character strings. The kind and size of constants a variable can
accommodate depends on the data type of the variable, as described in
Section 4, "Data Representation.”

A constant expression is an arithmetic expression that contains no
variables. You can use a constant expression anywhere a single
constant is allowed.

The following are examples of constants and constant expressions:

255 !Numeric constant
"xyz" ICharacter string constant
2 * 5 !Constant expression

3-6
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Number Bases

LEXICAL ELEMENTS
Variables

You can specify numeric constants in binary, octal, decimal, or
hexadecimal base depending on the data type of the item, as described

in Section 4.

Examples are:

Binary: $B101111

Octal: %57

Decimal: 47

Hexadecimal: $H2F
VARIABLES

A variable is a symbolic representation of an item or a group of

elements. It stores data that can change during program execution.

Table 3-4 summarizes variables.

Table 3-4. Variables

Variable Meaning Section
Simple A variable that contains one item of a specified 8
Variable data type
Array A variable that contains multiple elements of the 9
same data type, all accessible by one identifier
Structure A variable that contains multiple elements of one 11
or more data types, all accessible by one identifier
Substructure A structure declared within another structure or 11
substructure
Structure An array or simple variable declared within a 11
data item structure or substructure
Pointer A variable that contains the address of another item 10
of a specified data type; referencing a pointer
accesses the item to which the pointer points
3-7
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LEXICAL ELEMENTS
Symbols and Operators

SYMBOLS AND OPERATORS

Symbols are indirection symbols, address base symbols, prefix symbols,
and delimiters (punctuation symbols):

e Indirection symbols are the period (.), .EXT, .SG, and €, as
summarized in Table 3-5.

® Address base symbols are 'SG', 'P', 'G', 'L', and 'S', as
summarized in Table 3-6.

o Delimiters start or end a field of information as summarized in
Table 3-7.

e Other symbols are "$" and "?", as follows:

$ —-specifies a standard function, such as $ABS and $DBL, as
described in Section 17.

? --specifies a directive line that contains one or more compiler
directives, as described in Section 20.

Operators specify assignment, move, bit shift, arithmetic, boolean,
and relational operations, as summarized in Table 3-8.
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Indirection and Base Address Symbols

Table 3-5. 1Indirection Symbols

Symbol Meaning Section
. Declares indirect array (standard indirection) 9
Declares indirect structure (standard indirection 11
Declares 16-bit standard pointer 10
Declares 16-bit standard structure pointer 11
Uses direct INT variable as a temporary pointer 10
@ Removes indirection (accesses address contained in
pointer or address of any other item) 10
. EXT Declares 32-bit extended pointer 10
Declares 32-bit extended structure pointer 11
.SG Declares 16-bit system global pointer 18
Declares 16-bit system global structure pointer 18
Table 3-6. Address Base Symbols
Symbol Meaning Section
'p’ P-register addressing (read-only array declaration) 9
'G' Base-address equivalencing, global user data area 12
'L’ Base-address equivalencing, local user data area 12
'S’ Base-address equivalencing, sublocal user data area 12
'SG' Base address, system global space (privileged
procedures) 18
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LEXICAL ELEMENTS

Delimiters
Table 3-7. Delimiters

Symbol Meaning Section
! Begins and optionally ends a comment 3

, Separates fields of information
Constant lists 4
Declarations 6-12
Parameters (DEFINEs, procedures, 6,16
standard functions, CALL statements) 17,15
; Terminates declarations 6-12
Separates statements 15
. Word.<bit> specification 14
Structure name qualification 11
<> Bit field 4,14
: Label, ASSERT statement, entry point 7,15,16
) Expression precedence 13
CODE statement 15
Parameters (DEFINEs, procedures, 6,16
standard functions, CALL statements) 17,15
Structure pointer referral mode 11
FIXED (<fpoint>) 8
(*) FIXED (*) formal parameter specification 16
Template structure declaration 11
Repetition factor 4
(] Constant list; index; array element 4,5,9
[:] Array bounds 9
Structure or substructure bounds 11
-> <next-addr> in SCAN, RSCAN, move statements 15
<next-addr> in group comparison expression 13

" Begins and ends character strings
nn Embedded quotation mark in character strings
# Terminates DEFINE declaration text
T, Embedded comma in DEFINE parameter

oo
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Operators

Table 3-8. Operators

Operation Operator Meaning Section

Data declaration initialization 8-11
Assignment and FOR statements 15
Assignment form of arithmetic expression 13

Assignment

It

LITERAL or DEFINE declaration 6
Equivalenced variable declaration 12
Redefinitions inside structures 11

Representation

Move Te="! Left-to-right move 15

Right-to-left move

Bit Shift << Signed left shift 14
>> Signed right shift
'<e<! Unsigned left shift
'>>! Unsigned right shift
Arithmetic + Signed addition 13
- Signed subtraction
* Signed multiplication
/ Signed division
4! Unsigned addition
't Unsigned subtraction
PR Unsigned multiplication
/! Unsigned division
"\' Unsigned modulo division
LOR Logical OR bit-wise operation
LAND Logical AND bit-wise operation
XOR Exclusive OR bit-wise operation

Boolean AND Logical conjunction 13
OR Logical disjunction
NOT Logical negation

Relational Signed less than 13

Signed equal to

Signed greater than

Signed less than or equal to

Signed greater than or equal to

Signed not equal to

Unsigned less than

Unsigned equal to

Unsigned greater than

Unsigned less than or equal to

Unsigned greater than or equal to

Unsigned not equal to

- = =« =« = = AV AVIA
AV AV IEAV I

vt
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SECTION 4

DATA REPRESENTATION

Data is the information on which a program operates.

Variables store data that can change during program execution. When
you declare a variable, you specify a data type, which determines its
storage, range of values and precision, and the way it can be used in
a program.

This section describes the following:

e Data units in which you can access variables

e Data types for variables and constants

e Syntax for character string constants, numeric constants, and
constant lists

DATA UNITS

Data units are the formats in which you can access data stored in
memory. The system stores all data in 16-bit word units, but you can
access this data as any of the five units listed in Table 4-1.
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DATA REPRESENTATION

Data Units
Table 4-1. Data Units
Number
Data Unit of Bits Description
Bit field 1-16 One or more contiguous bits within a word
Byte 8 Two bytes comprise a word, with byte 0 (most
significant) in the left half and byte 1 (least
significant) in the right half
Word 16 Basic addressable unit of memory
Doubleword 32 Four contiguous bytes or two contiguous words
Quadword 64 Eight contiguous bytes or four contiguous words
Bit Fields

A bit field specifies one or more contiguous bits in a data unit by
bit number. For a word unit, the bit numbers are 0 through 15 from
left to right, as shown in Figure 4-1,

01234567 8 9101112131415

Most Least
Significant Significant
$5013-006

Figure 4-1, Bit Field
For a one-bit field, specify the bit number enclosed in angle
brackets, as in <0>, <7>, or <14>,
For a multiple-bit field, specify the leftmost and rightmost bit

numbers of the field separated by a colon and enclosed in angle
brackets, as in <2:3>, <0:7>, or <4:15>,
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DATA REPRESENTATION
Data Types

DATA TYPES

The data type of a variable determines the values it can represent,
the goperations you can perform on it, byte or word addressing and
alignment, data length, indexing offsets, and kind of machine
instructions generated.

Data can be character strings or numbers. Table 4-2 shows the six
data types and the numeric range each represents.

Table 4-2, Data Types

Data Type Data Unit Number Representation

STRING Byte ASCII character or 8-bit integer
in the range 0 through 255 unsigned

INT Word 16-bit integer in the range
0 through 65,535 unsigned or
-32,768 through 32,767 signed

INT(32) Doubleword 32-bit integer in the range
-2,147,483,648 through +2,147,483,647

FIXED Quadword 64-bit fixed-point number in the range
-9,223,372,036,854,775,808 through
+9,223,372,036,854,775,807

REAL Doubleword 32-bit floating-point number

REAL(64) Quadword 64-bit floating-point number
REAL and REAL(64) data are in the range

-78 78
+/-8.62 * 10 through +/-1.16 * 10

Address Modes

The data type of a variable determines byte or word addressing,
alignment, and indexing, as discussed in Section 5, "Addressing
Modes."
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DATA REPRESENTATION
Data Types

Operations and Functions

The data type of a variable determines the operations you can pgrform
on it and the standard functions you can use with it, as shown in
Table 4-3,

Table 4-3. Operations and Functions

STRING INT INT(32) FIXED REAL REAL(64)

Operations
Unsigned arithmetic . .
Signed arithmetic o ) . o% ex% oxk
Logical operations . .
Relational operations ° . ) o okx ok
Bit shifts ) . .
Byte scans .

Standard Functions
Type transfer . ° . . . .
Character test .
Minimum/Maximum . . ° % okk o %k
Scaling °
Structure . ) . . . ™
Address conversion ° . . . . o
Miscellaneous . . )

* Fixed-point optional microcode required on the NonStop 1+ system
** Floating-point optional microcode required

STRING Operands

In expressions, the system treats STRING variables and constants as
if they were 16-bit quantities. For more information on expressions,
see Section 13,
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SYNTAX FOR CONSTANTS

The remaining pages of this section give the following syntax
definitions for specifying constants in your program:

e Character String Constants (All Data Types)
e STRING Numeric Constants

e INT Numeric Constants

e INT(32) Numeric Constants

e FIXED Numeric Constants

e REAL and REAL(64) Numeric Constants

e Constant Lists
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Character String Constants (All Data Types)

A character string consists of one or more ASCII characters stored in
a contigquous group of bytes.

The syntax for specifying a character string constant is:

"<string>"

<string>

is a sequence of one or more ASCII characters enclosed in
quotation mark delimiters. If a quotation mark is a
character within the string, use two quotation marks (in
addition to the quotation mark delimiters). TAL does not
upshift lower case characters.

Each ASCII character in the character string requires one byte of
storage. Thus, the number of characters that each element can
accommodate depends on its data type:

STRING = 1 byte INT(32) or REAL = 1 to 4 bytes
INT = 1 to 2 bytes REAL(64) or FIXED = 1 to 8 bytes

In initializations, a character string can contain up to 128
characters. The character string must be on one line unless enclosed
in a constant list, described later in this section. The system left
justifies the character string. For examples initializing simple
variables and arrays with character strings, see Sections 8 and 9.

In expressions, a character string can contain one to four characters,

as in "a" or "abcd". The system right justifies the character string.
For examples, see "Assignment Statement” in Section 15.

Example of Character String Constant
This example declares a FIXED variable and initializes it with a
character string:

FIXED fix~num := "ABCD1234";
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STRING Numeric Constants

Representation: Unsigned 8-bit integer
Range: 0 through 255

The syntax for specifying a STRING numeric constant is:

[ <base> ] <integer>

<base>

is one of:

% = Octal
%$B = Binary
$H = Hexadecimal

The default base is decimal.

<integer>

is one or more digits. The digits allowed are:

Binary 0 or 1

Decimal 0 through 9

Hexadecimal O through 9, A through F
Octal 0 through 7

Examples of STRING Numeric Constants

Decimal: 255
Octal: %12
Binary: %$B101
Hexadecimal: $h2A
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INT Numeric Constants

Representation: Signed or unsigned 16-bit integer
Range (Unsigned): 0 through 65,535
Range (Signed): -32,768 through 32,767

The syntax for specifying an INT numeric constant is:

[ + 1 [ <base> ] <integer>

<base>
is one of:
% = QOctal
%$B = Binary
%$H = Hexadecimal

The default base is decimal. Unsigned integers greater than
32,767 must be in octal, binary, or hexadecimal base.

<integer>

is one or more digits. The digits allowed for each base are:

Binary 0 or1

Decimal 0 through 9

Hexadecimal 0 through 9, A through F
Octal 0 through 7
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/  Examples of INT Numeric Constants

Decimal:

Octal:

Binary:

Hexadecimal:

Storage Format

3
-32045

%177
-%5

%$B01010
%$b1001111000010001

$H1A
%h2f

DATA REPRESENTATION
INT Numeric Constants

The system stores signed numbers in two's complement notation. It
obtains the negative of a number by inverting each bit position in the

number, then adding a 1.
2 is stored as

-2 is stored as

“482581 AQO 3/85
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INT(32) Numeric Constants

Representation: Signed or unsigned 32-bit integer
Range: -2,147,483,648 through 2,147,483,647

The syntax for specifying an INT(32) numeric constant is:

[ + 1 [ <base> ] <integer> { D }
] %D }

<base>
is one of:
% = Octal
%$B = Binary
%H = Hexadecimal

The default base is decimal.

<integer>

is one or more digits. The digits allowed for each base are:

Binary 0 or 1
Decimal 0 through 9
Hexadecimal 0 through 9, A through F
Octal 0 through 7
D and %D

are suffixes that specify INT(32) constants:

D
%D

Decimal, octal, or binary
Hexadecimal

([
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Examples of INT(32) Numeric Constants

Decimal: 0D
+14769D
-3278950664
Octal: %$1707254361d
-%24700000221D
Binary: %$B0001001011000100010100010014d

Hexadecimal: %$h096228d%d
-%H99FF29%D

Storage Format

The system stores signed numbers in two's complement notation.
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FIXED Numeric Constants

Representation: Signed 64-bit fixed-point number
Range: -9,223,372,036,854,775,808 through +9,223,372,036,854,775,807

The syntax for specifying a FIXED numeric constant is:

[ + 1 [ <base> ] <integer> [.<fraction>] { F }
%F }

<base>

is one of:

% = Octal base
%$B = Binary base
$H = Hexadecimal base

The default base is decimal.

<integer>

is one or more digits. The digits allowed for each base are:

Binary 0 or 1

Decimal 0 through 9

Hexadecimal 0 through 9, A through F
Octal 0 through 7

<fraction>
is one or more decimal digits. <fraction> is legal only for
decimal base.

F and %F
are suffixes that specify FIXED constants:

Decimal, octal, or binary
Hexadecimal

F
%F
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Examples of FIXED Numeric Constants

Decimal: 1200.09F
0.1234567F
239840984939873494F
-10.09F

Binary: %$B1010111010101101010110F

Octal: %$765235512F

Hexadecimal: $%$H298756%F

Storage Format

The system stores a FIXED number in binary notation. When the system
stores a FIXED number, it scales the constant as dictated by the
declaration or expression. Scaling means the system multiplies or
divides the constant by powers of 10 to move the decimal.

For information on scaling of FIXED values in declarations, see

Section 8, "Simple Variables." For information on scaling of FIXED
values in expressions, see Section 13, "Expressions."

“4 82581 A00 3/85



DATA REPRESENTATION
REAL and REAL(64) Numeric Constants

REAL and REAL(64) Numeric Constants

Representation: Signed 32-bit REAL or 64-bit REAL(64) floating-point

number
-78 77
Range: +/-8.62 * 10 through +/-1.16 * 10
Precision: REAL--to approximately seven significant digits

REAL(64)--to approximately 17 significant digits

The syntax for specifying a REAL or REAL(64) numeric constant is:

[ + ] <integer>.<fraction> { E } [ + ] <exponent>

( L}

<integer>

is one or more decimal digits comprising the integer part.

<fraction>

is one or more decimal digits comprising the fractional part.

E and L

are suffixes that specify floating-point constants:

E = REAL constant
. = REAL(64) constant
<exponent>

is one or two decimal digits comprising the exponential part.
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Examples of REAL and REAL(64) Numeric Constants

Decimal Value REAL REAL(64)
0 0.0EOQ 0.0LO
2 2.0e0 2.0L0
0.2E1 0.2L1
20.0E-1 20.0L-1
-17.2 -17.2E0 -17.2L0
-1720.0E-2 -1720.0L-2

Storage Format

The system stores the number in binary scientific notation in the
form:

Yy
X * 2

X is a value of at least 1 but less than 2. Since the integer part
of X is always 1, only the fractional part of X is stored.

The value y is an exponent in the range 0 through 511 (%777). The
system adds 256 (%400) to y before storing it. Thus, the exponent is
the stored value minus 256. This provides for exponents from -256
(represented by %0) through 255 (represented by %777).

The system stores the parts of a floating-point constant as follows:

Sign Bit Fraction Exponent
REAL <0> <1:22> <23:31>
REAL(64) <0> <1:54> <55:63>

“4 82581 A00 3/85



DATA REPRESENTATION
REAL and REAL(64) Numeric Constants

Examples of Storage Formats

1. For the REAL constant shown, the sign bit is 0, the fraction
bits are 0, and the exponent bits contain %400 + 2, or %402:

2
4 = 1.0 * 2 stored as 000000 000402

2. For the REAL constant shown, the sign bit is 1, the fraction
bits contain %.2 (decimal .25 is 2/8), and the exponent bits
contain %400 + 3, or %403:

3
-10 = -(1.25 * 2 ) stored as 120000 000403

3. For the REAL(64) constant shown, the sign bit is 0, the fraction
bits contain the octal representation of .333333..., and the
exponent bits contain %400 - 2, or %376:

-2
1/73 = ,333333... * 2 stored as 025252 125252 125252 125376
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Constant Lists

A constant list is a list of one or more constants. You can use
constant lists in:

e Array declarations not in structures (Section 9)
® Group comparison expressions (Section 13)
e Move statements but not assignment statements (Section 15)

The syntax of the constant list is:

[ <repetition-factor> * ] "[" <constant-list> "]"

<repetition-factor>
is an INT constant that specifies the number of times
<constant-list> occurs

<constant-list>

is a list of elements stored on an element boundary. It
has the form:

<constant> [ , <constant ] ...

<constant>

is a character string, a number, or a LITERAL. For INT
arrays only, the constants can be different types. The
range and syntax for specifying constants depends on the
data type.
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Examples of Constant Lists

1.

2.

The two examples in each pair below are equivalent:

[ "A", "BCD" , "..."' "Zu ]
{ "ABCD...2" ]

10 * [0];
(0,0,0,0,0,0,0,0,0,0]

(3 * [2 * [1], 2 * [0]]]
(11,0,0,1,1,0,0,1,1,0,0]

10 % [" u]
[n vv]

These examples declare arrays and initialize them using constant
lists:

STRING al[0:99] := ["A constant list that is a single ",
"character string can continue on ",
"more than one line."];

INT b[0:79] := 80 * [" "]; IRepetition factor

INT(32) c[0:4] := ["abcd", 1D, 3D, "XYzZ", %20D];
'Mixed constant list
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SECTION 5

ADDRESSING MODES

This section summarizes the process environment, the user data space,
and the addressing modes used in this environment. The addressing
modes described are:

e Byte and word addressing

e Direct and indirect addressing

e Standard and extended addressing

e Indexing

For more information than is given in this section, see the System
Description Manual for your system.

PROCESS ENVIRONMENT

Figure 5-1 shows the current process environment. The following
registers are shown in this figure:

e Program Counter (P) Register--Contains the address of the next
instruction in the code area

e Instruction (I) Register--Contains the instruction that is
currently executing

e TLocal (L) Register--Contains the address of the beginning of the
local data area for the most recently called procedure.

e Stack (S) Register--Contains the address of the last allocated
word in the dynamic data stack (see also Figure 5-2)
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ADDRESSING MODES
Process Environment

e Register Stack--Eight registers (RO through R7) for computation;
R5, R6, and R7 double as index registers; the register pointer (RP)
points to the top of the register stack

e Environment (ENV) Register--Contains information about the current
process such as the current RP pointer and whether traps are

enabled
Current Current
Code Segment Data Segment
G[0] Register P
Global Stack -
Proc 1 Data
- P Register
- L Register
Local
Proc 2
Data
-« S Register
| Register ENV Register
RP (3 bits)
$5013-007

Figure 5-1. Process Environment

USER DATA SPACE

The user data space consists of the current user data segment and
extended data segments, if any. (A segment is a non-extended segment
except where the word "extended" is specifically used.)

The organization of the current data segment is shown in Figure 5-2.
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User Data Space

G[O]

Global data
variables

Local storage for
MAIN procedure

Local storage for
other called
procedures

Parameter area for
current procedure

L{0]

Saved P register
Saved ENV register
Saved L register

L{1]

Local storage for
current procedure

s{o]

Sublocal data and
parameter storage
for current
subprocedure

y
/]

Available for
dynamic data stack

-«— Top of data stack

G[32767]

)/

G[65535]

Upper 32K area

/( Not available for

dynamic data stack

<«— Dummy stack marker

:}— Three-word stack marker
precedes local data for each
called procedure except MAIN

— This area is extra buffer
space for user application

Figure 5-2,.
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ADDRESSING MODES

Addressing modes are byte and word addressing, direct addressing,
standard and extended indirection, and indexing.

Byte and Word Addressing

Figure 5-3 shows byte and word addresses in the data segment.

Byte Addresses Word Addresses
Gglo] (0] (1] (o]
(2] [3] (1]
(4] (5] [2]
(6] (7] [3]
/E : :
/]

[(65534] [65535] (32767] <« Upper limit for
16-bit byte
addresses

Upper 32K area

/; Access through
1 16-bit word 4
pointer or
extended pointer
only
G[65535] [65535]

Figure 5-3. Byte and Word Addressing
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Direct and Indirect Addressing

Except for structures and substructures, the data type of a variable
determines whether it has a byte or a word address. Variables of type
STRING have byte addresses; variables of any other data type have word
addresses.

Structures always have a word address; substructures always have a
byte address. (Variables contained in structures and substructures
have byte or word addresses based on the data type of the variable.)

For examples specific to simple variables, arrays, and structures, see
Sections 8, 9, and 11.

Direct Addressing

Direct addressing is data access that requires only one memory
reference. Direct addressing is not absolute but is relative to the
base of the global, local or sublocal area of the current data
segment.

The range for direct addressing is limited to the lower 32K words of
memory. The upper 32K always requires indirect addressing (described
next) since it is not part of the dynamic data stack. That is, the
upper 32K is not directly addressable using the L or S register.

Indirect Addressing

Indirect addressing is data access through a pointer (a data element
that contains the memory address of another data element). Indirect
addressing requires two memory references, one to get the pointer
contents and the second to get the data element to which the pointer
points., Indirect addressing is standard or extended.

Standard Indirection

Standard 16-bit addresses allow access to the current data segment
(byte or word addresses in the lower 32K area and word addresses in
the upper 32K area). Standard indirection is data access through
either:

e Standard pointers and structure pointers you declare and initialize
yourself

e Standard pointers TAL provides and initializes when you declare
indirect arrays and structures
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Primary and Secondary Storage

Extended Indirection

Extended 32-bit addresses allow access to byte addresses in the entire
data segment, code segment, and extended data segment. Extended
indirection is data access through extended pointers and structure
pointers you declare and initialize.

For examples showing standard and extended indirection, see the
following sections: Section 9 (indirect arrays), Section 10 (standard
or extended pointers), Section 11 (indirect structures and standard or
extended structure pointers).

Primary and Secondary Storage

The global and local areas in the data segment each have a primary and
secondary storage area. The sublocal area has only primary storage.

The primary areas are directly addressable; they contain pointers and
direct variables based on global, local, or sublocal scope. The size
of each primary area is:

Global primary area: 256 words
Local primary area: 127 words
Sublocal primary area: 31 words

The secondary areas are indirectly addressable; they contain the data
for indirect arrays and structures depending on global or local scope.
The secondary areas have no explicit size limit, except that the total
data storage cannot exceed the lower 32K area.

Figure 5-4 shows the global and local primary and secondary storage
areas and the sublocal primary area.
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Glo] -
Global direct
variables and — Global primary area
pointers (256 words)
e e e s e e e, e e ] —
Global indirect
arrays and — Global secondary area
structures
y . y
:( . 2
Stack marker — Three-word stack marker
= precedes local data for each
L{1] called procedure except MAIN
Local direct
variables and — Local primary area
pointers (127 words)
Local indirect
arrays and — Local secondary area
Structures
Sublocal direct — Sublocal primary area
variables (31 words)
sl{o] —
y . y
;r . 4
G[32767] <«— Upper limit of directly
addressable area
/  Upper 32K area 4
// A
G[65535]

Figure 5-4. Primary and Secondary Storage in
User Data Segment
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Storage Allocation

TAL allocates space for each variable in the order in which you
declare them as follows:

e Global Variables—--TAL allocates space at compilation for each
variable at an offset from the beginning of the data block in
which it appears. The data blocks are relocatable at bind time.

e Local and Sublocal Variables--TAL allocates space for each variable
when a call to a procedure or subprocedure occurs.

Primary Storage. For global or local variables, TAL allocates primary
storage for each direct variable and each pointer. Allocation starts
at G[0] (global scope) or L[1] (local scope). Each successive
variable or pointer is allocated space at an increasingly higher
offset.

For sublocal variables, TAL allocates storage starting at S§[(0]. Each
successive sublocal variable is allocated storage at a negative offset
from S[0].

Secondary Storage. TAL allocates storage for the data in each
indirect array and structure in the global or local secondary area.
The secondary area begins immediately after the last direct variable
or pointer.

Examples specific to simple variables, arrays, pointers, structures,
and equivalenced variables are given in Sections 8 through 14.

5-8 482581 A0Q 3/85



ADDRESSING MODES
Indexing

Indexing

You can access data by appending an index to the name of a variable.

The syntax for indexing a variable is:

<identifier> "[" <index> "]"

<identifier>

is the name of a previously declared variable (simple
variable, array, structure, substructure, structure data
item, or pointer). The variable can be direct or indirect.

<index>
is one of the following values:

e For standard addressing, it is a signed INT arithmetic
expression that represents either:

--an element offset from the address of a simple variable
or array (when appended to a simple variable, array,
pointer, or structure data item)

—-—-an occurrence offset from the address of a structure
(when appended to a structure or structure pointer) or
from the address of a substructure (when appended to a
substructure). An occurrence is one copy of a structure
or substructure.

e TFor an extended pointer, it is a signed INT or INT(32)
arithmetic expression.

e For an extended structure pointer, it must be a signed INT
arithmetic expression.
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The following example shows use of indexes:

INT var[0:4]; 'Declares array
INT .ptr := %100000; !Declares pointer
var[2] := 5; !Assigns 5 to third element of "var"

ptr ":=' [1, 2, 3]; !Moves constant list to location to which
! "ptr" points
var[3] := ptrl[2]; !Assigns 3 to fourth element of "var"

Indexes and Data Type

The data type impacts the amount of offset yielded by an index. For
type STRING, the index yields a byte offset from the variable base.
For INT, a word offset; for INT(32) and REAL, a doubleword offset; for
REAL(64) and FIXED, a quadword offset.

In the following example, "var" contains five doubleword elements:

INT(32) var[0:4]; !Declares array
var[3] := 2; !Accesses the fourth element of "var"

Indexing Examples

1. The following example shows an indexed direct variable:

PROC x MAIN;
BEGIN al0] —- L[1]
INT al0:2];

al1] = L[2]

END; al2] = L[3] 5
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This example of an indexed pointer initializes an INT pointer with
the address of an INT(32) array, then assigns a value to the last

word of the array via the indexed pointer:

PROC z MAIN;
BEGIN

INT(32) 4[0:4] = [1D, 2D, 3D, 4D, ODI];
INT .p := @d[o0]; 'View "d" as single words
p [9] := 5; !Last word of "d" is a
END; ! nine-word offset from p[0]
Figure 5-5 shows the array before and after the assignment. (L[O]
contains the third word of the 3-word stack marker.)
Before After
L[0] “ e L[0] . ..
dlo] — L[1] 0 - L{1] 0 < p[0]
L2l | 1 L2l |1
d(1] — L[3] 0 L{3] 0
Lial | 2] Lial | 2|
d{2] — L[5] 0 L[5] 0
Liel | 3 Liel | 3|
d(3] = L[7] 0 L[7] 0
Liel | 4] Lisl | 4|
d(4] — L[9] 0 L[9] 0
L[lO]_ 0 N L[lO]_ 5 4«— pl9]
.p > L[11] edlo] .p = @dlo]
Figure 5-5. Indexing a Pointer
5-11
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SECTION 6

LITERALS AND DEFINES

This section describes the following declarable objects:

e LITERALS--Named constants

e DEFINES--Named text with or without parameters

For each, the following information is given:

e Declarations

e Compiler action

e Data access

LITERAL and DEFINE declarations let you define constants and text once
in a program, then reference them by name many times throughout the
program. They allow you to make significant changes in the source

code efficiently. You only need to change the declaration, not every
reference to it in the program.
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LITERAL Declaration

LITERAL DECLARATION

The LITERAL declaration associates an identifier with a constant.

The syntax for the LITERAL declaration is:

LITERAL <identifier> = <constant>

[ , <identifier> = <constant> ] ... ;

<identifier>

is an identifier associated with <constant>.

<constant>

is an INT, INT(32), FIXED, REAL, or REAL(64) constant
expression or a character string of one to two characters.

It must not be the address of a global variable because all
global variables are relocatable.

You access a LITERAL constant by referencing its identifier in other
declarations and in statements.

TAL allocates no storage for LITERAL constants. It substitutes the
associated value at each occurrence of the identifier.

LITERAL identifiers make the source code more readable. In the
example shown on the next page, identifiers such as "buffer~length",
"table~size", "table~base", and "entry~size" are more readable than
their corresponding constant values (80, 128, %1000, and 4).
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LITERALS AND DEFINES
LITERAL Declaration

Examples

The following example shows various LITERAL declarations:

LITERAL true = -1,
false = 0,
buffer~length = 80,
table~size = 128,
table~base = $1000,
entry~size = 4,
timeout = %100000D,
CR = %15,
LF = $12;

The following example declares the length of an array as a LITERAL
constant, then references the LITERAL identifier in an array
declaration:

LITERAL length = 50; !{Length of array
INT buffer[0O:length - 11; !Array declaration

The following example declares LITERAL constants, then references
their identifiers in subsequent LITERAL declarations:

1,

second * 60,
minute * 60,
hour + 30,

2 * hour;

LITERAL second
minute
hour
over~time
double~time

O I I I
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DEFINE DECLARATION

A DEFINE declaration associates an identifier (and parameters if any)
with specified text.

The syntax for the DEFINE declaration is:

DEFINE <identifier> [ ( <param> [ , <param> ] ...) ] <text> #
[ , <identifier> [ ( <param> [ , <param> ] ...) ] =

<text> # 1 ... ;

<identifier>

is the name associated with <text>.

<param>

is the name of a formal parameter.

<text>

is all characters between = and #. Enclose character strings
in quotation marks ("). To use # in the <text>, enclose it
in quotation marks or embed it in a character string.

terminates a definition.

When specifying <text>, the following rules apply:
. The expanded text must produce legal TAL constructs.

. The text must not be recursive; that is, it must not call itself.
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DEFINE Declaration

Examples of DEFINE Declarations

1. This example shows a DEFINE declaration with no parameters:
DEFINE value = ( (45 + 22) * 8 / 2 ) #;
2. This example provides incrementing and decrementing utilities:

DEFINE increment (x)
DEFINE decrement (y)

o
=X

3. This example loads numbers into particular bit positions:

DEFINE word~val (a, b) = (a '<<' 12) LOR b #;

Compiler Operation

TAL allocates no storage for defined text. When TAL encounters a
DEFINE identifier in a statement, it replaces the identifier with the
text, compiles it, and emits any machine instructions needed.

Accessing Defined Text

You access defined text by using its identifier in a statement.

If you use a DEFINE identifier in an expression, make sure that proper
evaluation occurs. For example, if the DEFINE identifier represents
an expression to be evaluated first, you must enclose the text in
parentheses:

DEFINE expr = (5 + 2) #;
j := expr * 4; !Means (5 + 2) * 4 and assigns 28 to "j"

Without parentheses, the same example has a different result:

DEFINE expr = 5 + 2 #;
j = expr * 4; !Means 5 + 2 * 4 and assigns 13 to "j"
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Passing Parameters

I1f

the DEFINE declaration has formal parameters, you supply the actual

parameters when you reference the DEFINE identifier in a statement.
The following rules apply to actual parameters:

L ]

If an actual parameter requires commas, enclose the comma in
apostrophes ('). An example is an actual parameter that is a
parameter list:

DEFINE varproc (procl, param) = CALL procl (param) #;
varproc (myproc, i ',' 3 ',' k); !Expands to
! "CALL myproc (i, j, k);"

An actual parameter can include parentheses. For example:
DEFINE varproc (procl, param) = CALL procl (param) #;

varproc (myproc, (i+j) * k); !Expands to
! "CALL myproc ((i+j)*k);"

Examples of Accessing Defined Text

1.

The following example shows a DEFINE declaration and the statement
that references it:

DEFINE cube (x) = ( x * x * x ) #;
INT result;

result := cube (3) '>>' 1: IMeans (3 * 3 * 3) '>>' 1 =
127 '>>'" 1 = 13

This example provides incrementing and decrementing utilities and
a statement that references one of them:

DEFINE increment (x) = x := x + 1 #;

DEFINE decrement (y) =y :=y - 1 #;

INT index := 0;

increment (index); IMeans "index := index + 1;"
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DEFINE Declaration

3. The following example fills an array with zeros:

DEFINE zero”array (array, length) =
BEGIN
arrayl[0] := 0;
array[l1] ':=' array FOR length - 1;
END #;

LITERAL len = 50;
INT buffer[0O:len - 11];

zero~array (buffer, len); 'Fill buffer with zeros

4. The following example displays a message, checks the condition
code, and returns an error if one occurs:

INT error:
INT file:
INT .buffer[0:501];
INT count”written;

DEFINE emit (filenum, text, bytes, count) =
BEGIN
CALL WRITE (filenum, text, bytes, count);
IF < THEN
BEGIN
CALL FILEINFO (filenum, error):;
RETURN error;
END;
END #;

IF i = 1 THEN enmit (file, buffer, 80, count”~written):;
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SECTION 7

LABELS

This section describes how to declare and use labels. A label is an
identifier you use with the GOTO statement.

LABEL DECLARATION

The LABEL declaration reserves an identifier for later use as a label.

The syntax of the LABEL declaration is:

LABEL <identifier> [ , <identifier> ] ... :

<jidentifier>

is the name of the label. It cannot be a global declaration.

Labels are the only declarable objects you do not need to declare
before using them. However, declaring them ensures that you access
the label rather than a variable in the event they have the same name.
(See Examples 4 and 5.)
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Local Labels

The steps for declaring, using, and referencing local labels are:
1. Declare the label name inside a procedure.

2. Place the label name and a colon (:) preceding a statement in the
same procedure (not in a subprocedure).

3. Reference the label in another statement located in the same
procedure or in any subprocedure contained in that procedure.

Sublocal Labels

The steps for declaring, using, and referencing sublocal labels are:
1. Declare the label name inside a subprocedure.

2. Place the label name and a colon (:) preceding a statement in the
same subprocedure.

3. Reference the label in another statement located in the same
subprocedure.

Referencing Labels

Statements you can use for referencing labels include:
e A GOTO statement to branch to the label

A GOTO statement in a procedure can reference a label in the same
procedure, but not in any subprocedure.

A GOTO statement in a subprocedure can reference a label in either
the same subprocedure or the encompassing procedure.

e An assignment statement to store the address of the label in a
variable
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Examples

1. This example

PROC a;
INT a, b;

label”a : IF a>b

THEN
<statement>

ELSE
<statement>:

label”~b :

label”~c :

2. This example is not a legal use
have global scope, and you must
statement:

LABEL label”a;

PROC b;
INT a, b;
IF a>b
THEN
<statement>
label~a : ELSE
<statement>;

LABELS
Label Declaration

shows valid placements of undeclared local labels:

'Valid placement of labels
!
I

of labels because a label cannot
place it at the start of a

!Invalid label declaration; a
! label cannot be global

!Invalid placement of label;
! ELSE does not begin a statement

3. This example declares a label and makes two branches to it:

INT opl, op2, result;
PROC p;
BEGIN
LABEL addr;
opl := 5;
op2 := 28;

GOTO addr;

result := opl + op2;
opl := op2 * 299;

addr :

IF result < 100 GOTO addr;
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LABELS
Label Declaration

4, This example uses an undeclared label name that is also the name
of a global variable. Using the name accesses the address of the
variable, not the address of the label as intended.

INT loop, data;

PROC p:;
BEGIN

data':= @loop;

!Global variables

!Stores address of variable
! instead of label

!Uses undeclared label

5. This example corrects example 4 by declaring the label. It stores
the address of the label in a variable:

INT loop, data;

PROC p;
BEGIN
LABEL loop;

data':= @loop;

loop : <statement>
END;

{Global variables

!Label declaration
{Stores label address
! in "data"

!Labeled location
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SECTION 8

SIMPLE VARIABLES

A simple variable is a single-element variable of a specified data
type. You allocate storage for it through a data declaration, then
use it in statements to access or change its data.

This section gives information on simple variables:

e Declaration

e Initialization

e Storage allocation

e Data access

SIMPLE VARIABLE DECLARATION

The simple variable declaration associates an identifier with
a single-element variable and optionally initializes it.
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The syntax for the simple variable declaration is:

<type> <identifier> [ := <initialization> ]

[ , <identifier> [ := <initialization> ] ] ... ;

<type>
is one of the following data types:

STRING

INT

INT(32)

FIXED [ ( <fpoint> ) ]
REAL

REAL(64)

<fpoint>

is the position of the decimal point. It is a value in the
range -19 through 19. The default value is 0 (no decimal
places). A positive value is the number of decimal places.
A negative value is the number of integer places between the
least significant digit and the decimal point.

If <initialization> has a different decimal setting than
<fpoint>, the system scales <initialization> to match
<fpoint>, If the value is scaled down, some precision is
lost.

<identifier>

is the name of the simple variable in the form described in
Section 3 under "Identifiers."

<initialization>

is a constant expression (global data) or an arithmetic
expression (local or sublocal data).
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Initializing Simple Variables

The data type of the initializing value must match that of the
variable, except for character strings. If a character string is
smaller than the space allocated, TAL left justifies the characters in
the variable and sets the extra bytes to 0. If it is too large, TAL
truncates the excess characters and emits a warning.

Examples of Simple Variable Declarations

1. The following examples declare simple variables:
STRING b;
INT(32) dblwdil;
REAL(64) long;

2. The following examples declare and initialize simple variables:

STRING y := "A"; {Character string
STRING z := 255; !Unsigned number
INT a := "AB"; {Character string
INT b := 5 * 2; |Expression

INT c := %B110; !Binary value
INT(32) dblwd2 := $B1011101D; !Doubleword value
REAL flt2 := 365335.6E-3; {Real value
REAL(64) b := 2718.2818284590452L-3; !Quadword value

3. The following examples show FIXED declarations and how the
<fpoint> affects storage (and scaling):

FIXED(-3) f := 642000F; !Stores 642

FIXED(3) g := 0.642F; !Stores 642 (three implicit decimal
! places)

FIXED(2) h := 1.234F; !Scales rightmost digit; stores 123

! (two implicit decimal places)

4, This example illustrates use of constants (any level) and
variables (local or sublocal only) as initialization values:

INT global := 34; !Constants allowed at global,
{ local, or sublocal levels
PROC mymain MAIN;

BEGIN
INT local := global + 10; {Variables allowed at
INT local2 := global * local; ! local or sublocal levels
FIXED local3 := SFIX(local2); t but not at global level
ENﬁ; 'End of "mymain" procedure
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Storage Allocation

STORAGE ALLOCATION

Figure 8-1 shows simple variable declarations and the offset
allocation that results.

For a simple variable of type STRING, TAL allocates one word of
storage. The initializing value is stored in the left byte and a zero
is stored in the right byte.

Word Offset
Global a 0 Gl[o]
Data
Gl1]
STRING a; ‘ — b -
INT(32) b; !Global data
PROC proc”a; — /; .. ?
BEGIN Local
STRING c; !Local data Data c 0 L{1]
REAL d;
. * L[2]
. [ d -
SUBPROC subproc”a; % ,
BEGIN o e Y
INT e; !Sublocal data Sublocal
FIXED f; Data e s(-4]
END;
END; ¢
- f —
s[0]

Figure 8-1. Storage Allocation for Simple Variables
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Accessing Simple Variables

ACCESSING SIMPLE VARIABLES

To access a declared simple variable, you use its name in a statement,
with or without an index.

Examples of Accessing Simple Variables

1. The following example declares and initializes a simple variable,
then assigns a new value to it:

INT count := 0; !Declaration and initialization
count := count + 1; !Assignment
2. This example shows how initialization left justifies a one-byte

character string, whereas an assignment right justifies it (unless
you assign a character and a space):

INT v := "A": {Declares "v"; initializes
! it with character v "A" 0
INT x, z; !Declares "x" and "z"
X 0 "A"
x = "A"; !Assigns character to "x"
z := "A " !Assigns character and z "A"

! space to "z"

3. This example shows indexed access to a simple variable:
INT 1i;
INT j;
INT k;

i[2] := 0; 1"k" gets 0
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SECTION 9

ARRAYS

An array is a collectively stored set of elements of the same data
type. You can use the same identifier to access the elements
individually or as a group.

This section describes one-dimensional arrays:

e Arrays stored in the current user data segment

¢ Read-only arrays stored in a user code segment

Information discussed includes:

e Array declarations

e Storage allocation

e Data access

Arrays within structures and multidimensional arrays are described in
Section 11, "Structures."

ARRAY DECLARATION

An array declaration associates an identifier with a set of elements
of the same data type collectively stored in the user data segment.
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ARRAYS
Array Declaration

The syntax for the array declaration is:

<type> [ . ] <identifier> "[" <lower-bound> : <upper-bound> "]"
[ := <initialization>
[ , [ . ] <identifier> "[" <lower-bound> : <upper-bound> "]"

[ := <initialization> ] 1 ... ;

<type>
is one of the following data types:
STRING
INT
INT(32)
FIXED [ ( <fpoint> ) ]
REAL
REAL(64)

<fpoint> is as described for simple variables in Section 8.

(period)

is the indirection symbol for standard addressing.

<identifier>

is the name of the array in the form shown in Section 3
under "Identifiers."

<lower-bound>

is an INT constant expression in the range -32768 through
32767 that defines the first array element. Both lower and
upper bounds are required.
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<upper-bound>

is an INT constant expression in the range -32768 through
32767 that defines the last array element. For arrays
outside of structures, <upper-bound> must be equal to or
greater than <lower-bound>.

<initialization>

is a numeric or character string constant or a constant list
to assign to the array elements.

Direct Versus Indirect Arrays

In the global and local areas, you can declare direct or indirect
arrays. In the sublocal area, arrays must be direct.

Because the global and local primary areas are limited to 256 and 127
words of direct data each, you should declare most arrays by using the
indirection symbol. TAL manages indirection for you by providing a
pointer and initializing it with the location of the data. To access
an indirect array, you reference it by name as if it were a direct
array.

Array Base

To the TAL compiler, the base of an array is element [0] regardless of
the lower and upper bounds specified. For example, if you declare
array bounds of [-5:5] or [3:7], TAL allocates space only for the
specified range, but the array base is still element [0].

For direct arrays, the array base must be addressable. The base must
reside between 'G' relative word addresses [0:32767]. For example:

e If the first global array is direct, its lower bound must be a 0 or
negative value, since the global area has 'G' plus addressing only.

e The upper bound of the last sublocal array must be a 0 or larger
value, since the sublocal area has 'S' minus addressing only.
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Examples of Array Declarations

l'

This example declares indirect arrays with various bourds:

INT .array~al0:01; 'One-element array
INT .array~b[-1:01; !Two-element array
FIXED .array~c([0:3]; |Four-element array
INT .array~d[0:49]; IFifty-element &array

In this example, the simple variable and the array base (logical
element [0]) are located at the same address:

INT var; var «— array[0]
INT arrayl[1:2];

array[1]

arrayl[2]

These examples declare and initialize arrays using constant lists:

INT .b~array[0:9]

STRING .buffer[0:108] := [

INT(32)

LITERAL len

STRING .buffer[0O:len - 1] :=
INT .rec[0:11]

FIXED .f[0:20]

.mixed[0:4]

:= [1,2,3,4,5,6,7,8,9,10]; !Ccnstant list
"You can use a constant list when ",
"a character string constant is too ",

"long to fit on one line." ];

1D, %$B0101011D, %20C]; !Mixed
! constant list

= [ "ade" ’

!Length of array
!Repetition factor

80;
len * [u "];

"]];
:= 3*[2*[1F,2F], 4*[3F,4F]];

:= ["SRECEIVE", 8*[" IGUARDIAN file name

!Repetition factors

LITERAL cr = %15,
1f = $12;
STRING .err~msg[0:15] := [cr, 1f, "ERROR", cr, 1f, 0];
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Storage Allocation

Storage Allocation

The data type and number of elements determine the amount of storage
TAL allocates for array data. Direct or indirect addressing
determines if the data is allocated in primary or secondary storage.

Direct Array Allocation
For global direct arrays, TAL allocates primary storage at offsets
from the beginning of the global data block that contains the arrays.

For local or sublocal arrays, TAL allocates primary storage at offsets
from the base of the local or sublocal storage area.

Figure 9-1 shows an example of direct array declarations and the
offset storage that results.
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Global G[O0]
Arrays |~ alo0] -
Word
* Offset
INT(32) a[0:1]; !Global — al1] -
INT b[1:2]; ! arrays
PROC proc*a; b(1] G[4]
BEGIN
STRING c[0:2]; !Local b[2]
FIXED d[0:31]; ! arrays ” ,

. e .. Ve
SUBPROC subproc”a; Local | c[0]]|c[1] Ll1]
BEGIN Arrays

INT el[0:1]; !Sublocal cl2]
STRING f[0:3]; ! arrays *
END; L{3]
END; - -
— d{o] -
L[5]
— --
/
3, LN ] //
- ]
—  d[3] -
— 7
Sublocal el0] s[-31]
Arrays
el1]
‘ £L0]1£[1] s(-1]
£[2]|£[3] s(o]

Figure 9-1. Storage Allocation for Direct Arrays
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Indirect Array Allocation

For each indirect array, TAL allocates storage for a 16-bit pointer in
the global or local primary area. It then allocates the array data in
the corresponding global or local secondary area. Finally, the system
initializes the pointer with the base address of the array. For a
STRING array, the pointer contains a byte address. For any other type
of array, the pointer contains a word address.

Figure 9-2 shows allocation for global indirect arrays. In this
example, the global secondary storage area begins at location G[4].

Word Offset

.a 4 G[0] —
.b 7 G[1]
Contains
byte offset— .c 20 G[2]
.d 12 G[3]
INT(32) .al[0:1]; G[4] =
INT .b[1:2]; — al0] -
STRING .c[0:1];
INT .d[-1:49];
Base of array "b"—» G[7] «-——
bl1]
bl2]
Byte offset—»G[20] clo0]]cl1] | G[10] -=———
al-11
alol G[12] =
/2N
dla9]

Figure 9-2. Storage Allocation for Indirect Arrays
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Data Access

The method for accessing data in direct and indirect arrays is the
same. You reference the array name in a statement.

To access a particular element, you reference the array name suffixed
with an index value, as in "buffer[2]". 1If you reference the array
name with no index, you access element [0]. Thus, the references
"buffer" and "buffer[0]" are equivalent.

Because TAL does no bounds checking, you access an address outside the
array if the index value is outside the upper and lower bounds
declared for the array.

To access byte elements in a word-aligned array, you must convert the
word address of the array element to a byte address. You can use a
bit shift operation for address conversions. Operating system
procedures, for example, require INT arrays, but the SCAN statement
requires byte elements. (See Example 3.)

Array operations include:

e Assigning values to elements one at a time using assignment
statements

® Moving values into multiple elements using a move statement
e Scanning multiple elements using an SCAN or RSCAN statement

e Comparing multiple elements using a group comparison expression

Examples
1. The following example shows how accessing of direct and
indirect arrays is the same:

INT dir~array([0:2];
INT .ind~array[0:2];

dir~arrayl[2] :
ind~arrayl(2] :
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The following example assigns a value to an out-of-bound address:

INT num; array[0]— num
INT array[1:2];

arrayl[1]
arrayl[0] := 4; !"num" gets 4

arrayl[2]

This example uses a bit shift operation ('>>' 1) to convert the
word address of an INT array to a byte address. It loads the byte
address into a STRING pointer to scan bytes in the array:
INT .array(-1:8] := [0,"Doe, J",0]; !Declares INT array
STRING .s”ptr := @arrayl[0] '<<' 1; !Declares STRING pointer;
! initializes it with byte
! address of array
SCAN s*ptr[0] UNTIL ","; !Scans bytes in array

This example accesses an array element by using index variables:

INT .b[0:10]; !Declares arrays
INT .c[0:9];

INT x; !Declares indexes
INT y;

INT z;

1Code to manipulate indexes

b[i] := cly-21; !Accesses array element

This example compares the contents of two arrays and fills the
first array with zeros if the contents match:

LITERAL count = 99; !Declares array length
INT .arrayl[O:count - 1]; !Declares arrays
INT .text[O:count - 1];

!Code to manipulate arrays

IF array[0] = text[0] FOR count !Compares arrays

THEN array[0] ':=' count * [0]; 'Fills "array" with
! zeros if contents
! match
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READ-ONLY ARRAY DECLARATION

A read-only array declaration allocates storage for a nonmodifiable
array in a user code segment.

The syntax for the read-only array declaration is:

<type> <identifier> [ "[" <lower-bound> : <upper-bound> "]" ]
= 'P' := <initialization>
[ , <identifier> [ "[" <lower-bound> : <upper-bound> "]1" ]

= 'P' := <initialization> ] ... ;

<type>
is one of the following data types:
STRING
INT
INT(32)
FIXED [ ( <fpoint> ) 1]
REAL
REAL(64)

<fpoint> is as described in Section 8 for simple variables.

<identifier>

is the name of the read-only array.

<lower-bound>

is an INT constant expression defining the first array element.
The default value is [0].

<upper-bound>

is an INT constant expression defining the last array element.
The default value is the number of elements initialized minus
one.
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Read-Only Array Declaration

|Pl

specifies a read-only array. Read-only arrays are addressed
using the program counter (the P register).

<initialization>

is a numeric or character string constant or a constant list
to assign to the array elements. Initialization at
declaration is mandatory.

Because code segments have no primary or secondary areas, read-only
arrays must be direct.

If you declare a read-only array in a RESIDENT procedure, the array is
also resident in main memory.

The binder binds each global read-only array into any code segment
containing a procedure that references the array.

Data Access

You access global read-only arrays in the same manner as any other
array, except that you cannot modify read-only arrays. That is, you
cannot specify them on the left side of an assignment operator (:=).

Procedures can access any global read-only array in the same 32K of
the code segment.

Procedures in the upper 32K of the code segment can access global
STRING read-only arrays in the lower 32K words only by using

extended pointers (described in Section 10, "Pointers"). You declare
and load an extended pointer with the address of the read-only array,
then use the pointer in a procedure to access the array in the same
code segment.

You can pass the data of a read-only array by reference to a procedure
only if the read-only array, the called procedure, and the calling
procedure all reside in the same code segment.
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Read-Only Array Declaration

Examples

1. The following example declares read-only arrays using default
lower and upper bounds:

STRING prompt = 'P' := ["Enter Character: ", 01];
INT error = 'P' := ["ILLEGAL INPUT"]:;

2. The following example moves a read-only array into a data array:

STRING message = 'P' := ["** LOAD MAG TAPE #00144"];
STRING .arrayl[0:22];

array ':=' message FOR 23;
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SECTION 10

POINTERS

A pointer is a variable that contains the address of a data item.
When you reference a pointer, you access the variable whose address is
stored in the pointer.

Pointers are standard or extended:

e Standard pointers can access data in the current data segment
(word-addressed data in the entire data segment; byte-addressed
data in the lower 32K area).

e Extended pointers can access data in the current data segment, in
an extended data segment created as described in Appendix A, or in
the current user or system code segments (read access only).

This section describes pointers you declare and manage yourself:

e Declaring and initializing pointers

e Assigning values to pointers

e Accessing data by using pointers

It also tells how to get addresses of other items and how to use INT
variables as temporary pointers.

This section does not describe the following kinds of pointers:

e Pointers that TAL provides when you declare indirect arrays
(see Section 9) or indirect structures (see Section 11)

e Structure pointers (see Section 11)

e System global pointers (see Section 18)
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POINTER DECLARATION

The pointer declaration associates an identifier with a memory
location containing the user-initialized address of another variable
or buffer area.

The syntax for the pointer declaration is:

<type> { . } <identifier> [ := <initialization> ]
{ .EXT }
t., . } <identifier> [ := <initialization> ] 1 ... ;
{ .EXT }
<type>

is one of the following data types and specifies the type of
value to which the pointer points:

STRING
INT

INT(32)

FIXED [ ( <fpoint> ) ]

REAL
REAL(64)

. (period)

is the indirection symbol for standard addressing.

.EXT
is the indirection symbol for extended addressing. It is a
reserved word only when followed by <identifier>. At least
one space must precede and follow the symbol.

<identifier>

is the name of the pointer.
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<initialization>

is a constant expression (global scope) or an arithmetic
expression (local or sublocal scope) as follows:

e If <identifier> is a standard STRING pointer, use a 1l6-bit
byte address in the lower 32K area.

e If <identifier> is a standard non-STRING pointer, use a
16-bit word address in the 64K area.

e If <identifier> is an extended pointer of any type, use a
32-bit byte address. For details, see Appendix A.

If <initialization> represents the contents of another pointer
or the address of an array or structure, the form for
<initialization> is:

@<previous-identifier>

is the symbol for removing indirection.

<previous-identifier>

is the name of a previously declared pointer, array, or
structure, with or without an index.

Before you reference a declared pointer, be sure you have assigned a
value to it, either in the pointer declaration or in a subsequent
statement (see "Pointer Assignments" in this section). References to
uninitialized pointers cause undefinable program execution.

Global pointers receive their initialized values when you compile the
source code. Local and sublocal pointers receive their initialized
values at each activation of the encompassing procedure or
subprocedure.

Extended pointer declarations should precede other global or local

declarations. TAL emits more efficient machine code if it can store
extended pointers between G[0] and G[63] or between L[0] and L[63].

“4 82581 AQO 3/85 10-3



POINTERS
Pointer Declaration

Examples of Standard Pointer Declarations

All examples apply to global, local, and sublocal pointer, unless
otherwise noted.

1. This example declares but does not initialize a standard pointer:
INT(32) .ptr; 'Declares pointer

2. This example declares a standard pointer and initializes it with
the location of the last element in an indirect array:

STRING .bytes[0:3]; 'Declares indirect array
STRING .s"ptr := @bytes[3]; !Declares pointer; initializes
! it with location of "bytes[3]"

3. This example declares a standard pointer and initializes it with
the starting address of the upper 32K area of the data segment:

FIXED .ptr := %$100000; !Declares pointer; initializes
! it with first address in upper
! 32K area

4. This example declares standard pointers and initializes them with
the contents of another pointer:

INT .ptrl := %100000; !Contains first word of upper 32K
INT .ptr2 := @ptrl; !{Contains same address
INT .ptr3 := @ptrl [2]; !Contains third word of upper 32K

5. This example declares a STRING pointer and initializes it with the
converted byte address of an INT array. This allows byte access
to the word-addressed array:

INT .i[0:39]; !Declares INT array

STRING .pt := @i[0] '<<' 1; !Declares STRING pointer;
! initializes it with array byte
! address that results from bit
! shift operation ('<<' 1)

6. This example declares an INT pointer and initializes it with the
converted word address of a STRING array. This allows word access
to the byte-addressed array. Any indexes appended to this pointer
must be even.

STRING .b [0:41; !Declares STRING array

INT .ptr := @b[0] '>>' 1; 'Declares INT pointer; initializes
! it with array word address that
! results from bit shift operation
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7. This example declares a direct array and local or sublocal
standard pointers and initializes them with values derived from
the array declaration:

INT var[0:1] := [%$100000, %1100001]; !Declares array
INT .int~ptrl := var[0]; !Declares pointer; initializes it

! with value of first array element
INT .int~ptr2 := var[1]; !Declares pointer; initializes it

! with value of second array

! element

Examples of Extended Pointer Declarations

1. This example declares an extended pointer and initializes it with
the first location in the upper 32K of the current data segment:

INT .EXT ptr := %200000D; !Declares extended pointer;
! initializes it with first
location of upper 32K area

PN

2, This example declares a local or sublocal extended pointer and
initializes it with the 32-bit address returned by the S$XADR
standard function for array "a", which has a standard address:

INT .al0:11]; !Declares INT array
STRING .EXT s := S$XADR(a); !Declares exended pointer;
! initializes it with 32-bit
! address retruned for array "a"

3. This example declares an extended pointer and initializes it with
the first address in a previously allocated extended data segment:

INT .EXT ptr := %2000000D; !Declares extended pointer;
! initializes it with first address
! in extended data segment

For additional examples using extended pointers to access data in
extended segments, see Appendix A,

STORAGE ALLOCATION

TAL allocates primary storage for each pointer in the order in which
you declare them. For a standard pointer, TAL allocates one word.
For an extended pointer, it allocates two words. Figure 10-1 shows
example pointer declarations and the resulting storage allocation.
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Storage Allocation

G[o] .a 200
b -
Contains
byte offset— .c 408
.pl Undefined
INT(32) .al[0:1]; .p2 200
INT b;
STRING .c[0:3]; .p3 1
INT .pl;
INT .p2 := Qa; .p4
INT .p3 := @b; — %200000
INT(32) .EXT p4 := %200000D;
. ,
’ . 4
Word Offset—» G[200] -
—  alo0] —
— G[408] G[204] |[c[0] | cl1]
(Bytes) (Words)
cl2] c[3]
Y
Upper
32K
Figure 10-1, Pointer Storage Allocation
10-6
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POINTER ASSIGNMENTS

The syntax for a pointer assignment is:

@<pointer-name> := <arithmetic-expression> ;

is the symbol for removing indirection. It means get the
contents of <pointer-name>, not the item pointed to.
<pointer-name>
is the name of a previously declared standard or extended
pointer.
<arithmetic-expression>

is an arithmetic expression that evaluates to one of the
following values:

e If <pointer-name> is a standard STRING pointer, use a
16-bit byte address in the lower 32K area.

e If <pointer-name> is a standard non-STRING pointer, use a
16-bit word address in the 64K area.

e If <pointer-name> is an extended pointer of any type, use a
32-bit byte address. For details, see Appendix A.

If the value represents the contents of another pointer or the
address of an array or structure, use the following form as
described under "Pointer Declaration” in this section:

@ <previous-identifier>
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Examples of Standard Pointer Assignments

1. This example assigns the address of an INT array to standard
pointers of different types. The FIXED pointer allows viewing of
the array four words at a time; the INT(32) pointer allows viewing
two words at a time.

INT .arrayl[0:99]; !Declares INT array

FIXED .quad”pt; !Declares FIXED pointer

INT(32) .dbl”pt; !Declares INT(32) pointer

@quad~pt := Qarrayl[0]; !Assigns array address to
! FIXED pointer

@dbl~pt := Qarrayl[0]; !Assigns array address to

! INT(32) pointer

2, This example assigns the converted byte address of an INT array
element to a STRING pointer, allowing byte access to the word

element:
STRING .s”ptr; !Declares STRING pointer
INT .word[0:5]; !Declares INT array
@s"ptr := @word[3] '<<' 1; !Assigns byte address of

! "word[3]" (convertec by
! bit shift operation)

Examples of Extended Pointer Assigments

1. This example uses the $XADR standard function to return a 32-bit
address for a STRING array, then assigns the address to an
extended pointer:

INT .EXT ext”ptr; !Declares extended pointer
STRING s”array[0:1]; !Declares STRING array
@ext~ptr := $XADR(s”array); 'Assigns 32-bit address of

! array returned by S$XADR

2. This example uses the $XADR standard function to return the 32-bit
address of an INT item to which a standard pointer points, then
assigns the address to an extended pointer:

INT .EXT ext” ptr; !Declares extended pointer
INT .std"ptr := %100000; !Declares INT standard pointer
@ext~ptr := S$SXADR(std”ptr); '!Assigns 32-bit address of INT

! item returned by $XADR
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3. The following example assigns the first byte address in the
upper 32K of the current data segment to an extended pointer:

INT .EXT top”~ptr; !Declares extended pointer
@top~ptr := %200000D; !Assigns first byte address in
! upper 32K area to extended
! pointer

4, This example shows how to build your own address in the user code
space. The $DBLL standard function returns an INT(32) value from
two INT values, the first becoming the upper 16 bits and the
second becoming the lower 16 bits. After the assignment, the
pointer can point to the fourteenth byte or seventh word of the
code space.

INT .EXT ext”ptr; !Declares extended pointer

@ext~ptr := ($DBLL (2, 7)) '<<' 1;
!Assigns .user-code-segment address

DATA ACCESS THROUGH POINTERS

To access the data to which a pointer points, you simply use its name
in statements. You can use standard and extended pointers in any
statement, except that an extended pointer cannot be the object of a
SCAN or RSCAN statement.

Examples of Data Access Through Pointers

1. This example assigns a new value to the item to which a standard
pointer points:

INT .addr[0:2] := [1,2,3]; !Declares and initializes array

INT .sp := @addr[0]; {Declares and initializes standard
! pointer with address of "addr[01]"

Sp := 4; 'Assigns 4 to "addr[O0]"

2. This example assigns a value to the location to which an extended
pointer points:

INT .EXT ep := %200000D; !{Declares and initializes extended
! pointer with address of first
! word in upper 32K area

ep := 5; !Assigns 5 to location %200000D

10-9
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3. The following example shows data being accessed through extended
pointers in various statements:

INT var~a;
INT var”b;
INT .ptr;
INT .EXT ptr~a;
INT .EXT ptr~b;

var~a t= ptr~ta;
ptr~a := var”a;
ptr*a := ptr~b;
varta ':=' ptr~a
ptr~a ':=' var~a
ptrta ':=" ptr~b
IF var~a = ptr~a

SCAN ptr~a WHILE

var~a
ptr~a

Note 1.

Note 2.

10-10

=' var~b
=' var~b

FOR 10;
FOR 10;
FOR 10;
FOR 10 THEN . . .

now,

FOR 10 -> @ptr~a;
FOR 10 -> @ptr;

!Declares variables
!Declares standard pointer
{Declares extended pointers
!Assignment statements

{Move statements

! IF-THEN-ELSE statement

!Invalid SCAN statement
!Invalid move; see Note 1
!Invalid move; see Note 2

Since "var~a" and "var~b" have 16-bit addresses, the
variable to the right of the -> symbol must also be a
l16-bit variable.

Since "ptr~a" is a 32-bit extended address, the variable
to the right of the -> symbol must also be a 32-bit

variable;

l'ptr"

is a 16-bit variable.
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ADDRESSES OF OTHER ITEMS

In addition to its use with pointers, the @ symbol lets you obtain the
addresses of other items.

The syntax for getting addresses of other items is:

@<item-name>

i$ the symbol for removing indirection. It means get the
address of <item-name>.

<item-name>

is the name of an existing variable, label, subprocedure, or
procedure.

Table 10-1 summarizes the address yielded by the @ symbol for each
item. This table does not apply to pointers.

Table 10-1, Addresses of Items

Item 16-Bit Value

STRING variable Byte address of variable

Non~-STRING variable Word address of variable

Structure Word address of structure occurrence

Substructure Byte address of substructure occurrence

Label Word address of label in current user code
segment

Subprocedure Word address of entry point in current user
code segment

Procedure Procedure entry point (PEP) number of the

procedure LORed with code space information
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Examples

1. This example returns the address of a simple variable:

INT a;
INT b;

b := @a;
2. This example returns

INT .m[0:2]

3. This example returns

LABEL loop;
INT address;

!Declares simple variables

'Returns address of "a"

the addresses of array elements:

the address of

loop : <statement>;

add;ess := @loop:;

!Declares array
!Declares simple variable
!Declares simple variable

tReturns address of "m[0]"
IReturns address of "m[1]"

a label:

!Declares label
!Declares variable

!Labels statement

tReturns label address

4, The following example returns the PEP table number in bits 7

through 15 of the address.

(For more information on the PEP, see

the System Description Manual for your system).

PROC main~proc MAIN;

BEGIN
INT pepnum;

pepnum := @main~proc.<7:15>;

END;

10-12

!Declares procedure

!Declares variable

!Returns PEP information
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TEMPORARY POINTERS

A temporary pointer is a direct INT variable whose contents become the
address of another data item.

The syntax for specifying a temporary pointer is:

.<direct-int-variable>

. (period)

is the indirection symbol for standard addressing. It causes
the contents of <direct-int-variable> to be used as a word

address.

<direct-int-variable>

is a previously declared direct variable of type INT located
in the current data segment.

You can specify a temporary pointer in any INT arithmetic expression.

Referencing the variable without the period accesses the variable.
Using the period accesses the item to which the variable points.

Example

In this example, the direct variable "a" becomes a temporary pointer:

INT b; {Declares "b"

INT a := 5; !Declares "a" and initializes it with 5
b := a; 1"b" equals "a" now

.a = 0; !Temporary pointer; assigns 0 to G[5]

b := .a; 1"b" equals 0 now
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SECTION 11

STRUCTURES

This section describes structure and structure pointer declarations,
storage, and data access.

A structure is a collectively stored set of data items that you can
access individually or as a group. Structures can contain simple
variables, arrays, and other structures (called substructures).

Structures usually contain related data items such as the fields of a
file record. For example, in an inventory control application, a
structure can contain an item number, the unit price, and the quantity
on hand.

They can contain multidimensional arrays, each consisting of any
number of arrays.

Global or local structures can be direct or indirect. Sublocal
structures must be direct. Since the primary storage areas are
limited in size, you should declare indirect global and local
structures. TAL manages indirection for you by providing a standard
pointer and initializing it with the location of the structure data.
You access structure items by referencing the qualified structure
name.

A structure pointer associates a previously declared structure with
the location to which the pointer points. You manage indirection by
declaring a standard or extended structure pointer and initializing it
with a value. You access structure items by referencing the qualified
pointer name.
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STRUCTURE FORMS

A structure declaration can have one of three forms:

e Definition--This form declares a structure, describes its body, and
allocates storage for it.

e Template--This form declares a structure template. It cescribes
the structure body but allocates no storage for it.

e Referral--This form declares a structure and allocates storage
for it. It describes the structure body by referencing a
previously declared structure or structure pointer.

The structure body contains declarations for arrays, simple variables,
substructures, FILLER bytes, or redefinitions.

STRUCTURE DECLARATIONS

Definition, template, and referral structures and structure body
entities are described separately on the following pages. This
discussion is for global, local, and sublocal data, not for formal
parameters.

Definition Structure Declaration

The definition form declares a structure, describes its body, and
allocates storage for it.
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The syntax for the definition structure declaration is:

STRUCT [ . ] <identifier>

[ "[" <lower-bound> : <upper-bound> "1" ] ;

<structure-body>

. (a period)

is the indirection symbol for standard addressing.

<identifier>

is the name of the structure,.

<lower-bound>

is a constant expression in the range -32768 through 32767
that specifies the first structure occurrence for which to
allocate storage. The default value is 0 (one occurrence).
Each occurrence is one copy of the structure.

<upper-bound>

is a constant expression in the range -32768 through 32767
that specifies the last structure occurrence for which to
allocate storage. The default value is 0 (one occurrence).

<structure-body>

contains declarations for data, substructures, FILLER bytes,
or redefinitions, as described under "Structure Body" in this

section.

The size of one occurrence of a structure must not exceed
32,767 bytes.
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The following example declares 50 occurrences of a definition
structure:

STRUCT .inventoryl[0:49];
BEGIN
INT item;
INT price;
INT quantity;
END;

Structure Storage Allocation

For direct structures, TAL allocates storage for each occurrence of
the structure in a primary global or local area or in the sublocal
area. Sublocal structures must be direct.

For indirect structures, TAL allocates primary global or local storage
for a 16-bit standard pointer. It then allocates storage in the
corresponding secondary area for each structure occurrence.

Structures are word addressed. That is, TAL starts each structure
occurrence on a word boundary. Within each structure occurrence, TAL
allocates storage for each item and adds a pad byte as needed to fill
an unused byte caused by the need for INT structure items to be
aligned on word boundaries.

The following example shows storage allocation for two occurrences of
a structure (slants denote a pad byte):

STRUCT al[0:1];
BEGIN sl /77
STRING s1;
INT x; alo0] X
STRING s2;
END s2 /77
sl /77
al1] X
s2 ///
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Template Structure Declaration

The template form describes a structure body but allocates no space
for it. The syntax for the template structure declaration is:

STRUCT <identifier> (*) ;

<structure-body>

<identifier>

is the name of the template structure.

(*)

is the symbol that identifies the structure as a template,

<structure-body>

contains declarations for data, substructures, FILLER bytes,
or redefinitions, as described under "Structure Body" in this
section.

Templates have meaning only when you reference them in subsequent
referral structure declarations or structure pointer declarations.
The subsequent declarations allocate space for a structure body
identical to that of the template.

TAL ignores the indirection symbol if specified.
An example of a template structure declaration is:

STRUCT inventory2 (*);
BEGIN
INT item;
INT price;
END;
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Referral Structure Declaration

The referral form declares and allocates storage for a structure
described in a previously declared structure or structure pointer,
The referral form has no body of its own.

The syntax for the referral structure declaration is:

STRUCT [ . ] <identifier> ( <referral> )

[ "[" <lower-bound> : <upper-bound> "1" ] ;

. (a period)

is the indirection symbol for standard addressing.

<identifier>

is the name of the new structure.

<referral>

is the name of a previously declared structure or structure
pointer.

<lower-bound>

is a constant expression in the range -32768 through 32767
that specifies the first structure occurrence for which to
allocate storage. The default value is 0 (one occurrence).
Each occurrence is one copy of the structure.

<upper-bound>

is a constant expression in the range -32768 through 32767
that specifies the last structure occurrence for which to
allocate storage. The default value is 0 (one occurrence).
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TAL allocates storage for a structure with the addressing mode and
number of occurrences specified in the referral declaration, not those

specified in the previous declaration. TAL uses only the body of the
previous declaration for the new structure.

The following example declares a template structure and a referral
structure that references the template structure:

STRUCT record (*);
BEGIN
INT name;
INT addr;
INT acct;
END;

{Declares template structure

STRUCT .customer (record) [1:50]; !Declares referral structure
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STRUCTURE BODY

The structure body is a BEGIN-END construct that can contain
declarations for:

Data Items--Arrays and simple variables

Substructures--Structures nested within the primary structure

e FILLER Bytes--Place-holding bytes

Redefinitions--Items that redefine data items or substructures

Data Declarations

Syntax for data declarations is described in Section 8, "Simple
Variables," and Section 9, "Arrays," with the following differences:

e You cannot initialize any variables.

¢ You cannot declare read-only arrays.

® You cannot use indirection.

e You can specify array bounds of [0:-1].

Bounds of [0:-1] place the identifier in the symbol table so you
can reference it, but allocates no storage for the array.

Storage Allocation

TAL allocates storage for data within structures by aligning word-
addressed items on word boundaries and STRING items on byte
boundaries, adding a pad byte where needed to fill an unused byte.
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STRUCTURES

Structure Body - Data Declarations

1. The following example shows data declarations in a structure body:

LITERAL len = 100;

STRUCT .strl;
BEGIN
STRING s[0:len-1];
INT index;
INT count;
END;

!Number of array elements

!Begins structure body

!{Declares array

!Declares simple variable
!Declares simple variable

!Ends structure body

2. The following example shows storage allocation for data inside a

structure (slants denote a pad

STRUCT .padding;
BEGIN
STRING first;
INT second;
STRING al[0:2];
STRING b[0:2];
STRING c[1:3];
INT third;

END;

3. This example declares an array

STRUCT x;
BEGIN
INT(32) d[0:-1]1;
STRING a;
STRING b[0:21];
END;

byte):

first /77

second
afo] | al1]
al2] | blo]
bl[1] | bl2]
cl1] | cl2]
c[3] /77

third

with bounds of [0:-1], which allows
access to subsequent structure items using the array identifier:

a

b(0]

bl1]

b[2]

x.d := 0D; !Sets "a" and "b[0:2]" to O

“4 82581 A00 3/85
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Substructure Declaration

A substructure is a structure embedded within another structure or
substructure.

The syntax for the substructure declaration is the same as the syntax
previously defined under "Definition Structure Declaration," except
that you cannot use the indirection symbol.

Substructures differ from structures as follows:
e Substructures must be directly addressed.

® You can nest substructures to any practical level; that is, you can
declare a substructure within a substructure within a substructure,
and so on.

® You can specify lower and upper bounds of [0:-1]. This places the
substructure in the symbol table but allocates no storage; the
substructure is addressable but uses no memory.

e Substructures are byte addressed. Structures are word addressed.

e TAL allocates storage for substructures starting on byte
boundaries, if possible. Structures always start on word
boundaries.

Examples of Substructure Declarations

1. This example constructs a two-dimensional array. It consists of
two occurrences of a structure, each of which contains 50
occurrences of a substructure:

LITERAL last = 49; !Last item in inventory

STRUCT .warehousel[0:1]; !Two warehouses

BEGIN

STRUCT inventory [0O:last]; IFifty items in each warehouse
BEGIN
INT item”~number;
INT price;
INT on~hand;
END;

END;
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2. The following example shows substructures used for the Command
Interpreter start-up message:

STRUCT .startup;

BEGIN

INT msgcode;

STRUCT default; !Substructure declaration
BEGIN
INT volume[0:3];
INT subvol[0:3];
END;

STRUCT infile; ISubstructure declaration
BEGIN
INT volume[0:3];
INT subvol(0:3];
INT fnamel[0:3];
END;

STRUCT outfile; t{Substructure declaration
BEGIN
INT volume[0:31];
INT subvol[0:3];
INT fname[0:3];
END;

STRING param[0:131]; !Program parameters

END;

3. The following example shows nested substructure declarations:

STRUCT .mil”~branch;

BEGIN
STRUCT div[0:3]; !Substructure
BEGIN
STRUCT reg([0:31]; !Nested substructure
BEGIN
STRUCT batt[0:1]; INested substructure
BEGIN
STRUCT comp[0:31]; !INested substructure
BEGIN
STRUCT plat[0:3]; INested substructure
BEGIN

INT infantry;
END; !0f "plat"
END; !0f "comp"
END; !0f "batt"
END; !0f "reg"
END; 10f "div"
END; !0f "mil”~branch”
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4. This example shows storage for substructure occurrences that begin
on byte boundaries because the substructure not only follows a
STRING item ("x") and but also starts with a STRING item ("aa"):

STRUCT s;

BEGIN

STRING x;

STRUCT sub[0:2]; {Substructure

BEGIN ! declaration
STRING aa;
INT b;
STRING c;
END;

INT y;

END;

5. This example shows storage for substructure
on word boundaries because the substructure
item ("a~a"):

STRUCT t1;

BEGIN

STRING x;

STRUCT t2 [0:1]; !Substructure
BEGIN ! declaration
INT a”~a;

INT b;
STRING c;
END:; 10f substructure

INT y;

END; 10f structure

11-12

X aa
b

c aa
b

c aa
b

c /77
b4

occurrences that begin
starts with an INT

X ///

ata

C /77
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FILLER Declaration

A FILLER byte provides a place holder for structure data or space that
your program does not use.

The syntax for the FILLER declaration is:

FILLER <constant-expression> ;

<constant-expression>

is a positive INT constant value that specifies the number of
bytes of FILLER.

The word FILLER is a reserved word only within the scope of a
structure declaration. You cannot reference FILLER byte locations.

FILLER declarations contribute to clearer source code. For example,
you can use FILLER bytes:

e To define data that appears in a structure but is not used by your
program

e To document word-alignment pad bytes inserted by TAL

e To provide place holders for unused space

The following example shows FILLER declarations:
LITERAL last = 11; !Last occurrence

STRUCT .filler[1l:last];
BEGIN
STRING byte[0:2];
FILLER 1; !Documents word-alignment pad byte
INT wordl;
INT word2;
INT(32) integer32;
FILLER 30; {Place holder for unused space
END;

For a FILLER example defining unused data, see "Substructure
Redefinition" (example 4) in this section.
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Redefinitions

A redefinition declares a new name and description for an existing
data item or substructure within a structure.

Data Item Redefinition

The syntax for the data item redefinition declaration is:

<type> <identifier> [ "[" <lower-bound> : <upper-bound> "]" ]

= <previous-identifier> ;

<type>
is one of the following data types:

STRING

INT

INT(32)

FIXED [ ( <fpoint> ) ]
REAL

REAL(64)

<identifier>
is the name of the new data item that redefines an existing
data item in the structure. A data item is a simple variable
or an array.

<lower-bound>
is an INT constant expression in the range -32768 through

32767 that defines the first array element. The default
value is 0 (one element).
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<upper-bound>
is an INT constant expression in the range -32768 through
32767 that defines the last array element. The default value
is 0 (one element).

<previous-identifier>

is the name of a data item previously declared in the same
structure. You cannot specify an index with this name.

When you redefine data items, the following rules apply:

The new item must be on the same level as the previous item.

The new item must have the same, or shorter, length as the
previous item.

You can redefine arrays contained in structures and substructures.
For arrays outside structures, see Section 12, "Equivalenced
Variables."

The redefinition must start at element [0] of the previous
identifier.

You cannot redefine the data type of a STRING item that begins on
an odd-byte address.

The following example redefines an INT array as an INT(32) array. The
redefinition begins at "al[0]":

STRUCT .s;

BEGIN s[0] al-21]
INT a[-2:3];
INT(32) b[1:2] = a; al-11
END; - -
alo0]
—  Dbl[1] .
all]
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Substructure Redefinition

The syntax for the substructure redefinition declaration is:

STRUCT <identifier> [ "[" <lower-bound> : <upper-bound> "]" ]
= <previous-identifier> ;

<structure-body>

<identifier>
is the name of the new substructure that redefines a
previously declared substructure.

<lower-bound>
is a constant expression in the range -32768 through 32767
that defines the first substructure occurrence. The default
value is 0 (one occurrence). Each occurrence is one copy of
the substructure.

<upper-bound>
is a constant expression in the range -32768 through 32767

that defines the last substructure occurrence. The default
value is 0 (one occurrence).

<previous-identifier>
is the name of a substructure that was previously declared
in the same structure. No index is allowed with this name.

<structure-body>

contains declarations for data, substructures, FILLER bytes,
or redefinitions.

If you do not specify lower and upper bounds, or if the upper bound
is equal to 0, the new substructure and the previous substructure
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occupy the same space and have the same offset from the beginning of
the structure.

Rules for redefining substructures are:

e The new substructure must be on the same level as the previous
substructure.

¢ The new substructure should have the same, or shorter, length as
the previous substructure.

e Both substructures must have the same alignment. 1If the previous
substructure starts on an odd byte, the first data item in the new
substructure must be a STRING item.

Examples for redefinition declarations are shown below.

1. In this example, the new substructure is smaller than the previous
substructure; the redefinition is proper:

STRUCT stri;
BEGIN
STRUCT subl; {Declares "subl"
BEGIN
INT intl;
END;
STRUCT sub2 = subl; !Redefines "subl"” as "sub2"
BEGIN
STRING strl;
END; - - -
END; subl intl sub?2 strl /77

2. In this example, the new substructure is larger than the previous
substructure; TAL issues a warning:

STRUCT strl;
BEGIN
STRUCT subl; !Declares "subl"
BEGIN
STRING strl;
END;
STRUCT sub2 = subl:; tRedefines "subl" as "sub2"
BEGIN
INT intl;
END; - - -
END; subl strl /// sub?2 intl
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3. In this example, both substructures ("b" and "c") have the same

alignment as required.
boundary:

STRUCT a;

BEGIN

STRING x;

STRUCT b;
BEGIN
STRING y;
END;

STRUCT ¢ = b3
BEGIN
STRING z;

!Redefines "b" as "c",

In this case, both begin on an odd-byte

!1"b" starts on odd byte

also on odd byte
b c

END;
END;

y /77 z

4, This example redefines the format of a substructure record:

STRUCT
BEGIN
STRUCT whole”name;

BEGIN

STRING first~name[0:10];
STRING middle~name[0:101;
STRING last”name[0:15];

.hame”record;

END:

STRUCT initials = whole™~name;
BEGIN
STRING first~initial;
FILLER 10;

STRING middle~initial;
FILLER 10;
STRING last~initial;
FILLER 15;
END;

END;

11-18

tDeclares "whole”name"

tRedefines "whole”name" as
! "initials"
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ACCESSING STRUCTURED DATA

To access a definition or referral structure (whether direct or
indirect), you specify its identifier in a statement. For a move,
SCAN, or RSCAN statement or a reference parameter, specify the
unqualified structure or substructure identifier.

For an assignment statement, specify the fully qualified identifier of
the structure item, using the following form, with or without indexes:

<struct-name> [ [.<substruct-name>]...] .<item-name>

All indexes must be signed INT arithmetic expressions. An example of
an indexed structure identifier is:

record[i].tablel[2].item[x]

Examples of Accessing Structured Data

1. The following example shows how nesting affects the qualification
level. 1In the declaration on the left, the full qualification for
"item" is "outer.inner~3.item." In the declaration on the right,
it is "outer.inner~l.inner”2.inner~3.item."

STRUCT .outer STRUCT .outer;
BEGIN BEGIN
STRUCT inner~1; STRUCT inner”1;
BEGIN BEGIN
. STRUCT inner”2;
END; BEGIN
STRUCT inner~2; STRUCT inner~3;
BEGIN BEGIN
. INT item;
END; .
STRUCT inner~3: .
BEGIN END;
INT item; END;
END; END;
END; END;

4482581 A00 3/85
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2. The following example shows how to access an item in a definition
structure:

STRUCT .d: !Declares definition structure "d"
BEGIN
INT a;
STRING b;
REAL c[0:2];
END;

d.a := 2; !Assigns value to "a" in structure "4"

3. The following example shows how to access an item in a referral
structure that references a template structure:

STRUCT t (*); !Declares template structure "t"
BEGIN
INT a;
STRING b;
REAL c[0:2];
END;
STRUCT .r (t); {Declares referral structure "r"
r.a := 2; 'Assigns value to "a" in structure "r"
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4, These code fragments access a three-dimensional array structure:

INT s; !Index for store sales
INT 4; !Index for department sales
INT c; !Index for each clerk's sales

STRUCT .chain;
BEGIN
INT(32) chain”~tot;
STRUCT store[0:2];
BEGIN
INT(32) store”tot;
STRUCT dept[0:21];
BEGIN
INT(32) dept~tot;
STRUCT clerk[0:1];
BEGIN
INT clk;
INT amt;
END; !Ends "clerk"”
END; !Ends "dept"
END; !Ends "store"
END; !Ends "chain"

!The following code updates each clerk's records using the
! clerk number and amount entered from terminal:

FOR s := 0 TO 2 DO
FOR d := 0 TO 2 DO
FOR ¢ := 0 TO 1 DO
IF chain.storel[s].dept[d].clerk[c].clk = entered~clk”no
THEN chain.storel[s].dept{d].clerk[c].amt := entered™amt;

!The following code updates department, store, and chain
! totals:

FOR s := 0 TO 2 DO
BEGIN
FOR d := 0 TO 2 DO
BEGIN
FOR ¢ := 0 TO 1 DO
chain.storels].dept[d].dept~tot :=
chain.storels].dept[d].dept~tot +
$DBL(chain.storels].dept{d].clerk[c].amt);
chain.storel[s].store~tot := chain.store[s].store~tot +
chain.storel[s].dept{d].dept~tot;
END;
chain.chain”~tot := chain.chain~tot +
chain.store[s].store~tot;

END;
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Structure Functions

TAL provides the following standard functions for processing of
structured data:

e SLEN--Returns the length in bytes of one occurrence of an item.

e SOFFSET--Returns an item's offset in bytes from the structure base.
e SOCCURS--Returns the number of occurrences of an item.

e STYPE--Returns the data type of an item.

The following example uses the $OCCURS and $LEN functions to read
structured data:

INT record”num;

STRUCT emp~data(*); !Template structure
BEGIN
INT number;
INT dept;
STRING ssn[0:11];
FIXED(2) salary;
END;

PROC main”~proc MAIN;
BEGIN

STRUCT .job~data (emp~data) [0:5]; !Referral structure

FOR record”num := 0 TO $OCCURS (job~data) - 1 DO
CALL READ(discfile,
job~datalrecord~num], !Buffer
SLEN(job~data), 'Record length
num~read) ;

END;

For more information on these functions, see Section 17, "Standard
Functions."
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STRUCTURE POINTER DECLARATION

The structure pointer declaration associates a structure with the
memory location to which the pointer points. Therefore, you can
access the location to which the pointer points by referencing a
structure item.

The syntax for the structure pointer declaration is:

{ INT }o{ . } <identifier> ( <referral> )
{ STRING } { .EXT }

[ := <initialization> ]

L, €. } <identifier> ( <referral> )
{ .EXT }

[ := <initialization> 1 1 ... ;

INT

indicates the pointer contains a word address.

STRING

indicates the pointer contains a byte address.

. (period)

is the indirection symbol for standard addressing.

.EXT

is the indirection symbol for extended addressing. It is a
reserved word only when followed by <identifier>. At least
one space must precede and follow the symbol.
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<identifier>

is the name of the structure pointer.

<referral>

is the name of a previously declared structure or structure
pointer.

<initialization>

is a constant expression (global scope) or an arithmetic
expression (local or sublocal scope), as follows:

e If <identifier> is a standard STRING pointer, use a 16-bit
byte address in the lower 32K area.

e If <identifier> is a standard INT pointer, use a 16-bit
word address in the 64K area.

e If <identifier> is an extended pointer of any type, use a
32-bit byte address. For details, see Appendix A,

Before referencing a structure pointer, be sure you have assigned a
value to it, either in the declaration or in a subsequent statement
(see "Structure Pointer Assignments" in this section). References
to uninitialized pointers cause undefinable program execution.

Standard STRING structure pointers can access STRING structure items
only. Standard INT pointers and extended STRING or INT pointers can
access structure items of any type. However, if an INT pointer
contains an address in the upper 32K area, you cannot access STRING
items with that pointer.

Global pointers receive their initial values when you compile the

source code. Local and sublocal pointers receive their initial values
each time the procedure or subprocedure is activated.
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’ Examples of Structure Pointer Declarations

1. This example declares a template structure and a structure pointer
that references the template and initializes the pointer with a
location in the upper 32K area:

STRUCT names (¥*): !Declares template structure
BEGIN
INT filename[0:11];
END;
INT .struc”ptr (names) := %100000; !Declares structure pointer
2. This example declares an extended structure pointer that
references the structure pointer declared in Example 1 and
initializes it with a location in the upper 32K area:

STRING .EXT ex"strc”ptr (struc”ptr) := %200000D;

Storage Allocation

TAL allocates primary storage for the structure pointer. A standard
pointer gets one word of primary storage; an extended pointer gets a
doubleword. You must allocate the memory location to which the
pointer points.

TAL emits more efficient machine code if it can store extended
pointers between G[0] and G[63] or between L[0] and L[63]. Thus,
extended pointers should precede other global or local declarations.
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Structure Pointer Assignments

The syntax for a structure pointer assignment is:

@<pointer-name> := <expression> ;

is the symbol for removing indirection. It means get the
contents of <pointer-name>, not the item to which it points.
<pointer-name>
is the name of a previously declared standard or extended
structure pointer.
<expression>
is an arithmetic expression:

e If <pointer-name> is a standard STRING structure pointer,
use a 16-bit byte address in the lower 32K area.

e If <pointer-name> is a standard INT structure pointer, use
a 16-bit word address in the 64K area.

e If <pointer-name> is an extended structure pointer of any
type, use a 32-bit byte address. For details, see Appendix
A.
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The following example assigns the address of the third occurrence of a
structure to a standard structure pointer:

STRUCT .strucl[0:2]; !Declares structure "struc"
BEGIN
INT i;
STRING s;
END;

INT .str~ptr (struc); !Declares structure pointer

@str~ptr := @strucl2]; !Assigns address of "struc[2]" to
! structure pointer

Accessing Data Using Structure Pointers

To access a structure item, you reference the pointer name in a
statement. In move, SCAN, or RSCAN statements or reference
parameters, specify the unqualified pointer name. Extended pointers
cannot be the object of SCAN or RSCAN operations.

In assignment statements, specify the fully qualified pointer name
using the following form, with or without indexes:

<pointer-name> [ [.<substruct-name>]...] .<item-name>
An example of a qualified structure pointer name is:
struc”ptr.records.customer.name

For both standard and extended structure pointers, the index must be a
signed INT arithmetic expression.
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Standard Structure Pointer Accessing Examples

1. The following example uses standard structure pointers to access
INT structure items in the upper 32K of data space:

?DATAPAGES 64 !Gets maximum data stack
STRUCT names (*); !Declares template structure
BEGIN
INT filename[0:11];
END;

%100000; !Points to beginning of
! upper 32K area

INT .name”ptr2(names) := %$110000; !Points to upper half of

! upper 32K area

INT .name”ptrl(names) :

PROC main“proc MAIN;

name~ptrl.filename[0] ':=' "$SYSTEM SYSTEM EDIT "
name~ptr2.filename[0] ':=' "SDATA OFFICE PRODUCT ";
. 'Accesses structure items

END;

2. In the following example, a structure pointer points into an
existing structure:

STRUCT .data2[0:2]; !Declares definition structure
BEGIN
INT il;
INT i2;:
INT i3;
STRING sl;
END;

INT .pnt2 (data2) := @data2{1]; !Declares and initializes
! structure pointer

pnt2.i

pnt2.s lAccesses structure items

=N

11-28 482581 A0O 3/85



STRUCTURE POINTERS
Accessing Data Using Structure Pointers

3. In the following example, a structure pointer points to the
beginning of a buffer, thereby imposing the structure on top of
the buffer:

INT .recbuf(0:7] :=[1,%22,%23,%24,%25,"ABCDE"]; !Buffer
INT numl;
STRUCT data (*); !Declares template structure
BEGIN
INT codel;
INT i1[0:3];
STRING s1[0:4];
END;
INT .pnt2 (data) := @recbuf; !Declares and initializes
! structure pointer
numl := pnt2.i1[2]; !Accesses structure item

4, In the following example, a STRING standard structure pointer
accesses a STRING item. You must convert the word address of the
structure to a byte address before assigning it to the pointer:

STRUCT .datal0:11; !Declares definition structure
BEGIN
STRING s1;
STRING s2;

STRING s3;
END;
STRING .pnt (data) := @datall] '<<' 1; !Declares and
! initializes structure pointer
pnt.s2 := %4; !Accesses structure item
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Extended Structure Pointer Accessing Examples

1. In this example, extended INT structure pointers access byte-
addressed variables. This example assumes previous allocation of
an extended segment as described in Appendix A.

STRUCT name”~rec (*); !Declares template
BEGIN
STRING name[0:25];
END;

INT .EXT ext”ptr(name~rec) := %200000D; !Points to beginning of
! upper 32K area

INT .EXT ext”seg(name~rec) := %2000000D; !Points to beginning
! of extended segment

ext~ptr.name[0] '
] 1

="' "Anastasia L. Malatorious";
ext~seg.name[0 =

' "Octavious Q. Pumpernickle”;

Additional examples for extended structure pointers are given at the
end of Appendix A.
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EQUIVALENCED VARIABLES

Equivalencing lets you use more than one name to describe a location
in a primary storage area. Variables made equivalent to previously
allocated locations do not allocate additional memory space.

The variables that represent a location can have different data types
and byte or word addressing attributes., For example, you can
reference an INT(32) variable as two separate words or four separate
bytes, or you can use an INT array and a STRING array to access the
same buffer.

This section describes how to declare and access:

e Equivalenced variables--Variables made equivalent to a previously
declared variable.

e Base-address equivalenced variables--Variables made equivalent to a
global, local, or top-of-stack address base.

The new variable can be a simple variable, pointer, structure, or
structure pointer. The previous variable can be a simple variable, a
direct array element, pointer, structure, structure pointer, or
another equivalenced variable that you previously declared as
described in Sections 8 through 12,

For equivalenced items within structures, see "Redefinitions" in
Section 11.

For equivalenced system global variables, see Section 18, "Privileged
Procedures."

“4 82581 A0O 3/85 12-1



EQUIVALENCED VARIABLES
Equivalenced Variable Declaration

EQUIVALENCED VARIABLE DECLARATION

The equivalenced variable declaration associates a new variable with a
previously declared variable.

Equivalenced variables (simple variables, pointers, and structure
pointers) are described first, followed by equivalenced structures.

The syntax for the equivalenced variable declaration is:

{ { .BEXT } { <structure-pointer> ( <referral> ) } }
{ . } { <pointer> b}
<type> { }
{ <simple-variable> }

= <previous-identifier> [ "[" <index> "]1" ]
[ {+]-} <offset> ]

{ { .EXT } { <structure-pointer> ( <referral> ) }
% { . } { <pointer> }
{

<simple-variable>

= <previous-identifier> [ "[" <index> "]1" ]
[ {+]|-} <offset> 1 1 ...

e

<type>

For <structure-pointer>, <type> must be STRING or INT.

For <simple-variable> or <pointer>, <type> is any data type.
. (period)

is the indirection symbol for standard addressing.

.EXT

is the indirection symbol for extended addressing.
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<structure-pointer>

is the identifier of a structure pointer to be made
equivalent to <previous-identifier>,

<pointer>

is the identifier of a pointer to be made equivalent to
<previous-identifier>.

<simple-variable>

is the identifier of a simple variable to be made equivalent
to <previous-identifier>.

<referral>

is the identifier of a previously declared structure or
structure pointer.

<previous-identifier>

is the identifier of a previously declared simple variable,
direct array element, pointer, structure, structure pointer,
or equivalenced variable.

<index>

is an INT constant that specifies a number of elements of
the type declared. <index> is permitted only with direct
variables. <index> must end on a word boundary.

<offset>

is an INT constant that specifies a word offset. <offset> is
permitted with direct or indirect variables. For indirect
variables, the offset is from the location of the pointer,
not from the location of the data pointed to.
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The syntax for the equivalenced structure declaration is:

STRUCT [ . ] <structure> [ ( <referral> ) ]
= <previous-identifier> [ "[" <index> "]" ]
[ {+|-} <offset> 1 ;

[ <structure-body> ]

. (period)

is the indirection symbol for standard addressing.

<structure>

is the identifier of a definition or referral structure to be
made equivalent to <previous-identifier>,

<referral>

is the identifier of a previously declared structure or
structure pointer. Its presence means <structure> is a
referral structure and <structure-body> cannot be specified.

<previous-identifier>

is the name of a previously declared simple variable, direct
array element, structure, structure pointer, or equivalenced
variable.

<index>

is an INT constant that specifies a number of elements of
the type declared. <index> is permitted only with direct
variables. <index> must end on a word boundary.
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<offset>

is an INT constant that specifies a word offset. <offset> is
permitted with direct or indirect variables. For indirect
variables, the offset is from the location of the pointer,
not from the location of the data pointed to.

<structure-body>

is a BEGIN-END construct that contains declarations as
described in Section 11. 1Its presence means <structure> is a
definition structure and <referral> cannot be specified.

Examples of Equivalenced Declarations

The leftmost box in each diagram represents the previously declared
variable to which the new variable is made equivalent.

1. This example makes an INT variable equivalent to a previous INT
variable:

INT wordl; -
INT word2 = wordl; wordl word?2

2. This example makes a STRING variable equivalent to another STRING
variable:

STRING sl1
STRING s2

= "A"; —
sl; sl 0 s2

3. This example makes STRING and INT(32) variables equivalent to an
INT array:

INT i[0:1]; - -

STRING b = i[0]; ifo] bl(o] | bl[1]

INT(32) d = b; — d[o0]
if1] b[2] b[3]
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12-6

This example makes an pointer equivalent to a direct variable:

INT dir :
INT .ptr

200; - -
dir; dir 200 .ptr

mon

200

G[200]

A

This example makes a word-addressed pointer equivalent to another
word-addressed pointer of a different type:

INT =
INT(32)

.ptril
.ptr2

200; - -
ptri; .ptrl 200 .ptr2

200

G[200]

A

This example tries to make a byte-addressed pointer equivalent to
a word-addressed pointer. However, the pointers point to
different locations, since one pointer contains a word address and
the other contains a byte address:

INT
STRING

.ptrl :=
.ptr2 =

200;
ptrl;

For INT variables, indexes and offsets are equivalent:

INT x[0:5];

INT y
INT z

For non-INT variables,

x[1]
+

H
X 1;

INT(32) x;

INT a
INT b

X +
x [1

1;
1;

! Index
10ffset

10ffset
! Index

x(0]

x[1]

Offset
x+0
x+1
x+2

X+3

y

Index

Index

| X[O] -

— x[1] =—

V4

Of fset

indexes and offsets are not equivalent:
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9. You can make a variable equivalent to an offset pointer but not to

an indexed pointer:

INT .pt;
INT a = pt + 2; !0ffset

! allowed
INT b = pt [2]; !Index

! not allowed

pt ?

pt+1

pt+2 a

10. This example tries to make a STRING variable equivalent to an

odd-byte array element.
issues a warning.

STRING al[0:11];
STRING b = all];

The system ignores the index and and

alo0] al1] b

11. This example tries to make arrays equivalent to other variables,

which is not allowed:

INT al0:5];
INT b;

INT c[0:5]
INT d[0:5]

a;
b;

!Not allowed
I{Not allowed

12, This example makes a referral structure equivalent to a structure

pointer:

STRUCT record (*);
BEGIN
INT name[0:14];
INT address[0:49];
END;

INT .p (record) := %100000;

STRUCT .empl (record) = p;

4 82581 A00 3/85

!Declares template structure

!Declares structure pointer

!Makes new structure equivalent
! to structure pointer "p"
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Accessing Equivalenced Variables

You access an equivalenced variable in the same way as any other

variable, by specifying its identifier in a statement.

Examples

1.

12-8

This example makes an INT variable equivalent to each word of an
INT(32) variable, then accesses the location as an INT variable
and as an INT(32) variable:

INT(32) dbl;
INT a = dbl,

b=a+
a = 2 * 2;
dbl := -1D;

1;

tAccess first
! word of "dbl"

tAccesses "dbl"

— dbl

as a doubleword

This example makes a STRING variable equivalent to the first of
three INT variables, then accesses byte items by indexing the
STRING variable:

INT wordl;
INT word2;
INT word3;

STRING s = wordl;

2 THEN ...;

wordl s[0] s{1]
word?2 s[2] s[3]
word3 s[4] s[5]
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3. These examples make a pointer equivalent to a direct variable,
then accesses them in different ways:

INT dir := 200; - -
INT .ptr = dir; dir 200 .ptr 200

Gl[200] De—

An assignment to the direct variable changes the contents of both
the direct variable and the pointer:

dir := 45; dir 45 .ptr 45

G[45] -

An assignment to the pointer (using the @ symbol) changes the
contents of both the direct variable and the pointer:

@ptr := 66; dir 66 .ptr 66

G[66] -

An assignment to the pointer (without the @ symbol) changes the
contents of only the variable to which the pointer points:

ptr := 15; dir 66 .ptr 66

G[661 15 -
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BASE-ADDRESS EQUIVALENCED VARIABLE DECLARATION

Base-address equivalencing lets you declare variables relative to the
global, local, and sublocal base addresses.,

Equivalenced variables (simple variables, pointers, and structure

pointers)

are described first, followed by equivalenced structures.

The syntax for the base-address equivalenced variable declaration is:

<type>

<type>

For
For

.EXT

. (period)

is the indirection symbol for standard addressing.

is the indirection symbol for extended addressing.

{ { .EXT } { <structure-pointer> ( <referral> ) } }
{ {. } { <pointer> ol
{ }
{ <simple-variable> }
= <base-address> [ "[" <index> "]1" ]
[ {+1-} <offset> ]
{ { .EXT } { <structure-pointer> ( <referral> ) } }
{{. } { <pointer> }
{ }
{ <simple-variable> }
= <base-address> [ "[" <index> "]1" ]
[ {+]-} <offset> 1 1 ... ;
<structure-pointer>, <type> must be STRING or INT,

<simple-variable> or <pointer>, <type> is any data type.

12-10
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<structure-pointer>

is the identifier of a structure pointer to be made
equivalent to <base-address>.

<pointer>
is the identifier of a pointer to be made equivalent to
<base-address>.
<simple-variable>
is the identifier of a simple variable to be made equivalent
to <base-address>,
<referral>
is the identifier of a previously declared structure or
structure pointer.

<base-address>
is one of:
'G' Global addressing relative to G[O0]
L Local addressing relative to L[O0]
'S’ Top-of-stack addressing relative to S[0]

<index> and <offset>

are equivalent INT values giving a location in the following
ranges:

'G' addressing: [0:255]
'L' addressing: [-31:127]
'S' addressing: [-31:0]
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The syntax for the base-address equivalenced structure declaration is:

STRUCT [ . ] <structure> [ ( <referral> ) ]

= <base-address> [ "[" <index> "]" ]
[ {+]-} <offset> ] ;

’

[ <structure-body> ]

. (period)
is the indirection symbol for standard addressing.

<structure>

is the identifier of a definition or referral structure to be
made equivalent to <base-address>.

<referral>

is the identifier of a previously declared structure or
structure pointer. Its presence means <structure> is a
referral structure and <structure-body> cannot be specified.

<base-address>

is one of:

'G' Global addressing relative to G[O0]
'L’ Local addressing relative to L[0]
IS'

Top-of-stack addressing relative to S[0]
<index> and <offset>

are equivalent INT values giving a location in the following
ranges:

'G' addressing: [0:255]
'L' addressing: [-31:127]
'S' addressing: [-31:0]

12-12
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<structure-body>
is a BEGIN-END construct that contains declarations as

definition structure and <referral> cannot be specified,

described in Section 11. 1Its presence means <structure> is a

Example

1. This example makes an INT simple variable equivalent to 'L’

relative addressing:

INT var = 'L'[5]; L[5]

var

For another example of base-address equivalencing, see the ARMTRAP

procedure in the System Procedure Calls Reference Manual.

9 82581 A00 3/85
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SECTION 13

EXPRESSIONS

This section gives information about expressions:
e Operators--Arithmetic and conditional (relational and boolean)

e Precedence of Operators--The order in which the system evaluates
operators in an expression

e Arithmetic Expressions--General form, assignment form, CASE form,
IF-THEN-ELSE form

e Conditional Expressions--General form and group comparison form

An exgression is a combination of operands and operators that make up
an arithmetic or conditional expression. The operands can be data or
constants. The operators specify an arithmetic or conditional
operation on the operands. Expressions can be type INT, INT(32),
FIXED, REAL, or REAL(64), but not type STRING. The system treats
STRING operands as 16-bit quantities.

An arithmetic expression specifies a rule (formula) for computing a
numeric value. It consists of one or more operands and arithmetic
operators such as:

3 +5

A conditional expression specifies a rule for establishing the
relationship between values and results in a true or false state. It
consists of one or more conditions and conditional operators such as:

vary > 5
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OPERATORS

An operator is a reserved word or a symbol that directs TAL to perform
an arithmetic or conditional (relational or boolean) operation on
values in the program.

Arithmetic Operators

Arithmetic operators provide signed arithmetic, unsigned arithmetic,
and logical operations. You can mix signed and unsigned arithmetic
and logical operations in an expression,

Signed Arithmetic Operators

Signed arithmetic operators are +, -, *, and /. They can operate on
operands of any data type. All operands in an expression must be of
the same type, except that an INT expression can include INT and
STRING operands. When the system evaluates an INT expression, it
right justifies STRING operands in word units and treats them as
16-bit quantities.

INT expressions produce INT results, even if they contain STRING
operands. Expressions of other types produce results of the same data
type as their operands. For example, expressions that contain FIXED
operands produce FIXED results, and expressions that contain REAL(64)
operands produce REAL(64) results.

Signed arithmetic operations affect the condition code and carry
indicators. The overflow indicator is set when you divide by 0 or
when a result exceeds the bits allowed by the operand type (INT, 15
bits; INT(32) and REAL, 31 bits; REAL(64) and FIXED, 63 bits). If an
overflow occurs, the results will have unpredictable values.

Examples of signed arithmetic are:

wordl * word2 + wordl !INT operands produce INT result

word2 / wordl 'INT operands produce INT result

doublel + double?2 !'INT(32) operands produce INT(32) result
bytel + byte2 ISTRING operands produce INT result

wordl + bytel !'INT and STRING operands produce INT result
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Unsigned Arithmetic Operators

Unsigned arithmetic operators are '+', '=', '*' '/' —and '\'. They
can operate on operands of certain data types, as follows'

e Unsigned add and subtract allow STRING or INT operands in an
expression and produce INT results.

These operations do not set the overflow indicator, but do affect
the condition code and carry indicators.

e Unsigned multiplication allows STRING or INT operands and produces
INT(32) results.

e An unsigned division operation or an unsigned modulo operation
(which returns the remainder) requires an INT(32) dividend and an
INT divisor that produces an INT quotient.

If the quotient exceeds 16 bits, an overflow condition occurs and
the results will have unpredictable values.

For example, the modulo operation "100000D '\' 2" (which should
result in a remainder of 0) causes an overflow because the quotient
(50000) exceeds 16 bits.

Typically, you use unsigned arithmetic on operands with values in the
range 0 through 65,535. An example is pointer variables that contain
standard addresses.

Examples of unsigned arithmetic are:

wordl '+' word2 !Unsigned addition produces INT result

wordl '-' bytel !Unsigned subtraction produces INT result

wordl '*' bytel !Unsigned multiplication produces INT(32) result
dbword '/' wordl !Unsigned division produces INT result

dbword '\' wordl 'Unsigned mod division produces INT result
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Logical Operators

The LOR, LAND, and XOR operators perform bit-by-bit operations on INT
and STRING operands only. They return 16-bit results as follows:

Operator Truth Table Example
LOR 1 0 10 LOR 12 = .4
(Logical OR)
1 1 1 10 1010
12 1100
0 1 0 — —

14 1110

LAND 1 0 10 LAND 12 = 8
(Logical AND)

1 1 0 10 1010

12 1100

0 0 O —_ —

8 1000

XOR 1 0 10 XOR 12 = 6
(Exclusive OR)

1 0 1 10 1010

12 1100

0 1 0 —_ —_

6 0110

The logical operators set the condition code indicator.

Summary of Arithmetic Operators

Table 13-1 summarizes the arithmetic operators and the data types of
operands on which each can operate.

TAL does not provide automatic type conversions on operands; instead,

it provides built-in type-transfer functions for converting an operand
from one type into another. (See Section 17.)
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Table 13-1., Arithmetic Operators and Operand Types

*Data Type of Operand

Operator Function **STRING INT INT(32) FIXED REAL REAL(64)
+ Signed Addition . . ° ° . .
- Signed Subtraction o ) o . o .
* Signed Multiplication . ° . . . .
/ Signed Division ) ° . . ° .
'+t Unsigned Addition ) ]
=t Unsigned Subtraction . .
vkt Unsigned Multiplication e . (See Note 1)
/! Unsigned Divison . ° . (See Note 2)
"\' Unsigned Modulo

Division (remainder) L J . (See Note 2)
LOR Logical OR o o
LAND Logical AND o .
XOR Exclusive OR . o

* Except as noted, operand types in an expression must match and the
expression yields results of the same type as its operands. To
convert an operand type, use a type-transfer standard function
described in Section 17.

**The system treats STRING operands as 16-bit quantities; there is no
STRING expression. INT expressions can have STRING or INT operands,
but always yield INT results.

Note 1: Unsigned multiplication always yields an INT(32) result.
Note 2: Unsigned division and modulo operations require an INT(32)

dividend and an INT divisor that produce an INT quotient,
See also "Unsigned Arithmetic Operators" in this section,
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Scaling of FIXED Operands

FIXED operands in an arithmetic expression need not have the same
<fpoint> value. The system makes adjustments as follows:

In addition or subtraction, the system scales the smaller <fpoint>
up to match the larger <fpoint>. The <fpoint> of the result
matches the larger <fpoint>. For example, the system scales the
smaller <fpoint> in "3,005F + 6.01F" up by a factor of one, and the
result is 9,.015F.

In multiplication, the <fpoint> of the result is the sum of the
<fpoint> values of the two operands. For example, "3.091F * 2.56F"
results in the FIXED(5) value 7.91296F.

In division, the <fpoint> of the result is the <fpoint> of the
dividend minus the <fpoint> of the divisor. (Some precision is
lost.) For example, "4.05F / 2.10F" results in the FIXED(0) value
of 1.

To retain precision when dividing operands having nonzero <fpoint>
values, use the S$SCALE function to scale up the <fpoint> of the
dividend by a factor equal to the <fpoint> of the divisor. $SCALE
is described in Section 17, "Standard Functions."

The following example shows scaling of FIXED operands having different
<fpoint> values and scaling of the result to match the variable to
which it is assigned:

FIXED a; {Data declarations
FIXED(2) b; !
FIXED(-1) c; !

a := 2.015F * (b + T);

up 3 <« "c" is scaled up by a factor of 3
| to match "b"
3 2 < Result of multiplication is an
5 implied <fpoint> of 5
down 5 <« Result of expression is scaled
down by 5 to match "a", with some
a loss of precision
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Conditional Operators

Conditional operators are either relational or boolean. You can
combine them with conditions to form conditional expressions. The
result of a conditional expression is a true or false state.

You usually use conditional expressions to direct program execution.
For example, in an IF-THEN-ELSE statement, if the IF condition is
true, the THEN clause executes, or if it is false, the ELSE clause
executes. Conditions are described under "Conditional Expressions" in
this section.

Relational Operators

Signed relational operators are <, =, >, <=, >=, <>, and unsigned
relational operators are '<', '=', '>', '<=', '>=', '<>',K6 as defined
in Table 13-2. They perform:

e Signed comparison of two INT, INT(32), FIXED, REAL, or REAL(64)
operands

e Unsigned comparison of two INT operands

The operands in a relational expression must have the same data type,
except that an INT expression can have STRING and INT operands.

Relational operations set the condition code indicator.

The following example controls program execution based on signed and
unsigned comparisons:

INT a := -2, 'Value = %177776
c 3= 3, !Value = %000003
x := 271;
IF a '<' ¢ THEN x := 314: IFalse; "x" still contains 271
IF a < c THEN x := 313; !'True; "x" is assigned 313
IF a <> ¢ THEN ITrue, but this is an arithmetic
IF < THEN x := 314; ! comparison; since -2 < 3,
! CCL is set
IF a '<>' ¢ THEN !True; this is a logical
IF > THEN x := 315; ! comparison; since %177776 '>' %3
! CCG is set

i
~J
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Table 13-2. Relational Operators and Operand Types

*Data Type of Operand

Operator Function **STRING INT INT(32) FIXED REAL REAL(64)
< Signed Less Than . ® ° . . .
= Signed Equal To o . . . . °
> Signed Greater Than ° . ° o . °
<= Signed Less

Than or Equal to ] . . . . .
>= Signed Greater

Than or Equal to L o . . [ .
<> Signed Not Equal to . ° . . e .
t<! Unsigned Less Than J o
t="' Unsigned Equal to o o
't Unsigned Greater

Than ° o
'e="! Unsigned Less

Than or Equal to o .
'>=" Unsigned Greater

Than or Equal to L .
T<>! Unsigned Not

Equal to . .

* You cannot mix operand types in an expression except STRING and INT.
To convert an operand type, use a type-transfer standard function
described in Section 17,

**The system treats STRING operands as 16-bit quantities. INT
expressions can contain STRING and INT operands.
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Boolean Operators

Boolean operators have the following meanings:

e NOT tests a condition for a false state.

e OR produces a true state if either adjacent condition is true.
e AND produces a true state if both adjacent conditions are true.

Conditions connected by AND are evaluated from left to right until
a false state occurs. The second condition is evaluated only if
the first condition is true.

A condition is one or more syntactic elements that represent a single
state. It can consist of a relational operator, a relational
expression, a conditional expression, or an arithmetic expression, as
described under "Conditional Expressions" beginning on page 13-18,

If a condition is an arithmetic expression, it must evaluate to an INT
value. Thus, the operands in the condition must be type STRING or
INT. If the arithmetic expression evaluates to a value of any other
type, use a relational expression instead.

Boolean operations set the condition code indicator.
Examples of boolean operators are:

1. In this example, the conditions are arithmetic expressions, so
"a" and "b" must be type STRING or INT. The expression is true
if either condition is true; that is, if "a" or "b" contains a
nonzero value:

INT a, b:
IF a OR b THEN . . .

2., In this example, the conditions are relational expressions, so "a"
and "b" can be any data type. The expression is true if either
condition is true; that is, if "a" or "b" contains a nonzero
value:

FIXED a, b:
IF a <> 0F OR b <> QF THEN . . .

3. The conditions in this expression are arithmetic expressions that
evaluate to INT values. The expression is true if either "a" is
false or both "b" and "c¢" are true:

STRING a, b, ¢;
IF NOT a OR b AND c . . .

Table 13-3 summarizes boolean operators and the data types of operands
on which they can operate.

13
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Table 13-3, Boolean Operators and Operand Types

Data Type of Operand**®

Operator Function *STRING INT INT(32) FIXED REAL REAL(64)
AND Logical
Conjunction . .
OR Logical
Disjunction ] ]
NOT Logical
Negation ° .

* The system treats STRING operands as 16-bit quantities. An
expression can contain INT and STRING operands.

**This table applies to operands in arithmetic expressions. For types
of operands allowed in relational expressions, see Table 13-2,

Precedence of Operators

TAL evaluates operations in expressions from left to right according
to standard rules of precedence. Table 13-4 shows the level of
precedence for each operator, from highest (0) to lowest (9).

To override the standard order of operations, place parentheses around
the operation to be performed first. Examples are:

c * (a + b) (a OR b) AND c
Result Result
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Table 13-4. Precedence of Operators
Order of

Operator Operation Precedence Section
. Indirection 0 10
@ Address of Identifier 0 10
<eeo> Bit Extraction 1 14
<eeo> Bit Deposit 1 14
<< Bit Shift 2 14
>> Bit Shift 2 14
Tt Bit Shift 2 14
'>>1' Bit Shift 2 14
* Signed Multiplication 3 13
/ Signed Division 3 13
TR Unsigned Multiplication 3 13
A Unsigned Division 3 13
"\ Unsigned Modulo Division 3 13
+ Signed Addition 4 13
- Signed Subtraction 4 13
'+ Unsigned Addition 4 13
't Unsigned Subtraction 4 13
LOR Logical OR 4 13
LAND Logical AND 4 13
XOR Exclusive OR 4 13
< Signed Less Than 5 13
= Signed Equal to 5 13
> Signed Greater Than 5 13
<= Signed Less Than or Equal to 5 13
>= Signed Greater Than or Equal to 5 13
<> Signed Not Equal to 5 13
'<! Unsigned Less Than 5 13
'=" Unsigned Equal to 5 13
> Unsigned Greater Than 5 13
'e="! Unsigned Less Than or Equal to 5 13
'>="! Unsigned Greater Than or Equal to 5 13
te>! Unsigned Not Equal to 5 13
NOT Boolean Negation 6 13
AND Boolean Conjunction 7 13
OR Boolean Disjunction 8 13
¢= Assignment 9 15

13-11
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ARITHMETIC EXPRESSIONS

An arithmetic expression is a rule for computing a single numeric
value of a specific data type. It has a general, assignment, CASE, or
IF-THEN-ELSE form.

General Form

The general form of an arithmetic expression is:

[ + % <primary> [ [ <arith-operator> <primary> 1 ... ]

[ -

+ =
are unary plus and minus, indicating the sign of the leftmost
<primary>. Plus is the default sign.

<primary>

is one or more items that represent a single value. <primary>
can consist of the following as described under "Primaries" in
this section:

Constant

Variable

Function reference

Bit shift

Bit extraction

( <arithmetic-expression> )
Code space item

<arith-operator>

is an arithmetic operator: signed (+, -, *, /); unsigned
("+', '"=', '*k' v/t '\'"):; logical (LOR, LAND, XOR).
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 Examples of arithmetic expressions are:

varyl ! <primary> only

- varyl ! - <primary>

+ varyl * 2 ! + <primary> <arith-operator> <primary>
varyl + vary?2 ! <primary> <arith-operator> <primary>
varyl * (-vary2) ! <primary> <arith-operator> <primary>

Primaries

A <primary> is one or more syntactic elements that represent a single
value. It can be any of the following:

Constant-—-A character string or numeric constant as described in
Section 4

Variable--A direct or indirect variable as described in Sections 8
through 12 for simple variables, arrays, pointers, structures,
substructures, structure data items and equivalenced variables
(with or without an indirection symbol (. or @) and index)

Function reference--A reference to a procedure that returns a
value, including standard functions listed in Section 17,

Bit shift or bit extraction--As described in Section 14.

Arithmetic expression--The general, assignment, CASE, or
IF-THEN-ELSE form described in this section, enclosed in
parentheses.

Code space item—-A procedure, subprocedure, or label name prefixed
with the @ symbol or a read-only array optionally prefixed with the
@ symbol, with or without an index.

Examples of primaries are:

4482581 A00 3/85

10 IConstant
vary(10] !Variable
( IF vary THEN 1 ELSE 2 ) !( <arithmetic-expression> )
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Assignment Form

The assignment form of arithmetic expression assigns the value of an
expression to a variable.

The syntax for the assignment form is:

<variable> := <expression>

<variable>
is a declared data variable. (It can have an optional bit
deposit field).

<expression>
is an arithmetic or conditional expression that represents a

value of the same type as <variable>. This value is the value
of the assignment expression form.

Examples
1. This example increments "a"; as long as "a + 1" is not 0, the
condition is true and the THEN clause is executed:
IF (a := a + 1) THEN . . .

2. This example shows the assignment form used as an index; "a" is
incremented and accesses the next array element:

IF arrayla := a + 1] <> 0 THEN . . .

3. This example mixes the assignment form with a relational form; it
assigns the value of "b" to "a", then checks for equality with O0:

IF (a := b) = 0 THEN . . .
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CASE Form

The CASE form of arithmetic expression selects one of several
expressions for assignment to a variable.

The syntax for the CASE form is:

CASE <index> OF

BEGIN
<expression> ; IFor <index> = 0
<expression> ; IFor <index> = 1
<expression> ; !For <index> = n
[ OTHERWISE <expression> ; ]
END
<index>

is an INT arithmetic expression that selects the <expression>
to evaluate.

<expression>

is an arithmetic or conditional expression.

OTHERWISE <expression>

indicates the expression to evaluate if <index> does not
select an expression within the index range 0 through <n>.
If you omit the OTHERWISE clause and an out-of-range case
occurs, results are unpredictable.

The CASE expression form resembles the CASE statement except that:
e It selects one of several expressions instead of statements

e The selected expression must be assigned to a variable
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Example

This example selects and assigns the value resulting from one of
several expressions and assigns it to a variable:

i := CASE a OF
BEGIN
b;
c;
da;
OTHERWISE -1;
END;

'If the value of "a" is 0, the value of "b" is assigned to "i".
'If the value of "a" is 1, the value of "¢" is assigned to "i".
'If the value of "a" is 2, the value of "d" is assigned to "i".
1If "a" has any other value, the value of -1 is assigned to "i".
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IF-THEN-ELSE Form

The IF-THEN-ELSE form of arithmetic expression conditionally selects
one of two expressions, usually for assignment to a variable.

The syntax of the IF-THEN-ELSE form is:

IF <conditional-expression> THEN <expression> ELSE <expression>

<conditional-expression>

is evaluated to determine the <expression> to compute.

<expression>

is an arithmetic or conditional expression.

If <conditional-expression> is true, the THEN clause is computed;
otherwise, the ELSE clause is computed. The IF-THEN-ELSE expression
resembles the IF-THEN-ELSE statement except that:

¢ Both the THEN and ELSE clauses are required

e The THEN and ELSE clauses contain expressions, not statements

e The IF-THEN-ELSE form is typically part of an assignment statement

Examples

1. This example assigns one of two arithmetic expressions:
var := IF length > 0 THEN 10 ELSE 20;
2. You can mix this form, enclosed in parentheses, with other forms:

vary * index + (IF index > limit THEN vary * 2 ELSE vary * 3)
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CONDITIONAL EXPRESSIONS

A conditional expression specifies a rule for establishing the
relationship between values. It has a general form and a group
comparison form.

General Form

The general form of conditional expression is:

[ NOT ] <condition> [ [ % AND } [ NOT ] <condition> ] ... ]
OR }

<condition>

is one or more syntactic elements that represent a single
state. <condition> can consist of the following as described
under "Conditions" in this section:

Relational operator
Arithmetic expression
Relational expression

( <conditional-expression> )
Group comparison form

AND, OR, and NOT are boolean operators:
AND produces a true state if both <conditions> are true.

OR produces a true state if either <condition> is true.
NOT tests <condition> for a false state.

Examples of conditional expressions are:

a !<condition>

NOT a INOT <condition>

a OR b !<condition> OR <condition>

a AND b !<condition> AND <condition>

a AND NOT b OR c l<condition> AND [NOT] <condition> ...
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Conditions

A <condition> is one of the following:

e Relational operator——An operator (<, =, >, <=, >=, <>, '<' '=",
'>', '<=', '>=', or '<>') that tests a condition code (see "Test1ng
Hardware Indicators" in this section)

e Arithmetic expression--general, assignment, CASE, or IF-THEN-ELSE
form discussed previously in this section

Any arithmetic expression used as a condition must evaluate to an
INT value. If it evaluates to a value of any other type, use a
relational expression. (See examples of conditions below.)

The condition is true if the value of the arithmetic expression
contains a nonzero value.

e Relational expression--Two general arithmetic expressions connected
by a relational operator

e Conditional expression--The general form enclosed in parentheses

e Group comparison form of conditional expression--See "Group
Comparison Form" in this section

Examples of conditions are:

<condition> Example Description

Relational IF < THEN ... Expression is true if condition code
operator setting is CCL

Arithmetic IF a THEN ... Expression is true if condition "a"
expression contains nonzero value; "a" must be

type INT or STRING

Relational IF a <> OF "a" is type FIXED; expression is true
expression THEN ... if "a" contains a nonzero value
IF a=5> Expression is true if "a" equals "b"
THEN ...
(<conditional- IF NOT (b OR c) Expression is true if both "b" and
expression>) THEN ... "c" are false; the parenthesized
condition evaluates first, then NOT
is applied
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Testing Hardware Indicators

The state of hardware indicators (condition code, carry, and overflow)
are affected by arithmetic and conditional operations and most file
system calls. 1If you are checking a hardware indicator, do so before
another arithmetic operation occurs in the program.

The condition code setting indicates if the result of an operation is
a negative value (CCL), a 0 (CCE), or a positive value (CCG). After
an assignment statement, the indicator reflects the new value in the
variable. To check thlS 1nd1cator, use a relational operator in a
conditional expression, as in the example "IF < THEN . . . .

The carry setting indicates if a carry out of bit 0 occurred. To
check this indicator, use the standard function $CARRY in a
conditional expression, as in the example "IF $SCARRY THEN . . . ."

The overflow setting indicates if a division by 0 occurred or if the
result of a signed arithmetic operation exceeds the number of bits
allowed by the data type. An overflow causes an interrupt to the
operating system overflow trap handler. To check the overflow
indicator, turn off the overflow trap bit (bit 8) in the ENV register,
then use the standard function $OVERFLOW in a cenditional expression,
as in the example "IF NOT $OVERFLOW THEN . . . ."

Assigning Conditional Expressions

Usually conditional expressions direct program execution without
returning a value as shown in previous examples. However, if you
assign a conditional expression to a variable, TAL returns a -1 for
the true state and a 0 for the false state.

1. This example assigns the result of a comparison to a variable:

INT neg := -1; 'Value = %177777

INT pos := 1; !Value = %000001

INT result;

result := neg < pos; !Signed comparison produces -1
result := neg '<' pos; !Unsigned comparison produces 0

2. This example produces a -1 if either "x" or "y" is a ncnzero value
(true), or a 0 if both "x" and "y" are zeros (false):

INT x, y, answer;
answer := x OR y; IAssigns -1 or 0 to "answer"
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Group Comparison Form

The group comparison form of conditional expression performs an
unsigned comparison of a group of contiguous bytes or words with
another group of contiquous bytes or words or with a constant.

The syntax for the group comparison form is:

<varl> <rela-operator> { <var2> FOR <count> [ -> <next-addr> ] }
{ <constant> }

<varl>

is the name of a variable, with or without an index, to
compare to <var2> or <constant>., <varl> can be a simple
variable, array, pointer, structure, substructure, structure
item, or structure pointer, but not a read-only array.

<rela-operator>

<, '=t,

is a relational operator (<, =, >, <=, >=, <>,
'>', '<=', '>=', '<>') as defined in Table 13-2.

<varl>

is the name of a variable, with or without an index, to which
<varl> is compared. It can be a simple variable, array,
read-only array, pointer, structure, substructure, structure

item, or structure pointer.

<count>

is a positive INT arithmetic expression of the general form
that specifies the number of bytes or words in <var2> to
compare. <count> is in bytes if <var2> is a STRING variable
or pointer or a substructure. It is in words if <var2> is a
non-STRING pointer or variable or a structure.
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<next-addr>
is a variable to contain the address of the first byte or
word in <varl> that does not match the corresponding byte or
word in <var2>, The address returned is:

e a 32-bit byte address if either <varl> or <var2> has an
extended address

e 3 16-bit byte address if <varl> and <var2> have standard
byte addresses

e a 16-bit word address if <varl> and <var2> have standard
word addresses

<constant>

is a numeric or character string constant or a constant list
to which <varl> is compared.

The system treats the elements being compared as unsigned values.
After a comparison, the condition code setting is:

(cCcL) if <varl> '<' <var2>
(CCE) if <varl> = <var2>
(CCG) if <varl> '>' <var2>

Vi A

The following rules apply:

e If neither <varl> or <var2> are extended, both must have 16-bit
byte addresses or both must have 16-bit word addresses.

e If <varl> and <var2> are word addressed, they can be different data
types. The number of elements compared depends on the data type of
<var2>.

e You can compare byte-addressed data only with byte-addressed data
or with constants. However, you can compare data pointed to by
an extended STRING pointer with data of any type.

For INT(32) or FIXED variables, the system performs a word comparison,
and <next-addr> might not point to an element boundary.
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Examples

1. The following example compares two arrays:
inc~array = file”name FOR 9
2. This example compares an array to a constant list:
IF file*name = [ "$RECEIVE" , 8 * [" "]] THEN . . .
3. This example uses an arithmetic expression for <count>:
IF in~array <> compare”mask FOR (2 * some~vary / 3) THEN ., . .

4, The following example is a group comparison using the optional
<next-addr> variable:

INT .s”array [0:11] :
.d~array [0:11] :
.pointer;

= "$SYSTEM SYSTEM MYFILE ",
= "SSYSTEM USER MYFILE ",

IF d~array = s™array FOR 12 -> @pointer THEN . . .

The comparison stops with element [4]; "pointer" contains the
address of "d~arrayl[4]1", as follows:

012345...
s*array ---> $SYSTEM SYSTEM MYFILE
d~array ---> $SYSTEM USER MYFILE

You can then use the address in "pointer" to determine the number
of array elements that matched:

n := @pointer '-' @d~array; 1"n" gets 4 (fifth element)
5. These examples mix group comparisons with other conditions:

IF length > 0 AND name = user FOR 8 AND NOT abort THEN, . . .
IF (file = "TERM" OR file = "term") AND mode = 5 THEN . . .

6. This example compares two arrays then tests the condition code
setting to see if the element in "d~array" that stopped the
comparison is less than the corresponding element in "s”array":

IF d~array = s”array FOR 10 -> @pointer THEN

BEGIN !{They matched
!'Do something
END
ELSE
IF < THEN !{"pointer" points to element of
!Do something else ! "d~array" that is less than the

! corresponding element of "s”array"
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SECTION 14

BIT OPERATIONS

TAL allows you to access bit fields of arbitrary size and location.
You can access individual bits or groups of bits to perform the
following operations:

e Bit extraction--Accesses a bit field
e Bit deposit--Assigns a value to a bit field
e Bit shift--Shifts a bit field to the left or right

For information on the precedence of bit operations, see Table 13-4
in Section 13, "Expressions."
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BIT EXTRACTION

Bit extraction lets you access individual bits or groups of bits.

The syntax for the bit extraction form is:

<primary> . "-" <left-bit> [ : <right-bit> ] ">"

<primary>
is as described in Section 13 under "Arithmetic Expressions,”
except that it must be a STRING or INT value. Bit extraction
does not alter <primary>.

<left-bit>
is an INT constant specifying the left bit of the bit field.
If <primary> is type STRING, bit <8> is the leftmost bit you
can extract, because the system right justifies STRING values
as if they were 16-bit quantities.

<right-bit>

is an INT constant specifying the right bit of the bit field.
<right-bit> must be equal to or greater than <left-bit>.

Examples of Bit Extractions

1. The following example shows an assignment where the bits are
extracted from an array element:

LITERAL len = 8;
INT vary;
INT arrayl[0O:len - 1]

vary := arrayl[8].<8:15>;
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2. The following example shows an assignment where bits are extracted
from an arithmetic expression. Two numbers are added together,
and bits <4> through <7> of the total are assigned to "result".

INT result;

INT numl := 51;

INT num2 := 28;

result := (numl + num2).<4:7>;

3. The following example shows bit extraction used in a conditional
expression. It checks bits <0> through <7> for "A":

INT word;
IF word.<0:7> = "A" THEN ... ;

4, The following example shows bit extraction used in a conditional
expression. It checks bit <15> for a nonzero value:

STRING var;

IF var.<15> THEN ... ;
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BIT DEPOSIT

Bit deposit lets you assign a value to an individual bit or a group of
bits using an assignment statement.

The syntax for the bit deposit form is:

<variable> . "<" <left-bit> [ : <right-bit> ] ">"

:= <expression> ;

<variable>

is a STRING or INT variable.

<left-bit>

is an INT constant specifying the left bit of the bit field.
For STRING variables, the leftmost bit you can specify is <8>.

<right-bit>

is an INT constant specifying the right bit of the bit field.
<right-bit> must be equal to or greater than <left-bit>.

<expression>

is an INT arithmetic or conditional expression.

The bit deposit field is on the left side of the assignment operator
(:=). The bit deposit operation changes only the bit deposit field.
If the value on the right side has more bits than the bit deposit
field, the system ignores the excess high-order bits when making the
assignment.

14-4 “j 82581 A00 3/85



BIT OPERATIONS
Bit Deposit

Examples of Bit Deposit

1. The following example replaces bits <10> and <11> with zeros:

INT old := -1; !1"old" 1111111111111111

0ld.<10:11> := 03 1"old"

1]

1111111111001111

2. This example sets bit <8>, the leftmost bit of "strng", to 0:
STRING strng;
strng.<8> := 0;

3. In this example, the value %577 is too large to fit in bits <7:12>

of "vary". The system truncates %577 to %77 before performing the
bit deposit:

INT vary := %125252; t"vary" = 1010101010101010
vary.<7:12> := %577; 1%577 = 0000000101111111
!"vary" = 1010101111111010

4. This example replaces bits <7:8> of "new" with bits <8:9> of

"Old" :
INT new := -1; !"new" = 1111111111111111
INT old := O0; t"old" = 0000000000000000
//
new.<7:8> := 01d.<8:9>; !"new" = 1111111001111111
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BIT SHIFT

The bit-shift operation shifts a bit field a specified number of
positions to the left or right.

The syntax for the bit-shift form is:

<primary> <shift-operator> <positions>

<primary>

is as described in Section 13 under "Arithmetic Expressions,"
except that it must be type STRING, INT, or INT(32). The
system treats STRING variables as 16-bit quantities. For types
STRING and INT, the shift occurs on one word; for type INT(32),
the shift occurs on two words. Shifts do not alter <primary>.

<shift-operator>

is an operator shown in Table 14-1.

<positions>

is an INT <primary> indicating the number of bit positions to
shift the bit field. The system uses <positions> mod %400.

The following usage considerations apply:
o The bit shift operation sets the condition code indicator.

¢ To multiply by powers of two, shift the field one position to the
left for each power of 2.

¢ To divide by powers of two, shift the field one position to the
right for each power of 2.

¢ To convert a word address to a byte address, use an unsigned shift
operator.
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Table 14-1. Bit-Shift Operators
Operator Function Result
T<<! Unsigned left shift Zeros fill vacated bits from the

through bit <0>
T>>! Unsigned right shift

<< Signed left shift
through bit <1>

right
Zeros fill vacated bits from the left

Sign bit (bit <0>) unchanged; zeros
fill vacated bits from the right

>> Signed right shift Sign bit (bit <0>) unchanged; sign

bit fills vacated bits from the left

Examples of Bit Shifts

1. This example of an unsigned left shift shows how zeros fill the
vacated bits from the right:

0 010 111 010 101 00O

/ /

1 011 101 010 100 000

Initial value

l<<| 2

2. This example of an unsigned right shift shows how zeros fill the
vacated bits from the left:

1111 111 010 101 000

\

0 011 111 110 101 010

Initial value

l>>| 2

3. This example of a signed left shift shows how zeros fill the
vacated bits from the right, while the sign bit remains the same:

1 011 101 010 100 000
/ /
1 111 010 101 000 000

Initial value =

<< 1

4, This example of a signed right shift shows how the sign bit fills
the vacated bits from the left:

1 111 010 101 000 000

NN

1111 111 010 101 00O

Initial value =

>> 3 =
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OPERATIONS
Shift

This example shows multiplication and division by powers of two:

a := b << 1; IMultiply by 2
a := b << 2; !Multiply by 4
a := b > 3; !Divide by 8

a := b > 4; !{Divide by 16

a := b << 5; 'Multiply by 32
a := b > 6; !Divide by 64

This example uses an unsigned bit shift to convert the word
address of an INT array to a byte address and loads the byte
address in a STRING pointer. This allows byte access to the
INT array.

INT a(0:5]; 'Declares INT array

STRING .p := @a[0] '<<' 1; !Declares and initializes STRING
! pointer with array byte address
! resulting from the bit shift

pl3] := 0; !Assigns 0 to fourth byte of "a"

This example shifts the right byte of a word into the left byte
position and sets the right byte to zero:

INT b; !Declares variable
b := b '<<' 8; !1Shifts right byte intc left byte

This example declares and initializes an extended pointer with the
lowest address in an extended segment (see also Appendix A):

STRING .EXT esp := 4D '<<' 17;
This example declares an extended pointer and assigns to it an
extended address in the current user code segment (see also
the $DBLL function in Section 17):

INT .EXT p; !Declares extended pointer

@ := (SDBLL (2,7)) '<<' 1; !Assigns address in code segment
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This section
execution by

This section
e A summary

e Rules for

SECTION 15

STATEMENTS

describes executable statements, which control program
accessing and modifying the program's data.

contains:
of statements, organized by functional category

forming statements

e Syntax for each statement, listed in alphabetic order

SUMMARY OF STATEMENTS BY FUNCTION

Statements are summarized within the following categories:

e Program Control--Directs the flow of program execution

e Data Trans

fer--Stores or transfers data within a program

e Data Scan—--Searches scan area for a test character

e Machine Instruction-—-Relates to machine instructions

482581 AQ00 3/85
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Program Control

ASSERT conditionally invokes error-handling procedure.

CALL invokes procedure or subprocedure.

CASE executes statement based on an index value.

DO-UNTIL executes posttest loop until true condition occurs.

FOR-DO executes pretest loop for <n> times.

GOTO unconditionally branches to label within procedure or
subprocedure.

IF-THEN- executes THEN or ELSE statement based on true or false

ELSE state.

RETURN returns from procedure or subprocedure to caller. For

functions, also can specify returned value.

WHILE-DO executes pretest loop during true condition.

Data Transfer

Assignment stores a value in a variable.

Move moves group of items from one location to another.
STACK loads value on register stack.
STORE stores register stack element into variable.
Data Scan
RSCAN searches scan area, right to left, for test character.
SCAN searches scan area, left to right, for test character.
15-2
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Machine Instruction

CODE specifies machine codes for inclusion in object code.
DROP frees index register or removes label from symbol table.
USE reserves index register for user manipulation.

RULES FOR FORMING STATEMENTS

An executable statement can be a single statement or a compound
statement. A compound statement is a BEGIN-END construct that groups
statements to form a single logical statement.

The syntax for a compound statement is:

BEGIN
[ <statement> ; 1 . . .
END [ ; 1]

BEGIN

indicates the start of the compound statement.

<statement>

is an executable statement.

END

indicates the end of the compound statement.

; (semicolon)

is a statement separator.
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You can use compound statements anywhere you can use a single
statement. You can nest them to any level in statements such as IF,
DO, FOR, WHILE, or CASE to control execution of multiple operations.

The following example shows a null compound statement:

BEGIN
END;

The following example shows a compound statement that contains
multiple statements:

BEGIN
a := b + c;
d := %B101;
f :=d - e;
END;

Separating Statements

Rules for using semicolons as separators are:
e A semicolon must separate each pair of statements.

e A semicolon is optional before the reserved word END, if END
terminates a compound statement.

® A semicolon must not precede an ELSE or UNTIL keyword.
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ASSERT STATEMENT

The ASSERT statement conditionally invokes the procedure named in an
ASSERTION compiler control directive.

The syntax for the ASSERT statement is:

ASSERT <assert-level> : <expression>

<assert-level>

is an integer in the range 0 through 32767 that is higher
than the <assertion-level> specified in an ASSERTION
directive. If the <assert-level> is lower than the
<assertion-level>, the ASSERT statement has no effect.

<expression>

is a conditional expression that tests a program condition and
evaluates to a true or false result.

The ASSERT statement is a debugging or error-handling tool. You use
it with the ASSERTION directive as follows:

e Place an ASSERTION directive in the source code, naming an
error-handling procedure and specifying an <assertion-level>.

e Place an ASSERT statement wherever you want to invoke the error-
handling procedure if an error occurs, specifying an <assert-level>
higher than the <assertion-level> of the ASSERTION directive.

o When the error occurs, the ASSERTION directive invokes the
procedure.

e After you debug the program, you can nullify the ASSERT statement
by raising the <assertion-level> of the ASSERTION directive higher
than the <assert-level> of the ASSERT statements,

If ASSERT statements that specify the same condition have the same
<assert-level>, you can nullify certain levels of ASSERT statements.

For more information on the ASSERTION directive, see Section 20,
"Compiler Operation."
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Example

This example invokes the operating system DEBUG procedure whenever a
SCARRY or $OVERFLOW condition occurs:

?ASSERTION = 5, DEBUG {Effective for all ASSERT
. ! statements

?SOURCE $SYSTEM.SYSTEM.EXTDECS (DEBUG)
SCAN array WHILE " " -> @pointer;
ASSERT 10 : S$CARRY;

ASSERT 10 : $CARRY;

ASSERT 20 : SOVERFLOW;

TAL generates instructions that check the condition code indicators
and invoke DEBUG.

In this example, changing <assertion-level> to 15 nullifies the $CARRY
condition. Changing it to 30 nullifies all of the ASSERT statements.
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ASSIGNMENT STATEMENT

The assignment statement assigns a value to a previously declared
variable.

The syntax for the assignment statement is:

<variable> := <expression>

<variable>

is the identifier of a variable (simple variable, array
element, pointer, or structure data item), with or without a
bit deposit field and/or index. If <variable> is a pointer,
you can use the @ symbol to update its contents as described
in Section 10.

<expression>

is an arithmetic or conditional expression of the same type
as <variable>, except as noted under "Mixing Types." It can
be a bit extraction value, but not a constant list.

For information on assignments to pointers, see Section 10; for
assignments to structures and structure pointers, see Section 11.

Mixing Types
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Assignment Statement

ASSIGNMENT STATEMENT

The assignment statement assigns a value to a previously declared
variable.

The syntax for the assignment statement is:

<variable> := <expression>

<variable>

is the identifier of a variable (simple variable, array
element, pointer, or structure data item), with or without a
bit deposit field and/or index. If <variable> is a pointer,
you can use the @ symbol to update its contents as described
in Section 10.

<expression>
is an arithmetic or conditional expression of the same type

as <variable>, except as noted under "Mixing Types." It can
be a bit extraction value, but not a constant list.

For information on assignments to pointers, see Section 10; for
assignments to structures and structure pointers, see Section 11.

Mixing Types

The data type of the value and the variable must match except in the
case of INT and STRING types.

If you assign an INT value to a STRING variable, the system left
justifies the right byte of the INT value. It discards the left byte
of the value.

If you assign a byte character string to an INT variable, the system
stores the value in the right byte of the word, with a 0 in the left
byte. (To store a character in the left side, assign the character
and a space, as in "A ").
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To mix types other than INT and STRING, use a type-transfer standard
function, described in Section 17.

FIXED Variables

When you assign a value to a FIXED variable, the system scales the
value up or down to match the <fpoint> value. If the system scales
the value down, you lose some precision depending on the amount of
scaling. The following example attempts to assign a value with three
decimal places to a FIXED(2) variable:

FIXED(2) a;
a := 2,348F ISystem scales value to 2.34F

If the ROUND directive is on, the system scales the value as needed,
then rounds it up or down. For example, if you assign the value
2.3456 to a FIXED(2) variable, the system scales the value by one
digit, then rounds it to 2.35.

Examples of Assignment Statements

1. This example shows various assignment statements:

STRING a:; !{Declarations

INT b;

REAL c;

FIXED d;

a := 255; !Assignment statements

b :=a + 10;

c := 36.6E-3;

d := $FIX (c); IType-transfer function returns

! FIXED value from REAL value

2. In this example, the declaration is equivalent to the three
assignment statements below it:

INT .b[0:2] := ["ABCDEF"}I; !Declaration with constant list
b[0] := "AB"; !Assignment statements

b[1] := "CD"; ! cannot use constant lists
bf{2] := "EF";
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3. This example shows what happens when you assign an INT value to a
STRING variable:

STRING bytel;
"B" ? 1"A" is lost; right half
bytel := "AB"; ! retains old value

4. This example shows that a character assigned to an INT variable
is right justified unless you also assign a space:

INT intl;
0 "A" !"A"
intl := "A";
intl := "A " waw p"p "
: ; !

5. In this example, the multiple assignment statement is equivalent
to the three separate assignments below it:

INT intl;
INT int2;
INT int3;
INT vary := 16; !Declarations

intl := int2 := int3 := vary; !Multiple assignment
intl :=
int2 :=
int3 :=

vary; !Separate assignments

[
0
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CALL STATEMENT

The CALL statement invokes a procedure, subprocedure, or entry point,
and optionally passes parameters to it.

The syntax for the CALL statement is:

CALL <identifier> [ ( <param> [ , <param> ] ... ) ]

<identifier>
is the name of a previously declared procedure, subprocedure,
or entry point.

<param>

is a variable or an expression that defines an actual
parameter to pass to <identifier>.

You invoke procedures and suprocedures using the CALL statement,
whereas you invoke functions by using their names in expressions. A
CALL statement can also invoke a function. 1In this case, the caller
ignores the returned value of the function.

Actual parameters are value or reference parameters and are optional
or required depending on the procedure or subprocedure declaration,
as described in Section 16,

If you omit any optional parameters, use a place-holding comma for
each omitted parameter except the rightmost ones. TAL does not check
for optional parameters.

When you invoke a procedure, the operating system saves the
environment of the calling procedure or subprocedure and executes the
called procedure. When you invoke a subprocedure, the operating
system saves only the location to which control is to return after the
subprocedure completes execution.

After the called procedure or suprocedure completes execution, the

program returns to the statement following the CALL statement, as
shown in Figure 15-1.
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CALL tax”?proc (item, rate, result); l

next <statement> ;
Execute “tax*proc”

Return J

$5013-008

Figure 15-1. CALL Statement Execution

Examples

1. This example invokes a procedure that has no parameters:
CALL error”~handler;

2. This example shows all parameters included:
CALL compute~tax (item, rate, result);

3. This example shows place-holding commas for omitted optional
parameters:

CALL FILEINFO (filenum, error, , dev®num, , , eof ) ;

4, This example uses place-holding commas and comments in place of
omitted parameters:

CALL FILEINFO (filenum, error, !filename! , dev”num,
!dev~type! , l!ext~size! , eof ) ;
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CASE STATEMENT

The CASE statement executes one of a choice of statements, based on an
index value.

The syntax for the CASE statement is:

CASE <index> OF

BEGIN
[ <statement> ] ; 'For <index> = 0
[ <statement> ] ; IFor <index> = 1
[ <statement> ] ; {For <index> = <n>
[ OTHERWISE [ <statement> ] ; ]
END
<index>

is an INT arithmetic expression that selects the statement to
execute,

<statement>

is any executable statement, including a compound or CASE
statement.

OTHERWISE
indicates the statement to execute for any case outside the

<index> range. If you omit the OTHERWISE clause and an
out-of-range case occurs, execution is unpredictable.

The CASE statement lets you make multiple branch decisions in
applications where selection is based on a range of index values.
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L — The following rules apply:

If a case in the <index> range has no action, you must specify
either a null statement (a semicolon with no <statement>) or a null
compound statement.

If a <statement> consists of more than one statement, you must use
a compound statement.

If the same <statement> applies to multiple <index> values, you
only need to code the <statement>, preceded by a label, for one
<index> value. Then you can use GOTO statements to the label for
the other <index> values to which the <statement> applies.

Figure 15-2 shows how the CASE statement works.

l

CASE <index> OF

BEGIN

» | <index> = !

» 10! <statement>;
» 11! <statement>;
» 12! <statement>;
» 13! <statement>;

» OTHERWISE < statement>;
END;

!

next < statement>;

$5013-009

Figure 15-2. CASE Statement Execution

15-13
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Examples

1. In this example, if "vary" is 0, the first statement executes;
if "vary" is 1, the second statement executes. For any other
case, the third statement executes.

INT vary;
INT vary0;
INT varyl;

CASE vary OF

BEGIN
vary0 := 0; !First statement
varyl := 1; 1Second statement
OTHERWISE
CALL error~handler; !Third statement
END;

2. This example selectively moves one of several messages into an
array:

PROC mséAhandler (index);

INT index; !Index value

BEGIN
LITERAL len = 80; !Length of array
STRING .a™array[0O:len - 1]; !Destination array

CASE index OF
BEGIN !Move Statements
10! a”™array "Training Program";
11! anarray "End of Program";
12! a™array "Input Error";
131 a”array "Home Terminal Now Open";

o nn

- a e -
ee se e» oo

OTHERWISE
a~array ':=' "Bad Message Number";
END; 'End of CASE statement
END; {End of procedure
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CODE STATEMENT

The CODE statement lets you specify machine-level instructions to
compile into the object program.

The syntax for the CODE statement is:

CODE ( <instruction> [ ; <instruction> ] ... )

<instruction>

is a machine instruction in one of six forms:

No. Form

1 <mnemonic>

2 <mnemonic> [ . | @ ] <identifier>

3 <mnemonic> <constant>

4 <mnemonic> <index-register>

5 <mnemonic> [ . | @ ] <identifier> [ , <index-register> ]
6 <mnemonic> <constant> [ , <index-register> ]

<mnemonic>

is an instruction code (described in the System
Description Manual for your system).

<identifier>

is the name of a previously declared object. For a PCAL,
XCAL, or SCAL instruction, it is a procedure name. For a
branch instruction, it is a label. (The procedure name
must be resolvable by the time the executable object file
is created.)

An indirect <identifier> specified without @ generates
instructions for an indirect reference through <identifier>.
<constant>

is an INT constant of the same size as the instruction
field.
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<index-register>
is an INT constant specifying either:
e the number of an index register in the range 5 through 7

e an identifier associated with an index register in an
USE statement

If you omit <index-register>, no indexing occurs.

The form of the CODE statement correlates to the requirements of each
instruction code as described in the System Description Manual for
your system. You must include all required operands for each machine
instruction,

TAL inserts indirect branches around instructions emitted in a CODE
statement, if needed. Normally, TAL emits these values after the
first unconditional branch instruction occurs.

Pseudocodes

In addition to the instruction codes described in the System
Description Manual, TAL recognizes the following pseudocodes as part
of the <mnemonic> set:

e CON--This code is a form 3 instruction that emits inline simple or
character string constants and indirect branch locations.

e FULL--This code is a form 1 instruction that signals TAL when the
register stack is full and sets the TAL RP counter to 7. TAL emits
no code for this mnemonic,

Examples

1. The following example turns off traps:

CODE ( RDE; ANRI %577; SETE ); !Turn off traps
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2. The following example scans from a code-relative address to the
test character 0, then saves the next address:

STRING .ptr;

STACK @ptr, 0;
CODE ( SBU %640 );
STORE @ptr;

3. The following are examples of the six instruction forms:

CODE ( ZERD; IADD ); !Form 1
CODE ( LADR a; STOR .b ); !Form 2
CODE ( LDI 21; ADDI -4 ); !Form 3
CODE ( STAR 7; STRP 2 ); |Form 4
CODE ( LDX a,7; LDB .stg, x ); IForm 5
CODE ( LDXI -15,5 ); !Form 6

4, This example emits %125 in the next instruction location:
CODE ( CON %125 );

5. This example emits 14 words of constant information starting in
the next instruction location:

CODE ( CON "the con pseudo operator code" );:

6. This example emits a code-relative pointer to "labelid" in the
next instruction location:

CODE ( CON @labelid ):
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DO STATEMENT

The DO statement is a posttest loop that executes a statement until a

specified condition becomes true.

The syntax for the DO statement is:

DO [ <statement> ] UNTIL <expression>

<statement>

is any executable statement (including compound, null, and
nested DO statements).

<expression>

is an arithmetic or conditional expression.

If <expression> is always false, infinite looping occurs unless some

event in the DO loop causes an exit (such as a RETURN statement).

Figure 15-3 shows the action of the DO statement.

]

DO < statement> UNTIL

< expression>;

FALSE

l

next < statement>;

§5013-010

Figure 15-3., DO Statement Execution
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Examples

1. This example loops until it clears each array element with a 0:

STRING .array[0:49];
DO array [index := index + 1] := 0 UNTIL index = limit;

2, This example tests each array element until it finds a character:
DO index := index + 1 UNTIL S$ALPHA (arraylindex]);
3. This example shows a multiline DO statement:
DO
BEGIN
i :=1 + 1;

CALL check”error (error);

END !No semicolon here
UNTIL i > 15 OR error = true;
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R e

DROP STATEMENT P
The DROP statement disassociates an identifier from either (1) a label
or (2) an index register that you reserved in a previous USE
statement.
The syntax for the DROP statement is:

DROP <name>

<name>

is the identifier of a label or of an index register
that you reserved in a previous USE statement.

Dropping Labels -~
e You can drop a label only if you have either declared it in a label

declaration or used it in a statement.
¢ Before you drop a label, be sure there are no further references

to the label. If a GOTO appears after the drop, an error occurs.
Dropping Registers
e The name must be associated in a USE statement.
e If you reserve an index register for a FOR loop, do not drop the

register within the scope of the FOR loop.
e Once you drop a name, you need a new USE statement to reference it.

—_—,
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s Examples

1.

2.

This example uses and drops a label within a DEFINE declaration:

DEFINE loop =

lab: !Uses label name
IF a=>»
THEN
GOTO lab; !Branches to label
DROP lab; #; !Frees label name for reuse

This example reserves, uses, and drops an index register:

LITERAL limit = 100;

INT arrayl[0:1limit-1]; !{Declarations

USE x; 'Reserves index register; names it "x"
FOR x := 0 TO limit - 1 DO

array[x] := 0; 'Uses index register to clear array
DROP x; !Drops index register
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FOR STATEMENT

The FOR statement is a pretest loop that repeatedly executes a
statement while incrementing or decrementing a variable until
the variable is greater than or less than a given limit.

The syntax for the FOR statement is:

FOR <variable> := <initial> { TO } <limit> [ BY <step> ] DO
{ DOWNTO }

[ <statement> ]

<variable>
is the identifier of an INT variable (simple variable, array
element, pointer, or structure data item).
<initial>
is an INT arithmetic expression that defines the beginning
value of <variable>.
TO
specifies that <step> is added to <variable> each time through
the loop until <variable> exceeds <limit>.
DOWNTO
specifies that <step> is subtracted from <variable> each time
through the loop until <variable> is less than <limit>,
<limit>

is an INT arithmetic expression. Looping stops when
<variable> passes <limit>,
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<step>
is an INT arithmetic expression to add to or subtract from
<variable> each time <statement> executes. The default is 1.
<statement>

is any executable statement, including a compound or null
statement or a nested FOR statement.

Because the FOR statement tests <variable> before looping, if
<variable> passes <limit> on the first test, the loop never executes.

You must enter a FOR statement only at the beginning, not at the
<statement>. You can nest FOR loops to any level.

Figure 15-4 shows the action of the FOR statement.

Optimizing FOR Loops

TAL emits more efficient machine code (using the BOX instruction) if
you use a reserved index register for <variable> in the FOR statement,
as follows:

1. Specify a USE statement to reserve and assign a name to an index
register.

2. In the FOR statement:
--Specify the name of the index register for <variable>.
--Specify a 1 (the default) for <step>.
--Specify the TO clause, not the DOWNTO clause.

3. Do not modify the register stack unless you save and restore it
before the end of the loop.

4. Do not drop the reserved index register (using the DROP statement)
until after the FOR statement completes executing.
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5. If you include procedure calls in the FOR loop, TAL does not emit

more efficient code with the USE statement.

Instead, TAL must

emit code to save and restore the registers associated with the
BOX instruction before and after the CALL statement.

FOR <variable> := <initial>

Calculate <limit> and < step > ——————p
(if not constants)

A

<variable >

DO < statement >

Increment or decrement
<variable> BY <step>

Is

past
<limit>
?

TRUE

FALSE

next < statement>;

$§5013-011

Examples

Figure 15-4.

FOR Statement Execution

1. This FOR loop clears each array element:

LITERAL len =

100;

STRING .arrayl[0O:len - 1];
INT index;

FOR index :=
arrayl[index] := ;

15-24

0 TO len - 1 DO

!Declarations

tUses default <step> of 1
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This example optimizes the FOR loop shown in Example 1:

LITERAL len = 100;

STRING .array[O:len - 1]; !Declarations
USE x; !Reserve index register
For x (= 0 TO len - 1 DO
array[x] := " ";
DROP x; IRelease index register

This example uses the DOWNTO clause and a compound statement:

LITERAL len = 200;

INT .arrayl[0O:len - 11;

INT index;

INT answer; !Declarations

FOR index := len - 1 DOWNTO 0 BY 5 DO
BEGIN !Begin compound statement
answer := answer + index:
arraylindex] := answer + index;
END; !End compound statement

This nested FOR statement treats "multiples" as a two-dimensional
array. It fills the first row with multiples of 1, the next row
with multiples of 2, and so on:

INT .multiples[0:10*%10-1];
INT row;
INT column;

FOR row := 0 TO 9 DO
FOR column := 0 TO 9 DO
multiples [row * 10 + column] := column * (row + 1);
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GOTO STATEMENT

The GOTO statement unconditionally transfers program control to a
labeled statement.

The syntax of the GOTO statement is:

GOTO <label-name>

<label-name>

is a label you previously associated with a statement. It
cannot be an entry point.

A GOTO statement in a procedure can branch only to a label in the same
procedure; it cannot branch to a label in a subprocedure. A GOTO
statement in a subprocedure can branch within the same subprocedure or
from the subprocedure to the calling procedure but not to another
subprocedure.

Figure 15-5 shows the action of the GOTO statement.

— GOTO <label-name>;

<label-name> :
» < statement>;

$5013-012

Figure 15-5., GOTO Statement Execution
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s Example

1. 1In this example, the GOTO statement transfers program execution to
the statement labeled "calc™a":

GOTO calc™a;
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IF-THEN-ELSE STATEMENT

The IF-THEN-ELSE statement executes one of a pair of statements based
on whether a condition is true or false.

The syntax for the IF statement is:

IF <conditional-expression>
THEN

[ <statement> ]
[ ELSE

[ <statement> ] ]

<conditional-expression>

is a conditional expression.
THEN <statement>

specifies the statement to execute if <conditional-expression>
is true.

<statement> can be any executable statement,
including a compound or IF statement. If you omit

<statement>, no action occurs for the THEN clause.

ELSE <statement>

specifies the statement to execute if <conditional-expression>
is false.

<statement> can be any executable statement,
including a compound or IF statement. If you specify ELSE

with no <statement>, no action occurs for the ELSE clause.

TAL sets no limit on nested IF conditions.

15-28
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The IF-THEN form executes as shown in Figure 15-6.
form executes as shown in Figure 15-7.

The IF-THEN-ELSE

<conditional-
expression >

THEN <statement >

next <statement>;

S§5013-013

Figure 15-6.

IF-THEN Form Execution

< conditional-
expression >

TRUE

THEN <statement>

+» ELSE <statement>

1

next < statement>;

85013-014

Figure 15-7.
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THEN-ELSE Pairing

The innermost THEN clause pairs with the closest ELSE clause, and
pairing proceeds outward. In the following examples, the ELSE clause
belongs to the second THEN clause (IF "condition2"). The

statements shown are equivalent, but the THEN-ELSE pairing is clearer
in the example on the left:

Recommended Format Ambiguous Format
IF conditionl IF conditionl THEN
THEN IF condition2 THEN
IF condition2 stmtl
THEN ELSE
stmtl stmt2;
ELSE
stmt2;

To override the THEN-ELSE pairing, you can use the BEGIN or END
keyword in a compound statement. Using the same example, if you
insert a BEGIN-END pair as shown below, the ELSE clause belongs to the
first THEN clause (IF "conditionl"):

IF conditionl
THEN
BEGIN !Begin compound statement
IF condition2
THEN
stmtl
END 'End compound statement (no semicolon here)
ELSE
stmt2;

Examples

1. This example checks a variable for a nonzero value:
INT var~item;
IF var~item <> 0

THEN
CALL error~handler;
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This example checks the hardware condition code setting and calls

a message-printing procedure when an error occurs:

CALL READ (filenum,...);
IF <
THEN
BEGIN
CALL print~error;
CALL STOP;
END;

!Sets condition code on error
IChecks the condition code

1Call message-printing procedure

3. This example of the IF-THEN-ELSE form compares two arrays:

IF new™array = old™array FOR 10

THEN
item~ok :

ELSE
item™ok := 0

1

~-e

4, This nested IF statement illustrates THEN-ELSE pairings:

IF a =Db
— THEN
IFc=4d
, ) —— THEN
-’ IF e = f
—— THEN
IF g <= h
— THEN
BEGIN
THEN
[:: result
ELSE
result
END
—ELSE
——ELSE
result := 2
——ELSE
result := 3;

“4 82581 A00 3/85

IF (NOT g > 1) OR (m = n)

tNo statement

INo corresponding ELSE clause
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MOVE STATEMENT

The left or right move statement transfers contiguous bytes, words, or
elements from one location to another.

The syntax of the move statement is:

<destination> {

' } { <source> FOR <count> } [ -> <next-addr> ]
' } { <constant>

<destination>

is the name of the variable, with or without an index, to
which the move begins. It can be a simple variable, array,
pointer, structure, substructure, structure data item, or
structure pointer, but not a read-only array.

indicates a left-to-right sequential move.

indicates a right-to-left sequential move.

<source>

is the name of the variable, with or without an index, from

which the move begins. It can be a simple variable, array,

read-only array, pointer, structure, substructure, structure
item, or structure pointer.

15-32

“4 82581 AQ0 3/85




STATEMENTS
Move Statement

<count>

is a positive INT arithmetic expression that defines the
number of bytes, words, or elements in <source> to move, as
follows. If omitted, TAL assumes a <count> of 1 and issues a
warning.

Simple variable = elements

Array = elements

Structure = words

Substructure = bytes

Structure pointer = bytes if STRING, words if INT
Pointer = elements

<constant>

is a LITERAL, numeric or character string constant, or
constant list to move.

<next-addr>

is a variable to contain the location in <destination> that
follows the last item moved. <next-addr> is:

e a 32-bit byte address if either <source> or <destination>
has an extended address

e a 16-bit byte address if both <source> and <destination>
have standard byte addresses

e a 16-bit word address if both <source> and <destination>
have standard word addresses
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Element Moves

If either <source> or <destination> is extended, the data in either
location can be any type (STRING, INT, INT(32), FIXED, REAL, or
REAL(64)).

If <source> and <destination> have standard addresses, the data in
both locations must be byte addressed, or they must both be word
addressed. If both are word addressed, their data types need not
match and can be INT, INT(32), FIXED, REAL, or REAL(64).

After an element move, <next-addr> might not point to an element
boundary in <destination>.

A concatenated move lets you move more than one <source> or constant
list, each separated by an ampersand (&).

Examples

Examples of structure moves follow examples of element moves.

Examples of Element Moves

1. This example shows a left-to-right move from one array to another:
LITERAL length = 12;
INT .out”array(0:length - 1];
INT .in~array[0:length - 1];
out~array[0] ':=' in~array[0] FOR length;

2. This is a right-to-left quadword element shift by one within an
array. It frees element [0] for new data:

LITERAL upper = 11; !Upper bound (same as length - 1)
FIXED .in”array[O:upper]; !Source and destination array

in~arrayl[upper] '=:' in~arraylupper - 1] FOR upper;
3. This example moves a constant list:

LITERAL len = 10;
STRING .p~array[0:len - 1];

p~array[0] ':=' len * ["-"]; !Moves hyphen into each element
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4., This example moves spaces into the
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first five elements, then uses

<next-addr> as <destination> to move dashes into the next five

elements:

LITERAL len
LITERAL num
STRING .array[O len - 1];

20

STRING .next”addr;
array[O] ':.—..' num ) [" "]
next/\addr ' e = ' num * [ n_n ] :

5. This concatenated move is a fast way to clear

LITERAL length = 100;
INT .array[O:length - 1];

array[0] ':=" "

6. This concatenates and moves three arrays and

LITERAL line~len = 68;
LITERAL date”len = 11;
LITERAL id~len = 11;
LITERAL dp~len = 3;

STRING .line~array[0:line~len -
STRING .date~array[0:date~len -
STRING .id~number[0:id~len - 1]
STRING .dp~num[0:dp~len - 1] :=

" & array[0] FOR length - 1;

!Length of array

!Number of elements
!Destination array
!Pointer for next address

-> @next~addr;

an array:

{Length of array
!Destination array

IClears array
some constants:

!Length of
!Length of

!Length of
!ILength of

destination array
source array 1
source array 2
source array 3

11;

1] := "Feb 1, 1985";
:= "854-70-1950";
ll107ll;

line~array ':=' " DATE: " & date”array FOR date~len
& " IDENTIFICATION: " & id”"number FOR id~len
& " DEPARTMENT: " & dp”~num FOR dp~len;

After execution,

DATE: Feb 1, 1985

/4 82581 A00 3/85

IDENTIFICATION:

"line~array"” contains the following:

854-70-1950 DEPARTMENT: 107
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Examples of Structure Moves

1. This example moves three occurrences of the source structure
to the destination structure:

LITERAL copies = 3; !Number of occurrences

STRUCT .sl[O:copies - 11; !Source structure
BEGIN

INT a;

INT b;

INT c¢;
END;

STRUCT .d (s) [O:copies - 1]; !Destination structure

PROC p;
BEGIN
d ':=' s FOR copies * ((SLEN(s) + 1) '>>' 1);
END; !Word move for structures;
! moves three occurrences

2. This right-to-left move makes room for a new occurrence at the
beginning of a structure:

LITERAL last = 9; !Last occurrence 1

STRUCT t(*); !Template structure

BEGIN
INT
INT
INT
INT

END;

e “e “wo W

— . s

STRUCT .s (t) [O:last]; !Source and destination structure

PROC p:;
BEGIN

s[last] '=:' s[last-1] FOR last * ((SLEN(s) + 1) '>>' 1);
END;
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"d"

{Word move

-’ 3. This example moves three occurrences of a substructure:
LITERAL copies = 3; !Number of occurrences
STRUCT .s;
BEGIN
STRUCT s~sub[0O:copies - 11]; !Source substructure
BEGIN
INT a;
INT b;
END:;
END;
STRUCT .d (s); !Destination substructure
! is within structure
PROC p;
BEGIN
d.s”sub ':=' s.s"sub FOR copies * SLEN(s.s”sub);
END; !Byte move for substructures;
! moves three occurrences
4, This code moves structure occurrences using structure pointers:
STRUCT t (*); ITemplate structure
BEGIN
INT a;
-’ STRING b;
END;
INT .EXT ptr0(t) := %200000D; !{Structure pointer to
! upper 32K
STRING .EXT ptrl(t) := %2000000D; !Structure pointer to start
! of extended segment
PROC p;
BEGIN
ptrl ':=' ptr0 FOR ((SLEN(t) + 1) '>>' 1);
! from upper 32K to start
! of extended segment
ptr0 ':=' ptrl FOR S$SLEN(t); !Byte move from extended
END; ! segment to upper 32K
L
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RETURN STATEMENT

The RETURN statement provides exit points from an invoked procedure or
subprocedure body back to the caller. If the invoked procedure or
subprocedure is a function, it can return a value.

The syntax for the RETURN statement is:

RETURN !Untyped procedure
RETURN <expression> !Function (typed procedure)
<expression>

is an arithmetic or conditional expression of the same type
as the encompassing procedure or subprocedure. <expression>
is the value to return to the caller. Specify <expression>
only when returning from functions.

A procedure or subprocedure returns to the caller when:
» A RETURN statement occurs.

e The invoked procedure or subprocedure finishes execution by
reaching the last END.

In a procedure designated MAIN, a RETURN statement stops execution of
the procedure and passes control to the operating system.

If a function does not contain a RETURN or if the TAL RP counter
setting is 7 (empty register stack), TAL emits a warning. If a
function contains a RETURN, you must specify <expression>. The value
of <expression> goes on the register stack.

For untyped procedures and subprocedures, a RETURN statement is

optional. If you do use a RETURN statement, you cannot include an
<expression> with it.
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Examples

1. This example shows RETURN statements in a function:
INT PROC other (nuff, more);
INT nuff;
INT more;

BEGIN
IF nuff < more

THEN
RETURN nuff * more !Function returns a value
ELSE
RETURN 0;
END;
2. This example show an untyped procedure with a RETURN statement:

PROC another;

BEGIN
INT a,
b;

.

IF a < b THEN RETURN; !'Returns no value

~~e o o

END

“4 82581 A00 3/85
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SCAN STATEMENTS

The SCAN or RSCAN statement searches a scan area for a test character
from left to right or from right to left, respectively.

The syntax for the SCAN and RSCAN statements is:

{ SCAN } <variable> { WHILE } <test-char> [ -> <next-addr> ]
{ RSCAN } { UNTIL }

SCAN

indicates a left-to-right search.

RSCAN

indicates a right-to-left search.

<variable>

is the name of a variable, with or without an index, at
which to start the scan. It can be a simple variable, array,
standard pointer, structure, substructure, structure data
item, or standard structure pointer. The data must be in

the lower 32K area.

WHILE

specifies that the scan continues until a character other than
<test-char> occurs. A scan stopped by a 0 sets the hardware
CARRY bit.

UNTIL

specifies that the scan continues until <test-char> or a 0
occurs. A scan stopped by a 0 sets the hardware CARRY bit.
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<test-char>

is an INT arithmetic expression that evaluates to a maximum of
eight significant bits. If the value is larger than eight
significant bits, execution errors might result.

<next-addr>

is a 16-bit variable to contain the 16-bit byte address of
the character that stopped the scan, regardless of what type

<variable> is.

If the test character or a 0 does not occur during a SCAN UNTIL
operation, the scan might continue to the 32K boundary. Before doing
any scans, you can delimit the scan area as follows:

INT .buffer[-1:20] := [0," John James Jones ",0];

T——— scan delimiters ————T

A scan that stops on a 0 sets the hardware CARRY bit, which means the
test character did not occur. To check the CARRY bit, use the $CARRY

function before doing any arithmetic operations, as follows:

IF S$SCARRY !If test character not found...
THEN ...;

IF NOT S$CARRY {If test character found...
THEN ...;

Examples

The following declarations apply to the examples:

INT .buffer[-1:18] := [0," Smith, Maurice ",0]; !INT buffer

STRING .sptr := @buffer '<<' 1; !STRING pointer
! to INT buffer

STRING .firstl, .first2, .lastl, .last2, .comma; 'Pointers
INT offset, length; !Variables
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In the diagrams, a circumflex (~) denotes the character that stopped
the scan. Declarations are on the previous page.

1. This example scans from element [0] for spaces, checks the CARRY

bit, and calls a string-handling procedure if a character occurs:
SCAN sptr(0] WHILE " " -> @firstl;
IF NOT S$CARRY THEN Smith, Maurice
CALL string”~handler;

2. This example scans from the first character of the last name for a
comma (,), checks the CARRY bit, and calls an error-printing
procedure if a comma does not occur:

SCAN firstl UNTIL "," -> @comma;
IF SCARRY THEN Smith, Maurice
CALL invalid~input;

3. This example scans for spaces right to left from the location
preceding the comma. In this case, the scan starts and stops at
the same location:

RSCAN comma[-1] WHILE " " -> @lastl; Smith, Maurice

4. This example uses <next-addr> to compute the offset of the last

name from the beginning of the array:
SCAN commal[+1] WHILE " " -> @first2; Smith, Maurice
offset := @first2 '-' @sptr;
I |
sptr(0] first2

5. This example uses <next-addr> to compute the length of the

character string stored in the array:
SCAN first2 UNTIL " " -> @last2: Smith, Maurice
length := @firstl '-' @last2;
I |
firstl last2
15-42
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“w STACK STATEMENT

The STACK statement loads a value onto the register stack.

The syntax for the STACK statement is:

STACK <expression> [ , <expression> ] ...

<expression>

is a value to load onto the register stack. If you list
multiple values, STACK loads them from left to right. The
number of registers needed by an <expression> depends on its
data type.

You can use the register stack for temporary storage and for
optimizing critical code sections.

TAL loads values on the register stack starting at the current setting
of the RP + 1, As TAL loads each value, it increments RP by the
number of words required by the type of the value. For example, for
an INT(32) value, it increments RP by 2; for a quadword value, it
increments RP by 4.

TAL keeps track of the size and type of values being stacked and emits
appropriate machine instructions. TAL right justifies byte values;
that is, it loads them on the register stack in bits <8:15>,

If the number of registers needed exceeds the number of free
registers, TAL transfers the contents of registers R[0] through RP to
the data stack, then loads the registers starting at RP[0] with values
specified in the STACK statement.
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Examples

1. This example loads values of various types onto the register
stack:

STRING .b[0:2]
INT wrd
INT(32) dwrd

i= 3;

STACK b[2], wrd * 4, 300, dwrd;

3 R{0O]
12 R[1]
300 R[2]
R[3]
L 0 —
R[4] -« RP

Register Stack

2. This example shows two versions of a switch operation commonly
The first version needs six memory references;
the second needs only four memory references, uses the register

used in sorting.

stack,

15-44

INT temp;
INT x;
INT y;

tem
X
y :

= X3

g

Yy
te

~e

mp
STACK x,y;
STORE x,y;

and is faster:

!Switch operation version 1

!Switch operation version 2
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STORE STATEMENT

The STORE statement removes values from the register stack and stores
them into variables.

The syntax for the STORE statement is:

STORE <variable> [ , <variable> ] ...

<variable>

is the name of a variable (simple variable, array element,
pointer, or structure data item), with or without a bit
deposit field and/or index. 1If <variable> is a pointer,
you can use the @ symbol to update its contents as
described in Section 10,

If the STORE statement specifies multiple variables, storage begins
with the leftmost variable.

The data type of each variable specified dictates the number of
registers to unload, starting at the current RP. If the RP setting is
too small to satisfy the variable type, TAL removes the required
number of items from the data stack, places them on the register
stack, and stores them in the variable.

Examples

1. The following example stores register contents into variables of
various types:

LITERAL len = 100;

STRING .byte[0:1len - 11];
INT word;
INT(32) twowords;

STORE byte[3], word, twowords;
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2. The following example stacks two variables, then stores them back
into the same variables:

STACK x, y;

STORE y, x;
3. The following example switches the values of two variables:

STACK x, Vy;
STORE x, y;
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USE STATEMENT

The USE statement associates an identifier with an index register and
reserves it for your use.

The syntax for the USE statement is:

USE <name>

<name>

is an identifier to associate with an index register.

TAL associates each identifier with an index register, starting with
R[7] down to R[5]. You can then reference the identifier in
statements. For example, you can use a reserved index register to
optimize a FOR loop, as described under the FOR statement.

The following rules apply:

You cannot reserve more than three registers at a time.

Evaluation of certain expressions might overwrite the value in a
reserved register, such as multiplication of two FIXED values.

If the compiler needs an index register and none is available, a
compilation error results.

You can issue a DROP statement to release a register. (When TAL
reaches the END reserved word of a procedure or subprocedure body,
all registers are automatically dropped.)

After you drop an index register, you cannot use its name without a
new USE statement.
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Examples

1. This example reserves two index registers:

USE a”~index; R[0]
USE b~index; " , .

Ve Ve

A A M

b~ index RE6]

a~index R[7]

Register Stack

2. This example reserves an index register, then drops it:

USE x; !Reserve register

DROP x; !Free register

3. This example shows two versions of a FOR loop, the second of which A
uses a reserved register and runs faster (if no procedure or !
function calls occur within the loop):

LITERAL len = 100;
INT .array [O:len - 1];

INT i;

FOR i := 0 TO len - 1 DO
arrayl[il] := arrayl(i] + 5; !Version 1

USE x;

FOR x := 0 to len - 1 DO !Version 2 is faster
arraylx] := arraylx] + 5;

DROP x;
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WHILE STATEMENT

The WHILE statement is a pretest loop that repeatedly executes a
statement while a specified condition is true.

The syntax for the WHILE statement is:

WHILE <conditional-expression> DO [ <statement> ]

<conditional-expression>
is a conditional expression.
<statement>

is any executable statement (including compound, null, and
WHILE statements).

The WHILE statement is useful when the number of loops needed is
unknown. It evaluates and tests <conditional-expression> before
looping; if <conditional-expression> is false after the first test,
<statement> never executes.

If <conditional-expression> is always true, <statement> executes
indefinitely unless some event in the WHILE loop causes an exit, such
as a RETURN statement.

Figure 15-8 shows the action of the WHILE statement.
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< conditional-

. DO <statement >;
expression >

next < statement>;

$5013-015

Figure 15-8. WHILE Statement Execution

Examples

1. This loop continues while "item" is not equal to zero:

LITERAL len = 100;

INT .arrayl[O:len - 1];
INT item := 1;

INT i := O;

WHILE item <> 0 DO
BEGIN
item := arrayl[i];
i t=1i+ 1;
END;

2. This WHILE statement increments "index" until a nonalphabetic
character occurs:

LITERAL len = 255;
STRING .arrayl[O:len - 11;
INT index := -1;

WHILE (index < len - 1) AND (SALPHA(array[index := index + 1]))
DO . . .
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PROCEDURES AND SUBPROCEDURES

Procedures and subprocedures are the executable portions of a TAL
program. They compose the block structure of the program. They
allow you to segment the program into discrete blocks or subroutines
that perform a task.

An executable program contains at least one procedure. Furthermore,
one procedure has the attribute MAIN, which identifies it as the first
procedure to execute when you run the program. A procedure can
contain subprocedures, which execute at various points within that
procedure,.

The maximum possible size of a single procedure is 32K words minus
either the Procedure Entry Point (PEP) Table in the lower 32K area or
the External Entry Point (XEP) Table in the upper 32K area. For
information on the PEP or XEP table, see the System Description Manual
for your system.

This section describes:

e Characteristics of procedures and subprocedures
e Procedure and subprocedure declarations

e Parameters and parameter passing

e Entry-point declarations
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CHARACTERISTICS OF PROCEDURES AND SUBPROCEDURES

Procedures and subprocedures share the following characteristics:

Procedures and subprocedures are parameterized. The same procedure
or subprocedure can process different sets of variables.

Procedures and subprocedures allow all items that have global
scope (except procedures) to have local scope (in a procedure) or
sublocal scope (in a subprocedure).

Procedures and subprocedures can be functions and return a value to
the caller. You can use the name of a function in an expression as
if it were a variable name.

The system allocates and initializes a private data area for each
activation of a procedure or subprocedure. After each activation
completes execution, the system deallocates its data area.

Procedures and subprocedures can receive variables, constant
expressions, and procedure names passed as parameters. (The MAIN
procedure does not receive parameters.)

FORWARD declarations let you reference procedures and subprocedures
before their bodies occur in the source code. Thus, you can
declare their bodies in any order.

Procedures and subprocedures can call themselves; that is, they can
be recursive,

Procedures and subprocedures differ as follows:

16

Procedures have global scope; you use procedures for operations
needed throughout the program. Subprocedures have local scope; you
use subprocedures for operations needed within a procedure.

Procedures can contain subprocedures; subprocedures cannot contain
subprocedures.

Unlike subprocedures, procedures can be referenced as external
procedures by procedures declared in other compilations.

A procedure has a 127-word primary storage area and a larger
secondary area. A subprocedure has a 31-word primary area and no
secondary area.

The system invokes subprocedures more rapidly than procedures. For
subprocedures, it uses the BSUB instruction; for procedures, it
uses the PCAL instruction. These instructions are described in the
System Description Manual for your system.
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e When you invoke a procedure, the operating system saves the
environment of the calling procedure or subprocedure. It restores
the environment when the invoked procedure completes execution.

When you invoke a subprocedure, the operating system saves only the
location to which control is to return when the invoked
subprocedure completes execution.

e Within procedures, initializations and statements can refer to
global variables or to local variables declared in that procedure.

Within subprocedures, initializations and statements can refer to

global variables, to local variables declared in the encompassing

procedure, or to sublocal variables declared in that subprocedure.
e Subprocedures can have the following attribute -only:

VARIABLE Subprocedure parameters are optional.

Procedures can have the following attributes:

MAIN This procedure executes first when you run the
program.
RESIDENT Procedure's instruction codes are not swapped in and

out of main memory when you run the program.

CALLABLE Procedure executes in privileged mode, but
nonprivileged procedures can call it.

PRIV Procedure executes in privileged mode, and only
privileged procedures can call it.

INTERRUPT Only operating system interrupt handlers can use
this attribute. When returning to its caller, the
procedure executes an IXIT (rather than an EXIT)
instruction.

VARIABLE Procedure parameters are optional.

EXTENSIBLE You can add new parameters to the procedure without
recompiling the caller.
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PROCEDURE AND SUBPROCEDURE DECLARATIONS

The syntax of a procedure or subprocedure declaration is:

[ <type> ] { PROC } <identifier>
{ SUBPROC }

[ ( <formal-param-name> [ , <formal-param-name> ] ... ) ]
[ <attribute> [ , <attribute ] ... ] ;
[ <formal-param-specification>
[ , <formal-param-specification> ] ... ;
{ <body>

:
{ FORWARD ;
;

{ EXTERNAL } !For procedures only

<type>

specifies that the procedure or subprocedure is a function
that returns a value and indicates the data type of the
returned value. <type> is one of:

STRING

INT

INT(32)

FIXED [ ( <fpoint> ) ]
REAL

REAL(64)

<identifier>

is the name of the procedure or subprocedure.

<formal-param-name>

is the name of a formal parameter. The number of formal
parameters you can declare is limited by space available in
the parameter area. See "Parameter Area” in this section.
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<attribute>
For a subprocedure, <attribute> can be VARIABLE only.

For a procedure, <attribute> can be one or more of the
following, as defined under "Attributes" in this section:

MAIN | INTERRUPT
RESIDENT

CALLABLE

PRIV

VARIABLE | EXTENSIBLE

<formal-param-specification>
specifies the data type of a formal parameter and whether
it is a value or reference parameter. See "Formal Parameter
Specifications” in this section.
<body>
is a BEGIN-END construct that contains declarations and
statements. See "Procedure and Subprocedure Bodies" in this
section.
FORWARD
means the declaration for the body occurs later in the source
file (procedures) or later in this procedure (subprocedures).
EXTERNAL
applies to procedures only and means the procedure body is
declared in another compilation such as a part of the
operating system or a user library.
Operating system external declarations are contained in a

system file that you can specify in a SOURCE directive.
The system file is $SYSTEM.SYSTEM.EXTDECS[<n>], where:

EXTDECS0 = current release version
EXTDECS1 = current release version minus one
EXTDECS =

current release version minus two
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Formal Parameter Specifications

A formal parameter specification defines the parameter type of a
formal parameter and whether it is a value or a reference parameter.

The syntax for the formal parameter specification is:

<param-type> [ . % <formal-param-name> [ ( <referral> ) ]
[ .EXT

(., (. ] <formal-param-name> [ ( <referral> ) 1 ] ... ;
[ .EXT ]

<param-type>
is the parameter type of the formal parameter:

STRING
INT

INT(32)

FIXED [ ( <fpoint> ) ]
FIXED(*)

REAL

REAL(64)

STRUCT

[ <type> ] PROC

. (period)
denotes a standard pointer and a reference parameter.
The absence of "." or ".EXT" denotes a value parameter.
.EXT
denotes an extended pointer and a reference parameter.
The absence of "." or ".EXT" denotes a value parameter.

<formal-param-name>

is the identifier of a formal parameter, as defined in
"Parameters"”" in this section.

16-6 4482581 A00 3/85



PROCEDURES AND SUBPROCEDURES
Procedure and Subprocedure Bodies

<referral>

is the name of a previously declared structure or structure
pointer. <referral> is required only if <formal-param-name>
is a structure pointer.

Procedure and Subprocedure Bodies

Procedure and subprocedure bodies contain declarations and statements.

Procedure bodies and subprocedure bodies are described separately on
the following pages.

“4 82581 AQ0 3/85



PROCEDURES AND SUBPROCEDURES
Procedure Body

Procedure Body

The syntax for the procedure body is:

BEGIN
[ <local-declaration> ] . . .
[ <subprocedure-declaration> ] . . .
[ <statement> 1 . . .

END ;

<local-declaration>
is a declaration for one of:

Simple variable

Array (direct or indirect)
Structure (direct or indirect)
Equivalenced variable
Pointer

Structure pointer

LITERAL

DEFINE

Label

Entry point

FORWARD subprocedure

<subprocedure-declaration>

is as previously described under "Procedure and Subprocedure
Declarations” in this section,

<statement>

is any executable statement described in Section 15,

16-8
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Subprocedure Body

The syntax for the subprocedure body is:

BEGIN
[ <sublocal-declaration> 1 . . .
[ <statement> 1 . . .

END ;

<sublocal-declaration>
is a declaration for one of:

Simple variable

Array (direct only)
Structure (direct only)
Equivalenced variable
Pointer

Structure pointer
LITERAL

DEFINE

Label

Entry point

<statement>

is any executable statement described in Section 15.

Sublocal Variables

Data variables declared in subprocedures must be directly addressed,
because the sublocal area has no secondary storage. (See "Primary and
Secondary Storage" in Section 5.) If you declare a sublocal indirect
array, TAL converts it to a direct array and emits a warning.
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Invoking Procedures, Subprocedures, and Functions

You invoke procedures or subprocedures by using their names in CALL
statements. You can call a procedure from anywhere in the program.
You can call a subprocedure from within the encompassing procedure.

You invoke functions (typed procedures or subprocedures) by using
their names in expressions.

Statements in the invoked procedure or subprocedure body execute until
the last statement or a RETURN statement executes. Program execution
then returns to the point following the invocation of the procedure or
subprocedure.

The scope of items declared within a procedure or subprocedure is
limited to the same procedure or subprocedure. Thus, a local or
sublocal item can have the same name as a global item without
conflict. In this case, however, you cannot reference the global
item,

Examples

1. The following example shows two procedures, the second of which
calls the first:

INT c;

PROC first;
BEGIN !1Procedure body
INT a,
b;
!Some code
IF a < b THEN
RETURN;
cC := a - b;
END;

PROC second;

BEGIN
!Lots of code
CALL first; 1Calls first procedure
!More code

END;
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w’ 2. The following example shows (1) a function that has two formal
value parameters and (2) a procedure that invokes the function

and passes actual parameters to it:

INT PROC mult (varl, var2);
INT varl,
var2;
BEGIN
RETURN varl * var?2;
END;

PROC myproc;

BEGIN
INT numl := 5,
num2 := 3,
answer;
answer := mult (numl, num2);
END;

!Formal specifications
! for value parameters

! Invokes function

3. The following example shows a FORWARD declaration for "procb", a

procedure that calls "procb" before its body is declared, and

the declaration for the body of "procb":

INT g2;

S’ PROC procb (paraml);
INT paraml;
FORWARD;

PROC proca;
BEGIN
INT il := 2;
CALL procb (il);
END;

PROC procb (paraml);
INT paraml;

BEGIN

g2 := g2 + paraml;
END;
PROC mymain MAIN;
BEGIN

g2 := 314;

CALL proca;
END;

4482581 A00 3/85

{ FORWARD declaration
! for "procb"

!Declares "proca"

1Calls "procb"

t{Declares body for "procb"

!1Calls "proca"

16-11



PROCEDURES AND SUBPROCEDURES

Invoking Procedures, Subprocedures, and Functions

4, The following example shows how to include and invoke external

operating system procedures:

?SOURCE $SYSTEM.SYSTEM.EXTDECS (DEBUG, STOP, . . . )

PROC a MAIN;
BEGIN
INT x, vy, z;

!Code for manipulating x, y, and z

If x = 5 THEN CALL STOP;
CALL DEBUG;
END;

!Calls external procedure

5. The following example declares a procedure and a subprocedure that
contain local and sublocal items with the same names:

PROC main2 MAIN;

BEGIN
INT a := 4&;
INT b := 1;
INT c;

SUBPROC sub2 (param2);
INT param2;

BEGIN

INT a := 5;

INT b := 2;

c := a + b + param2;
END;

a := a + b;
CALL sub2 (a);
END;

16-12

!Declares procedure

!Declares local items
!Declares subprocedure
!Declares sublocal items
!Sublocal "a" and "b"
{End of subprocedure

!Local "a" and "b"

!'End of procedure
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«’  ATTRIBUTES

Subprocedures can have only the VARIABLE attribute.
Procedures can have the following attributes:

MAIN | INTERRUPT
RESIDENT

CALLABLE

PRIV

VARIABLE | EXTENSIBLE

MAIN Attribute

This attribute causes the procedure to execute first when you run the
program. When the MAIN procedure completes execution, control passes
to the operating system STOP procedure.

If more than one procedure in a compilation has the MAIN attribute,
TAL emits a warning and puts the MAIN attribute with the first MAIN
procedure it sees. In the following example, "x" and "y" have the
MAIN attribute in the source code, but only "x" has the MAIN attribute
in the object file:

PROC x MAIN; IThis procedure is MAIN in object file
BEGIN

CALL this”proc;

CALL that”proc;
END;

PROC y MAIN; !Second MAIN procedure is not MAIN in
BEGIN ! object file

CALL some”proc;
END;

INTERRUPT Attribute

This attribute is used only by operating system interrupt handlers.
It causes TAL to generate an IXIT (interrupt exit) instruction instead
of an EXIT instruction at the end of execution. An example is:

PROC int~handler INTERRUPT;
BEGIN

!Do some work
END;
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RESIDENT Attribute

This attribute causes procedure code to remain in main memory for the
duration of program execution. The operating system does not swap
pages of this code. BINDER allocates storage for resident procedures
as the first procedures in the code space. An example is:

PROC proca RESIDENT;
BEGIN
!Do some work
END;

CALLABLE Attribute

CALLABLE means the procedure can execute privileged instructions, and
a nonprivileged procedure can call it. It is the only way a
nonprivileged program can become privileged. For information on
privileged mode, see the System Description Manual. The following
callable procedure calls a privileged procedure (described next):

PROC proc2 CALLABLE;
BEGIN

CALL priv~proc;
END;

PRIV Attribute

PRIV means the procedure can execute privileged instructions, and only
other privileged procedures can call it. PRIV protects the operating
system from unauthorized calls to its internal procedures, as follows:

Nonprivileged CALLABLE PRIV
Procedures — Procedures ——» Procedures

(Application) (Operating System)

The following privileged procedure is called by the callable procedure
declared above:

PROC priv~proc PRIV;
BEGIN

!Privileged instructions
END;

16-14 4482581 AOO0 3/85



PROCEDURES AND SUBPROCEDURES
Attributes

VARIABLE Attribute

This attribute means some or all of the procedure or subprocedure
parameters are optional. TAL considers all the parameters to be
optional, even if some are required by your code. The following
example declares a VARIABLE procedure:

PROC v (a, b) VARIABLE;

INT a, b;
BEGIN

1Lots of code
END;

When a call to a VARIABLE procedure or subprocedure occurs, TAL
allocates space in the parameter area for all the parameters and
generates a parameter mask, which indicates those actually passed.
The called procedure or subprocedure can use the $PARAM function to
check for receipt of each parameter.

VARIABLE Parameter Mask

The parameter mask for a VARIABLE procedure or subprocedure has the
following characteristics:

e FEach formal parameter corresponds to one bit. For 16 or fewer
parameters, TAL generates a single-word mask. For more than 16
parameters, TAL generates a doubleword mask.

®* The mask is right justified. For a single-word mask, bit <15>
corresponds to the last parameter. For a doubleword mask, bit <15>
of the low-order word corresponds to the last parameter.

e For each passed parameter, TAL sets the correspondiqg bi? to 1.
For each omitted parameter, TAL sets the corresponding bit to 0.

For procedures, a single-word mask resides in location L[-3]; a
doubleword mask resides in location L[-4:-3]. For subprocedures,
either single-word or doubleword mask resides between the last
parameter and the caller's return address.

Figure 16-1 shows an example of a single-word parameter mask for a
VARIABLE procedure "zz", whose formal parameters correspond to mask
bits <10:15>, The mask indicates which parameters are passed by
procedure "aa".
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PROC zz (pl,p2,p3,p4,p5,p6) VARIABLE; Local Data
INT pl,p2,p3,p4,p5,p6; for "aa"
BEGIN
: > pl Oomitted L[-11]
END;
> D2 a
> p3 b
> pé Omitted
p5 c
[——> p6 Omitted
%000032 L[-3]
0 1 1 0 1 0 " L
’r ’f
<10> <15> 1 1 wra)
PROC aa MAIN; Local data
BEGIN for "zz" -~
INT a, b, c; f
CALL zz (,a,b,,c);
END;
Figure 16-1. VARIABLE Single-Word Parameter Mask
Figure 16-2 shows a doubleword mask for the following example, in
which a VARIABLE procedure declares 18 formal parameters, and another
procedure passes five actual parameters to it.
INT aa, dd, ee, ff, jj;
PROC mask (a,b,c,d,e,f,qg,h,i,j,k,1,m,n,0,p,q,r) VARIABLE;
INT a,b,c,d,e,f,q,h,i,j,k,1,m,n,0,p,q,r;
BEGIN
Do more processing
END;
PROC caller;
BEGIN
!Do processing
CALL mask (aa,,,dd,ee,ff,,,,jij);
END; A
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Bit Numbers: 0 1 2 3 4 5 6 7 8 910 11 12 13 14 15

L [-4]: 00 00 000 0O OGO OTU OTUOTU O 10
aa
L [-3]: 0111 00 0 10 00 O0O0O0 0 O
dd ee ff 33

Figure 16-2. VARIABLE Doubleword Parameter Mask

Parameter Checking

The following example shows a VARIABLE procedure that contains
parameter—-checking statements:

PROC errmsg (msg, count, errnum) VARIABLE;

INT .msg; !Required parameter

INT count; IRequired parameter

INT errnum; !Optional parameter
BEGIN

IF NOT $PARAM (msg) OR
NOT S$PARAM (count) THEN

RETURN; 11f required parameters missing
IF NOT $PARAM (errnum) THEN
errnum := 0; iDefault for optional parameter
!Process the error . . .

END;

EXTENSIBLE Attribute

EXTENSIBLE means you can later add new parameters to the procedure
without recompiling the caller. An example declaration is:

PROC x (a, b) EXTENSIBLE; !Declares EXTENSIBLE procedure
INT a, b;

BEGIN
!Do some work

END;

TAL considers all parameters of an EXTENSIBLE procedure to be
optional, even if some are required by your code. When a call to an
EXTENSIBLE procedure occurs, TAL allocates space in the parameter area
for all the parameters and generates a parameter mask, which indicates
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those actually passed. The called procedure can use the $PARAM
function to check for a passed parameter, as was described for
VARIABLE procedures.

A new procedure with or without parameters can be extensible. An

existing procedure that has no parameters cannot become extensible.
An existing VARIABLE procedure can become extensible as follows.

Converting Procedures From VARIABLE to EXTENSIBLE

A VARIABLE procedure can become extensible only if:

e It has 15 or fewer parameters.

e It has 16 or fewer words of parameters.

e All parameters, except the last parameter, are one word long.

When converting a VARIABLE procedure, the required form for the
EXTENSIBLE attribute is:

EXTENSIBLE ( <param-count> )

<param-count>

an INT arithmetic expression in the range 1 through 15 that
defines the number of parameters declared when the procedure
was VARIABLE.

The following example converts an existing VARIABLE procedure to an

ENTENSIBLE procedure:

PROC errmsg (msg, count, errnum, new”param) EXTENSIBLE (3);

INT .msg; tRequired parameter
INT count; !Required parameter
INT errnum; !Optional parameter
INT new”param; INew optional parameter
BEGIN
!Do something
END;
16-18
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EXTENSIBLE Parameter Mask

The format for EXTENSIBLE parameter masks differs from that of
VARIABLE procedure masks, as follows:

Each formal parameter corresponds to one or more bits, depending
on the size of the parameter. Each bit represents one word of a
parameter.

The mask is left justified. For a single-word mask, bit <0>
corresponds to the first parameter if it is a single word. For a
doubleword mask, bit <0> of the low-order word corresponds to the
first parameter.

For each passed parameter, TAL sets all the bits for that parameter
to 1. For each omitted parameter, TAL sets the corresponding bits
to 0. The $PARAM function checks only the high-order bit that
corresponds to a parameter. (Word parameters have only one
corresponding bit.)

Figure 16-3 shows a single-word mask for the following example in
which an EXTENSIBLE procedure declares INT, INT(32), and FIXED
formal parameters. The seven formal parameters occupy 12 parameter
words. Another procedure passes four actual parameters to it.

“4 82581 AQ0 3/85

INT aa, ff, gg;

FIXED cc;
PROC baz (a,b,c,d,e,f,g) EXTENSIBLE;
INT a,d, f,qg;
INT(32) b,e;
FIXED «c;
BEGIN
!Code for processing
END;
PROC maz;
BEGIN

!Code for processing
CALL baz (aa,,cc,,,ff,qq):
END;
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Bit Numbers: 0 1 2 3 4 5 6 7 8 910 11 12 13 14 15

L [-3]: 10 0 11 1 1 0 0 O 1 1 0 0 0 O
aa (  cc ) ff gg

Figure 16-3. EXTENSIBLE Single-Word Parameter Mask

Figure 16-4 shows a doubleword mask for the following example in
which an EXTENSIBLE procedure declares INT, INT(32), and FIXED
formal parameters. The 12 formal parameters occupy 20 parameter
words. Another procedure passes five actual parameters to it.

INT aa, ff, gg;
FIXED cc;
INT(32) 3j3;

PROC baz ( g,h,i,j,k,1) EXTENSIBLE;

!Do more work
END;

PROC maz;
BEGIN

tDo some work

CALL baz (aa,,cc,,,ff,qq,,,3ji);
END;

Bit Numbers: 01 2 3 4 5 6 7 8 910 11 12 13 14 15

L [-4]: 1 0 0 1 1 1 1 0 O O 1 1 0 O 0 O
aa ( cc ) ff gg
L [-3]: 1_ i1 0 0 0 0 0 0 0 O O O O O o0 O

Figure 16-4. EXTENSIBLE Doubleword Parameter Mask
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Number of Parameter Words Passed

In addition to the parameter mask, TAL generates a one-word value that
represents the number of parameter words passed to the EXTENSIBLE
procedure. TAL stores the negative form of that value in the
parameter area immediately preceding the three-word stack marker. For
example, if four parameter words are passed, TAL stores -4.

Procedure Entry Sequence

On entry to an EXTENSIBLE procedure, the system loads the following
values on the register stack:

e For a converted VARIABLE procedure:

--R[0] = Number of parameters when the procedure was VARIABLE
--R[1] = Number of parameter words when it was VARIABLE
--R[2] = Number of parameter words now expected

RP must be 2,
e For a procedure that was EXTENSIBLE to begin with:

--R[0] = Number of parameter words expected

RP must be 0.
The system then executes the ESE instruction, which uses the RP
setting to tell the cases apart. ESE sets RP to 7 but does not save
the values in RO through R7.
For a converted VARIABLE procedure, ESE converts the mask format to
the EXTENSIBLE format. It adds the needed bits and words and

initializes them to 0. It does not initialize any extra words on the
register stack caused by the stack movement.
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PARAMETERS

Each parameter requires a formal parameter name and a formal parameter
specification.

Formal parameter names provide identifiers that have local scope if
declared in a procedure body or sublocal scope if declared in a
subprocedure body. When a .call occurs, each formal parameter assumes
the value of the corresponding passed parameter.

A formal parameter specification defines the parameter type of a
formal parameter and whether it is a value or reference parameter.

Parameter Area

The calling procedure enters the actual parameter values in the
parameter area before transferring control to the called
procedure or subprocedure.

For procedures, the parameter area limit is 29 words, less storage
required for a single-word or doubleword parameter mask, if present.
For EXTENSIBLE procedures, a word value representing the number of
parameter words passed also resides in the parameter area. Thus,
the space available for the parameters of a procedure is:

Parameter Words

VARIABLE procedure with single-word mask 28
VARIABLE procedure with doubleword mask 27
EXTENSIBLE procedure with single-word mask 27
EXTENSIBLE procedure with doubleword mask 26
Any other procedure 29

For subprocedures, the parameter area limit is 30 words, less storage
required for sublocal variables and for a single-word or doubleword
VARIABLE parameter mask, if any.
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L — Figure 16-5 shows an example of parameter storage.
INT .buffer(0:20];
PROC b (parml, parm2); Global data
INT parml, parm2;
BEGIN
INT b~local~array[0:12]; Local data
for MAIN
buffer[0] := parml + parm2; procedure
buffer[1] := parml - parm2;
buffer[2] := parml * parm2; parml first L[-4]
END; !End of "b"
parm2 second L{-3]
PROC a MAIN;
BEGIN p
INT first,
second, E
a~local~arrayl[0:2];
L L{o]
CALL b (first, second);
END; !End of "a" Local data
for "b"
~ s{o]

Figure 16-5. Parameter Storage

Value Parameters

If a procedure or subprocedure specifies a formal parameter without an
indirection symbol ("." or ".EXT"), you pass a value parameter.
(Structures and arrays must be reference parameters.)

Statements in the called procedure body access the passed value
parameter directly in the parameter area. They can use a value
parameter as working space within the procedure without affecting the
actual variables used to generate the value for that parameter.

A passed value parameter can be any arithmetic expression. The formal
parameter specification of the called procedure defines the data type
and storage allocation for the passed parameter (one word for INT and
STRING, two words for INT(32) and REAL, and four words for REAL(64)
and FIXED).
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The system right justifies STRING value parameters in the parameter
area as if they were INT expressions. If you want to left justify a
STRING parameter in bits <0:7> of the word, shift the value 8 bits to
the left when you call the procedure; for example:

CALL procl (byte '<<' 8)

FIXED Value Parameters

The system scales FIXED value parameters up or down to match the
<fpoint> in the parameter specification. If the <fpoint> of the
passed parameter is greater than the <fpoint> in the parameter
specification, precision is lost according to the amount of scaling
required.

To prevent scaling of the <fpoint> of the passed parameter, you
can use a parameter type of FIXED (*). The called procedure treats
the parameter as having an <fpoint> of 0.

Procedures as Value Parameters

A procedure can declare a procedure as a formal parameter. TAL treats
the identifier associated with a parameter type PROC as a procedure
name within the procedure body. TAL allocates one word in the
parameter area for the PEP number of the procedure to be passed.

If the passed procedure itself has parameters, you must make certain
that all parameters are supplied. TAL cannot perform this check.

If the passed procedure is VARIABLE or EXTENSIBLE, you must supply
the correct parameter mask. TAL treats any missing parameters in
the CALL statement as type INT value parameters.

If the passed procedure has reference parameters, each must be
preceded by an @ symbol in the call.
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Parameters
-’ The following example shows a procedure passed as a value parameter:

PROC a(t); !Declares procedure to be passed

STRING .t;
BEGIN

t ':=' "NO MAN IS AN ISLAND.";
END;
PROC p(q); !Declares procedure to be called

PROC q; 'Formal PROC parameter specification
BEGIN

STRING .s[0:201];

CALL g(@s); !Calls "q" and passes address of array "s";
END; ! "s" gets "NO MAN IS AN ISLAND."
PROC m MAIN;
BEGIN

CALL p(a); !Calls "p" and passes procedure "a" as a
END; ! parameter

Reference Parameters

If a procedure specifies a formal parameter with an indirection symbol
(. or .EXT), you pass a reference parameter. TAL allocates storage in

~ the parameter area for the address of the variable (one word for a
standard pointer and two words for an extended pointer). If required
by the procedure, TAL converts standard addresses to extended
addresses. Converting extended addresses to standard addresses,
however, is an error since the segment information in the extended
pointer is lost.

To pass a parameter by reference, place the name of the variable in
the CALL statement. TAL generates the address of the variable and
places it in the parameter area. Statements within the called
procedure access the actual variable indirectly through the parameter
location. The called procedure can store values in reference
parameters and modify the actual variables.
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The caller can change the contents of a pointer by prefixing the
pointer name with an @ symbol and passing it by reference. The
following example shows how this is done:

PROC p ( ptr );
INT .ptr;
BEGIN
ptr := %100000;
END;

PROC q;
BEGIN

INT .upper32k;

CALL p ( Qupper32K );
END;

Arrays and structures must be reference parameters. The previous
example in "Procedures as Value Parameters" specifies array "s" as a
formal reference parameter.

FIXED Reference Parameters

For FIXED reference parameters, the <fpoint> of the passed parameter
must match the <fpoint> in the parameter specification. If they do
not match, TAL does not perform scaling and issues a warning. The
statements in the called procedure then apply the <fpoint> in the
formal parameter specification to the passed parameter.

Mixing Data Types of Formal and Actual Parameters

You can pass a non-STRING parameter to a formal reference parameter
that has a standard byte address. TAL converts the word address of
the actual parameter to a byte address.

You can pass a STRING variable to formal reference parameter that has
a word address. However, when TAL converts the byte address of the
actual parameter to a word address by right shifting, the byte number
is lost. 1If the actual variable is aligned on an even-byte boundary,
this is no problem, but if it is aligned on an odd-byte boundary, you
access a byte outside the variable. TAL issues a warning message that
right shifting occurred.
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ENTRY-POINT DECLARATION

The entry-point declaration associates a name with a secondary
location in a procedure or subprocedure where execution can start.

The syntax for the entry-point declaration is:

ENTRY <entry-point-name> [ , <entry-point-name> ] ... ;

<entry-point-name>

is the name of an entry point in the procedure or subprocedure
body. It is an alternate name to use when invoking the
procedure or subprocedure.

Procedure and subprocedure entry points are discussed separately
below.

Procedure Entry Points

The following rules apply:

1.

2.

Declare all entry-point names for a procedure within the
procedure.

Place each entry-point name and a colon (:) at a point in the
procedure at which execution is to start.

To invoke an entry point, reference its name in a CALL statement
located in any procedure or subprocedure. Include any actual
parameters as if you were calling the procedure name. (See
Example 1.) '

A GOTO statement to an entry point is not allowed.

You can declare FORWARD or EXTERNAL procedure entry points. The
syntax is the same as for a FORWARD or EXTERNAL procedure
declaration, except that you specify the name of the entry point.
The declaration must include all formal parameters and parameter
specifications declared for the procedure. (See Example 2.)
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Each time you invoke a procedure entry point, all local variables
receive their initial values.

For a procedure entry point, the reference @<entry-point-name> yields
the PEP number of the entry point.

Subprocedure Entry Points

The following rules apply:

1.

2.

Declare all entry-point names for a subprocedure within the
subprocedure.

Place each entry-point name and a colon (:) at a point in the
subprocedure at which execution is to start.

To invoke an entry point, reference its name in a CALL statement
located anywhere in the encompassing procedure, such as in another
subprocedure in the same scope. Include any actual parameters as
if you were calling the subprocedure name.

A GOTO statement to an entry point is not allowed.

You can declare FORWARD subprocedure entry points. The syntax
is the same as for a FORWARD subprocedure declaration except
that you specify the name of the entry point. The declaration
must include all formal parameters and parameter specifications
declared for the subprocedure.

Each time a you invoke a subprocedure entry point, all sublocal
variables receive their initial values.

For a subprocedure entry point, the reference @<entry-point-name>
yields the code address of the entry point.
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Entry-Point Declaration

“w  Examples

1. This example illustrates use of entry points:

INT to~this := 314; !Global data declaration
PROC add~3 (g2);
INT .g2;
BEGIN
ENTRY add~2, add~1l; !Declares entry points
INT m2 := 1;
g2 := g2 + m2;
add~2 : g2 := g2 + m2; !Entry-point location
add”~1l : g2 := g2 + m2; 'Entry-point location
END;
PROC mymain MAIN; IMain procedure
BEGIN
CALL add”~1 (to~this); 1Calls entry point
END;

2. This example shows FORWARD declarations for entry points:

INT to~this := 314;

PROC add”~1 (g2); IDeclares a FORWARD entry point
o INT .g2;
FORWARD;
PROC add~2 (g2); !Declares a FORWARD entry point
INT .g2;
FORWARD;
PROC add~3 (g2); IDeclares a FORWARD procedure
INT .g2;
FORWARD;
PROC mymain MAIN; 'Main procedure
BEGIN
CALL add~l1l (to~this); 1Calls entry point
END;
PROC add~3 (g2); tBody for FORWARD procedure
INT .g2;
BEGIN
ENTRY add”~2, add~1; !Declares entry points
INT m2 := 1;
g2 := g2 + m2;
add~2 : g2 := g2 + m2; 'Entry-point location
add™1l : g2 := g2 + m2; 'Entry-point location
END;

4482581 A00 3/85 16-29






SECTION 17

STANDARD FUNCTIONS

TAL provides a variety of standard functions that perform frequently
used operations.

This section contains:
e A summary of standard functions, organized by operational group

e The syntax of each function, listed in alphabetic order, and the
need for optional microcode, if any

STANDARD FUNCTIONS BY OPERATIONAL GROUP

Functions are summarized within the following groups:
e Type Transfer

¢ Address Conversion

e Character Test

e Minimum-Maximum

e Carry and Overflow Test

e Fixed-Point Value and Scale

e Structure

e Parameter-Checking and Register Pointer

e Miscellaneous
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Type Transfer

The type-transfer functions convert a variable of one data type into a
variable of another data type. As indicated, some functions apply
rounding to the result. This means if the least significant digit is
less than 5, it is truncated; otherwise, the result is rounded up.

SDBL

S$DBLL

$DBLR

SDFIX

SEFLT

$EFLTR

SFIX

SFIXD

SFIXI

SFIXL

SFIXR

SFLT

SFLTR

SHIGH

SIFIX

SINT

17

i
N

returns a signed INT(32) value from an INT, FIXED(0), REAL,
or REAL(64) expression.

returns an INT(32) value from two INT values,

returns a signed INT(32) value from an INT, FIXED(0), REAL,
or REAL(64) expression and applies rounding to the result,

returns a 64-bit integer from a signed doubleword integer
(the equivalent of a signed right shift of 32 positions).

returns a REAL(64) value from an INT, INT(32), FIXED, or
REAL expression.

returns a REAL(64) value from an INT, INT(32), FIXED, or
REAL expression and applies rounding to the result.

returns a FIXED(0) value from an INT, INT(32), REAL, or
REAL(64) expression and applies rounding to the value.

returns the INT(32) equivalent of a FIXED expression
treated as a 64-bit integer.

returns the signed INT equivalent of a FIXED expression
treated as a 64-bit integer.

returns the unsigned INT equivalent of a FIXED expression
treated as a 64-bit integer.

returns a FIXED(0) value from an INT, INT(32), REAL, or
REAL(64) expression and applies rounding to the result.

returns a REAL value from an INT, INT(32), FIXED, or
REAL(64) expression.

returns a REAL value from an INT, INT(32), FIXED, or
REAL(64) expression and applies rounding to the result.

returns an INT value from the left half of an INT(32)
expression.

returns a 64-bit integer from a signed INT expression (the
equivalent of a signed right shift of 48 positions).

returns an INT value from INT(32), FIXED(0), REAL, or
REAL(64) expression.
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SINTR

SLFIX

SUDBL

Table 17-1
data type:

STANDARD FUNCTIONS
Standard Functions by Operational Group

returns an INT value from an INT(32), FIXED(0), REAL, or
REAL(64) expression and applies rounding to the result.

returns a 64-bit integer from an unsigned INT expression.

returns an INT(32) value from an unsigned INT expression.

cross-references the type-transfer functions according to

Table 17-1. Type-Transfer Functions by Data Type
TO
FROM INT INT(32) FIXED REAL REAL(64)
INT - $SDBL SIFIX SFLT SEFLT
SUDBL SLFIX SFLTR SEFLTR
INT(32) SINT - SDFIX SFLT SEFLT
SHIGH SFLTR SEFLTR
FIXED SFIXI SFIXD - SFLT SEFLT
SFIXL SFLTR SEFLTR
REAL SINT SDBL SFIX - SEFLT
SINTR SDBLR SFIXR SEFLTR
REAL(64) SINT SDBL SFIX SFLT -
SINTR SDBLR SFIXR SFLTR

Address Conversion

These functions convert standard addresses to extended addresses or
extended addresses to standard addresses.

SXADR

SLADR
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converts a standard address to an extended address.

converts an extended address to a standard address.
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Character Test

These functions test for an alphabetic, a numeric, or a special
(nonalphanumeric) ASCII character. They return a true value if the
character passes the test or a false value if the character fails.
You typically use these functions in conditional expressions to direct
the flow of program execution.

SALPHA tests an expression for an alphabetic character.

$NUMERIC tests an expression for a numeric character.

$SPECIAL tests an expression for a special character.

Minimum-Maximum

These functions return the maximum or the minimum of two expressions.
SLMAX returns the maximum of two unsigned INT expressions.
SLMIN returns the minimum of two unsigned INT expressions.

SMAX returns the maximum of two signed INT, INT(32), FIXED,
REAL, or REAL(64) expressions of the same type.

SMIN returns the minimum of two signed INT, INT(32), FIXED,
REAL, or REAL(64) expressions of the same type.

Carry and Overflow Test

These functions check the state of the carry or overflow indicator in

the ENV register. They return a true value if the indicator is on or

a false value if it is off. Typically, you use these functions in

conditional expressions to direct the flow of program execution.
SCARRY tests the state of the carry indicator.

SOVERFLOW tests the state of the overflow indicator.
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Standard Functions by Operational Group

Fixed-Point Value and Scale

These functions assist you in manipulating FIXED expressions.

$SPOINT returns the <fpoint> value, in integer form, associated
with a FIXED expression.

$SCALE moves the position of the implied decimal point by
adjusting the internal representation of the expression.

Structure
These functions return information about previously defined data
structures.
SLEN returns the unit length in bytes of a variable.
SOCCURS returns the number of occurrences of a STRUCT item.

SOFFSET returns the offset in bytes of a structure item from the
structure base.

STYPE returns a value indicating the type of a variable.

Parameter-Checking and Register Pointer

These functions check for the presence or absence of a parameter in a
procedure or subprocedure call or return the current setting of the
TAL register pointer.

SPARAM checks for the presence or absence of a parameter in a
p
procedure or subprocedure call.

SRP returns the current setting of the TAL register pointer.

Miscellaneous

These functions return the absolute value or the one's complement of
an expression.

SABS returns the absolute value of an expression.

SCOMP returns the one's complement of an INT expression.
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SABS Function

$ABS FUNCTION

The $ABS function returns the absolute value of an expression. The
returned value has the same data type as the expression.

The syntax for the $ABS function is:

$ABS ( <expression> )

<expression>

is an expression of any type as defined in Section 13 of
this manual.

SABS sets the overflow indicator if the absolute value of a negative
number cannot be represented in two's complement or real format
(depending on the type of the expression). For example, $ABS (-32768)
causes an arithmetic overflow.

Example

This example assigns the absolute value of "i2" to "j2". Since "i2"
is equal to -5, "j2" receives the absolute value of (-5), which is 5.

INT 12 := -5,

INT j2;

j2 := $ABS(i2); !Sets "j2" equal to absolute value of (-5)
17-6
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SALPHA Function

$ALPHA FUNCTION

The $ALPHA function tests the right half of an INT value for the
presence of an alphabetic character.

The syntax for the S$SALPHA function is:

SALPHA ( <int-expression> )

<int-expression>

is an INT expression. S$ALPHA inspects bits <8:15> of
<expression> and ignores bits <0:7>.

It tests for an alphabetic character according to the
following criteria:

<int-expression> >= "A" AND <int-expression> <= "Z" OR
<int-expression> >= "a" AND <int-expression> <= "z"

SALPHA sets the condition code indicator to "=" if an alphabetic
character occurs. If you plan to check the condition code, you must

do so before an arithmetic operation or assignment occurs.

If the character passes the test, S$ALPHA returns a -1 (true);
otherwise, it returns a 0 (false).

Example

This example tests for an alphabetic character in expression
"some~char":

STRING some~char;
IF SALPHA (some~char) THEN , . . ;
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SCARRY Function

$SCARRY FUNCTION

The S$CARRY function checks the state of the carry bit in the ENV
register.

The syntax for the $CARRY function is:

SCARRY

If the carry bit is on, $CARRY returns a -1 (true); otherwise, it
returns a 0 (false).

Example

This example tests the state of the carry bit:

IF $SCARRY THEN . . . ;

For additional examples, see the SCAN statement in Section 15,
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$COMP FUNCTION

The $COMP function obtains the one's complement of an INT expression.

The syntax for the $COMP function is:

SCOMP ( <int-expression> )

<int-expression>

is an INT expression,

Example

This example assigns "some”~int" a value equal to the one's complement
of 10:

INT some”int:

some”~int := $SCOMP (10);
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$DBL FUNCTION

The $DBL function returns a signed INT(32) value from an INT,
FIXED(0), REAL, or REAL(64) expression.

The syntax for the S$DBL function is:

$DBL ( <expression> )

<expression>

is an INT, FIXED(0), REAL, or REAL(64) expression.

$DBL sets the overflow indicator if the expression is too large in
magnitude to be represented by a 32-bit two's complement integer.

This function needs the following optional microcode:

System FIXED REAL REAL(64)
NonStop 1+ QLD CFD QLD
CQD CED
NonStop CQD CFD CED
Examgle

This example converts the INT variable "i2" into a signed INT(32)
value and assigns the result to the INT(32) variable "b32":

INT i2 = %177775;

INT(32) b32;
b32 := $DBL(i2);
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L — $DBLL FUNCTION

The $DBLL function returns an INT(32) value from two INT values.

The syntax for the $DBLL function is:

$DBLL ( <int-expression> , <int-expression> )

<int-expression>

is an INT expression.

To form the INT(32) value, $DBLL places the first INT value in the
upper 16 bits and the second INT value in the lower 16 bits.

o Examples

1. This example returns the INT(32) value formed from "first~int" and
"second™int":

INT first~int, second”™int; !Declares variables
INT(32) some~double;

some”~double := $DBLL (first~int, second™int);

2. This example returns an extended (32-bit) address in the current
user code segment:

INT .EXT p: IDeclares extended pointer

@p := (SDBLL (2, 7)) '<<' 1; !Assigns address in code segment

“4 82581 AQ0 3/85 17-11



STANDARD FUNCTIONS
SDBLR Function

SDBLR FUNCTION

The $DBLR function returns a signed INT(32) value from an INT,
FIXED(0), REAL, or REAL(64) expression and applies rounding to the
result,

The syntax for the $DBLR function is:

$SDBLR ( <expression> )

<expression>

is an INT, FIXED(0), REAL, or REAL(64) expression.

$DBLR sets the overflow indicator if the expression is too large in
magnitude to be represented by a 32-bit two's complement integer.

This function needs the following optional microcode:

System FIXED REAL REAL(64)

NonStop 1+ QLD CFDR QLD
CQD CEDR

NonStop CQD CFDR CEDR
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