st

014 JARAOSNT

[enupyy Bulwwoib

ENSCRIBE

Programming

Manual

Iunnmmu mn‘ — - — o

, E\\B

P/N 82083

Tandem NonStop (TM) Systems

ENSCRIBE (TM) PROGRAMMING MANUAL

Copyright (c) 1981

TANDEM COMPUTERS INCORPORATED
19333 Vallco Parkway
Cupertino, California 95014

April, 1981
Printed in U.S.A.

Copyright (c) 1981 by Tandem Computers Incorporated.

All rights reserved. WNo part of this document may be reproduced
in any form, including photocopying or translation to another
programming language, without the prior written consent of Tandem
Computers Incorporated.

The following are trademarks of Tandem Computers Incorporated:
Tandem, NonStop, AXCESS, DYNABUS, ENCOMPASS, ENFORM, ENSCRIBE, ENVOY,
EXCHANGE, EXPAND, GUARDIAN, PATHWAY, TGAL, XRAY.

PREFACE

This manual documents ENSCRIBE, Tandem”s data base record manager. It
is written for data base programmers and data base administrators
whose job is to design, develop, and maintain data base applications
for a Tandem NonStop System or a Tandem NonStop II System.

The manual contains both reference and background information. The
primary source of reference material is Section 3, File Management
Procedures, and Appendix E, File Management Procedure Syntax Summary.
Section 3 contains detailed syntax descriptions of each of the
ENSCRIBE file management procedures; the syntax descriptions are

listed in alphabetical order.

Section 1, Introduction to ENSCRIBE, lays the foundation for all of
the detailed information that follows. The introduction should be
read at least once.

Section 2, ENSCRIBE Disc Files, describes, in detail, each of the four
types of files supported by ENSCRIBE: key-sequenced files, relative
files, entry-sequenced files, and unstructured files.

Section 3, File Management Procedures, contains syntax descriptions
of all the ENSCRIBE calls.

Section 4, File Access, describes how ENSCRIBE files are accessed.
Section 5, File Creation, describes how to create ENSCRIBE disc files.

Section 6, File Loading, describes how to load data into ENSCRIBE
files.

Appendix A, Sequential I/O Procedures, describes a set of procedures
that can be used to perform common input and output operations on
ENSCRIBE disc files.

An index is included for quick access to the mass of details that
make up this book.

SECTION l' INTRODUCTION TO ENSCRIBE ® @ & 0 & 0 0 5 O O B S 6 OGO O S PE O N e

ENSCRIBE PROGRAMMING MANUAL

Table of Contents

Disc File Organization c.eeeeeececececcscsscoscsccooosanconces
Structured FileS ..ceseesssescsscssssssssscasacosssssnsanas
Key-Sequenced File StruCtUre ..eieeeceessscscscosccscscns
Relative File StrUCLULE .eeeesscesscsssssscccccssssnssss
Entry-Sequenced File StruCtUre ...veesssccssscsoscccccces
Multi-Key Access To Structured FileS ..ceeeecscesccsoncss
Relational Access Among Structured FileS ..eecesceeecenes 1
Automatic Maintenance Of All KEOYS ceessescscsccccacccnsnas 2
Data and Index COmMPresSsSiOn .ecceeeeccsrscsoscscssssccsssseceel=12
Unstructured FileS .ievececceccosssccscsososscoscsosasssssssssssl—l3
Access Coordination Among Multiple ACCESSOLS teeveecsececeeal-14
LOCKING teeeeereossseessseosnsosassssssssosssssassssssssesessl=lbd
File LOCKING tiiteeeeercesscesscasssassossesancscscscaessesl=l5
Record LOCKING vsiveeceeeeeecosscssssssasceccssnscasansssasssl=lb
Wait/No-Wait I/0 ceveereesonessesscescssscssasssssossocsesal=lb
CaChe ..iieeescoceccssososossosasasscssssssnsscsasssscscscssnccssasli=20
Sequential Access Buffering ..eeeeeeseeeecescencessccncesasel=20
Multiple Volume (Partitioned) FileS .ceeeecscssescecssaessssl=2l
File Creation t.eeeeeeeeseeseessessssosscosssascscossoccsonseeasl=2l
Data Definition Language ...ceeceesccsscesscsscscsassacsscoceasl=22
File LOAAING s ieteeneecsseccssscsceoscscscssasscososscscscsssseel=22
Record Management FUNCLIONS tseececvesscaccccosnssssosssscnssesl=23
File System Implementation .eeeeeeeescesscescesscccsoscceessl—24
File and I/0 System StruUCtULeeceeececscccssacssaasesl—24
Hardware SErUCEULE ..o svsecossssacasscsssssecoeseesl=24
Software StrUCtULE .eeeeecescscsssssssscssccessosonsesessl—26
File System Procedure EXeCULION teveeveeeoseocoococcnccessl=29
File OPEN tcveeevscneseasensssssssasossscesosssssssassnssseel—30
File TransfersS c.veeeceseceesssscasesscsnsscssscsscscsnsesel=33
BUffering ..eeeeeeacsooecesossoscessscssvsesssssossasssssssassl=3D
File ClOSE tuivieeeoeasesacnsosoosscscsescsasaasasasssosaeassl=37
Automatic Path Error Recovery for Disc FileSeceeves.l1=37
Mirror Volumes I Y

L] L] L3 L3
b bt b b b e e
HENO T WN

i-3

Table of Contents

SECTION 2, ENSCRIBE DISC FILES ttccecscacccccanssccssnsonnans
Structured FLlleS cieecececcosssossccsosossossscscsossscsssssscnas
Key-Sequenced FileS c.viieescececasesscocceosnscanconsasses
Relative FileS .veeeeeavesssssecosossscccsssssosssssascnseas
Entry-Sequenced FileS ..iieccecacceccsscsccsoscocconcsoces
Accessing Structured Files —— CONCEPLS ceeeececesccccssasnss

File ® 6 9 5 6 0 0 85 2 06 0 0 0 0 0 0 P GO LSS L L L P L LGOS L O e LS e OO S Ce GO0

RECOYA eeeeeveocsasssosncssossconsossscssosscsssssssscsssssnoces

[] . .
NN NDNDN
|
WO IUIND -

KeY o eecneseceescescccecassscccscsossscoscnscscsssccnssnsas
Primary KEY eeeescecccecesscososccosesssssscassssasacascscss
BAlternate KeY t.iieeceecocsoossssssssncssassscsssssssssccesl—8
Current Key Specifier and Curren Access Path2-9
Current Key Value and Current POsSitiOn ...ieecececeacesasa2=-10
Positioning Mode and Compare Length ...eeeeercececocnnass2=11
APPILOXimMAte +.ceeecsosscescecsccescscsascssscasencssansasalll
GENEeriC t.ceeesececscssseseasasscsssasasccscscsseansssssssl=ll
EXAQCE teveenccesnsseeesccssssossesssossssscssesncsssssscssssd=ll
SUDSEt tivtteeeetoreceasssssosssssosssssacnssssssacsassanss2=12
Blternate KeYS .tecesecsccsoscessassssscacssscssnsscasssscssssssal—l2
Alternate Key Attributescccieiveeceseeeccscceascseesss-14
Alternate Keys in Key-Sequenced FileS ..ceeeccccssccsaaaol=1ld
Alternate Keys in Relative FileS ..vceieeeresecsnssssesneeesl=ld
Alternate Keys in Entry-Sequenced FileS .i.ieeecececsceessl~1l5
Comparison of Structured File Characteristics ..eciceeeeseea2-15
Unstructured FileS .t.eeeeesescseesssssssnsessasssssasssecceeeld—Ll6
CharacteristiCS ..ceeeessceccaccasccccsncsascssscsssasssseeal-lb
Relative Byte Addressing and File Pointerscceee0e...2-18

SECTION 3. FILE MANAGEMENT PROCEDURES ..ccccceccscccaccsnsanse
File Management Call SUMMALY «.ceseessocancssccscscsasnscncsass
Characteristics of ENSCRIBE CallS .ceceeveccectscsnnscsccccon

Completion .c.ceviesecesssesccssscccscsscasacssccsnssnnscass
<file number> ParametersS ...ceocececessscsccssassoscccsas
<tag> ParameterS s.eeeesecsssccaoscssscssasascsscsconsas
<buffer> PArameter ..ceceeesccscecsccascsscscccscacssasssons
<transfer count> Parameter ...icececsvocsocssocscesoscccoes
Condition COAES teveeeeeesesssscssosssccscscsscssesasssasaanse
EELOLS 4t eteesovestnesssssssosscsssssssscsscssassoscscscsanssses
Access Mode and Security Checkingcceeeeececccccecsseal3-8
Current State Indicators .e.eeeecsveesecesccecaccceccaceeeal—8
External DeclarationNS seceeeesccscssccccsssassossesascssscsses3=9
File NAMES vt eeeeoceccocceeoscacssscscocsssecsosscsasnosssssasaseld—=ll
Permanent Disc File NAGMES ccccececsaassosscanssasssssaaesld—ll
Temporary File NaMeS ...eeeececesosssosocsssccocssssasssssesad—ll
File Name EXAmMPleS .vcveeeeesessesssscsssssssssscssncsnssssd—l2
Network File NaAMES toceteteeeescocecscsccncoosononsesesnneseld—l2

1
LU UTUT R s

L] .
WWWWWwwwwww
!

i-4

Table of Contents

AWAITIO ProCedUIre «.sceeceocceecssoscscssoscscsscssscsssssccsscsses3—ld
CANCEL ProCeAUILE ceeceescssssscssssscencsssssesscssassosssosceseld—2]l
CANCELREQ ProCedUrIe ..eeeeecsscssssssscocssscssosscsssssssccsesl—22
CLOSE ProCedUILE teeeeeceecocassssoscsnscsascssnscsssscsssncseasesld=23
CONTROL ProOCEAUrE «oeeeescecscsssscsscsscssascssassasasssnssnansee’d—24
CREATE ProCEAULE eeeesvesecsscsssssscsascsessacscssssscscsoccssesdI—27
DEVICEINFO ProCedUre ..iecececeecsccscccccscsssosssccssascasscses3—39
EDITREAD ProCedUre .eeieececcsssccssssassassssasscsascsssceseed—d2
EDITREADINIT ProcCedUre .c.eeececosccecscscscscsssscssssascsocsses3—q6
FILEERROR ProCeAUIE . eeceeveeossscsssscsoscsssscsssssssscssees3—48
FILEINFO ProCedUre .eeeeecscessscsssossssssssosnssascsssssssses3=Dl
FILERECINFO ProCeAUrE ...cceccessssscsaccsscsccssscscsscsccsssl—D0
FNAMECOLLAPSE ProCedUre ..cecececsceasscccssssscscsssssansssseld=D9
FNAMECOMPARE ProCedUre .eeeeceeesccsccccscscsscscsssasscscscsessd—bl
FNAMEEXPAND ProCeAUre@ ..eeeeccecsccsscsscscscssssssscsascsssesd—05
GETDEVNAME ProCedUrre «.eeeeeeecescscsesccsooscsccsssssosssecceseld—70
KEYPOSITION ProCeAUrIE@ «cecessessscsccssscsssscasoscscssscsssnesd—12
LOCKFILE Procedure (file 1OCKiINg) eeeeceesesccssascscsaceeald—78
LOCKREC Procedure (record 1loCKiINg) cceeceessscccccocccssassase3d—82
NEXTFILENAME ProCeAUYrE .ceiceecceccscsoscccscssoscssassaasocesesl—80
OPEN ProCedUre@ +eceecececscssccassasassoscsassssssssssassasasassssi—88
POSITION Procedure (relative, entry-seq, & unst files) ...3-98
PURGE ProCedUYE .eeeeseececscecsscscssssscssssassssssasscssssseseld—l0l
READ Procedure (sequential procesSsing) ...eeeeecessccsceeceea3—103
READLOCK Procedure (sequential processing,

record loCking) ccesseecscscsccccsesssa3d—108
READUPDATE (random proCeSSiNg) eceeesscsoscssssssccsesssaasss3—1ll
READUPDATELOCK (random processing,

record 1locking) ..eeeececescsecesscssosesaea3d—ll’

REFRESH ProCedUre +eeeescesesccoscssssscsssosascncsscssssssocscseeld—117
RENAME PrOCEAULE tveeeeceeccescossssescsscssscsssncssscsocsesld—11l8
REPOSITION ProCeAUIre eceeecsccocsscsccssscssascsocsasssscscssecssi—120
SAVEPOSITION ProCedUrE o+ cseecescecocscscossssososssssscsssscseeessd=12]
SETMODE ProCeAUY e .eeeeesececoscocscssscssscssssscsassscsssssseld—123
SETMODENOWAIT ProCedUIrE ..cseecescccesscscscscsccsscssccscsssasd—l25
UNLOCKFILE (file 10CKinNng) ceeceeeseecscccscosnssccsscssocceeld—l29
UNLOCKREC (record 1loCKing) ..ceceeececscesccecssassseccsssess3d=130
WRITE Procedure (inSert) .eeeeeeeeceecsceosccscasssssssscesssld—132
WRITEUPDATE (random replace and delete) .vieeecceecssnessessld—=136
WRITEUPDATEUNLOCK (random processing,

record 1oCKing) ceeeecescesascccecesessld—140

Table of Contents

SECTION 4. FILE ACCESS ttteeeetscesccssoncacnsosncenanosoaseead=l
File OPEN teeeeteccccssssostscsssasosesccassscscssssasassscccssald=2
Access Rules for Structured FileS ...ieeeccoessssccccoccessd=2

Sequential ProCesSSiNg ..eeeesscscscsasssssssssssscccscscasd=2
Random ProCesSiNg ..ceeeeescoccssscccssssssssssssssssesesh=3
Inserting RECOXAS tvceeeeeeocsssssossossssnscasssasasssasnceeesd—3
Deleting ReCOIrdS .seceveeceessssccsssscscsssssocasssasscseed—
Alternate KeYS t.veeeecceccsoscccccnoscoccossososcnosnssssssssim
Current POSIitiON t.ieeeececocosseesssoasncossaossscssoscnsseesd—
Current Key ValUue .cieeeeossssecsscccssossscssccscoossssssld—
Current Primary Key Value ...ieeecececcsccsscoscssonsesssd—
End-of-File POINterS cieeeeecscssccasccscscccscssoassossesasd=bh
Sequential Buffering Option ..ccieieeeecescccsccccoasecasad—6
Access Rules for Unstructured FileS ...eceeesvcvcssasccceescd=T
Relative Byte Addressing and File Pointersceeceeescs.d=9
Sequential ACCESS teeeescccsccccssnssosssoososscssessassseseesld=l2
Encountering EOF During Sequential Readinge....4-13
RANAOM ACCESS eresevroossssvesssssscosssessssncsssssssssaseesid=lb
Appending tO End-Of-File.iseeeescccceassscesscenccnonsaaasd=lb
DiSC SECLOrS tievecscssscscsssasescscssascccccoancnssssassid=18
Resident Buffering (TNS ONlY) ceeeccccccccssscessscssassad=20
Considerations for Both Structured and Unstructured Files .4-23
Locking—-General CONCEPt teeeeeesscscocsacssscssnssasaesad=23
File LOCKING tveeteeecseecacccccasanscosoosnscsscsnsnssssseseecd=23
RecOord LOCKING ceevescseocsosssseoscsscccosssssscassscnncsesd—23
LOCKInNg MOAES tieecesecrsossoscnsosnossssssncsasecsnsacssscd=24
File/Record Locking Interaction ec.eeeeeesccecscscescecesad—24
Dea@dloCK .cuiveeevecsosescasssocccsccossoscsoccsccscososasessseseid=26
Record Locking with Unstructured FileS ..vceeeeccceasseead=26
Record Locking Limitation..ieeeeeevecocssoscasssssanseeeed=27
Purge Dataeeeesecerecsasssssesccseasssssesscccccssssassd=27
Verify Write .t.iveeeesesecsescssosscccacecscacacccsssassessd=28
Refresh ... iitieeeeseeseasescsssossssossssscasoscssosssanscasesd=28
Programmatic Extent Allocationcceecececscsscacessseecd=29
Extent Allocation ErrOrS ceeeeccccccenssscsccccsssosasasssd=29
Programmatic Extent Deallocation ...c.ccceceeeceeccasceaesead=31
Summary of Disc Control and Setmode Operationseeeeee..4=-32
Errors and ErrOr RECOVEIXY ceessscceaccsassosoasssesrssscsccccased=34
File Management ELTOLS ..ceeecccssscccososscsacsosnssnscseesd—=34
Path ELXOLS teceeeccocsossossosossncssssassssssasssssssacsssassd=35
Dat@ EIXTrOCS ceeeveoesesosrsocesssasosvssocssssscssssssssssneessd—35
Device Operation ErFOr ...eeeecceccccacnossscscsnssssasessd=36
Failure of Primary Application ProCesSs ...eeeeeccecceees.4-36
Errors Grouped by Error NUMDEIr ..ceccecccccosscccsacacssssi=36
Special Considerations for Errors 200, 210, and 2114-38
EXrOor RECOVEILY ceeeveccscsoccoaoscoscossccsscssssscossasasasssd=39
Error Handling for Structured FileS ...cceeeecececccsecees.d-40
For Key-Sequenced FileS .ieereccocsoosrsososcencossossnsceeesd—42
For Files with Alternate KeYS .ceeieeeecsescacesonncaossad—42
For Partitioned FileS .c.ieeeeeeceessessccsconnssnsoancnsosesd—42
Action of Current Key, Key Specifier, and Key Length4-43
ACCESS EXaAMPleS .evvvveeasesnesssssssccsssscansssssassnesesid=q’d

[S200 = -

i-6

Table of Contents

SECTION 5. ENSCRIBE FILE CREATION .cvceceeessscsssccsscccoscsnssssd=l
Considerations for Both Structured and Unstructured Files .5-2
File TYPE eteeeeecsccesosscoccscssssoncsssscsscsssccssssssscssnsassd—2
Key-Sequenced FileS ceceeeccveccsscsoscsssccssscosossssssssesssd—2
Relative FileS tceeecceccceocasccsocsssscssscsssssssssessaceed—2
Entry-Sequenced FileS ..eieecscccsscccssscsssssscscseseeed=2
Unstructured FileS .ceeeccescscssccccsssesssssssssascssanasd=3
EXtentsS coceeeeeececsecceascsassssecssssssscssesnccsssnssesed—3
File COA@ .vvieecceosscanosssassoscssssosossscossasssssanssesd—3
Partitioned (Multi-Volume) FileS tececeecccceccccccscnsessd=d
Considerations for Structured FileS ...cecsccescsccasscnssed=5
Logical RECOIAS ceesceccesssvsssccsssssosssessassssssssssssd=Dd
BlOCKS covececenoeosscscsasssscssssssscccscscassssssssaacesd=b
Considerations for Key-Sequenced FileS .v.ceveeccsccasasad=b
COMPreSSiON.esecessecsscsssssssssssssscscsccsscssssssssceed=b
Primary K@Y eceeeeeececcccessoscsscssesscssosassscsssasnssed=T
IndeX BlOCKS cceecececvseososccccsosssossssssssssassscscsssssssd=8
Considerations for Files Having Alternate KeyS .ceseeee..5-8
Key Specifier ..ciesececceseceossssceccscccosscoccsssssssased=8
Key Offset and Length ...cieececceecococssssccsssssnssed=9
NULl VAlUE ceeeeescscccsssssoscesssssascsscccosssssssssesed=9
No Automatic Update ..ceeeesececsccccsssscscsssscssanassad=1l0
Unique Alternate KeYS ciceeececssccssoccsccsccsscsscsscseed=l0
Alternate Key FileS ..ceeeesvoscccscsssssscsscscocssssassd—ll
The File Utility Program (FUP) .ceeeeececcccccccccccsoacsssead=l2
RUNNING FUP tcveessvecsccccsosssscccsssnossssscnsssscsssessd=l3
FUP SET COMMANG «cveceeccossssossssssossssscsssssssssosssseed—ld
FUP SHOW COMMANGA e vcoeecocosasscsssacosssscsnasscsasscssssd—23
FUP CREATE COMMANA . eoeeeessssccosssosssssoosssscncsecsessd=24
FUP RESET CoOmmManNd «eesecececsssssscsccescoosscesossssassesed=25
FUP INFO COMMANA «ceeoscccsosscsscssscocasssccsssssscssccased=26
CREATE ProCeAUYre .ceecessscssscssssssssscsccsscsasssssasssssd—28
Creation EXAMPleS ceveeeecesssccecssssscsssscossssssssasesnsecsd=40
Example 1. Key-Sequenced File .ccceeeccecccccccesscsscccesesd=40
Example 2. Key-Sequenced File With Alternate Keys5-42
Example 3. Alternate Key File ticceeeeeccccscccccsscsosessn—dd
Example 4. Relative, Partitioned File ..cccceececececesssd=45
Example 5. Key-Sequenced, Partitioned File ...ccceeeseess>-46

i-7

Table of Conten

SECTION 6.

The FUP LOADALTFILE Command
The FUP BUILDKEYRECORDS Command

File Load
Example
Example
Example
Example

Example

APPENDIX A.
Source Fi

SET"FILE

Sequentia
FCB Struc
Initializ

INITIALIZER-Related Defines

ts

ENSCRIBE FILE LOADING ..'-.-o-9..-....0.-.-000....6"1
The FUP LOAD Command'....'..'..'.....'.‘.....'.6_2

cco-ooo.noocc-ooo.-ao-o.ooooo--6-6

o-ooon-uoobuo---oooocoo-c-o6‘-9

ing EXamPlesS ciicciseccessssoocsssssscssssecssssecessb=12
l. Load a Key-Sequenced File .ccieeiieccccnnnsaacb=1l2

2. Add an Alternate Key to a File

Having an Alternate Key .cceeeeecceccccns

3. Add an Alternate Key to a File

Not Having Alternate KeysS ..cecececececns

4, Reload a Single Partition of

° e .6-13

) .6—14

Key-Sequenced, Partitioned File ...ccceee...b6-15

5. Load a Single Partition of

Partitioned Alternate Key File .

SEQUENTIAL I/O PROCEDURES ..ccceecccs
<
CHECK"BREAK Procedure
CHECK"FILE Procedure
CLOSE"FILE Procedure
GIVE"BREAK Procedure
OPEN"FILE Procedure
READ"FILE Procedure

© 6 06 6 6 0 006060 0465 0000090000000

® ¢ 5 98 8 0 0600000000090 0090000080

® 6 5 0286 006 5 60 9 ¢ 08 000000000

®© % 3 0 06 0 ¢ 0 S 00 PG00t E L VO ETEEDIDBIOE

ProCedUre .eeveecosasassassosasasscsccscsaca
TAKE"BREAK ProCedUre ...ceeceeeccscesacscsoscoscss
WAIT FILE ProCedUrecececececcsssssssccssssaes
WRITE FILE ProCedUre «.ceeceeeecceccccscnccasocns
1 I/0 Procedure ErrOrS e.eeecessccccoans

ture T 3 € 0 8 0 0 6 5 5 I P 96 0 E S S S E OGSO LSPGO P e

* s 0 0

e o e 0

ing the File FCB ® & & ¢ 2 & 0 & ¢ 0 P " O PSSP S S e o
Interface With INITIALIZER and ASSIGN Messages ..

Usage Example With the INITIALIZER .ccccoscccsoes
Usage Example Without INITIALIZER ..cecececcecses

NO”ERROR
SRECEIVE

Procedure ® 0 0 0 00 0000000000000 0
Handling ® 6 0 0 09 6 0 0000 00000008000

NOWAIT I/O ® © 6 0 0 00 0 05 0% 00 PG SISO eSS s e

SSYSTEM. S
File Cont

APPENDIX B.

APPENDIX C.

APPENDIX D.

APPENDIX E.

YSTEM.GPLDEFS ® ® 9 9 & 9 & 5 0 B S 9 000
rol BloCk FOrmat eeceeececceccaecs

ASCII CHARACTER SET ...cvveeeses

STRUCTURED FILE BLOCK STRUCTURE

e e 0 00 2o

.

FILE MANAGEMENT ERROR LIST ..¢eesse

ENSCRIBE PROCEDURE SYNTAX SUMMARY

* 0 o 0

e 0o s 0

LRI)

® e o0

.

9 0 0000 0

LI 06—].6

.+ sA-1

...A-4

«sA=5

e+ .A-6

...A-14
...A-16
«e.A-17
.. .A-23
e e A=-25
«+.B=-35
...A-36
...A-38
...A-40
...B-43
...A-44
...A-48
...A-48
...A-52
.«.A=-56
...A-58
...A-62
. .A-65
...A-66
...A=-70

L3R] oB_l

o .C"l

L) oD_l

«..BE-1

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Fiqure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure

e el el el el

1
HHEWO~NOU & WwN -

O o

o o . e o .

.

LIST OF FIGURES

Disc File Organization «..ceeeecesecessononcaeeseal=2
Key—-Sequenced File Structure ceeesscssseecl—4
Relative File StruCtuUre ..c.cececsccscsscsssassasl=h
Entry-Sequenced File StructuUre ...cceseceecesssceseal—6
Access PathS c..eeivieesccenessossssscssccccnenssel=9
Approximate, Generic, and Exact Subsets ..¢.¢....1-10
Relational Access Among Structured Files1-11
Wait Versus No-Wait I/O c.ceeeecssscsscsanssasnesasl—l8
No-Wait I/0O (Multiple Concurrent Operations)1-19
Hardware I/0 StruCtUre .e.ceececccscccsccssassssasl=26
Primary and Alternate Communication Paths1-28
File System Procedure ExXecUtion .ceeeececcccsas esel1-29
File OP@N tttevevnnnnccanens ceseecsscsossssssncacsl=32
File Transfer ..cceeeeeceececccoscsasssssssssasnsssl—34
Buffering .oeeveeecenns ceseenns ceessscecccsseesssl1=35
MirroOr VOlUME .vevvvecescceacnoosssscassssssascesesl=dd

Key-Sequenced File StrUCLUIre .eeeeeeecocccoansooses—4d
Relative File StrUCLUIrE ciciitececscsssssccensssssl2—6
Entry-Sequenced File Stucture ...ccceeccecescceees=T
Key Fields and Key SpecifiersS c..eeececcecssssccceea2=9

Current Position .¢e.eeee. e 1)
Alternate Key POSition ® e o o9 50 0 0 ® 6 ® 06 ¢ 0 8 0 0 00000000 2—13
AWAITIO Operation N A

File Security CheCking .-o-.ooo-o.ooooo.oooooo.oo.3—94

Example of Encountering EOF ...eeececceessssssesssd=1l4
Example of Encountering EOF (short read)4-15
Example of File Pointer ACtion .iieeecececcncoeessd=17
Example of Crossing Sector Boundriescceece...4-19
Resident Buffering cesssssscenesecscssssssad=20
Example Showing Extent Allocation Error4-30

FCB Linking ® e e e 00 0000000000000 ooooo'ooonoo....oA—43

i-9

Table

Table
Table
Table
Table
Table
Table
Table
Table
Table

Table

Table
Table

i-10

LIST OF TABLES

File Pointer ACtiOl’l-....-....................2—].9

File Management Call SUMMALY «cveevessosassssesseesd=l

AWAITIO ACLION eveescvencscscssccsssascsssoscsascaessld—1l9
CONTROL OperatiOns eeeeesceceecscssssssccscassnnesssd=25
<key-sequenced params> Array Formatc0...3=32
<alternate key params> Array Format....c.cceeeeeee.3-33
<partition params> Array Formatces2c00000..3-36
Device Types and SUbtypPeS cieeeeeveensecanssaesssald—40
Exclusion/Access Mode Checking .eeeeeeeesccesessaa3=95
SETMODE and SETMODENOWAIT Functions ...eecsesssssa3=127

File Pointer ACtIiON ceveeescvscocscsssnsccssesessosd=ll
Disc CONTROL and SETMODE OperatiOns «ceceececescsssad=32
Action of Current Key, Key Specifier,

and Key Length seeeeeececeessocssnsnsnossasaseses .4-43

SYNTAX CONVENTIONS IN THIS MANUAL

The following is a summary of the characters and symbols used in the
syntax notation in this manual. For distinctiveness, all syntactical
elements appear in a typeface different from that of ordinary text.

Notation Meaning
UPPER-CASE Upper-case characters represent keywords and reserved
CHARACTERS words. If a keyword is optional, it is enclosed in

brackets. If a keyword can be abbreviated, the part
that can be omitted is enclosed in brackets.

<lower-case Lower-case characters enclosed in less than/greater

characters> than symbols represent all variable entries supplied
by the user. If an entry is optional, it is enclosed
in brackets.

Brackets [] Brackets enclose all optional syntactic elements.
A vertically-aligned group of items enclosed in
brackets represents a list of selections from which
one, or none, may be chosen.

Braces {} A vertically-aligned group of items enclosed in
braces represents a list of required elements from
which exactly one must be chosen.

Ellipses ... An ellipsis (...) following a pair of brackets that
contains a syntactic element preceded by a separator
character indicates that that element may be repeated
a number of times. An ellipsis following a pair of
braces that contains a series of syntactic elements
preceded by a separator character indicates that the
entire series may be repeated, intact, a number of
times.

Punctuation All punctuation and symbols other than those described
above must be entered precisely as shown. If any of
the above punctuation appears enclosed in quotation
marks, that character is not a syntax descriptor but a
required character, and must actually be entered.

Conventions for Procedure Calls

Calls to operating system procedures are shown in the following
form:

&CALL } <procedure name> (<parameters>)
<retval>:=}
where

CALL

is an ENSCRIBE CALL statement.

<retval> :=

indicates that the procedure is a function procedure; it
returns a value of type INT or INT(32) when you reference it in
a statement. All function procedures can be called with a CALL
statement, but the return value will be lost. The return wvalue
is described as:

<retval>, <type>

where
<type>

is INT or INT(32)

<procedure name>

is the name of the procedure.

<parameters>
are described as:

<parameter>, <type> :i ref } [:<num elements>],
value

where
<type>

is INT,INT(32), or STRING.

i-12

ref

indicates a reference parameter.

value

indicates a value parameter.

<num elements>

indicates that the procedure returns
parameter for num elements.

a value of type to

SECTION 1
INTRODUCTION TO ENSCRIBE

ENSCRIBE is a data base record manager that provides high level access
to, and manipulation of, records in a data base.

ENSCRIBE operates as an integral part of the GUARDIAN Operating System
in a distributed fashion across multiple processors. As such,
ENSCRIBE ensures the integrity of the application”s data in the event
that a processor module, i/o channel, or disc drive fails.
Important Features of ENSCRIBE are listed below:
® Four disc file structures
- [Key-Sequenced
- Relative
- Entry-Sequenced
- Unstructured
® Multi-key Access to Records
® Relational Access Among Files
® Record Locking
® Sequential Access Buffering Option
® Record Management Procedures
® Automatic Maintenance of All Keys
® Data Compression for Key-Sequenced Files
® Index Compression

e Multiple-Volume (partitioned) Files

® Cache Buffer

INTRODUCTION TO ENSCRIBE

DISC FILE ORGANIZATION

A disc file is referenced by the symbolic file name that is assigned

when the a file is created.

The symbolic name that identifies an

individual disc file in the system consists of three parts:

1) A "volume" name to identify a particular disc pack in the

2)

3)

system

a "subvolume" name to identify the disc file as a member of a
related set of files on the volume (as defined by the

application)

a "disc file name" to identify the file within the subvolume.

This disc file organization is illustrated in Figure 1-1 below.

VOLUME NAME SUBVOL NAMES
7 L \
SVOL1 svoL2 ACCT —8
$VOL 1
(1) (2) (3)
l FILEA , FILEA INFILE '

DISC FILE NAMES A i FILEB '

Figure 1-1.

I MYFILE '

(1) FULL FILENAME = "$VOL1e SVOL1e FILEA”
(2) FULL FILENAME = "$VOL1e SVOL2e FILEA"
(3) FULL FILENAME = "$VOL1e ACCT1e INFILE"

Disc File Organization

INTRODUCTION TO ENSCRIBE

A disc file must be created before it can be accessed. A file is
created by calling the CREATE procedure or by using the File Utility
Program (FUP) CREATE command. When created, a file can be designated
as either permanent or temporary. A permanent file remains in the
system after access is terminated; a temporary file is deleted when
access is terminated.

Also specified when a file is created is the file”s type. ENSCRIBE
supports four file types: key-sequenced, relative, entry-sequenced,
and unstructured files. Taken as a group, key-sequenced, relative,
and entry-sequenced files are known as structured files. The
facilities available with structured files differ significantly from
those available with unstructured files. The following sections

briefly describe each of the four file types, beginning with the
structured files.

STRUCTURED FILES

All data transfers between an application process and a structured
disc file are done in terms of logical records. The placement of and
access to records in a disc file is determined by the file structure
(a file”s structure is specified at file creation time).

For structured files, the maximum length of a logical record (i.e.,
the maximum number of bytes that can be inserted in a single
operation) is specified for each file at file creation time. The
actual number of bytes comprising a logical record can be variable (up

to the specified record length); the minimum number of bytes that can
be inserted depends on the file structure.

Each record has a length attribute. The length attribute is a count
of the number of bytes inserted when the record was written. A
record”s length is returned when the record is read.

INTRODUCTION TO ENSCRIBE

Key-Sequenced File Structure

Records are stored in ascending sequence according to the value of a
field within each record called the "primary key field". The primary
key field is designated when a key-sequenced file is created and may
be any set of contiguous bytes within the data record. Physical and
logical record lengths can be variable; a record occupies only the
amount of space specified for it when inserted into the file.

KEY SEQUENCED FILE:
RECORD
1

/ ~\
PRIMARY

KEY

/__L'_ﬂ

PRIMARY ACCESS IS VIA ADAMS
VALUE IN THE PRIMARY
KEY FIELD. BROWN
EXAMPLE: COLLINS

FIND “"KING "— FISH
; JACKSON
KING

MASTERS
OBRIEN
RYAN

| KEY-SEQUENCED
FILE

WATSON
ZANTE

?

RECORDS ARE STORED

IN ASCENDING ORDER

OF “PRIMARY KEY"” FIELD
VALUE.

..___.‘._4_‘._J._4___....¢

Figure 1-2. Key-Sequenced File Structure

1-4

INTRODUCTION TO ENSCRIBE

Relative File Structure

Records are stored in a position relative to the beginning of the file
according to a record number supplied by the application program. A
record number is an ordinal value and corresponds directly to a
physical record position in a file. Each physical record position in
a relative file occupies a fixed amount of space (although logical
record lengths may be variable).

RELATIVE FILE:
RECORD

NUMBER RECORD
1 1
N

Oth

1st
PRIMARY ACCESS IS VIA
“RECORD NUMBER". 2nd
EXAMPLE: 3rd

FIND 6th 4th
5th
6th RELATIVE FILE

7th

nth

!

RECORDS ARE STORED
ACCORDING TO A
“RECORD NUMBER”
SUPPLIED BY THE
APPLICATION PROGRAM

Figure 1-3. Relative File Structure

INTRODUCTION TO ENSCRIBE

Entry-Sequenced File Structure

Records are appended to the end of an entry-sequenced file in the
order in which they are presented to the system. Once added to a
file, a record”s contents may be updated but the record”s size may not
be changed and the record may not be deleted (although an application
program may use a field within the record to indicate that it has been
logically deleted). Physical and logical record lengths can be

variable; a record occupies only the amount of space specified for it
when inserted into the file.

ENTRY-SEQUENCED FILE:

RECORD
7/ 1 N
PRIMARY ACCESS 1st \
IS IN SEQUENCE ond
THAT RECORDS
ARE STORED IN 3rd
FILE. ath
EXAMPLE: S
READ (READS FIRST}
READ (READS SECOND) 6th
READ (READS THIRD) 7th | ENTRY-SEQUENCED
FILE
8th
LATEST J

—_—

T
RECORDS ARE STORED

IN ORDER PRESENTED
TOSYSTEM (LLE.,
CHRONOLOGICAL ORDER)

Figure 1-4. Entry-Sequenced File Structure

INTRODUCTION TO ENSCRIBE

Multi-key Access to Structured Files
A "record" consists of one or more "fields":

A record in a key-sequenced file:

CUSTOMER
NAME | [ADDRESS [REGION |
fields: T T T

Each record in a file is uniquely identified among other records in

that file by the value of its primary key. For key-sequenced files,
the primary key is a byte field within a record; for relative files,
the primary key is a "record number"; for entry-sequenced files, the
primary key is a "record address". Records in a file are physically
ordered by ascending value of the primary key.

The primary key field for a key-sequenced file:

[NAME [ADDRESS , I REGION |

T
primary key

The primary key for a relative file:

<record number> --> | NAME | DATE |

primary key

The primary key field for an entry-sequenced file:

<record address> -> | ITEM | DESCRIPTION H

primary key

A record is located among records of the same file by the value of its
primary key:

| JONES, J.A. | DAYTON, OHIO [CENTRAL |

primary key entry

This is the only record of this record type having the primary
key entry "JONES, J.A."

INTRODUCTION TO ENSCRIBE

One or more byte fields within a record may be designated "alternate
keys". Any structured file can have up to 255 alternate key fields.
Values in alternate key fields need not be unique.

[NAME [ADDRESS [REGION |

an alternate key

Several associated records of the same type may be located by
their entries in an alternate key field:

JONES, J.A. DAYTON, OHIO CENTRAL
MOORE, Q.A LOS ANGELES, CA WESTERN
SMITH, S.A CHICAGO, ILL CENTRAL

Two records of this record type have alternate key field
entries of "CENTRAL".

Each key in a structured file provides a separate access path through
records in that file. Records in an access pass are logically
ordered by ascending access path key values.

A simple employee file with three seperate access paths, provided by
three different key fields, is shown in Figure 1-5 on the following

page.

1-8

INTRODUCTION TO ENSCRIBE

EMPLOYEE NAME ADDRESS DEPT
NUMBER {NOT AN
ACCESS PATH)
1

VN

RECORDS IN ORDER 007
OF “EMPLOYEE

NUMBER" ACCESS
PATH 010

4 ﬁ | o

laccess! I I |
| PATH | | i |

ADAMS
BROWN
FISH
JACKSON

SAME FILE.
RECORDS IN ORDER
OF “NAME"” ACCESS

2 71 KING
4 |7 013" MASTERS

PATH ' 012 .| OBRIEN
~.001. 1 RYAN

51011] STEVENS
007 | TUTTLE
016] WATSON

o f } | -

| I access
| | PATH | | |

SAME FILE.
RECORDS IN ORDER
OF “DEPT” ACCESS
PATH

QOO0 0O|lm | O |>]|>

L 012 ¥ OBRIEN

—

ACCESS
PATH

Figure 1-5. Access Paths

INTRODUCTION TO ENSCRIBE

A subset of records in a designated access path can be described by a
"positioning mode" and a key value. The positioning modes are:
"approximate", "generic", and "exact". Approximate means that the
subset comprises all records whose access path key value is

equal to or greater than the supplied key value. Generic means that
the subset is comprised of all records whose access path key value
matches a supplied partial value. Exact means that the subset is
comprised of only those records whose access path key value matches
the supplied key value exactly. Examples of subsets returned with
these three positioning modes are shown in Figure 1-6 below.

APPROXIMATE GENERIC EXACT
FIND “JONES”, APPROX. FIND “JONES”, GENERIC FIND “JONES, K.A.", EXACT
CHUNT, H.L, 0
CIRWINF., , _ v
START —»{ JONES A.B. START —»{ JONES, A.B. START " JONES, A.B. "
- EXACT
JONES, K.A. JONES, K.A. GENERIC | JONES. K.A. ¥ susseT
JONES, M.P. JONES, M.P. SUBSET © JONES, M.P,
JONES, 2.2. JONES, 2.2. 7 JONES, 2.2,
JORDAN, W.R. - JORDAN, W.R. JORDAN, W.R.
KANE, C.T. APPROXI- | KANE, C.T. KANE,C.T. "
KING, M FMATE TKING, M NG, ML
, M.L. SUBSET G, __'Lf KlN. il
LACEY, G.T. - LACEY,G.T LACEY,G.T.'
LANG, K.L. “LANG, K.L. : LANG, K.L. - =
LANG, M.N. " LANG, M.N. "LANG, M.N.
McGRAW, H.E. “McGRAW, H.E. McGRAW, H.E. :
LAST : ; S00c
RECORD —>] MEYER, DJ. | MEYER,D.J. 'MEYER, D.J.
IN FILE ? $ T
READING THE FILE READING THE FILE READING THE FILE
SEQUENTIALLY SEQUENTIALLY SEQUENTIALLY
RETURNS 12 RECORDS, RETURNS 4 RECORDS, RETURNS 1 RECORD,
THEN EOF THEN EOF THEN EOF

Figure 1-6. Approximate, Generic, and Exact Subsets

Relational Access Among Structured Files

Relational access among structured files in a data base is

INTRODUCTION TO ENSCRIBE

accomplished by obtaining a value from a field in a record in one file
and using that value to locate a record in another file.
of relational access is shown in Figure 1-7 below.

An example

ORDER HEADER FILE
ORDER NO. NAME

DATE TOTAL
L 1

T\

JONES, J.A.

| ADAMS, A.B. ©

10-17-76

{WATSON, N.A.

. SMITH, C.J.

—=

ORDER/ITEM
NO. PART NO.
1 1

ORDER DETAIL FILE

“' CUSTOMER FILE
NAME ADDRESS REGION
1 1 1
- - ‘L,A,,‘CA‘

PLAINS, GA.'

[BOSTON,MA.. |~

QUAN- ITEM
TITY TOTAL
1 i

' 0021

0001

0021

PARIT NO.

INVENTORY FILE

DESCRIIPT!ON ON-HAND PR1|CE
e

N

Figure 1-7.

Relational Access Among Structured

INTRODUCTION TO ENSCRIBE

Automatic Maintenance of All Keys

When a new record is added to a file or a value in an alternate
key-field is changed, ENSCRIBE automatically updates the indices to
the record (the value of a record”s primary key cannot be changed).
This operation is entirely transparent to the application program.

If more key fields are later added to a file, but existing fields in
that file are not relocated, existing programs that access the file
need not be rewritten or recompiled.

Data and Index Compression

For key-sequenced files, an optional data compression technique
permits storing more data in a given disc area, thereby reducing the
number of head repositionings.

Similarly, an optional index compression technique is provided for key
indices to data records.

Both data and index compression may be specified for a file when the
file is created.

INTRODUCTION TO ENSCRIBE

UNSTRUCTURED DISC FILES

An unstructured disc file is essentially a byte array. The
organization of an unstructured disc file, the lengths and locations
of records within the file, is the responsibility of the application
process.

Data stored in an unstructured file is addressed in terms of a
relative byte address (rba). A relative byte address is an offset, in
bytes, from the first byte in the file, the first byte being located
at rba zero.

Associated with each open unstructured disc file are three "pointers":
® a "current-record" pointer
® a2 "next-record" pointer
® an "end-of-file" pointer

Upon opening a file, the current-record and next-record pointers are
set to point to the first byte in the file. A read or write operation
always begins at the byte pointed to by the next-record pointer. The
next-record pointer is advanced with each read or write operation by
the number of bytes transferred; this provides automatic sequential
access to a file. Following a read or write operation, the

current~record pointer is set to point to the first byte affected by
the operation.

The next-record and current-record pointers can be set to an explicit
byte address in a file, thereby providing random access. The
end-of-file pointer contains the relative byte address of the last
byte in a file plus one. The end-of-file pointer is automatically

advanced by the number of bytes written when appending to the end of a
file.

INTRODUCTION TO ENSCRIBE

ACCESS COORDINATION AMONG MULTIPLE ACCESSORS

A file may be accessed by several different processes at the same
time. 1In order to coordinate simultaneous access, each process must
indicate when opening the file how it intends to use the file. Both
an "access mode" and an "exclusion mode" must be specified.

The access mode specifies the operations that will be performed by an
accessor. The access mode is specified as one of

® Read/Write (default access mode)
® Read-Only
® Write-Only

The exclusion mode is used by a process to specify the type of access
it can tolerate.by other accessors. The exclusion mode is specified
as one of

® Share Access (default exclusion mode)

Share access indicates that the opening process can tolerate
simultaneous read and/or write access to the file.

® Exclusive Access

Exclusive access indicates that the opening process cannot tolerate
any simultaneous access of any kind to the file. Therefore, if any
further opens are attempted while the file is open, they are
rejected. Likewise, if the file is already open, an open
specifying exclusive access is rejected.

® Protected Access

Protected access indicates that the opening process can tolerate a
simultaneous read access to the file but cannot tolerate a
simultaneous write access to the file. Therefore, if any further
opens that specify read/write or write-only access mode are
attempted while the file is open, they are rejected. Likewise, if
the file is already open with read/write or write-only access
mode, an open specifying protected access is rejected. However, a
simultaneous open that specifies read-only access mode is
permitted.

INTRODUCTION TO ENSCRIBE

LOCKING

The access and exclusion mode operate on a file from the time it is
opened until the time it is closed. To prevent concurrent access to

a disc file for shorter periods of time, a locking mechanism is
provided. Two types of locking are available, file locking and record
locking.

File Locking

File locking is accomplished with the LOCKFILE and UNLOCKFILE
procedures. Multiple processes accessing the same disc file call
LOCKFILE before performing a critical sequence of operations to that
file. If the file is not currently locked, it becomes locked and the
process continues executing. This prevents other accesses to the file
until it is unlocked through a call to UNLOCKFILE. If the file is
locked, a caller of LOCKFILE is suspended until the file is unlocked.
If a process attempts to write to a locked file, the access is
rejected with a "file is locked" error indication; if a process
attempts to read from a locked file, it is suspended until the file is
unlocked.

An alternate mode for file locking is provided. 1Instead of suspending
the caller to LOCKFILE if the requested file is locked, the lock
request is rejected and the call to LOCKFILE completes immediately
with a "file is locked" error indication. Moreover, if a process
attempts to read from a locked file, the read is immediately rejected.
The alternate locking mode is specified via a call to the SETMODE
procedure.

Record Locking

Record locking for ENSCRIBE disc files is accomplished through the
LOCKREC and UNLOCKREC procedures. Record locking operates in
essentially the same manner as file locking, however it allows a
greater degree of concurrent access to a single file than file
locking. Through a call to LOCKREC, a process locks the current
record (as indicated by the last operation with the file). TIf the
record is currently locked, then the caller of LOCKREC is suspended
until the record is unlocked. Records are unlocked by a call to
UNLOCKREC.

Both record and file locking may be done concurrently to the same
file. A file lock will wait for all records to be unlocked before it
will be granted. Similarly, a record lock must wait if the file is
currently locked.

INTRODUCTION TO ENSCRIBE

WAIT/NO-WAIT I/0

The file system provides the capability for an application process to
execute concurrently with its file operations.

Two definitions:
® Wait I/O (the default)

"Wait" i/o means that when designated file operations are performed
(i.e., via file management calls), the application process is
suspended, waiting for the operation to complete.

e No-wait I/0

"No-wait" i/o means that when designated file operations are
performed, the application process is not suspended. Rather, the
application process executes concurrently with the file operation.
The application process waits for an i/o completion in a separate
file management call.

Whether "wait" or "no-wait" i/o is to be in effect when designated
file operations are performed is specified on a per OPEN basis when
files are opened. If "no-wait i/o" is specified, then the maximum
number of concurrent operations to be permitted must also be specified
at file open. Disc files are limited to one concurrent operation (one
outstanding no-wait call) per file open.

For example, to open a file so that one concurrent file operation is
permitted (i.e., a "no-wait" file), the follow1ng could be wrltten in

Aarn ArmmT dAanld Al e e " -7
Gii QML LA LLULL PLUYL ault \aa:uulc t_ucu. L.I.J.Cllalllc bull‘-a-l.llb a VaJ_J. .LJ._LC

name) :
CALL OPEN ‘rilename, fnum”1l, 1);
The third parameter, "1", specifies that one concurrent
operation is permitted (this parameter is also used for other
purposes, see "OPEN").
Any input/output operation involves an "initiation" and a
"completion". With "wait"™ files both the initiation and completion

are performed in the same file management procedure call. For
example, on a wait file, the call

CALL READ(fnum”0,buffer,..);

initiates the i/o operation, then the application process is
suspended, waiting for its completion.

-16

l..-l

INTRODUCTION TO ENSCRIBE

With "no-wait" files, the "initiation" is performed in one call, the
operation is "completed" by another call:

CALL READ(fnum”™1l,buffer,..);

initiates the i/o operation. Process execution continues
concurrently with the i/o transfer.

CALL AWAITIO(fnum™l,..);

completes the i/o operation. If not complete when AWAITIO is

called, the process is suspended until completion occurs or an
application-defined timeout expires.

Multiple operations (with multiple files) can be in progress
simultaneously. Concurrent operations associated with a particular
open are "completed" in the same order as initiated, unless setmode
30, "Allow no-wait operations to complete in any order", has been
specified (GUARDIAN operating system version D or later). Concurrent

operations associated with separate opens are "completed" as they
finish.

The difference between wait and no-wait i/o is illustrated in Figure
1-8, on the following page.

INTRODUCTION TO ENSCRIBE

WAIT I/0
OPENED AS A “WAIT” FILE

INITIATE
— — — — — CALL READ (f1, ...);
COMPLETE
NO-WAIT i/0
OPENED AS A “NO-WAIT” FILE
INITIATE CALL READ (f2,...);

7 CONCURRENT
EXECUTION

Y
COMPLETE CALL AWAITIO (2, .. .);

Figure 1-8. Wait Versus No-Wait I/O

The action of no-wait i/o during multiple concurrent operations is
shown in Figure 1-9, on the following page.

INTRODUCTION TO

ENSCRIBE

MULTIPLE CONCURRENT OPERATIONS

'

i file number

CALL WRITE (3, . . .);

CALL WRITE (f3, .. .);

CALL AWAITIO (f3,...);

ONE FILE:
INITIATE 1
\
INITIATE 2
COMPLETED
IN THE ORDER —
AS INITIATED
/
COMPLETE 1
y
COMPLETE 2

CALL AWAITIO (f3,...);

:

TWO FILES, ONE CONCURRENT
OPERATION EACH (I.E,TWO TOTAL):

TWO FILES, ONE CURRENT OPERATION WIiTH
ONE, TWO CONCURRENT OPERATIONS WITH

THE OTHER (L.E., THREE

INITIATE f4 CALL READ (fa,...); ﬂl INITIATE 6 1
/
\ \i
INITIATE f5 CALL READ (f5,...); / INITIATE f7
Y
/ INITIATE f6 2
// —
COMPLETED IN THE
SAME ORDER AS
anyfile . = —1; INITIATED
anyfite : = —
E?R'::’Lsg:E CALL AWAITIO)
(anyfile, . . .); ’I COMPLETE
: 4
co €TE NE CALL AWAITIO / /
(anyfile, . . .); / COMPLETE
COMPLETE
/
FIRST DONE OF l
“f6 1" OR “{7"

Figure 1-9.

No-Wait I/0 (Multiple Concurrent Operations)

TOTAL):

CALL WRITE (f6, . . .);

CALL READ {f7,...);

CALL WRITE {f6, .. .);

1

CALL AWAITIO(anyfile, . . .);

CALL AWAITIO (anyfile, . . .);

CALL AWAITIO (anyfile, . . .);

0878

INTRODUCTION TO ENSCRIBE

CACHE

The "Cache" is an area of main memory, whose size is specified at
system generation time, that is reserved for buffering blocks read
from disc.

When a request is made to read a record from disc, ENSCRIBE first
checks the Cache for the block that contains the record. 1If the block
containing the record is already in the cache, the record is
transferred from the Cache to the application process. If the Cache
does not contain the block, the block is read from the disc into the
Cache, then the requested record is transferred to the application
process.

If no space is available in the Cache when a block must be read in, a
a weighted, least-recently-used algorithm (LRU) determines which block
to overlay. The purpose of the LRU is to, whenever possible, keep the
most recently referenced blocks in main memory. (For key-sequenced
files, this weighting favors index blocks.)

When a request is made to write a record to disc, the block in the
Cache that contains the record is modified then immediately written to
disc (if the block to be modified is not in the Cache, it is first
read from the disc). However, the modified block remains in the Cache
until it is needed for overlay.

SEQUENTIAL ACCESS BUFFERING OPTION (Structured Files Only)

For a program that seguentially reads a file, the access time to
individual records can be greatly reduced by means of the Sequential
Access Buffering Option (this option, if desired, is specified at file
open). Basically, this option allows the record deblocking buffer to
be located in the application process”s data area (rather than in a
system i/o process). This buffer is then used by ENSCRIBE to deblock
the file”s records. The advantage to this buffering is that it
eliminates the request to the system i/0 process to retrieve each
record in a block (instead, a request retrieves an entire block of
records). This option is allowed only if the file is opened by the
requesting process with protected or exclusive access.

INTRODUCTION TO ENSCRIBE

MULTIPLE-VOLUME (PARTITIONED) FILES

At file creation time, a file can be designated to reside entirely on
a single volume or may be partitioned to reside on separate volumes.
Moreover, the separate volumes need not reside on the same system; a
file can be partitioned accross network nodes. Up to sixteen
partitions are permitted; each partition can have up to sixteen
extents.

In addition to providing a maximum file size of approximately four
billion bytes, the use of multi-volume files provides for simultaneous
access to a file”s records:

@ If the file resides on several volumes connected to the same
control device, seeking (disc head repositioning) can be occurring
on all volumes simultaneously.

® If each file resides on a volume that is connected to a different
control device, several data transfers (as well as seeks) with the
file can occur concurrently.

@ If each volume”s control device is connected to a different
processor module, simultaneous processing of the file”s data can
occur, as well as simultaneous seeking and data transfers.

FILE CREATION

Disc files are created (defined) by

® using the Tandem-supplied File Utility Program (FUP)
The "creation parameters” (i.e., file type, record length, key
description, etc.) for a file to be created are set (specified) by
entering FUP commands. The state of file creation parameters can
be displayed and modified before the file is actually created.
Creation parameters can be set to those like another, existing
file.

FUP accepts commands entered at an online terminal or from a file
such as an EDIT-format file.

® calling the File Management CREATE procedure

programmatic file creation of disc files is accomplished by
supplying the appropriate parameters to the CREATE procedure.

File creation is described in section 5, "ENSCRIBE File Creation".

INTRODUCTION TO ENSCRIBE

DATA DEFINITION LANGUAGE (DDL)

The Data Definition Language (DDL) provides a uniform method of
describing record formats, regardless of the programming language used
(COBOL, FORTRAN, or TAL) to access the record. DDL also provides a
system-wide definition of record formats so all programs have a
consistent definition of a given record format. (See the Data
Definition Language Programming Manual, T16/8034.) 1In addition to
data language source, DDL can produce FUP File Creation commands for
data base files which are then accessible through ENSCRIBE. See File
Creation described in Section 5.

FILE LOADING

The File Utility Program (FUP) can also be used to load data into
existing ENSCRIBE files. This is accomplished by supplying the set of
records to be loaded and specifying the file”“s data and index block
loading factor. (The loading factor determines how much free space to
leave within a block). FUP attempts to optimize access to a file by
placing the lowest level index blocks on the same physical cylinder as
their associated data blocks, thus reducing the amount of head
repositioning.

File loading is described in section 6, "ENSCRIBE File Loading".

1-22

INTRODUCTION TO ENSCRIBE

RECORD MANAGEMENT FUNCTIONS

Manipulation of records in an ENSCRIBE file is
File Management Procedures.

associated procedures are:

Function

® Find.

® Insert

® Read

e Update

® Delete

e Lock

® Unlock

® Define

Description

Set the current position, access path,
and positioning mode for a file. This
may indicate the starting record of a
subset of records in anticipation of a
sequential read of the set, or may
specify a record for a subsequent update

a new record into a file according to
its primary key value

a subset of records sequentially

a record in a random position in a file
the record in a key-sequenced or relative
file as indicated by a primary key value

the current record in a file,
or the file

the current record in a file,
or all records in the file

a new file

performed by calling
Record management functions and their

Procedure

KEYPOSITION,
POSITION

WRITE

READ

READUPDATE,
WRITEUPDATE

WRITEUPDATE

LOCKREC,
LOCKFILE,
READLOCK,
READUPDATE-
LOCK

UNLOCKREC,
UNLOCKFILE,
WRITEUPDATE-
UNLOCK

CREATE

The Record Management Procedures are described in section 3.

INTRODUCTION TO ENSCRIBE

FILE SYSTEM IMPLEMENTATION

This description is intended to provide a basic understanding of the
internal operation of the file system. 1In particular, the programmer
should have a thorough understanding of the action that the file
system takes when a communication "path" failure occurs and the
corresponding action that the application program must take to
recover.

Topics covered in this description are:

Automatic Path Error Recovery for Disc Files
Mirror Volumes

® File and I/0 System Structure

® File System Procedure Execution
e File Open

@ File Transfer

e File Close

°

°

File and I/O System Structure

The file and i/o structure encompasses the following areas:
® Hardware Structure

and

® Software Structure,

HARDWARE STRUCTURE. The hardware structure of a Tandem System is
designed so that two physically independent communication "paths"
exist between any application process and any i/o device.

The hardware communication path associated with an i/o operation is
comprised of the following:

e The interprocessor buses

Interprocessor buses are used for communicating data and control
information between processor modules. (The interprocessor bus is
not part of the communication path if the processor module
controlling the device is same as one where the application process
requesting an i/o operation is running)

INTRODUCTION TO ENSCRIBE

The processor module controlling the device

The processor module controlling a device executes i/o instructions
to command the device to perform designated i/o functions, contains
the main memory where the i/o transfer takes places, and receives
completion status from the hardware controller

The i/o channel to which the device is connected

The i/o channel carries the control and data signals between a
processor module and i/o controllers. (Up to 32 controllers may be
connected to a single channel)

The i/o controller

The i/o controller provides the electrical interface between and

i/o device and the i/o channel. (I/O controllers are generally
capable of controlling multiple devices)

Two physically independent communication paths are accomplished as
follows:

The two interprocessor buses provide two independent communication
paths between processor modules. If either bus fails, the other is
still available

I/0 controllers have two interface ports and are connected to the
i/o channels of two processor modules. If one channel fails,
control of the i/o controller is accomplished via the i/o channel
connected to the other processor module.

The hardware i/o structure is shown in Figure 1-10 on the following
page.

INTRODUCTION TO ENSCRIBE

INTERPROCESSOR BUSES

P P

Ol puaL-porT |©
? CONTROLLER ?

1/0 CHANNEL 1/0 CHANNEL

=

Figure 1-10. Hardware I/O Structure

SOFTWARE STRUCTURE. The GUARDIAN File Management System is designed
so that if at any time during a file operation any part of a
communication path fails, the file operation can still be completed
successfully.

The file management system is an integral part of the GUARDIAN
Operating System. A copy of the operating system resides in

each processor module in the system. Each copy contains only what is
necessary to control the input/output devices connected to

its particular processor module.

System control of i/o devices is accomplished by means of "system i/o
processes". The action of an i/o process is to accept a request from
the file system (the request initially comes from an application
process), perform the requested action (e.g., read or write), return
the completion status of the operation (and also data if a read
operation) to the file system, then wait for another request.

1-26

INTRODUCTION TO ENSCRIBE

There are two system i/o processes for each device (or set of devices
in the case of terminals or data communication lines); one located in
each of the two processors which are physically connected to a given
device. One process is designated the "primary" i/o process; the
other is designated the "backup" i/o process. (This primary/ backup
designation is made at system generation time.) Either i/o process is
capable of controlling the device. However, they do not control the
device simultaneously. Instead, the primary i/o process controls the
device exclusively and, at the same time, keeps the backup i/o process
informed (via checkpoint messages) of the activity on the device.

The communication path (i.e., processor module, i/o channel, and
controller port) through a primary i/o process to the device that it
controls is called the "primary path"; the path through through a
backup i/o process is called the "alternate path". If the file system
(or the operating system on behalf of the file system) detects a
failure in the primary path, it shuts down the primary path and
automatically reroutes subsequent communication to the device via the
alternate path. The backup i/o process takes control of the device
and, in fact, becomes the primary i/o process for the device.

In the case of disc files, the error recovery following a failure of
the primary path is automatic, and this type of failure is completely
invisible to the application program (see "Automatic Path Error
Recovery for Disc Files" later in this description).

When the original primary path is restored to system operation, it
becomes the current backup path. The original primary path is
restored to primary operation for the following reasons: the system
is cold loaded, a failure occurs in the current primary path, a PUP
"PRIMARY" command is executed to switch control of the device, or
"return to configured primary" is configured for the device and the
original primary processor module is reloaded. (See the GUARDIAN
Operating System Operating Manual for the NonStop system, or the
GUARDIAN Operating System Management Manual for the NonStop II system,
for an explanation of "cold load" and "reload."

INTRODUCTION TO ENSCRIBE

Figure 1-11 below shows the primary and alternate communication paths
to a device. While the primary path is operable; all i/o transfers
occur via that path. Only when a failure of the primary path is
detected, does the alternate path come into use. Once an alternate
path is brought into use, it becomes the primary path and is used
exclusively.

PRIMARY PATH

GUARDIAN

GUARDIAN

ALTERNATE PATH

7’

-~

GUARDIAN

GUAHDIAN

- PRIMARY SYSTEM 1/0 PROCESS
= BACKUP SYSTEM I/0 PROCESS
= APPLICATION PROCESS

Figure 1-11. Primary and Alternate Communication Paths

INTRODUCTION TO ENSCRIBE

File System Procedure Execution

File system procedures reside in operating system code but execute in
the application process”s environment. When a file system procedure
(or any operating system procedure for that matter) is called by an
application process, the system procedure”s local storage is allocated
in the application process”s data stack. The maximum amount of local
storage required by a call to a system procedure is approximately 400
words. (See Figure 1-12.)

USER CODE USER DATA

BUFFER }‘T

Z0——2>»0O0—r 070>

>»—4» 0

uoumOOIT T

400
WORDS

SYSTEM DATA SPACE FOR NonStop SYSTEM

SYSTEM CODE 1/0 POOL SPACE FOR NonStop || SYSTEM

SYSTEM /
(BUFFERS

Y

v

PROC READ:

THE READ PROCEDURE.
EXECUTING ON BEHALF OF THE
APPLICATION. ACCESSES BOTH
THE SYSTEM AND THE
APPLICATION DATA AREAS
(APPLICATIONS ACCESS ONLY
THEIR OWN DATA)

»—+4>»0

THE READ PROCEDURE CAUSES THE
SYSTEM PROCESS CONTROLLING
THE 'O DEVICE TO EXECUTE. THE
‘O PROCESS CONTROLS THE
TRANSFER OF DATA FROM THE
PHYSICAL DEVICE TO THE SYSTEM
BUFFER AREA. THE READ
PROCEDURE TRANSFERS THE DATA
FROM THE SYSTEM TO THE
APPLICATION'S BUFFER

[__M4n<yw OZ——=pIMUVO

Figure 1-12. File System Procedure Execution

1-29

INTRODUCTION TO ENSCRIBE

File Open

The OPEN procedure establishes a communication path to a file. The
symbolic file name that identifies a file is used to search a table, a
copy of which resides in each processor module, called the Logical
Device Table. The Logical Device Table contains an entry for each
device connected to the system. Each entry contains a device name or,
in the case of disc files, a volume name, the process id of the
"primary" system i/o process that controls the device/volume, and the
process id of the "backup" system i/o process that controls the
device/volume.

In the following illustration, the logical device table is searched
for an entry corresponding to the volume name "$VOLUME". The entry
is associated with logical device four and a path is established to
the primary i/o process controlling the device.

Next, in the case of disc files, a directory on the disc volume is
searched for the subvolume name and the the disc file name that was
supplied to OPEN. The entry associated with a subvolume and disc file
name is a file label which contains information describing the state
of the file, including the location of allocated extents, end-of-file
location, file type, etc.

In the following illustration, the file label is searched for a
subvol designated "MYFILES" and a disc file named "FILEA".

Once the file is located, whether it is a disc file, non-disc device,
process, or the operator console, an Access Control Block (ACB) is
created for that file in the processor”s memory where the caller to
OPEN is running. The ACB is used by other file system functions when
referencing the file. It contains information such as the logical
device number of the device where the file resides and, for disc
files, information "local" to the particular open of the file such as
the current record pointer and next record pointer.

If the open is to a disc file and the file is not currently open, one
File Control Block (FCB) is created in the memory of each of the two
processor modules that contain the system i/o processes that control
the volume containing the file. The FCB contains information which is
"global" to all accessors of the file. This includes a copy of the
information from the file label, such as allocated extents and
end-of-file location, along with dynamic control information such as
which process has the file locked and which processes if any are
waiting to lock the file.

INTRODUCTION TO ENSCRIBE

There is a single FCB for each open disc file in the system (in each
of the two processor modules controlling the associated device) while
there is an ACB created every time a file is opened. Thus each open
of a given file provides a logically separate access to that file
(i.e., separate current-record and next-record pointers), yet the
end-of-file location is maintained in the FCB so that it has the same
setting for all accessors of the file.

In the following illustration, the access control block indicates
that logical device four is associated with the file indicated by
"$VOLl".

When OPEN completes, it returns a file number to the application
process. The file number is an index into a table that contains an
address pointer to the associated access control block.

How the File System takes the file name passed with an OPEN procedure
and builds the control blocks used to control subsequent access to the
file is illustrated in Figure 1-13 on the following page.

INTRODUCTION TO ENSCRIBE

|V LOGICAL
DEVICE
TABLE
(NonStop
SYSTEM)

CONTROL
TABLE
{NonStop I!
SYSTEM)

DESTINATION]

)

$SYSTEM
PRIMARY
BACKUP

APPLICATION PROCESS

——]

INT .fildname (0:11) :$VOLUME SVOL2 MY FILE": ‘

K INT filenum;]

NN I |

\

CALL OPEN (fil€'name, filenum,);

| |
R

$VOLUME

|
|

LDEV 3

I LDEV 4

PRIMARY
BACKUP
$TERM1

PRIMARY
BACKUP
$TERM2

PRIMARY

%C%P/é

LDEV 6

DIRECTORY

FILEAL 7
"EOF PTR 2
TA ADDRESS

B -
|
|

| SVOL2
I MYFILE

F
| EOF PTR

IL DATA ADDRESS
E 0

LDEVS ~

DISK
1/0 PROCESS
(BACKUP)

CHECKPOINT
OF FCB

N

DISK
1/0 PROCESS
(PRIMARY)

FILE
CONTRCL
BLOCK

EOF PTR

DATA ADDRESS

L u 0 s i
— _BLOCK |B UTFILE
_/ LDEV 4 | E
[FILE NAME L)
CURREC PTA_| -
FILE NEXT-REC PTR |
TABLE '
\0
1 [ACB ADDRESS
2
3
: ‘
5
e | T |
MAIN MEMORY RESIDENT OPERATING SYSTEM (N APPLICATION | T T -
PROCESS'S PROCESSOR MODULE _i A

.
LOCK QUEUE

MAIN-MEMORY
RESIDENT IN

1:0 PROCESS'S
PROCESSOR MODULE

File Open

Figure 1-13,

1-32

INTRODUCTION TO ENSCRIBE

File Transfers

As previously mentioned, the file number returned from open is used by
file management procedures to access an open file. The file number
can be thought of as a pointer to an access control block. When
performing an i/o operation, the file number is used to locate an
access control block, which in turn provides a logical device number
which is then used as an index into the logical device table. The
corresponding entry in the logical device table provides the process
id associated with the primary path to the physical i/o device. 1In
the case of disc files, other information maintained in the access
and file control blocks eliminates the need for a disc access when
addressing a file.

In the following illustration, Figure 1-14, the access control
block indicates that the device is logical device four.

In the case of disc files, the information in the access control block
(such as the current-record and next-record pointers) and the
information in the file control block (such as the end-of-file pointer
and addresses of allocated extents) is updated with the execution of
each i/o operation.

As accesses which necessitate changes to the FCB are made to the file,
the system process which is currently responsible for controlling the
disc ensures that the copy of the FCB in the other processor which can
access the disc is updated. Thus, if the primary processor- fails, the
backup has all the information necessary for a smooth transition
(which is invisible to the user). 1In addition, when a new extent is
allocated or the file is renamed, the file label on the disc is
updated to reflect this change. This ensures that no disc space is
lost, even in the event of a total system failure. However, when the
end-of-file is changed or the file is written into, which requires
updating the last modification timestamp, only the main-memory copies
are updated. (Updating the file label each time the file is written
into would be an unnecessary amount of additional overhead, because
the current eof and last modification timestamp would be lost only in
the event of a total system failure. The user who is concerned about
the eof being updated on disc can force this to happen with the
CONTROL request to set the end-of-file.)

INTRODUCTION TO ENSCRIBE

APPLICATION PROCESS

INT buffer (@ 127)

4
\

————
INT filenum; h

\ l

AN

—— e |

|
CALL READ (filenum, buffer, 256, .);

~ |
LOGICAL DESTINATION
DEVICE CONTROL
TABLE TABLE

(NonStop {NonStop 11
SYSTEM) SYSTEM)

(—> SVOLUME

PRIMARY

BACKUP

SRR~ a1\ A=

- .

— ACCESS
CONTROL
BLOCK
LDEV 4
FILE FILE NAME
CUR-REC PTR
TABLE NEXT-REC PTR
L.
Lo 1 _
2 \\\\\\\\\\\\\\\\\\‘

\‘
6 NN

MAIN MEMORY RESIDENT OPERATING SYSTEM

N

FILE
(MY FILE)

DisK
I/0 PROCESS
(PRIMARY)

FILE

CONTROL
BLOCK

EOF PTR
DATA ADDRESS

LOCK QUEUE

Figure 1-14.

File Transfer

1-34

INTRODUCTION TO ENSCRIBE

Buffering

Two operating system buffers and an application buffer are involved
in an i/o transfer. The operating system buffers, designated
File System Buffer and I/0 Buffer, are shown in Figure 1-15 below.

IN GUARDIAN'S DATA AREA
|

7/ AN
BUFFER IN FILE
DATA D

APPLICATION |<¢———— 9 SYSTEM <—AT-A—-ﬂ BUY’?ER DATA

PROGRAM BUFFER
\ J/ /

T T
IN SAME PROCESSOR MODULE IN SAME PROCESSOR MODULE

AN /

|
SAME OR DIFFERENT PROCESSOR MODULE

Figure 1-15. Buffering

When an i/o transfer is initiated, in this example a call to READ from
a disc file, the file system first secures resident File System Buffer
space in the processor module where the application process is
executing. The amount of File System Buffer space secured is
dependent on the transfer count specified in the file management
procedure call. Next, the i/o process in the primary processor module
controlling the disc is instructed (in this example) to read a block
of data from the disc.

1-35

INTRODUCTION TO ENSCRIBE

The i/o process first secures resident I/0 Buffer space in its
processor module (the amount of I/0 Buffer space secured is dependent
on the transfer count specified in the file management procedure call)
then initiates the i/o transfer. When the i/o transfer with the
device is completed, the data is moved from the I/O Buffer in the
device”s processor module to the File System Buffer in the
application”s processor module. If these are different processor
modules, then this is accomplished by an interprocessor bus transfer.
At this point, the file system (executing on behalf of the
application process) moves the data from the resident File System
buffer to an array in the application process”s (virtual) data area.

For the Tandem NonStop II system, File System buffers are obtained
from the process”s Process File Segment (PFS). 1I/O buffers are
obtained from the i/o segments as needed by the i/o process.
Processes that require dedicated buffers obtain buffer space during
initialization. Once a process has obtained dedicated buffer space,
it keeps that space until it terminates execution.

For the Tandem NonStop System, File System Buffers are obtained from a
memory space pool, called SHORTPOOL, in the operating system”s data
area. Processes requiring File System Buffers compete for this space
on a first-come, first-served basis. If space is not available when
needed, the application process is suspended until either the needed
space becomes available or a configured timeout period expires (in the
latter case an error indication is returned to the application
process). When an i/o transfer is completed, the space in use by the
File System Buffer is returned to SHORTPOOL for use in subsequent data
transfers.

For the Tandem NonStop Systeim, there are three types of 1/0 Buffers
(the type of buffer that a device uses is specifed at system
generation time) :

® Pooled buffers -~ buffer space is secured from an i/o buffer pool,
called IOPOOL, in the operating system”s data area. I/O
processes controlling devices using pooled buffers compete for
space on a first-come, first-served basis. If space is not
available when needed, the i/o process is suspended until either
the needed space becomes available or a configured timeout
expires (if a timeout occurs, an error indication is returned to
the application process). When an i/o transfer is completed, the
I/0 Buffer space is returned to IOPOOL for use in subsequent data
transfers.

° Shared buffers - buffer space in the operating system data area is
shared among two or more i/o devices on the same controller.

° Dedicated buffers - buffers space in the operating system data
area is dedicated to a device.

1-36

INTRODUCTION TO ENSCRIBE

File Close

When a file is closed, the communication path to the file is broken.
The access control block is deleted and the space that it used is
returned for use as another access control block. In the case of disc
files, if no other opens are outstanding for the file, then the file
control block is also released and information such as the end-of-file
pointer and addresses of allocated extents is updated on the physical
disc from the information that was maintained in the file control
block. ‘

Automatic Path Error Recovery for Disc Files

The system accomplishes adtomatic path error recovery with disc files
in the following manner.

First, two definitions: operations with disc files are classified as
either "retryable" and "nonretryable". Retryable operations are those
that can be retried indefinitely, without the possibility of loss or
duplication of data. The retryable operations are: reading and
full-sector writes. Nonretryable operations are those that if retried,
could cause a loss or duplication of data. The nonretryable
operations are: partial-sector writes and appending to the
end-of-file. :

Associated with each distinct file operation is a "sync id" and a
"requestor id"; these are kept in the file”’s Access Control Block.

The sync id identifies a single operation in a series of operations;
the "requestor id" identifies the process requesting an i/o operation;
together they identify a particular operation requested by a
particular process. Additionally, each disc i/o process maintains a
list of completed operations, each operation being identified by a
sync id and a requestor id; these are kept in the File Control Block.

When an application program calls a file management procedure to write
to disc, the file system initiates an i/o operation by sending an "i/o
request" message to the primary i/o process for that file. The i/o
request message contains the data be written, along with a sync id,
the requestor id, and the address where the data is to be written.

The primary i/o process, upon receipt of the request, stores the

information contained in the message and begins processing the
request.

1-37

INTRODUCTION TO ENSCRIBE

If the request involves a non-retryable operation (i.e., a
partial-sector write and/or append to the end-of-file), special action
is taken. The primary i/o process first reads the sector to be
changed and updates the sector image in memory (if a partial-sector
write). The primary i/o process then sends the new or updated sector
image in a checkpoint message to its backup i/o process along with the
disc address of where it is to be written, the sync id, and requestor
id. Next, the primary i/o process performs the physical i/o operation
to the disc. Upon completion of the i/o operation, the primary i/o
process informs the file system (which, in turn, notifies the
application process) of the completion.

If the request involves a retryable operation (i.e., a full-sector
write and not to append to the end-of-file), the information kept by
the file system (i.e, that contained in an i/o request message) is
enough the reinitiate the operation. Therefore, in the case of
full-sector writes, no checkpointing occurs between the primary and
backup i/o processes.

If a failure of the primary i/o process”s processor module occurs, the
file system and the backup i/o process are notified.

The backup i/o process, when notified of the primary”s failure, takes
over the primary”s duties. The first action that the backup performs
is to execute the i/o operation indicated by the latest checkpoint
message received from primary i/o process (this occurs regardless of
whether or not the operation had been completed by the primary).

When the file system receives notification of the primary”s processor
module failure, after an operation has been requested but before it
has been notified by the i/o process of a successful completion, it
reinitiates the operation, this time sending the "i/o request" message
(containing the data, sync id, requestor id, and disc address) to the
backup i/o process.

Following a takeover from its primary, the backup i/o process checks
the sync id and requestor id in the i/o request message for a match in
the list of completed operations. If there is a match, the requested
operation has already completed and the backup i/o process returns the
associated completion status to the file system (and no other action
is taken). If there is no match, the backup i/o process has not
performed the operation. The operation is performed in its entirety
and the operation®s completion status is returned to the file system.

INTRODUCTION TO ENSCRIBE

PROCESSOR MODULE FAILURE RECOVERY FOR DISC FILES
The first operation is performed without incident:

CALL WRITE(fnum,...);

1. The file system sends an "i/o request" message to the primary
disc i/o process.

(a) = application process

—-[::] sync id in ACB
i/o request message (data, sync id, requestor id)

(i/0) = primary backup = (i/o”)
— [0] sync id in FCB

2. 1In the primary i/o process

* - the sector to be updated is read from disc
- the sector image in memory is updated
- the next sync id (1) is saved.

(i{o) (i{o’)

[1] sync id in FCB sync id in FCB [0 |

* performed only if partial-sector write

INTRODUCTION TO ENSCRIBE

*3, The state of the operation about to be performed is

checkpointed to backup i/o process. The checkpoint message
contains:

- the requestor id

- the updated sector image
- the next sync id

(i/0) checkpoint message > (i/07%)

sync id in FCB | sync id in FCB [1 |
The backup i/o process

- saves the updated sector image
- saves the next sync id =1

4, The primary i/o process then writes updated sector image to

disc.
(i/0) (i/07)
AN !
sync id in FCB sync id in FCB
DISC

* performed only if partial-sector write

1-40

INTRODUCTION TO ENSCRIBE

5. The primary i/o process indicates to the application process
(i.e., via the file system) that the operation is completed.

(a)
—[0] sync id in ACB

i/o request message (completion part)

(i/0) _ (i/0%)
I l
[[1] sync id in FCB sync id in FCB [I |

6. The file system increments the "sync id" in the ACB.
(a)
l— sync id in ACB ! incremented.

The next operation encounters a failure:
CALL WRITE (fnum,...);

1. The file system sends an "i/o request" message to the primary
disc i/o process.

(a)
—[1] sync id in ACB

i/o request message (data, sync id, requestor id)

(i/o) (i/07)

* performed only if partial-sector write

INTRODUCTION TO ENSCRIBE

2. In the primary i/o process

* -~ the sector to be updated is read from disc
- the sector image in memory is updated
- the next sync id (0) is saved.

(i{o) (i/0%)
AN
[0 | sync id in FCB sync id in FCB

*3, The state of the operation about to be performed is check-
pointed to the backup i/o process. The checkpoint contains:

- the requestor id
- the updated sector image
- the next sync id

(i/0) checkpoint message > (i/07)

[0] sync id in FCB sync id in FCB [0 |
The backup i/o process

- saves the updated sector image
- saves the next sync id = 0

The primary”s processor module fails

4. The backup i/o process is notified of the failure. (*)It
uses the latest checkpoint from the primary to perform the
i/o operation to the disc.

(xxx) (i/0%)

/
sync id in FCB [0 |

DISC

* performed only if partial-sector write

1-42

INTRODUCTION TO ENSCRIBE

5. The file system, on behalf of the application process,
reinitiates the request; this time to the backup process.

(a)
—[1] sync id in ACB

i/o request message (data, sync id, requestor id)

-
>

I
(i{o’)

sync id in FCB [0 |

6. The backup i/o process compares the requestor id and sync id
in the i/o request message with that of operations is has
already performed. (*) The backup recognizes that this is a
request to perform an operation is has already completed.
Therefore, the operation is not performed. Rather, the
completion status from the completed operation is returned to
the file system.

(a)
—[I] sync id in ACB

i/o request message (completion part)

<
<

(1}0’)
|
sync id in FCB [0 |
7. The file system increments the "sync id" in the ACB. |
(a)
—[0] sync id in ACB ! incremented.

* performed only if partial-sector write

INTRODUCTION TO ENSCRIBE

Mirror Volumes

A "mirror" disc volume consists of a pair of physically independent
disc devices that are accessed as a single volume; each device is
usually controlled through two independent disc controllers. With
this configuration, both devices of a mirror volume are controlled by
the same i/o process-pair. Each mirror volume is controlled by a
separate i/o process-pair. The mirror designation for a volume is
indicated to the system at system generation time. The hardware
congiguration of a mirror volume is shown in Figure 1-16.

\

[3 p
o} [¢]
A | DUALPORT | R
] 7| contRoueR |7

N—

<D»ZT DT

MIRROR VOLUME

e P
0 o)
A | DUAL-PORT | R
T | CONTROLLER | T
A B
t‘L -~

PRIMARY 1.0 PROCESS FOR MIRROR VOLUME

I ~->»70T
-

BACKUP 110 PROCESS FOR MIRROR VOLUME

Figure 1-16. Mirror Volume

1-44

INTRODUCTION TO ENSCRIBE

When a write is performed to a mirror volume, the (primary) i/o
process automatically writes the data on the two disc devices
comprising the volume. Both devices, when both are operable, are used
by the i/o process for reading. If one of the devices becomes '
inoperable, the i/o process performs all subsequent reading from the
operable device.

When an inoperable device is repaired, the information on the
previously inoperable pack is brought up-to-date by means of the PUP
(Peripheral Utility Program) "REVIVE" command. The REVIVE command
copies the information from the operable pack onto the previously
inoperable pack in groups of one or more tracks. This copying
operation is carried out concurrent with requests to read or update
data in files on this volume. (An optional parameter to the REVIVE
command specifies a time interval between copying groups of tracks.
This permits the revive operation to take place without a significant
degradation of system performance.)

Four options are provided to optimize mirror volume performance when
hoth devices comprising a mirror volume are operable. These options,
which are specified at system generation time, are:

e for reading, SLAVESEEKS or SPLITSEEKS

SLAVESEEKS specifies that both devices of a mirror volume are to
seek (i.e., perform head positioning) together. The device that is
to be used for reading data is selected at random.

SPLITSEEKS specifies that the device with its head positioned
closest to the desired cylinder is the device to be used for
reading. The alternate device”s head is not repositioned.

e for writing, SERIALWRITES or PARALLELWRITES

SERIALWRITES specifies that both devices are to seek together when
preparing to write. The actual data transfer completes on one
device before beginning for the other.

PARALLELWRITES specifies that both devices are to seek together
when preparing to write. Data transfers to both devices occur
concurrently. This option is allowed only if each device is
controlled by a separate hardware controller.

1-45

SECTION 2

ENSCRIBE FILE STRUCTURES

The ENSCRIBE Data Base Record Manager provides these disc file
structures:

® Key-Sequenced

® Relative

® Entry-Sequenced
e Unstructured

These four file types fall into two major groups, structured files and
unstructured files. Key-sequenced, relative, and entry-sequenced
files are structured files, and unstructured files are, of course,
unstructured files.

STRUCTURED FILES

This section begins with descriptions of the three stuctured file
types. Following the descriptions of key-sequenced, relative, and
entry-sequenced files, the section describes basic access concepts for
structured files. The section closes with a description of alternate
keys, which apply to all three structured file types.

ENSCRIBE DISC FILES

Key-Sedquenced Files

A key-sequenced file consists of a set of variable length records.
Each record is uniquely identified among other records in a
key-sequenced file by the value of its primary key field. Records in
a key-sequenced file are logically stored in order of ascending
primary key values. The primary key value must be unique and it
cannot be changed when updating a record.

A record may vary in length from one byte (1) to the maximum specified
for record size when the file was created. The number of bytes
allocated for a record is the same as that written when the record was
inserted into the file. Each record has a length attribute that is
optionally returned when a record is read. A record”s length can be
changed after the record has been entered (with the restriction that
the length cannot exceed the specified record size). Records in a
key-sequenced file can be deleted.

A key-sequenced file is physically organized as a tree structure of
index blocks and data blocks. Each data block contains one or more
data records, depending on the record size and data block size. For
each data block there is an entry in an index block which contains the
value of the key field for the first record in the data block and the
address of that data block.

The position of a new record inserted into a key-sequenced file is
determined by the value of its primary key field. 1If the block where
a new record is to be inserted into a file is full, a new data block
is allocated and part of the data from the o0ld block is moved into the
new block. 1In addition, an entry is inserted in the index block to

- -

] IR RS N
udia NLUCRKR.

point to the new
When an index block fills up (i.e. there is not enough space in the
index block to point to all the data blocks), the block is split into
two parts. A new index block is allocated and some of the pointers
are moved from the o0ld index block to the new one. The first time
that this occurs in a file, it is necessary to generate a new level of
indices. This is accomplished by allocating a higher level index
block which has the low key and pointer to the two lower level index
blocks (which in turn point to many data blocks).

Note that data records are never chained together in ENSCRIBE
key-sequenced files. 1Instead, the tree structure is dynamically
rebalanced to ensure that any record in the file can be accessed with
the same number of reads, that number being the number of levels of
indices plus one for the data block.

ENSCRIBE DISC FILES

The user may optionally specify when the file is created that data
and/or index records are to be compressed. Compression results in
only the significant bytes of the record being stored on the disc.
When the record is accessed, it is reconstructed from the significant
data and additional information which relates the insignificant data
to significant data in another record in the block. Data compression
thus reduces storage requirements on the disc at the cost of slightly
higher processing time. For sequential processing it can also reduce
disc accesses since more records will fit in a block. Data
compression can have the additional affect of reducing index levels.
When compression is applied to index blocks, it may have the added
advantage of reducing the number of index levels so that less reads
are necessary to access any data record. This happens because an
index block may now point to more data blocks, so there is a
proportionate reduction in the number of index blocks.

An example of an application for a key-sequenced file is an inventory
file where each record describes a part. The key field for that file
would be the part number, and thus the file would be ordered by part
number. Other fields in the record could contain the vendor name,
quantity on hand, etc. Note that ENSCRIBE is concerned only with key
fields. The content of all fields and the location within the record
of fields other than key fields is determined solely by the
application.

Key sequenced files may be accessed sequentially or randomly. An
example of sequential access is the generation of a report of the
quantity on hand of all parts. Random access would be used to
determine the vendor of a particular part.

The structure of a key-sequenced file is shown in Figure 2-1, on the
following page.

KEY - SEQUENCED
FILE STRUCTURE

FIND “PAM’

} } FIRST (HIGHEST) LEVEL INDEX BLOCK
R

!

SECOND LEVEL INDEX BLOCK

A DATA RECORD

*I-7 2anb1ta

wiLLy

s [ouse

empry |
Emery |
EMPTY I
o EmpTY |

SECOND LEVEL INDEX BLOCK

| DATA
BLOCKS

91n30Nn13S 9114 pPSousINbag-4AsYy

>} MoLLY

(EMPTY

VARIABLE LENGTH
PHYSICAL RECORDS

[

_q__r___J

SAVED FOR

FUTURE INSERTIONS

anse

SHTIA DSIA HIIYOSNA

ENSCRIBE DISC FILES

Relative Files

A relative file consists of a set of records. Each record is uniquely
identified among other records in a relative file by a record number;
a record number denotes an ordinal position in a file. The first
record in a relative file is designated by record number zero;
succeeding records are designated by ascending record numbers in
increments of one. A record occupies a position in a file whether or
not the position has been written in.

Each record position is always allocated a fixed amount of storage.
However, a record may logically vary in size from byte zero to the
maximum specified for record size when the file was created. Each
record has a length attribute that is optionally returned when a
record is read. A record”s length can be changed after the record has
been entered (with the restriction that the length cannot exceed the
specified record size). Records in a relative file can be deleted.

The position where a new record is inserted into a relative file is
specified by supplying a record number to the POSITION or KEYPOSITION
procedure. Alternatively, the programmer can specify that records be
inserted into any available position in a relative file by supplying a
record number of -2D to POSITION or KEYPOSITION before inserting
records into the file. Likewise, the programmer can specify that
subsequent records be appended to the end-of-file by supplying a
record number of -1D to the POSITION or KEYPOSITION procedure.

When -2D or -1D is specified for inserting records into a relative
file, the actual record number associated with the new record can be
obtained through the FILEINFO procedure.

The structure of a relative file is shown in Figure 2-2 on the
following page.

ENSCRIBE DISC FILES

FIRST RECORD

RECORD 0 RECORD 1 RECORD 2 RECORD3 4, 4 ¢ o
H | 1l

I
rDATA

1

—

|oata

1

7
| oata

DATA
[‘ BLOCKS

EACH RECORD HAS A

LENGTH ATTRIBUTE. .

THEREFORE RECORDS .

MAY “LOGICALLY"” VARY IN LENGTH :
L]
|

l I 7/ — % L ~— —
| oata bEiid pata | pbata | oata | ﬂ} |)

l< ol ol >
[I I~ |
FIXED LENGTH PHYSICAL RECORDS.
EACH RECORD POSITION OCCUPIES
A FIXED AMOUNT OF SPACE, WHETHER
OR NOT THE RECORD HAS BEEN
WRITTEN IN.

0078

Figure 2-2. Relative File Structure

Relative files are best suited for applications where random access to
fixed length records is desired and the record number may function as
the key to the file. 1In the earlier inventory example, it would be
possible to make the inventory file a Relative file where the relative
record number was equal to the part number. However, this would
probably be wasteful of space since part numbering schemes typically
leave large gaps in the numbers and this would result in many records
allocated but not used. However, an employee file where the relative
record number was equal to the employee number would be a good
application for a Relative file, since there are typically no large
gaps in this kind of file. Data fields in the record could consist

of such things as name, address, department, salary, etc.

2-6

ENSCRIBE DISC FILES

Entry-Sequenced Files

An entry-sequenced file consists of a set of variable length records.
Each record is uniquely identified among other records in an entry-
sequenced file by a record address. Records inserted in an entry-
sequenced file are always appended to the end-of-file and, therefore,
are physically ordered by the sequence presented to the system. So
that records may be accessed randomly, the record address of where a
record is appended can be obtained through the FILEINFO procedure.

A record may vary in length from zero byte (empty) to the maximum
specified for the record size when the file was created. The number
of bytes allocated for a record is the same as that written when the
record was inserted into the file. Each record has a length attribute
that is optionally returned when a record is read. A record”s length
cannot be changed after the record is written into the file. Records
in an entry-sequenced file cannot be deleted.

The structure of an entry-sequenced file is shown in Figure 2-3.

1T 2nD 3RD aTH 5TH
RECORD RECORD RECORD ~ RECORD RECORD
1 ! " 1 i ~
| oara | pata | DATA | bata | paTa EUNUSED
6TH 7TH 8TH 9TH 10TH 11TH
RECORD RECORD RECORD RECORD RECORD RECORD
) v)
y, i !
[oata | pata | pata [pata| pata | para
12TH 13TH 14TH 15TH 16TH
RECORD RECORD RECORD RECORD RECORD DATA
A L
—) — L ! N BLOCKS
| DATA [pata| oata |[oava | opata |
17TH 18TH 20TH 21sT 22ND
RECORD RECORD 19TH RECORD RECORD RECORD
i 1 i t 1]
S '
[pata | oata | DATA | pata | pata [UNUSED'

} ‘ ZERO LENGTH (EMPTY)

VARIABLE LENGTH RECORDS ARE PERMITTED
PHYSICAL RECORDS
0076

Figure 2-3. Entry-Sequenced File Structure

2-17

ENSCRIBE DISC FILES

Entry-Sequenced files are best suited to sequential processing of
variable length data. An example of this type of application is a
transaction logging file. Each transaction becomes a record in the
file; the records are stored in the file in the order that

the transactions are made.

ACCESSING STRUCTURED FILES —-- CONCEPTS

This section describes how structured files are accessed. It begins
by defining some basic concepts, and then describes how a process can
select a subset of a structured file for subsequent access.

Some definitions:

e File A file is a collection of related records.
® Record A record is a collection of one or more data items.
® Key A key is a value that is associated with a record (such

as a record number) or contained in a record (such as a
byte field) that can be used to locate one record or a
subset of records in a file.

® Primarv Key Each record in an ENSCRIBE file is uniquely identified
by the value of its "primary" key.

- for key-sequenced files, this is a byte field within
the record and determines where a record is added to
a file. The primary key field for a key-sequenced
file is defined when the file is created.

- for relative files, this is a record number.

- for entry-sequenced files, this is a record address.

® Alternate An alternate key is a byte field within a record that
Key can be used to provide a logically independent access

path through a file. The values of an alternate key
can be used to identify a subset of records in an
access path. A file”s alternate key fields are defined
when the file is created. Any ENSCRIBE file type can
have up to 255 alternate key fields. Alternate key
values may or may not be unique.

ENSCRIBE DISC FILES

Current Key Specifier and Current Access Path

To identify a particular key field as an access path when positioning,
each key field is uniquely identified among other key fields in a
record by a two-byte "key specifier". The key specifier for primary
keys is pre-defined as ASCII "<null><null>" (binary zero). Key
specifiers for alternate key fields are application-defined and are
assigned when the file is created.

The current key specifier defines the current access path. The ‘
current access path determines the order that records are returned
when the file is read sequentially.

The current key specifier, and therefore the current access path, is
implicitly set to the file”’s primary key when a file is opened or a
call is made to the POSITION procedure (for relative and entry-
sequenced files only). The access path is set explicitly by calling
the KEYPOSITION procedure. Figure 2-4 shows a typical record
structure with a primary key and three alternate keys.

AN INVENTORY RECORD

PRIMARY KEY ALTERNATE KEY FIELDS
|
PARTNO. | DESCRIPTION | ONHAND | PRICE | LOCATION | VENDOR
T — T T
SYSTEM-DEFINED APPLICATION-DEFINED
KEY SPECIFIER =0 KEY SPECIFIERS = "OH" “Lo” “UN"
EXAMPLES:

1. TOPOSITION VIA PRIMARY KEY
KS: = 0; ! KEY SPECIFIER, PRIMARY
CALL KEYPOSITION (FNUM, KEY, KS});
2. TOPOSITION VIA AN ALTERNATE KEY
KS: = ““OH""; | ON-HAND KEY FIELD
CALL KEYPOSITION (FNUM, KEY, KS);

Figure 2-4. Key Fields and Key Specifiers

2-9

ENSCRIBE DISC FILES

Current Key Value and Current Position

The current key value defines a subset of records in a file”s current
access path (see "Positioning Mode and Compare Length") and sets a
file”s current position.

The current key value can be set explicitly by calling the POSITION or
KEYPOSITION procedures. KEYPOSITION is used to position by primary
key for key-sequenced files and by alternate key for key-sequenced,
relative, and entry-sequenced files. POSITION is used to position by
primary key for relative and entry sequenced files. The current key
value is implicitly set following a call to READ to the key value of
the current access path in the record just read.

The current position determines the record to be locked (by a call to
LOCKREC) or accessed (by a call to READ[LOCK], READUPDATE[LOCK], or
WRITEUPDATE[UNLOCK]). A record need not exist at the current
position. Following a file open, the current position is that of
first record in the file as defined by the file”s primary key. An
example of using KEYPOSITION to position within a key-sequenced file
is shown in Figure 2-5 below.

RECORD
1

PRIMARY
KEY
KEY 1= “FISH "; —Y
U — CALL KEYPOSITION (FNUM, KEY) ADAMS
1.E. APPROXIMATE VIA PRIMARY KEY.

1~ CALL READ (FNUM, . .); BROWN

2 - CALL READ (FNUM, ... COLLINS

3~ CALL READ (FNUM, . ..); RRENT POSITION AFTER
FISH 4 R TPOSI TION AND READ 1.
JACKSON «—CURRENT POSITION AFTER READ 2.
KING , -— CURRENT POSITION AFTER READ 3.

MASTERS
OBRIEN
RYAN

Figure 2-5. Current Position

ENSCRIBE DISC FILES

Positioning Mode and Compare Length

The positioning mode, compare length, and current key value determine
the first record accessed and the records comprising a subset of
records. Positioning mode and compare length (as well as current key
specifier and current key value) are set explicitly by the KEYPOSITION
procedure and implicitly by the OPEN and POSITION procedures. There
are three positioning modes: approximate, generic, and exact.

APPROXIMATE. Approximate positioning means that the first record
accessed is the one whose key field, as indicated by the current key
specifier, contains a value equal to or greater than, or only greater
than the current key value. Following approximate positioning,
sequential reads to the file return ascending records until the last
record in the file is read (an end-of-file indication is then
returned). Subsequent to a file open, the positioning mode is set to
approximate, the compare length is set to 0.

Sequential reads to a relative file following approximate positioning
will skip non-existent records.

GENERIC. Generic positioning means that the first record accessed is
the one whose key field, as designated by the current key specifier,
contains a value equal the current key value for compare length bytes.
Following generic positioning, sequential reads to the file return
ascending records whose key matches the current key value (for compare
length bytes). When the current key no longer matches, an end-of-file
indication is returned.

For relative and entry-sequenced files, generic positioning by the
primary key is equivalent to exact positioning.

EXACT. Exact positioning means that the only records accessed are
those whose key field, as designated by the current key specifier,
contains a value of exactly compare length bytes and is equal to the
current key value. When the current key no longer matches, an
end-of-file indication is returned. Exact positioning on a key field
having a unique value accesses at most one record.

2-11

ENSCRIBE DISC FILES

Subset
A subset is a related set of records in the current access path. The
records comprising a subset are determined by the current key value

and positioning mode. A subset may consist of all, part of, or none
of the records in a file.

ALTERNATE KEYS

Alternate keys are implemented as follows. For each file having one
or more alternate keys, at least one alternate key file exists. Each
record in an alternate key file consists of:

® Two bytes for the <key specifier>

® The alternate key value

® The primary key value of the associated record in the primary file.
The length of an alternate key record is at least

2 + alternate key field length + primary key length

Figure 2-6 on the following page shows how alternate keys are
implemented.

2-12

ENSCRIBE DISC

FILES

RECORD iN PRIMARY FILE
PRIMARY KEY ALTERNATE }(EYS

1
/__lﬁ e N N\

PART NO. ON-HAND LOCATION VENDOR
\—T_/ L—T—_/ AN /\
T T
KEY SPECIFIERS (v} “OH"” “LO” “VN"

RECORD IN ALTERNATE FILE FOR KEY FIELD “OH"”

“OH"| ON-HAND PART NO.

\ T /\ T A . /
KEY FIELD PRIMARY
SPECIFIER VALUE VALUE
EXAMPLE
PRIMARY FILE DATA
PART NO. DESCRIPTION ON-HAND PRICE LOCATION VENDOR

— 1 1 1 1 1 1
0115 TOASTER 20 12.50 [TWR
0201 T.V.SET 5 200.00 A ACME
0205 PHONOGRAPH 52 55.00 B ACR
0206 RADIO 210 5.50 A BROWN
0310 FRY PAN 19 37.50 D SMITH
0322 MIXER 12 32.95 D ACME

ALTERNATE FILE DATA (ALTERNATE FILE IS KEY-SEQUENCED)

“LO" A 0201
“LO” A 0206
“LO” D 0322
“OH” 5 0201
“OH'" 12 0322
4 ~ ~ L
“OH” 210 0206
“VN" ACME 0201
“VN" ACME 0322
-~ > =~ =
“VN” TWR 0115
AN /

T T T
KEY ALTERNATE PRIMARY

SPECIFIER KEY VALUE KEY VALUE

Figure 2-6. Alternate Key Implementation

ENSCRIBE DISC FILES

Alternate Key Attributes

When an alternate key is defined, the following attributes can be
assigned.

® Null Value

An alternate key field can be designated to have a "null value". A
"null value”™ is a byte value that when encountered in all positions
of the indicated key field during a record insertion causes the
alternate key file entry for the field to be omitted. This has the
effect, when reading the file sequentially via an alternate key
field having a null value defined, of skipping records containing
only the null value in the alternate key field.

® Unique Alternate Key

An alternate key field can be defined as requiring a unique value.
An attempt to insert a record having a duplicate key value in a
unique alternate key field is rejected with a file management
<error> 10, "record already exists".

® No Automatic Update

The data base designer can specify that an alternate key field not
be updated by the system when a change to that field occurs.

Alternate Keys in a Key-Sequenced File

An example of alternate key usage in a key-sequenced file would be a
file whose records consisted of the vendor name and the part number.
The primary key to this file would be the part number (it could not
be the vendor name since this is not unique). 1In order to produce
the report consisting of all parts supplied by a given vendor, a
"generic position" would be done via the desired vendor. The file is
then read sequentially until the vendor name field is not equal to
the desired vendor (at which time the system will return an
end-of-file indication). The records associated with a given vendor
are returned in ascending order of the part number.

Alternate Keys in a Relative File

An example of alternate key usage in a relative file would be a file
whose records consisted of employee data. The primary key (i.e., a
record number) would be an employee number. An alternate key field
would be an employee name.

2-14

Alternate Keys in an Entry-Sequenced File

ENSCRIBE DISC FILES

An example of alternate key usage in an entry-sequenced file would be

in a transaction logging file.

The primary key (i.e., a record

address) would indicate the order that transactions occurred. An
alternate key field might indicate the terminal in the system that

To list all transactions for given terminal
in the order in which they occurred, a "generic position" would be
done using the field value of the desired terminal, then the file
would be read sequentially.

initiated a transaction.

Comparison of Structured File Characteristics

Key-Sequenced

Records are ordered
by value in primary
key field

Access is by
primary or
alternate key

Space occupied by a
record depends on
length specified
when written

Free space in block
or at end of file
is used for adding
records

Records can be del-
eted, shortened, or
lengthened

Space freed by
deleting or
shortening a record
is reused within
its block

COMPARISON OF KEY-SEQUENCED,

Relative

Records are ordered
by relative record
number

Access is by record
number or alternate
key

Space occupied by a
record is specified
when the file is
created

Empty positions in
file are used for
adding records

Records can be del-
eted, shortened, or
lengthened

Space freed by
deleting a record
can be reused

RELATIVE, AND ENTRY-SEQUENCED FILES

Entry-Sequenced

Records are in the
order in which they
entered

Access is by record
address or alternate
key

Space occupied by a
record depends on
length specified
when written

Space at end of file

is used for adding
records

Records cannot be
deleted, shortened,
or lengthened

A record cannot be
deleted, but its
space can be used
for another record
of the same size

ENSCRIBE DISC FILES

UNSTRUCTURED FILES

This section begins with a list of unstructured disc file
characteristics and then briefly describes how an application process
can position within an unstructured file.

Unstructured File Characteristics

Unstructured files have the following characteristics:

It is the application”s responsibility to determine optimum record
sizes and to block records in an efficient manner.

Files must be created first, then opened for access.

Disc space is allocated by the file system in file extents as
required. A file may have as many as 16 extents. The first extent
is designated the "primary" extent and may differ in size from the
remaining "secondary" extents.

An application process can initially allocate one or more extents
in an open file via a call to CONTROL, <operation> = 21. This
CONTROL <operation> can also be used to deallocate unused extents.

File names for permanent files are of the form

<file name[0:3]> 1is $<volume name><blank fill>

<file name[4:7]> 1is <subvol name><blank fill>
" .
4

.
<file nameflg8:111>

2AS o~ R R

a £31 o~ - 158 T3
1S <Gis8C [i.€& name><giaink 1i-

rh
=

File names for temporary files are of the form

<file name[0:3]> is $<volume name><blank fill>
<file name[4:11]> is the <temporary file name> returned by
CREATE (which is blank filled)

For network file names, <file name[4:11]> is the same as for
local file names but

<file name[0:3]> 1is \<sys num><volume name><blank fill>
Data in an unstructured disc file is referenced by a relative byte
address. Three file pointers indicate the current address just
accessed, the next address to be accessed, and the end-of-file
address

Data is physically located on disc in 512-byte sectors.

ENSCRIBE DISC FILES

If a data transfer is between 3585 and 4095 bytes inclusive,

the transfer may fail if the current record pointer is
positioned such that the transfer spans more than eight sectors.
The condition which must be met for the transfer to be possible
is:

mod (current record pointer,512) < 4096 - (transfer-length)
An application process can purge all of the data from a file,
without deleting the file, by use of the CONTROL procedure, "purge
data" operation.

File locking procedures are provided to coordinate access to a
shareable file

Error Recovery

Parity and overrun errors are retried automatically by the file
system. Therefore, if one of these errors is reported back to the
application process, the file is no longer accessible.

Path errors are retried automatically by the file system if the
file is open with a "synchronization depth" greater than zero. An
error return of a path error in this case then indicates that the
file is no longer accessible.

Maximum number of files on a <volume> is a function of system
configuration

<device type> is 3

2-17

ENSCRIBE DISC FILES

Relative Byte Addressing and File Pointers

Data in an unstructured disc file is addressed in terms of a "relative
byte address" (rba). A relative byte address is an offset, in bytes,
from the first byte in a file; the first byte in a file is at rba
zZero.

Three file pointers are associated with each open disc file:

1. A next-record pointer containing the relative byte address of the
location where the next disc transfer, due to a READ or WRITE,
begins.

2. A current-record pointer containing the relative byte address of
the location just read or written and is the address where a disc
transfer due to a READUPDATE or WRITEUPDATE begins.

3. An end-of-file pointer containing the relative byte address of the
next even numbered byte after the last significant data byte in a
file. The end-of-file pointer is incremented automatically when
data is appended to the end-of-file (WRITE). It can be set
explicitly by calls to the POSITION and CONTROL procedures.

Separate next-record and current-record pointers are associated with
each open of a disc file so that if the same file is open several
times simultaneously, each open provides a logically separate access.
The next-record and current-record pointers reside in the file“s
Access Control Block in the application process environment.

A single end-of-file pointer, however, is associated with all opens of

a aivan Aic~ fila Thic narmite Aara +A A anrmarnAaAd A FhAa
- T weas Tt e e e @ e kA e WS :’\-J—‘ll& - n A L Y e\ L “:’k’bllu\‘u s wilso

end-of-file by several different accessors. The end-of-file pointer
resides in the file”s File Control Block in the disc i/o process
environment. A file”s end-of-file pointer value is copied from the
file label on disc when the file is opened and is not already open;
the end-of-file pointer value in the file label is updated when any
CONTROL operation to the file is performed, when a file extent is

allocated for the file, and when the file is closed and there are no
other opens of the file.

A summary of file pointer action is given in Table 2-1 on the
following page.

ENSCRIBE DISC FILES
Table 2-1. File Pointer Action
CREATE
file label end-of-file pointer := 0D;
OPEN (first)
end-of-file pointer := file label end-of-file pointer;
OPEN (any)
current-record pointer := next-record pointer := 0D;
READ
current-record pointer := next-record pointer;
next-record pointer := next-record pointer +
Smin (<count>, eof pointer - next-record pointer);
WRITE
if next-record pointer = -1D then
begin
current-record pointer := end-of-file pointer;
end-of-file pointer := end-of-file pointer + <count>;
end
else
begin
current-record pointer := next-record pointer;
next-record pointer := next-record pointer + <count>;
end-of-file pointer := $max(end-of-file pointer,
next-record pointer);
end;
READUPDATE
file pointers are unchanged
WRITEUPDATE
file pointers are unchanged
CONTROL (write end-of-file)
end-of-file pointer := next-record pointer;
file label end-of-file pointer := end-of-file pointer;
—_—

ENSCRIBE DISC FILES

Table 2-1. File Pointer Action (cont”

CONTROL (purge data)

current-record pointer := next-record pointer
end-of-file pointer := 0D;
file label end-of-file pointer := end-of-file
CONTROL (allocate/deallocate extents)

file pointers are unchanged
file label end-of-file pointer := end-of-file

POSITION

current-record pointer := next-record pointer
CLOSE (last)

file label end-of-file pointer := end-of-file

where

d)

pointer;

pointer;

:= <rba>;

pointer;

<count> is the specified transfer count rounded-up to

even number

an

SECTION 3
ENSCRIBE FILE MANAGEMENT PROCEDURES

An application process accesses ENSCRIBE disc files through calls to
ENSCRIBE file management procedures. This section contains detailed
syntax descriptions of all the ENSCRIBE file management procedures.

The section begins with a brief summary of all of the ENSCRIBE calls.
Then characteristics common to all of the calls are described. The
section continues with a full syntax description of disc file names,
both for single system and network applications. Following the file
name description, syntax descriptions of all the ENSCRIBE file
management calls are listed in alphabetical order.

FILE MANAGEMENT CALL SUMMARY

A functional summary of all the ENSCRIBE file management calls is
given in Table 3-1 below.

Table 3-1. File Management Call Summary

AWAITIO waits for completion of an outstanding i/o operation
pending on an open file

CANCELREQ cancels the oldest outstanding operation, optionally
identified by a <tag>, on an open file.

CLOSE stops access to an open file and purges a temporary
disc file

CONTROL exXecutes device dependent operations to an open file

CREATE creates a new disc file (permanent or temporary)

ENSCRIBE: FILE MANAGEMENT PROCEDURES

Table 3-1. File Management Call Summary (cont.)

DEVICEINFO

EDITREADINIT

EDITREAD

FILEERROR

FILEINFO

FILERECINFO

provides the device type and physical record size
for a file (open or closed)

prepares a control block for subsequent calls to
EDITREAD

reads a line of text (logical record) from an EDIT
file

is used to determine whether or not a failed call
should be retried

provides error information and characteristics about
an open file

provides characteristic information about an open
Enscribe disc file

FNAMECOLLAPSE collapses an internal file name to external form

FNAMECOMPARE

FNAMEEXPAND

GETDEVNAME

KEYPOSITION

LOCKFILE

LOCKREC

NEXTFILENAME

compares two internal file names to determine
whether the two names refer to the same file
or device

expands an external file name to internal form

returns the $<device name> or $<volume name>
associated with a logical device number if such a
device exists; otherwise the name of the next higher
logical device number is returned

sets the current key value and current key specifier
for an open Enscribe disc file

provides the <system number> corresponding to a
<gsystem name>

locks an open disc file, making the file
inaccessible to other accessors

locks a record in an open disc file so that other
processes cannot access the record

returns the next disc file name in alphabetical
sequence following the designated file name

ENSCRIBE: FILE MANAGEMENT PROCEDURES

Table 3-1. File Management Call Summary (cont.)

OPEN establishes communication with a file

POSITION set the current (primary) key for an open relative
or entry-sequenced file

PURGE purges a closed disc file from the system

READ is used when sequentially reading an open file. It
returns the record indicated by the value of current
key

READLOCK is the same as READ but first locks the record

before reading it

READUPDATE is used to randomly read an open file. It returns
the record indicated by the current key value

READUPDATELOCK

is the same as READUPDATE except that it first locks
the record before reading it

REFRESH is used to write the information contained in File
Control Blocks (FCBs) in main-memory, such as the
end-of-file pointer, to the associated physical disc
volume

RENAME renames an open disc file and makes a temporary
disc file permanent
which message is being replied to

REPOSITION restores the disc file positioning information saved
with previous SAVEPOSITION

SAVEPOSITION saves the current disc file position information; a
later call to REPOSITION restores the saved position

SETMODE sets device-dependent functions in an open file

SETMODENOWAIT

sets device-dependent functions in a no-wait manner
for an open file.

ENSCRIBE: FILE MANAGEMENT PROCEDURES

Table 3-1. File Management Call Summary (cont.)

UNLOCKFILE unlocks an open disc file currently locked by the
caller

Additionally, a call to UNLOCKFILE unlocks any
records in the designated file that are currently
locked by the caller

UNLOCKREC unlocks a record currently locked by the caller so
that other processes can access the record

WRITE inserts (adds) a new record into an open disc file
location read by the last call to READ or READUPDATE

WRITEUPDATE replaces (updates) or deletes data in the existing
record indicated by an open file”s current key value

WRITEUPDATEUNLOCK

is the same as WRITEUPDATE except that the record is
unlocked after it is updated or deleted

CHARACTERISTICS OF ENSCRIBE CALLS

This section describes features common to all ENSCRIBE file management
calls.

Completion

If a file is open with no-wait i/o specified, the following calls must
be completed by a corresponding call to AWAITIO: ‘

CONTROL, LOCKFILE, LOCKREC, READ, READLOCK, READUPDATE,
READUPDATELOCK, UNLOCKFILE, UNLOCKREC, WRITE,
WRITEUPDATEUNLOCK, and SETMODENOWAIT.

If a file is open with no-wait i/o specified, the following calls are
rejected with a file management error 27 if there are any outstanding
{(i.e., uncompleted) operations pending:

KEYPOSITION, POSITION, RENAME, REPOSITION, SETMODE, and
SETMODENOWAIT.

3-4

ENSCRIBE: FILE MANAGEMENT PROCEDURES

Regardless of whether the file was opened with wait or no-wait i/o
specified, a return from the following calls indicates a completion:

CANCELREQ, CLOSE, CREATE, DEVICEINFO, FILEINFO, FILERECINFO
KEYPOSITION, NEXTFILENAME, OPEN (unless flag <8> is set to 1),
POSITION, PURGE, RENAME, and SETMODE.

<file number> Parameters
All file management procedures except
DEVICEINFO, CREATE, OPEN, NEXTFILENAME, REFRESH, and PURGE

use the <file number> returned from the OPEN procedure to identify
which file the call references. The DEVICEINFO, CREATE, OPEN, and
PURGE procedures reference the file by its <file name>; the
LASTRECEIVE and REPLY procedures always reference the S$RECEIVE file
(i.e., interprocess communication). For every procedure that has a
<file number> parameter, except OPEN and AWAITIO, the file number is
an INT:value parameter.

<tag> Parameters

An application-specified double integer - INT(32) - tag can be passed
as a calling parameter when initiating an i/o operation (e.g., read or
write) with a no-wait file. The tag is passed back to the application
process, through the AWAITIO procedure, when the i/o operation
completes. The tag is useful for identifying individual file
operations and can be used in application-dependent error recovery
routines.

<buffer> Parameter

The data buffers in an application program used to transfer data
between the application process and the file system must be integer
(INT) or double integer (INT(32)) and must reside in the program”s
data area (“P” relative read-only arrays are not permitted).

3-5

ENSCRIBE: FILE MANAGEMENT PROCEDURES

<transfer count> Parameter

The transfer count parameter of file management procedures always
refers to the number of BYTES to be transferred. The number of bytes
that can be transferred in a single operation with an Enscribe disc
file is in the range of {0:4096}. This figure is the file
system/hardware maximum. The actual maximum transfer count may be
less than 4096 due to the amount of buffer space assigned to the disc
at system generation time (SYSGEN). (The amount buffer space
configured for a disc volume can be obtained via the DEVICEINFO
procedure.)

Condition Codes

All file management procedures return a condition code indicating the
outcome of the operation. THE CONDITION CODE SHOULD ALWAYS BE
CHECKED FOLLOWING A CALL TO A FILE SYSTEM PROCEDURE and should be
checked before an arithmetic operation or a store into a variable is
performed. Generally, the condition codes have the following
meanings:

< (CCL) an error occurred (call the file management FILEINFO
procedure to determine the error)

= (CCE) operation was successful

> (CCG) a warning message (typically end-of-file, but see the
individual procedures for the meaning ¢f CCG or call

3-6

ENSCRIBE: FILE MANAGEMENT PROCEDURES

Errors

Associated with each call completion is an error number. The error
numbers into fall into three major categories. As shown below, the
setting of the condition code indicates the category of the error
associated with a completed call.

Error cc Category
0 CCE No error. Operation executed successfully.
1-9 CCG Warning. Operation executed with exception

of indicated condition. For <error> 6,
data is returned in application process’s
buffer.

10-255 CCL Error. Operation encountered an ercor.
For data transfer operations, either none
or part of specified data was transferred
(with exception of data communication
<error> 165, which indicates normal
completion - data is returned in
application process”s buffer).

300-511 CCL Error. These errors are reserved for
process application-dependent use.

The error number associated with an operation on an open file can be
obtained by calling the FILEINFO procedure and passing the <file
number> of the file in error:

CALL FILEINFO(in"file, err”num);
The error number associated with an unopen file or a file open failure
can be obtained by passing the <file number> as -1 to the FILEINFO
procedure:

CALL FILEINFO(-1l, err”num);

Note: the OPEN procedure returns -1 to <file number> if the open
fails.

Error recovery is described in Section 4, Enscribe File Access.

A complete list of the error numbers and their meanings is
given in Appendix D, File Error Summary.

ENSCRIBE: FILE MANAGEMENT PROCEDURES

Access Mode and Security Checking

READ ACCESS. The disc file must be open with read or read/write
access for the following calls to be successful (otherwise the call
will be rejected with a file management <error> 49, "access
violation"):

READ, READLOCK, READUPDATE, and READUPDATELOCK.
WRITE ACCESS. The disc file must be open with write or read/write
access for the following calls to be successful (otherwise the call
will be rejected with a file management <error> 49, "access

violation"):

CONTROL, WRITE, WRITEUPDATE, and WRITEUPDATEUNLOCK.

PURGE ACCESS. The caller must have purge access to a disc file for

the following calls to be successful (otherwise the call will be
rejected with a file management <error> 48, "security violation"):

PURGE and RENAME.

Current State Indicators

For each file management procedure, changes to the current state

indicators are listed. The current state indicators are:
® current position.

® positioning mode.

® compare length,

® current primary key value.

ENSCRIBE: FILE MANAGEMENT PROCEDURES

EXTERNAL DECLARATIONS

Like all other procedures in an application program, the File
Management Procedures must be declared before being called. These
procedures are declared as having "external" bodies. The external
declarations for these procedures are provided in a system file
designated "$SYSTEM.SYSTEM.EXTDECS". . A SOURCE compiler command
specifying this file should be included in the source program
following the global declarations but preceding the first call to one
of these procedures:

<global declarations>
?SOURCE $SYSTEM.SYSTEM.EXTDECS (<ext proc name> , ...)
<procedure declarations>

Each external procedure that is referenced in the program should be
specified in the SOURCE command.

For example:

?SOURCE S$SYSTEM.SYSTEM.EXTDECS (OPEN, READ, WRITE, POSITION,
? KEYPOSITION, WRITEUPDATE, CLOSE)

compiles only the external declarations for the OPEN, READ,
WRITE, POSITION, KEYPOSITION, WRITEUPDATE, and CLOSE procedures.

File Names

FILE NAMES

File names are used when creating new disc files, purging old disc
files, and renaming disc files.

There are two forms of file name - "external" and "internal". The
external form is used when entering file names into the system from
the outside world (e.g., by a user to specify a file name to the
Command Interpreter). The external form is described in the GUARDIAN
Programming Manual. The internal form is used within the

system when passing file names between application processes and the
operating system. This section describes the internal form.

The conversion from external to internal form is performed
automatically by the Command Interpreter for the IN and OUT file
parameters of the RUN command. (See the COMINT section of the
GUARDIAN Command Language and Utilities Manual for details of the RUN
command.) For general conversion of file names from the external to
the internal form, the FNAMEEXPAND procedure is provided. For
conversion from internal to external form, the FNAMECOLLAPSE procedure
is provided.

The internal form of disc file names is:

<file name> ! 12 words, blank filled.
where
to access permanent disc files, use
<file name[0:3]>

<file name[4:7]>
<file name[8:11]>

S$<volume name><blank fill>
<subvol name><blank fill>
<disc file name><blank fill>

to access temporary disc files, use

<file name[0:3]>
<file name[4:11]>

$<volume name><blank fill>
the <temporary file name> returned by
CREATE (which is blank filled)

3-10

File Names

Permanent Disc File Names
Permanent disc file names are of the form:

word: [0:3] [4:7] . [8:11]
S<volume name> <subvol name> <disc file name>

Each of these three components of a disc file name is described below.

O <volume name>

<volume names> identify disc packs (each pack in the system has a
<volume name>). They are assigned at system generation time and when
new disc packs are introduced into the system. A <volume name> must
be preceded by a dollar sign "$" and consists of a maximum of seven
alphanumeric characters; the first character must be alphabetical.

o <subvol name>

This name identifies a subset of disc files. <subvol names> are
assigned programmatically when disc files are created. A <subvol
name> consists of a maximum of eight alphanumeric characters; the
first character must be alphabetical.

o <disc file name>

This name identifies a particular disc file. <disc file names> are
assigned programmatically when disc files are created. A <disc file
name> consists of a maximum of eight alphanumeric characters; the
first character must be alphabetical.

Temporary File Names

Temporary file names identify temporary disc files. <temporary file
names> are assigned by the file management CREATE procedure when
temporary files are created. A <temporary file name> consists of a
number sign "#" followed by four numerical characters.

3-11

File Names

File Name Examples
Permanent disc file:

INT .fname[0:11] := "S$STOREl ACCT1 MYFILE ";

’

temporary disc file:
INT .fname([0:11] := ["SSTORE1l ", 8 * [" "]];

only the <volume name> is supplied. The <temporary file name>
is returned from CREATE.

CALL CREATE (fname) ;

Network File Names

File names can optionally include a <system number> that identifies a
file as belonging to a particular system on a network. (See the
EXPAND User”s Manual for information regarding networks of Tandem
systems.)

In this context, a file name beginning with a dollar sign, "$", is
said to be in "local™ form, to distinguish it from a file name
beginning with a backslash, "\", which characterizes the "network"
form. Specifically, the network form of a file name is

<network file name> ! 12 words, blank filled

word[0].<0:7>
word[0] .<8:15>

\ (ASCII back slant)
<system number>, in octal

word([1l:3] <volume name>, <device name>, or
<process id>
word[4:11] = same as local file name
where

<system number>
is an integer between 0 and 254 that designates a
particular system. The assignment of system numbers is
made at system generation (SYSGEN) time

<volume name>

consists of at most six alphanumeric characters, the first
of which must be alphabetic

File Names

Note that names of disc volumes and other devices, when embedded
within a network file name, are limited to having six characters, and

do NOT begin with a dollar sign. Similar restrictions apply to the
network form of <process id>, as follows.

Note that <process name> in words 1 and 2 can contain at most four
alphanumeric characters (the first one must be alphabetic, as
usual) and does NOT include the initial dollar sign "$".

The application program rarely, if ever, concerns itself with octal
<system numbers> in network file names. Usually, the application
passes the external form of the file name (which contains a system
name, rather than a number) to the procedure FNAMEEXPAND, which
converts the system name into the corresponding number.

Conversion between internal and external forms of network file names
is accomplished by the procedures FNAMEEXPAND and FNAMECOLLAPSE.

AWAITIO Procedure

AWAITIO

The AWAITIO procedure is used to complete a previously initiated
"no-wait" i/o operation. AWAITIO can be used to -

Wait for a completion with a particular file. Application process
execution is suspended until the completion occurs. A timeout is
considered to be a completion in this case.

Wait for a completion with any file or a timeout to occur. A
timeout is not considered to be completion in this case.

Check for a completion with a particular file. The call to AWAITIO
immediately returns to the application process regardless of
whether there is a completion or not. (If there is no completion,
an error indication is returned.)

Check for a completion with any file.

If AWAITIO is used to wait for a completion, a time limit can be

specified as to maximum time allotted to completing the waited-for
operation.

The call

AWAITIO Procedure

to the AWAITIO procedure is:

where

<f

CALL AWAITIO (<file number>

<buffer address>]
<count transferred>]
<tag>]
<time limit> 1)

- W N ™

ile number>, INT:ref:1, passed, returned

if a particular <file number> is passed, AWAITIO applies to

that file. The specific action depends on the value of the
<time limit> parameter. If <time limit> is a non-zero

value, the application process is suspended until a comple-

tion occurs or the <time limit> expires. If passed as 0D,
completion check is made.

If <file number> is passed as -1, the call to AWAITIO
applies to the oldest outstanding operation pending on any
file. The specific action depends on the value of the
<time limit> parameter. 1If <time limit> is a non-zero
value, the application process is suspended until a
completion occurs or the <time limit> expires. If

<time limit> is passed as 0D, a completion check is made.
In either case, if an operation completed, AWAITIO returns
to <file number> the file number associated with the
completion.

<buffer address>, INT:ref:1l, passed

if present, returns the address of the <buffer> specified
when the operation was initiated. Note that if the actual
parameter is to be used as an address pointer to the
returned data and has been declared in the form "INT
.<buffer address>", it should be passed to AWAITIO in the
form "@<buffer address>".

<count transferred>, INT:ref:l, returned

if present, returns the count of the number of bytes
transferred because of the associated operation.

a

AWAITIO Procedure

<tag>, INT(32):ref:l, returned

if present, returns the application-defined tag that was
stored by the system when the i/o operation associated with
this completion was initiated.

<time limit>, INT(32):value, passed

if present, indicates whether the process wants to wait for
completion or check for completion:

If <time limit> <> OD then a wait-for-completion is
specified. <time limit> then specifies the maximum time
(in .01 second units) that the application process is
willing to wait (i.e., be suspended) for completion of a
waited-for operation. Specifying a <time limit> value of
-1D implies a willingness to wait forever.

If <time limit> = 0D then a check-for-completion is

specified. AWAITIO immediately returns to the caller
regardless of whether or not an i/o completion occurred.

If <time limit> is omitted, then a willingness to wait
forever is specified.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO)

= (CCE) indicates that an i/o completed

> (CCG) indicates that a warning occurred (call FILEINFO)
example

CALL AWAITIO (file"num);
IF < THEN ... ! error occurred.

AWAITIO Procedure

Considerations

e Completing No-wait I/0O Calls

Each "no-wait" operation initiated must be completed with a
corresponding call to AWAITIO.

- 1If AWAITIO is used to wait for completion (i.e., <time limit> <>
0D) and a particular file is specified (i.e., <file number> <>
-1), then completing AWAITIO for any reason is considered a
completion.

- If AWAITIO is used to check for completion (<time limit> = 0D)
or used to wait on any file (<file number> = - 1), completing
AWAITIO does not necessarily indicate a completion. If an error
indication is returned and a subsequent call to FILEINFO returns
<error> = 40 (i.e., a timeout), then the operation is considered
incomplete (AWAITIO must be called again). Any indication other
than <error> = 40 (i.e., CCE, CCG, CCL and <error> <> 40)
indicates a completion.

® Order of I/0 Completion With SETMODE 30 Set

Specifying SETMODE 30 allows no-wait i/o operations to complete in
any order. When initiating an i/o operation, an application
process employing this option can use the <tag> parameter to keep
track of multiple operations associated with an open of a file.

® Order of I/0 Completion Without SETMODE 30 Set

If SETMODE 30 has not been set, the oldest outstanding i/o
operation is always completed first. Therefore, AWAITIO always
completes i/o operations associated with the particular open of a
file in the same order as initiated.

e Error Handling

If an error indication is returned (i.e., condition code is CCL or
CCG), the <file number> that is returned by AWAITIO can be passed
to the FILEINFO procedure to determine the cause of the error. 1If
<file number> = -1 (i.e., any file) is passed to AWAITIO and an
error occurs on a particular file, AWAITIO returns, in <file
number>, the actual file number associated with the error.

3-17

AWAITIO Procedure

@ Error 26: No Outstanding No-wait I/O Calls

If AWAITIO is called and a corresponding "no-wait" operation has
not been initiated, an error indication is returned (CCL) and a
subsequent call to FILEINFO returns <error> = 26 (no outstanding
operation).

® WRITE Buffers

The contents of a buffer being written should not be altered
between a no-wait i/o initiation (e.g., call to WRITE) and the
corresponding no-wait i/o completion (i.e., call to AWAITIO). If
the buffer is altered, application error recovery can become
difficult, if not impossible.

® AWAITIO Completion

The way in which AWAITIO completes depends on whether the

<file number> parameter specifies a particular file or any file,
and on the value of <time limit> passed with the call. The action
taken by AWAITIO for each combination of <file number> and <time
limit> is summarized in Table 3-1, on the following page. (Note:
Table 3-1 assumes SETMODE 30 has been set.)

® AWAITIO Operation

Figure 3-1 illustrates the operation of the AWAITION procedure.

Particular
File

{tn) = (file num)

Any File

<fn> = -1

Table 3-1.

(time limit) =0

AWAITIO Procedure

AWAITIO Action

(time Iimit) +0

CHECK for any <file num>
110 completion

COMPLETION
file number returned in <{fn> ;
Tag of completed call returned
in (tag)

NO COMPLETION
CCL (error 40) returned;
file number returned in {fn> ;
No /O operation is canceled.

WAIT for any {file num>
1/O completion

COMPLETION
file number returned in {fn> ;
Tag of completed call returned in (tag))

NO COMPLETION
CCL (error 40) returned;
file number returned in {fn) ;
Oldest {file num) /O operation canceled;
Tag of canceled call returned in {tag) .

CHECK for any /O completion on any
open file

COMPLETION
File number of completed call returned
in {fn) ;

Tag of completed call returned in

(tag) .

NO COMPLETION
CCL (error 40) returned;
—1returned in {fn) ;
No |/O operation is canceled.

WAIT for any |/O completion on any
open file

COMPLETION

File number of completed cali returned
in (fn)

Tag of completed call returned in
(tag) .

NO COMPLETION

CCL (error 40) returned;
—1returned in (fn) ;
No 1/O operation is canceled.

Notes: {fn) = (file number)
SETMODE 30 Set

3-19

AWAITIO Procedure

CCL
<error> =40
COMPLETION

TIMEOUT
-€

>-1
PARTICULAR FILE

COMPLETION
?

oD
<timeout>

{CHECK)

$N
WAIT
<timeout>

FOR COMPLE-
TION

CCL
<error™ = 40

CALL AWAITIO

-1
ANY FILE

<file number>

COMPLETION
?

ANY

FOR ANY
COMPLETION

oD
<timeout>
(CHECK) CCL
? <error> = 40
WAIT
<timeout> COMPLETION

TIMEOUT
CCL
<error>= 40

Figure 3-1.

AWAITIO OPERATION

CANCEL Procedure

CANCEL

The CANCEL procedure is used to cancel the oldest outstanding
operation on a no-wait file. (Note: A specific call, identified with
a <tag> parameter, can be canceled with a call to CANCELREQ.)

The call to the CANCEL procedure is:

CALL CANCEL (<file number>)

where

<file number>, INT:value, passed

identifies the file whose oldest outstanding operation is to
be canceled.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO)
= (CCE) indicates that the operation was cancelled
> {(CCG) is not returned by CANCEL

example

CALL CANCEL (some”file);
IF < THEN ! no operation outstanding.

CANCELREQ Procedure

CANCELREQ

The CANCELREQ procedure is used to cancel an outstanding operation
identified by <file number> and <tag> on a no-wait file.

The call to the CANCELREQ procedure is:

CALL CANCELREQ (<file number>
+ [<tag> 1)
where
<file number>, INT:value, passed

identifies the file whose outstanding operation
is to be canceled.

<tag>, INT(32):value, passed
if present, identifies the operation to be canceled.

<tag> is the application-defined tag that is stored by
the system when the i/o operation is initiated.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO)
= (CCE) indicates that the operation was canceled
> (CCG) is not returned by CANCELREQ

example

CALL CANCELREQ (some”file,14D);
IF = THEN ! operation 14 of some”"file canceled.

Considerations
o Using the <tag> Parameter
If the <tag> parameter is provided, the oldest outstanding

operation with that tag value is canceled. If <tag> is not

provided, the oldest outstanding operation for <file number>
is canceled.

3-22

CLOSE Procedure

CLOSE

The CLOSE procedure is used to terminate access to an open file.

When a permanent disc file is closed, if it is not open concurrently,
the file label on disc is updated with pertinent information from the
main-memory resident File Control Block and the space in use by the
FCB is returned to a system main-memory space pool. When a temporary
disc file is closed, if it is not open concurrently, its name is
deleted from the volume”s directory and any space that had been
allocated to the file is made available for other files.

For any file close, the space allocated to the Access Control Block
is returned to the system.

The call to the CLOSE procedure is:

CALL CLOSE (<file number>)
where
<file number>, INT:value, passed

identifies the file to be closed.

condition code settings:

< (CCL) indicates that the file was not open
= (CCE) indicates that the CLOSE was successful
> (CCG) is not returned by CLOSE

example

CALL CLOSE (fnum)

Considerations

® Closing a No-wait File
If a CLOSE is executed to a no-wait file with outstanding

operations pending, any uncompleted operations are canceled. There
is no indication as to whether the operation completed or not.

3-23

CONTROL Procedure

CONTROL

The CONTROL procedure is used to perform device-dependent i/o
operations.

If the CONTROL procedure is used to initiate an operation with the
file opened with "no-wait i/o" specified, the operation must be
completed with a corresponding call to the AWAITIO procedure.

The call to the CONTROL procedure is:

CALL CONTROL (<file number>
' <operation>
' <parameter>
r [<tag> 1)

where
<file number>, INT:value, passed

identifies the file that is to execute the control
operation.

<operation>, INT:value, passed

is defined by device in the table that follows.

<parameter>, INT:value, passed

is also defined in the table that follows.

<tag>, INT(32):value, passed

for no-wait i/o only, if present, is stored by the system,
then passed back to the application process by the AWAITIO
procedure when the control operation completes.

condition code settings:

(CCL) indicates that an error occurred (call FILEINFO)
(CCE) indicates that the CONTROL was successful
(CCG) 1is not returned by CONTROL

Vil A

3-24

CONTROL Procedure

example

CALL CONTROL (printer, form”"control, vfu”channel);
IF < THEN ! error occurred.

The control operations that apply to disc files are listed in Table
3-3 below.

Table 3-3. CONTROL OPERATIONS
<operation>

2 = write end-of-file (unstructured files only. Write access is
required)

<parameter> = number of records {0:255}
20 = disc, purge data (write access is required)
<parameter> = none

21 = disc, allocate/deallocate extents (write access is required)

<parameter> = 0 deallocate all extents past the end-of-

file extent

1:16 number of extents to allocate for a

key-sequenced file

l:<total extents>
= total number of extents to allocate
for entry-sequenced, relative and
unstructured files
where

<total extents> = 16 * <number of partitions>

CONTROL Procedure

Considerations

® Writing EOF to an Unstructured File
A write end-of-file to an unstructured disc file sets the
end-of-file pointer to the relative byte address indicated by
the setting of the next-record pointer and writes the new
end-of-file setting in the file label on disc. Specifically:

end-of-file pointer := next-record pointer;

® Error 73: File is Locked

If a control operation is attempted for a file that is locked

through a <file number> other than the <file number> specified
with the call to CONTROL, the call to CONTROL is rejected with
an error 73: file is locked.

® Allocating Extents for Partitioned Key-Sequenced Files
To allocate extents for partitioned key-sequenced files, each

partition must be opened separately and a CONTROL 21 issued
for the individual partition.

3-26

CREATE

CREATE Procedure

The CREATE procedure is used to a define new structured or

unstructured disc file. The file can be either temporary (and deleted
when closed) or permanent. If a temporary file is created, CREATE
returns a file name suitable for passing to the OPEN procedure.
The call to the CREATE procedure is:
CALL CREATE (<file name>
r [<primary extent size>]
, [<file code> 1
r [<secondary extent size>]
r [<file type>]
r [<record length>]
, [<data block length>]
» [<key-sequenced params>]
+ [<alternate key params>]
, [<partition params> 1)
where
<file name>, INT:ref, passed, [returned]

is an array providing the name of the disc file to be
created in either of the following forms:

permanent disc files are created by specifying

<file name{0:3]> 1is S$<volume name><blank fill>

or \<system number><volume name><blank fill>
<file name[4:7]> is <subvol name><blank fill>
<file name[8:11]> is <disc file name><blank fill>

temporary disc files are created by specifying

<file name[0:11]> is $<volume name><blank fill>
or \<system number><volume name><blank fill>

when CREATE completes, a <temporary file name> is returned
in <file name[4:7]>. The temporary file can then be opened
by passing <file name> to OPEN.

CREATE Procedure

<primary extent size>, INT:value, passed

if present, is the size of the primary extent in 2048-byte
units. The maximum <primary extent size> is 65535
(134,215,680 bytes). 1If omitted, a primary extent size of
one (2048 bytes) is assigned.

<file code>, INT:value, passed

if present, is an application-defined file identification
code (file codes 100 - 999 are reserved for use by Tandem
Computers, Inc.). If omitted, a file code of zero is
assigned.

<secondary extent size>, INT:value, passed

if present, is the size of the secondary extents in
2048-byte units (a file may have up to 15 secondary extents
allocated). The maximum <secondary extent size> is 65535
(134,215,680 bytes). 1If omitted, the size of the primary
extent is used for the secondary extent size.

<file type>, INT:value, passed
if present, specifies the type of the file to be created.
<file type>.<13:15> specifies the file structure:
unstructured (default)
relative

entry-sequenced
key-sequenced

WO
W wn

<file type>.<12> 1 = specifies “ODDUNSTR” for
unstructured files. See Section 5, File Creation, for
details.

<file type>.<12> 1 specifies data compression for
key-sequenced files. See Section 5, File Creation, for
details.

<file type>.<11l> 1 specifies index compression for
key-sequenced files. See Section 5, File Creation, for
details.

3-28

CREATE Procedure

<file type>.<10> 1 = File Label is written to disc
each time the end-of-file is advanced. The effect of
setting this parameter is the same as calling REFRESH
after every operation that advances the end-of-file.

<file type>.<3:9> must be zero.

<file type>.<2> 1 = for systems with the Transaction
Monitoring Facility (TMF), specifies this file is an
audited file; for systems without TMF, must be zero.

<file type>.<0:1> must be zero

If <file type> is omitted, an unstructured file is
created.

<record length>, INT:value, passed

if present, is the maximum length of the logical record in
bytes. For structured files, the maximum record length is
determined by the data block size. With a data block size
of 4096, the maximum record length for entry-sequenced and
relative files is 4072 bytes. With the same maximum data
block size of 4096, the maximum record length for a
key-sequenced file is 2035. For unstructured files, the
maximum record length is 4096. If omitted, 80 is used for
the <record length>.

<data block length>, INT:value, passed

for structured files, if present, is the length in bytes of
each block of records in the file. <data block length>
must be a multiple of 512 and can not be greater than 4096.
<data block length> must be at least <record length> + 24.
For a key-sequenced file <data block length> must be at
least 2 * <record length> + 26. If omitted, 1024 is used
for the <data block length>. Regardless of the specified
record length and data block size, the maxixum number of
records that can be stored in a data block is 511.

CREATE Procedure

<key-sequenced params>, INT:ref, passed

is a three-word array containing parameters that describe
this file. This parameter is required for key-sequenced
files and may be omitted for other file types. The format
for this array is shown in the "<key sequenced params>
ARRAY" table which follows

<alternate key params>, INT:ref, passed

is an array containing parameters describing any alternate
keys for this file. This parameter is required if the file
has alternate keys, otherwise it may be omitted or its first
word must be zero. The format for this array is shown in
the "<alternate key params> ARRAY" table which follows.

<partition params>, INT:ref, passed

is an array containing parameters that describe this file if
the file is a multi-volume file. 1If the file is to span
multiple volumes, then this parameter is required, otherwise
this parameter may be omitted or its first word must be
zero. The format for this array is shown in the

"<partition params> ARRAY" table which follows.

condition code settings:

< (CCL) indicates that the CREATE failed (call FILEINFO)
= (CCE) indicates that the file was created successfully
> (CCG) the device is not a disc
example
CALL CREATE(filename,5,0);
IF < THEN ... ! CREATE failed.
Considerations

® Disc Allocation at CREATE Time

Execution of the CREATE procedure does not allocate any disc area;
it only provides an entry in the volume”s directory indicating that
the file exists.

3-30

CREATE Procedure

® Error Handling

If the CREATE fails (i.e., condition code other than CCE returned),
the reason for the failure can be determined by calling the
FILEINFO procedure and passing -1 as the <file number> parameter.

® File Security

The file is created with the default security associated with
the process creator”s access id. Security can be changed by
opening the file and calling SETMODE or SETMODENOWAIT.

e 0dd Unstructured Files

When creating unstructured files, the value passed for
<file type>.<12> determines how all subsequent read, write, and
position operations to the file will work.

If <file type>.<12> is passed as a 1, the values of

<record specifier>, <read count>, and <write count> are all
interpreted exactly. That is, a <write count> or <read count> of
seven transfers exactly seven bytes.

If <file type>.<12> is passed as a 0, the values of

<record specifier>, <read count>, and <write count> are all rounded
up to an even number before the operation is performed. That is, a
<write count> or <read count> of seven is rounded up to eight, and
eight bytes are transferred.

3-31

CREATE Procedure

® Key-Sequenced Parameter Array Format

The key-sequenced parameter array format is shown in Table 3-4.

Table 3-4. <key-sequenced params> ARRAY FORMAT

word:
[0] <key length>
[1] <key offset>
[2] <index block length>

where
<key length>, INT,
is the length, in bytes, of the record”s primary key field
<key offset>, INT,

is the number of bytes from the beginning of the record where
the primary key field starts.

<index block length>

TNT .
1N

is the length in bytes of each index block in the file.
<index block length> must be a multiple of 512 and may not be
greater than 4096. 1If zero is specified, then the value of
<data block length> is used as the <index block length>

3-32

CREATE Procedure

Alternate Key Parameter Array Format

The alternate key parameter array format is shown in Table 3-5.

Table 3-5. <alternate key params> ARRAY FORMAT

0 8
word: [0] <nf alt files> <nk alt keys>
[1] KEY DESCRIPTION
FOR

ALTERNATE KEY O

KEY DESCRIPTION
FOR
ALTERNATE KEY nk - 1

[nk * 4 + 1] FILE NAME
OF
KEY FILE O

FILE NAME
OF
KEY FILE nf - 1

Key Description for key "k" consists of four words of the form:

0 8
[k * 4 + 1] <key specifier>
[k * 4 + 2] <key attributes>
[k * 4 + 3] <null value> <key length>
[k * 4 + 4] <key file number>

3-33

CREATE Procedure

Table 3-5. <alternate key params> ARRAY FORMAT (cont”d)

where

<nf alt files>, one-byte value,
specifies the number of alternate key files for this primary
file.

<nk alt keys>, one-byte value,
specifies the number of alternate key fields in this primary
file.

<key specifier>, INT,
is a two-byte value that uniquely identifies this alternate
key field. This value is passed to the KEYPOSITION
procedure when referencing this key field.

<key attributes>, INT,
describes the key.
where

<key attributes>.<0>: 1 = null value is specified. See
"<null value>" below.

<key attributes>.<1>: 1 = key is unique. 1If an attempt is
made to insert a record that duplicates an existing value
in this field, the insert is rejected with a "duplicate
record" error.

<key attributes>.<2>: 1 = no automatic updating of this
key is to be performed by ENSCRIBE.

<key attributes>.<3> must be zero.
<key attributes>.<4:15> = <key offset>. This specifies

the the number of bytes from the beginning of the record
where this key field starts.

3-34

CREATE Procedure

Table 3-5. <alternate key params> ARRAY FORMAT (cont”d)

<null value>, one-byte value,

is used to specify a "null value" if <key attributes>.<0> =
1.

During an insertion (i.e., WRITE), if a null value is
specified for an alternate key field and the null value is
encountered in all bytes of this key field, ENSCRIBE does
not enter the reference to the record into the alternate key
file. (If the file is read via this alternate key field,
records containing a null value in this field will not be
found.)

During a deletion (i.e., WRITEUPDATE, <write count> = 0), if
a null value is specified and the null value is encountered
in all bytes of this key field within <buffer>, ENSCRIBE
deletes the record from the primary file but does not

delete the reference to the record in the alternate file.

<key length>, one-byte value,

that specifies the length, in bytes, of this key field.

<key file number>, INT,

is the relative number in the <alternate key params> array of
this key”s alternate key file. The first alternate key file”s
<key file number> = 0.

The File Name for file "f" consists of 12 words and begins at
[nk * 4 + 1 + £ * 12]
and is of the form
<file name[0:3]1> is $<volume name><blank fill>
or \<system number><volume name><blank £ill>

<file name[4:7]> 1is <subvol name><blank fill>
<file name[8:11]1> is <disc file name><blank fill>

CREATE Procedure

® Partition Parameter Array Format

The partition parameter array format is shown in Table 3-6.

Table 3-6. <partition params> ARRAY FORMAT

num words

<num extra partitions> [1]

$<volume name> or [4]
\<sys num><volume name>
for partition 1

$<volume name> Or
\<sys num><volume name>
for partition 2

$<volume name> or
\<sys num><volume name>
for partition n

<primary extent size> part 1 [1]

<primary extent size> part n

<secondary extent size> part 1 [1]

<secondary extent size> part n

3-36

CREATE Procedure

Table 3-6. <partition params> ARRAY FORMAT (cont”d)

The following must be included in the <partition params> array
for key-sequenced files and may be omitted for other file types:

<partial key length> [1]

<partial key value>
for partition 1

<partial key value>
for partition n

where
<num extra partitions>, INT,

is the number of extra volumes (other than the one specified

in the <file name> parameter) on which the file is to reside.

The maximum value permitted is 15. Note that every other
parameter in the partition array (except <partial key
length>) must be specified <num extra partitions> times.

$<volume name> or
\<sys num><volume name>, eight bytes blank filled,

is the name of the disc volume (including "$" or "\") where
the particular partition is to reside.

<primary extent size>, INT,

is the size of the primary extent for the particular
partition.

<secondary extent size>, INT,

is the size of the secondary extents for the particular
partition. Specifying zero results in the <primary extent

size> value being used.

3-37

CREATE Procedure

Table 3-6. <partition params> ARRAY FORMAT (cont”d)

The remaining parameters are required for key-sequenced files and
may be omitted for all other file types.

<partial key length>, INT,
is the number of bytes of the primary key of a key-sequenced
file that will be used to determine which partition of the
file will contain a particular record. The minimum value for
<partial key length> is one.

<partial key wvalue>, INT,

for <partial key length> bytes, specifies the lowest key
value that will be allowed for a particular partition.

Each <partial key value> in <partition params> must begin on
a word boundary.

3-38

DEVICEINFO Procedure

DEVICEINFO

The DEVICEINFO Procedure is used to obtain the device type and the
physical record length for a file. The file may be open or closed

The call to the DEVICEINFO Procedure is:

CALL DEVICEINFO (<file name>
; <device type>
;, <physical record length>)
where
<file name>, INT:ref, passed
is an array containing the name of the device whose
is permitted. For disc files, only the first eight

characters (i.e, the <volume name>) are significant, but
the remaining eight characters must be blank.

<device type>, INT:ref:1, returned
"Device Type" table which follows.

<physical record length>, INT:ref:l, returned

is returned the physical record length associated with the
file:

For non-disc devices, <physical record length> is the
configured record length

For disc files, <physical record length> is the maximum
buffer size for the device; either 2,048 or 4,096 bytes

Note: The <logical record length> for an ENSCRIBE disc
file is obtained via the FILERECINFO Procedure

For processes and the $RECEIVE file, 132 is returned in
<physical record length> (this is the system convention
for interprocess files)

characteristics are to be returned. Any form of <file name>

is returned the device type of the associated file. See the

possible transfer length. This is equal to the configured

3~-39

DEVICEINFO Procedure

example

condition code settings:

The condition code has no meaning following a call to
DEVICEINFO.

CALL DEVICEINFO (infile, devtype, reclength);

Device Types and Subtypes

The values returned for <device type> are listed in Table 3-7.

0
1

Table 3-7.

device type, A
<device type>.<4:9>,

process
operator console
$RECEIVE

Disc

Magnetic Tape

none

none

~NonddsWwhh HO 8
3
®

N =
o

10
50
160
240
64
64
1

2

DEVICE TYPES AND SUBTYPES

<device type>.<0>, 1 = removable disc volume

device subtype,
<device type>.<10:15>,

MB
MB
MB
MB
MB
MB
MB
MB

capacity
capacity
capacity
capacity
capacity
capacity
capacity
capacity

Nine track
Seven track

(SMD)
(MMD)

3-40

DEVICEINFO Procedure

Table 3-5. DEVICE TYPES AND SUBTYPES (cont.)
5 = Line Printer 0 = Belt Printer
1l = Drum
2 = Current-Loop Belt
3 = Current-Loop Matrix
4 = Matrix Serial
6 = Terminal 0 = Character Mode
(conversational or 1 = 6510
page mode) 2 = 6520
32 = Hard Copy Console
7 = Data Communication Line 0 = BISYNC, point-to-point,
non-switched
1 = BISYNC, point-to-point,
switched
2 = BISYNC, multipoint,
tributary
3 = BISYNC, multipoint,
supervisor
8 = ADM-2, multipoint,
supervisor
9 = TINET, multipoint,
supervisor
10 = Burroughs, multipoint,
supervisor
30 = Full-duplex, out line
31 = Full-duplex, in line
40 = Asynchronous line
supervisor
56 = Autocall unit
8 = Punched Card Reader none
9 = X.25 access method none
PTP protocol
11 = Bit synchronous 40 = Synchronous Data Link
ENVOY Control (SDLC)
12 = Tandem to IBM Link none
(TIL)
26 = Tandem Hyper Link none

3-41

EDITREAD Procedure

EDITREAD

The EDITREAD procedure reads text lines from an edit file
(filetype = 10l1). Before EDITREAD can be called, a call to
EDITREADINIT must be completed successfully.

Text lines are transferred, in ascending order, from the text file
to a buffer in the application program”®s data area. One line is
transferred with each call to EDITREAD. EDITREAD also returns the
sequence number associated with the text line and performs checks
to ensure that the text file is valid.

The edit file can be opened with nowait i/o specified. However, a
call to EDITREAD completes before returning to the application
program; it is not completed with a call to AWAITIO.

The call to the EDITREAD procedure is:

<status> := EDITREAD (<edit control block>
, <buffer>
, <buffer length>
; <seguence number>)

where
<status>, INT, passed

is a value indicating the outcome of EDITREAD: Values for
<status> are:

>= 0 indicates that the read was successful. This is the
actual number of characters in the text line.
However, only <buffer length> bytes are transferred
into <buffer>,

< 0 1indicates an unrecoverable error. Where:

-1 = end-of-file encountered

-2 = read error

-3 = text file format error

-4 = sequence error. The sequence number of the line

just read is less than its predecessor

3-42

EDITREAD Procedure

<edit control block>, INT:ref, passed

is the same array as specified in the parameter to
EDITREADINIT.

<buffer>, STRING:ref, returned

is an array where the text line is to be transferred.

<buffer length>, INT:value, passed
is the length, in bytes, of the <buffer> array. This
specifies the maximum number of characters in the text line
that will be transferred into buffer.

<sequence number>, INT(32) :ref, returned

is the sequence number multiplied by 1000, in doubleword
integer form, of the text line just read.

example

count := EDITREAD(control”block, line, length, seq”num);

Extended EDITREADINIT and EDITREAD Example

The data declarations:

LITERAL buf”size = 512, ! EDITREAD”s internal buffer size in bytes
length = 80; ! length of the application”s buffer (byte)
INT fnum,
fcode,
error,
count,

.control”block[0:39+buf”size/2]; ! global data declaration.
STRING .line[0:length/2-1]; ! application”s buffer.

INT(32) seq”num;

EDITREAD Procedure

First the text file is opened and verified that it is an edit format
file:

CALL OPEN(fname, fnum,.):

IF < THEN ...;

CALL FILEINFO(fnum,,,,,s,,.fcode);

IF fcode <> 101 THEN .. ! not edit format file.

Then EDITREADINIT is called to initialize the <edit control block> and
specify EDITREAD s internal buffer size:

IF (error := _EDITREADINIT (control”block,fnum,buf”®size)) THEN
BEGIN ! unsuccessful

END;

To read a text line, EDITREAD is called:

loop:
IF (count := EDITREAD(control”block,line,length,seq”num)) < 0

MITHAT

BEGIN ! unsuccessful

END
ELSE
IF count > length THEN ... ! line truncated.

GO&O loop

If the read is successful, a count of the number of bytes in
the text line is returned in "count", the text line is

returned in the array "line", and the sequence number is
returned in "seq"num".

3-44

EDITREAD Procedure

Saving and Restoring a Location in an EDIT File

A specific location in an EDIT file can be saved during sequential
reading and later be restored to reposition a process at the saved
location. To save a location within an EDIT file, the second through
fourth words of the edit control block are stored in a temporary
buffer.

Later, repositioning to the saved location is done in two steps:

1) the current second through fourth words of the edit control

block are replaced with the three words saved in the temporary
buffer.

2) the first bit of the first word in the edit control block is
set to a zero.

Calling EDITREAD after repositioning returns the next record after the
saved position.

An example:

INT edit”cb[0:79],
position[0:2];

! EDITREADINIT and one or more EDITREADs are called

position “:=" edit”cb[l] for 3; ! save current position

! more EDITREADS

.

edit”cb[1l] “:=" position for 3; ! restore saved position
edit”cb.<0> := 0;

! next EDITREAD returns same record returned after position was
! saved

EDITREADINIT Procedure

EDITREADINIT

The EDITREAD procedure is called to prepare a buffer in the
application program”s data area for subsequent calls to EDITREAD.

The application program designates an array to be used as an
<edit control block>. The <edit control block> is used by the
EDITREAD procedure for storing control information and for an
internal buffer area.

The edit file can be opened with NOWAIT I/O. However, a subsequent

call to EDITREADINIT completes before returning to the application;
it is not completed with a call to AWAITIO.

The call to the EDITREADINIT procedure is:

<status> := EDITREADINIT (<edit control block>
; <file number>
, <buffer length>)
where
<status>, INT, returned

is a value indicating the outcome of EDITREADINIT. Values
for <status> are:

0 = successful (ok to read)
-1 = end-of-file detected (empty file)
-2 = input/output error
-3 = format error (not EDIT file)
<edit control block>, INT:ref, passed

the <edit control block> are used for control information.
The remainder is used as an internal buffer by EDITREAD.

least 40 + <buffer length> divided by 2.

<file number>, INT:value, passed

identifies the edit file to be read.

is an uninitialized array declared globally. Forty words of

The length, in words, of the <edit control block> must be at

3-46

EDITREADINIT Procedure

<buffer length>, INT:value, passed

is the size, in bytes, of the internal buffer area used by
EDITREAD. This parameter determines the amount of data that
EDITREAD reads from the text file on disc (not the amount of
data transferred into the <buffer> specified as a parameter
to EDITREAD). The size of the internal buffer area must be
a power of two, from 64 to 2,048 bytes (i.e., 64, 128, 256,
eesy 2,048).

example

INT .control”block[0:167];
n := EDITREADINIT(control”block, fnum, 256);

An extended example using both EDITREADINIT and EDITREAD is shown
under the syntax description of EDITREAD.

FILEERROR Procedure

FILEERROR

The FILEERROR procedure is used to determine if an i/o operation, that
completed with an error, should be retried.

The call to the FILEERROR procedure is:

<status> := FILEERROR (<file number>)
where
<status>, INT, returned
has two possible values:

0 = operation shouldn”t be retried (i.e., error is fatal)
1 operation should be retried

<file number>, INT:value, passed

identifies the file having the error.

example

IF FILEERROR(fnum) THEN .. ! retry

The FILEERROR procedure is called after a CCL return from a file
management procedure. The FILEERROR procedure determines if an
operation should be retried as follows:

® FILEERROR . obtains the file management error number and file name
through a call to the FILEINFO procedure, or

e If the error is caused by a disc pack not up to speed

FILEERROR delays the calling process for one second then returns a
one indicating a retry should be performed.

3-48

FILEERROR Procedure

@ If the error is caused by a device not ready, an appropriate
message is printed on the home terminal. This is followed by a
read from the terminal. If, at this time, "STOP" is entered
(signalling that the condition cannot be corrected), FILEERROR
returns a zero indicating that the operation should not be retried.
If any other data is entered (typically, carriage return), it
signals that the condition has been corrected, and FILEERROR
returns a one indicating that the operation should be retried.

@ If the error is caused by an ownership error (<error> = 200) or
path down error (<error> = 201) and the alternate path is operable,
FILEERROR returns a one indicating the the operation should be
retried. If the alternate path is inoperable, a zero is returned.

@ Any other error results in the file name being printed on the home
terminal followed by the file management error number. A zero is
returned indicating that the operation should not be retried.

Two examples follow. First example:

error := 1;
WHILE error DO
BEGIN

CALL WRITE(fnum,buffer,count);
IF < THEN

BEGIN

IF NOT FILEERROR(fnum) THEN CALL ABEND;
END

ELSE error := 0;
END;

3-49

FILEERROR Procedure

It may be desirable to check for certain errors before calling
FILEERROR. Therefore, the program itself should first call FILEINFO:

LITERAL nofile = 11; ! data declaration.
not”open := not”created := 1;
WHILE not”open DO ! open the file.
BEGIN
CALL OPEN(fname, fnum, 0);
IF < THEN
BEGIN

CALL FILEINFO(fnum,error);
IF error = nofile THEN ! file does not exist. create it
WHILE not”created DO
BEGIN
CALL CREATE (fname, ..);
IF < THEN ! creation failure
BEGIN
IF NOT FILEERROR(-1) THEN CALL ABEND;
END
ELSE not”created := 0;
END
ELSE
BEGIN
IF NOT FILEERROR (fnum) THEN CALL ABEND:
END;
END
ELSE not"open := 0;
END; ! open the file.

FILEINFO Procedure

FILEINFO

The FILEINFO procedure is used to obtain error and characteristic
information about an open file.

The call to the FILEINFO procedure is:

CALL FILEINFO (<file number>

<error>

<file name>

<logical device number>
<device type>

<extent size>
<end-of-file location>
<next-record pointer>
<last mod time>

<file code>

<secondary extent size>
<current-record pointer>
<open flags>

e e e R W R N W Ko W W N |
et b b bd) Bt bad feaed o] bored b Sed

W ™M M W ™M W M MW N w wew

where
<file number>, INT:value, passed
identifies the file whose characteristics are to be
returned.
<error>, INT:ref:1, returned
if present, is returned the error number associated with the

last operation on the file (see "Errors and Error
Recovery").

<file name>, INT:ref:12, returned

if present, is returned the file name of this file. See
"File Names" for the file name format.

3-51

FILEINFO Procedure

<logical device number>, INT:ref:16, returned

if present, is returned the logical device number of the
device where this file resides (in binary).

For partitioned files, an array of <logical device numbers>
is returned; one entry for each of 16 possible partitions:

[0] = <logical device number> of partition 0
[1] = <logical device number> of parititon 1
[15] = <logical device number> of partition 15

If -1 is returned for a partition, then the partition is
not open.
<device type>, INT:ref:l, returned

if present, is returned the device type of the device
associated with this file. See "DEVICEINFO Procedure",
table of "Device Types and Subtypes"

ned

1~

<extent size>, INT:ref:1i., retn
if present, is returned the primary extent size in 2048
byte units.

<end-of-file pointer>, INT(32):ref:l, returned

if present, is returned the relative byte address of the
end-of-file location.

3-52

FILEINFO Procedure

<next-record pointer>, INT(32):ref:1, returned
if present, is returned the next-record pointer setting.

For relative files, this is a <record number>; for entry-
sequenced files, this is a <record address>; for
unstructured files, this is an <rba>; for key-sequenced
files, this parameter is ignored (i.e., whatever is passed
is returned unchanged).

<last mod time>, INT:ref:3, returned

if present, is returned a three-word timestamp indicating
the last time that the file was modified. <last mod time>
of the same form as the <interval clock> returned by
TIMESTAMP and can be converted into a date by CONTIME.

<file code>, INT:ref:l, returned

if present, is returned the application defined file code
that was assigned when the file was created. File codes
100-999 are reserved for use by Tandem Computers, Inc.

<secondary extent size>, INT:ref:l, returned

if present, is returned the size of the secondary file
extents (extents 1-15) in 2048 byte units

<current-record pointer>, INT(32):ref:l, returned

if present, is returned the setting of the current-record
pointer. This may be an even or odd value.

For relative files, this is a <record number>; for entry-
sequenced files, this is a <record address>; for
unstructured files, this is an <rba>; for key-sequenced
files, this parameter is ignored (i.e., whatever is passed
is returned unchanged).

is

FILEINFO Procedure

<open flags>, INT:ref:1, returned

if present, is returned the access granted when the file was
opened. Where:

<open flags>.<12:15> is the maximum number of concurrent
no-wait i/o operations that can be in progress on this
file at any given time. <open flags>.<12:15> = 0 implies
"wait i/o".

<open flags>.<9:11> is the exclusion mode:

= shared access
1 = exclusive access
= protected access

<open flags>.<8> 1 = for process files, the OPEN message
is sent no-wait and must be completed by a call to
AWAITIO.

<open flags>.<6> 1 = resident buffers have been provided
by the application process for calls to file system i/o
routines. Resident buffering only applies to the Tandem
NonStop System; a zero is always returned in this bit for
the NonStop II System (see "OPEN Procedure").

<open flags>.<3:5> is the access mode:
0 = read/write access
1l = read-only access
= write-only access
<open flags>.<2> 1 = unstructured access regardless
of the actual file structure (see "OPEN Procedure").
condition code settings:
< (CCL) indicates that an error occurred, the error number is
returned in <error>

= (CCE) indicates that FILEINFO executed successfully
> (CCG) is not returned by FILEINFO

CALL FILEINFO (infile, err”"num);

3-54

FILEINFO Procedure
Considerations

® Error Handling
The error number of a preceding AWAITIO on any file or waited OPEN
that failed can be obtained by passing a -1 in the <file number>
parameter. The error number is returned in <error>.

® Calling FILEINFO Before Opening any Files
<error> = 32 is returned in <error> (if <error> is a parameter
present in the call) if a process has never opened any files and -1
is specified in the <file number> parameter.

® Commas (A word of Caution)
All parameters to FILEINFO, except <file number>, are optional.

Placeholder commas must be included to indicate missing parameters;
commas can be omitted for rightmost missing parameters.

CALL FILEINFO (devicenum, error,,, devicetype,, eof);

® Error 16: File Not Open
Calling FILEINFO subsequent to a close, returns <error> = 16, file
not open.

® Error Recovery for a Failed CREATE or PURGE
The error number of a preceding CREATE or PURGE that failed can be

obtained by passing a -1 in the <file number> parameter. The error
number is returned in <error>.

3-55

FILERECINFO Procedure

FILERECINFO

The FILERECINFO procedure is used to obtain the characteristics of an
open Enscribe disc file.

The call to the FILERECINFO procedure is:

CALL FILERECINFO (<file number>

<current key specifier>
<current key wvalue>
<current key length>
<current primary key value>
<current primary key length>
<partition in error>
<specifier of key in error>
<file type>

<logical record length>
<block length>
<key-sequenced params>
<alternate key params>
<partition params>

L N B B N T I B D B B B
[N N N W W Ko M Mo W W B Foa |
[ST S S S ==]

where

<file number>, INT:value, passed
identifies the file whose characteristics are to be
returned.

<current key specifier>, INT:ref:1, returned
if present, is returned the key specifier of the current key
field.

<current key value>, STRING:ref:*, returned
if present, is returned the value of the current key for
<current key length> bytes.

<current key length>, INT:ref:1, returned

if present, is returned the is length, in bytes, of the
current Kkey.

FILERECINFO Procedure

<current primary Key value>, STRING:ref:*, returned
if present, is returned the value of the current primary
key for <current primary key length> bytes.

<current primary key length>, INT:ref:1, returned
if present, is returned the is length, in bytes, of the
current primary key

<partition in error>, INT:ref:l, returned
if present, is returned a number from 0 through 15
indicating the partition associated with the latest error
occuring with this file.

<specifier of key in error>, INT:ref:1, returned
if present, is returned the key tag associated with the
latest error occurring with this file.

<file type>, INT:ref:l, returned

if present, is returned indicating the type of file being
accessed:

where

<file type>.<13:15> specifies the file structure:
unstructured
relative

entry-sequenced
key-sequenced

WNH O

<file type>.<12> 1 = “ODDUNSTR” is specified for
unstructured files.

<file type>.<12> 1 = data compression is specified
for key-sequenced files.

<file type>.<11l> 1 = index compression is specified
for key-sequenced files.

FILERECINFO Procedure

<file type>.<2> 1 = for systems with the Transaction
Monitoring Facility (TMF), indicates file is audited.

<logical record length>, INT:ref:l, returned

if present, the maximum size of the logical record in bytes
is returned.

<block length>, INT:ref:1l, returned

if present, is returned the length, in bytes, of a block of
records for the file

<key-sequenced params>, INT:ref:*, returned
if present, is an array where the parameters unique to an

key-sequenced file are returned. See the description under
"CREATE Procedure" in this section.

<alternate key params>, INT:ref:%*, returned
if present, is an array where the parameters describing the

file”s alternate keys are returned. See the description
under "CREATE Procedure" in this section.

<partition params>, INT:ref:*, returned
if present, is an array where the parameters describing a

multi-volume file are returned. See the description under
"CREATE Procedure" in this section.

condition code settings:

< (CCL) indicates that an error occurred

= (CCE) indicates that FILERECINFO executed successfully

> (CCG) indicates that the file is not an Enscribe disc file
example

CALL FILERECINFO (infile,,,,r,,, ftype);

3-58

FNAMECOLLAPSE Procedure

FNAMECOLLAPSE

The FNAMECOLLAPSE procedure converts a file name from its internal
form to its external form. The system number of a network file
name is converted to the corresponding system name.

The call to the FNAMECOLLAPSE procedure is:

{ length := } FNAMECOLLAPSE (<internal name>
; <external name>)

where
<length>, INT, returned

is returned the number of bytes in <external name>.

<internal name>, INT:ref:12, passed

is the name to be converted. If this is in local form, it
is converted to external local form; if it is in network
form, it is converted to external network form. Network

file names are discussed in the "File Names" section of
this manual.

<external name>, STRING:ref:26 or 34 returned
contains, on return, the external form of <internal name>.
If <internal name> is a local file name, <external name>
contains 26 bytes; if a network name is converted,
<external name> contains 34 bytes.

example

length := FNAMECOLLAPSE(internal, external);

Examplee of File Name Conversion

local: $SSYSTEM SUBVOL MYFILE
is converted to "S$SYSTEM.SUBVOL.MYFILE"

network: \<sysnum>SYSTEMSUBVOL MYFILE
is converted to "\<system name>.$SYSTEM.SUBVOL.MYFILE

FNAMECOLLAPSE Procedure

Considerations

® Passing Invalid File Names
It is the responsibility of the program calling FNAMECOLLAPSE to
pass a valid file name in <internal name>. Invalid file names
cause unpredictable results.

® Passing a Bad <sysnum> Value

If <internal name> is in network form and the system number in the
second byte does not correspond to any system in the network,

3-60

FNAMECOMPARE Procedure (all files)

FNAMECOMPARE

The FNAMECOMPARE procedure compares two file names within a local or
network environment to determine whether these file names refer to the
same file or device. For example, one name may be a logical system
name or a device number while the other reference is a symbolic name.
The file names compared must be in the standard twelve-word internal
format that is returned by FNAMEEXPAND.

The call to the FNAMECOMPARE procedure is:

i status := i FNAMECOMPARE (<file name 1>
CALL , <file name 2>)
where
<status>, INT, returned

is a value indicating the outcome of the comparison.
Values for <status> are:

-1 = (CCL) the file names do not refer to the same file
0 = (CCE) the file names refer to the same file
+1 = (CCG) the file names refer to the same <volume

name>, <device name>, or <process name> on the same
system, however, words [4:11] are not the same:
<file name 1> [4] <> <file name 2> [4] FOR 8.

A value less than negative one is the negative of a file

management error code. This indicates that the comparison
is not attempted due to this error condition.

That value returned from the program function determines
the condition code setting.

<file name 1>, INT:ref:12, passed

the first comparable file name. Each <file name> array
may contain either a local file name or a network file
name. Definitions of file names are found in the GUARDIAN
OPERATING SYSTEM PROGRAMMING MANUAL, File Names section.

<file name 2>, INT:ref:12 passed

the second comparable file name.

FNAMECOMPARE Procedure (all files)
Considerations

® File Name Arrays

The arrays containing the file names for comparison are not
modified.

® Alphabetic Character Handling

Alphabetic characters within qualified process names are not
upshifted before comparison.

® Passing Logical Device Numbers for File Names
If a logical .device number format such as $0076, is used for
one file name, but not for the second file name, then the
device table of the referenced system is consulted to determine
whether the names are equivalent. This is the only case where

the device table is used. All other comparisons involve only
the examination of the two file names supplied.

® Common Errors Returned From FNAMECOMPARE

Some of the most common negative file management error codes
returned are:

-13 = an illegal file name specification for either file name
is made.

-14 = the device does not exist. (See note.)
-18 = no such system is defined in this network. (See note.)
-22 = a parameter or buffer is out of bounds.

-250 = all paths to the system are down. (See note.)

Note: These negative file management error codes indicate that

one file name is passed in logical device number format while the

second is not and the device is connected to a remote network
node.

FNAMECOMPARE Procedure (all files)

Extended Example of Using FNAMECOMPARE

In the following example, the notation <x> refers to a number, not
to an ASCII character; <%52> :==; "*",

Assume the following declarations:
INT .fnamel[0:11 1,

.fname2[0:11 1,
status;

Then in a network node with a system number of <6>, execution of

fnamel “:=" ["Sterml™, 9 * [" "] 1;
fname2 “:=" [%56006, "TERM1 ", 8 *# [™ "]]; I "™\", <6>, "TERM1"
status := FNAMECOMPARE (fnamel, fname2);

returns a status of 0, and the condition code (CCE).

In a non-network system, execution of the above example returns a
status of negative one, and the condition code (CCL).

Whether a system is a network node or not, execution of

fnamel “:=" ["$SERVR #START UPDATING"];

fname2 “:=" ["$SSERVR #FINISH UPDATING"];
status :=

FNAMECOMPARE (fnamel, fname2)

returns a status of plus one, and the condition code (CCG).

In any system, execution of

fnamel “:=" ["$0013 ", 9 * [" "]];
fname2 “:=" ["SDATAX", 9 * [" "1 1;
status := FNAMECOMPARE (fnamel, fname2);

returns a status of zero and condition code (CCE), if the device
name SDATAX is defined as logical device number 13 at SYSGEN

time, otherwise a status of negative one and the condition code
(CCL) is returned.

FNAMECOMPARE Procedure (all files)

FNAMECOMPARE can also verify the specified file names, as shown in the
following example:

!
!
i
!

assume all variables and procedures have been
properly defined and initialized elsewhere

also assume LITERAL 1legal = 0;

IF FNAMEEXPAND (external”name, internal”name, default"names) THEN

3-64

BEGIN
! something reasonable was entered.
IF FNAMECOMPARE (internal”name, internal”"name) = legal THEN

! it may not exist, but looks okay.
BEGIN

! normal processing.

END

ELSE
! the format is not legal.
BEGIN

! error processing.

END;
END;

FNAMEEXPAND Procedure (all files)

FNAMEEXPAND

The FNAMEEXPAND procedure is used to expand a partial file name from
the compacted external form to the standard twelve-word internal form
usable by file management procedures.

The call to the FNAMEEXPAND procedure is:

{ <length> := | FNAMEEXPAND (<external file name>
, <internal file name>
; <default names>)
where
<length>, INT, returned

is the length in bytes of the file name in <external file
name>. If an invalid file name is specified, zero is
returned.

<external file name>, STRING:ref, passed

is the file name to be expanded. The file name must be in
the form

[\<system name>]<file name>
where <file name> is in one of these forms:
[$<volume name>.] [<subvol name>.]<disc file name><delim>
$<device name><delim>
$<logical device number><delim>
<delim>
is a delimiter character. <delim> can be any character
that is not valid as part of an <external file name>
such as <blank> or <null>.
<internal file name>, INT:ref, returned
is an array of twelve words where FNAMEEXPAND returns the

expanded file name. This cannot be the same array as
<external file name>.

3-65

FNAMEEXPAND Procedure (all files)

<default names>, INT:ref, passed

is an array of eight words containing the default volume and
subvol names to be used in file name expansion. <default
names> is of the form:

<default names([0:3]1>

default <volume name> (blank
filled on right)
default <subvol name> (blank
filled on right)

<default names[4:7]>

<default names[0:7]> corresponds directly to <word[l:8]> of
the Command Interpreter parameter message. See the Guardian
Programming Manual for the parameter message format.

example

length := FNAMEEXPAND (inname,outname,pmsg{l]);

Examples of File Name Expansion by FNAMEEXPAND

<disc file name> is returned as

$<default volume name><blank fill>
<default subvol name><blank fill>
<disc file name><blank fill>

<file name[0:3]>
<file name([4:7]>
<file name[8:11]>

<subvol name>.<disc file name> 1is returned as

<file name[0:3]1>
<file name[4:7]>
<file name([8:11]>

S$<default volume name><blank fill>
<subvol name><blank fill>
<disc file name><blank fill>

$<volume name>.<disc file name> is returned as

$<volume name><blank fill>

<default subvol name><blank fill>
<disc file name><blank £fill>

<file name[0:3]>
<file name[4:7]>
<file name[8:11]>

3-66

FNAMEEXPAND Procedure (all files)

S$<volume name>.<subvol name>.<disc file name> is returned as

$<volume name><blank £fill>
<subvol name><blank fill>
<disc file name><blank fill>

<file namel0:3]>
<file name[4:7]>
<file name[8:11]1>

$<device name> is returned as
<file name[0:11]> = $<device name><blank fill>
$<logical device number> is returned as
<file name[0:11]> = $<logical device number><blank £fill>

any other file name is invalid

FNAMEEXPAND Procedure (all files)
Extended Example Using FNAMEEXPAND

Assuming the following declarations:

STRING .ext"names[0:24] := " filea $system.fileb "

14
.p; ! string pointer.

INT .infile[0:11],
.outfile[0:11],
.defaults[0:7] := "Svoll n

"svoll "e.

FNAMEEXPAND is used to expand the external file names into a usable
internal form:

SCAN ext”"name WHILE " " -> @p; ! skip leading blanks.

@p := FNAMEEXPAND(p, infile, defaults) + @p;

on the completion of FNAMEEXPAND, <infile> contains

"Svoll svoll filea "

which is suitable for passing to the file management CREATE,

OPEN, RENAME, and PURGE procedures as well as the process
control NEWPROCESS procedure.

"p" is incremented by the number of characters in the external
file name.

SCAN p WHILE " " -> @p; ! skip intermediate blanks.
CALL FNAMEEXPAND(p, outfile, defaults);

on the completion, "outfile" contains

"Ssystem svoll fileb ",

FNAMEEXPAND Procedure (all files)

Expanding Network File Names

FNAMEEXPAND converts local file names to local names, and network file
names to network names. Network file names are described under

"File Names".
When network file names are involved, in addition to expanding the

local part of the name using the defaults, FNAMEEXPAND converts the
system name to the appropriate system number.

Example:
Suppose that system \NEWYORK is assigned system number 4. Then
the external file name "\NEWYORK.S$SDATA.SUB.MYFILE" is converted
by FNAMEEXPAND to
\<%4>DATA SUB MYFILE

where "<%$4>" denotes octal 4 in the second byte.

The use of FNAMEEXPAND in programming network applications is
discussed fully in the EXPAND User”s Manual.

GETDEVNAME Procedure

GETDEVNAME

The GETDEVNAME procedure is used to obtain the name associated with a
logical device number. GETDEVNAME returns, from the Logical Device
Table (LDT), the name of a designated logical device if such a device
exists or the name of the next higher (numerically) logical device if
the designated logical device does not exist. A status word is
returned from GETDEVNAME that indicates whether or not the designated
device exists or if higher entry exists in the LDT. By repeatedly
calling GETDEVNAME and supplying successively higher logical device
numbers, the names of all system device can be obtained.

The call to the GETDEVNAME procedure is:

<status> := GETDEVNAME (<logical device no>
’ <device name>
, [<system number> 1)
where
<status>, INT returned

indicates the outcome of the call. Where

0 = successful, the name of the designated logical
device is returned in <device name>

1 = the designated logical device does not exist. The
logical device number of the next higher device is
returned in <logical device no>; the name of that
device is returned in <device name>

2 = "end-of-LDT", there is no logical device equal-to or
or greater than <logical device no>
3 = unable to get name for demaountable disc
4 = the system specified could not be accessed
99 = parameter error
<logical device no>, INT:ref:l, passed, returned

on the call, is passed the logical device number, in
binary, of the designated logical device whose name is to
be returned.

On the return, <logical device no> is is returned the
logical device number, in binary, of the device whose name
is actually returned. If "end-of-LDT" is encountered,
<logical device no> is unchanged.

3-70

GETDEVNAME Procedure

<device name>, INT:ref:4, returned
is returned the <device name> or <volume name> of the
designated device if it exists or the next higher logical
If

device if the designated device does not exist.
"end-of-LDT" is encountered, <device name> is unchanged.

<system number>, INT, passed

if present, specifies the system (in a network) whose
Logical Device Table is to be searched for <logical device

no>.

If absent, the local system is assumed.

condition code settings:
The condition code setting has no meaning following a call to

GETDEVNAME.

example
! get the names of all logical devices.

ldev := 0;
WHILE NOT GETDEVNAME (ldev , devname) DO

BEGIN
CALL print (ldev , devname);

ldev := ldev + 1;
END;

Considerations

® Specifying Remote Logical Devices

If the device specified by <logical device no.> is remote, its
<device name> is returned in network form; otherwise, the <device

name is returned in local form.

® Limitations When <system number> is Passed

If the <system number> parameter is supplied, devices whose names
contain seven characters are not accessible using this procedure.

3-71

KEYPOSITION Procedure

KEYPOSITION

The KEYPOSITION procedure is used to position by primary key within
key-sequenced files, and by alternate key within key-sequenced,
relative and entry-sequenced files.

KEYPOSITION sets the current position, access path, and positioning
mode for the specified file. The current position, access path,
and positioning mode define a subset of the file for subsequent
access.

The calling application process is not suspended because of a call to
KEYPOSITION.

A call to the KEYPOSITION procedure will be rejected with an error
indication if there are any outstanding "no-wait" operations pending
on the specified file.

The call to the KEYPOSITION procedure is:

CALL KEYPOSITION (<file number>

<key value>

<key specifier>]
<length word> 1
<positioning mode>]

- W™ wm w

e P

)

where
<file number>, INT:value, passed

identifies the file to be positioned.

<key value>, STRING:ref, passed

is the value which defines the current position in the file.
The current position is found by a search of the access path
specified by <key specifier>. The first record having an
access path key field value that matches <key value>, as
defined by <positioning mode> and <compare length>, becomes
the current position.

3-72

KEYPOSITION Procedure

<key specifier>, INT:value, passed

designates the key field to be used as the access path for
the file:

<key specifier> = 0 or omitted, means use the file’s
primary key as the access path.

<key specifier> = predefined key specifier for an
alternate key field, means use that field as the access
path.

<length word>, INT:value, passed

contains two values, the <compare length> in the left byte
<length word>.<0:7>, and the <key length> in the right
byte <length word>.<8:15>.

<0:7>, the <compare length>, is the number of bytes of <key
value> compared with the specified key field in the file.
If omitted or zero, <compare length> is assumed to equal
the minimum of the <key length> value and the key length
defined for the file when it was created. 1If a shorter key
length than that defined for the file is specified, the
results are determined by the <positioning mode>.

<8:15>, the <key length>, is the number of bytes of <key
value> searched for in the file to find the initial
position. If omitted, the <key length> is assumed to equal
the key length defined at file creation.

KEYPOSITION Procedure

<positioning mode>, INT:value, passed

<positioning mode>.<0> if 1 and a record with exactly the
key specified is found, it is skipped.

<positioning mode>.<14:15> indicate the type of key search
(and, therefore, a subset of records),

where

0 = approximate - positioning occurs to the first record
whose key field, as designated by the <key specifier>,
contains a value equal to or greater than <key value>
for <compare length> bytes

1l = generic - positioning occurs to the first record whose
key field, as designated by the <key specifier>,
contains a value equal to <key value> for <compare
length> bytes

2 = exact - positioning occurs to the first record whose
key field, as designated by the <key specifier>,
contains a value of exactly <compare length> bytes and
is equal to <key value>

If <positioning mode> is omitted, approximate is used.

condition code settings:

(CCL) indicates that an error occurred (call FILEINFO)
(CCE) indicates that the KEYPOSITION was successful
(CCG) no operation, not an Enscribe disc file

vV A

example
key “:=" "DOE,JOHN";
CALL KEYPOSITION (infile, key,, 8
!

) ;
IF < THEN error occurred

3-74

KEYPOSITION Procedure

Considerations

® Positioning on Duplicate or Nonexistent Records

No searching of indices is done by KEYPOSITION. Therefore a
nonexistent or duplicate record is not reported until a subsequent
READ, READUPDATE, WRITEUPDATE, LOCKREC, READLOCK, READUPDATELOCK,
or WRITEUPDATEUNLOCK is performed.

® KEYPOSITION and Disc Seeks

KEYPOSITION does not cause the disc heads to be repositioned; the
heads are repositioned when a subsequent i/o call (READ,
READUPDATE, WRITE, etc.) transfers data.

® Positioning Exact

If an exact KEYPOSITION is performed and a <compare length> is
specified that is less than that specified when the file was
created, <compare length> must match the variable key length
specified when the record was entered into the file. Otherwise a
subsequent call to READ, READUPDATE, WRITEUPDATE, etc., is
rejected.

3-75

KEYPOSITION Procedure

® Current State Indicators After a KEYPOSITION
Current state indicators following a successful KEYPOSITION:

current position is that of the record indicated by the
<key value>, <key specifier>,
<positioning mode>, and <compare length>;
or the subsequent record if <positioning
mode>.<0> is set to 1.

positioning mode is <positioning mode> if the parameter is
supplied, otherwise approximate.

compare length is <compare length> if the <length word>
parameter is supplied, otherwise the
defined length of the specified key
field.

The compare iength for generic searches is determined as follows:

IF <length word>.<0:7> <> 0

THEN <length word>.<0:7>

ELSE
IF <length word>.<8:15> > length of <key specifier>
THEN length of <key specifier>

ELSE <length word>.<8:15>

current primary key is <key wvalue> if <key specifier> is
value primary, otherwise unchanged.

3-76

KEYPOSITION Procedure

® Saving Current Position for Later Access

To return to a position in a key-sequenced file, when processing
by alternate key, save the concatenated alternate key and primary
key values in a temporary buffer. For example:

»

<temporary buffer> “:=" record.altkey field for $len
(record.altkey field) and
record.primary key for $len
(record.primary key)

Repositioning to the same record is done with:

KEYPOSTION (<filenum>,
<temporary buffer>,
<key specifier>,
<compare length for generic searches “<<”* 8 +
length of alternate key + length of primary key>,
<positioning mode>).

Repositioning to the next record is done with:

KEYPOSTION (<filenum>,
<temporary buffer>,
<key specifier>,
<compare length for generic searches “<<” 8 +
length of alternate key + length of primary key>,
<$100000 + positioning mode>).

The <key specifier> specifies the alternate key.

3-77

LOCKFILE Procedure (file locking)

LOCKFILE

The LOCKFILE procedure is used to temporarily exclude other accesses
to a file.

If the file is currently unlocked or is locked by the caller when
LOCKFILE is called, the file becomes locked and the caller continues
executing.

Two "locking™ modes are available:

® With the default mode, if the file is already locked when the call
to LOCKFILE is made, the process requesting the lock is suspended
and queued in a "locking" queue behind any other processes also
requesting to lock or read the file. When the file becomes
unlocked, the process at the head of the locking queue is granted
access to the file. If the process at the head of the locking
queue is requesting a lock, it is granted the lock and resumes
execution. If the process at the head of the locking queue is
requesting a read, the read operation continues to completion.

® With the alternate mode, if the file is already locked when the
call to LOCKFILE is made, the lock request is rejected and the call
to LOCKFILE completes immediately with a "file is locked" error
indication (<error> = 73). The alternate locking mode is
established by calling SETMODE and specifying function 4, set lock
mode.

If the LOCKFILE procedure is being used to initiate an operation on a
file opened with "no-wait i/o" specified, the operation must be
completed with a corresponding call to the AWAITIO procedure. Note
that process suspension due to a queued lock occurs when AWAITIO is
called and the alternate locking mode error "file is locked" is
returned by AWAITIO (if the file was already locked).

The call to the LOCKFILE procedure is:

CALL LOCKFILE (<file number>
+ [<tag> 1)
where
<file number>, INT:value, passed

identifies the file to be locked.

3-78

LOCKFILE Procedure (file locking)

<tag>, INT(32):value, passed

for no-wait i/o only, if present, is stored by the systemn,

then passed back to the application process by the AWAITIO
procedure when the lock operation completes.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO)
= (CCE) indicates that the LOCKFILE was successful
> (CCG) file is not a disc file

example

CALL LOCKFILE (file”num);
IF < THEN .ceo. ! error

Considerations

® Locks and Multiple Opens by the Same Process

Locks are granted on an open file (i.e., <file number>) basis.
Therefore, if a process has multiple opens of the same file, a lock

of one <file number> excludes accesses to the file through other
<file numbers>.

® Attempting to Write to A Locked File

If a call to WRITE, or WRITEUPDATE is made and the file is locked
but not through the <file number> supplied in the call, the call is
rejected with a "file is locked" error indication (<error> = 73).

3-79

LOCKFILE Procedure (file locking)

e Attemting to Read a Locked File -- Default Locking Mode

If the default locking mode is in effect when a call to READ or
READUPDATE is made and the file is locked but not locked through
the <file number> supplied in the call, the caller of READ or
READUPDATE is suspended and queued in the "locking" queue behind
other processes attempting to lock or read the file.

Note that a deadlock condition occurs if a call to READ or
READUPDATE is made by the process having a file locked but the file
is not locked via the <file number> supplied to READ or READUPDATE.

e Attempting to Read a Locked File -- Alternate Locking Mode

If the alternate locking mode is in effect when READ or READUPDATE
is called and the file is locked but not through the <file number>
supplied in the call, the call is rejected with a "file is locked"
error indication (<error> = 73).

e Attempting to Control a Locked File

If a call to CONTROL is made and the file is locked but not through
the <file number> supplied in the call, the call is rejected with a
"file is locked" error indication (<error> = 73).

® Specifiying the Locking Mode

The locking mode is specified via the SETMODE procedure, <function>
= 4.

LOCKFILE Procedure (file locking)

e Locks Are Not Nested
Locks are not nested. For example:

CALL LOCKFILE (file™a):

"file"a" becomes locked.

CALL LOCKFILE (file"a);
is a "null" operation because the file is already locked. A
condition code of CCE is returned.

CALL UNLOCKFILE (file®a);

"file"a" becomes unlocked.

CALL UNLOCKFILE (file"a);
is a "null" operation because file is already unlocked. A
condition code of CCE is returned.

LOCKREC Procedure (record locking)

LOCKREC

The LOCKREC procedure is used to temporarily exclude other accesses to
the record at the current position. For key-sequenced, relative, and
entry-sequenced files, the current position is the record with a key
value that matches the current key value exactly. For unstructured
files, the current position is the record identified by the
current-record pointer.

If the record is either unlocked or is currently locked by the caller
when LOCKREC is called, the record becomes locked and the caller
continues executing.

Two "locking" modes are available:

e With the default mode, if the record is already locked when the
call to LOCKREC is made, the process requesting the lock is
suspended and queued in a "locking" queue behind any other
processes also requesting to lock or read the record. When the
record becomes unlocked, the process at the head of the locking
queue is granted access to the record. If the process at the head
of the locking queue is requesting a lock, it is granted the lock
and resumes execution. If the process at the head of the locking
queue is requesting a read, the read operation continues to
completion.

® With the alternate mode, if the record is already locked when the
call to LOCKREC is made, the lock request is rejected and the call
to LOCKREC completes immediately with a "record is locked" error
indication (<error> = 73). The alternate locking mode is specified
via an option to the SETMODE procedure.

Note: A call to LOCKFILE is egquivalent to locking all records in a
file. Therefore, a file lock is queued behind any pending
record locks. Conversely, a record lock is queued behind any
pending file locks.

If the LOCKREC procedure is being used to initiate an operation with
a file opened with "no-wait i/o" specified, the operation must be
completed with a corresponding call to the AWAITIO procedure.
Additionally, the process suspension due to a queued lock occurs when
AWAITIO is called.

The syntax for the LOCKREC procedure is shown on the following page.

3-82

LOCKREC Procedure (record locking)

The call to the LOCKREC procedure is:

CALL LOCKREC (<file number>
¢+ [<tag> 1)

where
<file number>, INT:value, passed

identifies the file containing the record to be locked.

<tag>, INT(32):value, passed

for no-wait i/o only, if present, is stored by the system,
then passed back to the application process by the AWAITIO
procedure when the operation completes.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO)
= (CCE) indicates that the LOCKREC was successful
> (CCG) file is not a disc file

example

CALL LOCKREC (file"num, lock”tag);
IF < THEN ..¢..; ! error

General Considerations

e Attempting to Write a Locked Record

If a call to WRITE or WRITEUPDATE is made for a record and that
record is locked but not through the <file number> supplied in the
call, the call is rejected with a "record is locked" error
indication (<error> = 73).

3-83

LOCKREC Procedure (record locking)

® Attempting to Read a Locked Record -- Default Locking Mode

If the default locking mode is in effect when a call to READ or
READUPDATE is made for a record and that record is locked but not
locked through the <file number> supplied in the call, the caller
to READ or READUPDATE is suspended and queued in the "locking"
queue behind other processes attempting to lock or read the record.

Note that a deadlock condition occurs if a call to READ or
READUPDATE is made by the process having a record locked but the
record is not locked via the <file number> supplied to READ or
READUPDATE.

e Attempting to Read a Locked Record -- Alternate Locking Mode

If the alternate locking mode is in effect when READ or READUPDATE
is called for a record and that record is locked but not through
the <file number> supplied in the call, the call is rejected with a
"record is locked" error indication (<error> = 73).

e Attempting to Control a File Containing a Locked Record

If a call to CONTROL is made for a file containing a record that
is not locked through the <file number> supplied in the call, the
call is rejected with a "record is locked" error indication
(<error> = 73).

® Selecting the Locking Mode with SETMODE
The locking mode is specified via the SETMODE procedure, <function>
= 4'

® Locks Can Not Be Nested

Locks are not nested. As an example:

CALL LOCKREC (file™a, ..);
. (locks the current-record in "file"a")

CALL LOCKREC (file™a, ..);
. (has no effect since current record already locked)

CALL UNLOCKREC (file™a, ..):
. (unlocks the current-record in "file®a")

CALL UNLOCKREC (file"a, ..)
. (has no effect since current record is not locked)

3-84

LOCKREC Procedure (record locking)

Considerations for Structured Files
® Calling LOCKREC after Positioning on a Nonunique Key

If the call to LOCKREC immediately follows a call to KEYPOSITION
where a non-unique alternate key is specified, the LOCKREC fails. A
subsequent call to FILEINFO returns error 46 (invalid key).

However, if an intermediate call to READ is performed, the call to
LOCKREC is permitted because a unique record is identified.

® Current State Indicators After LOCKREC

Current state indicators following a successful LOCKREC:

unchanged.

Considerations for Unstructured Files

e Locking Records in an Unstructured File

Record positions in an unstructured file, represented by a
relative byte address (rba), can be locked with LOCKREC. To
lock a record position in an unstructured file, first position
to the record by calling POSITION with the desired rba, and then
call LOCKREC. This locks the rba; any other process attempting
to access the file with exactly the same rba will encounter a
"record is locked condition". Depending on the process’s
locking mode, the process”s call will either fail with error 73,
record is locked, or be placed on the locking queue.

® Record Pointers After LOCKREC

Following a successful call to LOCKREC, the current-record,
next-record, and end-of-file pointers are:

unchanged.

3-85

NEXTFILENAME Procedure

NEXTFILENAME

The NEXTFILENAME procedure is used to obtain the names of disc files
on a designated volume. NEXTFILENAME returns the next file name in
alphabetical sequence after the file name supplied as a parameter.

The intended use of NEXTFILENAME is in an iterative loop where the
file name returned in one call to NEXTFILENAME is used to specify the
starting point for the alphabetical search in the subsequent call to
NEXTFILENAME. In this manner, a volume”s file names are returned to
the application process in alphabetical order through succeeding calls
to NEXTFILENAME.

The call to the NEXTFILENAME procedure is

<error> := NEXTFILENAME (<file name>)

where
<error>, INT returned

is a file management error number indicating the outcome of
the call. Common error number returns are:

0 = no error, next file name in alphabetical sequence is
returned in <file name>
1 = end-of-file; fhprp ia no F1'Ir.~. in alnh

name>
13 = illegal filename specification

3-86

NEXTFILENAME Procedure

<file name>, INT:ref:12, passed, returned

on the call, is passed the file name from which search for
the next file name begins. <file name> on the initial call
can be one of the following forms:

<file name[0:11]> = $<volume name><blank fill>
or \<system number><volume name><blank fill>

The form shown above is used to obtain the name of the
first file on $<volume name>.

<file name[0:3]> = $<volume name><blank fill>
or \<system number><volume name><blank fill>
<file name[4:11]> = <subvol name><blank fill>

The form shown above is used to obtain the name of the
first file in <subvol name> on $<volume name>.

<file name[0:3]> = $<volume name><blank £ill>
or \<system number><volume name><blank £ill>
<file name[4:7]> = <subvol name><blank £fill>

<file name[8:11]> = <disc file name><blank fill>

The form is used to return the name of the next file in
alphabetic sequence.

On the return, <file name> is returned the next file name in
alphabetical sequence, if any.
condition code settings:

The condition code setting has no meaning following a call to
NEXTFILENAME

example
fname “:=" ["$SYSTEM ", 8 * [" "]];
WHILE NOT (error := NEXTFILENAME (fname)) DO
BEGIN
END;

3-87

OPEN Procedure

OPEN

The OPEN procedure establishes a communication path between an
application process and a file. When OPEN completes, a "file number"
is returned to the application process. The file number identifies
this access to the file in subsequent file management calls.

The call to the OPEN procedure is:

CALL OPEN (<file name>

<file number>

<flags>

<sync depth>

<primary file number>
<primary process id>
<sequential block buffer>
<buffer length>

~ - - - wm - -
—) P
e b e bt nd d

where
<file name>,. INT:ref, passed

is an array containing the name of the file to be opened.

<file number>, INT:ref:1, returned

is returned from OPEN and is used to identify the file in
subsequent file management calls.

3-88

OPEN Procedure

<flags>, INT:value, passed

if present, specifies certain attributes of the file. If
omitted, all fields are set to zero. The bit fields in the
<flags> parameter are defined as follows:

<flags>.<1> = is unused; must be zero
<flags>.<2> = unstructured access

0 = no 1 = yes
<flags>.<3> = access mode
<flags>.<4> 0 = read/write 1 = read-only
<flags>.<5> 2 = write-only
<flags>.<6> = resident buffering

0 = no 1l = yes
<flags>.<7> = reserved for Link Control Blocks (LCBs)
<flags>.<8> = open process file no-wait

0 = no 1 = yes
<flags>.<9> | = exclusion mode
<flags>.<10> 0 = shared 1 = exclusive
<flags>.<11> } 3 = protected
<flags>.<12> } = wait or no-wait i/o
<flags>.<13> | 0 = wait i/o
<flags>.<14> 1 = no-wait i/o
<flags>.<15>

where

<flags>.<12:15> specifies the maximum number of concurrent
no-wait i/o operations that can be in progress on this
file at any given time. <flags>.<12:15> = 0 implies "wait
i/o". For disc files, only one no-wait operation can be
outstanding at one time (i.e., maximum value for
<flags>.<12:15> is 1).

<flags>.<9:11> specifies exclusion mode:

shared access
exclusive access

0
1
3 protected access

3-89

OPEN Procedure

<flags>.<8> = 1 indicates that for process files, the
OPEN message is sent no-wait and must be completed by
a call to AWAITIO.

<flags>.<6> = 1 specifies resident buffering for
unstructured files on Tandem NonStop System only. For
Tandem NonStop II System, this bit must be 0. (See
Section 4, File Access, for details.) Resident buffering
is not permitted with ENSCRIBE file structures.

<flags>.<3:5> specifies access mode:

0 = read/write access
1 = read-only access
2 = write-only access

<flags>.<2> specifies unstructured access regardless of
the actual file structure. This field should be set to 0
to provide normal access to the file. (See
considerations for details.)

<sync depth>, INT:value, passed

if present, specifies the number of nonretryable (i.e.
write) requests whose completion status is to be

PPN n ~1. AL Amn A oo ~ -
remembered by the file SYScChi. A Value OL one or greater

must be specified to recover from a path failure
occurring during a write operation.

<sync depth> also implies the number of write operations
the primary process in a primary/backup process pair may
perform to this file without intervening checkpoints to
its backup process.

If omitted, or zero is specified, internal checkpointing
does not occur and disc path failures are not automati-
cally retried by the file system.

3-90

OPEN Procedure

The next two parameters are supplied only if the open is by the
backup process of a process-pair, the file is currently open by
the primary process, and the Checkpointing Facility (described in
the GUARDIAN Operating System Programming Manual) is not used.

<primary file number>, INT:value, passed

is the file number returned to the primary process when it
opened this file.

<primary process id>, INT:ref, passed

is an array which contains the <process id> of the
corresponding primary process. The primary process must
already have the file open.

The next two parameters are included if the block buffer for the
file is to reside in the application process”s data area.
Otherwise, the next two parameters are omitted. See section 4
for an explanation of the "Sequential Buffer Option".

Note: The file must be opened with protected or exclusive access
if sequential buffering is to be used.

<sequential block buffer>, INT:ref, passed

is an array which the caller is providing for unblocking
records to speed sequential processing.

<pbuffer length>, INT:value, passed

is the length (in bytes) of the <sequential block buffer>.
<buffer length> must be greater than or equal to the <data
block length> specified at creation for this file and any
associated alternate key file(s). If not, or if the file is
opened with shared access, the open succeeds but returns a
CCG indication (a subsequent call to FILEINFO returns
<error> = 5); the application process”s sequential buffer is
not used; instead, normal system buffering is used. If this
parameter is omitted or specified as zero, sequential
buffering will not be attempted.

3-91

OPEN Procedure

Condition code settings:

< (CCL) indicates that the OPEN failed (call FILEINFO)
= (CCE) indicates that the file opened successfully
> (CCG) indicates that the file opened successfully but an
exceptional condition was detected (call FILEINFO)
example

CALL OPEN (filename, filenum); "wait i/o", exclusion mode
= shared, access mode =
read/write, sync depth = 0.
OPEN failed.

tm e gem Sme

IF < THEN

General Considerations

® How File Numbers are Assigned

Within a process, the file numbers are unique. The lowest
numerical file number is zero (0) and is reserved for $RECEIVE.
Remaining file numbers start at one (l). The lowest available file
number is always assigned. Once a file is closed, its file number

number.

® Maximum Number of Open Files

The maximum number of files in the system that can be open at any
given time depends on the space available for control blocks
(ACB”s and FCB”s). The amount of space available for control
blocks is limited only by the physical memory size of the system.

® Multiple Opens by Same Process
If a given file is opened more than once by the same process, a

new ACB is created for each OPEN. This provides logically

separate accesses to the same file (a unique <£file number> is
provided for each OPEN).

e Maximum Opens on Same File
For disc files, there is no limit on concurrent opens for the same

file.

3-92

OPEN Procedure

e Maximum Number of Nowait Opens for Same File

The maximum number of concurrent no-wait operations permitted for
an open of a disc file is one (l). Attempting to open a disc file
and specifying a value greater than one returns an error
indication. A subsequent call to FILEINFO returns <error> 28,

® Errors Returned for No-Wait Files

See Error Recovery Considerations in Section 4, File Access,
for considerations when using "no-wait" i/o.

® File Security Checking on File Open

When a disc file open is attempted, a file security check takes
place. The accessor”s (i.e., caller”s) security level is checked
against the file”s security level for the requested access mode.
(File security is set via the SETMODE Procedure or the File Utility
Program, FUP, SECURE Command.) If the caller”s security level is
equal-to or higher-than the file”s security level for the requested
access mode, then the caller passes the security check. If the
caller fails the security check, the open fails and a subsequent
call to FILEINFO returns <error> 48: security violation.

The file security checking performed by the file system at open
time is illustrated in Figure 3-2, on the following page.

3-93

OPEN Procedure

accessor”s security file security
level level
super id = 7, 7, 7, 7, 7, = superid
owner = 2, 2, 2, 2, 2, = ownher
group mem = 1, —_— 1, 1, 1, 1, = group
or or or or or member
other = 0 0 0 0 0 = any

read write exc purge

_ A A A
requested

<access mode>

read/write * —*

read-only

write-only

* execute

* purge
* cannot be specified via OPEN
If the accessor”s security level is equal-to or higher-than the
file“s security level for the requested access mode, then the
accessor passes the security check

Figure 3-2. File Security Checking

® Exclusion/Access Mode Checking on File Open

When a file open is attempted, the requested access and exclusion
modes are compared to those of any opens already granted for the
file. If the attempted open is in conflict with other opens, then
the open fails. A subsequent call to FILEINFO returns <error> 12.
Table 3-8, on the following page, lists all possible current modes
and requested modes; the table indicates whether an open succeeds
or fails.

Note: "Protected" exclusion mode has meaning only for disc files.
For other files, specifying "protected" exclusion mode is
equivalent to specifying "shared" exclusion mode.

3-94

OPEN Procedure

Table 3-8. Exclusion/Access Mode Checking

OPEN
ATTEMPTED FILE CURRENTLY OPEN WITH
WITH
Exclusion S S S E E E P P P
Mode C
L
0] R R W R R W R R W
Access] / / /
Mode E W W W
D
S R/W Y Y Y Y
S R Y Y Y Y Y Y Y
S W Y Y Y Y
E R/W Y
E R Y ALWAYS FAILS
BE W Y
P R/W Y Y
P R Y Y Y
P W Y Y
Exclusion Mode: Access Mode:
S = Shareable R/W = Read/Write
E = Exclusive R = Read only
P = Protected W = Write only
Y = Yes, OPEN successful
Blank = No, OPEN fails.
Notes:
® BACKUP opens the file currently being backed-up
with R, P.
e BACKUP with "OPEN" option specified opens the file
with R, S.
® RESTORE opens the file currently being restored
with R/W, E.
® When a program file is running it is opened with
the equivalent to R, P.

3-95

OPEN Procedure

e REFRESH (CREATE Option) Action

When a disc file that has the REFRESH option set is opened, file
labels are refreshed automatically when the end-of-file pointer is
advanced. Depending on the particular application, there may be a

significant decrease in processing throughput due to the increased
number of disc accesses.

® Partitioned Files

For partitioned files, there is a separate pair of FCB”s for each
partition of the file. There is one ACB per accessor (as for
single volume files), but this ACB requires more main memory since
it contains the information necessary to access all of the
partitions, including the location and partial key value for each
partition.

Considerations for Structured Files

® Accessing Structured Files as Unstructured Files

The "unstructured access" option (<flags>.<2>) permits a file to be
accessed as an unstructured file. For a file open with this option
specified, a data transfer occurs to the position in the file
specified by a relative byte address (instead of to the position
indicated by a key-field or record number); the number of bytes
transferred is that specified in the file management procedure call
(instead of the number of bytes indicated by the record format).

If a partitioned structured file is opened as an unstructured file,
only the first partition is opened. The remaining partitions must
be opened individually with separate calls to OPEN (each OPEN
specifying unstructured access).

CAUTION
Programmers using this option are cautioned that the block format
used by ENSCRIBE must be maintained if the file is to ever be

accessed again in its structured form.

The ENSCRIBE block format is described in Appendix C.

3-96

OPEN Procedure

® Current State Indicators After OPEN

Current state indicators following completion of a successful OPEN:

current position is that of the first record in the file
by primary key.

positioning mode is set to approximate.

compare length is 0.

For key-sequenced files, KEYPOSITION must be called after OPEN to
establish a position in the file before a subsequent i/o call
(READ, READUPDATE, WRITE, etc.) can be made.

For relative and entry-sequenced files, a READ following an OPEN
reads the first record in the file. Subsequent reads without
intervening positioning reads the file sequentially through the
last record in the file.

Considerations for Unstructured Files

® Multiple OPENs for Single Unstructured File

If an unstructured disc file is opened by more than one process,
separate current-record and next-record pointers are maintained for
each opener, but all of the processes share the same end-of-file
pointer.

® File Pointers After OPEN

Following an open to a disc file, the current-record and
next-record pointers start out pointing to relative byte address
zero and the first data transfer (unless an intervening POSITION is
performed) is from that location. The pointers following a
successful OPEN are:
current-record pointer 0D;

next-record pointer 0D;

3-97

POSITION Procedure (relative, entry-sequenced, and unstructured files)

POSITION

The POSITION procedure is used to position by primary key within
relative and entry-sequenced files. For unstructured files, the
POSITION procedure specifies a new current position.

For relative and unstructured files, POSITION sets the current
position, access path, and positioning mode for the specified file.
The current position, access path, and positioning mode define a
subset of the file for subsequent access.

The POSITION procedure is not used with key-sequenced files.

The caller is not suspended because of a call to POSITION.

A call to the POSITION procedure will be rejected with an error
indication if there are any outstanding "no-wait" operations pending

on the specified file.

The call to the POSITION procedure is:

CALL POSITION (<file number>
, <record specifier>)

where
<file number>, INT:value, passed

identifies the file to be positioned.

<record specifier>, INT(32):value, passed

specifies the new setting for the current-record and
next-record pointers:

Relative files: <record specifier> is a four-byte

<record number>. -2D specifies that the the next write
should occur at an unused record position. =-1D specifies
that subsequent writes should be appended to the
end-of-file location. (-2D and -1D remain in effect until
a new <record specifier> is supplied.)

Entry-Sequenced files: <record specifier> is a four-byte
<record address>.

3-98

POSITION Procedure (relative, entry-sequenced, and unstructured files)

Unstructured files: <record specifier> is a four-byte
<relative byte address>. -1D specifies that subsequent
writes should be appended to the end-of-file location.
(-1D remains in effect until a new <record specifier> is
supplied.)

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO)
= (CCE) indicates that the POSITION was successful
> (CCG) no operation, not an unstuctured, relative, or
entry-sequenced file
example

CALL POSITION (infile, 1000D)
IF < THEN ! error occurred

Considerations for Relative and Entry-Sequenced Files

® Writing to Entry-Sequenced Files

Inserts to entry-sequenced files always occur at the end of file.

® Current State Indicators for Structured Files

Following a successful POSITION to a relative or entry-sequenced
file, the current state indicators are:

current position is that of the record indicated by the
<record specifier>.
positioning mode is approximate.
compare length is 4.
current primary key is set to the value of the <record
value specifier>,

3-99

POSITION Procedure (relative, entry-sequenced, and unstructured files)

Considerations for Unstructured Files

e Value of <record specifier> for Unstructured Files

Unless the unstructured file was created with the ODDUNSTR
parameter set, the rba passed in <record specifier> must be an even
number. If the ODDUNSTR parameter was set when the file was
created, the rba passed in <record specifier> can be either an odd
or even value. (The ODDUNSTR parameter is set with

<file type>.<12> of the CREATE procedure.)

® Meaning of -2D for Unstructured Files

Specifying -2D for <record specifier> is equivalent to -1D for
unstructured files.

® File Pointers After POSITION

Following a successful call to POSITION for an unstructured file,
the file pointers are:

current-record pointer := next-record pointer :=

if <rba> = -1D then end-of-file pointer else <rba>

PURGE Procedure

PURGE

The PURGE procedure is used to delete a closed disc file. When PURGE
is executed the disc file name is deleted from the volume”s directory

and any space previously allocated to that file is made available to
other files.

The call to PURGE is:

CALL PURGE (<file name>)
where
<file name>, INT:ref, passed

is an array containing the name of the disc file to be
purged.

To purge a permanent disc file, <file name> must be of
the form:

<file name[0:3]> 1is S$<volume name><blank fill>

or \<system number><volume name><blank fill>
<file name{4:7]1> 1is <subvol name><blank fill>
<file name[8:11]1> is <disc file name><blank £fill>

To purge a temporary disc file, <file name> must be of the
form:

<file name[0:3]> is $<volume name><blank fill>
or \<system number><volume name><blank fill>
<file name[4:11]> is <temporary file name>

condition code settings:

(CCL) indicates that the PURGE failed (call FILEINFO)

(CCE) indicates that the file was purged successfully

(CCG) indicates that the device is not a disc or that not
all partitions of a partitioned file were purged

v il A

3-101

PURGE Procedure

example

CALL PURGE (oldfilename);
IF < THEN ... ! PURGE failed.

Considerations
® Error Recovery

If PURGE fails, the reason for the failure can be determined by
calling FILEINFO, passing -1 as the <file number> parameter.

3-102

READ Procedure (sequential processing)

READ

The READ procedure is used to perform sequential reading of a disc
file. For key-sequenced, relative, and entry-sequenced files, the
READ procedure reads a subset of records in the file. (A subset of
records is defined by an access path, positioning mode, and compare
length.) PFor unstructured files, the READ procedure reads records
sequentially on the basis of a beginning relative byte address and the
lengths of the records read. (After each READ, the current-record
pointer is set to the previous next-record pointer and the next-record
pointer is set to the previous next-record pointer plus the number of
bytes read.)

For key-sequenced, relative, and entry-sequenced files, the first call
to READ following a position returns the first record of the subset
(i.e., the record at the current position). Subsequent calls to READ
without intermediate positioning return successive records in the
subset. Following each READ of the subset”s records, the position of
the record just read becomes the file”s current position. An attempt
to read a record following the last record in a subset returns an
end-of-file indication.

If the READ procedure is being used to initiate an operation with a
file opened with "no-wait i/o" specified, the operation must be
completed with a corresponding call to the AWAITIO procedure.

The call to the READ procedure is:

CALL READ (<file number>
R <buffer>
' <read count>
, [<count read>]
» [<tag> 1)
where
<file number>, INT:value, passed

identifies the file to be read.

<buffer>, INT:ref:*, returned

is an array in the application process where the information
read from the file is returned.

3-103

READ Procedure (sequential processing)

<read count>, INT:value, passed

is the number of bytes to be read: {0:4096}.

<count read>, INT:ref:l, returned
for wait i/o only, if present, is returned a count of the
number of bytes returned from the file into <buffer>.

<tag>, INT(32):value, passed
for no-wait i/o only, if present, is stored by the system,

then passed back to the application process by the AWAITIO
procedure when the operation completes.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO)
= (CCE) indicates that the READ was successful
> (CCG) end-of-file. No more records in this subset

example
CALL READ (filenum, inbuffer, 72);
IF < THEN ! READ failed.

General Considerations

® Meaning of <count read> for Wait and Nowait I/O Reads

If a "wait" read is executed, the <count read> parameter indicates
the number of bytes actually read.

If a "no-wait" read is executed, <count read> has no meaning and
can be omitted. The count of the number of bytes read is obtained

when the i/o operation completes via the <count transferred>
parameter of the AWAITIO procedure.

3-104

READ Procedure (sequential processing)

® Reading a Locked File with the Default Locking Mode

If the default locking mode is in effect when a call to READ is
made and the current record or the file is locked but not locked
through the <file number> supplied in the call, the caller of READ
is suspended and queued in the "locking"™ queue behind other
processes attempting to lock or read the file/record.

Note that a deadlock condition occurs if a call to READ is made by
the process having a file/record locked but not locked via the
<file number> supplied to READ.

® Reading a Locked File with the Alternate Locking Mode

If the alternate locking mode is in effect when a call to READ is
made and the current record or the file is locked but not through
the <file number> supplied in the call, the call is rejected with a
"file/record is locked" error indication (<error> = 73).

® Selecting the Locking Mode

The locking mode is specified via the SETMODE procedure, <function>
= 4.

Considerations for Structured Files

® Selecting a Subset of Records for Sequential Reads

The subset of records read by a series of calls to READ is
specified through the POSITION or KEYPOSITION procedures.

® Sequential Reads of an Approximate Subset of Records

If an approximate subset is being read, the first record returned
is the one whose key field, as indicated by the current key
specifier, contains a value equal to or greater than the current
key. Subsequent reading of the subset returns successive records
until the last record in the file is read (an end-of-file
indication is then returned).

Sequential reading of an approximate subset in a relative file will
skip deleted records.

3-105

READ Procedure (sequential processing)

® Sequential Reads of a Generic Subset of Records

If generic subset is being read, the first record returned is the
one whose key field, as designated by the current key specifier,
contains a value equal to the current key for compare length bytes.
Subsequent reading of the file returns successive records whose key
matches the current key (for compare length bytes). When the
current key no longer matches, an end-of-file indication is
returned.

For relative and entry-sequenced files, a generic subset of the
primary key is equivalent to an exact subset.

® Sequential Reads of an Exact Subset of Records

If an exact subset is being read, the only records returned are
those whose key field, as designated by the current key specifier,
contains a value of exactly compare length bytes and is equal to
key. When the current key no longer matches, an end-of-file
indication is returned. The exact subset for a key field having a
unique value is at most one record.

® Current State Indicators After a Read

Current state indicators following a successful READ:

current position is that of the record just read.

positioning mode is unchanged.

compare length is unchanged.

current primary key is set to the value of the primary
value key field in the record.

Considerations for Unstructured Files

® Unstructured READs

For a read from an unstructured disc file, data transfer begins
at the position indicated by the next-record pointer.

3-106

READ Procedure (sequential processing)

e How Many Bytes are READ

If the unstructured file was created with the ODDUNSTR (odd
unstructured file) parameter set, the number of bytes read is
exactly the number of bytes specified with <read count>. If the
ODDUNSTR parameter was not set when the file was created, the value
of <read count> is rounded up to an even number before the READ is
executed.

The ODDUNSTR parameter is set with <file type>.<12> of the CREATE
procedure.
® Determination of <count read> for Unstructured READs

Following a successful call to READ to an unstructured file,
the value returned in <count read> is determined by:

<count read> := $SMIN (<read count> , end-of-file pointer
- next-record pointer)
® File Pointers After a READ

Following a successful READ to an unstructured file, the file
pointers are:

CCG := if next-record pointer = end-of-file pointer then 1
else 0;

current-record pointer := next-record pointer;

next-record pointer := next-record pointer + <count read>;

3-107

READLOCK Procedure (sequential processing, record locking)

READLOCK

The READLOCK procedure is used to perform sequential locking and

reading of records in a disc file.
entry-sequenced files, a subset of

For key-sequenced, relative, and
the file (defined by the current

access path, positioning mode, and compare length) is locked and read

with successive calls to READLOCK.
relative byte address (rba) of the

For unstructured files, the
record returned by the READLOCK

procedure is locked before the record data is transferred.

For key-sequenced, relative, and entry-sequenced files, the first call
to READLOCK following a position (or OPEN) first locks and then
returns the first record of the subset. Subsequent calls to READLOCK
without intermediate positioning, lock, then return successive records
in the subset. Following each read of the subset”s records, the
position of the record just read becomes the file“s current position.
An attempt to read a record following the last record in a subset
returns an end-of-file indication.

If the READLOCK procedure is being used to initiate an operation with
a file opened with "no-wait i/o" specified, the operation must be
completed with a corresponding call to the AWAITIO procedure.

The call to the READLOCK procedure is:

CALL READLOCK (<file number>

<buffer>

sroasAd ~mAnR
SaTau vuUw

3=
“Aild
<count read>]

\V4

- w O ww
—

[<tag> 1)
where
<file number>, INT:value, passed
identifies the file to be read.
<buffer>, INT:ref:*, returned

is an array in the application process where the information
read from the file is returned.

<read count>, INT:value, passed

is the number of bytes to be read: {0:4096}.

3-108

READLOCK Procedure (sequential processing, record locking)

<count read>, INT:ref:l, returned

for wait i/o only, if present, is returned a count of the
number of bytes returned from the file into <buffer>.

<tag>, INT(32):value, passed

for no-wait i/o only, if present, is stored by the system,

then passed back to the application process by the AWAITIO
procedure when the operation completes.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO)

= (CCE) indicates that the READLOCK was successful

> (CCG) end-of-file. No more records in this subset
example

CALL READLOCK (filenum, inbuffer, 72, num”read);
IF < THEN ! READLOCK failed.

Considerations

® See the considerations for READ.

e How READLOCK Works

The record locking performed by READLOCK functions identically
with that of LOCKREC.

3-109

READLOCK Procedure (sequential processing, record locking)

® Locking Records in an Unstructured File

READLOCK can be used to lock record positions, represented by a
relative byte address (rba), in an unstructured file. When
sequentially reading an unstructured file with READLOCK, each call
to READLOCK first locks the rba stored in the current next-record
pointer and then returns record data beginning at the current
next-record pointer for <read count> bytes. Following a successful
READLOCK, the current-record pointer is set to the previous
next-record pointer, and the next-record pointer is set to the
previous next-record pointer plus <read count>. This process is
repeated for each subsequent call to READLOCK.

3-110

READUPDATE Procedure (random processing)

READUPDATE

The READUPDATE procedure is used for random processing of records in
a disc file. A call to READUPDATE returns the record from the
current position in the file. Because READUPDATE is designed for
random processing, it cannot be used for successive positioning
through a subset of records like the READ procedure. Rather,
READUPDATE is intended to be used to read a record after a call to
POSITION or KEYPOSITION, possibly in anticipation of a subsequent
update through a call to the WRITEUPDATE procedure.

For key-sequenced, relative, and entry-sequenced files, random
processing implies that a designated record must exist. Therefore,
positioning for READUPDATE is always to the record described by the
exact value of the current key and current key specifier. If such a
record does not exist, the call to READUPDATE is rejected with a
"record does not exist" error (<error> = 11l). (This is unlike
sequential processing via the READ procedure, where positioning may be
by approximate, generic, or exact key value.)

For unstructured files, data is read from the file beginning at the
position of the current-record pointer. A call to READUPDATE
typically follows a call to POSITION that sets the current-record
pointer to the desired relative-byte-address (rba). The values of the
current-record and next-record pointers are not changed by a call to
READUPDATE.

If the READUPDATE procedure is being used to initiate an operation
with a file opened with "no-wait i/o" specified, the operation must
be completed with a corresponding call to the AWAITIO procedure.

The call to the READUPDATE procedure is:

CALL READUPDATE (<file number>
' <buffer>
P <read count>
, [<count read>]
r [<tag> 1)

where
<file number>, INT:value, passed

identifies the file to be read.

3-111

READUPDATE Procedure (random processing)

<buffer>, INT:ref:*, returned

is an array where the information read from the file is
returned.

<read count>, INT:value, passed

is the number of bytes to be read {0:4096}.

<count read>, INT:ref:l, returned

for wait i/o only, if present, is returned a count of the

number of bytes returned from the file into <buffer>.
<tag>, INT(32):value, passed

for no-wait i/o only, if present, is stored by the system,

then passed back to the application process by the AWAITIO
procedure when the operation completes.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO)
= (CCR) indicateg that the READUPDATE was successful
> (CCG) is not returned by READUPDATE

example

CALL READUPDATE (infile, inbuffer, 72);
IF < THEN ! READUPDATE failed

General Considerations
e Calling READUPDATE After READ

A call to READUPDATE following a call to READ, without intermediate
positioning, returns the same record as the READ.

3-112

READUPDATE Procedure (random processing)

® Meaning of <count read> for Wait and Nowait I/O

If a "wait" read is executed, the <count read> parameter indicates
the number of bytes actually read.

If a "no-wait" read is executed, <count read> has no meaning and
car be omitted. The count of the number of bytes read is obtained
when the i/o operation completes via the <count transferred>
parameter of the AWAITIO procedure.

e READUPDATE to Locked File with Default Locking Mode

If the default locking mode is in effect when a call to READUPDATE
is made and the current record or the file is locked but not locked
through the <file number> supplied in the call, the caller of
READUPDATE is suspended and queued in the "locking" queue behind
other processes attempting to lock or read the file/record.

Note that a deadlock condition occurs if a call to READUPDATE is
made by the process having a file/record locked but not locked via
the <file number> supplied to READUPDATE.

® READUPDATE to Locked File with Alternate Locking Mode

If the alternate locking mode is in effect when a call te
READUPDATE is made and the current record or the file is locked but
not through the <file number> supplied in the call, the call is
rejected with a "file/record is locked"™ error indication (<error> =
73).

® Selecting Locking Mode

The locking mode is specified via the SETMODE procedure, <function>
= 4.

Considerations for Structured Files

e Calling READUPDATE Without Selecting a Specific Record

If the call to READUPDATE immediately follows a call to KEYPOSITION
where a non-unique alternate key is specified, the READUPDATE
fails. A subsequent call to FILEINFO returns error 46 (invalid
key). However, if an intermediate call to READ[LOCK] is performed,
the call to READUPDATE is permitted because a unique record is
identified.

3-113

READUPDATE Procedure (random processing)

® Current State Indicators After READUPDATE
Current state indicators following a successful READUPDATE:

unchanged.

Considerations for Unstructured Files

® Unstructured Reads with READUPDATE

For a read from an unstructured disc file, data transfer begins
at the position indicated by the current-record pointer.

e How Many Bytes are Read

If the unstructured file was created with the ODDUNSTR (odd
unstructured file) parameter set, the number of bytes read is
exactly the number of bytes read specified with <read count>. If
the ODDUNSTR parameter was not set when the file was created, the
value of <read count> is rounded up to an even value before the
READUPDATE is executed.

The ODDUNSTR parameter is set with <file type>.<12> of the CREATE
procedure.

Following a successful call to READUPDATE to an unstructured file,
the value returned in <count read> is determined by:

<count read> := SMIN (<read count> , end-of-file pointer
- next-record pointer)
® File Pointers After READUPDATE

Following a successful call to READUPDATE, the current-record
pointer and next-record pointer are:

unchanged.

3-114

READUPDATELOCK Procedure (random processing, record locking)

READUPDATELOCK

The READUPDATELOCK procedure is used for random processing of records
in a disc file. A call to READUPDATELOCK locks, then returns the
record from the current position in the file. READUPDATELOCK is is
intended to be used to read a record after a call to POSITION or
KEYPOSITION, possibly in anticipation of a subsequent call to the
WRITEUPDATE [UNLOCK] procedure.

For key-sequenced, relative, and entry-sequenced files, random
processing implies that a designated record must exist. Therefore,
positioning for READUPDATELOCK is always to the record descibed by the
exact value of the current key and current key specifier. 1If such a
record does not exist, the call to READUPDATELOCK is rejected with a
"record does not exist"™ error (<error> = 11).

A call to READUPDATELOCK is functionally equivalent to a call to
LOCKREC followed by a call to READUPDATE. However, less system
processing is incurred when the READUPDATELOCK Procedure is called

rather than when two separate calls are made to LOCKREC and
READUPDATE.

If the READUPDATELOCK procedure is being used to initiate an operation
with a file opened with "no-wait i/o" specified, the operation must be
completed with a corresponding call to the AWAITIO procedure.

The call to the READUPDATELOCK procedure is:

CALL READUPDATELOCK (<file number>
’ <buffer>
' <read count>
[<count read>]
r [<tag> 1)

where
<file number>, INT:value, passed

identifies the file to be read.

<buffer>, INT:ref:*, returned

is an array where the information read from the file is
returned.

3-115

READUPDATELOCK Procedure (random processing, record locking)

<read count>, INT:value, passed

is the number of bytes to be read {0:4096}.

<count read>, INT:ref:l, returned

for wait i/o only, if present, is returned a count of the
number of bytes returned from the file into <buffer>

<tag>, INT(32):value, passed

for no-wait i/o only, if present, is stored by the system,
then passed back to the application process by the AWAITIO
procedure when the operation completes

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO)
= (CCE) indicates that the READUPDATELOCK was successful
> (CCG) is not returned from READUPDATELOCK

example

CALL READUPDATELOCK (infile, inbuffer, 72, num”"read);
IF < THEN ! READUPDATELOCK failed.

Considerations

® See the considerations for READUPDATE

® How READUPDATELOCK Works

The record locking performed by READUPDATELOCK functions
identically with that of LOCKREC.

3-116

REFRESH Procedure

REFRESH

The REFRESH procedure is used to write control information contained
in File Control Blocks (FCBs), such as the end-of-file pointer, to the
associated physical disc volume. (While a file is open, its control
information is kept in its main-memory resident FCB; this control
information is normally written to the physical volume only when the
last process having the file open closes the file.) This procedure or
the equivalent Peripheral Utility Program (PUP) REFRESH command should
be performed for all volumes prior to a total system shutdown.

The call to the REFRESH procedure is:

CALL REFRESH [($<volume name>)]

where
$<volume name>, INT:ref, passed

specifies a volume whose associated FCB”s should be written
to disc. $<volume name> can be specified as a full
twelve-word <file name>; <file name[4:11]> is ignored.
If omitted, all FCB”“s for all volumes are written to their
respective discs.

example

CALL REFRESH;

Consideration
® Calling REFRESH without Specifying <volume name>

When REFRESH is called without a <volume name>, the error returned
is always zero (CCE).

3-117

RENAME Procedure

RENAME

The RENAME procedure is used to change the name of an open disc file.
If the file is temporary, assigning a new name causes the file to be
made permanent.

A call to the RENAME procedure will be rejected with an error
indication if there are any outstanding "no-wait" operations pending
on the specified file.

The call to the RENAME procedure is:

CALL RENAME (<file number>
y <new name>)

where
<file number>, INT:value, passed

identifies the file to be renamed.

<new name>, INT:ref, passed

is an array containing the <file name> to be assigned to the
disc file, in the following form:

<file name{0:3]> 1is S<volume name><blank fill>

or \<system number><volume name><blank £ill>
<file name[4:7]> 1is <subvol name><blank £ill>
<file name[8:11]> is <disc file name><blank fill>

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO)
= (CCE) indicates that the RENAME was successful
> (CCG) the device is not a disc

example

CALL RENAME (temp”file, name”array);
IF < THEN ... ! error occurred.

3-118

RENAME Procedure

Considerations

® Access Security Required for RENAME
The caller must have purge access to the file for the RENAME to be

successful. Otherwise, the RENAME will be rejected with a file
management <error> 48, "security violation".

® Volume Name Requirement

The <volume> specified in <new name> must be the same as the
<volume> specified when opening the file.

3-119

REPOSITION Procedure

REPOSITION

The REPOSITION procedure is used to position a disc file to a "saved"
position (the positioning information having been saved by a calling
the SAVEPOSITION procedure). The REPOSITION procedure passes the
positioning block obtained via SAVEPOSITION back to the file system.
Following a call to the REPOSITION, the disc file is positioned to the
point where it was when SAVEPOSITION was called.

A call to the REPOSITION procedure will be rejected with an error
indication if there are any outstanding "no-wait" operations pending
on the specified file.

The call to the REPOSITION procedure is:

CALL REPOSITION (<file number>
, <positioning block>)

where
<file number>, INT:value, passed

identifies the file to be positioned to a "saved" position.

<positioning block>, INT:ref, passed

indicates a "saved" position to be repositioned to.

condition code settings

(CCL) indicates that an error occurred (call FILEINFO)
(CCE) indicates that REPOSITION was successful
(CCG) file is not a disc file

AV | VAN

example

CALL REPOSITION (file"num, position”block);
IF < THEN; ! error

3-120

SAVEPOSITION Procedure

SAVEPOSITION

The SAVEPOSITION procedure is used to save a disc file”’s current file
positioning information in anticipation of a need to return to that
position. SAVEPOSITION returns a block of positioning information.
This block of information is passed back to the file system in a call
to the REPOSITION procedure when it is desired to return to the
"saved" position.

A call to the SAVEPOSITION procedure will be rejected with an errer
indication if there are any outstanding "no-wait" operations pending
on the specified file.

The call to the SAVEPOSITION procedure is:

CALL SAVEPOSITION (<file number>
’ <positioning block>
, [<positioning block size>])

where
<file number>, INT:value, passed
identifies the file whose positioning block is to be
obtained.
<positioning block>, INT:ref:*%*, returned

is returned the positioning block for this file.

<positioning block size>, INT:ref:1, returned

is returned a count of the the number of words in the
positioning block.

For unstructured files, the count is 4.

For structured files, the count is calculated by
7 + (<max alt key len> + <pri key len> + 1) / 2

3-121

SAVEPOSITION Procedure

condition code settings

< (CCL) indicates that an error oécurred (call FILEINFO)
= (CCE) indicates that SAVEPOSITION was successful
> (CCG) file is not a disc file

example

CALL SAVEPOSITION (file"num, position”block);
IF < THEN .¢...;

! error

3-122

SETMODE Procedure

SETMODE

The SETMODE procedure is used to set device-dependent functions.

A call to the SETMODE procedure will be rejected with an error
indication if there are any outstanding "no-wait" operations pending

on the specified file.

The call to the SETMODE procedure is:

CALL SETMODE (<file number>
<function>

[<parameter 1>
<parameter 2>
[<last params>

- m wm W
~—

[—py

where
<file number>, INT:value, passed

identifies the file to receive the SETMODE <function>.

<function>, INT:value, passed
is one of the device dependent functions listed in the
"SETMODE Functions" table.

<parameter 1>, INT:value, passed
is one of the parameters listed in the "SETMODE Functions"
table. If omitted, the present value is retained.

<parameter 2>, INT:value, passed

is one of the parameters listed in the "SETMODE Functions"
table. If omitted, the present value is retained.

NOTE

SETMODE Function Table follows SETMODENOWAIT description.

3-123

SETMODE Procedure

<last params>, INT:ref:2, returned

if present, is returned the previous settings of <parameter
1> and <parameter 2> associated with the current <function>.
The format is:

<last params[0]>
<last params([l]>

old <parameter 1>
0ld <parameter 2> (if applicable)

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO)
= (CCE) indicates that the SETMODE was successful
> (CCG) indicates that the SETMODE function is not allowed
for this device type
examples

CALL SETMODE (filenum, 3, 1); ! disc verify write, on.
IF > THEN ... ! not a disc.

CALL SETMODE (termfnum, 1,,, sec); ! return transfer mode.
IF < THEN ...

Considerations

o SETMODE Defaults

The SETMODE settings designated as being "default" are the values
that apply when a file is opened (not if a particular <function> is
omitted when SETMODE is called).

e Obtaining Current SETMODE Settings Without Changing Their Values
The value of the current setting associated with a <function> is
returned to <last values> without changing the current setting if
SETMODE is called and both <parameters> are omitted.

® Requirements for Changing File Security and Ownership

Set disc file security and set disc file owner will be rejected
unless the requestor is the owner of the file or the superid.

3-124

SETMODENOWAIT Procedure

SETMODENOWAIT

The SETMODENOWAIT procedure is used to set device-dependent functions
in a no-wait manner, on no-wait files.

When the SETMODENOWAIT procedure is used to initiate an operation
with a file open with "no-wait" specified, the operation must be
completed with a corresponding call to the AWAITIO procedure. The
<count transferred> parameter to AWAITIO has no meaning for
SETMODENOWAIT completions. The <buffer address> parameter is set to
the address of <last params> parameter of SETMODENOWAIT.

The call to the SETMODENOWAIT procedure is:

CALL SETMODENOWA™ (<file number>
<function>
<parameter 1>
<parameter 2>
<last params>
<tag>

- ™ wm wm W

where

<file number>, INT:value, passed
identifies the file to receive the SETMODENOWAIT
<function>.

<function>, INT:value, passed
is one of the device-dependent functions listed in the
"SETMODE Functions" table.

<parameter 1>, INT:value, passed
is one of the <parameter 1> values listed in the "SETMODE
Functions" table. If omitted, the present value is
retained.

<parameter 2>, INT:value, passed
is one of the <parameter 2> values listed in the "SETMODE

Functions" table. If omitted, the present value is
retained.

3-125

SETMODENOWAIT Procedure

<last params>, INT:ref:2, returned

if present, is returned the previous settings of
<parameter 1> and <parameter 2> associated with the
current <function>.

The format is:

<last params[0]>
<last params{l]>

0ld <parameter 1>
0ld <parameter 2> (if applicable)

<tag>, INT(32):value, passed
for no-wait i/o only, if present, is stored by the system,

then passed back to the application process by the AWAITIO
procedure when the operation completes.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO)
= (CCE) indicates that the SETMODENOWAIT was successful
> (CCG) indicates that the SETMODENOWAIT function is
not allowed for this device type
Considerations

® SETMODENOWAIT Completion
AWAITIO must be used to complete the call when <file number> is
opened with a wait-depth greater than 0. For files with a

wait-depth equal to zero, a call to SETMODENOWAIT is a waited
operation and performs just as a call to SETMODE.

® <last params> Returned From AWAITIO

The <buffer> parameter of AWAITIO is set to @<last params>, and the
count is undefined.

e SETMODE and SETMODENOWAIT Functions

A list of SETMODE functions, <parameter 1>, and <parameter 2>
settings is shown in Table 3-9, on the following page.

3-126

SETMODE AND SETMODENOWAIT Functions

Table 3-9. SETMODE and SETMODENOWAIT Functions

<function>
1l = disc, set file security

<parameter 1>

.<0> = 1, for program files only. Set accessor”s id to
program file”s id when program file is run

.<4:6>, id allowed for read, 0 = any local id
1 = member of owner”s
group
2 = owner
4 = any network user
.<7:9>, id allowed for write, ' (local or remote)
5 = member of owner”s
community
6 = local or remote
.<10:12>, id allowed for execute, | user having same id
as owner

7 = local super id only

.<13:15>, id allowed for purge, (see GUARDIAN Programming
1 Manual, Section 8,

"Security", for an

1 explanation of local

and remote users,

communities, etc.)

<parameter 2> is not used
2 = disc, set file owner id

<parameter 1>.<0:7> = group id
.<8:15> = user id

<parameter 2> is not used
3 = disc, set verify write

<parameter 1> = 0, means off (default setting)
= 1, means on

<parameter 2> is not used

3-127

SETMODE AND SETMODENOWAIT Functions

Table 3-9. SETMODE and SETMODENOWAIT Functions (cont.)

4 = disc, set lock mode

<parameter 1> 0, default mode, process will be suspended

when lock or read is attempted

1, alternate mode, lock or read attempt will
be rejected with "file is locked" error
(<error> = 73)

<parameter 2> is not used

57 = disc, set serial or parallel writes (overrides SYSGEN setting
for this file)

<parameter 1> = 1, serial writes
= 2, parallel writes

<parameter 2> is not used

3-128

UNLOCKFILE Procedure (file locking)

UNLOCKFILE

The UNLOCKFILE procedure is used to unlock a disc file and any records
in that file that are currently locked by the caller. Unlocking a
file allows other processes to access the file. 1If any processes are
queued in the locking queue for the file, the process at the head of
the locking queue is granted access and is removed from the queue (the
next read or lock request moves to the head of the queue). If the
process granted access is waiting to lock the file, it is granted the
lock (which excludes other process from accessing the file) and
resumes processing. If the process granted access is waiting to read
the file, its read is processed by the file system.

If the UNLOCKFILE procedure is being used to initiate an operation
with a file opened with "no-wait i/o specified, the operation must be
completed with a corresponding call to the AWAITIO procedure.

The call to the UNLOCKFILE procedure is:

o

CALL UNLOCKFILE (<file number>
+ [<tag> 1)
where
<file number>, INT:value, passed

identifies the file to be unlocked.

<tag>, INT(32):value, passed

for no-wait i/o only, if present, is stored by the system,
then passed back to the application process by the AWAITIO
procedure when the unlock operation completes.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO)
= (CCE) indicates that the UNLOCKFILE was successful
> (CCG) file is not a disc file

example

CALL UNLOCKFILE (filenum);
IF < THEN | error occurred.

3-129

UNLOCKREC Procedure (record locking)

UNLOCKREC

The UNLOCKREC procedure is used to unlock a record currently locked by
the caller. UNLOCK unlocks the record at the current position,
allowing other processes to access that record. If any processes are
queued in the locking queue for the record, the process at the head of
the locking queue is granted access and is removed from the queue (the
next read or lock request moves to the head of the queue). TIf the
process granted access is waiting to lock the record, it is granted
the lock (which excludes other process from accessing the record) and
resumes processing. If the process granted access is waiting to read
the record, its read is processed by the file system.

If the UNLOCKREC procedure is being used to initiate an operation with
a file opened with "no-wait i/o" specified, the operation must be
completed with a corresponding call to the AWAITIO procedure.

CALL UNLOCKREC (<file number>
¢ [<tag> 1)
where
<file number>, INT:value, passed

identifies the file containing the record to be unlocked.

<tag>, INT(32):value, passed
for no-wait i/o only, if present, is stored by the system,

then passed back to the application process by the AWAITIO
procedure when the unlock operation completes.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO)
= (CCE) indicates that the UNLOCKREC was successful
> (CCG) file is not a disc file

example

CALL UNLOCKREC (filenum);
IF < THEN 1 error occurred.

3-130

UNLOCKREC Procedure (record locking)

Considerations

® Calling UNLOCKREC After KEYPOSITION
If the call to UNLOCKREC immediately follows a call to KEYPOSITION
where a non-unique alternate key is specified, the UNLOCKREC fails.
A subsequent call To FILEINFO returns error 46 (invalid key).
However, if an intermediate call to READ[LOCK] is performed, the
call to UNLOCKREC is permitted.

® Unlocking Several Records
If several records need to be unlocked, the UNLOCKFILE Procedure
can be called to unlock all records currently locked by the caller
(rather than unlocking the records through individual calls to
UNLOCKREC) .

® Current State Indicators After UNLOCKREC

For key-sequenced, relative, and entry-sequenced files, the current
state indicators following a successful UNLOCKREC are:

unchanged.

® File Pointers After UNLOCKREC

For unstructured files, the current-record pointer and the
next-record pointer are:

unchanged.

3-131

WRITE Procedure (insert)

WRITE

The WRITE operation is used to insert a new record into a file in the
position designated by the file”s primary key:

For key-sequenced files, the record is inserted in the position
indicated by the value in its primary key field.

For relative files, following an OPEN or an explicit positioning
by its primary key, the record is inserted in the designated
position. Subsequent writes without intermediate positioning
insert records in successive record positions.

If -2D is specified in a preceding positioning, the record is
inserted in an available record position in the file.

If -1D is specified in a preceding positioning, the record is
inserted following the last record currently existing in the file.

For entry-sequenced files, the record is inserted following the
last record currently existing in the file.

For unstructured files, the record is inserted at the position
indicated by the current value of the next-record pointer.

If the WRITE procedure is being used to initiate an operation with a
file opened with "no-wait i/o" specified, the operation must be
completed with a corresponding call to the AWAITIO procedure.

The call to the WRITE procedure is:

CALL WRITE (<file number>
R <buffer>
’ <write count>
r [<count written>]
r [<tag> 1)
where
<file number>, INT:value, passed

identifies the file to be written.

<buffer>, INT:ref, passed

is an array containing the information to be written to the
file.

3-132

WRITE Procedure (insert)

<write count>, INT:value, passed
is the number of bytes to be written: {0:4096}.
For key-sequenced and relative files, 0 is illegal;
for entry-sequenced files, 0 denotes an empty record.
<count written>, INT:ref:1, returned
for wait i/o only, if present, is returned a count of the
number of bytes written to the file.
<tag>, INT(32):value, passed
for no-wait i/o only, if present, is stored by the system,

then passed back to the application process by the AWAITIO
procedure when the write operation completes.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO)
= (CCE) indicates the the WRITE was successful
> (CCG) is not returned by WRITE

example

CALL WRITE (outfile, outbuffer, 72);
IF < THEN ! error occurred.

General Considerations

® Meaning of <count written> for Wait and Nowait I/O

If a "wait" write is executed, the <count written> parameter
indicates the number of bytes actually written.

If a "no-wait" write is executed, <count written> has no meaning
and can be omitted. The count of the number of bytes written is
obtained when the i/o completes via the <count transferred>
parameter of the AWAITIO procedure.

3-133

WRITE Procedure (insert)

® Error 73: File is Locked

If a call to WRITE is made and the file is locked but not locked
through the <file number> supplied in the call, the call is
rejected with a "file is locked" error indication (<error> = 73).

Considerations for Structured Files

® Inserting Records into Relative and Entry-sequenced Files
If the insert is to a relative or entry-sequenced file, the file
must be positioned currently via its primary key. Otherwise, the

WRITE fails and a subsequent call to FILEINFO returns error 46
(invalid key specified).

® Error 10: Record Already Exists
If the insert is to a key-sequenced or relative file and the record

already exists, WRITE fails and a subsequent call to FILEINFO
returns error 10 (duplicate record).

® Current State Indicators After WRITE
Current state indicators following a successful WRITE:

positioning mode is unchanged.
compare length is unchanged.

- For key-sequenced files

current position is unchanged
current primary key is unchanged.
value

- For relative and entry-sequenced files

current position is that of the record just inserted
current primary key is set to the value of the record’s
value primary key.

3-134

WRITE Procedure (insert)
Considerations for Unstructured Files

® Unstructured WRITEs

If the write is to an unstructured disc file, data is transferred
to the record location specified by the next-record pointer. The
next-record pointer is updated to point at the record following
the record written.

e How Many Bytes are Written

If an unstructured file was created with the ODDUNSTR (odd
unstructured file) parameter set, the number of bytes written is
exactly the number of bytes specified with <write count>. 1If the
ODDUNSTR parameter was not set when the file was created, the value
of <write count> is rounded up to an even number before the WRITE
is executed.

The ODDUNSTR parameter is set with <file type>.<12> of the CREATE
procedure.
® File Pointers After WRITE

Following a successful WRITE to an unstructured file, the file
pointers are:

current-record pointer := next-record pointer;
next-record pointer := next-record pointer + <count written>;
end-of-file pointer := max (end-of-file pointer,

next-record pointer);

3-135

WRITEUPDATE Procedure (random replace and delete)

WRITEUPDATE

The WRITEUPDATE procedure is used for random and sequential processing
of records in a disc file. WRITEUPDATE has two functions:

® Alter the contents of the record at the current position.

® Delete the record at the current position in a key-sequenced or
relative file.

For key-sequenced, relative, and entry-sequenced files, random
processing implies that a designated record must exist. This means
that positioning for WRITEUPDDATE is always to the record described by
the exact value of the current key and current key specifier. 1If such
a record does not exist, the call to WRITEUPDATE is rejected with a
"record does not exist" error (<error> = 1ll).

For unstructured files, data is written in the position indicated by
the current-record pointer. A call to WRITEUPDATE for an unstructured
file typically follows a call to POSITION, READ, or READUPDATE
procedures. The current-record and next-record pointers are not
changed by a call to WRITEUPDATE.

If the WRITEUPDATE. procedure is being used to initiate an operation
with a file opened with "no-wait i/o" specified, the operation must
be completed with a corresponding call to the AWAITIO procedure.

The call to the WRITEUPDATE procedure is:

CALL WRITEUPDATE (<file number>
<buffer>
<write count>

[<count written>]

[<tag> 1)

LI

where

<file number>, INT:value, passed

identifies the file to be written.

<buffer>, INT:ref, passed

is an array containing the information to be written to the
file.

3~-136

WRITEUPDATE Procedure (random replace and delete)

<write count>, INT:value, passed
is the number of bytes to be written to the file: {0:4096}.

For key-sequenced and relative files, 0 means delete the
record.

For entry-sequenced files, 0 is illegal.

<count written>, INT:ref:1, returned
for wait i/o only, if present, is returned a count of the
number of bytes written to the file.

<tag>, INT(32):value, passed
for no-wait i/o only, if present, is stored by the system,

then passed back to the application process by the AWAITIO
procedure when the write operation completes

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO)
= (CCE) indicates the the WRITEUPDATE was successful
> (CCG) is not returned by WRITEUPDATE

example

CALL WRITEUPDATE (outfile, outbuffer, 512);
IF = THEN ! successful.

General Considerations
® Meaning of <count written> for Wait and Nowait I/O

If a "wait" write is executed, the <count written> parameter
indicates the number of bytes actually written.

If a "no-wait" write is executed, <count written> has no meaning
and can be omitted. The count of the number of bytes written is
obtained when the i/o completes via the <count transferred>
parameter of the AWAITIO procedure.

3-137

WRITEUPDATE Procedure (random replace and delete)

® Calling WRITEUPDATE after Calling READ

A call to WRITEUPDATE following a call to READ, without
intermediate positioning, updates the record just read.

® Deleting Locked Records

Deletion of a locked record implicitly unlocks that record.

Considerations for Structured Files

® Error 73: File/Record is Locked

If a call to WRITEUPDATE is made and the current record or the file
is locked but not through the <file number> supplied in the call,
the call is rejected with a "file/record is locked" error
indication (<error> = 73).

e Calling WRITEUPDATE After KEYPOSITION

If the call to WRITEUPDATE immediately follows a call to
KEYPOSITION where a non-unique alternate key is specified as the
access path, the WRITEUPDATE fails. A subsequent call to FILEINFO
returns error 46 (invalid key). However, if an intermediate call
to READ[LOCK] is performed, the call to WRITEUPDATE is permitted
because a unique record is identified.

® Specifying <write count> for Entry-sequenced Files

For entry~-sequenced files, the value of <write count> must match
exactly the <write count> value specified when the record was
originally inserted into the file.

e Changing Primary Key of Key-sequenced Record

An update to a record in a key-sequenced file may not alter the
value of the primary key field. Changing the primary key field
must be done by deleting the 0ld record (WRITEUPDATE with <write
count> = 0) and inserting a new record with the key field changed
(WRITE) .

3-138

WRITEUPDATE Procedure (random replace and delete)

® Current State Indicators After WRITEUPDATE
Current state indicators following a successful WRITEUPDATE:

unchanged.

Considerations for Unstructured Files

® WRITEUPDATE to an Unstructured File

If the write is to an unstructured disc file, data is transferred
to the record location specified by the current-record pointer.

e How Many Bytes are Written

If the unstructured file was created with the ODDUNSTR (odd
unstructured file) parameter set, the number of bytes written is
exactly the number of bytes specified with <write count>. If the
ODDUNSTR parameter was not set when the file was created, the value
of <write count> is rounded up to an even number before the
WRITEUPDATE is executed.

The ODDUNSTR parameter is set with <file type>.<12> of the CREATE
procedure.
® File Pointers Following a Successful WRITEUPDATE

Following a successful WRITEUPDATE to an unstructured file, the
current-record and next-record pointers are:

unchanged.

3-139

WRITEUPDATEUNLOCK Procedure (random processing, record locking)

WRITEUPDATEUNLOCK

The WRITEUPDATEUNLOCK procedure is used for random processing of
records in a disc file. WRITEUPDATEUNLOCK has two functions:

® Alter, then unlock the contents of the record at the current
position.

® Delete, the record at the current position in a key-sequenced or
relative file.

For key-sequenced, relative, and entry-sequenced files,

random processing implies that a designated record must exist. This
means that positioning for WRITEUPDATEUNLOCK is always to the record
descibed by the exact value of the current key and current key
specifier. If such a record does not exist, the call to
WRITEUPDATEUNLOCK is rejected with a "record does not exist" error
(<error> = 1ll).

For unstructured files, data is written in the position indicated by
the current-record pointer. A call to WRITEUPDATEUNLOCK for an
unstructured file typically follows a call to POSITION or READUPDATE.
The current-record and next-record pointers are not changed by a
call to WRITEUPDATEUNLOCK.

A call to WRITEUPDATEUNLOCK is equivalent to a call to WRITEUPDATE
followed by a call to UNLOCKREC. However, less system processing is
incurred if the WRITEUPDATEUNLOCK Procedure is called instead of the
separate calls to WRITEUPDATE and UNLOCKREC.

If the WRITEUPDATEUNLOCK procedure is being used to initiate an
operation with a file opened with "no-wait i/o" specified, the

operation must be completed with a corresponding call to the AWAITIO
procedure.

The call to the WRITEUPDATEUNLOCK procedure is:

CALL WRITEUPDATEUNLOCK (<file number>
<buffer>

<write count>
<count written>]

[<tag> 1)

- ™ W -
—

where
<file number>, INT:value, passed

identifies the file to be written.

3-140

WRITEUPDATEUNLOCK Procedure (random processing, recor