
Tandem Nonstop™ & Nonstop D™ Systems

PATHWAY™ Programming Manual

ABSTRACT: This manual describes the SCREEN COBOL language used
in the PATHWAY Transaction Processing System by
PATHWAY application programmers.

PRODUCT VERSION: PATHWAY E06

OPERATING SYSTEM VERSION: GUARDIAN A05 (Nonstop II System)
GUARDIAN E06 (Nonstop System)

Part No. 82059 EOO

Tandem Computers Incorporated
19333 Vallco Parkway

Cupertino, California 95014-2599

April 1983
Printed in U.S.A.

PRINTING HISTORY

82059 AOO December 1980 Original printing.

BOO October 1981 Revised.

coo April 1982 Rewritten.

DOO October 1982 Revised.

EOO April 1983 Revised.

Copyright © 1983 by Tandem Computers Incorporated.

All rights reserved. No part of this document may be reproduced in any form, including photocopying or translation to another
language, without the prior written consent of Tandem Computers Incorporated.

The following are trademarks or servicemarks of Tandem Computers Incorporated:

AXCESS ENABLE EXPAND PERUSE TMF
BINDER ENCOMPASS GUARDIAN TANDEM TRANSFER
CROSSREF EN FORM INSPECT TAL XRAY
DDL EN SCRIBE Nonstop TGAL XREF
DYNABUS ENVOY Nonstop II THL
EDIT EXCHANGE PATHWAY TIL

INFOSAT is a trademark in which both Tandem and American Satellite have rights.

HYPERchannel is a trademark of Network Systems Corporation.

IBM is a registered trademark of International Business Machines Corporation.

NEW AND CHANGED INFORMATION

This revision adds the following new information:

• the RECEIVE clause that causes SCREEN COBOL programs to accept data from devices other
than the terminal keyboard (applies only to the T16-6530 terminal)

• for T16-6530 terminals, a SCREEN COBOL program can assign a RETURN KEY function
through the SPECIAL-NAMES paragraph

• the RECONNECT MODEM statement that manages PATHWAY terminal connections across a
dial-in switched line

• the SEND statement UNDER PATHWAY and AT SYSTEM phrases that enable communication
between PATHWAY processes running in separate PATHWAY systems or on separate Tandem
systems

• the STOP RUN statement that stops an executing program

• the SCREEN COBOL compiler command SYMBOLS that causes the SYMSERV process to build
a program symbol table used by INSPECT

• the BINDER program is now used to store the user-defined checking and conversion
procedures.

iii

CONTENTS

PREFACE ... xv

SYNTAX CONVENTIONS IN THIS MANUAL .. xvii

SECTION 1. PATHWAY ORGANIZATION .. 1-1
System Components ... 1-1

PATHWAY Monitor Process . 1-2
PA THC OM Process . 1-2
SCREEN COBOL ... 1-2
Terminal Control Process .. 1-3
Server Process . 1-3
Transaction Monitoring Facility ... 1-3
PATHWAY Programming Aids ... 1-4
CROSS REF . 1-4
INSPECT .. 1-4

Application Configuration .. 1-5
Communication Between Processes .. 1-5

Transaction Messages . 1-7
Transaction Replies . 1-7

Developing the Application ... 1-7
SCREEN COBOL Programming Techniques to Reduce Terminal Context 1-12

SECTION 2. SCREEN COBOL SOURCE PROGRAM 2-1
Program Operating Modes . 2-1

Block Mode Program . 2-1
Conversational Mode Program .. 2-2

Program Organization ... 2-2
Language Elements . 2-3

Character Set . 2-3
Editing Characters .. 2-4
Punctuation Characters .. 2-4
Separators ... 2-4
SCREEN COBOL Words ... 2-5

Reserved Words . 2-5
User-Defined Words ... 2-5
System Names ... 2-6

v

Contents

Literals . 2-6
Numeric Literals . 2-6
N onnumeric Literals . 2-6
Figurative Constants 2-6

Reference Format ... 2-7
Tandem Standard Reference Format ... 2-8
ANSI Standard Reference Format ... 2-9
Comment Lines .. 2-10
Continuation Lines ... 2-10
Compiler Command Lines ... 2-10

Arithmetic Operations ... 2-10
Arithmetic Expressions . 2-11
Arithmetic Operators .. 2-11
Evaluation of Expressions ... 2-12

Multiple Results ... 2-13
Intermediate Results ... 2-13
Incompatible Data ... 2-15

Conditional Expressions . 2-15
Simple Conditions .. 2-15

Class Condition . 2-15
Condition-Name Condition .. 2-16
Relation Condition ... 2-16
Comparison of Numeric Operands .. 2-17
Comparison of Nonnumeric Operands ... 2-17
Comparison of Equal Sized Operands .. 2-17
Comparison of Unequal Sized Operands ... 2-17
Sign Condition ... 2-17

Complex Conditions .. 2-18
Negated Simple Condition ... 2-18
Combined and Negated Combined Conditions 2-18
Abbreviated Combined Relation Conditions 2-19

Condition Evaluation Rules .. 2-19
Tables .. 2-20
Data Reference .. 2-21

Qualification 2-21
Subscripting .. 2-23
Using Identifiers ... 2-24
Using Condition Names ... 2-24

Data Representation . 2-25
Standard Alignment .. 2-25
Optional Alignment . 2-25

SECTION 3. IDENTIFICATION DIVISION .. 3-1
PROGRAM-ID Paragraph .. 3-2
DATE-COMPILED Paragraph .. 3-2

SECTION 4. ENVIRONMENT DIVISION .. 4-1
Configuration Section ... 4-2
SOURCE-COMPUTER Paragraph . 4-2
OBJECT-COMPUTER Paragraph ... 4-2
SPECIAL-NAMES Paragraph ... 4-4
Input-Output Section . 4-7

vi

Contents

SECTION 5. DATA DIVISION .. 5-1
Data Division Sections ... 5-2

Working-Storage Section . 5-2
Linkage Section . 5-2
Screen Section . 5-3

Data Structure ... 5-3
Level Numbers 01-49 .. 5-3
Level Numbers 66, 77, and 88 ... 5-4

Data Description Entry .. 5-4
JUSTIFIED Clause ... 5-6
OCCURS Clause .. 5-7
PICTURE Clause ... 5-8

PICTURE Character-String Symbols .. 5-8
Item Size . 5-9
Categories of Data .. 5-9
Alphabetic Data . 5-9
Numeric Data ... 5-10
Alphanumeric Data .. 5-10

REDEFINES Clause ... 5-10
RENAMES Clause ... 5-11
SIGN Clause .. 5-13
SYNCHRONIZED Clause ... 5-14
USAGE Clause .. 5-16
VALUE Clause .. 5-17

VALUE Clause for Data Initialization ... 5-18
VALUE Clause for Condition-Name Entries 5-19

Screen Description Entry . 5-20
Base Screen . 5-23
Screen Overlay Area . 5-24
Overlay Screen . 5-25
Screen Group .. 5-26
Screen Field . 5-27
Input Control Character Clauses ... 5-29

ABORT-INPUT Clause ... 5-29
END-OF-INPUT Clause ... 5-30
FIELD-SEP ARA TOR Clause .. 5-31
GROUP-SEP ARA TOR Clause ... 5-32
RESTART-INPUT Clause .. 5-33

Field Characteristic Clauses ... 5-34
ADVISORY Clause . 5-34
AT Clause . 5-34
FILL Clause . 5-35
LENGTH Clause .. 5-35
mnemonic-name Clause ... 5-36
MUST BE Clause .. 5-36
OCCURS Clause ... 5-37
PICTURE Clause .. 5-39
PICTURE Character-String Symbols ... 5-40
Item Size ... 5-41
PROMPT Clause ... 5-41
PROMPT Clause for Block Mode ... 5-41
PROMPT Clause for Conversational Mode ... 5-42
RECEIVE Clause .. 5-43
REDEFINES Clause ... 5-44

vii

Contents

SHADOWED Clause ... 5-44
TO, FROM, USING Clauses .. 5-46
UPSHIFT Clause .. 5-47
USER CONVERSION Clause .. 5-47
VALUE Clause .. 5-47
WHEN ABSENT/BLANK Clause ... 5-48
WHEN FULL Clause .. 5-49

Terminal Considerations .. 5-49
IBM-3270 Considerations .. 5-49
T16-6510 Considerations .. 5-51
T16-6520 Considerations .. 5-52
T16-6530 Considerations .. 5-54
Conversational Mode Considerations . 5-55

Special Registers . 5-55
DIAGNOSTIC-ALLOWED Special Register ... 5-55
LOGICAL-TERMINAL-NAME Special Register 5-55
NEW-CURSOR Special Register ... 5-56
OLD-CURSOR Special Register .. 5-56
REDISPLAY Special Register ... 5-56
RESTART-COUNTER Special Register ... 5-57
STOP-MODE Special Register ... 5-57
TELL-ALLOWED Special Register .. 5-58
TERMINAL-FILENAME Special Register .. 5-58
TERMINAL-PRINTER Special Register .. 5-58
TERMINATION-STATUS Special Register ... 5-58
TERMINATION-SUBSTATUS Special Register 5-59
TRANSACTION-ID Special Register ... 5-59

SECTION 6. PROCEDURE DIVISION ... 6-1
Division Structure .. 6-1

Declarative Procedures .. 6-3
Sections . 6-3
Paragraphs . 6-3
Sentences and Statements .. 6-4
Procedures ... 6-4

Procedure Division Statements ... 6-4
ABORT-TRANSACTION Statement .. 6-6
ACCEPT Statement . 6-6

Timeout Accept Operation ... 6-9
Block Mode Accept Operation ... 6-9
Conversational Mode Accept Operation ... 6-10

ACCEPT DATE/DAY/TIME Statement .. 6-12
ADD Statements .. 6-13

ADD TO .. 6-13
ADD GIVING ... 6-13
ADD CORRESPONDING ... 6-14

BEGIN-TRANSACTION Statement .. 6-15
CALL Statement .. 6-17
CHECKPOINT Statement .. 6-21
CLEAR Statement ... 6-21
COMPUTE Statement .. 6-22
COPY Statement . 6-23
DELAY Statement . 6-25

viii

Contents

DISPLAY Statements .. 6-26
DISPLAY BASE . 6-26
Block Mode DISPLAY BASE .. 6-26
Conversational Mode DISPLAY BASE ... 6-27
DISPLAY OVERLAY .. 6-27
DISPLAY RECOVERY ... 6-28
DISPLAY ... ~. 6-28

DIVIDE Statements .. 6-30
DIVIDE INTO ... 6-30
DIVIDE GIVING .. 6-30
DIVIDE BY GIVING ... 6-31

END-TRANSACTION Statement .. 6-32
EXIT Statements .. 6-32

EXIT .. 6-32
EXIT PROGRAM .. 6-33

GO TO Statements ... 6-33
GO TO ... 6-33
GO TO DEPENDING ... 6-34

IF Statement .. 6-34
MOVE Statements ... 6-36

MOVE ... 6-36
MOVE CORRESPONDING ... 6-37
Move Restrictions . 6-39
Move Conventions . 6-39

MULTIPLY Statements .. 6-40
MULTIPLY BY .. 6-41
MULTIPLY GIVING ... 6-41

PERFORM Statements ... 6-41
PERFORM ... 6-42
PERFORM TIMES . 6-43
PERFORM UNTIL . 6-44
PERFORM VARYING ... 6-44
PERFORM ONE ... 6-46

PRINT SCREEN Statement .. 6-46
1/0 Performed by the PRINT SCREEN Statement 6-48
Diagnostic Screens ... 6-48
IBM-3270 Attached Printers ... 6-49

RECONNECT MODEM Statement ... 6-49
RESET Statement ... 6-50
RESTART-TRANSACTION Statement .. '· ... 6-51
SCROLL Statement .. 6-52
SEND Statement .. 6-52
SET Statement .. 6-59
STOP RUN Statement .. 6-60
SUBTRACT Statements .. 6-60

SUBTRACT . 6-60
SUBTRACT GIVING .. 6-61
SUBTRACT CORRESPONDING .. 6-61

TURN Statement .. 6-63
USE Statement .. 6-64

ix

Contents

:SECTION 7. COMPILATION ... 7-1
Using the Compiler .. 7-1
Compiler Commands .. 7-3

ANSI Command . 7-5
COMPILE Command .. 7-5
CROSSREF/NOCROSSREF Command .. 7-5
ENDIF Command ... 7-7
ERRORS Command ... 7-7
HEADING Command ... 7-7
IF Command . 7-8
IFNOT Command ... 7-8
LINES Command . 7-9
LIST/NOLIST Command . 7-9
MAP/NOMAP Command ... 7-10
OPTION Command .. 7-10
RESETTOG Command ... 7-11
SECTION Command ... 7-11
SETTOG Command .. 7-11
SYMBOLS/NOSYMBOLS Command . 7-12
SYNTAX Command ... 7-12
TANDEM Command ... 7-12
WARN/NOWARN Command ... 7-12

Compilation Statistics .. 7-13
Stopping the Compiler .. 7-14
Conserving Disc Space .. 7-14

SECTION 8. PATHWAY APPLICATION EXAMPLE 8-1
PATHMON and PATHCOM Process Creation .. 8-3
SCREEN COBOL Program for Block Mode ... 8-4
SCREEN COBOL Program for Conversational Mode 8-10
Server Program in COBOL . 8-18

APPENDIX A. MESSAGES ... A-1
Advisory Messages ... A-1
Diagnostic Screens ... A-4

Diagnostic Screen Messages ... A-4
Diagnostic Message Generation Procedure ... A-5

SCREEN COBOL Compiler Diagnostic Messages A-7

APPENDIX B. SCREEN COBOL SYNTAX SUMMARY B-1
Identification Division ... B-1
Environment Division . B-1
Data Divisi9n .. B-2
Data Description Clauses .. B-2
Input Control Clauses ... B-3
Screen Description Clauses ... B-4
SCREEN COBOL Compiler Defined Special Registers B-5
Procedure Division .. B-5
Procedure Division Statements .. B-6
Compiler Control Commands .. B-9

APPENDIX C. SCREEN COBOL RESERVED WORDS C-1

x

Contents

APPENDIX D. USER CONVERSION PROCEDURES D-1
Input Procedures . D-2
Output Procedures .. D-3
3270 Key Mapping .. D-5

APPENDIX E. PATHWAY PROGRAMMING FOR TMF E-1
Task Overview ... E-2
TMF Application Structure .. E-3

TMF and PATHWAY Application Characteristics E-3
TMF Restrictions . E-4

PATHWAY Programs Using TMF .. E-4
Transaction Mode Use . E-4
TMF and SCREEN COBOL Verbs .. E-4

ABORT-TRANSACTION Use .. E-5
BEGIN-TRANSACTION Use .. E-5.
END-TRANSACTION Use .. E-7
RESTART-TRANSACTION Use ... E-7

TMF and Special Registers .. E-7
TRANSACTION-ID .. E-8
TERMINATION-STATUS .. E-8
RESTART-COUNTER .. E-8

TMF Programming Considerations .. E-8
Accessing Audited Data Base Files .. E-9
Record Locking ... E-10·

Repeatable Reads ... E-12
Opening Audited Files ... E-12
Reading Deleted Records . E-12
Batch Updates .. E-12

Coding Servers .. E-13
Deadlock ... E-14
Backout Anomalies .. E-18

Application Conversion Considerations ... E-19
Audited Files ... E-19
Record Locking Conversion . E-20
Grouping Transaction Operations .. E-20
Transaction Control . E-21
N onStop Servers . E-21
Deadlock and Conversion . E-22

PATHWAY Interaction with TMF . E-22
SET SERVER Command and TMF ... E-23
SET TERM and SET PROGRAM Commands and TMF E-23
Effects of the TMF Parameter on PATHWAY Send Operations E-23
TCP Checkpointing Strategy .. E-25
Precautions for Using TMF Parameters ... E-25

APPENDIX F. GLOSSARY .. F-1

INDEX . Index-1

xi

Contents

FIGURES

l-1 SCREEN COBOL Functions .. 1-2
l-2 PATHWAY System Structure .. 1-6
1.-3 Developing Screen Definitions with PATHAID 1-7
1.-4 Building SCREEN COBOL Program Units with EDIT 1-8
1-5 Producing SCREEN COBOL Object Files ... 1-9
1-6 SCREEN COBOL Object Files - Including a Symbol Table 1-10
1-7 Managing SCREEN COBOL Object Files with SCUP 1-11
2-1 Tandem Standard Reference Format ... 2-8
2-2 ANSI Standard Reference Format .. 2-9
~~-3 Sample Table Structure .. 2-21
3-1 Identification Division Format .. 3-1
4-1 Environment Division Format .. 4-1
5-1 Data Division Format ... 5-1
5-2 Level Numbering Within a Structure .. 5-4
5-3 Data Description Entry Skeleton ... 5-5
5-4 Screen Description Entry Skeleton . 5-20
5-5 Input Control Character Clauses ... 5-21
5-6 Screen Field Characteristic Clauses ... 5-22
{)-1 Procedure Division Format .. 6-1
{)-2 Procedure Division Structure .. 6-2
{)-3 Sample Diagnostic Screen ... 6-49
7-1 Sample Compilation Statistics .. 7-13
8-1 PATHWAY Application Example Screen ... 8-2
A-1 DIAGNOSTIC-FORMAT Parameter for Diagnostic Message Generation A-6
D-1 Input Procedure Declaration for Numeric Data Items D-2
D-2 Input Procedure Declaration for Nonnumeric Data Items D-2
D-3 Output Procedure Declaration for Numeric Data Items D-3
D-4 Output Procedure Declaration for Nonnumeric Data Items D-4
D-5 Procedure Declaration for 3270 Key Mapping D-5
E-1 PATHWAY Programming for TMF ... E-2
E-2 Accessing and Changing Audited and Nonaudited Files E-9
lf!:-3 Record Locking for TMF . E-10
lf!:-4 Record Locking by Transaction Identifier E-11
E-5 N onqueuing Server . E-13
E-6 Deadlock Caused by Deleting a Record .. E-14
lf!:-7 Deadlock Caused by Inserting a Record ... E-15
E-8 Deadlock Caused by a Process Switching Transaction Identifiers E-15
E-9 Deadlock Caused by Multiple SEND Statements E-16
:E-10 A voiding Deadlock . E-17

xii

Contents

TABLES

2-1 SCREEN COBOL Character Set . 2-3
2-2 Editing Characters . 2-4
2-3 Punctuation Characters ... 2-4
2-4 Separators .. 2-5
2-5 Figurative Constants . 2-7
2-6 Arithmetic Operators .. 2-11
2-7 Logical Operators ... 2-18
4-1 Function Key and Display Attribute System Nam es . 4-6
5-1 Screen Types and Allowable Field Characteristic Clauses 5-28
5-2 Minimum Separation (in Characters) Between Screen Elements for the IBM-3270 5-51
5-3 Minimum Separation (in Characters) Between Screen Elements for the Tl6-6510 5-52
5-4 Minimum Separation (in Characters) Between Screen Elements for the T16-6520 5-54
6-1 Classification of Statements ... 6-5
6-2 TIMEOUT Conversions for ACCEPT Statement 6-9
6-3 .TERMINATION-STATUS Error Numbers ... 6-17
6-4 TERMINATION-STATUS/TERMINATION-SUBSTATUS Error Codes

for CALL Statement .. 6-19
6-5 Move Summary Table ... 6-40
6-6 TERMINATION-STATUS Error Codes for PRINT SCREEN Statement 6-47
6-7 SEND Statement Errors ... 6-57
7-1 Compiler Commands ... 7-4
A-1 Advisory Messages .. A-2
A-2 Diagnostic Screen Messages .. A-5
A-3 SCREEN COBOL Compiler Error Messages .. A-8
E-1 SEND Operations With TMF ... E-24

xiii

PREFACE

This manual is one of three manuals that describe the three major tasks associated with the
PATHWAY Transaction Processing System. These manuals and tasks are:

• PATHWAY Operating Manual - Configuring the PATHWAY environment.

• PATHWAY Programming Manual - Programming the application that runs within the
PATHWAY environment.

• PATHWAY Programming Aids - Using the utilities provided to create and modify screen
definitions and to control application program object files.

This manual, which concerns PATHWAY application programming only, describes the SCREEN
COBOL language. Section 1 presents an overview of the PATHWAY transaction processing
environment. Section 2 describes the organization of a SCREEN COBOL source program and
details the various rules of the language. Sections 3 through 6 describe the four sections that com
prise a SCREEN COBOL program. Section 7 describes source program compilation. Section 8
illustrates a sample PATHWAY application.

The manual is for personnel who are responsible for developing a SCREEN COBOL requester pro
gram to define and control terminal displays in the PATHWAY environment. It is recommended
that readers using this manual have a knowledge of Tandem system programming concepts.

The following publications contain information related to PATHWAY:

CROSSREF User's Manual
INSPECT Interactive Symbolic Debugger User's Guide
GUARDIAN Operating System Programming Manual
PATHWAY Operating Manual
PATHWAY Programming Aids
Transaction Monitoring Facility (TMF) Reference Manual
Transaction Monitoring Facility (TMF) System Management and Operations Guide for

NonStop Systems
Transaction Monitoring Facility (TMF) System Management and Operations Guide for

NonStop II Systems

xv

SYNTAX CONVENTIONS IN THIS MANUAL

The following is a summary of the characters and symbols used in the syntax notation in this
manual.

Notation

UPPERCASE
LETTERS

lowercase
letters

Brackets[]

Braces {}

Ellipses ...

Ellipses
preceded by a
comma, ...

Punctuation

Meaning

Uppercase letters represent keywords and reserved words.

Lowercase letters represent variable entries to be supplied by the user.

Brackets enclose optional syntax items. A vertically aligned group of items
enclosed in brackets represents a list of selections from which one, or none, can
be chosen.

Braces enclose required syntax items. A vertically aligned group of items
enclosed in braces represents a list of selections from which exactly one must
be chosen.

Ellipses immediately following a pair of brackets of a pair of braces indicate
the enclosed syntax can be repeated any number of times.

Ellipses preceded by a comma and immediately following a pair of brackets or
braces indicate that the enclosed syntax can be repeated a number of times
and requires a comma separator before each repetition.

All punctuation and symbols other than those described above must be
entered precisely as shown.

xvii

SECTION 1

PATHWAY ORGANIZATION

SCREEN COBOL is a principal component of PATHWAY, the ENCOMPASS product that
simplifies the development and control of on-line transaction processing applications. A transaction
is a basic unit of work defined by the organization that uses the computer system. Transactions
typically originate at computer terminals and require access to a data base, either to search for in
formation or to modify existing information. A terminal operator in the PATHWAY transaction
processing environment enters queries and data from a terminal according to a specific screen for
mat; the format is defined and controlled internally by the SCREEN COBOL application program.

A warehouse inventory system represents a typical transaction processing application. A terminal
operator performs read transactions when querying the inventory data base to determine the quan
tity on hand of specific items. As new items are received and existing items are shipped, a terminal
operator performs update transactions when modifying data in the data base to reflect current
inventory.

A transaction to be processed within the PATHWAY system is entered from a terminal and passed
to a requester process. The requester sends messages to a server process to perform functions on
the data base. The server completes the requested data base function and replies to the requester.
The requester can, in turn, send a reply back to the terminal as acknowledgement that the trans
action has completed.

As a SCREEN COBOL programmer, you develop the requester program that defines the screen for
mats and controls for terminals operating within the PATHWAY environment.

SYSTEM COMPONENTS

The following are components of a PATHWAY system:

• PATHWAY Monitor process (PATHMON)-The central controlling process for PATHWAY.

• PA TH COM process-The command interface to PA THMON.

• SCREEN COBOL-The procedural language that is used to define and control terminal
displays.

• Terminal Control Processes (TCPs)-The requesters that interpret SCREEN COBOL object
code and send messages to server processes.

1-1

PATHWAY Organization

• Server Processes -The processes that implement data base oriented requests and send replies
to the requesters.

• Transaction Monitoring Facility (TMF)-The data management product that is available for use in
PATHWAY to maintain the consistency of a data base and provide the tools for data base recovery.

• PATHWAY Programming Aids-The utility program, PATH.AID, that you use to create or
modify screen definitions. The utility program, SCUP, you use to access and manipulate com
piled programs in SCREEN COBOL object files.

• INSPECT-The interactive symbolic program debugging tool that you can use to examine and
modify SCREEN COBOL programs.

PATHWAY Monitor Process

The PATHWAY Monitor (PATHMON) is the Tandem-supplied process that supervises and controls
the PATHWAY system. This process controls the existence, the state, and the interrelations of the
other processes and devices within PATHWAY. PATHMON assumes responsibility for the life of
each process, from definition and start-up through operation and termination.

PA THMON maintains configuration and status information, starts and stops TCPs, starts and stops
server processes, and grants links from the TCPs to the server processes.

PATHCOM Process

PA TH COM is the Tandem-supplied process that provides the command interface to P ATHMON.
PATHCOM executes the file of commands that are entered by the PATHWAY system designer to
describe terminals, TCPs, and servers to the PATHWAY system. These commands describe which
terminals are controlled by each TCP, describe the capacity of the PATHWAY system by indicating
the maximum number of entities that can exist, indicate the starting and stopping of processes and
terminals, and request the display of status and statistical information.

SCREEN COBOL

SCREEN COBOL is the language you use to write the requester program. Your program defines
the display format, the application of editing checks and data conversion, the relationships between
screen fields and data items, and the flow of messages to PATHWAY servers. You always design
the SCREEN COBOL program as if to control a single terminal.

A SCREEN COBOL program performs three basic functions:

• Displays screens and data through execution of DISPLAY statements.

• Allows data to be entered from the terminal through execution of an ACCEPT statement.

• Sends messages to a server process through execution of a SEND statement.

These functions are illustrated in Figure 1-1.

1-2

~-----DISPLAY screen
------4• ACCEPT data

SEND message to server-------.
Receive reply----·

--------- DISPLAY data

Figure 1-1. SCREEN COBOL Functions

PATHWAY Organization

Terminal Control Process

A Terminal Control Process (TCP) is a Tandem-supplied program that interprets the code
generated by the SCREEN COBOL compiler for multiple SCREEN COBOL programs. A TCP
assumes responsibility for the physical terminal 1/0 operations, performs field validation based on
edit patterns in the SCREEN COBOL application program, maintains separate data areas and con
trol information for each terminal under its control, handles the conversion of data between exter
nal and internal representations, and sends messages to sever processes on behalf of the SCREEN
COBOL application.

Server Process

A server process is a program written in COBOL, FORTRAN, MUMPS, or the Tandem Transaction
Application Language (T AL) to implement the data base oriented requests and replies in the form
of transaction messages. These messages are generated by the SCREEN COBOL application and
sent by a TCP. You design the server to receive and interpret the requests, perform data base 1/0
functions according to these requests, and send appropriate replies back to the TCP.

A server is configured to be a member of a particular server class. The server class itself has
specific characteristics that are defined within the PATHWAY configuration. Individual servers
within a server class are simply copies of a single program; PA TH COM creates new servers from a
single server program according to configuration criteria.

Transaction Monitoring Facility

The Transaction Monitoring Facility (TMF) is a data management product that maintains the con
sistency of a data base and provides the tools for data base recovery. TMF requires that monitored
data files be flagged for auditing. TMF audits a file by maintaining before and after images of
changes to these files. These images provide the basis for transaction backout, which cancels the
effects of a partially completed transaction, and data base rollforward, which restores a data base to
a consistent state after a catastrophic failure.

PATHWAY systems that use TMF must have server classes configured to operate on audited files.
Servers that are configured as TMF servers can read, lock, and change records in audited files.
Servers that are not configured as TMF servers can only read audited files.

Terminal program units that communicate with TMF servers via the SCREEN COBOL SEND verb
must be configured in PATHCOM for TMF. TMF is invoked by execution of a SCREEN COBOL
BEGIN-TRANSACTION verb, at which time the terminal program enters what is called trans
action mode. The terminal program remains in transaction mode until execution of a SCREEN
COBOL END-TRANSACTION (or ABORT-TRANSACTION) verb. These verbs start and end a
sequence of operations that are treated as a single transaction by TMF. An additional verb is
available to restart a transaction. When transaction mode begins, TMF assigns the transaction a
unique identifier called a TRANSID. When concurrent terminal programs are in transaction mode,
TMF distinguishes transactions by TRANSIDs.

For information about TMF, refer to the Introduction to Transaction Monitoring Facility (TMF)
and the Transaction Monitoring Facility (TMF) Users Guide.

1-3

PATHWAY Organization

PATHWAY Programming Aids

PATHWAY programming aids include the PA THAID screen builder and the SCREEN COBOL
Utility Program (SCUP). The P ATHAID screen builder allows you to create and modify screen
definitions for use in PATHWAY applications. SCUP allows you to manipulate SCREEN COBOL
object files; you can issue commands to display information about programs, change the accessi
bility of programs, copy programs from one object file to another, delete programs, and reclaim file
space by compressing object files.

For information about PATHWAY programming aids, refer to the PATHWAY Programming Aids
publication.

CROSS REF

CROSSREF is a program development tool that produces a list of program references used by
SCREEN COBOL programmers to aid in debugging programs. This list contains screen names,
paragraph names, data variables, and other program identifiers. In addition, this list describes
where and how the identifiers are used throughout the program. The SCREEN COBOL compiler
produces the CROSSREF listing and writes it to the output file for the compile ..

To obtain a CROSSREF listing, compile your SCREEN COBOL program with the CROSSREF com
piler command. The CROSSREF compiler command is described in the "Compilation" section of this
manual.

For a complete description of how to use CROSS REF, refer to the CROSSREF Users Manual

INSPECT

INSPECT is an interactive symbolic program debugging tool that you can use to examine and
modify SCREEN COBOL programs. INSPECT runs as a separate process that communicates
through the TCP with the SCREEN COBOL program running on a PATHWAY terminal. By issuing
commands to INSPECT you can control and modify an executing program.

INSPECT uses a symbol table file for the SCREEN COBOL program. To generate a symbol table
file when the program is compiled, you must specify the SYMBOLS compiler command either in the
program source code or in the compiler run command. The SYMBOLS compiler command is
described in the "Compilation" section of this manual.

Before you can use INSPECT, the PATHWAY system must be configured for communication with
INSPECT. The PA TH COM commands that let the TCP and the terminals communicate with
INSPECT are described in the PATHWAY Operating Manual

For a complete description of how to use INSPECT, refer to the INSPECT Interactive Symbolic
Debugger User's Guide.

1-4

PATHWAY Organization

APPLICATION CONFIGURATION

A PATHWAY system appropriate for executing an application is configured through PATHCOM
commands. These commands are issued by the PATHWAY application designer to define the
capacity and the environment of the PATHWAY system and describe the characteristics and start
up information of the PATHWAY processes and devices. PATHMON maintains this information in
a file called PA THCTL.

PATHMON builds the PATHCTL file the first time PATHWAY is configured. PATHMON always
uses this file when starting a PATHWAY system after a normal shutdown or a total system failure.

The structure of a PATHWAY system is illustrated in Figure 1-2. The various components and files
that comprise the processing environment are briefly described as follows:

• Commands are input to PA TH COM from a terminal, obey file, or another process to initiate
P ATHMON and establish the PATHWAY configuration.

• PA THMON controls the interrelations of the processes and devices. PA THMON also reports
errors and changes in status to a log terminal or log file according to logging commands submit
ted to PATHCOM.

• The TCPs perform application operations according to the SCREEN COBOL object program,
provide general control of the assigned terminals, and route messages to available servers.

• The servers access and update the data base files and reply to messages.

When TMF is configured and terminals are operating in transaction mode, data files auditing is
performed.

COMMUNICATION BETWEEN PROCESSES

TCPs and servers communicate with each other by exchanging transaction messages and trans
action replies through an interprocess file. Messages and server classes are referenced in the
SCREEN COBOL SEND statement, which is executed by the TCP.

When a SCREEN COBOL program communicates with a server class in a different PATHWAY
system, the program becomes location sensitive. That is, the SCREEN COBOL SEND statement
must indicate the Tandem system on which the external server is running and the name of the
external PATHMON (the PATHMON running in a different PATHWAY system from the re
questing SCREEN COBOL program) controlling the server class.

Specifying the system name and the P ATHMON name makes communication possible among multi
ple PATHWAY systems on the same Tandem system and on different Tandem systems.

1-5

PATHWAY Organization

·-----------------------

Figure 1-2. PATHWAY System Structure

l-6

PATHWAY Organization

Transaction Messages

A transaction message is sent by a SCREEN COBOL program to a server. This message consists of
data supplied by the SCREEN COBOL SEND statement. The data in the message is a list of
SCREEN COBOL data items. Each data item begins immediately after the last byte of the
preceding data item. This list can include variable length data items. It should be noted, however,
that a message containing a variable length data item cannot be easily decomposed by a server writ
ten in COBOL; the only exception is when the variable length data item is the last item of the
message.

If a server is to process more than one type of message, a data item of the message should contain a
field that identifies the type of transaction unless the content of the data itself determines the
transaction type.

Transaction Replies

A transaction reply is sent by the server to the TCP. This reply consists of a two-byte binary inte
ger reply code value plus the data. Upon receipt of this reply, the TCP compares the reply code
value to the list of reply code values given in the SCREEN COBOL SEND statement. The TCP
determines which reply was received and, consequently, determines the structure of the data. (The
SEND statement declares the data structure that is associated with each valid reply code value.)
The TCP then copies the reply into the SCREEN COBOL program.

DEVELOPING THE APPLICATION

Transactions are processed with requesters and servers. The development of an application
involves the design of the entire application and the partitioning of work load between the
requester and the servers. The functions of the requester should be kept as simple as possible.
SCREEN COBOL requester program development is illustrated in Figures 1-3, 1-4, and 1-5.

PA THAID, the PATHWAY screen builder illustrated in Figure 1-3, can be used to design
PATHWAY screens by first laying out a picture of the screen on your terminal. Data field display
attributes can be assigned after you design the screen. PA THAID then generates the associated
screen description source code for the screen layout from the terminal. You can edit the screen
source code and copy the screen definitions directly into a SCREEN COBOL program unit or store
the screen code in a screen library file.

Build a library
of screen definitions

Terminal

Figure 1-3. Developing Screen Definitions with PATHAID

1-7

PATHWAY Organization

Figure 1-4 illustrates general SCREEN COBOL program development. You create an edit file in
which to build the SCREEN COBOL source code. This file can contain the source cod~) for an entire
SCREEN COBOL program or can contain COPY statements that insert other SCHEEN COBOL
program units when the source code is compiled.

Terminal

Figure 1-4. Building SCREEN COBOL Program Units with EDIT

1-8

PATHWAY Organization

Figure 1-5 illustrates the SCREEN COBOL compiler output. The SCOBOL run command invokes
the SCREEN COBOL compiler which produces the object code according to the compiler commands
specified in the run command and specified in the source code. There are three processes associated
with the SCREEN COBOL compiler (SCOBOL, SCOBOL2, and SYMSERV). The SCOBOL and
SCOBOL2 processes produce two object files- a director file and a code file. The TCP interprets
the object code produced by the compiler when the program is executed.

If you specify the CROSSREF compiler command, the compiler produces a cross-reference listing
for your program and includes the listing in the output file.

Terminal

Copies screen definitions
into program unit

........
........

........
........

........

Library of
screen definitions

SCREEN
COBOL
Source

'<::)

Program unit

Figure 1-5. Producing SCREEN COBOL Object Files

1-9

PATHWAY Organization

1'he third process associated with the SCREEN COBOL compiler is SYMSERV. This process can be
used to produce the program symbol table that is used by the INSPECT utility during program
debugging. To obtain a symbol table file, you must specify the SYMBOLS compiler command.
F'igure 1-6 illustrates the output from the SCREEN COBOL compiler including a symbol table file.

1-10

Copies screen definitions
into program unit

Library of
screen definitions

Prcigram unit

Figure 1-6. SCREEN COBOL Object Files-Including a Symbol Table

PATHWAY Organization

Each time a SCREEN COBOL program is successfully compiled, the new version of the object file is
added to the previously compiled versions. You can use the SCREEN COBOL Utility Program
(SCUP), illustrated in Figure 1-7, to manage your SCREEN COBOL object files in the following
ways:

• to display information about the program units in the SCREEN COBOL object files

• to delete previously compiled program versions from the object files

• to build a new SCREEN COBOL object file by copying programs from one SCREEN COBOL
object file to another

• to reclaim file space by compressing object files.

Terminal

Terminal

Figure 1-7. Managing SCREEN COBOL Object Files with SCUP

1-11

PATHWAY Organization

General rules concerning SCREEN COBOL requester program development are given in the
following list:

• Design simple screens.

• Keep the operator informed of task completion, errors, the next step, and what the system is
doing at all times.

• Design screens to display initial values and thus reduce keying of data. If no initial value is
declared for a screen field, a default value can be established by moving a value into the data
name associated with the field; this default value will be changed only if the operator enters
data into the field or the program moves another value into the field.

• Protect crucial screen fields; for example, protect primary key.

• Reduce errors on crucial screen fields by using check digits. Check digit processing can be per
formed by the SCREEN COBOL program or by user conversion procedures as described in
Appendix D.

• Keep context information in the requester and never in the server. Context is any information
that is required by a process to continue operating in a previously existing environment.

• Use a modular program design for ease of maintenance.

Refer to the PATHWAY Operating Manual for information about configuring a PATHWAY
application.

SCREEN COBOL Programming Techniques to Reduce Terminal Context

Terminal context in the PATHWAY environment is composed of data that must be maintained for
each active terminal (that is, entered data, data base records, file position data, or program data)
and data that is required by the TCP to execute the program units. PATHWAY provides the TCP
to manage this data so that SCREEN COBOL program units can be written for a single terminal
and servers can be written context free.

The following SCREEN COBOL programming techniques can be used to reduce terminal context:

• Whenever possible, limit program functions to the following:

Accept data from the screen
Send information to a server
Receive data from a server
Display data on the screen
Call another SCREEN COBOL program

• Evaluate whether a function should be performed in a SCREEN COBOL program or in a server.
For example, putting a large table of user logons in a server reduces the amount of context in
the SCREEN COBOL program. The trade-off is between cont.ext in the SCREEN COBOL pro
gram and an 1/0 to the server.

• Accept data into the server request message and display data from the server reply message.
When data is accepted from the screen into one area of working storage then moved to the
request message, context data is wasted and unnecessary move instructions are used.

1-12

PATHWAY Organization

• Whenever possible, pass parameters instead of defining the same record definitions or data
items in multiple SCREEN COBOL programs. The parameters appear in the Linkage Section of
the called program. A Linkage Section in a SCREEN COBOL program unit contains pointers
back to the calling program data area; the data is not duplicated.

• When appropriate, use the REDEFINES clause. Sometimes it is possible to redefine requests or
replies that are not used simultaneously. In the case where one send can yield multiple replies, it
might be possible to redefine the replies so they use the same storage area. Make sure the data
description that matches the current reply code is the data description that is used. Use the
DDL COBLEVEL command to set the correct level number in the record description.

• Use a shared request/reply buffer. In many SCREEN COBOL applications a one screen per pro
gram module structure is suggested. This sometimes means there will be at least one send per
program module and possibly multiple record definitions for requests and replies. If the
operator follows the program modules down the tree structure, the separate request/reply buf
fers consume additional context.

By changing the design so that a reply area is passed from the first program unit in the Linkage
Section to each program unit down the tree structure, the context space is reused as a global
buffer. This change in design could cause some additional programming to save data that is
needed when returning to certain modules. If the amount of data needed to be saved is equal to
the buffer, nothing is gained by the use of a shared buffer. If the amount of data is less than the
buffer, context is saved. This approach, however, more closely couples the program units, which
might not be desirable.

1-13

SECTION 2

SCREEN COBOL SOURCE PROGRAM

The SCREEN COBOL procedural language is used to define and control the terminal displays. The
syntax of the language enables you to:

• define the characteristics of the display screen

• indicate how the data is to be converted and how editing checks are to be applied to the data

• specify transaction messages to be sent to the server process

• control how input or output is to be accepted and displayed on the terminal screen.

SCREEN COBOL is available for use on the T16-6510, T16-6520, T16-6530, the IBM-3270, and those
devices operating as conversational mode terminals as recognized by the GUARDIAN File System.

A SCREEN COBOL program is always designed as if to control a single terminal. The Terminal
Control Process (TCP) that interprets the object code generated by the SCREEN COBOL compiler,
however, can perform multiple executions of the same code for each terminal under its control.

PROGRAM OPERATING MODES

Generally, a SCREEN COBOL program displays formatted information, receives data entered from
a terminal, and performs some action based on the data. SCREEN COBOL enables you to write pro
grams that perform these operations in either of two modes: block mode (full screen accept and
display operations) or conversational mode Oine by line accept operations). To support both of these
modes, some of the SCREEN COBOL statements and clauses act differently in block mode from con
versational mode. These differences are summarized below and described in detail throughout the
following sections.

Block Mode Program

To execute in block mode, a SCREEN COBOL program must run on a block mode terminal. The
screen definitions for any SCREEN COBOL program are restricted by the characteristics of the
specific type of terminal on which your program runs.

2-1

SCREEN COBOL Source Program

A SCREEN COBOL program running in block mode performs as follows:

• displays a full screen of information on the terminal

• accepts data entered from the terminal one screen at a time

• recognizes a specific terminal type

• recognizes function keys and associates each with a particular function (for example, pressing
the Fl function key might might be associated with exiting from a screen).

Conversational Mode Program

A SCREEN COBOL program written for conversational mode operation can run on either a block
mode terminal or a conversational mode terminal. Once a program is specified as conversational,
that program performs according to the restrictions for a conversational terminal regardless of the
type of terminal on which the program runs.

A SCREEN COBOL program running in conversational mode performs as follows:

• displays information on the terminal during an ACCEPT statement, one line at a time

• accepts data entered from the terminal one line at a time

• responds to a set of input control characters when the terminal is enabled to accept data

• recognizes only keyboard characters, carriage return, and line feed (not function keys)

• restricts the display field attributes to bell and hidden.

PROGRAM ORGANIZATION

A SCREEN COBOL program is organized into four divisions that must be written in the following
order:

ldentification Division
Environment Division
Data Division
Procedure Division

The Identification Division identifies the program. Comments such as the name of the programmer,
the date the program was written, and a description of the program can be declared in this division.

The Environment Division specifies the program execution environment. Display error attributes,
processing options, computer equipment, and terminal equipment can be described in this section.

The Data Division defines the program data structures in terms of their formats and usage. The
Screen Section that appears in this division describes the structure of the data moving to and from
the terminal.

The Procedure Division specifies the processing steps of the program.

2-2

SCREEN COBOL Source Program

LANGUAGE ELEMENTS

The SCREEN COBOL language elements fall into one of two categories: character strings and
separators. Character strings are strings of contiguous characters. Separators are characters that
separate one character string from another character string.

The language elements that comprise the SCREEN COBOL source program are described in the
following paragraphs.

Character Set

The SCREEN COBOL character set is a subset of the ASCII character set and consists of 52
characters. These characters are listed in Table 2-1.

0-9 Digits
A-Z Letters

Space (blank)
+ Plus sign

Table 2-1.

Minus sign (hyphen)
Asterisk
Stroke (slash)
Equal sign

$ Currency sign

SCREEN COBOL Character Set

Comma
Semicolon
Period (decimal point)

" Quotation mark
Left parenthesis
Right parenthesis

> Greater than
< Less than
@ Commercial at

The following definitions apply to the SCREEN COBOL character set:

• Alphabetic characters include letters A through Z and space.

• Numeric characters include digits 0 through 9.

• Special characters include all characters except letters A through Z, space, and digits 0 through 9.

• Alphanumeric characters include any character in the character set.

The full ASCII character set can be used in comments and literals.

2-3

SCREEN COBOL Source Program

Editing Characters

Editing characters are symbols that can be used in PICTURE clauses to format screen data. Editing
characters are listed in Table 2-2.

A Alphabetic or space
B Space insertion
P Decimal position (scaled)
V Decimal position (fixed)
X ASCII character
Z Zero suppress
O Zero
9 Numeric digit
+ Plus

Punctuation Characters

Table 2-2. Editing Characters

- Minus
CR Credit
DB Debit
* Check protect
$ Currency symbol

Comma (decimal point)
Period (decimal point)
Stroke (right slash)

Punctuation characters are used to separate words, sentences, or special clauses, and to group
arithmetic relationships. Punctuation characters are listed in Table 2-3.

Comma
Semicolon
Period

" Quotation mark
Left parenthesis
Right parenthesis
Space (blank)
Equal sign

Separators

Table 2-3. Punctuation Characters

Separators are strings of one or more punctuation characters; they can have leading or trailing
blanks. Separators are listed and defined in Table 2-4.

2-4

SCREEN COBOL Source Program

space

()

Table 2-4. Separators

A space separates language elements.

A comma, semicolon, or period immediately followed by a space is a separator. A
period can appear as a separator only when it terminates headers, entries, and
sentences as defined by the syntax. A comma or semicolon is treated as a space
when used as a separator.

Right and left parentheses enclose certain parts of character strings. Although they
must appear in balanced pairs, each is considered a separator.

Quotation marks are used to enclose nonnumeric literals. The characters appear in
balanced pairs except when the literal is continued across a line. The first quotation
mark must be preceded by a space, and the second one must be followed by a
separator other than another quotation mark.

Some character strings include punctuation characters, in which case those characters do not act as
separators. Any character in the ASCII character set can appear in a nonnumeric literal, provided
the character does not have special meaning to a hardware device.

SCREEN COBOL Words

A SCREEN COBOL word is a character string that forms a reserved word, user-defined word, or
system name. A word can have a maximum of 30 characters.

RESERVED WORDS. A reserved word has special meaning for the compiler. A reserved word can
not be used as a data item name or a system name. Reserved words are any of the following:

Keywords
Special registers
Figurative constants

Reserved words must be spelled correctly and can be used only as specified in syntax.

USER·DEFIN ED WORDS. A user-defined word can consist of any of the following characters:

Letters A through Z
Digits 0 through 9
The hyphen character(-)

A user-defined word must have at least one alphabetic or numeric character, must not begin or end
with a hyphen, and must not contain embedded spaces. User-defined words are used for the follow
ing types of items:

Procedure name
Data name
Mnemonic name
Condition name

Program name
Library name
Text name

2-5

SCREEN COBOL Source Program

SYSTEM NAMES. A system name is a SCREEN COBOL word that identifies part of the Tandem
operating environment. System names are defined for equipment and operating system access. Use
of each system name is restricted to a specific category, such as terminal function key or display
attribute.

Literals

A literal is a character string whose value is implied either by a set of characters or by a reserved
word that represents a figurative constant. A literal is numeric or nonnumeric.

NUMERIC LITERALS. A numeric literal is one or more digits (0-9), a plus or minus sign, and an
optional decimal point. The value of the literal is the value of the digits. The following rules apply to
numeric literals:

• A numeric literal can have a maximum of 18 digits.

• One sign character is allowed and must be the first character. The absence of a sign character
indicates the literal is a positive number.

• A numeric literal can have one decimal point, which can appear anywhere within the literal
except as the last character. The absence of a decimal point indicates the literal is an integer.

The following examples illustrate numeric literals:

Integer Numeric Literals N onlnteger Numeric Literals

+601
-234116

0
15

+601.1
89.6

0.0051
-.1

NONNUMERIC LITERALS. A nonnumeric literal is any ASCII character string enclosed in quota
tion marks. The value of the literal is the string of characters between the quotation marks. The
following rules apply to nonnumeric literals:

• Nonnumeric literals can have a maximum value of 120 characters, not including the surrounding
quotation marks.

• If a quotation mark is part of the literal, it must be represented in the string as two contiguous
quotation marks. The additional quotation mark is not included in the character count.

The following example illustrates a nonnumeric literal:

"THIS IS A NONNUMERIC LITERAL"

"12345 THIS IS A NONNUMERIC LITERAL ALSO"

The following example illustrates a nonnumeric literal with an embedded quotation mark:

"A"" IS PART OF THIS NONNUMERIC LITERAL"

FIGURATIVE CONSTANTS. A figurative constant is a constant that has been prenamed and
predefined by the SCREEN COBOL compiler so that it can be written in the source program
without having to be defined in the Data Division. Figurative constants do not require quotation
marks.

2-6

SCREEN COBOL Source Program

Figurative constants are listed and defined in Table 2-5; singular and plural forms are equivalent in
meaning:

ZERO
ZEROS
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

ALL literal

Table 2-5. Figurative Constants

Depending on the context, represents the numeric value 0 or a string
of one or more of the character 0.

Represents one or more ASCII space characters (blanks).

Represents one or more of the characters that have the highest
position in the ASCII character set.

Represents one or more of the characters that have the lowest
position in the ASCII character set.

Represents one or more quotation mark characters. Neither of
these words can be used in place of quotation mark characters
around a nonnumeric literal string.

Repeats the value of literal. Literal must be a nonnumeric literal or
figurative constant other than ALL literal. When a figurative con
stant is used, the word ALL is redundant and is used only for
readability.

The following rules apply to figurative constants:

• When a figurative constant represents multiple characters, the length of the string is deter
mined by the compiler.

• A figurative constant can be used wherever a literal appears in a format; when the literal must
be numeric, only ZERO, ZEROS, or ZEROES are permitted.

• When a figurative constant is moved or compared to another data item, the figurative constant
is repeated on the right until its size is equal to the size of the data item. This happens inde
pendently of a JUSTIFIED clause for the data item.

REFERENCE FORMAT

A SCREEN COBOL source program can be written in Tandem standard or ANSI standard reference
format. The Tandem standard reference format has no sequence number field (columns 1-6), has no
identification field (columns 73-80), and is restricted to lines of up to 132 characters.

Although the SCREEN COBOL compiler assumes Tandem format, a SCREEN COBOL program can
be written completely in either format or in a combination of both. Refer to the source text options
in Section 7 for information regarding format specification.

2-7

SCREEN COBOL Source Program

Tandem Standard Reference Format

Lines in Tandem standard reference format are not fixed length; they can have up to 132
characters. Lines longer than 132 characters are truncated; trailing blanks are ignored. For each
line, Margin R is set to follow the last nonblank character in the line, regardless of the Margin R
location in any previous line.

Trailing blanks from a previous line and initial blanks on a continuation line are ignored.

The Tandem standard reference format is illustrated in Figure 2.-1.

2-8

Margin
R

1 2 3 4 5 6 7 8 9 10 132

~
Indicator

Field

Area A Area B

Text not required
to begin in Area A
begins in Area B.

Division, section, and paragraph headers
must begin in Area A. The first sentence of
a paragraph can begin on the same line as
the paragraph header, provided at least one
space follows the period terminator of the
paragraph name.

Level numbers 01 and 77 must begin in
Area A.

Level numbers 02-49, 66, and 88 can begin
in either Area A or Area B.

Area A of a continuation line should always
be left blank.

An * or I in the indicator field indicates a comment; a - indicates continuation; a ? in
dicates a compiler command line. If any other character appears in the indicator field,
the last character in the preceding line is assumed to be followed by a space.

Figure 2-1. Tandem Standard Reference Format

SCREEN COBOL Source Program

ANSI Standard Reference Format

Each line in ANSI Standard reference format has 80 characters. The SCREEN COBOL compiler
assures this by truncating lines over 80 characters, or adding blanks to fill out short lines.

A literal string that exceeds one line must fill the line on which it begins; otherwise, any trailing
blanks are included as part of the literal before the continued characters.

The sequence number area (1 through 6) assigns a number to each line of code or labels a line with
any combination of ASCII characters.

The positions following Margin R (73 through 80) represent the identification field. Their contents,
which can include any ASCII character, are treated as a comment, and have no effect on the mean
ing of the program.

The ANSI standard reference format is illustrated in Figure 2-2.

Margin
R

1 2 3 4 5 6

"'-~-..-----/
I

7 8 9 10 11 12· 13 72

~ "'.....__~___,/ ~
Sequence Number Area A Area B I dent if ication

Area
Indicator

Field
I

Text not required
to begin in Area A
begins in Area B.

Division, section, and paragraph headers must begin in
Area A. The first sentence of a paragraph can begin on the
same line as the paragraph header, provided at least one
space follows the period terminator of the paragraph
name.

Level numbers 01 and 77 must begin in Area A.

Level numbers 02-49, 66, and 88 can begin in either Area A
or Area B.

Field

An * or I in the indicator field indicates a comment; a - indicates continuation; a ? in
dicates a compiler command line. If any other character appears in the indicator field,
the last character in the preceding line is assumed to be followed by a space.

Figure 2-2. ANSI Standard Reference Format

2-9

SCREEN COBOL Source Program

Comment Lines

Comment lines can appear anywhere in a SCREEN COBOL program. Comment lines are indicated
by a special character in the indicator field, which is column 1 in the Tandem standard reference for
mat and column 7 in the ANSI standard reference format. The characters and their functions are as
follows:

* An asterisk in the indicator field indicates the entire line is a comment.

A slash in the indicator field indicates the entire line is a comment. When a listing of the
program is printed, a page eject is performed before printing the comment line.

Continuation Lines

Any word or literal in a SCREEN COBOL program can be continued. Continuation lines are in
dicated by the hyphen character in the indicator field.

If the previous line has a nonnumeric literal without a closing quotation mark, the first nonblank
character in Area B of the continuation line must be a quotation mark. The continuation begins with
the character immediately following that quotation mark.

Compiler Command Lines

Compiler command lines are indicated by the question mark character in the indicator field. The
line is an instruction for the SCREEN COBOL com·piler.

Normally, a compiler line in ANSI standard reference format is identified by a question mark in col
umn 7; however, the SCREEN COBOL compiler interprets any line with a question mark in column
1 as a compiler command, even when the ANSI standard reference format is being used. In this
special case, the line is treated as beginning with the indicator field; no sequence number area ex
ists. Refer to Section 7 for detailed information regarding compiler commands.

ARITHMETIC OPERATIONS

Arithmetic operations are specified in the Procedure Division with the ADD, COMPUTE, DIVIDE,
MULTIPLY, and SUBTRACT statements. These operations have the following common features:

• The data descriptions of the operands do not have to be the same. Any necessary conversion and
decimal point alignment is supplied throughout the calculation.

• The maximum size of each operand is 18 decimal digits.

• Each arithmetic operation is evaluated using an intermediate data item. If the size of the result
being developed is larger than this intermediate data item, the SCREEN COBOL program will
be suspended by the TCP with an arithmetic overflow error. The contents of the intermediate
data item are moved to the receiving data item according to the rules of a MOVE statement.

When a sending and receiving item in an arithmetic statement share part of their storage areas, the
result is undefined.

2-10

SCREEN COBOL Source Program

Arithmetic Expressions

An arithmetic expression is one of the following:

• A numeric elementary item

• A numeric literal

• A numeric elementary item and a numeric literal separated by arithmetic operators

• An arithmetic expression enclosed in parentheses

Data items and literals appearing in an arithmetic expression must be either numeric elementary
items or numeric literals on which arithmetic operations can be performed. Any arithmetic expres
sion can be preceded by a plus or minus sign.

Arithmetic Operators

Four binary arithmetic operators and two unary arithmetic operators are used in arithmetic ex
pressions. These operators are represented by specific characters, and must be preceded and
followed by a space. Arithmetic operators are listed in Table 2-6.

Table 2-6. Arithmetic Operators

Binary Arithmetic
Operators Meaning

+ Addition

*

**

Unary Arithmetic
Operators

+

Subtraction

Multiplication

Division

Exponentiation

The effect of
multiplying by + 1

The effect of
multiplying by -1

2-11

SCREEN COBOL Source Program

When a plus or minus sign immediately precedes a numeric literal (with no intervening spaces) the
sign becomes a part of that literal, making it a signed numeric literal. The sign is neither a binary or
unary operator. For example:

X + 2 is equivalent to X, + 2

X, + 2 is two separate expressions.

A plus sign in any other situation is treated as a binary operator if it is preceded by an operand, and
treated as a unary operator if it is not preceded by an operand. For example:

X + 2 and X + + 2 are equivalent expressions.

Evaluation of Expressions

Parentheses can be used to specify the order in which the operations of an arithmetic expression
are performed. Expressions within parentheses are evaluated first. Evaluation of expressions
within nested parentheses proceeds from the innermost set to the outermost set. When paren
theses are not used, or expressions in parentheses are at the same level, the order of execution is as
follows:

1st Unary plus and minus
2nd Multiplication and division
3rd Addition and subtraction

Parentheses are used to eliminate ambiguities in logic or to modify the normal sequence of execu
tion in expressions where it is necessary to have some deviation. When the sequence of execution is
not specified by parentheses, the order for consecutive operations at the same level is from left to
right. The following example illustrates the normal evaluation order in the absence of parentheses:

a+b/c+d*f-g

would be interpreted as:

(a + (b I c)) + (d * f) - g

with the sequence of operations proceeding from the innermost parentheses to the outermost.

Expressions ordinarily considered ambiguous, such as:

a I b * c, a I b I c

are permitted in SCREEN COBOL. They are interpreted as if they were written:

(a I b) * c, (a I b) I c.

Data items and literals appearing in an arithmetic expression must represent either numeric
elementary data items or numeric literals.

2-12

SCREEN COBOL Source Program

MULTIPLE RESULTS. The ADD, COMPUTE, MULTIPLY, and SUBTRACT statements can have
multiple results. Such statements behave as though they had been written in the following way:

1. One statement performs all necessary arithmetic to arrive at a result, and stores that result in a
temporary storage location.

2. A sequence of statements transfers or combines the value of this temporary location with each
result. These statements are considered to be written in the same left-to-right sequence that
the multiple results are listed.

For example,the result of the following statement:

ADD a, b, c TO c, d(c), e

is equivalent to:

ADD a, b, c GIVING temp
ADD temp TO c
ADD temp TO d (c)
ADD temp TO e

where temp is the temporary storage location.

INTERMEDIATE RESULTS. Intermediate results are maintained by SCREEN COBOL during the
evaluation of arithmetic expressions. The maximum number of digits held for an intermediate
result is 18. If this limit is exceeded, arithmetic overflow occurs.

The following abbreviations are used to explain intermediate operations:

IR is the number of integer places carried for an intermediate result.

DR is the number of decimal places carried for an intermediate result.

OPl is the first operand in an arithmetic expression, which has the form 901)V9(Dl), where I1
is the number of integer places carried and Dl is the number of decimal places carried for
the first operand.

OP2 is the second operand in an arithmetic expression, which has the form 9(I2)V9(D2), where
I2 is the number of integer places carried and D2 is the number of decimal places carried
for the second operand.

QPR is the desired result, which has the form 9(IR)V9(DR), where IR is the number of places
carried for the integer result and DR is the number of places carried for the decimal
result.

Operation Decimal Places

OPl { + or - } OP2 DR is the greater of Dl or D2.
IR is the lesser of (the greater of I1 or I2) or 18-DR.

OPl * OP2 DR is the greater of Dl or D2.
IR is the lesser of (Il + 12) or 18-DR.

2-13

SCREEN COBOL Source Program

OPl I OP2 DR is the greater of Dl or 1.
IR is the lesser of (11 + D2) or 18 - DR.

If (11 + D2 +DR) is greater than 18, the low order digits of the quotient are
lost; in other words, any part of the quotient less than 1om+n2 +DR- 181

is lost.

A normal divide computation proceeds as follows:

Example 1

03 A1 PIC S9(9)V9(9) VALUE 2.
03 A2 PIC S9(9)V9(8) VALUE 3.
03 AR PIC SV9(9).

DIVIDE A1 BY A2 GIVING AR.

where:

3.00000000 2.000000000

is computed as:

000000003.00000000

00000000000000000.6

000000002.000000000

then moved to AR as: . 600000000

Example 2

03 A1 PIC S9(2)V9(9) VALUE 2.
03 A2 PIC S9(2)V9(8) VALUE 3.
03 AR PIC SV9(9).

DIVIDE A1 BY A2 GIVING AR.

where:

3.00000000

is computed as:

03.00000000

2.000000000

000000000.666666666

02.0000000000000000

then moved to AR as: . 666666660

When a division operation in an arithmetic expression involves a COMPUTE statement or a rela
tional expression, the intermediate results are evaluated in two steps:

1. the actual division

2. the adjustment of that result for use in further computations

2-14

SCREEN COBOL Source Program

Example 3

With

COMPUTE AX = A1/A2 + A3 * A4.

or

IF A1/A2 + A3 * A4 LESS THAN AX GO TO

the division is performed before further evaluation of either of the above statements. The in
termediate result is then adjusted to fit the conceptual PICTURE derived by examining the other
operands in the expression.

INCOMPATIBLE DATA. An incompatible data condition occurs when a data item is referenced in
the Procedure Division and that item contains characters not permitted by its PICTURE clause.
For example:

If a position in a display numeric item contains an alphabetic character, A, and that item is
used as an operand in an ADD statement, an incompatible data condition occurs. The result of
this reference is undefined.

The class condition test is an exception to this rule because its purpose is to determine whether or
not items contain legal data.

CONDITIONAL EXPRESSIONS

Conditional expressions identify conditions that are tested by the program to select between alter
nate paths of control. Conditional expressions are specified in the IF and PERFORM statements.

The two categories of conditions for conditional expressions are: simple conditions and complex con
ditions. Either kind of condition can be enclosed within any number of paired parentheses without
changing the category of the condition.

Simple Conditions

Simple conditions are: class, condition-name, relation, and sign conditions. A simple condition has a
truth value of true or false. Parentheses can enclose a simple condition without changing the truth
value of the condition.

Simple conditions are described in the following paragraphs.

CLASS CONDITION. The class condition determines whether a DISPLAY item value is numeric or
alphabetic.

Class condition syntax is:

data-name [IS J [NOT J
{

NUMERIC t
ALPHABETIC f _]

When NOT is included, the test condition is reversed. NOT NUMERIC tests for a field being non
numeric; NOT ALPHABETIC tests for a field being nonalphabetic.

2-15

SCREEN COBOL Source Program

The NUMERIC test cannot be used with an item described as alphabetic. The NUMEHIC test can
not be used with a group item composed of elementary items with data descriptions that include
operational signs. If the data item being tested is signed, the item is numeric only if the contents are
numeric and a valid sign is present. If the item is not signed, the item passes the test only if the con
tents are numeric and no sign is present. Valid signs for items with SIGN IS SEPARATE clause are
+and-.

The ALPHABETIC test cannot be used with an item described as numeric.

CONDITION-NAME CONDITION. A condition-name condition determines whether or not the value
of a conditional variable is equal to one of the values predefined for the condition-name.

Condition-name condition syntax is:

condition-name -~

The condition-name must be a level 88 item defined in the Data Division and given a value or a range
of values.

The condition is true if the value of the conditional variable is equal to one of the condition-name
values or falls within one of the ranges of values (including both ends of the range) given with the
condition-name.

RELATION CONDITION. A relation condition causes a comparison of two values. Each value can be
a data item, a literal, or a value resulting from an arithmetic computation; both values cannot be
literals. A relation condition has a truth value of true if the relation exists between the values.

Relation condition syntax is:

value-1 IS [NOT l

[NOT l

[NOT l

{ ~ESS [THAN l}

{ :QUAL [TO l}

{ ~REATER [THAN] }

value-2

The relational operators < = > determine the type of comparison made. A space must precede and
follow each word of the relational operator. When NOT is included, the word NOT and the next
keyword or relation character are one operator. NOT EQUAL is a truth test for an unequal com
parison; NOT GREATER is a truth test for an equal or less comparison.

Two numeric values can be compared regardless of their usage (as defined by a USAGE clause). For
all other comparisons, however, the values must have the same usage. If either of the values is a
group item, nonnumeric comparison rules apply.

2-16

SCREEN COBOL Source Program

Comparison of Numeric Operands. Comparison of numeric operands is made with respect to the
algebraic value of the operands. The length of the literal or arithmetic expression operands, in
terms of the number of digits represented, is not significant. Zero is considered a unique value
regardless of the sign.

Comparison of these operands is permitted regardless of the manner in which their usage is
described. Unsigned numeric operands are considered positive.

Comparison of Nonnumeric Operands. Comparison of nonnumeric operands, or one numeric and
one nonnumeric operand, is made with respect to the ASCII collating sequence of characters. The
size of an operand is its total number of characters.

A noninteger numeric operand cannot be compared to a nonnumeric operand.

Numeric and nonnumeric operands can be compared only when their usage is the same. The follow
ing conventions apply:

• The numeric operand must be an integer data item or an integer literal.

• If the nonnumeric operand is an elementary data item or a nonnumeric literal, the numeric
operand is treated as though it were moved to an elementary alphanumeric data item of the
same size as the numeric data item; the content of this alphanumeric data item is then compared
to the nonnumeric operand.

• If the nonnumeric operand is a group item, the numeric operand is treated as though it were
moved to a group item of the same size as the numeric data item; the content of this group item
is then compared to the nonnumeric operand.

Comparison of Equal Sized Operands. If the values of operands are equal in size, characters in cor
responding positions are compared starting from the high order end. This continues until either a
pair of unequal characters is found or the low order end is reached. The values are equal when all
pairs of characters are the same through the last pair.

The first pair of unequal characters is compared to determine their relative position in the collating
sequence. The value having the character that is higher in the collating sequence is the greater
value.

Comparison of Unequal Sized Operands. If the values of operands are unequal in size, comparison
proceeds as though the shorter operand were extended on the right by sufficient spaces to make the
operands equal in size.

SIGN CONDITION. The sign condition determines whether or not the algebraic value of an
arithmetic expression is greater than, less than, or equal to zero.

Sign condition syntax is:

arithmetic-expression [IS J [NOT J

Arithmetic-expression must have at least one variable.

POSITIVE
NEGATIVE
ZERO _]

2-17

SCREEN COBOL Source Program

When NOT is included, the word NOT and the next keyword specify one sign condition that defines
the algebraic test to be executed for truth value. NOT ZERO is a truth test for a non,zero, positive,
or negative value. An item is positive if its value is greater than zero, negative if its value is less
than zero, and zero if its value is equal to zero.

Complex Conditions

Complex conditions are formed by using simple conditions, combined conditions and/or complex
conditions with logical connectives AND or OR, or negating these conditions with keyword NOT.
The truth value of a complex condition, whether or not the value is enclosed in parentheses, is that
truth value which results from the interaction of all the logical operators on the individual truth
values of simple conditions, or on the intermediate truth values of conditions connected or negated.

Logical operators and their definitions are listed in Table 2-7.

Table 2-7. Logical Operators

Logical Operator Definition

AND

OR

NOT

Logical conjunction-the truth value is true if both conditions
are true, and false if one or both are false.

Logical inclusive OR-the truth value is true if one or both of
the conditions is true, and false if both conditions are false.

Logical negation or reversal of truth value-the truth value is
true if the condition is false and false if the condition is true.

The logical operators must be preceded by a space and followed by a space.

NEGATED SIMPLE CONDITION. A simple condition is negated through the use of the logical
operator NOT. The negated simple condition effects the opposite truth value for a simple condition.
Parentheses enclosing negated simple condition do not change the truth value.

Negated simple condition syntax is:

NOT simple-condition J
COMBINED AND NEGATED COMBINED CONDITIONS. A combined condition results from con
necting conditions with AND or OR. Each condition can be a simple condition, a negated condition, a
combined condition or negated combined condition, or a combination of these.

Combined and negated combined condition syntax is:

condition condition}

2-18

SCREEN COBOL Source Program

ABBREVIATED COMBINED RELATION CONDITIONS. In a relation where one item is compared
to several others, the relation can be abbreviated by leaving out the subject item name after the
first reference to it. If the relational operator is the same as the previous operator, the operator can
also be omitted.

Abbreviated combined relation condition syntax is:

condition{ {~~D} [not J [operator J object} J
If NOT appears within the abbreviated condition and is not followed by an operator, the keyword
negates that portion of the condition, but does not automatically carry forward to the next relation.

The following examples illustrate abbreviated combined relation conditions and their expanded
equivalents.

Abbreviated Combined
Relation Condition

a > b AND NOT < c OR d

Expanded Equivalent

((a > b) AND Ca NOT < c)) OR
(a NOT < d)

a NOT EQUAL b OR c (a NOT EQUAL b) OR (a NOT EQUAL c)

NOT a = b OR c (NOT (a = b)) OR Ca = c)

NOT (a GREATER b OR < c) NOT ((a GREATER b) OR Ca < c))

NOT Ca NOT > b AND c AND NOT d) NOT < < < <a NOT > b) AND
(a NOT > c)) AND
(NOT (a NOT > d))))

(a + b - c) > d AND NOT < e OR f (a + b - c) > d AND
(a + b - c) NOT < e OR
Ca + b - c) NOT < f

Condition Evaluation Rules

Parentheses are used to change the order in which individual conditions are evaluated when it is
necessary to depart from the standard precedence. Conditions within parentheses are evaluated
first. When conditions are within nested parentheses, evaluation goes from the innermost condition
to the outermost condition.

When parentheses are not used or when conditions in parentheses are at the same level, the follow
ing order of evaluation is used until the final truth value is determined:

1. Values are established for arithmetic expressions.

2. Truth values for simple conditions are established in the following order:

relation
class
condition-name
sign

2-19

SCREEN COBOL Source Program

3. Truth values for negated simple conditions are established.

4. Truth values for combined conditions are established:

AND logical operators, followed by OR logical operators.

5. Truth values for negated combined conditions are established.

6. When the sequence of evaluation is not completely specified by parentheses, the order of
evaluation of consecutive operations of the same hierarchical level is from left to right.

TABLES

Tables of data are common in data processing problems. For example, a data structure might have
20 total fields, described as twenty identical data items named total-one, total-two, ... , total-twenty.
This would mean twenty different names, which could obscure the interrelated nature of the totals
and make references awkward. A table structure simplifies this problem.

Tables are defined by using an OCCURS clause in their data description. This clause specifies that
an item is repeated as many times as stated. The item is considered to be a table element, and its
name and description apply to each repetition. As an example, the one-dimensional table mentioned
in the preceding paragraph could be defined with this entry:

02 total OCCURS 20 TIMES ...

In the Screen Section, a table must be an elementary item. In the Working-Storage Section and
Linkage Section, the elements of a table can be groups of subordinate structures, some of which can
also be tables. Thus, the previous example might appear in greater detail as:

02 total-g OCCURS 20 TIMES.
03 total-a
03 total-b OCCURS 3 TIMES

The expanded example describes total-a as a one-dimensional table, and describes total-b as a two
dimensional table because an OCCURS clause is applied to an item subordinate to the first
OCCURS clause. If the description of a data item subordinate to total-b also had an OCCURS clause,
the item would be a three-dimensional table. SCREEN COBOL allows a maximum of three dimen
sions in the Working-Storage Section and Linkage Section.

Frequently, tables are built in Working-Storage with constant values that a program needs in addi
tion to the data from external sources. An example of coding for a table containing the full calendar
month names is shown in Figure 2-3.

2-20

SCREEN COBOL Source Program

WORKING-STORAGE SECTION.

01 month-name-table.
05 FILLER PIC XC9) VALUE "JANUARY".
05 FILLER PIC XC9) VALUE "FEBRUARY".
05 FILLER PIC X(9) VALUE "MARCH".
05 FILLER PIC X(9) VALUE "APRIL".
05 FILLER PIC XC9) VALUE "MAY".
05 FILLER PIC XC9) VALUE "JUNE".
05 FILLER PIC XC9) VALUE "JULY".
05 FILLER PIC X(9) VALUE "AUGUST".
05 FILLER PIC XC9) VALUE "SEPTEMBER".
05 FILLER PIC X(9) VALUE "OCTOBER".
05 FILLER PIC XC9) VALUE "NOVEMBER".
05 FILLER PIC XC9) VALUE "DECEMBER".

01 month-name-table REDEFINES month-name-table.
05 month-name OCCURS 1 2 times PICX(9).

Figure 2-3. Sample Table Structure

The term FILLER is a keyword that takes the place of a data name when it is unimportant to name
an item. Because occurrences of a table element do not have individual names, a reference to an oc
currence must give its position number along with the data name of the table. The method of giving
the position number, called subscripting, is described later in this section.

DATA REFERENCE

All items must be named so they can be referenced. Items given unique names can be referenced
with no difficulty, but many programs contain items that do not have unique names. All elements of
a table, for example, share a single name. Also, the same name can be used for more than one data
item, and the same paragraph name can be used in different sections of the Procedure Division.

Names must be unique or made unique through qualification or subscripting.

Qualification

Every name must be unique, either because no other name has the same spelling and hyphenation,
or because the name is subordinate to a unique name. In the latter case, including one or more of the
higher level names qualifies the subordinate item and makes it unique. Although enough qualifica
tion must be present to make a name unique, it is not necessary to include all levels.

For data name references, group names can be used for qualification. Level 01 names are the
most significant qualifiers, then level 02, and so forth.

For condition-name references, the name of the condition variable can be used as qualification,
even if the variable is an elementary item.

For paragraph name references, the section name is the only qualifier available. References to
paragraphs within the same section never require qualification.

2-21

SCREEN COBOL Source Program

For copy text references in COPY statements, the copy text name must be qualified if the text
library that defines it is not the default library for the compilation.

Level 01 names and section names must be unique because they cannot be further qualified.
Regardless of available qualification, a name cannot be both a data name and a procedure
name.

An item is qualified by following a data name, a condition-name, a paragraph name, or a copy text
name by one or more phrases composed of a qualifier preceded by connective IN or OF. IN and OF
are equivalent.

Qualification syntax is:

{
data-name }
condition-name

[l~~l qualification-name]

paragraph-name [l~~l section-name]

[l~~} library-name] copy-text

Qualification rules are as follows:

• Each qualifier must be at a higher level than the previous one, and must stay within the same
structure of the name it qualifies.

• The same name cannot appear at different levels in a structure; otherwise, the name could
qualify itself.

• If a data name or a condition-name is assigned to more than one data item, the data name or
condition-name must be qualified each time it is referenced (except in the REDE:FINES clause
where, by context, qualification is unnecessary).

• A paragraph name cannot be duplicated within a section. Within its own section a paragraph
name does not require qualification. When a section name is used to qualify a paragraph name,
the word SECTION is not part of the name.

• A data name used as a qualifier is not subscripted, even if the data name is described with an
OCCURS clause.

• A name can be qualified even when the name is unique.

• If more than one combination of qualifiers is available to make a name unique, any combination
can be used.

2-22

SCREEN COBOL Source Program

In the following example, all data names except prefix are unique. Qualification must be used to
reference either prefix item.

01 transaction-data 01 master-data .. .
03 item-no .. . 03 code-no .. .

05 prefix .. . 05 prefix .. .
05 code .. . 05 suffix .. .

03 quantity .. . 03 description .. .

Using the same example, any of the following sentences could be used to move the contents of one
prefix to the other prefix:

MOVE prefix OF item-no TO prefix OF code-no.
MOVE prefix OF item-no TO prefix OF master-data.
MOVE prefix OF transaction-data TO prefix IN code-no.
MOVE prefix IN transaction-data TO prefix IN master-data.

Subscripting

Subscripts are used to reference elements in a table. Subscripts are needed because all table
elements have the same name.

The subscript can be an integer numeric literal or a data item that represents a numeric integer.
When the subscript is a data item, the data item name can be qualified, but not subscripted itself.
The subscript can be signed and, if signed, it must be positive.

The lowest possible subscript value is 1. This value selects the first element of a table. The other
elements of the table are selected by subscripts whose values are 2, 3, 4, and so forth. If a subscript
value greater than the size of the table is used, the result is undefined.

The subscript, or set of subscripts, is enclosed in parentheses and appended to the element name of
the table. When more than one subscript is required, they are written in the order of most signifi
cant value to least significant value.

Subscript syntax is:

jdata-name ~
lcondition-name~

(sub-1 [, sub-2 [, sub-3 J J)

The following examples illustrate subscripting:

MOVE total(8) TO report-total-8.

MOVE day of date(3) TO print-line-date.

MOVE month-name(month-number) TO report-month.

MOVE matrix(row, column) TO output-display-line.

2-23

SCREEN COBOL Source Program

Using Identifiers

An identifier is a data name made unique by qualifiers, subscripts, or qualifiers and subscripts. A
data name being used as a subscript or qualifier cannot itself be subscripted.

Identifier syntax is:

[

data-name-1 [l~~l data-name-2]

[(sub-1 [, sub-2 [, sub-3 l l) l

The following examples illustrate specification of identifiers:

unique-identifier

item-1 OF group-a

element OF name-table OF master-data Cmaster-num)

Using Condition Names

Items are tested frequently by a program. Assigning a condition-name to an item is a convenient
way to reference the item and determine its value.

E~very condition-name must be unique or capable of being made unique through qualification and/or
subscripting. If qualification is used to make a condition-name unique, the conditional variable can
be used as the first qualifier. The containing data names of the conditional variable can also be used
as qualifiers. If references to a conditional variable require subscripting, then any of its condition
n.ames must have the same subscripting.

The following example illustrates a condition-name called restricted-use:

01 inventory.
02 part-number OCCURS 100 TIMES ...

03 prefix PIC 99.
03 use-code PIC 9.

88 restricted-use
03 supplier-suffix PIC 99.

VALUE 1.

The condition-name, restricted-use, might be referenced as:

IF restricted-use OF use-code IN part-number (30)
NEXT SENTENCE,

ELSE ••.

2-24

SCREEN COBOL Source Program

DATA REPRESENTATION

In the Working-Storage Section and Linkage Section, data items are stored in a certain number of
bytes; each byte is an 8-bit unit of storage. Bytes are grouped in pairs to form words.

Data items whose usage (as defined by a USAGE clause) is DISPLAY occupy one byte per
character. Data items whose usage is COMPUTATIONAL occupy storage as follows:

PICTURE Size in Digits

1 to 4
5 to 9

10 to 18

Storage Occupied

2 bytes
4 bytes
8 bytes

In the Screen Section, items do not have individual storage assigned; storage of these items is of no
consequence to SCREEN COBOL programming.

Standard Alignment

The standard rules for positioning data within an elementary item depend on the category of the
receiving item. The rules are as follows:

• If the receiving data item is described as numeric, the sending data is aligned either by decimal
point with zero fill on either end of the value or by truncation on the low end, as required. Trun
cation on the high end is not permitted, and if required, causes suspension of the program. When
no decimal point is specified, the receiving data item is treated as if it had an assumed decimal
point immediately following the rightmost character.

• If the receiving data item is described as alphanumeric or alphabetic, the sending data is aligned
at the leftmost character position in the data item with space fill or truncation to the right as re
quired.

Optional Alignment

Standard data representation and alignment rules are not always appropriate, so provisions exist
to override them. The JUSTIFIED clause can be used in the data description to right justify data
within a data item.

Sometimes a server requires that data items in messages be aligned on word boundaries. Data
items aligned on word boundaries are said to be synchronized. Synchronization typically is achieved
by organizing and describing data so that item boundaries coincide with word boundaries. This task
can be eliminated by using the SYNCHRONIZED clause to force alignment of data items to their
natural boundaries.

2-25

SECTION 3

IDENTIFICATION DIVISION

The Identification Division identifies the SCREEN COBOL program. The division has one required
paragraph and five optional paragraphs. If other paragraphs are present, they are treated as com
ments.

The format of the Identification Division is shown in Figure 3-1.

IDENTIFICATION DIVISION.

PROGRAM-ID. program-unit-name.

AUTHOR. [comment-entry J J

INSTALLATION. comment-entry

DATE-WRITTEN. comment-entry

DATE-COMPILED. [comment-entry] J

SECURITY. [comment-entry J J

Figure 3-1. Identification Division Format

The division header is

IDENTIFICATION DIVISION.

The header must begin in Area A and must be terminated with a period separator.

Optional paragraphs AUTHOR, INSTALLATION, DATE-WRITTEN, and SECURITY are included
for documentation purposes only. The comment-entry parameter for these paragraphs can be any
combination of characters from the SCREEN COBOL character set and represents text describing
each paragraph heading.

3-1

Identification Division

PROGRAM-ID PARAGRAPH

The required PROGRAM-ID paragraph names the SCREEN COBOL program unit.

The syntax of the PROGRAM-ID paragraph is:

PROGRAM-ID. program-unit-name

where

program-unit-name

is the name of the SCREEN COBOL program unit; the name can have from l through 30
alphanumeric characters. The name can differ from the file name of the source code or
the object file. This name is used in a CALL statement when the program is referenced in
another SCREEN COBOL program unit. This name is also used by the PATHCOM SET
TERM INITIAL command.

DATE-COMPILED PARAGRAPH

The optional DA TE-COMPILED paragraph causes the compiler to generate the cur:rnnt date and
time and insert it in this line of the source listing.

The syntax of the DA TE-COMPILED paragraph is:

DATE-COMPILED. [comment-entry l

where

comment-entry

is any combination of characters from the SCREEN COBOL character set.

When this paragraph is included, the compiler generates the current date and time, replacing
the DA TE-COMPILED line and any comment-entry with this line:

3-2

DA TE COMPILED. yy/mm/dd - hh:mm:ss

yy is the year
mm is the month
dd is the day

hh is the hour
mm is the minute
ss is the second

range 00-99
range 01-12
range 01-31

range 00-23
range 00-59
range 00-59

SECTION 4

ENVIRONMENT DIVISION

The Environment Division declares the operating environment of the program unit and provides
optional error reporting for screen input operations. The division has two sections: a required Con
figuration Section and an optional Input-Output Section.

The format of the Environment Division is shown in Figure 4-1.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. comment-entry

OBJECT-COMPUTER. object-computer-entry

SPECIAL-NAMES. special-names-entry l

INPUT-OUTPUT SECTION. input-output-entry

Figure 4-1. Environment Division Format

The division header is:

ENVIRONMENT DIVISION.

The header must begin in Area A and must be terminated with a period separator.

4-1

Environment Division

CONFIGURATION SECTION

The required Configuration Section declares the operating environment of the program unit. These
declarations can include terminal type characteristics and screen display attributes.

The section header is:

CONFIGURATION SECTION.

The header must begin in Area A and must be terminated with a period separator.

The Configuration Section contains three paragraphs:

SOURCE-COMPUTER paragraph (required)

OBJECT-COMPUTER paragraph (required)

SPECIAL-NAMES paragraph (optional)

SOURCE-COMPUTER Paragraph

The required SOURCE-COMPUTER paragraph names the computer system by which the program
unit is compiled. The SCREEN COBOL compiler assumes the system is a Tandem system and treats
any name given as a comment.

The SOURCE-COMPUTER paragraph syntax is:

SOURCE-COMPUTER. comment-entry.

where

comment-entry

is one or more words. comment-entry cannot be blank or null characters.

OBJECT-COMPUTER Paragraph

The required OBJECT-COMPUTER paragraph names the computer system on which the object
program runs. The SCREEN COBOL compiler assumes the system is a Tandem system and treats
the name given as a comment.

4-2

The OBJECT-COMPUTER paragraph syntax is:

OBJECT-COMPUTER. comment-word,

TERMINAL IS terminal-type]

CHARACTER-SET IS character-set-type] .

where

comment-word

is a single word only.

TERMINAL IS terminal-type

Environment Division

specifies the type of terminal for which the program is intended. The terminal type entry
is one of the following keywords:

T16-6510
Tl6-6520
T16-6530

These keywords denote a Tandem product number

IBM-3270} This keyword denotes a terminal that is one of the IBM-3270 family, or a
terminal that is program-compatible with such a terminal.

Program units compiled for a T16-6520 terminal can be run on a T16-6530 terminal. If
T16-6520 is specified as terminal-type and the program unit runs on a T16-6530 terminal,
features unique to the T16-6530 are prohibited.

C 0 NV ER SAT ION AL} This keyword denotes that a terminal operates in conversational
mode regardless of the terminal type.

Program units compiled for conversational mode can be run on T16-6510, T16-6520, and
T16-6530 terminals or on any device operating as a conversational mode terminal as
recognized by the GUARDIAN File System. Features unique to the block mode terminal
types are not recognized by the conversational mode SCREEN COBOL program.

If the TERMINAL IS specification is omitted, the program can run on all of the terminal
types listed above. Features unique to a particular terminal cannot be used.

CHARACTER-SET IS character-set-type

provides limited support of national use characters, that is, foreign character sets that
are not USASCII. This parameter can be used only with the T16-6530 terminal and if
specified, must follow the TERMINAL IS specification.

character-set-type is one of the following keywords:

USASCII
FRANCAIS-AZ
FRANCAIS-QW
DEUTSCH
ESPANOL
UK
SVENSK-SUOMI
DAN SK-NORSK

US ASCII
French AZERTY
French QWERTY
German/Austrian
Spanish
United Kingdom
Swedish/Finnish
Danish/Norwegian

If the CHARACTER-SET specification is omitted, USASCII is used.

4-3

Environment Division

If the CHARACTER-SET specification is included and the character set type differs from the cur
rent setting in the terminal or the terminal setting is unknown, the terminal is signalled the
character set type at the first DISPLAY BASE statement in a program unit. After the program
unit completes execution, the terminal is reset to its original character set.

Programmatic support of national use characters is in the following areas:

• field characteristic clause UPSHIFT-Lowercase national use characters are upshifted to their
uppercase equivalents.

• class condition-The condition ALPHABETIC checks for characters in the national use
characters.

• symbol A in PICTURE clauses-A check is made for characters in the nationaJ use character
set.

Programmatic support of national use characters does not affect the following areas:

• field characteristic clause MUST BE -Range tests are not supported for national use
characters.

• tests that involve collating sequence matters-Any comparison tests, such as less-than or
greater-than relations, are not supported for national use characters.

SPECIAL-NAMES Paragraph

The optional SPECIAL-NAMES paragraph allows you to select names and have those names
assigned to certain system names. The paragraph also matches features of a specific terminal with
the words used in the program to refer to those features. With careful use of the correspondences
established in this paragraph, you can remove much of the dependence on terminal type from the
body of the program unit.

The SPECIAL-NAMES paragraph syntax is:

4-4

SPECIAL-NAMES.

[{mnemonic-name IS) system-name } }
t< {system-name} , .•.)

I • • •]

, CURRENCY [SIGN] IS literal-1

, DECIMAL-POINT IS COMMA] •

where

mnemonic-name

is an identifier you select to be associated with a system-name. The mnemonic-name can
be used later in the Screen Section or the Procedure Division of the program to refer to a
function key or display attribute indicated by system-name.

A list of system-names can be equated to a single mnemonic-name only if the system
names refer to display attributes; this causes the mnemonic-name to represent the com-
bination of the display attributes. __..

Environment Division

system-name

specifies a function key or display attribute available on the terminal. Table 4-1 lists the
function keys and display attributes that can appear as a system-name.

CURRENCY [SIGN] IS literal-1

specifies a literal to be used instead of the dollar currency sign ($). Literal-1 must be a
single character and cannot be any of the following:

Digits 0 through 9

Characters A B C D L P R S V X Z space

Special * +) "

DECIMAL-POINT IS COMMA

exchanges the function of comma and period in PICTURE character strings and numeric
literals in the remainder of the program.

4-5

:Environment Division

4-6

Table 4-1. Function Key and Display Attribute System Names

Function Key

Allowed Allowed Allowed Allowed
System-Name (1) for 6510 for 6520 for 6530 for 3270 f

Allowed
or Conv. (4)

CLEAR (2) x
ENTER x
F1 - F16 (unshifted) x x x
SF1 - SF16 (shifted) x x x
NEXT-PAGE x x
PA1 - PA3 (2) x
PA4 - PA10 x
PF1 - PF24 x
PR EV-PAGE x x
RETURN-KEY (3) x
ROLL-DOWN x x
ROLL-UP x x

Display Attribute

BELL x
BLINK x x x
BRIGHT x
DIM x x
HIDDEN x x x x x
MDTOFF x x x
MOTON x x x
NOBE LL x
NOB LINK x x x
NOREVERSE x x
NORMAL x x x x
NOTH I DD EN x x x x x
NOUNDERLINE x x
NUMERIC-SHIFT x
PROTECTED x x x x
REVERSE x x
UNDERLINE x x
UNPROTECTED x x x x

NOTES:

(1) System-name words are not reserved words.

(2) Used in ESCAPE clause of ACCEPT statement only.

(3) If the SCREEN COBOL program is to run on a Tandem 6530 terminal, a return key function c
in the SPECIAL-NAMES paragraph of the program. When the RETURN key is pressed a funct

an be defined
ion code will
1e return key be transmitted. If a function is not defined, no return key function code exists-pressing tt

will cause a forward tab action.

A return key function is local to a program unit. The first DISPLAY BASE statement of the
causes the terminal to adjust the RETURN key operation to the setting indicated by the e
gram unit.

~rogram unit
xecuting pro-

(4) Applies for any terminal specified CONVERSATIONAL in the OBJECT-COMPUTER paragrap h.

Environment Division

The following example illustrates the SPECIAL-NAMES paragraph:

SPECIAL-NAMES.
ENTER-KEY IS F1,
EXIT-KEY IS F16,
INPUT-ATTR IS UNDERLINE,
SIGNAL-ATTR IS (REVERSE, NOUNDERLINE).

INPUT-OUTPUT SECTION

The optional Input-Output Section provides error reporting for screen input operations. If this sec
tion is omitted, the error display attribute is dependent on the terminal type specified in the Con
figuration Section.

The section header is:

INPUT-OUTPUT SECTION.

The header must begin in Area A and must be terminated with a period separator.

The Input-Output Section syntax is:

SCREEN-CONTROL.

ERROR-ENHANCEMENT [IS] mnemonic-name [IN

[WITH [NO] AUDIBLE ALARM] .

where

ERROR-ENHANCEMENT [IS] mnemonic-name

specifies the display attribute with which fields found to be in error are to be enhanced.
The BLINK attribute is used for the T16-6510, T16-6520, and T16-6530 terminals; the
BRIGHT attribute is used for the IBM-3270 terminal.

IN FIRST

enhances the first field that is found to be in error.

IN ALL

enhances all fields that are found to be in error.

NOTE

For terminals operating in conversational mode, I N F I RS T is the only
recognized enhancement option. If I N A L L is specified, the phrase is ig
nored and the first field containing an error is enhanced.

WITH [NO] AUDIBLE ALARM

enables or disables the audible indicator when an error is detected.

4-7

Environment Division

Procedure Division ACCEPT statement processing checks the contents of input fields against the
requirements of a PICTURE clause and any constraints, such as those imposed by a MUST BE field
characteristic clause. ACCEPT processing attempts to indicate which field is in error. The ERROR
ENHANCEMENT option allows you to control some aspects of the error processing.

4-8

SECTION 5

DATA DIVISION

The Data Division describes the data that the program creates, accepts as input, manipulates, or
produces as output. The division has three sections: a Working-Storage Section, a Linkage Section,
and a Screen Section. Each section is optional and is included only when the type of data the section
defines is used in the program.

Data described in the Data Division falls into two categories:

• Data formatted for display on a terminal or received as input from a terminal.

• Data developed internally by the program and placed in temporary areas described in the
Working-Storage Section or Linkage Section.

The format of the Data Division is shown in Figure 5-1.

DATA DIVISION.

WORKING-STORAGE SECTION.

data-description-entries

LINKAGE SECTION.

data-description-entries

SCREEN SECTION.

input-control-entries <---- For conversational mode only.

screen-description-entries]

Figure 5-1. Data Division Format

The division begins with a division header. The format of the header is:

DATA DIVISION.

The header must begin in Area A and must be terminated with a period separator.

5-1

Data Division

IDATA DIVISION SECTIONS

'rhree sections comprise the Data Division: Working-Storage Section, Linkage Section, and Screen
:Section. When all three sections are included in a program; they must be written in the order shown
in Figure 5-1. Items within each section can be written in any order.

Each section describes a different type of data. Sections are defined as follows:

• Working-Storage Section -This section describes the structure of local data developed within
the program. Data entries in this section are initialized each time the program unit is called;
therefore, values are not retained between calls.

• Linkage Section-This section describes the structure of parameter data passed to a sub
program by a CALL statement. Items described in the calling program are referenced in the
USING clause of the Procedure Division of a called program.

• Screen Section -This section describes the types and locations of fields in screens that can be
displayed on the terminal. Screens described in the Screen Section are those that are referenced
in the Procedure Division of the program.

Working-Storage Section

The Working-Storage Section defines records and miscellaneous data items that are used for inter
nal purposes. Data entries in this section can be set to initial values. When local data items or in
termediate storage is not necessary, this section can be omitted.

The section begins with a section header. The format of the header is:

WORKING-STORAGE SECTION.

The header must begin in Area A and must be terminated with a period separator.

Data description entries for individual items follow the header. All item names must be unique.
Subordinate data names can be duplicated as long as they can be qualified.

Linkage Section

The Linkage Section describes data that is passed from one program to another and is available to
both programs. This section is required when a program is called from another progTam. No local
data is used in the called program for these items; the calling program item is used during execution
of the called program.

The section begins with a section header. The format of the header is:

LINKAGE SECTION.

The header must begin in Area A and must be terminated with a period separator.

A Procedure Division reference in the called program accesses the location in the cailing program.
Statements within the Procedure Division of the called program can only reference Linkage Section
items given in the Procedure Division header USING clause of the calling program. Subordinate
data items and condition names can be used. The called program is invoked by a CALL statement
with a USING clause corresponding to the USING clause of the calling program.

The structure of the Linkage Section is the same as that of the Working-Storage Section except the
VALUE clause is prohibited for items other than level 88 items.

5-2

Data Division

Screen Section

The Screen Section describes the screens that are referenced in the Procedure Division. The struc
ture of the Screen Section is similar to that of the Working-Storage Section. The section makes pro
vision for two types of screens: base and overlay.

The section begins with a section header. The format of the header is:

SCREEN SECTION.

The header must begin in Area A and be terminated with a period separator.

DATA STRUCTURE

Data is described through a set of entries that name the components of a structure, describe the at
tributes of those components, and describe the structure into which the components are organized.
Each entry has a level number followed by a data name, and possibly a series of independent
clauses. The level numbers depict the structure, dividing the data further and further down to its
smallest parts.

The lowest subdivisions of a structure, that is, those not further subdivided, are called elementary
items. A structure can be a single elementary item or a series of elementary items.

Sets of elementary items can be referenced by combining them into groups. Groups, in turn, can be
combined into groups; an elementary item, therefore, can belong to more than one group.

Level Numbers 01-49

Level numbers 01 through 49 describe the hierarchy of data items. The structure itself is assigned
level number 01.

The system of level numbers shows the relationship of elementary items to group items. Data items
within a group are assigned level numbers higher than that of the group item. Level numbers
within the group need not be consecutive, but they must be ordered so that the higher the level
number the lower the entry in the hierarchy.

A group includes all group and elementary items following it until a level number less than or equal
to the level number of that group is encountered. All items or groups immediately subordinate to a
given group item must be described using identical level numbers greater than the level number of
that group item.

5-3

Data Division
Working-Storage or Linkage Section

An example of level numbering is shown in Figure 5-2.

01 address-data.
05 office-number.

1 0 district PIC 99.
1 0 region PIC 999.

05 office-address.
10 street PIC XC25).
1 0 city PIC XC15).
1 0 state PIC x (5) .
1 0 zip-code PIC 9(5).

01 personnel-data.
05 office-manager PIC XC35).
05 no-of-employees PIC 9 (4).
05 tax-groups.

10 hourly PIC 9 (3) •
1 5 part-time PIC 99.
1 5 full-time PIC 99.

10 exempt PIC 9 (4) •

Figure 5-2. Level Numbering Within a Structure

Level Numbers 66, 77, and 88

Three additional types of data entries can exist in the Working-Storage Section and Linkage Sec
tion: level 66, level 77, and level 88 data entries. Entries that begin with these level numbers do not
define the hierarchy of the item described. Entries are defined as follows:

• Level 66-A level 66 data entry specifies elementary items or groups introduced by a
RENAMES clause. These entries are used to regroup contiguous elementary data items.

• Level 77 -A level 77 data entry is an independent data item that is not a subdivision of another
data item. The data item is not itself subdivided.

• Level 88-A level 88 entry defines a condition name, including a value or range of values that
define the condition to be tested.

DATA DESCRIPTION ENTRY

A data description entry defines the characteristics of a data item. The entry can be used in the
Working-Storage Section or Linkage Section of the SCREEN COBOL program.

Several forms are available to describe items for various purposes. Some entries cause the creation
of items (memory space is allocated), while others supply alternative descriptions or reference
points for already existing data. Others supply specification of value ranges for later testing.

A skeleton of the data description entry is shown in Figure 5-3.

5-4

WORKING-STORAGE SECTION.

or

LINKAGE SECTION.

Format 1

level-number
{

data-name-1 }
FILLER

JUSTIFIED clause

OCCURS clause J

PICTURE clause J

REDEFINES clause

SIGN clause J

SYNCHRONIZED clause

USAGE clause

Data Division
Working-Storage or Linkage Section

VALUE clause <----- For WORKING-STORAGE SECTION only.

Format 2

[66 new-name [RENAMES clause J]

Format 3

[88 condition-name , [VALUE clause J J

Figure 5-3. Data Descriptionjntry Skeleton

Format 1 of Figure 5-3 describes data of levels 01 through 49 and level 77. The data-name-1 entry is
the name of the storage area defined by the subordinate items. In the following example, store
address references everything from street through zip-code.

01 sample-record.
05 store-id.

10 store-number PIC 999.
10 store-region PIC x.

05 store-manager PIC X(35).
05 store-address.

10 street PIC XC25).
10 city PIC XC15).
1 0 state PIC XC2).
1 0 zip-code PIC 9 (5) .

05 FILLER PIC XC14).

5-5

Data Division
Working-Storage or Linkage Section

The FILLER keyword takes the place of a data name when it is unimportant to name an item.
FILLER is commonly used when building Working-Storage records, such as error messages, where
most of the text is groups of constants. The text groups can be separated by the filler. In the follow
ing example, FILLER defines an area in storage that cannot be referenced in the program except as
part of the enclosing item, first-record:

01 first-record.
05 record-code PIC 99.
05 record-type PIC xx.
05 FILLER PIC XC30).
05 division-code PIC 999.

A level 77 entry cannot itself be subdivided. Level 77 entries, like level entries 01 through 49, must
be immediately followed by a data name or keyword FILLER. For example:

01 first-record.
05 record-code PIC 99.
05 record-type PIC xx.

77 temp-1 PIC x (4) •

77 temp-2 PIC x (3) .

Various examples of level 77 items appear in Section 6.

Format 2 of Figure 5-3 describes a level 66 entry, which renames one or more contiguous elemen
tary items. In the following example, the group card-codes is renamed code:

05 card-codes.
10 store-code
10 state-code

PIC 9.
PIC 9(4).

66 code RENAMES card-codes.

Format 3 of Figure 5-3 describes a level 88 entry, which assigns condition--name values. In the
following example, item tax-code is defined with a range of values:

05 tax-code PIC 99.
88 tax-range VALUES ARE 01 THRU 20.

JUSTIFIED Clause

The JUSTIFIED clause causes nonstandard positioning of data within a receiving item. The clause
can only appear in the data description of an elementary item; the clause cannot be used for a data
item that is described as numeric.

The syntax of the JUSTIFIED clause is:

{
JUST }
JUSTIFIED

RIGHT

When a receiving data item is described with the JUSTIFIED clause, the standard alignment rules
do not apply. If a sending item is too big for the receiving item, the sending item is truncated on the
left. If the sending item is smaller than the receiving item, the rightmost character of the sending
item is aligned with the rightmost character of the receiving field and the value is extended to the
left with space characters.

5-6

Data Division
Working-Storage or Linkage Section

When the JUSTIFIED clause is omitted, standard alignment rules dictate that alignment is left
justified and truncation or padding, when necessary, occurs on the right.

NOTE

The JUSTIFIED clause is ignored when initializing an item with the literal given in a
VALUE clause.

OCCURS Clause

The OCCURS clause defines tables and other sets of repeating items, thus eliminating the need for
separate item entries. These tables can be a fixed number of elements or can vary within given
limits. An OCCURS clause is illegal in an 01 level.

The syntax of the OCCURS clause is:

Format 1 (fixed length table)

OCCURS max [TIMES J

where

max

is an integer that represents the number of elements in the table.

Format 2 (variable length table)

OCCURS min TO max [TIMES J DEPENDING [ON J depend

where

min

is an integer that represents the smallest number of elements in the table at any time.
The integer must be greater than or equal to zero, and less than or equal to max.

max

is an integer that represents the greatest number of elements the table can have at any
time.

depend

is an integer data item that controls the size of the table. As the value of the depend item
increases or decreases, the number.of elements in the table increases or decreases. When
the table size decreases, those elements beyond the new depend limit are lost even if the
next statement increases the table to include them. When the table size increases, you
must assign values to the new elements before using them.

The following example illustrates the OCCURS clause:

01 table-group.
02 activity-count PIC 99.
02 activity-table OCCURS 10 TO 20 TIMES

DEPENDING ON activity-count.
05 activity-entry PIC 999.

5-7

Data Division
Working-Storage or Linkage Section

When using the data name that represents a table item, you must use subscripts to access the item.
You can use the data name without subscripts only when you want the entire table (for example, in
a MOVE statement). If the data name is a group item, you must use subscripts for all items belong
ing to the group whenever they are used as operands. Subordinate data names used as objects of a
REDEFINES clause are not considered operands and, therefore, cannot be subscripted.

A data description entry with an OCCURS DEPENDING ON clause can only be followed, within its
data description, by descriptions of subordinate items. In other words, only one table with a
variable number of occurrences can appear in a single data description, and the data i terns contained
by the table must be the last data items in the data description.

Data items subordinate to an entry described with an OCCURS clause can themselves contain an
OCCURS clause. Tables can consist of such multiple occurrences of subordinate tables for a max
imum of three levels. A data description entry containing either format of the OCCURS clause can
be followed by subordinate entries containing a fixed length table OCCURS clause; however, a data
description entry with an OCCURS DEPENDING ON cannot be subordinate to a group entry
described with either format of the OCCURS clause.

PICTURE Clause

The PICTURE clause defines the characteristics of an elementary item.

The syntax of the PICTURE clause is:

{ PI C }
PICTURE

IS] character-string

where

character-string

is one or more symbols that determine the category of an elementary item and place
restrictions on values assignable to the item.

A maximum of 30 characters is allowed in character-string. When the same PICTURE character
repeats, you can write it once followed by an unsigned integer enclosed in parentheses. The integer
indicates how many times that character is repeated. For example:

PIC 9(5) is equivalent to PIC 99999.

Although only 30 characters can make up a character string, you can use the repetition technique to
define items longer than 30 characters.

The character-string symbols that are defined in the following paragraphs are used to describe a
data item.

PICTURE CHARACTER-STRING SYMBOLS. Each symbol that is used to describe a data item has a
specific function. The symbols are as follows:

A represents a character position for a letter of the alphabet or a space character. The symbol
is counted in the size of the data item.

5-8

Data Division
Working-Storage or Linkage Section

P indicates scaling when the decimal point is not among or adjacent to the digits of the data
item stored. The symbol is counted in determining the maximum number of digit positions in
numeric items (the maximum is 18). One or more P symbols can appear only as a contiguous
string to the left or right of all other digit positions in the PICTURE string. Since P implies
an assumed decimal point, the P symbol is redundant when used with the V symbol.

If an operation involves conversion of data from one form of internal representation to
another and the data item being converted is described with the P symbol, each digit posi
tion described by a P is considered to have the value zero; the size of the data item includes
those digit positions.

S represents a signed numeric value. The symbol is counted in the size of the item only if a
SIGN IS SEPARATE clause is used.

V represents the decimal point location in noninteger numeric items. The symbol is not
counted in the size of the item.

X represents a character position that can have any character from the ASCII character set.
The symbol is counted in the size of the item.

9 represents a character position for a digit. The symbol is counted in the size of the item.

ITEM SIZE. The size of a data item is determined by the symbols in its PICTURE string. Each A, X,
and 9 is counted as one character position. An S is counted as one character only if the item is sub
ject to a SIGN IS SEPARATE clause.

If a data item is described as DISPLAY in a USAGE clause, the size of the item includes the PIC
TURE string symbols. If the item is described as COMPUTATION AL, the size of the item is com
puted differently, as described under the USAGE clause.

CATEGORIES OF DATA. The PICTURE clause can describe three categories of data: alphabetic,
numeric, and alphanumeric. The results of most statements in the Procedure Division depend on
the categories of the data items. Some statements require certain categories for some or all of their
operands. In some cases, a statement can take different actions depending on the category of the
data items.

In the discussion that follows, 9 and A symbols within the PICTURE string are described as
representing character positions that have only numbers or letters and spaces. For reasons of effi
ciency, the SCREEN COBOL compiler does not always enforce this restriction. Characters other
than those permitted can be moved into these positions if they appear in the corresponding group
positions of a sending data item. SCREEN COBOL considers every group item to be alphanumeric.
Manipulations on group items ignore all PICTURE strings. For example, a move operation into a
group item can cause any position of an item to contain any ASCII character.

Alphabetic Data. An alphabetic data item can have only A symbols in the PICTURE string. The
contents of this type of item are represented externally as some combination of the 26 letters of the
alphabet and the space character.

5-9

Data Division
Working-Storage or Linkage Section

The following examples illustrate alphabetic data:

05 package-code PIC AAA.

05 dept-id PIC AAC6)AA.

05 dept-code PIC AA(2)AA.

Numeric Data. A numeric data item can have 9, P, S, and V symbols in the PICTUHE string. The
number of digits described must be greater than zero and not more than 18. The contents of this
type of item are represented externally as a combination of digits 0 through 9.

If the item is signed, a plus or minus is included when the data is moved to a screen item, or when a
SIGN IS SEPARATE clause is specified. In all other instances, the sign is encoded within one of the
digits.

The following examples illustrate numeric data:

05 division-total PIC S9C10)V99.

05 fraction-amount PIC PP99.

Alphanumeric Data. An alphanumeric data item can have combinations of A, X, and 9 symbols in
the PICTURE string, but the item is treated as if the string contained all X symbol~ .. The contents
of the item can be any combination of ASCII characters. A PICTURE string of all A symbols or all 9
symbols is not an alphanumeric item.

The following examples illustrate alphanumeric data:

10 stock-item-name PIC XC25).

10 zone-id PIC AC4)99.

REDEFINES Clause

The REDEFINES clause allows the same computer storage area to be described in more than one
way. This capability is valuable for such tasks as input data validation when tests require different
descriptions of the data. This capability is convenient when some portions of a record are constant,
while other portions vary.

The syntax of the REDEFINES clause is:

REDEFINES data-name-2

where

data-name-2

is the data item being redefined.

5-10

Data Division
Working-Storage or Linkage Section

The REDEFINES entry must immediately follow the entry for the data item being redefined or
must immediately follow the last item subordinate to that data item. The level number of the
REDEFINES entry must be the same as the item being redefined by the clause.

The following rules apply to the REDEFINES clause:

• Level numbers 66 and 88 cannot be redefined.

• The redefined data item cannot have an OCCURS clause or REDEFINES clause.

• The data name of the redefined item cannot be subscripted or qualified.

• Neither the original definition nor the redefinition can include an item whose size is variable due
to an OCCURS clause of a subordinate entry.

• A VALUE clause cannot be included.

• When the level number is not 01, the redefinition cannot be greater than the number of
character positions (bytes) in the data item you are redefining.

• The redefined item can be subordinate to an item with an OCCURS clause or a REDEFINES
clause.

• The REDEFINES entry can be followed by subordinate data entries. Redefinition continues un
til the appearance of a level number less than or equal to that of the data name being redefined
or until the ending of the current section of the Data Division.

The REDEFINES clause redefines a storage area, not the data items occupying the area. Multiple
redefinition of the same area is permitted, but all definitions must begin with a REDEFINES clause
containing the data name of the entry that originally defined the area.

The following example illustrates the REDEFINES clause:

WORKING-STORAGE SECTION.

01 record-in.
05 record-code PIC 9.
05 record-detail PIC X(30).
05 record-subtotal PIC 9(3)V99.

01 record-total REDEFINES record-in.
05 total-1 PIC 9(5)V99.
05 total-2 PIC 9(5)V99.
05 total-3 PIC 9(5)V99.
05 total-4 PIC 9(5)V99.
05 total-5 PIC 9(6)V99.
05 total-5-sub REDEFINES total-5 PIC XC8).

RENAMES Clause

The REN AMES clause assigns a new data name to one or more contiguous elementary items within
a data description. RENAMES does not cause any allocation of storage. The clause can only be used
with a level 66 entry.

5-11

Data Division
Working-Storage or Linkage Section

The syntax of the REN AMES clause is:

66 new-name RENAMES old-name

where

new-name

is the new name for a group item or elementary item.

old-name

is a group item, an elementary item, or the first of several items to be given a new name.

end-name

is the last group item or elementary item to be included in the new name.

The RENAMES clause merely renames a group of existing data items and does not redescribe any
of their characteristics; therefore, no other clauses can be used. One or more REN AMES entries
can be written for a structure; these entries can occur in any order, but must immediately follow the
last data description entry of the structure.

When the THROUGH option is not specified, new-name merely renames old-name .. New-name is a
group item only if old-name is a group item.

When the THROUGH option is specified, the following rules apply:

• Old-name and end-name must be data areas within the same structure.

• Old-name and end-name cannot have the same names, but the names can be qualified.

• Old-name and end-name cannot be the names of data entries with level number 01, 77, 66, or 88.

• Old-name and end-name cannot be described by an OCCURS clause in their definitions, and they
cannot be subordinate to an item described by an OCCURS clause.

• End-name cannot name an item that occupies character positions preceding the beginning of the
area described by old-name.

• End-riame cannot name an item that is subordinate to old-name.

• Items within the renamed area cannot be described by an OCCURS clause.

5-12

Data Division
Working-Storage or Linkage Section

When the THROUGH option is specified, new-name is a group item that includes all elementary
items within the bounds established by old-name and end-name. The following defines the begin
ning and end of the group:

• If old-name is an elementary item, the new group item begins with old-name.

• If old-name is a group item, the new group item begins with the first elementary item of old
name.

• If end-name is an elementary item, the new group item ends with end-name.

• If end-name is a group item, the new group item ends with the last elementary item of end-name.

The following example illustrates the RENAMES clause:

05 card-codes.
1 0 store-code PIC 9.
1 0 state-code PIC 9 (4) .

05 account-number PIC 9 (6) .
05 check-digit PIC 9.
66 card-number RENAMES card-codes THRU check-digit.

SIGN Clause

The SIGN clause specifies the position and mode of an operational sign for a numeric data item. The
clause can only be used for items that are described as DISPLAY in a USAGE clause and have an S
symbol in the PICTURE string.

The syntax of the SIGN clause is:

SIGN [IS]

where

LEADING

{
LEADING } [SEPARATE [CHARACTER]]
TRAILING

indicates the sign is at the beginning of the item.

TRAILING

indicates the sign is at the end of the item.

SEPARATE [CHARACTER]

specifies the sign becomes a separate character and is counted in the size of the item. A
+ for positive and a - for negative is placed at the beginning or end of the item value.

If this phrase is omitted, the sign is at the end of the item and is not counted in the size of
the item.

The following example illustrates the SIGN clause:

05 WS-subtotal-value PIC S9(02) SIGN IS TRAILING SEPARATE.

5-13

Data Division
Working-Storage or Linkage Section

SYNCHRONIZED Clause

The SYNCHRONIZED clause forces alignment of an elementary item on the most natural computer
storage boundary.

The syntax of the SYNCHRONIZED clause is:

{
SYNC t
SYNCHRONIZED f

where

RIGHT and LEFT

[
RIGHT]
LEFT

have no effect in SCREEN COBOL.

A VALUE clause must not appear for any group item that has a subordinate item d·escribed with
the SYNCHRONIZED clause.

In most cases the alignment supplied automatically by the compiler is also the most natural;
however, use of the SYNCHRONIZED clause has an effect in a few special cases. Alignment con
siderations are as follows:

• Alignment requirements can cause SCREEN COBOL to generate implicit FILLEH data. The ex
istence of this generated data must be accounted for in certain situations.

• DISPLAY items are composed of one or more character positions and are stored as an equal
number of 8-bit bytes. The byte boundary is also their natural storage boundary; therefore, the
SYNCHRONIZED clause has no effect on DISPLAY item alignment.

• COMPUTATIONAL items are stored as an even multiple of bytes. Their most natural storage
unit is some multiple of the 16-bit computer word, each of which contains two bytes. The
SCREEN COBOL compiler automatically aligns COMPUTATIONAL items to word boundaries.
This is also the natural boundary for small COMPUTATIONAL items (those itc:ms with PIC
TURES containing up to four 9s).

• Larger COMPUTATIONAL items (those items with PICTURES containing five or more 9s) are
naturally stored as one or two 32-bit double-words. The SYNCHRONIZED clause is effective for
these items because it forces their alignment on a double-word boundary.

5-14

Data Division
Working-Storage or Linkage Section

• All level 01 and level 77 items in the Working-Storage Section and Linkage Section are
automatically allocated by the SCREEN COBOL compiler so they begin on a word boundary.
The compiler logic treats these items as simultaneously beginning on a byte, word, and double
word boundary. Thus, each level 01 and level 77 Working-Storage Section or Linkage Section
item is inherently aligned to its most natural storage boundary.

• Words begin on two-byte boundaries and double-words begin on four-byte boundaries. Align
ment, either automatic or as requested by use of the SYNCHRONIZED clause, generates im
plicit FILLER data in some cases.

If an odd number of character positions precedes a word-aligned item within a record, the
compiler inserts one character position (byte) of FILLER before the item to complete
allocation of the preceding word.

If the number of character positions preceding a double-word aligned item within a
record is not a multiple of four, the compiler inserts the amount of FILLER (1, 2, or 3
bytes) needed to complete allocation of the preceding double-word. These extra bytes are
not part of the data item.

If a group item contains two items separated by implicit FILLER bytes, these bytes are a
part of that group item. However, a group item always begins with the first character
position of its first elementary item, ignoring any implicit FILLER bytes that were
generated to properly align that item. Thus, the initial character positions of a group
item are never implicit FILLER.

• Special considerations apply when aligning an elementary data item that is described with an
OCCURS clause, is subordinate to a group item described with an OCCURS clause, or both. In
these cases all occurrences of the data item must be aligned uniformly.

The first occurrence of the item is aligned to the required storage boundary (if the
elementary item also begins a containing table's first occurrence, that table's first occur
rence is defined to begin at the first character position of the item). When the aligned
item is itself a table, the first occurrence will end on the appropriate storage boundary
(byte, word, double-word) and the remaining occurrences follow without additional
FILLER bytes.

When the aligned item (or table of aligned items) belongs to a higher level table, further
adjustment might be necessary. If the elementary item is word-aligned and the contain
ing group occurrence consists of an odd number of character positions, the compiler in
serts one byte of FILLER after each group occurrence. If the item is double-word aligned
and the size of the containing group occurrence is not some multiple of four, the compiler
inserts the appropriate amount of FILLER (1, 2, or 3 bytes) after each group occurrence.
In all cases, inserted bytes are not part of the containing occurrences themselves, but are
included in group items that contain the complete table. The preceding sequence is
repeated for each higher level table.

5-15

Data Division
Working-Storage or Linkage Section

The following example illustrates alignment as it applies to multiple OCCURS clauses:

01 master.
02 table-1 OCCURS 5 TIMES.

03 table-2 OCCURS 5 TIMES.
04 table-3 OCCURS 5 TIMES.

05 item-a PIC 999 COMPUTATIONAL.
05 item-b PIC X.

04 item-3
03 item-2

PIC X.
PIC X.

Master appears to occupy this many bytes:

(((2+1) * 5+1) * 5+1) * 5 = 405 bytes

but it actually occupies

(((2+1+1) * 5+1+1) * 5+1+1) * 5 = 560 bytes

due to the alignment requirement for the COMPUTATION AL item.

Implicit FILLER bytes must be accounted for in several situations. These bytes are counted when
determining the size of group items that contain them. Thus, when a data item contains implicit
FILLER bytes, the character positions of the bytes are included in the allocation requirements of
the item. Also, implicit FILLER bytes must be included among the character positions redefined if
a containing group item appears as the object of a REDEFINES clause.

Automatic alignment or requested alignment of data items described by redefinition of character
positions (through use of the REDEFINES clause) follows the rules described in the preceding
paragraphs. However, when the first data item allocated by a redefinition requires word or double
word alignment, the data item being redefined must begin on the appropriate boundary. In other
words, SCREEN COBOL does not permit redefinitions that require insertion of implicit FILLER
bytes before the first data item of the redefinition. Any bytes inserted at other places within the
redefinition are counted when determining the redefinition size.

USAGE Clause

The USAGE clause defines how a data item is stored within the Tandem system, and normally af
fects the number of character positions used. The USAGE clause does not restrict how the item is
used; however, some statements in the Procedure Division require certain usages for their
operands.

The syntax of the USAGE clause is:

[USAGE [IS]] COMP
COMPUTATIONAL
DISPLAY

where

COMP or COMPUTATIONAL

indicates a numeric data item that is suitable for computations.

DISPLAY

indicates a data item value that is stored in the standard data format as a sequence of
ASCII characters.

If the clause is omitted, the default is DISPLAY.

5-16

Data Division
Working-Storage or Linkage Section

A USAGE clause can be written at any level. A USAGE clause written at the group level applies to
each elementary item in the group. The usage of an elementary item cannot contradict the USAGE
clause of a group to which the item belongs. Note, however, that a group item is always considered
to be alphanumeric by SCREEN COBOL; thus, the USAGE clause of a group item might not always
apply to the manipulation of the item.

A COMPUTATIONAL item has a value suitable for computations and, therefore, must be numeric.
The PICTURE string of the item can have only the symbols 9, S, V, and P. Two to eight bytes are
selected for a COMPUTATIONAL item, depending on the number of 9 symbols in the PICTURE as
follows:

Number of 9 symbols

1 to 4
5 to 9

10 to 18

Size of Data Item

2 bytes
4 bytes
8 bytes

Declaration of a group item as COMPUTATIONAL implies that all subordinate items in the group
are COMPUTATIONAL. The group item itself cannot be used in computations.

A DISPLAY item has a value that is stored in the standard data format as a sequence of ASCII
characters. The characteristics of the item are given in the PICTURE string.

If the PICTURE string of a numeric item contains an S symbol, the item has an operational sign. If a
SIGN IS SEPARATE clause is not specified, the operational sign is maintained as part of either the
leading or trailing digit; the affected character position will contain a non-digit ASCII character.

VALUE Clause

A VALUE clause specifies an initial value of a Working-Storage item or the value of a level 88
condition-name.

The syntax of the VALUE clause is:

Format 1 (data initialization)

VALUE [IS l Literal

where

Literal

is the initial value to be assigned to a data item. The value can be a figurative constant.

5-17

Data Division
Working-Storage or Linkage Section

Format 2 (condition name entries)

88 condition-name
{

VALUE [IS] t
VALUES [ARE] J

THROUGH
THRU

l value-2J! I • • •

where

condition-name

is the name of the condition value.

value-1

is either a single literal value or the first of a range of literal values tested by the condi
tion.

value-2

is the final literal value in a range of literal values tested by the condition. The value
must be greater than value-1.

VALUE CLAUSE FOR DATA INITIALIZATION. Format 1 of the VALUE clause is ust::d to assign an
initial value to a Working-Storage item at the time the program is entered. The VALUE clause
must not conflict with other clauses in the data description of an item, or in the data descriptions of
other items within the hierarchy. The following rules apply:

• If an item is numeric, all literals of the VALUE clause must be numeric and must be in the range
of values set by the PICTURE string. Truncation of nonzero digits is not allowed. A signed
numeric literal only applies to a signed numeric PICTURE. Initialization follows standard align
ment rules.

• If an item is nonnumeric, all literals of the VALUE clause must be nonnumeric and must not ex
ceed the size of the PICTURE. JUSTIFIED clauses are ignored.

• The VALUE clause is not permitted in a data description entry that meets the following
criteria:

The entry contains an OCCURS or REDEFINES clause.

The entry is subordinate to an entry containing an OCCURS or REDEFINES clause.

The entry has a variable size due to an OCCURS clause in a subordinate entry.

• If the VALUE clause is used for initialization at the group level, the literal must be a figurative
constant or a nonnumeric literal. The group area is initialized without consideration for the in
dividual elementary or other group items within this group. Thus, the group should not have
items with descriptions that include JUSTIFIED or USAGE IS COMPUTATIONAL clauses. A
VALUE clause cannot appear at the subordinate levels within this group.

5-18

Data Division
Working-Storage or Linkage Section

The following example illustrates the VALUE clause used for data initialization:

WORKING-STORAGE SECTION.

01

01

main-heading.
05 FILLER
05 FILLER
05 FILLER
05 FILLER

counters.
05 no-of-reads
05 no-of-writes

PIC XX
PIC XC8)
PIC XX
PIC XC6)

PIC 9(5)
PIC 9(5)

VALUE SPACES.
VALUE "DIVISION".
VALUE SPACES.
VALUE "REGION".

VALUE ZEROS.
VALUE ZEROS.

VALUE CLAUSE FOR CONDITION-NAME ENTRIES. Format 2 of the VALUE clause is used with
condition-name entries. A data item assigned in the Data Division using the special level number 88
is a condition-name; the item under which the 88 appears is the condition variable. A value or a
range of values can be defined within this variable for testing. Each entry under a condition
variable includes a condition-name with a VALUE clause specifying a value or a range of values for
that condition-name.

All condition-name entries for a particular condition variable must immediately follow the entry
describing that variable. A condition-name can be associated with any data description entry, even
if specified as FILLER, with the following exceptions:

• A condition-name cannot be associated with a level 66 or 77 item.

• A condition-name cannot be associated with a group item with a JUSTIFIED or USAGE IS
COMPUTATIONAL clause.

A single value, several values, or a range of values can be given for a condition-name entry.

The following example illustrates single values for condition-names:

05 return-code PIC 99. condition variable
88 end-of-file VALUE 01 .
88 error-on-read VALUE 02. condition-names
88 permanent-error VALUE 03.
88 error-on-write VALUE 04.

A statement using one of these condition-names might look like this:

IF end-of-file,
PERFORM end-up-routine.

The following example illustrates a range of values for a condition-name:

05 tax-code PIC 99.
88 tax-range VALUES ARE 00, 03, 07 THROUGH 11.

A statement testing tax-code for being in the range of 00, 03, 07, 08, 09, 10, 11 might look like
this:

IF NOT tax-range
PERFORM tax-error-routine.

5-19

Data Division
Screen Section

SCREEN DESCRIPTION ENTRY

A screen description entry declares the characteristics of a screen format. The entry is used in the
Screen Section of the SCREEN COBOL program.

A screen can be composed of any combination of literal fields, input fields, output fields, input
output fields, and overlay areas. Each of these items can be combined into logically related groups.
A group declaration provides easy reference to related fields, but it is not required.

The two types of screens are: base and overlay.

• Base screen -A base screen can be displayed independently. This type of screen can contain
overlay areas upon which overlay screens can be displayed.

• Overlay-An overlay screen is displayed in an overlay area of a base screen. This allows a base
screen (with, for example, a constant header section) to be used with various overlay screens.

The structure of the screen description entry is similar to a data description entry. The screen
description entry is a series of declarative sentences, each beginning with a level number to indi
cate the hierarchy. A higher number indicates that the entry is subordinate to the previous entry.
The 01 level is the highest statement in the paragraph. Subordinate entry levels can be any number
from 02 through 49.

A skeleton of the screen description entry is shown in Figure 5-4.

SCREEN SECTION.

01 base-screen-name [BASE J [SIZE clause J
[input-control-character clauses J <--- For conversational

field-characteristic clauses J •••

{
screen group }
screen field
screen overlay area

mode only.

01 overlay-screen-name OVERLAY SIZE clause [field
characteristic clauses J •••

{
screen group }
screen field

Figure 5-4. Screen Description Entry Skeleton

Level 01 introduces a screen description entry. This level defines the name of the screen, a name by
which the screen is known throughout the program; defines the size of the screen; and indicates
whether the screen is a base or overlay screen. The intermediate levels define groups ·of items. The
highest numbered levels define the characteristics of the screen fields.

~rhe screen description can have the following parts: screen name, screen overlay area, screen
group, and screen field. Each of these parts defines a specific attribute of the screen. The following
example illustrates a screen description entry.

5-20

Data Division
Screen Section

SCREEN SECTION.
01 ENTER-AMT BASE SIZE 12, 80.

05 FILLER AT 1, 12 VALUE "ORDER DETAIL ENTRY".
05 FILLER AT 2, 1 VALUE "CUSTOMER".
05 FILLER AT 4, 1 VALUE "ITEM".
05 FILLER AT 4, 10 VALUE "QUANTITY".
05 LINE1-HEADER AT 5, 1 VALUE "MENU LIST".
05 OVER1 AREA AT 6, 1 SIZE 10,80.

01 OVER1-SCREEN OVERLAY SIZE 10,80.
05 LINE1-0VERLAY AT 2, 10 VALUE "1 DISPLAY PREVIOUS ORDER".

The input control character clauses are available for terminals in conversational mode. These
clauses define the specific input control characters to be used during execution of an ACCEPT
statement. The input control character clauses, which are referenced in text and described in detail
later in this section, are summarized in Figure 5-5.

01 screen-name
{

[BASE l [SIZE clause l}
OVERLAY SIZE clause

[ABORT-INPUT [IS l

[END-OF-INPUT [IS l

"nonnumeric-Literal"
numeric-Literal

[,numeric-Literal
OFF

"nonnumeric-Literal"
numeric-Literal

[,numeric-Literal
OFF

[FIELD-SEPARATOR [IS "nonnumeric-literal"
numeric-Literal
OFF

[GROUP-SEPARATOR [IS l "nonnumeric-literal"
numeric-Literal
OFF

[RESTART-INPUT [IS l "nonnumeric-literal"
numeric-Literal

[,numeric-Literal
OFF

Figure 5-5. Input Control Character Clauses

5-21

Data Division
Screen Section

A number of field characteristic clauses are available to define the characteristics o:f screen fields.
'rhese clauses, which are referenced in text and described in detail later in this section, are sum
marized in Figure 5-6.

level-num
{

field-name}
FILLER {

[AT] line-spec, column-spec}
REDEFINES field-name-2

[ADVISORY]

FILL nonnumeric-Literal

[LENGTH [MUST BE

mnemonic-name] .•.

lliteral-1

MUST [BE] literal-1 THROUGH
THRU

literal-2

[
OCCURS {lines-phrase [columns-phrase]]l

columns-ph~ase [Lines-phrase

[DEPENDING [ON] data-name-1]]

IS] character-string]

[PROMPT screen-field]

[RECEIVE [FROM l

REDEFINES field-name-2]

SHADOWED [BY] data-name-1

[\~:~:G data-name-1]

[UPSHIFT

[~~~~~T l l
INPUT-OUTPUT

USER [CONVERSION] numeric-Literal

VALUE nonnumeric-literal]

[
WHEN {ABSENT}

BLANK

[[WHEN] FULL

{
CLEARt]
SKIP ~

'------------------------

Figure 5-6. Screen Field Characteristic Clauses

5-22

Base Screen

Data Division
Screen Section

A base screen is a screen that is initially displayed on the terminal and is used to establish the current
screen for each program unit. In contrast to an overlay screen that is displayed in the overlay area of
a base screen, the base screen can be displayed independently.

The base screen syntax is:

01 screen-name [BASE J [SIZE Lines, cols J

field-characteristic-clause J •••

where

screen-name

is the name given to the base screen.

SIZE Lines, cols

indicates the size of the screen. The number of lines and columns can each range from 1
through 255. The size can be no larger than the physical limits of the terminal screen for
base screens.

If this option is omitted, the default is 24 lines, 80 columns.

field-characteristic-clause

is one or more clauses that define default characteristics for all fields subordinate to the
screen unless these characteristics are explicitly overridden for a particular group or
field. The clauses that can appear here are:

FILL
mnemonic-name
UP SHIFT
USER CONVERSION
WHEN ABSENT
WHEN BLANK
WHEN FULL

5-23

Data Division
Screen Section

Screen Overlay Area

A screen overlay area defines an area of a base screen within which an overlay screen can be
displayed. When overlay screens are used in a program, a screen overlay area must be defined in
the base screen description entry.

The screen overlay area syntax is:

level-no area-name AREA AT line, col SIZE lines, cols

where

5-24

level-num

is a numeric literal that indicates the hierarchy. The value must be within the range of 2
through 49. Subordinate entries are not allowed.

area-name

is the name given to the screen overlay area.

AREA AT line, col

specifies the position of the upper left-hand corner of the area relative to the boundaries
of the screen.

SIZE lines, cols

determines the number of lines and columns included in the area. The entire area must lie
within the boundaries of the base screen, and no fields can overlap the area.

For T16-6510 terminals, the cols value must be the same as the number of columns
declared for the base screen.

Overlay Screen

An overlay screen is a screen that is displayed in an overlay area of a base screen.

The overlay screen syntax is:

01 screen-name OVERLAY SIZE Lines, cols

field-characteristic-clause J •••

where

screen-name

is the name given to the overlay screen.

SIZE Lines, cols

Data Division
Screen Section

indicates the size of the overlay screen. The size can be no larger than the size of the
overlay area into which it is to be placed. For the T16-6510, the width must be exactly the
same as the base screen.

field-characteristic-clause

is a clause that defines default characteristics for all fields subordinate to the screen
unless explicitly overridden for a particular group or field. The clauses that can appear
here are:

FILL
mnemonic-name
UPSHIFT
USER CONVERSION
WHEN ABSENT
WHEN BLANK
WHEN FULL

5-25

Data Division
Screen Section

Screen Group

A screen group is a combination of fields that are grouped together to provide collective references
to the subordinate fields and to define the common characteristics of the fields. A screen group can
contain subordinate groups.

The screen group syntax is:

level-num
{

group-name}
FILLER

[[AT l line, column]

field-characteristic-clause] ...

{
screen-field}
screen-group

where

5-26

level-num

is a numeric literal that indicates the hierarchy. The value must be within the range of 2
through 48.

group-name

is the name given to the group.

FILLER

is a keyword that takes the place of group-name.

AT line, column

specifies the home position of the group relative to the boundaries of the screen. The line
number and column number must be within the size specified for the screen. The posi
tions of subordinate fields can be given relative to the home position; this a1lows you to
move groups easily.

If this clause is omitted, group relative addressing is not allowed in the group.

field-characteristic clause

is one or more clauses that define default characteristics for all fields subordinate to the
group unless these characteristics are explicitly overridden for a particular field. The
clauses that can appear here are:

FILL
mnemonic-name
UPSHIFT
USER CONVERSION
WHEN ABSENT
WHEN BLANK
WHEN FULL

Screen Field

A screen field is a single elementary item.

The screen field syntax is:

Data Division
Screen Section

level-num
{

field-name}
FILLER

[field-characteristic-clause]

where

level-num

is a numeric literal within the range of 2 through 49 that indicates the hierarchy.

field-name

is the name given to the field.

FILLER

is a keyword that takes the place of fiel,d-name. FILLER must be used for a literal field.

field-characteristic-clause

is one or more clauses that define a characteristic of the field. The clauses that can appear
here depend on the field type.

The four types of screen fields are determined by the data association clauses TO, FROM, and
USING. Screen field types and the clauses that can be used with each are listed in Table 5-1.

5-27

Data Division
Screen Section

Table 5-1. Screen Types and Allowable Field Characteristic Clauses

Required Optional
Screen Type Determined By Clauses Clauses

Literal No TO, FROM, or AT mnemonic-name
USING clause VALUE

Input TO clause only AT or REDEFINES FILL
PICTURE LENGTH

mnemonic-name
MUST BE
OCCURS
RECEIVE
SHADOWED
UPSHIFT
USER CONVERSION
VALUE
WHEN ABSENT
WHEN BLANK
WHEN FULL

Output FROM clause only AT or REDEFINES ADVISORY
PICTURE FILL

mnemonic-name
OCCURS
SHADOWED
UPSHIFT
USER CONVERSION
VALUE

Input-Output USING clause or AT or REDEFINES ADVISORY
TO and FROM clause PICTURE FILL

LENGTH
mnemonic-name
MUST BE
OCCURS
RECEIVE
SHADOWED
UPSHIFT
USER CONVERSION
VALUE
WHEN ABSENT
WHEN BLANK
WHEN FULL

S-28

Input Control Character Clauses

Data Division
Screen Section

Input control character clauses are for terminals operating in conversational mode. These clauses
define the characters used during the execution of an ACCEPT statement to perform the following:

• delimit a screen field or a group of screen fields described with an OCCURS clause

• terminate or abort the processing of an ACCEPT statement

• restart the processing of an ACCEPT statement

These clauses, which are recognized only by terminals in conversational mode, are described in the
following paragraphs.

ABORT-INPUT CLAUSE. The ABORT-INPUT clause defines the characters used to terminate the
processing of the current ACCEPT statement with an abort termination status. The ABORT
INPUT clause is recognized only by terminals operating in conversational mode.

The syntax of the ABORT-INPUT clause is:

~--------------------·------------- ---------

ABORT-INPUT [IS]

where

"nonnume r i c- Lite ra L"
numeric-Literal [, numeric-Literal J
OFF

"nonnumeric-Literal"

is one or two alphanumeric characters enclosed in quotation marks.

numeric-Literal

is one or two integers. Each integer must be within the range of 0 through 255. numeric
literal is the decimal value of an 8-bit binary number.

If a process is responding in place of a terminal, SCREEN COBOL interprets the 8-bit
pattern (two numeric literals convert to a 16-bit pattern) as a non-keyboard character.

OFF

specifies that ABORT-INPUT is not available for the current screen.

If this clause is omitted, the abort input characters are @@.

If used, the ABORT-INPUT clause must be specified at the 01 screen level. A character defined for
ABORT-INPUT cannot be specified for another input control character.

If the abort input character is entered during an ACCEPT statement no values in the Working
Storage Section are changed by that ACCEPT statement.

5-29

Data Division
Screen Section

END-OF-INPUT CLAUSE. The END-OF-INPUT clause defines the characters used to indicate the
end of the last input field for the current ACCEPT statement. The END-OF-INPUT clause is
recognized only by terminals operating in conversational mode.

The syntax of the END-OF-INPUT clause is:

END-OF-INPUT [IS]

l
"nonnumeric-literal" I
numeric-literal [, numeric-literal J
OFF

where

"nonnumeric-literal"

is one or two alphanumeric characters enclosed in quotation marks.

numeric-literal

is one or two integers. Each integer must be within the range of 0 through 255. numeric
literal is the decimal value of an 8-bit binary number.

If a process is responding in place of a terminal, SCREEN COBOL interprets the 8-bit
pattern (two numeric literals convert to a 16-bit pattern) as a non-keyboard character.

OFF

specifies END-OF-INPUT is not available for the current screen.

If this clause is omitted, the end of input characters are //.

If used, the END-OF-INPUT clause must be specified at the 01 screen level. A character defined for
END-OF-INPUT cannot be specified for another input control character.

5-30

Data Division
Screen Section

FIELD-SEPARATOR CLAUSE. The FIELD-SEPARATOR clause defines the character used to
separate one screen field from another during an ACCEPT statement. If a screen field description
includes an OCCURS clause, each occurence is treated as one field. The FIELD-SEP ARA TOR
clause is recognized only by terminals operating in conversational mode.

The syntax of the FIELD-SEP ARA TOR clause is:

FIELD-SEPARATOR [IS]

where

"nonnumeric-Literal"

l
"nonnumeri c-L i tera L" I

numeric-Literal
OFF

is one alphanumeric character enclosed in quotation marks.

numeric-Literal

is one integer that must be within the range of 0 through 255. numeric-literal is the
decimal value of an 8-bit binary number.

If a process is responding in place of a terminal, SCREEN COBOL interprets the 8-bit
pattern as a non-keyboard character.

OFF

specifies that FIELD-SEPARATOR is not available for the current screen.

If this clause is omitted, the field separator character is a comma (,).

If used, the FIELD-SEP ARA TOR clause must be specified at the 01 screen level. The character
defined for FIELD-SEP ARA TOR cannot be specified for another input control character.

In the following example, the FIELD-SEP ARA TOR clause defines S as the keyboard character to
be used.

SCREEN SECTION.
01 EMP-RECORD-SCREEN BASE SIZE 24, 80

FIELD-SEPARATOR IS "S" .

5-31

Data Division
Screen Section

GROUP-SEPARATOR CLAUSE. The GROUP-SEPARATOR clause defines the character used dur
ing the processing of an ACCEPT statement to indicate the following:

• the last item in an OCCURS clause

• the end of a field, if the field preceding the group separator has no multiple occurences.

The GROUP-SEPARATOR clause is recognized only by terminals operating in conversational
mode.

The syntax of the GROUP-SEPARATOR clause is:

GROUP-SEPARATOR [IS J

I
"nonnumeric-Literal" I
numeric-Literal
OFF

where

"nonnumeric-Literal"

is one alphanumeric character enclosed in quotation marks.

numeric-Literal

is one integer that must be within the range of of 0 through 255. numeric-i'iteral is the
decimal value of an 8-bit binary number.

If a process is responding in place of a terminal, SCREEN COBOL interprets the 8-bit
pattern as a non-keyboard character.

OFF

specifies that GROUP-SEPARATOR is not available for the current screen.

If this clause is omitted, the group separator character is a semicolon (;).

If used, the GROUP-SEPARATOR clause must be specified at the 01 screen level. The character
defined for GROUP-SEPARATOR cannot be specified for another input control character.

5-32

Data Division
Screen Section

RESTART-INPUT CLAUSE. The RESTART-INPUT clause defines the characters used to restart
input processing during the current ACCEPT statement. The RESTART-INPUT clause is recog
nized only by terminals operating in conversational mode.

The syntax of the RESTART-INPUT clause is:

RESTART-INPUT [IS l

where

"nonnumeric-Literal"

l"nonnumeric-Literal" I
numeric-literal [, numeric-Literal l
OFF

is one or two alphanumeric characters enclosed in quotation marks.

numeric-Literal

is one or two integers. Each integer must be within the range of 0 through 255. numeric
literal is the decimal value of an 8-bit binary number.

If a process is responding in place of a terminal, SCREEN COBOL interprets the-8 bit
pattern (two numeric literals convert to a 16-bit pattern) as a non-keyboard character.

OFF

specifies that RESTART-INPUT is not available for the current screen.

If this clause is omitted, the restart input characters are !!.

If used, the RESTART-INPUT clause must be specified at the 01 screen level. A character defined
for RESTART-INPUT cannot be specified for another input control character.

If the current ACCEPT statement is restarted, the data entered before the restart input characters
does not change the values of the associated data items in working-storage. If data is entered on the
same line following the restart input characters, the data is ignored.

The following example illustrates the input control character clauses:

SCREEN SECTION.

01 CUSTOMER-REC-SCREEN BASE

* Documents the default field separator character.

* Defines the keyboard abort input characters as AI.

*Defines the keyboard end of input characters as @@.

* Defines the keyboard restart input character as 2.

SIZE 24, 80
FIELD-SEPARATOR","

GROUP-SEPARATOR OFF

ABORT-INPUT "AI"

END-OF-INPUT 64 I 64

RESTART-INPUT "2" .

5-33

Data Division
Screen Section

Field Characteristic Clauses

Field characteristic clauses specify various characteristics of screen fields. These clauses are
described in the following paragraphs.

ADVISORY CLAUSE. The ADVISORY clause identifies a single output or input-output field as the
one to be used for informational and error messages generated by the TCP.

The syntax of the ADVISORY clause is:

ADVISORY

Every base screen should have an advisory field. The field should be alphanumeric with a size of at
least 35 characters. Error messages that appear in this field are described in Appendix A.

An overlay screen must not have an advisory field.

For terminals in conversational mode, an advisory field must be defined for the screen or the stand
ard advisory messages will not appear on the terminal.

AT CLAUSE. The AT clause specifies the location of the field.

The syntax of the AT clause is:

AT Line-spec, column-spec

where

Line-spec

specifies the line in which the field begins.

column-spec

specifies the column in which the field begins.

Both line-spec and column-spec can appear in the following forms:

numeric-Literal

*

@

[
+ numeric-Literal]
- numeric-Literal

[
+ numeric-Literal]
- numeric-Literal

This form represents the line or column relative to the
beginning of the screen.

This form represents a location relative to the current
position. The current position begins at line l, column 1
and is advanced to the first available position following a
field after that field is declared.

This form represents a location relative to the home
position of the group containing the field declaration.
The home position is the first data character of the field
and is specified for the group with the AT clause.

Either the AT or the REDEFINES clause must be included in every screen field declaration. If both
clauses appear in the screen field declaration, they must both refer to exactly the same position.

5-34

Data Division
Screen Section

FILL CLAUSE. The FILL clause declares a padding character for the field. When output to the field
does not fill the full width specified, the padding character fills in to the right of the field.

The syntax of the FILL clause is:

FILL nonnumeric-literal

where

nonnumeric-literal

is one character long.

If this clause is omitted, the fill character is SP ACES.

On input, the trailing FILL characters are removed from the input string before the input is
analyzed for errors and converted. If a TO clause contains a numeric field, the leading and trailing
FILL characters are removed before the input is processed. FILL characters embedded within a
field are not removed.

LENGTH CLAUSE. The LENGTH clause specifies the acceptable number of characters that can be
entered into a screen input field. The number of characters input is determined before conversion,
but after the fill characters are removed.

The syntax of the LENGTH clause is:

LENGTH [MUST BE])LHeral-1 I • • •

where

literal-1 and Literal-2

are numeric values from 0 through the field size. If literal-2 is included, its value must be
greater than literalrl.

The maximum value allowed by the compiler is 255.

If this clause is omitted, any number of characters are allowed within the constraints of the
picture.

The following example specifies that FLDl is optional (length can be 0), but must be five characters
long if it is entered; FLD2 is required, but 1 through 5 characters can be entered.

04
04

F LD1
FLD2

AT 1 I 1
AT 2 I 1

TO X
TO Y

PIC A9999
PIC ZZZZ9

LENGTH
LENGTH

0, 5.
1 THRU 5.

When a field is optional and no characters are input, the value of the associated data item is changed
by the ACCEPT statement according to the WHEN ABSENT/BLANK field characteristic clause.

5-35

Data Division
Screen Section

mnemonic-name CLAUSE. The mnemonic-name clause allows display attributes to be specified for
a screen field. The mnemonic-name is associated with the attributes by a declaration in the
SPECIAL-NAMES paragraph of the Environment Division.

The syntax of the mnemonic-name clause is:

mnemonic-name

The display attributes combined with the default values for unspecified attributes determine the
display attributes for the field when the field is displayed initially; display attributes can be
restored by a RESET statement, as described in Section 6.

The default value for the protection attribute depends on the screen field type. If the field is an
input or input-output field, the default is UNPROTECTED. If the field is an output field, the default
is PROTECTED.

MUST BE CLAUSE. The MUST BE clause specifies the acceptable values for an input screen field.

The syntax of the MUST BE clause is:

MUST [BE l lliteral-1 I • • •

where

literal-1 and literal-2

are numeric literals for numeric items and nonnumeric literals for alphanumeric items.

Any figurative constant except ALL can be specified.

The literals used in this clause must match for the screen field and the associated data item or an
error is generated. For example, if a screen field receives alphanumeric character data, that data
must go into a data item that is defined with a nonnumeric PICTURE clause.

Numeric items are compared numerically; alphanumeric items are compared left to right according
to the ASCII character set. For example:

An input string 9 is less than 10 if the screen PICTURE clause is numeric.

An input string "9" is greater than "10" if the screen PICTURE clause is nonnumeric.

When the MUST BE clause is processed a numeric literal is scaled to match the PICTURE clause
defined for the associated data item. For example, if a data item is defined with a PICTURE 999.99
and the value 100 is received from the terminal, the input value is scaled two places and stored into
the data item as 100.00.

5-36

Data Division
Screen Section

OCCURS CLAUSE. The OCCURS clause specifies multiple occurrences of screen fields. This clause
can define a column, a row, or a rectangular array of fields. Each occurrence of the field is identical
except for location, and each is associated with a particular occurrence of a Working-Storage data
item having an OCCURS clause.

The syntax of the OCCURS clause is:

OCCURS
{

lines-phrase [columns-phrase J] }
columns-phrase [lines-phrase

[DEPENDING [ON] data-name-1

where columns-phrase is

{
OFFSET }
SKIPPING

IN literal-1 COLUMNS { literal-k} , ...

where lines-phrase is

ON literal-2 LINES [SKIPPING literal-3]

where

IN COLUMNS, ON LINES

determines the number of field occurrences, the location of each field occurrence, and the
ordering of the field occurrences.

literal-1

is a numeric literal that specifies the number of field occurrences on a line.

literal-k

is a numeric literal that specifies the horizontal spacing of the field columns.

When OFFSET is specified, literal-k is the number of spaces between the first column of
a field occurrence (literalrl) and the first column of the next field occurrence (literalrl + 1)
on the same line.

When SKIPPING is specified, literal-k is the number of spaces between the last column
of a field occurrence (column k) and the first column of the next field occurrence (column
k + 1) on the same line. There can be at ~ost Oiteral-1) -1 separations. If there are fewer
separations, the last literal-k is used repeatedly. No separation is required after the last
literal.

literal-2

is a numeric literal that specifies how many lines contain occurrences.

literal-3

is a numeric literal that specifies how many lines are skipped between each line that con-
tains occurrences of the field. ~

5-37

Data Division
Screen Section

DEPENDING

indicates that the number of occurrences is variable.

data-name-1

is the unsubscripted name of an elementary numeric item where the current number of
occurrences is defined. This item must be defined in the Working-Storage Section or
Linkage Section. On input (execution of an ACCEPT statement), this item is set. On output
(execution of a DISPLAY statement), this item is used to define the number of values
output.

'The following conventions apply to the OCCURS clause:

• When the IN phrase is omitted, a single occurrence on each line is indicated.

• The order of the phrases determines the order in which the occurrence numbers are assigned to
the occurrences.

If the ON phrase is specified first, the occurrences are numbered sequentially from line
to line down a column.

If the IN phrase is specified first, the occurrences across a line are numbered sequentially.

• A screen field described with an OCCURS clause and associated with a data item by a TO,
FROM, or USING clause, must define the same maximum number of occurrences in the
OCCURS clause as is specified in the associated data item OCCURS clause. The following exam
ple is a working storage data item associated with the screen field.

WORKING-STORAGE SECTION.
01 GAME-SCHE-REC.

05 TABLE-A

SCREEN SECTION.

PIC X(8) OCCURS 4 TIMES.

05 FIELD-A AT 6, 10 PIC X(8) USING TABLE-A
OCCURS IN 4 COLUMNS SKIPPING 1.

If the data item named in the TO, FROM, or USING clause has subordinate items and contains
multiple OCCURS clauses, the maximum number of occurrences for each OCCURS clause must
match the maximum number of occurrences specified in the corresponding screen field
descriptions.

• A single screen description can have any number of variable length tables. The restriction of
one per structure that applies to the Working-Storage Section and Linkage Section does not
apply to screens.

• A screen field that is described with an OCCURS clause must be referenced without a subscript
when the field is used as one of the screen identifiers in an ACCEPT statement. In other
statements where screen identifiers can be used, a screen field that is described with an
OCCURS clause can appear with or without a subscript. A reference without a subscript refers
to all occurrences of the table. A reference that includes a subscript refers only to the occur
rence selected by the value of the subscript.

5-38

Data Division
Screen Section

• When a screen field described with a DEPENDING phrase is referenced in an ACCEPT state
ment, part of the input processing is the determination of the size of the table -the value to be
stored into data-name-1. All occurrences of the field are examined and data-name-1 is set to the
occurrence number of the last occurrence that was entered. If the field is also a required field, all
preceding occurrences of the field must also be entered. Failure to do this causes a PREVIOUS
FIELD MISSING error message to be displayed for the terminal operator.

• Several tables on the same screen might have the same data-name-1 in their DEPENDING
phrase. If the tables are referenced in the same ACCEPT statement, the value of data-name-1 is
set to the maximum of the values that would be computed when considering each table sepa
rately. If this causes the value of data-name-1 to be set greater than the highest supplied occur
rence of a table whose fields are required, the input is in error and a REQUIRED FIELD
MISSING or EARLIER FIELD MISSING (depending on the order of the fields) message is
displayed for the terminal operator.

• When a field described with a DEPENDING phrase is referenced without a subscript in any
statement other than an ACCEPT statement, the reference is to all occurrences within the cur
rent size of the table, as specified by the value in data-name-1.

The following example illustrates the OCCURS clause:

05 FLO-A AT 6, 10 PIC X(8) FROM TBL-A
OCCURS IN 4 COLUMNS OFFSET 10.

An equivalent OCCURS clause would be:

OCCURS IN 4 COLUMNS SKIPPING 2.

PICTURE CLAUSE. The PICTURE clause defines the format in which the data appears on the ter
minal screen.

The syntax of the PICTURE clause is:

j PI C t
lPICTUREf

where

[IS J character-string

character-string

can take the same form as described in the data description entry with the following
exceptions:

The symbol S cannot appear in the picture.

Numeric edited and alphanumeric edited forms are allowed.

Generally, input from a screen field is performed in a manner that is inverse to normal editing func
tions implied by the picture. The input editing always correctly reconverts a value using the same
picture for input and output.

5-39

Data Division
Screen Section

The input editing process is different for the two classes of the input item:

• Alphanumeric input-Only the left-hand portion of the picture corresponding to the actual
number of input characters must be matched. The remaining portion of the picture is ignored.

• Numeric input - Leading and trailing spaces and fill characters are first removed from the input
data string. Then an attempt is made to match each character in the picture with a character in
the input data, proceeding from right to left. If a match cannot be made, the data is considered to
be in error.

Some picture symbols are special in that the positions they represent might be omitted from the
input data string. Symbols that can be included in this category are Z, comma, multiple plus and
minus signs, CR, DB, and multiple currency signs. If a mismatch occurs with an input character of
this type, and if a space would be acceptable at that point in the input string, the data is not con
sidered in error; the picture symbol is replaced by a space and the editing attempts to match the
input character with the next picture symbol.

PICTURE Character-String Symbols. Each symbol that is used to describe a screen data item has a
specific function. The symbols are as follows:

A represents a character position for a letter of the alphabet or a space character. If the
character is not a letter or a space, it is flagged as an error.

B represents a character position where a space must occur in the input. The space is deleted
during conversion into its associated data item. This character should not he used as the
rightmost character of a numeric picture because trailing spaces are removed before con
version.

P indicates an implicit decimal position (with value zero) to be used in aligning the decimal
point in the numeric result. Refer to the description of the V symbol for cautions.

V indicates the decimal point location in a numeric item in which the termiml\ operator will
not enter an explicit decimal point. The alignment takes place from the last character
entered in the field by the terminal operator. This symbol should be used with care
because the variable length nature of terminal operator input could cause unintended
alignments to occur. It is recommended that the LENGTH clause be used to require full
length entry whenever a picture with implicit decimal places and potentially absent posi
tions (for example, positions defined with the Z symbol) is used.

X represents a character position that can have any character from the ASCII character set.

Z represents a position that must be a digit or must be a space if no digits appear to the left
of the symbol. The symbol is replaced by a space during editing only when it is one of a set
of multiple Z symbols. A space is equivalent to a zero for purposes of conversion.

9 represents a character position that must be a digit.

0 represents a character position where a zero must appear. The zero is deleted during con
version into the associated data item.

5-40

represents a character position where a right slant must appear. The I is deleted during
conversion into the associated data item.

represents a character position where a comma must appear if any digits appear to the left
of it. If no digits appear to the left of the symbol, the character must be a space (or other
floating insertion character). The comma is deleted during conversion into the associated
data item.

Data Division
Screen Section

represents a character position where a period must appear and indicates decimal point
alignment. The period is deleted during conversion into the associated data item.

+ represents a position where either a plus or a minus sign must appear. Multiple plus signs
represent positions that must contain some number of digits preceded by a single plus sign
or a single minus sign, preceded by spaces. The symbol is replaced by a space during
editing only when it is one of a set of multiple plus signs.

CR

DB

*

$

represents a position where either a space or a minus sign must appear. Multiple minus
signs represent positions that must contain some number of digits preceded by an optional
minus sign, preceded by spaces. The symbol is replaced by a space during editing only
when it is one of a set of multiple minus signs.

represents two positions that must contain the characters CR, or spaces. These symbols
are replaced by spaces during editing if the value is nonnegative.

represents two positions that must contain the characters DB, or spaces. These symbols
are replaced by spaces during editing if the value is nonnegative.

represents a position that must be a digit or an asterisk. If the position is a digit, the digit
must be to the left of all asterisks.

represents a position where a currency symbol must appear. Multiple currency symbols
represent positions that must contain some number of digits preceded by a currency sym
bol, preceded by spaces. The symbol is replaced by a space during editing only when it is
one of a set of multiple currency symbols.

Item Size. The size of a data item is determined by the symbols of its PICTURE string. The
character-string symbols DB and CR are each counted as two character positions. Symbols V and P
are not counted. All others are counted as one character position.

PROMPT CLAUSE. The PROMPT clause associates a named screen item for output with a screen
field for input. During the processing of an ACCEPT statement the contents of a named screen item
can be displayed (to assist the terminal operator) before the screen input is read.

The syntax of the PROMPT clause is:

PROMPT screen-field

where

screen-field

is the name of a previously defined screen field. The contents of screen-field can be
described in the Screen Section with a VALUE clause or in a working storage data item
and output with a FROM clause. The contents of screen-field are used as a prompt for the
screen field described with the PROMPT clause.

~---------------------------------·-- --·- ·-- --·-··------ -

PROMPT Clause for Block Mode. For terminals operating in block mode, a screen-field described
in the Screen Section is displayed during the ACCEPT statement.

If a PROMPT clause is specified, the value of screen-field is displayed during the ACCEPT state
ment.

5-41

Data Division
Screen Section

PROMPT Clause for Conversational Mode. For terminals operating in conversational mode,
screen-field is used as a signal for input. In the Screen Section, a screen field description must
precede the associated PROMPT clause in the same screen description.

During execution of the ACCEPT statement, the value specified in the prompt screen field is
displayed before the terminal is able to receive input. The prompt value is always displayed in the
first column of a screen line.

The following example illustrates a PROMPT clause with screen-field described in the Screen
Section. When the associated ACCEPT statement executes, LAST NAME appears on the screen
followed by a set of parentheses (delimiting the field size) and the cursor.

SCREEN SECTION .
01 ADDCUST-SCREEN

05 NAME1-PROMPT
BASE SIZE 24, 80 .

05 LAST-NAME-FIELD
AT 3, 2 VALUE "LAST NAME: " .
AT 3, 13 PIC XC10) USING CUST-LAST-NAME

LENGTH MUST BE 1 THRU 10
PROMPT NAME1-PROMPT .

The next example illustrates a PROMPT clause with screen-field described in the Working-Storage
Section and output with a FROM clause.

WORKING-STORAGE SECTION.
01 NEWCUST-REC.

05 NEW-LAST-NAME

01 WS-PROMPT-VALUE

SCREEN SECTION.
01 NEWCUST-SCREEN.

05 LAST-NAME-PROMPT
05 LAST-NAME-FIELD

PIC XC10) VALUE SPACES.

PIC XC11> VALUE "LAST NAME: "

AT 3 I 2
AT 3, 13

PIC XC11) FROM WS-PROMPT-VALUE.
PIC XC10) USING NEW-LAST-NAME

LENGTH MUST BE 1 THRU 10
PROMPT LAST-NAME-PR OMPT.

If the PROMPT clause is defined with a FROM or USING phrase, the value currently stored in the
associated working-storage data item is displayed in parentheses following the prompt. For exam
ple, if LAST NAME (Brown) appears, Brown was the value entered during the last ACCEPT state
ment for this field.

If the PROMPT clause is defined with a TO phrase, the parentheses are not displayed.

5-42

Data Division
Screen Section

RECEIVE CLAUSE. The RECEIVE clause specifies whether screen field data can be accepted from
a terminal, another kind of device, or both. This option is supported only for applications running on
Tandem 6530 terminals with version COO (or later) microcode and Tandem 6AI (revision AOO)
firmware.

The syntax of the RECEIVE clause is:

RECEIVE [FROM] ALTERNATE I
ALTERNATE OR TERMINAL
TERMINAL
TERMINAL OR ALTERNATE

where

ALTERNATE

causes data to be accepted from a device other than the terminal. The other devices that
PATHWAY supports are:

- optical character recognition reader
- optical bar code reader
- magnetic string reader for badges or cards

ALTERNATE OR TERMINAL

causes data to be accepted from one of the alternate devices listed above and from the
terminal keyboard.

TERMINAL

causes data to be accepted only from the terminal keyboard.

TERMINAL OR ALTERNATE

causes data to be accepted from one of the alternate devices listed above and from the
terminal keyboard.

If this clause is omitted, data can be accepted only from the terminal keyboard.

The RECEIVE clause restricts input from the terminal keyboard for screen fields defined with the
ALTERNATE option. These fields can accept data only from an alternate device that is plugged
into a Tandem 6530 terminal.

You can use the SCREEN COBOL TURN statement to change this attribute to a previously defined
option.

An example of the RECEIVE clause is:

SCREEN SECTION.
01 INVENTORY-REC-SCREEN

05 PROD-FIELD

05 COUNT-FIELD

BASE SIZE 24, 80.

AT 5, 28 PIC XC10) RECEIVE FROM ALTERNATE
USING WS-PROD-ID.

AT 7, 28 PIC XC10) RECEIVE FROM
ALTERNATE OR TERMINAL
TOWS-PROD-COUNT.

5-43

Data Division
Screen Section

REDEFINES CLAUSE. The REDEFINES clause specifies that the screen field being defined is an
alternate interpretation of a previously defined field.

The syntax of the REDEFINES clause is:

REDEFINES field-name-2

where

field-name-2

is the previously defined field.

The two fields must be identical in size and display attributes.

The REDEFINES clause allows an ACCEPT statement to be issued for a given physical field using
different rules. An example would be postal codes in the U.S. and in the U.K.

05 ZIP-US AT 10, 10 PIC 999999 LENGTH 0, 5 TO ZIP-US-WS.
05 ZIP-UK REDEFINES ZIP-US PIC XXXXXX LENGTH 0, 6 TO ZIP-UK-WS.

Either the REDEFINES or the AT clause must be included in every screen field declaration. If both
clauses appear in the screen field declaration, they must refer to exactly the same position.

SHADOWED CLAUSE. The SHADOWED clause associates a secondary Working-Storage data
item with a nonliteral screen field. This additional field can be used to determine whether input was
supplied for the screen field or to control selection of the field for output statements.

The syntax of the SHADOWED clause is:

SHADOWED [BY] data-name-1

where

data-name-1

is the data item to be associated with a nonliteral screen field. The size of the data item is
one byte with a description of PIC X or PIC 9 COMP.

The rightmost bit of data-name-1 is the SELECT bit for the screen field. This bit is examined by the
DISPLAY, TURN, RESET, and SET NEW-CURSOR statements that include the SHADOWED
modifier; when this modifier is used in the statement, a field listed in the statement will not be
affected unless the SELECT bit in its SHADOWED item is set to 1.

I ... I RETURN I ENTER I SELECT I

The bit to the left of the SELECT bit is the ENTER bit. When a screen field is specified in an
ACCEPT statement, a 1 or a 0 is stored into this bit. If data is present in the field, a 1 is stored in the
ENTER bit. If spaces, fill characters, or nothing is entered in the field, a 0 is stored in this bit.

5-44

Data Division
Screen Section

The bit to the left of the ENTER bit is the RETURN bit. If a shadowed field is specified in an
ACCEPT statement, a 1 or a 0 is stored into this bit. If data, fill characters, or spaces are present in
the field, a 1 is stored in the RETURN bit; otherwise, a 0 is stored in this bit. If operating on a
T16-6510 terminal, the RETURN bit always contains a 1 for a shadowed field.

The values stored in the RETURN and ENTER bits depend on the following information received
from the terminal:

• If the screen field is tabbed across (contains nothing), the values stored are:

RETURN bit = 0 ENTER bit = 0

• If the screen field contains fill characters or spaces, the values stored are:

RETURN bit = 1 ENTER bit = 0

• If the screen field contains normal data, the values stored are:

RETURN bit = 1 ENTER bit = 1

If the ESCAPE clause is executed during the ACCEPT statement (for example, an abort input is
specified for a terminal operating in conversational mode), the settings for the RETURN bit and the
ENTER bit are undefined.

If the screen field to which the SHADOWED clause applies has an OCCURS clause, data-name-1
given in the SHADOWED clause should be the data item having an OCCURS clause with the same
maximum number of occurrences to match the occurences in the OCCURS clause of this corres
ponding field in the Screen Section.

An example of the SHADOWED clause is:

SCREEN SECTION.
01 LOCATION-REC-SCREEN

05 STATE-FIELD

BASE SIZE 24, 80.

AT 5, 28 PIC X(2) USING WS-STATE
SHADOWED BY WS-DATA-ITEM.

5-45

Data Division
Screen Section

TO, FROM, USING CLAUSES. The TO, FROM, USING clauses are collectively referred to as data
association clauses. These clauses specify a Working-Storage Section or Linkage Section data item
that is associated with the screen field for moving data to and from the screen field. The clauses
determine the general type of a field.

The syntax of the TO, FROM, USING clauses is:

TO data-name-1
FROM
USING

where

TO

specifies that data is to be moved from the screen field into the data-name-1 area; this is
an input association.

FROM

specifies that data is to be moved from the data-name-1 area into the screen field; this is
an output association.

USING

is equivalent to specifying both TO and FROM with the same data name.

data-name-1

is a working-storage data item associated with an elementary screen field; the field can
not be a subscripted item.

The following rules apply:

• A TO, FROM, and USING clause can be specified only with an elementary screen field.

• The TO and FROM clauses can both be specified for a screen field. If both clauses are specified,
the data names can differ.

• If a data association clause is specified for any field, a PICTURE clause must also be specified
for that field.

• The category of the screen field must be compatible with the associated data item in the
Working-Storage Section or Linkage Section. A numeric edited field must be associated with a
numeric data item, and an alphabetic edited field must be associated with an alphabetic or
alphanumeric data item.

The data movement occurs in connection with the execution of a DISPLAY or ACCEPT statement.
The statements explicitly or implicitly name the screen field containing the data association clause.

5-46

Data Division
Screen Section

UPSHIFT CLAUSE. The UPSHIFT clause specifies that lowercase alphabetic characters are to be
translated to uppercase characters for input and output.

The syntax of the UPSHIFT clause is:

UPSHIFT

[

INPUT l OUTPUT

{~~~UT-OUTPUT}

If UPSHIFT appears by itself, INPUT-OUTPUT is assumed.

If the clause is omitted, lower case alphabetic characters for the field remain in lower case.

USER CONVERSION CLAUSE. The USER CONVERSION clause gives a user-defined number to
be passed with the field to a conversion procedure.

The syntax of the USER CONVERSION clause is:

USER [CONVERSION] numeric-literal

The USER CONVERSION clause is used only if the application makes use of a user conversion pro
cedure. Refer to Appendix D for details regarding user conversion procedures.

VALUE CLAUSE. The VALUE clause specifies the initial value of a screen field. The initial value is
displayed during a DISPLAY BASE or OVERLAY statement, during a RESET DATA statement,
and during screen recovery. The VALUE clause is required for literal screen fields.

The syntax of the VALUE clause is:

VALUE nonnumeric-literal

where

nonnumeric-literal

is the character form of the specified value. The nonnumeric-literal must not be longer
than the size specified for the field in the PICTURE clause; if it is shorter, the
nonnumeric-literal is left justified and padded with the fill character.

The value does not have to be valid according to conversion and checking restraints for input fields.
However, if the value is not valid and the value comes in from the terminal during ACCEPT state
ment processing, the field is in error.

The VALUE clause cannot be used for a field using the OCCURS clause.

5-47

Data Division
Screen Section

The following example illustrates the VALUE clause:

SCREEN SECTION.
01 ORD-DETAIL-SCRN SIZE 12, 40.

05 FILLER AT 1, 12 VALUE "ORDEn DETAIL ENTRY".
05 FILLER AT 2, 1 VALUE "CUSTOMER".
05 ENTRY-GROUP AT 5, 4.

10 FILLER AT @, @ VALUE "ITEM".
10 FILLER AT @, @ + 9 VALUE "QUANT".

WHEN ABSENT/BLANK CLAUSE. The WHEN ABSENT/BLANK clause controls the disposition
of working storage associated by TO or USING clauses with absent or blank fields.

The syntax of the WHEN ABSENT/BLANK clause is:

WHEN { ABSENT~ BLANK t { CLEAR~ SK IP j

where

ABSENT

indicates that the disposition is for absent fields, that is, fields for which no data is
returned from the terminal. An absent field is possible only if the terminal has a Modified
Data Tag (MDT). (Refer to the paragraph Terminal Considerations in this section for in
formation regarding the MDT.)

BLANK

indicates that the disposition is for fields containing blanks, null characters, or fill
characters.

CLEAR

sets the working storage to zero for numeric items and to spaces for alphabetic or
alphanumeric items.

SKIP

leaves the working storage unaltered.

If this clause is omitted, absent fields are skipped and blank fields are cleared; that is, WHEN
ABSENT SKIP and WHEN BLANK CLEAR.

5-48

Data Division
Screen Section

WHEN FULL CLAUSE. The WHEN FULL clause specifies the action to be taken when the last posi
tion of an input screen field is filled and additional characters are keyed into the terminal.

The syntax of the WHEN FULL clause is:

[WHEN J FULL

where

TAB

{
TAB ~
LOCK ~

causes the cursor to advance to the next input field.

LOCK

causes the terminal to lock the keyboard.

If the clause is omitted, the default is LOCK.

The WHEN FULL clause is only effective for terminals that support more than one alternative ac
tion. Currently those terminals are the T16-6520, T16-6530, and the IBM-3270.

TERMINAL CONSIDERATIONS

For dial-in terminals, the TCP issues a wait for modem connect immediately after the terminal file
is opened. At terminal start-up time no program unit or data area is attached to the terminal;
therefore, the terminal is using a minimum of TCP resources while waiting for modem connect.
When the terminal is stopped, the terminal file is closed. The close causes the modem to disconnect
if no other process has the terminal file open.

Tandem currently supports the IBM-3270, the T16-6510, the T16-6520, the T16-6530, and any device
operating as a conversational mode terminal as recognized by the GUARDIAN File System. Each
terminal set has unique requirements. These requirements are described in the following
paragraphs.

IBM-3270 Considerations

The supported IBM-3270 terminals have a number of different physical screen sizes. In general, a
screen can be used on any model that has a physical size at least as large as the logical size of the
screen definition. However, a field that wraps from one line to the next in the logical screen defini
tion does not wrap (or wraps differently) if the physical screen width exceeds the logical screen
width; this is because the field goes to the next line only at the end of the physical line. This is an im
portant consideration if a screen is intended to run on both 40- and 80-character width displays.

All nonliteral fields must reserve a character position immediately before the field. For example:

If a field is at line 2, column 2, and is one character long, then 2,1 and 2,2 are reserved for the
field. A second field cannot be at 2,3 because both fields would attempt to use location 2,2.

A field cannot be at 1,1 because the character before 1,1 does not exist and thus cannot be
reserved.

5-49

Data Division

The IBM-3270 terminal has a Modified Data Tag (MDT) associated with this character that im
mediately precedes the field. If the MDT is on when a read modified operation is performed, the
data in the field is sent to the computer; if the MDT is not on, data is not sent. The MDT can be set
or reset from the computer or from the keyboard. In normal operation, the MDT is reset by the com
puter and set by the terminal after data is entered into the field.

In SCREEN COBOL, the MDT is treated syntactically as a display attribute, even though the MDT
affects data transmission rather than the display. Normally, MDTs are not referenced by a
SCREEN COBOL program, but they can be manipulated by the program. One possible method is to
specify MDTON as an initial display attribute of a field that has a VALUE clause; this causes the in
itial value to be returned as if entered by the terminal operator even though the terminal operator
does not change anything in the field.

The TCP controls the MDTs in the same way it controls display attributes with two important ex
ceptions:

• When a TURN TEMP statement selects an input field for changing of display attributes, the
MDT bit is always set.

• When a RESET TEMP statement selects an input field for resetting of display attributes, the
MDT bit is set, regardless of the initial MDT attribute of the field.

These two exceptions apply only to the TURN and RESET statements that have the TEMP
modifier.

These MDT rules allow fields to be handled correctly when they contain errors. When an error is
detected in a field, a TURN TEMP of a display attribute is normally performed on that field,
whether explicitly by the program or implicitly by the action of the ACCEPT statement. As in
dicated by the preceding rules, the MDT will be set also, thus guaranteeing that the field will again
come in from the terminal on the next read operation. After that next read operation, a RESET
TEMP is performed, which removes the flagging display attribute while again forcing the MDT bit
on. The latter setting of the MDT is necessary because a further read of the same data might be per
formed if another field is found to be in error, and the data in the field that was RESET must come
in once again and be properly accepted.

SCREEN COBOL supports the program attention (PA) keys 4 through 10. A user-replaceable pro
cedure that lets the PATHWAY Terminal Control Process (PATHTCP) support these keys is
described in Appendix D.

The PROTECTED display attribute is allowed for IBM-3270 terminals (refer to Table 4-1 of Section 4).
This attribute is a control that determines whether or not a field is protected against terminal
operator entry. Normally, all input fields are unprotected, and all others are protected. The pro
gram can use the PROTECTED attribute to dynamically control the protection of 3270 fields; care
must be taken to ensure the field has the appropriate protection during sensitive operations, for ex
ample, during ACCEPT statement processing.

The minimum separation between screen elements for the IBM-3270 is indicated in Table 5-2.

5-50

Data Division

Table 5-2. Minimum Separation (in Characters) Between
Screen Elements for the I BM-3270

Field

Start of base screen 1

Literal

1

Overlay
Area

0

End of
Screen

0
----------------+-------+-----------+---------+---------- ---

Start of overlay
screen occupying an
overlay area that does
not have the same
width as its base
screen (a)

1 0

!-----------------+-------+----------+---------------+--··-

Field 1 1 0

0

0
!-----------------+-------+----------+-------- --- ------

Literal 1 1 0 0
1-----------------+-------+----------+-------+------------1

Overlay Area 1 1 0 0

NOTE (a):

When an overlay screen occupies an overlay area that does not have the same width as
its base screen, an overlay field cannot wrap from one line to the next.

T16-651 O Considerations

When defining screen declarations for display on a T16-6510, the following restrictions should be
noted:

• The following fields must have one reserved character immediately before the field and one im
mediately following the field:

All input fields

Output fields and literals with BLINK or HIDDEN attributes

Output fields referred to in a TURN or RESET statement

Note that none of the above named fields can begin in line 1, column 1 because the character
before 1,1 does not exist.

• The last position of the screen (line 24, column 80) cannot be used, including use as a reserved
character as specified in the previous restriction.

• The PROTECTED attribute of a field cannot be changed. The PROTECTED attribute deter
mines the intensity; therefore, any other intensity specifications are ignored.

5-51

Data Division

11 Overlay areas must have the exact same width as the base screen.

11 Screens occupying an overlay area that is scrolled cannot contain any input fields.

11 Fields cannot wrap from the bottom to the top line of the screen.

• 1 The RETURNED bit is always set for a SHADOWED field.

1rhe T16-6510 terminal does not support Modified Data Tags (MDT).

The minimum separation between screen elements for the T16-6510 is indicated in Table 5-3.

Start of Screen

ln/Attr (a)

Out/NoAttr (a)

Overlay Area

NOTE (a):

Table 5-3. Minimum Separation (in Characters) Between
Screen Elements for the T16-6510

ln/Attr Out/NoAttr Overlay
(a) (a) Area

-

1 0 0
-

2 1 1
-

1 0 0
-

1 0 0

End of
Screen

1
--+-·---

2
--+-·

1
--t-

1
L-.

The space requirements of fields and literals depend upon certain characteristics. Two
groupings can be made, identified above as ln/Attr and Out/NoAttr. A field or literal can
be classified as fol lows:

Out/NoAttr: Output-only fields or literals that do not have BLINK or HIDDEN attri
butes and that are not used in a TURN or RESET statement.

ln/Attr: All other fields and literals.
'---------------------- -------·--------·-··-----~

1'16·6520 Considerations

All nonliteral fields must reserve a character immediately before the field. For example:

If a field is at line 2, column 2, and is one character long, then 2,1 and 2,2 are reserved for the
field. A second field cannot be at 2,3 because both fields would attempt to use location 2,2.

A field cannot be at 1,1 because the character before 1,1 does not exist and thus cannot be
reserved.

5-52

Data Division

The T16-6520 terminal has an MDT associated with this character that immediately precedes the
field. The TCP uses the read modified data operation when reading the screen. If the MDT is on
when a read modified operation is performed, the data in the field is sent to the computer; if the
MDT is not on, data is not sent. The MDT can be set or reset from the computer or from the
keyboard. In normal operation, the MDT is reset by the computer and set by the terminal after data
is entered into the field.

In SCREEN COBOL, the MDT is treated syntactically as a display attribute, even though the MDT
affects data transmission rather than the display. Normally, MDTs are not referenced by a
SCREEN COBOL program, but they can be manipulated by the program. One possible method is to
specify MDTON as an initial (default) display attribute of a field that has a VALUE clause; this
causes the initial value to be returned as if entered by the operator even though the operator does
not change anything in the field.

During execution of a SCREEN COBOL program, the TCP controls the MDTs in the same way it
controls display attributes with two important exceptions:

• When a TURN TEMP statement selects an input field for changing of display attributes, the
MDT bit is always set.

• When a RESET TEMP statement selects an input field for resetting of attributes, the MDT bit
is set, regardless of the initial MDT attribute of the field.

These two exceptions apply only to the TURN and RESET statements that have the TEMP
modifier. When the TURN and RESET statements do not have the TEMP modifier, these
statements treat the MDT attributes like normal display attributes.

These MDT rules allow fields to be handled correctly when they contain errors. When an error is
detected in a field, a TURN TEMP of a display attribute is normally performed on that field,
whether explicitly by the program or implicitly by the action of the ACCEPT statement. As indi
cated by the preceding rules, the MDT will be set also, thus guaranteeing that the field will again
come in from the terminal on the next read operation. After that next read operation, a RESET
TEMP is performed (normally only implicitly as part of the ACCEPT action), thus removing the
display attribute set by the TURN TEMP statement while again forcing the MDT bit on. The latter
setting of the MDT is necessary because a further read of the same data might be performed if
another field is found to be in error, and the data in the field that was RESET must come in once
again and be properly accepted.

The PROTECTED display attribute is allowed for T16-6520 terminals (refer to Table 4-1 of Section 4).
This attribute is a control that determines whether or not a field is protected against terminal
operator entry. Normally, all input fields are unprotected, and all others are protected. The pro
gram can use the PROTECTED attribute to dynamically control the protection of T16-6520 fields;
care must be taken to ensure the field has the appropriate protection during sensitive operations,
for example, during ACCEPT statement processing.

A limit is placed on the number of fields that can exist on a screen. This is due to a space limitation
with the internal Data Attribute Table within the terminal. Each field requires at least one entry in
the table; fields that have more than one character position separating them and fields that are
followed by literal values require two entries in the table. The table has a maximum of 332 entries.
Thus, a screen can have at most 166 fields if the fields meet the requirement for two entries in the
internal Data Attribute Table.

Fields cannot wrap from the bottom to the top line of the screen.

The minimum separation between screen elements for the T16-6520 is indicated in Table 5-4.

5-53

Data Division

Table 5-4. Minimum Separation (in Characters) Between
Screen Elements for the T16-6520

-

Field Literal
Overlay End of

Area Screen

Start of base screen 1 1 0 0
---1 1----

Start of overlay 1 1 0 0
screen occupying an
overlay area that does
not have the same
width as its base
screen (a)

--- ·---

Field 1 1 0 0
--t--- ·---

Literal 1 0 or 1 0 0
(b)

Overlay Area 1 1 0 0

NOTES:

(a) When an overlay screen occupies an overlay area that does not have the same width
as its base screen, an overlay field cannot wrap from one line to the next

(b) If two successive literals have the same attributes, then no separation is necessary;
otherwise at least one position must separate them.

--

--

'---·---------'

T16-6530 Considerations

The T16-6530 terminal is upward compatible with the T16-6520 terminal. Considerations listed for
the T16-6520 also apply to the T16-6530.

Program units compiled for a Tandem 6520 terminal can be run on a 6530 terminal. T16-6520 must
be specified as the terminal-type in the OBJECT-COMPUTER paragraph of the Environment Divi
sion and the program unit must be run on a 6530 terminal. Those features unique to the Tandem
6530 terminal will not function.

The additional screen memory of the Tandem 6530 (relative to the Tandem 6520) is used to retain
screen format information in the terminal. Redisplaying a screen from the terminal memory
reduces time utilization. If the terminal screen memory is full and a screen is to be displayed for the
first time, PATHWAY uses a least-recently-used algorithm to select the screen for replacement.

5-54

Data Division

PATHWAY can enable a return key function when a SCREEN COBOL program takes control
of a Tandem 6530 terminal. For a return key function to become effective, the program's
SPECIAL-NAMES paragraph must contain a RETURN-KEY phrase as the system-name
parameter. The return key function is local to a SCREEN COBOL program and must be defined in
the program or no return key function will exist. To use this function in a program that was
previously compiled, you must recompile the program and include the RETURN-KEY phrase. If a
program is defined for a Tandem 6520 terminal and run on a Tandem 6530 terminal, you cannot use
a return key function.

The T16-6530 terminal enables the use of other devices to input data into screen fields. Refer to the
RECEIVE clause earlier in this section.

Conversational Mode Considerations

A conversational terminal is any device that operates as a conversational mode terminal as
recognized by the GUARDIAN File System. The TCP assumes that this device can process carriage
return, line feed, and bell operations. If the data entered during accept processing exceeds the size
of the I/0 buffer, a field prompt is simply redisplayed without an advisory error message.

SPECIAL REGISTERS

Special registers are data items defined automatically by the SCREEN COBOL compiler, not by the
program. Each special register has a particular purpose, and should be used only in the manner
outlined in its description.

DIAGNOSTIC-ALLOWED Special Register

The DIAGNOSTIC-ALLOWED special register indicates whether or not diagnostic screens are to
be displayed to inform the terminal operator if an error or termination condition occurs. A copy of
this register is local to each program unit.

The register is initialized to the value specified by the DIAGNOSTIC parameter of the PA TH COM
SET TERM command each time the program unit is called. If the DIAGNOSTIC parameter has not
been specified on the SET TERM command, the default value is YES, which enables display of
diagnostic screens. The program can move the value NO into the register to disable display of
diagnostic screens.

The register has an implicit declaration of

01 DIAGNOSTIC-ALLOWED PIC AAA.

For additional information regarding the use of diagnostic screens, refer to Section 6 and Appendix A.

LOGICAL-TERMINAL-NAME Special Register

The LOGICAL-TERMINAL-NAME special register contains the name of the terminal executing
the program unit. The name of the terminal is defined in PA TH COM through the FILE parameter
of the SET TERM command. A single copy of this register is global to the program units. The
register is initialized when the terminal is first started.

The register has an implicit declaration of

01 LOGICAL-TERMINAL-NAME PIC XC16).

5-55

Data Division

NEW-CURSOR Special Register

The NEW-CURSOR special register controls placement of the cursor in the next accept operation.
A single copy of this register is global to the program units.

If the register value is not a valid screen position when an accept operation begins, the cursor is
positioned to the first field of the ACCEPT statement. At the end of any accept operation, the
register is set to zero; this causes the default position for the next accept operation to be the first
field of that ACCEPT statement.

The register has an implicit declaration of

01 NEW-CURSOR.
02 NEW-CURSOR-ROW
02 NEW-CURSOR-COL

OLD-CURSOR Special Register

PIC 9999 COMP.
PIC 9999 COMP.

The OLD-CURSOR special register indicates the row and column occupied by the cursor at the last
accept operation. A single copy of this register is global to the program units. The register is set by
each ACCEPT statement executed by a program unit; the program unit can subsequently access
the register.

The register has an implicit declaration of

01 OLD-CURSOR.
02 OLD-CURSOR-ROW
02 OLD-CURSOR-COL

REDISPLAY Special Register

PIC 9999 COMP.
PIC 9999 COMP.

The REDISPLAY special register can prevent unnecessary moving of an entire screen into ter
minal memory. This register indicates to the TCP whether or not a screen must be sent to the
terminal during processing of a DISPLAY statement. The REDISPLAY register affects only the
DISPLAY statement.

This register supports T16-6520 and T16-6530 terminals that store multiple screens in terminal
memory and can display these screens upon command. This register does not support terminals
operating in conversational mode.

A single copy of the REDISPLAY register is global to the SCREEN COBOL program units. The
register is set to NO when the terminal is first started. The SCREEN COBOL program can move
YES into the register for specific DISPLAY statements. When entering or returning from a called
program, the value of the REDISPLAY register is undefined.

When the REDISPLAY register is set to NO (the normal setting) and a DISPLAY statement is
executed, the following occurs:

1. The TCP checks whether the screen is in the terminal memory and whether any data fields
have been entered since the previous display operation. If the screen is present and no changes
have been made to the data items, the TCP displays the screen.

2. If a data item has been changed since the previous display operation, the variable data items
associated with the screen are moved from the Working-Storage Section to the terminal
memory. This operation takes place only when redisplaying a screen, not when displaying a
base screen or menu screen.

5-56

Data Division

When the register is set to YES and a DISPLAY statement is executed, the TCP checks whether
the screen is in the terminal memory and the following occurs:

• If the screen is present, the TCP displays the screen from the terminal memory. No data items
are moved from the Working-Storage Section.

• If the screen is not present, the TCP moves the variable data items associated with the screen
from the Working-Storage Section to the terminal memory, as if the register had been set to
NO. Then, the screen is displayed.

The register has an implicit declaration of

01 REDISPLAY PIC AAA.

An example of the REDISPLAY special register is:

PROCEDURE DIVISION.

MOVE "YES" TO REDISPLAY.
DISPLAY EMPLOYEE-REC-SCREEN.

RESTART-COUNTER Special Register

The RESTART-COUNTER special register contains the number of times a transaction has been
restarted during transaction mode. The first time the BEGIN-TRANSACTION verb executes, the
register is set to zero. This number is incremented immediately following each execution of the
BEGIN-TRANSACTION verb.

The register has an implicit declaration of

01 RESTART-COUNTER PIC 9999 COMP.

STOP-MODE Special Register

The STOP-MODE special register can prevent interruption of multiple step transactions. A single
copy of this register is global to the program units.

The register is set to zero when the terminal is first started, and the value is subsequently under
program control. Most programs will continue with a value of zero.

When the value is nonzero, several PA TH COM commands are affected. The effect of the STOP
TERM, SUSPEND TERM, and FREEZE SERVER commands is delayed until the register value
returns to zero. The SUSPEND and FREEZE commands can be issued in a form that causes the
STOP-MODE value to be disregarded.

The register has an implicit declaration of

01 STOP-MODE PIC 9999 COMP.

5-57

Data Division

TELL-ALLOWED Special Register

The TELL-ALLOWED special register can be set by the program to control the issuing of tell
messages during ACCEPT statement processing.

A copy of this register is available to each program unit. The register is initialized to YES each time
the program unit is called. The program can move NO into the register to prevent tell messages
from being displayed during succeeding accept operations.

When this register is set to YES and a tell message is waiting, the following occurs:

• When the TCP is about to complete an accept operation, it displays the tell message (prefixed by
the word MESSAGE:) in the ADVISORY field.

• The TCP waits for any function key from the terminal operator, then resets the field and com
pletes the accept operation.

When this register is set to NO, display of the tell message is postponed.

The register has an implicit declaration of

01 TELL-ALLOWED PIC AAA.

TERMINAL-FILENAME Special Register

The TERMINAL-FILENAME special register contains the internal form of the file name for the
terminal executing the program unit. A single copy of this register is global to the program units.
The register is initialized when the terminal is first started.

The register has an implicit declaration of

01 TERMINAL-FILENAME PIC XC24).

TERMINAL-PRINTER Special Register

The TERMINAL-PRINTER special register contains the external form of the file name for the
printer that is associated with the terminal executing the program unit. If no associated printer is
defined in PA TH COM, this register contains blanks. A single copy of this register is global to the
program units. The register is initialized when the terminal is first started.

The register has an implicit declaration of

01 TERMINAL-PRINTER PIC XC36)

'TERMINATION-STATUS Special Register

'The TERMINATION-STATUS special register communicates completion status of an ACCEPT,
SEND, and BEGIN-TRANSACTION statement. A copy of this register is available to each program
unit. The register is initialized to zero each time the program unit is called.

'This special register also communicates an error number when the ON ERROR branch of a CALL
statement is taken.

'The register has an implicit declaration of

01 TERMINATION-STATUS PIC 9999 COMP.

5-58

Data Division

TERMINATION·SUBSTATUS Special Register

The TERMINATION-SUBSTATUS special register communicates an error number further
describing the error communicated in the special register TERMINATION-STATUS when the ON
ERROR branch of a CALL statement is taken. A copy of this register is local to eacli program unit.

The register has an implicit declaration of

01 TERMINATION-SUBSTATUS PIC 9999 COMP.

TRANSACTION-ID Special Register

The TRANSACTION-ID special register contains the value of the transaction identifier that the
Transaction Monitoring Facility (TMF) assigns when the BEGIN-TRANSACTION statement exe
cutes. TMF assigns a unique identifier to this register for each new or restarted transaction. The
register is set to SPACES after either the END-TRANSACTION or the ABORT-TRANSACTION
statement executes.

Generally, the contents of this special register should not be displayed on a terminal screen because
the associated data item contains binary data. Use this register to locate uniquely identified
transactions.

The register has an implicit declaration of

01 TRANSACTION-ID PIC X(8).

5-59

SECTION 6

PROCEDURE DIVISION

The Procedure Division includes all of the processing steps for the program. The steps are organized
into SCREEN COBOL statements and sentences, and grouped into paragraphs, procedures, and
sections.

The format of the Procedure Division is shown in Figure 6-1.

PROCEDURE DIVISION [USING data-name-1 [, data-name-2] ...] .

DECLARATIVES.

{ [section-name SECTION .]

[paragraph-name . [sentence l ...] ... } ...

{paragraph-name . [sentence] ..• } ...

END DECLARATIVES.]

{ section-name SECTION .]

[paragraph-name . [sentence l ...] .•. } ...

{paragraph-name . [sentence] ... } ...

Figure 6-1. Procedure Division Format

DIVISION STRUCTURE

The division begins with a division header. The format of the header is:

PROCEDURE DIVISION [USING data-name-1 [, data-name-2] ...] .

The header must begin in Area A and must be terminated with a period separator.

6-1

Procedure Division

The USING phrase is applicable only in a subprogram that is to execute under control of a CALL
:statement that also contains a USING phrase. The identifiers in the USING phrase must corre
spond exactly in number and structure to the identifiers specified in the USING phrase of the
CALL statement. A maximum of 29 names can be specified.

Execution begins with the first executable statement after the Procedure Division header, exclud
ing any declarative procedures, and continues on in the logical order. The Procedure Division
header must be immediately followed by the DECLARATIVES keyword and declarative pro
cedures, or immediately followed by a paragraph or section name.

During execution, control is transferred to a paragraph only at the beginning of the paragraph. Con
trol is passed to a sentence within a paragraph only from the immediately preceding sentence,
unless the immediately preceding sentence is a GO TO statement.

When control reaches the end of a paragraph, control passes to the first section of the following
paragraph. The only exception is when control reaches the end of a paragraph and that paragraph is
the last in the range of a currently active PERFORM operation.

An example of Procedure Division structure is shown in Figure 6-2.

6-2

PROCEDURE DIVISION.
initialization SECTION.
get-started.

sentence
statement
statement.

sentence
statement

f i ni sh-up-i nit.
sentence

main-processing SECTION.
begin-it.

sentence

process-input-data.

end-of-job.
EX IT PROGRAM.

Figure 6-2. Procedure Division Structure

Procedure Division

Declarative Procedures

A special portion of the Procedure Division is reserved for declarative procedures. These pro
cedures are screen recovery routines specified by USE statements. When used, this portion must
be coded immediately after the Procedure Division header. The portion begins with keyword
DECLARATIVES and ends with keywords END DECLARATIVES. The following example il
lustrates a declarative procedure:

PROCEDURE DIVISION.
DECLARATIVES.
RECOV-SECT-1 SECTION.
USE FOR RECOVERY •..

END DECLARATIVES.
MAIN SECTION.
begin-my-program.

Sections

A section, which is optional, is used to group related paragraphs for processing steps. Reference to
a section name in a PERFORM statement, for example, would include all paragraphs in that section
for the PERFORM execution range.

A section begins with a section header in Area A. The format of the header is:

section-name SECTION.

A section ends at the next section header, at keywords END DECLARATIVES, or at the physical
end of the Procedure Division.

Paragraphs

A paragraph is used to group related sentences and statements. A paragraph usually has at least
one sentence, but sentences are not required. For example:

get-all-input.

get-the-first-record.
ACCEPT my-screen ...

Reference to a paragraph name permits branching from one area of code to another.

A paragraph begins with a paragraph name in Area A. A paragraph ends immediately before the
next paragraph name or section name, or at the physical end of the Procedure Division.

6-3

Procedure Division

Sentences and Statements

A sentence is a string of one or more statements, ending with a period. A statement is a combina
tion of words and symbols beginning with a SCREEN COBOL verb. For example:

chk-report-yy.
IF current-yy IS LESS THAN 0 OR GREATER THAN 99

DISPLAY "REPORT YEAR IS NOT BETWEEN 00 AND 99, RE-ENTER "
"YEAR" IN msg-1

ACCEPT current-yy UNTIL my-fi le1
GO TO chk-report-yy.

Sentences can be grouped into three functional categories:

• imperative takes an action unconditionally

• conditional takes an action based on a condition

• compiler directing uses compiler-directing verbs COPY or USE

An imperative sentence is constructed from one or more imperative statements terminated by a
period. An imperative sentence can have a GO TO statement or an EXIT PROGRAM statement. If
an EXIT PROGRAM statement is present, it must be the last statement in the sentence.

The following examples illustrate imperative sentences:

Jl1DD a1 TO b1 GIVING c1, d1, e1.

Jl1DD 25 TO x2,
GO TO next-image.

A conditional sentence tests a conditional item or some relationship between values to determine
an action to take.

The following example illustrates a conditional sentence:

IF last-tax IS LESS THAN current-tax
PERFORM higher-tax

ELSE PERFORM lower-tax.

Procedures

A procedure consists of a paragraph, a group of successive paragraphs, a section, or a group of suc
cessive sections. A procedure name is a paragraph or section name; the name can be qualified.

PROCEDURE DIVISION STATEMENTS

Procedure Division statements can be grouped into eight categories. Table 6-1 lists each statement
and its category.

6-4

Procedure Division

Table 6-1. Classification of Statements

Statement Category Statement Keywords

Arithmetic ADD
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT

Conditional BEGIN-TRANSACTION ON ERROR
CALL. .. ON ERROR
IF
SEND ... ON ERROR

Data Movement ACCEPT DATE/DAY/TIME
MOVE
SET

Terminal Input/Output ACCEPT
CLEAR
DELAY
DISPLAY
PRINT SCREEN
RECONNECT MODEM
RESET
SCROLL
SEND
TURN

lnterprogram CALL
Communicating CHECKPOINT

EXIT PROGRAM

Program Control EXIT
GOTO
PERFORM
STOP RUN

Compiler Directing COPY
USE

Transaction Monitoring ABORT-TRANSACTION
BEGIN-TRANSACTION
END-TRANSACTION
RESTART-TRANSACTION

Statements are described in alphabetic order in the following paragraphs.

6-5

Procedure Division

ABORT-TRANSACTION Statement

The ABORT-TRANSACTION statement aborts the transaction of a terminal operating in trans
action mode. Transaction mode is an operating mode in which PATHWAY servers that are con
figured to run under the Transaction Monitoring Facility (TMF) can lock and update audited files.
When this statement executes, all data base updates that were made to audited files during the
transaction are backed out, and no attempt is made to restart the transaction.

The syntax of the ABORT-TRANSACTION statement is:

[ABORT-TRANSACTION
---·.-·-·-·-·-·-·-]

- ------

E:xecution of this statement causes the terminal to leave transaction mode and the special register
TRANSACTION-ID to be set to SPACES. If the terminal is not in transaction mode when this state
ment is executed or if a fatal error occurs while aborting the transaction, the terminal is suspended
for a pending abort.

Refer to the Introduction to Transaction Monitoring Facility (TMF) and the Transaction Monitor
ing Facility (TMF) Users Guide for additional information about programming with TMF.

ACCEPT Statement

The ACCEPT statement operations for terminals operating in block mode are slightly different
from operations for terminals operating in conversational mode.

If the terminal associated with the SCREEN COBOL program is operating in block mode, ACCEPT
performs the following:

• Displays all the prompt values defined for the screen fields described with PROMPT clauses.

• Waits for response from the terminal.

• Receives data for input to the program data area from the terminal.

• Returns only valid data to the program; checking the definitions in the Screen Section of the
Data Division determines the validity of the data.

If invalid data is entered and an ADVISORY field is defined for the base screen, an error message is
displayed on the screen, the field in error is enhanced, and the data can be corrected or reentered.

If the terminal associated with the SCREEN COBOL program is operating in conversational mode,
ACCEPT performs the following:

• Displays the prompt value defined for the first screen field described with a PROMPT clause.
The prompt value is always displayed in the first column of the screen line.

• Waits for response from the terminal. If the TIMEOUT phrase is used, ACCEPT waits the time
limit specified in this phrase.

• Receives input from the terminal and stores the data into the associated working-storage items
of the program data area. Input can be accepted from the terminal one screen field at a time; one
field per line. However, the capability referred to as typeahead enables entering data for more
than one field on the same line.

6-6

Procedure Division

• Returns only valid data to the program; checking the definitions in the Screen Section of the
Data Division determines the validity of the data.

If invalid data is entered and an ADVISORY field is defined, an error message is displayed, the
prompt is redisplayed for the field in error, and the data can be reentered. If an ADVISORY field is
not defined for the base screen, only the prompt is redisplayed for the field in error and the data can
be reentered.

The syntax of the ACCEPT statement is:

ACCEPT [screen-identifier] ...

UNTIL (] { comp-condition-1 } ... [)] ESCAPE [ON]
[(] { comp-condition-2} ... [)]

comp-condition-1 . . . [

ESCAPE [ON { [(] { comp-condition-2 } [)] }

where

screen-identifier

specifies the screen fields from which data is accepted. Each screen-identifier can name
an entire screen, a screen group, or an elementary input item of any base or overlay
screen that is currently displayed. If screen-identifier is a group, all subordinate elemen
tary items that have a TO or USING clause in their definition are referenced. The screen
identifier cannot be a subscripted item.

The order in which fields appear in the screen-identifier list is the order in which they are
checked and converted.

If this parameter is omitted, the completion condition comp-condition in either the
UNTIL or ESCAPE clause determines when the statement is to terminate. No data is
accepted from the screen, and no working storage item is altered. A typical reason for
omitting the identifier would be during the display of a help screen.

In block mode, if a screen contains only filler items and a DISPLAY statement is followed
by an ACCEPT statement without a screen identifier, the screen remains until a function
key signals the termination of the ACCEPT statement. A typical instance for omitting
the identifier would be during the display of a help screen.

UNTIL and ESCAPE

specify the conditions under which the statement is to complete. These conditions are
typically the names of the terminal function keys that the terminal operator can use. At
least one of these two clauses must be present with a completion condition. If both
clauses are present, any one completion condition can appear in only one of the two
clauses.

comp-condition-1

specifies the completion conditions under which the statement is to terminate with input
of data.

6-7

Procedure Division

comp-condition-2

specifies the completion conditions under which the statement is to terminate without
input of data.

Language elements that can appear as comp-conditions are:

15-8

ABORT

indicates that the abort input control characters were entered to terminate the ACCEPT
statement. This phrase is effective only for terminals in conversational mode. Refer to
the Input Control Characters paragraph described in Section 5.

ABORT is allowed only in the ESCAPE clause. If this phrase is executed, the data items
in working storage are not changed.

If the terminal is in block mode, ABORT is treated as a comment.

INPUT

indicates that the ACCEPT statement terminates with valid screen input. This phrase is
effective only for terminals in conversational mode.

If the terminal is in block mode, INPUT is treated as a comment.

TIMEOUT numeric-Literal

indicates that the terminal operator is to be given a limited time to complete the data
entry. This language element can appear only in the ESCAPE clause. The time allowed is
the number of seconds specified by numeric-literal If the terminal does not respond
within the specified time, the ACCEPT operation is completed without input data.

If this phrase is not specified, there is no time limit.

NOTE

In conversational mode, all comp-condition phrases except ABORT, INPUT,
and TIMEOUT are ignored.

mnemonic-names

indicates the ACCEPT operation completes when the terminal operator presses the
associated function key. This assumes a mnemonic-name has been associated with a ter
minal function key; the association is specified by an IS phrase in the SPECIAL-NAMES
paragraph of the Environment Division. Because of terminal characteristics, certain keys
can be used only in the ESCAPE clause. The function keys are described in Section 4.

mnemonic-name-1 THROUGH mnemonic-name-2

indicates a set of function keys as a single condition. The mnemonic-names must be
associated with the keys from the same range of function keys; for example, F2
THROUGH F15.

Procedure Division

TIMEOUT ACCEPT OPERATION. The numeric literal specified in the TIMEOUT phrase is pro
cessed for the ACCEPT statement in the following manner. The SCREEN COBOL compiler con
verts the number of seconds indicated in numeric-literal into 2 to the t power (2t). The value 2t is
the actual time that elapses before the ACCEPT statement times out. If the numeric literal is not an
exact power of 2, the number of seconds is converted to the next higher power of 2. Table 6-2
illustrates the conversion from numeric-literal to the actual time that elapses.

Table 6-2. TIMEOUT Conversions for ACCEPT Statement

POWER OF 2
t 1 2 2 3 4 4 5 5 6 6 7 7 8

I I I I I I I I I I I I I
TIMEOUT numeric-literal

(in seconds) 2 3 4 8 9 16 17 32 33 64 65 127 129

I I I I I I I I I I I I I

Actual time elapse
2t (in seconds) 2 4 4 8 16 16 32 32 64 128 128 256

I I I I I I I I I I I I

BLOCK MODE ACCEPT OPERATION. The ACCEPT statement enables the terminal keyboard and
waits for input from the terminal. When a valid control key code is received from the terminal, the
keyboard is disabled and a RESET TEMP is executed automatically; this causes the removal of any
temporary field attributes and/or data from the display regardless of whether they were originally
displayed explicitly by the program or implicitly through the ACCEPT statement. If termination is
caused by the comp-condition specified in the ESCAPE clause, the ACCEPT statement terminates
at this point.

If a prompt is used and the field named in the PROMPT clause is an output field, the ACCEPT state
ment causes the current value for the output field to be displayed before reading the data input
from the terminal. An output field named in the PROMPT clause must be defined as FILLER or
defined with a FROM or USING clause.

The data entered from the terminal is checked against the requirements given for the field by its
definition in the Screen Section of the Data Division. The TCP checks only those fields referenced
by the screen-identifier list in the ACCEPT statement.

If errors are discovered and the terminal is in block mode during the data checking, the following
occurs:

• If a field with the ADVISORY clause is defined for the current screen, a DISPLAY
TEMPORARY of the advisory field automatically occurs using the standard error message for
the first error detected.

• If the terminal is equipped with an audible alarm, the alarm sounds provided its use was not sup
pressed in the SCREEN-CONTROL paragraph of the Environment Division.

• The first field in error has a temporary modification of its display attribute with the standard
error enhancement as declared in the SCREEN-CONTROL paragraph. The program can specify
that all fields in error are enhanced (refer to the INPUT-OUTPUT Section in Section 4).

• The statement is restarted following these display operations.

If no data errors are found during the checking, the following occurs:

• The validated data from all referenced screen fields present, including all required fields, is con
verted and moved into the TO or USING data items in working storage associated with the
screen fields.

6-9

Procedure Division

• Absent screen input fields do not change the associated working storage data items unless
specifically requested with the WHEN ABSENT field characteristic clause.

• All SHADOWED fields associated with the input fields of the ACCEPT statement have their
ENTERED and RETURNED bits set appropriately. If these bits are checked by a comparison
statement, the ENTERED and RETURNED bits should be checked together.

If the completion is through an ESCAPE clause, none of the TO or USING data items are affected.
Data variables retain their values and SHADOWED ENTERED bits are not valid.

At the end of any accept operation, the NEW-CURSOR special register is set to zero (row 0, column
0). This controls the placement of the cursor for the next accept operation and causes the default
position to be the first field of the current ACCEPT statement.

The ACCEPT statement indicates the condition that caused completion by storing the condition
code value into the TERMINATION-STATUS special register. Each comp-condition is assigned a
code value according to its position in the UNTIL or ESCAPE clauses. The codes are assigned by
considering the conditions of the UNTIL and ESCAPE clauses to be a single list and assigning each
condition the code value that corresponds to its position in the list. When several conditions are
grouped together with parentheses, they are considered to all occupy the same position; that is, all
the conditions within the parentheses receive the same code value, and the next condition following
the group receives the code value that is one greater than that assigned to the conditions in the
group.

In the following example, the value of TERMINATION-STATUS will be 1 if ENTER is pressed, 2
for CLEAR, 2 for PAl, and 3 for PFL

ACCEPT CUSTOMER-SCREEN UNTIL ENTER
ESCAPE ON (CLEAR, PA1) I PF1

CONVERSATIONAL MODE ACCEPT OPERATION. The ACCEPT statement displays the prompt
value for the first screen field described with a PROMPT clause, enables the keyboard, and waits
for data to be entered from the terminal. (If no screen field description contains a PROMPT clause,
the ACCEPT statement begins at the first column of the screen.) If termination is caused by a
comp-condition specified in the ESCAPE clause, the ACCEPT statement terminates at this point
with no changes to the working storage data items.

The ACCEPT statement always displays the prompt value in the first column of the screen line and
positions the cursor at the end of the prompt field regardless of the positions specified for the field
in the screen description.

When the terminal is enabled for input, data can be accepted for each input field a line at a time or
accepted for more than one field on the same line. If the typeahead capability is used, field or group
separators delimit the screen fields such that multiple fields of data are accepted in a single buffer.
When using typeahead, only the prompt value for the first field is displayed. Then, no other
prompts appear until the end of the input is indicated by either a carriage return or an input control
character.

The ACCEPT statement processes input data in the order the data is received from the terminal.
The input data is associated with the screen fields in the sequence the fields are defined in the
Screen Section. The data is accepted until there is no more input, the abort input character is
entered, or an error is detected. The sequence in which the screen identifiers are processed is from
top to bottom and from left to right as follows:

6-10

Procedure Division

1. The screen field with a lower row Oine) number is processed before a screen field with a higher
row number.

2. Within the same row, the screen field with a lower column number is processed before a screen
field with a higher column number.

The input data is checked against the requirements given for a field by the field definition in the
Screen Section. Only those fields referenced by the screen-identifier list are checked. During
ACCEPT statement processing, the input data is scanned for input control characters that identify
the input fields and indicate an abort, end-of-input, or restart operation. Mnemonic names (except
BELL and HIDDEN) are not recognized in conversational mode. Therefore, function keys have no
effect.

A field error affects only the data in the field that contains the error; fields containing data entered
before the error was detected remain valid. Fields containing data entered after the error was
detected are ignored.

If an error is discovered during the data checking, the following occurs:

• Only the first field having an error is detected and enhanced. The BELL attribute is the only
recognized error enhancement in conversational mode.

• If a field with the ADVISORY clause is defined for the current screen, the advisory field is
displayed on the next line following the line with the error.

• ACCEPT processing restarts after the error display operation. The prompt for the field contain
ing the error is redisplayed, and the cursor is positioned to accept the correct input.

Not all errors are detected immediately. If an error is detected after subsequent screen fields have
been entered and processed, an error message is displayed and the ACCEPT statement is restarted
at the beginning. This is the same action that occurs when a restart input character is processed.

If no data errors are found during the checking, the following occurs:

• The validated data from each referenced screen field is converted and moved as the field is
received from the terminal. The converted data is placed in either the TO or USING data item in
working storage associated with the screen field. The characteristics defined for a screen field
such as PICTURE, UPSHIFT, and so forth, apply to the converted value.

• Absent screen input fields do not change the associated working storage data items unless
specifically requested with the WHEN ABSENT field characteristic clause.

• All SHADOWED fields associated with the input fields of the ACCEPT statement have their
ENTERED and RETURNED bits set appropriately. If these bits are checked by a comparison
statement, the ENTERED and RETURNED bits should be checked together.

ACCEPT statement processing stores a condition code into the TERMINATION-STATUS special
register. A code value is assigned to each comp-condition in the same way as described previously
for block mode.

The following example illustrates an ACCEPT statement for conversational mode. The value of
TERMINATION-STATUS will be 1 if valid input is entered, 2 for ABORT, and 2 for TIMEOUT.

ACCEPT EMPLOYEE-SCREEN UNTIL INPUT
ESCAPE ON (ABORT, TIMEOUT 180).

PERFORM ONE OF
300-CHECK-NULL-NAME
200-EXIT-ROUTINE
DEPENDING ON TERMINATION-STATUS.

6-11

Procedure Division

ACCEPT DATE/DAY/TIME Statement

The ACCEPT DATE/DAY/TIME statement causes the TCP to obtain the current GUARDIAN
system settings for date, day, and time and return them to your program data area.

The syntax of the ACCEPT DATE/DAY/TIME statement is:

ACCEPT accept-name FROM

I DATE I
DAY
TIME

where

accept-name

is the identifier of the data item where DATE, DAY, or TIME is stored. DATE, DAY, and
TIME are typically defined as:

DATE

PICTURE 9(6)
PICTURE 9(5)
PICTURE 9(8)

for DATE
for DAY
for TIME

is the current date expressed as a 6-digit number yymmdd where yy is the year, mm is
the month, and dd is the day. For example, February 25, 1982 would be returned as
820225.

DAY

is the current Julian date expressed as a 5-digit number yyddd where yy is the year and
ddd is the day of the year. For example, February 25, 1982 would be returned as 82056.

TIME

is the current time based on a 24-hour clock, expressed as an 8-digit number hhmmsscc
where hh is the hour, mm the minutes, ss the seconds, and cc the hundredths of seconds.
For example, the time 2:41 P.M. would be returned as 14410000. The range of values
allowed is 00000000 through 23595999.

The following sentence stores the current date (yymmdd) in todays-date, the Julian date (yyddd) in
juli.an-date, and the current time (hhmmsscc) in time-right-now:

WORKING-STO~AGE SECTION.

01 date-and-time-fields.
05 todays-date PIC 9(6)
05 julian-date PIC 9(5)
05 time-right-now PIC 9<8>

PROCEDURE DIVISION.

ACCEPT todays-date FROM DATE
ACCEPT julian-date FROM DAY
ACCEPT time-right-now FROM TIME

6-12

VALUE ZERO.
VALUE ZERO.
VALUE ZERO.

Procedure Division

ADD Statements

The ADD statements sum numeric values and store the results in one or more data items. When
defining a field to hold a total, the size of the field should be considered. The receiving field must be
large enough to hold the result and thus avoid truncation of nonzero digits. The forms of the ADD
statements are:

ADD TO
ADD GIVING
ADD CORRESPONDING

Each form is described in the following paragraphs.

ADD TO. The ADD TO statement adds together all values specified and then adds that sum to the
current. value in each data item specified.

The syntax of the ADD TO statement is:

ADD {value} , ..• TO {result} , ...

where

value

is either a numeric literal or the identifier of an elementary numeric data item.

result

is the identifier of a numeric data item to which value, or the sum of the values, is added.

ADD GIVING. The ADD GIVING statement adds together all values specified and then replaces the
current value of each data item specified with the sum.

The syntax of the ADD GIVING statement is:

ADD {value} , ... GIVING { result} , ...

where

value

is either a numeric literal or the identifier of an elementary numeric data item.

result

is the identifier of a numeric data item into which the sum of the values is stored.

6-13

Procedure Division

ADD CORRESPONDING. The ADD CORRESPONDING statement adds together elementary
items in one group to any corresponding items in another group and then stores the totals in the
second group used for the addition. Items correspond when they have the same names and
qualifiers up to but not including the group item name specified in the ADD CORRESPONDING
statement.

The syntax of the ADD CORRESPONDING statement is:

ADD
{

CORR }
CORRESPONDING

group-1 TO group-2

where

group-1 and group-2

are the identifiers of group items in which some or all of the elementary items are
numeric.

The totals are placed in the group-2 items.

The following conventions apply to data items used with the CORRESPONDING phrase:

• A REDEFINES or OCCURS clause can be specified in the data description entry of any data
item.

• Data items can be subordinate to a data description entry with a REDEFINES or OCCURS
clause.

• No data item can be defined with a level number 66, 77, or 88.

Subordinate data items in two different groups correspond to each other according to the following
rules:

• Both data items must have the same data name.

• All possible qualifiers for the sending data item, up to but not including a group name, must be
identical to all possible qualifiers for the receiving data item up to but not including the receiv
ing group name.

• Only elementary numeric data items are considered.

• Any data item subordinate to a data item that is not eligible for correspondence is ignored.

• FILLER data items are ignored.

In the following example, all item names except staples and paper correspond. Those two items are
skipped in the add operations. Notice that correspondence depends on the names of the items (and
qualifiers other than the highest level ones), and not on their physical order.

6-14

Procedure Division

WORKING-STORAGE SECTION.

01 cabinet-supplies.
05 writing-tools.

10 penci Ls PIC 99.
10 pens PIC 99.
10 erasers PIC 99.

05 paper-clips PIC 99.
05 staples PIC 99.

01 stockroom-supplies.
05 writing-tools.

10 penci Ls PIC 99.
10 erasers PIC 99.
10 pens PIC 99.

05 paper-clips PIC 99.
05 paper PIC 99.

PROCEDURE DIVISION.

ADD CORRESPONDING cabinet-supplies TO stockroom-supplies.

In the following example, only one item (6-12-years) corresponds between the groups:

01 test-group-1.
05 chi Ldren.

10 1-5-years
10 6-12-years

05 teen-agers.
10 13-15-years
10 16-19-years

05 adults
10 women
10 men

01 test-group-2.
05 chi Ldren.

10 1-3-years
10 4-5-years
10 6-12-years

05 teen-agers

Assuming all items are numeric, the following statement sums 6-12-years of children of test-group-1
with 6-12-years of children of test-group-2:

ADD CORRESPONDING test-group-1 TO test-group-2

BEGIN-TRANSACTION Statement

The BEGIN-TRANSACTION statement marks the beginning of a sequence of operations that are
to be treated as a single transaction. When this statement executes, the terminal enters transaction
mode. Transaction mode is an operating mode in which PATHWAY servers that are configured to
run under the Transaction Monitoring Facility (TMF) can lock and update audited files.

6-15

Procedure Division

TMF starts a new transaction and assigns a transaction ID number to the terminal. This number is
placed in special register TRANSACTION-ID. Two other special registers are set: RESTART
COUNTER is set to 0 to indicate that the transaction is being started for the first time, and
TERMINATION-STATUS is set to 1 to indicate that the transaction has started.

The syntax of the BEGIN-TRANSACTION statement is:

BEGIN-TRA~SACTION [ON ERROR imperative-statement J

where

ON ERROR

provides a point of control if an error is encountered. No test is made against the trans
action restart limit; the transaction is restarted and the ON ERROR branch is taken.

imperative-statement

is the statement to be executed if an error occurs or the transaction is being restarted.

If the ON ERROR phrase is omitted and the number of restarts equals the transaction restart
limit, the terminal is suspended, but can be restarted.

[f the transaction fails for any reason while the terminal is in transaction mode, TMF backs out any
updates performed on the data base for the current transaction. If the transaction was not ter
minated deliberately by execution of the ABORT-TRANSACTION statement, terminal execution is
restarted at the BEGIN-TRANSACTION statement if the ON ERROR phrase is specified or if the
ON ERROR phrase is not specified and the number of restarts has not exceeded the transaction
restart limit. (The maximum number of times a logical transaction can be automatically restarted is
specified with the MAXTMFRESTARTS parameter of the PATHCOM SET PATHWAY command.)
TMF assigns a new transaction ID number to the terminal; the TCP marks the screen for screen
recovery and increments by 1 the special register RESTART-COUNTER. The special register
TERMINATION-STATUS remains at 1.

If the terminal is in transaction mode when the BEGIN-TRANSACTION statement is executed, the
current transaction is backed out and the terminal is suspended for a pending abort. Terminal ex
ecution cannot be resumed.

The special register TERMINATION-STATUS is set by the BEGIN-TRANSACTION statement to
indicate the result of this statement's execution. The possible values of TERMINATION-STATUS
are listed in Table 6-3.

6-16

Procedure Division

Table 6-3. TERMINATION-STATUS Error Numbers

TERMINATION-STATUS
Error Number

2

3

4

Meaning

The transaction is started or restarted.

TMF is not installed.

Action without the ON ERROR phrase: the terminal is
suspended for pending abort.

TMF is not running.

Action without the ON ERROR phrase: the terminal is
suspended, but can be restarted.

A fatal error was encountered while attempting to start
the transaction.

Action without the ON ERROR phrase: the terminal is
suspended for pending abort.

Refer to the Introduction to Transaction Monitoring Facility (TMF) and the Transaction Monitor
ing Facility (TMF) Users Guide for additional information about programming with TMF.

CALL Statement

The CALL statement transfers control from one SCREEN COBOL program to another SCREEN
COBOL program.

The syntax of the CALL statement is:

{
data-name }
program-unit-name

[USING { identifier} , ... J CALL

[ON ERROR imperative-statement J

where

data-name

is a nonnumeric data item in the Working-Storage Section or Linkage Section; the value
of the data item gives the PROGRAM-ID of another SCREEN COBOL program, as
specified in the Identification Division of that program. The data-name specification
allows the PROGRAM-ID of the called program to be specified dynamically.

6-17

Procedure Division

program-unit-name

is a nonnumeric literal that gives the PROGRAM-ID of another SCREEN COBOL pro
gram, as specified in the Identification Division of that program.

USING

passes data to the program called. A USING phrase must be specified in the Procedure
Division header of the called program.

identifier

is the name of an argument passed to the called program. This identifier cannot exceed
2047 bytes; it must be an 01 or 77 level data item in the Working-Storage Section or
Linkage Section of the program that is calling the other program. The identifiers in the
USING phrase must correspond exactly in number and structure to the number and
structure of the identifiers specified in the USING phrase of the Procedure Division
header of the called program. Correspondence is by position in the USING lists.

ON ERROR

provides a point of control if an error is encountered in a descendent program unit.

If a suspend class error is encountered, control is returned to the next higher level pro
gram unit having a CALL statement containing an ON ERROR clause. (A suspend class er
ror condition is one that without the use of the CALL ... ON ERROR feature would cause the
terminal to become suspended.) If a program unit containing an ON ERROR clause does
not exist, the terminal is suspended at the statement where the error occurred. If the ter
minal is in transaction mode when a suspend class error occurs and the point-of-control
CALL ... ON ERROR is beyond the scope of the current transaction, the current transaction
is aborted.

imperative-statement

is the statement to be executed if an error occurs.

The data area of a program is initialized each time the program is called; therefore, variables do not
retain their values between calls.

If the ON ERROR branch is taken, the special register TERMINATION-STATUS contains an error
code describing the error, and the special register TERMINATION-SUBSTATUS contains a value
or an error code further describing the error. TERMINATION-STATUS and corresponding
TERMINATION-SUBSTATUS error codes are listed in Table 6-4. The error code in
TERMINATION-SUBSTATUS is dependent upon the error.

6-18

Procedure Division

Table 6-4. TERMINATION-STATUS/TERMINATION-SUBSTATUS
Error Codes for CALL Statement

TERMINATION-STATUS

0001 - INVALID PSEUDOCODE DETECTED

0002 - DEPENDING VARIABLE VALUE TOO BIG

0003 - INVALID SUBSCRIPT VALUE

0004 - SCREEN RECOVERY EXECUTED ILLEGAL
INSTRUCTION

0005 - CALL: ACTUAL NUMBER PARAMETERS
MISMATCH FORMAL

0006 - CALL: ACTUAL PARAMETER SIZE
MISMATCHES FORMAL

0007 - SCREEN OPERATION DONE WITHOUT
BASE DISPLAYED

0008 - INVALID DATA REFERENCE

0009 - REFERENCED SCREEN IS ILLEGAL FOR
TERMINAL TYPE

0010 - INTERNAL ERR IN TERMINAL FORMAT
ROUTINES

0011 - ILLEGAL TERMINAL TYPE SPECIFIED

0012 - SCREEN REFERENCED BUT NOT
DISPLAYED

0013 - OVERLAY SCREEN DISPLAYED IN TWO
AREAS

0014 - ILLEGAL TERMINAL 10 PROTOCOL
WORD

0015 - ARITHMETIC OVERFLOW

0016 - TERMINAL STACK SPACE OVERFLOW

0017 - ERROR DURING TERMINAL OPEN

0018 - ERROR DURING TERMINAL 10

0019 - WRONG TRANSFER COUNT IN
TERMINAL 10

0020 - CALLED PROGRAM UNIT NOT FOUND

TERMINATION·SUBSTATUS

TCP P-Register

Descriptor number

TCP P-Register

TCP P-Register

TCP P-Register

Screen number

TDA Size (words)

File Error Code

File Error Code

Transferred Count

6-19

Procedure Division

Table 6-4. TERMINATION-STATUS/TERMINATION-SUBSTATUS
Error Codes for CALL Statement (Continued)

TERMINATION-STATUS

0021 - TRANSACTION MSG SEND FAILURE

0022 - SEND: SERVER CLASS NAME INVALID

0023 - PSEUDOCODE SIZE TOO BIG

0024 - TCLPROG DIRECTORY ENTRY IS BAD

0025 -TERMINAL INPUT DATA STREAM INVALID

0026 - PROGRAM UNIT HAS WRONG TERMINAL
TYPE

0027 -TRANSACTION MODE VIOLATION

0028 - TRANSACTION 1/0 ERROR

0029 - TRANSACTION RESTART LIMIT
REACHED

0030 - TM F NOT CON FIGURED

0031 - TMF NOT RUNNING

0040 - INVALID NUMERIC ITEM

0041 - INVALID PRINTER SPECIFICATION

0042 - DEVICE REQUIRES ATTENTION

0043 - PRINTER 1/0 ERROR

0044 - CALL: PROGRAM UNIT NAME INVALID

0113 - TRANSACTION MSG SIZE EXCEEDS
LIMIT

0114 - MAXIMUM REPLY SIZE EXCEEDS LIMIT

-----------·-·----------.

TERMINATION-SUBSTATUS

Fi le Error Code

File Error Code

Fi le Error Code

The TERMINATION-STATUS error numbers related to CALL ... ON ERROR correspond directly
to the TCP-generated PATHWAY error messages, that is, those errors in the 3000 to 3999 range.
For example, TERMINATION-STATUS error 114 corresponds to PATHWAY error message 3114.

6-20

Procedure Division

Note that TERMINATION-SUBSTATUS becomes undefined when TERMINATION-STATUS is
set for reasons other than CALL ... ON ERROR return.

Refer to the EXIT PROGRAM statement for additional information on programmatic control of er
ror conditions.

CHECKPOINT Statement

The CHECKPOINT statement causes the current context for the terminal, such as working storage
items, to be checkpointed.

The syntax of the CHECKPOINT statement is:

[CHECKPOINT _]
This statement causes an additional checkpoint. Automatic checkpointing occurs as follows:

• When the terminal is not in transaction mode, the TCP performs a full context checkpoint before
execution of a SEND statement and performs a checkpoint of the reply after execution of a
SEND statement.

• When the terminal is in transaction mode, the TCP only performs checkpoints at the BEGIN
TRANSACTION and END-TRANSACTION statements. No checkpoints are performed at any
SEND statements while in transaction mode.

If the CHECKPOINT statement is issued while the terminal is in transaction mode, the terminal is
suspended for pending abort.

CLEAR Statement

The CLEAR statement prepares the terminal for a new set of input.

The syntax of the CLEAR statement is:

[CLEAR INPUT
-------]

This statement stores null values into all unprotected fields of the screens currently displayed and
resets the Modified Data Tag (MDT) bits of all unprotected fields on terminals that use MDT. Ex
cept for the MDT, the attributes of the fields are not affected.

6-21

Procedure Division

The CLEAR statement differs from the RESET statement as follows:

The CLEAR statement affects all unpro
tected fields on the display screen.

The CLEAR statement causes all unpro
tected fields to become blank.

The CLEAR statement does not affect
field attributes, although the MDT bits are
cleared.

The CLEAR statement requires only a
short data sequence.

COMPUTE Statement

The RESET statement affects only those
fields specified in the statement, whether
or not the fields are protected.

The RESET statement returns all fields to
the initially declared values.

The RESET ATTR statement sets all
display attributes to their initial values.

The RESET statement requires a data se
quence from the TCP for each field
referenced in the statement.

The COMPUTE statement evaluates an arithmetic expression and then stores the result in one or
more data items.

The syntax of the COMPUTE statement is:

COMPUTE { result } , ... =expression

where

result

is the identifier of a numeric elementary item.

expression

is an arithmetic expression calculated according to precedence rules described in Section 2.

As with other arithmetic operations, consider truncation situations and how they should be
handled.

The following example illustrates the COMPUTE statement:

WORKING-STORAGE SECTION.

77 compute-result PIC 999 VALUE ZEROS.
77 ws-result PIC S9(9) VALUE ZEROS.
77 ws-99 PIC S99 VALUE 99.
77 ws-five-ones PIC S9(5) VALUE 11111.
01 exponent PIC 9(5) VALUE ZERO COMP.

COMPUTE compute-result= (((24.0 + 1) * (60 - 10)) I 125).

(compute-result = 10)

l)-22

Procedure Division

COPY Statement

The COPY statement inserts sections of code into a program for use at compile time. This allows
code that is common to several programs to be written once and be maintained easily.

The syntax of the COPY statement is:

COPY copy-text Library-name] •

where

copy-text

is a unique section name in a SCREEN COBOL copy library file.

Library-name

is the Tandem file containing the text to be copied. The name is expanded to a full file
name using the default subvolume in effect for the compilation. If you specify the library
name with a subvolume and a file name, you must enclose the entry in quotation marks.
For example, "subvol.afile".

If the library-name clause is omitted and copy text exists, the default library name
COPYLIB is used for the compilation.

Even though the COPY statement is described as a Procedure Division statement, the statement
can be included in a SCREEN COBOL program wherever a character string or separator can
appear; the only exception is within another COPY statement. Keyword COPY cannot be split over
two lines, but text that follows the keyword can be continued.

Library text is copied into the source program. The SCREEN COBOL copy library must be in the
correct format, and each copy text must be written in correct SCREEN COBOL syntax.

A copy library must be an EDIT disc file in the following form:

?SECTION copy-text-1
[I {ANSI }]

TANDEM
text-1

?SECTION copy-text-2
[I {ANSI }]

TANDEM

text-2

Each SECTION line identifies the beginning of a copy-text; the question mark must be in column 1.
The content of the text is arbitrary and can be any length. No text line can begin with ?SECTION.

The compiler assumes the source format (ANSI standard reference format or Tandem standard
reference format) of the library text is the same as that of the line containing the COPY statement.
When the format option is specified, the format overrides the compiler's assumption, permitting a
library text to be copied irrespective of the format of the source program. Also, the library text
itself can have compiler commands, which are obeyed when the text is copied. Note that after copy
ing is complete, the compiler always reverts to the format in force when it encountered the COPY
statement.

6-23

Procedure Division

During program compilation, copy-text is found by locating the SECTION command whose copy
text name matches copy-text in the COPY statement. Text is copied starting at the line after the
SECTION line and continues until either another SECTION line is recognized or end-of-file is
reached.

In the following example, text-0 has no SECTION command and could never be copied:

text-0

?SECTION copy-text-1
text-1

When a library file begins like this, this text could be comments about the library contents.

In the following example, notice that employee-detail of the COPY statement is not qualified
because the copy library, named COPYLIB, resides on the default volume and subvolume for the
compilation: ·

Contents of copy library COPYLIB

?SECTION employee-detail
01 emp-data-in.

05 emp-no PIC
05 emp-name PIC
05 dept PIC
05 job-class PIC
05 hourly-rate PIC
05 deductions PIC
05 salary PIC

Source SCREEN COBOL code

DATA DIVISION.
WORKING-STORAGE SECTION.

COPY employee-detail.

Compile listing of object code

X(05).
x (20).
X(03).
X<05).
9(3)V99.
9(3)V99.
9(7)V99.

DATA DIVISION.
WORKING-STORAGE SECTION.

COPY employee-detail.

< 01 emp-data-in.
< 05 emp-no PIC XC05).
< 05 emp-name PIC x (20).
< 05 dept PIC x (03) .
< 05 job-class PIC XC05).
< 05 hourly-rate PIC 9(3)V99.
< 05 deductions PIC 9(3)V99.
< 05 salary PIC 9(7)V99.

6-24

All lines from a
copy library are
marked by <in
the compile
listing.

Procedure Division

DELAY Statement

The DELAY statement provides a means to delay program execution for a specified period of time.

The syntax of the DELAY statement is:

DELAY

where

{
numeric-literal l
identifier f

numeric-literal

is a numeric value representing one-second units. No limitation is imposed on the value.

identifier

is the identifier of an integer data item representing one-second units. No limitation is im
posed on the value.

This statement is intended for use in situations where an error has occurred (such as a terminal I/O
error because power to the terminal is off) and the operation encountering the error is to be retried
periodically. The following example illustrates the DELAY statement:

* highest level program-unit.

loop.
CALL menu ON ERROR PERFORM analyze-error.
IF retry = 1

* delay five minutes, then retry.
DELAY 300
GO TO loop

ELSE
GO TO giveup.

analyze-error.
IF TERMINATION-STATUS = 18 AND

(TERMINATION-SUBSTATUS = 171 OR
TERMINATION-SUBSTATUS = 173)

MOVE 1 TO retry
ELSE

MOVE 0 TO retry.

* suspend.
giveup.

EXIT PROGRAM WITH ERROR.

6-25

Procedure Division

DISPLAY Statements

The DISPLAY statements transmit and display data to the terminal screen. The forms of the
DISPLAY statements are:

DISPLAY BASE
DISPLAY OVERLAY
DISPLAY RECOVERY
DISPLAY

Each form is described in the following paragraphs.

DISPLAY BASE. The DISPLAY BASE statement operations for terminals in block mode are
slightly different from operations for terminals operating in conversational mode.

If the terminal associated with the SCREEN COBOL program is operating in block mode, DISPLAY
BASE performs the following:

• Clears the current screen display.

• Displays literals, null, and fill characters declared in the Screen Section for the base screen.

If the terminal associated with the SCREEN COBOL program is operating in conversational mode,
DISPLAY BASE selects the screen for subsequent operations, but does not display the screen.

DISPLAY BASE establishes the foundation for all other screen operations. Therefore, the state
ment must be executed before attempting any other display operations. A second DISPLAY BASE
statement can be specified at any time to establish a new screen, or to reestablish the same screen.

The syntax of the DISPLAY BASE statement is:

DISPLAY BASE base-screen-name

where

base-screen-name

is the name of the base screen.

During execution of the first DISPLAY BASE statement for a SCREEN COBOL program, the 1/0
startup messages prepare the terminal for PATHWAY operation. The program can it hen act on any
terminal 1/0 errors through the CALL ON ERROR clause.

BLOCK MODE DISPLAY BASE. The input and output fields of the screen are villed with the value
specified in the VALUE clause for each field. A field that has no VALUE clause is filled with the fill
character. All occurrences of a variable length table are filled, regardless of the current value of the
table's controlling variable.

A running SCREEN COBOL program has at most one current base screen; the current base screen
is defined by the most recently executed DISPLAY BASE statement. The program can have at
most one current overlay screen associated with each of the overlay areas of the current base
screen; the current overlay screen is defined by the most recently executed DISPLAY OVERLAY
statement for each of the areas. With the exception of the DISPLAY BASE and DISPLAY
OVERLAY statements, all screen operations must deal only with the current screens.

The definition of a screen is local to a SCREEN COBOL program; therefore, a program cannot make
use of a current screen that was established by another program, even if the declaration of the cur
rent screen is identical to the declaration of the screen in the currently executing program. Conse
quently, the program must perform a DISPLAY BASE to make use of a screen.

Procedure Division

If a program has current screens defined and calls another program that has screen declarations,
the current screens become undefined for the first program. If the first program is to make use of
the screens it previously displayed, the first program must execute DISPLAY BASE/OVERLAY
statements after the call to the program has completed.

If a program calls another program that has no screen declarations, the definition of the current
screens remains unchanged.

When a program that has defined the current screens executes an EXIT PROGRAM statement, the
current screens become undefined. The program must display the screens again to make use of
them, even if no intervening screen operations have occurred since its exit.

CONVERSATIONAL MODE DISPLAY BASE. If the terminal associated with the SCREEN COBOL
program is operating in conversational mode, DISPLAY BASE selects the screen description for
subsequent operations, but does not display the screen. A DISPLAY or an ACCEPT statement
must follow the DISPLAY BASE for data to be output to the terminal.

DISPLAY OVERLAY. The DISPLAY OVERLAY statement operations for terminals in block mode
are slightly different from operations for terminals in conversational mode.

If the terminal associated with the SCREEN COBOL program is operating in block mode, DISPLAY
OVERLAY performs the following:

• Associates an overlay screen description with an overlay area.

• Performs the initial display of the screen in the area, replacing any previous screen in that area.

If the terminal associated with the SCREEN COBOL program is operating in conversational mode,
DISPLAY OVERLAY selects an overlay screen description for subsequent operations, but does not
display the screen.

The syntax of the DISPLAY OVERLAY statement is:

DISPLAY OVERLAY

where

)overlay-screen-name}
lSPACES

overlay-screen-name

is the name of the overlay screen to be displayed.

AT overlay-area

AT overlay-area

is the name of the overlay area of the currently displayed base screen into which the
overlay screen is to be placed.

SPACES

causes the overlay area to become blank and restores the area to the state it was in imme
diately after the base screen was displayed. Any association of an overlay screen with
the overlay area is broken.

If the DISPLAY BASE statement does not appear before the DISPLAY OVERLAY statement, an
error is generated.

The overlay area must be at least as large as the overlay screen. An overlay screen cannot be
displayed in more than one overlay area at the same time.

6-27

Procedure Division

DISPLAY RECOVERY. The DISPLAY RECOVERY statement initiates screen recovery. A program
can use this statement to implement a terminal operator request for screen recovery, thus
eliminating duplication of code for recovery actions.

The syntax of the DISPLAY RECOVERY statement is:

[DI~PLAY RECOVERY

When DISPLAY RECOVERY executes, the standard error recovery procedure is executed. The
recovery process performs the equivalent of a DISPLAY BASE statement for the current base screen
followed by a DISPLAY OVERLAY for all currently active overlay screens. The screen recovery
process then executes any screen recovery declarative procedures that have been provided in the
SCREEN COBOL program.

DISPLAY. The DISPLAY statement transmits data to selected output fields of the screen.

11he syntax of the DISPLAY statement is:

DISPLAY
[

TEMP] [nonnumeric-literal IN J
TEMPORARY

{screen-identifier} , ••.

[
DEPENDING [ON J identifier]
SHADOWED

where

6·-28

TEMP or TEMPORARY

marks the fields so that they will be reset to their default values when the next RESET
TEMP or ACCEPT statement is executed.

If the terminal is operating in conversational mode, this phrase is ignored and DISPLAY
performs normally. To temporarily change the value of a screen item, the current value
of the associated working storage item must be saved, the value changed, the new value
displayed, and then the previous current value must be restored.

nonnumeric-literal

is a value that is sent to the terminal for each selected field. The value is not converted; it
is truncated or extended with the fill character if necessary.

If this clause is omitted, the data for a selected screen field is obtained from the working
storage data item specified in the FROM or USING clause of the screen field description.
The data is converted and edited according to the screen field declaration, and those
characters are placed in the field on the terminal display.

Procedure Division

screen-identifier

is a screen, screen group, or elementary output item of any active screen. When screen
identifier is not an elementary item, all subordinate elementary items that have a FROM
or USING clause in their definitions are referenced.

DEPENDING ON identifier

selects either zero or one screen-identifier from the list. The statement whose position in
the screen-identifier list is the same as the value in identifier is selected. If the value in
identifier is less than one or greater than the number of screen-identifiers, no screen
identifier is selected.

SHADOWED

selects from the screen-identifier list only those fields that have SHADOWED items in
which the SELECT bit is set. Fields in the screen-identifier list that do not have
SHADOWED items are not selected.

If neither the DEPENDING ON modifier nor the SHADOWED modifier is specified, all fields
in the list are selected.

For terminals operating in conversational mode, the DISPLAY statement presents output in order
by rows. A screen field value appears on the screen at the column number position specified in the
screen field description. Blank lines are not generated (for formatting purposes) such that screen
lines generally do not correspond with the line numbers specified in the Screen Section.

To display fully line-formatted screens, define at least one item for every line (row) of the screen. If
a row of spacing is required, define the screen item for that row with a VALUE clause specifying
blanks. For example, VALUE "". Then, display the entire screen by specifying the screen name as
the screen-identifier in the DISPLAY statement.

For terminals operating in conversational mode, the DISPLAY statement performs as follows:

• The DISPLAY statement positions screen items on the output line, in the column location
specified in the Screen Section. Another screen item having the same line number description,
but not named in the DISPLAY statement will not appear in the screen display.

If you specify a screen group name to display multiple screen fields, each screen field will appear
in the column described for that field. However, the screen fields will be on consecutively
numbered lines regardless of the screen field descriptions.

• Any non-filler screen item must be defined with a TO, FROM, or USING clause in the Screen
Section. If a screen item is defined with both a VALUE clause and a TO, FROM, or USING
clause, the literal in the VALUE clause is never displayed. The DISPLAY statement output is
always from the associated working storage data items.

• If nonnumeric-literal is listed in a DISPLAY statement and the screen-identifier list contains
more than one field, the literal appears in each of the screen fields named in the list.

6-29

Procedure Division

DIVIDE Statements

The DIVIDE statements divide one data item into another and store the results in one or more data
items. The forms of the DIVIDE statements are:

DIVIDE INTO
DIVIDE GIVING
DIVIDE BY GIVING

Each form is described in the following paragraphs.

DIVIDE INTO. The DIVIDE INTO statement divides one data item into one or more other data
items.

The syntax of the DIVIDE INTO statement is:

DIVIDE divisor INTO {dividend} , ••.

where

divisor

is either a numeric literal or the identifier of an elementary numeric data item.

dividend

is the identifier of an elementary numeric data item that is the dividend and receiving
field for the quotient.

DIVIDE GIVING. The DIVIDE GIVING statement divides one data item into another and stores the
quotient in one or more data items.

The syntax of the DIVIDE GIVING statement is:

DIVIDE divisor INTO dividend GIVING {quotient} , .•.

where

divisor

is either a numeric literal or the identifier of an elementary numeric data item.

dividend

is either a numeric literal or the identifier of an elementary numeric data item.

quotient

is the identifier of an elementary numeric data item where the quotient is stored.

6-30

Procedure Division

DIVIDE BY GIVING. The DIVIDE BY GIVING statement is the same as DIVIDE GIVING, except
the dividend is specified first.

The syntax of the DIVIDE BY GIVING statement is:

DIVIDE dividend BY divisor GIVING {quotient} , ...

where

dividend

is either a numeric literal or the identifier of an elementary numeric data item.

divisor

is either a numeric literal or the identifier of an elementary numeric data item.

quotient

is the identifier of an elementary numeric item where the quotient is stored.

The following example illustrates the DIVIDE BY GIVING statement:

WORKING-STORAGE SECTION.
77 Leap-year PIC 9
77 divide-result PIC 99
01 invoice-date.

05 inv-month
05 i nv-day
05 inv-year

PROCEDURE DIVISION.

PIC 99.
PIC 99.
PIC 99.

VALUE ZERO.
VALUE ZERO.

DIVIDE inv-year BY 4 GIVING divide-result.

6-31

Procedure Division

END-TRANSACTION Statement

The END-TRANSACTION statement marks the completion of a sequence of operations that are
treated as a single transaction. When this statement executes, the terminal leaves transaction
mode. Transaction mode is an operating mode in which PATHWAY servers that are configured to
run under the Transaction Monitoring Facility (TMF) can lock and update audited files.

The syntax of the END-TRANSACTION statement is:

END-TRANSACTION

If TMF accepts this statement, any data base updates made during the transaction become commit
ted, the terminal leaves transaction mode, and the special register TRANSACTION-ID is set to
SPACES. If TMF rejects this statement, transaction restart occurs.

If the terminal is not in transaction mode when the END-TRANSACTION statement is executed,
the terminal is suspended for a pending abort.

Refer to the Introduction to Transaction Monitoring Facility (TMF) and the Transact,ion Monitor
ing Facility (TMF) Users Guide for additional information about programming with TMF.

EXIT Statements

The EXIT statements mark the end of a procedure or the exiting point of a subprogram. The forms
of the EXIT statements are:

EXIT
EXIT PROGRAM

Each form is described in the following paragraphs.

EXIT. The EXIT statement marks the end of a procedure. The statement performs no operation.

The syntax of the EXIT statement is:

EXIT • --=

6-32

Procedure Division

EXIT PROGRAM. The EXIT PROGRAM statement marks the logical end of a called program.
When this statement is executed in a called program, control returns to the calling program. If the
program executing the EXIT PROGRAM statement is the initial program used when the terminal
was started, the terminal is stopped.

The syntax of the EXIT PROGRAM statement is:

EXIT PROGRAM [WITH ERROR J •

where

WITH ERROR

is an option that provides a way to reassert the error condition described by special
registers TERMINATION-STATUS and TERMINATION-SUBSTATUS. The error con
dition states that if a suspend class error is encountered, control is returned to the next
higher level program unit having a CALL statement with an ON ERROR clause; if a pro
gram unit with the CALL ... ON ERROR feature does not exist, the terminal is suspended
without possibility of restart.

Note that the program can change the contents of TERMINATION-STATUS and
TERMINATION-SUBSTATUS before executing the EXIT PROGRAM WITH ERROR
statement. Values for TERMINATION-STATUS must be in the range of 0 through 255.

The EXIT PROGRAM statement must appear in a sentence by itself and must be the only sentence
in the paragraph.

GO TO Statements

The GO TO statements pass control from one part of the Procedure Division to another. The forms
of the GO TO statements are:

GO TO
GO TO DEPENDING

Each form is described in the following paragraphs.

GO TO. The GO TO statement unconditionally passes control from one part of the Procedure Divi
sion to another.

The syntax of the GO TO statement is:

GO [TO J procedure-name

where

procedure-name

is the name of the procedure to which control is transferred.

6-33

Procedure Division

GO TO DEPENDING. The GO TO DEPENDING statement passes control to one of several pro
cedures depending on a variable data item.

The syntax of the GO TO DEPENDING statement is:

GO TO {procedure-name} , ... DEPENDING [ON J depend

where

procedure-name

is a series of procedure names. Only one is chosen, based on the value of depend.

depend

is the identifier of an elementary numeric integer data item. This item acts like an index
because its value selects the procedure name to which the program branches. If the value
of depend is outside the range of procedure-name, no branching occurs and control passes
to the next statement.

The following example illustrates the GO TO DEPENDING statement:

procedure-branch.
GO TO proc-1,

proc-2,
proc-3, DEPENDING ON branch-flag.

MOVE 0 to branch-flag.

If branch-flag is l, control passes to proc-1.
If branch-flag is 2, control passes to proc-2.
If branch-flag is 3, control passes to proc-3.
If branch-flag is less than 1 or greater than 3, control passes to the statement immediately
following the GO TO DEPENDING statement.

IF Statement

The IF statement evaluates a condition and then transfers control depending on whether the value
of the condition is true or false.

The syntax of the IF statement is:

IF condition

where

condition

j statement-1 }
lNEXT SENTENCE

is any conditional expression.

6-34

{
statement-2 }]
NEXT SENTENCE

Procedure Division

statement-1, statement-2

are imperative or conditional statements. Each statement can contain an IF statement, in
which case the statement is referred to as a nested IF statement.

NEXT SENTENCE

is a substitution for statement-1 or statement-2. The phrase performs no operation, but is
used to preserve the syntactical structure or to emphasize that one value of condition
elicits no action.

IF statements within IF statements are considered as paired IF and ELSE statements, proceeding
from left to right. An ELSE is assumed to apply to the immediately preceding IF that has not
already been paired with an ELSE.

The following conventions apply to the IF statement:

If condition is true

If condition is false

If a GO TO statement that causes a
transfer of control is executed as part of
statement-1 or statement-2

If control is not unconditionally trans
ferred by execution of a GO TO statement
as part of statement-1 or statement-2

statement-1 is executed; if NEXT
SENTENCE has been substituted for
statement-1, no operation takes place.

statement-2 is executed; if NEXT
SENTENCE has been substituted for
statement-2 or if the ELSE clause has
been omitted, no operation is performed.

control is unconditionally transferred to
the target of the GO TO.

control passes to the next executable
statement following the IF after all
statements executed as part of the IF have
completed.

The following example illustrates a simple IF statement:

IF julian-days IS GREATER THAN 59,
ADD Leap-year TO julian-days.

The following example illustrates a simple IF ELSE statement:

IF tally GREATER THAN 0
MOVE 0 TO tally
MOVE 3 TO msg-index
PERFORM print-error-routine

ELSE
MOVE 1 TO flag.

6-35

Procedure Division

The following example illustrates nested IF statements:

IF employee-number NOT EQUAL TO SPACES
PERFORM read-routine
IF no-error

PERFORM list-record-out
IF yes

PERFORM delete-master
IF no-error

ADD 1 TO delete-count
ELSE

NEXT SENTENCE
ELSE

MOVE 0 TO flag
ELSE

NEXT SENTENCE
ELSE

MOVE 1 TO flag.

MOVE Statements

The MOVE statements transfer data from one data item to one·or more other data items in accor
dance with editing rules. The forms of the MOVE statements are:

MOVE
MOVE CORRESPONDING

Each form is described in the following paragraphs.

MOVE. The MOVE statement copies data from one data item and stores it in one or more other data
items.

The syntax of the MOVE statement is:

MOVE data-name-1 TO { data-name-2} , ...

where

data-name-1

is the sending item. The item can be an identifier or a literal.

data-name-2

is the receiving item. The item is an identifier.

Any subscripting or indexing for data-name-1 is evaluated only once, immediately before data is
moved to the first receiving item.

ti-36

Procedure Division

The following statement:

MOVE i tem-1 (b) TO i tem-2, i tem-3 (b)

is equivalent to:

MOVE item-1(b) TO temp
MOVE temp TO item-2
MOVE temp TO item-3(b).

The following examples illustrate the MOVE statement:

WORKING-STORAGE SECTION.
01 record-in.

05 item-a PIC X(5).
05 item-b PIC 99V99.
77 t emp1 PIC x (4) .
77 temp2 PIC x (8) •
77 temp3 PIC 9(5)V999.
77 temp4 PIC 9V9.

PROCEDURE DIVISION.
begin-processing.

MOVE item-a TO temp1.
MOVE item-a TO temp2.
MOVE item-b TO temp3.
MOVE item-b TO temp4.
MOVE SPACES TO record-in.
MOVE ZEROS TO item-b.

<-
<-
<-
<-

Item-a is truncated to fit temp1.
Remainder of temp2 is blank fi Lled.
Remainder of temp3 is zero fi Lled.
If the value in item-b is greater
than 9.9, this move wi LL cause the
SCREEN COBOL program to be
suspended by the TCP with an
arithmetic overf Low error.

MOVE CORRESPONDING. The MOVE CORRESPONDING statement moves selected data items
of one group to corresponding data items of another group.

The syntax of the MOVE CORRESPONDING statement is:

MOVE
{

CORR ~ g roup-1 TO g roup-2
CORRESPONDING~

where

group-1

is the group name of sending data items.

group-2

is the group name of receiving data items.

Group-1 and group-2 must be defined in the Working-Storage Section or the Linkage Section,
not in the Screen Section.

6-37

Procedure Division

'I'he following conventions apply to data items used with the CORRESPONDING phrase:

• A REDEFINES or OCCURS clause can be specified in the data description entry of any data
item.

• Data items can be subordinate to a data description entry with a REDEFINES or OCCURS
clause.

• No data item can be defined with a level number 66, 77, or 88.

Subordinate data items in two different groups correspond to each other according to the following
rules:

•
1 Both data items must have the same data name.

•
1 All possible qualifiers for the sending data item, up to but not including a group name, must be

identical to all possible qualifiers for the receiving data item up to but not including the receiv
ing group name.

•
1 At least one of the corresponding sending/receiving items must be elementary. The class of any

corresponding pair of data items can differ.

11 Any data item subordinate to a data item that is not eligible for correspondence is ignored.

• 1 FILLER data items are ignored.

l~xamples of corresponding items are shown in the following examples:

l~xample 1: All items in the following two groups correspond:

01 detail-in. 01 report-line.
05 social-security 03 social-security
05 employee-name 03 FILLER
05 address 03 employee-name

10 street 03 FILLER
1 0 city 03 address
10 state 05 street
1 0 zip-code 05 FILLER

05 city
05 FILLER
05 state
05 FILLER
05 zip-code

The following sentence would fill in report-line:

MOVE CORRESPONDING detail-in TO report-line

6-38

Procedure Division

Example 2: Only pencils items in the following groups correspond; even though all other elemen
tary names are alike, they do not have the same qualifiers:

01 stock-items.
05 erasers

10 gum
10 pink
10 ink

05 penci Ls
10 mechanical
10 non-mechanical

05 felt-tip-pens
05 ball-point-pens
05 fountain-pens

01 shelf-items.
05 pens

07 felt-tip-pens
07 ball-point-pens
07 fountain-pens

05 eradicators
10 ink
10 pink
10 gum

05 penci Ls
10 mechanical
10 non-mechanical

The following sentence would move only the data items of the pencils group:

MOVE CORRESPONDING stock-items TO shelf-items

MOVE RESTRICTIONS. Move operations between the following types of data items should not be
attempted:

• An alphabetic data item or the figurative constant SPACE to a numeric data item.

• A numeric literal, a numeric data item, or the figurative constant ZERO to an alphabetic data
item.

• A noninteger numeric literal or a noninteger numeric data item to an alphanumeric data item.

• A numeric data item to a numeric data item that does not have at least the same number of posi
tions to the left of the decimal position.

MOVE CONVENTIONS. Data is converted and stored according to the data category of the receiv
ing field. The conventions are as follows:

• Alphanumeric or alphabetic receiving data item

Data is stored beginning at the leftmost position in the receiving field.

If the data in the sending item is shorter, the data is space filled in the receiving field ac
cording to the standard alignment rules described in Section 2.

If the data in the sending item is longer, the data is truncated on the right to the length of
the receiving field.

If the sending item is described as signed numeric, the operational sign is not moved to
the receiving field; this applies whether the sign is a part of the data item or is a separate
character.

6-39

Procedure Division

• Numeric receiving item

Data is aligned by decimal point, zero filled as necessary.

If the receiving field is signed and the sending field is signed, the sign is moved and con
verted; if the sending field is not signed, the value is signed as positive.

If the receiving field is not signed, the absolute value of the sending field data is moved.

If the sending field is alphanumeric, the value of the sending field is treated as an unsigned
numeric integer.

Group moves are treated as alphanumeric to alphanumeric moves, with no data conversion. The
receiving area is filled without regard to individual or subgroup items in either the sending or
receiving items.

Move conventions are summarized in Table 6-5.

Table 6-5. Move Summary Table

Category of Receiving Data Item

Category of Sending Nume1 ric Integer
Data Item Alphabetic Alphanumeric Numeri c Noninteger

_" ___ f---------
Alphabetic x x

-----···-··-·- ---------------- t-----------

Alphanumeric x x x
-"--"- ·---

Numeric Integer x x
---····-- ---------------- t------

Numeric Noninteger x
. -- ----

x = legal

MULTIPLY Statements

'The MULTIPLY statements multiply two or more numeric items and place the result in a specified
data item. A multiply operation can easily produce a value that does not fit into the receiving field;
when defining a receiving field, thought should be given to the size of that field. The forms of the
MULTIPLY statements are:

MULTIPLY BY
MULTIPLY GIVING

.Each form is described in the following paragraphs.

1)-40

Procedure Division

MULTIPLY BY. The MULTIPLY BY statement multiplies one numeric data item by one or more
other numeric data items. The product replaces the value of each multiplier.

The syntax of the MULTIPLY BY statement is:

MULTIPLY value BY {multiplier} , ..•

where

value

is the multiplicand, which is a numeric literal or an identifier of an elementary numeric
data item.

multiplier

is the identifier of an elementary numeric data item. The result of the multiply operation
is stored as the new value of multiplier. The sum of the number of digits in value and
multiplier must not exceed 18.

MULTIPLY GIVING. The MULTIPLY GIVING statement multiplies two numeric data items and
stores the product in one or more other data items.

The syntax of the MULTIPLY GIVING statement is:

MULTIPLY value BY multiplier GIVING {result} , ..•

where

value

is the multiplicand, which is a numeric literal or an elementary numeric data item.

multiplier

is a numeric literal or the identifier of an elementary numeric data item. The sum of the
number of digits of value and multiplier must not exceed 18.

result

is the identifier of an elementary numeric data item into which the product is stored.

PERFORM Statements

The PERFORM statements execute one or more procedures in a program. When a single paragraph
or section name is specified, control passes to the first statement of the paragraph or section; when
execution of the paragraph or section completes, control passes to the PERFORM statement. If a
group of paragraphs or procedures is specified, control passes to the first statement of the first
paragraph or section; when execution of the last paragraph or section completes, control returns to
the PERFORM statement.

6-41

Procedure Division

The forms of the PERFORM statement are:

PERFORM
PERFORM TIMES
PERFORM UNTIL
PERFORM VARYING
PERFORM ONE

In each of these forms, the parameters proc-1 and proc-2 appear. P'roc-1 and proc-2 have no special
relationship; they represent a consecutive sequence of operations to be executed beginning at
proc-1 and ending with the execution of proc-2. GO TO and PERFORM statements can occur within
the range of proc-1 and proc-2. If two or more logical paths lead to the return point, proc-2 could he a
paragraph consisting of an EXIT statement, to which all of these paths must lead.

If control passes to these procedures by a means other than a PERFORM statement, control passes
through the last statement of the procedure to the next executable statement as if no PERFORM
statement referenced these procedures.

The range of a PERFORM statement is logically all those statements that are executed as a result
of the PERFORM statement, through the transfer of control to the statement following the PER
FORM statement. The range includes all statements executed as a result of a GO TO, PERFORM,
or CALL statement in the range of the original PERFORM statement, as well as aU statements in
the Declaratives Section that might be executed. Statements in the range of a PERFORM are not
required to appear consecutively.

If a sequence of statements referred to by a PERFORM statement includes another PERFORM
statement, the sequence of procedures for the nested PERFORM must be either totally included in,
or totally excluded from, the logical sequence referred to by the original PERFORM statement.
Thus, an active PERFORM statement whose execution point begins within the range of another ac
tive PERFORM statement must not allow control to pass to the exit of the other active PERFORM
statement. Furthermore, two or more such active PERFORM statements must not have a common
exit.

Each form of the PERFORM statement is described in the following paragraphs.

PERFORM. The PERFORM statement executes a procedure, or group of procedures as established
by the THROUGH phrase, one time. When execution completes, control passes to the statement
following the PERFORM statement.

The syntax of the PERFORM statement is:

PERFORM proc-1 [{~~~~UGH } proc-2 J
where

proc-1 and proc-2

are the procedure paragraphs or sections to be executed.

6-42

Procedure Division

The following example illustrates a PERFORM of one paragraph:

IF report-a
PERFORM do-report-a.

The following example illustrates a PERFORM of several paragraphs:

IF reports
PERFORM do-reports THRU do-reports-exit.

do-reports.

(several paragraphs to create the reports)

do-reports-exit.
EXIT.

PERFORM TIMES. The PERFORM TIMES statement executes a procedure, or group of pro
cedures as established by the THROUGH phrase, a specified number of times. When the specified
number of executions complete, control passes to the statement following the PERFORM TIMES
statement.

The syntax of the PERFORM TIMES statement is:

PERFORM proc-1 [{~~:~UGH } proc-2 J count TIMES

where

proc-1 and proc-2

are the procedure paragraphs or sections to be executed.

count

is an integer literal or the identifier of an integer data item. The procedure, or group of
procedures, is executed as many times as the value of count.

The following example illustrates the PERFORM TIMES statement:

PERFORM list-transactions 2 TIMES.

6-43

Procedure Division

l'ERFORM UNTIL. The PERFORM UNTIL statement executes a procedure, or group of pro
cedures as established by the THROUGH phrase, based on a condition. The condition is checked
before each PERFORM cycle. When the condition is met, control passes to the statement following
the PERFORM UNTIL statement.

'rhe syntax of the PERFORM UNTIL statement is:

PERFORM proc-1 [{~~:~UGH } proc-2 J UNTIL condition

where

proc-1 and proc-2

are the procedure paragraphs or sections to be executed.

condition

is any conditional expression.

The following example illustrates the PERFORM UNTIL statement~

WORKING-STORAGE SECTION.
01 flag PIC 9.

88 bad
88 good
88 no-more-adds

PROCEDURE DIVISION.

VALUE 0.
VALUE 1.
VALUE 1.

PERFORM add-routine UNTIL no-more-adds.

add-routine.
MOVE 0 to flag .

.

. Once the add routine is successful, a 1 is moved to

. flag; otherwise, flag remains 0. As long as flag is

. 0, the procedure is reexecuted.
delete-routine.

PERFORM VARYING. The PERFORM VARYING statement executes a procedure, or group of pro
cedures as established by the THROUGH phrase, while varying a data item until specified condi
tions are true. When AFTER phrases are specified, the range is within a nested loop. The inner
most loop is defined by the last AFTER phrase; the outermost loop is defined by the first set of
parameters in the VARYING clause. When execution completes, control passes to the statement
following the PERFORM VARYING statement.

6-44

Procedure Division

The syntax of the PERFORM VARYING statement is:

PERFORM proc-1

V A R Y I N G v a r y - 1 F R 0 M b a s e - 1 B Y s t e p - 1 U N T I· Lf c o n d i t i o n -1

[AFTER vary-2 FROM base-2 BY step-2 UNTIL condition-2] ••.

where

proc-1 and proc-2

are the procedure paragraphs or sections to be executed.

vary-1 and vary-2

are the identifiers of integer numeric data items.

base-1 and base-2

are integer numeric literals or identifiers of numeric data items.

step-1 and step-2

are integer numeric literals or identifiers of numeric data items. Their value must not be
zero.

condition-1 and condition-2

are any conditional expressions.

The following example illustrates the PERFORM VARYING statement:

WORKING-STORAGE SECTION.
01 command-data.

05 FILLER PIC XC36) VALUE "ADD - ADD A NEW RECORD".
05 FILLER PIC XC36) VALUE "DELETE - DELETE A RECORD".

01 command-table REDEFINES command-data.
05 command-entry PIC XC36) OCCURS 10 TIMES.

77 no-of-commands
77 command-index

PROCEDURE DIVISION.

PIC 99
PIC 99

VALUE 9.
VALUE 1 COMP .•

PERFORM list-commands VARYING command-index FROM 1 BY 1
UNTIL command-index GREATER THAN no-of-commands.

list-commands.

6-45

Procedure Division

PERFORM ONE. The PERFORM ONE statement executes just one procedure, or one group of pro
cedures as established by the THROUGH phrase, as determined by the value of an identifier.

The syntax of the PERFORM ONE statement is:

PERFORM ONE (OF l I proc-1

DEPENDING [ON J identifier

where

proc-1 and proc-2

[{
THROUGH}
THRU

proc-2 JI

are the procedure paragraphs or sections to be executed.

identifier

, ...

is an integer numeric literal or the identifier of an integer data item. The value deter
mines which procedure, or group of procedures, is to be performed.

Each procedure, or group of procedures, in the list is assigned an index; the index indicates the posi
tion of the procedure, or group of procedures, in the list. If the value of the identifier matches one of
these indexes, the procedure, or group of procedures, with that index is executed. When execution
completes, control passes to the statement following the PERFORM ONE statement. If the value of
identifier does not match any procedure index, no procedures are executed.

The following example illustrates the PERFORM ONE statement:

PERFORM ONE OF
A THRU B
c
D

DEPENDING ON I.

PRINT SCREEN Statement

The PRINT SCREEN statement causes the current screen image to be printed on an attached or
non-attached printer.

The syntax of the PRINT SCREEN statement is:

PRINT SCREEN [ON ERROR imperative-statement J

where

6-46

ON ERROR

provides a point of control if an error occurs while attempting the print operation. The
special register TERMINATION-ST A TUS is set with an error code indicating the type
of error; the imperative-statement is then executed.

If the clause is omitted and an error occurs, default system action is taken.

imperative-statement

is the statement to be executed if an error is detected.

Procedure Division

If an attached printer has been specified via the PA TH COM SET TERM command for the T16-6520
terminal, the screen image is directed to a printer attached directly to the terminal (T16-6524 is the
terminal with an attached printer). If an attached printer has been specified via the PATHCOM
SET TERM command for the IBM-3270 terminal, the screen image is directed to the device
specified in the special register TERMINAL-PRINTER; this device must be attached to the same
control unit as the terminal.

If a printer is not attached, printing occurs on the GUARDIAN file specified in the special register
TERMINAL-PRINTER. Device types terminal, printer, and process are supported. This type of
print operation does not read the screen to form the screen image to be printed; instead, the print
operation forms the screen image by using the screen description contained in the SCREEN
COBOL object file and the working storage items associated with the screen. The use of working
storage items as the basis for data fields poses three problems:

• It is possible that the value in the working storage item has never been displayed or contains
data that is different from what is presently displayed on the screen; the program must take
care to ensure that intended results occur.

• Direct displays, such as DISPLAY "XYZ" IN SCREEN-FIELD, have no effect on working
storage.

• If a screen field has an associated FROM field and a different associated TO field, an anomaly
exists. The PRINT SCREEN statement resolves this by assigning the following precedence
when selecting associated working storage items:

highest -> USING association
- > TO association

lowest - > FROM association

The TERMINATION-STATUS error codes set by the PRINT SCREEN statement are listed in
Table 6-6.

Table 6-6. TERMINATION-STATUS Error Codes for PRINT SCREEN Statement

TERMINATION-STATUS

Error code O

Error code 1

Error code 2

Meaning

No error has occurred.

The base screen is not displayed.

Default system action: The terminal is suspended
without possibility of restart, and a message describing
the error is logged to the log file.

Ttie printer specification is invalid for the terminal type,
or the printer device type is not supported: the IS
ATTACHED modifier of the PATHCOM SET TERM
PRINTER command is specified for T16-6510; the IS
ATTACHED modifier is specified for IBM-3270 and the
printer is not attached to the same controller as the ter
minal; or a file having a device type other than terminal,
printer, or process has been specified.

6-47

Procedure Division

Table 6-6. TERMINATION-STATUS Error Codes for PRINT SCREEN Statement (Continued)

TERMINATION-STATUS

Error code 2
(continued)

Error code 3

Error code 4

Meaning

Default system action: The terminal is suspended
without possibility of restart, and a message describing
the error is logged to the log file.

The printer requires attention (for example, it ~s in NOT
READY state). During 1/0 to the printing device, a
GUARDIAN file error code indicating the device requires
human intervention was returned.

Default system action: If the special register
DIAGNOSTIC-ALLOWED is set to YES, a cliagnostic
screen informing the terminal operator of the condition
is displayed.

If the terminal operator presses the T16-6510 or
T15-6520 F1 key (or equivalent IBM-3270 key), the ter
minal operator has corrected the condition; screen
recovery is invoked, then the copy is restarted from the
beginning.

If the terminal operator presses the T16-6510 or
T16-6520 F2 key (or equivalent IBM-3270 key), the print
screen operation is aborted, a diagnostic screen in
dicating the permanent condition is displayed, the ter
minal is suspended with the possibility of restart, and
a message describing the error is logged to the log file.

If the special register DIAGNOSTIC-ALLOWED is set to
NO, the terminal is suspended with the possibility of
restart, and a message describing the error is logged to
the log file.

A fatal error has occurred. During 1/0 to the device, a
GUARDIAN file error code indicating a fatal error condi
tion was returned.

Default system action: The terminal is suspended with
the possibility of restart, and a message describing the
error is logged to the log file.

1/0 PERFORMED BY THE PRINT SCREEN STATEMENT. The PRINT SCREEN I/0 sequence
begins with a top-of-form operation. Each screen line is written in a separate record; trailing blanks
and trailing null values are suppressed. Printing starts with the line at the top of the screen and
proceeds through the line at the bottom of the screen.

DIAGNOSTIC SCREENS. A diagnostic screen, which is described in Appendix A, can be displayed
when an error occurs during a PRINT SCREEN sequence. An example of the default diagnostic
:screen is shown in Figure 6-3.

13-48

PATHWAY ERROR REPORT: 04MAY82,12:42
TERMINAL: TERM-1

PRINTER REQUIRES ATIENTION
PRINTER: $LP
PRESS F1 TO RETRY, F2 TO ABORT

Figure 6-3. Sample Diagnostic Screen

Procedure Division

IBM-3270 ATTACHED PRINTERS. To permit a screen on an IBM-3270 terminal to be printed, an
input field must be declared starting at screen position 1,2. If a protected field is in this position, the
screen is locked for screen copy operations and a PRINTER 1/0 ERROR (179) occurs.

The destination device of a PRINT SCREEN operation must have a device type of 10 and must use
the CRT protocol of the AM3270 access method. Refer to the AXCESS Data Communications Pro
gramming Manual for additional information.

RECONNECT MODEM Statement

The RECONNECT MODEM statement gives a SCREEN COBOL program control of the connection
to a PATHWAY terminal across a dial-in switched line (a standard communication line used by the
public telephone system). PATHWAY does not support a dial-out capability over a switched line.

The syntax of the RECONNECT MODEM statement is:

RECONNECT MODEM

If the connection to the PATHWAY terminal is over a switched line, the RECONNECT MODEM
statement breaks the terminal's connection with the SCREEN COBOL program and causes the pro
gram to wait for another incoming call. After the next incoming call completes connection to the ter
minal, the SCREEN COBOL program resumes execution at the next program instruction.

If a RECONNECT MODEM statement is executed while the PATHWAY terminal is not connected
over a switched line, the program resumes immediately at the next program instruction.

After a RECONNECT MODEM statement is executed, all screen definitions are lost. A DISPLAY
BASE statement must precede the next screen operation.

RECONNECT MODEM lets a SCREEN COBOL program perform the following operations for
PA TH WAY terminals connected over switched lines:

• disconnect the terminal at the end of a terminal session (the caller does a logoff)

• recover from a modem error (an accidental hang up or line disconnect), and wait for the next ter
minal to call.

Each terminal caller should access the SCREEN COBOL program in a consistent state. You should
initialize local variables and have previous transactions completed before the RECONNECT
MODEM statement executes.

The RECONNECT MODEM statement causes a full context checkpoint. If PATHWAY is run
ning under TMF and a terminal is in transaction mode, this statement causes the current trans
action to be backed out and suspends the terminal such that the terminal cannot be resumed. If the
ABORT-TRANSACTION statement precedes the RECONNECT MODEM statement, PATHWAY
can attempt to resume terminal communications after a modem error.

6-49

Procedure Division

The following example illustrates the RECONNECT MODEM statement:

START-PROGRAM.
CALL SEARCH-PROGRAM ON ERROR GO TO VERIFY-RECONNECT.
RECONNECT MODEM.
GO TO START-PROGRAM.

VERIFY-RECONNECT.
IF TERMINATION-STATUS IS = 18 AND

TERMINATION-SUBSTATUS IS = 140
* This is a modem error - return to a consistent state and
* wait for the next terminal caller.

DELAY 10
RECONNECT MODEM
GO TO START-PROGRAM.

* Processes other error conditions.

DISPLAY BASE SEARCH-SCREEN.

RESET Statement

The RESET statement restores the display attributes and/or the data of screen fields to the states
declared in the screen definition. The statement restores only the terminal display, not the internal
data.

The syntax of the RESET statement is:

RESET [TEMP J [ATTR J {sc reen-i dent if i er}
TEMPORARY DATA

I • • •

[
DEPENDING [ON] identifier]
SHADOWED

where

6-50

TEMP or TEMPORARY

specifies that the selected fields are to be reset only if they have received their current
values or attributes from a DISPLAY TEMP or TURN TEMP statement.

ATTR

resets the display attributes of the selected fields to the value specified in the screen
definition.

DATA

resets the characters displayed in the selected fields to the value specified in the VALUE
field characteristic clause of the field. If a value is not specified, the standard fill
character fills the field.

If neither ATTR nor DATA is specified, both the attributes and data of the selected fields
are reset to initial values.

NOTE

If the display is for a terminal operating in conversational mode, RESET
DATA has no effect. Either RESET ATTR or RESET TEMP ATTR must be
specified to reset the display attributes.

Procedure Division

screen-identifier

specifies the fields to be RESET. Each identifier can be the name of an entire screen, a
screen group, or an elementary item of any base or overlay screen that is currently
displayed. If screen-identifier is not an elementary item, all subordinate elementary
items that have a TO, FROM, or USING clause in their definitions are reset.

DEPENDING ON identifier

selects zero or one screen-identifier from the list. The statement whose position in the
screen-identifier list is the same as the value in identifier is selected. If the value in iden
tifier is less than one or greater than the number of screen-identifiers, no screen
identifier is selected.

SHADOWED

selects from the screen-identifier list only those fields that have SHADOWED items in
which the SELECT bit is set; fields that do not have SHADOWED items are not selected.

If neither the DEPENDING ON modifier nor the SHADOWED modifier is specified, all fields
in the screen-identifier list are selected.

When the RESET statement is executed, the attributes and/or data of the selected fields are reset
to their initial values.

RESTART-TRANSACTION Statement

The RESTART-TRANSACTION statement restarts the transaction of a terminal operating in
transaction mode. Transaction mode is an operating mode in which PATHWAY servers that are
configured to run under the Transaction Monitoring Facility (TMF) can lock and update audited
files.

Execution of this statement indicates the current attempt to perform the transaction failed because
a transient problem occurred. The statement requests TMF to back out any updates made on a data
base during this transaction; terminal execution resumes at the BEGIN-TRANSACTION state
ment. TMF assigns a new transaction ID number to the terminal; the TCP marks the screen for
screen recovery and increments by 1 the special register REST ART-COUNTER. The special
register TERMINATION-STATUS remains at 1.

The syntax of the RESTART-TRANSACTION statement is:

RESTART-TRANSACTION

The execution of this statement can cause suspension of a terminal for a pending abort for two
reasons:

1. The terminal is not in transaction mode when this statement executes.

2. A fatal error occurs while attempting to back out the updates made on the data base.

Refer to the Introduction to Transaction Monitoring Facility (TMF) and the Transaction Monitor
ing Facility (TMF) System Management and Operations Guide for NonStop Systems or the Trans
action Monitoring Facility (TMF) System Management and Operations Guide for NonStop II
Systems for additional information about programming with TMF.

6-51

Procedure Division

SCROLL Statement

The SCROLL statement moves the contents of an overlay area up or down. This statement can be
used only with the T16-6510 terminal.

The syntax of the SCROLL statement is:

SCROLL { ~6wN } overlay-area-name

where

UP

moves the data displayed in the overlay area of the screen up one line toward the top of
the screen. A blank line appears at the bottom of the overlay area, and the top line in the
overlay area is lost.

DOWN

moves the data displayed in the overlay area of the screen down one line toward the bot
tom of the overlay. A blank line appears at the top of the overlay area, and the last line in
the overlay area is lost.

overlay-area-name

is the name of the screen overlay area. The overlay screen associated with the area can
contain only output or literal fields. Literal fields are displayed only when the overlay
screen is initially displayed in the area.

SEND Statement

The SEND statement sends a transaction request message to a server process and receives a reply
from that process.

The syntax of the SEND statement is:

SEND [identifier-11 , ... TO server-class-name

UNDER PATHWAY pathmon-namel

AT SYSTEM system-name]

REPLY { CODE { reply-code-value }

YIELDS { identifier-2} ... } ...

[ON ERROR imperative-statement l

where

6-52

identifier-1

is a data item to be sent to the server. The data item represented by this identifier cannot
exceed 2047 bytes. If identifier-1 is a variable length data item, the SEND statement
sends only the currently defined occurrence (a variable length data item is an item defined
with an OCCURS DEPENDING ON clause).

If this parameter is omitted, zero bytes are sent to the server. A reply will still be returned
from the server.

Procedure Division

server-class-name

identifies the server class for which the message is intended. The server-class-name can
be a nonnumeric literal or a data item. The size of the field containing server-cl,ass-name
can be 1 through 15 characters.

This is the logical server class name used in the PA TH COM ADD SERVER command.

pathmon-name

is the name of the PA THMON process that controls the links to the server class named in
the server-class-name parameter above. The pathmon-name can be a nonnumeric literal
or a data item. The size of the field containing pathmon-name can have 15 characters, but
the TCP will pass only the first five characters in network communications.

A SEND statement directed through an external PATHMON must specify a valid net
work process name. The value specified for pathmon-name must begin with a $ and can be
followed by one to four alphanumeric characters.

If this parameter is omitted, the PATHMON that controls the server class is assumed to
have the same name as the PATHMON process that controls the TCP.

system-name

is the name of the Tandem system on which the above named PATHMON is running. The
system-name can be a nonnumeric literal or a data item. The field containing system
name can have 15 characters, but the TCP will pass only the first eight characters in net
work communications.

The value specified for system-name must be a valid network system name that begins
with a \ and can be followed by one to seven alphanumeric characters.

If this parameter is omitted, the Tandem system name of the PATHMON that controls
the server class is assumed to be the same as the system name of the PATHMON that
controls the TCP.

reply-code-value

is an integer literal or integer data item that specifies an expected reply code from the
server.

identifier-2

is a data name into which a portion of the contents of the reply message is to be placed.

ON ERROR

provides a point of control if an error occurs in sending the message.

If this clause is omitted and an error is detected, standard system action is performed.
Depending on the error, system action involves either waiting for a resource to become
available or suspending execution of the program.

imperative-statement

is the statement to be executed if an error is detected.

6-53

Procedure Division

Specifying reply-code-value after the CODE keyword identifies the structure of the reply. When
the send operation receives the reply from the server, the first two bytes are interpreted as a 16-bit
integer. This code must match one of the CODE reply code values. The entire reply is then
distributed to the items in identifier-2 list associated with reply-code-value. The special register
'l,ERMINATION-STATUS is set to a number corresponding to the position of the particular reply
code value in the list. Each reply-code-value corresponds to a unique number setting for
TERMINATION-STATUS whether or not a reply code value yields the same working storage data
item. If there is no match or if the reply message data does not exactly fill the data items in the
identifier-2 list, an error is indicated.

In the SEND statement, the position of a reply code affects the value set for the TERMINATION
STATUS special register as illustrated in the following example:

SEND HEADER, LASTNAME OF EMP-REC TO "PERS-DEPT"
REPLY CODE 1, 21, 31 YIELDS R-CODE, NEW-SALARY

CODE 2, 42, 62 YIELDS NEW-RATE, STOCK-OPTION, BENE-FIT
CODE 0, 200 YIELDS TERMINATION-NOTICE

ON ERROR PERFORM SERVER-LIST.

In this example, the positions of the reply codes cause these corresponding values to be set for
TERMINATION-STATUS:

6-54

REPLY CODE

1
21
31
2

42
62
0

200

TERMINATION-STATUS

1
2
3
4
5
6
7
8

Procedure Division

Consider the following example of the SEND statement:

77 YEARLY-REVIEW PIC 999 VALUE 3.

MOVE YEARLY-REVIEW TO TRANSCODE OF HEADER.
SEND HEADER, LASTNAME OF PERSONAL-REC TO "SALARY-UPDATE"

REPLY CODE 1 YIELDS R-CODE, NEW-SALARY
CODE 2 YIELDS R-CODE, NEW-SALARY, STOCK-OPTION
CODE 0 YIELDS R-CODE, TERMINATION-NOTICE

ON ERROR PERFORM SERVER-DUMB.

This example is executed as follows:

1. The transaction message is constructed using the values of HEADER and LAS TN AME from
the SCREEN COBOL program data area. This message is sent to a server process of the server
class SALARY-UPDATE and the requester waits for a reply.

2. When the reply arrives, the reply is identified and is moved into NEW-SALARY, NEW
SALARY and STOCK-OPTION, or TERMINATION-NOTICE, depending on the reply code.
The number moved into special register TERMINATION-STATUS will be 1, 2, or 3, depending
on the reply code interpreted from the server.

3. The ON ERROR clause takes special action in case a problem occurs in sending the message.
The possible problems include a freeze being in effect on the server class, the unavailability of
an appropriate server, and an unrecognizable reply from the server. If such a condition arises,
TERMINATION-STATUS is set to a value indicating the type of error and the imperative
statement PERFORM SERVER-DUMB is executed.

4. If the ON ERROR clause had not been included and an error occurred, the standard system
action would be performed.

6-55

Procedure Division

The following program example illustrates two ways you can use the SEND statement to access a
server class controlled by an external PA THMON (a PA THMON in a different PATHWAY system
from the requesting TCP).

6-56

DATA DIVISION.
WORKING-STORAGE SECTION.

01 WS-DEFAULT-NAMES.
05 WS-DEFAULT-SERVER
05 WS-DEFAULT-PATHMON
05 WS-DEFAULT-SYSTEM

01 WS-SCRN1-FIELDS.
05 WS-SERV-NAME
05 WS-SCRN-PATHMON
05 WS-SCRN-SYSTEM

PROCEDURE DIVISION.

PIC XC15) VALUE "SERV-1".
PIC X(5) VALUE "$PWT".
PIC X(8) VALUE "\TS".

PIC XC15) VALUE II "·

PIC X(5) VALUE II II

PIC X(8) VALUE II II

SEND MSGID, EMPLOYEE-REC TO "SERV-1"
UNDER PATHWAY "$PWT"
AT SYSTEM "\TS"
REPLY CODE 1 YIELDS R-CODE, EMPLOYEE-REC

CODE 2 YIELDS R-CODE, HIRE-DATE
ON ERROR PERFORM 899-SEND-ERROR.

MOVE WS-DEFAULT-SERVER TO WS-SERV-NAME.
MOVE WS-DEFAULT-PATHMON TO WS-SCRN-PATHMON.
MOVE WS-DEFAULT-SYSTEM TO WS-SCRN-SYSTEM.

SEND MSGID, EMP-TRANSFER TO WS-SERV-NAME
UNDER PATHWAY WS-SCRN-PATHMON
AT SYSTEM WS-SCRN-SYSTEM
REPLY CODE 1 YIELDS R-CODE, EMPLOYEE-LOC

CODE 2 YIELDS R-CODE,
CODE 3 YIELDS R-CODE

ON ERROR PERFORM 899-SEND-ERROR.

Procedure Division

Errors that can occur during execution of a SEND statement are listed in Table 6-7. The number
given is the special register TERMINATION-STATUS value returned if the SEND statement
includes the ON ERROR clause.

Number Message

1 SERVER CLASS
FROZEN

2,3 RESOURCE
UNAVAILABLE

4 LINK DENIED

5 SERVER CLASS
UNDEFINED

6 ILLEGAL
SERVER CLASS
NAME

7 MESSAGE
TOO LARGE

8 MAXIMUM
REPLY TOO
LARGE

9 Unused

Table 6-7. SEND Statement Errors

Meaning

The server class to which the
message is directed is frozen.

A free control block cannot be
found, generally because the
initial configuration of the TCP
did not provide enough control
blocks.

The request to PATHCOM for
a link to the server class has
been denied for indeterminate
reasons, and the TCP has no
previously established links to
the class.

The request to PATHMON for
a link to the server class has
been denied because no class
of that name has been
defined.

The value given for the name
of the server class does not
have the format of a valid
server class name.

The message to the server is
larger than allowed by the
configuration of the TCP.

The size of one or more replies
specified in the SEND
statement would be larger
than al lowed by the
configuration of the TCP.

-

Actl on Without
RROR Clause ONE

The system
server class
execution of

waits until the
is thawed by
a PATHCOM
ER statement,
es with SEND
ocessing.

THAW SERV
then continu
statement pr

The system
resource is

waits until the
available, then
th the send continues wi

operation.

The system periodically
rerequests a link and when

continues with the
on.

successful,
send operati

The system
rerequests a

periodically
link. When the
is added to the

n, the send
ntinues.

server class
configuratio
operation co

The system
terminal wit

suspends the
h a fat al error.

6-57

Procedure Division

Table 6-7. SEND Statement Errors (Continued)

Number Message Meaning

10 Undefined Reply The reply code found in the
reply from the server does not
match any codes specified in
the SEND statement.

11 REPLY LENGTH The length of the reply re-
INVALID ceived from the server is not

equal to the length implied by
the selected YIELDS list.

12 1/0 ERROR A file system error occurred
during the WRITEREAD to the
server, or a timeout on the
server occurred.

13 TRANSACTION A send to a non-TMF server
MODE was attempted while the
VIOLATION terminal was in transaction

mode.

14 NO PMCB The request requires the TCP
AVAILABLE to communicate with an

external PATHMON, but the
maximum number of
PATHMON processes the TCP
can communicate with has
been reached. The value
specified in the SET TCP
MAXPATHWAYS parameter
sets this maximum.

15 UNDEFINED The system name given is not
SYSTEM known to the network

16 ILLEGAL The value given for system-
SYSTEM NAME name does not have the

correct format. For example,
the first character is not a \.

17 ILLEGAL The value given for pathmon-
PATH MON name does not have the
NAME correct format. For example,

the first character is not a $.

18 PATHMON 1/0 An 110 error occurred during
ERROR the OPEN or WRITEREAD

message to an external
PATH MON.

-

6-58

Acti on Without
ROR Clause ON ER

The systems uspends the
terminal.

If the termin
execution of

al is resumed by
a PATHCOM
tement, the send
I be reattempted.

RESUME sta
operation wil

If the termin al is in trans-
action mode, the transaction
is backed ou t and the terminal

. If terminal
resumed, the

is suspended
execution is
transaction i s restarted.

The system. suspends the
pending abort. terminal for

The system .~ ;:,uspends the
terminal and
is sent to th~
file.

an error message
3 PATHWAY log

Procedure Division

SET Statement

The SET statement stores the position of the indicated screen field into the special register NEW
CURSOR. This value, which could be further modified by the program, is used at the beginning of
the next ACCEPT statement to establish the position of the cursor on the screen. This value also
can be examined by the program for some specific purpose.

The syntax of the SET statement is:

SET NEW-CURSOR AT {screen-identifier} , ...

[
DEPENDING [ON J identifier]
SHADOWED

where

screen-identifier

specifies the fields whose positions are to be stored. Each identifier can be the name of an
entire screen, a screen group, or an elementary item of any base or overlay screen that is
currently displayed. If screen-identifier is not an elementary item, all subordinate
elementary items that have a TO, FROM, or USING phrase in their definitions are
referenced.

The default cursor position is the first screen field defined with a TO or USING clause for
the current ACCEPT statement.

DEPENDING ON identifier

selects zero or one screen-identifier from the list. The statement whose position in the
screen-identifier list is the same as the value in identifier is selected. If the value in iden
tifier is less than one or greater than the number of screen-identifiers, no screen
identifier is selected.

SHADOWED

selects from the screen-identifier list only those fields that have SHADOWED items in
which the SELECT bit is set; fields that do not have SHADOWED items are not selected.

If neither the DEPENDING ON modifier nor the SHADOWED modifier is specified, all fields
in the screen-identifier list are selected.

The SET statement selects a field in sequence from top to bottom and left to right. For example, a
field having the lowest row Oine) number is selected before a field with a higher row number. For
fields in the same row the field having the lowest column number is selected before the field with a
higher column number.

The SET statement places the row and column numbers of the leftmost character of the first selected
field into the special-register NEW-CURSOR. The implied structure of NEW-CURSOR is as follows:

01 NEW-CURSOR.
02 NEW-CURSOR-ROW PIC 9999 COMP.
02 NEW-CURSOR-COL PIC 9999 COMP.

If the value specified in the special register NEW-CURSOR is not a valid screen position when an
accept operation begins, the cursor is positioned to the first unprotected field of the ACCEPT state
ment. After execution of an ACCEPT statement, the special register is set to zero; this causes the
cursor position for the next ACCEPT statement to be the first field of that ACCEPT statement.

6-59

Procedure Division

STOP RUN Statement

The STOP RUN statement causes the executing program to stop immediately after this statement
executes.

The syntax of the STOP RUN statement is:

STOP RUN J
If the executing program is a called program unit and a STOP RUN statement is executed, control
does not return to the calling program.

SUBTRACT Statements

The SUBTRACT statements subtract elementary numeric data items and set the results in specific
data items. The forms of the SUBTRACT statements are:

SUBTRACT
SUBTRACT GIVING
SUBTRACT CORRESPONDING

Each form is described in the following paragraphs.

SUBTRACT. The SUBTRACT statement totals all data items before keyword FROM and then sub
tracts that sum from the current value of each data item after keyword FROM.

The syntax of the SUBTRACT statement is:

SUBTRACT { sub-1 } , ... FROM { sub-2 } , •..

where

sub-1

is either a numeric literal or the identifier of an elementary numeric data item.

sub-2

is the identifier of an elementary numeric data item.

6-60

Procedure Division

SUBTRACT GIVING. The SUBTRACT GIVING statement is the same as the SUBTRACT state
ment, except the result is stored in separate data items.

The syntax of the SUBTRACT GIVING statement is:

SUBTRACT { sub-1 } , •.. FROM sub-2 GIVING { result } , ...

where

sub-1

is either a numeric literal or the identifier of an elementary numeric data item.

sub-2

is either a numeric literal or the identifier of an elementary numeric data item.

result

is the identifier of an elementary numeric data item.

SUBTRACT CORRESPONDING. The SUBTRACT CORRESPONDING statement subtracts
elementary items in one group from any corresponding items in another group. Items correspond
when they have the same names and qualifiers up to but not including the group item name
specified in the SUBTRACT CORRESPONDING statement.

The syntax of the SUBTRACT CORRESPONDING statement is:

{
CORR }
CORRESPONDING

g roup-1 FROM g roup-2 SUBTRACT

where

group-1 and group-2

are the identifiers of group items in which some or all of the elementary items are
numeric.

The results are placed in the group-2 items.

The following conventions apply to data items used with the CORRESPONDING phrase:

• A REDEFINES or OCCURS clause can be specified in the data description entry of any data
item.

• Data items can be subordinate to a data description entry with a REDEFINES or OCCURS
clause.

• No data item can be defined with a level number 66, 77, or 88.

6-61

Procedure Division

Subordinate data items in two different groups correspond to each other according to the following
rules:

• Both data items must have the same data name.

• All possible qualifiers for the sending data item, up to but not including a group name, must he
identical to all possible qualifiers for the receiving data item up to but not including the receiv
ing group name.

• Only elementary numeric data items are considered.

• Any data item subordinate to a data item that is not eligible for correspondence is ignored.

• FILLER data items are ignored.

Refer to the ADD CORRESPONDING statement for examples of corresponding items.

6-62

Procedure Division

TURN Statement

The TURN statement changes the display attributes of screen variable fields.

The syntax of the TURN statement is:

[
TEMP J
TEMPORARY

TURN mnemonic-name
RECEIVE FROM ALTERNATE

ALTERNATE OR TERMINAL
TERMINAL
TERMINAL OR ALTERNATE

IN

{screen-identifier} , ...
[

DEPENDING [ON J identifier]
SHADOWED

where

TEMP or TEMPORARY

indicates the fields are to be reset to their initial display attributes when the next
RESET TEMP or ACCEPT statement is executed.

mnemonic-name

specifies the display attributes to be used. The mnemonic-name must be associated with
one or more display attributes through an IS phrase in the SPECIAL-NAMES paragraph
in the Environment Division of the program.

RECEIVE FROM ALTERNATE
ALTERNATE OR TERMINAL
TERMINAL
TERMINAL OR ALTERNATE

specifies the type of device from which data can be accepted for a screen field. This clause
is supported only for applications running on Tandem 6530 terminals with Tandem 6AI
(revision AOO) firmware.

screen-identifier

specifies the fields whose attributes can be changed. Each identifier can be the name of
an entire screen, a screen group, or an el~mentary item of any base or overlay screen that
is currently displayed. If screen-identifier is not an elementary item, all subordinate
elementary items that have a TO, FROM, or USING clause in their definitions are
referenced.

DEPENDING ON identifier

selects zero or one screen-identifier from the list. The statement whose position in the
screen-identifier list is the same as the value in identifier is selected. If the value in iden
tifier is less than one or greater than the number of screen-identifiers, no screen
identifier is selected.

6-63

Procedure Division

SHADOWED

selects from the screen-identifier list only those fields that have SHADOWED items in
which the SELECT bit is set; fields that do not have SHADOWED items are not selected.

If neither the DEPENDING ON modifier nor the SHADOWED modifier is specified, all
fields in the screen-identifier list are selected.

The attributes of the selected fields are changed to those specified by mnemonic-name. The settings
for attributes not specified by mnemonic-name are determined by the initial attributes of the field.

USE Statement

The USE statement is used in the DECLARATIVES portion of the Procedure Division. This state
ment marks a procedure as the one to restore the terminal display when errors occur while the
specified base screens are active. Screen recovery might be necessary during any screen operation
due to terminal or communication line errors, processor failure, or terminal suspensions.

The syntax of the USE statement is:

USE [FOR SCREEN J RECOVERY

[ON { base-screen-name-n} , ... J •

where

ON base-screen-name-n

specifies the base screens for which the declarative procedures are to be used.

If this phrase is omitted, the declarative procedures are used for all screens not mentioned
in another USE statement.

The recovery process performs the equivalent of a DISPLAY BASE for the current base screen
followed by a DISPLAY OVERLAY for all currently active overlay screens. The applicable
declarative procedure statements are then executed. When the declarative procedures complete
execution, control returns to the statement that was being executed when the problem was
detected; the statement is executed again.

The USE statement must immediately follow a section header in the DECLAHA TIVES portion of
the PROCEDURE DIVISION.

The following example illustrates the USE statement:

PROCEDURE DIVISION.
DECLARATIVES.
S-R SECTION. USE FOR SCREEN RECOVERY.
RECOV-1.

Move "SCREEN RECOVERY" TO error-msg,
DISPLAY msg-1.

END DECLARATIVES.
MAIN SECTION.

6-64

SECTION 7

COMPILATION

The SCREEN COBOL compiler is called with the SCREEN COBOL run command. The name to be
used on the compiler run is SCOBOL. If all default parameters are selected, the compiler run
appears as

SCOBOL

USING THE COMPILER

The SCREEN COBOL source program is usually run from the Command Interpreter. The syntax is:

SCOBOL

where

I [IN source-fi Le
[, run-option J
compi Ler-command

source-file

[,OUT [List-file J J
I [tclprog-file] [, copy-Library
[compi Ler-command J •••

is a Tandem file containing SCREEN COBOL statements and compiler commands. The
SCREEN COBOL compiler reads source-file as 132-byte records.

If this parameter is omitted, input is taken from the current input file of the Command In
terpreter; this is typically the home terminal.

OUT list-file

directs listing output to a named file that is of the same form as source-file. If listjile is an
· unstructured disc file, each list-file record is 132 characters (partial lines are blank filled

through column 132).

If list-file is omitted and OUT is present, no listing is produced.

If the entire option is omitted, the listing output is directed to the Command Interpreter
OUT file; this is typically the home terminal.

7-1

Compilation

7-2

run-option

is one of following GUARDIAN command options that can be specified when running a
SCREEN COBOL program:

IN file-name
OUT file-name
NAME $process-name
CPU cpu-number
PRI priority
MEM num-pages
NOWAIT

input files
output files
symbolic process name
processor module
execution priority
maximum number of data pages
Command Interpreter does not suspend while the pro
gram runs

For more information about these options, refer to the GUARDIAN Operating System
Command Language and Utilities manual.

tclprog-fi le

is used to derive the names of a pair of disc files into which the SCREEN COBOL object
program is placed. tclprog-file has the disc file name of the following form:

[\ sysname .] [$volume-name .]
[subvol-name .] disc-file-name

Disc-file-name must not exceed 5 characters.

If this parameter is omitted, POBJ is used.

The names of the actual disc files are formed by adding COD (the code file) and DIR (the
directory to the code file) to the end of the name supplied. If these files do not exist,
SCREEN COBOL creates them and stores the object program in them. If these files
already exist, SCREEN COBOL adds the object program to those already present in the
file. The addition is done in a way that does not disrupt concurrent users of the file, even
if the program ID of the object program being added is the same as one already present.
This allows additions to be made to object files while they are in use by a TCP.

When the object files are referenced in PATHCOM commands, the short form (without
the COD or DIR) is used. When the object files are referenced by GUARDIAN com
mands, the actual names (including the COD or DIR) must be used. The actual files can be
renamed or copied to another volume as long as the two new file names are related in the
same way; the files must be the same except that one ends with COD and the other ends
with DIR.

copy-library

is the name of an EDIT disc file. This file is used as the default library for source code
when expanding a COPY statement that does not include a specific library name. Copy
library has the form of a disc file name.

If this parameter is omitted, COPYLIB is used.

compiler-command

is any compiler command indicated by the following keywords:

ANSI
COMPILE
CROSSREF/NOCROSSREF
ERRORS
HEADING
LINES
LINES
LIST/NOLIST
MAP/NOMAP
OPTION
SYMBOLS/NOSYMBOLS
SETTOG
SYNTAX
TANDEM
WARN/NOWARN

The following examples illustrate the command to run the SCREEN COBOL compiler:

SCOBOL/IN mysource,OUT $SPOOL, NOWAIT/mprog;MAP

SCOBOL/IN aprog/

COMPILER COMMANDS

Compilation

Compiler commands are used to specify the source format, control listing features, control selective
compilation of portions of the source, and request compilation options.

A single compiler command or a single OPTION command followed by a series of available option
commands can be entered in the compiler-command field of the SCREEN COBOL run command.

Compiler commands can also be included as part of the source text. These commands occupy one
line each and can appear at any point in the source text, including those portions retrieved from a
source library file with the COPY statement; compiler command lines in the source text cannot be
interspersed with multiline COPY statements.

The format of a compiler command in the source text is:

?compiler-command

where

?

must be in the indicator field (column 1 for Tandem standard reference format and either
column 1 or 7 for ANSI standard reference format).

A compiler-command is any of the compiler commands described in this section.

The question mark is a source text format indicator and not part of the compiler-command. The
compiler-command entered as part of the SCREEN COBOL run command is not preceded by a ques
tion mark.

7-3

Compilation

Compiler commands are listed by category in Table 7-1 and described in alphabetic order in the
following paragraphs.

Command Category

Option Commands

Toggle Commands

Section Command

7 .. 4

Table 7-1. Compiler Commands

Command Name

ANSI
COMPILE
CROSSREF
ERRORS
HEADING
LINES
LIST
MAP
NOC ROSS REF
NOLIST
NOMAP
NOSYMBOLS
NOWARN
OPTION
SYMBOLS
SYNTAX
TANDEM
WARN

ENDIF
IF
IFNOT
RESETTOG
SETTOG

SECTION

Purpose

Specify the source text input format, the
source listing options, the title field of the
page header, and compilation options.

Selectively compile portions of the source text.
Up to 15 flags, called toggles, can be turned on
(set), turned off (reset), or tested.

Identifies individual texts in a SCREEN COBOL
source library accessed by a COPY statement.

Compilation

ANSI Command

The ANSI command specifies that the following source text is in ANSI standard reference format.
The syntax is:

ANSI _]
Lines longer than 80 characters are truncated; shorter lines are padded with trailing blanks. The
positions following Margin R (columns 73 through 80) form the identification field. This field, which
can contain any ASCII characters, is treated as a comment and has no effect on the meaning of a
program.

If this command is omitted, TANDEM is the source test format.

COMPILE Command

The COMPILE command requests full compilation and production of an object file. The syntax is:

[COMPILE

CROSSREF/NOCROSSREF Command

The CROSSREF command causes a list of the SCREEN COBOL program identifiers to be added to
the compiled program output. The list is a cross reference showing where the identifiers are
described, read, or written throughout the program. This command contains a list of classes into
which program identifiers are classified. Selections from the class list determine the identifiers to
be included in the cross reference listing.

The NOCROSSREF command is the default and disables the CROSSREF command. The syntax is:

[
ONLY]
INCLUDE
EXCLUDE

[class J ••• CROSSREF

NOCROSSREF

where

ONLY

requests information for just the classes specified.

INCLUDE

adds a class of identifiers to an existing class list.

7-5

Compilation

EXCLUDE

deletes a class of identifiers from an existing class list.

class

is one of the following SCREEN COBOL identifiers:

CONDITIONS

items tested in the program that have condition names

DATANAMES or VARIABLES

data items defined in the Working-Storage Section

LABELS or PROCNAMES

paragraph names and section names

LITERALS

numeric and nonnumeric literals

MNEMONICS

mnemonic names associated with display attributes

PROGRAMS

program unit names for called programs

SCREEN

screen groups or fields described in the Screen Section

UNREFS

items defined in the program, but never referenced.

Specifiying CROSSREF with no options or classes produces a list of the following program
identifiers:

CONDITIONS
DATANAMES or VARIABLES
LABELSorPROCNAMES
MNEMONICS
PROGRAMS
SCREENS

If the NOLIST or SYNTAX commands are specified in the SCREEN COBOL source program or at
compile time, no cross reference listing is produced. For a complete description of CROSSREF,
refer to the CROSSREF Users Manual.

Compilation

ENDIF Command

The ENDIF command terminates the effect of a preceding IF or IFNOT command. The syntax is:

ENDIF toggle-number

where

toggle-number

is the toggle-number specified in the IF or IFNOT command.

ERRORS Command

The ERRORS command sets the maximum number of severe errors allowed during compilation.
The syntax is:

ERRORS nnnnn

where

nnnnn

is an integer from 0 through 32767.

If this command is omitted, the default limit is 100 errors.

If the limit set by the ERROR command is exceeded, the compilation terminates.

HEADING Command

The HEADING command replaces or sets to blanks the heading portion of the standard top-of-page
line that appears on each page of the compilation listing. The syntax is:

HEADING ["character-string" J

where

"character-string"

is a string of any ASCII characters enclosed in quotation mark characters. At least one
character must appear. If a quotation mark character is part of the string, it must be
represented as two contiguous quotation marks. The character string is used in all subse
quent top-of-page lines.

If the character-string option is omitted, the heading portion of these lines is set to all
blanks.

7-7

Compilation

IF Command

The IF command causes the compiler to ignore subsequent source text unless the specified toggle is
turned on with a SETTOG command. The syntax is:

IF toggle-number

where

toggle-number

is an integer from 1 through 15.

COPY statements are not affected by this command; these statements are still processed and
expanded.

The following example illustrates the IF command:

?RESETTOG 1 I 2

?IF 2

text

?ENDIF 2

The source text bounded by the IF 2 and ENDIF 2 commands will be ignored.

IFNOT Command

The IFNOT command causes the compiler to ignore subsequent source text unless the specified tog
gle is turned off either with the RESETTOG command or by default (never set). The syntax is:

IFNOT toggle-number

where

toggle-number

is an integer from 1 through 15.

COPY statements are not affected by this command; these statements are still processed and
expanded.

7-8

Compilation

The following example illustrates the IFNOT command:

?RESETTOG 1 I 2

?IF NOT

text

?END IF

The source text bounded by the IFNOT 1 and ENDIF 1 commands will be compiled.

LINES Command

The LINES command sets the number of lines listed on each page. Whenever the next line to be listed
would overflow the line count given, a page is ejected and the standard page heading and two blank
lines are listed at the top of the next page, followed by the pending line. The syntax is:

LINES nnnnn

where

nnnnn

is an integer from 10 through 32767.

The line limit is ignored if paging does not apply to the compilation list device.

If this command is not issued, the default number of lines per page is 60.

LIST/NOLIST Command

The LIST command transmits each source image to the compilation list device. The NOLIST com
mand disables the LIST option. The syntax is:

[LIST or NOLIST J
A MAP command is not effective unless LIST is enabled.

7-9

Compilation

IMAP/NOMAP Command

'The MAP command lists a table of user-defined symbols following the listing of the program or sub
program source text. The NOMAP command disables the MAP option. The syntax is:

MAP or NOMAP

'The MAP command is not effective unless LIST is enabled.

OPTION Command

The OPTION command controls the source text input format, the source listing options, the title
field of the page header, and compilation options. The syntax is:

OPTION command-option [, command-option J •••

where

command-option

is any of the following commands:

ANSI
COMPILE
CROSSREF
ERRORS
HEADING
LINES
LIST
MAP
NOCROSSREF
NO LIST
NOMAP
NOSYMBOLS
NOWARN
OPTION
SYMBOLS
SYNTAX
TANDEM
WARN

A single option command can contain any combination of the available options, in any order. An
option takes effect at the beginning of the next source text line. If a command contains two or more
conflicting options, the last option specified overrides all the others. For example:

OPTION LIST, ERRORS 20, LIST, NOLIST

is equivalent to

OPTION ERRORS 20, ~OLIST

7-10

Compilation

RESETTOG Command

The RESETTOG command turns off all specified toggles. The syntax is:

RESETTOG [toggle-number [, toggle-number J ... J

where

toggle-number

is an integer from 1 through 15.

If the toggle-number option is omitted, all toggles are turned off.

SECTION Command

The SECTION command is used to identify individual texts in a SCREEN COBOL source library
accessed by a COPY statement. The command is ignored if it appears in the text of the compilation
source file. The syntax is:

SECTION text-name [, library-text-format J

where

text-name

is a SCREEN COBOL word (1 to 30 letters, digits, and hyphens, but not all digits).

The compiler assumes that the format of the library text is the same as the current source text
format. Although this can be overridden by a compiler command as the first line following the
SECTION command, the ANSI or TANDEM command is usually more convenient for this purpose.

SETTOG Command

The SETTOG command turns on all specified toggles. The syntax is:

SETTOG [toggle-number [, toggle-number J ••• J

where

toggle-number

is an integer from 1 through 15.

If the toggle-number option is omitted, all toggles are turned on.

7-11

Compilation

SVMBOLS/NOSVMBOLS

The SYMBOLS command causes a symbol table file to be built for the SCREEN COBOL program.
This file is used by INSPECT to examine and debug programs. The NOSYMBOLS command
disables the SYMBOLS command. The syntax is:

SYMBOLS or NOSYMBOLS ________________ J
If the SYMBOLS command is omitted, the compiler will not generate a symbol table file.

The SYMBOLS command is not effective unless MAP is enabled.

The file for the symbol table is given the name used in the SCOBOL run command with SYM
appended. In the following example, the SCOBOL compiler compiles the program in TESTFILE and
adds the symbol table to a file named MANUFSYM.

SCOBOL/IN TESTFILE/ manuf;
MAP,
SYMBOLS

SVNT AX Command

The SYNTAX command requests a syntax check of the source text only. No object file is produced.
The syntax is:

SYNTAX ____________________ : _____]
This command checks only syntax and does not produce object files. If this command is specified
with the CROSSREF command, no cross-reference listing is produced.

TANDEM Command

The TANDEM command specifies that the following source text is in Tandem standard reference
format. The syntax is:

TANDEM
----------]

Lines in Tandem standard reference format are not restricted to a fixed length and can have up to
132 characters (longer lines are truncated). The source text does not include either the initial six
character sequence number area or the final six-character identification field of the ANSI standard
reference format.

WARN/NOWARN Command

The WARN command allows minor error conditions to be reported in the source text. The
NOW ARN command disables the WARN option. The syntax is:

WARN or NOWARN _]
If LIST is not enabled, the last line of source text scanned by the compiler is also listed to provide a
point of reference.

7-12

Compilation

COMPILATION STATISTICS

Statistics are printed at the end of every compilation. A sample listing is shown in Figure 7-1.

OBJECT FILE NAME IS \ TS.$DATA.MYSUBVOL.POBJ
PROGRAM NAME IS TESTER1
PROGRAM VERSION IS 4
NO. ERRORS = O; NO. WARNINGS = 0
CODE SIZE = 1495
DATA SIZE = 1382
NUMBER OF SOURCE LINES READ = 619
MAXIMUM SYMBOL TABLE SIZE = 3342 WORDS
ELAPSED TIME - 0:01 :27

OBJECT Fl LE NAME IS ...

is the short form of the object file name. In the example, the object code for the program
is placed on system \TS in the files: $DATA.MYSUBVOL.POBJCOD, POBJDIR, and
POBJSYM.

PROGRAM NAME IS ...

is the name of the program. This line is printed only if no errors occurred.

PROGRAM VERSION IS ...

is the version number of the program. This line is printed only if no errors occurred.

NO. ERRORS = ...

is the total number of error messages issued.

NO. WARNING = ...

is the total number of warning messages issued.

CODE SIZE= ...

is the total number of bytes used for all Procedure Division code in the object file name.

DATA SIZE= ...

is the total number of bytes of user-allocated working storage, plus compiler-allocated
working storage.

NUMBER OF SOURCE LINES READ = ...

is the total number of source lines read by the SCREEN COBOL compiler, including any
COPY lines.

Figure 7-1. Sample Compilation Statistics

7-13

Compilation

MAXIMUM SYMBOL TABLE SIZE = ...

is the number of words that the compiler needed for its symbol table. (This is a snap
shot view and should be considered only a rough estimate.)

ELAPSED TIME = ...

is the wall clock elapsed time for the compilation.

Figure 7-1. Sample Compilation Statistics (Continued)

STOPPING THE COMPILER

A compilation is performed by three compiler processes. To stop a compilation before normal com
pletion, do the following:

1. Press the BREAK key.

2. Type STOP to terminate SCOBOL, the first compiler process.

3. Type either STOP and the SCOBOL2 PID number or PA USE to terminate the second and third
compiler processes, SCOBOL2 and SYMSERV respectively. If you type PAUSE, SCOBOL2
issues an error message (**FAIL URE 10 ** COMPILER COMMUNICATION LOST : 00) and
terminates.

4. Press the BREAK key to return to the Command Interpreter.

5. Type a STATUS command to check that the unwanted processes have terminated.

CONSERVING DISC SPACE

You can prevent unnecessary use of disc space by monitoring the number of object files allowed to
accumulate during program development. Each time a SCREEN COBOL source program is com
piled, a new version of the object program is added to the code file and an entry is made in the direc
tory file.

For information on how to manipulate and maintain multiple versions of SCHEEN COBOL object
files, refer to the SCREEN COBOL Utility Program (SCUP) information in the PATHWAY Pro
gramming A ids manual.

7-14

SECTION 8

PATHWAY APPLICATION EXAMPLE

This section provides a sample PATHWAY application. The example includes the commands that
create the PATHMON and PATHCOM processes, sample commands that configure PATHWAY
and define the components to be used, two SCREEN COBOL programs to illustrate general pro
gramming concepts for terminals operating in block mode and for terminals operating in conversa
tional mode, and an associated server program written in COBOL.

This example can be duplicated exactly as shown by taking the following steps in the order in
dicated:

1. Code the sample COBOL server program.

2. Compile and run the sample COBOL server program. Rename the default object file RUNUNIT
to EXSERV to correspond to the PATHWAY configuration.

3. Code the sample SCREEN COBOL application program.

4. Compile the sample SCREEN COBOL application program for terminals operating in block
mode. The object files default to POBJCOD and POBJDIR.

Compile and run the sample SCREEN COBOL application program for terminals operating in
conversational mode. This program is just for illustration and does not communicate with the
server program included in this section.

5. Code the PATHWAY configuration file, named PWCONFIG. Change the process names
$term01 and $term02 in the two SET TERM commands to legal terminal names in your installa
tion. For convenience, the second set of SET TERM commands specifying $term02 can be
eliminated without interfering with the operation.

6. Set up an obey file that contains the PATHMON and PATHCOM run commands. The
PA THMON name $PM can be changed to any appropriate five-letter name.

7. Issue an OBEY obey command.

8. Issue the PATHCOM RUN command for the SCREEN COBOL application program.

8-1

Pathway Application Example

'I'he following rules should be noted before attempting to establish this application:

• The PATHWAY configuration is established through a command terminal. The command ter
minal cannot be included in the configuration.

• A PATHWAY system should allow more than one PATHCOM to communicate with PATHMON
at a time; therefore, the SET PATHWAY MAXPATHCOMS command should never be set to 1.
(The default is 5.)

•· The individual at the command terminal can issue appropriate commands and alter the
PATHWAY configuration on-line. This is accomplished by typing PATHCOM and responding to
the PATHCOM = prompt. If the PATHMON name is not $PM, this PATHCOM command must
include the $process-name parameter.

•
1 If a configured terminal has a command interpreter, the terminal operator must type PAUSE to

activate the SCREEN COBOL application on the terminal.

The sample SCREEN COBOL requester program describes a base screen only that appears as pic
tured in Figure 8-1. The program accepts operator input that consists of a name and address until an
appropriate function key is pressed.

If the operator keys the name SMITH and presses the F2 key to enter data, the server returns
a reply-code of 999 and an error-code of l; this causes the message SMITH IS ALREADY ON
FILE to be displayed in the advisory field of the terminal.

If the operator keys the name JONES and presses the F'2 key to enter data, the server returns
a reply-code of 999 and an error-code of 2; this causes the message JONES IS ALREADY ON
FILE to be displayed in the advisory field of the terminal.

If the operator keys any other name and presses the F2 key to enter data, the server returns a
reply-code of 0 and writes the record; this causes the entered record to be displayed on the ter
minal screen.

EXAMPLE SCREEN COBOL PROGRAM

DEPARTMENT : MKT PASSWORD

NAME :
ADDR :

MONTH FEBRUARY DAY : 15 YEAR : 82

REPLY -

F1 - ENTER PASSWORD
F2 - ENTER DATA
F3 - CLEAR INPUT
F4 - RESET DATA SCREEN

Figure 8-1.

FS - BLINK REPLY
F6 - RESET ATTR REPLY
F7 - RESET DATA REPLY
F16 - EXIT PROGRAM

PATHWAY Application Example Screen

The sample SCREEN COBOL requester program for terminals operating in conversational mode
describes a base screen only and illustrates the SCREEN COBOL characteristics for conversational
mode programs. The program displays a screen header and prompts the operator, accepts operator
input that consists of a name and an address, contains a function selection, and responds to the input
control characters named in the program, but no server response is provided.

To execute the program use the PA THC OM RUN command.

8-2

PATHMON AND PATHCOM PROCESS CREATION

PATHMON/NAME $PM,CPU O,NOWAIT/
PATHCOM/IN PWCONFIG/$PM

where PWCONFIG contains the following commands;

SET PATH MON BACKUPCPU 1
SET PATHWAY MAXTCPS 1
SET PATHWAY MAXTERMS 5
SET PATHWAY MAXSERVERCLASSES 5
SET PATHWAY MAXSERVERPROCESSES 5
SET PATHWAY MAXSTART.UPS 5
SET PATHWAY MAXASSIGNS 5
SET PATHWAY MAXPARAMS 5
SET PATHWAY MAXPATHCOMS 3
SET PATHWAY MAX PROGRAMS 1

START PATHWAY COLD

RESET TCP
SET TCP
SET TCP
SET TCP
SET TCP
SET TCP
SET TCP
ADD TCP

RESET TERM
SET TERM
SET TERM
SET TERM
SET TERM
ADD TERM

RESET TERM
SET TERM
SET TERM
ADD TERM

RESET PROGRAM
SET PROGRAM
SET PROGRAM
SET PROGRAM
SET PROGRAM
ADD PROGRAM

RESET SERVER
SET SERVER
SET SERVER
SET SERVER
SET SERVER
ADD SERVER

START TCP
START TERM *

CPUS 1:2
PROGRAM $SYSTEM.SYSTEM.PATHTCP
PRI 141
PROCESS $XTCP
TCLPROG pobj
MAXTERMS 5
ex-tcp

FILE $term01
TCP ex-tcp
INITIAL example
TMF OFF
t1

LIKE t1
FILE $term02
t2

TCP ex-tcp
TYPE T16-6520 INITIAL example
ERROR-ABORT ON
TMF OFF
exprog

PROGRAM exserv
CPUS 0:1
NUMSTATIC 1
MAXSERVERS 3
example-server

ex-tcp

Pathway Application Example

The SCREEN COBOL programs and an associated COBOL server program appear on the following
pages.

8-3

Pathway Application Example

SCREEN COBOL PROGRAM FOR BLOCK MODE

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. T16.
OBJECT-COMPUTER. T16,

TERMINAL IS T16-6520.
SPECIAL-NAMES.

F1-KEY IS F1, F2-KEY IS F2, F3-KEY IS F3, F4-KEY IS F4
F5-KEY IS F5, F6-KEY IS F6, F7-KEY IS F7, F16-KEY IS F16
ATTENTION IS BLINK, HIDDEN IS HIDDEN.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 ws.

02 ERROR-MSG PIC XC77>.
02 PASSWORD PIC x (3) .
02 DEPT-HEADER PIC x (3) .

01 EXIT-FLAG PIC S9 VALUE 0.
88 EX IT-PROGRAM VALUE 1 .

01 ENTRY-MSG.
02 PW-HEADER.

04 REPLY-CODE PIC S9(4) COMP.
04 APPLICATION-CODE PIC xx.
04 FUNCTION-CODE PIC xx.
04 TRANS-CODE PIC 99.
04 TERM-ID PIC XC15).
04 LOG-REQUEST PIC x.

02 ENTRY-GROUP.
04 NAME-IN PIC AC30).
04 ADDR-IN PIC x (20).
04 DATE-GRP.

06 MONTH-IN PIC AC10).
06 DAY-IN PIC 99.
06 YEAR-IN PIC 99.

01 ENTRY-REPLY.
02 PW-HEADER.

04 REPLY-CODE PIC S9(4) COMP.
04 FILLER PIC XC22).

02 SERVER-RECORD PIC XC64).

01 ERROR-REPLY.
02 REPLY-CODE PIC S9(4) COMP.
02 FILLER PIC XC22).
02 ERROR-CODE PIC S999 COMP.

8-4

1
2
3
4
5
6
7
8
9
1 0
11
1 2
13
14
1 5
16
17
1 8
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Pathway Application Example

Lines 1-2
These lines give the program name that is specified in the SET TERM INITIAL command. This
program is used when a terminal is first started.

Lines 23-29
These lines illustrate a sample header for the transaction messages. Lines 25-29 are not required.

Lines 38-47
Two reply messages are used to limit the amount of data sent between the server and the
SCREEN COBOL program. When only an error code is returned from the server, ERROR
REPLY is used. When data is returned, ENTRY-REPLY is used.

Line 40 and Line 45
These lines show the reply code that is required by PATHWAY.

8-5

Pathway Application Example

8-6

SCREEN SECTION. 1
01 EXAMPLE-SCREEN BASE SIZE 24, 80. 2

03 FILLER AT 1, 20 VALUE "EXAMPLE SCREEN COBOL PROGRAM". 3
03 FILLER AT 3, 1 VALUE "DEPARTMENT : ". 4
03 DEPT-HEADER AT 3, 14 PIC XC3) FROM DEPT-HEADER OF WS. 5
03 FILLER AT 3, * + 10 VALUE "PASSWORD : II. 6
03 PASSWORD AT 3, * + 2 PIC XC3) LENGTH 1 THRU 3, HIDDEN, 7

UPSHIFT INPUT, MUST BE "AAA", "X", TO PASSWORD OF WS. 8
03 DATA-IN. 9

03
03

03

03

03

03

03

05 FILLER AT 5, 1 VALUE "NAME:". 10
05 NAME-IN AT 5, 8 PIC AC30) LENGTH 1 THRU 30 11

TO NAME-IN OF ENTRY-MSG, FILL "-"· 12
05 FILLER AT 6, 1 VALUE "ADDR :". 13
05 ADDR-IN AT 6, 8 PIC XC20) LENGTH 1 THRU 20 14

TO ADDR-IN OF ENTRY-MSG, FILL II II 15
05 DATE-GRP AT 8, 1. 16

07 FILLER AT @, 1 VALUE "MONTH :". 17
07 MONTH-IN AT @, * + 2 PIC AC10) LENGTH 1 THRU 10 18

MUST BE "JANUARY", "FEBRUARY" USING MONTH-IN OF 19
ENTRY-MSG, UPSHIFT INPUT, VALUE "FEBRUARY". 20

07 FILLER AT @, * + 4 VALUE "DAY :". 21
07 DAY-IN AT @, * + 2 PIC Z9 LENGTH 1THRU2, VALUE "15" 22

MUST BE 1 THRU 31, USING DAY-IN OF ENTRY-MSG. 23
07 FILLER AT @, * + 4 VALUE "YEAR :". 24
07 YEAR-IN AT @, * + 2 PIC Z9 MUST BE 79, 82, 85 THRU 88 25

USING YEAR-IN OF ENTRY-MSG, VALUE 11 82 11
• 26

FILLER AT 1 0, 1 VALUE "REPLY - II .
SERVER-RECORD AT 1 0, * + 2 PIC XC64)

FROM SERVER-RECORD OF ENTRY-REPLY.
FILLER AT 18, 1 VALUE
II F 1 - ENTER PASSWORD F5 - BLINK REPLY".
FILLER AT 1 9, VALUE
"F2 - ENTER DATA F6 - RESET ATTR REPLY".
FILLER AT 20, VALUE
II F 3 - CLEAR INPUT F7 - RESET DATA REPLY".
FILLER AT 21 , VALUE
II F 4 - RESET DATA SCREEN F16 - EXIT PROGRAM".
ERROR-MSG AT 24, 2 PIC XC76) ADVISORY

FROM ERROR-MSG OF ws.

27
28
29
30
31
32
33
34
35
36
37
38
39
40

Pathway Application Example

Line 3
This literal is displayed on the screen starting at line 1, column 20.

Line 4
This literal is displayed on the screen starting at line 3, column 1.

Line 5
If a data name is used in a screen section, a PIC clause must be associated with that data name.
The FROM (data association clause) specifies an output association. Data. is moved from DEPT
HEADER OF WS to this position on the screen.

Line 6
The asterisk means relative to the current position; therefore, the literal PASSWORD is
displayed on the screen at line 3, column 26 (16 + 10).

Lines 7-8
The data entered for PAS SWORD is hidden from the operator as it is entered. The password is
upshifted and tested for the correct value. If the password is correct, the password is moved to
the data name PASSWORD of working storage.

Lines 11-12
The operator must key in from 1 to 30 alphabetic characters that are moved to ENTRY-MSG. A
fill character of underscore is present on the screen in these 30 positions.

Line 17
The at sign (@)indicates the position is relative to the home position of the group. This literal is
displayed on line 8, column 1.

Lines 39-40
These lines identify the field to be used for information and error messages generated by the
TCP. The programmer also can use this field.

8-7

Pathway Application Example

PROCEDURE DIVISION.
A-MAIN.

DISPLAY BASE EXAMPLE-SCREEN.
MOVE "MKT" TO DEPT-HEADER OF WS.
DISPLAY DEPT-HEADER OF EXAMPLE-SCREEN.
ACCEPT PASSWORD OF EXAMPLE-SCREEN UNTIL F1-KEY.
PERFORM CASE-MANAGER UNTIL EXIT-PROGRAM.

A-EXIT.
EX IT PROGRAM.

CASE-MANAGER.
ACCEPT DATA-IN OF EXAMPLE-SCREEN UNTIL F2-KEY

ESCAPE ON F3-KEY F4-KEY FS-KEY F6-KEY F7-KEY F16-KEY.
PERFORM ONE OF

DATA-ENTERED, CLEAR-INPUT, RESET-DATA, BLINK-REPLY
RESET-ATTR-REPLY, RESET-DATA-REPLY, SET-EXIT

DEPENDING ON TERMINATION-STATUS.

DATA-ENTERED.
MOVE SPACES TO PW-HEADER OF ENTRY-MSG.
PERFORM SEND-DATA.

CLEAR-INPUT.
CLEAR INPUT.

RESET-DATA.
RESET DATA EXAMPLE-SCREEN.

BLINK-REPLY.
TURN ATTENTION IN SERVER-RECORD OF EXAMPLE-SCREEN.

RESET-ATTR-REPLY.
RESET ATTR SERVER-RECORD OF EXAMPLE-SCREEN.

RESET-DATA-REPLY.
RESET DATA SERVER-RECORD OF EXAMPLE-SCREEN.

SET-EXIT.
MOVE 1 TO EXIT-FLAG.

SEND-DATA.
SEND ENTRY-MSG TO "EXAMPLE-SERVER"

REPLY CODE 0 YIELDS ENTRY-REPLY
CODE 999 YIELDS ERROR-REPLY.

IF TERMINATION-STATUS = 2 AND ERROR-CODE = 1
MOVE "SMITH IS ALREADY ON FILE" TO ERROR-MSG OF WS
PERFORM 901-DISPLAY-ADVISORY

ELSE IF TERMINATION-STATUS = 2 AND ERROR-CODE = 2
MOVE "JONES IS ALREADY ON FILE" TO ERROR-MSG OF WS
PERFORM 901-DISPLAY-ADVISORY

ELSE
DISPLAY SERVER-RECORD OF EXAMPLE-SCREEN.

901-DISPLAY-ADVISORY.
DISPLAY TEMP ERROR-MSG OF EXAMPLE-SCREEN.
TURN TEMP ATTENTION IN ERROR-MSG OF EXAMPLE-SCREEN.

8-8

1
2
3
4
5
6
7
8
9
1 0
11
1 2
13
1 4
1 5
16
17
1 8
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Pathway Application Example

Line 3
This line displays the screen and the initial values, FILL characters, and default values.

Line 5
The value of DEPT-HEADER is moved to the screen at line 3, column 14.

Line 6
When the Fl key is pressed, the field is tested for validity. Data can be keyed into any other field
on the screen, but only the PASSWORD field is used.

Lines 12-13
The UNTIL F2-KEY expects data to be entered before the F2 key is pressed and validity checks
are performed. The ESCAPE series of function keys causes the statement to terminate without
data being entered.

Line 17
The key that was pressed to terminate the ACCEPT statement has a positional value associated
with it from the ACCEPT statement; the key is put into TERMINATION-STATUS.

Line 23
All unprotected fields are cleared.

Line 25
This line resets the fields to the initial values and FILL characters declared.

Line 27
This line causes SERVER-RECORD to blink by setting the BLINK attribute.

Line 29
This line stops the blinking of SERVER-RECORD by resetting the attribute to normal.

Line 31
This line resets the data portion of SERVER-RECORD to its original value (blank line).

Line 36
This line specifies the server class to be used. This can be a data name in working storage.

Line 46
The fields that comprise SERVER-RECORD are displayed.

Line 49
This line displays ERROR-MSG on the screen as temporary data.

Line 50
This line sets the blink attribute as a temporary attribute and makes the value of ERROR-MSG
blink.

8-9

Pathway Application Example

SCREEN COBOL PROGRAM FOR CONVERSATIONAL MODE

IDENTIFICATION DIVISION.
PROGRAM-ID. DCONV-EXP.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. T16.
OBJECT-COMPUTER. T16, TERMINAL IS CONVERSATIONAL.
SPECIAL-NAMES.

BELL IS BELL,
NOBELL IS NOBELL.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 EMPLOYEE-REC.

05 EMP-LAST-NAME
05 EMP-FIRST-NAME
05 EMP-MIDDLE-INIT
05 EMP-ADDR
05 EMP-CITY
05 EMP-STATE
05 EMP-ZIP

01 WS-ADVISORY

01 WS-FUNC
88 WS-SEARCH-REQUEST
88 WS-ADD-REQUEST
88 WS-DELETE-REQUEST
88 WS-SHOW-REQUEST
88 WS-EXIT-REQUEST

01 EXIT-FLAG
88 EXIT-PROGRAM
88 INVALID-RESPONSE

01 MESSAGE-ID

01 R-CODE
88 SEND-ERROR

8-10

PIC XC10)
PIC XC10)
PIC x <02)
PIC X(30)
PIC XC10)
PIC X(02)
PIC 9(05)

PIC XC70)

PIC XC06)

PIC 9 (01)

PIC 9(04)

PIC 9(04)

VALUE SPACES.
VALUE SPACES.
VALUE SPACES.
VALUE SPACES.
VALUE SPACES.
VALUE SPACES.
VALUE ZEROS

VALUE SPACES.

VALUE SPACES.
VALUE "SEARCH".
VALUE "ADD".
VALUE "DELETE".
VALUE "SHOW".
VALUE "EXIT".

COMP VALUE ZERO.
VALUE 1 .
VALUE 2.

COMP VALUE ZERO.

COMP VALUE ZERO.
VALUE 999.

1
2
3
4
5
6
7
8
9
1 0
11
1 2
13
14
1 5
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Pathway Application Example

Line 2
This line gives the program name that is specified in the SET TERM INITIAL command.

Line 7
This line specifies a conversational mode terminal type and identifies the terminal type that is
specified in the SET PROGRAM TYPE and SET TERM TYPE commands.

8-11

Pathway Application Example

SCREEN SECTION.
01 EMPLOYEE-REC-SCREEN BASE SIZE 24, 80

FIELD-SEPARATOR
GROUP-SEPARATOR
ABORT-INPUT
END-OF-INPUT

II II
I

II • II
I

"AI"
47

The keyboard character for END-OF-INPUT is "/"

.S-12

RESTART-INPUT 58, 58.

The keyboard characters for RESTART-INPUT are "· "''

05 TITLE
05 NAME-PROMPT
05 LAST-NAME-FLO

05 FIRST-NAME-PROMPT
05 FIRST-NAME-FLO

05 MI-PROMPT
05 MIDDLE-INIT-FLD

05 ADDR-PROMPT
05 ADDR-FLD

05 CITY-PROMPT
05 CITY-FLO

05 STATE-PROMPT
05 STATE-FLO

05 ZIP-PROMPT
05 ZIP-FLO

05 TYPEAHEAD-MSG

AT 1 I 3
AT 2 I 1
AT 3, 1

VALUE "PERSONNEL SYSTEM EXAMPLE".
VALUE "LAST NAME: ".
PIC X(10)
USING EMP-LAST-NAME
LENGTH 1 THRU 10
PROMPT NAME-PROMPT.

AT 2, 12 VALUE "FIRST NAME: ".
AT 3, 12 PIC X(10)

USING EMP-FIRST-NAME
LENGTH 1 THRU 10
PROMPT FIRST-NAME-PROMPT.

AT 2, 24 VALUE ''MI: II

AT 3, 24 PIC X(2)

AT 4 I 1
AT 4, 11

AT 5 I 1
AT 5, 11

USING EMP-MIDDLE-INIT
PROMPT MI-PROMPT.

VALUE "ADDRESS: II

PIC X(30)
USING EMP-ADDR
PROMPT ADDR-PROMPT.

VALUE "CITY: II

PIC XC10)
USING EMP-CITY
PROMPT CITY-PROMPT.

AT 5 I 22 VALUE 11 STATE: II.

AT 5, 30 PIC X(10)
USING EMP-STATE
PROMPT STATE-PROMPT.

AT 5, 45 VALUE "ZIP: II

AT 5, 51 PIC Z(5)
USING EMP-ZIP
PROMPT ZIP-PROMPT.

AT 10, VALUE "TO GET TYPEAHEAD, ENTER
"LAST NAME, FIRST NAME, MIDDLE INITIAL." .

1
2
3
4
5
6
7
8
9
10
11
1 2
13
14
1 5
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Pathway Application Example

Lines 3, 4, 8, and 12
These lines are instructive comments about the input control characters. They are not required
by SCREEN COBOL.

Line 19
This is the first PROMPT clause for the screen. The value of this clause (line 15) will be displayed
indicating the terminal is ready to accept data for this field.

Line 52 and 53
These lines identify the typeahead message that is included in the heading displayed at the
beginning of the screen.

8-13

Pathway Application Example

05 PROMPT-AREA AREA

05 ADVISORY-FLO

01 EMPLOYEE-REC-PROMPT

05 FUNC-PROMPT

05 FUNC-INPUT

8-14

AT 23, SIZE 1, 80.

AT 24, 1 PIC XC70)
ADVISORY FROM WS-ADVISORY.

OVERLAY SIZE 1, 80.

AT 1, 1 VALUE "(FUNCTION) SEARCH, ADD,
"DELETE, SHOWg EXIT: II

AT 1, 45 PIC XC06)
TO WS-FUNC
UPSHIFT INPUT
LENGTH MUST BE 3 THRU 6
PROMPT FUNC-PROMPT.

1
2
3
4
5
6
7
8
9
10
11
1 2
13
14
1 5

Pathway Application Example

PROCEDURE DIVISION.

BEGIN-PROGRAM.
DISPLAY BASE EMPLOYEE-REC-SCREEN.
DISPLAY TITLE, TYPEAHEAD-MSG.
PERFORM LOOP UNTIL EXIT-PROGRAM.

EX IT-PROG.
EX IT PROGRAM.

LOOP.
ACCEPT EMPLOYEE-REC-SCREEN

UNTIL INPUT
ESCAPE ON ABORT.

IF TERMINATION-STATUS = 1
PERFORM FUNCTION-DISPLAY
PERFORM !NIT-EMPLOYEE-REC

ELSE
PERFORM EXIT-IT.

FUNCTION-DISPLAY.
DISPLAY OVERLAY EMPLOYEE-REC-PROMPT AT PROMPT-AREA.
MOVE 2 TO EXIT-FLAG.
PERFORM OPERATION UNTIL NOT INVALID-RESPONSE.

OPERATION.
ACCEPT EMPLOYEE-REC-PROMPT

UNTIL INPUT
ESCAPE ON ABORT.

IF TERMINATION-STATUS = 1
PERFORM FUNCTION-SELECTION

ELSE
PERFORM EXIT-IT.

FUNCTION-SELECTION.
MOVE ZERO TO EXIT-FLAG.
IF WS-SEARCH-REQUEST

PERFORM SEARCH-IT
ELSE
IF WS-ADD-REQUEST

PERFORM ADD-IT
ELSE
IF WS-DELETE-REQUEST

PERFORM DELETE-IT
ELSE
IF WS-SHOW-REQUEST

PERFORM SHOW-IT
ELSE
IF WS-EXIT-REQUEST

PERFORM EXIT-IT
ELSE

PERFORM INVALID-FUNCTION.

1
2
3
4
5
6
7
8
9
1 0
11
1 2
13
14
1 5
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

8-15

Pathway Application Example

SEARCH-IT.
MOVE 1 TO MESSAGE-ID.
SEND MESSAGE-ID, EMPLOYEE-REC TO "USER-SERVER"

REPLY CODE 1 YIELDS R-CODE, EMPLOYEE-REC
CODE 2 YIELDS R-CODE

ON ERROR MOVE 999 TO R-CODE.
IF NOT SEND-ERROR

PERFORM ONE OF DISPLAY-EMPLOYEE-REC, EMPLOYEE-NOT-FOUND
DEPENDING ON R-CODE

ELSE
PERFORM SEND-ERROR-NOTICE.

ADD-IT.
MOVE 2 TO MESSAGE-ID.
SEND MESSAGE-ID, EMPLOYEE-REC TO "USER-SERVER"

REPLY CODE 1, 3 YIELDS R-CODE
ON ERROR MOVE 999 TO R-CODE.

IF NOT SEND-ERROR
PERFORM ONE OF EMPLOYEE-ADDED, EMPLOYEE-ALREADY-EXISTS
DEPENDING ON R-CODE

ELSE
PERFORM SEND-ERROR-NOTICE.

DELETE-IT.
MOVE 3 TO MESSAGE-ID.
SEND MESSAGE-ID, EMPLOYEE-REC TO "USER-SERVER"

REPLY CODE 1, 2 YIELDS R-CODE
ON ERROR MOVE 999 TO R-CODE.

IF NOT SEND-ERROR
PERFORM ONE OF EMPLOYEE-DELETED, EMPLOYEE-NOT-FOUND

DEPENDING ON R-CODE
ELSE

PERFORM SEND-ERROR-NOTICE.

SHOW-IT.
MOVE 4 TO MESSAGE-ID.
SEND MESSAGE-ID, EMPLOYEE-REC TO "USER-SERVER"

REPLY CODE 1, 2 YIELDS R-CODE
ON ERROR MOVE 999 TO R-CODE.

IF NOT SEND-ERROR
PERFORM ONE OF DISPLAY-EMPLOYEE-REC, EMPLOYEE-NOT-FOUND

DEPENDING ON R-CODE
ELSE

PERFORM SEND-ERROR-NOTICE.

EXIT-IT.
MOVE 1 TO EXIT-FLAG.

DISPLAY-EMPLOYEE-REC.
DISPLAY EMPLOYEE-REC-SCREEN.

EMPLOYEE-NOT-FOUND.
MOVE "EMPLOYEE DOES NOT EXIST" TO WS-ADVISORY.
DISPLAY ADVISORY-FLO.

EMPLOYEE-ADDED.

8-16

MOVE "EMPLOYEE ADDED" TO WS-ADVISORY.
DISPLAY ADVISORY-FLO.

1
2
3
4
5
6
7
8
9
1 0
11
1 2
13
14
1 5
16
1 7
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
53
54
55
56
57

Pathway Application Example

EMPLOYEE-ALREADY-EXISTS.
MOVE "EMPLOYEE ALREADY EXISTS" TO WS-ADVISORY.

DISPLAY ADVISORY-FLO.

EMPLOYEE-DELETED.
MOVE "EMPLOYEE DELETED" TO WS-ADVISORY.
DISPLAY ADVISORY-FLO.

!NIT-EMPLOYEE-REC.
MOVE SPACES TO EMPLOYEE-REC.
MOVE ZEROES TO EMP-ZIP.

INVALID-FUNCTION.
MOVE 2 TO EXIT-FLAG.
MOVE "INVALID FUNCTION REQUESTED" TO WS-ADVISORY.
DISPLAY ADVISORY-FLO.

SEND-ERROR-NOTICE.
MOVE "ERROR ACCESSING PERSONNEL SYSTEM" TO WS-ADVISORY.
DISPLAY ADVISORY-FLO.

1
2
3
4
5
6
7
8
9
1 0
11
1 2
13
14
1 5
16
1 7
1 8
19
20
21

8-17

Pathway Application Example

SERVER PROGRAM IN COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE-SERVER.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TANDEM/16.
OBJECT-COMPUTER. TANDEM/16.
INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT MESSAGE-IN, ASSIGN TO $RECEIVE

FILE STATUS IS RECEIVE-FILE-STATUS.
SELECT MESSAGE-OUT, ASSIGN TO $RECEIVE

FILE STATUS IS RECEIVE-FILE-STATUS.

DATA DIVISION.
FILE SECTION.
FD MESSAGE-IN

LABEL RECORDS ARE OMITTED.
01 ENTRY-MSG.

02 PW-HEADER.
04 REPLY-CODE PIC S9(4) COMP.
04 APPLICATION-CODE PIC xx.
04 FUNCTION-CODE PIC xx.
04 TRANS-CODE PIC 99.
04 TERM-ID PIC XC15).
04 LOG-REQUEST PIC x.

02 ENTRY-GROUP.
04 NAME-IN PIC A(30).
04 ADDR-IN PIC x (20).
04 DATE-GRP.

06 MONTH-IN PIC AC10).
06 DAY-IN PIC 99.
06 YEAR-IN PIC 99.

FD MESSAGE-OUT
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 1 TO 88 CHARACTERS.

01 ENTRY-REPLY.
02 PW-HEADER.

04 REPLY-CODE
04 FILLER

02 SERVER-RECORD

01 ERROR-REPLY.
02 REPLY-CODE
02 FILLER
02 ERROR-CODE

PIC S9(4) COMP.
PIC XC22).
PIC XC64).

PIC S9(4) COMP.
PIC XC22).
PIC S999 COMP.

WORKING-STORAGE SECTION.
01 RECEIVE-FILE-STATUS.

02 STAT-1 PIC 9.
88 CLOSE-FROM-REQUESTOR VALUE 1.

02 STAT-2 PIC 9.

8-18

Pathway Application Example

PROCEDURE DIVISION.
BEGIN-COBOL-SERVER.

OPEN INPUT MESSAGE-IN.
OPEN OUTPUT MESSAGE-OUT SYNCDEPTH 1.
PERFORM B-TRANS UNTIL CLOSE-FROM-REQUESTOR.
STOP RUN.

B-TRANS.
MOVE SPACES TO ENTRY-REPLY, ENTRY-MSG.
READ MESSAGE-IN, AT END STOP RUN.
MOVE PW-HEADER OF MESSAGE-IN TO PW-HEADER OF MESSAGE-OUT.
IF NAME-IN = "SMITH"

MOVE 999 TO REPLY-CODE OF ERROR-REPLY
MOVE 1 TO ERROR-CODE
WRITE ERROR-REPLY

ELSE IF NAME-IN = "JONES"
MOVE 999 TO REPLY-CODE OF ERROR-REPLY
MOVE 2 TO ERROR-CODE
WRITE ERROR-REPLY

ELSE
MOVE 0 TO REPLY-CODE OF ENTRY-REPLY
MOVE ENTRY-GROUP TO SERVER-RECORD
WRITE ENTRY-REPLY.

8-19

APPENDIX A

MESSAGES

Three types of messages are provided by SCREEN COBOL. These messages are:

• Advisory messages displayed for the terminal operator during input checking.

• Diagnostic screen messages displayed for the terminal operator to report device error or ter
mination conditions.

• Compilation diagnostic messages reported during source program compilation.

Each type of message is described in this appendix.

ADVISORY MESSAGES

The PATHWAY Terminal Control Process (TCP) displays messages in the advisory field. The ad
visory field is an alphanumeric output field defined in the ADVISORY field characteristic clause of
the Screen Section. Messages in this field primarily describe errors detected during input checking.
The text of each standard message is a brief indication of the condition that invoked the message.

The text of the message and the number used internally in the TCP to refer to the message are
listed in Table A-1. The list of messages provides a reference for those installations that develop
their own user conversion procedures.

A-1

Messages

Table A-1. Advisory Messages

Number Message Text

REQUIRED FIELD MISSING

2 PREVIOUS FIELD MISSING

3 EARLIER FIELD MISSING

4 FIELD TOO SHORT

5 FIELD NOT CORRECT LENGTH

6 FIELD TOO LONG

7 WRONG FORMAT

8 WRONG FORMAT: DIGIT EXPECTED

9 WRONG FORMAT: LETTER EXPECTED

10 INVALID NUMBER FORMAT

11 VALUE WRONG

12 VALUE INCORRECT

~--M_E_s_s_A_G_E_: ------·

A-2

Meaning

The field does not allow zero length input.

For a required occurring field with a
DEPENDING clause, an occurrence is
present but a previous occurrence was
absent.

For an occurring field with a DEPENDING
clause, a different occurring field
DEPENDING on the same item was
required but absent for this occurrence
number, and this field's occurrence is
present.

The length of the field data, after strip
ping of fill characters and spaces, is
shorter than allowed.

The input does not have an allowed
length.

The input is too long. Generally this
occurs only when the terminal's format
ting has been corrupted.

Input to an alphanumeric i1tem does not
obey the PICTURE.

Input to an alphanumeric Hem does not
have a digit where a 9 symbol appeared in
the PICTURE.

Input to an alphanumeric item does not
have a letter or space where an A
appeared in the PICTURE.

Input to a numeric item does not obey the
PICTURE.

The numeric value input is larger than
allowed by the constraints imposed by
the field and the receiving data item.

The input value is not allowed by the
MUST BE constraints.

This text is used to prefix a tell message.

Messages

Number

14

15

NOTE

Table A-1. Advisory Messages (Continued)

Message Text

DEP OCCUR FLD ERR-INPUT
RESTARTED (a)

ABORT NOT ALLOWED (a)

Meaning

For multiple screen-identifiers in which
the OCCURS DEPENDING ON clauses
reference the same depend data item, one
of the following is detected:

(1) The depend data item value is greater
than the maximum number of elements
allowed for one of the screen-identifiers.

(2) A required screen-identifier field
occurs fewer times than the value of the
associated depend data item.

The ESCAPE ON ABORT phrase is not
present; therefore, the abort-input control
character is not effective. ACCEPT pro
cessing continues from where the control
character is entered.

(a) These advisory messages are displayed only for terminals operating in conversational mode.

An installation can replace the PATHWAY advisory message routine with a routine of its own. This
might be done for the purpose of changing the text of the messages or adding error messages for
use in association with user-provided conversion procedures.

To change the routine, the installation must write a procedure in the Tandem Transaction
Language (TAL) and use the UPDATE program to store the procedure in the TCP object file. The
declaration for the procedure is as follows:

PROC ADVISORYAMESSAGE(MSGNUM, BUF, MESSLEN);
INT MSGNUM; THE ERROR NUMBER
STRING .BUF; PLACE MESSAGE HERE
INT .MESSLEN; RETURN MESSAGE LENGTH HERE (MAX 255)

The MSGNUM parameter is the internal message number as given in Table A-1, or as returned by
the user conversion procedure. If new error/message numbers are to be used (via user conversion
procedures), the numbers should be larger than 100 to avoid conflict with future PATHWAY
numbers.

The B UF parameter is a string buffer where the text associated with MSGNUM should be placed.
The text cannot be longer than 255 characters.

The MESSLEN parameter should be set to the length of the text returned.

A-3

Messages

DIAGNOSTIC SCREENS

Diagnostic screens are displayed to inform the terminal operator if an error condition or termina
tion occurs. Diagnostic screens are displayed unless the PATHCOM SET TER.M command
DIAGNOSTIC parameter is set off. When the parameter is set on (the default setting), the special
register DIAGNOSTIC-ALLOWED is initialized to YES.

Screen recovery is invoked following display of a diagnostic screen. This is especially important if
the diagnostic screen is displayed because of an error during a PRINT SCREEN sequence.

The default diagnostic screen has the following form:

row r--------------
1 I PATHWAY ERROR REPORT: timestamp

3 I TERMINAL: termname

5 I diagnostic-message
6 I [device-name]
7 I [retry-info

Diagnostic Screen Messages

Table A-2 lists and describes the standard diagnostic messages and indicates the conditions that in
voke the messages.

A-4

Messages

Table A-2. Diagnostic Screen Messages

Diagnostic-message

TERMINAL STOPPED BY PROGRAM

TERMINAL STOPPED BY SYSTEM
OPERATOR

TERMINAL SUSPENDED BY SYSTEM
OPERATOR

TERMINAL SUSPENDED FOR SYSTEM
ERROR

TERMINAL STOPPED FOR SYSTEM
ERROR

PRINTER BUSY

PRINTER REQUIRES ATTENTION

Default value for device-name is

Default value for retry-info is

Diagnostic Message Generation Procedure

Meaning

The terminal stopped because the highest level
program unit was exited.

The terminal was stopped or aborted by command
from the system operator.

The terminal was suspended by command from
the system operator.

The terminal was suspended because an error
occurred during program execution.

The terminal was suspended without possibility of
restart because an error occurred during program
execution.

The print device that is the target of a PRINT
SCREEN statement is currently in use.

The print device that is the target of a PRINT
SCREEN statement needs to be placed into the
ready state.

PRINTER: filename

PRESS f1 TO RETRY, f2 TO ABORT

f1 = F1 for T16-6510, T16-6520, and
T16-6530; and PA1 for IBM-3270

f2 = F2 for T16-6510, T16-6520, and
T16-6530; and PA2 for IBM-3270

Installations can replace the PATHWAY-generated diagnostic messages. For example, messages
can be displayed in another language.

To change the messages, the PATHTCP routine DIAGNOSTIC"MESSAGE must be replaced
by a user-written routine having the same name. This is handled in the same manner as the
ADVISORY"MESSAGE procedure previously described in this appendix.

A-5

Messages

The declaration for the DIAGNOSTJCAMESSAGE procedure is as follows:

PROC
INT

DIAGNOSTICAMESSAGEC DIAGAFORMAT, MESSAGE, MSGLEN, CONTEXT);
.DIAGAFORMAT(DIAGAFORMATADEF >;

STRING .MESSAGE;
Byte addressable diagnostic info struct.
Returned - Message to display (byte addr).
Returned - Length in bytes of message. INT .MSG LEN;

INT .CONTEXT; One word of "OWN" storage.

The procedure is called repeatedly to initialize the screen; one call for each row of the screen. The
parameter DIAGAFQRMAT, which is described in Figure A-1, defines the the error condition and
the sequencing to build the screen. The parameter CONTEXT provides one word of storage that is
not altered between successive calls to initialize a given screen; the parameter is set to zero prior to
the first call in the initialization sequence.

STRUCT DIAGAFORMATADEF(*);
BEGIN - All string arrays are blank

padded.
STRING CLASS;

STRING SUBCLASS;

INT ROW;

INT ERRTYPE;

STRING LOGATERMANAME
[O:NAMEALEN-1] ;

STRING TERMAPRINTER[0:35
INT ERRNUM;

INT ERR INFO;
STRING PUNAME

[0:15] . ,
INT PUVERSION;
INT INSTRAADDR;
STRING INSTRACODE[0: 19] . ,

END;

] . ,

Class: 1 = IBM-3270, 2 = T16-6510,
3 = T16-6520, 4 = T16-6530.

! Subclass for IBM-3270 (screen size)
0 = 24 x 80 (NOT IBMA3270),
1 = 12 x 40,
2 = 24 x 80,
3 = 24 X 80 - ALT 32 X 80,
4 = 24 X 80 - ALT 43 X 80,
5 = 12 X 40 - ALT 12 X 80,

row of screen format [1 :NROWSJ.
(Iner by one on each call to

DIAGNOSTICASCREEN.)
error type.

See DIAGAERRTYPEA??? below.

Pathway terminal name.
Printer name, external form.
Error number of suspension cause.

(3000 to 3999).
Additional error info.

Current program-unit name.
Version of program unit.
Address of instruction at susp.
Instruction at suspension.

LITERAL ! DIAGNOSTIC DISPLAY ERROR TYPES.

A-6

DIAGAERRTYPEASTOPABYAPROG = 1,
DIAGAERRTYPEASTOPABYAOP = 2,
DIAGAERRTYPEAABRTABYAOP = 3,
DIAGAERRTYPEASUSPABYAERR = 4,
DIAGAERRTYPEASUSPABYAERRANRS = 5,

DIAGAERRTYPEASUSPABYAOP
DIAGAERRTYPEAATTN
DIAGAERRTYPEABUSY

= 6,
= 7,
= 8;

Term stopped by program.
Term stopped by operator.
Term aborted by operator.
Term susp because of error.
Term susp because of error,

not resumable.
Term suspended by operator.
Printer Requires attention.
Printer in use.

Figure A-1. DIAGNOSTIC-FORMAT Parameter for Diagnostic Message Generation

Messages

SCREEN COBOL COMPILER DIAGNOSTIC MESSAGES

THE SCREEN COBOL compiler produces three kinds of diagnostic messages to report problems in
the source text or compilation process. The message types WARNINGS, ERRORS, and FAILURES
reflect the severity of the problem.

A warning message reports a questionable condition, but does not inhibit code generation. Some
warnings merely report a minor deviation from the conventions of the SCREEN COBOL language.
Other warnings indicate more important violations that could result in a different interpretation of
the program than is intended. The explanation of a warning includes a brief description and any ac
tions taken or assumptions made by the compiler. Warning messages can be suppressed with the
NOW ARN compiler command, as described in Section 7.

An error message reports a serious violation of SCREEN COBOL syntax or semantics. The compiler
stops generating code and deletes any previously generated code; however, compilation continues for
syntax checking purposes. Since information at this point would be incomplete or incorrect, correct
syntax might be reported as an error.

A failure message reports a condition so severe that the compiler cannot continue. Any previously
generated code is deleted.

Most warnings or errors pertain to a specific portion of the source text or a specific user-defined
item. The compiler assists in locating the error as follows:

• When the problem is local, the line preceding the message contains a caret ("). The language ele
ment in error is in the last source line either at the position indicated or somewhere to the left.
Occasionally, the language element to the left is actually on a source line preceding the last one
listed.

• Some problems are not found until the entire program is examined. When the line preceding the
message contains the phrase PROBLEM AT OR NEAR LINE nnnnn, it refers to a preceding
portion of the program by line number. The cause of the problem, or one of several interrelated
causes, will be found in the vicinity of the specified line.

• When a user-defined name appears at the end of a message, the message concerns the item
specified.

SCREEN COBOL compiler error messages are listed and described in Table A-3. The explanations
describe the problem in further detail or describe the language rule violated. When the same
message can refer to different problems, the discussion includes several independent explanations.

With the exception of the ILLEGAL SYNTAX message, all messages carry a code number; are
preceded by the word FAILURE, WARNING, ~r ERROR; and are surrounded by asterisks. For ex
ample:

**FAILURE nnn **
**WARNING nnn **
** ERROR nnn **

The Type column in Table A-3 indicates which word will appear by specifying an F (FAILURE), W
(WARNING), or E (ERROR).

A-7

Messages

Table A-3. SCREEN COBOL Compiler Error Messages

Type No. Message Meaning

ILLEGAL SYNTAX The sequence of character strings and
separators does not conform to SCREEN
COBOL language syntax. Misspelled reserved
words are a common cause. The compiler can-
not always recover to a known context after a
syntax error; if the compiler fails in the attempt,
following diagnostics might not be valid.

"
F 0 TOO MANY ERRORS The number of ERROR diagnostics exceeds the

limit specified (the default limit is 100).

F UNABLE TO INVOKE The compiler is unable to invoke one of its
COMPILER PROCESS processes. The error code returned by the

GUARDIAN NEWPROCESS proceclure (bits 0-7)
is appended to the message.

F 2 UNABLE TO OPEN The compiler is unable to open the job com-
$RECEIVE munication file. The error code returned by the

GUARDIAN operating system is appended to the
message.

F 3 UNABLE TO OPEN The compiler is unable to open the interprocess
COMMUNICATION communication file. The error code returned by
FILE the GUARDIAN operating system is appended to

the message.

F 4 UNABLE TO OPEN The compiler is unable to open the specified
(SOURCE/LIST) file. The error code returned by the GUARDIAN
FILE operating system is appended to the message.

F 5 UNABLE TO USE (1) The source file does not have read capability
(SOURCE/ LIST) or the list file does not have write capability.
FILE

(2) Access to the source file, an EDIT disc file,
failed. The error code returned from the attempt
to access the file is appended to the message.

(3) The record length of the list file is less than
40 bytes (characters), or the list device is a
printer/process and the initial control operation
failed.

F 6 UNABLE TO CREATE The compiler is unable to create one of its work
WORK FILE files. The error code returned by the GUARDIAN

operating system is appended to the message.

F 7 UNABLE TO OPEN The compiler is unable to open one of its work
WORK FILE files. The error code returned by the GUARDIAN

operating system is appended to the message.

F 8 UNABLE TO OPEN The compiler is unable to open a COPY library
COPY FILE file. The error code returned by the GUARDIAN

operating system is appended to the message.

A-8

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

F 9 UNABLE TO USE (1) The default COPY library file name is not a
COPY FILE legal Tandem file name.

(2) The COPY library file is not an EDIT disc file,
or has been modified since the start of this
compilation.

(3) An attempt to access the COPY library file
failed. The error code returned from the attempt
to access the file is appended to the message.

F 10 COMPILER Communication between compiler processes
COMMUNICATION failed. The error code returned by the GUARDIAN
LOST operating system is appended to the message. If

the code is 0, one of the compiler processes has
ABENDed.

F 11 (SOURCE/LIST) FILE The compiler is unable to access the specified
(READ/WRITE) file. The error code returned by the GUARDIAN
FAILURE operating system is appended to the message.

F 12 SOURCE FILE A read issued to the source file failed. The error
EDITREAD code returned from the attempt to access the
FAILURE file is appended to the message.

F 13 COPY FILE A read issued to the COPY library file failed. The
EDITREAD error code returned from the attempt to access
FAILURE the file is appended to the message.

F 14 UNABLE TO CREATE The compiler is unable to create the object file.
RUN UNIT FILE The error code returned by the GUARDIAN

operating system is appended to the message.

F 15 UNABLE TO OPEN The compiler is unable to open the object file.
RUN UNIT FILE The error code returned by the GUARDIAN

operating system is appended to the message.

F 17 COMPILER LOGIC Internal consistency checking has discovered an
ERROR error in the compiler logic. Report this failure to

a Tandem Computers representative.

F 18 DICTIONARY Compiler dictionary space is insufficient for the
OVERFLOW number of items defined in the current program

unit. The deficiency might be corrected by invok-
ing the SCREEN COBOL compiler with a larger
value for the MEM parameter. If the failure per-
sists when MEM 64 is used, the program must
be subdivided into smaller program units.

F 19 FILE ERROR ON An operation on a compiler work file failed. The
WORK FILE error code returned by the GUARDIAN operating

system is appended to the message.

A-9

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)
-·--- -------··---------·---··--·---·--

Type No. Message Meaning
-·--------

F 20 PROGRAM DATA Either the allocation requirements of the data
SPACE OVERFLOW items in a single program unit or the cumulative

requirements for the object file exceed the max-
imum program data space available to SCREEN
COBOL.

F 21 CONTROL DATA For each program unit, the SCREEN COBOL
SPACE OVERFLOW compiler allocates an auxiliary data space used

for control purposes. The cumulative require-
ments for these control data spaces exceed the
maximum available to SCREEN COBOL.

F 22 PROGRAM CODE Either the code requirements for a single pro-
SPACE OVERFLOW gram unit or the cumulative requirements for the

entire object file exceed the maximum code
space available to SCREEN COBOL.

F 23 FILE ERROR ON RUN An operation on the object file failed. The error
UNIT FILE code returned by the GUARDIAN operating

system is appended to the message.

E 26 MISSING QUOTE The terminating quotation mark character is
CHARACTER missing from a nonnumeric literal.

E 27 NULL LITERAL A nonnumeric literal contains no characters
(has no value).

E 28 LITERAL EXCEEDS A nonnumeric literal contains more than 120
120 CHARACTERS characters.

E 29 LITERAL EXCEEDS A numeric literal contains more than 18 digits.
18 DIGITS

E 30 WORD EXCEEDS 30 A SCREEN COBOL word contains more than 30
CHARACTERS characters.

w 31 NOT SUPPORTED SCREEN COBOL does not support some of the
optional elements of the ANSI COBOL language.
The message probably refers to one of the
following language elements, which are not nor-
mally critical to correct program execution:

(1) The Rerun facility.

(2) File labels. (SCREEN COBOL does not have
file handling capability.)

(3) More than one system name in an ASSIGN
clause. (NO ASSIGN)

E 31 NOT SUPPORTED SCREEN COBOL does not support some of the
optional elements of the ANSI COBOL language.

w 32 ILLEGAL CONTEXT A SCREEN COBOL reserved word is used as the
FOR RESERVED WORD text name or library name in a COPY statement.

A-10

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 32 ILLEGAL CONTEXT The indicated SCREEN COBOL reserved word
FOR RESERVED WORD cannot appear in this context. The cause for

this message might be an attempt to define one
of the reserved words as a user-defined name.

E 33 ILLEGAL CHARACTER The character indicated is not permitted in this
context. Since the character might be non-
printing, the internal value of the character is
listed with the message.

E 34 TOKEN EXCEEDS 120 An entry considered to be a character string
CHARACTERS contains more than 120 characters. If the

character string is actually several adjacent
language elements, the problem can be cor-
rected by inserting blanks to separate them.

w 35 BLANK CONTINUATION A source line marked as a continuation line con-
LINE tains only blanks.

w 36 ILLEGAL INDICATOR (1) The character in the indicator field of a
CHARACTER source line is not - * I ? or blank.

(2) A continuation line appears as part of a com-
ment entry in a paragraph of the Identification
Division.

w 37 MISSING SEPARATOR (1) A character string is not fol lowed by a
separator.

(2) A comma, semicolon, or period separator is
not followed by a blank.

E 38 UNEXPECTED TEXT (1) A section header or division header is fol-
lowed by other text on the same source line.

(2) The program-name in the PROGRAM-ID
paragraph of the Identification Division is
followed by other text on the same source line.

(3) The Identification Division header or the
PROGRAM-ID paragraph must be followed by an
Identification Division paragraph header or the
Environment Division header, and it must begin
in Area A of the source line.

E 39 UNEXPECTED END OF The source text ended before the appearance of
TEXT all four required divisions.

E 40 INCORRECT NUMBER The number of operands in the USING clause of
OF PARAMETERS a CALL statement differs from the number of

names in the USING Division header for the
SCREEN COBOL subprogram it invokes.

A-11

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 41 NAME CONFLICT (1) The definition of a user-defined name in one
class conflicts with its prior definition in
another class.

(2) The name of a new data item cannot be
distinguished from the name of a previous data
item, even with full qualification.

E 42 AMBIGUOUS A reference has insufficient qualifications to
REFERENCE identify a unique object within the program unit.

E 50 EXPECTED A SCREEN COBOL program unit must begin
'IDENTIFICATION' with an Identification Division header. The

reserved word IDENTIFICATION must start in
Area A of the source line.

E 51 EXPECTED UNSIGNED (1) A numeric literal in this context must be an
INTEGER unsigned integer.

(2) Only an unsigned integer numeric literal is
permitted in this context.

E 52 0 NOT PERMITTED The indicated integer numeric literal cannot be
IN THIS CONTEXT zero in this context.

E 53 INTEGER NOT IN (1) The value of the integer numeric literal is too
EXPECTED RANGE smal I for this context.

(2) The value of the integer numeric literal is too
large for this context.

E 54 ILLEGAL RANGE (1) The first value in a numeric range exceeds
the last value.

(2) The first value in a nonnumeric range is
greater than the last value.

w 55 OUT OF ORDER The position of a phrase, clause, or paragraph
does not conform to SCREEN COBOL language
requirements.

E 55 OUT OF ORDER (1) The REDEFINES clause must be the first
clause in a data description entry.

(2) A section of the Data Division occurs out of
order.

E 56 DUPLICATE PHRASE The indicat.ed phrase duplicates the function of
a preceding one.

E 57 DUPLICATE CLAUSE The indicated clause duplicates the function of
a preceding one.

E 58 DUPLICATE The indicated paragraph header duplicates a
PARAGRAPH preceding one.

A-12

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 59 DUPLICATE SECTION The indicated section header duplicates a
preceding one.

E 61 EXPECTED COMMAND A compiler command line must begin with the
WORD keyword of a command or one of the command-

options defined for the OPTION command.

E 62 EXPECTED QUOTED The heading value in a HEADING command-
STRING option must be a quoted string (nonnumeric

literal).

E 63 EXPECTED COMMA (1) Compiler command-options must be
separated by commas.

(2) Toggle numbers in a SETTOG or RESETTOG
command must be separated by commas.

E 64 MISSING TEXT NAME (1) The text name is missing from a SECTION
command.

(2) The text name in a COPY statement cannot
be found in the copy library.

E 65 COMMAND NOT A command keyword follows one or more
PERMITTED AFTER command-options. Only a single command is
OPTION permitted on each command line.

E 66 TEXT NOT PERMITTED Additional text follows a complete command.
AFTER COMMAND Only a single command is permitted on each

command Ii ne.

E 70 MISSING PROGRAM ID The required PROGRAM-ID paragraph of the
Identification Division is missing.

E 71 MISSING The required Configuration Section of the
CONFIGURATION Environment Division is missing.
SECTION

w 72 MISSING SOURCE The Configuration Section should contain the
COMPUTER SOURCE-COMPUTER paragraph. The compiler
PARAGRAPH assumes: SOURCE-COMPUTER. TANDEM/16.

w 73 MISSING OBJECT The Configuration Section should contain the
COMPUTER OBJECT-COMPUTER paragraph. The compiler
PARAGRAPH assumes: OBJECT-COMPUTER. TANDEM/16.

E 77 ILLEGAL CURRENCY Either the alternative currency symbol specified
SYMBOL is not a single character or the specified

character is not among the set permitted for
this purpose.

E 94 ALPHABET NAME NOT The indicated name is either not defined or not
FOUND an alphabet name.

A-13

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 111 CLAUSE NOT The indicated clause appears in an entry whose
PERMITTED FOR level number prohibits it.
THIS ENTRY

E 112 NOT PERMITTED IN A VALUE clause defining an initial value
THIS SECTION appears in the Linkage Section of the Data

Division.

E 113 ILLEGAL LEVEL A level number is not 66, 77, 88, or in the range
NUMBER 01 to 49. The compiler converts the illegal level

number to 50.

E 114 INCONSISTENT A level number is neither greater than the level
LEVEL NUMBER number of the preceding data description entry

nor equal to that of some preceding data
description entry in the same data structure.

E 115 MISSING 01 LEVEL A level number in the range 02-49 is not subor-
ENTRY dinate to a data description entry with level

number 01; that is, it is not within a data
structure.

E 116 PRECEDED BY Within a data structure, the data description
VARIABLE entry for a variable occurrence table (one con-
OCCURRENCE TABLE taining an OCCURS clause with a range) cannot

be followed by a data description entry with a
lower level number.

E 117 NOT PRECEDED BY The definition of a condition-name (a name
CONDITIONAL whose data description entry has level number
VARIABLE 88) must be preceded by the entry of the data

item whose value it tests. Any intervening data
description entries must also have level number
88.

E 118 NOT PRECEDED BY A data description entry with level number 66
RECORD must be preceded by a data structure. Any inter-

vening data description entries must also have
level number 66.

E 119 FILLER PERMITTED The data description entry of a FILLER data
ONLY FOR item must have a level number in the range
ELEMENTARY RECORD 02-49 and cannot be followed by descriptions of
ITEM subordinate data items; that is, it must be an

elementary data item defined within a data
structure.

w 120 DO NOT QUOTE A PICTURE character string should not be writ-
PICTURE STRING ten as a nonnumeric literal. The SCREEN

COBOL compiler accepts the contents of the
nonnumeric literal as the PICTURE character
string.

A-14

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 121 PICTURE STRING The SCREEN COBOL language limits the
EXCEEDS 30 representation of a PICTURE character string to
CHARACTERS 30 characters. Data items with more character

positions must be described with parenthesized
repetition counts.

E 122 TOO MANY DIGIT The SCREEN COBOL language supports a max-
POSITIONS imum of 18 digits in a numeric or numeric

edited data item.

E 123 TOO MANY SCREEN COBOL supports a maximum of 16383
CHARACTER character positions for an elementary data item.
POSITIONS

E 124 ILLEGAL PICTURE The PICTURE character string does not conform
STRING to SCREEN COBOL syntax. Some of the causes

for this message are illegal characters,
unmatched parentheses, improper combinations
of otherwise legal characters, and pictures with
no positions for data characters.

w 125 LAST SYMBOL IS After stripping the terminating comma,
','OR'.' semicolon, period, or blank, the last character in

the PICTURE character string is a comma or
decimal point. The compiler accepts the picture
and interprets the character in conformance
with the presence or absence of the DECIMAL-
POINT IS COMMA clause in the Special-Names
paragraph.

E 127 SUBORDINATE USAGE The data description entry for a containing
CONFLICTS WITH group item has a USAGE clause. The descrip-
GROUP USAGE tion of the subordinate data item cannot specify

a different usage.

E 128 DISPLAY USAGE The data description entry of a containing group
REQUIRED IN GROUP item has a VALUE clause specifying an initial
WITH VALUE OR value or is followed by entries defining
CONDITION NAME condition-names for the group item. The subor-

dinate data item must have DISPLAY usage.

E 129 COMPUTATIONAL The category of a data item must be numeric
USAGE REQUIRES when its usage is COMPUTATIONAL.
NUMERIC

E 130 SUBORDINATE SIGN The data description entry for a containing
CONFLICTS WITH group item has a SIGN clause. The description
GROUP SIGN of the subordinate data item cannot specify dif-

ferent sign characteristics.

A-15

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 131 SIGN CLAUSE (1) The data description entry for a containing
REQUIRES DISPLAY group item has a SIGN clause. The subordinate
USAGE numeric data item is signed (has an S in its pie-

ture); therefore, the item must have DISPLAY
usage.

(2) The data description entry for the current
data item has a SIGN clause; therefore, the item
must have DISPLAY usage.

E 132 SIGN CLAUSE The data description entry for the current data
REQUIRES SIGNED item has a SIGN clause; therefore, the item pie-
NUMERIC ture must specify category numeric and contain

an S.

E 133 JUSTIFIED REQUIRES A data item described with the JUSTIFIED
DISPLAY USAGE clause must have DISPLAY usage.

E 134 JUSTIFIED NOT The JUSTIFIED clause cannot appear for a data
PERMITTED FOR item described as numeric.
NUMERIC OR EDITED

E 135 JUSTIFIED NOT The data description entry of a contaiining group
PERMITTED IN GROUP item has a VALUE clause specifying an initial
WITH VALUE OR value or is followed by entries defining condi-
CONDITION NAME tion names for the group item. The subordinate

data item cannot be described with the
JUSTIFIED clause.

E 137 SYNCHRONIZED NOT The data description entry of a containing group
PERMITTED IN GROUP item has a VALUE clause specifying an initial
WITH VALUE OR value or is followed by entries defining condi-
CONDITION NAME tion names for the group item. The subordinate

data item cannot be described with the SYN-
CHRONIZED clause.

E 138 BLANK WHEN ZERO A data item described with the BLANK WHEN
REQUIRES DISPLAY ZERO clause must have DISPLAY usage.
USAGE (BLANK WHEN ZERO syntax is enforced when

used, but data items using this syntax cannot
be accessed by SCREEN COBOL programs.)

E 139 BLANK WHEN ZERO Only a numeric data item can be described with
REQUIRES NUMERIC the BLANK WHEN ZERO clause. (BLANK WHEN
OR NUMERIC EDITED ZERO syntax is enforced when used, but data

items using this syntax cannot be accessed by
SCREEN COBOL programs.)

E 140 BLANK WHEN ZERO A data item cannot be described with both the
NOT COMPATIBLE BLANK WHEN ZERO clause and a picture con-
WITH'*' taining the asterisk(*) symbol. (BLANK WHEN

ZERO syntax is enforced when used, but data
items using this syntax cannot be accessed by
SCREEN COBOL programs.)

A-16

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 141 TOO MANY NESTED The SCREEN COBOL language supports access
TABLES to a data item with at most three subscripts.

The OCCURS clause is subordinate to three or
more other OCCURS clauses and thus would re-
quire four or more subscripts to access the data
item it describes.

E 142 VARIABLE The SCREEN COBOL language does not permit
OCCURRENCE NOT a variable occurrence table to be subordinate to
PERMITTED FOR a group table item.
SUBORDINATE TABLE

E 143 VARIABLE A data item described in a redefinition cannot
OCCURRENCE NOT be a variable occurrence table.
PERMITTED IN
REDEFINITION

E 144 VARIABLE The data description entry of a containing group
OCCURRENCE NOT item has an initial value. The subordinate data I'

COMPATIBLE WITH item cannot be a variable occurrence table.
GROUP INITIAL
VALUE

E 146 SUBORDINATE VALUE The data description entry of a containing group
NOT PERMITTED item specifies an initial value for the group item.
WITH GROUP VALUE The subordinate data item cannot also specify

an initial value.

E 147 ONLY ONE INITIAL A data item cannot be initialized with more than
VALUE PERMITTED one value.

E 148 RANGE NOT A data item cannot be initialized with a range of
PERMITTED FOR values.
INITIAL VALUE

E 150 INITIAL VALUE NOT A data item that is described with an OCCURS
PERMITTED FOR clause or is subordinate to a group table item
TABLE ITEM cannot be initialized.

E 151 INITIAL VALUE NOT A data item described in a redefinition cannot
PERMITTED FOR be initialized.
REDEFINITION

E 152 SIGNIFICANCE The number of significant digits to the left of
RANGE OF LITERALS the decimal point in one literal plus the number
EXCEEDS 18 DIGITS of significant digits to right of the decimal point

in another literal exceeds 18.

E 153 NUMERIC LITERAL When a VALUE clause contains a numeric
NOT COMPATIBLE literal, all other values must also be numeric
WITH NONNUMERIC literals or one of the figurative constants ZERO,
FIGURATIVE OR ZEROS, or ZEROES.
LITERAL

A-17

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 154 RENAME OBJECT NOT The RENAMES clause can only rename data
DATA ITEM items.

E 155 RENAME OBJECT IS A RENAMES clause cannot rename a level 66
66 LEVEL ITEM item.

E 156 RENAME OBJECT NOT A data item referenced in the RENAMES clause
SUBORDINATE TO must be defined within the preceding data
PRECEDING RECORD description.

E 157 RENAME OBJECT IN The RENAMES clause cannot reference either a
TABLE OR HAS table item or a group data item that has a
VARIABLE SIZE variable size (has a subordinate variable occur-

rence table).

E 158 ILLEGAL RENAMES The second data item in the range of a
OBJECT RANGE RENAMES clause must include some character

positions that are not part of the first data item.
However, the initial character position of the
second data item cannot precede the ~nitial
character position of the first data item within
their data structure.

E 159 REDEFINITION Either the name in the REDEFINES clause can-
OBJECT NOT FOUND not be found or it is not the name of a data

item. Note that when a REDEFINES clause
appears in a data structure, only that data item
is searched for the data item to be redefined.

E 160 REDEFINITION The data item to be redefined must have the
OBJECT HAS same level number as the redefining data
CONFLICTING description entry.
LEVEL NUMBER

E 161 REDEFINITION A data item described with a REDEFINES clause
OBJECT IS cannot itself be redefined. This restriction does
REDEFINITION not apply to a subordinate of a redefinition item

unless its data description entry also contains a
REDEFINES clause.

E 162 REDEFINITION When the redefined data item is subordinate to
OBJECT AND a set of group items, the redefinition item must
REDEFINITION NOT also be subordinate to them.
SUBORDINATE TO
SAME LEVELS

E 163 REDEFINITION The data description entry of a redefinition must
OBJECT NOT not be separated from that of the redefined item
PRECEDING ITEM by any other data description entry with the
AT THIS LEVEL same level number, unless the intervening entry

redefines the same data item.
·-----------·-

A-18

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 164 REDEFINITION A table item or a group item that has a variable
OBJECT IS TABLE OR size (has a subordinate variable occurrence
HAS VARIABLE SIZE table) cannot be redefined.

E 165 MISSING VALUE The required VALUE clause is missing from a
CLAUSE data description entry with level number 88.

E 166 MISSING RENAMES The required RENAMES clause is missing from
CLAUSE a data description entry with level number 66.

E 167 GROUP ITEM HAS The data description entry of a group item has a
ELEMENTARY ITEM BLANK WHEN ZERO, JUSTIFIED, SYNCH RO-
CLAUSE NIZED, or PICTURE clause. These clauses can

only describe an elementary data item. (BLANK
WHEN ZERO syntax is enforced when used, but
data items using this syntax cannot be
accessed by SCREEN COBOL programs.)

w 168 GROUP WITH SIGN The SCREEN COBOL language requires a group
CLAUSE HAS NO data item described with a SIGN clause to have
SIGNED NUMERIC at least one signed numeric subordinate data
SUBORDINATE item. SCREEN COBOL reports nonconformance

for informational purposes only.

E 169 ELEMENTARY ITEM An elementary data item must be described with
HAS NO PICTURE a PICTURE clause.

E 174 FIRST ELEMENTARY The indicated data item cannot be aligned to
ITEM NOT DISPLAY the first character position of the area it
AND NOT ALIGNED redefines. SCREEN COBOL does not permit a

redefinition that requires allocation of implicit
FILLER character positions to align the first
elementary item.

E 175 REDEFINITION HAS The number of character positions occupied by
INCORRECT SIZE a redefinition must equal the number of

character positions occupied by the redefined
data item(s), unless the redefinition begins at
the 01 level.

E 176 NON NUMERIC The initial value for a numeric data item must
FIGURATIVE OR be a numeric literal or one of the figurative
LITERAL NOT constants ZERO, ZEROS, or ZEROES.
PERMITTED FOR
NUMERIC ITEM

E 177 SIGNED LITERAL The initial value for an unsigned numeric data
NOT PERMITTED item must be an unsigned numeric literal or one
FOR UNSIGNED of the figurative constants ZERO, ZEROS, or
NUMERIC ITEM ZEROES.

E 178 TOO MANY FRACTION Assignment of the initial value to the numeric
DIGITS IN NUMERIC data item would require truncation of nonzero
LITERAL digits to the right of the decimal point.

A-19

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 179 NUMERIC LITERAL Assignment of the initial value to the numeric
VALUE TOO LARGE data item would require truncation of nonzero
FOR ITEM digits to the left of the decimal point.

E 180 NUMERIC LITERAL A numeric literal can only be used as the initial
NOT PERMITTED FOR value for an elementary numeric data item.
NONNUMERIC OR
GROUP ITEM

E 181 NONNUMERIC LITERAL Assignment of the initial value to the indicated
EXCEEDS ITEM SIZE data item would require truncation of one or

more characters.

E 182 01 OR 77 LEVEL SCREEN COBOL supports a maximum of 16383
ITEM TOO LARGE character positions for a level 01 or level 77

data item defined in the Working-Storage Sec-
tion or Linkage Section.

E 190 DEPENDING ITEM A name referenced in the DEPENDING phrase of
NOT FOUND an OCCURS clause is not defined.

E 191 DEPENDING ITEM Either the indicated name (referenced in the
NOT SIMPLE DEPENDING phrase of an OCCURS clause)
UNSIGNED INTEGER does not identify an elementary unsigned
DATA ITEM integer data item, or access to the item requires

subscripting.

E 192 DEPENDING ITEM The indicated data item is allocated within the
IN TABLE table it controls. The allocation is a result of an

explicit or implicit redefinition.

E 205 USING OPERAND NOT A name referenced in the USING phrase of the
FOUND IN LINKAGE Procedure Division header is not defined in the
SECTION Linkage Section of the Data Division.

E 206 USING OPERAND NOT The indicated name does not identify a data
DATA ITEM item. Only the names of data items can be

specified in the USING phrase of the Procedure
Division header.

E 207 USING OPERAND IS SCREEN COBOL requires that a data item in the
REDEFINITION OR USING phrase be a level 01 or level 77 item.
NOT LEVEL 01 OR SCREEN COBOL does not permit a redefinition,
LEVEL 77 DATA ITEM including one of a level 01 or level 77 item, to

appear in the USING phrase.

E 208 DATA ITEM The same name cannot appear more than once
PERMITTED ONLY in the USING phrase of the Procedure Division
ONCE AS USING header.
OPERAND

E 209 TOO MANY USING SCREEN COBOL supports a maximum of 29
OPERANDS names in the USING phrase of the Procedure

Division header.
--------·---------------·---

A-20

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 210 LINKAGE DATA ITEM The indicated data item is defined in the
MUST BE USING Linkage Section but cannot be addressed.
OPERAND Addressable items are those specified in the

USING phrase of the Procedure Division header;
their subordinate items; and the redefinition,
renaming, and condition-names of the subor-
dinate items.

E 211 TOO MANY RECORDS The program defines more data stuctures than
the compiler can address.

E 212 TOO MANY The program defines more level 77 data items
ELEMENTARY ITEMS than the SCREEN COBOL compiler can address.

E 221 INSUFFICIENT Any screen item (other than the 01 level screen
SPECIFICATION TO name) must be either a group, an overlay area, a
DETERMINE TYPE literal field, an input field, an output field, or an
OF SCREEN ITEM input-output field. This item cannot be classified

because it does not have the minimum require-
ments for definition.

E 222 THIS SCREEN ITEM A name is required for 01 levels (screen names)
MUST BE NAMED and overlay areas.

E 223 THIS SCREEN ITEM The screen item must have a BASE clause
MUST HAVE BASE specified.
SPECIFICATION

E 224 THIS SCREEN ITEM The screen item must have an OVERLAY clause
MUST HAVE specified.
'OVERLAY'
SPECIFICATION

E 225 THIS SCREEN ITEM Overlay areas must have a SIZE clause.
MUST HAVE SIZE
SPECIFIED

E 226 THIS SCREEN ITEM Overlay areas must have an AREA clause.
MUST HAVE 'AREA'
SPECIFICATION

E 227 THIS SCREEN ITEM All screen items must have a location specified.
MUST HAVE LOCATION Screen fields can use either the AT clause or
('AT') SPECIFIED the REDEFINES clause or both.

E 228 THIS SCREEN ITEM All screen items must have a location specified.
MUST HAVE LOCATION Screen fields can use either the AT clause or
('REDEFINES') the REDEFINES clause or both.
SPECIFIED

A-21

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

-------·

Type No. Message Meaning

E 229 THIS SCREEN ITEM The screen item must have a FROM or USING
MUST HAVE FROM clause specified with an associated data item.
(OR USING) DATA
ITEM

E 230 THIS SCREEN ITEM The screen item must have a TO or USING
MUST HAVE TO clause specified with an associated data item.
(OR USING) DATA
ITEM

E 231 THIS SCREEN ITEM The screen item must have a SHADOW clause
MUST HAVE SHADOW specified with an associated data item.
DATA ITEM
SPECIFIED

E 232 THIS SCREEN ITEM Input fields, output fields, and input-output
MUST HAVE PICTURE fields must have a PICTURE clause.
SPECIFICATION

E 233 THIS SCREEN ITEM Literal fields must have an initial value.
MUST HAVE INITIAL
VALUE

E 234 THIS SCREEN ITEM The screen item must have a FILL clause
MUST HAVE FILL specified with a fill character.
CHARACTER
SPECIFIED

E 235 THIS SCREEN ITEM The screen item must have an OCCURS clause
MUST HAVE OCCURS specified.
SPECIFICATION

E 236 THIS SCREEN ITEM The MUST BE clause for the screen item must
MUST HAVE specify a value that is compatible with the
ACCEPTABLE screen PICTURE clause.
VALUE(S) ('MUST')
SPECIFIED

E 237 THIS SCREEN ITEM The LENGTH clause for the screen item must
MUST HAVE specify a length that is compatible with the
ACCEPTABLE screen PICTURE clause.
LENGTH(S)
SPECIFIED

E 238 THIS SCREEN ITEM The screen item must have an UPSHIFT clause
MUST HAVE UPSHIFT specified with a valid input or output specifica-
SPECIFICATION ti on.

E 239 THIS SCREEN ITEM The screen item must have a WHEN FULL
MUST HAVE FULL clause specified.
ACTION ('WHEN
FULL') SPECIFIED

----------···-------.

A-22

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 240 THIS SCREEN ITEM The screen item must have a USER CONVER-
MUST HAVE USER SION clause specified.
CONVERSION NUMBER
SPECIFIED

E 243 THIS SCREEN ITEM The screen item must have a PROMPT clause
MUST HAVE PROMPT specified in the Screen Section.
FIELD SPECIFIED

E 254 THIS SCREEN ITEM Literal fields must not be named.
MUST NOT BE NAMED

E 255 THIS SCREEN ITEM The BASE clause is allowed only at the 01 level.
MUST NOT HAVE BASE
SPECIFICATION

E 256 THIS SCREEN ITEM The OVERLAY clause is allowed only at the 01
MUST NOT HAVE level.
'OVERLAY'
SPECIFICATION

E 257 TH IS SCREEN ITEM The SIZE clause is al lowed only at the 01 level
MUST NOT HAVE or for overlay area items.
SIZE SPECIFIED

E 258 THIS SCREEN ITEM AREA can only be specified for overlay areas.
MUST NOT HAVE This item either has conflicting clauses or
'AREA' subordinate items (is a group).
SPECIFICATION

E 259 THIS SCREEN ITEM The screen item must not have an associated
MUST NOT HAVE screen location. The AT clause is allowed only
LOCATION ('AT') for screen groups and fields.
SPECIFIED

E 260 THIS SCREEN ITEM The screen item must not redefine another
MUST NOT HAVE screen item. The REDEFINES clause is allowed
LOCATION only for elementary screen fields.
('REDEFINES')
SPECIFIED

E 261 THIS SCREEN ITEM Only output fields and input-output fields can
MUST NOT HAVE have FROM or USING clauses.
FROM (OR USING)
DATA ITEM

E 262 TH IS SCREEN ITEM Only input fields and input-output fields can
MUST NOT HAVE have TO or USING clauses.
TO (OR USING)
DATA ITEM

E 263 THIS SCREEN ITEM SHADOWED clauses are allowed only for input,
MUST NOT HAVE output, or input-output fields.
SHADOW DATA ITEM
SPECIFIED

----- ----------

A-23

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 264 THIS SCREEN ITEM PICTURE clauses are allowed only for input, out-
MUST NOT HAVE put, or input-output fields.
PICTURE
SPECIFICATION

E 265 THIS SCREEN ITEM VALUE clauses are allowed only for input, out-
MUST NOT HAVE put, input-output, or literal fields.
INITIAL VALUE

E 266 THIS SCREEN ITEM FILL clauses are allowed only for input, output,
MUST NOT HAVE or input-output fields.
FILL CHARACTER
SPECIFIED

E 267 THIS SCREEN ITEM OCCURS clauses are allowed only for input, out-
MUST NOT HAVE put, or input-output fields.
OCCURS
SPECIFICATION

E 268 THIS SCREEN ITEM MUST clauses are allowed only for input or
MUST NOT HAVE input-output fields.
ACCEPTABLE
VALUE(S) ('MUST')
SPECIFIED

E 269 THIS SCREEN ITEM LENGTH clauses are allowed only for input or
MUST NOT HAVE input-output fields.
ACCEPTABLE
LENGTH(S)
SPECIFIED

E 270 THIS SCREEN ITEM UPSHIFT clauses are allowed only for input, out-
MUST NOT HAVE put, or input-output fields.
UPSHIFT
SPECIFICATION

E 271 THIS SCREEN ITEM WHEN FULL clauses are allowed only for input
MUST NOT HAVE or input-output fields.
FULL ACTION
('WHEN FULL')
SPECIFIED

E 272 THIS SCREEN ITEM USER CONVERSION clauses are allowed only
MUST NOT HAVE for input, output, or input-output fields.
USER CONVERSION
NUMBER SPECIFIED

E 275 THIS SCREEN ITEM The screen item must not have a PROM PT
MUST NOT HAVE clause specified.
PROMPT FIELD
SPECIFIED

--····· .. -·---·-----------------------·

A-24

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 276 THIS SCREEN ITEM The screen item must not have a FIELD-
MUST NOT HAVE SEPARATOR clause specified. This clause can
FIELD-SEPARATOR be specified only for an 01 screen level item.
CHARACTER
SPECIFIED

E 277 THIS ~GREEN ITEM The screen item must not have a GROUP-
MUST NOT HAVE SEPARATOR clause specified. This clause can
GROUP-SEPARATOR be specified only for an 01 screen level item.
CHARACTER
SPECIFIED

E 278 TH IS SCREEN ITEM The screen item must not have an ABORT-
MUST NOT HAVE INPUT clause specified. This clause can be
ABORT-INPUT specified only for an 01 screen level item.
CHARACTERS
SPECIFIED

E 279 TH IS SCREEN ITEM The screen item must not have an END-OF-
MUST NOT HAVE INPUT clause specified. This clause can be
END-OF-INPUT specified only for an 01 screen level item.
CHARACTERS
SPECIFIED

E 280 THIS SCREEN ITEM The screen item must not have a RESTART-
MUST NOT HAVE INPUT clause specified. This clause can be
RESTART-INPUT specified only for an 01 screen level item.
CHARACTERS
SPECIFIED

E 285 THIS SCREEN ITEM ADVISORY clauses are allowed only for output
MUST NOT HAVE or input-output fields.
ADVISORY
SPECIFICATION

E 286 THIS SCREEN ITEM Duplicate clauses are not allowed.
HAS DUPLICATE
NAMING

E 287 TH IS SCREEN ITEM Duplicate clauses are not allowed.
HAS DUPLICATE BASE
SPECIFICATION

E 288 THIS SCREEN ITEM Duplicate clauses are not allowed.
HAS DUPLICATE
'OVERLAY'
SPECIFICATION

E 289 THIS SCREEN ITEM Duplicate clauses are not allowed.
HAS DUPLICATE
SIZE SPECIFIED

A-25

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 290 THIS SCREEN ITEM Duplicate clauses are not allowed.
HAS DUPLICATE
'AREA'
SPECIFICATION

E 291 TH IS SCREEN ITEM Duplicate clauses are not allowed.
HAS DUPLICATE
LOCATION ('AT')
SPECIFIED

E 292 THIS SCREEN ITEM Duplicate clauses are not allowed.
HAS DUPLICATE
LOCATION
('REDEFINES')
SPECIFIED

E 293 THIS SCREEN ITEM Duplicate clauses are not allowed.
HAS DUPLICATE
FROM (OR USING)
DATA ITEM

E 294 THIS SCREEN ITEM Duplicate clauses are not allowed.
HAS DUPLICATE
TO (OR USING)
DATA ITEM

E 295 THIS SCREEN ITEM Duplicate clauses are not allowed.
HAS DUPLICATE
SHADOW DATA ITEM
SPECIFIED

E 296 TH IS SCREEN ITEM Duplicate clauses are not allowed.
HAS DUPLICATE
PICTURE
SPECIFICATION

E 297 THIS SCREEN ITEM Duplicate clauses are not allowed ..
HAS DUPLICATE
INITIAL VALUE

E 298 THIS SCREEN ITEM Duplicate clauses are not allowed.
HAS DUPLICATE
FILL
SPECIFIED

E 299 THIS SCREEN ITEM Duplicate clauses are not allowed.
HAS DUPLICATE
OCCURS
SPECIFICATION

E 300 THIS SCREEN ITEM Duplicate clauses are not allowed ..
HAS DUPLICATE
ACCEPTABLE
VALUE(S) ('MUST')
SPECIFIED

--------·---

A-26

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

---- ---·---

Type No. Message Meaning
---- ----

E 317 THIS SCREEN ITEM Duplicate clauses are not allowed.
HAS DUPLICATE
ADVISORY
SPECIFICATION

E 318 INPUT SCREEN ITEMS Input and input-output fields must not be pro-
(TO OR USING) MAY tected; if they were, data entry would be
NOT BE PROTECTED impossible.

E 319 REDEFINED SCREEN A redefined field must have the same location
ITEM HAS DIFFERENT as the field it redefines.
LOCATION

E 320 REDEFINED SCREEN A redefined field must have the same length as
ITEM HAS DIFFERENT the field it redefines.
LENGTH

E 321 REDEFINED SCREEN A redefined field must have the same display
ITEM HAS DIFFERENT attribute as the field it redefines.
DISPLAY ATIRIBUTE

E 322 REDEFINED SCREEN A redefined field must have the same full action
ITEM HAS DIFFERENT (WHEN FULL) as the field it redefines.
FULL ACTION

E 323 REDEFINED SCREEN A redefined field must have the same occurs
ITEM HAS DIFFERENT specification as the field it redefines.
OCCURS
SPECIFICATION

E 324 DUPLICATE A given type of display attribute has been
SPECIFICATION FOR declared more than once.
DISPLAY ATIRIBUTE

E 325 INITIAL VALUE MUST Only string literals are allowed for initial values
BE QUOTED STRING of screen items.

E 326 TOO MANY The column spacing list must contain fewer
SEPARATIONS OR entries than there are column occurrences.
OFFSETS IN COLUMN
SPACING LIST

E 327 UNKNOWN TERMINAL Terminal type must be IBM-3270, T16-6510,
TYPE T15 .. 5520, or T16-6530.

E 328 NO TERMINAL TYPE A terminal type clause is required.
SPECIFIED

E 329 FUNCTION KEY NOT The function key mentioned is not available for
ALLOWED FOR THIS this terminal type.
TERMINAL TYPE

---·-

A-28

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 330 DISPLAY ATTRIBUTE The display attribute mentioned is not available
NOT ALLOWED FOR for this terminal type.
THIS TERMINAL TYPE

E 331 FROM (USING) DATA Numeric screen items must be associated with
ITEM HAS DIFFERENT numeric data items and nonnumeric screen
TYPE (NUMBER VS. items must be associated with nonnumeric data
STRING) items.

E 332 FROM (USING) DATA The screen item has more occurrences than the
ITEM HAS data item.
INSUFFICIENT
NUMBER OF
OCCURRENCES

E 333 FROM (USING) DATA The scale specified for the TO or USING data
ITEM HAS item is not compatible with that specified by the
INCOMPATIBLE SCALE screen item PICTURE. The scale should be

adjusted for compatible editing of data.

E 334 TO (USING) DATA Numeric screen items must be associated with
ITEM HAS DIFFERENT numeric data items and nonnumeric screen items
TYPE (NUMBER must be associated with nonnumeric data items.
VS. STRING)

E 335 TO (USING) DATA The screen item has more occurrences than the
ITEM HAS data item.
INSUFFICIENT
NUMBER OF
OCCURRENCES

E 336 TO (USING) DATA The scale specified for the FROM or USING
ITEM HAS data item is not compatible with that specified
INCOMPATIBLE SCALE by the screen item PICTURE. The scale should

be adjusted for compatible editing of data.

E 337 VALUE STRING The value string must not be longer than the
LONGER THAN screen item.
PICTURE

E 338 OVERLAY AREA 'The overlay area is larger than the base screen.
TOO LARGE

E 339 OVERLAY SCREENS Recursive definition of overlay areas is not
MAY NOT CONTAIN allowed.
OVERLAY AREAS

E 340 OVERLAY AREAS Overlay areas must be as wide as the base
MUST BE FULL screen on T16-6510 terminals.
WIDTH FOR THIS
TERMINAL TYPE

E 341 SCREEN TOO LARGE Screen size exceeds the largest supported size
FOR TERMINAL TYPE for this terminal type.

A-29

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 342 ERROR An ERROR-ENHANCEMENT clause must not
ENHANCEMENT specify PROTECTED attribute. If a field in error
MAY NOT SPECIFY is protected, correction of the error would not be
PROTECTION possible.
A ITRI BUTE

E 343 SHADOWED If a shadowed field contains an OCCURS
DATA ITEM clause, the shadowed data item must have the
HAS INSUFFICIENT same number of occurrences as the field.
NUMBER OF
OCCURRENCES

E 344 SCREEN ITEM The maximum field length of 255 characters has
TOO LONG been exceeded.

E 345 UNKNOWN The character-set type specified in the OBJECT-
CHARACTER COMPUTER paragraph of the Environment Divi-
SET sion is not valid.

w 346 CHARACTER SET NOT The character set specified is not valid for the
VALID FOR THIS terminal type. The character set specification is
TERMINAL TYPE ignored.

E 347 PROMPT SCREEN (1) The ·screen item named in the PROMPT
ITEM MUST BE A clause and the definition of the screen 'field
FIELD IN SAME must be in the same screen.
SCREEN

(2) The screen item must be a field.

(3) The screen item cannot be an overlay, a
group, or a filler item.

E 348 PROMPT SCREEN The screen item named in the PROMPT clause
ITEM MUST NOT BE cannot refer to the screen item containing the
THE CURRENT ITEM PROMPT clause. A screen field cannot be

prompted by itself.

E 349 PROMPT SCREEN If the screen item named in the PROMPT clause
ITEM MUST HAVE A has an associated working storage data item,
FROM (OR USING) the screen item must have a FROM or USING
DATA ITEM clause. A TO clause generates this error.

E 350 DUPLICATE INPUT The same character cannot be defined for more
CONTROL than one input control character within each
CHARACTERS screen.
DEFINED

E 351 OPERAND MUST BE A The operand must be an item defined in the
SCREEN ITEM Screen Section.

E 352 OPERAND MUST BE A The operand must be an item defined in the
DATA ITEM Working-Storage Section.

E 353 OPERAND MUST BE A The operand must be a mnemonic name
MNEMONIC-NAME specified in the SPECIAL-NAMES paragraph.

A-30

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 354 INVALID A field or group separator is defined incor-
CONVERSATIONAL rectly-a non numeric I it era I must be one
SEPARATOR alphanumeric character enclosed in quotation

marks and a numeric literal must be in the
range 0 through 255.

E 355 TOO MANY COLUMN An OCCURS clause includes a column number
OCCURRENCES greater than the number of columns in the size
SPECIFIED FOR of the screen. For example, if a screen is
SCREEN FIELD defined as SIZE 20, 80, an OCCURS IN 82

COLUMNS will generate this message.

E 356 TOO MANY LINE An OCCURS clause includes a line number
OCCURRENCES greater than the number of lines in the size of
SPECIFIED FOR the screen. For example, if a screen is defined
SCREEN FIELD as SIZE 20, 80, an OCCURS IN 24 LINES will

generate this message.

E 357 ILLEGAL SENDING (1) A numeric data item cannot be moved into
OR RECEIVING ITEM an alphabetic data item.
IN MOVE STATEMENT

(2) A noninteger numeric data item cannot be
moved into an alphanumeric data item.

(3) An alphabetic data item cannot be moved
into a numeric data item.

E 358 UNABLE TO OPEN The specified SCREEN COBOL library cannot be
SCREEN COBOL accessed. The library either does not exist or
LIBRARY FILE could not be shared at compile time.

E 359 UNABLE TO LIST The object file cannot be opened to list the
LOAD MAP internal procedure load map.

E 360 UNDEFINED DATA The referenced data item is not described in the
NAME Environment or Data Division.

E 361 ONLY A MNEMONIC A system name (mnemonic-name) is required in
NAME IS ALLOWED this context.
IN THIS CONTEXT

E 362 NO CORRESPONDING No correspondence was found between the
DATA NAMES specified groups.

E 363 UNDEFINED OR Either a procedure name referenced in a
AMBIGUOUS PERFORM or GO TO statement was not
PROCEDURE ACCESS encountered in the source text, or the name was

not sufficiently qualified to avoid ambiguity.

E 364 INDEPENDENT SCREEN COBOL does not support independent
SEGMENTS NOT segments.
SUPPORTED

E 365 ILLEGAL DATA ITEM An operand in a conditional statement is an
IN IF STATEMENT illegally defined data item; the operand is

defined as a numeric edited data item.

A-31

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 367 ONLY AN ALPHABET The name specified must refer to an alphabetic
NAME IS ALLOWED name in this context.
IN TH IS CONTEXT

E 368 EMPTY GO TO NOT A GO TO statement of this form can only appear
LABELED in a single statement paragraph, which by

definition is labeled.

E 370 EXPECT ELEMENTARY A numeric data item is required in this context.
NUMERIC DATA ITEM
IN TH IS CONTEXT

E 371 EXPECT GROUP DATA Only a group data item is legal in this context.
ITEM IN THIS
CONTEXT

E 372 INVALID TABLE The item is not a data item; indexes are not
SUBSCRIPT OR allowed.
INDEX

E 373 TOO MANY OR The number of parameters specified in the
TOO FEW USING phrase of a CALL statement does not
PARAMETERS agree with the number specified in the USING

phrase of the Procedure Division header.

E 374 EXPECT A DATA Only a data item can be used in a class condi-
WORD OR IDENTIFIER ti on.
IN THIS CONTEXT

E 375 CATEGORY MUST BE The category of the data item must be
ALPHANUMERIC OR alphanumeric or alphabetic in this context.
ALPHABETIC

E 376 CATEGORY MUST BE The category of the data item must be
ALPHANUMERIC OR alphanumeric or numeric in this context.
NUMERIC

E 381 MISSING PROGRAM A called program unit was neither found in a
SCREEN COBOL program library nor
encountered in the source text.

E 385 EXPECT A TABLE The description of the data item must contain
SPECIFIER an OCCURS clause.

E 386 INCORRECT NUMBER An incorrect number of subscripts, possibly
OF SUBSCRIPTS zero, are used to access the data item. (Indices
OR INDICES are not allowed.)

E 387 REFERENCE DATA A data item has a PICTURE clause greater than
ITEM TOO LARGE 2048.

E 389 AN UNEXPECTED An irrecoverable 1/0 error occurred while
ERROR OCCURRED building the object file. The compilation must be
WHILE BUILDING restarted.
RUN UNIT

.A-32

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 391 ILLEGAL USE OF An index name or index data item is not
INDEX NAME OR allowed.
INDEX DATA ITEM

E 395 INVALID VARYING The VARYING identifier in the PERFORM state-
ITEM ment must be described as a numeric elemen-

tary data item without any positions to the right
of the assumed decimal point.

E 398 ILLEGAL A comparison between a numeric computational
COMPARISON data item and a nonnumeric data item is illegal.
BETWEEN DISPLAY
AND COMPUTATIONAL
DATA

E 399 NON-INTEGER OR An integer data item containing no P symbols in
CONT Al NS P'S its PICTURE clause is required in this context.

E 400 EXPECT The data item must have an explicit or implied
ALPHANUMERIC alphanumeric category.
DATA ITEM

E 401 EXPECT DISPLAY The data item must have explicit or implied
USAGE DISPLAY usage.

E 403 EXPECT LEVEL 01 Only level 01 and level 77 data items can be
OR 77 DATA ITEM specified in the USING phrase of a CALL state-

ment.

E 404 INVALID DISPLAY An item is not defined in the Data Division.
ITEM

E 415 INVALID OPERATOR The expression contains operators other than +
OR OPERAND IN - I * or contains one or more nonnumeric
ARITHMETIC operands.
EXPRESSION

E 416 INVALID OPERATOR The expression contains an illegal operator or
OR OPERAND IN illegal identifier form.
CONDITIONAL
EXPRESSION

E 418 ILLEGAL TABLE An illegal occurrence number was detected.
OCCURRENCE
NUMBER
(BOUNDS VIOLATION)

E 427 ONLY AN The referenced data item must be an elementary
ELEMENTARY alphanumeric data item in this context.
ALPHANUMERIC DATA
ITEM IS ALLOWED

A-33

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 429 ILLEGAL DATA ITEM An operand in an arithmetic statement is an
IN ARITHMETIC illegally defined data item; the operand is
STATEMENT defined as a numeric edited data item.

E 430 DIVIDE BY ZERO Division by a literal with a value of zero was
detected in a DIVIDE or COMPUTE statement.

E 431 ONLY A NUMERIC Only numeric literals and data items can be
LITERAL IS used in the composition of an arithmetic expres-
ALLOWED sion.

E 445 ILLEGAL PERFORM A statement generates an illegal implied or
INVOCATION explicit transfer of control between mutually

exclusive sections. The statement is compiled
as if the requested action were legal.

w 445 ILLEGAL PERFORM A statement generates an illegal implied or
INVOCATION explicit transfer of control between mutually

exclusive sections. The statement is compiled
as if the requested action were legal.
1) A debug section performs a declarative
procedure.
2) A non-debug declarative section performs a
non-debug declarative procedure.
3) A non-declarative section performs a non-
declarative procedure.

E 446 ILLEGAL GO TO A statement generates an illegal implied or
INVOCATION explicit transfer of control between mutually

exclusive sections. The statement is compiled
as if the requested action were legal.
1) A GO TO transfers between a
declarative section and a non-
declarative section.
2) A GO TO transfers between a debug
section and a non-debug section.

w 446 ILLEGAL GO TO A statement generates an illegal implied or
INVOCATION explicit transfer of control between mutually

exclusive sections. The statement is compiled
as if the requested action were legal.

w 468 ADDRESSING RANGE More than 16000 bytes of working storage was
EXCEEDED declared. This exceeds the addressing range of

a pseudo object program on the TCP.

E 469 SOURCE ITEM MAY Numeric data is limited to 18 digits.
NOT EXCEED
18 DIGITS

E 473 PROTECTION The PROTECTED attribute must not be changed
ATTRIBUTE MAY for tile T16-6510.
NOT BE CHANGED

.A-34

A-35

Messages

Table A-3. SCREEN COBOL Compiler Error Messages (Continued)

Type No. Message Meaning

E 487 SCREEN ITEM Only a screen item with an OCCURS clause can
WITHOUT OCCURS be subscripted.
CLAUSE IS
SUBSCRIPTED

E 488 SCREEN ITEMS MAY A screen item with an OCCURS clause is con-
HAVE ONE (1) sidered to be a single table.
SUBSCRIPT ONLY

E 489 SCREEN ITEM The subscript exceeds the count of screen
SUBSCRIPT TOO items.
LARGE

E 490 SCREEN ITEM All subscripts must be integers.
SUBSCRIPT MUST
BE INTEGER

E 491 MUST BE OVERLAY The overlay-area following the AT clause in a
AREA SCREEN NAME DISPLAY OVERLAY statement is not defined as

an overlay area.

E 492 'LENGTH MUST BE' The maximum value that can be specified in a
VALUE MUST BE LENGTH clause is 255.
LESS THAN 256

E 493 INCORRECT NUMBER An arithmetic expression contains either too
OF OPERANDS IN many or too few operands.
ARITHMETIC
EXPRESSION

E 494 SCALE OF MUST BE A numeric literal named in the MUST BE clause
VALUE EXCEEDS contains too many digits to the right of the
SCALE OF decimal.
ASSOCIATED DATA
ITEM

E 495 MUST BE VALUE A numeric literal named in the MUST BE clause
TOO LARGE FOR exceeds the size of the data item PICTURE
ASSOCIATED DATA clause.
ITEM

E 496 TYPE OF MUST BE The type of literal named in the MUST BE clause
VALUE IS does not match the associated data item. A
INCOMPATIBLE WITH numeric literal must be associated with a
ASSOCIATED DATA numeric data item and a nonnumeric I iteral
ITEM must be associated with a nonnumeric data

item.

w 497 QUALi Fl ED NAME This is a warning. During compilation, SCOBOL
TOO LONG - builds fully qualified names to send to
CROSSREF LINE CROSSREF. A name exceeded the length of the
WILL BE buffer and will appear in the CROSSREF listing
TRUNCATED in truncated form. This might occur with multi-

pie levels of qualification.

A-36

APPENDIX B

SCREEN COBOL SYNTAX SUMMARY

SCREEN COBOL syntax is summarized in this appendix. Detailed information for each command is
referenced by page number.

IDENTIFICATION DIVISION

IDENTIFICATION DIVISION.

PROGRAM-ID. program-unit-name.

AUTHOR. [comment-entry]]

INSTALLATION. comment-entry

DATE-WRITTEN. comment-entry

DATE-COMPILED. [comment-entry]]

SECURITY. [comment-entry]]

ENVIRONMENT DIVISION

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. comment-entry.

OBJECT-COMPUTER. comment-word,

TERMINAL IS terminal-type]

CHARACTER-SET IS character-set-type].

Page

3-1

3-2

3-1

3-1

3-1

3-2

3-1

4-1

4-2

4-2

4-3

4-3

4-3

B-1

:SCREEN COBOL Syntax Summary

SPECIAL-NAMES.

[! mnemonic-name IS jsystem-name
l< {system-name}

, CURRENCY [SIGN] IS literal-1

, DECIMAL-POINT IS COMMA] .]

INPUT-OUTPUT SECTION.

SCREEN-CONTROL.

ERROR-ENHANCEMENT [IS] mnemonic-name

[WITH [NO] AUDIBLE ALARM] .]

DATA DIVISION

DATA DIVISION.

WORKING-STORAGE SECTION.

data-description-entries

LINKAGE SECTION.

data-description-entries

DATA DESCRIPTION CLAUSES

level-number jdata-name-1}
lFILLER

[
jJUST } RIGHT]
(JUSTIFIED

I • • •) } I I • • •]

[oc CURS ~max [TIMES] }"]
}min TO max [TIMES] DEPENDING [ON] depend .

B-2

[{::~TURE} [JS l character-string]

REDEFINES data-name-2]

[SIGN [IS]] LEADING
TRAILING

[SEPARATE [CHARACTER]]

Page

4-4

4-4

4-5

4-5

4-7

4-7

4-7

5-2

5-2

5-5

5-6

5-7

5-8

5-10

5-13

SCREEN COBOL Syntax Summary

[{ SYNC }
SYNCHRONIZED [RIGHT]]

LEFT

[[USAGE [IS l l COMP l COMPUTATIONAL
DISPLAY

[VALUE [IS J literal J

66 new-name RENAMES old-name

{
VALUE [IS J }
VALUES [ARE J

88 condition-name ,

)value-1 [l~~:~UGH} value-2J! I • • •

SCREEN SECTION.

input-control-entries
screen-description-entries

INPUT CONTROL CLAUSES

screen-name
{

[BASE] [SIZE clause]}
OVERLAY SIZE clause

[ABORT-INPUT [IS J

[END-OF-INPUT [IS J

[FIELD-SEPARATOR [IS

"nonnumeric-literal"
numeric-literal

[, numeric-literal
OFF

"nonnumeric-literal"
numeric-literal

[, numeric-literal
OFF

!
"nonnumeric-literal"
numeric-literal
OFF

[GROUP-SEPARATOR [IS J "nonnumeric-literal"
numeric-literal

[RESTART-INPUT [IS J

OFF

"nonnumeric-literal"
numeric-literal

[, numeric-literal
OFF

Page

5-14

5-16

5-17

5-12

5-18

5-3

5-23
5-25

5-29

5-30

5-31

5-32

5-33

B-3

SCREEN COBOL Syntax Summary

SCREEN DESCRIPTION CLAUSES

level-num Jfield-name}
lFILLER {

[AT J line-spec, column-spec(
REDEFINES field-name-2 ~

ADVISORY J

FILL nonnumeric-Lite~al

[LENGTH [MUST BE l ILHeral-1

mnemonic-name J •••

[MUST [BE l lliteral-1
[{

THROUGH}
THRU

Li tera L-2] I
[OCCURS {Lines-phrase [columns-phrase JJ}

columns-phrase [Lines-phrase

[
[DEPENDING [ON J data-name-1]]

{ PI C }
PICTURE

IS J character-string]

PROMPT screen-field J

RECEIVE [FROM J ALTERNATE
ALTERNATE OR TERMINAL
TERMINAL
TERMINAL OR ALTERNATE

REDEFINES field-name-2 J

SHADOWED [BY J data-name-1

[l ~~OM I data-name-1]

USING

[

UPSHIFT [INPUT l l OUTPUT

~~~UT-OUTPUT 
USER [ CONVERSION J numeric-Literal 

VALUE nonnumeric-literal J 

[ WHEN jABSENn 
lBLANK ~ 

j CLEAR}] 
lSKIP 

[ 
[ WHEN J FULL {TAB ~ J 

LOCK' 

.... ] 

Page 

5-26/5-34 
5-43 

5-34 

5-35 

5-35 

5-36 

5-36 

5-37 

5-38 

5-39 

5-41 

5-43 

5-44 

5-44 

5-46 

5-47 

5-47 

5-47 

5-48 

5-49 



SCREEN COBOL Syntax Summary 

SCREEN COBOL COMPILER DEFINED SPECIAL REGISTERS 

01 DIAGNOSTIC-ALLOWED PIC AAA. 

01 LOGICAL-TERMINAL-NAME PIC XC16). 

01 NEW-CURSOR. 
02 NEW-CURSOR-ROW PIC 9999 COMP. 
02 NEW-CURSOR-COL PIC 9999 COMP. 

01 OLD-CURSOR. 
02 OLD-CURSOR-ROW PIC 9999 COMP. 
02 OLD-CURSOR-COL PIC 9999 COMP. 

01 REDISPLAY PIC AAA. 

01 RESTART-COUNTER PIC 9999 COMP. 

01 STOP-MODE PIC 9999 COMP. 

01 TELL-ALLOWED PIC AAA. 

01 TERMINAL-FILENAME PIC XC24>. 

01 TERMINAL-PRINTER PIC XC36). 

01 TERMINATION-STATUS PIC 9999 COMP. 

01 TERMINATION-SUBSTATUS PIC 9999 COMP. 

01 TRANSACTION-ID PIC X(8). 

PROCEDURE DIVISION 

Page 

5-55 

5-55 

5-56 

5-56 

5-57 

5-57 

5-57 

5-58 

5-58 

5-58 

5-58 

5-59 

5-59 

P R 0 C E D U R E D I V I S I 0 N [ U S I N G d a t a - n a m e -1 [ , d a t a - n a m e - 2 ] . . . ] . 6-1 

DECLARATIVES. ~3 

{ [ section-name SECTION . J 

[paragraph-name . [ sentence J ••• J ••• } ••• 

{paragraph-name . [ sentence J ••• } ••• 

END DECLARATIVES. J 

{ section-name SECTION . J 6-3 

[ paragraph-name . [ sentence J ••• J ••• } ••• 

{paragraph-name . [ sentence J ••• } ••• 

B-5 



SCREEN COBOL Syntax Summary 

PROCEDURE DIVISION STATEMENTS 

ABORT-TRANSACTION 

ACCEPT [ screen-identifier l ••. 

UNTIL < l { comp-condition-1 } .•. [ > l ESCAPE [ ON J 
[ ( l { comp-condition-2} ~ •. [ > l 

{ comp-condition-1 } ..• [ 

ESCAPE [ ON { [ ( l { comp-condition-2 } 

ACCEPT accept-name FROM 

IDATEI 
DAY 
TIME 

ADD { value } , ... TO { result } I • • • 

ADD { value } I • • • GIVING { result } , ••• 

ADD 
{

CORR ~ 
CORRESPONDING~ 

group-1 TO group-2 

BEGIN-TRANSACTION [ ON ERROR imperative-statement l 

[ ) ] } 

CALL 
{

data-name } [USING { identifier} , .•• 
program-unit-name 

[ ON-ERROR imperative-statement J 

CHECKPOINT 

CLEAR INPUT 

COMPUTE { result } I • • • 

COPY copy-text 

DELAY 
{
numeric-literal} 
identifier 

= expression 

library-name 

DISPLAY BASE base-screen-name 

DISPLAY OVERLAY 

DISPLAY RECOVERY 

{
overlay-screen-namel 
SPACES f 

AT overlay-area 

DISPLAY 
[

TEMP ] nonnumeric-literal IN l 
TEMPORARY 

{ screen-identifier } , •.• 

B-6 

[
DEPENDING [ ON l identifie~.l 
SHADOWED 

Page 

6-6 

6-7 

6-12 

6-13 

6-13 

6-14 

6-16 

6-17 

6-21 

6-21 

6-22 

6-23 

6-25 

6-26 

6-27 

6-28 

6-28 



SCREEN COBOL Syntax Summary 

DIVIDE divisor INTO {dividend} , ... 

DIVIDE divisor INTO dividend GIVING {quotient } , ... 

DIVIDE dividend BY divisor GIVING { quotient } 
I • • • 

END-TRANSACTION 

EX IT . 

EXIT PROGRAM [ WITH ERROR ] • 

GO TO ] procedure-name 

GO TO { procedure-name } I • • • 

IF condition 
{

statement-1 } 
NEXT SENTENCE 

DEPENDING [ ON ] depend 

[ELSE 
{
statement-2 lJ 
NEXT SENTENCEf 

MOVE data-name-1 TO { data-name-2} , ... 

MOVE 
{

CORR l 
CORRESPONDINGf 

group-1 TO group-2 

MULTIPLY value BY {multiplier} , ... 

MULTIPLY value BY multiplier GIVING { result } , ... 

PERFORM proc-1 [{THROUGH} proc-2] 
THRU 

PERFORM proc-1 [{THROUGH} proc-2] count TIMES 
THRU 

PERFORM proc-1 [{THROUGH} proc-2] UNTIL condition 
THRU 

PERFORM proc-1 WHROUGHJ proc-2] 
THRU 

VARYING vary-1 FROM base-1 BY step-J UNTIL condition-1 

[ AFTER vary-2 FROM base-2 BY step-2 UNTIL condition-2 ] 

PERFORM ONE OF !proc-1 

identifier 

I • • • 

DEPENDING ON 

PRINT SCREEN [ ON ERROR imperative-statement 

RECONNECT MODEM 

... 

Page 

6-30 

6-30 

6-31 

6-32 

6-32 

6-33 

6-33 

6-34 

6-34 

6-36 

6-37 

6-41 

6-41 

6-42 

6-43 

6-44 

6-45 

6-46 

6-46 

6-49 

B-7 



SCREEN COBOL Syntax Summary 

RESET 
[ TEMP J 

[ ATTRJ {screen-identifier} , •.. 
TEMPORARY DATA 

[
DEPENDING [ON] identifier] 
SHADOWED 

RESTART-TRANSACTION 

SCROLL overlay-area-name 

SEND [ identifier-1] , ... TO server-class-name 

UNDER PATHWAY pathmon-name 

AT SYSTEM system-name J 

REPLY { CODE { reply-code-value } 

YIELDS { identifier-2} ... } ... 

[ ON ERROR imperative-statement J 

SET NEW-CURSOR AT {screen-identifier} , ... 

[
DEPENDING [ ON ] identifier] 
SHADOWED 

STOP RUN 

SUBTRACT { sub-1 } I • • • FROM { sub-2} , ... 

SUBTRACT { sub-1 } I • • • FROM sub-2 GIVING { result } , ... 

SUBTRACT jCORR } 
tcoRRESPONDING 

group-1 FROM group-2 

TURN 
[TEMP J 

TEMPORARY 
mnemonic-name 
RECEIVE FROM ALTERNATE 

ALTERNATE OR TERMINAL 
TERMINAL 
TERMINAL OR ALTERNATE 

{ screen-identifier} , ... 
[

DEPENDING [ ON J identifier] 
SHADOWED 

Page 

6-50 

6-51 

6-52 

6-52 

6-59 

6-60 

6-60 

6-61 

6-61 

IN 6-63 

USE [ FOR SCREEN J RECOVERY [ON { base-screen-name-n} , ... ] . 6~4 

JB-8 



SCREEN COBOL Syntax Summary 

COMPILER CONTROL COMMANDS 

SCOBOL I [ IN source-file 
[ , run-option J J I 
[ compiler-command 

GUARDIAN Run Options 

IN file-name 

OUT f i le-name 

NAME $process-name 

CPU cpu-number 

PRI priority 

MEM num-pages 

NO WAIT 

Compiler Option Commands 

ANSI 

COMPILE 

, OUT [list-file J 
tclprog-fi le J [ , copy-library 
, compiler-command J ••• 

CROSSREF 

[
ON LY ] [ class J ••• 
INCLUDE 
EXCLUDE 

NOCROSSREF 

ERRORS nnnnn 

HEADING [ "character-string" 

LINES nnnnn 

LIST or NOLIST 

MAP or NOMAP 

OPTION command-option [ , command-option J ••• 

SYMBOLS or NOSYMBOLS 

SYNTAX 

TANDEM 

WARN or NOWARN 

Page 

7-1 
7-2 
7-3 

7-2 

7-2 

7-2 

7-2 

7-2 

7-2 

7-2 

7-5 

7-5 

7-5/7-6 

7-5 

7-7 

7-7 

7-9 

7-9 

7-10 

7-10 

7-12 

7-12 

7-12 

7-12 

B-9 



SCREEN COBOL Syntax Summary 

Toggle Commands 

ENDIF toggle-number 

IF toggle-number 

IFNOT toggle-number 

RESETTOG [ toggle-number , toggle-number J ••• 

SETTOG [ toggle-number , toggle-number J ••• J 

Section Command 

SECTION text-name [ , library-text-format J 

B-10 

Page 

7-7 

7-8 

7-8 

7-11 

7-11 

7-11 



APPENDIX C 

SCREEN COBOL RESERVED WORDS 

ABORT CD DATA 
ABORT-INPUT CALL DATE 
ABORT-TRANSACTION CANCEL DA TE-COMPILED 
ABSENT CF DATE-WRITTEN 
ACCEPT CH DAY 
ACCESS CHARACTER DE 
ADD 

CHARACTERS DEBUG-CONTENTS 
ADVANCING 
ADVISORY CHARACTER-SET DEBUG-ITEM 

ALARM CHECKPOINT DEBUG-LINE 

AFTER CLEAR DEBUG-NAME 

ALL CLOCK-UNITS DEBUG-SUB-1 
ALPHABETIC CLOSE DEBUG-SUB-2 
ALSO COBOL DEBUG-SUB-3 
ALTER CODE DEBUGGING 
ALTERNATE CODE-SET DECIMAL-POINT 
AND COLLATING DECLARATIVES 
APPROXIMATE COLUMN DELAY 
ARE COLUMNS DELETE 
AREA COMMA DELIMITED 
AREAS COMMUNICATION DELIMITER 
ASCENDING COMP DEPENDING 
ASSIGN COMPUTATION AL DESCENDING 
AT COMPUTE DESTINATION 
ATTR CONFIGURATION DETAIL 
AUDIBLE CONTAINS DIAGNOSTIC-ALLOWED 
AUTHOR CONTROL DISABLE 

CONTROLS DISPLAY 
BASE CONVERSATION AL DIVIDE 
BE CONVERSION DIVISION 
BEFORE COPY DOWN 
BEGIN-TRANSACTION CORR DUPLICATES 
BLANK CORRESPONDING DYNAMIC 
BLOCK COUNT 
BOTTOM CROSS REF EGI 
BY CURRENCY ELSE 

C-1 



SCREEN COBOL Reserved Words 

EMI INDICATE NO 
ENABLE INITIAL NOSHADOW 
END INITIATE NOT 
END-OF-INPUT INPUT NUMBER 
END-OF-PAGE INPUT-OUTPUT NUMERIC 
END-TRANSACTION INSPECT NUMERIC-SHIFT 
ENTER INSTALLATION 
ENVIRONMENT INTO OBJECT-COMPUTER 
EOP INVALID OCCURS 
EQUAL IS OF 
ERROR OFF 
ERROR-ENHANCEMENT JUST OFFSET 
ESCAPE JUSTIFIED OLD-CURSOR 
ESI OLD-CURSOR-COL 
EVERY KEY OLD-CURSOR-ROW 
EXCEPTION OMITTED 
EXCLUSIVE LABEL ON 
EXIT· LAST ONE 
EXTEND LEADING OPEN 

LEFT OPTIONAL 
FD LENGTH OR 
FIELD-SEP ARA TOR LESS ORGANIZATION 
FILE LIKE OUTPUT 
FILE-CONTROL LIMIT OVERFLOW 
FILL LIMITS OVERLAY 
FILLER LINAGE 
FINAL LINAGE-COUNTER PAGE 
FIRST LINE PAGE-COUNTER 
FIXED-LENGTH LINE-COUNTER PATHWAY 
FOOTING LINES PERFORM 
FOR LINKAGE PF 
FROM LOCK PH 
FULL LOCKFILE PIC 

LOGICAL-TERMINAL-NAME PICTURE 
GENERATE LOW-VALUE PLUS 
GENERIC LOW-VALUES POINTER 
GIVING POSITION 
GO MEMORY POSITIVE 
GREATER MERGE PRINT 
GROUP MESSAGE PRINTING 
GROUP-SEP ARA TOR MODE PROCEDURE 

MODEM PROCEDURES 
HEADING MODULES PROCEED 
HIGH-VALUE MOVE PROGRAM 
HIGH-VALUES MULTIPLE PROGRAM--ID 

MULTIPLY PROGRAM--ST ATUS 
I-0 MUST PROGRAM--ST ATUS-1 
I-0-CONTROL PROGRAM-STATUS-2 
1-0-ERROR NATIVE PROMPT 
IDENTIFICATION NEGATIVE PROTECT 
IF NEW-CURSOR 
IN NEW-CURSOR-COL QUEUE 
INDEX NEW-CURSOR-ROW QUOTE 
INDEXED NEXT QUOTES 

C-2 



RANDOM 
RD 
READ 
RECEIVE 
RECEIVE-CONTROL 
RECONNECT 
RECORD 
RECORDS 
RECOVERY 
REDEFINES 
REDISPLAY 
REEL 
REFERENCES 
RELATIVE 
RELEASE 
REMAINDER 
REMOVAL 
RENAMES 
REPLACING 
REPLY 
REPORT 
REPORTING 
REPORTS 
RERUN 
RESERVE 
RESET 
RESTART-COUNTER 
RESTART-INPUT 
RESTART-TRANSACTION 
RETURN 
REVERSED 
REWIND 
REWRITE 
RF 
RH 
RIGHT 
ROUNDED 
RUN 

SAME 
SCREEN 
SCREEN-CONTROL 
SCROLL 
SD 
SEARCH 
SECTION 
SECURITY 
SEGMENT 
SEGMENT-LIMIT 

SELECT 
SEND 
SENTENCE 
SEPARATE 
SEQUENCE 
SEQUENTIAL 
SET 
SHADOWED 
SHARED 
SIGN 
SKIP 
SKIPPING 
SORT 
SORT-MERGE 
SOURCE 
SOURCE-COMPUTER 
SPACE 
SPACES 
SPECIAL-NAMES 
STANDARD 
STANDARD-1 
START 
STARTBACKUP 
STATUS 
STOP 
STOP-MODE 
STRING 
SUB-QUEUE-1 
SUB-QUEUE-2 
SUB-QUEUE-3 
SUBTRACT 
SUM 
SUPPRESS 
SYMBOLIC 
SYNC 
SYNCDEPTH 
SYNCHRONIZED 
SYSTEM 

TAB 
TABLE 
TAL 
TALLYING 
TAPE 
TELL-ALLOWED 
TEMP 
TEMPORARY 
TERMINAL 
TERMINAL-FILENAME 

SCREEN COBOL Reserved Words 

TERMINAL-PRINTER 
TERMINATE 
TERMINATION-STATUS 
TERMINATION-SUBSTATUS 
TEXT 
THAN 
THROUGH 
THRU 
TIME 
TIMEOUT 
TIMES 
TO 
TOP 
TRAILING 
TRANSACTION-ID 
TRANSPARENT 
TURN 

UNDER 
UNIT 
UNLOCK 
UNLOCKFILE 
UNLOCKRECORD 
UN STRING 
UNTIL 
UP 
UPON 
UPSHIFT 
USAGE 
USE 
USER 
USING 

VALUE 
VALUES 
VARYING 

WHEN 
WITH 
WORDS 
WORKING-STORAGE 
WRITE 

YIELDS 

ZERO 
ZEROES 
ZEROS 

C-3 





APPENDIX D 

USER CONVERSION PROCEDURES 

User-defined checking and conversion can be implemented by writing one or more procedures in 
the Tandem Transaction Language (TAL). Use the BINDER development tool to store the pro
cedures in the Tandem-supplied TCP object file. (The UPDATE program provides this operation for 
software versions prior to GUARDIAN E05 for the NonStop System and GUARDIAN A04 for the 
Nonstop II System.) 

The following are the basic commands to create a user TCP with BINDER: 

BIND 
ADD * FROM $SYSTEM.SYSTEM.PATHTCP 
REPLACE * FROM user-conversion-object 
BUILD user-tcp-name 
EXIT 

An example of the above commands: 

BIND 
ADD * FROM $SYSTEM.SYSTEM.PATHTCP 
REPLACE * FROM $uvol.usubvol.urobj 
BUILD $uvol.usubvol.urtcp 
EXIT 

For information about using BINDER to manage object files, see the BINDER User's Manual. 

If you wish to continue using UPDATE to store conversion procedures, the symbol table and 
BINDER table must be removed from the PATHTCP object file. The BINDER command, STRIP, 
will delete the two tables from the TCP code. 

Four procedures are available: two for input conversion and checking, and two for output conver
sion. These procedures exist in the TCP and are called only if the USER CONVERSION screen field 
characteristic clause is declared for the field. Any or all of the procedures can be replaced. 

D-1 



User Conversion Procedures 

INPUT PROCEDURES 

Two procedures can be invoked during input. One procedure is for input of numeric data items, and 
the other is for nonnumeric items. When the USER CONVERSION clause is deelared for the field, 
the appropriate procedure is called as follows: 

before value checks are applied 

after the input has been stripped of fill characters 

after standard conversion is attempted 

The procedure is called even if an error occurs during the standard conversion attempt; if a length 
error occurs, however, the procedure is not called. 

Most of the parameters of the two procedures are the same; they differ only for the internal data 
item. Declarations for the input procedures are shown in Figures D-1 and D-2. 

PROC USERANUMERICAINPUTACONVERSIONC USERCODE, ERROR, INPUT, 
INPUTALEN, INTERNAL, INTERNALASCALE ); 

INT USERCODE; 
I NT . ERROR; 
STRING .INPUT; 
INT INPUTALEN; 
FIXED .INTERNAL; 
INT INTERNALASCALE; 

Figure D-1. Input Procedure Declaration for Numeric Data Items 

PROC USERAALPHAAINPUTACONVERSIONC USERCODE, ERROR, INPUT, 
INPUTALEN, INTERNAL, INTERNALALEN ); 

INT USERCODE; 
INT .ERROR; 
STRING .INPUT; 
INT INPUTALEN; 
STRING .INTERNAL; 
INT INTERNALALEN; 

Figure D-2. Input Procedure Declaration for Nonnumeric Data Items 

The USERCODE parameter is the value given in the USER CONVERSION field characteristic 
clause. This parameter can be used to select a particular type of conversion. 

The ERROR parameter is both an input and an output parameter. When the procedure is called, the 
parameter contains either zero (indicating no error) or the number of a conversion error detected 
during the attempted standard conversion. Refer to Table A-1 of Appendix A for a listing of error 
codes. 

D-2 



User Conversion Procedures 

The value of the ERROR parameter after the call determines whether or not an error for the field 
will be reported back to the terminal. If the value is nonzero, that value is used to select the error 
message to be displayed. Processing depends on the purpose of the procedure as follows: 

• If the procedure simply performs additional checking on the input, the routine should return im
mediately if ERROR is nonzero. If ERROR is zero, the routine should proceed with its own 
checking and set ERROR according to the results. 

• If the procedure performs conversion, the routine can generally ignore the value of ERROR as it 
is passed and set the parameter according to the results of the processing. 

The !NP UT parameter is the string of characters input from the terminal. N onnumeric input is 
stripped of fill characters from the right; numeric input is stripped of fill characters from both the 
right and the left. 

The INPUT"LEN parameter gives the number of bytes in the input string after the string is 
stripped of fill characters. The byte before and the byte after the input string will be set to null 
values. 

The INTERNAL parameter contains the result of the standard conversion (if no error occurred), 
and should contain the result of the user conversion (unless ERROR is nonzero upon return). 

• For the numeric procedure, INTERNAL is a FIXED parameter; if necessary, this value is later 
converted to the final data type by the TCP. The INTERNAL"SCALE parameter gives the 
scale that INTERNAL should have. 

• For the nonnumeric procedure, INTERNAL is a string parameter. INTERNAL"LEN gives the 
exact number of bytes the result should occupy. 

OUTPUT PROCEDURES 

Two procedures can be invoked during output. One procedure is for output of numeric data items, 
and the other is for nonnumeric items. When the USER CONVERSION clause is declared for the 
field, the appropriate procedure is called after standard conversion has completed. 

Most of the parameters of the two procedures are the same; they differ only for the internal data 
item. Declarations for the output procedures are shown in Figures D-3 and D-4. 

PROC USERANUMERICAOUTPUTACONVERSION( USERCODE, OUTPUT, 
OUTPUTALEN, MAXAOUTPUTALEN, 
INTERNAL, INTERNALASCALE ); 

INT USERCODE; 
STRING .OUTPUT; 
INT .OUTPUTALEN; 
INT MAXAOUTPUTALEN; 
FIXED .INTERNAL; 
INT INTERNALASCALE; 

Figure D-3. Output Procedure Declaration for Numeric Data Items 

D-3 



User Conversion Procedures 

PROC USERAALPHAAOUTPUTACONVERSION( USERCODE, OUTPUT, 
OUTPUTALEN, MAXAQUTPUTALEN, 
INTERNAL, INTERNALALEN ); 

INT USER CODE; 
STRING .OUTPUT; 
INT .OUTPUTALEN; 
INT MAXAQUTPUTALEN; 
STRING .INTERNAL; 
INT INTERNALALEN; 

Figure D-4. Output Procedure Declaration for Nonnumeric Data Items 

The USERCODE parameter is the value given in the USER CONVERSION field characteristic 
clause. This parameter can be used to select a particular type of conversion. 

The OUTPUT parameter indicates where the string of characters for output to the terminal is to be 
placed. When the procedure is called, the location designated by this parameter will contain the 
result of the standard conversion. 

The OUTPUT"LEN parameter contains the length of the output string. If the procedure changes 
the output string, the procedure should set OUTPUT"LEN to the associated length; in no case 
should OUTPUT"LEN be greater than MAX"OUTPUT"LEN. If OUTPUT" LEN is less than the 
field length, the fill character is used to pad the field. 

The INTERNAL parameter contains the data to be converted. 

1• For the numeric procedure, INTERNAL is a FIXED parameter. The INTERNAL"SCALE 
parameter contains the number of decimal places. 

1• For the nonnumeric procedure, INTERNAL is a string. The INTERNAL"LEN parameter con
tains the number of bytes in the string. 

D-4 



User Conversion Procedures 

3270 KEY MAPPING 

A user-replaceable procedure called USER"3270"KEY"MAPPING is provided to support pro
gram attention keys P A4 through P AlO. These keys are used on terminals analogous to the 
IBM-3270 terminal. Declarations for the key mapping procedure are shown in Figure D-5. 

PROC USER"3270"KEY"MAPPING (AID, KEYNUM ); 

INT AID; 3270 AID BYTE CONTAINS THE PATHWAY KEY NUMBER 
ASSOCIATED WITH THE AID BYTE 
ACCORDING TO THE FOLLOWING TABLE 

INT .KEYNUM; ! ON THE CALL 

OR -1 IF KEY IS UNDEFINED. 
ON THE RETURN - PATHWAY KEY NUMBER OR -1 IF 

UNDEFINED. 

PATHWAY 3270 KEY TO INTERNAL KEY NUMBER MAPPING. 

SCREEN COBOL 3270 AID 
SPECIAL-NAME BYTE PATHWAY KEY NUMBER 

ENTER %047 0 
PA1 %045 1 
PA2 %076 2 
PA3 %054 3 
CLEAR %137 4 
PF1 %061 5 
PF2 %062 6 
PF3 %063 7 
PF4 %064 8 
PF5 %065 9 
PF6 %066 10 
PF? %067 11 
PF8 %070 12 
PF9 %071 13 
PF10 %072 14 
PF11 %043 15 
PF12 %100 16 
PF13 %101 17 
PF14 %102 18 
PF15 %103 19 
PF16 %104 20 
PF17 %105 21 
PF18 %106 22 
PF19 %107 23 

t PF20 %110 24 
PF21 %111 25 
PF22 %133 26 
PF23 %056 27 
PF24 %074 28 
undefined %060 29 (Test Request) 
undefined %127 30 {Op ID Card Reader) 
PA5 undefined 32 

Figure D-5. Procedure Declaration for 3270 Key Mapping D-5 



User Conversion Routines 

PA6 
PA? 
PA8 
PA9 
PA10 
undefined 
undefined 
undefined 
other 

undefined 
undefined 
undefined 
undefined 
undefined 

%075 
%055 
%131 

33 
34 
35 
36 
37 
-1 (Selector Pen Attn) 
-1 (no aid-Display) 
-1 (no aid--Printer) 
-1 

Figure D-5. Procedure Declaration for 3270 Key Mapping (continued) 

D-6 



APPENDIX E 

PATHWAY PROGRAMMING FOR TMF 

The purpose of this appendix is to provide information related to PATHWAY and TMF interaction. 
This information is for SCREEN COBOL programmers who are designing PATHWAY application 
programs and for system managers who are controlling PATHWAY applications in a system that 
uses TMF. 

The general environment for PATHWAY applications using TMF is a requester/server environ
ment where the requester (TCP) accepts input from a terminal operator and transforms the input 
into a request for data base services from the servers. The servers, in turn, satisfy the request by 
reading, locking, and changing (or adding or deleting) records in audited data base files. The applica
tion requester is a SCREEN COBOL program. The server can be written in COBOL, TAL, or 
FORTRAN, and it must follow the record-locking rules imposed by TMF. 

To write application requesters and servers that use TMF, you should know: 

• the recommended structure for applications that use TMF 

• how to use the SCREEN COBOL verbs that support TMF 

• how to access audited data base files 

• the general guidelines for coding servers 

• the record-locking rules that must be followed by processes that change records in audited data 
base files 

• how to avoid deadlock 

• the anomalies that can occur during transaction backout 

• the considerations involved in converting existing applications for TMF. 

This appendix discusses each of these topics in detail. 

E-1 



PATHWAY Programming for TMF 

TASK OVERVIEW 

Figure E-1 illustrates the basic tasks involved in programming PATHWAY applications that use 
TMF. 

r-----------------------·---------------·-----~ 

E-2 

SCREEN COBOL 

Requester 

BEGIN-TRANSACTION 

request data-base services 

abort or restart 
transaction if 
necessary 

END-TRANSACTION 

trans id 

COBOL 
TAL 

FORTRAN 

~erver 
process request 
by reading, locking, 
and changing records 

reply to 
request 

Figure E-1. PATHWAY Programming for TMF 

update file, 
following TMF 
record-locking 

rules 

Audited 
Data-Base Files 

all changes to 
files associated 

with transid 
of Server ___ , __ __, 



PATHWAY Programming for TMF 

TMF APPLICATION STRUCTURE 

The recommended structure for applications that use TMF has the characteristics described below. 
If your current or planned application has these characteristics, programming the application to use 
TMF will be relatively straightforward. If not, refer to Application Conversion Considerations in 
this appendix for a detailed discussion of converting an application to use TMF. 

TMF and PATHWAY Application Ch~racteristics 

The recommended characteristics for PATHWAY applications that use TMF are discussed in the 
following paragraphs. 

One process (the TCP requester generally) coordinates all of the work required to do a single trans
action. This process identifies the beginning and ending points of each TMF transaction. Addi
tionally, if the server replies to a request message by indicating that it failed to complete all of the 
changes, this process can either abort and abandon the transaction, or abort and retry the trans
action according to the SCREEN COBOL application. 

The communication between requesters and servers is by standard interprocess I/O. The SCREEN 
COBOL requester does the SEND and the server does the READUPDA TE $RECEIVE and 
REPLY. Each request message and the server reply to this message is for a single transaction. 

Any disc 1/0 request is for a single transaction. TMF appends the process's current-transaction 
identifier to each disc-request message so the audit trails can include the identity of the transaction 
responsible for each data base change. 

Any concurrency control is done by using the EN SCRIBE record-locking facilities and all servers 
should follow the record-locking rules imposed by TMF. ENSCRIBE record-locking gives TMF the 
control required to ensure that transactions are presented with a consistent view of the data base. 

Servers do not reply to request messages until all work for the request has been completed; the con
tents of the reply message should indicate whether the work for the request is completed suc
cessfully or abandoned in a partial state. This characteristic lets the requester decide if the trans
action should be committed or aborted. 

Servers should not be NonStop; this is unnecessary overhead with TMF and requires additional 
programming effort. 

Servers always perform all of the 1/0 for the request message most recently read from $RECEIVE 
and always reply to that message before reading another message; therefore, servers should not do 
$RECEIVE-queuing. 

The rest of this appendix contains detailed information related to writing SCREEN COBOL 
requesters and servers that use TMF. Refer to Programming Considerations and Application Con
version Considerations in this appendix for information specifically related to the server considera
tions listed previously. 

E-3 



PATHWAY Programming for TMF 

TMF Restrictions 

The following restrictions apply to applications that use TMF: 

• A MUMPS program should not be used as a server for a SCREEN COBOL requester under 
TMF. 

• The COBOL feature that provides record-blocking on an unstructured disc file should not be 
used on audited files. 

• A server that provides its own record-blocking, record-caching, or its own manner of record
locking in any form, should not be used to change audited files. 

PATHWAY PROGRAMMING USING TMF 

PATHWAY applications can be programmed to use TMF by using the following: 

• SCREEN COBOL verbs that start and end a transaction, abort a transaction, and restart a 
transaction 

• the special registers TRANSACTION-ID, TERMINATION-STATUS, and RESTART
COUNTER. 

Transaction Mode Use 

A terminal program unit (that is, a SCREEN COBOL program executing on behalf of a terminal) 
configured for TMF enters transaction mode when the BEGIN-TRANSACTION verb is executed 
and leaves transaction mode when END-TRANSACTION or ABORT-TRANSACTION is executed. 
When BEGIN-TRANSACTION is executed, the transaction is assigned a unique transaction identi
fier (called a transid) that distinguishes one transaction from all other transactions. If the program 
unit is configured with TMF OFF, the PATHWAY TCP does not allow that program unit to enter 
transaction mode, but causes BEGIN-TRANSACTION to issue a null transaction identifier. 

For the PATHCOM SUSPEND, STOP, or FREEZE commands, the effect of transaction mode is like 
setting the STOP-MODE special register to a nonzero value: none of these commands can take 
effect until the terminal leaves transaction mode and the terminal STOP-MODE register is zero. 

The SUSPEND! and FREEZE! commands take effect immediately and cause transaction backout. 

The ABORT command takes effect immediately. If the terminal is in transaction mode when this 
command is executed, the transaction is aborted. 

For more details regarding SUSPEND, FREEZE, STOP, and ABORT, refer to the PATHWAY 
Operating Manual. 

TMF and SCREEN COBOL Verbs 

The following SCREEN COBOL verbs enable PATHWAY programmers to use TMF:: 

ABORT-TRANSACTION 

BEGIN-TRANSACTION 

END-TRANSACTION 

RESTART-TRANSACTION 

E-4 

aborts and backs out a transaction. 

starts a transaction. 

ends a transaction. 

backs out, then restarts a transaction from the BEGIN
TRANSACTION point. 



PATHWAY Programming for TMF 

ABORT-TRANSACTION USE. Generally, this verb is used when the SCREEN COBOL program 
detects an irrecoverable error and decides to abandon the transaction. When this verb is executed, 
the transaction is aborted; all updates made by the transaction to audited data files are backed out. 
The aborted transaction is not restarted automatically. 

The form of the ABORT-TRANSACTION verb is: 

____ ._-:_--~~-·=--~~] ABORT-TRANSACTION 

with no options. 

Execution of ABORT-TRANSACTION causes the terminal to leave transaction mode and sets the 
special register TRANSACTION-ID to SPACES. 

If the terminal is not in transaction mode when ABORT-TRANSACTION is executed, the terminal is 
suspended for pending abort and terminal execution cannot be restarted with a RESUME command. 

If a fatal error occurs while the transaction is being aborted, and the current BEGIN
TRANSACTION verb does not have an ON ERROR clause, then the terminal is suspended for 
pending abort; the current transaction is backed out and terminal execution cannot be resumed 
with a RESUME command. If the BEGIN-TRANSACTION verb does have an ON ERROR clause, 
that clause is executed and the terminal is not suspended. 

BEGIN-TRANSACTION USE. BEGIN-TRANSACTION starts a new transaction; this verb identi
fies the beginning of a sequence of operations that are treated by TMF as a single transaction. 
When this verb is executed, the following occurs: 

• the terminal enters transaction mode 

• TMF is requested to start a new transaction 

• the transaction identifier for the new transaction is assigned to the TRANSACTION-ID special 
register ' 

• the RESTART-COUNTER and TERMINATION-STATUS special registers are reset to zero for 
the first occurrence of the transaction. 

The form of the BEGIN-TRANSACTION verb is: 

BEGIN-TRANSACTION [ ON ERROR statement J 

where 

ON ERROR statement 

specifies the statement to be executed if the transaction is being restarted or if an error 
occurs. 

~--------~-------· --------------~--

E-5 



PATHWAY Programming for TMF 

The BEGIN-TRANSACTION verb indicates the restarting point to be used if a failure occurs while 
the terminal is in transaction mode. If the transaction fails for any reason, its data base changes are 
backed out and (with the exception of the SCREEN COBOL program issuing ABORT
TRANSACTION) execution of the SCREEN COBOL program can be restarted at that point if these 
conditions are met: 

• If ON ERROR is absent, the number of times that the transaction has been restarted is com
pared with the global restart limit specified via the MAXTMFRESTARTS option of the SET 
PATHWAY command in PATHWAY. If the number of restarts is less than that limit, the trans
action is restarted with a new transaction identifer, the RESTART-COUNTER special register 
is incremented by 1, and the TERMINATION-STATUS special register remains set to 1. If the 
number of restarts equals the transaction restart limit, the terminal is suspended but its execu
tion can be resumed. 

• If ON ERROR is present, the transaction is restarted, RESTART-COUNTEH is incremented by 
1, TERMINATION-STATUS remains set to 1, and the ON ERROR branch is executed. You can 
then determine whether or not the transaction should be restarted in the ON ERROR branch of 
the SCREEN COBOL program; for example, RESTART-COUNTER can be compared to a local 
restart limit established within the program. 

If the terminal is already in transaction mode when BEGIN-TRANSACTION is issued, the terminal 
is suspended for pending abort; the current transaction is backed out and terminal execution cannot 
be resumed with a RESUME command. 

The following code sequence accepts input data from the operator and starts a new transaction. In 
the event of an error, TMF checks to determine if this transaction has been restarted more than 
two times. If the transaction has been started more that two times, the transaction is aborted and 
the operator is asked to enter the data again. If the transaction has not been restarted more than 
two times, another attempt is made to process the transaction. 

enter-data 

ACCEPT screen 
BEGIN-TRANSACTION 

ON ERROR PERFORM check-error. 
IF abort-flag NOT = 0 

GO TO enter-data. 

SEND 
END-TRANSACTION 

stop-trans. 
GO TO enter-data 

check-error. 
MOVE 0 TO abort-flag. 

IF TERMINATION-STATUS = 1 

E-6 

IF RESTART-COUNTER > 2 
ABORT-TRANSACTION 
DISPLAY "Nope" IN MSG 
MOVE 1 TO abort-flag. 



PATHWAY Programming for TMF 

END-TRANSACTION USE. END-TRANSACTION indicates that the transaction is complete. When 
this verb is successfully executed, the data base updates made by the transaction become perma
nent, the terminal leaves transaction mode, and the special register TRANSACTION-ID is set to 
SPACES. 

If TMF rejects END-TRANSACTION, the SCREEN COBOL program is restarted at the BEGIN
TRANSACTION point. 

The form of the END-TRANSACTION verb is simply 

[

END-TRANSACTION 

with no options. 

If the terminal is not in transaction mode when END-TRANSACTION is executed, the terminal is 
suspended for pending abort; terminal execution cannot be resumed with a RESUME command. 

RESTART-TRANSACTION USE. RESTART-TRANSACTION is used when the SCREEN COBOL 
program detects an error that might be temporary, abandons the current attempt, and retries the 
transaction. When this verb is executed, the following occurs: 

• the current execution of the transaction is backed out 

• the transaction is restarted at the BEGIN-TRANSACTION point with a new transaction 
identifier 

• the special register RESTART-COUNTER is incremented by 1. 

The form of the RESTART-TRANSACTION verb is: 

RESTART-TRANSACTION 

with no options. 

The restart due to executing RESTART-TRANSACTION counts as a restart for purposes of the 
global transaction restart limit. 

If the terminal is not in transaction mode when RESTART-TRANSACTION is executed, the ter
minal is suspended for pending abort; terminal execution cannot be resumed with a RESUME 
command. 

TMF and Special Registers 

Special registers are data items defined automatically by the SCREEN COBOL compiler, not by the 
programmer. Three special registers have been provided for TMF users: 

• TRANSACTION-ID 

• TERMINATION-STATUS 

• RESTART-COUNTER. 

E-7 



PATHWAY Programming for TMF 

The special registers are described in the following paragraphs. 

TRANSACTION-ID. Executing BEGIN-TRANSAC'rION sets TRANSACTION-ID to the value of 
the transaction identifier. Executing END-TRANSACTION or ABORT-TRANSACTION sets this 
register to SPACES. 

TRANSACTION-ID has this implicit declaration: 

01 TRANSACTION-ID PIC X(8). 

TERMINATION-STATUS. Executing BEGIN-TRANSACTION sets the value of TERMINATION
STATUS to indicate the outcome of BEGIN-TRANSACTION. The following values are possible: 

1 The transaction is started or restarted. 

2 TMF is not installed. If there is no ON ERROR phrase, the default system action is to 
suspend the terminal for pending abort. 

3 TMF is not started. If there is no ON ERROR phrase, the default system action is to sus
pend the terminal, but the terminal can be restarted by the PATHCOM command 
RESUME. 

4 A fatal error occurred. If there is no ON ERROR phrase, the default system action is to 
suspend the terminal for pending abort. 

TERMINATION-STATUS has this implicit declaration: 

01 TERMINATION-STATUS PIC 9999 COMP. 

RESTART-COUNTER. Executing BEGIN-TRANSACTION sets RESTART-COUNTER to the 
number of times the transaction has been restarted. RESTART-COUNTER is reset to zero when 
BEGIN-TRANSACTION is first executed for a particular transaction. 

RESTART-COUNTER has this implicit declaration: 

01 RESTART-COUNTER PIC 9999 COMP. 

Refer to the BEGIN-TRANSACTION verb, in this appendix, for an example of how to use 
RESTART-COUNTER to selectively limit the number of times a transaction is retried. 

TMF PROGRAMMING CONSIDERATIONS 

The following topics are general considerations related to programming for TMF: 

• accessing audited data base files 

• record locking 

• coding servers 

• a voiding deadlock 

• TMF backout anomalies. 

E-8 



PATHWAY Programming for TMF 

Accessing Audited Data-Base Files 

Audited data base files are files that reside on audited volumes and have been designated as 
audited by use of FUP or the CREA TE procedure. Before and after images of all changes to these 
files are written to the audit trails that have been configured for the audited volumes. Figure E-2 
illustrates the differences between processes that change audited files and those that can change 
only non-audited files. 

A server that has a transaction identifier can read, lock, insert, delete, and change records in 
audited files. A transaction identifier is created when a SCREEN COBOL program issues the 
BEGIN-TRANSACTION verb. A server acquires a transaction when reading $RECEIVE to pick up 
a request message generated by a SCREEN COBOL SEND statement. 

In PATHWAY, servers can lock and change records in an audited file only if they are members of a 
server class that is defined as a TMF server class. Refer to the PATHWAY Operating Manual for an 
explanation of how to configure server classes. 

A process that does not have a current-transaction identifier can read records in audited files, but 
cannot lock or change them. 

No 
transid 

LOCK 
READ 
CHANGE 

READ 

LOCK 
READ 
CHANGE 

must follow TMF 
record-locking 

rules 

Audited 
Files 

Figure E-2. Accessing and Changing Audited and Non-Audited Files 

E-9 



PATHWAY Programming for TMF 

Record Locking 

For all changes to audited files, TMF enforces the following record-locking protocol: 

• An existing record must be locked by a transaction before the record can be changed or deleted 
by a transaction. 

• TMF locks all records inserted by a transaction. 

• TMF locks the primary keys of all records deleted by a transaction. 

• TMF will not release the locks for any record changed, inserted, or deleted by a transaction until 
the transaction either is committed or aborts and is backed out. 

Locks can be acquired individually on a record-by-record basis or a lock can be acquired for an entire 
file by using the GUARDIAN LOCKFILE procedure. Figure E-3 illustrates how processes can 
acquire locks, update audited files, and when TMF will release the locks. Mixing record locks and 
file locks in the same file is not supported. Record locks cannot be granted while a file is locked. 

If the entire set of current active transactions tries to acquire more than 922 key locks or 1808 
record locks per file, error 32 (CONTROL BLOCK SPACE UNAVAILABLE) is returned as a file 
error. 

~---------------------------------------·--------~ 

E:-10 

LOCK RECORD 1 
CHANGERECORD1 
UNLOCK RECORD 1 

LOCK RECORD 2 
DELETE RECORD 2 

LOCKFILE 
CHANGE RECORD 1 

CHANGERECORD2 
UNLOCKFILE 

LOCK RECORD 1 
CHANGERECORD1 

LOCK RECORD 2 
NO CHANGE TO 
RECORD2 

UNLOCKFILE 

Figure E-3. Record Locking for TM F 

locks for records 
1 & 2 will be held 

until transaction A 
commits or is aborted 

and backed out 

.....__ _____ _ 

file lock will be held 
until transaction A 

commits or is aborted 
and backed out 

lock for record 1 
will be held until 

transaction A commits 
or is aborted and backed 

out 

lock for record 2 
will be released at 

UNLOCKFILE 



PATHWAY Programming for TMF 

The file lock or record locks are owned by the current-transaction identifier of the process that 
issued the lock request. In PATHWAY, a single transaction can send requests to several servers or 
multiple requests to the same server class. In the situation where several processes share a com
mon transaction identifier and the locks are held by the same transaction identifier, the locks do not 
cause conflict among the processes participating in the transaction if all are record locks or all are 
file locks. Record locking by transaction identifier is illustrated in Figure E-4. 

Figure E-4 illustrates the following principles: 

• The TCP interprets BEGIN-TRANSACTION and obtains the transaction identifier before 
requesting data base activity from the servers. 

• The transaction identifier is transmitted to the servers in the request message and any disc 
activity performed by the servers is associated with the transaction identifier. 

• The transaction identifier owns the locks; all servers that acquired the same transaction identi
fier can read, lock, add, delete, and change records in the audited files. For example: server A 
can read and lock a record and server B can read or change the same record, if both servers A 
and B have the same transaction identifier. 

"transaction mode" 

END-TRANSACTION 
\. .,I 

Figure E-4. Record Locking by Transaction Identifier 

E-11 



PATHWAY Programming for TMF 

BEPEATABLE READS. Generally, a transaction should lock any data read during the transaction 
and used in producing output, regardless of whether the data is modified. Following this rule 
guarantees that all the transaction read operations are repeatable and that data on which the trans
action depends does not change before the transaction is committed. 

OPENING AUDITED FILES. Because locks are owned by the transaction identifier instead of the pro
cess identifier and the identifier of the file opener, they can persist longer than the opener process. This 
means that even if a file has been closed by all its openers, the disc process keeps that file effectively 
open until all transactions owning locks in the file have ended or have been aborted and backed out. 

The following types of errors are possible for files that have pending transaction locks: 

., Attempting to open an audited file with exclusive access will fail with file error 12 (FILE IN 
USE), regardless of whether openers of the file exist . 

., FUP operations requiring exclusive access such as PURGE and PURGEDATA will fail. PURGE 
fails with file error 12 and PURGEDATA fails with file error 80. 

Additionally, error 80 (INVALID OPERATION ON AUDITED FILE OR NON-AUDITED DISC 
VOLUME) is returned for the following open situations: 

• 1 attempting to open an audited file having an automatically updated key file that cannot be 
opened or is not audited 

., attempting to open an audited file that does not reside on an audited volume 

• 1 attempting to open a structured audited file with unstructured access 

• 1 attempting to open an audited, partitioned file having a non-audited secondary partition. 

BEADING DELETED RECORDS. If transaction Tl deletes a record and another transaction T2 
attempts to read the same record while Tl is still active, the following occurs: 

• 1 If the read request is the GUARDIAN procedure READ after exact positioning, file error 1 
(END-OF-FILE) is returned. 

• 1 If the read request is the GUARDIAN procedure READUPDATE, file error 73 (FILE/RECORD 
LOCKED) is returned in alternate locking mode and the request waits for Tl to complete in 
default locking mode. 

BATCH UPDATES. When programming for batch updating of audited files, you should either have 
the transaction lock an entire file at a time by using the LOCKFILE procedure or carefully keep 
track of the number of locks held. If you do not use LOCKFILE, TMF sets two implicit locks: 

., When a new record is inserted in an audited file, TMF implicitly locks that record . 

., When a record is deleted from an audited file, TMF implicitly locks the key of that record. 

These locks are not released until the transaction is committed or is aborted and backed out. This 
means that transactions doing batch updates to audited files (if they involve deleting or inserting a 
large number of records) can obtain too many locks. The maximum number of locks that can be 
acquired for each file is 922 key locks and 1808 record locks. In this situation, error 32 (CONTROL 
BLOCK SPACE UNAVAILABLE) is returned as a file error. 

If a transaction calls LOCKFILE for a primary-key file, LOCKFILE is also applied to any associated 
alternate-key files. This prevents primary-file updates from causing the alternate-key files to obtain 
record locks (for insertions) or key locks (for deletions). 

E-12 



PATHWAY Programming for TMF 

Coding Servers 

Figure E-5 illustrates the typical sequence of actions performed by a single-threaded (not 
$RECEIVE-queuing) server. 

trans id 

' ' ' ' ' ' ' .. ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: .. 

Initialize 

READ UPDATE 
$RECEIVE 

READ RECORD1 WITH 
LOCK 

REWRITE RECORD1 
READ RECORD2 WITH 
LOCK 

DELETE RECORD2 
WRITE RECORD3 

REPLY 

Figure E-5. Nonqueuing Server 

When you write servers of the type illustrated in Figure E-5, consider the following: 

• When the server reads $RECEIVE to pick up a request message, the server automatically 
acquires the transaction identifier of the process that sent the message. All data base operations 
performed from the point of the read on $RECEIVE until the server replies are associated with 
the transaction identifier. 

• Existing servers that are not NonStop servers (do not do $RECEIVE-queuing) and lock all 
records before making a change generally do not have to be modified for TMF. 

• The server must follow the record-locking rules imposed by TMF. This means the server must 
lock all records to be deleted or changed. 

Refer to the Transaction Monitoring Facility (TMF) System Management and Operations Guide for 
a description of actions performed by $RECEIVE-queuing servers. 

E-13 



PATHWAY Programming for TMF 

Deadlock 

The following example of a sequence of record locking operations results in a deadlock situation: 

1. Transaction 1 locks record A. 

2. Transaction 2 locks record B. 

3. Transaction 1 attempts to lock record B and has to wait. 

4. Transaction 2 attempts to lock record A and has to wait. 

Neither transaction can proceed and the situation is a deadlock. 

Some deadlock situations that can occur because of the TMF record locking protocol are: 

Deleting a record implicitly locks the key of the record and can cause the deadlock situation 
illustrated in Figure E-6. 

lock held until 
transaction 
commits 

Transaction 1 

READ RECORD A WITH 
LOCK 

DELETE RECORD A 

READ RECORD B WITH 
LOCK 

REWRITE RECORD B 

owns lock on 
record A 

waits for 
lock on 

record B 

owns lock on 
record B 

waits for 
lock on 

record A 

Transaction 2 

READ RECORD B WITH 
LOCK 

READ RECORD A 

Figure E-6. Deadlock Caused by Deleting a Record 

A record inserted by a transaction is automatically locked and can cause the deadlock situation as 
illustrated in Figure E-7. 

E-14 



PATHWAY Programming for TMF 

WRITE RECORD A 
!implicit lock! 

READ RECORD B WITH 
LOCK 

owns lock on 
record A 

waits for 
lock on 

record B 

owns lock on 
record B 

waits for 
lock on 

record A 

READ RECORD B WITH 

LOCK 

READ RECORD A WITH 
LOCK 

Figure E-7. Deadlock Caused by Inserting a Record 

A process can deadlock itself as illustrated in Figure E-8 if the process acquires different current
transaction identifiers. 

Process 
r 

READ $RECEIVE 

)~v-. . 
LOCK RECORD A 

operating 
with transid1 

READ $RECEIVE 

}~ : 
deadlock! n LOCK RECORD A 

waits for lock r-- operating 

on record A. REPLY 
with transid

2 

REPLY will not 
be executed \.. ..) 

Figure E-8. Deadlock Caused by a Process Switching Transaction Identifiers 

Multiple SEND statements to one PATHWAY server (if they cause the server to access the same 
record under a different transaction identifier) can cause the server to participate in a deadlock 
as illustrated in Figure E-9. This situation only occurs if different TCPs are involved in the send 
operations. 

E-15 



PATHWAY Programming for TMF 

.---------------------··-----------------------·--------. 

TCP1 Terminal1 Server TCP2 Terminal2 
r "" OJ r ""'I r 

""" BEGIN-TRANSACTION BEGIN-TRANSACTION 

ACCEPT 
ACCEPT 

Work on 

SEND 
Record A _..... 

{ reads message )I 
y 

locks record A IT] 
.A. 

{ replies Work on v 
Record A 

reads message }( SEND v 

[I] 
-') 

{ request waits for 
SEND lock on record A 
: l to be released 
END-TRANSACTION END-TRANSACTION 

.) .I 

Al 
deadlock! 

lock on record A 
cannot be released 

until SEND completes, 
and ENO-TRANSACTION 

executes or transaction 
is aborted 

"-----------------------------------------·--------' 

Figure E-9. Deadlock Caused by Multiple SEND Statements 

There is no way of detecting if a transaction becomes involved in a deadlock. However, the follow
ing situations can be detected: 

• A transaction is attempting to read or lock a record that is already locked. 

• A transaction read or lock request is waiting too long before completion. 

Each of the above situations is explained in the following paragraphs and illustrated in Figure E-10. 
ln either situation, it is safe to assume (although it might not be true) that the transaction is in a 
deadlock. Code the transaction to either abort or restart. The locks held for the transaction will be 
released, avoiding the possibility of the transaction participating in or prolonging a deadlock. A 
PATHWAY server can return a message to the SCREEN COBOL requester indicating the dead
lock possibility and the requester can then use the ABORT-TRANSACTION or RESTART
'TRANSACTION verb. 

'TAL programmers can determine if a record is already locked by using the GUARDIAN SETMODE 
procedure to select alternate locking mode. In this mode, file error 73 can be returned to the server 
when that server attempts to access a locked record. 

In default locking mode, TAL programmers can determine if an l/O request has waited too long 
before completion. In this mode, a server process will be suspended when the server attempts to 
access a locked record. To avoid deadlock, open the file using no-wait I/0 and specify a nonzero time 
limit in the call to AW AITIO. If AW AITIO returns GUARDIAN error 40 (indicating timeout), the 
transaction might be in a deadlock situation. 

COBOL programmers can open files using the WITH TIME LIMITS parameter. WITH TIME 
LIMITS indicates that further l/O requests will be timed by a value that is specified in the TIME 
LIMIT parameter of the request. If the l/O request times out, GUARDIAN error 40 will be returned 
to the request. 

FORTRAN programmers can open files with the TIMED specifier and use the TIMEOUT specifier 
in their I/O requests to specify a timeout value. If the I/O request times out, GUARDIAN error 40 
will be returned to the request. 

:~-16 



PATHWAY Programming for TMF 

SEND request 

with timeout 

Avoiding deadlock at TCP 

SEND request 

No reply from server 
before timeout limit 

Avoiding deadlock at the Server 

Figure E-10. Avoiding Deadlock 

Disc request 

ERROR 40 

E-17 



PATHWAY Programming for TMF 

Backout Anomalies 

When a transaction aborts, TMF backs the transaction out in the following sequence: 

• Records updated by the transaction are backed out by a WRITEUPDA TE of the before-images 
for each of the updated records. 

• Records deleted by the transaction are backed out by a WRITE (insert) of the before-images for 
each of the deleted records. 

• Records inserted by the transaction are backed out by a write count zero WRITEUPDA TE 
(delete). 

Because of this sequence, certain types of anomalies can occur during backout: 

• Insertions at end-of-file (EOF) to an unstructured file cannot be backed out. This means that 
EOF will not be restored to its previous value, because another transaction might have written 
to EOF after the insert but before the backout. 

• If a record A is inserted at EOF of an entry-sequenced file and no other record has been inserted 
after record A, backout of record A involves the disc process moving the EOF pointer to the 
previous record. If another record already follows record A, however, record A is backed out by 
rewriting record A with a length of zero bytes; that is, making it an empty record. A READ at 
record A address then returns a null record with a length of zero bytes. 

• An EOF (-lD POSITION) insertion to a rel,ative file is backed out by deleting the record. 
However, EOF is not restored to some previous value, because another transaction might have 
written to EOF after the insert but before the backout. 

• Backout can fail for a transaction that deletes records from a key-sequenced file that is near a 
file full condition. This occurs if other transactions, concurrent with the transaction that deleted 
the record, insert enough records to fill the file. If the file is full, the transaction that deleted the 
records cannot be backed out because there is insufficient space to insert the records that it 
deleted. If this happens, the console receives a message like this: 

89 11:43 21APR81 FROM 004,01,018 LDEV 0022 CU% 420 BACKOUT ERROR 
#0045 TRANSACTION SEQ #00000238 

and the transaction to delete the record remains in an aborting state. Note that the message 
reflects GUARDIAN error 45, FILE IS FULL. Here, you could use DELETE TRANSACTION 
to unlock affected files. However, remember that this could cause an inconsistency in your data 
base, as the deleted record might not be restored. If your application programs maintain a log to 
tie the transaction identifier to the user-entered transaction, you might be able to correct the 
problem manually. It could also be possible to run a separate transaction to delete one or more 
unneeded records, then use the ABORT TRANSACTION command to complete the previously 
unsuccessful backout. (A better solution for this problem is to use the FUP INFO command 
periodically and make sure your files never get that full.) 

• A request to write to a rel,ative file using -2D positioning is changed to -lD positioning if there 
are active key locks on the file when the disc process handles the request. A -2D request 
specifies insert at any avail,able position and a -lD request specifies insert at EOF. Active key 
locks imply the existence of uncommitted transactions that have deleted records. And, if it is 
necessary to abort and back out the uncommitted transaction, the deleted records need to be 
reinserted at the same record addresses. This means that if the -2D request were honored, one 
of the reserved record addresses might be used and transaction backout would be impossible for 
the transaction that deleted the record at the reserved address. Refer to Record Locking in this 
appendix for a discussion of key locks. 

E-18 



PATHWAY Programming for TMF 

APPLICATION CONVERSION CONSIDERATIONS 

Converting an existing application to use TMF requires that you do the following: 

1. Decide which files in the data base should be audited. 

2. Determine what (if any) modifications are necessary to convert the application to follow the 
TMF record-locking rules. 

3. Decide how to group sequences of the application operations into TMF transactions (that is, 
units of recovery). 

4. Add the necessary transaction control statements to the SCREEN COBOL requester to enable 
the program to begin and end the transaction, and to enable the program to abort or restart the 
transaction if necessary. 

5. Ensure that any NonStop servers respond correctly to error 75 (REQUESTING PROCESS 
HAS NO CURRENT-TRANSACTION IDENTIFIER). A backup server that takes over in mid
transaction does not have a current-transaction identifier to send to the disc process; therefore, 
the disc process returns error 75 to the server, which passes the error along to the requester. If 
the requester aborts and retries the transaction, the new request has a current-transaction 
identifier. The preferred solution is to change the servers so they are not NonStop servers. 

6. Modify any $RECEIVE-queuing servers to assume a new request transaction identifier 
whenever such a server begins work on a new queued message. 

7. Determine if any new deadlqck situations are introduced as a result of TMF implicit record lock
ing and modify the application to avoid the deadlock. One way to avoid deadlock is to use 
timeout. 

Audited Files 

TMF recovery strategy involves backing out the aborted transaction changes, which enables the 
transaction to be reexecuted from the beginning (with a new transaction identifier). This means 
that if you decide to have a mixture of audited and non-audited files in the data base, you must be 
careful: only changes to audited files will be backed out. And if a transaction works on a mix of 
audited and non-audited files, the operations on the non-audited files must be retryable. 

A retryable operation is an operation that can be interrupted and repeated an indefinite number of 
times without affecting the consistency of the data base; for example, all reading operations are 
retryable. Whether or not a writing operation (on a non-audited file) is retryable depends on your 
criteria for consistency of the data in the data base. If the transaction changes both audited and non
audited files, you should analyze it to determine whether backing out and reexecuting the trans
action affects consistency. 

For example, consider a transaction that extracts records from a data base, computes some aggre
gates like averages or means, and then uses the aggregates to extract a subset of the extracted 
records from the data base for summary reporting. This transaction can be implemented by doing 
the extraction twice, the first to compute the aggregates and the second to extract the subset. You 
can place the extracted records in a non-audited scratch file (each server can have its own scratch 
file to avoid conflict). If the transaction is aborted and restarted, the transaction starts writing the 
scratch file from the beginning and there is no real need for the scratch file to be audited. 

Another example is logging all input messages to a server, which allows examination of them after a 
failure. It is self-defeating to designate the log file as an audited file; the message that caused the 
failure would be backed out. 

E-19 



PATHWAY Programming for TMF 

Record Locking Conversion 

An application that does not follow the TMF record locking rules must be modified to adhere to 
them. Refer to Record Locking for a complete discussion of the rules and for a discussion of the fac
tors that could change your application conversion strategy with respect to locking. These factors 
include: 

• repeatable reads 

• the errors that result from locks being held by the transaction identifier instead of the process 
identifier and openid of the file opener 

• the errors that result from reading deleted records 

• batch updates by a transaction that acquires a large number of locks. (Batch updating should use 
file locks instead.) 

Grouping Transaction Operations 

Your application can view the transaction as a logical unit of work; for example, entering the order 
header along with all of the detail items in a purchase order. However, TMF treats the transaction 
as a physical unit of recovery. When you convert applications to use TMF, this difference must be 
considered. Basically, this means deciding how to answer certain questions. What is the logical unit 
of work that you want to accomplish within an application? How can the work be divided into a 
number of transactions that can be recovered by TMF? Factors that influence the answers to these 
questions are: 

• Concurrency: How long will record locks be held by a transaction? 

• Performance: How much extra disc 1/0, server activity, and TCP paging is involved in the choice 
of one conversion strategy over another? 

• Consistency: Are the units of recovery large enough to ensure that your criteria for consistency 
will be maintained? 

In view of these factors, two guidelines will generally help you decide how to group the data base 
accesses made by an application into a single transaction. The first is: any group of accesses that 
together modify the data base from one consistent state to another consistent state should be a 
single TMF transaction. The second is: any group of accesses that require a consistent view of the 
data base should be a single TMF transaction. 

The following examples demonstrate application of the previous guidelines: 

EXAMPLE 1: Some logical transactions do not have to be identified as TMF transactions. For 
example, a logical transaction locates a single record and displays the record contents. Since this 
transaction changes nothing in the data base, it does not affect consistency and does not have to be a 
TMF transaction. 

EXAMPLE 2: A data entry transaction with a group of accesses that insert new data into the data 
base should be a TMF transaction. For example, a logical transaction records receipt of some items 
for a stockroom by accepting the stock codes and quantity received from a data entry operator, and 
then updates the records (in an audited file) for the items. The first guideline applies, and you 
should arrange to begin a TMF transaction after the data is accepted, and to end the transaction 
after the last record is updated. TMF ensures that all changes resulting from the one operator 
entry are either permanent or backed out in case the transaction aborts. Note that since any change 
to an audited file requires a transaction identifier, this example is also true if the transaction only 
inserts one record in the file. 

E-20 



PATHWAY Programming for TMF 

EXAMPLE 3: An update transaction should be a TMF transaction. For example, assume a logical 
transaction does the following: 

1. accepts a specification from the operator 

2. performs the equivalent of an inquiry operation to find the data that will be updated 

3. releases the locks obtained for the inquiry 

4. displays the data for the operator 

5. accepts modifications to the displayed data (saving a copy of the original displayed data) 

6. performs the inquiry a second time 

7. verifies that the results of the first inquiry and the second inquiry are the same 

8. writes the modified record to the data base. 

The transaction should be implemented as two TMF transactions. The first should begin after the 
data is accepted and should end (in place of releasing the locks) after the last record is read. The sec
ond should begin after the modifications to the displayed data have been accepted and should end 
after the last modified record is written to the data base. However, if the inquiry part of the trans
action is just a single read, there is no need for the first inquiry to be part of a TMF transaction. 

Transaction Control 

The transaction control verbs for SCREEN COBOL requestors are BEGIN-TRANSACTION, END
TRANSACTION, ABORT-TRANSACTION, and RESTART-TRANSACTION. 

For PATHWAY applications, transaction control simply involves adding BEGIN-TRANSACTION 
and END-TRANSACTION verbs to the SCREEN COBOL units and using ABORT-TRANSACTION 
or RESTART-TRANSACTION in the places where the SCREEN COBOL unit itself handles trans
action failure. PATHWAY handles a number of failure cases itself by automatically aborting the 
transaction and restarting it at the BEGIN-TRANSACTION point. The TCP performs the 
following: 

• takes care of all details involved in handling concurrent active transactions 

• keeps track of the transaction identifiers for multiple transactions 

• checkpoints the transaction identifier 

• generally operates as a N onStop process 

• handles the TMF-related programming involved when the backup process takes over. 

Nonstop Servers 

NonStop operation of servers is unnecessary overhead with TMF. However, if your applications use 
NonStop servers, it is not usually necessary to change them from NonStop to ordinary servers. 
Nevertheless, you should note that if the primary server process fails, the backup process (on 
takeover) does not have a current-transaction identifier. This means that the server process 
receives error 75 (NO CURRENT-TRANSACTION IDENTIFIER) on the first I/0 request to an 
audited file. If the server is coded to recognize this error and report it as a failure to the requester, 
or if the server is coded to terminate (both processes if the backup creates a new backup immedi
ately) when it receives this error, then it can be a NonStop server. 

E-21 



PATHWAY Programming for TMF 

Since the COBOL runtime library recognizes the PARAM named NONSTOP, you can disable 
NonStop operation of COBOL servers by having a PARAM NONSTOP OFF in effect when the 
server is started. The runtime library will ignore the STARTBACKUP and CHECKPOINT verbs 
and store the successful completion code in the PROGRAM-STATUS special register. For 
PATHWAY, PARAM NONSTOP OFF can be included with the parameters in the definition of the 
server class during PATHWAY configuration. 

There is no equivalent mechanism for disabling NonStop servers coded in TAL or FORTRAN. 

Deadlocks and Conversion 

An application that uses TMF might hold more record locks and hold them longer than without 
TMF. This occurs because: 

• Implicit locks are held on the keys of deleted records. 

• Implicit locks are held for inserted records. 

• Locks are held until the transaction is either committed or aborted and backed out. 

The increased locking might cause new deadlock possibilities for the application and should be 
:studied to determine if the possibilities exist. If they do and deadlock can become a problem, con
sider implementing the deadlock avoidance schemes discussed in the Deadlock paragraph. 

PATHWAY INTERACTION WITH TMF 

The rest of this appendix discusses information about three basic questions related to PATHWAY 
interaction with TMF. 

l. How do the settings you specify for the TMF parameter of the SET SERVEH, SET TERM, and 
SET PROGRAM commands affect SCREEN COBOL SEND statements? 

!~. How is TCP checkpointing strategy affected by the settings you specify for the TMF parameter 
of the SET SERVER command? 

a. What problems are caused by using the TMF OFF option of the SET TERM and SET 
PROGRAM commands as a switch to turn TMF off for a PATHWAY system that is configured 
for TMF? 

Understanding the answers to the preceding questions could help to ensure the consistency of the 
data base and help you to improve the reliability and performance of the applications that use the 
data base. 

E~-22 



PATHWAY Programming for TMF 

SET SERVER Command and TM F 

The SET SERVER command contains a TMF parameter with an ON or OFF option. By setting this 
parameter you control how a TCP allows access to a server class, that is, the types of operations a 
server class can perform. 

If you specify ON for the TMF parameter, the TCP allows a SEND to members of this server class 
whether or not the SCREEN COBOL program is in transaction mode. 

If you specify OFF for the TMF parameter, the TCP allows a SEND to the members of this server 
class only if the SCREEN COBOL program is not in transaction mode. OFF is the default setting. 

In addition, the TCP makes checkpointing decisions based upon the option specified for the TMF 
parameter. You must match the TMF parameter setting to the application environment. Refer to 
the TCP Checkpointing Strategy paragraph later in this appendix. 

SET TERM and SET PROGRAM Commands and TMF 

The commands SET TERM and SET PROGRAM each contain a TMF parameter with an ON or OFF 
option. 

If you specify ON for the TMF parameter, the TCP will invoke the corresponding GUARDIAN 
operating system procedure for any TMF verb issued from a SCREEN COBOL program. ON is the 
default setting whether or not TMF is running with PATHWAY. 

If you specify OFF for the TMF parameter, the TCP will not invoke the corresponding GUARDIAN 
operating system procedure for any TMF verb issued from a SCREEN COBOL program. Instead, 
the verb will appear (to the SCREEN COBOL program) to complete successfully and the program 
can continue to execute. Under special circumstances (discussed later in this appendix), specifying 
the OFF option is a convenient way to partially test programs on a PATHWAY system that does not 
have TMF running. 

For most PATHWAY applications, whether or not TMF is running, you should use the default 
parameter settings and ignore the OFF options. 

EFFECTS OF THE TMF PARAMETER ON PATHWAY SEND OPERATIONS 

Table E-1 illustrates what happens to a SCREEN COBOL SEND statement for the various settings 
of the TMF parameter in the SET TERM, SET PROGRAM, and SET SERVER commands; 
PATHWAY and TMF are both assumed to be running on the system. Depending on the type of file 
access attempted, PATHWAY either allows the SEND statement to execute or issues the appro
priate error message. 

In Table E-1, transaction mode (Trans. Mode) indicates that the SEND is executed after a SCREEN 
COBOL program has issued a BEGIN-TRANSACTION statement, but before the program has 
issued an END-TRANSACTION or an ABORT-TRANSACTION statement. 

In a PATHWAY system that normally runs with TMF, the SET SERVER TMF ON and SET TERM 
or SET PROGRAM TMF OFF combination (shown in Table E-1) should not be viewed as a way to 
temporarily turn off TMF. This condition will appear to allow normal PATHWAY operation because 
the BEGIN-TRANSACTION statement that would have failed with TMF stopped now appears to 
work; the TCP allows a SEND to a server that can access and update nonaudited files. In this condi
tion, you should note that both the normal TMF consistency for files accessed by the server and the 
correct PATHWAY NonStop operations will not be maintained. 

E-23 



PATHWAY Programming for TMF 

E-24 

Table E-1. SEND Operations With TMF 

PATHWAY COMMAND 

SET SERVER TMF ON 

SET SERVER TMF OFF 

SET TERM TMF ON 
SET PROGRAM TMF ON 

SET SERVER TMF ON 

Audited Files 
---.----

Trans. Non-Trans. 
Mode Mode 

--+-------

(1) (2) 
GUARD. 

OK Error 75 
··--------------------

PATHWAY 
SEND GUARD. 

Error 13 Error 75 

Audited Files 

Trans. Non-Trans. 
Mode Mode 

--+---

(1) 
GUARD. GUARD. 
Error 75 Error 75 

Non-Audited Files 

Trans. Non-Trans. 
Mode Mode 

--

OK OK 

PATHWAY (3) 
SEND 

Error 13 OK 
-·---

Non-Audited Files 

Trans. 
Mode 

(4) 

OK 

Non-Trans. 
Mode 

OK 
-·---··- --------+----------+----·-------__, t---

SET SERVER TMF OFF 

SET TERM OFF 
SET PROGRAM OFF 

PATHWAY 
SEND 

Error 13 

GUARDIAN File Management Error 75 -

GUARD. 
Error 75 

-

PATHWAY 
SEND 

Error 13 OK 

Indicates that no TRANSACTION-ID was present; PATHWAY has allowed thH SEND and the 
server receives the error. 

A GUARDIAN error indicates the SEND was allowed by the TCP, but the GUARDIAN 
operating system did not permit a lock or update operation on the disc file. 

PATHWAY SEND Error 13 -

Indicates a TMF mode violation; the error is returned by the TCP in the TERMINATION
STATUS special register. 

NOTES: 

(1) SET SERVER TMF ON, SET TERM and SET PROGRAM TMF ON are the parameter settings 
for normal TMF and PATHWAY operation. The SET SERVER TMF ON must be set with 
PATHCOM. 

(2) This SEND is allowed because a server is assumed to have read-only access to the files; 
attempts to lock or update a record in an audited file will result in a GUARDIAN error 75. 

(3) SET SERVER TMF OFF, SET TERM and SET PROGRAM TMF ON are the parameter settings 
for normal non-TMF PATHWAY operation. These are the TMF parameter defaults. 

(4) SET SERVER TMF ON, SET TERM and SET PROGRAM TMF OFF are the parameter settings 
for special program testing. 

The SET SERVER TMF ON, SET TERM and SET PROGRAM TMF OFF, and nonaudited files 
combination is a convenient way to partially test or debug a SCREEN COBOL program on a 
system that does not yet have TMF configured. The program will execute, and all SEND 
requests to audited files will receive error replies. 



PATHWAY Programming for TMF 

TCP CHECKPOINTING STRATEGY 

For PATHWAY systems with TMF running, the TCP uses the following checkpointing strategy: 

• At BEGIN-TRANSACTION - A full context write to the swap file and a checkpoint to the 
backup is performed. 

• At END-TRANSACTION - A full context checkpoint is performed. 

• For a SEND to a non-TMF server (SET SERVER TMF OFF) outside of transaction mode - A 
checkpoint is performed before and after the SEND. Note that a SEND to a non-TMF server 
that operates on nonaudited files indicates PATHWAY operation without TMF; the TCP check
points the SEND context. If the non-TMF server attempts to lock or update a record in an 
audited file, an error is returned. 

• For a SEND to a TMF server (SET SERVER ON) - No checkpoints are performed whether or 
not the SCREEN COBOL program is in transaction mode. This strategy means that SEND 
requests to TMF servers that operate on audited files will require fewer checkpoints than 
SEND requests to non-TMF servers. Note that if the SEND request is outside of transaction 
mode to a TMF server that operates on nonaudited files, data might be lost because TMF is not 
invoked and the TCP performs fewer checkpoints. 

TCP checkpointing requirements can be significantly reduced if PATHWAY applications running 
with TMF have TMF servers read outside of transaction mode before updating the data base. 

The performance of a PATHWAY application can be improved by taking advantage of the TCP 
checkpointing strategy for TMF servers as follows: 

• not using transaction mode for a server with read-only access to a data base (the access is 
retryable) where the requester displays the data before any attempt is made to change the data. 
In the event of a failure, the read operations are retry able and N onStop operation is maintained. 
(If you know that no other server has write access to the same data base, you can make the read
only operations nonretryable. Refer to the Transaction Monitoring Facilitiy (TMF) System 
Management and Operations Guide.) 

• not using transaction mode for a server that writes to an entry-sequenced logging file in which 
possible duplicates are acceptable. In the event of a failure, the write operations can be 
rewritten. 

PRECAUTIONS FOR USING TMF PARAMETERS 

If a TMF error occurs and makes normal PATHWAY/TMF operation impossible, setting the TMF 
parameter options OFF is not the solution for continuing normal PATHWAY operations. The follow
ing can result: 

1. The server intended for operation with TMF probably does not make the checkpoints necessary 
to function as a N onStop server when TMF is not invoked. 

2. A SCREEN COBOL program that uses ABORT-TRANSACTION or RESTART
TRANSACTION to handle exceptions to normal program operation only appears to execute 
but the TMF verbs have no effect. 

3. With SET SERVER TMF ON and SET TERM or SET PROGRAM TMF OFF, the TCP makes 
checkpoint, retry, and syncdepth decisions as if TMF were running. For example, the TCP per
forms fewer checkpoints and opens servers with a syncdepth of 0 instead of 1. The TCP will not 
be running in normal NonStop mode, and a single cpu failure can cause the application to fail. 

E-25 





APPENDIX F 

GLOSSARY 

Accept operation - An operation in which the program waits for response from the terminal and 
allows data to be input into the program data area from the terminal. 

Advisory message - A message displayed in the terminal advisory field to inform the terminal 
operator of errors detected during input checking. 

Alphabetic character - A character that belongs to the set of letters A through Z and the space 
character. 

Alphanumeric character - Any character in the character set. 

Application - A complete sequence of machine instructions and routines necessary to solve a problem. 

Arithmetic expression - A combination of numeric elementary items and numeric literals con
nected by arithmetic operators to form an expression th"at reduces to a single value. 

Arithmetic operator - A character that denotes an arithmetic operation: + for addition, - for 
subtraction, * for multiplication, and I for division. 

Assignment - A convention in which an ASSIGN command is issued to make logical file 
assignments for programs. A logical assignment equates a Tandem file name with a logical file of 
a program and optionally attributes characteristics to that file. 

Audited file - A data file that is flagged for auditing by TMF; auditing is the monitoring of trans
actions in preparation for recovery efforts. 

Base screen - A screen that can be initially displayed on the terminal. In contrast to an overlay 
screen that is displayed in the overlay area of a base screen, the base screen can be displayed 
independently. 

Block mode - A terminal operating mode in which data is read from the terminal and displayed on 
the terminal a screen at a time. 

Character string - A series of contiguous characters. 

Clause - An ordered set of characters that specify the characteristics of a field. 

Command Interpreter - An interactive program used to run programs, check system status, 
create and delete disc files, and alter hardware states. 

F-1 



Glossary 

Comment line - A line consisting of any combination of characters from the character set for 
documentation purposes. Comment lines are indicated by an * or I in the indicator field of the 
reference format; a I causes a page eject before printing. 

Compiler command line - An instruction for the SCREEN COBOL compiler; the line is indicated by 
a question mark in the indicator field. 

Complex condition - A condition that has a truth value resulting from the interaction of all logical 
operators on the individual truth values of simple conditions, or on the intermediate truth values 
of conditions connected or negated. 

Conditional expression - An expression that identifies a condition that is to be tested by the pro
gram for selection between alternate paths of control. 

Condition-name - A level 88 data item with a value or range of values for testing purposes. 

Condition variable - An item that immediately precedes a condition-name entry. 

Conversational mode - A terminal operating mode in which data is read from the terminal and 
displayed on the terminal one line at a time. 

Copy library - A library of SCREEN COBOL text that can be inserted into the source program by 
a COPY statement. 

Data base - A collection of data that is described and controlled within a computer system. 

Data base rollforward - A TMF activity in which the data base is restored to a consistent state 
after a catastrophic failure. 

Data Division - The SCREEN COBOL source program division that defines the program data 
structures in terms of their formats and usage. 

DDL - The Data Definition Language that is used to describe the records and files comprising a 
data base. 

Declarative procedures - Screen recovery procedures specified by USE statements; procedures 
are declared in the Procedure Division immediately following the division header. 

Default value - The value that is used by the system when a value has not been supplied by the 
user. 

Diagnostic screen - A screen of information that is displayed to inform the terminal operator of 
error conditions and termination status. 

Display attribute - A terminal display feature that is given a screen data name; the screen data 
name can be associated with a predefined system name in the SPECIAL-NAMES paragraph and 
thus be manipulated by a SCREEN COBOL program. 

EDIT file - A source text file that can be augmented and modified by the user through the Tandem 
text editor. 

Edited Item - An item whose PICTURE clause contains editing symbols. 

Editing characters - The symbols that can be used in PICTURE clauses to format :screen data. 

ENCOMPASS - The Tandem distributed data base management system. 

F-2 



Glossary 

Environment Division - The SCREEN COBOL source program division that specifies the program 
execution environment. 

External process - A PATHMON, TCP or server class that is running in a different PATHWAY 
system from the process with which it is communicating. For example, a TCP requests a link 
from an external PATHMON to an external server. The PATHMON and the server are in a dif
ferent PATHWAY system from the TCP. 

Field characteristic clause - An ordered set of characters that specify the characteristics of a 
screen field. 

Figurative constant - A constant that has been prenamed and predefined by the SCREEN COBOL 
compiler. 

Fill character - A character selected as the padding character of a field. 

FILLER - A keyword that takes the place of a data name; FILLER items cannot be referenced. 

Floating insertion characters - A string of at least two symbols, only one of which appears in an appro
priate position in the final edited item. A single floating insertion character is placed in the 
character position immediately preceding the first non blank character. The characters preceding 
the placement of the floating insertion character are replaced by spaces. 

GUARDIAN - The Tandem operating system. 

Identification Division - The SCREEN COBOL source program division that identifies the pro
gram. 

Identifier - A data name made unique by qualification or subscripting. 

INSPECT - An interactive program debugging tool that uses a table of symbolic names to access 
code and data locations in the executing program. 

Integer numeric literal - A numeric literal that does not have a decimal point. 

Interactive mode - An operating mode in which commands are entered from a terminal keyboard. 

Keyword - A word in a command string that must be spelled and positioned in a prescribed way, 
usually to indicate the meaning of an adjacent parameter. 

Level - A system of numbers that indicate either hierarchy or special properties of data items. 
Levels 01-49 describe hierarchy; level 66 specifies items introduced by a RENAMES clause; 
level 77 describes an independent data item that cannot be subdivided; level 88 defines a 
condition-name. 

Linkage section - A SCREEN COBOL source program section that describes the structure of 
parameter data passed to a subprogam by a CALL statement. 

Literal - A character string whose value is implied either by a set of characters or by a reserved 
word that represents a figurative constant. 

Log files - Files that are used for reporting errors and changes in status. 

Modified Data Tag (MDT) - A bit that is set or reset to indicate whether or not data in an 
associated field is to be sent to the computer from the terminal. 

MUMPS - The Massachusetts General Hospital Utility Multi-Programming System interpretive 
programming language. 

Noninteger numeric literal - A numeric literal that has a decimal point. 

N oninteractive mode 
file. 

An operating mode in which commands are entered through a command 

F-3 



Glossary 

Nonnumeric literal - An ASCII character string enclosed in quotation marks; a maximum of 120 
characters, not including the surrounding quotation marks, is allowed. 

Numeric character - A character that belongs to the set of digits 0 through 9. 

Numeric literal - A string of one or more digits (0-9), a plus or minus sign, and an optional decimal 
point; a maximum of 18 digits is allowed. 

Obey file - A file that serves as an alternate source for command input. 

Overlay area - An area that defines an area of a base screen within which an overlay screen can be 
displayed. 

Overlay screen - A screen that appears in the overlay area of a base screen. 

Paragraph - A group of related sentences and statements. 

PATHAID - A group of utility programs that are used to create and modify screen definitions. 

PATHCOM command file - A file of commands that define PATHWAY entities required to 
execute an application. 

PATHCOM process - The command interface to PATHMON. 

PATHCTL - A disc file in which PATHMON maintains status information and 1the application con-· 
figuration. 

PATHMON - The central controlling process in a PATHWAY system. 

PATHTCP - The TCP object module. 

PATHWAY - A transaction processing system that supplies the programs, procedures, and struc
tures necessary to produce user-written applications. 

PATHWAY Monitor process - See PATHMON. 

Phrase - An optional portion of a clause or statement. 

POBJ - The default name of the SCREEN COBOL object program. 

Procedure - A named grouping that can consist of a paragraph, a group of successive paragraphs, 
a section, or a group of successive sections. 

Procedure Division - The SCREEN COBOL source program division that specifies the processing 
steps of the program. 

Pseudo code - Code that is interpreted by software instead of being executed by the hardware. 

Punctuation characters - Characters that are used to separate words, sentences, or special 
clauses, and to group arithmetic relationships. 

Qualification - A convention that is used to make a name unique. 

Reference format - The columnar positioning of source code. 

Requester process - A process that interprets application program object code and sends replies 
to a server; synonymous with requester. 

F'-4 



Glossary 

Reserved word - A word that can only be used as a keyword. 

SCREEN COBOL - A procedural language that is used to define and control terminal displays. 

SCREEN COBOL Utility Program (SCUP) - A utility that provides control and manipulation of 
SCREEN COBOL object files. 

SCREEN COBOL word - A character string that forms a reserved word, user-defined word, or 
system name; a maximum of 30 characters is allowed. 

Screen overlay area - Refer to overlay area. 

Screen section - A SCREEN COBOL source program section that describes the types and loca
tions of fields in screens that can be displayed on the terminal. 

SCUP - See SCREEN COBOL Utility Program. 

Section - A group of related paragraphs. 

Send operation - An operation in which a transaction request message is sent to a server process 
and a reply is received back from the server process. 

Sentence - A string of one or more statements. 

Separator - A punctuation character that separates language elements. 

Server class - A grouping of duplicate copies of a single server program; server processes within 
the class have identical attributes. 

Server process - A process that implements application requests and sends replies to the re
quester; synonymous with server. 

Simple condition - A condition that has a truth value of true of false; simple conditions are 
categorized as class, condition-name, relation, and sign conditions. 

Special character - Any character in the character set except the letters A through Z, space, and 
digits 0 through 9. 

SPECIAL-NAMES paragraph - An optional paragraph in the Environment Division of a SCREEN 
COBOL program; the paragraph allows user-selected names to be assigned to system names. 

Special registers - Data items that are defined automatically by the SCREEN COBOL compiler. 

Statement - A combination of words and symbols beginning with a SCREEN COBOL verb. 

Subscripting - A convention that is used to reference individual elements in a table. 

Symbol table - A table of symbols that identify program code and data locations. The table is built 
during compilation by the SYMSERV process and used by INSPECT for program debugging. 

System name - 1) A SCREEN COBOL word that identifies part of the Tandem operating environ
ment; a name can be associated with function keys or terminal display attributes. 

2) A name given in the SCREEN COBOL SEND statement to identify the Tandem system on 
which a PATHWAY system is running. 

Table - A set of repeated data items defined by an OCCURS clause. 

F-5 



Glossary 

TAL - The Tandem Transaction Application Language that is used to write systems software and · 
routines that support transaction-oriented applications. 

TCP - A Tandem-supplied program that interprets SCREEN COBOL object code and send 
messages to server processes; synonymous with requester process. 

Terminal - A device capable of sending and receiving information over communication lines. 

Terminal context - Data maintained by a TCP for each active terminal under its control. 

Terminal Control Process - See TCP. 

TMF - See Transaction Monitoring Facility. 

Transaction - A basic unit of work that originates at a computer terminal and accesses data base 
files. 

Transaction backout - A TMF activity in which the effects of a partially completed transaction are 
cancelled. 

Transaction ID (TRANS ID) - A unique transaction identifier that allows TMF to distinguish trans
actions when concurrent terminal programs are in transaction mode. 

Transaction mode - The operational mode of a terminal between the execution of a BEGIN
TRANSACTION statement and the execution of the associated END-TRANSACTION state
ment or an ABORT-TRANSACTION statement. 

Transaction Monitoring Facility (TMF) - A data management product that maintains the con
sistency of a data base and provides the tools for data base recovery. 

TRANSID - See Transaction ID. 

User conversion procedures - Procedures that are written by an installation to perform additional 
checking and conversion; procedures are called when the USER CONVERSION clause is 
declared for a field. 

User-defined word - A word consisting of the letters A through Z, digits 0 through 9, and the 
hyphen character; the word must have at least one alphabetic character, must not begin or end 
with a hyphen, and must not contain embedded spaces. 

Variable occurrence data item - A data item described with an OCCURS clause that includes a 
DEPENDING ON phrase. 

Verb - A SCREEN COBOL leading keyword in a statement that identifies the purpose of that 
statement. 

Working storage section - A SCREEN COBOL source program section that describes the struc
ture of local data developed within the program. 

F-6 



6530 terminal 
attribute 4-6 
RETURN KEY function 4-6 

ABORT-INPUT clause 
description 5-29 
syntax 5-29 

ABORT-TRANSACTION statement 
description 6-6 
syntax 6-6 
TMF 6-6 
TMF considerations E-5 

Aborting a transaction E-5 
ACCEPT DATE/DAY/TIME statement 

description 6-12 
syntax 6-12 

ACCEPT statement 
ABORT-INPUT clause 5-29 
block mode 6-6, 6-9 
completion condition 6-8 
conversational mode 6-6, 6-10 
data checking 6-11 
data error 6-11 
description 6-6 
END-OF-INPUT clause 5-30 
error detection 6-11 
ESCAPE option 6-7 
FIELD-SEPARATOR clause 5-31 
GROUP-SEPARATOR clause 5-32 
PROMPT clause 5-41 
RESTART-SEPARATOR clause 5-33 
syntax 6-7 
timeout 6-9 
UNTIL option 6-7 

ACCEPT statement completion status 
TERMINATION-STATUS special register 

5-58 

INDEX 

Accepting data 
see ACCEPT statement 

ADD CORRESPONDING statement 
conventions 6-14 
description 6-14 
syntax 6-14 

ADD GIVING statement 
description 6-13 
syntax 6-13 

ADD TO statement 
description 6-13 
syntax 6-13 

Adding numeric values 6-13 
ADVISORY clause 

description 5-34 
syntax 5-34 

Advisory field 5-34 
Advisory messages A-1 

listing A-2 
Alarm 4-7 
Alignment of data 

on word boundaries 2-25 
optional 2-25 
see also SYNCHRONIZED clause 
standard 2-25 

Alphabetic characters 2-3 
Alphanumeric characters 2-3 
Alternate input devices 

RECEIVE clause 5-43 
Alternate interpretations 

of screen fields 5-44 
AND 2-18 
Anomalies 

see Backout anomalies 
ANSI command 7-5 
ANSI standard reference format 2-9 

Margin R 2-9 

Index-1 



Index 

Application characteristics 
for TMF E-3 

Application configuration 1-5 
Application development 

description 1-7 
Application example 

PATMON and PATHCOM 
process creation obey file 8-3 

Applicaton example 
block mode 

SCREEN COBOL program 8-4 
conversational mode 

SCREEN COBOL program 8-10 
description 8-1 

.Arithmetic operations 
arithmetic expressions 2-11 
arithmetic operators 2-11 
comment indicator 2-10 
specification in Procedure Division 2-10 

.Arithmetic operators 2-11 
Array 

field definition 5-37 
ASCII character set 2-3 
AT CLAUSE 

description 5-34 
syntax 5-34 

Attributes 
changing attributes of screen fields 6-63 
display system names 4-6 
protection 

default for screen fields 5-36 
restoring display attributes 6-50 
screen display 5-36 

Audited data base files 
accessing E-9 
conversion considerations E-19 
opening E-12 
reading E-12 

Automatic alignment of data 5-16 
REDEFINES clause 5-16 

Avoiding deadlock E-16 

Backout anomalies 
for TMF E-18 

Base screen 
description 5-20, 5-23 
syntax 5-23 

Batch updates 
with TMF E-12 

BEGIN-TRANSACTION statement 
description 6-15 
error numbers 6-17 
RESTART-COUNTER special register 6-16 
syntax 6-16 

Index-2 

TERMINATION-STATUS special register 
6-16 

TMF considerations E-5 
ON ERROR clause E-6 

Binary operators 2-11 
BINDER development tool 

basic commands D-1 
for user conversion procedures D-1 

Blank fields 5-48 
Block mode 

ACCEPT operations 6-9 
coding example 

SCREEN COBOL 8-4 
DISPLAY BASE 6-26 
PROMPT clause 5-41 

CALL statement 
description 6-17 
error codes 6-19 
syntax 6-17 
TERMINATION-STATUS special register 

6-18 
TERMINATION-SUBSTATUS special 

register 6-18 
Character limit 

for screen entry 5-35 
Character set 

SCREEN COBOL program 2-3 
Character set specification 4·-4 
Character strings 2-3 

see Language elements 
Characters 

alphabetic 2-3 
alphanumeric 2-3 
editing 2-4 
numeric 2-3 
punctuation 2-4 
special 2-3 
strings 2-3 

CHECKPOINT statement 
description 6-21 
syntax 6-21 
transaction mode 6-21 

Checkpointing terminal context 6--21 
Checkpointing with TMF E-23 
Class condition 2-15 

alphabetic 2-15 
numeric 2-15 

Clauses 
ADVISORY 5-34 
AT 5-34 
END-OF-INPUT 5-30 
FIELD-SEPARATOR 5-31 
FILL 5-35 



GROUP-SEPARATOR 5-32 
JUSTIFIED 5-6 
LENGTH 5-35 
mnemonic-name 5-36 
MUST-BE 5-36 
OCCURS 5-7, 5-37 
OCCURS DEPENDING 5-37 
PICTURE 5-39 
PROMPT 5-41 
RECEIVE 5-43 
REDEFINES 5-10, 5-44 
RENAMES 5-11 
RESTART-INPUT 5-33 
SHADOWED 5-44 
TO, FROM, USING 5-46 
UPSHIFT 5-4 7 
USAGE 5-16 
USER CONVERSION 5-4 7 
VALUE 5-17, 5-47 
WHEN ABSENT/BLANK 5-48 
WHEN FULL 5-49 

CLEAR statement 
description 6-21 
effect of modified data tag 6-21 
syntax 6-21 

Coding a screen 
see Screen description entry 

Combined and negated condition 
syntax 2-18 

Combined relation conditions 2-19 
Comment indicators 2-9 
Comment lines 2-10 
Communication 

between requesters and servers 6-52 
Comparing 

equal sized operands 2-17 
nonnumeric operands 2-17 
numeric operands 2-17 
numeric values 2-16 
unequal sized operands 2-17 

Compilation 
SCOBOL 7-1 
SCOBOL compiler commands 7-3 

Compilation statistics 
sample listing 7-13 

Compilaton 
run command 7-1 
stopping 7-14 

COMPILE command 7-5 
Compiler 

see Compiler commands 
see SCREEN COBOL compiler 

Compiler commands 
ANSI 7-5 
COMPILE 7-5 

CROSSREF/NOCROSSREF 7-5 
description 7-3 
ENDIF 7-7 
ERRORS 7-7 
format 7-3 
HEADING 7-7 
IF 7-8 
IFNOT 7-8, 7-9 
LINES 7-9 
LIST/NOLIST 7-9 
MAP/NOMAP 7-10 
OPTION 7-10 
option commands 7-4 
RESETTOG 7-11 
SECTION 7-11 
SETTOG 7-11 
summary table 7-4 
SYMBOLS/NOSYMBOLS 7-12 
SYNTAX 7-12 
TANDEM 7-12 
toggle commands 7-4 
WARN/NOWARN 7-12 

Compiler diagnostic messages A-7 
Completing a transaction E-7 
Completion condition 

ACCEPT statement 6-8 
Complex conditions 2-18 
COMPUTE statement 

description 6-22 
syntax 6-22 

Concurrency control 
for TMF E-3 

Condition evaluation rules 2-19 
Condition name 

VALUE clause 5-19 
Condition names 2-24 
Condition-name condition 

syntax 2-16 
Conditional expressions 

complex conditions 2-19 
description 2-15 
evaluation rules 2-19 
simple conditions 2-15 

Conditions 

Index 

abbreviated combined relation 2-18, 2-19 
class 2-15 
combined and negated 2-18 
complex 2-18 
condition-name 2-16 
relation 2-16 
sign 2-17 
simple 2-15 

Configuration section 
header 4-2 
paragraphs 4-2 

Index-3 



Index 

Configuring an application 
see Application configuration 

Configuring PATHWAY 1-5 
Configuring PATHWAY with INSPECT 1-4 
Conserving disc space 

with SCUP 7-14 
Context checkpoints 

RECONNECT MODEM statement 6-49 
Continuation lines 2-10 
Conventions 

IF statement 6-35 
MOVE CORRESPONDING statement 6-38 

Conversational mode 
ACCEPT operations 6-10 
coding example 

SCREEN COBOL 8-10 
DISPLAY BASE 6-27 
input control character clauses 

ABORT-INPUT 5-29 
END-OF-INPUT 5-30 
FIELD-SEPARATOR 5-31 
GROUP-SEPARATOR 5-32 
RESTART-INPUT 5-33 

input control characters 5-21 
PROMPT clause 5-42 

Conversational mode programs 2-2 
Conversational mode terminal 

considerations 5-55 
Conversational terminal 

specification as a terminal type 4-3 
Conversion considerations 

for TMF E-19 
Conversion procedures 

see User conversion procedures 
Copy library 6-23 
COPY statement 

description 6-23 
effect of SECTION compiler command 6-24 
syntax 6-23 

Copy text references 2-22 
Copying object file sections 1-8, 6-23 
COPYLIB 

COPY statement 6-24 
Cross reference listing 1-9 

SCREEN COBOL program identifiers 1-4 
Cross reference listings 7 -5 
CROSSREF 1-4 

compiler command 1-4 
program debugging 1-4 
program identifiers 1-4 
SCREEN COBOL compiler command 1-4 

CROSSREF/NOCROSSREF command 7-5 
effect of NOLIST 7-6 
effect of SYNTAX 7-6 

Index-4 

CURRENCY parameter 
SPECIAL-NAMES paragraph 4-5 

Cursor 
position 

NEW-CURSOR special register 5-56 
OLD-CURSOR special register 5-56 

Cursor positioning 
NEW-CURSOR special register 5-56 
OLD-CURSOR special register 5-56 

Data alignment 2-25 
Data association 5-46 
Data categories 

description with PICTURE clause 
alphabetic 5-9 
alphanumeric 5-10 
numeric 5-10 

Data checking 
ACCEPT statement 6-11 

Data description entry 
DEPENDING ON phrase 5-8 
FILLER keyword 5-6 
form 5-5 
JUSTIFIED clause 5-6 
OCCURS clause 5-8 5-7 
PICTURE clause 5-8 
REDEFINES clause 5-10 
RENAMES clause 5-11 
SIGN clause 5-13 
USAGE clause 5-16 
VALUE clause 5-17 

Data division 
definition 2-2 
format 5-1 
header 5-1 
Linkage section 5-1 

description 5-2 
Screen section 5-1 

screen description entries 5-20 
Working-Storage section 5-1 
Working-storage section 

description 5-2 
Data error 

ACCEPT statement 6-11 
Data format 

on screens 5-39 
Data initialization 

with VALUE clause 5-18 
Data item 

usage is COMPUTATIONAL 2-25 
usage is DISPLAY 2-25 

Data item size 
description with PICTURE clause 5-9 



Data items 
characteristic definition 5-4 
comparison 

MUST-BE clause 5-36 
in an arithmetic expression 2-12 

Data passed between program units 
Linkage section 5-2 

Data reference 
description 2-21 
qualification 

description 2-21 
rules 2-22 

Data representation 
JUSTIFIED clause 2-25 
optional alignment 2-25 
standard alignment 2-25 
SYNCHRONIZED clause 2-25 
USAGE clause 2-25 
usage is COMPUTATIONAL 2-25 
usage is DISPLAY 2-25 

Data storage 2-25 
Data structure 5-3 

description 5-3 
level numbers 5-3 

Data tables 
see Tables 

DATE-COMPILED paragraph 
description 3-2 
syntax 3-2 

Deadlock 
avoidance E-16 
causes E-15 
description E-14 

Deadlock and conversion 
TMF E-22 

Debugging tool 
INSPECT 1-4 

Debugging with INSPECT 
SYMBOLS/NOSYMBOLS 7-12 

Decimal places 2-13 
DECIMAL-POINT IS COMMA 

SPECIAL-NAMES paragraph 4-5 
Declarative procedures 

in the Procedure division 6-3 
DECLARATIVES procedures 

USE statement 6-64 
Defining data items 

Working-Storage section 5-2 
Defining records 

Working-Storage section 5-2 
DELAY statement 

description 6-25 
syntax 6-25 

Delaying program execution 6-25 

Deleting compiled program versions 1-11 
Describing data 5-3 
Developing an application 

see Application development 
Diagnostic screen messages A-4 
Diagnostic screens A-4 

listing A-5 

Index 

PRINT SCREEN statement 6-48 
DIAGNOSTIC-ALLOWED special register 

5-55 
Dial-in switched line 

RECONNECT MODEM statement 6-49 
Disc space 

conserving 7-14 
Display attribute system names 4-6 
DISPLAY BASE statement 

description 6-26 
syntax 6-26 

DISPLAY OVERLAY statement 
description 6-27 
syntax 6-27 

DISPLAY RECOVERY statement 
base 6-28 
description 6-28 
overlay 6-28 
syntax 6-28 

DISPLAY statement 
description 6-28 
SHADOWED phrase 6-29 
syntax 6-28 
TEMP phrase 6-28 
VALUE clause 6-29 

Display statements 
overview 6-26 

Displaying diagnostic screens 
DIAGNOSTIC-ALLOWED special register 

5-55 
DIVIDE BY GIVING statement 

description 6-31 
syntax 6-31 

DIVIDE GIVING statement 
description 6-30 
syntax 6-30 

DIVIDE INTO statement 
description 6-30 
syntax 6-30 

EDIT 
use in application development 1-8 

Editing characters 2-4 
PICTURE clause 2-4 

Elementary items 5-3 
ENCOMPASS 1-1 

Index-5 



Index 

END-OF-INPUT clause 
description 5-30 
syntax 5-30 

END-TRANSACTION statement 
description 6-32 
syntax 6-32 
TMF considerations E-7 

ENDIF command 7-7 
Ending a transaction 6-32 
ENTER bit 

SHADOWED clause 5-45 
Environment division 

configuration section 4-2 
definition 2-2 
division header 4-1 
error reporting 4-1 
format 4-1 
input-output section 4-7 
OBJECT-COMPUTER paragraph 4-2 
SOURCE-COMPUTER paragraph 4-2 
SPECIAL-NAMES paragraph 4-4 

Equal sized operands 
comparision 2-17 

Error codes 
PRINT SCREEN statement 6-47 

Error detection 
ACCEPT statement 6-11 

Error enhancement 4-7 
Error messages 

SCREEN COBOL compiler A-7 
SEND statement 6-57 

Errors 
during compilation 7-7 

ERRORS command 7-7 
Evaluating arithmetic expressions 

Intermediate operations 2-13 
with the COMPUTE statement 2-14 

Evaluating expressions 
arithmetic data 6-22 
incompatible data 2-15 
intermediate results 2-13 
multiple results 2-13 
rules 2-12 

Executing procedures 6-41 
EXIT PROGRAM statement 

description 6-33 
syntax 6-33 

EXIT statement 
description 6-32 
syntax 6-32 

Expression 
arithmetic 2-11 
conditional 2-15 
evaluation 2-12 
parenthesis 2-12 

Index-6 

Expression arithmetic 
see Arithmetic expressions 

Expression evaluation 
see evaluating expressions 

Field character clauses 5-28 
input screen 5-28 
input-output screen 5-28 
output screen 5-28 
screen field 5-28 

Field characteristics clauses 
ADVISORY clause 5-34 
AT clause 5-34 
FILL clause 5-35 
LENGTH clause 5-35 
mnemonic-name clause 5-36 
MUST BE clause 5-36 
OCCURS clause 5-37 
PICTURE clause 5-39 
PROMPT clause 5-41 
RECEIVE clause 5-43 
REDEFINES clause 5-44 
SHADOWED clause 5-44 
TO/FROM/USING clauses 5-46 
UPSHIFT clause 5-47 
USER CONVERSION clause 5-47 
VALUE clause 5-47 
WHEN ABSENT/BLANK clause 5-48 
WHEN FULL clause 5-49 

Field length 5-35 
Field location 

on a screen 5-34 
Field validation 1-3 

done by TCP 1-3 
FIELD-SEPARATOR clause 

description 5-31 
syntax 5-31 

Figurative constants 2-6 
rules for 2-7 

File 
log 1-5 
PATHCOM command 1-5 
PATHCTL 1-5 

File space 
reclaiming 1-11 

FILL clause 
description 5-35 
syntax 5-35 

FILLER 5-6 
Foreign character sets 4-3 
Format of data 

on screens 5-39 
Formatting a screen 

see Screen description entry 



Formatting screen data 
editing characters 2-4 

Function key and display attributes 
system names 4-6 

Function keys system names 4-6 

GO TO DEPENDING statement 
description 6-34 
syntax 6-34 

GO TO statement 
description 6-33 
syntax 6-33 

Group items 5-3 
GROUP-SEPARATOR clause 

description 5-32 
syntax 5-32 

Grouping fields on screens 
see Screen group 

HEADING command 7-7 

1/0 performed by 
PRINT SCREEN statement 6-48 

IBM-3270 considerations 
attached printers 6-49 
key mapping 

user conversion procedures D-5 
protected display attribute 5-50 
screen size 5-49 
separation between elements 5-50 

Identification division 
DATE-COMPILED paragraph 3-2 
definition 2-2 
division header 3-1 
format 3-1 
optional paragraphs 3-1 
PROGRAM-ID paragraph 3-2 

Identifiers 
syntax 2-24 

IF command 7-8 
IF statement 

conventions 6-35 
description 6-34 
syntax 6-34 

IFN OT command 7-8 
Implicit FILLER bytes 5-16 
Incompatible data 

in evaluating arithmetic expressions 2-15 
Initial values 

of screen fields 5-4 7 
Initial working storage values 5-17 

VALUE clause 5-17 
Input control character clauses 

ABORT-INPUT 5-29 
END-OF-INPUT 5-30 

FIELD-SEPARATOR 5-31 
GROUP-SEPARATOR 5-32 
RESTART-INPUT 5-33 

Input control characters 
conversational mode 5-21 

Input devices 
alternate 

RECEIVE clause 5-43 
Input field length 

on a screen 5-35 
Input screen 

acceptable values 5-36 
Input user conversion procedures D-2 
INPUT-OUTPUT section 

ACCEPT statement processing 4-8 
conversational mode terminals 4-7 
ERROR enhancement option 4-8 
header 4-7 
syntax 4-7 

INSPECT 
description 1-4 

Index 

SYMBOLS compiler command 1-4 
SYMBOLS/NOSYMBOLS command 7-12 
use of symbol table 1-4 

INSPECT process 
communication with TCP 1-4 

Integers 
numeric literals 2-6 

Interactive symbolic program debugging 
INSPECT 1-4 

Intermediate results 
in evaluating arithmetic expressions 2-13 

Interpreting SCREEN COBOL object code 
1-9 

Interproccess comm uni ca ti on 
between requesters and servers 1-5 
see also SEND statement 

ITEM size 
in PICTURE clause 5-9 

Julian date 6-12 
ACCEPT DATE/DAY/TIME statement 6-12 

JUSTIFIED clause 
description 5-6 
effect of VALUE clause 5-7 
syntax 5-6 

Justifying ·data 
see JUSTIFIED clause 

Key mapping 
IB¥-3270 D-5 

Language elements 
character set 2-3 
character strings 2-3 

Index-7 



Index 

editing characters 2-4 
punctuation characters 2-4 
separators 2-3, 2-4 

Length 
screen field 5-35 

LENGTH clause 
description 5-35 
syntax 5-35 

Level 66 5-4 
RENAMES clause 5-4 

Level 77 5-4 
data items not subdivided 5-4 

Level 88 5-4 
condition names 5-4 

Level numbers 
01 through 49 5-3 
66,67, and 88 5-3, 5-4 
in working and linkage storage 5-4 

Limit 
characters entered on a screen 5-35 

LINES command 7-9 
Linkage section 

data description entries 5-4 
description 5-2 
header format 5-2 
USING clause 5-2 
VALUE clause prohibition 5-2 

LIST/NOLIST 7-9 
Listing advisory messages A-2 
Listing diagnostic screens A-5 
Listing error messages 

SCREEN COBOL compiler A-8 
Literals 

figurative constants 2-6 
in arithmetic expressions 2-12 
nonnumeric literals 2-6 
numeric literals 2-6 

Locking 
see Record locking rules 

Logical operators 2-18 

Managing object files 
with SCUP 1-11 

MAP/NOMAP command 7-10 
Maximum record locks 

with TMF E-12 
MDT 

see Modified data tag 
Messages 

advisory A-1 
compiler diagnostic A-7 
diagnostic screens A-4 
overview A-1 

Mnemonic names 4-4 

Index-8 

Mnemonic-name clause 
description 5-36 
syntax 5-36 

Modified data tag 
CLEAR statement 6-21 
for IBM-3270 terminals 5-50 
for T16-6520 terminals 5-52 

MOVE CORRESPONDING statement 
conventions 6-38 
description 6-37 
syntax 6-37 

MOVE statement 
conventions 6-39 
description 6-36 
restrictions 6-39 
summary table 6-40 
syntax 6-36 

Moving overlay areas 6-52 
Multiple occurrences 

of screen fields 5-37 
Multiple results 

in evaluating arithmetic expressions 2-13 
Multiple step transactions 

RESTART-COUNTER special register 5-57 
MULTIPLY BY statement 

description 6-41 
syntax 6-41 

MULTIPLY GIVING statement 
description 6-41 
syntax 6-41 

MUST-BE clause 
data items comparison 5-86 
description 5-36 
syntax 5-36 

Nam es system 2-6 
National use characters 

programmatic specification 4-4 
Negated simple condition 

syntax 2-18 
NEW-CURSOR special register 5-54, 5-56 

SET statement 6-59 
N onnumeric literals 2-6 
N onnumeric operands 

comparison 2-17 
N onStop servers 

conversion considerations E-21. 
with TMF E-3 

NOT 2-18 
Numeric characters 2-3 
Numeric elementary item 2·-11 
Numeric literals 2-6 

integers 2-6 
Numeric operands 

comparison 2-17 
NUMERIC test 2-16 



Object file management 1-11 
Object files 

SCREEN COBOL 1-9 
OBJECT-COMPUTER paragraph 

description 4-2 
syntax 4-3 

Occurrences of screen fields 5-37 
OCCURS clause 

conventions 
screen section 5-38 

description 5-37 
effect of FROM clause 5-38 
effect of TO clause 5-38 
effect of USING clause 5-38 
screen section 5-37 
SUBTRACT CORRESPONDING statement 

6-61 
syntax 5-37 

OCCURS clause considerations 
SYNCHRONIZE clause 5-15 

OCCURS DEPENDING ON clause 
description 5-37 
syntax 5-37 

OLD-CURSOR special register 5-56 
ON ERROR 

CALL statement 6-18 
ON ERROR clause 

PRINT SCREEN statement 6-46 
Opening audited files E-12 
Operand 

comparison rules 2-17 
Operations 

block mode program 2-2 
conversational mode program 2-2 

Operators arithmetic 
see Arithmetic operators 

OPTION command 7-10 
OR 2-18 
Organization of PATHWAY, 1-5 

application configuration 1-7 
application development 1-6 
communication between processes 1-5 
reducing terminal context 1-12 
system components 1-1 

Output user conversion procedures D-3 
Overlay screen 5-20 

description 5-25 
syntax 5-25 

Overview of PATHWAY system components 
1-1 

Padding characters 5-35 
Paragraph name references 2-21 

Paragraphs 
DATE-COMPILED 3-2 
in the Procedure division 6-3 
OBJECT-COMPUTER 4-2 
PROGRAM-ID 3-2 
SOURCE-COMPUTER 4-2 
SPECIAL-NAMES 4-4 

Parenthesis 

Index 

use in ordering expression evaluation 2-12 
Passing control 

between sections 6-33 
PATHAIDS 

description 1-3 
use in application development 1-7 

PATHCOM 
commands 1-2 
description 1-4 

PATHCTL file 1-5 
PATHMON 

description 1-2 
sample configuration file 8-3 

PATHMON process name 
SEND statement 6-53 

PATHWAY 
interaction with TMF E-22 

PATHWAY application 
development 1-7 
example 8-1 

PATHWAY system structure 1-6 
PERFORM ONE statement 

description 6-46 
syntax 6-46 

PERFORM statement 
description 6-42 
syntax 6-42 

PERFORM statements 
overview 6-41 

PERFORM UNTIL statement 
description 6-44 
syntax 6-44 

PERFORM VARYING statement 
description 6-44 
effect of AFTER phrase 6-44 
syntax 6-45 

PICTURE character-string symbols 5-8, 5-40 
PICTURE clause 

alphabetic data 5-9 
alphanumeric data 5-10 
alphanumeric input 5-40 
block mode 5-41 
character string symbols 5-8, 5-40 
data categories 5-9 
description 5-8, 5-39 
item size 5-41 

lndex-9 



Index 

numeric data 5-10 
numeric input 5-40 
syntax 5-8, 5-39 

Positioning data 
see JUSTIFIED clause 

Predefined constants 2-6 
PRINT SCREEN statement 

description 6-46 
diagnostic screens 6-48 
error codes 6-4 7 
I/0 6-48 
syntax 6-46 
TERMINAL-PRINTER special register 

6-47 
Printer 

external file name 
TERMINAL-PRINTER special register 

5-58 
Printing a screen image 6-46 
Procedure division 

classification of statements 6-5 
declarative procedures 6-3 
definition 2-2 
format 6-1 
header 6-1 
paragraphs 6-3 
procedures 

statements 6-4 
sections 6-3 
sentences and statements 6-4 
structure 6-2 
USING phrase 6-2 

Processes 
SCREEN COBOL compiler 1-9 

Program control 
transferring 6-2 

Program identifiers 
CROSSREF/NOCROSSREF command 7-6 

Program operating modes 
summary of differences 2-1 

Program organization 2-2 
SCREEN COBOL 2-2 

Program processing steps 6-1 
Program references 

CROSSREF 1-4 
PROGRAM-ID paragraph 

description 3-2 
syntax 3-2 

PROMPT clause 5-41 
description 5-41 
effect of FROM or USING 5-42 
effect of TO 5-42 
numeric input 5-41 
syntax 5-41 

Punctuation characters 2-4 

Index-10 

Qualifying data references 2-21 
rules 2-22 
syntax 2-22 

Quotation marks 
use in defining nonnumeric literals 2-6 

Reading deleted records E-12 
RECEIVE clause 

alternate input devices 5 .. 43 
description 5-43 
effect of TURN statment 5-43 
field characteristic clauses 5-43 
syntax. 5-43 
TURN statement 6-63 

Reclaiming file space 1-11 
Recommended application characteristics 

for TMF E-3 
RECONNECT MODEM statement 

context checkpoint 6-49 
description 6-49 
dial-in switched line 6-49 
syntax 6-49 
terminal connection to PATHWAY 6-49 

Record locking rules 
for TMF servers E-10 

Record locks 
maximum with TMF E-12 

REDEFINES clause 
automatic alignment of data 5-16 
description 5-10, 5-44 
rules 5-11 
SUBTRACT CORRESPONDING statement 

6-61 
syntax 5-10, 5-44 

REDISPLAY special register 5-56 
DISPLAY statement processing 5-56 

Reducing terminal context 1-12 
Reference formats 

ANSI standard reference format 2-9 
sequence number area 2-9 
Tandem standard reference format 2-7 

Reference table elements 
subscripts 2-23 

Referencing data 
see Data reference 

Referencing elements in a table 
see Subscripting 

Relation condition 
description 2-16 
syntax 2-16 

Relational operators 2-16 
RENAMES clause 

description 5-11 
effect of THROUGH option 5-12, 5-13 



rules 5-12 
syntax 5-12 

Repeatable reads 
for TMF servers E-12 

Repeating items 5-7 
Representing data 

see Data representation 
Reserved words 2-5 

SCREEN COBOL list C-1 
RESET statement 

description 6-50 
syntax 6-50 

RESETTOG command 7-11 
RESTART-COUNTER special register 5-57 

BEGIN-TRANSACTION statement 6-16 
RESTART-INPUT clause 

description 5-33 
syntax 5-33 

RESTART-TRANSACTION statement 
description 6-51 
syntax 6-51 
TMF considerations E-7 

Restarting a transaction E-7 
TMF 

TERMINATION-STATUS special 
register E-8 

TRANSACTION-ID special register E-7 
Restarting transactions 

RESTART-COUNTER special register 5-57 
Restoring 

procedures after error 6-64 
terminal displays after error 6-64 

Restoring display attributes 6-50 
Restrictions 

for TMF E-4 
RETURN bit 

SHADOWED clause 5-45 
RETURN KEY function 

6530 terminal 4-6 
Rules for figurative constants 2-7 
Rules for requester development 1-12 
Rules for subordinate data items 

SUBTRACT CORRESPONDING statement 
6-62 

Rules for TMF record locking E-20 
Run command 

see SCOBOL run command 
Run-options 

for SCOBOL compiler command 7-2 

Sample program 
see Application example 

SCOBOL process 1-9, 7-14 
SCOBOL run command 7-1 

SCOBOL2 process 1-9, 7-14 
SCREEN COBOL 

basic functions 1-2 
compiler processes 1-9 
cross reference listing 1-4 
description 1-2 
language elements 2-3 
object file 1-9 
program references 1-4 
SEND statement E-22 
source program 

organization 2-2 
statements and clauses 2-1 
SYMBOLS compiler command 1-10 

SCREEN COBOL compiler 
using 7-1 

SCREEN COBOL processes 
SCOBOL 1-9 
SCOBOL2 1-9 
SYMSERV 1-9 

SCREEN COBOL program 
character set 2-3 
operating modes 2-1 

Index 

SCREEN COBOL program opfrating modes 
summary of differences 2-1 

SCREEN COBOL syntax summary B-1 
SCREEN COBOL Utility Program 

see SCUP 
SCREEN COBOL words 

reserved words 2-5 
system names 2-6 
user-defined words 2-5 

Screen description entry 
base screen 5-23 
field characteristic clauses 5-34 
format 5-20 
input control character clauses 5-29 
overlay screen 5-25 
screen. field 5-20, 5-27 
screen group 5-20, 5-26 
screen name 5-20 
screen overlay area 5-24 

Screen field 
description 5-27 
field characteristic clauses 5-28 
syntax 5-27 

Screen field characteristics 
see Field characteristics 

Screen field occurrences 5-37 
Screen field values 5-36 
Screen formatting 

see Screen description entry 
Screen group 

description 5 ... 26 
syntax 5-26 

Index-11 



Index 

Screen image printing 6-46 
Screen overlay area 

description 5-24 
syntax 5-24 

Screen section 
description 5-3 
header 5-3 
screen types 5-3 

SCROLL statement 
description 6-52 
syntax 6-51 

SCUP 
conserving disc space 7-14 
description 1-4 
functions 1-11 

Secondary, Working-Storage data 5-43, 5-44 
association with screen field 5-44 

SECTION command 7-11 
Section command 

compiler commands 7-4 
Section header 

Linkage section 5-2 
Sections 

in the Procedure division 6-3 
SELECT bit 

SHADOWED clause 5-44 
SEND operation with TMF E-24 
SEND operations 

TMF effects E-23 
SEND statement 

description 6-51 
example 6-55, 6-56 
syntax 6-52 
termination status values 6-53 

SEND statement completion status 
TERMINATION-STATUS special register 

5-58 
Sentences and statements 

in the Procedure division 6-4 
Separators 

see also Language elements 
Server classes 1-3 
Server process 

communication with TCP 1-3, 6-52 
description 1-3 
for TMF 1-3 
languages 1-3 
with TMF E-22 

Servers 
coding with TMF E-13 

SET statement 
description 6-59 
NEW-CURSOR special register 6-59 
syntax 6-59 

Index-12 

SETTOG command 7-11 
SHADOWED clause 

description 5-44 
effect of ENTER bit 5-45 
effect of RETURN bit 5-45 
effect of SELECT bit 5-44 
syntax 5-44 
TURN statement 6-64 

SHADOWED phrase 
DISPLAY statement 6-29 

Shared request/reply buffer 1-13 
SIGN clause 

description 5-13 
syntax 5-13 

Sign condition 2-17 
Simple conditions 2-15 
Size of data items 

description with PICTUHE clause 5-9 
SOURCE-COMPUTER paragraph 

description 4-2 
syntax 4-2 

Special characters 2-3 
Special registers 

DIAGNOSTIC-ALLOWED 5-55 
LOGICAL-TERMINAL-NAME 5-55 
NEW-CURSOR 5-56 
OLD-CURSOR 5-56 
REDISPLAY 5-56 
RESTART-COUNTER 5 .. 57 
STOP-MODE 5-57 
TELL-ALLOWED 5-58 
TERMINAL-FIL EN AME 5-58 
TERMINAL-PRINTER 5-58 
TERMINATION-STATUS 5-58 
TERMINATION-SUBST.ATUS 5-59 
TRANSACTION-ID 5-59 

SPECIAL-NAMES paragraph 
description 4-4 
syntax 4-4 

Starting a transaction 6-16, E-5 
Statement 

SCROLL 6-52 
Statement categories 6-5 
Statement overview 

in the Procedure division 6-5 
Statements 

ABORT-TRANSACTION 6-6 
ACCEPT 6-6 
ACCEPT DATE/DAY/TIME 6-12 
ADD 

CORRESPONDING 6-14 
GIVING 6-13 
TO 6-13 

BEGIN-TRANSACTION 6-15 



CALL 6-17 
CHECKPOINT 6-21 
CLEAR 6-21 
COMPUTE 6-22 
COPY 6-23 
DELAY 6-25 
DISPLAY 

BASE 6-26 
BASE block mode 6-26 
BASE conversational mode 6-27 
DISPLAY 6-28 
OVERLAY 6-27 
RECOVERY 6-28 

DIVIDE 
BY GIVING 6-31 
GIVING 6-30 
INTO 6-30 

END-TRANSACTION 6-32 
EXIT 6-32 

PROGRAM 6-33 
EXIT PROGRAM 6-32, 6-33 
GO TO 6-33 

DEPENDING 6-34 
IF 6-34 
MOVE 6-36 

CORRESPONDING 6-36 
MULTIPLY 

BY 6-40 
GIVING 6-40 

PERFORM 6-41 
ONE 6-46 
TIMES 6-43 
UNTIL 6-44 
VARYING 6-44 

PRINT SCREEN 6-46 
RECONNECT MODEM 6-49 
RESET 6-50 
RESTART-TRANSACTION 6-51 
SCROLL 6-52 
SEND 6-52 
SET 6-59 
STOP RUN 6-60 
SUBTRACT 6-60 

CORRESPONDING 6-61 
GIVING 6-61 

TURN 6-63 
USE 6-64 

Statistics 
compilation sample listing 7-13 

Stop executing program 
STOP RUN statement 6-60 

STOP RUN statement 
description 6-60 
syntax 6-60 

STOP-MODE special register 5-57 
Stopping the compiler 7-14 
Storing data 2-25 
Subscripting 2-23 

syntax 2-23 

Index 

SUBTRACT CORRESPONDING statement 
description 6-61 
OCCURS clause 6-61 
REDEFINES clause 6-61 
rules for subordinate data items 6-62 
syntax 6-61 

SUBTRACT GIVING statement 
description 6-61 
syntax 6-61 

SUBTRACT statement 
description 6-60 
FROM phrase 6-60 
syntax 6-57 

Subtracting data items 6-57 
Symbol table 

INSPECT 1-4 
SYMBOLS 

compiler command 1-10 
SCREEN COBOL compiler command 1-4 

SYMBOLS/NOSYMBOLS command 
debugging with INSPECT 7-12 
symbol table file 7-12 

SYMSERV process 1-9, 7-14 
produces symbol table 1-10 

SYNCHRONIZED clause 
description 5-14 
syntax 5-14 

SYNCHRONIZED clause 
generated FILLER data 5-15 
OCCURS clause considerations 5-15 
VALUE clause prohibited 5-14 

Synchronized data 
see also SYNCHRONIZED clause 

SYNTAX command 7-12 
Syntax summary C-1 
System components 

description 
PATHCOM process 1-2 
PATHMON process 1-2 
SCREEN COBOL 1-2 
server process 1-3 
TCP 1-3 
TMF 1-3 

System name 2-6 
SPECIAL-NAMES paragraph 4-5 

System names 
description 2-6 
function key and display attributes 4-6 

System structure 
PATHWAY 1-6 

Index-13 



Index 

T16-6510 terminal considerations 
restrictions 5-51 
separation between screen elements 5-52 

T16-6520 terminal considerations 
modified data tag 5-53 
protected display attribute 5-53 
restrictions 5-52 

T16-6530 terminal considerations 5-54 
conversational mode 5-55 

Tables 
defining 2-20 
description with OCCURS clause 5-7 
in the Linkage Section 2-20 
in the Screen Section 2-20 
in the Working Storage Section 2-20 
OCCURS clause 2-20 
sample structure 2-21 
three dimensional 2-20 

TANDEM command 7-12 
Tandem standard reference format 2-8 

Margin R 2-8 
Tandem system name 

SEND statement 6-53 
TCP 

checkpointing with TMF E-23, E-25 
communication with INSPECT 1-4 
communication with servers 1-5 
description 1-3 

Techniques 
for reducing terminal context 1-10 

Tell messages 
issuing 

TELL-ALLOWED special register 5-58 
TELL-ALLOWED special register 5-58 
Terminal 

internal file name 
TERMINAL-FILENAME special register 

5-58 
Terminal connection to PATHWAY 

RECONNECT MODEM statement 6-49 
Terminal considerations 

conversational mode 5-55 
IBM-3270 5-49 
T 16-6520 5-52 
T16-6530 5-54 
WHEN FULL clause 5-49 

Terminal context 
checkpointing 6-21 
description 1-12 
reducing 1-12 

Terminal name for executing program unit 
LOGICAL-TERMINAL-NAME 5-55 

Terminal type specification 
conversational 4-3 
IBM-3270 4-3 

Index-14 

Tl6-6510 4-3 
T16-6520 4-3 
T 16-6530 4-3 

TERMINAL-FILENAME special register 
5-58 
internal file name of terminal 5-58 

TERMINAL-PRINTER special register 5-58 
external file name of printer 5-58 
PRINT SCREEN statement 6-47 

Termination status 
error numbers 6-19 

TERMINATION-STATUS special register 
ACCEPT statement completion status 5-58 
BEGIN-TRANSACTION statement 6-16 
EXIT PROGRAM statement 6-33 
PRINT SCREEN statement 6-46 
SEND statement completion status 5-58 
with TMF E-24 

TERMINATION-SUBSTArrus special 
register 5-59 
error description 5-59 
EXIT PROGRAM statement 6-33 

Timeout 
during ACCEPT operation 6-9 

TMF 
programming 

accessing audited files E-9 
application characteristics E-3 
backout anomalies E-18 
coding servers E-13 
considerations E-8 
conversion considerations E-19 
deadlock E-14 
interaction with PATHWAY E-22 
overview E-1 
record locking E-10 
SCREEN COBOL verbs E-4 
special registers E-8 
transaction mode E-4 

server E-25 
verbs E-23 

TMF deadlock and conversion E-22 
TMF record locking 

rules E-20 
TMF transaction identifier 

TRANSACTION-ID special register 5-59 
TO/FROM/USING clause 

description 5-46 
syntax 5-46 

Toggle-number 7-11 
Trailing blanks 

reference format 2-8 
Transaction 

auditing 
done by TMF 1-3 



backout 1-3 
messages 1-7 
mode 1-3, E-4 
overview 1-1 
replies 1-7 

Transaction identifier 
see TRANSID 

Transaction messages 1-7 
Transaction mode E-23 

BEGIN-TRANSACTION statement 6-16 
RECONNECT MODEM statement 6-49 
RESTART-COUNTER special register 5-57 

Transaction operations 
grouping E-20 

Transaction replies 1-7 
TRANSACTION-ID special register 

TMF transaction identifier 5-59 
with TMF E-24 

Tran sf erring control 
between SCREEN COBOL programs 6-17 

Transferring program control 6-2 
TRANSID 1-3 
Transmitting data 

to screen output fields 6-28 
Truth values for conditions 2-19 
TURN statement 

description 6-63 
RECEIVE clause 6-63 
SHADOWED clause 6-64 
syntax 6-63 

Unary operators 2-11 
Unequal sized operands 

comparision 2-17 
Unique data names 2-22 
Unprotected fields 

clearing 6-22 
UPDATE 

for user conversion procedures D-1 
Upshift 5-47 
UPSHIFT clause 

description 5-4 7 
syntax 5-47 

USAGE clause 
description 5-16 
effect of COMPUTATIONAL items 5-17 
syntax 5-16 

USE statement 
DECLARATIVES procedures 6-64 
description 6-64 
syntax 6-64 

User conversion procedure 
BINDER development tool D-1 

User conversion procedures 
3270 key mapping D-5 

input procedures D-2 
output procedures D-3 

User conversion procedure 
UPDATE D-1 

User TCP 
BINDER command D-1 

USER-CONVERSION clause 
description 5-47 
syntax 5-47 

User-defined numbers 5-47 
User-defined words 2-5 

definition 2-5 

VALUE clause 
condition name 5-19 
description 5-17, 5-4 7 
DISPLAY statement 6-29 
nonnumeric items 5-18 
numeric items 5-18 
restrictions 5-18 
syntax 5-17, 5-47 

VALUE clause prohibition 
Linkage section 5-2 

WARN/NOWARN command 7-12 
WHEN ABSENT/BLANK clause 

description 5-48 
effect of ABSENT option 5-48 
effect of Modified Data Tag 5-48 
syntax 5-48 

WHEN FULL clause 
description 5-49 
syntax 5-49 

Words 
reserved 2-5 

Working-Storage section 
data description entries 5-4 
data structure 5-3 
description 5-2 
header format 5-2 
omitting this section 5-2 

* asterisk 
comment indicator 2-9 

+ plus sign 2-3, 2-12 

- minus sign 2-3, 2-12 
- dash 

continuation indicator 2-9 

I slash 
comment indicator 2-9 

? question mark 
compiler command line 2-10, 2-19 
compiler commands 7-3 

Index 

Index-15 





J 
I 

YOUR COMMENTS PLEASE 

Tandem Nonstop™ & Nonstop D™ Systems 
PATHWAY™ Programming Manual 

82059 EOO 

Tandem welcomes your comments on the quality and usefulness of its publications. Does this publication serve 
your needs? If not, how could we improve it? If you have specific comments, please give the page numbers with 
your suggestions. 

This comment sheet is not intended as an order form. Please order Tandem publications from your local 
Sales office. 

FROM: 

Name Date -----~·-____ _ 

Company ___ _ 

Address 

City/State Zip ------·----



111111 

BUSINESS REPLY MAIL -1 
FIRST CLASS PERMIT NO. 482 CUPERTINO, C~ 

POSTAGE WILL BE PAID BY ADDRESSEE 

Tandem Computers Incorporated 
19333 Valko Parkway 
Cupertino, CA 95014-9990 

Attn: Manager-Technical Communications 

TAPE 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 


