SPARCbook 1
Technical Reference Manual




BN R N B

. = C [ oo

)

L

L.

l__ )

SPARCbook 1

Tadpole Technology Inc
12012 Technology Blvd.
Austin, TX 78727
USA

Tel: 512-219-2200
Fax: 512-219-2222

Technical Reference Manual

Tadpole Technology plc
Cambridge Science Park
Milton Road
Cambridge, CB4 4WQ
ENGLAND

Tel: 0223 250030
Fax: 0223 250036




FCC Class B Notice

This equipment has been tested and found to comply with the limits for a Class B digital device,
pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection
against harmful interference in a residential installation. This equipment generates, uses and can
radiate radio frequency energy and, if not installed and used in accordance with the instructions,
may cause harmful interference to radio communications. However, there is no guarantee that
interference will not occur in a particular installation. If this equipment does cause harmful
interference to radio or television reception, which can be determined by turning the equipment off
and on, the user is encouraged to try to correct the interference by one or more of the following
measures:

* Reorient or relocate the receiving antenna

* Increase the separation between the equipment and receiver

+ Connect the equipment into an outlet on a circuit different from that to which the
Teceiver is connected

+ Consult your supplier, or an experienced radio or television technician for help

Modifications

This equipment contains no user-serviceable parts. You are advised that unauthorized changes or
modifications to the equipment could cause it to exceed Class B limits and may void the authority
granted by the FCC to operate the equipment.

Shielded Cables

Connections between the SPARCbook and any connected peripherals mustbe made using shielded
cables to maintain compliance with FCC radio frequency emission limits.

FCC Part 68 Modem Information

This equipment complies with Part 68 of the FCC rules. On the underside of this equipment is a
label that contains, among other information, the FCC registration number and ringer equivalence
number (REN) for this equipment. If requested, this information must be provided to the telephone

company.
This equipment uses the following USOC jacks: RJ11C

The REN is used to determine the quantity of devices which may be connected to the telephone
line. Excessive RENSs on the telephone line may result in the devices not ringing in response to an
incoming call. In most, but not all areas, the sum of the RENs should not exceed five (5.0). To be
certain of the number of devices that may be connected to the line, as determined by the total RENs,
contact the telephone company to determine the maximum REN for the calling area.

-1 1 1 __]



. 0 [

- [C_ B N

L

L

Issue A of January 1992
Part Number: 980 011

If this equipment causes harm to the telephone network, the telephone company will notify you in
advance that temporary discontinuance of service may be required. If advance notice is not
practical, the telephone company will notify the customer as soon as possible. Also, you will be
advised of your right to file a complaint with the FCC if you believe it is necessary.

The telephone company may make changes in its facilities, equipment, operations or procedures
that could affect the operation of the equipment. If this happens, the telephone company will
provide advance notice in order for you to make the necessary modifications in order to maintain
uninterrupted service.

If trouble is experienced with this equipment, please contact Tadpole Technology Inc, 8310 Capital
of Texas Highway North, Austin, Texas 78731 Tel: (512) 338 4221 for repair and/or warranty
information. If the trouble is causing harm to the telephone network, the telephone company may
request you remove the equipment from the network until the problem is resolved.

The following repairs can be done by the customer: None

This equipment cannot be used on telephone company-provided coin service. Connection to Party
Line Service is subject to state tariffs.

Trademarks

All rights reserved. This product or d isp ‘bycopynghunddismbuwdunduhmamummuse.copymg.
d:mbtmonmddeoanpﬂmon No part of this product ord may b duced in any form by any means without prior written
authorization of Sun and its licensors, if any. mmpmductor!hepmducudepmedhaunmybepxmmedbymemmomUS or
intemational patents or pendmg pnwms. Portions of this product may be derived from the UNIX® and Bezkeley 4.3 BSD systems,
licensed from UNIX Sy ies, Inc. and the Univessity of California, respectively. Third party font software in this product
is protected by copyright md licensed from Sun’s Font Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the gov is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR $52.227-
19.

Sun, Sun Microsystems, the Sun Logo, OpenWindows, SunView, SunOS, X-11 NEWS, DeskSet, NFS and NEWS are trademarks or
registered trademarks of Sun Microsystems, Inc. UNIX and OPEN LOOK are registered trademarks of UNIX Systems Laboratorics,
Inc. All other product names mentioned herein are the trademarks of their respective owners. All SPARC trademarks, including the
SCD Compliant Logo, are trademarks or registered trademarks of SPARC Intemational, Inc. The SPARCbook trademark is licensed
exclusively to Tadpole Technology, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees. Sun

knowledges the pi ing efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers
Sun’s licensees who implement OPEN LOOK GUI’s and otherwise comply with Sun’s written license agreements.

The X Window System is a product of the Massachusetts Institute of Technology.

UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories
PostScript is a trademark of Adobe Systems, Inc

Sendfax is a registered trademark of Sierra Semiconductor Corp

SoftPC is a registered trademark of Insignia Solutions Ltd

©1992 by Tadpole Technology
Printed in the UK



CONTENTS
INTRODUCTION TO
THE SPARCbook TECHNICAL REFERENCE MANUAL .....cceeveeceeeed
MANUAL STRUCTURE ..........oueueeeeeeererresensinsressssisssessssssasssessessesssssssssssssssssssassessossssssasen 10
INDENTED AUDIENCE ...........coeeeerrereeressinscsssessesiesssssssssisssssassssssssssssssssssassssessesssssssans 10
CONVENTIONS USED IN THIS DOCUMENT ...............ucoovrmrerrrinrresrisrsessssssessossssassessassassens 11
LOGIC SALES .........coevneeeeeereeeeeecrereves s sssses s sssassasas s sasas e sesss s sasssssssssssnensnssases 11
Data Length DEfinitiOns ..................uuceeeeeerereireeierssesesseseseesesnssesessssssssessessssssssssesssssassssase 11
CHAPTER ONE
OVERVIEW 13
CENTRAL PROGCESSOR ........ooueeeeerrrererenessssessesssessessessssessssssssssssssssssssnssssnsassassssnsaseases 14
MAIN MEMORY ...........cooouerteerreeeererissisississssnsssssnsssssssessss s sssassssssssssssssssssassssssssssssssnssssssassses 14
DISPLAY ........occuouiueeunrniniesssissssssssssssstssssssssssssssssnssssessssssssssssssssssesessssssssssassossssesssssssssssasssssss 15
UNIVERSAL PERIPHERAL CONTROLLER. ...............ooorrerrrrreeecrrsessssssssissssssssessasssasessses 16
MICROCONTROLLER SUBSYSTEM ............couverreesirerissenensrsssesssssensssssssssssssssnsssssssenssssns 17
ETHERNET INTERFAGE ..........uoueerreererersesesensssussssasssssssssssssasssssssessssasssstsssssssssseacssssnsantass 17
MODEM ..........oeeeerresereisisitssesissssissse s sns s s st sssessssss s ssassasssssssssssssnssassssssssssessesssssss 18
REAL TIME CLOCK AND EPROM ..............coeeeeeesissesenestnineneeseessssesesssseasessstasesessases 18
SPARCBOOK TECHNICAL SPECIFICATION ..........eoeeeeeveeereeecsisssnssssseesasesesssssasnsssens 19
SPARCBOOK DETAILED ADDRESS MAP ..........oeirerenecenenecsessssssssstsssssssssasssssassessnss 22
DRAM ...t ce s cseste s e ssse s s st s st st s s st st sen ot ase st sbbeReR SR st e a R bR RO s s 22
Display CORPOMIEr ..............uueeeeneeerriirseerereerecssieinsesstese s sstasesssstssess st sessssessssnnseeseassennss 22
Ethernet Controller ................ . oeveeueescncnereeeesiessnesacecssssseeenssesnssssssssssesssmssssssssssnssens 23
MOAEM INLEITACE ...............cceeeeeeeeeeeiersrsre e is sttt sssenesese st sa s sesemsaeessseseasstsnssesbssens 24
Real Time ClIoCk | SRAM ............uuceneeeeeeirieeeiseesesssrsasssesestssnssssssesensssesssssssssssssssssassssssasns 24
16-Bit I/0 Region — Hard Disk Data INterface ................cceoueeceneeveneccnnrisisencsrisssesusneses 24
8-Bit I/0 Region — UPC Associated INerfaces .................cceevncercnnoriseninensinnnsnisinnns 25
MPIASIC ...ttt st ees s ssass s s st ss st s e st se st stasesessastsenen et aes 26
CHAPTER TWO
ARCHITECTURE 27
BUS STRUCTURE . .............covverevevrreenisrsssrssesessssssssssasssssssssssssnsntnessssssesesesensessissensasssssssssnssessnsss 28
MDBUS .....ooeeeetreeeeetee e ceste e e tessssessese st ssasssa s st e s s e s s et s e et ee e sh e Rt sh Rt shabe s 28
PDUS ..coeevereeeerenecesesessereesesesstssessssssses s ssanessessnstssssssasessessssnene st sentntesetenras shstebe e sebeR bR s SR bt 08 28
MDBUS - POUS INIETTACE ...............oeeeeeereeereeereeeeeteeecrene s sas s stessssstsssssensssasesssasesssesssassasasensee 29
iv

1 1] 1 3 /3 1 -/

1

—1 ] —1 — /1 /1 1

1 1 /]



.

L C_

C— =

—

L

|

L - [

L [

L [

CHAPTER THREE

THE SPARC CPU MODULE 31
CY7CO01A INTEGER UNIT .........oueeeesrireenineereensesisiensesersesesssssssssssssssssssesssssassssssassnsasass 32

INSITUCLIONS OVETVIEW .............oceeeeeeeenerereirreeerresesessnssssaesessstssssssinssssssesssstsssssssssasassansssessnes 32
CY7CO601A INternal REGISIETS ...........cooveeeneeeeeeinneeieiirissssssisesssssssssssnssssssssnssssssasssasesasass 34
Traps ANA INLEITUPDLS .........oceeeerccvenicericnncsessesiieesnsisisssnssese s e stsssssssssssnanssnsssnssnssssssusas 38
MEMOTY PPOIECHON ...........oeeeenveeenrenrereeeecncenststenesscssscse st s sssbs s ssssassbessnsasssassnsssasssncas 38
FLOATING POINT UNIT ..........uuoererereeriesessessssasssssssssssssesssssssstsssssssssssssssssssssssssssssssssns 40
OVEIVIEW .......ceeveeeeeeieerrisssseessessessssssssissssestssssssnsassssestssssasstasstssarssessssssssssssssnsssnsnsssssssaen 40
FlOGLING POINEt REGISIETS ..........oeeeeeeeeeeesreesverenesrenestssessecnsssesssscssnessessosssmnsssnsisessossasssense 40
Floating-Point S1ate RegiSIEr .................ueerevrererrrnrreasvoresessiossisississessssssssisississssssassassns 41
CACHE CONTROLLER AND MEMORY MANAGEMENT UNIT ...........ccvurrievenercrscrunuens 43
Memory Management URit .................ceevirceeirrnceiineenesincsnsiest e ssissnssssssssssssssssssssses 43
CACRE CORIPOIIEE ..........ueeeeveecerereerrrneirnesserssss st e sssas e sess st sasaeassssassersssbsnsassnssanen 47
CY7C157A CACHE STORAGE UNIT ...........uueeeeeeeriecsrerisnsenssisessesencesssesssnssssessmsnssssnsasssssses 49

CHAPTER FOUR

MAIN MEMORY 51
FUNCTIONAL DESCRIPTION ..........oooeeeueeeeeeiereressssrsesssessssesasensasssasssssessncassssessssssssassssens 52

CHAPTER §

MBUS TO PBUS INTERFACE 53
INTRODUCTIONTOTHE MPI ..........ocoeeeeereerereeereresrescsssssssesnsassstssssssssssasesessnsnssensssssns 54
PERIPHERAL BUS INTERFACE ...........oeeeiveeeieeeersesiessnsisssssssssssssssnsssssanssssssssesensassensans 54

Direct OPeration...................uueeeeeeeriveereeereeresessessessssessesesssssessessessessnssssssensssasssnsesssnsns 54
FIFO OPEIALIONS ..........eeeeeeeererveerersiersirresssssisssssesesssessnsssessssssssssssssssssassssssessssssssssssnssssnns 56
Peripheral Space Address Decoder .................oeuoeeeceeesrieeessisisiresessessnsisesssesesessssssessns 57
COUNTER-TIMERS ........oocoveeeereeieienrererrsssessssissensnsesssssssssnssssssessssssssssssessssssssssssssesssssesesnsses 59
SYSIEM TIMETS .........ooeeeeerrertereerereeeeetesier st s s s seses s st st sesst st ssasas s s ssssssessnsssssssssns 60
Bus Timeout TImer ..............cucevreerevecersreisienssesaesssenssssssssssssssnsssssasssssssssssesssssensasassssssnsasas 60
SERIAL I/O PORT ......coeeeeeeeeeerereererseissesessesssssssssssiss st ssssssssssssssssssnsssssassensassssssssanasssssosans 60
SEPIALINPUL .........ceoeeeevrieeiteeeeessreessesssess et sss s st ess e besstansasssssssesessnsnsssenessrsasassessesssentas 61
SETIAL QUIDUL ..........ooueeeeeeerrerseenrsiscsiesessssssssss s s estesss e ssasssestssssassssssssessasssssasssssnsasssaneens 61
POWER MANAGEMENT FUNCTIONS ........oeeeeeeeereerierssssesisnsisasssssssssssssssssssssessessnsaesssns 61
ClOCKk CORIIOL............oeeeeeeeeerrerreescsvereresssesssssasasesssssas st et st sasssea st st st sa s sstsessasasasassnsnen (1
INTERRUPT CONTROLLER ............eeereereeereresrereresssssssssssssaessssssssssasssssnssanssasasesssnnssnases 62
INTERNAL REGISTERS ............ooeeeertrevecrsesssnsssssssssssssssssssasessssssssssssssssassssenssssssssssssssssessases 64
FIFO CORITOL REGISIETS ............oeeveeeeeeereeereerersrsessesssesssssessensasssssssssnsnsassssnsssnssessssssssseses 65
Timer COMITOl REGISIETS ............uueeeeeerenrecreereiiessesssesssesseesssessesssssesssssessessssnsssssssssssesssssns 67
POWER MANAGEMENT CONTROL REGISTERS ............ooeeerereeererseseeressenssseessssssescnes 69
Interrupt CORITOL REGISLETS .............ccueueeeeeeeeeinteiieenreresesnsssesssessesessssestasessasessassssssssssssssssans 70




Serial INDUIOUIDUL REGISIETS ................oocooeeeeeeeeeeeeeeeeeeeeeeeeesesesesessesssseesseesseesssessesess e 71
SOftWAre RESEL REGISIEN ......................oooeeeeereeeses v eevessevasssessssesssssseenseeessemasss e sesaseeneen 72
ETTOT SUAUUS REGISIET ... ees et eeees e sseesssees e ess e seans e esenn 73
CHAPTER SIX
MICROCONTROLLER SUBSYSTEM 75
KEYBOARD INTERFACE. ..........uuoooeeeeeesveeeesmseeeseesseessceseessseseaseeessmsensesessmsessasensesssnsssanes 76
KEY REPEAL ... eeeetess e seseeeesesesesssessesssess s seasssesmensenseas s ssenssnesas 76
SPECIAL CRATACLETS ..............eceeeeeeeeerer s s e s s seseeseassneasess s sssassasesaseasasssnasesenn 77
SPECIALROULINES .............ccoveeoeeeeeeses e ssessenss st st s s sssssessssenenas et aesensesnses 77
MOUSEKEY INTERFACING ...........ouooeeeeervesrcsseesesieessesiesessssssesssssssssssssesssesssnssssssssasssses 78
Mousekey INIALIZALON .....................oeoueeeeeeeeeeeeeeeeeeeeeeeerereeeeressesessesssassssasesessnsasessasasesnnen 78
MOUSEKEY EVERLS ...........oeoveeeeeeereeeeeeeeeseeeeeeesreseeesssassasassassssssseeassesssesaseaseseaseessseasassanen 79
HARDWARE INTERFACES .....ooeeeeeeeeeeeersseesesesasssssssssssssssssssasssssssssssssssessssssassssaseneas 80
HOSE INSITUCHON PTOOCO .............ceeeeeeeeeeeseeeersreverssessassesssssasss s sassnsas s sesssssasasnns 80
HOSEIRLEITUDLES ...........oeeeeeseecreseceseeereereiesesvesessstesssassesassssessssssasassssass st sasssnesnsasassssassenes 84
EEPROM DL ..........uoeeeeeeveereveeeee e vve e esesessssesesss s s sssssssassssssssssssssssesssasassnsass 84
CHAPTER SEVEN
UNIVERSAL PERIPHERAL CONTROLLER 85
FLOPPY DISK CONTROLLER............oeeeeeieireeeeeseeeesessissssssssssssssasssassssssssasssasasssossesens 86
HOSLIRIETTACE ...ttt et ssa s ss st sasseseasase st assssassnsens 86
FIloppy Disk COMMANAS ..................ouooeeeeeeeeeeieierseeeeeeeresessscsssssassssssssssssssssssssssssssssssessssss 87
FDC Operating Modes .....................coueveuncinccrsinnciensssssssessssssssssssssssssssssssssssnsssessas 89
IDE HARD DISK INTERFACE ............oeeeeeeeeeeeseeveeesreseesssessssensssssesssssssssnsssassesssnssssssasas 89
IDE OVEIVIEW .........ccueeveeeeeerrrereierereesseeessiesessssssssssesssesessssssssssesssssssessssnsstassssaessnssensssssesess 89
IDE Interface Operating Modes ....................oueeeeeeeveresieinserissescsssssesssssssssssassssssnsssssseraes 90
TASK File REGISIELS .........coeeeeeeeererereeeseereteeisssssssssesesesssssssssssssssssesssssstsssssnssssessnssssnsacas 90
IDE Command SUMMATY .................oeereereriereieteressieeessssssssssssessesssssssssssssssssssssssasssssasss 92
PARALLEL PORT .......oeeveeeeeeteeeereeeeersresessessssesesssssssssnsesesssesssssessssnsssstsssnsnsssssnssasensssses 96
Printer INtETfAce REGISIETS ............eueeeeeererrsteieeesessssesesssss s s ssssssssssssssssssssssnsasssssssns 96
MOUSE PORT ...........eeeeeeeeereeeseeeeecvsrs s s ssssssse s sssssssassssssnssesssssssasssssssssssssnsasnsassns 98
MoOUSE POTE REGISIETS .............ooeoeeeeereerereireseseess s sssassssseessssssassesasasssnesssssssnsmssessensesssssens 98
SERIAL PORT .......coeeeeeeeteeeeeeeiereee e evss s ses s sesssese s sessssssstasasssssssssssssasnsnsnssssenensassssssn 99
SCTIGL POTt REGISIETS ........ecevevvveeeeveeresesseeveseresssesssssseesssssnsesesssasesstassnsssssnsssanssaseseses 99
UPC CONFIGURATION ........ouneereeeeeeereteieeecreveieresssssesssssessesssesesessssssesssssssssssssasssssssasssess 102
UPC Configuration SEQUENCE.....................couoeereeeereeienrsiesssvensisessssessesssssssssasessssssssnssssssses 103
Configuration Register DeSCTIDHON .................ovevieeeeneseneneeciniinsessessseessessssssssnessassssssans 104

vi




— [ [ (- [ *C—

- [ - [ [ @

L L

L - [

CHAPTER EIGHT
MODEM 107
MODEM OVERVIEW ......eoeeeeerveiresiseieeissessssssessessessessessessssssesstessmssensssassassssssesasssassssssses 108
INTERFACE CONTROL ..........cnueneeenrerereiarnssissssssssssssssasssssssestssssnsassscsesensasnenssssesasssasnsas 109
MAC Integ@ral UART RegiSIErS ..........uuceeveeereeirrsenisesisssenssessseesissssesessssssssssssssssesesssassaes 110
THE AT COMMAND SET ...........oeeeeverereereiessssesssssisesssessssensssessssssesssssnssssssssenssssassessessons 111
Basic COMMANA St .............ueeeeeeeeeeeereceeeecestesesreressssesesteressessetensssssensssonmasesssssrensssesssssaes 112
Sendfax COMMANA Set ...........oueoeeeeeceerereereeeerieeesistessesesessesessssessasastessssssssssassssssssassesess 114
S-REGISTERS ...........ooueeeereeeeerieireeeeesesieessssinessessessnssssntessssssnsansssssassessssesesssssasesssssssansssssssessssen 115
FAX RESPONSES ... oooeeeeeieeeeteieereneeresesisesssssssssssssnssssssssssssssssstssessssssnsssensessasssesessssssssssnss 116
CHAPTER NINE
ETHERNET INTERFACE 119
NETWORKING OVERVIEW .........ouoeeereeeeeeresesrevesessssssssssesesssssssssssssssssssesssssssssssssssssssssesssenes 120
EtRETNEE PrOOCOL ............ceoeeeeveeeereeecreerenseseese e sessesesese s sestesesssns et sss st asessanssssassnsasseses 120
BASIC OPEIGLONS .........ecueeeeererererieeeeereeeesesesessesesssesessasssesesassssssasasssessssssssssasssesssssssssssns 121
THE SPARCBOOK ETHERNET IMPLEMENTATION ............ouoeeeeveererreeeerenssssssssssssnssssanes 122
FUNCTIONAL DESCRIPTION OF THE NICE ............eeeeeieiriiesiesssssssssssssssensnsessesasanas 123
NICE Host SYStem INLEITACE ............ceeeeeeereereereereeieseisersesstssssestssssssssesssssssnssasesssssassssesees 124
BUffer MARager ....................coveeeeeeieeeseeresesessasessssessssesessesessssssssssssesssssssnsssesssssnssssasssssenes 126
INTERRUPTS ....uoeeeeeeeeteieeeeesseetesssssassesssssssassssssassssssesesessssssssssassassssssssssssnsnsssasenssssessssssennss 128
CHAPTER TEN
DISPLAY CONTROLLER 129
DISPLAY INTERFACE OVERVIEW ...........ccvvievveeiineissessisssessssssssessessssssssssssssssssnssssssssssases 130
HOST INTERFACE .........eeorrerrrsisssssssssssssssssssssss s s sssssssssssssssssssssssssees 130
Host Accesses to the Color Lookup Table ..................eeeeeeerecveeerererereressessnssssssssssssssasenes 131
Display Access 10 Video MEMOTY ..................uceceeueeerreeeerereesrssereassssssesssesssssssssssssssssssssens 132
INTERNAL RAMDAGC OPERATION .........ooeeeetererrcessisessesssssssesssssssssssssnssssssssssssasssssssssenens 132
SIMULTANEQUS DISPLAY ENABLING ................oueeeereererrenrrerssseeseseesesesassensssesssssssssanes 133
INTELLIGENT POWER MANAGEMENT AND SEQUENCING ...........uveercerervervsresseenns 133
CHAPTER ELEVEN
MK48T02 BATTERY BACKED
REAL TIME CLOCK AND SRAM 137
BATTERY BACKED SRAM ............oueeeeeeeeeeeereeeeesesessesesssssssssssssessesssssssnssssensssssnsssssssen 138
REAL TIME CLOCK ......cocuvovievveiivnrriereressssessesssessesatessssssssssssssssssessssnsssssssassssssesssssesssssssssssans 138
RTC OPEration...............ccuuueeeeeeeeeerersessesissesesesenssessssesssesssssssssssssssnsessssesessassssssssssssssass 139
Real Time Clock Calibration ................eeoeveceeeeeeereceeeeeseiesesesssesesssessssssssssassssssssessssssness 140

vii



CHAPTER TWELVE
S1-BASE SCHEMATICS DESCRIPTION.......... 141
Sheet 1 —DRAM CONTROL.............oeeeevereereeeeeeseereesessssosesseessesensasensessssessssessassssassssans 141
SREEL2 —DRAM ..........oooeeevereeeeiereerrsisssss e ssess s st sssssasssssssbesnsasasessasassssssasss et seseesanes 142
Sheet 3 — PARITY GENERATION ..........ooeeeeeeeeeeeerssesssssisisisesssssssessssssssssnsasesseesssnsans 142
Sheet 4 — MBUS INTERFACE & MISCELLANEOUS I/0 ........uueoeeeeeeesrissisceiraeeenens 143
Sheet 5 — PERIPHERAL I/Q ..........oueoeeeeeeiiissessesssssisisssssssessssessssssssssnssssessssnensesens 144
Sheet 6 — GRAPHICS ................oeeeeeeeeeeeeeesssesssssesesssssssssssssssssssassssnsasssssssasssssssensens 145
Sheet 7— MODEM AND ETHERNET .........coooeeveisiseeisenssesesissssssssassssssssessesesasmsmsan 145
Sheet 8 — CONNECTORS ..........eeeeeeeeeveeeeeeisessesssessssessssasssssssnsssssasssesssssassssssssasessens 146
COlOT SYSIEMS ONLY = SREEL 9 .........oeeveeeeeeeeeeeeeeeeeeeesrseseeresesssseteseasssesensssssessenasenenasas 146
S1-I/O SCHEMATIC DESCRIPTION ..........c.oocoeeeeeereeeseereseeeseseesseevessssssasasssssassssssssossusane 148
S1-CPU SCHEMATIC DESCRIPTION ..........eeeereeeereesecesesvsveisassssesssssssssssssssssssssens 149
Sheet 1 — CY7C601 INTEGER UNIT ...........ooeeeeeeeeeeresesseeis s sesesssssessssssssssssssssssssnens 149
Sheet 2 — 100-WAY MINIATURE CONNECTOR.............eeeeeeeeeeeieeseeseresseessssssnsenns 149
CHAPTER THIRTEEN
SYSTEM COMPONENT SPECIFICATIONS 151
LCD COLOR DISPLAY .........oueeeveeeeeeeereeeenssereseeseseessesasesssssssssssesessesssssessssesssssssasssssenes 151
Mechanical CRATACLETISHCS ................ecouevereeeereeceeneereissaecsseasesessassasnsssssessesssssessssssssasenses 151
ElectricAl CRATACIETISHCS ..............ocuveeerrreereererrereererreseessessssessassssessesssssssesssssassassessssssensen 152
OPHCAl CRATACLETISHCS ...........coovveveveeerererressesasessssesesssesssesssssssssssssssensssasssssssssssssssssasssssass 153
MONQOCHROME DISPLAY ..........cuuooeereeecreirereeresesnsssesessessassassessssessesesssssesssssessssssssssesssssnns 154
Mechanical CRATACIETISHICS ...............c.oeeuvueeeeevreerereeressesensessasesssssessssssessessssessssessessesssnes 154
Temperature RANge................uccueeeeeereeeeseeeeseesesee s sssesseesessessesassaessssssessesesssnsssessesssses 154
Absolute MaxXimum RALINEGS ..............oceeeeeeueeerieeienneenieseresissenseeseesseenesesesasssssssssssssesensacas 155
ElectricAl CRATACIETISHICS ............cuoeeeeveeerereeresveiesresessessessessssasssssesssssessssasssssssessessassassenes 155
OPHCAL CRAPACLETISHCS ............oeveveevenrerieieareeteseeseesesseesessessstessssessssasssessassasassssnssssssssssssnens 156
SOMBYTE HARD DISK ...........oeueeeeeeeereeeereieessnsesesssesesssssessessssssssssssssssssassensssessesassessssssssenans 157
MeCRANICAl DIMERSIONS .............oeueeeereeeneeereevrerecrinressessesssesesssesessessssesssresssssssssassssssassasses 157
Environmental limits ................coooeeeoeveeiecincirciicriestessestesssessessessesssesssesssasssassssssessonsasssesas 157
POWEr REGUITEMENLS ...........c.cceoeeveneeervienricrerinieericneteesisesre et ss s b sss s ssasnss sesssenaes 158
Timing SPECIfICALIONS ..............c.ovvevrvnreeeeennereeeenteeise et et sente s sissssesanesessesasns 158
120MBYTE HARD DISK ............cooooeoveereerereeceeieeeeieevesseeesessaiesesssstesssssssssssssssessssessansensessanes 160
MecCRhanical DIMENSIONS ..................coecueeeeveeireereeieieessireestessessessssssssesssassessassssssasssssassasss 160
Environmental LImiLs ..................ocuoeieeeeeeiceeeeeeeeveneesevereeeseesssssesssesssesassssssassessesssensssssssasen 160
POWEr REQUITEMENLS .............ouooeeeneeeeriririeiniinteteet e et srs s sra e s saesnsai s 160
Timing PArAMELEYS ..............ecuecueeuecreerecesisenesssesesssessesssssesssssssesessssssssssssenssssesensssesssasasaneses 161

viii

—1 /1 /1 1 3 3 1 —/

]




r—

- [ - = [

L

L

INTRODUCTION
TO THE
SPARCbook TECHNICAL REFERENCE MANUAL

The SPARCbook Technical Reference Manual is published as a supplement to the SPARCbook User's
Guide to provide additional technical information. This document describes the hardware operation of
the SPARCbook notebook computer and also provides details about the resident operating system
supplied with each unit.




MANUAL STRUCTURE

The SPARCbook Technical Reference Manual is structured as follows:

* Technical Overview
Chapter 1 discusses the principle features of the SPARCbook and
introduces the reader to the main hardware devices that provide control
over the SPARCbook's operations.

¢ Architecture Overview
Chapter 2 describes the internal architecture of the SPARCbook, showing
how the major devices are connected together.

* Detailed Device Descriptions
Chapters 3 - 11 discuss in some depth the implementation of the major
hardware devices in the SPARCbook.

¢ Schematics Description
Chapter 12 provides a description of the schematic diagrams and discusses
the theory of operation.

INTENDED AUDIENCE

The SPARCbook Technical Reference Manual is aimed at the hardware engineer wishing to carry out
service or repairs, and at the software engineer wishing to implement hardware drivers.

It is assumed that the reader is familiar with the operation of SPARCbook, as detailed in the
SPARCbook User Guide, and has a basic understanding of computer hardware.

10

1 7 -1 -1 31 1 1

1

11— 1 1




. — L - =

O

[ [ [ [

CONVENTIONS USED IN THIS DOCUMENT

The reader is advised to note the following conventions employed in the SPARCbook Technical
Reference Manual.

Logic states

The terms Clear or low indicate that the signal being discussed is at the logic level ‘0,
The terms Set or high indicate that the signal being discussed is at the logic level '1'.

The term Asserted indicates that a signal is in its true or active state regardless of
whether that state is high or low.

The term Negated indicates that a signal is in its false or inactive state regardless of
whether that state is high or low.

Data Length Definitions

A Halfword is taken to contain 16 bits.
A word is taken to contain 32 bits.

A doubleword is taken to contain 64 bits

11



[

[ [

L

L

C_

'CHAPTER ONE
OVERVIEW

The SPARCbook provides in a compact notebook format many of the advanced features and high
performance normally associated with desktop workstations. Low power consumption and compact-
ness have been achieved by the use of highly integrated components without compromising either the
functionality or performance of the SPARCbook.

The SPARCbook is housed in a magnesium alloy case measuring 11.8" x 8.5" x 1.9", and weighs
6.81bs, including batteries and peripherals.

The SPARCbook’s standard features include a 640 x 480 pixel color or monochrome liquid crystal
display, an 82-key keyboard, a 3.5" floppy disk drive, an IDE hard disk drive, and Modem, Ethernet,
Centronics and serial interfaces. A second hard disk drive is available as an option, when it is fitted in
substitution for the floppy disk drive.

All of the major integrated circuit components are carried on a single printed circuit board, using the
latest surface mount technology and avoiding the need for space consuming and power hungry
expansion cards. The use of components with low power demand and the SPARCbook’s advanced
power management facilities allow the SPARCbook to be used continuously for 2.5 hours or more
when powered from the battery.

13



CENTRAL PROCESSOR

Processing power in the SPARCbook is provided by the Cypress CY7C600 implementation of the
Scalable Processor Architecture (SPARC) RISC microprocessor. The Cypress CY7C600 is a chip set
which comprises the following:

« Integer Unit (IU)

* Cache Controller and Memory Management Unit (CMU)
» Optional Floating Point Unit (FPU)

64Kbytes zero wait state Cache

The IU is the basic processing engine which executes all of the instruction set except for floating point
instructions which are performed by the FPU when it is fitted. The CMU provides memory manage-
ment and address translation facilities between the SPARC virtual bus and the main system bus. Two
CY7C157 SRAM devices provide 64Kbytes of fast cache memory resident on the SPARC virtual bus.

The SPARC CPU is a RISC (reduced instruction set computer) based processor. It uses a simplified
range of commands to carry out operations, enabling most instructions to execute within a single clock
cycle.

Conventional processors tend to use large and complex instruction sets, taking several clock cycles to
perform each instruction. Many of the instructions available to this type of processor are rarely if ever
used, a fact that has led to the development of RISC processor concepts.

The already high performance of the SPARC CPU is further enhanced by the ability of FPU to
execute instructions simultaneously with the IU, and by the provision of cache memory. The Cache
memory is specialized area of fast (zero wait state) memory which allows many instructions and
operands to be fetched locally by the CPU without it having to access the comparatively slow main
memory.

MAIN MEMORY

The SPARCbook is built using either 4Mbit or 16Mbit DRAM devices to provide 8 or 32Mbytes of
DRAM. The main memory provides a 64-bit wide bus interface designed specifically to support burst
cycles by the CPU.

14

— 1 1 1

1 1 1 /1 /1 1 1

]




L [ [

. - [C—

=

L

The memory management unit maintains entries in cache memory called cache lines, each one a 256
bits wide copy of a similar sized area of main memory. When the IU requires data that is not present
in the cache, the MMU copies the new data from main memory to cache memory using burst cycles of
four 64-bit reads (see Chapter Three).

Using burst transfers, the memory interface is capable of a transfer rate of 72Mbyte/s. While using
random access a transfer rate of 40Mbyte/s is achieved. Both rates are at a 25MHz processor clock

speed.

The main memory also features software selectable parity protection.

DISPLAY

The SPARCbook is equipped with a 640 x 480 pixel color or monochrome liquid crystal flat panel
display. Both types are side-lit by a cold fluorescent lamp, which can be controlled to vary the screen
brightness. Reducing the brightness of the sidelight reduces the power consumption, prolonging
battery life.

The display is controlled by a GD6410 VGA compatible display controller made by Cirrus Logic.
This provides control for a monochrome LCD display and for an external color CRT display. Both
displays may be used simultaneously. Advanced grey scale control by the GD6410 provides quality
grey scale rendering of color images for clear display on the LCD.

In the color SPARCbook, a GD6340 color LCD controller provides the additional control required for
the color LCD display. The color model is able to display 16 colors simultaneously from a palette of
262144,

The SPARCbook supports three display modes:

* Mode 1 - Inbuilt LCD only
* Mode 2 - Simultaneous LCD and standard VGA 640 x 480 Color monitor

* Mode 3 - Extended VGA 800 x 600 external high resolution only

Both color and monochrome models of the SPARCbook are able to display an image in 16 colors on
the external monitor. They are both able to display the same image simultaneously on the LCD and
external CRT when in mode 2.

Mode 3 allows the SPARCbook to display an image on an external high resolution monitor, but turns
the inbuilt LCD screen off. This mode requires the use of a multisync monitor.

15



UNIVERSAL PERIPHERAL CONTROLLER

One of the highly integrated devices used in the SPARCbook to achieve its compact size is the
82C710 Universal Peripheral Controller (UPC) manufactured by Chips and Technologies Inc. This
single device provides the following:

« Hard Disk Control

* Floppy Disk Control

 Centronics Interfacing

« External Mouse/Keyboard Interfacing
+ RS232 Serial Interfacing

Floppy Disk Control
The UPC provides control for one or two IDE (Integrated Drive Electronics) PC/AT compatible hard
disk drives. It provides a complete electronic interface, and control of a 16-bit data buffer.

Floppy Disk Control

Single hard disk versions of the SPARCbook contain a 3.5" floppy disk drive. The UPC provides an
NEC765 compatible command set for control of the drive, and the SPARCbook's operating system
allows 720Kbyte and 1.4Mbyte SUN and DOS format disks to be read and written.

Centronics Interface
The UPC provides control and data buffering for the parallel interface which appears on the rear panel
of the SPARCbook. This interface supports connection to a printer with a Centronics interface.

External Mouse/Keyboard Interface

The UPC provides data buffering and control over a serial interface. This interface supports the
connection of an external mouse or keyboard and appears via a 6-way mini DIN socket on the rear
panel. This interface operates with TTL signal levels and does not allow the connection of RS232
devices.

RS232 Serial Interface
In addition to the TTL serial interface, the UPC provides data buffering and control over an RS232
serial interface.

16

— 1 1 1

-] 31 -1 — -3 = 1 _1




.

L [ C_

— [ [ [ [ [ [

MICROCONTROLLER SUBSYSTEM

An 87CS51 microcontroller provides control over the in-built keyboard, the bit I/O interface and the
power management functions.

The bit I/O interface enables aspects of the SPARCbook’s functionality to be controlled in software
using keyboard commands. The microcontroller interprets certain special characters from the key-
board as being commands, and carries out system configuration changes accordingly. This includes
display screen brightness and contrast.

The bit I/O interface also controls the LEDs next to the display in order to convey machine status
information to the user.

The power management function maintains a constant check on the condition of the supply voltages,
and provides early warning when the battery requires recharging. Recharging is carried an in-built
power supply unit and battery charger when the SPARCbook is connected to an external electricity
supply.

The microcontroller also provides control over the Mousekey.

ETHERNET INTERFACE

The SPARCbook is equipped with an IEEE802.3 compliant Ethernet interface controlled by a 86960
Network Interface Controller with Encoder (NICE) from Fujitsu. This provides complete control over
the network interface.

The NICE has direct control over a 64Kbyte area of SRAM in which it maintains receive and transmit
buffers. The host is able write data into the transmit buffer and read data of the receive buffer via
port in the NICE's address space. The NICE is able to carry out network operations with minimal
demand on the CPU, and an integral driver and receiver interfaces directly to the 15-way D-type
socket at the rear of the unit.

17



MODEM

The SPARCbook’s modem interface is implemented with chipset comprising a Sierra SC11075
Modem Access Controller (MAC) and SC11054. The SC11075 provides a direct interface between
the host system and SC11054 modem; it incorporates an Intel 8096 equivalent processor core, sup-
porting an AT command set; it contains a built-in 16C450 equivalent UART; and it contains 16Kbytes
of on-chip ROM and 320bytes of RAM.

The SC11054 is a complete 2400bps (bits per second) modem IC which, when combined with the
SC11075, provides Sendfax capability up to 9600bps.

The modem interface can be controlled completely using Hayes compatible commands written to the
UART section of the MAC. Commands are sent to the interface using character strings, and these are
interpreted by the MAC’s in-built processor core and acted on appropriately.

Command characters and data for transmission onto the telephone line are written into the UART’s
transmit buffer. Data received from the telephone line and status information from the MAC can be
read from the UART’s receive buffer.

REAL TIME CLOCK AND EPROM

Many of the background operations of the SPARCbook, such as system startup and battery condition
monitoring, are controlled by the Tadpole resident firmware monitor. This is a body of software (most
often referred to as firmware) that is permanently stored in an EPROM and is not erased when the
machine is without power.

A 48T02 provides a battery backed real time clock and non-volatile RAM. This provides ti_me 9f day
clock and calendar functions and a 2Kbyte area of RAM which retains data when the board is without
power.

A 1Mbit serially accessed EEPROM is used by the resident firmware to store the SPARQbook’s
Ethernet address and manufacturing information. The EEPROM is accessible via the microcontroller.

18

—1 1 —1 /1 /a0 /]




L [ [ [ [ [ [ [ [

I I

L [

SPARCbook TECHNICAL SPECIFICATION

* Processor and Memory
Processor
Cache Controller/MMU
Cache
FPU (optional)
DRAM (standard)
DRAM (-E models)

+ Components

EPROM 128Kbytes - 1Mbyte
SERIAL UPC
MISC MK48T02

NMC93C46

NETWORK Fujitsu NICE Controller

DISK 82C710 UPC Controller

e J/O Interfaces
Ethernet

Centronics

Mouse/Keyboard

Modem

25MHz CY601 Integer Unit

25MHz CY604 CMU

64Kbyte direct mapped virtual cache
25MHz CY602 Floating Point Unit
8Mbytes with byte parity

32Mbytes with byte parity

One 8-bit 32-pin JEDEC socket

One asynchronous RS232 port
TxD, RxD, CTS, RTS, DCD,
DTR, DSR, RING

RTC/2Kbyte DRAM with battery backup
1Kbit EEPROM

IEEE802.3 interface with local buffer memory

Two IDE disks supported
Floppy disk controller

IEEE802.3 compliant

15-pin D-type AUI interface with slidelock
IBM PS/2 compatible interface

36-pin miniature D-type with cable to 25-pin
D-type socket

IBM PS/2 compatible (TTL)

6-pin mini-DIN socket

2400baud data and 9600baud SendFax
FCC Part 68 compliant, 0.3 REN

V.29, V.27ter, V.22bis, V.22, V.21

Bell 212A, Bell 103 standards

RJ11 jack socket

19



VGA 640x480 25.057MHz dot clock
800x600 36.242MHz dot clock (external monitor)
15-pin PS/2 compatible D-type connector

Serial 110 to 38400baud
9-pin mini-DIN connector

* Peripherals
Winchester disk 85Mbyte formatted IDE interface or 125Mbyte

formatted IDE interface, depending upon model
One or two drives per system
Maximum transfer rate 8Mbyte/s buffer to memory
Maximum sustained transfer rate 1.8Mbyte/s

Floppy disk 720Kbyte/1.44Mbyte formatted 3.5" floppy disk
drive
Fitted in single Winchester disk models

» Display
Monochrome 640x480 VGA paper-white display side-lit
Displays 16 gray scales from 64
Color (-C models) 640x480 VGA color STN display side-lit
Displays 16 colors from 256

* Keyboard 82-key notebook style with integral Mousekey
based upon Force Sensitive Resistor (FSR) tech-
nology

* LEDs

External DC supply connected
Hard disk active

User controlled indicator
Battery low/exhausted indicator

* (Case and Emissions

Magnesium alloy AZ91 castings
SPARCbook is certified to FCC Part 15 Class B

20

-— — — —/ —J -1 -3 432 4 a3 - —Ja = - 1 — 1




| -

[

. - - °_ C_

| I

Power Supply
Internal

External

Physical
Dimensions
Weight (with battery)
(without battery)

Environmental
Temperature (operational)
(storage)
Vibration (operational)
(storage)
Shock (operating)
(storage)
Humidity (operating)

Operating System
SunSoft Solaris 1.01
Comprising

Switched mode PSU with battery charge and
charge detection

facilities

Universal input 110V-240V AC

Output 18V 0-3.1A DC

11.8" x 8.5" x 1.95"
6.81b/7.01b (monochrome/color)
5.21b/5.41b (monochrome/color)

5-40 degrees Celsius
-20 - 60 degrees Celsius
5-100Hz 0.25G
5-100Hz 1.2G

4G

50G

8-80% relative humidity

SPARCbook Version A

SunOS 4.1.2 sun4m architecture

OpenWindows V3

SPARCbook utilities

Meets SPARC Compliance Definition (SCD) 1.1

21



Nons Ea&ixg&pj Power Coxrrvog T:W’ig- | 't{‘ac»"{"; TwW -9 S'G{L] V -¢

SPARCbook DETAILED ADDRESS MAP

This section provides a detailed address map for the SPARCbook. Please note the meanings of the

following abbreviations used in the address map. All addresses are shown in hexadecimal.

R/W: R =read, W = Write

SIZE: b = byte, h= halfword (16-bits), w= word (32-bits), d = doubleword (64-bits)

DRAM
ADDRESS DEVICE or REGISTER RW SIZE
000000000 - C007FFFFF DRAM (8Mbyte) R/W b/h/w/d
000000000 - 001 FFFFFF DRAM (32Mbyte) R/W b/h/w/d

Display Controller

00C000000 - 00CCFFFFF
00C0003B4
00C0003B5
00C0003C0

00C0003C1
00C0003C2

00C0003C3
00C0003C4
00C0003C5
00C0003C6
00C0003C7

00C0003C8
00C0003C9
00C0003CA
00C0003CC
00CO0003CE
00CO003CF
00C0003D4
00C0003D5
00C0003DA

00C0046E8

CL-GD6410/CL-GD6340t . 7 11 U‘gf‘lo_ 7 s e

CRTC Index MP (o[l
CRTC Data MP

Attribute Controller Index

Data

Attribute Controller Data

Misc Output

Feature

Motherboard Sleep Address

Sequencer

Sequencer

RAMDAC Pixel Mask

RAMDAC Address — Read Mode
RAMDAC Status Register

RAMDAC Address — Write Mode
RAMDAC Data

Feature Control

Misc Output

Graphics Controller and Extensions Index
Graphics Controller and Extensions Data
CRTC Index

CRTC Data

Feature Control

Display Status

AT Adapter Sleep Address

E- DI T

(= 2= - g~ i - i p- g~ > i~ i~ g g MG S~ S~ S - A~ o~ - g - o - o -

R/W

E

RW
w
R

R/W

Note ¥ CL-GD6340 only present in color models. It contains RAMDAC registers shadow mapped over
similar CL-GD6410 registers.

22

—_ | I ] I




[

L [C

L

- — C- - C— —

L

Ethernet Controller
ADDRESS DEVICE or REGISTER SIZE
00C200000 - 00CFFFFF Fujitsu 86960 NICE
00C200000 Transmit Status b
00C200001 Receive Status b
00C200002 Transmit Interrupt Mask b
00C200003 Receive Interrupt Mask b
00C200004 Transmit Mode b
00C200005 Receive Mode b
00C200006 Control Register 1 b
00C200007 Control Register 2 b
00C200008 Node ID (Register Bank 0) b
Mask Address (Register Bank 1) b
Buffer Memory Port (Register Bank 2) h
00C200009 Node ID (Register Bank 0) b
Mask Address (Register Bank 1) b
00C20000A Node ID (Register Bank 0) b
Mask Address (Register Bank 1) b
Transmit packet Control 1 (Register Bank 2) b
00C20000B Node ID (Register Bank 0) b
Mask Address (Register Bank 1) b
Transmit packet Control 2 (Register Bank 2) b
00C20000C Node ID (Register Bank 0) b
Mask Address (Register Bank 1) b
DMA Enable (Register Bank 2) b
00C20000D Node ID (Register Bank 0) b
Mask Address (Register Bank 1) b
DMA Burst Control (Register Bank 2) b
00C20000E TDR (LSB) (Register Bank 0) b
Mask Address (Register Bank 1) b
Receive Buffer Pointer (Register Bank 2) b
00C20000F TDR (MSB) (Register Bank 0) b
Mask Address (Register Bank 1) b

Note: Register Bank 0, 1 and 2 are selected using bits 2 and 3 of Control Register 2

23



Modem Interface
ADDRESS DEVICE or REGISTER R/W SIZE
00C400000 - 00C4FFFFF Sierra SC11075 — UART Registers
00C400000 Receive Buffer R b
Transmit Buffer w b
Divisor Latch (LSB)t R/W b
00C400001 Interrupt Enable R/W b
Divisor Latch (MSB) RW b
00C400002 Interrupt ID R b
00C400003 Line Control R/W b
00C400004 Modem Control R/W b
00C400005 Line Status R/W b
00C400006 Modem Status R/W b
00C400007 Scratch Pad R/W b

Note: ¥ The divisor latch can be accessed only when bit 7 of the Line Control Register is set.

Real Time Clock /| SRAM
00C600000 - 00CTFFFFF MK48T02
00C600000 SRAM R/W bm/w/d
00C6007F8 Calibration R/W b
00C6007F9 Seconds R/W b
00C6007FA Minutes R/W b
00C6007FB Hours R/W b
00C6007FC Day R/W b
00C6007FD Date R/W b
00C6007FE Month R/W b
00C6007FF Year R/W b
16-Bit 1/0 Region — Hard Disk Data Interface
00C800000 - 00CBFFFFF
00C8001F0 IDE - Hard Disk Data Interface R/W h

24

1

1

- 1

1

-] 1 -/ - 4 _

1 1 1 1




L__ L

.

. L I

L _

8-Bit I/0 Region — UPC Associated Interfaces

ADDRESS

00CCO00000 - 00CEFFFFF
00CCO001F1
00CC001F2
00CC001F3
00CCO001F4
00CCO01F5
00CCO001F6
00CCO001F7

00CCO003F6

00CC00310
00CC00311

00CC00330
00CC00331
00CC00332

00CC00390
00CC00391

00CCO003F2
00CCO003F4
00CCO003F5
00CCO03F7

00CCO003F8

00CCO003F9

00CCO03FA
00CCO03FB
00CCO03FC
00CCO003FD
00CCO03FE
00CCOO03FF

DEVICE or REGISTER

82C710 Universal Perpheral Controller

IDE - Error Register

IDE - Sector Count

IDE - Sector Number

IDE - Cylinder Low

IDE - Cylinder High

IDE - Drive/Head Register
IDE - Status Register

IDE - Command Register
IDE - Alternate Status
IDE - Fixed Disk Register

Mouse Port - Data Register
Mouse Port — Status/Control Register

Parallel Port — Data Register
Parallel Port - Status Register
Parallel Port — Command Register

UPC Configuration Index
UPC Configuration data

Floppy I/F — Digital O/P Register
Floppy I/F — Main Satus Register
Floppy I/F — Data Register

Floppy I/F — Data Rate

Floppy I/F - Digital Input Register

UART - Receive Buffe

UART - Transmit Buffer

UART - Baud Rate Divisor (LSB)t
UART - Interrupt Enable Register
UART - Baud Rate Divisor (MSB)t
UART - Interrupt Flag Register
UART - Byte Format Register
UART - Modem Control Register
UART - Line Status Register
UART - Modem Status Register
UART - Scratch Pad

g

$E2EEEEEETT TTETT §F fTg g§ SUUUEREEYT

SIZE

coococo oo oo o

o oo o o

o o

cooocag

coooovcoocoTooca

Note: + The Baud Rate Divisor Registers can only be accessed when bit 7 of the Byte Control Register is set.

25



MPI ASIC
ADDRESS DEVICE or REGISTER R/W SIZE
00D00000 — 00DFFFFFF Mbus to Pbus Interface Controller
00D000000 Mbus Error Status R b
00D000010 Set Count CTO R/W w
00D000018 Current Count CT0 R w
00D000020 Control CTO R/W b
00D000028 Set Count CT1 R/W w
00D000030 Current Count CT1 R w
00D000038 Control CT1 R/W b
00D000050 Interrupt Pending R w
00D000058 Interrupt Polarity R/W w
00D000060 Interrupt Enable R/W w
00D000068 Interrupt Acknowledge w w
00D000070 Serial Receive Port R b
00D000088 Serial Receive Status R b
00D0000%0 Serial Transmit Port w b
00D000098 Serial Transmit Data w b
00D0000AO Reset R/W b
00D0000AS Clock Control R/W b
00D0000BS Power Down w b
00D0000CO FIFO Start Address R./W w
00D0000CS8 FIFO Control R/W w
00DO00OFS FIFO Data R/W d

R/W: R =read, W = Write

SIZE: b = byte, h = halfword (16-bits), w = word (32-bits), d = doubleword (64-bits)

26

1




L . - I C_

- - L

- C- (=

- C— - [

CHAPTER TWO
ARCHITECTURE

One of the factors that contributes to the compactness of the SPARCbook is that at its heart is a single
board of less than 12 square inches, the Base Board. This one board carries the processor module,
provides 8 or 32Mbytes of memory and provides all of the control required for the display, keyboard,
disks and interfaces.

This section provides a brief description of the architecture of the SPARCbook. Figure 2-1 shows
how the main components connect together.

Power Supply Unit
and Batery Charger

27



BUS STRUCTURE

It will be seen from Figure 2-1 that the SPARCbook is based on a dual bus architecture, with the
SPARC CPU and DRAM connected to a fast 64-bit bus, called the Mbus, and the I/O devices con-
nected to a 16-bit peripheral bus called the Pbus.

The SPARC processor is the only Mbus master device and is able to access all locations in DRAM,
and locations on the Pbus via the MPL.

As described in the previous chapter, the SPARC CPU comprises the integer unit, floating point unit
and the combined memory management unit and cache controller. These communicate via a private
address bus which remains local to the SPARC chipset. This consists of a 32-bit address bus, an 8-bit
address space identifier bus, and a 32-bit data bus. The IU uses logical (or virtual) addresses as labels
to identify locations in its address space. The memory management unit translates the virtual ad-
dresses used on this bus into physical addresses used on the M-bus.

Mbus

The Mbus is an address and data multiplexed bus, which means that some of the wires are used to
carry both address information and data, though at different times. The time when address information
is on the bus is the address phase, and the time when data is on the bus is the data phase. In a SPARC
based environment, a bus cycle consists of an address phase followed by one data phase for single
access cycle, or an address phase and four data phases for a burst cycle.

The memory management unit produces a physical address on Mbus(35:0) and, during the address
phase of the Mbus, provides bus control information on Mbus(45:36). The whole bus, Mbus(63:0), is
used to transfer data during the data phase.

Pbus

The Pbus is a 16-bit PC-AT style bus which supports the on-board I/O devices. It consists of 16 data
lines, PD(15:0), and 19 address lines, PA(18:0). The CPU addresses and exchanges data with the disk,
Ethernet , modem and serial interfaces and the EPROM and RTC using the Pbus.

28

— 1 1 /]




— [ [

— - =

[

L [

L

Mbus - Pbus Interface

The gateway between the Mbus and Pbus is provided by the Mbus to Pbus Interface controller (MPI),
a Tadpole Technology designed custom ASIC (Applications Specific Integrated Circuit).

The MPI provides an internal 512byte bidirectional FIFO, address decode facilities for the Pbus,
interrupt support and two internal counter/timers. It provides a byte packing interface which converts
between 8-, 16-, 32- and 64-bit accesses used on the Mbus, and 8- and 16-bit accesses used on the
peripheral bus. This allows the two buses to operate at their optimum speed.

The MPI provides two data paths between the Mbus and Pbus.. The first path provides direct access
by the CPU to the Pbus devices, and the second path is via the MPI’s internal 512byte FIFO. The MPI
also provides DMA support for floppy disk operations.

In addition to providing an interface between the Mbus and Pbus, the MPI contains a fifteen level
interrupt controller and two 16-bit counter/timers. The interrupt controller section is used to consoli-
date the large number of interrupt requests from devices within the SPARCbook, and from the FIFO
controller and counter/timers within the MPL. Interrupt controller provides the CPU with a code
which identifies a pending interrupt, and allows individual interrupts to be masked

29



r—

—

L - [

C— € [ [

CHAPTER THREE
THE SPARC CPU MODULE

The SPARC CPU module comprises the CY7C601A integer unit (IU), the CY7C602A floating point
unit (FPU), and the CY7C604A cache controller and memory management unit (CMU). In the
SPARCbook implementation, these are carried on a small module along with two CY7C157A cache
storage units (CSU).

The devices on the SPARCbook CPU module are connected together via a 32-bit virtual address bus
and a 32-bit data bus. The CMU provides an interface between this bus and the Mbus. The Mbus is a
SPARC architecture standard 64-bit multiplexed address and data bus that provides the SPARCbook
with a high bandwidth data path between the CMU and main memory. The CMU performs address
translations between these buses and provides memory management and cache control functions. The
two CY7C157A SRAMs provide 64Kbytes of zero wait-state cache memory.

CY7C601 CY7C602
Integer Unit Floating Point
Unit
AQGL:0) D(31:0) A(31:0) D(31:0)

A(152)

CY7C604A
Cache Controller/
Memory management
Unit

2xCYTCISTA
64Kbyte
Cache

MADX(63:0) — Physical Bus A
ST TOTOTOTOTOTOTOTOTTOTOTOTOTOTOTOTOTOTOTTE

Figure 3-1 The SPARC CPU Module

31



CY7C601A INTEGER UNIT

The IU is the main processing engine that executes all of the instruction set except for floating point
operations.

Instructions Overview

The CY7C600 architecture supports 62 integer instructions which fall into the following basic catego-
ries:

. Load and Store Instructions

. Arithmetic, Logical and Shift Instructions
. Control Transfer Instructions

. Read/Write Control Registers Instructions

The load and store instructions are the only instructions which cause the movement of data on the
Mbus. They use two registers, or a register and a constant, to calculate the memory address involved.
Halfword accesses must be aligned on 2-byte boundaries, word accesses on 4-byte boundaries, and
doubleword accesses on 8-byte boundaries. These alignment restrictions greatly speed up memory
access.

The arithmetic, logical and shift instructions compute a result that is a function of one or two source
operands and then place the result non-destructively in a register. They perform arithmetic, logical, or
shift operations. :

The control transfer instruction category includes jumps, calls, traps, and branches. Control transfers
are usually delayed until after execution of the next instructions so that the pipeline is not emptied
every time a control transfer occurs, allowing compilers to be optimized for delayed branching.

The read/write control register instructions include instructions to read and write the contents of
various control registers. Generally the source or destination is implied by the instructions.

In addition to the instruction types within the categories listed above, there are Floating Point instruc-
tions executed by the FPU.

Table 3-1 provides a summary of the IU instruction set.

32

)3 /71 /1 /1 /i1 1 /T3] /1 —/1 —/J3 /3




L [ [ [ C= [ [ [ —

INPUTS OPERATION

Load and Store Instructions

LDSB(LDSBA¥*) Load Signed Byte (from Alternate Space)
LDSH(LDSHA*) Load Signed Halfword (from Alternate Space)
LDUB(LDUBA¥*) Load Unsigned Byte (from Alternate Space)
LDUH(LDUHA¥*) Load Unsigned Halfword (from Alternate Space)
LD(LDA¥*) Load Word (from Alternate Space)
LDD(LDDA¥*) Load Doubleword (from Alternate Space)
LDF Load Floating Point

LDDF Load Double Floating Point

LDDFSR Load Floating Point Status Register

LDC Load Coprocessor

LDDC Load Double Coprocessor

LDDCSR Load Coprocessor Status Register

STB(STBA¥*) Store Byte (In Alternate Space)
STH(STHA¥*) Store Halfword (In Alternate Space)
ST(STA*) Store Word (In Alternate Space)
STD(STDA¥*) Store Doubleword (In Alternate Space)
STF Store Floating Point

STDF Store Double Floating Point

STFSR Store Floating Point Status Register

STDFQ* Store Double Floating Point Queue

STC Store Coprocessor

STDC Store Double Coprocessor

STCSR Store Coprocessor Status Register

STDCQ* Store Double Coprocessor Queue

LDSTUB(LDSTUBA*) Atomic Load/Store Unsigned Byte  (In Alternate Space)
SWAP(SWAPA*) Swap r Register With Memory (In Alternate Space)
Arithmetic, Logical and Shift

ADD(ADDcc) Add (Modify icc)
ADDX(ADDXcc) Add With Carry (Modify icc)
TADD(TADDccTV) Tagged Add and Modify icc (and Trap on Overflow)
MULScc Multiply Step and Modify icc

AND(ANDcc) AND (Modify icc)
ANDN(ANDNCcc) AND NOT (Modify icc)
OR(ORcc) OR (Modify icc)
ORN(ORNcc) OR NOT (Modify icc)
XOR(XORcc) Exclusive OR (Modify icc)
XNOR(XNORcc) Exclusive NOR (Modify icc)

SLL Shift Left Logical

SRL Shift Right Logical

SRA Shift Right Arithmetic

SETHI Set High 22 Bits of r Register

SAVE Save Caller’s Window

RESTORE Restore Caller’s Window

33




INPUTS OPERATION

Control Transfer

Bicc Branch on Integer Condition Codes

FBicc Branch on Floating Point Condition Codes
CBccc Branch on Coprocessor Condidition Codes
CALL Call

JMPL Jump and Link

RETT Return from Trap

Ticc Trap on Integer Condition Codes

Read/Write Control Registers

RDY Read Y Register

RDPSR Read Processor State Register
RDWIM Read Window Invalid Mask
RDTBR Read Trap Base Register
WRY Write Y Register

WRPSR* Write Processor State Register
WRWIM* Write Window Invalid Mask
WRTBR* Write Trap Base Register
UNIMP Unimplemented Instruction
IFLUSH Instruction Cache Flush

FP and Coprocessor Ops

FPop Floating Point Operations
CPop Coprocessor Operations

* Privileged instuctions

Table 3-1 Instruction Set Summary

CY7C601A Internal Registers

The IU contains two types of registers, working registers (or r registers) and control registers. The r
registers are used for storage by processes and the control registers are used to track and control the
state of the IU. The r registers are contained within a large register file containing one hundred and

thirty-six 32-bit registers. Eight of these are global registers and are always accessible to a program,
and the remaining registers are accessed via register windows.

Figure 3-2 shows the register window organization

34




L [ [ [ [ =

L [

L [ C— = [—

L [ [— [

L

The register file contains eight register windows, and each window contains twenty-four working
registers. Each register window is divided into three sections called ins, outs, and locals. There are
eight registers in each of these sections. A window shares its ins and outs with adjacent windows.
The outs of the previous window are the ins of the current window, and the outs of the current window
are the ins of the next window. The windows are joined together in a circular stack where the outs of
the last window are the ins of the first window.

A current window pointer (CWP) in the processor state register keeps track of which window is
currently active. The CWP is decremented when the program calls a subroutine that causes the
processor to access to the next window, and is incremented when the processor returns to the previous
window.

Register windows may be marked as invalid in the WIM register, and interrupts may be enabled to
signal when movement into an invalid window is caused by an instruction.

Previous Window

r31

: INS
124

23

qg LOCALS Current Window

s e ———

: OUTS

r8

Next Window
INS
LOCALS
OUTS

Figure 3-2 Window Register Organization

35



Control Registers
These include the Processor State Register, the Window Invalid Mask Register, the Trap Base Regis-
ter, the Y Register, illustrated in Figure 3-3, and the Program Counter.

Processor Status i
Regi imp I ver ICC

Trap Base
Register

31 28 27 2% 23 20 19 14 13 1211 87 65 4 0
P [slpsfer] cwe |

0
[ 1]

31 1211 43210
| Trap Base Address | Trap Type [T 111

Figure 3-3 IU Control Registers

The Processor Status Register (PSR) contains a number of fields that control the processor and hold
status information. The PSR is modified by SAVE, RESTORE, Ticc and RETT instructions, and also
by all instructions that modify the condition codes. The privileged instructions RDPSR and WRPSR

read and write the PSR directly.

Bits 31:28  impl - identifies the implementation of the IU

Bits 27:24  ver - identifies the version number of the IU

Bits 23:20  icc—contains the IU’s condition code and are set by the conditions occurring during integer logic and
arithmetic operations:
Bit 23 = Negative flag
Bit 22 = Zero flag
Bit 21 = Overflow flag
Bit 20 = Carry

Bits 19:14  Reserved

Bit 13 EC - Enable Coprocessor. This feature should remain disabled

36




Bit 12 EF - Enable Floating Point Unit. This bit enables the FPU. An FP instruction will trap if the EF =
0, or if an FPU is not fitted.

Bits 11:8 PIL - identifies the interrupt levels in operation. The IU will only accept interrupts whose level is
greater than the contents of this field.

Bit7 S - Supervisor. This bit determines whether the processor is in supervisor or user mode. S = 1 selects
supervisor mode.

Bit6 PS — Previous Supervisor. This bit indicates the value of the S bit at the time of the most recent trap.

Bit5 ET - Enable Traps. This bit determines whether traps are enabled. A trap automatically resets ET.
When ET = 0, an interrupt request is ignored and an execution trap causes the IU to halt execution,

typically resulting in a reset trap.

Bits 4:0 CWP - Current Window Pointer. This field identifies the current window into the r registers.
Hardware decrements the pointer when traps are encountered and on SAVE instructions. The pointer
is incremented on RESTORE and RETT instructions

Window Invalid Mask Register
The Window Invalid Mask Register (WIM) allows windows to be marked as invalid in the WIM
register. Movement into an invalid window caused by a SAVE, RESTORE or RETT instruction will

cause a window overflow or underflow interrupt to be generated.

Trap Base Register
The Trap Base Register contains three fields that generate the address of the trap handler when a trap

occurs.
Bits 31:12  Trap Base Address. This contains the most significant 20 bits of the trap table address.

Bits 11:4 Trap Type. This field is written by hardware at the time of a trap. It provides an offset into the trap
table.

Bits 3:0 Reserved - Should always be written as zeros.

Y Register
The Y Register is used to store the partial product during multi-step instructions.

Program Counter
The Program Counter (PC) contains the address of the instruction being executed. The next Program

Counter contains the address of the next instruction to be executed.

37



Traps and Interrupts

The CY7C600 design supports a full set of traps and interrupts. They are handled by a table that
supports 128 hardware and 128 software traps. Even though floating-point instructions can execute
concurrently with integer instructions, floating-point traps are precise because the FPU supplies (from
the table) the address of the instruction that failed.

The IU supports both asynchronous traps (interrupts) and synchronous traps (error conditions and trap
instructions). Traps transfer control to an offset within the trap table. The base address of the table is
specified by the Trap Base Register and the offset is a function of the trap type. Traps are taken
before the current instruction causes any changes visible to the programmer and can therefore be
considered to occur between instructions.

Table 3-2 shows priority levels of the exceptions and traps.

Interrupts from the peripheral devices within the SPARCbook are controlled and prioritized by the
Mbus to Pbus interface (MPI) ASIC (see Chapter 5).

Memory Protection

The CY7C600 design provides memory protection, which is essential for smooth multitasking
operation. Memory protection makes it impossible for user programs to corrupt the system, other user
programs, or themselves.

The IU supports a multitasking operation system by providing user and supervisor modes. Some-+
instructions are privileged and can only be executed while the processor is in supervisor mode.
Changing from user to supervisor mode requires taking a hardware interrupt or executing a trap
instruction. This instruction execution protection ensures that user programs cannot accidentally alter
the state of the machine with respect to its peripherals.

38

— 1 1 1

- -1 -1 1 = - -/ - 1 1



L I | L l |

L

L

TRAP PRIORITY OFFSET
Reset 1 7?
Instruction access exception 2 0x01
Illegal Instruction 3 0x02
Privileged Instruction 4 0x03
FP Disabled 5 0x04
CP Disabled 5 0x24
Window Overflow 6 0x05
Window Underflow 7 0x06
Unaligned Memory Address 8 0x07
FP Exception 9 0x08
CP Exception 9 0x28
Data Access Exception 10 0x09
Tag Overflow 11 0x0A
Trap Instruction 12 0x80 OxFF
Interrupt Level 15 — Microcontroller/Floppy Disk 13 Ox1F
Interrupt Level 14 — Battery Power Low 14 Ox1E
Interrupt Level 13 — MPI (Counter/timer 0) 15 0x1D
Interrupt Level 12 — MPI (Counter/timer 1) 16 0x1C
Interrupt Level 11 — MPI (Keyboard buffer) 17 0x1B
Interrupt Level 10 — Mouse 18 Ox1A
Interrupt Level 9 — Serial Port 19 0x19
Interrupt Level 8 - Modem 20 0x18
Interrupt Level 7 — Ethernet Interface 21 0x17
Interrupt Level 6 - VGA Controller 22 0x16
Interrupt Level 5 — Hard Disk Interface 23 0x15
Interrupt Level 4 — MPI (FIFO Full/Empty) 24 Ox14
Interrupt Level 3 — MPI (FIFO Op Complete) 25 0x13
Interrupt Level 2 — Microcontroller/Floppy Disk 26 0x12
Interrupt Level 1 — Centronics Interface 27 0x11
Implementation Dependent Exceptions Dependent 0x60 - 7F

Table 3-2 Trap Table

39




FLOATING POINT UNIT

The FPU provides high-performance, [IEEE STD-754 compatible single- and double-precision
floating-point calculations for CY7C600 systems and is designed to operate concurrently with the IU.
All address and control signals for memory accesses by the FPU are supplied by the IU.

Overview

The IU and FPU are able to execute instructions simultaneously. The FPU performs all floating-point
calculations with its own set of registers and arithmetic and logic unit.

Floating-point instructions are addressed by the IU, and are simultaneously latched from the data bus
by both it and the FPU. Floating-point instructions are concurrently decoded by the IU and the FPU,
but do not begin executing in the FPU until after the instruction is enabled by a signal from the IU.
Pending and currently executing FP instructions are placed in an on-chip queue while the IU continues
to execute non-floating-point instructions.

Floating Point Registers

The FPU contains thirty-two 32-bit floating-point F registers. These form a 32 x 32-bit register file.
The contents of these registers are transferred to and from external memory under control of the IU
using floating-point load/store instructions. Addresses and control signals for data accesses during a
floating-point load or store are supplied by the IU, while the FPU supplies or receives the data.

Figure 3-4 F Registers

40

1 1 1 1



L - - [

[ C__

L

L=

C—

L

Although the FPU operates concurrently with the IU, a program containing floating-point computa-
tions generates results as if the instructions were being executed sequentially.

Figure 3-4 illustrates the F registers.

A single F register is able to one single-precision operand, two are required to hold a double precision
operand, and four are required to hold and extended precision operand.

Floating-Point State Register

The floating-point status register (FSR) contains mode and status information about the FPU. It is
read and written using the STFSR and LDFSR. Figure 3-5 illustrates the FSR.

FPU State
Register

3130 29 28 27 232221 1716 1413121110 9 5 4 0
[ro|rRe | 1M k| f fodi foc | aexc | cexc |
/7

AU

Figure 3-5 FSR

Bits 31:30

Bits 29:28

Bits 27:23

Bit 22

Bits 21:17

RD - Rounding Direction. These select the rounding direction for floating-point results:
00 = Nearest

01 =Zero

10 = +o0

11 = —o

RP - Extended Rounding Precision
00 = Extended

01 = Single

10 = Double

11 = Unused

TEM - Trap Enable Mask. These are enable bits for each of the five floating-point exceptions:
Bit 27 = Invalid Operation Trap Mask

Bit 26 = Overflow Trap Mask

Bit 25 = Underflow Trap Mask

Bit 24 = Divide by Zero Trap Mask

Bit 23 = Inexact Trap Mask

AU - Abrupt Underflow. When set, this bit causes denormalized FP operands or results to be rounded
to zero.

Reserved

41



Bits 16:14  ftt — Floating-Point Trap Type. These indicate the type of exception:
0 = None
1 = IEE E Exception
2 = Unfinished FP operation
3 = Unimplemented FP operation
4 = Sequence Error
5-F =reserved

Bit 13 gne —Queue Not Empty. When set, this bit indicates that the FP queue is not empty following an FP
exception or STDFQ instruction was executed.

Bit 12 Reserved

Bits 11:10  fcc — FPU Condition Codes. These bits are updated by FP compare instructions:
00 = fsrl = fsr2
01 =fsrl < fsr2
10 = fsrl > fsr2
11 =fsrl ? fsr2 (unordered)

Bits 9:5 aexc — Accrued Exception Bits.
Bit 9 = Accrued Invalid Operation
Bit 8 = Accrued Overflow
Bit 7 = Accrued Underflow
Bit 6 = Accrued Divide by Zero
Bit 5 = Accrued Inexact

Bits 4:0 cexc — Current Exception Bits
Bit 4 = Current Invalid Operation
Bit 3 = Current Overflow
Bit 2 = Current Underflow
Bit 1 = Current Divide by Zero
Bit 0 = Current Inexact

42

1

1]

]




. [

— L [ C=Z = L

C

L [ [ [ ¢

CACHE CONTROLLER AND MEMORY MANAGEMENT UNIT

The interface between the bus, on which the IU, FPU and cache memory reside, and the Mbus, on
which the main memory and peripheral interfaces reside, is provided by a CY7C604 Cache Controller
and Memory Management Unit (CMU). This device provides translation between the 32-bit virtual
addresses used on the CPU module and 36-bit physical addresses used on the Mbus. It provides
hardware support for a demand-paged virtual memory environment for the IU. The Page size is fixed
at 4Kbytes. The CMU also manages a 64Kbyte cache memory.

Memory Management Unit

The memory management unit (MMU) conforms to the standard SPARC architecture definition for
memory management.

The MMU provides virtual to physical address translation using a translation lookaside buffer (TLB).
This is an area of specialized on-chip memory containing sixty-four Page Table Entries (PTE) as
shown in Figure 3-6.

Virtual Section Physical Section

/\ /\
/7 \N/

VA(31:12) | CXN(11:0) | PPN(35:12) |C [M]| ACC(2:0) ST(1:0)

<|/

64 TLB Entries

VA@31:12) | CXN(11:0) | PPN(35:12) |C |[M| ACC(2:0) ST(1:0) |V

Figure 3-6 Translation Lookaside Buffer

Each entry within the TLB contains a virtual section and a physical section. The virtual section
comprises a virtual address field, for comparison with VA(31:12), and 12-bit context field, for
comparison with the contents of the context register.

43



The physical section contains the physical address field, PPN(35:12), a cache control bit, a modified
bit, a 3-bit access protection field, a translation control field, and a valid bit.

Bits (31:12) of the virtual address are translated and expanded to physical address bits (35:12).
During an access by the IU, the virtual address supplied by the IU and the contents of the context
register are compared with the virtual section of all sixty-four entries simultaneously. When a match
is found (or a “hit” occurs), the physical address field PPN(35:12) supplies the address of a 4Kbyte
page in memory. Virtual address bits A(11:00) from the IU are passed through unchanged to supply a
byte offset. This is illustrated in Figure 3-7. Each hit TLB entry is checked for memory protection
attributes automatically and violations are reported to the IU as memory exceptions.

31 % 2 18 17 12 11 0
Vinual Address|  Index1 | Index2 | Index3 | PageOffser | [ Context register |
TBEmy | yamioe) |vagsas| vaaray | axwaio)  [acceo|stao|v]
by by
Hit Detection Logic
vy A 4
ASI(5:0) B
RD - Access Violation
LDSTO »

Figure 3-7 Address Translation

If the virtual address from the IU does not match an entry in the TLB, the CMU automatically per-
forms a search (or table walk) through a translation table in main memory to obtain an address
translation.

The translation table forms a tree structure in main memory as illustrated in Figure 3-8. The Context
Pointer register provides a pointer to the context table, and the context register provides an index to
the Root Pointer, which in turn points to a level 1 page table. Index 1 from the virtual address selects
an entry within Level 1 pointing to a level 2 page table, where Index 2 selects a pointer to a level 3
table. Index 3 then selects one of the entries in the level 3 table which should point to a 4Kbyte
memory page.




L - - C=

L L [

When a page table pointer (PTP) is encountered within the tables, the search continues to the next
lower level. If a page table entry (PTE) is found, the search is terminated and the entry is stored in the
TLB. If no PTE is found at all, a synchronous fault exception is signalled to the IU.

The PTE provides a pointer to a physical page while the lower 12 bits of the virtual address provides
an offset.

The level at which a table walk terminates (i.e. a PTE is found) is related to the size of addressing
region associated with the entry. A table walk which finds a PTE in the context table corresponds to a
region of 4Gbytes. A PTE in level 1 corresponds to a 16Mbyte region, or 256Kbyte in level 2, or
4Kbyte in level 3. The virtual address bits not used to index table entries are used to supply the page
offset.

31 24 23 1817 1211 0

Virwal Address|  Index1 | index2 | index3 | offsw |
............................................................................. N
.
Context Pointer Context Table H
Register :
Level 1 Page H
Table H
] Root Pointer ;
Level 2 Page :
Lo Table
Level 3 Page
Table '
PTP H
:
PTE E

35 l 12 11 l 0

Physical Address | Physical Page Number | Byeomse |

Figure 3-8 A Three Level Table Walk in Memory

45



Figure 3-8 shows a table walk which uses three page table levels. In this example A(31:12) from the
virtual address are used to index the page tables, and A(11:0) supply an offset address into the selected
memory page

Figure 3-9 shows a table walk which terminates at level 2. In this case A(31:18) are used as index
bits, and A(17:0) provide an offset address into the selected page.

31 24 23 1817 0
Virual Address|  Index1 | Index2 | Offset |
........................................................... :
H \
Context Pointer : > Context Table ¢
Register :
H Level 1 Page \
: Table
Context Register T Root Pointer >
: Level 2 Page
H Table
: PTP >
: —» e
.
.
L}
L]
H
.
H
.
H
35 v 18 17 . 0
Physical Address [ Physical Page Number | Byte Offset |

Figure 3-9 A TwoLevel Table Walk in Memory

46

1 1 3 /0 —/J /3 1

1

—1 1



(—

L [ C= [

—

[(—

[

| I

—

Cache Controller

The cache controller provides access control for the 64Kbyte cache memory implemented on the CPU
module.

The cache is organized with 2048 cache lines of 32bytes each, as illustrated in Figure 3-10. The CMU
provides on-chip storage for 2048 cache address tags, one for each line. The tag entries can be directly
written or read by the processor.

8 x 32-bit Words
/\
/ N\ \
VA(15:5)
Line Address 64Kbyte Cache’ 2048 Lines
/
Word Address

Figure 3-10 Cache Memory Organization

During an IU read operation, virtual address bits VA(15:5) select one of the 2048 lines and, at the
same time, one of the cache tags maintained by the CMU. If the virtual address within a cache tag
matches with VA(15:5), and the context field matches with context register, a hit occurs. The cache
line represented by the valid tag is selected by the CMU and one or more of the 32bytes in the cache
line are selected by VA(4:0) from the IU. If a miss occurs the CMU reads in a new cache line from
main memory. Burst accesses are used by the CMU to fill cache lines. Burst accesses are always 64-
bits wide and always consist of an address phase followed by four data transfer phases (32bytes in
total). The IU is held until the CMU has loaded the new cache line, but this is completely transparent
to the programmer.

47



Figure 3-11 illustrates cache tag comparison by the CMU.

[ Virtual Address T Cache Line Select | Byte Select |
31 16 15 5 4 0

VA(31:16) CXN(11:0) VIM|S

VA(31:16) CXN(11:0) VIM|S

{ Context Register |

& - Cache Hit

Figure 3-11 Cache Tag Comparison

48




-

C—

-

CY7C157A CACHE STORAGE UNIT

The CY7C157A cache storage unit is a 16Kbyte x 16 SRAM CSU designed to interface easily to a
CY7C600 processor and provide maximum performance. The CSU is a specialized device which has
registered address inputs, and latched data inputs and outputs as well as a self-timed write pulse.

The device has a single clock that controls loading of the address registers, data input latches, data
output latches, pipeline control latch, and chip enable register. The chip enable is clocked into a
register and pipeline through a control register to condition the output enable. This pipeline design
allows a cache that works as an extension of the internal instruction pipeline of the IU.

Figure 3-12 shows the internal architecture of a CY7C157A CSU chip.

Wiite Ensble 0 inﬁcl & & %
& 7
Wiite Ensble | =—eefe—O Timed 1 2 Timed |
Writo : Wiite
) 16384x 8 7 16384x8

Ouput
Clock >DH;: —>  DuaOw(70)Lach

%

Ouzput Enable

Figure 3-12 CSU Internal Architecture

49



r— [

r*‘\

—— = = =

.

—

S r e

—

. C— [

L

CHAPTER FOUR
MAIN MEMORY

The SPARCbook may be manufactured with either 8Mbytes or 32Mbytes of main memory which
provides a 64-bit wide storage for the SPARC CPU. The SPARCbook’s Base board is always fully
populated with DRAM chips. It is fitted with an array of sixteen 1Mbit x 4 DRAM, if equipped with
8Mbytes of memory, or the same number of 4Mbit x 4 DRAM:s if equipped with 32Mbytes. Field
upgrades are not possible. Two additional DRAMs, of the same size as those used in the main
memory array, provide storage for parity bits generated for each byte location.

Figure 4-1 shows the architecture of the main memory.

Qe emee

ececccnnqecacns

MACH210
PLD
Uncarrectable
B¢ ] Error
% 4 1
HKHXAXKKX I’I‘I‘I‘:‘I‘Z‘I‘1‘1‘1‘1’1‘1" 4
Mbus(63:0) — Multiplexed Address and Data Bus )
crPU
....... Module

Figure 4-1 SPARCbook Main Memory

51



FUNCTIONAL DESCRIPTION

Memory Accesses

All main memory accesses in the SPARCbook are initiated by the SPARC CPU. It supports single
cycle reads and writes of 8, 16, 32 and 64bits, and also burst cycles.

Access Control and memory refresh for the main memory array is provided by a powerful program-
mable logic device (PLD) containing the equivalent of 1800 logic gates. This, in conjunction with a
custom 32-bit buffer chip, provides full addressing support for all of the SPARC CPU’s memory
access cycles.

Parity Checking

During writes to DRAM, parity bits are generated for each byte location written to. When the data is
read out again, the parity bits and the stored data are checked. Errors in any byte lane are signalled to
the PLC which in turn signals an uncorrectable error to the SPARC CPU. Parity checking is enabled

via the microcontroller (see Chapter 6), and parity error interrupts are enabled via the MPI (see
Chapter 5).

52

-3 a0 - 1 1 1

—_1 /7 3 1

~—1 1 1 —/1 3 /] 0




C— [ [ °*[C—

(— L[

—

—

L

L

CHAPTER §
MBUS TO PBUS INTERFACE

The SPARCbook baseboard is based on a dual bus architecture (see Chapter 2). The SPARC CPU and
main memory are located on the SPARC architecture standard 64-bit Mbus, and the peripheral
controllers are located on the 16-bit PC-AT style Pbus.

In the SPARCbook, transactions between these two buses are controlled by the Mbus to Pbus Inter-
face controller (MPI). This is an application specific integrated circuit (ASIC) designed by Tadpole
Technology.

Mbus s
MAD(63:00), Peripheral Space Peripheral
Address Decod ‘Address Bus
Mbus Interface PA(18:00)
; — S12byte ——
Clock Controller —— FIFO —]
and = —— (64 x 64) ——]
Power Management Unit :
Peripheral
- Data Bus
Mbus @i —| Bus Timer ] PD(15:00)
Error FIFO Count |
Timer O Preload Register ¥
Counter/Timer 0 Ml;igm“
CPU Interrupt Bus
IRL(3:0) i ’
Interrupt ot > Serial
Controller = Interface Microcontroller
% Character Buffer
External
Interrupts
IRQ(9:0)

Figure 5-1 MPI Architecture

53



INTRODUCTION TO THE MPI

The Mbus and Pbus have very diverse characteristics so that interactions between them are complex.
The Mbus is a 64-bit multiplexed data and address bus which operates at 2SMHz and is capable of
sustaining a data transfer rate of 40Mbyte/s in and out of main memory. The SPARC CPU also uses
part of the Mbus to supply control signals during the address phase of a transfer operation.

The Pbus uses separate address and data buses, and separate control lines to control transfers. It is
also very much slower than the Mbus.

The MPI contains data packing registers which allow direct 64-bit accesses by the SPARC CPU to the
8- and 16-bit peripheral controllers on the Pbus by converting 8-, 16-, 32- and 64-bit accesses on the
Mbus into the appropriate number of single cycle accesses on the Pbus. It also contains a 512byte
FIFO buffer which extends this access conversion to support Mbus burst cycles.

The MPI provides complete address decode facilities for the Pbus (the peripheral address space) and
converts the control information from the Mbus into the Pbus control signals necessary to support
accesses to the AT style peripheral controllers employed in the SPARCbook. In addition, the MPI
provides the SPARCbook with a 15 level interrupt controller and two 16-bit counter/timers

PERIPHERAL BUS INTERFACE

The MPI is the only Pbus master device in the SPARCbook, no other device is able to initiate a data
transfer cycle on the Pbus. Data may be transferred to and from the Pbus using 8- or 16-bit accesses
by one of two independent paths. The first is a direct access path into the peripheral address space, and
the second is via the internal FIFO.

Direct Operation

The direct access path into the peripheral address space takes a single transfer of 8, 16, 32 or 64bits
from the host bus and performs the corresponding number of transfers required on the Peripheral bus.
The Mbus transfers and corresponding Pbus transfers supported are shown in Table 5-1.

54

— 1 1 —1 ]

]




L [ [ [ [

C—

- [

[

On a write cycle, the MPI allows write-posting from the Mbus. It latches the data presented into
internal buffers and completes the Mbus transaction immediately, allowing the SPARC CPU to use
the Mbus for main memory accesses. In the mean time, the MPI performs the appropriate number of
write cycles to the addressed peripheral. The only possible errors on write-posted cycles are accesses
by the CPU to non-responding or illegal locations, which are immediately decoded by the MPI and
signalled as an uncorrectable Mbus error.

When the SPARC CPU executes a read operation to the peripheral address space, the MPI holds the
Mbus until the requested data has been read from the Pbus into the internal buffers and then completes
the Mbus cycle. Up to eight Pbus read operations (for a single 64-bit Mbus operation) are carried out
for each Mbus read operation.

MBUS TRANSFER PORT SIZE PBUS TRANSFER

Byte on byte boundary Byte 1 Byte transfer

Byte on byte boundary Halfword 1 Byte transfer (lower or upper)
Halfword on halfword boundary Byte 2 Byte transfers

Halfword on halfword boundary Halfword 1 Halfword transfer

Word on word boundary Byte 4 Byte transfers

Word on word boundary Halfword 2 Halfword transfers
Doubleword on doubleword boundary Byte 8 Byte transfers

Doubleword on doubleword boundary Halfword 4 Halfword transfers

Note: Halfword = 16bits, Word = 32bits, Doubleword = 64bits

Table 5-1 Conversion of Mbus Transfers to Pbus Transfers

55



FIFO Operations

The second means of data transfer to and from the host bus is by using the MPI’s internal FIFO.
Mbus transfers to and from the FIFO port are only permitted using 64-bit transfers.

FIFO operations are initiated by the SPARC CPU. To execute a FIFO operation, the SPARC CPU
must set up control registers in the MPI to specify the following parameters:

. The Peripheral address space start address

The number of bytes to be transferred

The direction of transfer (read or write)

Incrementing or static Pbus addressing

Pbus DMA (floppy disk operations only) or polled operation

A FIFO operation is started by setting the FSTART bit in the FIFO control register.

Read Transactions

After the FIFO control registers have been used to initiate a read operation, the MPI executes a series
of read operations on the Pbus, transferring the data into the FIFO. The operation is complete when
either the FIFO becomes full or the byte count in the FCOUNT register reaches zero, signifying that
the specified number of bytes have been transferred. The FIFO full and FCOUNT equals zero
conditions are signalled to the SPARC CPU with interrupts.

In polled mode operations, the data transfers proceeds at the fastest rate pennittbd by the peripherals.
In DMA mode, the DRQ/DACK lines are used to control the peripheral bus transfers. This latter mode
is intended for floppy disk transfers. ¢

Once in the FIFO, the data may be read out by the SPARC CPU using 64-bit single cycle or burst
transfers. While data may be read from the FIFO as soon as it is available, the SPARC CPU should
not read more data than has been read from the Pbus (this can be checked by using the FCOUNT
status register). Reading more data than is available in the FIFO will result in a FIFO Empty interrupt
(if it is enabled), and undefined data being returned.

Once the required number of bytes have been read by the CPU, Pbus transfers are stopped and the
host is interrupted (under software control).

Write Transactions
For a write operation the host may write up to 512bytes into the FIFO data register using 64-bit single

or burst transfers. Bursts of up to 32bytes (four Mbus data transfer cycles) are supported without wait
states.

56

1




L L C_ [

L

—

L [ [

The FIFO Control register contains full and empty flags which may be programmed to generate
interrupts. The MPI may be programmed to interrupt the CPU when the FIFO Full flag or FIFO
Empty flag in the FIFO Control register become set.

The FIFO Start bit in the FIFO Control register must be set in order to allow a FIFO operation to
proceed. Then, once the CPU writes data into the FIFO the corresponding Pbus transactions com-
mence, beginning at the address specified in the FIFO Start Address register.

A special operating mode allows data in the FIFO to be written directly to the peripheral bus (a write
operation with no data supplied by the SPARC CPU).

NOTES:
1  FIFO transfers may not be carried out over a 1Kbyte peripheral address boundary.

2 Atanytime the FIFO may be reset by asserting a bitin the System Reset Register. This causes the FIFO pointers
and counters to be reset and creates an empty FIFO.

3  Mbus transfers other than those in Table 5-1 (eg misaligned transfers) are not supported.

Peripheral Space Address Decoder

All addresses for the Pbus are decoded by the MPI. The MPI divides the Pbus address space into six
2Mbyte regions, resulting in the address map shown in Figure 5-2.

In four regions the MPI asserts the chip select for one device, while the remaining two are assigned to
provide one 8-bit region and one 16-bit Pbus I/O region. Accesses to non-responding locations will
return undefined data on reads and write to undefined locations on writes.

The MPI does not provide a chip select signal for the 82C710 UPC, which is used to provide control
of the disk and external mouse interface. This device is accessible at various locations within the 8-
and 16-bit access regions (see Chapter 7).

57



0x00CCFFFFF
8-bit Pbus Operations
0x00CC00000
16-bit Pbus Operations
0x00C800000
Real Time Clock
0x00C600000
Modem Interface
Controller
0x00C400000
Ethernet Controller
0x00C200000
VGA Controller
0x00C000000
Figure 5-2 Pbus Memory Map
58

1

—1 1



—

C_

L. - [ C

L

C— - - [ [CZ

L

C—

L

L. - =

COUNTER-TIMERS

The MPI incorporates two general purpose 32-bit counter/timers, CT0 and CT1 for software use, and
a bus timeout timer which prevents the SPARCbook from stalling due to an access to a non-respond-

ing location. These are illustrated in Figure 5-3.

CTO Interry,

Enable 1MHz

I ‘CTO Control

| CTO Count = 0 |

CTO Up Counter/Counter Current Value |

| CTO Set Count Register |
Select CT1
[ CT1 Set Count Register ] Clock source

[ CT1 Up Counter/Counter Current Value K'—'_

| CT1 Count =0 |

CT1 Control

CT1 Interru
Enable

Figure 5-3 MPI Counter Timers

59




System Timers

The two general purpose counter/timers each consist of a 32-bit up counter, a 32-bit time constant
register and a counter control register. These are clocked from a IMHz clock, internally generated by
the MPI, giving a timing resolution of 1us. The timers count up and may be used to generate an
interrupt after a programmable delay.

The timers can be chained to create a single 64-bit counter/timer. In this mode of operation, Timer 0
supplies the timing for Timer 1.

The timers may be programmed to operate in either one-shot mode or continuous mode. In one-shot

mode the timer counts up from a preloaded value and completes the count when it reaches one after
passing zero.

In continuous mode, the timer is reloaded with the preset count value each time it reaches zero and
continues counting, generating a periodic interrupt each time zero is reached.

Further information is provided in the register descriptions in this chapter.

Bus Timeout Timer

The MPI also contains a bus timeout timer (see Interrupts below). This timer monitors all Mbus
transactions. Any Mbus transaction that is not completed after detection of four CLK32K clocks
causes termination of the cycle and an Mbus Error. This corresponds to a timeout of approximately

125us. The bus timeout timer has a fixed timeout period and signals an Mbus error if this period
expires.

This facility is used for all Mbus cycles and is not limited to accesses to the MPI control registers or to
the peripheral address space.

SERIAL 1/0 PORT

The MPI contains a single channel serial interface which operates in conjunction with the
microcontroller to provide an interface to the keyboard.

1

1]

-/ 1 —/1 1

—]

] 1

-] 1 1 1

1 —/J 1



-

C— =

-

L - [ =

I I

C— [ =

Serial Input

A single serial input line receives asynchronous data at 976.6 baud (1.024ms period) from the key-
board microcontroller. Data is formatted as 8 data bits with one start bit (0) and one stop bit (1), with
the least significant bit transferred first. No other data formats are permitted. Up to three characters are
buffered by the MPI. An interrupt may be generated if there are any received characters in the buffer.

Serial Output

A single serial output line transmits asynchronous data at 976.6 baud to the keyboard microcontroller.
Data is formatted as 8 data bits with one start bit (0) and one stop bit (1). No other data formats are
permitted. A status register contains a busy bit. If the busy bit is not asserted the host may write a
single byte to the transmit register. The busy bit will be asserted until the transmitter buffer becomes
available again.

POWER MANAGEMENT FUNCTIONS

The MPI incorporates a power management unit (PMU) which controls the SPARCbook internal
clocks and power supply to the peripheral controller devices.

PM1 is used to switch off the main power to the system.

Clock Control

The MPI controls the main Mbus clock, MCLKO, to which all Mbus transactions are synchronized.
The MPI performs the following functions using the input reference 2SMHz.

Normal Operation
MCLKO & MCLK1 are generated from CLK25M and operate at 25SMHz. A 1MHz timing reference
for the counter/timers is derived from CLK25M.

Slow Operation
MCLKO & MCLKI1 are generated from CLK25M but are reduced to 12.5MHz. The timing reference

for the counter/timers remains unchanged.

61



Stop Operation
MCLKQO is stopped in the high state at the end of the cycle after the deassertion of /MRDY. MCLK1 is
output at 12.5MHz. The timing reference for the counter/timers is unchanged.

Pause Operation

MCLK]1 is not affected (remains at 12.5 or 25MHz). MCLKO can be stopped temporarily in one of
two software selectable (via the relevant CLK_CTL register bits) modes. The first is the INTPAUSE
mode. In this mode the MCLKO signal is held high (stopped) from the clock after the MAS strobe
until the clock before the MRDY or MERR cycle termination for accesses which are to the MPI.

In the second, EXTPAUSE mode, the MCLKO is held high (stopped) for a programmable number of
clocks from O (default) to 7 after the MAS cycle when the MPI is not being addressed. This is used to
conserve power during initial memory accesses. Note that in the INTPAUSE mode the Mbus timeout
will still operate to terminate the cycle if required.

INTERRUPT CONTROLLER

The MPI incorporates an interrupt controller. This consists of a priority encoder and Interrupt Mask
registers. The interrupt controller is illustrated in Figure 5-4.

Integer Unik.

ot
t 4
.

P r
br 4
“

b ¢

AN 0o =g0ONN> ~TUB @ ~dm

AP =0 ~VE~N"O D~

I.—Ul'!

i

Figure 5-4 SPARCbook Interrupt Architecture

62

1 -1 /1 1 1 ]

1y 1 1 1



C— CC .

L

— - [ [ [ — [(— (— - —

C

Table 5-2 shows the interrupt sources from the SPARCbook’s devices and from within the MPI itself.

The MPI performs a simple priority encoding of the sixteen interrupt sources to four interrupt request
lines to the SPARC CPU, IRL(3:0). The MPI external interrupts are all leve!l sensitive, and may be
individually programmed to be active high or active low. Each interrupt may be individually enabled
or masked. At power up all interrupts are masked.

After an Mbus clock stop operation (under CPU control), the activation of any non-maskable inter-
rupts will automatically restart the MCLK clock in the same mode (25MHz or 12.5MHz) as when it

was halted.

IRQ9 is a special case. It is latched internally within the MPI when it has been asserted for one clock
period. The latched signal is fed into the interrupt priority circuit. The latch (and the interrupt) is
cleared by writing to the appropriate Interrupt Acknowledge bit.

LABEL SOURCE IRL(3:0) DEVICE
IRQ9 External 1111 CMU
IRQS8 External 1110 Power Low/Floppy Disk
CT0 Internal 1101 Counter Timer 0
CT1 Internal 1100 Counter Timer 1
KBD Internal 1011 Keyboard Buffer
IRQ7 External 1010 External Mouse
IRQ6 External 1001 Serial
IRQS External 1000 Modem
IRQ4 External 0111 Ethernet
IRQ3 External 0110 Display
IRQ2 External 0101 Hard Disk
FFE Internal 0100 FIFO Full/Empty
FOP Internal 0011 FIFO Operation complete (FCOUNT=0)
IRQ1 External 0010 Power Low/Floppy Disk
IRQO External 0001 Centronics
0000 No Interrupt

Table 5-2 SPARCbook Interrupt Sources

63



INTERNAL REGISTERS

The MPI contains twenty control registers which affect the activity of the elements that the MPI
contains. In addition to the control registers, the MPI provides a twenty first location which is used to
move data into (for writes), and out of (for reads), the FIFO.

Table 5-3 summarizes the internal address map of the MPL. It provides the address, label, name and
size of each register. The size refers to the data width that must be used when accessing the register.

ADDRESS LABEL NAME ACCESS | SIZE
0x00D000000 MERR_STATUS Mbus Error Status RO 8-bit
0x00D000010 CTO_TIME Set Count CTO R/W 32-bit
0x00D000018 CTO_VALUE Current Count CTO RO 32-bit
0x00D000020 CTO_CONTROL Control CTO R/W 8-bit
0x00D000028 CT1_TIME Set Count CT1 R/W 32-bit
0x00D000030 CT1_VALUE Current Count CT1 RO 32-bit
0x00D000038 CT1_CONTROL Control CT1 R/W 8-bit
0x00D000050 INT_PEND Interrupt Pending RO 32-bit
0x00D000058 INT_POLARITY Interrupt Polarity R/W 32-bit
0x00D000060 INT_ENABLE Interrupt Enable R/W 32-bit
0x00D000068 INT_ACK Interrupt Acknowledge WO 32-bit
0x00D000070 KBDDATA Serial Receive Port RO 8-bit
0x00D00008S KBDSTATUS Serial Receive Status RO 8-bit
0x00D000090 TXDATA Serial Transmit Port WO 8-bit
0x00D000098 TXSTATUS Serial Transmit Status RO 8-bit
0x00D0O000AO | RESET Reset R/W 8-bit
0x00D0000A8 | CLK_CTL Clock Control R/W 8-bit
0x00D0000B8 | PM_PORT Power Down WO 8-bit
0x00D0000CO | FIFO_START FIFO Start Address R/W 32-bit
0x00D0000C8 | FIFO_CONTROL FIFO Control R/W 32-bit
0x00DO00OOF8 FIFO_DATA FIFO Data R/W 64-bit only

Table 5-3 MPI Internal Registers




L

C—

. . [ CCC

C__

. . = = oo

I

FIFO Control Registers

FIFO control registers are used to program the FIFO.

FIFO Start Address Register

This register is used to specify the Peripheral Space start address for a FIFO transaction. The first
Pbus transaction accesses this address. Subsequent transactions will either automatically increment the
Pbus address by the size of the port (by 1 for byte, by 2 for halfword), or retain the same address if the
FNOINC bit is set in the FIFO_CONTROL register.

Note that although only 24 bits are valid the full address may be written into this register, the upper
bits are ignored. On a read, address bit A(20) is set (signifying FIFO address). A(19) is hardwired to 0.

Bits 31:24  Reserved
Bits 23:0 Address Bits 23:0

31 30 29 28 27 26 25 24 23 0

0x00D0000CO FIFO Operation Start Address

Bits 31:24 Reserved
Figure 5-5 FIFO Start Address Register

FIFO Control Register
This register is used to to control and initiate FIFO operations. It also contains status bits to reflect the

state of the FIFO.

31 2019181716 151413 121110 9 0
<--—-- RCOUNT Bits 9:0 -—-—->

44
FSTART
FRNW

FINT

FDMA

FNOINC

Figure 5-6 FIFO Control Register

65



Bits 31:20

Bit 19

Bit 18

Bit 17

Bit 16

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9:0

Reserved

FULL
1 = FIFO is full

EMPTY
1 = FIFO is empty

FNHD
0=
1=

ENFULL
0 = Disable FIFO FUII interrupts
1 = Enable FIFO FULL interrupts

ENFEMPTY
0 = Disable FIFO EMPTY interrupts
1 = Enable FIFO EMPTY interrupts

FSTART
0 = Disable FIFO operations
1 = Enable FIFO operations

FRNW
0 = CPU write to Pbus
1 = CPU read from Pbus

FINT
0 = Disable FCOUNT equals interrupts
1 = Enable FCOUNT equals zero interrupt

FDMA
0 = Polled FIFO operations
1 = DMA FIFO operations (floppy disk only)

FNOINC
0 = Use incrementing Pbus address
1 = Use same Pbus address

FCOUNT Bits 9:0 — Number of bytes to be transferred.




CL— [ [ C—

—

L— - - [ [ -

—

L C— [ = C—

A FIFO Full/Empty interrupt will cause the FEMPTY and FFULL bits to be frozen until the register is
read by the CPU. These bits are set on a transition to the EMPTY or FULL state. They will not cause
a new interrupt if the associated state is still true after being acknowledged, or if enabled when the

FIFO is already in the Full/Empty state.

An operation is initiated by programming the FIFO Start Address register, programming the FIFO
Control register parameters and setting the FSTART bit. The FSTART bit may be set in the same
CPU as the programming of the rest of the FIFO Control register.

Initially, FCOUNT must be a multiple of 8. FCOUNT is decremented by 1 (for byte operations) or 2
(for halfword operations) for each peripheral bus read or write. The FINT bit determines whether a
transition on FCOUNT to zero causes a FOP interrupt.

FIFO Data Register

The FIFO_DATA register is used for host FIFO data transfer operations. Only doubleword (64-bit) or
32byte burst operations are allowed to this register. FIFO data will be transferred into or out of the
FIFO. Data is aligned to SPARC conventions. Full byte swapping and packing/unpacking between
the Peripheral bus and the Mbus is performed within the MPI. Note that byte swapping cannot deal
with addresses or pointers passed between the Mbus and Pbus.

Timer Control Registers

Set Count CTO (CT1) _
These are read-write registers used to set the count value for the associated counter. The value is

specified in microseconds.

e

Counter Current Value
These registers provide the current Counter Value for the associated counter. They are read only

registers, a write has no effect.

Counter 0 Control
This register provides control for Counter 0. The COSTART bit may be set in the same operation as

the setting of the rest of the control register.

Figure 5-7 Counter 0 Control Register

67



Bits 7:3 Reserved
Bit2 COCONT
0 = Counter continues on zero to 1 (one shot)
1 = Counter reloads from CTO_TIME and continues running
Bit1 COINTEN
0 = Disable interrupt on zero
1 = Enable interrupt on zero
Bit0 COSTART
0 = Stop counter
1 = Start counter
Counter 1 Control

This register provides control for Counter 1. The CISTART bit may be set in the same operation as
the setting of the rest of the control register.

0x00D000038

Figure 5-8 Counter 1 Control Register

Bits 7:3

Bit3

Bit2

Bitl

Bit 0

Reserved

CI1CONT
0 = Counter continues on zero to 1 (one shot)
1 = Counter reloads from CTO_TIME and continues running

C1INTEN
0 = Disable interrupt on zero
1 = Enable interrupt on zero

C1START
0 = Stop counter
1 = Start counter

C1LINK
0 = Count from 1MHz Clock
1 = Count from CTO0

68




— = [

—

—

— [ [ [

L

.

L =

POWER MANAGEMENT CONTROL REGISTERS

Power Management Port

This register is used to control the state of the power management line provided by the MPL. It is an 8-
bit read/write register containing one valid bit in DO. If this bit is set the PM1 line is asserted (high)
and the system is powered down.

Clock Control Register

This register performs the MCLK management for the main CPU clock. Note that the only way of
restarting MCLKO after MCLKSTOP has been asserted is by the receipt of a non-masked interrupt.
The programmer should therefore be careful to ensure that this will happen or the system will hang.

When an interrupt is received MCLKO is automatically restarted and the MCLKSTOP bit is cleared.
Note that when the clock restarts both MCLKO-1 will be restarted at 25MHz if MCLK12 is reset, and
at 12.5MHz if MCLK12 is set.

7 6 5 4 3 2 1 0
0x00DO000AS PAUSECNT I

Lo ]‘
EXTPAUSE
INTPAUSE

MCLKSTOP
MCLK12

Figure 5-9 Clock Control Register

Bit 7 TEST
Must be set to 0

Bits 6:4 PAUSECNT
001 - 111 = Number of MCLKO clock cycles to stop during EXTPAUSE.
0 = do not pause clock

Bit3 EXTPAUSE
1 = Enable EXTPAUSE clock stopping during other Mbus accesses

Bit D2 INTPAUSE
1 = Enable INTPAUSE clock stopping during MPI wait states

Bit D1 MCLKSTOP
1 = MCLKO stopped (MCLK(1 operates at 12.5MHz)

Bit DO MCLK12
0 = MCLKO and MCLK1 are 25MHz
1 = MCLKO and MCLK1 are 12.5MHz

69



Interrupt Control Registers

Interrupts Pending
This register may be read to determine which of the interrupts are pending at any given time.

Interrupt Polarity

This register is used to specify the polarity level for the external interrupts. Bits corresponding to the
internally generated interrupts are ignored and read as zero. A bit cleared to zero specifies an active
low interrupt, a bit set to one specifies an active high interrupt. The register powers up as zero.

Interrupt Enable

This register is used to specify the interrupts which may interrupt the host. Clearing a bit to zero
masks the corresponding interrupt level. A bit set to a one enables the corresponding level. All bits
power up as ze€ro.

Interrupt Acknowledge

This register is used to acknowledge the internally generated interrupt sources. It has no effect on the
external interrupt sources except for IRQ9. It is write-only and a bit is set to acknowledge the corre-
sponding interrupt. For the counter timers the interrupt will not occur again until the count transitions
to zero. For the FIFOs the empty, full or FCOUNT=0 interrupt will not occur again until the transition
to that condition happens again.

The interrupt control registers are organized as shown in Figure 5-10. Each of the interrupt request
sources is assigned to the same bit in each of the control registers.

15 14 13 12 11 10 9 8 7 6 S 4 3 2 1 0

Interrupt Pending
0x00

Interrupt Polarity
0x00D000058

Interrupt Enable 0
0x00D000060

Interrupt Acknowledge
0x00D000068 0

IRQ9 IRQ8 CT0 CT! KBD IRQ7 IRQ6 IRQS IRQ4 IRQ3 IRQ2 —T IRQ! IRQO NULL

Figure 5-10 Interrupt Control Registers FIFO Full/Empty
FIFO Operation Compl

70

-1 1 3 1 a9 - = -1 1 1



(

C—— [ [

—

L [ [ [

—

. C—

Bit 15 IRQ9 - CMU

Bit14 . IRQS8 - Low Power Warning

Bit 13 CTO - Counter Timer 0

Bit 12 CT1 - Counter Timer 1

Bit 11 KBD - Keyboard Character Buffer
Bit10 IRQ7 — Mouse

Bit9 IRQ6 — External Serial Interface

Bit 8 IRQS — Modem

Bit7 IRQ4 - Ethernet

Bit 6 IRQ3 - Display Controller

Bit$S IRQ2 - Hard Disk Interface

Bit4 FIFO FULLVEMPTY

Bit3 FIFO Operation Complete (FCOUNT = 0)
Bit2 IRQ1 - Floppy Disk Interface

Bit 1 IRQO - Centronics Interface

Bit0 NULL - No Interrupt, hardwired to 0

Serial Input/Output Registers

Keyboard Byte
This register is read-only, it contains data from the serial input port which is used to communicate

with the microcontroller (see Chapter 6). Up to three bytes are buffered in the MPI and the program-
mer is responsible for ensuring there is no overflow. A write to this register has no effect.

Note that Mousekey information passes via the Keyboard byte.

Keyboard Status
This register provides a single bit (Bit DO) that is asserted when there is valid data in the data register.
It is cleared on a data read operation to the KBDSTATUS register. If there is further data to be read it

is reasserted when that data is in the KBDDATA register.

Transmit Byte
This register is a write only 8-bit register; a read will return undefined data. Data may be written to

this register when the TXBUSY status bit is not asserted.

Transmit Status
This register provides a single bit (Bit D0) that is asserted when the transmitter is busy.

71



Software Reset Register

Bit4

Bit3

Bit 2

Bit 1

Bit 0

RESET
Reinitializes the MPI, clears FIFO and sets all I/O bits to default levels — same effect as Power On
Reset

IORESET
Asserts PRST line for 2us

FIFOSTOP
Terminates any FIFO activity, resets FCOUNT and FSTART

TST1
Test vectors - must be left at 0

TST2
Test vectors - must be left at 0

[TT11]

Bits 7:5 Resarved
RESET

IORESET e—d

FIFOSTOP-
TST1
TSTO

Figure 5-11 Software Reset Register .

72

— 1 1 1 1




L L [ I

- [ [ [ C— (— C

— [—

Error Status Register

This register provides the cause of an Mbus error generated by an access to the MPI ASIC. A read to

this register clears the register bit latches.

Bit5
Bit4
Bit3
Bit2
Bit1
Bit0

BTO MBus timeout

TYPE Invalid MBus Type Field
SIZE Invalid MBus Size Field
FNHD FIFO No Host Data Error
PFERR Pbus FIFO Setup Error
MFERR Mbus FIFO Setup Error

1 0

%%&

[11]

Bm7=6 ‘

TYPE
SIZE
FNHD
PFERR

4

MFERR

Figure 5-12 Error Status Register

73



L~ L [

[

L [ [ C— [ [ [

CHAPTER SIX
MICROCONTROLLER SUBSYSTEM

Software monitoring of battery condition, keyboard input, and control of screen brightness and
contrast are controlled by a dedicated microcontroller. This offloads these tasks from the main CPU,
allowing its processing power to be concentrated on running applications.

——
MP1 ICommands
———| 80CS1
Status Microcontroller

75



The microcontroller performs the following functions:

Keyboard interfacing

Mousekey interfacing

Power supply monitoring

Controlling the Status LEDs

System temperature monitoring
Screen brightness and contrast control
System EEPROM interfacing
Hardware reset control

The microcontroller interfaces with the CPU (or host) via the serial interface of the MPI (see Chapter
5). During normal operation, the microcontroller performs keyboard and Mousekey scanning and
monitors the power supply. On receipt of a command from the host or user command from the
keyboard it performs a number of additional functions.

Note: the host and microcontroller exchange characters which represent hexadecimal numbers. In this
manual, hexadecimal numbers are shown with the prefix Ox. The characters Ox do not form part of the
command code or the data returned.

KEYBOARD INTERFACE

The microcontroller interfaces to the keyboard via a Honeywell 380105 keyboard scanner. This
periodically scans the keyboard to detect key press events, and passes the serialized character codes
for any depressed keys to the microcontroller. The microcontroller in turn interprets characters
received and acts upon any that represent microcontroller commands, and conveys all others to the
host via the serial port of the MPI (see Chapter 5).

Key Repeat

The microcontroller provides a software programmable key repeat function which produces multiple
characters while a key remains depressed. Key depression and release are registered. A key press
causes an a character code to be returned to the host, and key release causes the same code character
to be returned but with the top bit (bit 8) set. Thus, if the code 0x33 is returned when a key is pressed,
0xB3 is returned when it is released.

76

- 1r 1 -1 1 3 1 1 31 1 1 _1



L__

— L =

L

L

L [

L . [ U r[—

L [

L

The key repeat rate is specified by two parameters: the time until repeat and the time between repeats.
These are programmable via a host command and are both measured in units of 10ms. The time until
repeat is the time from when a key is pressed until it starts to repeat. Once repeat has started, the key
code of the last key pressed will be presented to the host every time-between-repeats x 10ms.

Special Characters

Certain character combinations are intercepted by the microcontroller and used to activate keyboard
enetered user commands. These are as follow:

. Display Brightness Control
ALT and UP or DOWN together

. Display Contrast Control
ALT and LEFT or RIGHT together

. Reset Control
ALT and ESC and R together

Only the ALT depression and release codes are sent to the host during these sequences. The opera-
tions performed by these sequences are repeated at a rate determined by the current key repeat param-

eters.

Special Routines

Brightness Control
The brightness of the in-built LCD display is controlled with a digital potentiometer. This is a device

which contains a software controllable variable resistance, providing 99 (dec) steps.

The UP cursor key pressed simultaneously with the ALT key increases the brightness (decreases the
Brightness digital potentiometer value). If the key continues to be depressed the brightness continues
to be changed until the end of track is reached.

The DOWN cursor key decreases the brightness (increases the pot value)

Contrast Control
A similar digital potentiometer controls the brightness of the in-built LCD display. This facility

functions in a similar manner to the Brightness Control.

71



Reset Control

If a reset command from the keyboard is detected, the Power Supply Status bit is set to a 1 (indicating
a user initiated reset) and the System Reset Line is asserted Low for 100ms. This causes a system
reset.

MOUSEKEY INTERFACING

The Mousekey contains four force sensitive resistors (FSR); two are used to control vertical cursor
movement, and two are to used to control horizontal movement. The Mousekey is isolated from the
rest of the keyoard and is scanned separately via four channels of an LTC1093 combined data
aquisition and analogue to digital converter (ADC) chip. Each of the four channels is assigned one
FSR. The pressures exerted on a each resistor is measured in terms of a voltage and converted to a
binary value by the ADC.

When the Mousekey left hand edge is pressed, for example, pressure is increased on the left FSR and
reduced on the right FSR. The microcontroller calculates the difference between the voltages meas-
ured across the two FSRs and uses the result to determine magnitude and direction of any cursor
movement.

Mousekey Initialization

At system initialization, the Mousekey is calibrated by reading FSR voltages and storing them in
variables within the microcontroller memory. When the Mousekey is subsequently scanned, any
voltages that differ from these calibration values are deemed to be an indication of Mousekey pres-
sure. The algorithm for converting left, right, up and down voltages into mouse movements is shown
below.

Read voltage on left FSR

Read voltage on right FSR

Calculate the difference (Vright - Vleft)

If result is 0 — no horizontal motion requested

If result is positive a net right motion has been requested.
Return this as a positive X motion.

If result is negative a net left motion has been requested
Return this as a negative X motion.

78

B D

1




L

L

Vertical movements are calculated in a similar way and returned as positive or negative Y motions
respectively. The algorithm evaluates relative voltages to counteract drift in the steady state FSR
values due to thermal effects.

Mousekey Events

The microcontroller passes mouse events to the host as a sequence of four bytes, 0xFD 0xSS 0xXX
OxYY. The first byte, OxFD, indicates to the host that three mouse event bytes are to follow. The
next, 0xSS, provides the following status information:

Bit7 Y data overflow (always 0)
1 = overflow
Bit6 X data overflow (always 0)
1 = overflow
Bit$5 Y data sign
1 = negative Y motion
Bit4 X data sign
1 = negative X motion
Bit3 Event Flag
Bit2 Middle button status
1 = depressed
Bit1 Right button status
1 = depressed
Bit0 Left button status
1 = depressed

The 0xXX and 0xYY bytes represent the magnitude of the X and Y motions recorded in a particular
mouse event. The force on the Mousekey is represented by 3 bits, so the values of 0xXX and QxYY
ranges from 0x00 to 0x07. These values cannot overflow, so the X and Y data overflow bits will

—

always be 0.

Mouse Buttons

The buttons found on a conventional three button mouse are simulated using special key combinations
on the keyboard. Mouse button events are detected by the keyboard scanning routine, which is always
executed immediately before the Mousekey scanning routine. During system initialization, the Event
Flag is cleared to 0. If the keyboard scanning routine detects a mouse button event, it sets the associ-

- L [

L

ated button bits, and sets the Event Flag to indicate that the status has changed and a mouse event
packet should be sent to the host.

79



Cursor Movement Requests

After the keyboard scanning routine is complete, the mouse scan routine is called. It determines if a
net motion has been detected and if so, fills in the sign bits, X and Y data fields and sets the Event
Flag (it may already have been set by the keyboard scanning routine) to indicate a changed status.

At the end of the Mousekey scanning routine, the Event Flag is checked to see if it has been set. If it
has, a mouse event packet is sent to the host and the reserved bit is cleared.

Mouse Event Parameters

Mouse operation is controlled by two parameters: the force on the Mousekey, and the time between
successive calls to the mouse scan routine. Key pressure is quantized into eight levels, so that a light
key pressure moves the cursor in steps of one unit every time the mouse scan routine is called, and the
heaviest measureable key pressure causes the cursor to move in steps of 8 units every time the mouse
scan routine is called. The result of this is that increasing the pressure on the Mousekey accelerates
cursor motion.

Mouse scan rate is variable in units of 10ms and determines how fast the mouse moves when a
constant pressure is applied to the Mousekey. This rate is software programmable and is stored in
EEPROM to maintain its value during system power down.

HARDWARE INTERFACES

The microcontroller communcates with the host via serial port of the MPI. It provides bonuol, data
aquisition and status aquisition via four ports, each with eight 1-bit I/O ports. These are assigned as
shown in Table 6-1

Host Instruction Protocol

The microcontroller incorporates a mask programmable read-only memory which contains the
complete microcontroller firmware. The host may make various requests to the microcontroller via
the serial port of the MPI. The microcontroller receives and interprets these requests and takes the
appropriate action. It returns values (if required) to the host as characters.

The microcontroller issues the code OxFE to acknowledge all host instructions, followed by one or
more bytes as required to fulfill the request before resuming normal keyboard and Mousekey scan-
ning.

Table 6-2 outlines the request codes available to the host and the responses from the microcontroller .

80




—

(—

L

L [

 —

BIT-PORT DIRECTION FUNCTION

Port0(0) Output Keyboard Scanner Reset
Port0(1) Output Keyboard Scanner Clock
Port0(2) Input Keyboard Data

Port0(3) Input DC Level OK

Port0(4) Input Battery Level 1

Port0(5) Input Battery Level 2

Port0(6) Input Battery On

Port0(7) Input Battery Full

Port1(0) Output Parity Detect Enable
Port1(1) Output Parity Error Inject
Port1(2) - Reserved

Port1(3) - Not Used

Port1(4) - Not Used

Port1(5) - Not Used

Port1(6) Input Floppy Disk Density Status
Port1(7) Input Floppy Disk Ready Status
Port2(0) Output Bit I/O Device Control 1
Port2(1) Output Bit I/O Device Control 2
Port2(2) Output Brightness Chip Select
Port2(3) Output Contrast Chip Select
Port2(4) Output ADC Chip Select
Port2(5) Output EEPROM Chip Select
Port2(6) Output Temperature Sense Read Data
Port2(7) Output EEPROM Read Data
Port3(0) Input Serial Data From MPI
Port3(1) Output Serial Data to MPI
Port3(2) Output System Reset

Port3(3) Output Sound Beeper

Port3(4) Output Battery low LED
Port3(5) Output User LED

Port3(6) Output External LED

Port3(7) Output Interrupt CPU on Level 14

Table 6-1 Bit-Port Assignment

81




REQUEST

MEANING

VALUE RETURNED (after OxFE)

System Information

0x10

Read Ethernet Address

3bytes with Net Address.
For example, for address 0x0044FA the bytes
returned would be 0x00, Ox44, 0xFA

0x11

Read Hardware Revision

2bytes with Hardware Revision Major and Minor.
For example Rev 1.3 is returned as 0x01, 0x03

0x12

Read Controller Firmware Rev

Format as for Hardware Revision
This data is hardwired into the microcontroller
firmware

0x13

Read System MAXTEMP

Value in degrees centigrade hexadecimal
Eg 25 degrees is returned as 0x19.

0x14

Read System MINTEMP

As for MAXTEMP

0x15

Read Temperature Sensor ADC

As for MINTEMP

0x16

Read POWERCOUNT

2bytes, most significant first, giving the number of
times the SPARCbook has been powered.

0x17

Read POWERONSECONDS

4bytes seconds SPARCbook has been powered

0x18

Return Microcontroller Status

Returned byte

Bit7 Bad Checksum

Bit6 Diagnostics Fail

Bit5 Watchdog Reset (1=Watchdog Reset)
Bit4 User Reset bit (0=POR)

Bit3 Battery Full bit

Bit2 Battery On bit

Bit1 Battery Level 2

Bit0 Battery Level 1

0x19 OxNN

Read ADC channel OxNN

2 bytes containing 10-bit value.

First byte contains most significant 8 bits, second
byte contains least significant 2 bits

i.e. bbbbbbbb 000000bb

CH O0xNN FUNCTION

0 0x00 Force sensitive resistor 0
1 0x01 Force sensitive resistor 1
2 0x04 Force sensitive resistor 2
3  0x05 Force sensitive resistor 3
4 0x02 Battery Voltage sensor

5 0x03 Temperature sensor

82

— 1 —1 1




L— [

-

—

L =

C [ [ [ [—

REQUEST MEANING VALUE RETURNED
Commands
0x20 Turmn USER LED off None
0x21 Turn USER LED on None
0x22 OxNN Sound Beeper for 0xNN increments of 10ms None
0x23 OxNN Increment Brightness 0xNN times (0 - 63 hex) None
0x24 OxNN Decrement Brightness OxNN times (0 - 63 hex) None
0x25 OxNN Increment Contrast OxNN times (0 - 63 hex) None
0x26 OxXNN Decrement Contrast 0xNN times (0 - 63 hex) None
0x27 OxNN Read EEPROM register 0XNN 16-bit register Value
0x28 OxNN 0xXX 0xYY | Write EEPROM register OxXNN with data 0xXXYY | None
0x29 0xMM OxNN Rollover parameters; None
MM is initial delay in 10ms increments, OxNN is
the interval between characters in 10ms increments.
Default is 400ms and 10 chars/sec.
0x2A OxNN Mouse scan period in units of 10ms None
0x2B 0xNN Write byte 0xXNN to microcontroller port 1 « | None
0x2C OxNN Read pin values from microcontroller port 1 1-byte port value
Miscellaneous
0x30 Acknowledge Interrupt None
0x40 Enable Watchdog None
(if watchdog commands are not received at least 1
per second the system will be reset)
0x41 Disable Watchdog (default) None
0x42 Watchdog command None

Table 6-2 Host Instructions and Replies

83




Host Interrupts

If either of the battery low signals is detected low, or the external power supply is plugged in or
removed, the host is interrupted on Level 14 by setting the Interrupt Host port bit. The port bit remains
set until an interrupt acknowledge is received from the host . It is returned to its default zero condi-
tion. The host is able to read the Microcontroller Status Byte to determine the cause of the interrupt
and then take the appropriate action.

EEPROM Data

The following data is defined in the EEPROM. This is a 1024bit device treated as 128 byte locations:

Note that bytes 0-31 may be not written, they are reserved for manufacturing information.

BYTE FUNCTION COMMENT

0 Ethernet Address (serial no) low byte

1 Ethernet Address (serial no) middle byte

2 Ethemet Address (serial no) high byte

3 HW Revision — Minor Level

4 HW Revision — Major Level

5-14 RESERVED for hardware use

15 Byte Checksum for bytes 0-14

16 MAXTEMP in degrees C

17 MINTEMP in degrees C

18 POWERCOUNT byte 0 No of power up cycles
19 POWERCOUNT byte 1

20 POWERONSECONDS byte 0 No of power on secs
21 POWERONSECONDS byte 1

22 POWERONSECONDS byte 2

23 POWERONSECONDS byte 3

24 Keyboard time until repeat 10ms units

25 Keyboard time between repeats 10ms units

26 Time between Mouse scans 10ms units

27-31 RESERVED for system use Access code protected
31-63 RESERVED for system use No Access code needed
64-127 RESERVED for application use No Access code needed

Table 6-3 EEPROM Address Map

1 1 1 __

84




C— [

-

L

CHAPTER SEVEN

UNIVERSAL PERIPHERAL CONTROLLER

One of the devices implemented in the SPARCbook design to achieve its high level of integration is
the 82C710 Universal Peripheral Controller (UPC) from Chips and Technologies Inc. This single
chip provides the SPARCbook with the following facilities:

Floppy disk controller

IDE Hard disk interface
Parallel Centronics interface
Serial Port

Mouse Interface

Universal Peripheral Controller

oppy Disk Dri
(not fitted in dusl hard disk models)

Figure 7-1 UPC Peripheral Control Architecture

Host Bus N Periphoral Address Bus
Floppy D N
sk
)| Ty ™ Dun Bus o1
Registers )
Parallel Asynchronous "
Pant Serial Part Mouse Hard Disk |

Hard Disk Drive(s)

85



FLOPPY DISK CONTROLLER

The UPC contains a floppy disk controller (FDC) fully compatible with the NEC uPD72065B. An
integral 48mA floppy interface buffer allows the disk drive to connect directly to the UPC. The
SPARCbook is equipped with one 3.5" floppy disk drive in single hard disk models, but does not
contain a floppy disk drive in dual hard disk models.

Host Interface

The activities of the FDC are controlled via a set of four register locations, shown in Table 7-1.

Digital Output Register
This is a write-only register which provides drive select (bits 1:0 = 00bin), motor enable (bit 4 = 1),
DMA enable (bit 3 = 1) and reset control (bit2=1).

Main Status Register
This is an 8-bit register which contains information about current activity by the FDC.

Data Register

The data register is used by the host to issue instructions to the FDC, and by the FDC to return status
information to the host. The FDC automatically directs information to or from the appropriate internal
location.

Data Rate Register

The lower two bits in this register are used to select the data rate for the FDC. 00bin selects a
500Kbyte/s data rate.

Digital Input Register
Only bit 7 in this register is used for FDC operations. It provides the complement of the Disk Change
input pin.

ADDRESS REGISTER ACCESS

0x00CCO003F0 Unused
0x00CCO003F1 Unused

0x00CCO003F2 Digital Output Register w
0x00CCO003F3 Unused
0x00CCO003F4 Main Status Register R
0x00CCO03F5 Data Register R/W
0x00CCO003F6 Unused
0x00CCO003F7 Data Rate Select Register w

Digital Input Register R

Table 7-1 FDC Register Map
86

—1

- /1 1 41 3 1 31 1 /43 /3 /Jg —/J




L C_

- . - -

[

Floppy Disk Commands

The host controls the FDC with commands written via the Data Register at 0x00CCO003F5. There are
seventeen commands available which are initiated by a multi-byte write to the data register. The first
byte contains an operation code, and this is followed by a number of bytes containing parameter
information (the number of parameter bytes depends upon the instruction). Most commands to the
FDC entail a three part sequence consisting of the Command Phase, the Execution Phase and the

Result Phase.

Command Phase
During the command phase, the host writes an instruction byte together with the parameters required

to carry out the instruction via the Data Register. The FDC automatically determines number of
parameters required with the command byte and the order in which they should be supplied by the
host.

Execution Phase
During the execution phase, the FDC acts upon the command supplied during the command phase.

Result Phase
After execution of an instruction, the FDC automatically presents status information for the host to

read from the Data Register. The status information supplied varies according to the action carried
out.

Figure 7-2 summarizes the command set of the FDC. The bytes written during the command phase
are shown within shaded areas, next to the bytes read by the host during the associated result phase.

Key to abbreviations used in Figure 7-2:

C Cylinder HD Selected head NCN New cylinder number

D Data pattemn HLT Head load time R Record

DTL Data length HUT Head unload time R/W Read/Write

EOT End of track MF FM/MFM mode SC Sectors per cylinder
GPL Gap 3 length MT Multi-track SK Skip

H Head Number N Bytes per sector SRT Step rate time

STP Scan step STO,1,2,3 Status registers 0, 1, 2,3
USo, 1 Selected drive number

87



1 1

0 IMF[sK] 0
x | x| x| x| x | HDJUS1|US

x | x | x| x| x [HDJUS1]USO

Result Phase

Figure 7-1 FDC Instruction Summary

88




— . C= = - C—

L

L.

L

L

. [ [ [C- -

FDC Operating Modes

The FDC in the SPARCbook application only ever controls a single 3.5" floppy disk drive. The FDC
reads and write SunOS format disks, which can be either high density 1.4Mbyte disks or low density
720Kbyte disks.

Table 7-2 summarizes the disk types supported by the SPARCbook and the parameters required to
configure the FDC to correctly carry out commands.

PARAMETER HIGH DENSITY LOW DENSITY UNIT
Step Rate 3 3 ms
Head Unload Time 64 64 ms
Head Load Time 12 12 ms
Gap 3 Lengtht 0x24 0x2A bytes
Gap 3 Lengthtt 0x6D 0x50 bytes
Filler (format pattern) O0xE5 OxES -
Number of Cylinders 80 80

Sectors/track 18 9 -
Sector Size 512 512 bytes
Surfaces 2 2

Data Encoding Mode MFM MFM

t  Gap 3 for read and write commands

tt Gap3 for format command

Table 7-2 Floppy Disk Parameters

IDE HARD DISK INTERFACE

The UPC provides an interface controller capable of supporting two hard disk drives with Integrated
Drive Electronics (IDE) interfaces. The UPC also provides control of external 16-bit data buffers.

IDE Overview

IDE hard disk drives incorporate an integral controller which interprets control signals and commands
from the host, and reads data from and writes data to the disk surfaces.

IDE drives are able to support applications in PC/XT and PC/AT environments. The SPARCbook
only supports drives configured for PC/AT compatibility. One or two drives may be present, but in a
two drive system, the drives must be electrically configured as primary and secondary drives. Refer-
ence should be made to the technical literature supplied with the disk drive for information about drive
configuration.

89



IDE Interface Operating Modes

The UPC provides two IDE interface modes: the AT mode, used in the SPARCbook and the XT
mode. The mode is configured via bit 6 of the UPC Configuration Register at 0xOC. When this bit is
at ‘1’, the AT mode is selected.

The UPC IDE interface control registers are accessible in the 8-bit I/O region of the SPARCbook
memory map, and the data register is accessible within the 16-bit I/O region of the MPI’s Pbus

address map. This results in the address loactions of the IDE Task File Registers shown in Table 7-3.

Transfers between hard disk sectors and the SPARCbook main memory take place via the MPI (see
Chapter 5). The hard disk interface uses polled operations only, DMA operations are not supported.

Task File Registers

The activities of an IDE hard disk drive are controlled via a set of register locations within the integral
drive controller called Task File Registers. The UPC decodes host accesses to these registers. Table
7-3 lists the task file registers

ADDRESS REGISTER ACCESS

0x00C8001F0 Data Register R/W
0x00CCO01F1 Error Register R
0x00CCO001F2 Sector Count R/W
0x00CCO001F3 Sector Number R/W
0x00CCO001F4 Cylinder Low R/W
0x00CCO01FS Cylinder High R/W
0x00CCO001F6 Drive/Head R/W 0
0x00CCO001F7 Status Register R
Command Register w
0x00CCO003F6 Alt. Status Register R
Fixed Disk Register w
R

0x00CCO003F7 Digital Input Register

Table 7-3 Task File Registers

Data Register

The data register is the register through which all data is passed on read and write commands. All
data transfers are 16-bits with the exception of the ECC bytes transferred during Read or Write Long
commands. Data is stored on the disk least significant byte first, then most significant byte.

Error Register
This read-only register contains the status of the last executed command.

Sector Count Register
This register contains the number of sectors to be read or written during a Verify, Read, Write or
Format command. Note that a value of 0 means a 256 sector transfer.

90

—1 1 1




C— [ [ —

L [

—

—

L [

L

R (I

L~ [

Sector Number Register
This register contains the starting sector number for Read, Write and Verify commands.

Cylinder Number Registers
These registers contain the LSB and MSB of the first cylinder number where the disk is to be accessed
for Read, Write, Seek and Verify commands.

Drive/Head Register
This register contains the drive and head select bits:

Bit4 Drive select

0 = Primary

1 = Secondary
Bit 3:0 Head number

Status Register
This register contains status infromation for the drive and controller. The contents of this register are
updated at the completion of each command. Pending interrupts are cleared whenever this register is
read by the host.

Bit7 Busy

Bit 6 Ready for command

Bit5 Fault

Bit4 Seek command completed
Bit3 Ready to transfer data
Bit2 Data correction sucessful
Bit 1 Index mark detected

Bit0 Error from last command

Command Register

This register is used to pass commands to the hard disk. The commands consist of an 8-bit command
code. Execution begins immediately after this register is written. Table 7-4 shows a summary of the
executable commands and the parameters used.

Alternate Status Register
This register contains the same information as the Status Register. The difference is that reading the
alternate status register will not clear pending interrupts.

Fixed Disk Register

This register contains interrupt enable and reset control bits. Bit 3 when set holds the drive in a reset
state. If two drives are present, the second drive will be reset as well. Bit 2 when clear enables
interrupts from the hard disk drives.

Digital Input Register
This register loops back the drive select and head select of the currently selected drive. Bit 7 of this
register is used by the FDC and has no relevence to the IDE interface.

91



COMMAND NAME CODE PARAMETERS USED

(hex) SC SN CY SDH
Recalibrate 1x n n n D
Read Sector (retry) 20 y y y y
Read Sector (no retry) 21 y y y y
Read Sector Long (retry) 22 y y y y
Read Sector Long (no retry) 23 y y y y
Write Sector (retry) 30 y y y y
Write Sector (no retry) 31 y y y y
Write Sector Long (retry) 32 y y y y
Write Sector Long (no retry) 33 y y y y
Read Verify Sector (retry) 40 y y y y
Read Verify Sector (no retry) 41 y y y y
Format Track 50 n n y y
Seek Tx n n y y
Drive Diagnostics 90 n n n n
Initialize Drive Parameters 91 y n n y
Read Sector Buffer E4 n n n d
Write Sector Buffer E8 n n n d
Identify Drive EC n n n d
Power Management F8 -FD
Key:
SC = Sector Count Register; SN = sector number Register; CY = Cylinder Register; SDH = Drive Head
Register; y = Parameter is used; n = Parameter not used; D = drive parameter only; x = Dont care

Table 7-4 AT Command Summary

IDE Command Summary

Recalibrate

This command moves the heads to cylinder 0. On receipt of this command, the drive sets BSY and
moves the heads to cylinder 0. The drive waits for the seek to complete before updating its status,
resetting BSY, and generating an interrupt. If the drive cannot reach cylinder 0, it sets both the
“ERR?” bit in the Status register and the “TKO” bit in the Error register. An aborted command
response will be given if the drive is not ready. When the command completes successfully, the Task
File registers will be affected as follows:

Cylinder High 00
Cylinder Low 00
Error 00
SDH Unchanged
Sector Count Unchanged
Sector Number  Unchanged

92

— 1 1 /T 1 /7

1

1

3 1 /1 /1

1




| | L [ [

L L

L

-

C— = =

L [

L [

Read Sector

This command reads from 1 to 256 sectors, as specified in the Task File, beginning at the specified
sector. A sector count of 0 requests 256 sectors. As soon as the Command register is written, the drive
sets BSY and begins execution of the command. An ID not found error is returned if incorrect task
file parameters are passed. If the drive is not already on the desired track, a seek is initiated. When
the sector ID is located, the DRQ bit is set, and an interrupt is generated.

The DRQ bit is always set, regardless of the presence or absence of an error condition at the end of a
sector. When the command completes successfully, the Task File register contains the cyclinder,
head, and sector number of the last sector read. The sector count is zero after successful execution of

the command.

Multiple sector reads set DRQ and generate an interrupt at the completion of each sector. DRQ is
reset and BSY is set immediately when the Host completes reading the sector. If an error occurs
during a multiple sector read, it will terminate after the sector in error is transferred to the host. The
Task File indicates the location of the sector where the error occurred. The Host may then read the
Task File to determine what error has occured, and on which sector. If no error is detected, the
cylinder, head, and sector registers are updated to point to the next sequential sector.

Read Long

The Read Long command performs similarly to the Read Sectors command, except that it returns the
data and the ECC bytes contained in the data field of the desired sector. During a Read Long com-
mand, the drive does not check the ECC bytes to determine if there has been a data error. Only single
sector Read Long operations are supported. Data transfers are 16bits wide and ECC byte transfers are

8bits wide.

Write Sector

This command writes up to 256 sectors, as specified in the Task File, beginning at the specified sector.
As soon as the Command register is written, the drive waits for the Host to fill the sector buffer with
the data. There is no interrupt generated to start the first buffer fill operation. Once the buffer is full,
the drive sets BSY and begins command execution.

An ID not found error is returned if incorrect task file parameters are passed. If the drive is not
already on the desired track, an implied seek is performed. Once at the desired track, the drive locates
the appropriate ID field and writes data from the buffer, plus 7 bytes of ECC. Upon command
completion, the Task File registers contain the cylinder, head, and sector number of the last sector
written. The sector count is zero after successful execution of the command.

Multiple sector writes set DRQ and generate an interrupt each time the buffer requires filling. DRQ is
cleared and BSY set immediately when the Host fills the sector buffer. If an error occurs during a
multiple sector write, it will terminate at the sector where the error occurs. The Task File indicates the
location of the sector where the error occurred. The Host may then read the Task File to determine
which error occured, and on which sector. If an error is not detected, the cylinder, head, and sector
registers are updated to point to the next sequential sector.

93



Write Long

This command is identical to the Write Sectors command, except that it writes the data and ECC bytes
directly from the sector buffer. The drive does not generate ECC for this command. Only single
sector operations are supported.

Read Verify
This command functions identically to the Read Sectors command, except that no data is transferred
to the Host. Up to 256 sectors will be read into the sector buffer and the ECC bytes are verified.

When each sector has been verified, the Task File is updated, but no DRQ or interrupt is set until all
sectors have been verified. A value of 0 in the sector count register indicates that 256 sectors are to be
verified.

Format Track

This command formats the track specified in the Task File. Once command registers have been
written, the drive waits for the host to fill the buffer with 512 bytes of format data. After the data is
written to the data register, the drive analyzes the information for each sector and performs the
requested action for each sector. Upon command completion, the drive places status information in
the Task File and signal an IRQ to the host.

The 512 bytes of data in the sector buffer must consist of 2 bytes for each sector to be formatted. The
most significant byte of each word designates the sector to be formatted. The least significant byte
contains a descriptor indicating which action should be carried out with that sector as follows:

0x00 Format Sector Good

0x80 Format Sector Bad

0x40 Assign Sector to Alternate

0x20 Unassign Alternate Location for this Sector
Seek

This command initiates a seek to the track and selects the head specified in the Task File. The drive
need not be formatted for a seek to execute properly. When the command is issued, the drive sets
BSY, initiates the seek, clears BSY, and generates an interrupt. Only the Cylinder register is valid for
this command. The drive does not wait for the seek to complete before returning the interrupt. Seek
complete (DSC) will be set upon completion of the command. If a new command is issued while a
seek is in progress, the drive will wait, with BSY active, until the seek is complete before starting the
new command. No checks are made on the validity of the sector number. The ERR bit in the Status
register and the IDNF bit in the Error register will be set if an illegal cylinder number is specified.

94

- /7 /3 -1 —3 31 a9 —31 a0 =9 -1 —a 1 1



I

L L L [

L

I

—

C— [ [

— [

L [ L [

Initialize Drive Parameters

This command enables the host to set the head switch and cylinder increment points for multiple
sector operations. In translate mode, the logical head, sector, and cylinder numbers in the Task File
will be translated to their native physical values in the Task File. They are not checked for validity by
this command, therefore if they are invalid, no error will be reported until an illegal access is made by
some other command. Upon receipt of the command, the drive sets BSY, saves the parameters, resets
BSY, and generates an interrupt.

Read Buffer

This command allows the host to read the current contents of the drive’s sector buffer. When this
command is issued, the drive sets BSY, sets up the sector buffer for a read operation, sets DRQ, clears
BSY, and generates an interrupt. The host then reads up to 512bytes of data from the buffer.

Write Buffer

This command allows the host to overwrite the contents of the drive’s sector buffer with any data
pattern desired. Only the command register is valid for this command. When this command is issued,
the drive will set BSY, set up the sector buffer for a write operation, set DRQ, reset BSY, and gener-
ate on interrupt. The host may then write up to 512 bytes of data to the buffer.

Identify Drive

The Identify Drive command allows the host to obtain parameter information from the drive. When
the command is issued, the drive sets BSY, stores the required parameter information in the Sector
buffer, sets the DRQ bit, and generates an interrupt. The parameter words in the buffer are in hexa-
decimal format right justified as shown Table 7-5.

WORD DESCRIPTION

00 A constant - 0ASA

01 Number of fixed cylinders

02 Number of removable cylinders

03 Number of heads

04 Number of unformatted bytes/track

05 Number of unformatted bytes/sector

06 Number of physical sectors/track

07 Number of bytes in the inter-sector gaps
08 Number of bytes in the sync fields

09 Vendor Unique

10-19 Serial number

20 Buffer type

21 Buffer size (x 512 bytes)

22 Number of ECC bytes passed during read or write long commands
23-26 Controller firmware revision

27-46 Model Number

47 Number of sectors/interrupts

48 Double word transfer flag

49-255 Reserved

Table 7-5 Drive Parameters

95



Power Save Commands

In order to conserve power, these commands allow the drive to operate in modes other than fully
operational. These are: Idle Mode, in which the driveis up to speed is and ready to accept a com-
mand; Sleep Mode in which the drive is spun down with only the interface chip powered up; and
Standby Mode in which the drive is spun down with all normal electronics on.

The Power Save Commands are as follows:

0xEO Enter Standby Mode immediately.

0xE1 Enter Idle Mode immediately.

0xE2 Enter Standby Mode immediately.

O0xE3 Enter Idle Mode immediately.

0xES5 This command allows the host to check the drive power status. If it is in Active or Power Save mode,

the Sector Count register will be set to OxFF. If the drive is in, going to, or recovering from
STANDBY MODE, the Sector Count register will be set to 00.

0xE6 Enter Sleep Mode

PARALLEL PORT

The Parallel Port is compatible to the IBM XT-AT Parallel Port, with a PS/2 like extended mode for
bi-directional transfers. When the parallel port is disabled via the configuration register, all outputs
are disabled, and register contents are preserved. Upon power up, the control signals are inactive.
The status registers reflects the status signals.

Printer Interface Registers

Table 7-6 shows the registers associated with the parallel printer port. These are compatible with the
IBM PC parallel port.  All addresses for the parallel port are offset from the base address specified
during the UPC configuration process. The table shows the value contained in the parallel port
registers after a hardware reset.

The parallel port registers are accessible in the SPARCbook’s 8-bit I/O region at 0x00CC00000. The
address offset of the parallel port registers is programmable via one of the UPC configuration regis-
ters. Table 7-6 shows the addresses assigned by the resident firmware.

Data Register
Data written to this register is transmitted to the printer. Data read from this port is identical to that
which was last written by the host.

96

1

1] -1 - = 1 -3 1 1 1

1 ]




— - r_

C

I

— =

C

.

L

L

-

ADDRESS REGISTER ACCESS RESET
0x00CC00330 Data Register R/W Dont Care
0x00CC00331 Status Register R 0x80
0x00CC00332 Control Register W 0x00

Table 7-6 Parallel Port Registers

Printer Status Registers
This register contains the following status information:

Bit7

Bit6

Bit5

Bit4

Bit3

Bits 2:0

BUSY
0 = Printer busy
1 = Printer ready to accept data

ACK.
0 = Printer has received a character and is ready for another.

1 = Printer not ready

PE-Paper Empty
0 = Paper OK
1 = Paper end

SLCT |
0 = Printer not selected
1 = Printer is online

ERROR
0 = Printer Error
1 = No errors.

Reserved

Printer Control Register
The bit definitions for this register are:

Bit 7:6

Bit5

Blt4

Reserved

DIR - Parallel Control Direction

In printer mode, the direction is always out, regardless of the state of this bit.

In the extended mode:
0 = output
1 = input

IRQEN.
0 = IRQ disabled
1 = Enable IRQ when ACK changes from active to inactive

97




Bit3 SLCTIN
0 = Printer not selected
1 = Printer selected

Bit 2 INIT
0 = Start the printer (50us pulse minimum)

Bit1: AUTOFD
0 = No autofeed.
1 = Printer to generate a line feed after each line

Bit 0: STROBE
0 = No strobe
1 = Assert STROBE

MOUSE PORT

The SPARCbook features an inbuilt Mousekey on the keyboard which is controlled by the
microcontroller (see Chapter 6), and not the UPC.

In addition, the UPC provides a port which appears via a 6-pin mini-DIN connector located on the
connector panel, to which an external pointing device (such as a mouse or graphics tablet) or keyboard
may be connected.

Pointing devices provide the computer to which they are connected with position and button press
information, and external keyboards provides character information. The UPC provides a serial data
input channel and shift register to allow the host to read this information from an 8-bit data port. The
UPC also provides a clock output used by the external device to synchronize its communications.

Devices connected to the mouse port must use TTL level signals and not RS232.

Connecting RS232 devices to the mouse port may cause damage to the SPARCbook

Mouse Port Registers

The UPC contains two registers associated with mouse controller operations. These are accessible in
the 8-bit I/O region at 0x00CC00000. The offset address for the mouse registers is programmable via
one of the UPC configuration registers. The address used by the resident firmware is 0x310. Table 7-7
shows the mouse port registers.

ADDRESS REGISTER ACCESS
0x00CC00310 Mouse Port Data R
0x00CC00310 Mouse Port Status/Control R/W

Table 7-7 Mouse Port Registers

98

1]

1 —/ — /1

-/ —1 1

1 /1 1

1 1 1




. C_— C—- [C— (C—

C—

C—

L

I

Mouse Data Port
This location is read by the host to obtain data input by an external mouse.

Mouse Status and Control Register
This register contains a number of status bits and a number of control bits:

Control Bits
Bit7 Mouse Clock Enable
0 = Clock disabled
1 = Clock enabled
Bit4 Pointing Device Interrupt
0 = Disable interrupt
1 = Enable interrupt
Bit3 Pointing Device Reset
0 = Normal operation
1 = Reset device
Status Bits
Bit6 Pointing Device Clear
Bit$5 Pointing Device Error
Bit2 Pointing Device Transmit Idle
Bit 1 Pointing Device Character Received
Bit0 Pointing Device Idle
SERIAL PORT

The UPC incorporates a universal asynchronous receiver and transmitter (UART) which provides a
serial interface. This appears on the connector panel via an 8-pin mini DIN connector. Buffers
external to the UPC convert the serial channel signals to RS232C levels. The UART allows data rates
from 50 to 38400 Baud; a character size of 5 to 8 bits, with one start bit and 1, 1.5 or 2 stop bits; and

the use of even, odd or no parity.

Serial Port Registers

The UPC contains eleven registers associated with UART operations. These are accessible in the
Pbus 8-bit I/O region at 0x00CC00000. The offset address for the UART registers is programmable
via one of the UPC configuration registers. The address used by the resident firmware is 0x3F8. Table

7-8 shows the UART port registers.

99



Access to the Transmit and Receive buffers, to the Interrupt Enable register and Divisor register is
controlled by bit 7 of the Byte Format register.

ADDRESS REGISTER

Byte Format Register Bit 7 =0

0x00CCO03F8 Receive Buffer/Transmit Buffer
0x00CCO003F9 Interrupt Enable Register

Byte Format Register Bit 7 =1

0x00CCO003F8 Baud Rate Divisor LSB
0x00CCO003F9 Baud Rate Divisor MSB

Byte Format Register Bit 7 = x

0x00CCO03FA Interrupt Flag Register
0x00CCO003FB Byte Format Register
0x00CCO03FC Modem Control Register
0x00CCO003FD Line Status Register
0x00CCO03FE Modem Status Register
0x00CCO03FF Scratch Pad Register

Table 7-8 UPC Serial Port Registers

Transmit and Receive Buffers
A read from this location returns data received from the serial port. A write is used to load a byte for
transmission.

Interrupt Enable Register
This register controls the enabling of four UART interrupt sources.

Bits 7:4 Reserved

Bit3 Modem Status Interrupts
0 = Interrupts disabled
1 = Interrupt when Modem Register bits change state

Bit2 Error Status Interrupts
0 = Interrupts disabled
1 = Interrupt on error

Bit 1 Transmit Buffer Interrupt
0 = Interrupt disabled
1 = Interrupt on Transmit Buffer empty

Bit 0 Receive Buffer Interrupt
0 = Interrupt disabled
1 = Interrupt when Receive Buffer contains valid data

100

— 1 1

1




—

—

[—

C— C— [ [

—

Interrupt Flag Register
This register identifies the highest pending interrupt. It can be read to determine the source of a UART
interrupt.
Bits 7:0 Reserved
Bits 2:1 Interrupt Source
11 = Error Interrupt — highest priority
10 = Receive Buffer Full
01 = Transmit Buffer Empty
00 = Modem Status
Bit 0 Interrupt Flag
0 = Valid interrupt pending
1 = No interrupts pending
Byte Format Register

This register is used to select the character length, number of stop bits, parity control and break
control. It also contains a bit which controls host access to the Divisor registers.

Bit7

Bit 6

Bit$5

Bit4

Bit3

Bit 2

Bits 1:0

Divisor register address bit
0 = No host access to divisor registers
1 = host access to divisor registers

Break control
1 = Force TxD pin to logic 0 (break condition)
0 = TxD pin normal operation

Force Parity
0 = Force Parity Disabled
1 = Force Parity Enabled

Parity Sense
0 = Odd Parity
1 = Even Parity

Parity Enable
0 = no parity generation or checking
1 = Parity generation and checking enabled

Stop Bits

0 =1 Stop bit

1 = 1.5 if character length is 5 bits

2 bits if word length is 6, 7, or 8 bits

Character Length
00 =5 bits
01 =6 bits
10 =7 bits
11 =8 bits

101



Modem Control
This register controls the handshake lines.

Bit 7:2 Reserved in SPARCbook
Should be 0’s
Bitl RTS Control
0 = Assert RTS
Bit 0 DTR control
0 = Assert DTR
Line Status Register
This register contains information about error conditions. The following conditions are signified when
the corresponding bit is at 1.
Bit 7 Always 0
Bit 6 Transmitter Empty
Bit5 Transmit Buffer Empty
Bit4 Break Interrupt
Bit3 Framing Error
Bit 2 Parity Error
Bit 1 Overrun Error
Bit 0 Receive Buffer Full
Modem Status Register
This register contains the information about modem lines.
Bit 7 Current DCD state
Bit 6 Current Ring Indicator state
Bit5 Current DSR state
Bit4 Current CTS state
Bit3 DCD changed since this register was last read
Bit 2 Ring Indicator changed since this register was last read
Bit 1 DCR changed since this register was last read
Bit 0 CTS changed since this register was last read
UPC CONFIGURATION

A significant portion of the 82C710 circuitry is used for configuration, all of which can be performed
under software control. This permits user friendly (menu-driven) UPC configuration. DIP switches
and jumpers are eliminated meaning that it is not necessary to open the chassis to change the configu-
ration of a peripheral interface.

Since the UPC is software configured, a setup program must be run whenever the configuration is
changed. This process entails placing the UPC in configuration mode and programming the on-chip
configuration registers.

102

— 1 1 1

1 —1 1 1



— [

L [

— . - [ - =

- L [

It should be noted that although the SPARCbook provides a PC-AT style hardware environment for
the UPC, it does not use a standard BIOS implementation. The SPARCbook operating system man-
ages all device configurations and it is therefore not normally necessary for the user to access the
UPC'’s internal registers.

UPC Configuration Sequence

In order to setup or change the configuration of the UPC, two consecutive addresses are used to select
and access the internal configuration registers. These are occupied by the Configuration Register
Index (CRI) which is located at an even address and is used to point to the configuration register; and
the Configuration Access Port (CAP) which is located at the next address, and is used to write data to
the selected register.

Before these two locations can be used, however, the UPC must be placed in Configuration Mode, and
in the process an address for the CRI supplied.

The UPC is located within the 8-bit I/O region of the SPARCbook’s address map. Any address
chosen for the CRI will have to lie within this region.

The configuration sequence comprises three steps:

1 Entering the configuration mode
2 Configuring the 82C710
3 Escaping the configuration mode

Entering Configuration Mode
Assuming an address of 0x00CC00390 is selected for CRI, the following sequence would be used to
enter the configuration mode:

Write 0x55 to 0x00CCO002FA

Write 0xAA to 0x00CCO03FA

Write 0x36H to 0x00CCO003FA

Write 0xE4 to 0x00CCO03FA

(Where 0xE4 is 0x390 divided by 4)
Write Ox1B to 0x00CCO002FA

(Where 0x1B is the complement of 0xE4)

Following this sequence, the UPC is in configuration mode. If there is any departure from this se-
quence, the UPC will revert to its idle state, and the sequence will need to be started again.

103



Configuring the UPC
To access and write data to any of the configuration registers, two writes are needed.

First a pointer is written to the CRI; bit 3:0 provide the pointer to the configuration register, and bits
7:4 should be set to 0.

Following this, the data may be written to the selected register via the CAP.

Escaping Configuration Mode
To escape configuration mode, write any value into the configuration register F, as follows:

Write 0xOF to 0x00CC00390
Write 0x?? to 0x00CC00391 (?? = any value)

Configuration Register Description

There are sixteen configuration registers in the UPC. Settings are retained as long as standby power is
maintained.

These registers are not affected by the RESET signal and are set to their default state only upon power
up. Table 7-9 shows the configuration registers in the UPC with the default values upon power up,
and values loaded by the SPARCbook resident firmware required for normal operation.

OFFSET FUNCTION POWER UP SPARCbook
DEFAULT DEFAULT
0x00 Configuration 0 0x0C 0x0C
0x01 Configuration 1 0x00 0x40
0x02 Configuration 2 0x0x 0x0x
0x03 Reserved - -
0x04 UART Port Address - Unused OxFE OxFE
0x05 Reserved - -
0x06 Parallel Port Address 0x9E 0xCC
0x07 Reserved - -
0x08 Reserved - -
0x09 General Port Chip Select - Unused 0xB0 0xB0
0x0A Configuration A 0x00 0x00
0x0B Configuration B 0x00 0xFO
0x0C Configuration C 0xAOQ 0xAQ
0x0D Mouse Port Address 0x00 0xC4
0x0E Configuration E 0x00 0x00
0xOF Configuration Index - -

Table 7-9 UPC Configuration Registers

104

1 1 1 1

- 1 1 1 —3J 0 /43 —/Ja g 1 1



L - C— [C— [ *»[=

L— [ L[

N

The only registers changed by the firmware are:

Configuration Register 1
Parallel Port Address
Configuration Register B
Mouse Port Address

Configuration Register 1

Only bit 6 in this register is changed in order to configure the parallel port for printer operation. All
other bits retain their default settings.

Bit7 Reset Control
This bit determines the manner in which the Reset pin affects the serial port. The default is 0, normal
Reset.
Bit 6 Parallel Port Mode
0 = Output, printer only
1 = Bi-directional
Bit5 UART CTS Control — Not used
Bit4 UART DSR Control — Not used
Bit3 UART DCD Control — Not used

Bits 2:0 Reserved

Parallel base address
This register holds the base address of the parallel port. The contents of this register are multiplied by
4 to give the base address of the parallel port. A setting of 0xCC identifies an address of 0x330.

Configuration B
This register is used to set the polarity of the interrupts issued by the UPC. All interrupts in the
SPARCbook are prioritized by the MPI (see Chapter 5) which requires requests to be configured as

active low.

Bit7 Mouse Interrupt Polarity
0 = Active High
1 = Active Lowt

Bit6 Floppy Interrupt Polarity
0 = Active High
1 = Active Lowt

Bit5 UART Interrupt Polarity
Not used, should be 0

105



Bit4 Parallel Port Interrupt Polarity
0 = Active High
1 = Active Low?

Bit 3:0 Not Used

+- Required by SPARCbook

Mouse Port Address
This register holds the base address of the mouse port. The contents of this register are multiplied by 4
to give the base address of the parallel port. A setting of 0xC4 identifies an address of 0x310.

106




L

L [— [ [ = - [

L [

CHAPTER EIGHT
MODEM

The SPARCbook is equipped with a modem interface which allows its connection via a public
telephone system (in the US only) for data communications or facsimile transmission.

The modem interface is implemented on the base board with a two-chip set comprising the SC11075
modem access controller (MAC) and the SC11054 modem, both from Sierra Semiconductor Corpora-
tion. These provide an extremely compact and low power interface with power management facilities
to reduce power consumption when the modem is not in use.

Figure 8-1 shows the implementation of the modem interface in the SPARCbook.

RING INDICATOR

Pbus A(2:0) )
SC11075
Modem
Advanced

Controller

OFF HOOK

107



MODEM OVERVIEW

The SC11075 provides a direct interface between the host system and SC11054 modem; it incorpo-
rates an Intel 8096 equivalent processor core, supporting an AT command set; contains a built-in
16C450 equivalent UART; and contains 16Kbyte of on-chip ROM and 320bytes of RAM.

The SC11054 is a complete 2400bps (bits per second) modem IC which, when combined with the
SC11075, provides Sendfax capability of up to 9600bps.

The modem interface can be controlled using Hayes compatible commands written to the UART
section of the MAC. Commands are sent to the interface using character strings, and these are inter-
preted by the MAC's processor core and acted on appropriately.

Command characters and data for transmission onto the telephone line are written into the UART's
transmit buffer. Data received from the telephone line and status information from the MAC can be
read from the UART's receive buffer.

The modem interface operates in two modes: Command Mode or On-Line Mode. In Command Mode,
characters written to the transmit buffer are regarded as being command characters. In the On-line
mode, data written to this location (apart from the escape sequence +++) are transmitted onto the
telephone line.

8096-Like

(Cannects to Modem)

108




.

L

L [ I L— L

INTERFACE CONTROL

The host may access the UART registers within the MAC; the MAC contains a number additional
registers but these are accessible only by the internal microcontroller. The UART registers are accessi-
ble at base address 0x00C400000 and are shown in Table 8-1.

Bit 7 in the Line Control register is used as a pointer to either the transmit and receive buffers and the
IRQ Enable register, or to the Divisor Latch registers. Bit 7 must contain '0' to gain access to the
transmit and receive Buffers.

The host is responsible for managing the transmit and receive buffers. During transmit operations, the
host must supply data at a sufficient rate to ensure that there is always a new character for the modem
to transmit; the modem is unable to wait and will regard an empty buffer as an error condition and
disconnect the telephone line. During receive operations, the host must read the data in the buffer in
time for the next incoming character from the telephone line.

The Modem generates interrupts on IRQ5 when the receive buffer contains a character, when the
transmit buffer is empty, and also to signal error conditions. All interrupt requests within the
SPARCbook are maskable and are prioritized by the MPI, encoding IRQS from the modem on the
CPU level 8 interrupt request (see Chapter 5).

ADDRESS REGISTER ACCESS
00C400000 Receive Buffer R
Transmit Buffer w
Divisor Latch (LSB)? R/W
00C400001 Interrupt Enable R/W
Divisor Latch (MSB) t R/W
00C400002 Interrupt ID R
00C400003 Line Control R/W
00C400004 Modem Control R/W
00C400005 Line Status R/W
00C400006 Modem Status R/W
00C400007 Scratch Pad R/W

Table 8-1 UART Registers

Note: t+  The divisor latch can be accessed only when bit 7 of the Line Control Register is set.

109



MAC Integral UART Registers

This section describes the more significant registers in the UART, from the point of view of manag-
ing the flow of commands and data between main memory and the UART.

Interrupt Enable Register
This register contains interrupt control bits. Setting one of the interrupt enable bits has the effect of
enabling the associated interrupt request.

Bits 7:4
Bit3
Bit2
Bit 1
Bit0

Reserved

Enable Modem Status Interrupt

Enable Receiver Line Status Interrupt

Enable Transmitter Holding Register Empty Interrupt
Enable Received Data Available Interrupt

Interrupt Identification Register )
This register provides the identity of the highest priority pending interrupt condition, and a flag which
indicates whether or not there is an interrupt pending. The UART prioritizes the internal interrupt

requests as shown below.
Bit7:3 Reserved
Bit 2:1 Interrupt ID

11 = Receiver Line Status — highest priority
10 = Receiver Data Available

01 = Transmit Buffer Empty

00 = Modem Status — lowest priority

Bit0 Interrupt Pending Flag
1 = No Interrupt Pending
0 = Interrupt Pending
Line Status Register
The Line Status register contains infromation which allows the condition of the transmit and receive
buffers to be monitored.
Bit7 Reserved
Bit 6 Transmitter Empty
This bit when set indicates that both the transmit buffer and the transmit shift register are empty
Bit5 Transmitter Buffer Empty
This bit when set indicates that the transmit holding register is empty. It is cleared automatically
when the host writes data into the transmit holding register
Bit4 Break Interrupt Flag

110




L — — [ [ [ [ [ [

[—

[

Bit3 Framing Error Flag

Bit2 Parity Error

Bit1 Overrun Error

Bit0 Receiver Data Ready
THE AT COMMAND SET

This section describes the basic AT command set supported by the SC11075/1154 chipset, and the
Sendfax extended command set. Table 8-2 provides a summary of the commands supported by the

SPARCbook.
CODE DESCRIPTION
Basic AT Commands
A Go Off-hook in Answer Mode
A/ Re-execute Previous Command
AT Attention Characters
B Bell/CCITT Protocol
D Dial Telephone Number
E Command Echo
Hn Switch Hook Control
In Identification
L Speaker Volume
M Speaker Control
(0} Return to Online
Qn Quiet Command Reset Code
Sn= Writing to S-Register
Sn? Reading From S-Register
\" Enable Short-form Result Code
X Enable Extended Result Code Set
&F Fetch Factory Configuration
+++ Switch to Command Mode, but retain line connection
Sendfax Commands
#Bn Speed Control
#En Received Frame Display Format Selection
#Fn Mode Control
#Pn Number of Pages to be Transmitted
#Rn Resolution Control

Table 8-2 Hayes AT Command Set Summary

111




The modem enters the Command Mode when it is reset, when it loses contact with a remote modem,
or when it is in Data Mode and receives the escape sequence +++.

When the modem is in Command Mode, it will accept instructions in the form of command lines, and
in many instances will return responses. The Command Mode allows the modem to be instructed to
perform functions such as originating or answering a call. When the modem makes a connection with
a remote modem, it sends a connect response to the CPU.

Commands lines are written to the UART location at 0x00C400000 and responses are read from the
same location.

All commands lines begin with the characters AT (with the exception of A/), may contain one or
more commands and are terminated by a RETURN. Command lines may contain up to 40 characters,
not including spaces. All characters before AT are ignored.

Basic Command Set

A Answer Incoming Call This forces the modem to go off-hook in answer mode.

A/ Re-execute Previous Command The A/command repeats the last command. It is not pre-
ceded by the AT characters or terminated by pressing
RETURN.

AT ATention Characters These characters must appear at the beginning of all
command lines.

Bn Bel/CCITT Protocol This command selects the communication standard:
n=0 CCITT V.21
n=1 V.22/V.22bis
n=2 V.23

D  Dial Telephone Number This command causes the modem to dial up a remote
modem. The following modifiers may be added:

Pulse Dial

Touch-tone Dial

Originate Call in Answer Mode

Wait for Dial Tone

Delay a Dial Sequence

EAAY

-

112

-1 -1 -1 31 1 1 1 1

1 1 1 1 1




L

.

L

-

| I

L_—

En Echo Command Characters

Hn Switch Hook Control

In Identification

(0] Return to Online

Qn Command Response Control

Sr=n Change Register Value

Sn? Read S Register

@ Wait for Quiet

! Go On-hook

; Return to Command Mode
S=n  Dial a Stored Number

This controls whether the modem echoes command charac-
ters back to the host:

n=0 Characters Echoed

n=1 Characters Echoed

=0 Modem goes on-hook (hangs up)
=1 Modem goes off-hook to access the telephone line

This command causes the modem to respond to the host by
providing identification codes:
0 Request Product Code

=

n=1 ROM Checksum
n=2 Return OK Response
n=3 Manufacturers ID
n=4 Configuration Mode
n=33 SierralD

This command is used to return to the MAC to the Data
Mode following an escape sequence used to enter Com-
mand Mode.

This command controls whether the modem provides
responses to commands:

n=0 Return Response to host

n=1 Do Not Send Response

This command selects an S register and changes its con-
tents:

r=0-27

n=0-255

This command returns the contents of an S register:
n=0-27

113



Vn

Xn

Response Format This command is used to select the format of response
made by the modem to the host:
n=0 Single Digit Response
n=1 Extended Response

Select Extended Response Set

&F Fetch Factory Configuration This command recalls the factory settings of the modem

chipset.
Sendfax Command Set

#Bn Speed Control This command selects the initial fax transmission speed:
n=4 2400 bps
n=5 4800 bps
n=6 7200 bps
n=7 9600 bps

#En Received Frame Display Format This command selects the display format for
HDLC frames:
n=0 Disable Display of HDLC Frames
n=1 Display Frame in Binary Format
n=2 Display Frame in 2 Digit ASCII Hex Format

#Fn Mode Control This Command selects the modem operating mode
n=0 Return to Normal Mode
n=1 Enter Fax Mode

#Pn Number of Pages to be Transmitted n =0 to 255

#Rn Resolution Control This command selects the resolution used for document
transmission:

n=0 Send Document with Normal Resolution
n=1 Send Document with Fine Resolution

114

1 —1

1 1 —1 __1

—1]

R B

1 1

1] —1 —1 —1 —1 __1



—

L

[

S-REGISTERS

The MAC maintains a set of registers which can be written to and read using the S-register commands

described previously. There are twenty-eight S-Registers summarized in Table 8-3.

REGISTER FUNCTION
SO Rings Until Auto-answer Calls
S1 Count Number of Incoming Rings
S2 Escape Character
S3 Carriage Return Character
S4 Line Feed Character
S5 Backspace Character
S6 Dial Tone Wait Time
S7 Wait Time for Remot<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>