
S DOS

APPLICATION PROGRAMMERS' GUIDE

COPYRIGHT (C) 1978 SOFTWARE DYNAMICS

4th Printing

TABLE OF CONTENTS

INTRODUCTION

SECTION I: DEVICE-DEPENDENT I/O
DEVICE-INDEPENDENT I/O .

SECTION II: DEVICE DRIVERS
DEVICE DRIVER CHARACTERISTICS
DISK FILE DRIVER . • • .
DISK DEVICE DRIVER . • .
VIRTUAL TERMINAL DRIVER

OPEN & CREATE .
CLOSE • • . . .
RENAME & DELETE
READA & WRITEA
READB .. .

VTCONTROL
CC: POSITION . .
CC:DUMPBUFFERS
CC:ECHO .
CC:NOECHO
CC:W'U\P •
CC:NOWRAP
CC:IDLES
CC:TABS .
CC:SETACTBLOCK
CC:CLRINPUT .•
CC:CLROUTPUT
CC:SETREADTIMEOUT
CC:SETPROFILE .•
CC:ALTERPROFILE .
CC:WRITEEDITLINE
CC:SETFIELDSIZE
CC:SETPARAMS
CC:ACTIVATIONCK
CC:SETBAUDRATE
CC:COLORING .
CC:BACKGROUND
CC:KILLPROOF
CC:KILLENABLE
CC:SETEXCEPTIONS
CC:SETOUTPUTTIMEOUT

VTSTATUS •.
SC:GETPOS
SC:GETCOL
SC:GETEOF
SC:GETTYPE
SC:GETPARAMS
SC:GETPROFILE
SC:GETPROFILENAME
SC:GETPROFILEALTERATION

COPYRIGHT {Cl 1978

1.2

1
1

5
5
6
11
14
15
15
15
16
16
16
18
18
18
18
18
18
18
19
19
19
19
20
20
21
22
23
23
24
24
25
26
26
26
26
26
27
27
27
27
27
27
27
27
28

Software Dynamics

SC:GETFREECOUNT ..
SC:GETDA'rACOUNT ..
SC:GETOUTPUTTIMEOUT
SC:GETBAUDRATE
SC:GETTABS
SC: GETIDLES . •
SC:GETWRAP
SC:GETCOLORING
SC:GETBACKGROUND
SC:GETACTCOL
SC:ATTENTIONCK
SC: STATUSCK . .

CONTROL CHARACTERS
SWITCHES ..•..
SDOS/MT SUPPORT

MULTI-USER CONTROL FUNCTIONS
MULTI-USER STATUS FUNCTIONS

THE CLOCK: DEVICE DRIVER

SECTION III: SYSCALLS
CONCEPTS
SYSCALL FORMAT

SECTION IV: ERROR HANDLING

SECTION V: SYSCALLS - IMPLEMENTATION
IMPLEMENTATION

SYSCALL:OPEN .
SYSCALL:CREATE
SYSCALL:CLOSE
SYSCALL:RENAME
SYSCALL:DELETE
SYSCALL:LOAD .
SYSCALL:CHAIN
SYSCALL:CREATELOG
SYSCALL:CLOSELOG .
SYSCALL:DISKDEFAULT
SYSCALL:READA
SYSCALL:READB
SYSCALL:WRITEA
SYSCALL:WRITEB
SYSCALL:CONTROL

CC:POSITION .
CC:DUMPBUFFERS

SYSCALL:STATUS .
SYSCALL:WAITDONE .
SYSCALL:EXIT ...
SYSCALL:ERROREXIT
SYSCALL:SETERROR .
SYSCALL:GETERROR .
SYSCALL:DISPERROR
SYSCALL:KILLPROOF
SYSCALL:KILLENABLE
SYSCALL:DEBUG

COPYRIGHT (C) 1978

28
28
28
28
28
28
28
28
28
29
29
29
30
35
36
36
37
38

39
39
40

43

46
46
47
48
49
50
51
52
54
55
57
58
59
61
63
64
65
66
67
68
70
71
72
74
75
76
77
78
79

Software Dynamics

SYSCALL:ATTNCHECK
SYSCALL:ISCONSOLE
SYSCALL:INTERLOCK
SYSCALL:DELAY
SYSCALL:GETSERIALNUMBER

SECTION VI: SDOS CONSTRUCTION/FUNCTIONS
WRITING AND DEBUGGING USER ASSEMBLY PROGRAMS
MEMORY MAP
SDOS LOADER FORMATS . . .
SDOS LOAD RECORD FORMATS
ENCRYPTED OBJECT FILES
SDOS DISK FILE STRUCTURE
LOGICAL SECTOR NUMBERS (LSN)
CLUSTERS (LCN)
DISK FILE STRUCTURE . .
SDOS FILE STRUCTURE . .
DIRECTORY.SYS STRUCTURE
THE BOOT.SYS FILE
SERIALNUMBER.SYS
SDOS.SYS ...•
DISKMAP.SYS ...
ERRORMSGS.SYS FORMAT
BUILDING A TURN-KEY APPLICATION SYSTEM

COPYRIGHT (Cl 1978

80
81
82
84
85

90
90
91
93
93
97
98
99
100
102
105
107
113
116
117
118
120
121

Software Dynamics

NOTICE

This manual describes Software Oynamics Operating System (SOOS)
Version 1.1. Software Oynamics has carefully checked the
information given in this manual, and it is believed to be
entirely reliable. However, no responsibility is assumed for
inaccuracies.

So reserves the right to change the specifications without
notice.

**
** This manual describes software which is a proprietary product **
** of Software Dynamics (SO). SO software is licensed for use on a

single copy per computer basis, and is covered by U.S copyright
laws. Unless a written exception is obtained from SO, the soft- **
ware must be used only on the single computer whose unique, SD

**
** **
**
** **
** assigned serial number matches that for which the software was

purchased. Copying the software for any purpose other than **
**
**

** archival storage, or use of the software on other than the as- **
** signed serial numbered CPU is strictly prohibited. SD assumes **
** no liability regarding the use of the software.
** Certain software programs and data files are delivered for use

in an encrypted format. The content of such programs and data
are considered to be a trade secret of SD. Attempts or suc
cess at breaking the encryption, publication of the results of
such attempts or successes, or copying, storage or use of such a
file in clear text form will be treated as theft of a trade sec

**
**
**
**
**
** ret, and prosecuted as such.
** POSSESSION OR USE OF THIS MANUAL OR THE SOFTWARE IT DESCRIBES
** CONSTITUTES AGREEMEN'1' BY THE USER TO THESE TERMS.

**
**
**
**
**
**
**
**
**
**

**

This manual and the software it describes are the copyrighted
property of Software Dynamics.

1.1

SDOS APPLICATION PROGRAMMERS' GUIDE

INTRODUCTION

This manual gives detailed information needed by programmers
building programs to operate under SDOS 1.1. The reader should be
familiar with SDOS concepts; the SDOS User's Guide provides the
appropriate background.

This document presumes some familiarity on the part of the reader
with assembly language coding for M6800, M6801 and M6809
microprocessors. This knowledge is needed to understand fully the
implications of the SDOS System Call (SYSCALL) interface and the
rules about error propagation. Practical use of SDOS does not
generally require assembly assembly language programming, as most
programming is done in SD BASIC, which provides statements for
performing SDOS System Calls.

This document covers three main areas:

SDOS SYSCALL structure and assembly language interface

Device Independent I/O
descriptions

SDOS File System Structure

1.2

Concepts and device specific

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION I: DEVICE-INDEPENDENT I/O

DEVICE-INDEPENDENT I/O

SDOS allows user programs to view all disk files and I/O devices
as being fundamentally the same, i.e., if one can perform an
operation on a device of type x (say, LPT:), one can generally
perform that same operation on a different device of type y.

Since disk files and devices are treated essentially identical,
we will use file sometimes to mean device.

In this section, a conceptual model of how files/devices should
act is presented (later sections describe in detail the system
calls used to implement this model). SDOS is designed in such a
way that disk files conform to this model very closely;
exceptions will be noted later. Real devices such as line
printers, CRT's, Digital-to-Analog converters, etc., are made to
emulate this model as closely as possible via a device driver
routine in the I/O package; the degree of closeness depends
entirely on this driver. In many cases, it is not practical or
appropriate for a device to match the desired model; this means
that there are device-dependent (actually, driver-dependent)
limitations on this device independence.

SDOS implements files for the purpose of storing and retrieving
data. A file is assumed to consist of a sequential set of 8 bit
data bytes, with the first byte being numbered zero, the second
being number 1, the nth being numbered n-l. Each file has a
size, which is equal to the number of bytes of data stored in the
file. The data in a file can be read or written sequentially in
variable-size blocks. If new data needs to be added to the end of
a file, the file can be automatically extended. Commands exist to
allow a file to be positioned to a specified byte position in
preparation for a later read or write operation, thus providing
random access. Data can be read or written in pure binary, or in
ASCII (text) format.

A device is (usually) a physical piece of hardware capable of
retrieving and storing data, converting data to/from printed
form, etc. (some devices, such as the CLOCK:, are almost purely
software). In many cases a device is treated as a file by SDOS.
Some devices can actually store many separate data files (such as
a disk device).

User programs communicate with files via mechanisms called "I/O
channels". A channel remembers which file is being manipulated,
and where in the file that the next data transfer should take
place. Each user can have several I/O channels; typical SDOS
systems allow eight I/O channels per user. I/O channels for a
user are given numbers 3 to 255 maximum.

Virtually all operations on a file must be performed in
conjunction with an I/O channel. An initial connection is
established between a user-program specified I/O channel and a
particular file by use of a SYSCALL:OPEN (or SYSCALL:CREATE).

COPYRIGHT (C) 1978 1 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION I: DEVICE-INDEPENDENT I/O

All further operations on that file must specify the operation
desired, and the I/O channel number associated with a file. Note
that a particular file may be open on several I/O channels, thus
causing interactions between what appear to be independent
operations. The association between a channel and a file is
broken with a SYSCALL:CLOSE operation~ a channel on which this
operation is the most recently executed valid operation is said
to be CLOSED. No operations except OPEN or CREATE are valid on a
closed I/O channel.

The I/O channel has associated with it several pieces of
information: whether that channel is open or closed~ the
particular device driver which is responsible for that file~
information selecting which file on that device is to be used~
data selecting a position within that file; and a column count
(next print position on a real or simulated printing device).

When a file is first opened, the position is reset to zero
(beginning of the file). Each read or write operation on an I/O
channel advances the position for that channel by the amount of
data read/written. An End Of File condition is said to have
occurred whenever the file position on a particular channel is
equal or larger than the file size (in bytes). Note that two I/O
channels open to the same file are not necessarily positioned to
the same place within that file.

A column count is maintained for the purpose of "tabbing" (a text
concept). This column count is zeroed whenever binary data
(non-text) is read or written to a file, and adjusted to reflect
the position along an imaginary typewriter line whenever textual
data is copied to or from a file.

Operations prformed on files are done via SDOS System
(SYSCALLs). SYSCALLs specify an operation, a Write
(containing data going to a file or to SDOS) , a Reply
(where data or status from SDOS is returned), a channel
and/or operation subcode, and a reply length (RPLEN).

Calls
Buffer
Buffer
number

COPYRIGHT (C) 1978 2 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION I: DEVICE-INDEPENDENT I/O

Operations defined on files include, but are not limited to:

OPEN, CREATE, CLOSE, DELETE, RENAME, READA, READB, WRITEA,
WRITEB, CONTROL, STATUS, POSITION, GETEOF, GETCOLCNT

Other operations are device-driver specific.

OPEN is intended to associate an I/O channel with a file (device)
that already exists, for the purpose of reading (or
updating) data in that file. Data-input only devices such as
paper tape readers must be OPENed in order to read data.
All devices can be OPENed so that the device type is easily
read without knowing the kind of device being OPENed.

CREATE is intended to associate a file or device with an I/O
channel which is to be used whenever an entirely new stream
of data is to be written or stored. In particular, when a
new disk file is needed, or data sent to an output-only
device (such as a line printer) a CREATE should be
performed. Some devices, like CRT's, which are both input
and output, can be either OPENed or CREATEd.

CLOSE is used to break the association between a file and an I/O
channel, and to cause the driver for the device on which
that file resides to finish any operations on that file.

DELETE is used to delete (disk)
multiple named files. Devices
file is deleted, it cannot be
permanently lost.

files from devices that store
cannot be deleted. Once a
OPENed and its contents are

RENAME is used to change the name of a disk file, and is illegal
when directed specifically at a device.

READA and WRITEA are used to read and write ASCII (textual) data.
This is used to read data from consoles, print
printers, etc. If a file has no more room for
written, then the file is automatically expanded.
number must be given to select the desired file.

on line
new data
A channel

READB and WRITEB are used to read and write binary data to and
from devices (data stored in a form convenient for the
computer). An I/O channel number is required to select the
desired file. Some devices, like Digital to Analog
converters, can only perform Write Binary.

CONTROL operations are used to cause device-specific operations
that do not fit into the above types of operations. Typical
control operations are GETTYP (get device type), POSITION,
DUMP BUFFERS, etc.

STATUS operations are used to read device or file specific data.
Typical status data is DEVICE TYPE, FILESIZE, EOF flag and
COLCNT.

COPYRIGHT (Cl 1978 3 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION I: DEVICE-INDEPENDENT I/O

POSITION is used to change the place in the file that the next
read or write will start transferring data to or from.
POSITION affects an I/O channel, not the file itself, so
several I/O channels may be positioned to different points
in the same file. A file can be positioned anywhere past
the last data byte; this is used to expand a file. Although
POSITION operations can be performed independently of read
or write operations, it is generally more efficient to
perform both in the same step; t.o allow this, an "implied
position" operation can be added to read and write
operations.

GETEOF is used to determine if the position of a particular file
is at or past the file size (i.e., there is no more data to
read) .

GETCOLCNT is used to read back
of an ASCII text file (or
a line printer, etc.).
display is desired. Like
I/O channel dependent.

COPYRIGHT (C) 1978

the simulated print head position
an actual print head position for
This is useful when a tabular

the file position, this value is

4 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

DEVICE DRIVER CHARACTERISTICS

This section describes the actual characteristics of the device
drivers, and how operations on these drivers differ from an
"ideal" device (as described under DEVICE-INDEPENDENT I/O).

These characteristics are observable directly by the assembly
language programmer via "Syscalls". Many features of the device
drivers may be masked by a high level language such as BASIC; to
use these features, an escape to assembly language may be
required.

COPYRIGHT (C) 1978 5 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

DISK File Driver

Disk files under SDOS implement virtually all aspects
file handling as described under Device-Independent
section details exactly the operations implemented by
Disk File Driver.

of general
I/O. This
the SDOS

An SDOS disk file can physically contain as few as zero data
bytes, and as many as the remaining free space after an
SDOSDISKINIT. SDOS keeps track of disk file sizes accurate to
the byte. Apparent file size may be much larger than the
actually allocated disk space; such a file is said to be
I'sparse'l.

Disk files may be allocated "dense"ly or "sparse"ly. A dense
file is one in which data clusters are allocated for each data
byte whose position is less than the file size. A sparse file
may have a position (with a smaller value than the file size) for
which no data cluster is allocated (data read from this area of
the file appears as zeroes).

An OPEN is used to open a disk file (that must already exist) for
reading and/or update. If the file does not exist, an error will
occur. A CREATE will CREATE a new disk file which will supersede
the old version of the file when the new file is closed. The new
file will contain zero data bytes after creation. A new file
cannot be created if the old file is write protected, or a new
file by that name is being created.

Any OPEN or CREATE that specifies a filename that does not
contain an explicit device identifier will be automatically
assumed to be a disk file on the default disk (DISK:). Also, any
filename that is prefixed by a disk device name, and does not
consist solely of the device name is assumed to be the name of a
disk file on the specified disk.

For the form of disk file names, see the section on DEVICE and
DISK FILE NAMES. Disk file names may include a parenthesized
integer; this integer is used by CREATE to' allocate enough disk
space at file creation time to contain the number of data bytes
specified by the integer. This has two advantages: first, it
decreases the amount of time needed to allocate the space to the
file (it is cheaper to allocate all at once than to allocate
several little pieces when SDOS discovers it needs them) and it
increases the probability the allocation of the file on the disk
is contiguous, which decreases random access time to the file. No
error is given if there is not enough disk space to satisfy the
request. OPEN will parse but ignore the size.

If CREATE is used to make a new disk file, and there is an old
file by the same name, the old file must not be delete or write
protected or an error will occur and the new file will not be
created (nor will the channel be opened). Also, no file by that
name may be CREATEd simUltaneously (i.e., in psuedo-BASIC,

COPYRIGHT (Cl 1978 6 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

CREATE #l,"X"
CREATE #2,~X"

will result in an error). Otherwise, the new file is created,
and the channel is opened. As long as the newly created file is
still open on the channel on which it was created, that new file
is in the state of "being CREATEd". If an old file with the same
name does exist, an OPEN SYSCALL executed after the CREATE,
looking for the same file, will open the old file. If the system
crashes before the new file is closed, the old file will be
unaffected in any way. Even after the new file is closed,
channels still open to the old file will not notice any
difference. When the last channel OPEN to the old file is closed,
the space for the old file is returned to free disk space.

Example:

TIME
I
2
3
4

5

6

OPERATION
OPEN #1, "ABC"
CREATE #2, "ABC"
OPEN #3, "ABC"
CLOSE #2, "ABC"

OPEN #4, "ABC"

CLOSE in, #3

ACTION
Opens o'ld ABC
CREATEs a replacement
Opens old ABC
Marks old verson of ABC
as deleted
Opens file generated at
time 2
Deletes old ABC

CLOSEing a disk file causes changes to the file size, protection,
and other characteristics to be updated on the disk. IF THE
SYSTEM CRASHES WHILE THE FILE IS OPEN, THESE CHANGES ARE LOST
(NOT RECORDED IN THE DIRECTORY). If the disk file is newly
created, and is not replacing another by the same name, closing
will make its name appear in the directory. If the file is newly
created, and it is a replacement for a file that already exists
(i.e., one by the same name), then the new file will replace the
old in the directory, and the disk space allocated to the old
file will be returned to free space as soon as no other I/O
channels remain open to the ol(~ version of the file. Disk space
allocated to a file beyond the file size will be returned to the
free disk space pool when a file is closed.

RENAME is used to change the name of a disk file. RENAMEing a
disk file to its own name is legal, and can speed up later OPENs
of that file since a rename causes the file name to be re-hashed
into the directory. Refer to hash-lookup description of files.
A disk file cannot be renamed if it is write protected, or a file
by that name already exists, or a new file by that name is being
created.

COPYRIGHT (Cl 1978 7 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

DELETE is used to free the space being used by a disk file and
remove the filename from the directory. A file cannot be deleted
if it is delete or write protected, or if a new version of the
file is being created.

READA performs exactly as specified by SYSCALL:READA. READAing
through a large, sparse portion of a file may take an excessive
amount of time due to the automatic suppression of all the zero
bytes found in the sparse area. WRITEA, WRITEB, and READB match
the SYSCALLs exactly. If an error occurs during a read or write,
the file position may not be advanced properly.

CONTROL operations available on disk files are the following:

CC:POSITION
Used to set file position before a read or write operation.
See also SYSCALL:WRITEx and SYSCALL:READx.

CC:DUMPBUFFERS
Forces all data related to the file back to the disk media,
so it is recorded permanently in case of a later crash.

CC:SETFILEDATE
Sets the creation/update date of the file. The date supplied
must be in the same format as returned by a SYSCALL:READB to
the CLOCK: device. Note that the file date is automatically
updated whenever a WRITE or CC:SETFILESIZE operation is
applied to a file.

CC:SETFILEPROT
Sets the file protection byte to the byte supplied. See
DIRECTORY.SYS for structure of file protection byte. If the
BACKUP protection bit is set, it will be cleared if any
RENAME, CC:SETFILESIZE, or WRITE operation occurs. If the
DELETE protection bit is set, the operations RENAME, DELETE,
WRITE and CC:SETFILESIZE will not be allowed.

CC:SETFILESIZE
Sets the file size to the current file position. This
operation can be used to extend a file (the extension will
be sparse until written) or to truncate a file (data written
beyond the file position given by the file size will become
inaccessible, and data clusters that were allocated beyond
that point will be returned to the pool of free clusters
when the file is closed).

CC:POSITIONTOEND
Sets the file position equal to the file size; has the same
effect as as a CC:POSITION applied to the result of an
SC:GETFILESIZE. Generally used when extending a file is
desired.

COPYRIGHT (Cl 1978 8 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

STATUSes obtainable from a disk file are:

SC:GETPOS
Read position of file.

SC:GETCOL
Get file column number. This value is zeroed by a
CC:POSITION or READB/WRITEB and adjusted as data bytes are
read or written in ASCII mode. The disk file driver advances
the column count by one for any visible character
read/written; decrements by one if ASCII:BS is encountered;
zeros the column count if ASCII:CR is encountered; advances
the column count to the next multiple of 8 if ASCII:HT is
found; and leaves the column count alone for all other
codes. The value of the column count at a particular point
in a file thus depends on the last operation of a file; it
is intended only for use with sequential ASCII reads and
writes.

SC:GETEOF
Returns EOF hit
file size. EOF
overwritten, or
positioned with

SC:GETTYFE

flag. EOF is set if positioned at or past
also set when last byte of file is read or

file is extended. EOF is reset when file is
a positioning value less than the file size.

Returns device type of DVTYF.FILE. See SDOSUSERDEFS.ASM.
All devices (drivers) are able to return a device type.

SC:GETFILESIZE
Returns the position of the
file, plus 1. If file has
zero.

SC:GETPARAMS

last data byte written to the
no data written in it, returns

Returns data about the file, such as sector size in bytes,
and the cluster size.

SC:GETFILEDATE
Returns the creation/update date of the file in the standard
system date format (same format as a SYSCALL:READB would
return from the CLOCK:). device.

SC:GETFILEPROT
Returns the protection byte currently associated with the
file. See DIRECTORY.SYS description for format of protection
byte.

COPYRIGHT (Cl 1978 9 Software Dynamics

SDOS APPLICATION PRuGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

No other status is obtainable from a disk file.

SDOS will allocate data clusters to a file automatically whenever
a write request to a non-allocated part of a file occurs (it does
not allocate from the current end of file up to the point of the
write; it simply leaves that part of the file sparse). A cluster
allocated in a formerly sparse part of a file is automatically
zeroed to preserve the "zero" property of the part not modified.

SDOS attempts to allocate data clusters contiguously (with
respect to Logical Cluster Numbers) to minimize scattering of the
file over a disk and to minimize sequential processing time. If
absolutely contiguous allocation is not possible, SDOS allocates
the closest free LCN that starts a contiguous block of
BOOT:MIDALLOC free clusters.

The SDOS disk file driver keeps track of OPENed (CREATEd) files
via File Control Blocks. FCBs are in one-to-one correspondence
with open files (not channels), and contain what amounts to a
DIRECTORY.SYS entry. In particular, the FCB holds the amount of
disk space allocated to a file and its apparent size. If a file
is extended on one channel, the extension will be apparent
immediately on a different channel on which that file is also
open because of the shared FCB.

Disk sectors are kept in a pool of sectors to minimize disk reads
of fr~quently accessed data. Data written into a file will be
immediately available through another I/O channel on which that
file is open because the (modified) disk sector in the pool is
shared. Modified sectors in the pool are written back to the
disk as space is required to bring in another disk sector
according to a Least Recently Used discipline. The oldest sector
on the queue will be written back if its disk is free.

These side effects of the FCBs and the disk sector buffer pool
are subtle but desirable because it is appropriate that different
programs be able to share a file and its contents exactly as it
is in any instant in time. Many disk operating systems do not
provide this exact sharing capability, and consequently make it
hard to build a set of programs that interact through a common
data base.

SDOS optimizes sequential I/O to disk files via "read-ahead".
Whenever data from a particular sector of a disk file is fetched,
SDOS pre-reads the next sector of that disk file into the sector
pool. The read-ahead happens in parallel with processing of data
from the first sector. This scheme decreases sequential file
processing time, and lowers the cost of reading records that span
sector boundaries to an acceptable level.

COPYRIGHT (C) 1978 10 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

DISK Device Driver

The SDOS disk device driver allows access to the entire cont~nts
of a disk as though it were a single, large file. This facility
is generally only used by utility programs to initialize, check
out, and repair the file structure on a disk, but it may also be
used to squeeze out the last ounce of available disk space, to
cut down access time to a large file, or to read/write disks
compatible with the drive but intended for other disk operating
systems.

Disk device drivers may also be used to perform operations on the
device itself, such as to dismount a disk.

A disk device driver
whose name consists
are illegal until
this protects the
programs since they

is OPENed when SDOS is asked to OPEN a file
only of a disk name. (Writes to the device
a CC:UNLOCKDISK call is made to enable this;

file structure against damage from casual
typically don't issue this call.)

A disk device which has been DISMOUNTed recently will have a Map
Algorithm of :0001. If the disk device is already mounted (i.e.,
has been used for disk file operations), then the map algorithm
will be that given by the BOOT.SYS file on the disk.

The disk device driver treats CREATE calls exactly like an OPEN.

CLOSEing a disk device simply disassociates the I/O channel
number, and otherwise does nothing.

RENAME and DELETE operations directed to a disk device will cause
an error.

READA and READB act as described under SYSCALLs; the contents of
the disk are treated as a single, large stream of bytes. WRITEA
and WRITEB act as described (once enabled by CC:UNLOCKDISK),
however, a disk device cannot be "extended" when more space is
needed, so writing off the "end" of the disk device will cause an
End of File error, and the written data will be lost.

Access to sectors may be obtained by positioning a disk device to
a byte position which is a multiple of the sector size for that
disk.

COPYRIGHT (C) 1978 11 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

Disk device drivers support the following CONTROL operations:

CC:POSITION
To position for later reads/writes.

CC:DUMPBUFFERS
This control operation will cause all modified sectors
belonging to the disk to be written back to it. It will
also cause information changed in FCBs of files open on that
disk to be written back. Information in FCBs for newly
created but not yet closed files is NOT written ba~k to the
disk. This is not a substitute for a DISMOUNT control
operation. No parameters are needed.

CC,UNLOCKDISK
This enables WRITEA and WRITEB to work properly on a disk
device. If CC,UNLOCKDISK is not issued after OPENing a
disk, and prior to a write, a "disk is software write
protected" error will occur. Requiring this control
operation to write on the disk device prevents accidental
writing to a disk device. CLOSEing the disk device
re-enables the write protection. No parameters are needed.

CC:DISMOUNTDISK
This operation is used to make SDOS let go of a disk
entirely so it may be removed from the drive. An implied
DUMPBUFFERS occurs. If there are any (new or old) disk
files OPEN on that disk, an error will occur and the
dismount operation will not take place (one should
repeatedly issue dismounts until no errors are detected; a
disk I/O fault on a dismount will probably require
SDOSDISKVALIDATE to repair the disk). The disk I/O driver
will be called so that it may physically eject the disk or
perform other needed cleanup. A successful dismount also
turns off the FORMAT mode switch in the disk sector I/O
driver. The map algorithm is set to :0001 if the dismount
succeeds.

CC:SETMAPALGORITHM
This allows the 16 bit Map Algorithm for the disk to be
changed. An implied CC:DUMPBUFFERS occurs first; if there
are any disk files OPEN on that disk, an error will occur.
If any error occurs, the map algorithm will not be changed.
The map algorithm is passed in the WRBUF of the SYSCALL
block.

CC:FORMAT
CC:FORMAT
intended
drivers.
devices.

:OPYRIGHT (Cl 1978

is used to switch into "blind write" mode,
for disk formatting purposes. See Disk I/O
This operation may not be available on all disk

12 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

Any other CONTROL code is simply passed by the SDOS Disk Device
Driver to the Disk Sector I/O driver for its use.

STATUS information
following:

obtainable from a disk device is the

SC:GETPOS
As described under SYSCALLs

SC:GETCOL
As described under SYSCALLs

SC:GETEOF
As described under SYSCALLs

SC:GETPARAMS
Returns NBPS (number of bytes per sector), NSPT (number of
sectors per track), NTPC (number of tracks per cylinder),
and NCYL (number of cylinders) each as 2 byte values. See
SDOSUSERDEFS.ASM for details on format of result.

SC:GETFILESIZE
Returns the size of the disk in bytes; equal to
NBPS*NSPT*NTPC*NCYL (the product of the sector size in
bytes, and the number of sectors on the disk).

SC:GETTYPE
Returns DVTYP.DISK

SC:GETLASTBADLSN
Returns the Logical Sector Number of the disk sector which
last caused a Seek, Read or Write error. The LSN is
returned as 3 bytes; an LSN of :FFFFFF means "no bad LSN".
Executing SC:GETLASTBADLSN, CC:DISMOUNT, or
CC:SETMAPALGORITHM causes the value to be reset "to no bad
LSN". This STATUS is intended primarily for use by
SDOSDISKVALIDATE.

SC:GETERRORSTATS
Returns error statistics collected by the disk driver
selected. Such error statistics record counts and disk
controller status after each failed attempt by the driver to
perform a seek, read or write operation, and the the LSN of
the sector involved when the failed attempt last occurred.
Since the disk drivers retry failed attempts, nonzero error
statistics can occur and yet the system will still function
without error; such errors are known as "soft" errors and
are only an indication that some difficulty may be present.
Executing SC:GETERRORSTATS, CC:DISMOUNT or
CC:SETMAPALGORITHM causes the value to be reset "to no bad
LSN". This STATUS is intended primarily meant for display
by the DISMOUNT command.

COPYRIGHT (cl 1978 13 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

VIRTUAL TERMINAL DRIVER
(CONSOLE:, LPT: and Other ASCII-Oriented Serial Devices)

This section describes SDVTIlC, known as the "Virtual Terminal
Driver". The Virtual Terminal driver is intended to allow an
applications program to operate with the majority of
display-oriented display units (terminals), without knowing
physical terminal characteristics. Inasmuch as printer devices
and terminals have a great deal in common., with respect to
output, the secondary intent of the VT driver is to give the
application the same uniform view of printer devices.

This is accomplished by defining a set of display-oriented
operations for an imaginary (virtual) terminal. The application
controls the terminal with this set of operations, giving no
regard to the type of physical terminal which may be ultimately
used. At time of program execution, the operations commanded by
the application are mapped into equivalent operations which the
physical terminal can perform.

In the event that an applications programmer desires to
explicitly reference a feature peculiar to a particular terminal,
he may use installation-dependent CONTROL or STATUS calls, or the
binary operations READB and WRITEB to bypass the general nature
of the VT driver. In so doing, however, that program becomes tied
to a particular terminal and is no longer portable to all
terminals serviced by the VT driver.

The VT driver provides keyboard entry, line input editing, and
text display functions. For CRTs, the VT driver also provides a
standard method of dealing with cursor positioning, data entry
via fields, and various screen attributes (denoted as "Coloring"
in this document) thus making display-oriented applications
portable over a wide variety of terminals.

For each virtual terminal device, the VT driver presents an
indefinitely long input or output byte stream to the application.
The path of input, from typist to application, travels through
several territories, before reaching its destination. Keystrokes
are first collected in a type-ahead buffer. When a request for
data is made (via a READA or READB, for instance), characters are
removed from the type-ahead buffer, in the order received, and
assembled in the input line buffer. a1aracters are moved from
the type-ahead buffer to the input line buffer, up to and
including the character which terminates the buffer filling
process. All subsequent data requests are satisfied from this
line buffer, until it has been exhausted; then, the type-ahead
buffer is again referenced. If the type-ahead buffer is empty,
then input is taken from the keyboard, a keystroke at a time. The
type of the last data request (READA, READB, etc.) determines how
the type-ahead buffer is filled. If the binary mode has been
selected (the last request was a READB), then all keystrokes are
faithfully stored in the type-ahead buffer. On the other hand,
if the ASCII mode has been selected (the last request was a READA

:OPYRIGHT (C) 1978 14 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

or CC:ACTIVATIONCK control call), the parity bit is stripped from
all characters; certain control characters are assigned special
meaning (see Control Characters in this section) and are not
stored in the type-ahead buffer. Editing of the input line is
performed at the time of character transfer from the type-ahead
buffer to the input line buffer: if a READA or a CC:ACTIVATIONCK
control call initiated the transfer, then the input line buffer
is filled in ASCII mode and line editing is performed; otherwise,
the data is transparently copied through the input line buffer to
the RDBUF specified by the request. When ASCII mode keystrokes
are being stored in the type-ahead buffer, switch requests, such
as ~A, ~C, ~S, and ~P (to name a few), are serviced immediately,
and are not retained in the type-ahead buffer.

Associated with each virtual terminal device is a "Device Profile
Block". The DPB customizes the terminal to operate with specific
manufacturers' devices so that standard SDOS operations are
converted to equivalent device-specific operations. This allows
application programs to position cursors, "color" the screen or
screen regions, or update and erase the screen without kL~wing
the specific device type. A system command, SDOSSET, can be used
to change which device profile is in use; some profiles are
"malleable"; i.e., changeable, so even devices with properties
not handled by standard DPBs in a system can be accommodated.
There are also special control calls to allow an application to
select or modify particular profiles.

A terminal may be OPENed or CREATEd, using the device name
I'CONSOLE:", "PORTl:", "PORT2: " , etc.; a printer to "LPT: " ,
"LINEPRINTER:", etc. Doing an OPEN or CREATE sets the ASCII
activation set to <CR> only, sets the tabs to 8, 16, 24 .•.. up
to 132, performs CC:ECHO and CC:KILLENABLE control calls, and
sets the background color to "black" (see CC:BACKGROUND). CREATEs
to non-ready devices are aborted with a "Device Not Ready" or
"Printer Not Ready", depending on whether the device was a
console or printer, respectively; this prevents applications from
outputting data to un-ready devices in a way which is convenient
to test. A terminal/printer may be open on several channels
provided that all channels belong to the same task; output
display by the terminal is exactly what would be seen if the I/O
requests had been all directed to one channel in the same order.

CLOSE disassociates the I/O channel from the driver. For
printers, if part of a line has been printed, the VT driver will
complete the line by effectively WRITEAing ASCII:CR; if a partial
page has been printed, it will finish the page by effectively
WRITEAing ASCII:FF, thus assuring that each use of a printer
leaves the paper aligned at top of form for the next use. CLOSE
finally does an implied CC:DUMPBUFFERS, and gives an error if the
device times out.

RENAME and DELETE operations are illegal.

COPYRIGHT (cl 1978 15 Software Dynamics

SDOS APPLICATION PROGRAMNERS' GUIDE
SECTION II: DEVICE DRIVERS

READA and WRITEA are the normal 1/0 modes used with the terminal,
and match the SYSCALL specification. A READA causes the
characters to be taken from an input line buffer maintained by
the driver. When the input line is exhausted, and a READA is
issued, the driver processes characters from the type-ahead
buffer, placing regular keystrokes in the input line buffer,
performing editing as directed by control keys. and performing
echoing for the typist's benefit. A'Z read from the type-ahead
buffer will cause an End of File condition to occur. Parity is
stripped, leaving only 7-bit ASCII codes. C~aracters are not
taken from the input line buffer until activation has been
signaled. READA terminates when an activation character is
encountered, or RDBUF has no room for the next character. In
the latter case, an "Activation Not in Buffer" error is returned,
along with as much data as RDBUF can hold. READA must be done in
line mode: a non-line mode request for more than zero bytes will
result in an "Illegal Device Operation" error;' READA non-line
mode for zero bytes is accepted for backwards compatibility
reasons to allow change of mode from Binary reads to Ascii reads.

As a general rule, SDOS uses a single <CR> character to represent
<CR><LF> as a pair. Line feeds are not an acceptable alternative.

When a READB is issued, keystrokes are accumulated in the input
line buffer (and the type-ahead buffer, as necessary), with
neither echoing nor pre-processing of any kind, The exact key
codes generated by the terminal hardware are passed directly to
the application, including the parity bit. READB is terminated
when the reply buffer is filled. WARNING: an unsatisfied READB to
a VT device cannot be aborted; we do not recommend using this.

If the last operation upon the terminal was READA, then most
control keys, including ASCII:ESC and ASCII,RUBOUT cause various
actions to be taken by the VT driver; these keystrokes are not
passed to the application. If READB was last issued, no special
interpretation of any keystroke is made; all keystrokes are
placed in the type-ahead buffer for processing by the
application. READA and READB perIni t a 0-byte read request for the
purpose of changing input modes. See section on Control
Characters for a complete list of the control characters, and
their actions, upon both input and output.

:OPYRIGHT ecl 1978 16 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

WRITEA causes text to be output to the terminal. All characters
are first stripped of the "parity" bit (bit 7), and then
inspected to determine their interpretation. Printing characters
are sent to the device. Tab characters are expanded according to
the tab table assigned to each terminal. ASCII:CR characters
cause an ASCII:LF and a variable number of idle characters to be
output after them. ASCII:FF (form) characters cause CRT screens
to be cleared, and cause printers to move to top-of-next-page.
Other control characters are generally printed as A C , where c is
the keystroke used with the control key. See Table of Control
Characters for a complete list of the control characters, and
their actions, upon both input and output.

WRITEB causes the bytes to be sent to the terminal exactly as
specified in the write buffer, including the "parity" bit. No
linefeeds or idles are inserted. The logical column count is
zeroed, and the VT driver assumes it no longer knows the location
of the cursor (the application must issue a CC:POSITION or
perform an implied positioning call before the VT will know where
the cursor is again).

COPYRIGHT (C) 1978 17 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

The VT driver supports the following control operations:

CC:POSITION
The positioning information is treated as a cursor position
of the form R*256+C, where R is the desired row (0 is the
top row), and C is the desired column (0 is the leftmost
column). Any value which would cause the cursor to position
off the display, will result in an Illegal Device Operation
error, and the cursor will not be moved. Positioning the
cursor of a hardcopy terminal (display depth is zero) or a
printer is not permitted, and will result in an Illegal
Device Operation error. Note that SYSCALL:READA,
SYSCALL:READB, SYSCALL:WRITEA and SYSCALL:WRITEB all allow
implied positions in SCBLK: EXT ENS ION, so that a single call
can both position the cursor and do I/O.

CC:DUMPBUFFERS
This is generally a no-op, since the driver dumps characters
to the device as fast as it can; it does check for a device
timeout. No parameters are needed.

CC:ECHO
This enables echo on READA. No parameters are needed.

CC:NOECHO
This shuts off echo on READA. No parameters are needed.

CC:WRAP
This enables line wrapping when a line exceeds the display
width.

CC:NOWRAP
This disables line wrapping when a line exceeds the display
width: the line is truncated, and the cursor is left on the
same line, following the last character displayed.

CC:IDLES
This sets the number of idles to be transmitted after a <CR>
or <LF>. The first byte in WRBUF is the idle count (0 is
legal), the second byte in WRBUF is the character after
which the idles are to follow. If the second byte is not
present, idle trigger defaults to <LF>. A character other
than <CR> or <LF> will cause an "Illegal Device Operation"
error. This information is not changed by OPENs, CREATEs, or
CLOSEs. Note that the current profile must be either
malleable or hardcopy (an option which must be SYSGENed into
the I/O package); otherwise, a Profile Not Malleable error
will be returned.

Caveat: Some terminals will behave differently for <LF><CR>
than for <CR> <LF > .

COPYRIGHT (C) 1978 18 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

CC:TABS
This sets tab stops for tab simulation. The WRBUF must hold
a string of bytes, each byte specifying the next tab stop.
Each successive byte must contain a column number larger
than the previous one. When the terminal is first opened,
tab columns are set at every eighth column, up to 132
columns (0 is the first column). Up to 16 tab stops may be
set; if too many are supplied, an "Illegal Device Operation"
error will result. If the order of the tab stops is
incorrect (not monotonically increasing), an "Illegal Device
Operation" error will be returned, and the old tab settings
will be undisturbed. Since CONSOLE: devices tend to stay
open for long periods of time, CONSOLE: tab settings have a
tendency to remain in effect long after needed.

CC:SETACTBLOCK
This specifies a non-standard set of activation characters.
The non-standard set is specified with a vector of 128 bits
(arranged in WRBUF as 16 bytes), corresponding to the ASCII
character set. The least significant bit in the first byte
corresponds to character code 00, and the most significant
bit of the 16th byte corresponds to character code :7F.
When a bit is set, the corresponding character is
interpreted as a non-standard activation character; when the
bit is reset, the standard interpretation applies (see the
chart of Control Characters, below). The activation set is
restored to the standard interpretation (all bits reset) by
OPEN and CREATE. When marked as activation characters,
control characters and ASCII:RUBOUT are never echoed, while
printing characters echo only if echo is enabled. Note that
<CR> is always an activation character -- marking it as a
non-standard activation character only changes its echoing
characteristics (as a standard activation character, it
echoes if echo is enabled; as not-standard, it does not
echo) .

CC:CLRINPUT
This clears the input
useful when input,
required.

line and type-ahead buffers. This is
following an abnormal condition, is

CC:CLROUTPUT
This clears the output buffer. It
when the output buffer for a device
device is very slow; otherwise,
quickly anyway.

COPYRIGHT (C) 1978 19

is generally useful only
is very big, or the
the buffer will empty

Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

CC:SETREADTIMEOUT
This sets a timeout on a subsequent READA or CC:ACTIVATIONCK
control call. The timed period begins when the subseql1ent
input operation is issued. When the timed period has
expired, the input operation is terminated with a "Timed
Input Expired" error, and the data input thus far is
returned in the RDBUF supplied by the input operation. The
length of the period is expressed in 60ths of a second, as a
16-bit value. Note that the period allowed is only
approximately what is specified, but is guaranteed to be
longer than the value given. The value is found in WRBUF,
and WRLEN must be 2.

CC:SETPROFILE
This selects a new device profile, which includes a function
mapping VT operations to physical terminal operations.
Selection of a profile sets default device width, depth and
output timeouts; it specifies how the device will position
the cursor, clear the screen, erase to end of line, and go
to new lines; it controls how "coloring" is to be displayed,
etc. Such a profile generally represents a particular model
of CRT/printer. The new profile replaces the old profile,
and is retained until changed or the system is re-booted.
Some profiles are malleable and may be somewhat altered to
accomodate devices for which there is no specific profile
(see below). As the malleable profile is a 'template, any
alterations are retained with the device, rather than with
the profile. Selection of a new profile will cause previous
alterations to be lost. WRBUF contains one number, which is
the profile "name". Specification of a profile not sysgenned
into the I/O package will result in a "No such Profile"
error. Wru,EN must be 1. This call is normally only used by
the SDOSSET program. For a list of profile names, see the
documentation for SDOSSET or the file IOVTDPBS.ASM.

Note that adding a new profile requires changes to the I/O
package.

COPYRIGHT (Cl 1978 20 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

CC:ALTERPROFILE
This alters the currently selected profile (see above), if
it is malleable; if it is not, a "Profile Not Malleable"
error is returned. The alterations are confined to defining
a cursor-positioning sequence, an erase to end of line
(EEOL) sequence, and a home and clear screen (CLEAR)
sequence. An "Illegal Device Operation" will be given if
the parameter supplied are unreasonable. Note that the
cursor positioning sequence contains, in place of the row
and column numbers, the offsets to be added to the row and
column numbers supplied by the application; thus, the cursor
positioning sequence could be used, by itself, to position
to location (0,0). More extensive alteration must be
accomplished by defining a new profile and incorporating it
into a newly-generated system.

WRBUF must contain the following data:

ALTERPROFILE:CPLEN

ALTERPROFILE:CPSEQ

ALTERPROFILE:CPIDLES

ALTERPROFILE:ROWDISP

ALTERPROFILE:COLDISP

ALTERPROFILE:CLLEN

ALTERPROFILE:CLSEQ

COPYRIGHT (C) 1978

significant length of cursor
positioning sequence following; 1
byte in range 3 to 4. If this
length is < 3, then the VT driver
will output '@@' instead of a
cursor position.

cursor position sequence, which
includes the row and column
offsets; 4 bytes

number of idles to follow cursor
positioning sequence; 1 byte

displacement into cursor
positioning sequence of row number;
1 byte

displacement into
positioning sequence of
number; 1 byte

cursor
column

significant length of CLEAR
sequence following; 1 byte in range
o to 4. If 0, a CLEAR sequence
will be simulated by generating
enough ASCII:LFs to move to the top
of a page if a printer device (page
depth can be changed by
CC:SETPARAMS). This is a useful
device if a system has different
size paper forms, and no forms
control tape.

CLEAR sequence; 4 bytes

21 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

ALTERPROFILE:CLIDLES

ALTERPROFILE:EEOLLEN

ALTERPROFILE:EEOLSEQ

number of idles to follow CLEAR
sequence; 1 byte

significant length of EEOL sequence
following; 1 byte in range 0 to 4.
If 0, the sequence will be
simulated.

EEOL sequence; 4 bytes

ALTERPROFILE:EEOLIDLES number of idles to follow EEOL
sequence; 1 byte.

CC:WRITEEDITLINE
This appends the contents of WRBUF to the end of the input
line buffer as if the typist had entered that data. A
subsequent READA or CC:ACTIVATIONCK control call will cause
the data to be displayed, in the usual fashion, and the
typist may edit the data until an activation character is
entered. Note that using the CC:NOECHO control call, prior
to invoking CC:WRITEEDITLINE, will inhibit that data from
being displayed at the time of the READA or CC:ACTIVATIONCK
control call. An activation character may be present in
WRBUF, but will prevent the typist from editing characters
prior to the activation character: activation will occur
immediately. If WRLEN is greater than the space available in
the input line buffer, or data follows an activation
character in WRBUF, an Illegal Device Operation error is
returned and no data is transferred to the input line
buffer.

If present, the syscall block extension contains a cursor
position at which the cursor should be left, after the data
has been echoed by the input operation; otherwise, the
cursor will be left at the end of the data supplied in
WRBUF.

When a field has been explicitly defined (see the
CC:SETFIELDSIZE control call, below), the I-byte syscall
extension is the column number at which the cursor is to be
placed, at the time of the READA or CC:ACTIVATIONCK control
call; if that column is in the middle of a tab expansion,
the cursor will be positioned following the expanded tab.

COPYRIGHT (C) 1978 22 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

CC:SETFIELDSIZE
This defines an input field for a subsequent READA or
CC:ACTIVATIONCK control call. WRBUF contains the field
width. The field width must be at least 1 and no greater
than the width of the display. If the field width is 0, or
exceeds the limits of the display, a "Bad Field Width" error
will be returned, and the field definition will not be made.

Unless any of the cursor control keys for moving left,
right, up, and down have been designated activation
characters, they may be used to position within the defined
field. When an attempt is made to position the cursor
beyond the boundary of the field, that character is treated
as an activation character and the operation is terminated;
the terminating cursor control character is appended as the
activation character, and the cursor is not moved. An
SC:GETACTCOL status call may be issued to determine the
exact column of exit. If any of the cursor control
characters is designated an activation character, then that
character cannot cause a field exit condition, and will
activate immediately upon use.

The field definition terminates upon field exit, or entry of
an activation character. If the field, at the time of the
input operation, is not contained completely within the
display width, that input operation will terminate with an
"Bad Field Width" erx-or and the field input mode will be
cancelled. 'CAC will cancel any outstanding field
definition.

CC: SETPARfu'lS
Sets the width (1 byte) and the depth (1 byte) of the
display; this overrides the default from the device profile
chosen. Zero depth means that the terminal is not a paging
device and will print AL when given a form feed character.

COPYRIGHT (C) 1978 23 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

CC:ACTIVATIONCK
This is used to enable keyboard input without causing the
program to suspend operation. CC:ACTIVATIONCK returns an
"Activation Received" error if an activation character is in
either the input line buffer or the type-ahead buffer. If no
activation character is present in either buffer, the input
line buffer is filled from the type-ahead buffer, unless
this has already been done by a previous call of
CC:ACTIVATIONCK. A READA issued following an "Activation
Received" error will always return immediately with the data
requested and/or an error appropriate to a READA (If ~C~C
has been seen while the SDOS/MT and KILLPROOF flags are set,
a "Program Killed" error will be returned; otherwise, ~C~C
will result in the program being killed.) *Once the
CC:ACTIVATIONCK control call has been issued, subsequent I/O
requests (with the exception of CC:ACTIVATIONCK, status
requests, and SYSCALL:READA) will result in an "I/O In
Progress" error. This state is exited by issuing a READA
upon receipt of an "Activation Received" error. A
CC:SETREADTIMEOUT control call issued prior to the initial
CC:ACTIVATIONCK can be used to limit the time spent in this
state. When the timed period expires, the next
CC:ACTIVATIONCK will return an "Activation Received" error,
and the subsequent READA will return the expected "Timed
Input Expired" error, along with any data received prior to
the expiration.

* See the section on SDOS/MT support for a caveat that
applies to this note.

CC:SETBAUDRATE
This call is used to change the baud rate of a device.
WRBUF contains a 16 bit unsigned integer representing the
exact baud rate desired (rounded to an integer). An
"Illegal Device Operation" is returned if the baud rate
cannot be changed, or cann0t be changed to the specified
value.

COPYRIGHT (C) 1978 24 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

CC:COLORING
For the purposes of this control call, a "color" is that
which change~ the appearance of text without changing its
meaning or s~ze. This call supports the myriad available
features dealing with display appearance: these include, but
are not limited to: color, intensity, underscoring, and
blinking. It explicitly does NOT handle characters whose
size is non-standard (i.e., double-width or double-height)
for the device. l6 bits of data, found in WRBUF, specify the
desired display mode for subsequent output: all display
characteristics must be specified by the same control call
at one time.

The mode change is made immediately, and the mode is saved
for later use by the position control call. All characters
output via WRITEA are "colored" according to the last color
selected by this call. When a position control call is
made, the "zero" coloring is selected (see CC:BACKGROUND,
below), the positioning is performed, and the coloring
selected by CC:COLORING is re-instated.

CC:COLORING does not cause the cursor to move (some
terminals violate this, due to their design deficiencies).

Two bytes in WRBUF are used to specify the display modes.
The first byte i.s divided as follows: 2 bits for intensity,
1 bit for blink, 1 bit for underscore, 1 bit for reverse
video, 3 bits for (inverted) color (1 bit each for "not
red", "not green", and "not blue"). The second byte contains
3 bits for selecting alternate Roman character sets; the
remaining bits are undefined and must be zero. The default
color of "zero" (both bytes zero) selects the standard
Roman character set, standard intensity, no reverse video,
no underscore, no blink, and the color white (i.e., the
display mode obtained for virtually all "dumb" CRTs). The
"zero" color is automatically selected by OPEN.

Although this control call is recognized by all systems, its
actual implementation will vary according to the particular
terminals being supported; in the simplest of cases, it will
be implemented as a NOP.

COPYRIGHT (cl 1978 25 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

CC:BACKGROUND
A "background" color is the color displayed in all screen
locations which do not contain a character.

CC:BACKGROUND selects the default coloring to be used when
the display is cleared, or when cursor positioning is to be
done (see CC:COLORING, above). The required byte of data is
found in WRBUF and is of the same format as for the first
byte of CC:COLORING, above. A black background (hex :07) is
automatically selected by OPEN.

Although this control call is recognized by all systems, its
actual implementation will vary according to the particular
terminals being supported; in the simplest of cases, it will
be implemented as a NOP.

CC:KILLPROOF
This is used to KILLPROOF a specific VT input device. What
that means is that ·C·C and 'D will be rejected with a beep
when they are entered. ·C while killproof clears the
type-ahead buffer.

CC:KILLENABLE
This is used to cancel the effect of a CC:KILLPROOF control
call directed at the same VT input device. Note that
'WSCALL:KILLPROOF is not overridden by this control call.

CC:SETEXCEPTION
This call is used to specify exceptions
processing. At this time, the only exception
SEDIT; and specifies that fields also
ASCII,RUBOUT at left end of field, and on ·u
end of field.

CC:SETOUTPUTTIMEOUT

to VT driver
defined is for
activate on

or 'L at right

This call is used to specify a new value for output timeout
interval, and overrides the default selected by the Device
Profile Block last chosen. It is especially useful with the
VT:MALLPT profile when the printer has a large buffer of its
own, and goes "BUSY" for long periods while it prints. The
interval is specified as a two byte number in WRBUF in 60ths
of a second.

COPYRIGHT (C) 1978 26 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

STATUS OBTAINABLE FROM THE VT DRIVER

Many of the statuses available from the VT driver are simply
images of data specified by Control calls to the driver. This is
for convenience of the SDOSSET program, and allows it to show the
operator the "current" settings of things before modification.

SC:GETPOS
Reads the cursor position in the same form as CC:POSITION.

SC:GETCOL
If the input line buffer is empty, this returns the output
column number; otherwise, this returns the column number
corresponding to the first byte to satisfy the next read.
The column number is the same as used in CC:POSITION. A
REA DB zeroes the column number. Returning the column number
corresponding to the next input character when there is a
partially-read input line makes it possible to distinguish
between "TERSE" command lines and "VERBOSE" command lines;
if the column count is zero when a program gets control,
there must be nothing in the line buffer and so VERBOSE mode
is desired; otherwise, something is in the line buffer and
so TERSE mode is desired (see COMMAND INTERPRETER).

SC:GETEOF
This returns a non-zero byte if ~Z was seen while in READA
mode, and the input line buffer is empty; otherwise, this
returns a zero byte. End of File status is never set while
in READB mode to a VT device. Note that the only way to
reset this status is to CLOSE and reOPEN the channel.

SC:GETTYPE
Returns DVTYP.CONSOLE or DVTYP.PRINTER, as appropriate.

SC:GETPARAMS
Returns the width (1 byte) and the depth (1 byte) of the
display. Zero depth means that the terminal is a hardcopy
device with continuous paper. Printers return paper width
and depth.

SC:GETPROFILE
Returns the current profile "name" (a one byte number);
suitable for use by the CC:SETPROFILE control call.

SC:GETPROFILENAME
Returns a one to 16 character ASCII text string
corresponding to the numeric profile "name" (1 byte)
specified in WRBUF. This call does NOT change the profile
currently selected on the device. Return a "No Such Profile"
error if the profile name specified in WRBUF is not
sysgenned into the I/O package. This call is used to all
SDOSSET produce a human-readable list of DPBs configured
into a system.

COPYRIGHT (C) 1978 27 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

SC:GETPROFILEALTERATION
Returns the current profile alterations in exactly the
format given to CC:ALTERPROFILE. Gives a "Profile Not
Malleable" error if the profile currently selected is not
malleable (and therefore has no alterations).

SC:GETFREECOUNT
Returns a 16 bit integer specifying how much
currently available in the output buffer for
(memory-mapped video displays always return "1").

SC:GETDATACOUNT

room is
a device

Returns a 16 bit integer specifying how much data is
currently available in the input ring buffer for this
device. Can be used to prevent hanging the system when
doing READB.

SC,GETOUTPUTTIMEOUT
Returns the current value of the Output Timeout for this
device, in a form suitable for use with CC:SETOUTPUTTIMEOUT.

SC:GETBAUDRATE
Returns the current baud rate for this device, in exactly
the form required for CC:SETBAUDRATE. Devices which cannot
change baud rates usually return "0".

SC:GETTABS
Returns the current tab settings for this device, in exactly
the form required for CC:TABS.

SC:GETIDLES
Returns the count of idles to follow a Newline sequence, and
the Idle trigger character, in exactly the form required for
CC:IDLES.

SC:GETWRAP
Returns a non-zero byte if Wrapping (see SC:WRAP) is
enabled, else return a zero byte (wrapping is disabled).

SC:GETCOLORING
Returns 2 bytes of Coloring information in exactly the form
required by CC:COLORING.

SC:GETBACKGROUND
Returns 1 byte of Background Coloring information in exactly
the form required by CC:COLORING.

:OPYRIGHT (C) 1978 28 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

SC:GETACTCOL
Returns both the column position and the line buffer
displacement at which the last activation character was
entered (the activation character, itself, is placed at the
end of the input line and is obtained via READA or READB).
Note that if echoing is disabled, the returned column
position value will be meaningless.

SC:ATTENTIONCK
This checks for "Operator Requested Attention" status. If
found, the status is cleared and an "Operator Requested
Attention" error is returned.

SC;STATUSCK
This returns a "Status has Changed" error if the VT device
has had an interesting change of status, which include
receipt of an activation character, receipt of ACA C, a
"Timed Input Expired" error, a "Device Timed Out" error,
etc.

COPYRIGHT (C) 1978 29 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

CONTROL CHARACTERS

This table describes how control characters are treated if they
are NOT marked as activation characters (see CC:SETACTIVATION).

:00 NUL

:01

:02

:03 AC

:04

:05

: 06 AF

~OPYRIGHT (c) 1978

input: ignored

output: discarded

input: toggles the CAPS LOCK switch, echoes
immediately at the end of the line

output: prints AA

input: requests BASIC breakpoint, does not echo

output: prints AB

input: clears the input and output buffers,
resets the FREEZE OUTPUT and DISCARD
OUTPUT switches (see AS, AO) , resets the
PAGE MODE switch (see Ap) , echoes
immediately at the end of the line,
aborts the program if two AC'S are
received in successioni ACAC will be
rejected with a beep if KILLPROOF is set.

output: prints AC

input: invokes the debugger immediately, does not
echo; a beep is echoed if no debugger is
available (CNPG:VTDEBUG=0). Illegal under
SDOS/M'l'.

output: prints AD

input: causes all input at, and to the right of,
the cursor to be erased from the display
and deleted from the input buffer.

output: erases the remainder of the display line
(erase to EOL)

input: positions cursor at left side (front) of
current input field. Illegal for hardcopy
terminals.

output: prints Ap

30 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

:07

:08

:09 -I

:0B

: 0C

:0D -M

:0E -N

:0F

COPYRIGHT (C) 1978

input: causes BASIC to resume execution from the
current breakpoint, does not echo

output: beeps

input: implements the backspace function, does
not echo

output: implements the backspace function.
edge of screen is not

input:

output:

input:

output:

Backspace across
allowed.

positions the cursor
column, when read

positions the cursor
column

rejected with beep; see

discarded

at the next tab

at the next tab

CC:SETFIELDSIZE

input: rejected with beep; see CC:SETFIELDSIZE

output: prints -K

input: implements the forespace function, does
not echo

output: causes a PAGE BREAK if the PAGE MODE
switch is set (see -P), homes the cursor,
selects the background color, and clears
the display if depth is not zero, prints
-L if the the depth is zero; for a printer
device, moves paper to the top of form,
such that the next character will be
printed in the first position of the line.

input: echoes <CR><LF>, causes program activation

output: prints <CR> <LF >

input: passed to the application, echoed when
read

output: prints -N

input: toggles the DISCARD OUTPUT switch (see -Q,
-C), echoes immediately; not functional
while a READA or CC:ACTIVATIONCK control
call is being satisfied

output: prints -0

31 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

:10

:11

:12 "R

:13 "S

:14 "T

: 15 "U

:16

: 17

COPYRIGHT (C) 1978

input: toggles the PAGE MODE switch (see "0, "C),
echoes immediately at the end of the line

output: prints .p

input:

output:

input:

output:

input:

output:

input:

output:

input:

resumes output suspended due to
BREAK (see "P), resets the DISCARD
switch (see "o), resets the FREEZE
switch (see AS), does not echo

prints "0

if CRT, positions cursor to Right

a PAGE
OUTPUT
OUTPUT

end of
current input field; for hardcopy devices
echoes "R<CR><LF> followed by all data
entered since the last activation

prints "R

sets the FREEZE OUTPUT switch (see "0,
·c), echoes immediately

prints "S

toggles the BASIC line trace switch, does
not echo

prints "T

deletes the character at the current
cursor location, deletes the corresponding
character from the input buffer, does not
echo

output: prints ·U

input: toggles the BASIC single step switch, does
not echo

output: prints ·V

input: for CRTs, causes the last input line to be
retrieved as though the typist had entered
it explicitly, if no other keys have been
typed since the last input. Illegal for
hardcopy devices.

output: prints 'w

32 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

:18

:19

:lA

:lB ESC

: lC '\

olD A]

olE

COPYRIGHT (cl 1978

input: clears the input buffer; for hardcopy,
echoes ·X<CR><LF> and positions to the
column at which input began; fOe a
terminal, erases, from the display, the
data entered since the last activation
character, and positions the cursor at the
location where input began; for a terminal
with fields defined, erases the displayed
field contents, and positions the cursor
at the first location of the field

output: prints ·X

input: passed to the application, echoed when
read

output: prints ·Y

input: causes END OF FILE status to
causes program activation with an
FILE error, echoes i~ediately at
of the line

output: prints ·Z

be set,
END OF

the end

input: causes cursor to be placed at right end of
current input field, OPERATOR REQUESTED
ATTENTION status to be set, and returns
"Operator Requested Attention" error.

output: prints .[

input: passed to the application, echoed when
read

output: prints .\

input: passed to the application, echoed when
read

output: prints .]

input: passed to the application, echoed when
read

output: prints

33 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

:IF

:7F RUB

input: passed to the application, echoed when
read

output: prints ~

input: deletes the character preceeding
current cursor location, deletes
corresponding character from the
buffer, does not echo

output: discarded

the
the

input

NOTE: No control character is passed to the application unless
explicitly noted.

COPYRIGHT (C) 1978 34 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

SOFTWARE SWITCHES AFFECTED BY CONTROL CHARACTERS

CAPS LOCK
When set, READA will interpret the lowercase letters a-z as
uppercase letters. 'A toggles the switch. If a terminal is
stuck in upper case, and the alpha lock key isn't the
problem, someone probably typed 'A by accident.

FREEZE OUTPUT
When set, further output will be suspended until the switch
is reset. On CRTs, 's will be displayed to remind the typist
that the switch has been set. 's sets the switch, 'Q and 'c
reset the switch.

DISCARD OUTPUT
When set, all output will be discarded until either the
switch is reset or a READA/READB is issued. '0 will be
displayed to remind the typist that the switch has been set.
A READA will reset the switch and overwrite the "'0" with "7

A READB will simply reset the switch. '0 toggles the
switch, 'Q and 'c reset the switch.

PAGE MODE & PAGE BREAK
When set, subsequent WRITEA lines will be counted, and when
<display depth> lines have been output, a Clear screen
request is output, or cursor positioning is attempted, then
a PAGE BREAK will occur, and no more output will occur until
the typist has acknowledged the page break. This gives the
typist a chance to read what is displayed before more output
occurs. On a CRT, a page break will be signalled by 'p being
displayed in the lower right-hand corner of the screen; on
hardcopy devices, output will simply cease. The
acknowledgement can be 'P (which prevents further page
breaks), 'Q (which allows output until the next page break),
or ·C (which prevents further page breaks). On CRTs, a Clear
screen requests causes a page break BEFORE the screen is
cleared, so the text may be read before it disappears; on
hardcopy terminals, the page break occurs AFTER the FORM
character moves the paper to top-of-page, so individual
sheets of paper may be conveniently printed. All lines
output while in page mode will be truncated to fit within
the current display width, thus ensuring that line wrapping
does not occur so that all lines between page breaks will be
captured on the display.

NOTE: All reminders are displayed in the lower, right corner of
the display. Reminders will overwrite any characters
already in those locations.

COPYRIGHT (C) 1978 35 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

SDOS/MT SUPPORT

The following control and status functions are included for
complete documentation only. They are subject to change without
notice.

Caveat Emptor I I

MULTIUSER CONTROL FUNCTIONS

CC:SETTIMESHARE
Sets the SDOS/MT flag, which results in different handling
of the line flags and ACAC abort. If the flag has already
been set, an "SDOS/MT Already Running" error is returned.
RDBUF is filled with system-dependent linkage information
for use by SDOS/MT.

CC:STOPTIMESHARE
Turns off the SDOS/MT flag. SHOULD NOT BE EXECUTED BY USER
PROGRAMS, OR A SYSTEM CRASH WILL RESULT.

CC,WRITEANOWAIT
This defines, for the VT driver, WRBUF as the source of data
for an asynchronous WRITEA of WRLEN bytes. RDBUF contains 3
bytes, the first of which the VT driver will set to zero
when the request is accepted, and set to non-zero when WRLEN
bytes have been written; the remaining two bytes will
contain either an error code, or zero if the operation had
no errors. Note that WRBUF must not be modified until the
request is complete (the first byte of RDBUF becomes
non-zero) .

CC:WRITEBNOWAIT
This defines, for the VT driver, WRBUF as the source of data
for an asynchronous WRITEB of WRLEN bytes. RDBUF contains 3
bytes, the first of which the VT driver will set to zero
when the request is accepted, and set to non-zero when WRLEN
bytes have been written; the remaining two bytes will
contain either an error code, or zero if the operation had
no errors. Note that WRBUF must not be modified until the
request is complete (the first byte of RDBUF becomes
non-zero) .

COPYRIGHT (el 1978 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

MULTIUSER STATUS FUNCTIONS

SC:GETLINEFLAGSHINT
Returns zero if no line flags have been collected since
the last call to SC:GETLINEFLAGS, otherwise returns
non-zero value. The value returned is only intended as
a hint; the program must call SC:GETLINEFLAGS to get
the true line flags and acknowledge their receipt.
Don't ask why.

SC:GETLINEFLAGS
Exchanges a zero with the line flags, and returns that
byte. If ACAC has been seen while the SDOS/MT and
KILLPROOF flags are set, a "Program Killed" error will
be returned; otherwise, ACAC will result in the program
being killed.

SC:GETTIMESHARE
This checks to see if SDOS/MT is running.
"SDOS/MT Already Running" error will
otherwise, a normal return will be made.

SC:ALLSTATUS

If it is, an
be returned;

This checks to see if an SC:STATUSCK status call issued
to any VT device would return a "Status Has Changed"
error as a response; if so, a "Status Has Changed"
error is returned. Note that this status call supplies
only a hint.

COPYRIGHT (el 1978 37 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION II: DEVICE DRIVERS

The CLOCK: Device Driver

The CLOCK: device is used to set and read the current time and
date. Since its function is limited, so is its conformance to
the SDOS file concept.

The CLOCK: device can only be OPENed. CREATE, RENAME, DELETE,
WRITEA, and CONTROL operations are illegal. CLOSE does nothing
except to disassociate the I/O channel from the driver.

A READA directed to the CLOCK: device returns a string of 17
bytes in the following form:

HH:MM:SS MO/DD/YY

where HH is hours on a 24 hour clock, MM is minutes, SS is
seconds, MO is the month, DD is the day number, and YY is the
year modulo 100. An ASCII:CR is appended if the READA has line
mode enabled and buffer space permits.

A READB returns 6 bytes exactly in the following form:

T T T M D Y

where T T T is a 24 bit binary value equal to the number of 1/60
second clock ticks since midnight; D is the day, M is the month,
and Y is the year modulo 100, all in BCD.

A WRITEB must write exactly 6 bytes in the format read by READB,
and is used to set the time of day.

The only status syscall accepted is SC:GETTYP, which returns
DVTYF.CLOCK.

COPYRIGHT (C) 1978 38 Software Dynamics

SOOS APPLICATION PROGRAMMERS' GUIDE
SECTION III: SYSCALLS

SYSCALLS - CONCEPTS

Programs running under SOOS communicate with it via system calls
(SYSCALLs). A SYSCALL is a subroutine call (from the user program
to SOOS) with a parameter block describing the function to be
performed.

This section describes the general philosophy behind the SYSCALLs
and their general format. It assumes some knowledge of assembly
language.

The most general form of a SYSCALL contains a function code, some
fixed parameters needed by the function, a (pointer to) Write
buffer and a (pointer to) Reply buffer. Essentially, the SYSCALL
causes the specified function to be performed according to the
parameters, using data from the write buffer, and storing a
result in the reply buffer. Many readers will recognize this as
an implementation of

ROBUF:= F(PARAMS, WRBUF)

The purpose of constraining all SYSCALLs to this form is to
simplify the process of transmitting a request from one computer
to another, to facilitate networking of multiple computers.

Conceptually, SYSCALL execution proceeds as follows:

1) The user program issues a SYSCALL.
2) SOOS transmits the function code, the parameters, and the

contents of the WRITE Buffer from the user's computer CQ some
target computer.

3) The target computer processes the SYSCALL and produces a
reply.

4) The reply, along with any error information, is sent back to
the SDOS which sent out the request.

S) SDOS places the reply in the user program's reply buffer.

In a stand-alone system, the target computer and the user's
computer are one and the same.

The primary advantage of this scheme is that by forcing all
SYSGALLS to have a fixed form for transmitting, performing, and
receiving replys to function requests, the software logic
processing the request can forward it to another computer without
having a lot of function-specific knowledge. In particular, it
means that the forwarding logic need not be changed even when new
functions are added t.O the list of legal SYSCALLs.

COPYRIGHT (C) 1978 39 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION III: SYSCALLS

Typical SYSCALL functions are: OPEN file, READ byte stream, LOAD
a program, etc. Not all functions require write data (i.e., a
STATUS Syscall needs only the function, some parameter bytes and
a reply buffer); nor do all functions return a result (WASCII
writes a string of ASCII bytes to a file and returns no result).
Some functions have neither write nor reply buffers (i.e., EXIT
to system). Furthermore, many functions have side effects (like
CLOSE I/O channel).

SYSCALL Format:

The following definitions give the formats of a SYSCALL block
(SCBLK) .

*
* SYSCALL BLOCK DISPLACEMENTS
*
ORG '"
SCBLK:OPCODE

SCBLK:WLEN

SCBLK:PARAMS

SCBLK:WRBUF
SCBLK:WRLEN
SCBLK:RPLEN
SCBLK:RDBUF

SCBLK:RDLEN

SCBLK:DATA

SCBLK:END

RMB

RMB

RMB

RMB
RMB
RMB
RMB

RMB

RMB

RMB

1

1

2

2
2
2
2

2

o

o

Primary SYSCAL Function (Open,
Read, Etc.)
Wait Flag Bit (0=Wait) and SYSCALL
Block Length (0 .. 127)
Parameter Bytes to Opcode (Secondary
Opcode, Channel #)
Pointer to Write Data Buffer
Number of Bytes in Write Data Buffer
Length of Reply (Result of SYSCALL)
Pointer to Read Data Buffer (Where
Result Goes
Ceiling on Size of Reply (Read Data
Buffer)
Other Parameters for SYSCALL; up
to 127-14=113 Bytes
End of SYSCALL Block;
Assert SCBLK:WLEN[1 •. 7]=
SCBLK:END-SCBLK:OPCODE

SCBLK:OPCODE is the desired function, and occupies a single byte.
Legal functions under SDOS 1.0 are shown in table 1.
(Definitions of all values for SYSCALL opcodes and related
information is given in the SDOSIOPKDEFS.ASM listing in the
back of this manual).

COPYRIGHT (C) 1978 40 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION III: SYSCALLS

SCBLK:WLEN is a single byte with two parts: a Wait flag (the most
significant bit) and a LENgth (2 to 127. measured in bytes)
(the SYSCALL block length). The wait flag is intended to
allow overlapped READ and WRITE operations to files. but is
not implemented in SDOS 1.0. When this bit = 0. it means
"wait for operation complete before returning control to
user program". "1" means I'don't wait'l. To retain
compatibility with future releases of SDOS. the user is
advised to leave this bit reset (0). The LEN field
specifies precisely how long the SYSCALL block is. Each
opcode requires that this byte have some minimum value, or
the SYSCALL will be aborted. The LEN field is used to
determine how much data must be sent to another computer.
The LEN field can specify more bytes than actually needed by
the SYSCALL without ill effect. but processing the unused
bytes may increase the execution time of the SYSCALL. All
SYSCALLs have at least the SCBLK:OPCODE and SCBLK:WLEN
bytes.

SCBLK:PARAMS are 2 bytes used for sundry purposes as parameters
to the opcode requested. Three cases are of particular
note: first. one of the two parameter bytes is generally
used to hold an I/O channel number on I/O-oriented SYSCALLS.
Second. a parameter byte may contain an opcode extension
byte. as with the STATUS and CONTROL SYSCALLs; the parameter
byte selects which control function is to be performed or
the particular ~iece of status information to read back.
The third case LS some 16 bit number. such as passing an
error code to SDOS via the SETERROR SYSCALL. In no case may
these two bytes contain a pointer or any other kind of
reference to other data in the memory of the user's
computer; only data values or relative references to data in
the write buffer or the SYSCALL block itself are legal
(because after the SYSCALL has been sent to another
computer. how could we follow a pointer?) SCBLK:PARAMs need
not be included in the LEN count for SYSCALLS such as
SYSCALL:CLOSE. SYSCALL:EXIT, etc.

SCBLK:WRBUF and SCBLK:WRLEN define the starting address of the
write data buffer. and its length in bytes. SCBLK:WRBUF
contains the address of the first byte of the buffer;
SCBLK:WRLEN contains the number of bytes in the buffer (0 to
65535). Note that SCBLK:WRLEN is the actual number of bytes
to be processed by the SYSCALL, not the allocated size of
the buffer. These parameters are used in SYSCALLs involving
filenames to specify the (device and) filename desired. or
as data buffer definitions f~r SYSCALL:WRITEB (Write
Binary). etc.

COPYRIGHT (C) 1978 41 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION III: SYSCALLS

SCBLK:RDBUF and SCBLK:RDLEN select a buffer address and size in
which a SYSCALL result/reply is returned. The SCBLK:RDLEN
must contain the expected maximum size of the result (in
bytes). SCBLK:RPLEN is set to the actual length of the reply
given, that is, the actual number of reply bytes placed in
the RDBUF. Many SYSCALLs do not return a result. If the
SYSCALL block includes space for SCBLK:RPLEN, it will be
zerod if no reply is given. If RDBUF overlaps any part of
the SYSCALL block or the WRBUF, the SYSCALL operation is not
well defined. When an error is returned by a syscall, RPLEN
and RDBUF contents are undefined (unless explicitly
specified by description of the particular syscall). In
particular, there is no guarantee that the RDBUF contents
are preserved (even in the presence of an error).

Bytes in the SYSCALL block beyond SCBLK:RDLEN are interpreted in
a manner specific to the particular SYSCALL opcode (like the
SCBLK:PARAMs bytes). Most SYSCALLs do not need or use these
bytes.

An error occurring during execution of a SYSCALL
the manner described under SDOS Error handling.
sequence for SYSCALLS is thus:

LDX #SYSCALLBLOCKADDRESS
JSR SYSCALL$ (Equated TO $FB)

is handled in
1~e calling

BCS OOPS (Go Process Error Code In Xl

COPYRIGHT (C) 1978 42 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION IV: ERROR HANDLING

ERROR HANDLING

Error handling is an important part of any programming system.
It allows application programs to continue or effect recovery in
spite of problems encountered. The error handling strategy
outlined here is used throughout most SD software. Facilities to
handle errors in a similar fashion are provided by the SD BASIC
Compiler, so application programs can also support the same
scheme.

Errors detected by SDOS are passed back to the user program for
inspection or handling. Each error which can occur is assigned a
16 bit error code (0 to 65535). Blocks of codes are assigned to
each possible detector of an error (i.e., errors which SDOS
detects have codes from 1000 to 1999, compiled BASIC programs
detect errors 2 to 99, EDIT errors are 200 to 299, etc.).

Each (assembly or SYSCALL) subroutine has two exits: a success
exit (meaning no unexpected/unrecoverable errors occurred) and an
error exit (meaning some error which the subroutine cannot handle
occurred) .

If the success exit is taken, normal processing can continue. If
the error exit is taken, an error code is passed back to the
caller for his inspection. The caller has three options:

1) Process and recover from the error (example: for "No Such
File" error on an OPEN, a standard default file name might be
OPENed) .

2) Give up; notify the operator of the error and exit.
3) Decide to pass the error back to his caller with an error

indication. This option is particularly important when the
caller can fail in many ways not understood by the caller
(such as I/O faults).

Processing the error requires explicit checking for each of the
possible error codes of interest (due to the large number of
unexpected errors, an "if it's not this, it must be that" scheme
is not safe; one should ALWAYS check explicitly). Sometimes, data
associated with the error is needed for the processing routine to
continue; in these cases, the original detector of the error must
have saved that data in a place agreed upon by the detector and
the routine attempting recovery. An example is a "recovery"
routine that prints out the Logical Sector Number of a disk
sector on which a read error occurred -- the recovery routine
must know that a GETLASTBADLSN STATUS syscall will retrieve the
LSN desired.

COPYRIGHT (C) 1978 43 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION IV: ERROR HANDLING

"Giving up" is aided by the SDOS SYSCALL:ERROREXIT. The error
code is stored into the SYSCALL block, and the SYSCALL is
executed. SDOS will print a text message corresponding to the
error code, and pass control to the command interpreter
(DEFAULTPROGRAM). The command interpreter can retrieve this
error code, and a DO file can process it via IFERROR statements
(see command interpreter description).

Passing back the error code to the next level of subroutine is
generally done only if the recovery routine does not find an
error code it is willing to handle. This provides an opportunity
for subroutines at successively higher levels to effect recovery.

The subroutine calling convention that implements this error
handling philosophy is as follows:

*
JSR
BCS
*

CLC
RTS

ERROROCCURRED
CPX
BEQ
CPX
BEQ

SEC
RTS

Subroutine
ERROROCCURRED
SUCCESS EXIT

EQU *
#ERR:-
HANDLE1STERROR
#ERR:--

HANDLE1STERROR EQU *

CLC
RTS

COPYRIGHT (C) 1978

(S) K HERE

(S) K HERE

FLAG "SUCCESS EXIT"

(S) = K HERE

(6809 "CMPX" DESTROYS CARRY BIT)
WITH CARRY SET, INDICATING ERROR

TO RECOVER FROM 1ST ERROR

(OKRTS IN DEFS)

44 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION IV: ERROR HANDLING

Carry reset on exit means the subroutine completed successfully.
The carry set on exit from a subroutine means "error occurred"
(only for those subroutines which adhere to this convention!);
the X register contains a 16 bit error code. Note that the
calling subroutine must provide a BCS after the JSR in order to
detect an error. The ERROROCCURRED routine tests the X register
for errors from which it can recover; if the wrong error happens,
no test will match and another RTS (with carry set) will occur,
providing the next higher level subroutine a chance at processing
the error code. In either case, error or not, the contents of
the stack above the return address is untouched. The stack
register itself has the original value of the stack pointer at
the time of the JSR, so that all higher level routines can be
returned to exactly as normal. Last, notice that the HANDLE ERROR
and the success paths both exjt by clearing the carry (indicating
"success" exit).

SYSCALLs are implemented as suproutine calls and follow the above
convention with one variation. If an error occurs, SDOS unwinds
the stack until a return address on top of the stack points to a
BCC or BCS. This means that a SYSCALL must be followed by a
BCC/BCS or SDOS will unwind the stack too far, with unpredictable
results. The unwinding process consists of repeatedly popping
two bytes, and assuming the top of the stack is a return address,
(with obviously bad consequences if this is not true) until an
appropriate return address is found (This scheme was chosen to
minimize the amount of processing an SDOS routine had to do when
it didn't care about errors, and has the side effect of speeding
things up 5 to 10 percent).

COPYRIGHT (C) 1978 45 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALLS - Implementation

This section details the SYSCALLs implemented in this version of
SDOS. See SDOSUSERDEFS.ASM listing for opcode values.

Errors listed are only common errors, i.e., ones for which
application programs attempt recovery. Many other (even hardware
specific errors) are possible, but due to the size and changing
nature of the list, are not recorded here.

Table 1 - Syscalls implemented in SDOS 1.1

*
*

SYSCALL$ OPCODE DEFINITIONS

SYSCALL:OPEN
SYSCALL:CREATE
SYSCALL:CLOSE
SYSCALL:RENAME
SYSCALL:DELETE
SYSCALL:LOAD
SYSCALL:CHAIN
SYSCALL:CREATELOG
SYSCALL:CLOSELOG
SYSCALL:DISKDEFAULT
SYSCALL:READA
SYSCALL:READB
SYSCALL:WRITEA
SYSCALL:WRITEB
SYSCALL:CONTROL

SYSCALL:STATUS
SYSCALL:WAITDONE
SYSCALL:EXIT
SYSCALL:ERROREXIT
SYSCALL:SETERROR
SYSCALL:GETERROR
SYSCALL:DISPERROR

SYSCALL:KILLPROOF
SYSCALL:KILLENABLE
SYSCALL:DEBUG
SYSCALL:ATTNCHECK
SYSCALL:ISCONSOLE
SYSCALL:INTERLOCK
SYSCALL:DELAY
SYSCALL:NOTUSED

ORG
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB

RMB
RMB
RMB
RMB
RMB
RMB
RMB

RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB

o
1
1
1
1
1
1
1
1
1
1
1
1
I
1
I

1
I
1
I
1
1
1

1
1
I
1
1
1
1
1

SYSCALL:GETSERIALNUMBER RMB 1

:OPYRIGHT (c) 1978

Open File
Create a New File
Close a File
Rename a File
Delete a File
Load an Overlay
Chain to a File
Create the Log File
Close the Log File
Select Default Disk Device
Read ASCII Bytes From a File
Read Binary Bytes From a File
Write ASCII Bytes To a File
Write Binary Bytes To a File
Perform a Control Operation
On a File/Device
Read File/Device Status
Wait for I/O on Channel to Complete
Give Control Back to Operating System
Exit to System With Error Code
Report an Error To The System
Read Back the Last Error Code
Display Error Message Corresponding
To Last Error Code
Prevent User Program Being Killed
Allow User Program to be Killed
Call System Debugger
Operator Attention Request Check
Check Channel 0 Input Device = Console:
Perform Interlock functions on objects
Delay for n 1/60ths of a second

Get processor serial number

46 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:OPEN

This SYSCALL is used to establish an association between an
existing file (to be read and/or updated) and an I/O channel.

OPEN SYSCALL Block Format:

SCBLK:OPCODE FCB SYSCALL:OPEN
SCBLK:WLEN FCB SCBLK:END-SCBLK:OPCODE
SCBLK:PARAMS FCB CHANNELNUMBER,IGNORED
SCBLK:WRBUF FDB FILENAMESTRING

POINTS TO FIRST BYTE
SCBLK:WRLEN FDB FILENAMELENGTH

IN BYTES
SCBLK:RPLEN RMB 2 EXPECTED RETURNED VALUE OF
SCBLK:RDBUF FDB SCANNEDCOUNT * FILENAME CHARACTERS

PROCESSED
SCBLK:RDLEN FDB 2 SIZE OF RDBUF
SCBLK:END EQU *

The WAIT flag must be zero. The first parameter byte is the
channel number desired. The second parameter byte is not used.
The Write Buffer (WRBUF) contains the filename (including device
name, etc.) desired, WRLEN contains the number of bytes in the
filename.

The OPEN SYSCALL checks the channel to ensure that it is not open
already. If not open, the filename is scanned to determine the
selected device (default to DISK: if no device) and a filename on
that device. The number of bytes scanned is returned as a 2 byte
value in the buffer selected by RDBUF; the rest of the bytes in
WRBUF are ignored. Leading blanks on the filename are ignored,
but are included in the scanned count. (Note: All SYSCALLs that
deal with file or device names return the number of bytes of the
filenam€ scanned as the result. The entire filename is scanned
even if an error occurs.) The device is searched for the file if
it is a directoried device, and an error issued if not found. If
the device is not a directoried device, the device is simply
opened. The file is positioned so that a subsequent read will
read the zeroth (first) byte of the file.

(Some) possible errors are:

Bad File Name
No Such File
Can't Open, Must Create
No Such Device
Channel Busy

2

COPYRIGHT (C) 1978 47 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:C'REATE

This SYSCALL is used to CREATE a new file and establish an
association between an I/O channel number and the new file. It is
also used when a program will do output only to a device (such as
a line printer; the philosophy is that such output is a new
file) .

CREATE SYSCALL Block Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:PARAMS
SCBLK,WRBUF
SCBLK:WRLEN
SCBLK:RPLEN
SCBLK:RDBUF
SCBLK:RDLEN
SCBLK:END

FCB
FCB
FCB
FDB
FDB
RMB
FDB
FDB
EQU

SYSCALL:CREATE
SCBLK:END-SCBLK:OPCODE
CHANNELNO,IGNORED
FILENAMESTRING
FILENAMELENGTH
2 EXPECTED RETURNED VALUE OF 2
SCANNEDCOUNT
2 SIZE OF SCANNED COUNT
*

The WAIT flag must be zero. The first parameter byte is the
desired channel number; the second parameter byte is ignored.
WRBUF points to the filename (device name) of the new file.

Like SYSCALL:OPEN, RDBUF points
number of bytes of the filename
completion of the SYSCALL.

to a 2 byte area in which the
scanned by SDOS is placed on

If a disk file is specified and there is an old file, the old
file must not write protected or an error will occur and the new
file will not be created (nor will the channel be opened).
Otherwise, the new file is created, and the channel is opened.
If an old file does exist, an OPEN SYSCALL executed after the
CREATE, looking for the same file, will find the old file. If
the system crashes before the new file is closed, the old file
will be unaffected in any way. Even after the new file is closed,
channels still open to the old file will not notice any
difference. When the last channel to the old file is closed, it
is deleted and the space for the old file is returned to free
disk space. Effectively, a CREATE includes an "implied" delete
of the older version of the file.

The file is positioned so that a write will write its first byte
in byte #0 of the file.

Possible errors are:

File is Delete Protected
File is Write Protected
No Such Device
Channel is Busy
Bad Filename
File is Being Created

COPYRIGHT (cl 1978 48 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:CLOSE

The CLOSE SYSCALL is used to break the association between an I/O
channel number and a file.

CLOSE SYSCALL Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK,PARAMS
SCBLK:END

FCB
FCB
FCB
EQU

SYSCALL:CLOSE
SCBLK:END-SCBLK:OPCODE
CHANNELNO,IGNORED
*

This SYSCALL frees the I/O channel to be opened to another file,
and causes the CLOSE entry point of a device driver to be called.
Action of the driver is driver-dependent.

If the channel was open to a disk file, then changes to the file
size, protection, and other characteristics are updated on the
disk (not before). If the disk file is newly created, and is not
replacing another by the same name, closing will make its name
appear in the directory. If the file is newly created, and it is
a replacement for a file that already exists (i.e., one by the
same name), then the new file will replace the old in the
directory, and the disk space allocated to the old file will be
returned to free space as soon as no other I/O channels remain
open to the old version of the file.

possible errors are:

Illegal Channel Number
Channel is Already Closed

COPYRIGHT (Cl 1978 49 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:RENAME

The RENAME Syscall is used to change the name of a file. The
file must be open on some channel; it must not be a newly created
file, and no file (new or old) having the new name must exist.

RENAME SYSCALL Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:PARAMS
SCBLK:WRBUF
SCBLK:WRLEN
SCBLK:RPLEN
SCBLK:RDBUF
SCBLK:RDLEN
SCBLK:END

FCB
FCB
FCB
FDB
FDB
RMB
FDB
FDB
EQU

SYSCALL:RENAME
SCBLK:END-SCBLK:OPCODE
CHANNELNUMBER,IGNORED
NEWFILENAME
NEWFILENAMELENGTH
2 EXPECTED RETURNED VALUE OF 2
SCANNEDCOUNT
2
*

The SYSCALL format is identical to that of an OPEN syscall;
parameters and results are passed the same way.

This SYSCALL affects nothing except the name of the file.

RENAMEing a disk file to its own name is
later OPENs of that file since a rename
be re-hashed into the directory.
description of files.

Possible errors are:

Channel Not Open
Bad File Name
File is Being Created
Can't Rename to a Different Device
File is Delete Protected
File is Write Protected
New File Already Exists

~OPYRIGHT (C) 1978 513

legal, and can speed up
causes the file name to

Refer to hash-lookup

Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:DELETE

The DELETE SYSCALL is used to delete a file from a disk device.

DELETE SYSCALL Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:PARAMS
SCBLK:WRLEN
SCBLK:WRBUF
SCBLK:RPLEN
SCBLK:RDBUF
SCBLK:RDLEN
SCBLK:END

FCB
FCB
FCB
FDB
FDB
RMB
FDB
FDB
EQU

SYSCALL:DELETE
SCBLK:END-SCBLK:OPCODE
IGNORED, IGNORED
FILENAMEBUFFER
FILENAMESIZE
2 EXPECTED RETURNED VALUE OF 2
REPLYBUFFER
REPLYBUFFERSIZE
*

The file specified on the specified device is deleted (this
syscall is not legal for devices which do not have directories).
No I/O channel is specified or needed. If the deletion is
successful, the directory entry is removed so that the file can
no longer be opened. If the file is open on some I/O channel
when the delete SYSCALL is issued. then the SYSCALL will complete
successfully. but the file will not actually be deleted until the
last channel open to the file is closed (in fact, the file may
actually be allocated more disk space via the other channell).

The reply buffer is loaded with the actual length of the filename
(see SYSCALL:OPEN).

Possible errors are:

No Such File
File is Delete Protected

COPYRIGHT (C) 1978 51 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:LOAD

The LOAD Syscall is used to load an overlay program segment into
memory, without transferring control.

LOAD SYSCALL Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:PARAMS
SCBLK:WRBUF
SCBLK:WRLEN
SCBLK:RPLEN
SCBLK:RDBUF
SCBLK:RDLEN
SCBLK:END

FCB
FCB
FCB
FDB
FDB
RMB
FDB
FDB
EQU

SYSCALL:LOAD
SCBLK:END-SCBLK:OPCODE
IGNORED,IGNORED
FILENAMESTRING
FILENAMELENGTH
2 EXPECTED RETURNED VALUE OF 4
COUNTANDSTART
4 MINIMUM REQUIRED
*

No channel number need be specified.

The filename specified is opened on a special system channel, and
checked to see if a load format file is given (first byte must be
ASCII US" or Hex :01). If so, the file contents are loaded into
memory as specified by the load records (see LOADER FORMATs).
Scatter loading (loading into non-contiguous parts of memory) is
possible. Upon completion of the loading process, control is
returned to the user, and the file is closed.

The results returned in the reply buffer are 2 bytes of filename
count (the first 2 bytes; see SYSCALL:OPEN) and 2 bytes of start
address (the second 2) as specified by the load records.

Load records which would load on top or above SDOS cause the load
to be aborted.

A load record whose address conflicts with that of the reply
buffer may be damaged; conversely, the reply may be garbled.
Loading into the area used by the stack may cause SDOS to crash.
SDOS does not check for this.

Errors while loading cause the error exit of the Syscall to be
taken.

In any case, on completion of the load, the file is closed.

Attempting to LOAD a program with a different encryption key is
illegal.

COPYRIGHT (Cl 1978 52 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

possible errors are:

Not a Load File
No Such File
EOF Hit
Checksum Error
Load Record Format Error
Bad Filename
Bad Filename Size

COPYRIGHT (cl 1978 53 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:CHAIN

The CHAIN Syscall is used to load and transfer control to an
overlay or program segment.

CHAIN SYSCALL Format:

SCBLK:OPCODE FCB SYSCALL:CHAIN
SCBLK:WLEN FCB SYSCALL:END-SYSCALL:OPCODE
SCBLK:PARAMS FCB IGNORED,IGNORED
SCBLK:WRBUF FDB FILENAMESTRING
SCBLK:WRLEN FDB FILENAMELENGTH
SCBLK:RPLEN RMB 2 EXPECTED RETURNED VALUE OF 4
SCBLK:RDBUF FDB COUNTANDSTART
SCBLK:RDLEN FDB 4 MINIMUM REQUIRED
SCBLK:END EQU *

CHAIN first closes all I/O channels except channel 0. It then
causes all modified disk sectors in the LRU queue to get written
back to the disk to ensure validity of disk contents, and then
performs exactly the same function as SYSCALL:LOAD. If an error
occurs, control will return to the caller only if no data has
been loaded into the user space. The most common causes of this
are the following errors:

Bad File Name
Bad File Name Size
File Not Found
Not a Load File
No Start Address

All other errors will cause an implied SYSCALL:ERROREXIT to be
executed (because of the possibility of the program issuing the
CHAIN being overlayed).

On successful completion of the load, control will be transferred
to the start address of the file. The stack pointer is set to
the contents of $FC,$FD, minus 1 (see SDOS Memory Map).

Chaining to a program with a different encryption key will cause
the user space to be zeroed before control is transferred.

COPYRIGHT (C) 1978 54 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:CREATELOG

There are occasions on which a record of a terminal session would
be very convenient, such as when a purported bug arises, or when
an example is required. This copy can be laboriously constructed
by hand, or it can be made automatically via a CREATELOG syscall.

CREATELOG SYSCALL Format:

SCBLK:OPCODE FCB
SCBLK:WLEN FCB
SCBLK:PARAMS FCB
SCBLK:WRBUF FDB
SCBLK:WRLEN FDB
SCBLK:RPLEN RMB
SCBLK:RDBUF FDB
SCBLK:RDLEN FOB
SCBLK:END EQU

SYSCALL:CREATELOG
SCBLK:END-SCBLK:OPCODE
CHANNELNO,IGNORED
FILENAMESTRING
FILENAMELENGTH
2 EXPECTED RETURNED VALUE OF 2
SCANNEDCOUNT
2 SIZE OF SCANNED COUNT
*

CREATELOG creates a new file (just like the CREATE syscall), but
no channel number is given (SDOS reserves a special, unnumbered,
I/O channel specifically for this purpose). It returns file name
size information in the same manner as OPEN.

There is no way for a user program to explicitly read or write
data to the log channel; all I/O through the log channel is done
invisibly by SDOS. Essentially, any data written via a Write
ASCII to channel 0 (the control channel) is also copied to the
log file. Data read via a Read ASCII O~ channel 0 is also
written to the log file. In this way, a complete copy of console
sessions (carried on through the control channel) is recorded in
the log file for later retrieval. The writes to the log file are
done only when the log file is open (has been created).

STATUS and CONTROL syscalls are re-directed from channel 0 to the
log channel when it is open, so that status information read from
channel 0 may not actually be that of channel 0. All other
channel-oriented syscalls (in particular, Read Binary and Write
Binary) are not affected by the log channel. If the log channel
is not open, it has no effect whatsoever on channel 0 operations.

The log file will not be found in the directory until it is
closed (via CLOSELOG). Like any CREATEd disk file, PROGRAM KILL
('C'C) automatically closes the log file. This Syscall is used
mainly by SDOSCOMMANDS to implement the LOG and DO commands.

A program can set up a DO file by:

1) Verifying that the DO file exists by OPENing it on some
channel.

2) CLOSEing channel 0
3) OPENing channel 0 to the DO file
4) CREATELOG on the "CONSOLE:" device

COPYRIGHT (C) 1978 55 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

Further input will come from the DO file.
during step 2 or 3. the program must reOPEN
CONSOLE: or no further console I/O can occur.

Possible errors are:

Channel Already Open
Illegal File Name
No Disk Space

COPYRIGHT (C) 1978 56

If an error occurs
channel 0 to the

Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:CLOSELOG

This Syscall is used to close the special log I/O channel (see
SYSCALL:CREATELOG).

CLOSELOG SYSCALL Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:END

FCB
FCB
EQU

SYSCALL:CLOSELOG
SCBLK:END-SCBLK:OPCODE
*

This Syscall performs the same operation as a CLOSE Syscall on
the Log channel. No channel number or other parameters are
needed.

Possible errors are:

Channel Not Open

COPYRIGHT (C) 1978 57 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:DISKDEFAULT

This SYSCALL is used to select which disk is default-selected
when a file name with no explicit disk device indentification is
given.

DISKDEFAULT SYSCALL Format:

SCBLK:OPCODE FCB SYSCALL:DISKDEFAULT
SCBLK:WLEN FCB SCBLK:END-SCBLK:OPCODE
SCBLK:PARAMS FCB IGNORED,IGNORED
SCBLK:WRBUF FDB FILENAMESTRING

POINTS TO FIRST BYTE
SCBLK:WRLEN FDB FILENAMELENGTH

IN BYTES
SCBLK:RPLEN RMB 2 EXPECTED RETURNED VALUE OF
SCBLK:RDBUF FDB SCANNEDCOUNT

FILENAME CHARS PROCESSED
SCBLK:RDLEN FOB 2 SIZE OF RDBUF
SCBLK:END EQU *

DISKDEFAULT parses the device name, and ensures that the device
name is a valid disk device name (filenames passed with the
devic0 name are not examined). The specified disk will then be
used whenever a filename with no device specification is
encountered by a filename SYSCALL.

No channel number is needed.

Data is returned in the same form as an OPEN syscall.

After a successful return, the device name DISK: refers to the
default disk.

Possible errors are:

Device is Not a Disk

2

COPYRIGHT (C) 1978 58 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:READA

This SYSCALL is used to read (ASCII) textual data from a file.
The file must be open on some I/O channel.

READA SYSCALL Block Format:

SCBLK:OPCODE FCB SYSCALL:READA
SCBLK:WLEN FCB SCBLK:END-SCBLK:OPCODE
SCBLK:PARAMS FCB CHANNELNUMBER,LMFLAG
SCBLK:WRBUF ~B 2
SCBLK:WRLEN FDB 0

(MINIMIZES PROCESSING TIME)
SCBLK:RPLEN ~B 2

ACTUAL NUMBER BYTES READ
SCBLK:RDBUF FDB READBUFFER

WHERE TO PUT DATA
SCBLK:RDLEN FDB READBUFSIZE

MAXIMUM NUMBER BYTES TO READ
SCBLK:END EQU *

READA will read the specified number of bytes into the read
buffer from the file open on the specified channel, anu advance
the file position past the number of bytes examined, subject to
the following conditions: the file has enough bytes, and no
errors occur during the read. Nulls (:00), line feeds (:0A), and
rubouts (:7F) are deleted from the stream of characters read from
the file/device.

Bit 7 of all characters read via SYSCALL:READA is zeroed. Other
characters may be removed from the input stream by the particular
device driver in use.

The column count for this channel is updated for each byte placed
in the read-back buffer, according to the following rule: a
printing character (:20-:7E) causes the column count to be
incremented. CR (:0D) causes the column count to be zeroed. All
other codes leave the count alone. The column count can be read
by a SYSCALL:STATUS call.

If LMFLAG is non-zero, the read proceeds in single line mode. If
a CR (:0D) character is encountered, it will be placed in the
read buffer, and the read will be terminated. LMFLAG=0 prevents
CRs from terminating the read, so the buffer will be filled.

SCBLK:RPLEN is set to the actual number of bytes read, even if an
error (such as End of File) occurs.

The WRBUF is ignored if supplied.

COPYRIGHT (C) 1978 59 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

All data read from channel 0 via a READA is copied (via WRITEA)
to the log file if the log channel has been opened. A READA with
LMFLAG=l directed at channel 0 will be completed from the
CONSOLE: device if a complete line cannot be read because of an
EOF error (this finishes a partial line from a DO file).

The overhead
high; larger
between all the
40 to 1 speedup
also typical
SYSCALL:READB.

for doing a single-byte SYSCALL:READA is fairly
buffers will cause this overhead to be divided
bytes transferred. Large buffers can achieve a
over single byte transfers. Such speed ups are

for SYSCALL:WRITEA, SYSCALL:WRITEB, and

If the SYSCALL block length is 18 bytes or more, then the first
four bytes of the extension hold a file position, and an implied
positioning operation is performed BEFORE the actual read takes
place. Compared to a CC:POSITION call followed by a
SYSCALL:READA, a combined position/read operation is considerably
more efficient in a network environment, so it is encouraged.
Similar efficiencies accrue for combined position/write
operations.

An EOF hit error will occur: (1) if not in line mode and the
buffer cannot be filled; (2) if in line mode and no CR character
is encountered before EOF.

An end-of-file condition (which can
SYSCALL:STATUS) is set whenever a read
the file occurs.

Possible errors are:

Channel Not Open
EOF Hit

:OPYRIGHT (C) 1978 60

be sensed via a
of the last data byte of

Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:READB

This SYSCALL is uoed to read binary data from a file. The file
must be open on some I/O channel.

READB Syscall Block format

SCBLK:OPCODE FCB SYSCALL:READB
SCBLK:WLEN FCB SCBLK:END-SCBLK:OPCODE
SCBLK:PARAMS FCB CHANNELNUMBER,IGNORED
SCBLK:WRBUF RMB 2
SCBLK:WRLEN FDB 0

(MINIMIZES PROCESSING TIME)
SCBLK:RPLEN RMB 2

ACTUAL NUMBER BYTES READ
SCBLK:RDBUF FDB READBUFFER

WHERE TO PUT DATA
SCBLK:RDLEN FDB READBUFSIZE

MAXIMUM NUMBER BYTES TO READ
SCBLK:END EQU *

READB will read the specified number of bytes into the read
buffer from the file opened on the specified I/O channel, and
advance the file position by the number of bytes actually read.
In order for the specified buffer to be completely filled, the
distance between the current file position and the end of the
file must be greater or equal to the buffer size, and no errors
may occur during the read. The data bytes read from the file are
not changed in any way.

SCBLK:RPLEN is set to the actual number of data bytes read
(usually equal to the buffer size).

Using a READB SYSCALL causes the column count for the specified
channel to be zeroed.

SCBLK:WRBUF is ignored if supplied; however, its length should be
specified as zero to minimize SYSCALL processing time.

An EOF error will occur if the read request is not completely
satisfied (i.e., the buffer was not filled).

The overhead for doing single-byte reads is high;
will distribute this overhead so that the average
is some 40 times faster than single byte reads.

long buffers
time per byte

If the SYSCALL block length is 18 bytes or more, then the first
four bytes of the extension hold a file position, and an implied
positioning operation is performed BEFORE the actual read takes
place.

COPYRIGHT (C) 1978 61 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

Possible errors are:

Channel Not Open
EOF Hit
Disk Read Error
Device Not Ready
Device Timed Out

~OPYRIGHT (C) 1978 62 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:WRITEA

WRITEA is used to Write ASCII data to a file. The primary
difference between this and WRITEB is that the column count gets
updated, and certain output editing is done.

WRITEA SYSCALL Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:PARAMS
SCBLK:WRBUF
SCBLK:WRLEN
SCBLK:END

FCB
FCB
FCB
FDB
FDB
EQU

SYSCALL:WRITEA
SCBLK:END-SCBLK:OPCODE
CHANNELNUMBER,IGNORED
WRITEDATABUFFER
NUMBEROFBYTESTOWRITE
*

The data bytes in the WRITEDATABUFFER are copied to the file open
on the specified I/O channel. The file position is advanced by
NUMBEROFBYTESTOWRITE. Disk files are extended automatically, if
necessary, to make more room and the file size is changed. The
column count for this I/O channel is changed according tc the
same rules as specified by SYSCALL:READA. The output stream may
be modified by the device driver; a CRT driver will typically add
LF (:0A) and nulls (idle characters) after a CR (:0D) character.

SDOS conventions dictate that LF characters are superflous in the
presence of CR characters. To write a line of text to a file (or
device), terminating it with a CR is sufficient.

An EOF condition will happen if the last data byte of the file is
overwritten, and/or the file was extended in order to accomodate
the write request. An EOF condition on a WRITE to a disk does
not cause an error.

Data written via WRITEAs to channel 0 is also sent (via WRITEAs)
to the log channel if the log channel is open.

Multi-byte writes are more efficient than single-byte writes.

No read-back buffer is required.

If the SYSCALL block length is 18 bytes or more, then the first
four bytes of the extension hold a file position, and an implied
positioning operation is performed BEFORE the actual read takes
place.

Possible errors are:

Channel Not Open
Disk Space Exhausted (for disk files)
Disk Write Error
Device Timed Out
Device Not Ready

COPYRIGHT (C) 1978 63 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:WRITEB

The WRITEB SYSCALL is used to write binary data to a file. The
stream of data bytes is copied directly to the file or device
without any change to its content.

WRITEB SYSCALL Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:PARAMS
SCBLK:WRBUF
SCBLK:WRLEN
SCBLK:END

FCB
FCB
FCB
FDB
FDB
EQU

SYSCALL:WRITEB
SCBLK:END-SCBLK:OPCODE
CHANNELNUMBER,IGNORED
WRITEDATABUFFER
NUMBEROFBYTESTOWRITE
*

The data bytes in the specified buffer are copied without change
to the file that is open on the specified I/O channel. The file
position is advanced by NUMBEROFBYTESTOWRITE. If necessary, a
disk file is extended automatically to make more room, and the
file size is adjusted accordingly. The column count for this
channel is zeroed.

Multi-byte writes are more efficient than single-byte writes.

An EOF condition will happen if the last data byte of the file is
overwritten, and/or the file was extended in order to accomodate
the write request.

No read-back buffer is required.

If the SYSCALL block length is 18 bytes or more, then the first
four bytes of the extension hold a file position, and an implied
positioning operation is performed BEFORE the actual read takes
place.

Possible errors are:

Channel Not Open
Disk Space Exhausted
Illegal Device Operation

(for line-printer-like devices)
Disk Write Error
Device Not Ready

COPYRIGHT (C) 1978 64 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:CONTROL

This SYSCALL is used to control or modify the operation of a
device/file. The first parameter byte selects the I/O channel
number; the second parameter byte determines the actual operation
performed (rewind, eject, dismount, etc.) so this SYSCALL
actually represents an entire class of operations. A control
operation may be issued only to an I/O channel that is already
OPEN.

If logging
channel 0,
channel.

is active, and a CONTROL operation is issued for
the control operation is actually applied to the log

CONTROL SYSCALL Block Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:PARAMS

SCBLK:WRBUF
SCBLK:WRLEN
SCBLK:END

FCB
FCB
FCB
FCB
FDB
FDB
EQU

SYSCALL:CONTROL
SCBLK:END-SCBLK:OPCODE
CHANNELNUMBER
CC:controlcode
CONTROLPARAMETERS
NUMBEROFCONTROLBYTES
*

SDOS divides device control operations into two classes: common,
and device specific. Common control operations are those
operations for which all devices generally have a capability.
Currently only the following operations fit in the category of
common:

CC:POSITION and CC:DUMPBUFFERS

All other control operations are
documented with the specific
device-specific operations include:
and dismount disk.

device specific and are
device driver. Typical
select echo mode, set tabs,

The format of the CONTROL SYSCALLs varies because different
device operations require different parameters. In particular,
most CONTROL SYSCALLs do not require a write buffer. For
specific formats, refer to the device driver descriptions.

COPYRIGHT (Cl 1978 65 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

CC:POSITION

CC:POSITION is used to select the next byte of a file to be
read/written. A 4 byte, 2's complement integer is used to select
the byte index into a (disk) file (it can also be used as a
record number, a port number, a screen position, or whatever is
appropriate for the device). The number must be positive (i.e.,
the sign bit must be zero) or an error will result. Following a
CC:POSITION command, further read/writes start from the specified
file position and advance sequentially. A "rewind" is obtained
by specifying a zero for the value of the 4 byte integer.

Setting a file position which is equal or greater than the size
of the (disk) file will cause an EOF condition to occur and cause
an error.

No reply is given for this syscall.

Alphanumeric CRTs are an interesting special case. It is
standard for SDOS CRT drivers to interpret the positioning
parameter as cursor positioning data. The parameter is
interpreted as 2 bytes of zero, 1 byte to specify the screen row
number (zero being the top screen row) and 1 byte of column
number (zero being the leftmost column). Given R for row and C
for column, the value of the positioning parameter is then
Row*256+Column. In this way, cursor positioning on screens is
generalized to work for a broad variety of CRT displays.

CC:POSITION SYSCALL Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:PARAMS
SCBLK:WRBUF
SCBLK:WRLEN

POSITIONDATA

FCB
FCB
FCB
FDB
FDB

RMB

SYSCALL:CONTROL
SCBLK: RPLEN-SCBLK: OPCODE
CHANNELNUMBER,CC:POSITION
POSITIONDATA
4

4 NEED FILE POSITION

For CRTs, POSI'l'IONDATA has the following form:

POSITIONDATA
SCREENROW
SCREENCOL

:OPYRIGHT (C) 1978

FCB
RMB
RMB

0,0
1
1

66 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

CC:DUMPBUFFERS

CC:DUMPBUFFERS is used to force an I/O device to dump any buffers
it may still have filled. CC:DUMPBUFFERS is particularly useful
in transaction oriented programs which need to force all disk
file changes back to the disk. No parameters are required;
operation is device specific.

CC:DUMPBUFFERS Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:PARAMS

,COPYRIGHT (Cl 1978

FCB
FCB
FCB

SYSCALL:CONTROL
SCBLK:WRBUF-SCBLK:OPCODE
CHANNELNUMBER,CC:DUMPBUFFERS

67 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:STATUS

The STATUS Syscall is used to read file or device-dependent
descriptive data about that file or device (as opposed to reading
data from the file or device itself). This syscall is really an
entire group of operations; a parameter byte selects the
device-specific data to read. A STATUS Syscall must reference an
open I/O channel. Like READA and READB, the data is read back
into the reply buffer.

If a STATUS syscall is issued for channel 0, and logging is
active, the status read back will be that of the log channel, not
channel 0.

STATUS SYSCALL Block Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:PARAMS
SCBLK:WRBUF
SCBLK:WRLEN
SCBLK:RPLEN
SCBLK:RDBUF
SCBLK:RDLEN

FCB
FCB
FCB
FDB
FDB
FDB
FDB
FDB

SYSCALL:STATUS
SYSCALL:END-SYSCALL:OPCODE
CHANNELNO,SC:statuscode
IGNORED
IGNORED
CHANGED
STATUSBUFFER
STATUSCODEDEPENDENTLENGTH

There are two classes of STATUS requests: those standard across
all devices, and those specific to the particular device type.
The following status information is obtainable from most devices:

SC:GETPOS
SC:GETCOL
SC:GETEOF
SC:GETFILESIZE
SC:GETTYP
SC:GETPARAMS

All other status-reading operations are device specific and are
detailed under the specific device drivers.

SC:GETPOS is used to read the current position in a file, i.e.,
if one executes a CC:POSITION command, an SC:GETPOS will
read back the same value as the positioning value given for
the CC:POSITION. SC:GETPOS always reads back four data
bytes (the interpretation of these bytes is up to the device
driver) •

SC:GETCOL reads back the print position of a simulated print head
on a particular I/O channel (see READA, WRITEA syscalls). 0
means "no characters printed on this line. 1I Only one data
byte is returned.

COPYRIGHT (e) 1978 68 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SC:GETEOF returns a single-byte flag indicating whether the I/O
channel has positioned, read or written past the last data
byte in the file. A non-zero returned byte indicates past
or at end of file; zero means more data can be read from the
file before the end of file is encountered.

SC:GETFILESIZE returns the size of the file (in bytes). The size
is returned as a four byte integer, appropriate for use in a
positioning command (this is convenient for appending data
to the end of a file). This is normally only implemented on
disk files.

SC:GETTYP returns a single-byte device type code, which places a
device into one of the following classes: FILE, DISK, TAPE,
DIRECTORIED TAPE, CONSOLE, LINEPRINTER, SERIALOUT, SERIALIN,
PARALELLOUT, PARALELLIN, DUMMY. Other device types may be
added as needed.

SC:GETPARAMS reads device class-specific parameters. To know
what kind of data to expect for a reply, the program must
first determine the device type (using SC:GETTYP).
Currently defined device-specific parameters are:

Disk FILE:

DVDAT:NSPC
DVDAT:NBPS

Number of Sectors Per Cluster
Sector Size in Bytes

The maximum file size may be computed as:

(NBPS*NSPC/2-1)*NBPS*NSPC

DISK Device:

DVDAT:NBPS
DVDAT:NSPT
DVDAT:NTPC
DVDAT:NCYL

CONSOLE:

DVDAT:WIDTH
DVDAT:DEPTH

PRINTER:

DVDAT:WIDTH
DVDAT:DEPTH

COPYRIGHT (Cl 1978

Number of Bytes Per Sector
Number of Sectors Per Track
Number of Tracks Per Cylinder
Number of Cylinders

In Characters
Screen or Page Depth in Lines, or
o If Continuous Form Paper

In Characters
Page Depth in Lines

69 Software Dynamics

SDOS APPLICATION PROGRfu~MERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:WAITDONE

This system call is used to wait for an operation initiated o~ an
I/O channel to complete.

This SYSCALL and the parallel initiation feature ARE NOT
IMPLEMENTED IN FINAL FORM. It currently is a no-operation, and
is provided to allow programs to be coded as though parallel
SYSCALLS were implemented.

WAITDONE SYSCALL Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:PARAMS
SCBLK:END

FCB
FCB
FCB
EQU

SYSCALL:WAITDONE
SCBLK:END-SCBLK:OPCODE
CHANNELNUMBER
*

If any parallel SYSCALL (a syscall with the WAIT flag = "don't
wait") was issued on the specified I/O channel, WAITDONE delays
the execution of the user program until that operation is
complete. Error status returned is that of the parallel SYSCALL
returned as though the parallel SYSCALL had the WAIT flag reset
when executed.

A second WAITDONE issued on an I/O channel, without any other
intervening SYSCALLS, returns immediately with no error possible,
so multiple WAITDONEs on a channel may be performed without
conflicts arising.

COPYRIGHT (C) 1978 70 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:EXIT

This syscall is used by a user program to pass control to the
DEFAULTPROGR&~. It is an indication that the user program
completed execution successfully.

EXIT SYSCALL Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:END

FCB
FCB
EQU

SYSCALL:EXIT
SCBLK:END-SCBLK:OPCODE
*

There are no parameters, and control does not return to the user
program.

All I/O channels except channel 0 are CLOSEd.

SDOS does a quiCk checksum on itself after an EXIT is completed,
and reports an error if it thinks memory is starting to fail;
otherwise, no errors are possible.

This syscall is functionally identical to SYSCALL:ERROREXIT with
an error code of 0.

COPYRIGHT (C) 1978 71 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:ERROREXIT

This syscall is used by a user program to cease execution
abnormally, and notify the operator the reason for stopping.

ERROREXIT SYSCALL Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:PARAMS
SCBLK:END

FCB
FCB
FOO
EQU

SYSCALL:ERROREXIT
SCBLK:END-SCBLK:OPCODE
ERRORCODE
*

The error code is displayed on the console as either

Error <CR>
or

<TEXT MESSAGE> <CR>

depending on whether SDOS can successfully extract the
corresponding text message from the ERRORMSGS.SYS file on drive 0
(see SYSCALL:DISPERROR). If the error code is 0, a message is
not displayed. Control is then passed to the DEFAULTPROGRAM
(usually the SDOS command interpreter, which can interrogate and
conditionally branch on the error code if a DO file is being
processed). No error is possible.

This syscall is intended to be used as very simple error handling
in user programs.

COPYRIGHT (C) 1978 72 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

Example:

LDX #PARAMETERLISTADDRESS
JSR SYSCALL$
BCS OOPS B/ ERROR

OOPS CPX #ERR:, ..
BEQ ICANHANDLEITI
CPX #ERR: ...
BEQ ICANHANDLEIT2

IGIVEUP STX ERROREXIT+SCBLK:PARAMS
LDX #ERROREXIT
JSR SYSCALL$
BCS * CAN'T GET HERE I
JMP *

ERROREXIT FCB SYSCALL:ERROREXIT
FCB 4 SCBLK:WLEN
FDB 0 SCBLK:PARAMS

COPYRIGHT (C) 1978 73 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:SETERROR

This syscall, coupled with SYSCALL:DISPERROR, is used by a
program to display the reason a SYSCALL failed.

SETERROR SYSCALL Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:PARAMS
SCBLK:END

FCB
FCB
FOO
EQU

SYSCALL:SETERROR
SCBLK:END-SCBLK:OPCODE
ERRORCODE
*

The user program first stores an error code into the syscall
block, and then issues the syscall. The error code has now been
stored in SDOS for use by the DISPERROR and GETERROR syscalls.
Normally, a SETERROR is followed by a DISPERROR, so that a text
display of the error cause occurs. Since control returns to the
user program, this is an effective procedure for displaying the
cause of an error without EXITing to the DEFAULTPROGRAM.

A GETERROR syscall can be used to later retrieve the error code.
A subsequent EXIT or ERROREXIT syscall will change the code set
by SETERROR.

COPYRIGHT (C) 1978 74 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:GETERROR

This syscall is used to retrieve an error code given to SDOS by
EXIT, ERROREXIT, or SETERROR syscalls.

GETERROR SYSCALL Format:

SCBLK:OPCODE FCB SYSCALL:GETERROR
SCBLK:WLEN FCB SYSCALL:END-SCBLK:OPCODE
SCBLK:PARAMS FDB IGNORED
SCBLK:WRBUF FDB IGNORED
SCBLK:WRLEN FDB IGNORED
SCBLK:RPLEN FDB 2 EXPECTED RETURNED VALUE
SCBLK:RDBUF FDB ERRORCODEBUF

WHERE TO PUT ERROR CODE
SCBLK:RDLEN FDB 2 LENGTH OF 16 BIT ERROR

CODE
SCBLK:END EQU *

The 2 byte error code last given to SDOS is returned in the reply
buffer. No parameters other than the reply buffer discriptor are
necessary.

possible errors are:

Syscall Length Too Short
Read-Back Buffer Too Short

COPYRIGHT (Cl 1978 75 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:DISPERROR

The DISPERROR is used to display a text message
the most recent error code given to SDOS
SYSCALL:ERROREXIT, or SYSCALL:SETERROR.

DISPERROR SYSCALL Block Format:

corresponding to
by SYSCALL:EXIT,

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:END

FCB
FCB
EQU

SYSCALL:DISPERROR
SCBLK:END-SCBLK:OPCODE
*

No parameters are needed.

Either

ERROR nnnnn <CR>
or

<TEXT FROM ERRORMSGS.SYS> <CR>

is displayed on channel 0. If the error code is 0, and error
message IS displayed (see SYSCALL:ERROREXIT for contrast). If
channel 0 is not open, SDOS automatically opens it to the
CONSOLE: device. SDOS gets the text message from the
ERRORMSGS.SYS file based on the error code. If SDOS cannot
retrieve the error message from the ERRORMSGS.SYS file, it
displays the simpler form, with nnnnn being the decimal
equivalent of the error code. No carriage return is output, so
that the user program may precede or append text to the error
message (such as ... AT LINE 100 for BASIC).

If an error occurs during the process of displaying the message,
SDOS will hang. The operator must re-boot. This can only occur
if SDOS cannot output to the CONSOLE:.

;OPYRIGHT (cl 1978 76 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:KILLPROOF

This SYSCALL is used by an application which needs to perform a
long computation or large amounts of I/O without being killed by
the operator for correct operation. This situation occurs when
several files need to be updated in order to maintain data base
consistency.

KILLPROOF SYSCALL Block Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:END

FCB
FCB
EQU

SYSCALL:KILLPROOF
SCBLK:END-SCBLK:OPCODE
*

Normally, when the operator types ACA C, SDOS kills the currently
running program and causes a forced ERROREXIT. This in turn
displays an appropriate message and causes the DEFAULTPROGRAM to
be loaded.

A double AC is deferred if a SYSCALL:KILLPROOF has been executed
more recently than a KILLENABLE. Operation of the program
continues undisturbed until it executes SYSCALL:KILLENABLE, at
which point the program is stopped. The user program can still
sense operator attention requests via the ATTNCHECK syscall.

On EXIT, SDOS switches user programs back to KILLENABLEd mode
dutomatically, (actually, the DEFAULTPROGRAM is loaded as a
KILLENABLEd user program) so a set of programs invoked by a DO
file is killable. SYSCALL:CHAIN does not affect the KILLENABLE
status of a program, so a large program consisting of several
serially executed segments can operate entirely KILLPROOFed if
needed.

Possible errors are:

Syscall Block Too Short

COPYRIGHT (C) 1978 77 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:KILLENABLE

This syscall allows a program to be killed by the operator. It is
normally only used after a critical portion of a program, running
KILLDISABLEd, is finished executing.

KILLENABLE SYSCALL Block Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:END

FCB
FCB
EQU

SYSCALL:KILLENABLE
SCBLK:END-SCBLK:OPCODE
*

Executing this syscall will allow a program to be killed when the
operator types ~C~C (when the I/O package calls
SDOS:KILLPROGRAM). If a ~C~C (call to SDOS:KILLPROGRAM) has
occurred while the user program was KILLPROOF, execution of the
SYSCALL:KILLENABLE will cause the program to quit execution
immediately (i.e., control does not return to the user program in
this case).

SDOSCOMMANDS (the command interpreter) runs KILLENABLEd and loads
user programs initially KILLENABLEd. The user program must
execute a SYSCALL:KILLDISABLE syscall before performing any
critical operations (see SYSCALL:KILLDISABLE). CHAIN syscalls do
not affect the KILLENABLE status of the user program.

Possible errors are:

Program Killed
Syscall Block Too Short

COPYRIGHT (C) 1978 78 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:DEBUG

The DEBUG syscall is used to transfer control from a user program
to the local system debugger.

DEBUG SYSCALL Block Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:END

FCB
FCB
EQU

SYSCALL:DEBUG
SCBLK:END-SCBLK:OPCODE
*

No parameters are needed. Control
debugger's entry point. The actual
I/O package dependent. If there is
forced.

is passed to the system
method of passing control is
no debugger, an ERROREXIT is

For systems with IDB (an SD assembly language debugging tool),
control is passed to the debugger in such a way that a
non-maskable interrupt appears to have occurred. EXIT from IDB
should be made via a "G" command. Using nnnnG to exit lIB and
return to the user program will also work. If a "G" command is
executed, control returns to the user program just beyond the
call, as with any other SYSCALL.

Possible errors are:

Syscall Too Short
No Debugger

COPYRIGHT (C) 1978 79 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:ATTNCHECK

This SYSCALL is used to determine if the operator would
interact with the user program (the operator normally
this by striking the ESCape key on his console; the
mechanism is determined by the I/O package).

ATTNCHECK SYSCALL Block Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:END

FCB
FCB
EQU

SYSCALL:ATTNCHECK
SCBLK:END-SCBLK:OPCODE
*

like to
signals
actual

The ATTNCHECK syscall will return normally if no attention has
been requested since the last ATTNCHECK syscall. If the opera~or
has requested attention at least once since the last ATTNCHECK
SYSCALL was issued, then an error exit is taken with error code
ERR:ATTENTION.

There are no parameters and no returned results.

Note that depressing ESCape terminates line input mode from the
CONSOLE:; thus, with suitable program design, ESCape can be used
to get a program out of one interaction mode and into another
mode of interaction.

:OPYRIGHT (Cl 1978 80 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:ISCONSOLE

This system call is used to determine if channel zero is open to
the operator's console (this is needed because a STATUS syscall
will read back the status of the log channel if logging is
active).

This SYSCALL is used primarily by the command interpreter (when
an error is encountered) to determine whether or not a DO file
should be aborted.

ISCONSOLE SYSCALL Block Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:END

FCB
FCB
EQU

SYSCALL:ISCONSOLE
SCBLK:END-SCBLK:OPCODE
*

There are no parameters and no returned results. A normal exit
indicates that channel zero truly is open to the console device;
otherwise, an error exit occurs. The only possible errors are:

Channel is Not Open at All
Channel 0 is Open; But Not to the Console

COPYRIGHT (C) 1978 81 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:INTERLOCK

This SYSCALL enables multiple users to synchronize usage of one
or more resources (under single-user SDOS, these calls are null
operations). Each resource is represented by an INTERLOCK
"object" (note: future SDOS's will provide for many other
abstract object types), and the means of referencing that object
is called a CAPABILITY. The functions which the INTERLOCK
syscall will perform, include creating a capability to an
interlock object; destroying an existing capability to an
interlock object; reserving an object for exclusive use (also
known as "locking" an object), and, if the Object has been
already locked, suspending execution of the caller until that
Object has been released; releasing the object, allowing the next
suspended requestor to resume execution; conditionally locking an
object, returning an error if that object is already locked; and
releasing and removing all requests for an object. Note that
objects and capabilities do not "belong" to users (e.g., user 1
may create an interlock capability to an object named "MYFILE" ,
communicate that capability to user 2, and proceed to lock MYFILE
twice, thereby blocking himself; user 2 subsequently releases
MYFILE, which causes user 1 to be unblocked).

The function
field of the

codes are expressed as 16-bit values in the PARAMS
SYSCALL block; the specific functions and their

requirements are:

IC:CREATE
Create a capability to an
ERR:NOSUCHOBJECT will be returned if
invalid.

interlock
the named

object.
object is

WRBUF must contain an object name, and WRLEN must be 16. A
16-byte capability to the Object will be returned in RDBUF.

IC:DESTROY
Destroy the usefulness of all capabilities to the named
interlock Object. Release the object if it has been locked;
release all requests for the object; release all suspended
requestors of the object, with ERR:OBJECTDESTROYED. If the
capability is invalid, ERR:NOSUCHOBJECT will be returned.

WRBUF must contain a valid capability to the object, and
WRLEN must be 16.

:OPYRIGHT (C) 1978 82 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

IC:LOCK
Lock the named interlock object. If the object is already
locked, the caller's execution is suspended until the object
has been released. Under SDOS/MT 1.2, no more than 32
different objects may be locked at anyone time
(implementation restriction); attempted violation of the
restriction will result in ERR:IMPLEMENTATIONLIMITREACHED.
If the capability is invalid, ERR:NOSUCHOBJECT will be
returned.

WRBUF must contain a valid capability to the object, and
WRLEN must be 16.

IC:RELEASE
Release the named interlock object. If the object has not
been previously locked, ERR:NOTLOCKED is returned. If the
capability is invalid, ERR:NOSUCHOBJECT will be returned.

WRBUF must contain a valid capability to the object, and
WRLEN must be 16.

IC:TEST
Lock the named interlock object. If the object is already
locked, no further action is taken and ERR:ALREADYLOCKED is
returned. If the capability is invalid, ERR:NOSUCHOBJECT
will be returned.

WRBUF must contain a valid capability to the object, and
WRLEN must be 16.

IC:RESET
Unconditionally release the named interlock object, if
locked; remove all requests for the object. Callers
suspended, awaiting use of the object, will be returned to
execution with ERR: LOCKRESET. If the capability is invalid,
ERR:NOSUCHOBJECT will be returned.

WRBUF must contain a valid capability to the object, and
WRLEN must be 16.

COPYRIGHT (C) 1978 83 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:DELAY

This system call is used
period of time before
multi-user systems when
resources are used while
complete.

by a program to wait for some fixed
continuing execution. This is useful on
a periodic check is required, as no

a program is waiting for the delay to

DELAY SYSCALL Block Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:PARAMS
SCBLK:END

FCB
FCB
FCB
EQU

SYSCALL:DELAY
SCBLK:END-SCBLK:OPCODE
DELAY in 1/60th second units
*

The delay is a 16 bit value given in 1/60th second units (i.e.,
60 = 1 seconds, 3600 1 minute, etc.). The actual delay is at
least that requested, and may be longer.

Possible errors:

Syscall Block is Too Short

COPYRIGHT (C) 1978 84 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

SYSCALL:GETSERIALNUMBER

This system call is used to read the 8 byte hardware serial
number of the computer.

GETSERIALNUMBER SYSCALL Block Format:

SCBLK:OPCODE
SCBLK:WLEN
SCBLK:PARAMS
SCBLK:WRBUF
SCBLK:WRLEN
SCBLK:RPLEN
SCBLK:RDBUF
SCBLK:RDLEN

Possible errors:

FCB
FCB
FDB
FDB
FDB
FDB
FDB
FDB

SYSCALL:GETSERIALNUMBER
SCBLK:END-SCBLK:OPCODE
IGNORED
IGNORED
IGNORED
8 EXPECTED RETURNED VALUE
SERIALNUMBERBUFFER
8

Syscall Block is Too Short

~OPYRIGHT Ie) 1978 85 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

ASM/6809 1.4Al: 0000
09/17/84 19:43:57: Page 1: Form 1
listfile.asm

*** SDOS SYSCALL Example ***

0200

0200 8E024C
0203 9DFB

0205 2528

0207 8E0277
020A 9DFB
020C 2521

020E BE027F

0211 BF028D
0214 8E0287
0217 9DFB
0219 2514

5: * This is a sample assembly language program to list
6: * a file to the console: device (i.e., it does exactly
7: * the same thing as a list file command does), and
8: * illustrates use of syscalls and error recovery logic.
9: *

10:
11: *
12: *

org $200 nice place for program
set up the equs we need

13: channe10 equ
14: channell equ
15: linemode equ
16: *

o
1
1

user terminal channel
channel for file i/o
input in "line mode"

17: * Print a "hello" message on user channel
18: *
19: listfile ldx #himessage
20: jsr syscall$
21: * If we get an error when printing the "hi" message
22: * (i.e., the carry is set), this BCS will take us
23: * to the error routine which will do an error exit
24: bcs error
25: *
26: * Now input the name of the file the user wishes
27: * to list to his/her terminal
28: *
29:
30:
31:
32: *

ldx
jsr
bcs

l/inputfilename
syscall$
error

33: * Next, open the file ••• to do this we set the length
34: * of the file name in the OPEN syscall block equal
35: * the number of characters read in by the last syscall.
36: * We don't have to move the file name anywhere since
37: * we very cleverly made the place that SDOS will look
38: * at for the file name the same place where SDOS
39: * read in the string from the user
40: * (similar to INPUT a$\OPEN #l,a$ in BASIC)
41: *
42: * Get
43:
44: * Set
45:
46:
47:
48:
49: *

how many chars the user typed in
ldx inputfilename+reada:actualcount

the length of file name to number of chars read
stx openfile+open:length
ldx #openfile address of syscall bloc
jsr syscall$ make SDOS open the file
bcs error take branch if "no such,

file", "bad name", etc.i

COPYRIGHT (C) 1978 86 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

ASM/6809 1.4Al: 0219
09/17/84 19:43:57; Page 2; Form 1
listfile.asm

*** SDOS SYSCALL Example ***

021B 8E029l
021E 9DFB

0220 2517

0222 BE0299
0225 BF02A7

0228 8E02Al
022B 9DFB

022D 24EC

022F BF02AB
0232 8E02A9
0235 9DFB
0237 25FE

0239 8C03E9
023C 26Fl
023E 8E02AD
0241 9DFB
0243 25EA
0245 8E02BD
0248 9DFB
024A 25E3

51: * main program loop
52: *
53: readloop Idx
54: jsr
55: *

#readaline
syscall$

read line from ...
the input file

56: * Now check to see if the read got an error.
57: * If it did, see if the error was an end of file.
58: *
59: bcs checkforeof
60: *
61: * If we get to here, we know we didn't get an error.
62: * So set the length of the write buffer equal to the
63: * number of characters read in
64: *
65:
66:
67: *

Idx
stx

readaline+reada:actual~ount
writealine+writea:count

68: * and then send the line out to the user
69: *
70:
71:

Idx
jsr

72: * If no error
73: bcc
74: *

#writealine
syscall$

on output, go read another line
read loop

75: * Error routine: copy error code in X to a syscall
76: * block which will have SDOS print out the
77: * corresponding error message and exit
78: *
79: error
80:
81:
82:

stx
Idx
jsr
bcs

errorexit+errorexit:code
#errorexit
syscall$
*

SDOS shouldn't return,
should never get here

83: ..
84: *
85: ..

Check for EndOfFile: if so, wrap things up and exit.
~Otherwise, do an error exit.

86: *
87: checkforeof cpx #err:eofhit EndOfFile error?
88: bne error if not, go complain
89: Idx #byemessage print "I'm done" message
90: jsr syscall$
91: bcs error
92: Idx #exi t
93: jsr syscall$
94: bcs error
95, *
96: * end of code

murphy's law strikes again!
now exit

this can't happen

COPYRIGHT (C) 1978 87 software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

~SM/6809 1.4Al: 024A
09/17/84 19:43:57; Page 3; Form 1
listfile. asm

*** SDOS SYSCALL Example .***

024C
n4C 0C
}24D 08
}24E 00
J24F 00
}250 0254
J252 0023

3254 48692128
0023

0277
3277 0A
3278 0E
3279 00
327A 01
1J27B 0000
1J27D 0000
1J27F 0000
3281 02BF
3283 0100
3285 0002

0287
3287 00
3288 0E
3289 01
328A 00
328B 02BF
028D 0004

0291
0291 0A
0292 0E
0293 01
0294 01
0295 0000
0297 0000
0299 0000
029B 02BF
029D 0100
029F 0002

98: * blocks for syscal1s
99: *

100: himessage ;
101: fcb
102: fcb

syscall block to output
syscall:writea
writea:sclen

"hello" message

103: fcb channel0
ignored
hitext

104: fcb filler
105: fdb pointer to message

length of message 106: fdb hitextlen
107:
108: hitext fcc
109: hitextlen equ

'Hi! What file do you want to list?
*-hitext length of message

110:
Ill:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131 :
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:

inputfilename
fcb
fcb
fcb
fcb
fdb
fdb
fdb
fdb
fdb
rmb

syscall block
syscall:reada
reada:sclen
channe10
linemode
ignored
ignored
ignored
filenamebuf
filenamebufmax
2

to accept line from user

from the user
input up to a <cr>
dummy write buffer stuff

read buffer
max amount to read
amount read (set by SDOS

openfile ; syscall block to open a file
fcb syscal1:open
fcb open:sclen
fcb channell
fcb ignored
fdb filenamebuf
rmb 4

filler
where user's input is
buffer length (set by pgl

readaline ;
fcb
fcb
fcb
fcb
fdb
fdb
fdb
fdb
fdb

syscall block to read
syscall:reada
reada:sclen
channell

a line from a file

rmb

linemode
ignored
ignored
ignored
readbuffer
readbuffermax
2

dummy write buffer stuff

how much data read

COPYRIGHT (cl 1978 88 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION V: SYSCALLS - IMPLEMENTATION

ASM/6809 1.4A1: 029F
09/17/84 19:43:57; Page 4; Form 1 *** SDOS SYSCALL Example ***
listfi1e.asm

02Al
02A1 0C
02A2 08
02A3 00
02A4 00
02A5 02BF
02A7 0002

02A9
02A9 12
02AA 04
02AB 0002

02AD
02AD 0C
02AE 08
02AF 00
02B0 00
02B1 02B5
02B3 0008

02B5 646F6E65
02BC 0D

0008

02BD
02BD 11
02BE 02

02BF
02BF
02BF
0100
0100

02BF 0100

143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:

writealine ;
fcb
fcb
fcb
fcb
fdb
rmb

errorexit ;
fcb
fcb
rmb

byemessage ;
fcb
fcb
fcb
fcb
fdb
fdb

164: byetext fcc
165: fcb
166: byetextlen
167:

syscall block to write a
syscall:writea
writea:sclen

filler

line on terminal

channe10
ignored
writebuffer
2 length of line

syscall block to effect
syscall:errorexit
errorexit:sclen

error exit

2 set to error code by pgm

syscall block to print
syscal1:writea
writea:sclen
channe10
ignored
byetext
byetextlen

"done ... II

"done .•. II

$0d
equ

carriage return
*-byetext

168: exit ; syscal1 block to effect normal exit
169:
170:
171:
172:
173:
174:
175:

fcb sysca11:exit
fcb exit:sclen

* and here's
filenamebuf
readbuffer
writebuffer

the i/o buffer

176: filenamebufmax
177: readbuffermax
178:
179: *

rmb

equ
equ
equ

*
*
*

equ $111'0
equ $100
readbuffermax

180: * that's all folks!
181: *
182: end listfile

space for buffer

COPYRIGHT (C) 1978 89 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

WRITING and DEBUGGING User Assembly Programs

Writing a User Assembly-Language program to run under SDOS
requires the following steps:

1) Use EDIT (or some other means) to place the desired assembly
source program on a disk.

2) Use ASM to produce a listing (optional) and a .BIN (Binary)
version of the desired program.

3) a) Execute the program by typing its name
or

3) b) Debug the program by typing

.DEBUG name

This will pass control to the local system debugger (usually
IDB) and debugging may commence.

Note: Breakpoints should not be placed on a BCC/BCS after a
SYSCALL (SDOS will not see the BCx if an error occurs and a
system failure will result). Further, breakpoints should
all be removed before a SYSCALL:EXIT or SYSCALL:ERROREXIT
is executed. Also, SDOS has no "warm start" entry point;
if the program runs away, the operator's only safe choice
is to re-boot.

COPYRIGHT (Cl 1978 90 Software Dynamics

SOOS APPLICATION PROGRAMMERS' GUIOE
SECTION VI: SOOS CONSTRUCTION/FUNCTIONS

MEMORY MAP

The memory of the 6800/6809 computer, when executing a user
program under SOOS, has the following layout:

LOCATIONS CONTENTS

$0-$7 (6800 and 6809)
$18-$lF (6801 and 6811)

$20-$EF

$FO-$FA

$FB,$FC,$FO

$FE,$FF

$100-(800S-1)

SOOS --

COPYRIGHT (C) 1978

Scratch temporaries, usable by user program. Note:
These temporaries are also used by SOOS; so any
SYSCALL will destroy their contents.

User program page zero. Not used by SOOS or the
I/O package.

System dependent data used by system hardware
(ROM), I/O package or interrupt routines for any
purpose; see specific I/O packages. User programs
must not disturb this data; references to this
data will make the program hardware or
configuration dependent.

SYSCALL entry point. These three bytes contain a
JMP to the SYSCALL entry point in SOOS. All user
programs should define SYSCALL$ as $FB; this will
make them independent of the actual location of
SOOS. These bytes are initialized by SOOS whenever
a CHAIN or LOAO SYSCALL is executed. Bytes
$FC,$FO form a 16 bit pointer to the first byte of
SOOS (to the first byte above the memory space
available to the user program).

Reserved for system dependent data
pointer to last byte or page of
program must not disturb or use.

(typically a
RAM) . User

User program area. Used in any way desired by
user programs. Last byte of this area has an
address equal to contents of ($FC,$FO) minus 1.
On entry (CHAIN) to a user program, the stack
register is set to this value (SOOS-l).
Generally, user programs have a start address of
$100.

Beginning of SOOS (and/or I/O
program may not overlay or store
above this boundary.

91

package).
any byte

User
on or

Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

Typical SDOS Address Space

LOW

$:0100

:7800
TTY,
LINEPRINTER,
DRIVERS,
(ETC.)

:F000

:FC00

:FF00

HIGH

COPYRIGHT (C) 1978

PAGE ZERO

SD SOFTWARE or
CUSTOMER SOFTWARE I

I
I

------------------�

MISCELLANEOUS
1\

\

DISK READ
DISK WRITE

DISK WAITDONE

DISK
SECTOR
BUFFERS

I------------------!
I VT DRIVER I
I I

\

/
/

1
1
1

1
1

1

I SDOS I 48K
(DISK FILE

I/O Package

MANAGEMENT) 63K DEPENDING ON
! CONFIGURATION
I//////////////////!
1//////////////////1 NON-EXISTENT MEMORY
I//////////////////!
1------------------1

IDB I
I

----~S~DO~S~B~O~O~T~----I

I/O SPACE

92

ROM VECTORS TO OTHER ROM

Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

SDOS LOADER FORMATS

SDOS will load files containing one of two types of records:

1) SDOS Load Records
2) Encrypted Load Records

A file to be loaded must contain only SDOS load records, or
encrypted load records.

SDOS LOAD RECORD FORMATS

SDOS Load Records are designed to let SDOS load large blocks of
contiguous memory efficiently, and still retain scatter-load
capability. A file containing SDOS Load Records appears as a
stream of load records. Each load record has a type and a
format. There are four SDOS load record types; all four contain
binary information for ease of processing by the loader and to
minimize file space occupied. Each load record type is
identified by its first byte. One record immediately follows
another.

SDOS load record type 1 must be the first record (i.e., start on
byte 0) of the file. It is fOllowed by 2 bytes forming a 16 bit
start address, MSB first. The next two bytes are the 16 bit
one's complement of the start address, MSB first (this record
format makes it extremely improbable that a non-load format file
is actually loaded by accident). The first byte of a A Type 1
load record specifies the CPU type:

$01 6800
$03 6801/6803
$02 6809
$07 6303
$11 6811

SDOS load record type 0 is a skip record. The two bytes
following the record type byte form a 16 bit count (MSB first) of
the number of bytes following the skip record to ignore. The
loader processes this record by positioning the file to the file
position after the skip record, plus count bytes. This record
format is used to align following load records on power of two
boundaries which can speed up loading of larger data records.

SDOS load record types 2 and 3 are identical in format. Both
record types are used to load blocks of data into the memory
address specified by the two bytes following the record type byte
(MSB first). The number of bytes to be loaded is given by the 16
bit count specified by the next two bytes (MSB first). The data
bytes to be loaded immediately follow the count bytes.

COPYRIGHT (C) 1978 93 Software Dynamic~

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

A type 2 record specifies that another load record follows (i.e.,
that EOF does not immediately follow the records) and that
further load record processing is needed. A type 3 record
indicates that the load process is complete once the data bytes
in the type 3 record are loaded (i.e., there are no more load
records in the file). After processing a type 3 record, a
SYSCALL:CHAIN will transfer control to the start address
specified by the type 1 record.

OPYRIGHT (C) 1978 94 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

SDOS LOAD RECORD FORMATS

Command

o COUNT 1 ••••• 1
____ 1 1 ____ 1 1_~ __ _

2-sYTES--- _____ ~--__
1
1

COUNT BYTES
Meaning: Skip COUNT bytes to find

next command. Used as a
space filler to pad to the
next physical sector boundary.

lCPU Type ADDRESS 16 BIT CHECKSUM Set start address.
Must be first command
in file. CHECt·3UM is
:FFFF - address.

1 1 1
--------- ~YTES ---~2-BYT==E~S----

2 ADDRESS COUNT

3 ADDRESS COUNT
1 1 1 1

DATA BYTES

COUNT BYTES

Causes data bytes to be loaded
sequentially into memory
starting with the specified
address.

DATA BYTES

----- -----2 BYTES -----2 BYTES ---------------

COPYRIGHT (Cl 1978 95

Just like 2, but also causes
JUMP to start address specified.

Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

The load records are used in the following way to optimize the
disk reads (example):

Logical byte #'s
!

NBPS

2*NBPS

3*NBPS

4*NBPS

Encrypted Files

05 I S#

Type 1 record

Type 0 record

Type 2 record
I=================!
1 1ST Data Byte 1
1 1
1=================1
1 1
1 1
1=================1
1 Type 3 record
1 ________________ __

1
1

1 1
1=================1

1
1

I=================!

Must be first in file

Filler record

Indicates "Load next
two sectors".

Indicates "Load next
two sectors" and
transfer control to
start address when
done.

COUNT 48 Random Bits

1 1 __________ ~--~-----------------
,------ 1st Serial Number

,----------~~--~--~----------------I 2nd Serial Number

I----------~-=--~-=~----------------1 S# Serial Number

1------------------------------------

)PYRIGHT (C) 1978 96 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

ENCRYPTED OBJECT FILES

An encrypted file is one whose content is not in a directly
usable form. Under SDOS, encrypted object files contain
proprietary programs which are designed to run on only a limited
number of CPUs. Some programs are proprietary to Software
Dynamics; other programs are proprietary to other vendors.
Software Dynamics provides a tool to allow vendors to encrypt
their own object programs or suite of programs.

An encrypted program is decrypted by
memory by use of an Encryption Key.
function of the serial numbers of the
is authorized run, and a 48 bit
embedded in the object file.

SDOS while loading into
The Encryption Key is a
CPUs on which the program
"application suite" number

SDOS zeros the address space when loading an encrypted file whose
Encryption Key is different than the Encryption Key of the last
file loaded. This prevents "Trojan Horse" software from
obtaining a snapshot of a previously-executed program. Only
programs with the same encryption key may pass control (and
non-zero data) to one another. This is a common requirement of
an "application suite".

Encrypted object files have an un-encrypted 1st object record,
followed by the rest of the file ~n an encrypted format. The
encrypted portion of the file, once un-encrypted, is in standard
SDOS load record format, with the exception that no skip records
are allowed (decrypting skip records is simply a waste of time).

The first object record starts with a byte containing :05,
signifying this file is an encrypted object file. The
SerialNumberCount (S#) specifies how many serial numbers for
which this object file was encrypted. Following the
SerialNumberCount are 6 bytes of Application Suite number
(typically a random number chosen at time of encryption). Last
are a series of 8 byte Serial Numbers on which this object file
is authorized to run. These serial numbers are in a clear text
form so they can be easily inspected by a utility program.

COPYRIGHT (C) 1978 97 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

SDOS DISK FILE STRUCTURE

This section gives detailed information on the structure of the
SDOS disk file system. Two concepts are critical to the
understanding of the file system: Logical Sector Numbers and
Logical Cluster Numbers. These concepts are detailed xbelow.

Definitions:

NBPS

NSPT
NTPC
NCYL
NLSN

Note:

Number of bytes/sector (2 A n,n=1 .. 15). Must be power of
2!! NBPS is limited to 128*32=4096 by directory search
routine. Minimum size is 128 bytes (see BOOT sector).
Number of sectors/track
Number of tracks/cylinder
Number of cylinders/drive
Number of (logical) sectors on a disk (= NSPT*NTPC*NCYL)

Number of bytes/cluster
implementation.

2 A 16 for 6800/6809

COPYRIGHT (C) 1978 98 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

LOGICAL SECTOR NUMBERS (LSNs)

LSN's are imaginary sequence numbering applied to physical disk
sectors on a disk cartridge or floppy diskette. The reason for
using them is that Logical Sector Numbers can be mapped onto any
disk removing any structure that the disk drive might arbitrarily
impose from the knowledge and concern of SDOS; i.e., the
distinction between tracks, cylinders, and sectors ceases to be
of concern to the SDOS file system.

The only requirements placed by SDOS on LSN's is that they begin
with 0 and increase sequentially; further, track 0, sector 0,
cylinder 0 (usually) maps into LSN 0. This is because most
hardware interfaces can read in this physical disk block as a
means for booting the system, so SDOS reserves LSN 0 for this
block.

A useful method for choosing the LSN number for a disk block on
physical cylinder C, track T, and sector Sis:

LSN(C,T,S)=S+NSPT*(T+NTPC*C)

where NSPT and NTPC are the number of Sectors per Track and the
number of Tracks per Cylinder, respectively; where 0<=S<NSPT,
0=<T<NTPC, and 0<=C<NCYL (NCYL= number of cylinders). This has
the advantage of allowing SDOS to allocate new blocks to a file
by use of their LSN's, attempting to minimize LSN distance (which
minimizes Cylinder, Track, and Sector distance, in that order.
The name NLSN refers to the number of logical sector numbers for
a disk and is equal to NSPT*NTPC*NCYL. There are physical disk
read and write routines in the I/O package which are required to
convert LSN's into the corresponding values of S, T and C. Each
LSN occupies 3 bytes (maximum of (2~24)-1 LSN's).

COPYRIGHT (C) 1978 99 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

CLUSTERS (LCNs)

SDOS allocates disk space in units of "clusters" (not sectors!).
A cluster is simply a set of sectors whose LSN's are contiguous,
and whose lowest LSN is a multiple of the cluster size (an
arbitrary constant for a particular diskette or disk pack). Data
placed in a cluster is generally related in some fashion.

Each cluster is assigned a logical cluster number (LCN). An
(LCN) is the number given to a cluster of sectors. Every LSN is
in a cluster whose LCN is given by:

LCN(LSN)=INT(LSN/NSPC)

where NSPC is the number of disk sectors per cluster (defined for
the disk).

The total number of clusters on a disk is given by:

NSPC=INT(NLSN/NSPC)

The special cluster number :FFFF is reserved, and means "no
cluster allocated" or "no such cluster". This is the value to
which unallocated clusters specified in cluster headers are set.

The advantage of this clustering technique
and time. Space savings are effected on
file does not need to explicitly record
contains. This means less disk space used
space.

is that it saves space
the disk because each
all the sectors it
keeping track of disk

Time savings are effected when SDOS is reading sequentially
through a file, because (NSPC-l)/NSPC*100% (for NSPC=4, 75%) of
the time, SDOS knows the next LSN which is required without
having to do any disk reads to collect this information. The
disadvantage is a small loss in efficiency of disk storage (i.e.,
each file wastes NSPC/2 disk sectors on the average, instead of
1/2 disk sector average).

The cluster size is chosen to either minimize average waste of
disk sectors in files, or to minimize the seek time between disk
sectors in a cluster, subject to several constraints.

The first constraint is that all legal LCN's are limited to the
range 0-65534 decimal (65535 is reserved; 2 bytes inside SDOS),
i.e., INT«NLSN-l)/NSPC)<65535.

The second constraint is that one cluster should have enough
space to contain all the LCN's defined for a disk, i.e.,
NSPC*NBPS/2 >= INT(NLSN/NSPC) where NBPS is the number of bytes
per sector. This constraint allows SDOS to use a single cluster
to record all the clusters of a file. This constraint can be
violated, but the result is that a single file might not be able
to use the entire disk. SDOS will complain if the Header Cluster

COPYRIGHT (e) 1978 100 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

of a file overflows when allocating space to a file.

The third constraint is that l<=NSPC<=255. This is purely an
implementation restriction and must be followed.

Assuming a file with 2'31=2.1x10'9 bytes, NBPS=512, NSPC=255, we
have 2.1x10'9/512=4.2x10'6 sectors in file; 4.2x10 A 6/255=l6449
clusters in file. The header cluster has room for 255*512/2=65280
clusters, which covers such a file easily.

To minimize average wasted space in disk files, NSPC should be
chosen to be as small as possible within the constraints
specified. This may leave some disk sectors (with high LSNs)
unused by SDOS if NLSN is not a multiple of NSPC. but the total
wastage here is again only 1/2*NSPC sectors average, and if one
has 100 files on a disk, this is insignificant in comparison with
the total savings. A final note: if the number of sectors per
cylinder is not a multiple of NSPC, some time inefficiency will
occur when reading sequentially through a cluster because some
clusters will cross track or cylinder boundaries. This
inefficiency will be small if the average file size is much
greater than NSPT*NSPC.

If the average file size is smaller than NSPT*NTPC, some time
savings can be gained by making NSPC a divisor of NTPC - this
will generally prevent part of file (cluster) from overlapping
cylinder boundaries, and will therefore save seek time.

A sample calculation of NSPC:

Assume we have 77 cylinders (NCYL=77), 1 track/cylinder
(NTPC=l), 16 sectors/track (NSPT=16), 256 bytes/sector
(NBPS=256) (so NLSN=NSPT*NTPC*NCYL=16*1*76=1232). Let
LSN(C,T,S)=S+16*(T+l*C). Since we have only one track
(track #0), the formula simplifies:

LSN(C,S)=S+16C

For any NSPC>=l then NLSN/NSPC 65536, satisfying
constraint 1.
Constraint 2 implies:
NSPC*256/2>=INT(1232/NSPC)
NSPC*128>=INT(1232/NSPC)
which is true for any NSPC>=4
If we choose NSPC=4, constraint 3 is also satisfied.

To minimize average wasted space, we choose NSPC=4. On a disk
with 100 files, an average of 100*4/2=200 disk sectors are
wasted. With NSPC=3, with 100 files wastes an average of
100*3/2=150 sectors, and prevents files from containing more than
1152 sectors (i.e., a particular file can only cover 93% of the
disk).

COPYRIGHT (C) 1978 101 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

DISK FILE STRUCTURE

A File under SDOS is a mechanism for storing logically related
information. From the point of view of an application program, a
disk file is a very large array of 8 bit bytes which can be
read/written sequentially, can be positioned for later
read/writes, and can be automatically extended (at the end) to
add more information. These files can be up to 2~31 bytes (2.1
billion bytes) in size, physical disk size being the real
limitation.

This view of files is implemented by device drivers. The
operations that a device driver considers legal and the actual
operation performed are dependent on each device driver (see
Device Drivers). There are two kinds of drivers: non-disk file
and disk file.

The disk file driver is a component of SDOS proper. It handles
files by breaking them dom1 into two layers: clusters and
sectors. Sectors are the physical unit of transfer to/from the
disk drive. Clusters are a logical grouping of sectors used to
minimize the amount of information required to record where all
the sectors of a file are located.

Each file has a special cluster of sectors known as the Header
Cluster. The Header Cluster contains the logical cluster numbers
of all (data) clusters contained in the file. These numbers are
placed in the Header Cluster in such a way as to indicate the
relative (byte) position of the target cluster in the file.

A special cluster number of hex :FFFF means "no
allocated" to this place in the file. This allows
to be built with very little wasted space.

COPYRIGHT (C) 1978 102

data cluster
sparse files

Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

Header
Cluster 2B

2B
2B

NSPC*NBPS
1
1

1
I
1
V

----------1

First Cluster Pointer
Points to Headercluster

--------------- Remaining Cluster Pointers
Point to Data Clusters

1
1
1 Data Cluster #0
1
1-->1

Data Cluster #1

1----->1 0

1

NSPC-l

Data Cluster #N

1--------->1
1

The first two bytes in the header cluster are reserved to contain
the cluster number of the header cluster itself (this simplifies
the space allocation routines). Succeeding pairs of bytes
contain the logical cluster numbers of the 0th data clusters. 1st
data cluster, etc.

When a file is first allocated, all the pointers (except the
first) in the first sector of the header cluster are initialized
as :FFFF (no data cluster allocated). The other sectors in the
header cluster are left as garbage.

A special 1 byte counter (stored in the directory), DIR:HrC:IC
(header cluster initialized count) tells SDOS how many of the
sectors in the header cluster are initialized.

COPYRIGHT (C) 1978 103 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

If a data byte is in logical byte number
SDOS can access that byte (in at most two
following process (definition):

"LBN"
disk

in a file, then
reads) by the

First, compute:

Next:

Finally:

NBPC := NSPC*NBPS
RDCN := INT(LBN/NBPC)

(COMPUTE # BYTES/CLUSTER)
(COMPUTE THE RELATIVE DATA
CLUSTER NUMBER)

HSLSN := INT[(RDCN+l)*2J/NBPS + HCLCN*NSPC

where HSLSN = header sector logical sector number
and HCLCN = header cluster logical cluster number.

This computes the LSN of desired sector in the Header
Cluster. The "+1" is because the first cluster pointer
is the pointer to the header cluster. The "*2" is
because each cluster number occupies two bytes.

Note: HCSIC may indicate that this sector (HSLSN) has not
been initialized!!

read HSLSN into memory in HBBUF (header buffer)
DBLCN := @((((RDCN+l)*2)MOD NBPS)+.HBBUF)
this computes the LCN of the data cluster containing the
byte.

"@" means use the value to the right as a memory address
and fetch 16 bits. ".HBBUF" means the address of the
header buffer. Note: DBLCN may be :FFFF (undefined)!!

DBLSN := DBLCN*NSPC+INT((LBN MOD NSPC*NBPS)/NBPS)
Read DBLSN into memory; desired byte is found at
displacement RBN := LBN MOD NBPS

COPYRIGHT (C) 1978

104 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

SDOS FILE STRUCTURE

DIRECTORY
ENTRY

LCN -----------

--------------/
1
1

/

/
/

1
1
1
1
/

1
-1--1 1 Header Cluster - First Cluster of File
1 V V
1-=--:::::- T

1
1----===--1

1 1
!--===--

1
I~

1-------> 2nd Data Cluster

1---------> 1st Data Cluster

COPYRIGHT (C) 1978

1 1

) (Some)
)Sections
)Initialized
)To "No
)Cluster
)Allocated"
)At File
)Creation
)Time

1 1
1 1
1
1
1
1

105

A Cluster Number Of
:FFFF

Means "No Cluster
Allocated"

Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

V Header Cluster

1--------

------------> 2nd Data Cluster
------------> Etc.

1st Data Cluster

!----->

1. I
I

Logical sector number of 1st sector in cluster =
clust~r number * cluster size in sectors.
Succeeding sector numbers are base sector number + index into
cluster.

COPYRIGHT (Cl 1978 106 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

DIRECTORY.SYS STRUCTURE

The directory stores the name and location of the header cluster
for all files on the disk (SDOS allows no magic disk files which
are not in the directory; even system files are mentioned in the
directory) .

Each Directory entry is 32 bytes and contains the following
information:

DIR:FILENAME
The file name can be any left-justified sequence of letters
(uppercase only), digits 0 through 9, $ or ".". It may not
begin with a "." or a digit. The name is blank filled to 16
bytes. Two file names are considered equivalent if they
match byte for byte. SDOS automatically folds lowercase
characters in disk file names into uppercase. Bit 7 of all
bytes must be zero.

DIR:HLCN
The Header Logical Cluster Number specifies the location of
the Header Cluster for the file if DIR:HCSIC > 0. If
DIR:HCSIC = 0, then DIR:HLCN is actually the cluster number
of the 1st data cluster.

DIR:HCSIC
The Header Cluster Sector Initialized Count tells. SDOS how
many sectors of the header cluster have been initialized
properly (see File Structure) and need not concern any but
the systems programmer. DIR:HCSIC is updated whenever a new
header cluster sector is initialized. If DIR:HCSIC is zero,
and DIR:NCLUSTERS > 0, then the file is contiguously
allocated on the disk, with the first data cluster being in
DIR:HLCN, contiguous for DIR:NCLUSTERS.

DIR:NCLUSTERS
DIR:NCLUSTERS is the number of clusters allocated. This
count is needed as a very sparse file may have an enormous
logical file size, and yet have a very small actual disk
allocation. SDOS updates DIR:NCLUSTERS only when a file is
closed. If DIR:NCLUSTERS is zero, this directory entry is
not valid and is available for use by a new file (name).

DIR:FILESIZE
DIR:FILESIZE is the apparent size of the file in bytes, and
is equal to the position of the last data byte written in
the file, +1. The filesize is completely independent of
sector or cluster size.

COPYRIGHT (C) 1978 107 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

DIR:PROTECTION
DIR:PROTECTION contains file protection bits. The
protection bits prevent inadvertant or undesired references
to file. The currently defined bits are:

7
6
5
4
3
2
1
o

PROTECT:WRITE

<NOT DEFINED>
PROTECT:WRITE
<NOT DEFINED>
<NOT DEFINED>
<NOT DEFINED>
<NOT DEFINED>
<NOT DEFINED>
PROTECT: BACKUP

The PROTECT:WRITE bit prevents DELETE, RENAME, and
CREA~E commands on a file with the corresponding name.
This is used by SDOS to prevent accidental erasures of
critical system files, and may be used by the user to
protect his critical files.

PROTECT: BACKUP
This bit prevents SDOSDISKBACKUP from backing up a file
if the CHANGED option is specified. It is reset
whenever a file is first created, or when a file is
mOdified in any way (SYSCALL:WRITEA, SYSCALL:WRITEB,
CC:SETFILESIZE, etc.). It is set by SDOSDISKBACKUP
whenever a file has been backed up using the CHANGED
option.

DIR:CREATIONDATE
DIR:CREATIONDATE contains the creation date of the file in
the form DDMMYY. DD is one byte containing the day number in
BCD; MM is one byte of BCD month; and YY is the year number
modulo 100 in one BCD byte.

SDOSDISKINIT generally places the first data cluster of the
directory at INT(NLCN/2) (the middle of the logical disk) in an
attempt to decrease seek-to-directory time. This also causes
SDOS to extend the directory in the middle of the disk if need
be. Note: This LCN must be non-zero! (Otherwise, the directory
and the boot cluster collide.)

SDOS locates the directory initially by reading BOOT:DIRLSN from
the BOOT.SYS file. BOOT:DIRLSN gives the LSN of the directory
sector containing the DIRECTORY.SYS entry. The directory entry
for DIRECTORY.SYS is located in the first 32 bytes of the sector.
This requirement also forces the sector size to be at least 32
bytes (the first entry must be contained entirely in the first
directory sector), and to be a multiple of 321

COPYRIGHT (e) 1978 108 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

All other filenames in the directory are added to it according to
the following procedure:

The directory is searched by initially hashing the desired
name to choose a directory sector, and then searching
circularly through the directory for the desired name. The
hashing scheme tends to make lookups of existing names very
quick, as long as the directory is 80% or less loaded. The
circular search guarantees that even if the directory size
changes, files will still be found.

The directory is automatically expanded by SDOS if it is
full and a new filename needs to be added. This automatic
expansion invalidates all the previous hashes, but since new
(or renamed) files will get hashed to the correct place,
after the system has been used with the expanded directory
awhile, lookups will speed up again. Renaming a file
rehashes it, so renaming all files will rehash them all.

The directory size is kept in the DIR:FILESIZE entry of the
DIRECTORY.SYS entry, and is always a multiple of the cluster size
(NBPC).

As a convenience to the hashing algorithm, a limit of 65536
directory sectors is imposed on the DIRECTORY.SYS file.

COPYRIGHT (C) 1978 109 Software Dynamic.

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

OPYRIGHT (C) 1978

Directory Entry

I================! 1 16 Bytes,
DIR:NAME Legal Names Contain

1 A-Z, 0-9, $, "."
1----------------1
1 DIR:HLCN 1 2B, Header Cluster Number
1 1
1
!----------------I

DIR:HCSIC IB Header Cluster Sector
Initialized Count

1----------------1
DIR:NCLUSTERS 1 2B Number of Data

1 Clusters in File
I----------------! 1 DIR:FILESIZE 4B, Number of Bytes in
! . The File
!----------------I
1 DIR:PROTECTION ! IB, Protection Bits

1----------------1
IDIR:CREATIONDATEI 3B
1----------------1
1 UNUSED IB
I================!
1 1
1 1
1
!

110 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

LCN 0, LSN "

BOOT:

File System Sketch

DIRECTORY.SYS
file body

1<-------1
1 1 DIRECTORY.SYS
1 I Header Cluster

-----1 I
DIRLSN *-------> DIRECTORY 1 -1--1--~--~----~----~1

1#
1

BOOT.SYS
Header

••• 1

SDOS.SYS
Header Cluster

.SYS #-------->1 # 1
1 ! ! 1 1 1

-----------1 usually, LCN=@(Directory)-l
1

___________ 1

1 <-----#
1

BOOT
.SYS

1 __________ _
1
1

1
1
1

DISKMAP.SYS file body
"Busy Cluster Mar"

(1 cluster)

--------------- SDOS.SYS
! # 1 ••• 1 1<--------#
! I ! 1 -1- -- - 1--------

I SDOS.SYS
I file body
V

I
1

1

1

DISKMAP.SYS
Header Cluster

--L"'C~N-;;#"-1--7 DISKMAP -I--I---,------,-----~--~

LCN #2
LCN #3

LCN #n

.SYS #--------->1 #
1

Notes: * represents pointer to (logical) sector
represents pointer to (logical) cluster

SDOS hashes to 1st directory entry, and does linear circular
search thereafter.

COPYRIGHT (C) 1978 III Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

Physical Placement of Files on Disk

LCN ~- NLCN/2
, Logical Sector 0 , ,
I V

/---, BO"'OT;;;-;. S""Y"'S"-'/' \
/, / \

/ , -----'\ S \ <--- Logical
/ V \ D \ <--- LCN 2,

/ !D::-I=SKMA:;-:::-;::-:P::-.-:S~Y:::S:-:- \ 0 \
/ --------------- \ S \

I I
/--\
I I

I
\ __ / TSI

! Y I
I S I

s
Y
S

Cluster #1
3, etc.

\ / . / <--------- LCN -- NLCN/2
\ / Y / /

\ ,.l-D~I.,.--;R E....,.C;-;;;T-O" R / /
\ ------------------/ /
\ /
_--------------------/

OPYRIGHT (C) 1978 112 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

THE BOOT.SYS FILE

BOOT.SYS is a file which owns LSN 0 (the boot sector).

The BOOT.SYS file contains three things:

1) a disk identification (32 bytes of text blank padded).
2) the appropriate DISKINFO (tuning parameters) for this disk
3) a "simple" program to read SDOS off the disk and into memory

as a means of booting.

Items 1 and 2 are stored in fixed places in LSN 0 and occupy the
first 64 bytes. This sets a minimum sector size requirement of
64 + 1 --> 128 (sector sizes must be a power of twol). Other
LSN's in the BOOT.SYS file are simply wasted or used
extended bootstrap program if needed.

The form of the boot sector must be as follows:

16 BYTES

15 BYTES

JUMP ----------- These Bytes Are
Used For Any
Purpose By Boot

DISK or Boot ROM
INFO Routine

to store an

1 BYTE IDISKINFOCKSUM
1 ______ _ <------ :FF - Sum of

Bytes in
DISKINFO Part

32 BYTES

REST OF
SECTOR

DISK
ID

BOOT
ROUTINE

<---------
1

This ensures that
locatable, and that
executing.

the
it

disk
does

identification string is easily
not prevent the boot routine from

Normally. LSN 0 is read into memory at $100
routine, and control is passed to location $100.
reads in the rest of BOOT.SYS if necessary.

COPYRIGHT (Cl 1978 113

by a ROM boot
The boot sector

Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

The boot routine then reads the
memory at the appropriate place,
starting point.

contents of the SDOS file into
and transfer control to the

BOOT:FILESYSTEMVERSION is a single byte containing a file system
version and revision number in the left and right nibbles,
respectively. This document describes file system version
1.1 (note: SDOS revision numbers do not necessarily match
file system revision numbersl).

BOOT:NSPC is a single byte which specifies the cluster size of
clusters on this disk (0<BOOT:NSPC<=255).

BOOT:MINALLOC is two bytes which specify the minimum number of
data clusters to allocate to a disk file when it is created
on this disk. 0 is not legal.

BOOT:MIDALLOC is two bytes which specify
clusters to be allocated to a
BOOT:MIDALLOC must be >= 1.

the
file

minimum
being

number of
extended.

BOOT:MAPALGORITHM is 16 bits which are used in a disk-sector
driver dependent way to tune rotational and seek latency
times to a minimum.

Commonly, the upper 8 bits are used as "spiralling", or the
number of sectors each cylinder should be offset from the
next (cylinaer) to tune seeks for sequential reads; the
lower byte tunes the physical spacing between adjacent
logical sector numbers (also measured in units of sector
times). SDOS can usually only read every other sector, best
case.

When using the "common" mapalgorithm interpretation to map
LSNs into physical CYLINDER, TRACK, and SECTOR (assuming
CYLINDERs and TRACKs increase sequentially from 0, and
physical sector 0 on all TRACKs are aligned) the following
formulas apply:

COPYRIGHT (C) 1978 114 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

where

REM PSUEDO-BASIC TO COMPUTE PHYSICAL CYLINDER, TRACK, SECTOR
CYLINDER= INT(LSN/(NSPT*NTPC))
TRACK= INT((LSN-CYLINDER*NSPT*NTPC)/NSPT)
SECTOR= ((CYLINDER*SPIRAL)+MAP[LSN MOD NSPT]) MOD NSPT

MAP[i]= (i*SPACING) MOD NSPT if SPACING is relatively
prime to NSPT, and is generally computed as:

MAP[0]:= 0 \ I RULE I
K= SPACING
FOR i= 1 TO NSPT-l

100 FOR J= 0 TO i-l
IF K= MAP[J] THEN K=(K+l) MOD NSPT\ GOTO 100
NEXT J
MAP[i]= K
K= (K+SPACING) MOD NSPT
NEXT i

On hardware systems where formatting a disk is used to effect
this tuning, the Mapalgorithm is by convention always set to "1".

BOOT:CREATIONDATE is the date that this
and consists of 3 BCD bytes: day,
respectively.

disk was SDOSDISKINITed,
month, and year MOD 100,

BOOT:DIRLSN is the Logical Sector Number of the DIRECTORY.SYS
sector that contains the DIRECTORY.SYS directory entry in
the first 32 bytes.

BOOT:CHECKSUM contains :FF-[sum of the 15
including) BOOT:FILESYSTEMVERSION] modulo
to check the validity of the disk.

bytes between (and
256, and is used

BOOT:DISKID contains 32 ASCII characters blank filled, used
solely as a disk identification. This ID is displayed by
the FILES command. It can be used (read) by an application
for the purpose of verifying the disk before the application
uses it.

The boot routine is used to read the contents of SDOS.SYS into
memory. Ususally, the boot routine does not fit entirely into the
remainder of the BOOT sector; the rest of the boot routine is
stored in memory image format in the remaining sectors of LCN 0.
Listings of sample boot routines can be obtained from the
distributor of SDOS or from Software Dynamics.

COPYRIGHT (C) 1978 115 Software Dynamics

SOOS APPLICATION PROGRAMMERS' GUIOE
SECTION VI: SOOS CONSTRUCTION/FUNCTIONS

SERIALNUMBER.SYS

SERIALNUMBER.SYS is a file required to be on an SOOS boot disk in
order that SOOS may successfully boot. The file is encrypted,
and contains several things:

A first-time-only conversation with the purchaser of SOOS;

The serial number of the computer for which the particular
version of SOOS was sold; and

The name of the end-user, or organization.

SOOS, after initializing operation of the system, goes and hunts
for SERIALNUMBER.SYS. If this file does not exist, SOOS
displays, and hangs up with a "No SERIALNUMBER.SYS file" error.
If the file does exist, it is CHAINed to, causing implicit
decryption. The SOOS decrypting loader will refuse to load
SERIALNUMBER.SYS if the serial number encoded into it does not
match that of the ROM included in the system hardware; this
causes a "Wrong Serial Number" message to be printed, and
operation of SOOS is aborted. If SERIALNUMBER.SYS is not
encrypted, an error message will likewise be generated and SOOS
will not run. Otherwise, the module is loaded and executed. If
this is not the first time SERIALNUMBER.SYS has been loaded, then
SERIALNUMBER.SYS first prints the ROM serial number, and the name
of the end-user; further operation of SDOS is normal.

The name of the end-user is supplied by the end-user when the
copy is first run by him; i.e., if the end-user name is blank.
SERIALNUMBER.SYS asks the name and then waits for the operator to
enter a corresponding code number that he must obtain from
Software Dynamics. This code number is generated by Software
Dynamics from the serial number of the computer and the string
entered by the user (this may be obtained from Software Dynamics
well in advance of system installation, in order to minimize
delays). An invalid response is so indicated, and the end-user
name is NOT updated. A correct response causes SERIALNUMBER.SYS
to change the end-user name to the supplied string. Once set,
the SERIALNUMBER.SYS file can never be changed again. A response
of <CR> is taken as a signal that the user does not wish to set
the name yet (this may be a demo copy, or the user may not have
yet obtained the corresponding code number from Software
Oynamics); in this case, after a 30 minute delay, SOOS will
operate normally.

COPYRIGHT (Cl 1978 l16 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

SDOS.SYS

SDOS.SYS is an SDOS load record format file containing the memory
resident part of the operating system. It is used by the boot
procedure to load a copy of the system from the disk into memory.

To simplify the boot process, certain restrictions are made on
the file structure of SDOS.SYS.

The data LCNs of SDOS must be numbered 1, 2, 3, ... etc., i.e., a
contiguously allocated file. This guarantees sequentially
increasing LSNs which makes the boot routine's job (of computing
LSNs) extremely simple. The header LCN of SDOS (if it has one)
may be anywhere on the disk; the boot routine need not look at it
(many boot routines never bother reading the SDOS header
clusters). Normally, the SDOSDISKINIT program assigns a very
high LCN to the header cluster of SDOS.SYS.

The start address of SDOS.SYS is defined to be SYSCALL$ (:FB).

When debugging a (newly SYSGENed) I/O package, a convenient trick
is to modify (using BMP, the Binary Maintenance Program) the
first load record (actually the start record) in the SDOS.SYS
file so the SDOS start address is the entry point to the ROM
debugger instead of :FB. With this change made, "booting" will
cause SDOS to get loaded, and the debugger will then gain
control. Patches may be made and breakpoints established, and
then SDOS can be started by causing a jump to :FB. When
debugging is completed, the first load record should be restored
to its initial state.

COPYRIGHT (C) 1978 117 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

DISKMAP. SYS

The DISKMAP.SYS file is used to keep track of clusters allocated
to disk files for that disk. Each disk cartridge or floppy
diskette has its own DISKMAP.SYS.

The file has one bit per cluster on the disk on which the file
resides. An "on" bit indicates the cluster is allocated (or
contains a bad sector). An "off" bit indicates a free cluster,
available for allocation to a file. SDOS assumes that the entire
disk map can be contained in a single cluster, so if constraint 2
of LCNs is violated (see section on CLUSTERS), one needs to make
sure that NBPS*8*NSPC>=INT(NLSN/NSPC) (otherwise the diskmap
doesn't fit into a single cluster). If constraint 2 is satisfied,
so is this condition (the 8 is the number of bits per byte).

Each byte of DISKMAP.SYS represents 8 clusters, such that bit
number n (starting with 0, counting from the right) represents an
LCN such that (LCN mod 8) n. Bytes at logically higher byte
addresses within DISKMAP.SYS represent groups of LCNs with higher
values, so that if LBN (logical byte number), BITN (bit number)
represent a particular bit in the DISKMAP.SYS, then that bit
corresponds to LCN=LBN*8+BITN (logical cluster number).

Cluster space allocation is done by taking the previously
allocated cluster number (to a file) as the starting point of a
search for a free cluster. Searches toward logical cluster number
o and NLCN-l are both made in an attempt to minimize the distance
between the cluster number (allocated to the preceding cluster in
the file) and the new. Furthermore, an old cluster number of
:FFFF causes allocation starting at a random place within the
map.

The allocator prefers a forward search, and will not bother with
a backwards search if it can get a distance of 1 between the old
cluster number and the new.

COPYRIGHT (Cl 1978 118 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

DISK CLUSTER ALLOCATION MAP

MSB represents Logical Cluster #7
I
I
I

LSB corresponds to Logical Cluster #0
1

BYTE #0
#l
#2

One Cluster
I
I
v

NOTE: Sector
Containing Bit
For NLCN-l is
Null Filled With
l's to Make it
Appear that the
Illegal LCNs
are allocated.

V V
~ ---------------- -r<--Logical Clusters #0-7
1 1<--#8-15
1 1<--#16-23
1 1<--#24-31
1
1
1
1
1
1
1
1
1
1

1
1
1

/-------------- Bit # (NLCN-l) mod 8
V 1 (max legal cluster number)

1777"/'-;/"/'/ '7/T/"I- -r 1
1/////////1 1 I
1//////////777/////////1
1//////////////////////1
I//////////////////////l
1//////////////////////1
1//////////////////////1
!///////ILLEGAL////////l
I///////CLUSTER////////I
I///////NUMBERS////////I
1//////////////////////1
1//////////////////////1
1////////////////////1/1
11//1/////1/1//1//1111/1
1----------------------1

A "I" bit --> cluster is busy
A "0" bit --> cluster is free (available).

OPYRIGHT (C) 1978 119 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

ERRORMSGS.SYS (ERROR MESSAGE FILE) FORMAT:

The ERRORMSGS.SYS file is used by SDOS to convert 16 bit error
codes into English text messages for the operator.

The file must exist on the default
must be mounted, in order for SDOS
SDOS merely prints "Error nnnnn").

disk,
to use

and the default disk
the file (otherwise

The file is organized into two parts, and is sparse.

The first part of the file converts 16 bit error codes
string pointers into the file. The second part of the
contains the raw error message text.

into
file

The 16 bit error code is multiplied by 3, and used as a byte
index on the file to fetch a 3 byte relative index into the file.
The 3 byte index points to an ASCII error message string, ending
with a CR (:0D) character. The SDOS error routines do not print
the CR explicitly but use it only to decide where the end of the
error message is (see SYSCALL:DISPERROR). A 3 byte index value
of zero means "no message defined".

1~e first 65536*3=196608 bytes of the file are reserved for this
lookup; since the number of error messages actually defined out
of the 65536 possible is very small, this region of the file is
sparsely allocated. The first text message starts in byte number
65536*3 of the file. This section of the file is dense.

New messages are added to the file by merely appending them to
the end, and adjusting the 3 byte pointer corresponding to the
error code to point to the old end of file.

The program SDOSERRORMAINT is used to maintain the contents of
this file. The file ERRORMSGBUILD.DO is a DO file used to
initially construct this file.

ERROR MESSAGE NUMBER ASSIGNMENTS:
o No Error
1 Operator Requested Attention
2-99 BASIC Compiler Runtime Errors
100-199 Errors Related to System Processors, Etc.
200-299 EDITor Errors
300-999 Application System Dependent Errors
1000-1999 SDOS / I/O Errors
2000-65535 Reserved

COPYRIGHT (C) 1978 120 Software Dynamics

SDOS APPLICATION PROGRAMMERS' GUIDE
SECTION VI: SDOS CONSTRUCTION/FUNCTIONS

BUILDING A TURN-KEY APPLICATION SYSTEM

In many circumstances, the full generality of an SDOS development
system is not needed; a simple menu-driven application program
selector plus the applications is sufficient. This is useful in
an office environment because it reduces the training required of
the office personnel.

Only two things need be done to build a turn-key application
system:

1) The boot process needs to be made automatic. This procedure
is hardware dependent and is not described further here.

2) The DEFAULTPROGRAM on an otherwise bootable SDOS disk needs to
be replaced by the menu-display program. This program may
contain the entire application, or it may CHAIN to other
segments at the appropriate time. The other segments, on
completion, will EXIT, which causes DEFAULTPROGRAM (the
menu-display program) to be reloaded, and the cycle repeats.

Note that the application program must set the time and date
itself by doing a WRITEB to the CLOCK$ device.

System development can still
menu program has a way of
regular development disk is
automatic).

continue on a turn-key system if the
chaining to SDOSCOMMANDS, or if a

inserted (just the boot part is

If DEFAULTPROGRAM is replaced by a compiled BASIC 1.4 program,
the 1.4 program must be combined with a runtime package.

COPYRIGHT (Cl 1978 121 Software Dynamics

ASM/6800 1.3H2: 0000
10/22/84 14:06:58; Page 2; Form 1
SDOSUSERDEFS.ASM

*** SDOS 1.1 DEFINITIONS ***

0011

0000

0001
0001

0001
0000

0001
0000

00FB

2: *
3: *

SDOS 1.1 DEFINITIONS FILE (AS OF 8/16/82)

4: SDOSVERSION
6:
7:
9:

10:
11:
12:
14:
15:
16: *
17: *

IFUND
FIN

IF
ELSE
FIN

EQU $11 1.1 IN HEX

LISTDEFS

LISTDEFS

18: *
19: *
20: *

The Definitions are broken into 3 parts:
A) THOSE NEEDED TO ASSEMBLE SDOS PROPER OR SYSTEM PROGRAMS
B) THOSE NEEDED TO BUILD AN I/O PACKAGE (A SUSSET OF "A")

21: * C) THOSE NEEDED SY EVERYDAY USER PROGRAMS (A SUSSET OF "S")
22: *
23:
24: IFUND SYSTEMDEFS
25: SYSTEMDEFS EQU 0 DON'T WANT SYSTEM DEFINITIONS
26: FIN
27:
28: IFUND IOPKDEFS
29: IOPKDEFS EQU 0 DON'T WANT I/O PACKAGE DEFINITIONS
30: FIN
31:
32: SYSCALL$ EQU $FS JMP TO SDOS; RESERVED SYSCALL ENTRY POINT
33: * CONTENTS OF ($FC.$FD) POINTS TO END OF USER RAM
34: * CONTENTS OF ($FE.$FF) ARE SACRED; THEY SELONG TO THE ROM

ASM/6800 1.3H2: 0000
10/22/84 14:06:58; Page 3; Form 1
SDOSUSERDEFS.ASM

*** SDOS 1.1 DEFINITIONS ***

36: *
37: *
38:

SYSCALL$ OPCODE DEFINITIONS

ORG
39: SYSCALL:OPEN
40: SYSCALL:CREATE

SYSCALL:CLOSE
SYSCALL:RENAME
SYSCALL:DELETE
SYSCALL:LOAD
SYSCALL:CHAIN

o
RMB
RMB
RMB
RMB
RMB
RMB
RMB

SYSCALL:CREATELOG
SYSCALL:CLOSELOG
SYSCALL:DISKDEFAULT
SYSCALL:READA RMB
SYSCALL:READB RMB
SYSCALL:WRITEA RMB
SYSCALL:WRITEB RMB
SYSCALL:CONTROL RMB
SYSCALL:STATUS RMB
SYSCALL:WAITDONE
SYSCALL:EXIT RMB
SYSCALL:ERROREXIT
SYSCALL:SETERROR
SYSCALL:GETERROR
SYSCALL:DISPERROR
SYSCALL:KILLPROOF
SYSCALL:KILLENABLE
SYSCALL:DEBUG RMB
SYSCALL:ATTNCHECK

1
1
1
1
1
1
1
RMB
RMB
RNB
1
1
1
1
1

OPEN FILE
CREATE A NEW FILE
CLOSE A FILE
RENAME A FILE
DELETE A FILE
LOAD AN OVERLAY
CHAIN TO A FILE
1 CREATE THE LOG FILE
1 CLOSE THE LOG FILE
1 SELECT DEFAULT DISK DEVICE
READ ASCII BYTES FROM A FILE
READ BINARY BYTES FROM A FILE
WRITE ASCII BYTES TO A FILE
WRITE BINARY BYTES TO A FILE
PERFORM A CONTROL OPERATION ON A FILE/DEVICE
READ FILE/DEVICE STATUS
1 WAIT FOR I/O ON CHANNEL TO COMPLETE
GIVE CONTROL BACK TO THE OPERATING SYSTEM
1
1
1
1
1
1

EXIT TO SYSTEM WITH ERROR CODE
REPORT AN ERROR TO THE SYSTEM
READ BACK THE LAST ERROR CODE
DISPLAY ERROR MESSAGE CORRESPONDING TO
PREVENT USER PROGRAM FROM BEING KILLED
ALLOW USER PROGRAM TO BE KILLED

CALL SYSTEM DEBUGGER
1 OPERATOR ATTENTION REQUEST CHECK

LAS'

0000
0000 0001
0001 0001
0002 0001
0003 0001
0004 0001
0005 0001
0006 0001
0007 0001
0008 0001
0009 0001
000A 0001
000B 0001
000C 0001
000D 0001
000E 0001
000F 0001
0010 0001
0011 0001
0012 0001
0013 0001
0014 0001
0015 0001
'0016 0001
0017 0001
0018 0001
0019 01001
001A 000l
001B 0001
001C 0001
001D 10001
001E 0001
001F 0001

41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61 :
62:
63:
64:
65:
66:

SYSCALL:ISCONSOLE

1
RMB
1
RMB
RMB
RMB
RMB
RMB
RMB
1
RMB
RMB
RMB
1

1 CHECK FOR CHANNEL 0 INPUT DEVICE = CONSOLE
SYSCALL:INTERLOCK

67: SYSCALL:DELAY RMB
68: SYSCALL:READLUN RMB 1
69: SYSCALL:GETSERIALNUMBER RMB
70: SYSCALL:JOBCONTROL RMB

1 PERFORM INTERLOCK FUNCTIONS ON OBJECTS
DELAY FOR n 1/60ths OF A SECOND
CONVERT LOGICAL UNIT NUMBER TO DEVICE NAME
1 GET PROCESSOR SERIAL NUMBER
1 CREATE/TEST/DESTROY OTHER JOBS

ASM/6800 1.3H2: 001F
10/22/84 14:06:58: Page 4: Form 1
SDOSUSERDEFS .. ASM

*** SDOS 1.1 DEFINITIONS ***

0000
0000 0001
0001 0001
0002 0002
0004 0002
0006 0002
0008 0002
000A 0002
000C 0002
000E 0000
000E 0000

0002
0006
0004
000E

0002
0006
0004
000E
000E
0012

0002
0003

0002
0006
0004
000E

0006
0004
000E

72: *
73: *
74: *

SYSCALL BLOCK DISPLACEMENTS

75: ORG
76: SCBLK:OPCODE
77: SCBLK:WLEN
78: SCBLK:PARAMS
79: SCBLK:WRBUF
80: SCBLK:WRLEN
81: SCBLK:RPLEN
82: SCBLK:RDBUF
83: SCBLK:RDLEN
84: SCBLK:DATA
85: SCBLK:END

o
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB

1
1
2
2
2
2
2
2
o
o

PRIMARY SYSCALL FUNCTION (OPEN, READ, ETC.)
WAIT FLAG BIT (0=WAIT) AND SYSCALL BLOCK LENGTH (0 •.
PARAMETER BYTES TO OPCODE (SECONDARY OPCODE, CHANNEL
POINTER TO WRITE DATA BUFFER
NUMBER OF BYTES IN WRITE DATA BUFFER
LENGTH OF REPLY (RESULT OF SYSCALL)
POINTER TO READ DATA BUFFER (WHERE RESULT GOES)
CEILING ON SIZE OF REPLY (READ DATA BUFFER)
OTHER PARAMETERS FOR SYSCALL: UP TO 127-12 BYTES
END OF SYSCALL BLOCK: ASSERT SCBLK:WLEN[l .• 7]=SCBLK:

86: *
87: *
88: *

SYSCALL PARAMETER LIST DEFINITIONS

89: OPEN:CHANNEL
90: OPEN:LENGTH
91: OPEN:NAMEP
92: OPEN:SCLEN

EQU
EQU
EQU
EQU

93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:

*
CREATE:CHANNEL EQU
CREATE: LENGTH EQU
CREATE:NAMEP EQU
CREATE:SCLEN EQU
CREATE:FILESIZE EQU
CREATE:FILESIZESCLEN
*
CLOSE: CHANNEL
CLOSE:SCLEN
*
RENAME: CHANNEL
RENAME: LENGTH
RENAME: NAMEP
RENAME:SCLEN
*

EQU
EQU

EQU
EQU
EQU
EQU

DELETE: LENGTH EQU
DELETE:NAMEP EQU
DELETE:SCLEN EQU

SCBLK:PARAMS
SCBLK:WRLEN
SCBLK:WRBUF
SCBLK:DATA

CHANNEL NUMBER
FILE NAME LENGTH
POINTER TO FILE NAME
OPEN SYSCALL BLOCK LENGTH

SCBLK:PARAMS CHANNEL NUMBER
SCBLK:WRLEN FILE NAME LENGTH
SCBLK:WRBUF POINTER TO FILE NAME
SCBLK:DATA CREATE SYSCALL BLOCK LENGTH
SCBLK:DATA 4 BYTE FILE SIZE INITIAL ALLOCATION
EQU CREATE:FILESIZE+4 END OF CREATE BLOCK

SCBLK:PARAMS
SCBLK:PARAMS+l

SCBLK:PARAMS
SCBLK:WRLEN
SCBLK:WRBUF
SCBLK:DATA

SCBLK:WRLEN
SCBLK;WRBUF
SCBLK:DATA

CHANNEL NUMBER
CLOSE SYSCALL BLOCK LENGTH

CHANNEL NUMBER
NEW FILE NAME LENGTH
POINTER TO NEW FILE NAME
RENAME SYSCALL BLOCK LENGTH

FILE NAME LENGTH
POINTER TO NAME
DELETE SYSCALL BLOCK LENGTH

WITH FIL

ASM/6800 1.3H2: 000E
10/22/84 14:06:58; Page 5; Form 1
SDOSUSERDEFS.ASM

0006
0004
000E

0006
0004
000E

0006
0004
000E

0002

0006
0004
000E

0002
0003
000A
000C
0008
000E
OOOE
0012

0002
000A
000C
0008
000E

0002
0004
0006
0008

0002

112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:

*
LOAD: LENGTH
LOAD:NAMEP
LOAD:SCLEN
*
CHAIN: LENGTH
CHAIN:NAMEP
CHAIN: SCLEN
*
CREATELOG:LENGTH

EQU
EQU
EQU

EQU
EQU
EQU

CREATELOG:NAMEP EQU
CREATELOG:SCLEN EQU
*
CLOSELOG:SCLEN EQU
*
DISKDEFAULT:LENGTH
DISKDEFAULT:NAMEP
DISKDEFAULT:SCLEN
*
READA:CHANNEL EQU
READA:LMFLAG EQU
READA:BUFFERP EQU
READA:MAXCOUNT EQU
READA:ACTUALCOUNT
READA:SCLEN EQU
RW:POSITION EQU
RWPOSITION:SCLEN
*
READB:CHANNEL EQU
READB:BUFFERP EQU
READB:MAXCOUNT EQU
READB:ACTUALCOUNT
READB:SCLEN EQU
*
WRITEA: CHANNEL
WRITEA:BUFFERP
WRITEA:COUNT
WRITEA:SCLEN
*

EQU
EQU
EQU
EQU

WRITEB:CHANNEL EQU

*** SDOS 1.1 DEFINITIONS ***

SCBLK:WRLEN
SCBLK:WRBUF
SCBLK: DA'l'A

SCBLK:WRLEN
SCBLK:WRBUF
SCBLK:DATA

LENGTH OF FILE NAME
POINTER TO FILE NAME
LOAD SYSCALL BLOCK LENGTH

LENGTH OF FILE NAME
POINTER TO FILE NAME
CHAIN SYSCALL BLOCK LENGTH

EQU SCBLK:WRLEN LENGTH OF FILE NAME
SCBLK:WRBUF POINTER TO FILE NAME
SCBLK:DATA CREATELOG SYSCALL BLOCK LENGTH

SCBLK:PARAMS CLOSELOG SYSCALL BLOCK LENGTH

EQU
EQU
EQU

SCBLK:WRLEN
SCBLK:WRBUF
SCBLK:DATA

FILE NAME LENGTH
FOINTER TO FILE NAME
DISKDEFAULT SYSCALL BLOCK LENGTH

SCBLK:PARAMS CHANNEL NUMBER
SCBLK:PARAMS+l LINE MODE FLAG BYTE
SCBLK:RDBUF BUFFER POINTER
SCBLK:RDLEN BYTE COUNT
EQU SCBLK:RPLEN ACTUAL NUMBER OF BYTES TRANSFERRE
SCBLK:DATA READA SYSCALL BLOCK LENGTH
SCBLK:DATA READ/WRITE IMPLICIT FILE POSITION
EQU RW:POSITION+4 END OF R/W SYSCALL WITH IMPLICIT

SCBLK:PARAMS
SCBLK:RDBUF

CHANNEL NUMBER
BUFFER POINTER

SCBLK:RDLEN BYTE COUNT
EQU SCBLK:RPLEN ACTUAL NUMBER OF BYTES TRANSFERRE
SCBLK:DATA READB SYSCALL BLOCK LENGTH

SCBLK:PARAMS
SCBLK:WRBUF
SCBLK:WRLEN
SCBLK:RPLEN

SCBLK:PARAMS

CHANNEL NUMBER
BUFFER POINTER
BYTE COUNT
WRITEA SYSCALL BLOCK LENGTH

CHANNEL NUMBER

ASM/6800 1.3H2: 000E
10/22/84 14:06:58; Page 6; Form 1 *** SDOS 1.1 DEFINITIONS ***
SDOSUSERDEFS.ASM

0004 152:
0006 153:
0008 154:

0002
0003
0004
0000

0002
0003
000A
000C
0008
000E
0000

0002
0003

0002

0002
0004

0002
0004

000A
000C
0008
000E

0002

0002

0002

0002

155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191 :

WRITEB:BUFFERP EQU
WRITEB:COUNT EQU
WRITEB:SCLEN EQU
*
CONTROL:CHANNEL EQU
CONTROL: CODE EQU
CONTROL:SCLEN EQU
CONTROL: DATA EQU
*
STATUS,CHANNEL EQU
STATUS:CODE EQU
STATUS:BUFFERP EQU
STATUS:MAXCOUNT EQU
STATUS:ACTUALCOUNT
STATUS:SCLEN EQU
STATUS: DATA EQU
*
WAITDONE:CHANNEL
WAITDONE:SCLEN EQU
*
EXIT:SCLEN EQU
*
ERROREXIT:CODE EQU
ERROREXIT:SCLEN EQU
*
SETERROR:CODE EQU
SETERROR:SCLEN EQU
*
GETERROR:BUFFERP
GETERROR:MAXCOUNT
GETERROR:ACTUALCOUNT
GETERROR:SCLEN EQU
*
DISPERROR:SCLEN EQU
*
KILLPROOF:SCLEN EQU
*
KILLENABLE:SCLEN
*
DEBUG:SCLEN EQU

SCBLK:WRBUF
SCBLK:WRLEN
SCBLK:RPLEN

BUFFER POINTER
BYTE COUNTER
WRITEB SYSCALL BLOCK LENGTH

SCBLK:PARAMS CHANNEL NUMBER
SCBLK:PARAMS+l CONTROL CODE
SCBLK:WRBUF CONTROL SYSCALL BLOCK MINIMUM LENGTH
o DISPLACEMENT INTO WRITE BUFFER FOR CONTROL DATA

SCBLK:PARAMS CHANNEL NUMBER
SCBLK:PARAMS+l STATUS SELECTOR CODE
SCBLK:RDBUF POINTER TO STATUS TARGET BUFFER
SCBLK:RDLEN SIZE OF STATUS READ-BACK BUFFER
EQU SCBLK:RPLEN ACTUAL # STATUS BYTES READ
SCBLK:DATA STATUS SYSCALL BLOCK MINIMUM LENGTH
o DISPLACEMENT INTO READ BUFFER FOR READ-BACK STATUS

EQU SCBLK:PARAMS CHANNEL NUMBER
SCBLK:PARAMS+l WAITDONE SYSCALL BLOCK LENGTH

SCBLK:PARAMS

SCBLK:PARAMS
SCBLK:WRBUF

SCBLK:PARAMS
SCBLK:WRBUF

EXIT SYSCALL BLOCK LENGTH

ERROR CODE NUMBER
ERROREXIT SYSCALL BLOCK LENGTH

ERROR CODE NmlBER
SETERROR SYSCALL BLOCK LENGTH

EQU SCBLK:RDBUF POINTER TO ERROR READ-BACK AREA
EQU SCBLK:RDLEN SHOULD BE 2
EQU SCBLK:RPLEN SHOULD BE RETURNED AS 2
SCBLK:DATA GETERROR SYSCALL BLOCK LENGTH

SCBLK:PARAMS DISPERROR SYSCALL BLOCK LENGTH

SCBLK:PARAMS KILLPROOF SYSCALL BLOCK LENGTH

EQU SCBLK:PARAMS KILLENABLE SYSCALL BLOCK LENGTH

SCBLK,PARAMS DEBUG SYSCALL BLOCK LENGTH

ASM/6800 1.3H2: 000E
10/22/84 14:06:58; Page 7; Form 1 *** SDOS 1.1 DEFINITIONS ***
SDOSUSERDEFS.ASM

0002

0002

0002
0004
0006
0008

0002
0004

000E

000A
000C
0008
000E

0002
0004
0006
000C
0008
0008

192: *
193: ATTNCHECK:SCLEN EQU
194: *
195: ISCONSOLE:SCLEN EQU
196: *
197: INTERLOCK:FUNCTION
198: INTERLOCK:BUFFERP
199: INTERLOCK:COUNT EQU
200: INTERLOCK:SCLEN EQU
201: *
202: DELAY:PERIOD
203: DELAY:SCLEN
204: *

EQU
EQU

SCBLK:PARAMS ATTNCHECK SYSCALL BLOCK LENGTH

SCBLK:PARAMS ISCONSOLE SYSCALL BLOCK LENGTH

EQU SCBLK:PARAMS INTERLOCK FUNCTION
EQU SCBLK:WRBUF POINTER TO OBJECT
SCBLK:WRLEN LENGTH OF OBJECT
SCBLK:RPLEN INTERLOCK SYSCALL BLOCK LENGTH

SCBLK:PARAMS
SCBLK:WRBUF

DELAY PERIOD
DELAY SYSCALL BLOCK LENGTH

205: *READLUNNAME:LUN EQU SCBLK:PARAMS
SCBLK:RDBUF

LOGICAL UNIT NUMBER
WHERE TO READ NAME BACK 206: *READLUNNAME:BUFFERP EQU

207: *READLUNNAME:MAXCOUNT EQU
208: *READLUNNAME:ACTUALCOUNT

SCBLK:RDLEN NAXIMUM LENGTH OF REPLY
EQU SCBLK:RPLEN ACTUAL NAME LENGTH

209: READLUNNAME:SCLEN EQU SCBLK:DATA READLUN SYSCALL BLOCK LENGTH
210: *
211: GETSERIALNUMBER:BUFFERP EQU
212: GETSERIALNUMBER:MAXCOUNT
213: GETSERIALNUMBER:ACTUALCOUNT
214: GETSERIALNUMBER:SCLEN EQU
215: *
216: JOBCONTROL:FUNCTION
217: JOBCONTROL:BUFFERP
218: JOBCONTROL:COUNT
219: JOBCONTROL:MAXCOUNT
220: JOBCONTROL:ACTUALCOUNT
221: JOBCONTROL:SCLEN

EQU
EQU
EQU
EQU
EQU
EQU

SCBLK:RDBUF POINTER TO SERIAL NUMBER
SIZE OF BUFFER
SIZE OF REPLY
SIZE OF BLOCK

EQU SCBLK:RDLEN
EQU SCBLK:RPLEN
SCBLK:DATA MINIMUM

SCBLK:PARAMS JOB CONTROL FUNCTION
SCBLK:WRBUF POINTER TO JOB CAPABILITY
SCBLK: WRLEN SIZE OF CAPABILITY
SCBLK:RDLEN MAXIMUM LENGTH OF REPLY
SCBLK:RPLEN ACTUAL SIZE OF CAPABILITY

REPLY BUI

SCBLK:WRLEN+2 JOBCONTROL SYSCALL MINIMUM BLOCK

ASM/6800 1.3H2: 000E
10/22/84 14:06:58; Page 8; Form 1 *** SDOS 1.1 DEFINITIONS ***
SDOSUSERDEFS.ASM

0003 223:
0002 224:

0000
0000 0001
0001 0001
0002 0001
0003 0001
0004 0001
0005 0001

0010

0000
0000 0001
0001 0001

0010

0000
0000 0001
0001 0001
0002 0001
0003 0001
0004 0001
0005 0001

225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244,
245:
246:
247:
248:
249:
250:
251 :
252:
253:
254:

LSN:SIZE
LCN:SIZE
*

EQU
EQU

3
2

BYTES OCCUPIED BY AN LSN
BYTES OCCUPIED BY AN LCN

*
*

STANDARD STATUS SYSCALL SUB-CODES

ORG 0
SC:GETPOS RMB
SC:GETCOL RMB
SC:GETEOF RMB
SC:GETFILESIZE RMB
SC:GETTYPE RMB
SC:GETPARAMS RMB

SC:DEVICESPECIFICOP
*

1
1
1
1
1
1

EQU

GET BYTE POSITION
GET COLUHN COUNT
GET EOF FLAG
GET FILE SIZE
GET DEVICE TYPE AND CHARACTERISTICS
GET DEVICE SPECIFIC PARAMETERS

$10 BASE FOR DEVICE SPECIFIC STATUS CODES

*
*

STANDARD CONTROL SYSCALL SUB-CODES

ORG 0
CC:POSITION RMB
CC:DUMPBUFFERS RMB

CC:DEVICESPECIFICOP
*

1
1

EQU

POSITION TO THIS PLACE IN THE FILE
DUMP BUFFERS TO THE DEVICE (MAINLY FOR DISK)

$10 BASE FOR DEVICE-SPECIFIC CONTROL CODES

*
*

STANDARD INTERLOCK SYSCALL SUB-CODES

ORG
IC:CREATE
IC:DESTROY
IC:RESET
IC:LOCK RMB
IC:RELEASE
IC:TEST RMB

o
RMB
RMB
RMB
1
RMB
1

1
1
1
LOCK AN
1
LOCK AN

CREATE AN OBJECT IDENTIFIER
DESTROY AN OBJECT IDENTIFIER
RESET OBJECT REFERENCE LIST
OBJECT OR BLOCK UNTIL AVAILABLE
RELEASE A LOCKED OBJECT
OBJECT OR ERROR IF UNAVAILABLE

ASM/68QJQJ 1.3H2: QJQJ05
1QJ/22/84 14:QJ6:58; Page 9; Form 1 *** SDOS 1.1 DEFINITIONS ***
SDOSUSERDEFS.ASM

256:
257:
258:

QJQJIQJ
QJQJIQJ QJQJ01
QJQJ11 QJQJQJl

QJQJ2C
QJQJ2C QJQJQJl

QJQJIQJ
QJQJIQJ QJQJQJ1
QJQJ11 QJQJQJl

QJQJ1QJ
QJ01QJ 01'101
QJ011 0001

0QJ10
001QJ QJQJ01
0011 0001
QJQJ12 1'101'11
QJ013 QJ0QJl
QJ014 0QJQJ1
QJ015 QJQJQJl
0016 QJ0QJl
QJ017 0QJQJ1
0QJ18 QJ0QJ1
01'119 QJQJQJ1
QJ01A QJ0QJl
00113 QJ0QJ1
QJ01C 0QJ01
001D QJQJQJl
001E 0QJl2ll

259:
26QJ:
261:
262:
263:
264:
265:
266:
267:
268:
269:
27QJ:
271:
272:
273:
274:
275:
276:
277:
278:
279:
28QJ:
281:
282:
283:
284:
285:
286:
287:
288:
289:
29QJ:
291:
292:
293:
294:
295:

*
*
*

VIRTUAL TERMINAL SPECIFIC STATUS REQUESTS

ORG SC:DEVICESPECIFICOP
SC:GETPROFILE RMB 1 GET CURRENT DEVICE PROFILE NAME
SC:GETACTCOL RMB 1 GET ACTIVATION COLUMN

ORG SC:DEVICESPECIFICOP+$lC (DON'T ASKIII)
SC:GETLINEFLAGS RMB 1 GET LINE FLAGS
*
*
*

DISK FILE SPECIFIC STATUS REQUESTS

ORG SC:DEVICESPECIFICOP
SC:GETFILEDATE
SC:GETFILEPROT

RMB 1 READ BACK CREATION DATE OF FILE IN CLOCK FORMAT
RMB 1 READ BACK FILE PROTECTION BYTE

*
*
*

DISK DEVICE STATUS REQUESTS

ORG SC:DEVICESPECIFICOP
SC:GETLASTBADLSN RMB 1
SC:GETERRORSTATS RMB 1
*

READ BACK LSN THAT CAUSED DRIVER A PROBLEM
GET DEVICE ERROR (HISTORY) STATISTICS

*
*

VIRTUAL TERMINAL SPECIFIC CONTROL OPERATIONS

ORG CC:DEVICESPECIFICOP
CC:ECHO RMB 1 TURN ECHO ON
CC:NOECHO RMB 1 TURN ECHO OFF
CC:IDLES RMB 1 SET TTY IDLES
CC:TABS RMB 1 SET TTY TABS
CC:SETACTBLOCK RMB 1 DECLARE ACTIVATION SET
CC:CLRINPUT RMB 1 CLEAR INPUT BUFFER
CC:CLROUTPUT RMB 1 CLEAR OUTPUT BUFFER
CC:SETREADTIMEOUT RMB 1 . SET TIMEOUT PERIOD FOR READA
CC:SETPROFILE RMB 1 DECLARE DEVICE PROFILE
CC:ALTERPROFILE RMB 1 ALTER MALLEABLE DEVICE PROFILE
CC:WRITEEDITLINE RMB 1 PUT LINE IN TYPE-AHEAD BUFFER
CC:SETFIELDSIZE RMB 1 DECLARE WIDTH OF INPUT FIELD
CC:SETPARAMS RMB 1 DECLARE DEVICE WIDTH AND DEPTH
CC:ACTIVATIONCK RM13 1 CHECK FOR READA DATA READY
CC:WRAP RMB 1 ALLOW FORE- AND BACK-WRAP

ASM/6800 1.3H2: 001F
10/22/84 14:06:58; Page 10; Form 1 *** SDOS 1.1 DEFINITIONS ***
SDOSUSERDEFS.ASM
001F 0001
0020 0001
0021 0001
0022 0001
0023 0001

0010
0010 0001
0011 0001
0012 0001
0013 0001

0010
0010 0001
0011 0001
0012 0001
0013 0001
0014 "001
0015 0001
0016 0001

296:
297:
298:
299:
300:
301:
302:
303:
304:
305:
306:
307:
308:
309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319:

CC NOWRAP
CC COLORING
CC BACKGROUND
CC KILLPROOF
CC:KILLENABLE

RMB
RMB
RMB
RMB
RMB

1
1
1
1
1

DISALLOW FORE- AND BACK-WRAP
DECLARE AND SET FOREGROUND COLORING
DECLARE AND SET BACKGROUND COLORING
KILLPROOF VT DEVICE
KILLENABLE VT DEVICE

*
*
*

DISK FILE SPECIFIC CONTROL OPERATIONS

ORG CC:DEVICESPECIFICOP
CC:SETFILEDATE RMB 1 SET
CC:SETFILEPROT RMB 1 SET
CC:SETFILESIZE RMB 1 SET
CC:POSITIONTOEND RMB 1
*

CREATION DATE OF FILE (USE CLOCK FORMAT)
FILE PROTECTION BYTE
SIZE OF FILE

POSITION TO END OF FILE

*
*

DISK DEVICE SPECIFIC CONTROL OPS

ORG CC:DEVICESPECIFICOP
CC:UNLOCKDISK RMB 1 U~LOCK THE DISK DEVICE FOR WRITING
CC:DISMOUNTDISK RMB 1 DISMOUNT THE DISK
CC:SETMAPALGORITHM RMB 1 SET MAP ALGORITHM NUMBER FOR DRIVE
CC:MULTISECTORREAD RMB 1 READ MULTIPLE SECTORS
CC:MULTISECTORWRITE RMB 1 WRITE MULTIPLE, ACCORDING TO SYSCALL EXTENSI
CC:FORMAT RMB 1 FORMAT DISK
CC:WAITDONE RMB 1 WAIT FOR CONTROLLER OPERATION COMPLETE

ASM/6800 1.3H2: 0016
10/22/84 14:06:58; Page 11;
SDOSUSERDEFS.ASM

Form; *** SDOS 1.1 DEFINITIONS ***

0000
0000 0004

0000
0000 0001

0000
0000 0001

0f.H.l0
0000 0001

0000
0000 0002
eU0::: 00100
0002 0002
0004 0002
0006 0002

0000
0000 0004

0000
0000 0'003

0000
0000 0003
0003 0001
0004 0001
0005 0001

0000
0000 0001

321: *
322: *

RETU> ',";D STATUS DISPLACEMENTS

323: eRG 0
324: STATUS:DIST RMB 4 PO.3ITION IN DISK FILE
325: *
326: ORG 0
327: STATUS:COLUMN RMB COLUMN NUMBER
328: *
329: ORG 0
330: STATUS:EOFFLAG RMD 1 END OF FILE FLAG
331: *
332: ORG 0
333: STATUS:DEVTYPE RMB 1 DEVICE TYPE DATA FOR DIRECTORIED DISK
334: *
335: ORG 0
336: STATUS:NBPS RMB 2 NUr1BER OF BYTES PER SECTOR
337: STA'rus: NSPC RMB 0 NU~BER OF SECTORS PER CLUSTER FOR DISK FILE
338: STATUS:NSPT RMB 2 NUMBER OF SECTORS PER TRACK
339: STATUS:NTPC RMB 2 NUMBER OF TRACKS PER CYLINDER
340: STATUS: NCYL RMB 2 NUMBER OF CYLINDERS
341: *
342: ORG 0
343: STATUS:FILESIZE RMB 4 SIZE OF DISK FILE IN BYTES
344: *
345: ORG 0
346: STATUS:LASTBADLSN RMB 3 LSN OF LAST BAD SECTOR ON DISK
347: *
348: * SC:GETFILEDATE REPLY BUFFER
349: *
350: ORG 0
351: STATUS:DATETICKS RMB 3 24 BITS OF TICKS SINCE MIDNITE
352: STATUS:DATEDAY RMB 1 BCD VALUE OF DAY (1. .31)
353: STATUS:DATEMONTH RMB 1 BCD VALUE OF MONTH (1. .12)
354: STATUS:DATEYEAR RMB 1 BCD VALUE OF YEAR MOD 100 (00.99)
355: *
356: * SC:GETFILEPROT REPLY BUFFER
357: *
358: ORG 0
359: STATUS: PROT RMB 1 PROTECTION BYTE FROM FILE

ASM/6800 1.3H2: 0000
10/22/84 14:06:58; Page 12; Form 1 *** SDOS 1.1 DEFINITIONS ***
SDOSUSERDEFS.ASM

361: * SC:GETERRORSTATS REPLY BUFFER

0000
0000 0002
0002 0002
0004 0002
0006 0002
0008 0002
000A 0002
000C 0003
000F 0003

ORG 0
362: *
363:
364:
365:
366:
367:
368
369
370
371

STATUS SEEKERRCNT
STATUS SEEKERRSTS
STATUS WRITEERRCNT
STATUS:WRITEERRSTS
STATUS:READERRCNT
STATUS:READERRSTS
STATUS:OPSCOUNT RMB
STATUS:ERRLSN RMB

RMB
RMB
RMB
RMB
RMB
RMB
3
LSN:SIZE

2
2
2
2
2
2
24 BITS

SEEK ERRORS SINCE MOUNT
16 BITS OF LAST "SEEK" STATUS IN ERROR
WRITE ERRORS SINCE MOUNT
16 BITS OF LAST "WRITE" STATUS IN ERROR
READ ERRORS SINCE MOUNT
16 BITS OF LAST "READ" STATUS IN ERROR
OF # DRIVER OPERATIONS SINCE MOUNT
LSN CAUSING ANY SOFT OR HARD ERROR

ASM/6800 1.3H2: 000F
10/22/84 14:06:58; Page 13; Form 1 *** SDOS 1.1 DEFINITIONS ***
SDOSUSERDEFS.ASM

373:
374:

0000
0000 0004

0000
0000 0003
0003 0001
0004 0001
13005 0001

0000
0000 0001

0000
0000 01302

0000
0000 0001
0001 0001
0002 0001

375:
376:
377:
378:
379:
380:
381:
382:
383:
384:
385:
386:
387:
388:
389:
390:
391:
392:
393:
394:
395:
396:
397:
398:
399:
400:
401:

*
*

CC:POSITION WRITE BUFFER

ORG
CONTROL:DIST
*

o
RMB 4 VALUE OF POSITIONING COMMANDS

*
*

CC:SETFILEDATE WRITE BUFFER

ORG 0
CONTROL:DATETICKS
CONTROL:DATEDAY RMB
CONTROL:DATEMONTH
CONTROL:DATEYEAR
*

RMB
1
RMB
RMB

3
BCD
1
1

24 BITS OF TICKS SINCE MIDNITE
VALUE OF DAY (1 .• 31)

BCD VALUE OF MONTH (1 .. 12)
BCD VALUE OF YEAR MOD 100 (00 .. 99)

*
*

CC:SETFILEPROT WRITE BUFFER

ORG
CONTROL: PROT
*

o
RMB 1 PROTECTION BYTE FOR FILE

*
*

CC:SETMAPALGORITHM WRITE BUFFER

ORG 0
CONTROL:MAPALGORITHM RMB
*
*
*

JOB CONTROL SUB-CODES

ORG
JC:CREATE
JC:TESTDONE
JC:DESTROY

o
RMB
RMB
RMB

1
1
1

2 PARAMETER BLOCK FOR SET MAP ALGORITHM CALL

CREATE A NEW JOB
TEST TO SEE IF A JOB IS DONE
DESTROY A JOB

ASM/6800 1.3H2. 0002
10/22/84 14.06:58; Page 14; Form 1 *** SDOS 1.1 DEFINITIONS ***
SDOSUSERDEFS.ASM

403: *
404: * SYSTEM-DEFINED ERROR CODES
405: *

00100 406: ORG 0
0000 0001 407: ERR:NONE RHB 1 CODE 0 --> NO ERROR
0001 0001 408: ERR:ATTENTION RIm 1 OPERATOR REQUESTED ATTENTION

409:
0064

0061 0001
0065 0001
0066 0001
0067 0001
0068 0001
0069 0001

03E8
03E8 0001
03E9 0001
03EA 0001
03EB 0001
03EC 0001
03ED 0001
03EE 0001
03EF 0001
03F0 0001
03F1 0001
03F2 0001
03F3 0001
03F4 0001
03F5 0001
03F6 0001
03F7 0001
03F8 0001
03F9 0001
03FA 0001

410: ORG le0
411: ERR:FATALCONPILE
412: ERR:WARNINGCOMPILE
413: ERR:BADCMDFORMAT
414: ERR:CANTGOTO RMB
415: ERR:ABNORMALSTOP
416: ERR:NOTENUFMEM RMB
417: *
418: *
419: *
420: *

SDOS ERROR CODES

RMB
RMB
RMB
1
RMB
1

1 COMPILATION OR ASSEMBLY HAD FATAL ERRORS
1 COMPILATION OR ASSEMBLY HAD NON-FATAL ERRORS
1 BAD COMMAND FORMAT (SYNTAX ERROR!)
CAN'T DO GO TO FROM CONSOLE:
1 PROGRAM TERMINATED ABNORMALLY
NOT ENOUGH MEMORY TO EXECUTE COMMAND

421: *
422: *
423:
424:
425:
426:
427:
428:
429:
430:
431:
432:
433:
434:
435:
436:

ERROR CODES FOR SDOS ARE RESERVED BETWEEN 1000-1999

ORG 1000
ERR: BOOTCKSUMFAIL
ERR: EOFHIT RMB
ERR:FILEISOPEN RMB
ERR:NODEBUGGER RMB
ERR:BADPOSITION RMB
ERR:NBPCTOOBIG RMB
ERR: NODISKMAP RMB
ERR: NOMATCHFCB RMB
ERR: NODEFAULTPROGRAM

RMB 1
ERR:FILEWRTPROT RMB
ERR:FILENOTFOUND
ERR:ILLEGALLCN RMB

437: ERR:BADFNAMESIZE
438: ERR:NEWFILEEXISTS
439: ERR:NODISKSPACE RMB
440:
441:
442:

ERR: LCNWASNTALLOCATED
ERR: NOFREEFCBS RMB
ERR:WRONGFILESY3TEM

RMB
1
1
1
1
1
1
1
R11B

1
RMB
1
RMB
RMB
1
RMB
1
RMB

1 BOOT SECTOR DISKINFO CHECK SUM
END OF FILE HIT
A FILE IS OPEN DURING DISMOUNT REQUEST
NO DEBUGGER TO CALL!
BAD POSITIONING REQUEST
NUMBER OF BYTES PER CLUSTER >= 65536
NO DISK MAP, CAN'T ALLOC OR FREE
NO MATCHING FILE CONTROL BLOCK FOUND

FAILED

1 NO "DEFAULTPROGRAM" ON THIS DISK
UNUSED ****

FILE IS WRITE PROTECTED
1 FILE NOT FOUND
LCN OUT OF RANGE
1 LENGTH OF FILE NAME > 16 CHARACTERS
1 NEW FILE ALREADY EXISTS!
DISK SPACE EXHAUSTED
1 LCN ENCOUNTERED BY FREECLUSTERS WASN'T ALLOC
RAN OUT OF FCBS (*SYSTEM*)
1 FILE SYSTEM INCOMPATIBLE WITH THIS VERSION 0

ASM/6800 1.3H2: 03FB
10/22/84 14;06:58; Page 15; Form 1
SDOSUSERDEFS.ASM

*** SDOS 1.1 DEFINITIONS ***

03FB 0001
03FC 0001
03FD 0001
03FE 0001
03FF 0001
0400 0001
0401 0001
0402 0001
0403 0001
0404 0001
0405 1"001
0406 0001
0407 0001
0408 0001
0409 0001
040A 0001
040B 0001
040C 0001
040D 0001
040E 0001
040F 0001
0410 0001
0411 0001
0412 C001
0413 0001
0414 0001
0415 0001
0416 0001
0417 0001
0418 0001
0419 0001
041A 0001
041B 0001
041C 0001
041D 0001
041E 0001
041F 0001
0420 21001
0421 0001
0422 0001

443:
444:
445:
446:
447:
448:
449:
450:
451:
452:
453:
454:
455:
456:
457:
458:
459:
460:
461:
462:
463:
464:
465:
466:
467:
468:
469:
470:
471:
472:
473:
474:
475:
476:
477:
478:
479:
480:
481:
482:

ERR:FILEINCREATE RMB
ERR:DISKMOUNTED RMB 1
ERR:CANTOPENMUSTCREATE RMB
ERR:NOERRORMSGS RMB 1
ERR:BADFILENAME RMB 1
ERR:ILLFILESIZE RMB 1
ERR: HCSICTOOSMALL RMB
ERR: NOTENOUGHPOOL RMB
ERR:PWRFAILDISKF RMB
ERR:NOTALOADFILE RMB
ERR:BADpILEVERSION RMB
ERR:CHTOOBIG RMB 1
ERR:CHBUSY RMB 1
ERR:CLOSED RMB 1
ERR:ILLEGALSYSCALL RMB
ERR:ILLDEVICEOP RMB 1
ERR:RENAMEDEVICE RMB
ERR:BADLOADRECORD RNB
ERR: NOTENOUGHROOM RMB
ERR:ILLLSN RMB 1
ERR:DIRECTORYDAMAGED RMB
ERR:IBUFOVERFLOW RMB
ERR:PROGRANKILLED RMB
ERR:DEVICETIMEDOUT RMB
ERR:SECTORSIZE2 RMB 1
ERR:SYSTEMCROAKED RMB
ERR:DISKREAD RMB 1
ERR:DISKWRITE RMB 1
ERR:DISKSEEK RMB 1
ERR: DSKWRTPROT RMB 1
ERR:DISKWRITELOCKED RMB
ERR:SDOSCKSUM RMB 1
ERR:NLSNGE224 RMB 1
ERR:CLUSTERSIZELIMITSFILE
ERR:SYSCALLTOOSHORT RMB
ERR:RDBUFTOOSMALL RMB
ERR:WRBUFTOOSMALL RMB
ERR: NOSUCHDEVICE RMB
ERR:DEVICEERRORED RMB
ERR:MUSTBEDISK RMB 1

1 FILE IS BEING CREATED
DISK IS MOUNTED, CAN'T CHANGE MAPALGORITHM
1 MUST CREATE TO OPEN OUTPUT ONLY DEVICE
NO $ERRORMESSAGES FILE ON DRIVE 0
FILENAME DOESN'T START WITH A-Z OR $
ILLEGAL FILE SIZE SPECIFICATION (SYNTAX OR OVFLOW)
1 HEADER CLUSTER NOT INITZED FOR RDCN FETCH
1 NOT ENOUGH DISKBUFFER POOL (*SYSTEM*)
1 DISK FILE HANDLERS DON'T IMPLEMENT POWER F.
1 CAN'T LOAD THAT - WRONG FORMAT
1 FILE VERSION NUMBER HAS NO DIGITS OR IS >2
CHANNEL # IS TOO BIG
CHANNEL IS ALREADY OPEN
CHANNEL IS ALREADY CLOSED
1 ILLEGAL SYSCALL #
ILLEGAL DEVICE OPERATION
1 CAN'T RENAME TO DIFFERENT DEVICE
1 LOAD RECORD FORMAT ERROR
1 PROGRAM TOO BIG TO LOAD
ILLEGAL LSN PASSED TO PHYSICAL DISK DRIVERS
1 DIRECTORY.SYS DIRECTORY ENTRY IS DAMAGED
1 INPUT BUFFER OVERFLOW IN THE DRIVERS
1 PROGRAM KILLED BY OPERATOR
1 DEVICE TIMED OUT
SECTORSIZE IS NOT A POWER OF 21
1 ... WHILE DOING AN EXIT OR CHAIN (*SYSTEM*)
DISK READ ERROR
DISK WRITE ERROR
DISK SEEK ERROR
DISK IS WRITE PROTECTED
1 DISK DEVICE IS SOFTWARE WRITE LOCKED
SDOS GOT A KNIFE IN THE RIBSI
NLSN >= 2~24, ILLEGAL
R~1B 1 CLUSTER SIZE IS TOO SMALL TO SUPPC
1 SYSCALL BLOCK IS TOO SMALL FOR SPECIFIED ~

1 READ BUFFER SPECIFIED BY SYSCALL IS TOO Sf
1 WRITE BUFFER SPECIFIED BY SYSCALL IS TOO ~

1 NO SUCH DEVICE IN THIS CONFIGURATIJN
1 DEVICi; HARDWARE DID NOT RESPOND RE"'SONABL~

MUST SELECT DeSK DEVICE

ASM/6800 1.3H2: 0423
10/22/84 14:e6:58; Page 16; Form 1 *** SDOS 1.1 DEFINITIONS ***
SDOSUSERDEFS.ASM
0423 0001
0424 0001
0425 0001
0426 0001
0427 0001
0428 0001
0429 0001
042A 0001
042B 0001
042C 0001
042D 0001
042E 0001
042F 0001
0430 0001
0431 0001
0432 0001
0433 0001
0434 0001
0435 0001
0436 0001
0437 0001

076E

0771
0771 0001
0772 0001
0773 0001
0774 0001
0775 0001
0776 0001
0777 0001
0778 0001
0779 0001

04B0
04B0 0001
04Bl 0001

483,
484:
485:
486:
487:
488:
489:
490:
491:
492:
493:
494:
495:
496:
497:
498:
499:
500,
501:
502:
503:
504:
505:
506:
507:
508:
509:
510,
511:
512:
513:
514:
515 :
516:
517:
518:
519:
520:
521,
522:

ERR: NOTOPENTOCONSOLE RMB
ERR:DEVICENOTREADY RMB
ERR:TIMENOTSET RMB 1
ERR: NOSUCHLUN RMB 1
ERR:ZEROSTARTADDRESS RMB
ERR: NOSUCHPROGRAM RMB
ERR,OLDFILEEXISTS RMB

RMB 1 ***
ERR:ALLOC0CLUSTERS RMB
ERR:FILEALREADYDELETED RMB
ERR:PRINTERNOTREADY RMB
ERR:INPUTTIMEOUT RMB
ERR:ENDCFMEDIUM RMB 1
ERR,SELFTESTCKSUM RMB
ERR: NOTIMEOUTBLKS RMB
ERR:SERIALNOWRONG RMB
ERR:NOSUCHKEY RMB 1
ERR: DUPLICATEKEY RMB
ERR:BRANCHFACTORSIZE RMB
ERR:SDOSNOTREGISTERED RMB
ERR:DECRYPTIONKEYSDONTMATCH
*
ERR,WRONGDISKTYPE EQU
*

1 CHANNEL 0 IS NOT OPEN TO CONSOLE DEVICE
1 DEVICE IS NOT READY
TIME NOT SET TO NON-ZERO DAY/MONTH!
NO SUCH LOGICAL UNIT NUMBER
1 OBJECT FILE HAS NO (ZERO) START ADDRESS
1 NO SUCH PROGRAM EXISTS (ERROR ISSUED BY LOAD
1 OLD FILE BY SAME NAME ALREADY EXISTS

UNUSED
1
1
1
1
END
1
1
1
NO
1
1
1
RMB

"ALLOC" CALL WITH REQUEST FOR 0 CLUSTERS I
FILE WAS DELETED BUT NOT CLOSED BEFORE RENAM
PRINTER IS NOT READY
INPUT TIMED OUT, ABORTED

OF MEDIUM ON DEVICE
PROGRAM SELF-TEST CHECKSml FAILED
ZERO TIME OUT BLOCKS IN I/O PKG NOT LEGAL
THIS CPU HAS WRONG SERIAL NUMBER TO RUN PROG

SUCH KEY EXISTS IN INDEX
KEY ALREADY EXISTS IN INDEX
KEY BRANCHING FACTOR IS TOO SMALL
THIS COPY OF SDOS NOT REGISTERED WITH SD YET
1 LAST FILE LOADED HAS DIFFERENT DECRY

1902 WRONG DISK TECHNOLOGY (DENSITY, SIDES, ETC.)

*
*

VIRTUAL TERMINAL DRIVER ERROR CODES

ORG 1905
ERR: IOINPROGRESS RMB LAST REQUEST HAS NOT COMPLETED
ERR: BUSYFORANOTHERPROCESS
ERR: ACTIVATIONNOTINBUFFER
ERR:BADFIELDWIDTH RMB
ERR:ACTIVATIONRECEIVED RMB
ERR:TIMEDINpUTEXPIRED RMB
ERR:PROFILENOTFOUND RMB
ERR:PROFILENOTMALLEABLE RMB

1
RMB
RMB
1

1 DCB OPEN TO ANOTHER PROCESS

1
1
1
1

1 RDBUF DOES NOT HOLD ACTIVATION
CRT SCREEN FEILD SPECIFICATION IS
ACTIV. REC'D PER CC:ACTIVATIONCK
TIMED INPUT PERIOD EXPIRED
DEVICE PROFILE NOT FOUND
DEVICE PROFILE NOT MALLEABLE

TOO WIDE

RMB 1 *** RESERVED ***

*
ORG 1200

ERR:BADREADBUF RMB
ERR:BADWRITEBUF RMB

SDOS/MT ERROR CODES
1 SYSCALL REPLY BUFFER NOT WITHIN USER SPACE
1 SYSCALL WRITE BUFFER NOT WITHIN USER SPACE

~SM/6800 1.3H2: 04B2
10/22/84 14:06:58; Page 17; Form 1
SDOSUSERDEFS.ASM

*** SDOS 1.1 DEFINITIONS ***

04B2 0001
04B3 0001
04B4 0001
04B5 0001
04B6 0001
04B7 0001
04B8 0001
04B9 0001
04BA 0001
04BB 0001
04BC 0001
04BD 0001
04BE 0001
04BF 0001
04C0 0001
04Cl 0001
04C2 0001
04C3 0001
04C4 0001

523 :
524:
525 :
526:
527 :
528:
529:
530:
531:
532:
533:
534:
535:
536:
537:
538:
539:
540:
541:

ERR:RDBUFTOOBIG RMB 1
ERR:WRBUFTOOBIG RMB 1
ERR: NOTENOUGHCHANNELS RMB
ERR: NOTUNDERTIMESHARE RMB
ERR:MTNOROOM RMB 1
ERR:MTBADCONFIG RMB 1
ERR:ALREADYLOCKED RMB
ERR: NOSUCHOBJECT RMB
ERR: NOTLOCKED RMB 1
ERR:OBJECTDESTROYED RMB
ERR: LOCKRESET RMB 1
ERR:IMPLEMENTATIONLIMITREACHED
ERR:ILLEGALINTERLOCKFUNCTION
ERR:MEMORYMGMTFAIL RMB
ERR: NOMOREJOBS R~IB 1
ERR:ILLEGALJOBCONTROL RMB
ERR:CAPABILITYFAILURE RMB
ERR:JOBKILLED RMB 1
ERR: JOBCOMPLETED RMB

SYSCALL REPLY BUFFER > 255 BYTES
SYSCALL WRITE BUFFER > 255 BYTES
1 AVAILABLE I/O CHANNELS EXHAUSTED
1 FUNCTION NOT AVAILABLE UNDER SDOS/MT
NOT ENOUGH ROOM TO RUN SDOS/MT
INCORRECT CONFIGURATION FOR SDOS/MT
1 INTERLOCK OBJECT IS ALREADY LOCKED
1 BAD CAPABILITY GiVEN
INTERLOCK OBJECT IS NOT LOCKED
1 INTERLOCK OBJECT DESTROYED WHILE WAITING I
INTERLOCK OBJECT WAS RESET WHILE WAITING FOR IT
RMB 1 CAN'T HANDLE MORE INTERLOCK OBJEC':
RMB 1 ILLEGAL INTERLOCK FUNCTION REQUES c

1 SDOS/MT INTERNAL MEMORY MANAGEMENT FAILURI
ALL AVAILABLE JOBS ARE BUSY NOW
1 ILLEGAL JOB CONTROL REQUEST
1 CAPABILITY DOES NOT HAVE RIGHTS TO PERFORI
THIS JOB HAS BEEN KILLED BY ANOTHER
1 JOB SUCCESSFULLY COMPLETED

ASM/6800 l.3B2: 04C4
10/22/84 14:06:58; Page 18; Form 2
SDOSUSERDEFS.ASM

*** SDOS 1.1 DEFINITIONS ***

1: * DEVICE TYPE DEFINITIONS

0000
0000 0001
0001 0001
0002 0001
0003 0001
0004 0001
0005 0001
0006 0001
0007 0001
0008 0001
00fil9 0001
000A 0001
000B 0001

0000
e00e e001

0e00
00e0 0002
0002 00fil2
0004 0002
000/\ 001212

0000
e0e0 0e01
0e01 00e1

2. *
3: ORG
4: DVT¥P.FILE
5: DVTYP.DISK
6: DVTYP.STAPE
7: DVTYP.D'rAPE
8: DVTYP.CONSOLE
9: DVTYP.PRINTER

Ie: DVTYP.SERIALOUT
11: DVTYP.SERIALIN
12: DVTYP.PAROUT
13: DVTYP.PARIN
14: DV'!'YP.DUMMY
15: DVTYP.C,(,OCK
16. *
17: *
18, *
19: *

o
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB

1
1
1
1
1
1
1
1
1
1
1
1

FILE (MANAGED BY SDOS)
DISK DEVICE (MANAGED BY SDOS)
SERIAL TAPE DEVICE
DIRECTORIED TAPE DEVICE
CONSOLE (HUMAN'S INTERFACE)
LINE PRINTER DEVICE
ILL-DEFINED

PARALLEL OUT
PARALLEL IN
BLACK HOLE FOR
CLOCK DEVICE

DATA BYTES

20: *
21: *

DEVICE TYPE DATA DISPLACEMENTS

22: ORG
23: DVTYP : TYPE
24: *

1 DEVICE TYPE

25: *
26: *

DEVICE-TYPE SPECIFIC DATA

27: ORG
28: DVDAT:NBPS
29: DVDAT:NSPT
30: DVDAT.NTPC
31: DVDAT,NCYL
32: *
33: ORG
34: DVDAT:WIDTH
35: DVDAT:DEPTH
36: *
37: *

'" RMB
RMB
RMB
RMB

'" RMB
RMB

DISK
2
2
2
2

DEVICE SPECIFIC DATA
NUMBER OF BYTES PER SECTOR
NUMBER OF SECTORS PER TRACK
NUMBER OF TRACKS PER CYLINDER
NUMBER OF CYLINDERS

CONSOLE/PRINTER DEVICE SPECIFIC DATA
1 LINE WIDTH IN CHARACTERS
1 PAGE DEPTH (DEFAULT DEPTH FOR

(0=INFINITY)
PRINTERS)

0002
0002 0eel

38: ORG
39: DVDAT:NSPC

DVDAT:NBPS+2
RMB 1

(DISK) FILE DEVICE SPECIFIC DATA
NUMBER OF SECTORS PER CLUSTER

ASM/6800 1.3~2: 0002
10/22/84 14:06:58; Page 19; Form 2
SDOSU6ERDEFS.ASM

*** SPOS 1.1 DEFINITIONS ***

13010

0C39
0039

0000
0000 00"2

0000
0000
0001

(lJ040
0001

41: **
42: FILESYSTEMVERSION EQU $10 VERSION 1.0 OF FILESYSTEM FORMAT
43: **
44: *
45: *
46: *

USEFUL ERROR-HANDLING OPCODES

47: OKRTS EQU
48: ERRORRTS
49: *

$0C39
EQU

"CLC,RTS"
$0D39 "SEC,RTS"

59: *
51: *

FUNNY VALUES TO MAKE DATA STORAGE ALLOCATION USES MORE CLEAR

52: IGNORED EQU
53: CHANGED EOU

o
o

SO I CAN MARK PLACES AS IGNORED
SO I CAN MARK PLACES AS CHANGED

54: *
55: *
56: *
57: *
58. *
59: *
60: *
€il: *
62:
63: TEMPX
64: TEMP
€iS: TEMPA
66: TEMPB
67: *
68: *
69: *

LOCATIONS 0-7 ARE TREATED AS PART OF TASK'S CONTEXT
AND SAVED DURING A CONTEXT SWITCH

DEFINEO TEMPORARIES
USEO TO PUSH (X) ONTO STACK IN INTERRUPTABLE WAY
FOR USE BY TASK-LEVEL SUBROUTINES

ORG
RMB
EQU
EQU
EQU

$0
2
TEMP X
TEMPX
TEMPX+l

ANY SUBROUTINE MAY STEP ON THISIII
FOR CONVENIENCE
TEMP STORAGE FOR A REGISTER
TEMP STORAGE FOR B REGISTER

pROTECTION BITS FOR DIR:PROTECTION

70: PROT: :WRITE
71: PROT:: BACKUP

EQU
EQU

$40
$1

PROTECT AGAINST WRITES
PROTECT AGAINST BACKING UP

ASM/6800 1.3H2: 0000
10/22/84 14:06:58; Page 20; Form 2
SDOSUSERDEFS.ASM

*** SDOS 1.1 DEFINITIONS ***

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
001C
001D
001E
001F
0020
007F
007F

73: *
74: *

ASCII CHARACTER SET

75: ASCII: NULL
76: ASCII: SOH
77: ASCII: STX
78: ASCII: ETX
79: ASCII:EOT
80: ASCII: ENQ
81: ASCII:ACK
82: ASCII: BEL
83: ASCII: BS
84 : ASC II : HT
85: ASCII:LF
86: ASCII: VT
87: ASCII: FF
88: ASCII:CR
89: ASCII:SO
90: ASCII:SI
91: ASCII:DLE
92: ASCII: DCl
93: ASCII: DC2
94: ASCII: DC3
95: ASCII: DC4
96: ASCII: NAK
97: ASCII: SYN
98: ASCII: ETB
99: ASCII:CAN

100: ASCII:EM
101: ASCII: SUB
102: ASCII: ESC
103: ASCII:FS
104: ASCII:GS
105: ASCII:RS
106: ASCII:US
107: ASCII:SPACE
108: ASCII:RUBOUT
109: ASCII:MASK

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

o
1
2
3
4
5
6
7
8
9
$A
$B
$C
$D
$E
$F
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$lA
$lB
$lC
$lD
$lE
$lF
$20
$7F
$7F

A@ NULL
AA START OF HEADING
AB START OF TEXT
AC END OF TEXT
AD END OF TRANSMISSION
AE ENQUIRY (WRU- WHO ARE YOU)
AF ACKNOWLEDGE
AG BELL
AH BACKSPACE
AI HORIZONTAL TAB
'J LINE FEED
AK VERTICAL TAB
AL FORM FEED
AM CARRIAGE RETURN
AN SHIFT OUT
AO SHIFT IN
Ap DATA LINK ESCAPE
AQ DEVICE CONTROL 1
AR DEVICE CONTROL 2
AS DEVICE CONTROL 3
AT DEVICE CONTROL 4
AU NEGATIVE ACKNOWLEDGE
AV SYNCHRONOUS IDLE
AW END OF TRANSMISSION BLOCK
AX CANCEL
Ay END OF MEDIUM
'z SUBSTITUTE
A[ESCAPE
A\ FILE SEPERATOR
'J GROUP SEPERATOR

RECORD SEPERATOR
UNIT SEPERATOR

SPACE (WORD SEPERATOR)
DELETE (RUBOUT)
TO MASK OFF ALL BUT 7 LEGAL ASCII BITS

ASM/6800 1.3H2: 00DD
10/22/84 14:06:58; Page 36; Form 1
sdvtllcdefs.asm

0002
0002

0002 0002
0004 0002
0006 0002

0008
0002

0030
0030 0001
0031 0001
0032 0001
0033 0001
0034 0001

0030
0030 0001
0031 0001
0032 0001
0033 0001

319: *
320:
321: ..
322:

323:
324:
325:
326:
327:

cnfg:vtprofiles
cnfg:vtdebug
cnfg:mtprims

328: cnfg:vtsize
329:
330:
331: *
332:
333: *
334:
335:
336: cc:writeanowait

cc:settimeshare
cc:setexception
cc:writebnowait
cc:stoptimeshare

337:
338:
339:
340:
341:
342: *
343 :
344:
345: sc:attentionck
346: sc:statusck

sc:gettimeshare
sc:allstatus

Virtual Terminal Driver definitions

Extensions to the Configuration Table

set *
org cnfg:timeoutlist+2

rmb 2
rmb 2
rmb 2

equ *
org ..
VT User calls

Control calls

Status calls

org
rmb
rmb
rmb
rmb
rmb

head of profile chain
interrupt level ep to debugger
-> MT primitives vector

cc:devicespecificop+$20
I write ascii, do not block
1 set the timeshare flag
1 set/clear exception flags
1 write binary, do not block
1 disable timesharing

org sc:devicespecificop+$20
rmb 1 check fo£ attention (s/u)
rmb 1 check for change of status (s/u)
rmb I check for SDOS/MT running (MT)
rmb I check for change of status on any

0001
0034 0001

0001

347:
348:
349:
350:
351:
353:
354:
355:
356:
357:

ifund
sc:getlineflagshint

sc:getlineflagshint ; kluge around SDOSllDEFS
rmb 1 returns line flags w/o clearing

0035 0001
0036 0001

00FF

sc:getfreecount
sc:getdatacount

sysdependent

else
fin

rmb
rmb

equ

I
I

$ff

returns dcb:tlroom
returns dcb:tldata

system dependent

ASM/6800 1.382: 0036
10/22/84 14:06,58; Page 37; Form 1
sdvtllcdefs.asm

00FF 358: lineflags

Virtual Terminal Driver definitions

equ sysdependent

ASM/6830 1.3H2: 0013
10/22/84 14:06:58; Page 39; Form 1
sdvtllcdefs.asm

Virtual Terminal Driver definitions

0002
04CE

04CE 0001
O,lCF 0001
0.Dn 0001

0002

set
org

err:sdosmta1readyrunning
err:statushaschanged
err:sdosmtprimsmissing

org

Errors specific to SDOS/MT

*
1230

rmb
rmb
rmb

1
1
1

SDOS/MT is already running
port status has changed since last
SDOS/MT primitives not defined in

399: *
400:
401: ••
402:
403:
404:
405:
406:
407:
408:
4139:
410: END ;«Supplied By ASM»

*** End of Source File Encountered.

:00
:01
:02
:03
:04
:05
:06
:07
:08
:09
:0A
:0B
:0C
:0D
:0E
:0F
:10
:11
:12
:13
:14
:15
:16
:17
:18
:19
:lA
:lB
:lC
:ID
:lE
:IF

INDEX

30
30
30
30
30
30
30
31
31
31
31
31
31
31
31
31
32
32
32
32
32
32
32
32
33
33
33
33
33
33
33
34
34

117
: 7F
:FB
:FFFF
<CR>
<CR><LF>
<ESC>
<LF> <CR>
?

100,102,103,104,118
16,59,60,63
18,31,32,33

80
18
35

@
ALTERPROFILE:CLIDLES
ALTERPROFILE:CLLEN
ALTERPROFILE:CLSEQ
ALTERPROFILE:COLDISP
ALTERPROFILE:CPIDLS
ALTERPROFILE:CPLEN
ALTERPROFILE:CPSEQ
ALTERPROFILE:EEOLIDLES
ALTERPROFILE:EEOLLEN
ALTERPROFILE:EEOLSEQ

104
22
21
21
21
21
21
21
22
22
22

ALTERPROFILE:ROWDISP
ASCII
ASCII Activation Set
ASCII Character Set
ASCII Data Write
ASCII Format
ASCII Mode
ASCII Text String
ASCII:CR
ASCII: ESC
ASCII:FF
ASCII:LF
ASC II : RUB OUT
ASM
Abnormal Cease Execution
Abnormal Condition
Abort SDOS

21
9,40

15
19
63

1
14
27

15,17,38
16
15

17,21
16,19,26

90
72
19
52

108 Accidental Eraser
Activation Character 14,16,19,22,23,29

Activation Not In Buffer
Activation Received
Address Space
Allocated Disk Space
Alternate Roman Character Set

30,33
16
24
97

7
25
10 Apparent Size

Application Program
Application Suite
Assembly Language

14,46,102,115,121
97

5
Assembly Language Program
Assembly Language Programmer
Associated 1/0 Channel
Asynchronous WRITEA
Asynchronous WRITEB
Automatic Expansion
Available Disk Space
BASIC
BASIC 1. 4
BASIC Breakpoint
BASIC Execution
BCC
BCD
BCS
BMP
BOOT

90
5
2

36
36

109
11

5
121

30,31
31

45,90
108

45,90
117
117

98,115 BOOT Sector
BOOT.SYS
BOOT.Sys
BOOT: CHECKSUM
BOOT:CREATIONDATE
BOOT:DIRLSN

11,108,112,113
113
115
115

108,115

BOOT:DISKID
BOOT:FILESYSTEMVERSION
BOOT:MAPALGORITHM
BOOT:MIDALLOC
BOOT:MINALLOC
BOOT: NSPC

115
114,115

114
10,114

114
114

Background Color 28,31
Backspace 31
Bad Field Width 23
Baud Rate 28
Beep 26,31
Being CREATEd 7
Binary Data 61
Binary Data Read 3
Binary Data Write 3,64
Binary Fomat 1
Binary Maintenance Program 117
Binary Mode 14
Binary Operation 14
Bit Number 118
Bit, Off 118
Bit, On 118
Blind Write Mode 12
Blinking 25
Boot Cluster 108
Boot Disk, SDOS 116
Boot Process 121
Boot ROM Routine 113
Boot Routine 113,114,115,117
Boot Sector 113
Boot, Successful 116
Booting the System 99
Bootstrap Program 113
Breakpoint 90,117
Buffer Address 42
Buffer Size 61
Buffer Space 38
Buffer, Read 59
Buffer, Read-Back 59,63
Buffer, Reply 2,40,68,75
Buffer, Unfilled 61
Buffer, Write 2,40,65
Bug 55
Byte 6
Byte Transfer, Speed Up 60
Byte, Data 6
CAPS LOCK 30,35
CC:ACTIVATIONCK 14,20,22,23,24,31
CC:ACTIVATIONCK Control Call 22
CC:ALTERPROFILE 2l,28
CC:BACKGROUND 15,25,26

CC:CLRINPUT
CC:CLROUTPUT
CC:COLORING
CC:DISMOUNT
CC:DISMOUNTDISK
CC:DUMPBUFFERS
CC:ECHO
CC:FORMAT
CC:IDLES
CC:KILLENABLE
CC:KILLPROOF
CC:NOECHO
CC:NOWRAP
CC:POSITION
CC:POSITIONTOEND
CC:SETACTBLOCK
CC:SETACTIVATION
CC:SETBAUDRATE
CC:SETEXCEPTION
CC:SETFIELDSIZE
CC:SETFILEDATE
CC:SETFILEPROT
CC:SETFILESIZE
CC:SETMAPALGORITHM
CC:SETOUTPUTTIMEOUT
CC:SETPARAMS
CC:SETPROFILE
CC:SETREADTIMEOUT
CC:SETTIMESHARE
CC:STOPTIMESHARE
CC:TABS
CC:UNLOCKDISK
CC:WRAP
CC:WRITEANOWAIT
CC :WRITEBNOWAIT
CC:WRITEEDITLINE
CHAIN
CHANGED Option
CLEAR Sequence
CLOCK
CLOCKS
CLOCK:

19
19

25,26,28
13
12

8,12,15,18,65,67
15,18

12
18,28
15,26

26
18,22

18
8,17,18,27,65,66

8
19
310
28
26

22,23,31
8
8

8,1108
12,13
26,28

23
210,27

210
36
36

19,28
11,12

18
36
36
22

78,91,116,121
1108

21,22
1

121
9

CLOCK: Device Driver 38
CLOSE 3,11,12,15,18,38,41,57,71
CLOSE Channel 27
CLOSE I/O Channel 410
CLOSEing A Disk File 7
CNFG: VTDEBUG=IO 310
COLCNT 3
CONSOLE 69
CONSOLE: 14,610,69,76,810

19 CONSOLE: Tab
CONTROL
CONTROL Call,

3,12,38,41,55
Installation-Dependent

14
CONTROL
CONTROL
CONTROL
CREATE
CRT

Code 13
Operation 8,65
SYSCALL 65
2,3,6,10,11,15,18,19,38,55,108

CRT Driver
CRT Screen
CRT, Dumb
Capability

1,3,32,35,66
63,66

17
25
82
78
25
16
16
16

Cause Program to Quit
Change Text Appearance
Change of Mode, Ascii
Change of Mode, Binary
Changing Input Mode
Channel 10,47,50,59,68

60,63,68,76,81
Open; But Not to the

Channel 0
Channel 0 is

Console
Channel Closed
Channel Number
Channel Number, I/O
Channel, I/O
Channel, Log
Channel, Open
Character Default
Character Delete
Character, Printing
Circular Search
Clear Display
Clear Screen
Close
Close I/O Channel
Closed

81
7

3,48,55
11,48
10,49

55
6

18
32,34

59
109,111

31
35

3,48,52
54
51

Cluster
Cluster (LCN)
Cluster Allocated
Cluster Number

100,101,102,108,112
100
118

100,103
107
119

Cluster Number Allocated
Cluster Number, Illegal
Cluster Size
Cluster Space Allocation
Cluster, Free
Cluster, Minimum Number
Cluster, Unallocated
Code Number
Color
Column

9,100,107,114
118
118
114
100
116

25,28
66

Column Count
Column Number

2,59,61,63,64

Column Number, Output
Column Position

19,21,22
27
29
23 Column of Exit

Command Interpreter
Command, DO

44,72,78,81
55
55
10

Command, LOG
Common Data Base
Computer Serial Number
Configuration Dependent
Console

116
91
81
56
55
80
93

Console I/O
Console Session Copy
Console:
Contiguous Memory
Contiguous Space
Control
Control Character
Control Function
Control Function,
Control Operation
Control Operation,
Control Operation,
Control Transfer
Control, Load
Control, Transfer
Copy
Crash, System
Create
Creation Date
Cursor
Cursor Control Key
Cursor Location
Cursor Position

6
3

15,16,17,19,30

Multiuser
36
36
18

Common 65
Device Specific 65

54,79,94,113
54
54

2
48

3
9

22
23
17

14,15,18,20,21,22,27
30,32,33,35,66

Cursor Position
Cylinder

Sequence 21

Cylinder 0
Cylinder Boundary
DBLCN
DBLSN
DEBUG
DEFAULTPROGRAM
DELETE
DEPTH
DIR:CREATIONDATE
DIR:FILENAME
DIR:FILESIZE
OIR:HCN
DIR:HCSIC

99,114
99

101
104
104

90
44,71,72,74,77,121

3,8,11,15,38,108
69

108,110
107

107,109,110
110

103,107,110

Default Disk
Default Set
Definition, SYSCALL Opcode
Delay
Delete
Delete, Implied
Demonstration Copy
Depth
Design Deficient Terminal
Device
Device Baud Rate

6
20
40
84

3
48

116
20
25

I
24

Device Driver 68,102
Device Driver Characteristic 5
Device Driver Routine 1
Device Name 58
Device Name DISK: 58
Device Profile 23
Device Profile Block 15,26
Device Time Out 15,18,29
Device Type 3,9,69
Device, Input 3
Device, Output 3
Device-Dependent Limitation 1
Device-Independent I/O 1,6
Device-Specific Operation 3,15
Digital to Analog Converter 1,3
Directoried Device 47
Directory 7,8,49,51,107,108,109
Directory Entry 105,110,111
Directory Header Cluster III
Directory Search Scheme III
Directory Size 109
Directory Structure 110
Disk Cluster Allocation Map 119
Disk Content 11
Disk Device Driver 11,13
Disk File 1,6,7,8,10,49,63,64,66,69

Disk
Disk
Disk
Disk
Disk
Disk
Disk
Disk
Disk
Disk
Disk
Disk
Disk

File
File
File
File
1D

Driver
Management
Structure
Structure, SDOS

Identification
Map
Read
Sector
Sector Buffer
Sector Buffer Pool
Sector Drl.ver
Sector I/O Driver

101,118
6,10,102

92
102

98
113

113,115
112

92,96,99
10,13

92
10

114
13

Disk Size, Physical
Disk Space
Disk Space Allocated
Disk Space Free
Disk Storage
Disk Validity
Disk Waitdone
Disk Write
Dismount
Dismount Tab

102
6,100

10
7

100
115

92
92,99

Displacement, Column Number
Displacement, Row Number
Display

11,12,65
65
21
21
66

Display Depth
Display Inhibiting
Display Line
Display Mode

23,27,35
22
30
25

Display Width
Display-Oriented Application
Display-Oriented Operation
Double-Height

23,27
14
14
25
25 Double-Width

Dump Buffer
EDIT
EFERROR
EOF
ERR:ALREADYLOCKED
ERR:ATTENTION

3
90
44

3,63,64,66,94
83
80

ERR:IMPLEMENTATIONLIMITREACHED
ERR: LOCKRESET

83
83

ERR: NOSUCHOBJECT
ERR: NOTLOCKED
ERR:OBJECTDESTROYED
ERROREXIT
ERROREXIT Syscall

82,83
83
82

75,77
74

ERROREXIT, No Debugger
ERRORMSGBUILD.DO

79
120

72,76,120
33

ERRORMSGS.SYS
ESC
EXIT
EXIT from IDB
EXIT to System
Echoing
Echoing Disabled
Editing
Eject
Encrypted File

41,71,74,75,77,121
79
4121
16
29
16
65
96

Encrypted Load Record 93
97 Encrypted Object File

Encryption
Encryption Key

1.1,52,54,116
97

End of File 2,4,9,10,27,33,69
End of File Condition 16
End of Line 32
End-User Name 116
Erase on Terminal 33
Erase to End of Line 30
Erase to End of Line Sequence 22
Error 6,11,12,47,59,61,63,66,70,71
Error Code 41,43,44,74,75,120
Error Code, ERROREXIT 72
Error Exit 52,54,80,81
Error Handling 43,72
Error Handling Philosophy 44
Error Message Display 76
Error Message File 120
Error Message Number Assignment 120
Error Message Routine 120
Error Message, New Addition 120
Error Message, Raw Text 120
Error Recovery 43
Error Statistic 13
Error, BASIC 43
Error, Bad File Name 47,48,50,53,54
Error, Bad File Name Size 53,54
Error, Can't Open, Must Create 47
Error, Can't Rename to a Different

Device 50
Error, Channel Already Open 56
Error,
Error,

Channel
Channel

Busy 47
Not Open 50,57,60,62,63

64
Error,
Error,
Error,
Error,
Error,

Channel is Already Closed
Channel is Busy

49
48
81
53

Channel is Not Open At All
Checksum
Common

Error, Device Not Ready
Error, Device Timed Out
Error, Device is Not a Disk
Error, Disk Read Error
Error, Disk Space Exhausted
Error, Disk Write Error
Error, Dismount
Error, Display Processing
Error, EDIT
Error, EOF Hit
Error, End of File
Error, End of File (EOF)
Error, End of File Hit (EOF)
Error, File Not Found
Error, File is Being Created

46
62,63,64

62,63
58
62

63,64
63,64

12
76
43

60,62
11

60,61
53
54

48,50

Error, File is Delete Protected 48,50
51

Error,
Error,
Error,
Error,
Error,
Error,
Error,
Error,
Error,
Error,
Error,
Error,
Error,
Error,
Error,
Error,
Error,
Error,
Error,
Error,
Error,

File is Write Protected
Hardware Specific
Illegal Channel Number
Illegal Device Operation
Illegal File Name

48,50
46
49
64
56

Load Record Format
Loading
New File Exists Already
No Debugger
No Disk Space

53
52
50
79

No SERIALNUMBER.SYS File
No Start Address

56
116

54
47,48

47,51,53
53,54

78

No Such Device
No Such File
Not a Load File
Program Killed
Read
Read-Back Buffer Too Short
SDOS

8,13
75
43
13 Seek

Syscall Block Too Short 77,78

Error, Syscall Length Too Short
Error, Syscall Too Short

84,85
75
79

Error, Write
Error, Write Protected
Error, Wrong Serial Number
Execution Time
Exit, Error
Exit, Successful
FCB
FCB Side Effect
FCBs
FILE
FILESIZE
FORMAT
FREEZE OUTPUT
Failure, Syscall
Field Boundary
Field Content
Field Definition
Field Exit
Field Location
Field Width Size

8,13
12

116
41
43
43
10
10
12
69

3
12

30,32,35
74
23
33
23
23
33
23

File 1,49,50,51,59,61,64,66,68,69,77

File Access Time
File Beginning
File Column Number

93,100,102,103,120
11

2
9

File Control Block 10
File Extended 9
File Model 1
File Name 47,52,58,107,109
File Name Size 55
File Name, Create 7
File Name, Device 6
File Name, Disk 6
File Name, Duplicate 7
File Position 8,61,63,64,66,93
File Position, Current 61
File Protection 7,8
File Protection Bit 108
File Size 1,6,7,8,9,64,101
File Size Computation, Maximum 69
File Size, Apparent 6,107
File Structure Protection 11
File Structure, Check Out 11
File Structure, Initialize 11
File Structure, Repair 11
File Structure, SDOS 105
File System 99
File System Version 114
File, ASCII 4
File, Automatic Expansion 3
File, Cluster Structure 103
File, Current Position 68
File, Delete 6
File, Dense 6
File, Disk 3,48
File, End of 61
File, Extend 8
File, Implied Position 4
File, Load Format 52
File, New 48
File, Open 10
File, Position 4
File, Read 4,6,47
File, Share 10
File, Sparse 6,8
File, Update 6
File. Updated 47
File. Write 4
File, Write Protected 6,48
Forespace 31
Form Character 35
Formatting Disk 115
Forwarding Logic 39
Free Cluster Pool 8
Free Disk Space 49
Free Space 7,8

Function Code
G Command
GETCOLCNT
GETEOF
GETERROR
GETTYP
HBBUF
HCSIC
HSLSN
Hanging the System
Hard Copy

39
79

3,4
3,4

74
3

104
104
104

28
33

27,32,35
18,30

91,121
104

Hard Copy Device
Hard Copy Terminal
Hardware Dependent
Header Buffer
Header Cluster 100,102,103,104,105,107

Header Cluster Initialized Count
Header Cluster Structure

117
103
106
103 Header Cluster, Garbage

Header Clustor Sector Initialized
Count

Header Logical
I/O

Cluster
107
107

18
I/O Channel 1,4,15,41,47,48,51,54,55

59,61,63,68,69,70,71
I/O Channel Number 1,3,65
I/O Channel, Log 57
I/O Channel, Two Open 2
I/O Device 1,67
I/O Driver 12
I/O Mode Used 16
I/O Package 1,20,27,77,80,91,92,99,117
I/O Package Dependency 79
I/O Space 92
IC:CREATE 82
IC:DESTROY 82
IC:LOCK 83
IC:RELEASE 83
IC:RESET 83
IC:TEST 83
IDB
INTERLOCK "Object"
IOVTDPBS.ASM
Idle
Idle Character
Idle Count
Idle Trigger Character
Illegal Device Operation

Illegal Operation

79,90,92
82
20
21
17
18
28

16,18,19,21
22,24

15,38,51,114

Imaginary Terminal
Implementation Restriction
Implementing SYSCALLs
Implied Position

14
83
46
18
17 Implied Position Call

Input Buffer 30,32,34
22
33
14

Input Buffer Space Available
Input Buffer, Clear
Input Byte Stream to Application
Input Erased 30

30,32
19

Input Field
Input Line
Input Line Buffer
Input Line Buffer Empty
Input Line Editing

14,15,16,22,24
27
15
32
28

Input Line, Last
Input Ring Buffer
Integer, Parenthesized 6

25 Intensity
Interaction Between Independent

Operations
Interlock Object
Interpretation
Invalid Capability
Invalid Object
Invalid Response
KILLDISABLE
KILLENABLE Mode
KILLENABLE Status
KILLPROOF
KILLPROOF Flag
Keyboard Entry
Keyboard Input
LBN
LCN
LCN of SDOS
LCN, Legal
LEN
LENgth
LINEPRINTER
LMFLAG
LOAD
LOADER FORMAT
LPT:
LRU Queue
LSB
LSN
LSN 0
LSN, Soft Error
Last Data Byte

1
82
17
83
82

116
78
77
77

30,78
24,37

14
14,24

104
100,105,111,112,118

117
100

41
41
69
59

40,54,91
52

1,14
54

119
99,104,108,114

99,113
13

9
Last Operation on Terminal 16

Latency Times
Left End of Field
Legal Operation
Line
Line Buffer Displacement
Line Feed
Line Feed <LF>
Line Flag
Line Input Editing
Line Input Mode
Line Mode
Line Printer
Line Wrapping
Load Data Block
Load Record
Load Record Format
Load Record Type 0
Load Record Type 1
Load Record Type 2
Load Record Type 3
Load Record, SDOS
Loader Format, SDOS
Locking an Object
Log Channel
Log File
Logging
Logical Byte Number
Logical Cluster
Logical Cluster #0
Logical Cluster Number

114
26
40
59
29

16,17
63
37
14
80

16,38,60
1,3

18
93

96,117
93,95,97,117

93
93

93,94
93,94

93
93
82

57,63,65,68,81
55,60

65,68,81
104,118

112
119

10,98,102,103
118

Logical
Logical
Logical
Logical

Column Count 17
File Size 107
Sector 112
Sector Number 13,98,99,106,114

Lost Data
Lowercase Character
Lowercase Letter
MIDALLOC
MSB

115
3,7,11

107
35
10
93

Map Algorithm
Memory Address
Memory Content

11,12,114,115

Memory Failure
Memory Map
Memory Space, User Program
Memory, Non-Contiguous
Memory, Non-Existent
Month
Multi-Byte Write

93.104
91
71
91
91
52
92

108,115
64

Hul ti-User System 84
Multiple WAITDONEs 70
NBPC 104.109
NBPS 13.69.98.100
NCYL 13.69.98.99
NLCN 112.119
NLSN 98.101
NOP 25.26
NSPC 69.100.101
NSPC Sample Calculation 101
NSPT 13.69.98.99
NTPC 13.69.98.99
NUL 30
NUMBEROFBYTESTOWRITE 63.64
Networking 39
New Line Sequence 28
No Data Cluster Allocated 102
No Such Cluster 100
No Such Profile 20.27
No-Operation 70
Non-Maskable Interrupt 79
Non-Ready Device 15
Non-Zero Data 97
Null 59
Null Operation 82
Number of Idles 22
Number of Open Channels 15
Number of Sectors Per Cluster 100
Numeric Profile Name 27
OPEN 2.3.6.7.10.11.12.15.18.19.25.26

38.40.48.50.55.65
OPEN Channel 27
OPEN SYSCALL 7
OPEN Speed Up 50
ORG 40
Opcode Value 46
Open 3.52.63.64.68
Operating System 117
Operation Subcode 2
Operator Abort 77
Operator Edit 22
Operator Program Kill 78
Operator Requested Attention 29.33
Operator/User Program Interaction 80
Output Buffer 19.30
Output Buffer Available Space 28
Output Byte Stream to Application 14
Output Discarded 35
Output Display 15
Output Suspended 32,35
Output Timeout 20.28

Overlay Program Segment
Overlay Segment
PAGE BREAK
PAGE MODE
PARALE,LLIN
PARALELLOUT

52
54

31,32,35
313,31,32,35

69

PARAMS Field of SYSCALL Block
POSITION

69
82

3,4
69

1138
1138

27
21
27
713

PRINTER:
PROTECT: BACKUP
PROTECT:WRITE
Paper, Depth
Paper Form Size
Paper Width
Parallel Initiation
Parameter
Parameter Block
Parity Bit
Parity Stripped
Pass Control
Passed to Application
Patch
Personnel Training

21,39
39

14,16,17
16
71
31

117

Physical Terminal Characteristic
Port Number

121
14
66

3 Position
Position Control Call
Position Zero
Position, Implied
Pre-Processing
Print Position
Printer
Printer Device
Printer, Large Buffer
Printing Character
Printing Character Echo
Profile Alteration
Profile Malleable
Profile Name
Profile Not Malleable
Program Kill
Program Killed
Program Portability
Program Segment
Proprietary Program
Protection Bit Table
Protection Byte
RAM

25
2

613,61,63,64
16
68

17,18,27
14,21,31

26
17
19
28

15,213,21
27

18,21,28
55

24,37
14
54
97

1138
9

91
RDBUF
RDBUG
RDCN

15,16,20,36,47,48,82
36

1134

READ 40
READ/WRITE Overlap 41
READA 3,8,11,14,16,18,20,22,23,24,29

31,35,38,68
READA Mode 27
READB 3,8,9,11,14,16,27,28,29,35,38,68
READB Mode 27
RENAME 3,7,8,11,15,38,108
ROM 91
ROM Serial Number 116
ROM Vector 92
RPLEN 2
RUB 34
Random Access 1
Random Access Time 6
Re-Boot 76,90
Read 3
Read ASCII 55
Read ASCII Data 59
Read Buffer 59
Read Operation 2
Read from Console 3
Read, Single-Byte 61
Read-Ahead 10
Recovery Routine 44
Rejected with Beep 31
Releasing the Object 82
Reminder Display 35
Rename 3
Reply Buffer 39
Reply Byte 42
Reply Length 2
Request for Data 14
Reset Switch 35
Return Addres'l 45
Returning an Error 82
Revision Number 114
Rewind 65,66
Right End of Field 26
Row 66
Rubout 59
Runtime Package 121
SC:ALLSTATUS 37
SC:ATTENTIONCK 29
SC: GETACTCOL 23,29
SC:GETBACKGROUND 28
SC:GETBAUDRATE 28
SC:GETCOL 9,13,27,68
SC:GETCOLORING 28
SC:GETDATACOUNT 28
SC:GETEOF 9,13,27,68,69

SC:GETERRORSTATS
SC:GETFILEDATE
SC:GETFILEPROT
SC:GETFILESIZE
SC:GETFREECOUNT
SC:GETIDLES
SC:GETLASTBADLSN
SC:GETLINEFLAGS
SC:GETLINEFLAGSHINT
SC:GETOUTPUTTIMEOUT
SC:GETPARAMS
SC:GETPOS
SC:GETPROFILE
SC:GETPROFILEALTERATION
SC:GETPROFILENAME
SC:GETTABS
SC:GETTIMESHARE
SC:GETTYP
SC:GETTYPE
SC:GETWRAP
SC:STATUSCK
SC:WRAP
SCBLK
SCBLK:DATA
SCBLK:END
SCBLK:EXTENSION
SCBLK:OPCODE
SCBLK:PARAMS
SCBLK:RDBUF
SCBLK:RDLEN
SCBLK:RELEN
SCBLK:RPLEN
SCBLK:WLEN
SCBLK:WRBUF
SCBLK:WRLEN
SDBLK:WRBUF
SDOS
SDOS Address Space
SDOS Boot
SDOS Checksum
SDOS Hung-Up
SDOS Location
SDOS Operation Aborted
SDOS, Beginning

13
9
9

8,9,13,68,69
28
28
13
37
37
28

9,13,27,68,69
9,13,27,68

27
28
27
28
37

38,68,69
9,13,27

28
29,37

28
40
40
40
18

40,41
40,41
40,42

42
40

40,42,59,61
40,41
40,61
40,41

41
77
92
92
71
76
91

116
91

SDOS.SYS
SDOS.SYS

111,115,117
File Structure Restriction

117
SDOS/MT
SDOS/MT Already Running
SDOS/MT Flag
SDOS/MT Running

24,30,37
36,37

36
37

SDOS/MT Support
SDOS:KILLPROGRAM
SDOSCOMMANDS
SDOSDISKBACKUP
SDOSDISKINIT
SDOSDISKVALIDATE
SDOSERRORMAINT
SDOSSET
SDOSSET Program
SDOSUSERDEFS.ASM
SDVT11C
SEDIT

36
78

55.78.121
108

6.108.115.117
12.13

120
15.20.27

27
9.13

14
26
69 SERIAL IN

SERIALNUMBER.SYS
SERIALOUT
SETBAUDRATE
SETERROR

116
69
24

41.75
9.13.40.41.55.81

Installation-Dependent
STATUS
STATUS Call.

SYSCALL
SYSCALL Block

14
2.8.11.91

12
91
16

117
77.80

54.77.94
49

55.57
65

1.48.55
55.57

79
84
51
78
58

SYSCALL Entry Point
SYSCALL Specification
SYSCALL$ (:FB)
SYSCALL:ATTNCHECK
SYSCALL:CHAIN
SYSCALL:CLOSE
SYSCALL:CLOSELOG
SYSCALL:CONTROL
SYSCALL:CREATE
SYSCALL:CREATELOG
SYSCALL:DEBUG
SYSCALL:DELAY
SYSCALL:DELETE
SYSCALL:DISABLE
SYSCALL:DISKDEFAULT
SYSCALL:DISPERROR
SYSCALL:ERROREXIT
SYSCALL:EXIT
SYSCALL:GETERROR

72.74.76.120
44.54.71.72.76.90

SYSCALL:GETSERIALNUMBER
SYSCALL:INTERLOCK
SYSCALL:ISCONSOLE
SYSCALL:KILLENABLE
SYSCALL:KILLPROOF
SYSCALL:LOAD
SYSCALL:OPEN
SYSCALL:READA
SYSCALL:READB
SYSCALL:RENAME

71.76.90
75
85
82
81

77.78
26.77

52
1.47.48.52
8.18.59.60
9,18,60,61

50

SYSCALL:SETERROR
SYSCALL:STATUS
SYSCALL:WAITDONE
SYSCALL:WRITEA
SYSCALL:WRITEB
SYSCALLS
SYSCALLS, List Of
SYSCLL:CLOSE
SYSGEN
SYSTEM CRASH
Scatter Load Capability
Scatter Loading
Scratch
Screen
Screen Position
Search, Backwards
Search, Forward
Sector
Sector 0
Sector Access
Sector Pool
Sector Size
Sector Size in Bytes
Sector Size, Minimum
Sector, Contiguous
Sector, Modified
Sectors Per Cylinder
Sectors Per Track
Seek Time
Select Echo Mode

74,76
59,60,68

70
18,60,63,108
18,60,64,108

45
46

2
117

36
93
52
91
66
66

118
118

99,102,114
99
11
10

9,11,107
13

113
100

10
101

99
100,101

65
9
9

10

Sequential ASCII Read
Sequential ASCII Write
Sequential File Processing Time
Sequential I/O 10

10 Sequential Processing Time
Serial Device, ASCII-Oriented
Serial Number

14
97,116

65
4

64

Set Tab
Simulated Print Head
Single-Byte Write
Skip Record
Software, Customer
Software, SD
Source of Data
Sparse
Sparse File
Spiralling
Stack Register
Stand-Alone System
Start Address
Start Address, SDOS.SYS

93,97
92
92
36
10

8,102,107,120
114

91
39

93,94
117

Status
Status Function
Status Has Changed
Status Operation
Subroutine Call
Suspended Requestor of Object
Switch Request
Synchronize Usage
Syscall
Syscall Block
Syscall Block Displacement
Syscall Block Extension
Syscall Concept
Syscall Execution
Syscall Extension
Syscall, Channel-Oriented
Sysgen
System Call
System Crash
System Debugger
System Dependent Data
System Dependent Linkage
System File, Critical
System Programmer
TAPE
TERSE Command Line
Tab
Tab Character
Tab Column
Tab Default
Tab Expansion
Tab Setting
Tab Simulation
Tab Table
Tabbing
Tabular Display
Target Computer
Terminal Device Name
Terminal Session Record
Text Display
Text Display Function
Time
Time Saving
Time of Day, Set
Timed Input Expired
Timeput Interval
Toggle BASIC Line Trace Switch
Toggle BASIC Single Step Switch
Top of Form
Top of Page
Track

3,27
36

29,37
3

39
82
15
82

5
74
40
22
39
39
22
55
27

2,39
7

79,90
91
36

108
107

69
27
15
17
31
19
22
28
19
17

2
4

39
15

54,55
74
14

38,121
100,101

38
20,29

26
32
32
31
21

99,114

Track 0
Track Boundary
Tracks Per Cylinder
Transmitted Idle
True Line Flag
Truncate File
Truncated Line
Tune
Tuning Parameters
Turn-Key Application

99
101

99
18
37

8

Turn-Key Application, Building

18,35
114
113
121
121
121 Turn-Key System

Type-Ahead Buffer
Type-Ahead Buffer Empty
Underscoring
Update Date
Uppercase Character
Uppercase Letter

14,16,19,24,26
14
25

9
107

35
90
90

User Assembly Program, Debugging
User Assembly Program, Writing
User Program 1,36,91

91
91
91
39
97
27
27
26
26
26

User Program Area
User Program Boundary
User Program Page Zero
User's Computer
Utility Program
VERBOSE Command Line
VT Driver
VT Driver Processing Exception
VT Input Device
VT:MALLPT
Valid Capability
Value, Zero
Variable-Size Block
Video Display, Memory-Mapped
Virtual Terminal Driver
WAIT
WAIT Flag
WARNING
WIDTH

82,83
9
1

28
14

47,48
70

16,36,54
69

WRBUF 12,18,19,20,21,22,23,24,25,26,27
36,47,48,82,83

WRBUF Contents 22
WRBUG 59
WRITE 8
WRITEA 3,8,11,12,15,16,17,25,35,38,68
WRITEB 3,8,9,11,12,14,17,38,41,121
WRITEDATABUFFER 63
WRLEN 20,22,36,47,82,83
Wait Flag 41
Wait for Operation 70

Waster Space
Width
Wrapping
Write ASCII
Write Binary
Write Buffer
Write Operation
Write Protect
Write. Illegal
Writing Data
Year
Zero-Byte Read Request
AA
AB

101
20

28.35
55
41

17.39
2

7.8
11

108
108.115

16
30.35

30
AC
ACAC
AD
AE

30.31.32.35
23.24.26.29.30.36.37.55.77.78

AF
AG
AH
AI
A J
AK
AL
AM
AN
AO
Ap
AQ
AR
·S
AT
AU
A V
A W
AX
'y
A Z
A[
A\
A]

26.30
30
30
31
31
31
31
31

26.31
31
31

31.35
30.31. 32. 35

31.32.35
32

32.35
32

26.32
32
32
33
33

27.33
33
33
33
33
34

	00001
	00002
	00003
	00004
	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	I-18
	I-19
	I-20
	I-21
	I-22
	I-23

