Specification Number CR-CP-0059-C381
Code Ident: FSCM 80063
November 1983

DRAFT
ADA* LANGUAGE SYSTEM SPECIFICATION
CR-CP-0059-A00
VOLUME |

These technical data and/or computer software have been furnished by the
U.S. Covernment under the express condition that they ba utilized solely
for the purpose of rehosting the entire ALS and/or retargeting the ALS.
Any reproduction or use of this information inconsistent with this objective
ar its release to third parties is exprezsly prohibited and may resuit in
liability to tha government for damages sustained. Nothing herein in any
way limits the use or dissemination of these technical cata and/or computer
software if same are legally obtained from another source without restriction.
This legend will remain in effect until January 1985 and will be seif-deleting
thereafter.

Contract No. DAAK80-80-C-0507
CDRL Item B010

Submitted to
Headquarters, United States Army
Communications Electreonics Command
Fort Monmouth, NJ 07703
Prepared by
SofTech, Inc.

460 Totten Poad Road
Waltham, MA 02154
1075-4.6

EXPORT OF THE ADA LANGCUAGE SYSTEM AT ANY TIME REQUIRES
AN EXPOKT LICENSE FROM THE U.S. DEPARTMENT OF COMMERCE.

*Ada is a registered trademark of the Department of Defense
(Acda Joint Program Office) OUSDRE (REAT)

(Copyright ©1983, SuiTech, Inc.)

1. SCOPE. . . L IR °

1.1

1.2

Ada Language System Specification CR-CP~0050-A00
1 November 1983

Specification.

TABLE OF

Ada Language System.

2. APPLICABLE DOCUMENTS. . .

2.1

2.2

3. REQUIREMENTS. . . « v v o o « o .

Government Documents.

Non=Government Documents.

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

CONTENTS

Generic Minimum Host Environment.

Target Environment.

3.1 Ada Language System Definition.
3. 1.1 General Description.
3.1.1.1 Host Enviromments.-. . . .
3.1.1.1.1 VAX/VMS Host Environment.
3.1.1.1.2
3.1.1.2 Target Environments.
3.1.1.2.1 VAX-11/780 VAX/VMS
3.1.1.2.2 Blank. « . « « o &
3.1.1.2.3 Blank. . . « . . &

- 3.1.1.2. 4 Blanke o« o o o o o«
3.1.1.2.5 Blank.
3.1.1.2.6 MCF Target Enviroment.

.

Ada Language System Specification CR-CP-0050-A00
1 November 1983

TABLE OF CONTENTS (cont.)

3.1.1.3 Ada Language Implementation. . . « « ¢« « ¢« o« « 3=5
3.1.1.3.1 Ada Language Implementation Dependencies. . 3=5
3.1.1.3.2 . Ada Language Terminology. .+ « « ¢ ¢« ¢« ¢ « « 3=5
3.1. 1.4 Functional Areas. . . ¢ « ¢ ¢« o+ o ¢ o o o « & 3=6
3. 1. 1.5 List of Computer Program Configuration Items. 3-9

3.1.1.6 Logical Fil;s. e e e e e e s e e e e s s 3=
3.1.1.6.1 File Names. . o ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢« o s o « » 3=M
3.1.1.6.2 File Assignﬁent. e 4 o s s s e s e e s . 3=
3.1.2 Mission/Purpose. T £
3.1.3 ThreatS. « « o « o o o o o o s s s o o o o « o 3=13
3.1.3.1 Potential Threats. e o o o ¢ o o o o o s o 3=13
3.1.3.2 Ada Language System Access and Security

Conbrol., ¢ ¢ ¢ ¢ ¢ o ¢ o o ¢ o s o o o s o 3=13

\\\\(3.1.“ System Diagrams. e & & o o & o o o o+ o o o+ o 3"'13

f 3.1.5 Interface Definitions. . « ¢« « ¢« ¢« o ¢« ¢ « o o 3=15
§ 3.1.5.1 ALS/User Interfaces. + « « + ¢ o« « « o ¢« o » 3=15
3.1.5. 1.1 Physical Interfaces. © e o s s s o o o« 3=15
3.1.5.1.2 Programming Interface. s e e e o o s o s 3=15

3.1.5.2 ALS/Host Operating System Interface. . . . 3=15

3. 1. 50 3 ALS/Tanet Machine Intel"face . e o o o o o e 3-15

ii

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

3.1.5.4

3.1.5.4.1
3.1.5.4,2
3.1.5.4.3
3.1.5. 4.4

3.1.5.4.5

3.1.5.4,6
3.1.5.4, 7
3.1.5.4.8
3.1.5.4.9
3.1.5.4.,10

3.1.5.4.1

3.1.5.4.12
3.1.5.4.13
3.1.5.4.14
3.1.5.4.15
3.1.5.4.16

Ada Language System Specification CR-CP=0050-A00"
1 November 1983

TABLE OF CONTENTS (cont.)

ALS Functional Area Interfaces.

Compiler. . ¢ « « o o«

Assembler. e o o o o

Linkér . L d L . . L] . .

. . L] L]

e o o o

L d . L . [.

ALS Loader (For Bare Target Machines). .

Loader (For Target Machine with Resident

Operating System). o o o 8 a4 6 e o o s »

DEC VAX/VMS Text Edaitor. o .

DEC S;andard Runoff Formatter.

Configuration Control Tools.

Command Language Processor. .

e o o o s o

e 8 o o o o

Database Manager. .« « « ¢ o ¢ s o o o o o

Kernel Ada Programming
Display Tools. PR
File Aaministrator. .
Symbolic Debugger. .
Statistical Analyzer.

Frequency Analyzer. .

iii

Support

Environment.

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

3-15
3-15
3=-16
3=16
3=17

3-17
3217
3-17
3-18
3-18
3-18

3-18
3-19
3-19
3=19
3=20

3=20

Ada Language System Specification CR-CP=0050-4 00

1 November 1983

3.1.6 Government Furnished Property Liét. e o v e
3.1.7 Operational and Organizational Concepts. ; .
3.1.7.1 ~Ada Language System Operational Guidelines.
3.1.7.2 Ada Language System Deployment.
3.2 Characteristics. « « ¢ ¢ o ¢ ¢ o ¢ ¢ ¢ o o o
3.2.1 Ada Language System Performance
Characteristics. « ¢« « ¢ ¢ ¢ ¢ o ¢ ¢ o o ¢ o
3.2.1.1 Portability. c e o s & 8 s e o 8 e s s e
3.2.1.1.1 Retargetability. e o e b e 2 e e s a o
3.2.1.1.2 Rehostability. .« ¢ ¢ ¢ ¢ v ¢ o o« o o &
3.2.1.1.3 User Portabilit¥e o+ ¢ ¢ o o o o o o o o
3.2.1.2 Extensibility. e s e s o s e s e s e o e
3.2.1.3 Programming Support. e e o s s s e o o s
3.2.1.3.1 Support of Concurrent Multiple Development.
3.2.1.3.2 Programming Teams. e o 8 o s o 9 s o e
3.2.1.4 Development of Program Families. e o e e
3.2.1;5 Ada ProgramsS. .« « « ¢ o o o o o o o o o o
3.2.1.6 Command Language. .+ « « « o o o = o o s »

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

TABLE OF CONTENTS (cont.)

iv

3-20
3=21
3=21
3-21

3=22

3=22
3=22
3=22
3=-22
3-23
3-23
3-23

3=-23
3-23
3=-23
324

3-25

3.2.1.6.1
3.2.1.6.2
3.2.1.7
3.2. 1. 7.1
3.2.1.7.2
3.2.1.7.3
3.2.1.8
3.2.1. 8.1
3.2.1.8.2
3.2.1.9
3.2.1.9.1
3.2.1.9.2
3.2.1.9.3
3.2.1.10
3.2.1.10,1
3.2.1.10.2

3.2.1,10.3

3.2.2 Physical Characteristics.
3.2.3 Reliability. e e o o o
3.2;“ Maintainability. .« s e
3.2.5 Availability. . « . . &

,

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0050-A00

TABLE OF CONTENTS (cont.)

Command Language Function. . .

Command Language Description.

Environment Database.
Nodes. e o o o o e
Program Libraries.
Containers.

ALS Toolset. &
Tool Functions. . .
Tool Descriptions.

Reliability.

Project Reviews. .

Management Reviews.

Structured Walk-Throughs. . .

Maintainability. . . .

Maintainability Characteristiecs.

Personnel.

Documentation. . .

o o e o o

* . L] L] L]

o o o o

e o o o o

1 November 1983

3-25
325
3-25
3-25
3-26
3-26
3-27
3-27
3-27
3-27
3-27
3-27
3-27
3-28
3-28
3-28
3-28
3-29
3-29
3-29
3-29

Ada Language System Specification CR-CP-0050-A00

1 November 1983

3.2.6
3.2.7
3.2.8
3.2.9
3.2.9.1
3.2.9.2
3.2.9.3
3.3

3. 3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.7.1
3.3.7.2
3.3.7.3
3.3.7.4
3.3.7.5
3.3.7.6

TABLE OF CONTENTS (cont.)

System Effectiveness Models.
Environmental Conditions.
Nuclear Control Requirements.
Transportability. =« ¢ ¢ ¢ o ¢ ¢ o o @
User/System/Tool Transportability.
Qutput Program Transportability. .
Distribution. . . .« . ¢ . o . . .
Design and Construction. e e e e e
Materials, Processes, and Parts. . e
Electromagnetic Radiation. e s s s o
Nameplates and Product Marking. . . .
Workmanship. e o o o o o o o o o o
Interchangeabilitye ¢ ¢ « ¢ ¢ ¢ o o &
Safet¥e o ¢ o« ¢ o o o o o o .o o o o o
Human Performance/Human Engineering. .
Programming Environméht. s e e e e
Command Language Tool Set. e s e e
Extensibility. ® e o o o s o v o »
Programming Support. « o o 8 8 8
Prevention of Error Cascading. . a

Messages and Diagnosties.

vi

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

3-29
3-29
3-29
3-29
3=29
3-30
3-30
3-30
3-30

- 3=30

3-30
3-31
3-31
3-31
3-32
3-32
3-32
3-32
3-32
3-32
3-32

3.3.8
3.3.8.1
3.3.8.2
3.3.8.3
3.3.8.4
3.3.8.5
3.4
3.4.1
3.4,2
3.4.3
3.4.4
3. 4.5
3.4.6
3.4.7
3.4.8
3.5
3.5.1
3.5. 1.1
3.5.1.2
3.5.2
3.5.2.1

Ada Language System Specification CR=CP-0050-A00

TABLE OF CONTENTS (cont.)

Computer Programming. . . .
TOP-DOWD Design. ¢« e o o
Structured Programming. .

Coding Standards. . . « .

Program Design Language (PDL).

Implementation Approach.
DocumentatiofNs + « « o« o o o
Plans. « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o @
ManualsS. « ¢« ¢ ¢ ¢ ¢ o o o &

Specifications.

Test Plans/Procedures and Reports.

Technical Reports. « « « ¢« &« « o &

Configuration Management Documents.

Administrative Documents. .
Blank. « ¢« ¢« ¢ ¢« ¢ o ¢ o o &
LogisticsS. ¢« ¢« ¢ o ¢ ¢ ¢ o o« &
Maintenance. e s s o s s e
Maintenance Procedures. .
Maintenance Documentation.
SUPPLYe o ¢ ¢ o ¢ o o o o &

Distribution. . « ¢« « o« &

vii

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

L]

L]

1 November 1983

3-32
3-33
3-33
3-33

- 3-33

3=34
3-35
3-35
3-35
3-35
3-35
3-36
3-36
3-36
3-36
3-38
3-38
3-38
3-38
3-38
3-38

Ada Language System Specification CR-CP-0050-A00

1 November 1983

3.5.2.2 Addition of New Tools. s e e
3.5.3 Facilities and Facility Equipment.
3.6 Personnel. . « ¢« ¢« ¢ ¢« ¢ ¢ « « &
3.6.1 User Personnel. . : e s o 0 s
3.6.2 Maintenance Personnel., . e »
3.6.3 Training. « o« o ¢« ¢ o o o o &
el
3.7 Functional Area Characteristies.
| 3,71 Compiler Functional Area. . .
3.7.1.1 Compiler Invocation. o« s
3.7.1. 1,1 | Compiler Options . . . e
; 3.7.1.1. 1.1 Listing antrol Options..
; 3.7.1.1. 1.2 Maintenance Aid Options.
| 3e7.1.1.1.3 Other Options. « o s e
; 3.7.1.2 Compiler Inputs. e e o o o
; 3.7.1.3 Compiler Outputs.
3¢7.1.3.1 Container Output.,

T3.7.1.3.2

TABLE OF CONTENTS (cont.)

*

Reformatted Source Text Output.

3.7.1.3.3 Output Listings « .« « ¢« &« « &

3. 7. 1. 3.

3.1 Source Listing. .« « ¢« « o+ &

3.7.1.3.3.2 Symbol Attribute Listing.

307-1- 30303

viii

‘:Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Cross-Reference Listing. . .

3-38
3-38
3-39
3-39
3-39
3-39
3-40
3-40
3-41
3-41
342
3-43
3-47
3-48
3-48
3-48
3-48
3-49
3-49
3-68
3-70

3.7.1.3.3. 4
3.7.1.3.3.5
3.7.1.3.
3.7.1.3.3.7

Ada Language System Specification CR=CP=0050-400
1 November 1983

TABLE OF CONTENTS (cont.)

Machine Code Listing.

3.6 Diagnostic Summary Listing.

ix

"Use or disciosure of technical data and/or computer software

Compilation Statistics Listing.

e o o o

Compilation Summary Listing.

e o o

Section.

is subject to the restrictions on the cover of this Document."

Goals.

3.7.1.3. 4 Diaghostic MessageS. « « « o o« « »
3.7.1.3.5 Special Diagnosties.
3.7.1. 4 Maintenance Aids. . . « . . ; .« e .
fﬁﬂ3.7.1.5 ALS Compiler Machine-Independent

3.7.1.5.1 Intermediate Language. « « ¢« « o o o o+ o
3.7.1.5.2 Machine-Inaependent Section Deé&gn
3.7.1.6 Code Generatorse o« « « « o s o o o o
3.7.1.6.1 Code Generator Design Goals. . . .
3.7.1.6.2 Code Generator Execution.«
3.7.1.6.3 Code Generator Inpﬁt. e e o o o o
3.7.1.6.4 Code Generator Output. « « « o + &
3.7.1.7 Runtime Support Libraries.
3.7.1.7.1 Runtime Support Library Routines.
3.7.1.7.2 Runtime Support Library Output. .
3.7.2 Assembler Functional Area.
3.7.2.1 Assembler Design Goals. . « « « « &
3.7.2.2 Detailed Descriptions. . « « « o « o«

3-75
3-80
3-82
3-84
3-86
3-87
3-87
3-87
3-88
3-88
3-88
3-88
3-88
3-88
3-88
3-89
3-89
3-89
3-90
3-90
3-90

Ada Language System Specification CR-CP-0050-A00

1 November 1983

TABLE OF CONTENTS (cont.)

3.7.2.3 Maintenance Aid OptionsS. « « « « o ¢ « o &
3.7.3 Linker Functional Area. . . + « s « s « « &
3.7.3.1 Linker Design GoalSe o « « o o o o o « o &
3.7.3.2 Linking Tool Operation. . « « o o« ¢ o o &
3.7.3.3 EXporters. « « o o o o ¢ o o o ¢ o o o o o
3.7.3.4 Importers. ¢« ¢« ¢ o ¢ ¢« ¢ ¢ ¢ o o o o o o
3.7.3.5 Linking Tool Maintenance Aids. . . « « « &
3.7.3.6 Exporter Maintenance Aids. . « « « « & ; .
3.7.4 Loader Functional Area. . « « o o« « o o o &
3.7.4;1 Loader Design Goal. « ¢« « ¢ ¢ « o ¢ o« o &
3.7.4.2 Loading and.Executing Programs.
3.7.4.3 Loader Qutput. « « o « s o o o o o o o o &
3.7.5 Text Editor and Formatter Functional Area.

3.7.5.1 Text EAitore o o« ¢ o ¢ o o o o o o o o o
3.7.5. 1.1 Invocation. .« ¢ ¢« ¢« o ¢ ¢ ¢ o o o o o .
3.7.5.1.2 QUtPUut. « ¢ ¢ 4 o o o o s ¢ o a8 s o
3.7.5.2 Formatter. « « o« o« v o s ¢ ¢ ¢ o o o o o &
3.7.5.2. 1 INVocations « o o ¢ o ¢ o o o o o o 0 .
3.7.5.2.2 Input and Qutput. « ¢ « ¢ ¢ o ¢ ¢ o o« &
3.7.6 Configuration Control Tools Functional Area.
3.7.7 Command Language Processor Functional Area.

‘stq or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

3-90
3-91
3-91
3=92
3-92
3-92
3-92
3-93
3-94
3-94
3-94
3-94
3-95
3-95
3-95
3-95
3-95
3-95
3-95
3-95
3-96

Ada Language System Specification CR-CP-0050-A00
1 November 1983

TABLE OF CONTENTS (cont.)

3.7. 7.1 Parameters To The CLP. . . . + . « &

3.7.7.2 CLP Maintenance OptionS. « « o « o &+ o+ &
3.7.8 Database Manager Functional Area.
3.7.8.1 Environment Data Manager. . . . « . . .
3.7.8.2 Container Data Manager. . . . « « « o+ &
3.7.8.3 Program Library Manager. . . + « « « « «
3.7.9 Kernel Ada Programing Support Environment

(KAPSE) Functional Area@. « « ¢ ¢ ¢ o o+ o+ &

3.7.10 Display Tools Functional Area.
3.7.10.1 Listing ToolS. « ¢ ¢ ¢ ¢ ¢ ¢ o o« ¢ &
3.7.10.2 Maintenance Aids Tools. « &
3.7.10. 2.1 Maintenance Aids Tool Descriptions.
3.7.10. 2.2 Container Dump User Interaction. .
3.7.10.2.2. 1 Display Format Subcommands. . .
3.7.10.2.2. 2 Selection SubcommandS.
3.7.10.,2.2.3 Display Subcommands.

3.7.10,2.2. 4 Control SubcommandS. « « « « o o

3.7.11 File Administrator (FA) Functional Area.

3.7.11. 1 Concepts of rollout/rollin.

3.7.11.2 Concepts bf backUpe « o o ¢ o ¢ o &

xi

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

3-96
3-97
3-98
3-98
3-98
3-98

3-98
3-99
3-99
3-99
3-99
3-102
3-102
3-103
3-104
3-106
3-106
3-109
3-110

Ada Language System Specification CR-CP-0050-A00
1 November 1983 . '

TABLE OF CONTENTS (cont.)

3.7.11.3 Tape-library-oriented Commands. 3=111
3.7.12 Symbolic Debugger Functional Area. . . « « . . 3=123
3.7.13 Statistical And Frequency Analy;er Functional

AFEa. v v v v e e e e e e e e e e .‘. 3-123
3.7.13. 1 Statistical AnalyzZer. . « « + « o ¢ o o o o 3=123
3.7.13.2 Frequency AnalyZer. . « « ¢ o o« ¢ o « o o o 3=124

3.7.1333 Pl"ofile Display Toolo e o & o o & s e s s 3—12“

3.8 Order of Precedence. o « « o« o o o « o o o o o o 3=126
30801 Conflict Resolution' e e o @ e o e © o e o o o 3"126
3.8.2 Contract Precedence. . ¢« « « o o o o o o o o o+ 3=126

y, QUALITY ASSURANCE PROVISIONS. « o « o o o o o o s » o 4=l

u.1 %neral. L) L] * [] . L] L] L] ® L] o L] L] L] L] L] * - * Ll u-1
4.1.1 Responsibility for TestSe o+ « o o o o o o o o o U=l
4,2 Quality Conformance Inspections. e e o o o o o o b=

5. PREPARATION FOR DELIVERY. e o o e o o & ° o e » e o » 5-1

5- 1 Ada Language systemo o o o0 o o 6 o & o o e o o 5"1
5. 1. 1 Delivel"y Fomato ® & © © ° & & 6 ¢ o & 0o & o o 5’1
. 5. 1.2 Phased Delivet‘y. e o o ¢ 8 9 o & 8 o s 8 e o o 5-1
xii
"Use or disclosure of technical data and/or computer software

is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0050-A00
1 November 1983

TABLE OF CONTENTS (cont.)

5.2 Ada Language System Documentation.

5.3 on-Line DOOUMEntation. e o o o o

6. NOTESQ . * o o o o @ o6 ¢ o o o s o o
6.1 Glossary. e o & o o 0'0 e o o o o

6.2 ACronyms. .« o o ¢ o o o o o s o o
Preface to Appendixes. . .« o ¢« ¢ o ¢ « &

APPENDIX 10 v 4 o o o o o o o o s o o o o

10.1 The Ada Language For The VAX/VMS Target.

10. 1.1 Pragmas.

10. 1. 1.1 Pragma Definition. o« o o s o

10.1.1.2 Scope of Pragmas. . . « . . &
1 00 1. 2 Attr ibutes' L] L] L[] L] . L] . L] L] L]

10. 1.3 Predefined Language Environment.

10, 1. 4 Representations and Declaration Restric;ions.

10, 1. 4,1 Integer Types. e e s o s s o
10. 1. 4,2 Floating Types. .+ « ¢ ¢ ¢ « &
10. 1. 4.3 Fixed Types. e s o v 0 o s »
10.1. 4.4 Enumeration Types. e s s s o
10. 1. 4.5 Access Types. « v ¢ o o ¢ o &
10. 1. 4.6 Arrays and Records.

xiii

.

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

. 5‘1

. 6=1

. 10;1
10=2
10=2
10=2
10=4
10-5
10«6
10-7
10=7
10-8
10-8
10-9
10-9

10=9

Ada Language System Specification CR-CP;OOSO-AOO

1 November 1983

10, 1. 4.7

TABLE OF CONTENTS (cont.)

Other Length Specifications. « e o s s s

10. 1.5 System Generated Names. . .

10.1.6 Address Specifications. . .

10, 1.7 Unchecked Conversions. . .

10.1.8 Input/Output. . + « « « o &

10.1.8. 1
10.1.8.2
10. 1.8.3
10.1.8. 4
10.1.8.5

10.1.8.6

Naming External Files:. .
The FORM Specification for
File Processing. « o o e
Text Input/Output. « o e
Low Level Input-Outpﬁt. .

Hardware Interrupts. . . .

10. 1.9 Character Set. e o o o o o

10.1.10 Machine Code Insertions. . .

10.1.10.1

10.1.10.2

10.1.10.3

Machine Features.

e e & o & o o

External Files.

Restrictions on the ADDRESS and DISP

Attributes. . . ¢« o ¢ o o

e e o o ° ¢ o o

Restrictions on Assembler Constructs. . .

10, 1. 11 Machine Instructions and Data. . « ¢« ¢ o « «

10.1.11.1

10. 1. 11. 1.1

Vax Instructions.

VAX Operands. . . . « »

xiv

e o o 8 o e o o

e ® o 8 e o o o

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

10-10
1011
10-11
10-11
10=11
10-11
10-11
10-12
10-12
10-13
10-13
10-13
10-13

10-13

10-16
10-16
10-18
10-18

10-19

10, 1. 11
10, 1. 11
10, 1.1
10. 1. 11
10.1. 11
10, 1. 11
10.i.11
10.1. 1"
10. 1. 12
"10.2
10.3
10. 4
10.5
10.6

10, 6. 1

10.6. 1.1

10.6.1.2

10. 6.2
10.6.3
10.6.4

10, 6. 4.1

J1.101
.1.1.2
+1.1.3
.1.1.4
1,15
.1.1.6
.2

.3 VAX Data.

Ada Language System Specification CR-CP-0050-A00
1 November 1983

TABLE OF CONTENTS (cont.)

System Defined
Blank. &
Blank. « + « & &
Blank.
Blank. « « o« « o
The Ada Language

Pragmas.

Attributes.

Exceptions

For

Scope of Pragmas.

Indexed Operands.

The CASE Statement.

The

Pragma Definition.

Short Literal Operands.

Byte Displacement'Operands.

Word Displacement Operands.

*

Register Operands. . . « . .

. . L] L] . L

.

® ® e o © o o o

e & o o o & o

Target.

Predefined Language Environment.

Representations and Declaration Restrictions.

Integer Types.

Xv

Longwora Displacement Operands.

* L] . . L] L] L] * L] L L L] .

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

10-19 °
10-19
1021
10=22
10=22
10=23
10=24
10-25
10-25
10-26
10=26
1026
10-26
10-27
10=27
10-27
10-29
10-30
10=31
10-32

10=32

Ada Language System Specification CR-CP-0050-A00

1 November 1983

10.6.4.2
10, 6. 4.3
10.6. 4.4
10.6.4.5
10.6. 4.6
10.6. 4.7
10. 6.5

10.6.6

10.6.7

10. 6. 8

10.6. 8.1
10.6.8.2
10.6. 8.3
10.6.8. 4
10.6.8.5
10.6.9

10.6.10

10. 6. 10- 1

10.6.10.2

TABLE OF CONTENTS (cont.)

Floating Types. . . .
Fixed Types. « e e o
Enumeration Types. .
Access Types. . + « &

Arrays and Records. .

Other Length Specifications.

System Generated Names.
Address Specifications.

Unchecked Conversions.

"Input/Output.

Naming External Files:
File Processing.

Text Input/Output.

Low Level Input-Output.

Hardware Interrupts. .
Character Set. e o e

Machine Code Insertions.

Machine Features. . .

Restrictions on ADDRESS anda DISP

Attributes.

® ® @ & ¢ @ o e e & s e © * 6 o 0 & o o+ o o

xvi

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

10-32
10-33
10-33
10-34
10-34
10-35
10-35
10-35
10-35
10-36
10-36
10-36
10-36
10-36
10-36
10-36
10-38
10-38

10-38

10, 6. 11
10.6.11.1
10.6.11. 1.1
10.6.11.1. 1.1
10.6.11.1,1.2
10,6.11.1,1.3
10.6.11.1.1. 4
10.6.11.1. 1.5
10,6.11.1. 1.6
10.6.11.1. 1.7
10.6.11.1.1. 8
10.6.11.1. 1.9
10.6.11.1. 1,10
10.6.11.1. 1. 11
10.6.11.1. 1. 12
10,6.11.1.1,13
10,6. 11,1, 1. 14

10.6.11.1.1.15

APPENDI x 20 ® e o e o @ 5 o O o 6 8 s o s & o

20,1

"Use or disclosure of technical data and /or computer software

MCF Instructions.

MCF Operands.

Ada Language System Specification CR-CP<0050-A00

TABLE OF CONTENTS (cont.)

Machine Instructions. . « « « « &

Short Literal Operands. . .
Register Ope}ands. e o o o
Short Parameter Operands. .
Extended Parameter Operands.
Literal Operands. . « « « &
Absolute Address Operands.

Indirect Register Operands.

Byte Indexed Operands. . .
Word Indexed Operands. .
General Parameter Operands.
Unscaled Index Operands. .
Scaled Index Operands. . o
Displacements.

e ¢ o o o o

CASE_MCF Jump Table. . o

WINDOW Instruction Information.

xvii

ALS VAX Assembly Language. « « ¢ « o o«

1

is subject to the restrictions on the cover of this Document."

November 1983

10-39
10-39
10-40
10-41
1041
10-41
10-42
10=42
1043
10-43
1044
1044
10-44
1045
10-45
10-46
10-47

10-47

9.-.020-1

20=2

Ada Language System Specification CR-CP-=-0050-A00

1 November 1983

20.1.1
20.1.1.1
20.1.1.2
20.1.1.3
20.1.1.4
20.1.2

20.1.2.1
20.1.2.2
20.1.2.3
20.1.2.3
20.1.2.3
20.1.2.4
20.1.3

20.1.4

20.1.4.1
20.1.4,2
20.1.4.3
20.1.4.4
20.1.4.5
20.1.4.6

20' 1'“.7

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.*

TABLE OF CONTENTS (cont.)

Source Statement Format.

Label Field. . .
Operator Field.
Operand Field. .

Comment Field. .

Components of Source

.

Statements.

Character Sete « « ¢ o« o o o o

Numbers. « « o« o o o o

SymbolSe « ¢ o o o o o

.1 Permanent Symbols

2 User-Defined Symbols.

Expressions.

Addressing Modes.

Assembler Directives.

'BLKB. . . L] L] - L] .

.BYTE, .WORD, .LONG.

.END.
EQU.
.PSECT.
.SUBPROGRAM. . .

.SEPARATE, . . .

xviii

204
20-4
20-5
20-5
20-6
20-6
20-6
20-8
20-8
20-8
20-9
20-10
20-10
20-18
20-18
20-19
20-19
20-19
20-20
20-21

20=21

20.1.4.8
20.1.5
20.1.5.1
20.1.5.2
20.1.5.3
20.1.5.4
20.1.6
20.1.7
20.1.8

20.1.9

20.1.9.1
20.1.9.2
20.1.9.3
20.1.9.4
20.1.9.5
20.1.9.5.1
20.1.9.5.2
20.1.9.6
20.1.9.6.1

Aga’ Language System Specification CR-CP-0050-A00
1 November 1983

TABLE OF CONTENTS (cont.)

EXTREF., ¢ & ¢ ¢ ¢ ¢ o o ¢ o &
Assembler Output. .« « ¢ o o o+
Machine Texte « ¢« ¢ ¢ o ¢ o &
Listing « ¢« ¢ ¢« & ¢ o ¢ ¢ & &
Diagnostic Messages.
Summary Message. « « « o o o
Invoking the Assembler.
Assembly Language Syntax. . . .
Assembly Language Comparison . .
Runtime Conventions for Assembly

Rout ines ® ® o e ¢ e s o o o o o

Language

e o o o o

Organization into Program Sections . . .

Register Use Conventions . . .

Starting Point of Executable Code . . .

External References

calls e & o & o & o & o * o o

From Ada Subprograms

To Ada Subprograms . « « « «
Arguments . . « o ¢ o o o o o

Scalar Arguments

xix

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

20-21
20-22
20-22
20=-22
20-24
20=-24
20-25
20=-25

20-35

20-39
20-39
20-39
20-39
20=40
2040
20-40
20-42
20-42

20-42

Ada Language System Specification CR-CP-0050-A00

1 November 1983

TABLE OF CONTENTS (cont.)

20.1.9.6.2 Access Arguments . .+ + + « o+

20.1.9.6.3 Task Arguments « « o« « « « o+ &

20.1.9.6.4 Array Arguments

20.1.9.6.5 Record Arguments . « « « « o ¢ o o o

20.1.9.7 Example of an Assembly Language Subprogram

20,2 Blanke o« + ¢ o o « o
20' 3 Blank. * L] [] L] L] L] L] (]

20. u Blank e o © o o o o & o

e o e o & o o

e & 8 ° o o

20,5 ALS MCF Assembler Language. . . .

20.5,1 Source Statement Format.

20.5.1.1 Label Field. . . .
20.5.1.2 Operator Field. .
20.5.1.3 Operand Field. . .
20.5.1.4 Comment Fiéld. . e
20.5.2 Components of Source
20.5.2.1 Character Set. . .
20.5.2.2 Numbers. « « « +

20.5.2.3 Symbolse ¢« ¢ ¢ o &

. L] . L . .

Statements.

20.5.2.3.1 Permanent SymbolsS. « « « « &

20.5.2.3.2 User-ﬁefined Symbols. . . .

20.5.2.4 Expressions. . . .

XX

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

20-42
20-42
20-43
20-44
2044
20-45
20-45
20-45
20-46
20-48
20-48
20-49
20-49
20-50
20-50
20-50
20-52
20-52
20-52
20-53

20-53

20.5.3
20.5.4
20.5.4.1
20.5.4,2
20,5.4.3
20,5.4.4
20.5.4.5
20.5.4.6
20.5.4.7
20.5.4.8
20.5.4.9
20.5.4.10
20.5.5
20.5.5.1
20.5.5.2
20.5.5.3
20.5.5.4
20.5.6
20.5.7
20.5.8

Ada Language System Specification CR-CP-0050-A00

TABLE OF CONTENTS (cont.)

Addressing Modes.

Assembler Directives.

] BLKB. ® e o o o o o

.BYTE, .HWORD,

.END. . L] .

L

.SECT. . . .
. SUBPROGRAM.
.ENTRY. . .
.PARM. . . .

.SEPARATE., .

.

.WORD,

LEXTREF.

Assembler Output.

Machine Text.

Listing. « « « &

Diagnostic Messages.

Summary Message. . .

Invoking the Assembler.

Assembly Language Syntax. . .

Assembly Language Comparison.

xxi

1 November 1983

e o o o o 20-54
o e e o« 20=57
o o + o« o 20-58
¢ o+« o« o 20-58
e« o o « o 20-59
o+ o s o o 20=59
e« o« a2 o o« 20-59
¢ o s o« 20-61
¢« o o o o 20=-61
e o o o o 20-61
¢ o o s o 20=62
o o o o o 20=62
e o o o o 20-63
e« o o o o 20=63
e o o o o 20-63
¢ o o o o 20=65
o s s o o 20=65
e o o o o 20-66
e« o o o o 20=-66

0000'20-72

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0050-A00
1 November 1983

TABLE OF CONTENTS (cont.)

APPENDIX 30 ¢ o ¢ o o o o o o o o o o ¢« o o s o o o « o o 30=7
30.1 Using The ALS VAX-11/780 Linker. . . + « « » « . 30=2
30.1.1 Invoking the Linker. . . « ¢« v ¢ ¢ ¢ ¢« « « « « 304
30.1.1.1 Options. « ¢ v ¢ o o o o o o o R 30=5
30.1.1.2 Units'Listing. e o o o o o o o o o o o ; « « 30-5
30.1.1.3 = Symbol Definition Listing. « « « « o ¢ &+ o & 30-8
30.1.1.4 Link Summary Listing. .« « ¢« ¢« « ¢ « « « o+ « 30=10
30.1.2 Preparing Incomplete Progréms. e e o o s o s o« 30=12
30.1.3 Allocation Of Storage. + « o o o o s o« « o o o 30-13
30.1.4 BlankKe. « « ¢ o o o o ¢ o s o o o o s o o o o o 30=14
30.1.5 DiagnosSticS. o &+ ¢ o o o ¢ o o o o ¢ o o ¢ o o 30=1U
30.2 Blanke « ¢ o o o ¢ ¢ o o o o o s o o s s o o o o 30=15
30.3 BlanKe « o o ¢ ¢ o ¢ o o o s o o o o s o o« o o o 30=15
30.4 Blank. « o o o o o o o o o o s o o o o s o o s o 30=15
30.5 Using The ALS MCF Linker. . « « « « o o o« « o o 30=16
30.5.1 Invoking the Linker. « « « « ¢ ¢« ¢ ¢« o o o » » 30=18
30.5.1.1 OptionS.e « o ¢« o ¢ s ¢« o s o o« o o« o o » o+ o 30-19
30.5.1.2 Units Listing. . « « o ¢ o o ¢« ¢ o ¢« o « « o 30=20
30.5.1.3 Symbol Definition Listing. . « « ¢« « « o . . 30=-22
30.5.1.4 Link Summary Listing. « ¢ « ¢ o ¢ o ¢ o« o o 30=24

30.5.2 Preparing Incomplete Programs. « « « ¢« « « » . 30=-26

xxii

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

S

30. 5‘ 3
30. 5.“

30.5.5

Ada Language System Specification CR-CP-0050-A00
1 November 1983

TABLE OF CONTENTS (cont.)

Allocation of Storage. « » « o s o o o o o o

Bl ank e e e o o e & & 5 o 6 o & o » o & 3 o

DiagnosticS. o ¢ o o o o ¢ o o ¢ o o o o o

APPENDIX 40 , .

40,1

40, 1.1
40.1.2
40.1.3
40,2
40. 3
40,4
40.5

40.6

APPENDIX 50 e & o e ¢ & @ © s & o & ©° o o o s o o s o o

50.1

Exporting, Loading, Executing Programs On The

VAX/VMSc e o o o @ o o o o

Exporting. « « ¢« ¢ « o &

Loading and Executing. .

Termination of

Blank. .
Blank. .
Blank. .

Blank. .

Exporting,

MCF ® ® @ e o6 & o & 6 ° & ¢ & & & * o s s s + O

Nodes

"Use or disclosure of technical data and/or computer software

L3

Execution.

e e o 6 © o o o o 0 o o @

.

Loading, Executing Programs

xxiii

is subject to the restrictions on the cover of this Document."

® e o ¢ o e & o o e O & 9 o o * o s O o

.

30=27
30-28

30-28

. uo-1

40-2
40-2
40-3
40-4
40-6
40-6
40-6

40-6

407

. 50-1

50=-1

Ada Language System Speciflcation CR=CP-0050-A00

1 November 1983

/
/

/

| 50,2 File Revisions . . .
50.3 Directory Hierarchy
50.4 Path Name Basics . .
50.5 Variation Sets . . .
50.6 Access Control . . .
50.7 Attribute and Association Details
50.7.1 Unique Identifiers
50.8 Derivations.
50.9 Node Deletion. . . .
50.10 Node Sharing
50, 11 Node Renaming . . .
50.12 Path Name Details .
50.13 Program libraries .
50.13.1 PL structure . . . « . « &
50.13.1.1 Revisions of Containers
50.13.2 Sharing Containers
50.13.3 Attributes and Associations
50.13.4 LIB 4 4 ¢« o o o o
50.14 HELP Database . . .
50.15 Subtree Transmission
50.16 Archiving &

I
!

TABLE OF CONTENTS (cont.)

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

xxiv

Attribute.

50-3
50-7
50-7
50-9

50-16

50-18

5021

50-22

50-24

50-25

50-30

50-31

50-32

50-34

50-35

50-36

50-37

50-38

50-40

50-42

50=42

Ada Language System Specification CR-CP-0050-A00
1 November 1983

TABLE OF CONTENTS (cont.)

50. 17 . BaCkup e ® o @ 8 & ° o 3 06 & O ° & o o & o

APPENDIX 6

o ® e & o & o o o & o ¥ e o s o °

60. 1 Structure of an ALS Session.

60.2 Basic Language Elements. . ¢« ¢« o ¢« & ¢ « &

60.2.1
60.2.2
60.2.3
60.2.4
60.2.5
60.2.6
60.2.7
60.2.8
60.2.9
60.2.9.1
60.2.9.2
60.2.9.3
60.2.9.3.1
60.2.9.3.2

"Use or disclosure of technical data and/or computer software

~

Character Sete o« o« o ¢ o o o ¢ o o ¢ o o

Lexical Units and Spacing Conventions. .

Identifiers. . « « ¢« ¢« ¢ ¢ & s o &
Character String Literals.
Integer String Literals.
Boolean String Literals.
Comments.

. L] . . L] * L] * L . L] L]

Reserved Words.

L] L] . L d * L] L] . L]

Substitutors. . .« . ¢ ¢ ¢ o o o
String Substitution Rules. . . .
Sharing Substitutors.
Predefined Substitutors.

Predefined Global Substitutors.

.

50=-43

. 60-1
60-1
60-3
60-3
60-3
60-3
60-3
60-4
60-4
60-4
604
60-5
60-5

 60-7
60=8
60-8

Predefined Local Substitutors For Parameter

P3831ﬂg e ® o © ® & ¢ 6 0 o s 2 s * » o o

XXV

is subject to the restrictions on the cover of this Document."

60-8

Ada Language System Specification CR-CP-0050-A00

1 November 1983

60.2.9.3.3

TABLE OF CONTENTS (cont.)

60.2.9.3. 4 Predefined Control Substitutors .

60.2.10

60. 2. 11

60.2.11.
60.2. 11,
60.2.11,
60.2. 11,
60.2.11,
60.2. 11,
60.2.11,
60.2. 11,
60.2.11,

60.2.11.

60.3
60.4
60.5
60.6
60.6. 1
60.6.2

60.6.3

Expressions. « « « ¢« ¢« o « & ; o« o o s

Operators. « « « o o« o o o o a o o o o
1 Logical Operators. « « « « o o o « &«
2 Relational Operators. . . « « « « &
3 Adding OperatorSe .« « o« ¢ « o o o .
4 Unary Operators. . . « ¢« « ¢ « « o &
5 Multiplying Operators. « « « « +» o o
6 Exponentiation. . . . ¢ ¢ ¢ o o o &
7 Diagnostic MessageS. « « « « « o o .
8 Expression Formation. . . « ¢ o« o &
9 Linemarks. .« « « ¢ o ¢ ¢ ¢ ¢ o o &
10 Line continuation. . . . « « . « . .
Command S€QUENCEe. =« o « o o o o o o o @
Commande « « o o o o o o o o o o o o o o
Assign Command. .« o « ¢ ¢« ¢ o o o o o &
Tool Commande « ¢ ¢ « ¢ ¢ ¢ o o ¢ o o o

Passing In Parameters. . . « ¢« « o . .

Referencing Parameters. . « « « « « &

Control Parte « ¢ ¢ ¢ o o o o o o o &

xxvi

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

.

.

Predefined Local Substitutors For Obtaining 60-9

60-9
60-10
60-10
60-11
60=11
60-11
60-12
60-12
60-12
60-12
60-13
60-17
60-17
60-18
60-19
60-20
60-21
60-22
60-22

60-24

Ada Language System Specification CR-CP-0050-A00
1 November 1983

TABLE OF CONTENTS (cont.)

60, 6.4 Obtaining Returned Information. 60-28
60.6.5 Search Rules. . « ¢ ¢« v ¢« ¢ ¢ o o « s o & o o 60=-29
60.7 RETURN COMMAND. . & & 4 ¢ o o o o o o ¢ s » o o 60=32
60.7.1‘“ Error ConditionS. .« « « ¢ & « o o o « o & o o 60=33
60.8 IF Command. =« ¢« o« o o ¢ o o o o o o o o o o » o 60=34
60.9 Loop Command. .« « ¢ ¢ o o o o o s o s o o s o« » 60=35
60.10 EXit COMMANde =« « o o « o o o o o o o o o o o+ o 60=36
60.11 Global Command. .« « o o o o o o o o o o o « o o 60=37
60.12 Null Command. . « « o o o o« o o s o o o o o o« o 60=38
60.13 Error Handling. . « « o o ¢ o o o o o o o o« « o« 60=39
60.14 Command Comgletion Reportinge .« ¢ ¢ ¢« ¢ ¢« « o« . 60=40

60.15 Command Languagee . « ¢ o o ¢ ¢« o ¢ o o« o o o o 060=U41
60.15.17 Notatiol. « ¢ ¢ ¢ o ¢ o o o o o o o o o o o o 60=41

60. 15.2 Gramar' * L . o L L] L] L[] L L] L] L] L d . L] L] L] . . 60‘“1

APPENDIX 70 ¢ v ¢ o o o o o o o o o o o o o o s o o o o o TO=1
70.1 Tool Description Format. . . « « « ¢ ¢ ¢ ¢ ¢ o o T0-1
70.2 Tool Set ProtocolSe . o « o ¢ o o s o o o o o o T0=2
70.2.1 Parameter Passing. « « « ¢ ¢« o &+ ¢ s o o o & o T0=2
70.2.2 Disposition of Qutput. « « ¢« 4 ¢ o o o« o o o« « T0=3

7003 Tool Descl‘iptions. e ®© ® 8 e o o ©® o & o o o o o 70-6

xxvii

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

-Ada Language System Specification CR=CP=0050-A00
1 November 1983

TABLE OF CONTENTS (cont.)

APPENDIX 80 ¢« « ¢« o o o o o o o s o o a s o o o o o s o o« 80=1
80. 1 Formate .« ¢ ¢ ¢ o ¢ ¢ o ¢ o ¢ o ¢ ¢ o o o o o » 80=1
_w80'2 Diagnostic Message Reference. .+ « o « « o o + & 80=3
T 80021 ADAVAX « 4 v e e e e e e e e e 803
© 80.2.1.1 Backend Of Compiler . . .+« + .+ B80=3
}&m§0.2.1.2 Fronténd Of Compiler « v o « ¢ o o ¢« o o« o o 80=19
80.2.2 ADDREF ¢ & ¢ ¢ o o o o o o o s o « o o o o & o 80=T4
80.2.3 ARéHIVE e e s s o s s s e s s s e e s e o s o 80=T6
80.2.4 ASMVAX & & ¢ o ¢ o o o ¢ o o o o o s o o o o« o 80=77
80.2.5 BACKUP «o . & o ¢ 6o ¢ o o o o o o ¢ o s s o s o 80=78

80. 2. 6 BKPCHNG ® o o o & o & & ¢ e e o o o 9 s o+ 2 80-79

™

—

© 80427 BKPTREE . v v v o o o o« o o o o o o o « o « » 80-80
80.2.8 CDUMP « v v v o o o o o o o o o o o o oo+ o 80=81
80.2.9 CHACC '« v v v v o o o o o o o o o o o o o o . 80=8Y4
80.2.10 CHASS & v v o ¢ o o o o o o o o o o o o o o o 80=85
80.2.11 CHATTR o « v o v e e e v e m e e v e e . 80-86
80.2.12 CHREF & & o ¢ o o o o o o o « o o o o « o+ o 80=87
8002.13 CLP 4 v v v e v o o o s o o o o o s o o o o . 80-89
80.2.13.1 CHTEAM + & v v v o o o o o o o o o o o o o o 80=91

8002‘1302 CWDIRoonooqooooooocooocoso‘gz

xxviii

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Aga Language System Specification CR=CP=0050-A00

TABLE OF CONTENTS (cont.)

80.2.13.3 ECHO , .

80.2. 14
80.2. 15
80.2.16
80.2.17
80.2.18
80.2.19
80.2.20
80.2. 21
80.2.22
80.2.23
80.2.24
80.2.25
80.2.26
80.2.27
80.2.28
80.2.29
80.2.30
80.2. 31
80.2.32

80.2.33

CMPFILE .
CMPNODE .
CMPTEXT .
CONCAT . .
CPYALL . .
CPYDATA .,
DATE . . .
DEBUGVMS ,
DELNODE .
EDT . . .
EXPVMS . .
FREEZE . .

GENLISTVAX

HELP And QHELP

LIB ...
LNKVAX ., .
LST . ..
LSTASS . .
LSTATTR .

MKDIR ., .

xxix

1 November 1983

¢ o o o o 80-92
e o o s o 80-93

0000080-9)4

e s o o o 80-95

. e« . . BO=96
. e+ . . 80-97
.+ . .. 80-98
e v+ . . 80=99
. e .. 80-100
.« o .. 80-107
« ... 80-108
e « o o 80=-109
e o o o 80=110
e o o« 80-111
e o e o 80=112
e e .. 80-113
. e .. 80-115
e ... 80-118
e o o o 80-119
.« .. 80-120

e o o o 80-121

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0050-A00

1 November 1983

TABLE OF

CONTENTS (cont.)

e o 9 & o o o o+ o

Frequency Analysis

2 Statistical Analysis

80.2.34 MKFILE . . .
80.2.35 MKVAR . . .
80.2.36 PRINT . . .
80.2.37 PROFILEVMS ,
80.2.37.1

80.2.37.

80.2.38 RECEIVE . .
80.2.39 RENAME . . .
80.2.40 RESTORE . .
80.2.41 REVISE . . .
80.2.42 ROLLIN . . .
80.2.43 ROLLOUT . .
80.2.44 RUNOFF . . .
80.2.45 SHARE . . .
80.2.46 SNAP_DUMP .
80.2.47 STUBGEN . .
80.2.48 TCX
80.2.49 TIME
80.2.50 TOC
80.2.51 TRANSMIT . .
80.2.52 UNARCHIVE .

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

® o e © o+ o e o o

XXX

80-122
80-123
80-124
80-125
80-125
80-125
80-127
80-128
80-129
80-130
80-131
80-132
80-133
80-135
80-136
80-137
80-138
80-139

80-140

. 80-141

80-142

80.2.53

Ada Language System Specification CR-CP=0050-A00
1 November 1983

TABLE OF CONTENTS (cont.)

Data Base Manager . . ¢« o« ¢ ¢ & « &

80,2.53.1 Container Data Manager

80.2.53.

80.2.54
80.2.55

2 Program Library Manager
KAPSE . L] L] . L] L] L] . L] - L * L] L] L]

Runtime Support Library.

APPENDIX 90 ® o o o o o @ o © o ©° @ & s °o * o

90.1

90, 1.1
90.1.2
90.1.3
90.1.3.

USING THE KAPSE . &+ ¢ ¢ o o ¢ o o o »
Obtaining The Package Specifications
Binding With The KAPSE

PACKAGE STRING_UTIL - Varying Length

1 §TRING_pTIL Definitions &

90.1.3,2 STRING_UTIL Subprograms

90. 1.4

PACKAGE STR_CONVERT - Varying Length

Conversions . ¢ ¢« ¢ ¢ ¢ ¢ o o o o+ &

90. 1. 4.1 STR_CONVERT Definitions

90.1.4.2 STR_CONVERT Subprograms . . « . .

90.1.5
90.2
90. 2. 1

PACKAGE KAPSE DEFS & « « ¢ o o & « &
INPUT AND OUTPUT SERVICES ., &

PACKAGE IO DEFS . & ¢ ¢ ¢ o ¢ ¢ o &

xxxi

Strings

String

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

80-143
80-143
80-176
80-177
80-178

.« 90-1
. 90=2
. 90-5
. 90-5
. 90-6
. 90-6
. 90-7

. 90-28
. 90-28
. 90=28
. 90-36
. 90-37
. 90-38

Ada Language System Specification CR-CP-0050-A00
1 November 1983

/
i

i
!

90.2.2

90.2.3
90.2.3.1

TABLE OF CONTENTS (cont.)

Error Reporting .
PACKAGE BASIC_IO .

Streams .+ . o o

-

90.2.3.2 Null _file . . .

90.2.3.3 Prompting . . .

90.2.3.4 File Classes And

90.2.3.5
90.2.3.6

90.2.3.7 BASIC_IO Subprogr

90. 2. u
90' 2. 5

e o o o o s o

Record Types

Temporary File Management . .

BASIC_IO Definitions

amsS « ¢ ¢ o o

PACKAGE STANDARD NAMES

PACKAGE AUX_IO . .

APPENDIX 100 . . ¢ o ¢ o o

100. 1
100. 1.1
100.1.2
100. 1.3
100.2

100.2.1
100.2.2

100.2. 2.

Introduction. . . .
The Static Model.
The Dynamic Model.

Subcommand Summary.

L] L] L) L L) . L

. . L] . L] . L

Subcommand and Parameter Syntax.

Literals anda Character Mnemonics.

Names. o o o o o

1 Selected Components and Clause

xxxii

Specifiers.

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

90-42
90-43
90-43
90-44
90-44
90-45
9045
90-46
90-47
90-34
90-86
100-1
100-1
100-2
100-2
100-4
100-5
100-6
100-7

100=7

100.2.2.2
100.2.2.3
100.2.2. 4
100.2.2.5

100.2.2.6

Ada Language System Specification CR-CP-0050-A00
1 November 1983

TABLE OF CONTENTS (cont.)

Suffixed Names. . « ¢« ¢« ¢ ¢ ¢ o o o &«
Indexed Components and Task Names. . .
Attributes. « « ¢ o ¢ o s 0 o 0 o o .
Addresses and Qualified Addresses. .

Subcommand LiStS. .« ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o

100.3 Subcommand Descriptions. e o s o 4 s o o

100, 3.1
100.3. 1.1

100.3.1.2

100.3.1.3

100.3. 1.4

100.3.2
100.3.2.1
100.3.2.2

100.3.2.3

Displaying and Modifying Entities.

Controlling the Debugger. . . . « « « &

INCLUDE -~ Redirect Subecommand Input.

SCRIPT_ON, SCRIPT_OFF - Record A Debug

Se SSiOn [} s ® o & & o & o o o s ° s -

EXIT = Terminate The Debug Session. .

Interrupting Debugger Subcommand Execution.

The Display Format of Clause Entities.

The Display Format of Object Entities.

DISPLAY - Display an Entity Name and Value.

L] L L] *

® ® ® @ 6 e & © o e & @ & o ¢ °o & ¢ & o o

xxxiii

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

100-8
100-8
100-9
100-10
100-11
100-12
100-12

100-12

100-13

100-13

100-14
100=-14
100-14

100-15

100-17

Ada Language System Specification CR-CP-0050-A00
1 November 1983 '

TABLE OF CONTENTS (cont.)

100. 3. 2.“ MODIFY - MOdify a Val"iable. e e e o o
100.3.3 Moving the Focus of Attention. .« e e e
100.3.3.1 ENTER = Move the Focus to a Different

Thread L] . . L] L] L] L] L] L] . L] L] . L] . .
100.3.3.2 CALLER - Move the Focus to the Calling

Unito ¢ & e e & © o o o o & e ° & o o

100.3.3.3 RESTORE - Restore the Focus to a Previously

Examined Clause. “ e e s e e s e e
100.3.4 Controlling Target Program Execution. .
100.3.4,1 LOAD - Load the Program.
100.3.4.2 CONTINUE - Continue Execution. . . .
100.3.4.3 Interrupting Program Execution. . . .
100.3.4.4 STEP - Execute a Program Step. o« o e
100.3.4.5 Using BreakpointsS . « « « « « o o o o
100.3.4.5.1 BEFORE = Set a Breakpoint

100.3.4.5.2 CLEAR, CLEAR_ALL - Clear Breakpoints

100.3.4.5.3 ASSOCIATE - Associate a Subcommand List

xxxiv

. "Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

100=-20

100-20

100-21

100-=22

- 100-23

100-24
100-24
100-24
100=25
100-25
100=26
10026

100=27

100.3.4,5.4

100.3.4.6

100, 3.4,6.1

Aga Language System Specification CR-CP-0050-A00
1 November 1983

TABLE OF CONTENTS (cont.)

With a B!‘eakpoint *¢ & & o o o ° s o e o 100-27

BREAKS = List the Breakpoints in a

Pl"Ogl"am e 9 e © @ & o o o & 0 & o o o o 100-28

Displaying Target Program Control State . '100-28

CALLS - Display the Nest of Active Calls 100-28

APPENDIX 110 e o e o & o e o o B & o & s ° 9+ ° & o+ & o o 110-1

110.1 Starting and Terminating an ALS Session. e o o 110=1

110.2 Bt‘eak-in. oooo.otcooooccaonon.110“2

110.3 Terminal Protocol. e o o o s s s s s o o o 110=4

XXXV

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document. "

Ada Language System Specification CR—CP-005‘9-A00
1 November 1983

ILLUSTRATIONS
Figure
Number Title
3=1 Functional Areas of the Ada Language System
3=2 | Ada Language System Architecture -
3=3 Ada Language System Specification Tree
=4 : Source Listing '
35 Symbol Attribute Listing
3=6 Cross-=Reference Listing
3=7 Attribute Cross-ReferencerListing
3-8 Compilation Statistics Listing
3=9 Machine Code Listing
3=10 Diagnostic Summary Listing
3=11 Compilation Summary Listing
3=12 Timing and Frequency Data Display Format
20-1 Sample Assembly Listing (VAX-11/780 Target)
20-2 Matching Ada Subprogram Specification
(VAX-11/780 Target)
20-3 Format of the Subprogram Stack Frame
20-4 Blank
20=5 Blank
20=6 Blank
20-7 Blank
20-8 Blank

xxxvi

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

20-23

20=41

Ada Language System Specification CR=CP=0059-A00
1 November 1983

ILLUSTRATIONS (Cont.)

Figure
Number Title Page
20-9 Sample Assembly Listing (MCF Target) 20-64
20-10 Matching Ada Subprogram Specification

(MCF Target) 20=64
30-1 Units Listing (VAX=11/780 Target) 30=7
30-2 Symbol Definition Listing (VAX=11/780 Target) 30-9
30-3 Link Summary Listing (VAX-11/780 Target) 30=-11
30-4 Blank
30-5 Blank
30-6 Blank
30-7 Blank ’
30-8 Blank
30-9 Blank
30-10 Blank
30-11 Blank
30-12 Blank
30-13 Blank
30-14 Blank
30-15 Blank
30-16 Blank

xxxvii

“"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover »of this Document."

Ada Language System Specification CR=-CP-0059-A00

1-November 1983

Figure
Number Title
30-17 Blank
30-18 Blank
30-19 Blank
30-20 Blank
30-21 Blank
30-22 Units Listing (MCF Target)
30=23 Symbol Definition Listing
(MCF Target)
30-24 Link Summary Listing (MCF Target)
40-1 Blank
40-2 Blank
40-3 A Blank
fméo-1 File Node Structure
| 50=2 Directory Node Structure
50-3a File Rule Summary
50-3b Directory Heirarchy Example
50=4 Path Name Example
50-=5 Variation Header Node Structure
50=6 Variation Set Example with "Name" Selection
50-7 Variation Set Example with "Attribute" Selection

ILLUSTRATIONS (Cont.)

xxxviii

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

30-21

30-23

30-25

50-2
504
50-6
50-8
50-~10
50-12
50-13

50~-14

Ada Language System Specification CR=CP-0059-A00
: 1 November 1983

ILLUSTRATIONS (Cont.)

Figure

Number Title Page
. 50=8a Node Sharing Example 50-28

50-8b Revision Deletion with Sharing 50-29

50=9 HELP_DATA Example | 50-41

xxxix

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Table
Number

3=2
3-3

6=1

6=2

20=1

20-2
20-3
20-4
20-5

20=6

20-7

20-8

20-9

20-10

20-11

TABLES

Title

Compiler Flag Strings
Keyword Alignment

File Administrator Tools

Glossary

List of Acronyms

Special Characters Used in Assembler Statements
(VAX-11/780 Target)

Addressing Modes (VAX-11/780 Target)

Floating Point Short Literals (VAX-11/780 Target)

Index Mode Addressing (VAX-11/780 Target)

Summary of Assembler Directives (VAX-11/780 Target)

Features In The DEC VAX-11 Macro Language That
Are Not Included In The ALS VAX-11/780 Assembler

Features That Are Different In The ALS VAX-11/780
Assemﬁler And The DEC VAX-11 Macro Language

Features In The ALS VAX-11/780 Assembler That
Are Not In The DEC VAX-11 Macro Language

Blank |

Blank

Blank

x1

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

3-45
3=-63
3-108

6-2

=14

20=7

20-14
20-16
20-17

20-18

20-36

20-37

20-38

Ada Language System Specification CR-CP-0059-A00
1 November 1983

TABLES (Cont.)

Table L
Number Title Page
20=12 Blank
20=13 Blank
20=-14 Blank
20~15 Blank
20-16 Blank
20-17 Blank
20-18 Blank
20-19 Blank
20-20 Blank
20=21 Blank
20=22 Blank
20-23 Blank
20-24 Blank
20=25 Blank
20-26 Blank
20-27 Special Characters Used In Assembler Statements 20=51
20=-28 Summary of Assembler Directives - 20«57
20-29 Features in the Nebula Assembly Language
That Are Not Included in the ALS MCF Assembler 20=-73
20-~30 Features That Are Restricted in the ALS MCF Assembler
As Compared to the Nebula Assembler 20-74
‘xli

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR=-CP-0059-A00
1 November 1983

TABLES (Cont.)

Table
Number ‘Title ‘ Page
20=31 Features in the ALS MCF Assembler That Are Not
Found in the Nebula Assembler 20=T76
70-1 Tool Set Summary T0-4
90-1 KAPSE Packages .~ 90-3
o x1ii

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

i Ada Language System Specification CR=CP=-0059-A00
1 November 1983

1. SCOPE

performance,

1.1 Specification. - This specification establishes the
design, development, documentation, and qualification requirements for the

Ada Language System (ALS).

1.2 Ada Language System. - The Ada Language System supports the
development of programs written in the Ada language for advanced, embedded
military computer systems. Furthermore, the ALS supports the development
of these programs by program teams and/or individual programmers. -

"Use or disclosure of technica|1d-a;'a and /or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR~-CP-0059-A00
1 November 1983

2. APPLICABLE DOCUMENTS

2.1 Government Documents. - The following documents of the exact issue
shown form a . part of this specification to the extent specified herein.
In the event of conflict between the documents referenced herein and the
contents of this specification, the contents of this specification shall
be considered a superseding requirement.

Specifications:

MIL-S-52T79(AD) Software Quality Assurance Program Requirements,
‘5 April 1974

Standards:

MIL-STD-483 Configuration Management Practices for Systems,
Equipment, Munitions, and Computer Programs, 31
December 1970; Notice 2, 31 March 1979

MIL-STD-490 Military Standards and Specification Practices,
30 October 1968; Notice 2, 18 May 1972

MIL-STD-1862A Military Standard, Nebula Instruction Set
Architecture, 2 November 1981

ANSI/MIL-STD- Military Standard, Ada Programming Language,

18154-~1983 17 February 1983

Other Publications:

Requirements for Ada Programming Support Environments-STONEMAN,
February 1980 '

AMCP-70-Y4, Research and Development Software Acquisition, A
Guide for the Material Developer, 2 Sep TH

Ada Language System Design and Development Plan, U.S. Army
CECOM, Ft. Monmouth, N.J., Contract No. DAAK80-80-C-0507,

April 1983

Ada Language System Quality Assurance Plan, U.S. Army CECOM,
Ft. Monmouth, N.J., Contract No. DAAK80-80-C-0507, Oct 1980

Ada Language System Configuration Management Pl m, U.S. Army
CECOM, Ft. Monmouth, N.J., Contract No. DAAK&0-80-C~0507, Oct

1980

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

. Ada Language System Specification CR-CP-0059-A00
1 November 1983

Ada Language System Preliminary/Fdrmal Qualification Test Plan,
u.s. Army CECOM, Ft. Monmouth, N.J., Contract No.
DAAK80-80-C~0507, February 1983

2.2 Non-Government Documents. - The following documents of the exact

issue shown form a part of this specification to the extent specified

herein.

In the event of conflict between the documents referenced herein

and the contents of this specification, the contents of this specification
shall be considered a superseding requirement.

Blank
Blank
Blank

VAX-11 Architecture Handbook, Volume I, Digital Equipmeht
Corporation, 1979-1980

VAX Software Handbook, Digital Equipment Corporation, 1980-1981

VAX-11/780 Hardware Handbook, Digital Equipment Corporation,
1979-80

VAX-11 EDT Editor Reference Manual, Digital Equipment
Corporation, April 1980

VAX-11 MACRO Language Reference Manual, Digital Equipment
Corporation, February 1979

DEC Standard Runoff (DSR) User's Guide, Digital Equipment
Corporation, Nov 1979

Diana Reference Manual, G. Goos and Wm. Wulf (Editors), March
1981

Blank
Blank

VAX/VMS Command Language User's Guide, Digital Equipment
Corporation, March 1980

Blank

The Nebula Assembler, 17 November 1981.

2-2
"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3. REQUIREMENTS

3.1 Ada Language System Definition. -

3.1.1 General Description. - The Ada Language System (ALS) is a facility
for the development of Ada programs. It provides to the wusers a
programming environment for software development and maintenance. The ALS
programming environment is defined to include:

a. A Database, containing text, data, programs, and fragments of
programs in various representations, and showing relationships
among fragments and programs;

b. A Set of Tools, for entering text, translating and executing
programs, and otherwise manipulating the database; and

c. A Command Language, for invoking the tools under user control.

3.1.1.1 Host Environments. -

3.1.1.1.1 VAX/VMS Host Environment. - The VAX/VMS#* Host Environment for
the Ada Language System shall be a VAX-11/780 configuration coupled with a
VAX/VMS Operating System. The host configuration shall include, as a
minimum, the following:

a. Hardware

QUANTITY DESCRIPTION
1 VAX-11/780 Processor with UM bytes
ECC MOS Memory
1 LA36 DEC Writer II Console
2 RPO7, 512M bytes, Disk Drives, or equivalent

space on other VMS-supported discs

#VAX -and VMS are trademarks of Digital Equipment Corporation

3-1

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP-0059-A00
1 November 1983
1 TU45, TUTT7, or TUT8 Tape Drive

1 LP11-DA, 660 lpm, 132 col, 96 char
Line Printer

- VT-100 Video Terminals sufficient to
support the number»of expected users
b. Resident Operating System: VMS Version 3

3.1.1.1.2 Generic Minimum Host Environment. - A generic minimum host
environment for an ALS shall include:

a. Hardware

QUANTITY DESCRIPTION
1 Central Processor with at least 8M bytes

of address space and approximately UM
bytes of physical memory (to support 10
concurrent users)

- Disk Drives that maintain at least 1000M
bytes total on-line at any time

1 Tape Drive
1 Operator's Console
- Terminals sufficient to support the

number of expected users

1 Line Printer with upper and lower case
capability, and capable of supporting a
minimum of 120 columns per line and 60
lines per page ’

b. Resident Operating Systemﬁ None

¢. Language Support. All host environments shall be capable of
supporting the full Ada 1language with the following minimal
capabilities:

. Integer arithmetic on values with a range of at least
-2,1“7,’483.6’47 e e e 2'147',"83,6)470

3=2

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

. Floating point arithmetic with an accuracy of at least 6
decimal digits and a range of -1.2E24 ... 1.2E24.

. Enumerations with at least 256 distinct values.

. The text input/output facilities must be capable of
recognizing the ACSII character enumeration set, and
supporting the basic graphic character set and
extensions to that set including lower case letters and-
any special characters defined in Par.2.1 of the
Reference Manual for the Ada Programming Language (2.1).

3.1.1.2 Target Environments. - The ALS shall provide the capability of
creating Ada programs which run on the following target environments.

3.1.1.2.1 VAX-11/780 VAX/VMS Target Environment. - A VAX-11/780 VAX/VMS
target environment is the same as the VAX-11/780 VAX/VMS Host with the ALS
residing on it. :

3.1.1.2.2 Blank.

3.1.1.2.3 Blank.

3.1.1.2.4 Blank.

3.1.1.2.5 Blank.

3-3

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.1.1.2.6 MCF Target Enviroment. - An MCF target environment consisting
of the following:

a. Hardware

QUANTITY DESCRIPTION
1 AN/UYK-41 Processor with

1M bytes Memory
<TBD>

b. Resident Operating System: None

3-4

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.1.1.3 Ada Language Implementation. -

3.1.1.3.1 Ada Language Implementation Dependencies. - The Ada language
implementation dependencies for each target environment in 3.1.1.2 are
described in Appendix 10 to this specification.

3.1.1.3.2 Ada Languéﬁe Terminology. - The Ada language terminology used
in this specification is precisely defined in the Military Standard, Ada
Programming Language, ANSI/-STD-1815A-1983, 17 February 1983 (2.1). The
following brief definitions are provided for quick reference. (Note: A
glossary of ALS terms is included in Section 6.1).

a. Subprogram: An executable program unit that is invoked by a
subprogram call.

b. Subprogram body: A subprogram body specifies the execution of
a subprogram. ’

¢. Compilation unit: The smallest unit of text that may be
submitted for compilation.

d. Subunit: A body of a subprogram, package, or task declared
within another compilation unit.

e. Library unit: A compilation unit that is not a subunit of
another unit.

f. Compilation: Zero or more compilation units submitted to the
compiler, or the act of translating a compilation into
instructions for the target machine.

g. Program library: A collection of compilation units of which a
program is composed.

h. Program: A collection of one or more compilation units
representing a complete executable entity.

i. Library subprogram body: The body of a subprogram which is not
a subunit.

3-5

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

jo

Visibility: At a given point in a program text, the
declaration of an entity is said to be visible if the entity is
an acceptable meaning for an occurrence at that point of the
identifier.

Dependence relation: The relationship among compilation units
that indicates the required order of compilation.

3.1.1.4 Functional Areas. - The Ada Language System shall cdnsist of the
following functional areas depicted in Figure 3-1.

a.

b.

The Compiler is a tool for translating Ada compilations into
machine code applicable to the target environments.

The Assemblers are tools for translating subprogram bodies
written 1in assembly language into machine code applicable to
the target environments.

The Linker functional area includes tools for combining
compilation wunits, previously translated by a compiler or
assembler, into load modules.

The Loaders are tools for bringing load modules into execution
in bare target machine environments.

The DEC VAX/VMS Text Editor and the DEC Standard Runoff

Formatter are tools for entering and updating text, and for

obtaining formatted listings of text.

The Configuration Control Tools (CCT) are a set of tools for
manipulating the database, for supporting configuration
control, and for separating programs for distributed targets.

The Command Language Processor (CLP) interprets the command
language input from the user, invoking tools as required.

The Database Manager (DBM) provides user access to the
environment database from the command language. It provides
primitive functions for manipulation of program libraries. It
also provides primitive functions that enable Ada programs to
examine and modify the contents of Containers.

The Kernel Ada Programming Support Environment (KAPSE)
provides, together with the runtime support library, the only
interface between the ALS and the host operating system. (The
KAPSE is not shown in Figure 3-1.)

The Display Tools provide displays of compiler, linker ahé
assembler listings, as well as listings of maintenance aids.

3-6

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR=-CP-0059-A00
1 November 1983

The File Administrator (FA) is a collection of tools providing
services for comparing elements of the environment database,
for balancing disk/tape requirements of the database, for
restoring the database after mechanical or human failure, for
long-term storage of database information, and for ALS-to-ALS
data transmission.

The Symbolic Debugger is a tool providing services for
interactive debugging of Ada programs executing on the host
computer.

The Statistical Analyzer 1is a tool that analyzes the
distribution of processor use (i.e., execution time) among the
parts of an Ada program executing on the host computer.

The Frequency Analyzer is a tool that analyzes the frequency

with which parts of an Ada program executing on the host
computer have been executed in a given set of tests.

3-7

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-OOSQ—AOO

1 November 1983

w0 iveLe
S8R I8 Nt
S manueans § 17avE

1

B W B ws W o w-

i

wa3sAg a3enlue] epy 3yl jo seaiy [ruojioung “[-¢ 3andry
\
mekpuy Rswenbesy gmarnva ®
sekpovy Supql SRAIIVA © r "----
2B8nang speaniy SVAVA © L
ey wplsy pue Brung,, “ ™
L L o T o K T RPNt l““.u«.-““u '
oIy So) IR GTIY - BOY -enoeoe [}
Snduy wepdolendey EaI esmseceg T ruprgswy oee)
" “ dorrs
]
weovave “
™ = ¥ 2 3 ¥ ¥ ¥ etvonts
m - - ._, iyt Hw—u III|IHﬂ||H|..II.IL»m.|.I|Il“”n.u..llnllnldl..lllml.ll”HHW»H.H.!IIH.H.HIIHHmHHH
1 -q. T T TN L L T L L L L I . T L T T T o N T T Iy oL
e I FpoT=zesIzoos I Tooo=s Im—TIIo . -
— - - - - o = - — § o e — Laadiadndiondin Tandiadbudinatiind - Ll
! I " | b | q.!l:--uuntnunuunnm_wﬂu...nn iyl
- M | m ol .. |] o .lllll.m..tllll.m.lll|n
m. ”1“ u_b_. x\u*’.l. ." ." : _" S ik et [
_."..ltollllnpll v ." ie —« be ! M i v
M " y
m " v -, sorivam “ Ll .lt-h“:nul- -.z.u.ma! M-.m..s oweirber n!u«.cmmo! m L8
| ' .I“-!ll”.l H "
.]
- - — — — JE it U N SRR | v

3-8

"Use or disclosure of technical data and/or computer software

is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR~-CP-0059-A00

3.1.1.5 List of Computer Program Configuration
Program Configuration Items (CPCIs) in the Ada Language System are listed
The corresponding functional area for each CPCI is indicated.

below.

1 November 1983

Items. - The Computer

CPCI No.
10
11
12
13

14

20

21
22
23
24

25

30
31
32
33
34

40
41
42

43

50

Name
ALS VAX-11/780 Code-Generator
Unused
Unused
Unused

ALS MCF Code Génerator

Functional Area

Compiler

4Compiler

ALS VAX-11/780 VAX/VMS Runtime Support Compiler

Library
Unused
Unused
Unused
Unused

ALS MCF Runtime Support Library

ALS VAX-11/780 Assembler
Unused‘
Unused
Unused

ALS MCF Assembler

ALS VAX-11/780 Linker
Unused
Unused

ALS MCF Linker

Unused

3-9

Compiler

Assembler

Assembler

Linker

Linker

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR=-CP-0059-A00
1 November 1983

51 Unused
52 Unused
53 ALS MCF Loader
60 ALS VAX/VMS Symbolic Debugger
70 “ALS VAX/VMS Frequency Analyzer
75 ALS VAX/VMS Statistical Analyzer
80 ALS Command Language Processor
81 ALS Database Manager
82 ALS Configuration Control Tools
83 ALS Kernel Ada Programming Support
Environment (KAPSE)
84 ALS Compiler Machine-Independent
Section
85 ALS File Administrator
86 ALS Display Tools
3-10

Loader
Symbolic Debugger

Frequency Analyzer
Statistical Analyzer
Command Language

Processor
Database Manager

Configuration
Control Tool

KAPSE

Compiler

File Administrator

Display Tools

“Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.1.1.6 Logical Files. - The ALS shall contain the following six
pre-defined logical files:

a. Master input;

b. Master output,

¢. Standard input,

d. Standafd output,

e. Message output, and

f. The null file.
The master input, master output, message output, and null files are
defined in the KAPSE. The standard input and standard output files are

. defined by the Ada TEXT_IO package. Additional information on the use of
these files is provided in Appendix 60.

3.1.1.6.1 File Names. - The standard names for the 1logical files shall
be:

a. .MSTRIN,

b. .MSTROUT,

c¢. .STDIN,

d. .STDOUT,

e. .MSGOUT, and

f. .NULL_FILE or .NF, respectively.

3.1.1.6.2 File Assignment. - All six files are opened and ready for use
when an ALS tool is invoked. The master input and master output files may
not be reassigned. The standard input, standard output, and message
output files may be reassigned by tool commands as described in Appendix
60.

3=-11

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.1.2 Mission/Purpose. - The purpose of the Ada Language System is to

provide

a comprehensive, friendly, long-term programming environment for

the design, development, documentation, testing, management, and
maintenance of software, coded in the Ada language and used in embedded
military computer systems. To accomplish this mission the Ada Language
System is designed to:

b.

Provide portability of the system across multiple host and
target environments;

Include a common command language and tool set that will enable
users to move easily across host environment boundaries;

Provide a frumework for the incorporation of additional tools
that will fulfill Ada programming requirements for embedded
military computer systems throughout the lifetime of the ALS;
and .

Provide extensive programming support for both individual
programmers developing single and/or multiple programs, and
teams of programmers working on a single program.

3=-12

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
' 1 November 1983

3.1.3 Threats. -

3.1.3.1 Potential Threats. - Potential threats to the Ada Language System
are:

a. Deliberate unauthorized access to the ALS database,
b. Inadvertent unauthorized access to the ALS database,

c. Deliberate modification and/or destruction of the ALS database,
and

d. Inadvertent modification and/or destruction of the ALS
database.

3.1.3.2 Ada Language System Access and Security Control. - The ALS
provides its own internal access control independent of host system access
control. Each user request through the ALS for access to any node in the
environment database 1is checked for authorization before access is
granted. (See Appendix 50 for details.) The ALS does not require any
access control facilities from the host operating system in order to
insure proper access control to ALS users. However, unauthorized external
access to the ALS may be available through the host system, depending upon
the characteristics of host system access and security controls. ALS
security control is dependent upon host and target system security
control. "

3.1.4 System Diagrams. - The following system diagrams are included in
this specification: ,

a. Functional Areas of the Ada Language System (Figure 3-1)
b. Ada Language System Architecture (Figure 3-2)

c. Ada Language System Specification Tree (Figure 3-3)

3-13

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

'

Ada Language System Specification CR-CP-0059-A00
1 November 1983

USER INTERFACE

ADDITIONAL
TOOLS

DISPLAY

TOOLS
RUNTIME

SUPPORT
LIBRARIES

COMPILER M1

CONFICURATIONN

DATABASE «
MANAGER *

-

HOST
OPERATING
SYSTEM

COMMAND
LANGUACE
PROCESSOR

~_

SYMBOLIC
DEBUCCERS

FREQUENCY
ANALY ZERS

CODE
GENERATORS

FILE
ADMINIS-
TRATOR-

EDITOR

Figure 3-2. Ada Language System Architecture

3-14

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1683

3.1.5 1Interface Definitions. -

3.1.5.1 ALS/User Interfaces. -

3.1.5.1.1 Physical Interfaces. - For interactive operation, the physical
interface between the host system, the ALS, and a user should include a
keyboard display terminal and a printer. Typically, one or more of these
units will be part of the host system. The physical interfaces for batch
operation are dependent upon the facilities available in the host system.

3.1.5.1.2 Programming Interface. - The programming interface between the
ALS and a user shall be the command language, the Ada language, and the
assembly language for the applicable target system (see Figures 3-1 and
3=2). Additional tools will interface to the KAPSE, and to the ALS
Database Manager.

3.1.5.2 ALS/Host Operating System Interface. - The interface between the
ALS and the host operating system shall be the ALS Kernel Ada Programming
Support Environment (KAPSE). This interface is shown in Figure 3-2.

3.1.5.3 ALS/Target Machine Interface. - The interface between the ALS and
a target machine shall be 1load modules on the appropriate physical
computer medium, i.e. tape, disk, etc,

3.1.5.4 ALS Functional Area Interfaces. -

3.1.5.4.1 Compiler. - The compiler functional area shall interface with
the following:

a. ALS Command Language Processor for user invocation commands,
user option inputs, and user control inputs;

b. ALS Database Manager for input of information from previous
compilations, and output of machine code, statistics, and
information for future compilations, assemblies, and links;

c. The target machine operating system (where applicable) for I1/0,
memory management, and other support; '

3=15

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP—0059-A00
1 November 1983

d.

KAPSE to obtain host operating system services such as
underlying I/0 support; and

Display Tools to generate listings and to obtain maintenance
aid services.

3.1.5.4.2 Assembler. - The assembler functional area shall interface with
the following:

a.

b.

3.1.5.4.3
following

a.

f.

ALS Command Language Processor for. user invocation commands,
user option inputs, and user control inputs;

ALS Database Manager for input of information from previous
compilations, and output of machine code, statisties, and
information for future compilations, assemblies, and links;

KAPSE to obtain host operating system services such as
underlying I/0 support; and :

Display Tools to generate listings and to obtain maintenance
aid services.

Linker. - The linker functional area shall interface with the

ALS Command Language Processor for user invocation commands,
user option inputs, and user control inputs;

Computer systems other than the host system for foreign object
modules received via an importer tool;

Target machine for transmission of load modules for execution;

ALS Database Manager for input of machine code and other
information from previous compilations, assemblies, and links;
output of information for future 1links and output of 1load
modules for execution;

KAPSE to obtain host operating system services such as
underlying I/0 support; and

Display Tools to generate listings and to obtain maintenance
aid services.

3-16

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-400
1 November 1983

3.1.5.4.4 ALS Loader (For Bare Target Machines). - The_ ALS loader
functional area for a bare target machine shall interface with the
following:

a. Load module input from the storage medium,
b. Target machine bootstrap mechanism,
c. User terminal(s) for interactive use and listings, and

d. ALS Runtime Support Library load modules for initialization
when appropriate.

3.1.5.4.5 Loader (For Target Machine with Resident Operating System). -
The exporter in the linker functional area shall interface with the loader
of a target machine with a resident operating system. The output of the
exporter shall be compatible with the input required by the target
machine.

3.1.5.4.6 DEC VAX/VMS Text Editor. - The Text Editor shall interface with
the following:

-

a. ALS Command Language Processor for user invocation commands,
user option inputs, and user control inputs;

b. User terminals for interactive inputs and outputs; and

¢. KAPSE to obtain ALS related services.

3.1.5.4.7 DEC Standard Runoff Formatter. - The Formatter shall interface
with the following:

a. ALS Command Language Processor for user invocation commands,
user option inputs, and user control inputs; and

b. KAPSE to obtain ALS related services.

3-17

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November

3.1.5-“08

1983

Configuration Control Tools. - The configuration control tools

shall interface with the following:

a.

ALS Command Language Processor for user invocation commands,

* user option inputs, and user control inputs;

b.

3.1.5.4.9

KAPSE to obtain host operating system services such as
underlying I/0 support; and

File Administrator for providing archiving services.

Command Language Processor. - The command language processor

shall interface with the following:

User terminal(s) for command language inputs;

All ALS tools except loaders for user invocation commands, user
option inputs, user control inputs; and

KAPSE to obtain host operating system services such as
underlying I/O support.

3.1.5.4.10 Database Manager. - The database manager shall interface with
the following:

a.

b.

3.1050“.11

All host-resident ALS tools to modify or examine compiled,
assembled or linked programs; and

KAPSE to obtain host operating system services such as
underlying I/0 support.

Kernel Ada Programming Support Environment. - The KAPSE shall

interface with the following:

b.

' The host operating system (see Figure 3-2); and

All host-resident ALS tools, and the ALS Database Manager.

3-18

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR=-CP-0059-A00
1 November 1983

3.1.5.4.12 Display Tools. - The display tools functional area shall
interface with the following: :

a. ALS Command Language Processor for user invocation commands.
user option inputs, and user control inputs;

b. ALS Database Manager for requests to examine the Containers in
the data base;

¢. Compilers, assemblers, and linkers to generate llstlngs and to
provide maintenance aid services; and

d. KAPSE to-obtain host'operating system services such as I/0.

3.1.5.4.13 File Administrator. - The File Administrator shall interface
with the following:

a. ALS Configuration Control Tools to provide archiving services
~ and to obtain text I/0 services; and

b. KAPSE to obtain host operating system services such as 1/0.

3.1.5.4.14 Symbolic Debugger..- The Symbolic Debugger shall interface
with the following:

a. ALS Command Language Processor for user invocation and user
control inputs;

b. The Compiler to obtain information relating the source form of
compiled Ada programs with the object form of those programs.
The RSL to obtain notification of program events, such as
unhandled exceptions and task allocation;

"¢. The Linker to obtain information about the address binding of
the executable image;

d. The Database Manager to obtain access to executable images,
linked images, and other objects maintained within program
libraries;

e. The KAPSE to obtain operating system services such as I/0 and
execution of the image of the program under test; and

f. User terminals for interactive inputs and outputs.

3-19

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.1.5.4.15 Statistical Analyzer. - The Statistical Analyzer shall
interface with the following:

a. ALS Command Language Processor for user invocation and user
control inputs;

b. The Linker to obtain binding with special run-time support and
allocation of memory for analysis tables;

¢. The Database Manager to obtain access to program libraries and
Containers, and to store analysis results; and

d. The KAPSE to obtain host operating system services such as CPU
time accounting and I/0 support.

3.1;5.3.16 Frequency Analyzer. - The Frequency Analyzer shall interface
with the following:

a. ALS Command Language Processor for user invocation and user
control inputs;

b. The Compiler for insertion of frequency monitoring code and to
obtain information relating the source form of compiled Ada
programs to the object form of those programs;

c. The Linker to obtain binding with special run-time support and
allocation of memory for analysis tables;

d. The Database Manager to obtain access to program libraries and
Containers, and to store analysis results; and

e. The KAPSE to obtain host operating system services such as I/0
support.

3.1.6 Government Furnished Property List. - The Government shall furnish
to the contractor, via a mutually acceptable medium, an MCF Simulator
which operates on a VAX/VMS host system. Along with the MCF Simulator,
the Government shall provide user documentation which describes how to use
the simulator on the VAX/VMS host system. <TBD>

3-20

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-400
1 November 1983

3.1.7 Operational and Organizational Concepts. -

3.1.7.1

Ada Language System Operational Guidelines. =~

Guidelines for field operation of the ALS are as follows:

b'

The host environment should be capable of supporting ten
concurrent users without degrading the system.

The target machine environment shall have the capability of
accepting ALS target programs that do not exceed its memory and
CPU resources.

The transfer medium, loading mechanism, and formatting
capabilities shall be adequate for the ALS.

3.1.7.2 Ada Language System Deployment. - No fundamental limitations on
the deployment of the ALS exist. The ALS can be located at any site that
can provide a host environment that meets the requirements of 3.1.1.1.2.
(It is anticipated that the ALS will be distributed to many centers but
will be centrally maintained.) The ALS host and target environments need
not be located at the same site.

3-21

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-400
1 November 1983

3.2 Characteristics. -

3.2.1 Ada Language System Performance Characteristics. -

3.2.1.1 Portability. - The Ada Language System will be designed to
provide portability of users and tools across multiple hosts and multiple
targets, as described in the following subparagraphs.

3.2.1.1.1 Retargetability. -~ The Ada Language System tools shall be
designed for retargetability. Each tool in the system will be designed
for isolation and parameterization of target dependencies. The ALS
Command Language Processor, ALS Configuration Control Tools, ALS Database
Manager, KAPSE, and ALS Compiler Machine-Independent Section shall be as
target independent as possible. The code generators, runtime support
libraries, assemblers, linkers, and loaders (if required) shall be target
dependent. However, the code generators, assemblers, and linkers shall be

independent of changes in the target operating system. ,

3.2.1.1.2 Rehostability. - The Ada Language System shall be designed for
rehostability. A design objective shall be the concentration of all host
dependencies in the KAPSE and the runtime support libraries. The tools in
the ALS shall interact with the host operating system through the KAPSE
(the DEC VAX/VMS Text Editor and the DEC Standard Runoff Formatter
excepted). This relationship is displayed in Figure 3-2, which shows that
the KAPSE interfaces the user and the toolset to the host operating
system,

All ALS programs shall be written in Ada except for small subprograms
which, for reasons of algorithm or efficiency, cannot be conveniently
expressed in Ada* (DEC VAX/VMS Text Editor and the DEC Standard Runoff
Formatter excepted). The Text Editor and the Formatter shall be invoked
" by the ALS Command Language Processor.,

#Government approval shall be required for any subprogram to be
written in a language other than Ada.

3-22

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.2.1.1.3 User Portability. - A host- and target-independent command
language shall be used to provide a consistent user interface.

3.2.1.2 Extensibility. - The Ada Language System shall provide a
framework for the addition of new tools. Tools may be built in Ada or in
the ALS command language. The ALS shall be used to build these tools.
New tools shall access the environment database and shall be invoked
through the ALS Command Language Processor in the same manner as existing
tools. The environment database shall be extensible for user-defined
attributes and associations.

3.2.1.3 Programming Support. - User helpfulness and human engineering are
key objectives in the design of the Ada Language System. Areas in which
the system will provide programming support are described in the following
subparagraphs.

3.2.1.3.1 Support of Concurrent Multiple Development. - The ALS shall be
designed to provide programming support for the simultaneous development
of multiple Ada programs in a concurrent user access environment.

3.2.1.3.2 Programming Teams. - The ALS shall support program development
by teams of programmers, each developing parts of a single program, by
providing:

a. Concurrent access to the system by multiple users,

b. Protection mechanisms to prevent unauthorized access to
information, and

c. Protection mechanisms to prevent accidental simultaneous
modification of a node by multiple users.

3.2.1.4 Development of Program Families. - The ALS shall support the
development of program families that share common, or similar, compilation
units. This support shall include database support of both revisions and
variations of compilation units. Revisions are defined as modified copies
of previous information in the database, superseding earlier data;
variations are defined as modified copies of previous information, not
superseding the earlier data. (See 6.1 for glossary of terms.)

3-23

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.2.1.5 Ada Programs. - The ALS shall support the construction of Ada
programs that contain, in addition to compilation units written in Ada,
compilation units written in other languages as follows:

a. For all target environments, library subprogram bodies written
in the assembly language for that target.

3-24

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.2.1.6 Command Language. -

3.2.1.6.1 Command Language Function. - A command language shall provide a
uniform interface between the user and the tools in the ALS, The command
language shall be interpreted by an ALS Command Language Processor tool.

3.2.1.6.2 Command Language Description. - A detailed description of the
ALS command language is included in Appendix 60 to this specification.

3.2.1.7 Environment Database. - There shall be one databaée. called the
environment database, that serves as the repository for all information
stored in the ALS. The environment database shall store information such
as:

a. Ada source text,

/b. Assembly language source text,

¢, Machine-code representations of programs,
d. Test data,

e. Log files,

f. Statisties,

g. Documentation, and

h. Relationships among programs and compilation units (e.g.,
dependence relations, revisions, and variations).

A detailed description of the environment database is provided in Appendix
50 to this specification.

3.2.1.7.1 Nodes. - The objects in the environment database shall be
called nodes. There shall be three basic types of nodes: files,
directories, and variation headers. All nodes shall have properties
called attributes and associations. Attributes are named properties with
character string values. Associations are named properties with values
that are collections of "p _nters" to other nodes.

In addition to attributes and associations, file nodes shall contain a
data portion that may be read and written by Ada programs via the standard
.Ada I/0 packages, INPUT_OUTPUT and TEXT_IO. As is common practice, the

3=-25

"Use or disclosure of technical data and/or computer software
.is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR=-CP-0059-A00
1 November 1983 ‘ .

data portion of file nodes shall not have type. Ada programs interpret
the data as a sequence of values of some ¢type when an Ada file is
associated with an ALS file. ’

Directory nodes shall be used to name and group other nodes. When a node
is created, it shall be created "within" a directory. 1In addition to
attributes and associations, each directory shall contain a specification
of the nodes grouped in it.

Directories shall be organized as directed acyclic graphs. 'Files shall be
leaves 1in these structures. The structure 1is described further in
Appendix 50.

3.2.1.7.2 Program Libraries. - Program libraries shall contain all of the
information necessary to support the separate compilation capability of
Ada, to perform partial or complete link-edits of Ada programs, to
incorporate routines written in other languages into Ada programs, and to
specify program structure to analysis and debugging tools.

A program library is a subtree of the directory hierarchy. The root of
the subtree is a directory with a category of program library. Access to
this directory and to all nodes below it is restricted. Users may only
create and use program libraries with tools created for that purpose.
They may, however, delete an entire program library.

3.2.1.7.3 Containers. - The files within a program 1library shall be
called Containers. A Container 1includes specification of externally
visible Ada names, statisties, object code, and other information. The
compiler shall create one Container for each compilation unit that it
compiles. Assemblers, linkers, and importers shall each create a single
Container. .

A full history of successful compilations shall be maintained in a program
library. When a compilation unit is recompiled into a program library, a
new revision of its Container 1s created: the old Container is not
replaced by the new.

Containers are created and accessed through the services of the Container
Data Manager (CDM) part of the Database Manager Functional Area.

3-26

"Use or disclosure of technical data and/or computer software
" is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.2.1.8 ALS Toolset. =-

3.2.1.8.1 Tool Functions. - A comprehensive set of tools for entering
text, translating, executing, and debugging programs, and manipulating the
database shall be included in the -ALS.

3.2.1.8.2 Tool Descriptions. - Detailed descriptions of each tool to be
provided in the ALS are included in Appendix 70 to this specification.

3.2.1.9 Reliability. - Ada Language System reliability shall be based on
the use of modern software engineering techniques in system design and
implementation, and frequent internal reviews of design progress. The
software engineering techniques, such as structured programming, top-down
design, and use of a program design language are noted in 3.3.8. The
internal reviews are listed below.

3.2.1.9.1 Project Reviews. - Formal and informal project reviews will be
held frequently to monitor and enhance program quality and reliability.
Formal progress reviews will be held periodically; informal reviews will
be held as the need arises.

3.2.1.9.2 Management Reviews. - Reviews of the project by a contractor
management review team will be held monthly to monitor progress and to
ensure the quality and reliability of the ALS.

3.2.1.9.3 Structured Walk-Throughs. - Structured walk-throughs will be
held for all major sections of ALS design. Structured walk-throughs
provide peer review of evolving design, and are oriented toward raising
issues while the design can be influenced.

3=27

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP40059-AOO
1 November 1983

3.2.1.10 Maintainability. -

3.2.1.10.1 Maintainability Characteristics. - Maintainability is one of
the key objectives of ALS development and design. Development of code
that is easy to understand and modify shall be emphasized. Extensive
in-line commenting shall be included. The software structure shall
consist primarily of basic building blocks separated by well-defined
interfaces permitting the rapid isolation of problems.

3.2.1.10.2 Personnel. -~ The ALS shall be designed to be maintained by
experienced system programmers trained in the operation and maintenance of
host and target machine software, and 1in the operation of the ALS.
Maintenance of the ALS at the SDSS facility, distribution of updated and
revised information to the field installations, and related ¢training of
both new and previously assigned personnel will require, as a minimum:

a. 3 Maintenance Programmers,
b. 2 Technical Aides (to copy and distribute tapes), and

¢. 1 Instructor.

3.2.1.10.3 Documentation. - As shown in 3.4, extensive maintenance
documentation shall be supplied with the ALS,

3-28

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP=0059-A00
1 November 1983

3.2.2 Physical Characteristics. - The ALS requires the physical
characteristics of the generic minimum host environment as specified in
3.1.1.1.2,

3.2.3 Reliability. - The reliability characteristics of the ALS are
described in 3.2.1.9.

-

"3.2.u Maintainability. - The maintainability characteristics of the ALS
are described in 3.2.1.10.

3.2.5 Availability. - The Ada Language System will be available for
developmental use in the host environment specified in 3.1.1.1 and the
target environments specified in 3.1.1.2 in accordance with the schedule
‘presented in the Ada Language System Design and Development Plan (2.1).

3.2.6 System Effectiveness Models. -

This paragraph is not applicable to this specification.

3.2.7 Environmental Conditions. - The Ada Language System shall operate
in the physical environments (e.g., temperature, humidity, etc.) of any
host machine specified in 3.1.1.1 and any target machine specified in
3.1.1.2.

3.2.8 Nuclear Control Requirements. -

This paragraph is not applicable to this specification.

3.2.9 - Transportability. -

3.2.9.1 User/System/Tool Transportability. - The Ada Language System will
be designed for wuser, system, and tool portability as specified in
302.101.

3-29

“"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP=-0059-A00
1 November 1983

3.2.9.2 OQutput Program Transportability. - The executable program image
produced by the Ada Language System may be transported on any conventional
computer system medium compatible with both the host and target systems
such as tape or disk. The media used for transportation to each target
are defined in Appendix U40.

3.2.9.3 Distribution. - The ALS shall be transportable by disk or tape
between identical host system configurations, and upward-compatible host
system configurations that include the facilties and functions required to
support all ALS functions and operations as described in this
specification.

3.3 Design and Construction. - The design and construction of the Ada
Language System shall be in accordance with the requirements of the Ada
Language System Design and Development Plan specified in 2.1. As
described in the plan a set of design and development standards will be
established at the start of the project to ensure that the design and
implementation efforts proceed in a manner consistent with modern
programming practices and the contractor's quality standards. The intent
of these standards will be to provide a framework for design and
development; thus, the standards and conventions will not be viewed as
rigid rules never to be violated, but rather as guidelines which represent
good engineering practice.

3.3.1 Materials, Processes, and Parts. - The materials and parts used in
the development, design, documentation, testing, qualification, operation,
and maintenance of the Ada Language System are high-quality,
commercially-available computer supplies such as disk packs, magnetic tape
cartridges, printer ribbons, and paper. No strategic or eritical
materials will be required.

3.3.2 Electromagnetic Radiation. - When installed in a host or ‘target
environment the ALS assumes the electromagnetic radiation characteristics
of the host or target environment.

3.3.3 Nameplates and Product Marking. - The computer tape reels
containing the Ada Language System shall be labeled with the following
identifying information: the system name, contents, contract. number,
serial number, date, and the na~2 of the responsible agency (U.S. Army
CECOM, Ft. Monmouth, N.J.).

3-30

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.3.4 Workmanship. - The workmanship in the Ada Language System shall be
in accordance with the contractor's quality standards described in the ALS
Design and Development and the ALS Quality Assurance Plans specified in
2.1,

3.3.5 Interchangeability. - Portability of users, systems, and tools
shall be a primary objective of the Ada Language System as specified in
3.2.1.1.

3.3.6 Safety. - The Ada Language System will be free from harmful effects
on personnel and equipment. No special safety precautions are required in
its handling, transportation, or use.

3-31

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.3.7 Human Performance/Human Engineering. -

3.3.7.1 Programming Environment. - The Ada Language System shall be
designed to provide a -beneficial, efficient, flexible, easy-to-use
environment for programming in Ada.

3.3.7.2 Command Language Tool Set. - The ALS command language and tool
set allows Ada programmers to move easily and conveniently across host
boundaries.

3.3.7.3 Extensibility. - The ALS shall provide a framework for the
addition of new tools and services at any time. Capabilities for building
new tools in Ada on the ALS will be provided.

3.3.7.4 Programming Support. - The ALS provides programming support for:

a. Programming in Ada,

b. Simultaneous development of multiple Ada programs in a
concurrent user access environment,

¢. Program development by teams of programmers, and

d. Development of program variations and revisions.

3.3.7.5 Prevention of Error Cagcading. - The ALS shall be designed so
that error cascading will be minimized.

3.3.7.6 Messages and Diagnostics. - Messages and diagnostics shall be
unique, complete, and uniform. Appendix 80 lists all the messages and
diagnostics for each of the ALS tools.

3.3.8 Computer Programming. - All Ada Language System programs shall be
written in Ada as specified in 3.2.1.1.2. Modern software engineering
methodologies shall be used in ALS design and implementation. Some of
these techniques are:

3-32

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.3.8.1 Top-Down Design. - Top-down design can be described as
"allocating functional and performance requirements to a modular software
structure." This characterization implicitly stresses the importance of
detailing and baselining requirements prior to design. The design effort
is driven by the requirements, and must clearly trace back to them.

A top-down approach requires that the procedural and data structures be
determined before the algorithmic and data layout details are specified.
Also, the interfaces between modules must be defined and controlled so
that the design of module internals can proceed in parallel with
confidence.

3.3.8.2 Structured Programming. - Structured programming contributes to
the development of reliable, maintainable software. In structured
programming, program design and coding are performed in accordance with
standards that 1limit the form or structure of code to certain basic
building blocks, require certain mnemonic aids to readability, and impose
other constraints on program complexity.

3.3.8.3 Coding Standards. - The Ada coding effort shall follow a
documented set of standards and conventions that support the development
of structured, maintainable code. The objectives of these standards are:

a. To contribute to readability and maintainability of code,
b. To prohibit the use of error-prone constructs, and

¢. To establish a uniform appearance of code produced by different
individuals.

Use of coding standards will be monitored by peer code reading and by the
project quality assurance monitoring.

3.3.8.4 Program Design Language (PDL). - A Program Design Language (or
"pseudo-code™) shall be used to document complex control flow logic.
Moreover, the flow-of-control constructs, such as IF-THEN-ELSE in the PDL,
will be exactly the same as those available in the Ada Language. This
means that the match between the documentation of a routine (in PDL), and
the code for the routine will be more immediate than is possible with
flowcharts. Program Design Language used in the ALS shall be documented
in the ALS Design and Development Plan (2.1).

3-33

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.3.8.5 Implementation Approach. - The Ada Language System implementation
approach is based on proven techniques used by the contractor in the
development of other high-order language compilers. Structured
programming techniques shall be carried through from the design phase.
Careful attention to checkout and testing will assure compliance with
system requirements. Coding standards shall be monitored by frequent
reviews. . ‘

3-34

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR=-CP-0059-A00
1 November 1983

3.4 Documentation. - The following documentation shall be supplied:

30“01

3.4.2

3.4.3

3.4.4

a.

b.

c'

b.

Plans. -

Ada Language System Design and Development Plan,
Ada Language System Configuration Management Plan, and

Ada Language System Quality Assurance Plan

Manuals. -

A User Reference Manual for each target environment specified
in Par. 3.1.1.2;

An Operator's Manual for each target environment specified in
Par. 3.1.1.2;

A Retargeting Manual that describes’ the procedures for
retargeting the ALS; and

An Intermediate Language Specification that shall describe the
intermediate 1language and provide interface data for the
development of code generators to be used in the Ada Language

System.

Specifications. -

Ada Language System Specification,

A BS Computer Program Development Specification for each CPCI
listed in 3.1.1.5 (see Figure 3-3), and

A C5 Computer Program Product Specification for each CPCI
listed in 3.1.1.5 (see Figure 3-3).

Test Plans/Procedures and Reports. -

A Preliminary/Formal Qualification T.st Plan for the Ada
Language System,

3-35

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.4.6

3.4.7

3.4.8

b.

A Preliminary Qualification Test Procedure for each CPCI listed
in 3.1.1.5,

A Preliminary Qualification Test Report for each CPCI listed in
3.1.1.5,

A Formal Qualification Test Procedure for each target
configuration in the Ada Language System, and

A Formal Qualification Test Report for each target
configuration in the Ada Language System.

Technical Reports. =

a.

Technical Report on Language Efficiency Issues,

Technical Report on Relationship between the ALS Intermediate
Language and DIANA, and

Design Data Book, Engineering Data.

Configuration Management Documents. -

b.

C.

Configuration Index Reports,
Version Description Documents, and

Change Status Reports.

Administrative Documents. -

a.

b.

Monthly Status Reports, and

Monthly Cost/Schedule Status Reports.

Blank. -

3-36

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

1 November 1983

Ada Language System Specification CR-CP-0059-A00

994] uorledijioads wayshg afenBue] epy

g~ aunB1y

dad SUOLVUINIS
snewsy
S n W
"o LX) =0
not1 308 B
wrever sAWeY oth oy one
=n) el el (2255 o1) B T I R
o i o
susevey wemey ssuvenmeey ournames ass I s hadid [rmuned L el o wnone
-!!llom novs sw Xeass Wy
b b v A] (=1 AJuandree it g
] 1 | | 1 1 1 _ 1 - j |] 1 1]]

3=37
"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.5 Logistics., -

3.5.1 Maintenance. - As described in 3.2.1.10, maintainability is one of
the key objectives of Ada Language System development and design. No
special test equipment will be required.

3.5.1.1 Maintenance Procedures. - Maintenance of the ALS on the SDSS
facility will be performed through a central maintenance operation., All
problem reports will be routed through the central maintenance operation.
Verification of fixes will be performed by use of the SDSS facility (with
on-site personnel). The ALS shall be placed in its own database, and will
be used to maintain itself.

3.5.1.2 Maintenance Documentation. - As shown in 3.4, extensive
maintenance documentation shall be supplied with the ALS.

3.5.2 iuﬂll. -

3.5.2.1 Distribution. - Distribution of the ALS and 1location of ALS
supplies will be at the discretion of the government.

3.5.2.2 Addition of New Tools. - The ALS shall be designed to permit new
tools to be built in Ada or in the command language on an ALS. The
presence of user-supplied tools should not degrade the operation of the
existing tools.

3.5.3 Facilities and Facility Equipment. - The ALS development model will
be hosted on the SDSS facility at Fort Monmouth, New Jersey, a concurrent
multiple-user access environment. Installation of the ALS will not
prevent normal use of the SDSS facility by other users. Access rights to
the ALS from the SDSS facility will be determined by the SDSS facility
operation. Security of the ALS shall be equivalent to the security of the
host system as described in 3.1.3.2.

3-38

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.6 Personnel. =-

3.6.1 User Personnel. - The Ada Language System shall be designed to
provide a friendly, flexible, easy-to-use environment for programming in
Ada. No special programming experience will be required. Any programmer
familiar with the Ada language will have the ability to learn to use the
ALS by reading and understanding the applicable ALS Users Reference
Manual.

3.6.2 Maintenance Personnel. - The ALS is designed to be maintained by
experienced system programmers trained in the operation and maintenance of
host and target machine software, and in the operation of the ALS.
Maintenance of the ALS at the SDSS facility, distribution of updated and
revised information to the field installations, and related training of
both new and previously assigned personnel will require, as a minimum:

a. 3 Maintenance Programmers, -
b. 2 Technical Aides (to copy and distribute tapes), and

¢. 1 Instructor.

3.6.3 Tréining. - It will be desirable to provide a training course for
all programmers planning to use the ALS,

3-39

"Use or disctosufe of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP=-0059-A00
1 November 1983

3.7 Functional Area Characteristics. -

This paragraph describes the characteristics of each functional area in
the Ada Language System.

3.7.1 Compiler Functional Area. - The compiler shall be a tool that
receives source text for an Ada language compilation, checks the text for
compliance with the Ada language definition, and, if the text is correct,
translates it into equivalent machine code instructions. The
characteristics of the compiler shall be as follows:

a. The compiler shall consist of an ALS Compiler
Machine-Independent Section, code generators for each target
environment, and runtime support 1libraries for each target
environment.

b. The compiler machine~independent section and the code
generators shall be reentrant.

¢. The compiler shall accept the full Ada language as specified in
the Military Standard, Ada Programming Language,
ANSI/-STD-1815A-1983, 17 February 1983 (2.1), and shall be
capable of generating code for each of the target machines
specified in 3.1.1.2.

d. The compiler shall not generate code for compilation units
which do not comply with the definition of the Ada Language;
all 1lexical, syntactic, and semantic deviations from the
definition shall be diagnosed, including those requiring
type-checking across compilation units. Appendix 80 is a
complete summary of all diagnostic messages.

e. As a design goal, the minimum performance of the compiler
should be on the order of 1000 lines per minute of real time,
As an additional objective, the compiler should be capable of
compiling itself at this rate.

f. The code generators shall be capable of producing code for
distributed processing when suitable language usage is imposed
(e.g., use of entry calls for communicating between
processors). The interface to the runtime support for the
communications package for interprocess communications shall be
defined and implemented. However, the actual communications
package shall not be implemented since the communication 1link
is target system architecture specific,

g. As a design goal, the compiler shall attempt *ro 1limit error
propagation, or error cascading, that occurs i:nen the compiler
misinterprets and produces a diagnostic message for one portion
of source text because of a user error in another portion of
source text.

3-40

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.7.1.1 Compiler Invocation. - The compiler shall be invoked by an ALS
. command that has the following format:
tool source prog_lib [NEW_SRC => out_src] [OPT => option_list]

tool is the name of the tool that performs the compilation,
e.g., ADAVAX. (See Appendix 70 for list of tools.)

source is the name of the file node containing the source
text to be compiled.

prog_lib is the name of the program 1library into which the
Containers generated by this compilation will be
placed.

out_src is the file node that is to receive the reformatted

source text. The NEW_SRC parameter has no effect if
the REFORMAT option is not in effect.

option list is a list of the options that are in effect for this
compilation. The available options are 1listed in
3.7.1.1.1.

Except for the diagnostic summary listing, all compiler listings shall be
routed to the standard output file, The pre-defined logical files in the"
ALS opened when a tool is invoked are described in 3.1.1.6 and Appendix

60. The diagnostic summary listing shall be routed to the message output
file.

3.7.1.1.1 Compiler Options . - The options that may be specified to the
compiler are 1listed in the following subparagraphs. Each option may be-
specified as shown, or may be preceded by the three characters NO_ to
specify the opposite option. For example, SOURCE turns Source Listing on
while NO_SOURCE turns Source Listing off.

The compiler produces a diagnostic of severity level WARNING if any
of the following conditions are encountered during the processing of
options:

. The complement of an option already specified is specified. The
first option will be ignored. For example, if NO_SOURCE is
specified, then SOURCE is specified 1later in the option 1list,
SOURCE will be in effect;

. An option already specified is re-specified. The first option
Wwill be ignored; or

. An undefined option is specified.
There is no examination of options to determine whether redundant

combinations of options are .specified. For example, specifying both
NO_SOURCE and NO_PRIVATE will not result in a diagnostic.

3-41

“"Use or disclosure of technical data and/or computer software
is -subject to the restrictions on the cover of this Document."

 Ada Language System Specification CR-CP-0059-A00

1 November 1983

3.7.1.1.1.1 Listing Control Options. -

SOURCE

PRIVATE

NOTES

ATTRIBUTE
XREF
STATISTICS

MACHINE

DIAGNOSTICS

Produce a listing of the source text. Default:
SOURCE

If there is a source listing, text in the private
part of a package specifier is to be listed,
subject to requirements of LIST pragmas.
Default: PRIVATE

Include diagnostics of severity NOTE in the
source listings, and in the diagnostic summary
listing. Default: NO_NOTES

Produce a symbol attribute 1listing. Default:

ATTRIBUTE

Produce a cross-reference listing. Default:
NO_XREF

Produce a statisties listing. Default:
NO_STATISTICS

Produce a machine code 1listing if code is
generated. Code is generated when
CONTAINER_GENERATION is in effect and there are
no diagnostics of severity ERROR, SYSTEM, or
FATAL, and, if there are diagnostics of severity
level WARNING, CODE_ON_WARNING is in effect. If
a machine code listing is requested, and no code
is generated, a diagnostic of severity NOTE is
reported. Default: NO_MACHINE

Produce a diagnostic summary 1listing. Default:
NO_DIAGNOSTICS

3-42

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP=-0059-A00
1 November 1983

3.7.1.1.1.2 Maintenance Aid Options. =

COMPILER MAINT

SAVE_CONTAINER_nn

STOP_CONTAINER nn

USE_CONTAINER_nn

FLAGS_nn_string

Permit the other maintenance aid options to have
an effect. This option must appear before any of
the other maintenance aids in order for them to
have an effect. Default: NO_COMPILER_MAINT

Save the state of the Container in a temporary
file in the current directory. The file is
identified as TEMPILnn. "nn" indicates to what
portion of the compilation process the option
applies. The Container is saved after that
portion of the compilation process. "nn" has the
following possible values and meanings:

01 Parsing
02 Context processing

03 Name resolution

04 Overloading resolution

05 Static expression evaluation

06 Statement checking

08 Diana expansion

14 Code generator initial
translation

20 Data Collection

21 Inter Procedural Analysis

22 Forward Optimizations

23 Backward Optimizations

30 Code generator secondary
translation

31 Code generator tree walk

32 Final optimization

33 Machine text formatting

Operates exactly as SAVE_CONTAINER nn, except
that the compilation process halts immediately
after the "nn" portion of the compilation process
is complete.

Use the Container as saved in a temporary file by
the SAVE_CONTAINER nn option in the current
directory identified as TEMPILnn to restart
compilation where it was left off. Earlier
phases are skipped. USE_CONTAINER is not valid
for "nn" values of 02, 20, 21, and 22.

"gtring" is of the form (alb|...{z)+. This
option specifies options that have effect during
the specified portion of the compilation process.
The meaning of the string is shown in Table 3-1.
Values of "nn" for which no string is shown have
no relevant options defined. The interpretation

3-43

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Speci
1 November 1983

STMT_nnnn

STMT_RANGE_nnnn_mmmm

STANDARD_COMPILE

fication CR-CP-0059-A00

of the characters is dependent on the value of
"nn", "nn" is as defined for SAVE_CONTAINER nn
with the following additions:.

00 Container Data Manager
34 Program Library Manager ,
35 Constant expression evaluation

36 Other utilities and compiler
control function
37 Reformatter

Maintenance aids traces should apply for
statement nnnn. Statement number "nnnn" is right
adjusted and padded to the left with zeros, if
necessary. Optionally supported by the different
phases.

Maintenance aids traces should apply within the
statement range nnnn through mmmm. Statement
numbers "nann" and "mmmm" are right adjusted and
padded to the 1left with zeros, if necessary.
Default: All Statements.

Compile a new version of the predefined package
STANDARD.

3-44

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

FLAGS_00_

FLAGS_01_

NYXE<CTOITODO0OIBREIHNO OOCTHD

FLAGS_O4_
a
b

c
d

FLAGS_05_

FLAGS_06_

Display
Display
Display
Display
Display

Display

Display
Display
Display
Display
Display
Display
Display
Provide
Display
Display
Display
Display
Display
Display
Display

Ada Language System Specification CR-CP-0059—A00
1 November 1983

Table 3-1

COMPILER FLAG STRINGS

Parser

parser first transition table

lexer input buffer

lexer current character as read from text
parser current token (and its numeric code)
parser forest of Diana trees

lexer hash table

lexer contents of include stack

lexer token and hash key

.parser transition table

parser nset table

lexer lookahead character

parser production table

lexer token and its lower case representation
a trace of the syntactic and semantic stacks
lexer token and its type

parser 1s table

parser lset table

parser reduction length table

parser left hand side table

parser parse table

parser first lookahead table

Overloading Resolution

Trace of all context routines.

Trace of all expression routines with values of in
parameters on entry and out parameters on exit.
Trace of OVERLOAD and OVERLOADRNG routines only.
Print candidate lists during expression trace.

Statement Checking

Trace entire trave}sal. pfinting context parameters.

3-45

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Table 3-1 (Cont.)

FLAGS_08_
FLAGS_14_
FLAGS_20_ Global Optimizer
a All optimizer transformations (b through j)
b Subprogram information table before interprocedural
analysis
¢ Common subexpression table
e Subprogram information table_ after interprocedural
analysis
g Next-use information table
J variable life overlab dump
FLAGS _21_
FLAGS_22_
FLAGS_23_
FLAGS_30_
FLAGS_31_
FLAGS_32_
FLAGS_33_
FLAGS_34_
FLAGS_35_
FLAGS_36_ Control Function
f Skip all back-end processing
p Turn on PLM maintenance flags
Diagnostic Recorder
t Display diagnostic information at terminal
FLAGS_37_ Reformatter
c Display reformatter current column postion
s Display reformatter contents of column stack
t Display reformatter token type

3-46

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.7.1.1.1.3 Other Options. =-

CODE_ON_WARNING

Generate code (and, if requested, a machine code
listing) when there are diagnostics of severity
level WARNING, provided there are no FATAL,
SYSTEM, or ERROR diagnostics. NO_CODE_ON_WARNING
means generate no code (and, if requested, no
machine code listing) when there are diagnostics
of severity level WARNING. Default:
CODE_ON_WARNING

CONTAINER_GENERATION

FREQUENCY

OPTIMIZE

REFORMAT

TRACE_BACK

Produce a Container if diagnostic severity
permits. NO_CONTAINER_GENERATION means that no
Container 1is to be produced, regardless of

- diagnostic severity. If a Container is not
produced because NO_CONTAINER_GENERATION is in

effect, code 1is not generated (nor is a machine
code listing, if requested). Default:
CONTAINER_GENERATION

Permit generation of code to monitor execution
frequency at the basic block level. Default:
NO_FREQUENCY.

Permit optimization in accordance with the
OPTIMIZE pragmas that appear in the text. When
NO_OPTIMIZE is specified or 1is in effect by
default, no optimization is performed, regardless
of pragmas. When no optimize pragmas are
included, optimization ¢tries to conserve code
space. (Note: With or without optimization, the
compiler shall conform to the Military Standard,
Ada Programming Language, ANSI/-STD-1815A-1983,
17 February 1983 (2.1).) Default: NO_OPTIMIZE

Reformat the source, the result being reflected
in the source 1listing, if present, and the
out_src node, if specified. Default: REFORMAT

Provides user with calling sequence traceback
information when the wuser's program is aborted
because of an unhandled exception. See Section
40.1.3 for a discussion of tracebacks. Default:
TRACE_BACK.

3-47

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Séecification CR-CP-0059-A00
1 November 1983 -

3.7.1.2 Compiler Inputs. - The compiler shall receive control inputs and
option inputs through the ALS Command Language Processor; Ada source text
compilations from the environment database through the ALS Database
Manager; and Containers containing previous compilations through the ALS
Database. Manager.

3.7.1.3 Compiler Qutputs. -

3.7.1.3.1 Container OQutput. - The compiler shall produce a Container
output for each input compilation unit depending on options and
diagnostics. The Containers shall ‘include machine text, global symbol
definitions, and global symbol references. The Containers shall be stored
in the environment database. A Container will not be produced if
NO_CONTAINER_GENERATION 1is in effect or if a diagnostic of severity level
FATAL is reported.

"3.7.1.3.2 Reformatted Source Text Output. - Under user option, the
compiler shall produce a text node containing the reformatted Ada source
text. This node shall be stored in the environment database.

3-48

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on-the cover of this Document."

Ada Language System Speclflcatlon CR-CP-0059-A00
1 November 1983

3.7.1.3.3 Qutput Listings . - The compiler shall produce the following
output 1listings. If a FATAL diagnostic occurs, a Container may not be
produced, depending on the precise nature of the FATAL diagnostic. . In
these cases, if a Container 1is not produced, 1listings shall not be

produced.

a. Source Listing,

b. Symbol Attribute Listing,

¢. Cross-Reference Listing,

d. Compilation Statisties Listing,
e. Machine Code Listing,

f. Diagnostic Summary Listing, and
g. Compilation Summary Listing.

Each listing is described in the following paragraphs.

3.7.1.3.3.1 Source Listing. -

a. Description. The source listing shall show the Ada language
statements that the compiler has received for compilation. The
listing shall be requested or suppressed with the SOURCE
option. The following information shall be included:

. The source statements.

. Diagnostic messages, describing errors or other unusual
circumstances. Each message appears in the listing
immediately within or following the diagnosed statement.
Diagnostic messages that are not associated with
particular statements are also included in this listing.
This includes messages generated during processing of
the arguments to the compiler. These messages appear
prior to the start of the 1listing of the source
statements. The messages are described in 3.7.1.3.4.

. Line numbers.

. Statement numbers. A compilation unit is decomposed
into a series of "statements", each of which represents
a syntactic construct or a fragment of a syntactic

3-49

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.*

Ada Language System Specification CR-CP-0059-A00

1 November 1983

construct. Each "statement"” of a compilation unit
receives a "statement number" that uniquely identifies
that '"statement™ within the unit. A "statement" is
terminated by the appearance of another "statement" or
by the end of the compilation unit.

A syntactic construct may define several
"statements" because: (1) it contains nested constructs
that in turn define one or more "statements", or (2) it
is broken up for convenience into several "statements"
that may be individually accessed. Each of the

following syntactic constructs represents one or more

"statements" of a compilation unit.
1. A pragma;
2. An object or number declaration;
3. A type or subtype declaration;

4, The "record™ and "end record" clauses of a record
type definition;

5. The component list "NULL;";
6. A component declaration;
7. A discriminant declaration;

8. The "case", "when", and "end case" clauses of a
variant part;

9. An incomplete type declaration;
10. A simple statement;

11. The "if", melsif", "else" and "end if"™ clauses of
- an if statement;

3-50

"Use or disclosure of technical data and/or cdmputer software
is subject to the restrictions on the cover of this Document."

12.

13.

14,

150

16.

17.

18.

19.

20.

21.

22.

23.

ah.

25.

Ada Language System Specification CR-CP-0059-A00
1 November 1983

The "case", "when", and "end case" <clauses of a
case statement;

The "while", "for", "loop" and "end 1loop" c¢lauses
of a loop statement;

The "declare", "begin"™, "exception", and "end"
clauses of a block:

The "procedure" and "function" clauseé of a
subprogram specification, and the "return" clause
of a function specification;

The parametér declarations of a formal part;

The "begin", "exception", and "end" <clauses of a
subprogram body, as well as the clauses of its
subprogram specification as previously defined;

The "package", "private", and "end" clauses of a
package specification;

The "package body", "begin", "exception", and "end"
clauses of a package body;

A use clause;
A renaming declaration;

The "task™ or "task type" and "end" clauses of a
task specification;

The "task body", "begin"™, "exception", and "end"
clauses of a task body;

An entry declaration;

The "accept", "do", and "end" clauses of an accept
statement;

3-51

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

26. The '"select", "when", "or", '"else", and "end
select" clauses of a select statement;

27. The "terminate" form of select alternative of a
selective wait statement;

28. A with claﬁse;

29. A body stub;

30. An exception declaration;

31. The "when" clause of an exception handler;

32. The "generice" clause of a generic part;

33. A generic formal parameter;

34. A generic subprogram or package instantiation;
35. A representation specification; ,

36. The "for", "record", and "end record" clauses, and
the "component name, location" pairs of a record
type representation.

Block identifiers, loop identifiers, and labels are
considered part of the statement that they precede.

. An indication of block depth, where the block 1level
changes whenever the current scope changes. For
example, the block 1level is incremented whenever a
package, subprogram, task body, or block statement is
encountered; the block level is decremented after an
end statement for a package, subprogram, task body or
block statement.

Depending on the presence of other pragmas and options,

3-52

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

the complete source text may or may not be listed. The
complete source text is defined as the contents of the
"source" node, together with the diagnostic messages,
line numbers, statement numbers, and block depth
indicators which apply to this text. The following
rules determine the portion of the complete text that
appears in the listing:)

. Any text between a LIST(OFF) pragma and the next
following LIST(ON) pragma is not listed. (Note: The
rule applies to any pragmas in the complete text, even
those appearing in imported text. The rule is not
affected by other options such as NO_PRIVATE.)

. If the NO_PRIVATE option is in effect, the private parts
of package specifications do not appear in the listing.

. If the NO_NOTES option is in effect, diagnostic messages
of severity NOTE do not appear in the listing.

Under user option, the source listing shall show the Ada source
text arranged either into 1lines and columns exactly as it
appeared in the- input, or as a text that is reformatted in a
manner that improves readability and displays the structure of
the Ada text. A reformatted 1listing shall have statements
separated one to a 1line and indented to show nesting depth;
comments shall be segregated from statements and declarations.
Subparagraphs b. through f. below describe the reformatting
process more fully.

If the source text to be listed (as determined above) contains
any PAGE pragmas, the line on which the token PAGE appears is
placed at the first line available on a new page in the source
listing.

Pragma TITLE (arg) specifies a CHARACTER string that is to
appear on the second line of each page of every listing produced

for a compilation unit. At most one such pragma may appear for
any compilation unit, and it must be the first lexical unit in

the compilation unit (comments excepted). The argument 1is a
CHARACTER string. :

If the listing contains more than one compilation unit, each
compilation unit begins a new page. For the purposes of
listings, a new compliation unit begins with the first

non-comment token or blank line tha. follows the final semicoloa
of the previous compilation unit.

All listing control pragmas and options shall preserve statement

3-53

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

b.

numbering and nesting 1level indications. Every statement,
whether listed or not, shall be counted in the determination of
statement numbers. All 1lines shall be counted for line
numbering, whether printed or not, except that included text
shall be numbered independently of the enclosing text.
Reformatting shall produce new line numbers.

All listings shall be printed with a maximum of 120 columns per
line and 60 lines per page.

Reformatting. When the REFORMAT option is specified, the source
listing shall contain a reformatted version of the source as
described in Section 3.7.1.3.3.1(a). The characteristics of the
reformatted output are described in Subparagraphs c¢., d., and e.
below. .

A reformatted source text node shall be produced under user
option.

Examples. Figure 3-4 shows examples of source listings under
various combinations of optionms.

3-54

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

« IUBWNDOQ S$IYY JO JOACD Y] UO SUOKIDIIISIL YL 0} I129(GNS i
94eM1)0S J2INAWOD JO/ PUR 2IEP [EDIUYDI} JO BINSOIISIP 1O IS,

BLOCK STAT
LINE LEYEL bun

1 ~= This Is the package body to implement the package RATIONAL _NUNBERS
2
3 1 1 uith EVCLID}
L] 1 2 package body RATIONAL_NUMBERS (s
5 i 2
[1 2
? 1 2
8 1 2 ~= SAME_DENOMNINATOR s a local procedure at module scope which
9 3 2 -+ geduces two ratlonal numpers to the sase denominator
16 1 3 pragma OPTINIZE (TVIME)}
il 4 4 procedure SAME_DENOMINATOR (Xo V5 In out RATIONAL) s
12 2 6 COMMONZ INTEGER range L .. INTEGER®LASYT}
13 2 7 begin
14 2 7 == feduces X and ¥ to the same
15 2 [] CORNON = 13 . -~ denominator
¢40E 2033 SYNTAX ERROR ~ %«=f - EXPECTING *3=® QR NAME QUALIFIER
(X2 1] 2000 SYNTAX RECOVERY — PARSING RESUMED AT *3°
16 2 9 It X DENONENATOR /= Y. 0ENONINATOR then
17 2 10 CONMON 3= EUCLID.LCF (X DENOMINATORy V.DENOMINATOR)} —- lesst common factors
18 2 11 COMMON 8= X,DENIMINATIROY,DENIMINATIR/CIMNNONG -~ smallest comeon multinle
i9 2 1
20 2 12 XoNUMERATOR 8= K NUNERATORC®COMMON/X.DENONINATOR}
21 2 13 YoNUNERATOR 3= ¢ NUMERATORSCOMNON/Y.DENONRINATOR}
22 H 13
23 2 14 X.OENOMINATOR 5= CONNING
24 4 15 Y .OENOMINATOR 3= COMMON;
25 2 16 end It}
26 2 16
27 2 1?7 end SAME_DENOMEINATOR
28 1 17
29 - 2 18 function EQUAL €Xs Y3 RATIONAL) return BODLEAN is
30 2 21 Uo V2 RATIONALS
k18 2 22 begin
32 2 23 U = X} -= save in teémporaries
33 2 24 ¥ 1= Y3}
34 2 25 SANE_DENOMINATOR (U, VI3
35 2 26 seturn {U.NUNERATOR = V,.NUMERATDRI}
36 2 27 end EQUAL}
7 1 27
38 2 28 function “+* (X, ¥3 RATIONAL) roeturn RATIONAL is
39 2 3t Ue Vi RATEONALS -= temporaries

Figure 3-U4, Source Listing (Page 1 of 7)
Options: SOURCE, REFORMAT, NOTES

00V=6500=d0=4D uol3ed1jroeds wajsdg a3endue] epy

£861 JaqwaaoN |

" IUBWND0Q SIYL JO JBAGS BY] UO SUOIDILISEJ BYY O} IRanSs si
S4em330s JaINdWOD JO/PUE BIEP |EDIUYDIY JO SINSOJISIP 4O ¥5(),

96-€

BLOCK

LINE LEYL

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

N NNNNNNNNeN VNN NN

STy
buy

32
n
34
35
36
36
37
37
38
41
4l
42
42

4
3
44

begin
U = X3
Vv i= Y;
SAME_DE

foturn INUMERATOR => U.NJNERATOR ¢ V.NUNERATORs ODENOMINATOR => U.DENOMINATOR

Vi

end "e%;}

function %™ (X,

begin

return (NUNERATOR => X NJMERATORSY NUMERATIR, DENOMINATOR => X.DENOMINATOR

NOMINATOR (Us V)

*Y.DENOHINATOR)

end "%

end RATIONAL _

NUHMBERS }

¥3 RATIONAL) return RATIONAL Is

Figure 3-4. Source Listing (Page 2 of 7)

(Continuation of Options:

SOURCE, REFORMAT, NOTES)

€861 JoquBAON |

00¥=65S00~dD-¥D uotrieoijroads weysAg sBenBuer epy

+*IUSWND0Q SIYI JO JOACD Y] UO SUONDLIISRJ 3y} 03 123(gns st
34em3jos J2INCWOD JO/PUR BIRP |EDIUYII] JO JNSO(ISIP JO SN,

Le-¢

BL0CK

LINE LEYEL

(1173
16
17
18
19
20
21
22
23

25
26

28
29
30
3
32
3

3%
36
37
38
39
40
41
42
43

203

CNNANNN W NN R R e

NRNNNNANNNNNNNYNNDe VNN

STNy
huy

BNNFTIPWNNNNNYN-

-~ This is the package body to implement the package RATIONAL_NUMBERS

with EUCLID;
package body RATIONAL _NUMBERS Is

~= SANE_DENOMINATOR s a iocal procedure at module scope which
-= reduces two rational numbers to the same denominator
pragma OPVIMIZE (TINED;
psrocedure SAME_DENONINATOR €Xo Y3 in out RATIONAL) Is
COMMON: INTEGER range 1 oo ENVEGER®LAST;
begin
-= redices x and y to the same
COMMON = 13 -~ densominator

SYNTAX ERROR - =° — EXPECTING “3=* OR NAME QUALIFIER

9
10
11
11
12
i3
i3
14
15
16
16
1?7

i% X.,DENGMINATOR /= Y,DENGMINATOR then
COMAON 8= EUC.ID.LCF (X.DENOMINATORy; Y.DENOMINATOR)} -- least common factor
CORNON 3= X .DENIMNINATIROY . DENOCHINATOR/CONNONG =~ snaltlest common multiple

XoNUMERATOR 3= XK NUMERATOROCOWMON/X.DENOMINATOR}
YoNUNERATOR 8= ¥ NUMERATOR®COYNIN/V.DENODMINATIR}

X<DENONINATOR t= COMMON}
YDENOMINATOR $= COMMON}
end it}

end SANE_DENOMINATOR]

function EQUAL (Xe Y$ RAVIONAL) return BOOLEAN is
Ue VI RATIONALS
~begln
U = X3 ~= save In tempararises
v &= Y3
SANE_DENOMINATOR (U, VI3
return (U.NUNERATOR = V,NUMERATOR)}

end EQUAL}
function "e® (X, Y2 RATIONAL) return RATIDNAL s
Uy V3 RATIONALS == temporaries
begin ’
U = X}
vV 3= Y}

SAME_OENOMINATOR (U, V)3

00V-6500-d0-¥0 uOT3eo13Toads weysAs eBenBue epy

€861 J3qWaAON |

Figure 3-4. Source Listing (Page 3 of 7)
Options: SOURCE, REFORMAT, NO_ NOTES

» T IUBWND0QG SIY) JO JOADD Y3 UO SUONDLAISBJ Byl 03 109fqns si
24eM}J0S J9INAWOD 20/ PUE LIEP |BDIUYDIS] JO BINSOIISIP JO SN,

85—t

BLOCK

LINE LEYEL

44
45
46
47
48
4«9
50
51
52
53
54
55
56

N NNNVNNNNNe NN

STNT
oy

36
36
37
37
38
Al
41
42
42

return (NUMERATOR => UJNJNERATIR ¢ V.NUMERATOR, DENOMINATOR => U.DENOMINATOR

LK
end “%;

tunction *¢* (X, Y3 RAVIONAL) return RATIONAL s

begin

cotusrn (NUMERATOR => X.NUNERATOR®Y.NUNERATOR, DENOMINATOR => X, DENOMINATOR

SY.DENONINATOR)
eng “e¥;

end RATIONAL_NUMBERS; -

Figure 3-4. Source Listing (Page 4 of 7)

(Continuation of Options:

SOURCE, REFORMAT, NO_NOTES)

€861 JoqueAON |

00¥-6500-do~¥) uoTjEeoTyIoeds weqsAs aBenSue] epy

» " JUBWND0Q SIY) JO JPA0D Y} UO SUONDLIISEJ Y3 0} 399{Qns si
4eM130s 4INAWOD JO/PUR BILP [BDIUYDIY JO IINSO[ISIP U0 as(),

65-€

ALOCK STAT
LINE LEYEL byt

- o g g G G oD g S P

BRI WNNN -

== This is the package spec for Ratlonal_Numbers

package Rational_Numbers Is

type
Rational is private;

procedure same_denominator (xeytin out rationsl);

function EQUALIxsy3rationalireturn Boolean)
function “e"ixoysrationaliceturn RATIONAL}
function “e"(xeytrationaldseturn RATIONAL}

private type rational s record
numeratoredenominatortinteges sange leointeger®iasts
end cecord}

end Rational_Numbers)

Figure 3-4%. Source Listing (Page 5 of 7)
Options: SOURCE, NO_REFORMAT, PRIVATE

00Y-6500-d9=¥D uoT3e0TJToads waysAg sBensue] epy

€861 JequRAON |

2 °IUBWND0Q S$IY} JO JOAOD B} UO SUOHDLSEJ DY) 0F 399(gns §|
34emijos 43INAWOD 40/ Pue BIBP |BDIULDIY JO FINSO[ISIP 40 Bs(),,

09-€

BLOCK

LINE LEYEL

- - - - - -

sTnt
by

Ll dedod et
RN NPT RL NN

-~ This Is the package spec for Ratlonal_Numbers

package RATIONAL_NUMBERS Is
type Ratlonat s privated
procedure same_denominator (x, yt in out rationaldi

function EQUAL (xy yt cational) return Boolean}
function "¢™ (x, yi rational) seturn RATIONAL}
tunction “#" (xs y3 vrational) return RATIONA_}

private
typs rational is
recosd
numerators denominators Integer range l..integer®last)
end secord}
end Ratlonal_Numbers;

Figure 3-4. Source Listing (Page 6 of T)
Options: SOURCE, REFORMAT, PRIVATE

€861 JOqUIBAON |

00Y-6500-d0~§D UoTaeOTJTO2dS weysAg sBenBue] epy

»°JUSWND0Q SIYS JO JPACD YL LD SUOHDIIISAJL By} o} 339{qgns s|
34em1308 J2INAWOD JO/PUR BILP |EDIUYDI] JO INSO[ISIP 40 98,

19-¢

B8LOCK

STaT

LINE LEVEL Hus

- oo o e

- e g

1
1
2
2
3
4
5
8
11
13
19

~= This Is the package spec for Rational_Numbers

package Ratlional_Numbers is
type Rational s private;
procedure same_denominator (xs y3 In out rationald}
tunction EQUAL (xe y3 rational) return Booleans
function “+* (x, y3 rationald seturn RAVIONAL}
function "% ixo y3 rational) return RATIONAL}

end Ratlional _Numbers}

Figure 3-U4. Source Listing (Page 7 of 7)
Options: SOURCE, REFORMAT, NO PRIVATE

€861 Jaquaaop |

00Y¥=6500=d0~40 uoTled1yToads waysdg sBenl3ue] epy

Ada Language System Specification CR-CP-0059-A00
1 November 1983

d.

Comments and Spacing. To highlight the logical structure of

code, it 1is common for a programmer to set off functional units
by block comments and blank lines. Additionally, the programmer
may expand on particularly complex code fragments using in-line
comments. The program reformatter supports these activities on

several levels.

First, the program reformatter shall preserve blank 1lines from
input to output, to help set off groupings.

Second, the program reformatter shall support two 1levels of
comments: long comments used as descriptions of major functional
units and short comments used for explanations of code fragments.

The first category, called a block comment, is recognized as:

. The first comments in a compilation unit before any
code,

. Any comments directly following a blank line, or

. Any comments directly following a PAGE pragma or a TITLE
pragma.

A block comment containé.no extra indentation or reformatting. A
block comment is terminated by the first lexical unit other than
comments,

All other comments fit into the second category, termed
"remarks". A remark will typically appear on the same line as
the code that it follows, or following another remark. All
remarks immediately following a code fragment shall be indented
to start in Column 41, or with an intervening space if it follows
a code fragment, whichever is greater. Any remarks not

immediately following a code fragment shall start in Column 41,

or one column past the column to which the text is currently
being indented, whichever is greater. Comments which do not fit
on a 1line shall be separated into two comments, divided at a

blank, if possible.

Alignment and Indentation. Keywords shall be aligned as shown in
Table 3=2. Their bodies shall be indented one indentation unit
(three columns) from their corresponding headers.

3-62

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Table 3-=2

KEYWORD ALIGNMENT

ACCEPT ... DO

END ...;

block_identifier:
BEGIN
EXCEPTION

END.-.;

CASE L) IS
WHEN ... =>

END CASE;

block_identifier:
DECLARE
BEGIN
EXCEPTION

END...:

loop_identifier:
FOR ... LOOP

END LOOP ...;

FOR ... USE
RECORD ...

END RECORD;

3-63

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Table 3-2 (cont.)

FUNCTION (...; = function specificatian
-..;

eeel]

FUNCTION (...:

eee) o0 IS

BEGIN
EXCEPTION

.00

END ...;

IF ... THEN
ELSIF ... THEN
ELSE

eeoe

END IF;

loop_identifier:
Loop

s 00

END LOOP...;

PACKAGE ... IS
PRIVATE

END;

PACKAGE BODY ... IS
BEGIN
EXCEPTION

END ...

3-64

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Table 3-2 (¢ont.)

PROCEDURE (...; =— procedure specification
ooo;

ooo);

‘PROCEDURE (G
ceu) IS

BEGiﬁf

EXCE;&ION

* 60

END ...

SELECT
OR
ELSE

s oe

END SELECT;

SEPARATE (...)

TASK [TYPE] ... IS

END ...:

TASK BODY ... IS
BEGIN

LN]

EXCEPTION

END- -o;

3-65 .

’jUse or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983

Table 3-2 (cont.)

TYPE ... IS
RECORD

END RECORD;

loop_identifier:
WHILE ... LOOP

END LOOP...;

GENERIC
PACKAGE ... IS
PRIVATE

END ...;

GENERIC

PROCEDURE ...;

GENERIC

FUNCTION ...;

Pragmas and labels will always be 1left aligned

listing column.

3-66

starting in

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

the

first

f.

Ada Language System Specification CR-CP-0059-A00
1 November 1983

General Aesthetic Considerations. 4As described earlier, certain

language constructs cause increases or decreases in the amount of
indentation. The unit of indentation shall be three columns.

A1l 1exiéal items shall be output followed by a single space,

with the following exceptions. The operators "#" 6 n/v_ period,
apostrophe, "#¥"_ ypary "+", and "-" are not followed by a space.
The delimiter "(" is not followed by a space. A lexical item
which is succeeded by an operator "®n n/n_ nperiod, apostrophe,
or "%¥n_ or a delimiter 'semicolon, colon, ")", or comma, is not
followed by a space. Semicolons always terminate a line, unless
followed by a remark.

The reformatter will attempt to fit a statement on a single line.
If it cannot, then that line will overflow. Any lexical unit
that causes overflow will result in a new 1line being started.
(Note that character strings are lexical units and will no t be
split.) The first and all succeeding overflow 1lines will start
one indentation 1level deeper than the initial overflowing line.
If an overflowing lexical unit still will not fit on the new
line, it will be left-adjusted until it fits. A remark which
overflows will be converted into two new remarks separated at a
blank.

To minimize the negative effect of overflow, all indentation
produced by the logical nesting of a program which results in a
potential remaining line 1length, as measured from after the
indentation to the end of the line, of less than 16, will be
ignored. 1In these cases, the indentation level is not increased.
When the logical nesting is reduced, the proper indentation will
be reestablished.

The reformatter shall output reformatted text with a .maximum of
97 columns per line, as the source output listing has a maximum
of 120 columns per line, including the line heading (block number
and statement number) of 23 columns.

3-67

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.7.1.3.3.2 Symbol Attribute Listing. - The symbol attribute listing
shall be an alphabetical list of all symbols defined in the
compilation unit. Symbols imported via WITH clauses shall appear only if
referenced in the compilation unit. The symbol attribute listing shall be
requested or suppressed with the ATTRIBUTE option.

For each symbol, the listing shall include:
a. The symbol name;
b. If the symbol is one of the following, it shall be indicated:

record
array

type

subtype
procedure
function
block name
loop name
label
package

task
exception
named number
enumeration literal;

-

¢, The enclosing scope (i.e. subprogram, package, task, block,
record type, or enumeration type);

d. The type and constraints, for scalar objects;
e. The mode, if the symbol is a formal parameter;
f. Whether the symbol is a constaht;

g. Whethef the symbol is a discriminant;

h. Whether the symbol is a generic parameter;

i. The block level and statement number of the declaration, or
WITH clause; and

j. The size. (storage units)

Symbols defined in the predefined package STANDARD shall not appear in the
symbol attribute listing.

Figure 3-5 is an example of a symbol attribute listing.
When both a symbol attribute listing and a cross-reference 1listing are

requested, a single listing, called the Attribute Cross-Reference Listing,
containing both types of information shall be produced.

3-68

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

o IUIWNDOQ SIYT JO JOAOD 3Y] UO SUONOLIISIL Syl 0} 19Iqns si
48M3308 JINdWOD JO/PpuUR BIBP |BDIUYDI] JO S.NSOIISIP 40 IS,

69-¢

STMT
NANE tun
L] 33
. 25
EQUAL : 17
COMMON b
DENUMEINATIR
EuCLiD
LCF
NUMERATUR
nei
npP2
RATIONAL
RATINNAL _NUNBERS 1
SAME_DENOATNATOR 5
u 26
v 18
v 26
v 18
X 33
X 25
X 17
X 5
Y 3
A4 25
Y 17
v 5

HLUCK
LEVEL

1
1
1
2

NNNNNONNNN NN -

SCORE

RATIONAL _NUNBERS
RATINVAL_NUNBERS
RATIONAL _NUNRERS
SAME_DENOMINATOR
RATIAVAL

EuCLID

RATIONAL

LCF

LCF

RATIONAL _NUNBERS/SPEC

RATIONAL _NUNBERS
*

€QuAL

*

EQUAL

*

*

FOUAL
SAME_DENOMINATOR
[]

*

EQUAL
SAME_DENONINATOR

LYRE

RATIONAL
RATIONAL
RATEONAL
INTEGER
INJFEGER
PACKAGE
INTEGER
INTEGER
INTEGER
INTEGER
RECORD ¥
PACKAGE
PRICEDUR
RATIONAL
RATIONAL
RATIONAL
RATIONAL
RATIONAL
RATIONAL
RATIDNAL
RATIONAL
RATIONAL
RATIONAL
RATIONAL
RATIONAL

FUNCTIONe ARGUMENTS X,
FUNCTIONs ARGUMENTS X,
FUNCTIONe ARGUMENTS X,
RAV3Z 1 oc UNTEGER'LAST
RANSE 1 oo INTVEGER'LAST

FUNCFION ARGUMENTS 0PI,

IN ARGUNENT
IN ARGUMENT
YPE

E ARGUMENTS X, Y

1N ARGUMENT
IN ARGUNENT
IN ARGUNENT
IN DUT ARGUMENT
EN ARGUMENT
IN ARGUMENT
IN ARGUNENT
IN DUT ARGUMENT

< < =

opP2

Figure 3-5. Symbol Attribute Listing
Options: A

TTRIBUTE, NO XREF

S1ZE

> >

L R 2 3

F X IR W O 3 3 W R XX

€861 JaquaAON |

00Y-6500-dd~4) uoT3estjIoads we3sig aBenBdue epy

Ada Language System Specification CR-CP-0059-A00
-1 November 1983 -

3.7.1.3.3.3 Cross-Reference Listing. - The cross-reference listing shall
be an alphabetical 1list of all symbols defined or referenced in the
compilation unit. Symbols imported via WITH clauses shall appear only if
referenced in the compilation unit. The cross-reference listing shall be
requested or suppressed with the XREF option.

For each symbol, the listing shall include:
a. The symbol name;

b. The block level. and statement number of the declaration, or
WITH clause;

c. The list of all statement numbers where the symbol is used;
i.e., referenced in a context other than as target of an
assignment, or as an QUT actual parameter; and

d. The list of all statement numbers where the symbol is set,
i.e., appears as the target of an assignment, or as an OUT or
INOUT actual parameter.

Symbols defined in the predefined package STANDARD shall not appear in the
cross-reference listing. Implicit declarations of subprograms and
enumeration literals shall not appear in the cross-reference listing.

A "SET" is recorded in the following cases:

a. For a variable or constant, whenever that object or a component
of that object is modified.

b. For a type, whenever an allocated object or a component of that
object is modified.

¢c. For a function, whenever a return statement is encountered for
that function.

A modification occurs when the entity named 1is the target of an
assignment. Assignment includes an assignment statement, an actual
parameter corresponding to a formal IN or INOUT parameter, a For loop
parameter, or an initialization. Initialization includes default
parameter and discriminant initializations in addition to ' initializations
used in variable, record component, constant, and number declarations.

A "Use" is any textual occurrence of a designator or character 1literal
which is not a set.

Figure 3-6 is an example of a cross-reference listing.

3-70

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

When both a symbol attribute listing and a cross-reference 1listing are
requested, a single listing, called the Attribute Cross-Reference Listing,
containing both types of information shall be produced.

Figure 3=7 is an example of an Attribute Cross-Reference listing.

3-71

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

" IUBWNDOQ SIY3 JO JRADD BY UO SUOHIDIIISEL By} 0y 139IGNs si
2L-t

8Jem3jos J9INdWOd JO/PUE BIEP |EDIUYDDY JO BANSO[ISIP JO B5(),

STHT dLOCK

Na#ig Hud LEYEL 36X £ Uikl
* 34 L SEY- 3 36
USED 3 36 Y6 37
* 26 1 SET 3 32
USED &t 32 33
EQUAL 14 1 SEV 1 24
USED & 24 25
COMMOL 6 2 SEV 1.8 10 11
’ USED 3 11 12 13 14)5
DENUMINATUR SET 3 14 15
¢ USED &t 9 9 10 10 11 1) 12 13 32 32 36 36 36
EUCLID SET 3 :
: USED 31 1 10
LCF SEY
USED & 10
NUMERATUR SET 3 12 13
USED 3 12 L3 24 24 32 32 32 36 36 36
orl SET 3 10
USED 3
oep2 SEY : 10
USED 3
RATIONAL SET 3
USED 3 5 L7 26 26 34 34
RATIONAL _NUMRERS 2 1 SET 3
USED & 38
SAME_DENOHINATOR 5 T SEV
USED & 17 23 31
0 27 2 SEV 1 29
USED & 31 32 32
u 19 2 SET 3 22
USED 3 23 24
v 27 2 SET 1 30
USED s 31 32
v 19 2 SET 1 22
USED s 23 24
X EL] 2 SET 1
USED 3 36 36
X 26 2 SEY 1
USED 1 29
X 18 2 SET 1
USED 3 21

4 Figure 3-6. Cross—-Reference Listing (Page 1 of 2)
Options: NO ATTRIBUTE, XREF

£861 4aqUBAON |

00Y-6500-d0-¥) uot3esTjioadg weqsAs o8enBue epy

«°JUBWND0Q SIYY JO JOACD I UO SUOHDIIISAJ Y3 O) 3129(gns si
24eM3jOs 19INdwoD JO/pue BIEP |EDIULYDIL JO FUNSOIDSIP 4O B8N,

EL-€

NAME

SETMT ALOCK

uus LEYEL
5 2

34 2
26 2
18 2

5 2

SEI £ UiER

SET 3 12 18 23 3}
USED T 9 10 11 12 12 14
SET

USED 3 36 36

SET 3

USED & 30

SEY 3

USFD & 22

SeEV 1 13 15 23 31

USED ¢ 9 10 11 13 13 15

Figure 3-6. Cross-Reference Listing (Page 2 of 2)A

(Continuation of Options:

NO ATTRIBUTE, XREF)

€861 JaquaaoN |

00Y=-6500-49=Y40 uoraeoTI1oads weqsdg o8enBue epy

« " IUBWND0Q SIYY JO JRAOD Y} UO SUOHIDIAISAL By} 0} 329iqns si
aaemyos J9INAWOD 4O/ puR BILP |EDIUYDIY JO SJNSOJISIP 4O Bs(,

tl-t

STMT 3LAOCK

HAdE Uy LEYEL
. : 33 1
. 25 1
EQUAL 17 1}
CUMMON [2
oeuunlﬁAluk

CNots3 Vhis Is an Incosplete tisting, Includsd Lo describe the tisting format.>

SCOLE

RATIONAL _NUMBERS
SET & 3%

USED 3 35 35 36
RATIOVAL _NUMBERS
SET 1 31

USED 3 31 32
RATIONAL _NUNBERS
SET 3 23

USED 3 23 24
SAME_DENOMINATOR
SET ¢ 8 10 11

USED 3 11 12 13 14 15

RATIONAL
SET. 1 14 15

LXee
RATIONAL FUNCTION,

RATIONAL FUNCTION,
RATIONAL FUNCTION,
INTEGER RANGE 1 ..

INTEGER RANGE 1 oo

ARGUNENTS X,

ARGUMENTS Xq

ARGUMENTS X,

INVEGER®LAST

INVEGER'LASY

USED 3 9 9 10 10 11 11 12 13 31 31 35 35 35

Figure 3-7. Attribute Cross-Reference Listing

Options: ATTRIBUTE, XREF

b 14

32

32

£861 JoqUAAON |

00¥~6500-d0~¥D uoTaEdI Toeds we3sAg sBenBue epy

Ada Language System Specification CR-CP-0059-~A00
1 November 1983

3.7.1.3.3.4 Compilation Statistics Listing. - The compilation statistiecs
listing is a summary of the characteristics of the Ada compilation_unit
that was compiled. The listing shall be requested or suppressed with the
STATISTICS option. Text brought in via INCLUDE pragmas shall be included
in the determination of statistics.

The listing shall include:
a. User who requested the compilation;
b. The program library into which the units are compiled;

c. Number of diagnostics of each severity level, broken down by
: compiler phase which detected the diagnostic e.g., lexical
analyzer, parser;

d. Number of statements, lexemes, and comments;

e. Number of language constructs of the following categories:

Assignment Statements
Return Statements
Procedure Call Statements
Delay Statements
Raise Statements
Exit Statements
Goto Statements
Entry Call Statements
Abort Statements
Code Statements
If Statements
Loop Statements
Case Statements
Accept Statements
Select Statements
Null Statements
Blocks

Labels

Subprogram Declarations
Renaming Declarations
Number Declarations
Exception Declarations
Package Declarations
Task Declarations
Type . Declarations
Subtype Declarations
Object Declarations

Each’reserved word (see Paragraph 2.9 of Military
Standard, Ada Programming I..nguage,
ANSI/-STD-1815A-1983, 17 February 1983)M

3-75

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00 .
1 November 1983

Each operator:

*

+ / <>
/= >= <=

i
& GO

*

f. Number of source input lines;
g. Date and time of compilation; and
h. The size of the object program.
Figure 3-8 is an example of a compilation statistics listing. Statistics

are included in the output Container whether or not the STATISTICS option
is in effect. : .

3-76

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

»“IUBWANDOQG SIYF JO JOA0D Y] UO SUORDIIIISAJ 3Y) 0} 129(gns S|

24BM}J0S 43INAWOD 4O/ PuUE BIEP |EDIULDIY JO BINSOISIP 40 ISM),

LL-€

A[ALLRLILE

usew

PRUGRAM L IBRARY

DATE

CONTAINEK SIZE

UNLT SiZe
STATENENTS
LEXEMES
COMMENT S
LINES

RSADA
DEAD_PROG

OCY Ol, 1940 11323
2532 BYTES

37
28)
12
56

Figure 3-8. Compilation Statistics Listing (Page 1 of 3)

Option:

STATISTICS

€861 JaquaAoN |

00V=6500-d0-40 uolzedtj1oadg weysiAg sBenBuer epy

»*JUBWINDOQ SIYY JO JBADD BY] UO SUOHIDIIISEL BY) O} ID3qNs §i
S4em)y0s JBINAWOD JO/PUR BIED [EDIUYDS} JO BINSOIISIP JO IS(,,

8-t

LFL] uifa

AJORTY
ACCEPT
ACCESS
ALl
AND
ARRAY
AT

HEGIN 4
800Y 1

CASE
CONSTANT

JLEKALGR Migi

Ad)
<
<=
>
e
<>

QECLABALILUND
03JECT_DECLARATION
VYPE_DECLARATION
SURPROGRAM_DECLARATION
TASK_DECLARATION
RENANING _JECLARATINN
NUMBFR_DECLARATION

SIALEAENIY
ASSIGNMENT_STATENENT
RETURN_3 TATEMENT
PROCEDDRE _CALL
DELAY_STATERENT
RAISE_STATENENT

)] 1314 4282 T3
DECL ARF GENERIC
DELAY Gova
DELYA
DIGITS IF 2
(11} IN 1
1s 5
ELSE
ELSIF LINITED
END 6 Looe
ENTRY
EXCEPTION NOD
FXIT
NENW
FOR NOT
FUNCTINN 3 NULL
ﬂtﬁgAlﬂl U3ES
. 1
€
*]
/ 3
!
Uiks DECLARALILONS
5 SUBTYPE_DECLARATION
PACKAGE _DECLARATYION
4 EXCEPYION_DECLARATION
LABELS
BLOCK_IDENTVIFIER
LOOP_LDENTIFIER
uigl dTALCHENES U3ES
10 NULL _STATEMENT
3 IF_STATEMENT 1
2 LODP _STATEMENT

ACCEPT _STATEMENT

HO8Y iEs

OF ‘
OR

DTHERS

ouy 1

PACKAGE)

PRAGHA 2 ~

PRIVAYE
PROCEDURE 8

RAISE

RANGE

RECORD

REN

RENANES
RETURN 6
REVERSE

113

SIALEOENIS
EXTT_STATEMENT
GITI_STAFZHENT
ENTRY_CAL_
ABIRT_STAVEMENT
€23 _STATEMENT

HO80 Uik

SELECT
SEPARATVE
SUBTVPE

TASK
TERNINATE
THEN 1
TYPE

USE

WHEN

WHILE

WITH |}

XOR

USES SIALEMENLS

CASE_STATEMENT
sLOCK

SELECT_STAVYEMENT

Figure 3-8. Compilation Statistiecs Listing (Page 2 of 3)

(Continuation of Qption:

STATISTICS)

£86L JoqUIBAON |

00¥=6500~-dD-¥D uotjedorjroeds waiysig sBenBuet] epy

«Juswnsoqg sy3 jo JPA0D Y1 UO SUOHSLIISRJ By} O} 9igns si
248M1J0s J2INAWOD 4O/ PuUR BIBP |EDIUYDI) JO FINSO[ISIP JO IS(),

6L-€

DEAGNUSTECS

SEVERITY

LEYEL NUMGER 2HASE
HUTE o PARSFR
WARNING 0

FRROR 6 PARSER
SYSTER 0

FATAL 0

Figure 3-8. Compilation Statistics Listing (Page 3 of 3)

NusaER

Option:

STATISTICS

£861 JaquaaoN |

00¥-6500-dD-4D uOT3E0T3Toads Wa3skg aBensue epy

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.7.1.3.3.5 Machine Code Listing. - The machine code listing shall
display the object code generated by the compilation of a
compilation_unit. The listing shall be be requested or suppressed with
the MACHINE option.

The listing shall contain a symbolic representation of each instruction
and of each word of data, side-by-side with the numeric representation of
the machine code corresponding to the symbolic representation. In
addition, the statement number of the Ada source to which the generated
code corresponds shall be listed. (In the case of optimization-induced
code motion, the statement number may not be meaningful.) When
appropriate, brief comments shall describe the generated code.

Figure 3-9 is an example of a machine code listing. It should be noted
that the machine code 1listing is not in a format acceptable to an ALS
assembler.

3-80

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

4+ *IUWNI0Q SIYY JO JOACD Y} UO SUONDIJIISAL 3U} 0} 329IqNS St
18-¢

34em10s JINdWOd JO/PUe BILP [EDIUYDIT JO JINSOIISIP JO 38N,

BYTFSTREAN (HFXADECIMAL;

BEAD €808 gieWI IO LEELI) ADORESS UBCOOE QBERANDY ilnl
0002 PSECT EXECUTABLE
54 00 90 0 00 00 93¢ n0n2 MNVAB ¢VAR(O, 0D R1L 17
5A 00 00 00 00 BF DO 0009 nove 0,810
51 0D 0010 PUSHL R1
5C oV 0012 PUSHL RI2
5€ 5A C2 0014 SUBL2 R10,R12 .
DC AD 04 8C 70 0017 novae IR1213844,(R13)34-30
E° AD 98 BC TO 001C novo (R1213048,1RLIIIA-28
F4 AD 5€ 00 0021 nove RiGoER1DIBA-12 20
- 5A DC aAD 3¢ 0025 HOVAY (R131Ba-I64R10
59 N4 AD 9E 0029 HOVAS (R13VBa-44,R9
LY 6A 08 28 0020 noved 89IRI0D (RDY
9A E4 AD 9t 0031 NOVAB (R131B4-28,R10 21
39 €CC AD 9t 0035 MOVAB (R13)Ba-529R9
69 6A 08 28 0039 noved B8y(RLOD o IRI)
5¢ 04 C2 0030 susL2 [T1I8} .
04 AD 7F 0040 PUSHAD (R131B-~-44 : 22
04 AE CC AD T¢ 0043 NOVAD (R13IB-A~5241RLA)DBAS
0L 00 00 VO 00 02 Fi 0048 CALLS 2+SANE_DENDMINATO .
5A D4 004F CLRL R10 23
CC AD 04 AD DL 0051 cnePL (R131BA-44,41RLD)IBA-52
02 12 0056 BNEQ 2
SA D6 0058 INCL R10
£C AD 54 90 005A nove R10,(R13BA20
50 EC AD 9A 005€ MOVIBL (R13)Ba-20,R0
04 0062 RET 24

<Nots3 This fisting does not correspond ta the source In Flgure 3-4,>

Figure 3-9. Machine Code Listing
Option: MACHINE

00V-6500=d0-4D uot3estyrosdg waysAs aBendue epy

€861 JaquaAoN |

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.7.1.3.3.6 Diagnostic Summary Listing. - The diagnostic summary listing
is a description of all the diagnostic messages produced during
compilation of a compilation unit. The 1listing shall be requested or
suppressed with the DIAGNOSTICS option. The NOTES option shall determine
whether diagnostics of severity NOTE should be included in the diagnostic
summary listing.

The diagnostics shall be sorted by their occurrence in the source text,
Each diagnostic shall be in the format described in 3.7.1.3.4. Totals
showing the number of messages of each severity level listed shall appear
at the end of the listing. .

Figure 3-10 is an example of a diagnostic summary listing.

3-82

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

» " JUBWNDOQ SIYE JO JOAGD S UO SUOHDIIISEJ Y3 OF 109lans sI
JBM}J08 J9INAWOD J0/PUR RIEP [EDIUYDI] JO IINSO[ISIP 4O ISM),

£8~¢

SV TENENT
NUNBER

SEVEKETY
LEYEL

NOTE
WARNING
ERROR
YT
FATAL

0LAgH0S1IC
seo y 2001
*es F 2033
yunaER

L

]

1

0

°

SYNTAX RECOVERY -~ PARSING RESUMED AT °*;°

SYNTAX ERROR = =% — EXPECVING °*3=* DR NAME QUALIFIER

Figure 3-10. Diagnostic Summary Listing

Options:

NOTES, DIAGNOSTICS

€861 JaquiaroN |

00¥-6500-d)-Y¥) uotjeo1yroads wessds sBendue epy

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.7.1.3.3.7 Compilation Summary Listing. - For each ‘compilation
consisting of one or more compilation _units, the compiler shall produce a
compilation summary. Users shall be prevented from suppressing this
listing.

The compilation summary shall include:
a. The total number of diagnostics of each severity level;
b. The CPU time consumed by the compiler;

c. The compiler options which were specified for the compilation;
and :

d. A list, called the recompilation advisory, of all compilation
units that, though previously compiled, must now be recompiled.

Figure 3-11 is an example of a compilation summary listing.

A compilation summary might not be produced if a FATAL diagnostic has been
generated.

3-84

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

»°IUIWNDOQ SIYY JO JIA0D Y UO SUOHIDIIISIJ DY) 0 139igns i

948M3)08 JIINCWOD JO/PUR BIBP |EIIULDIY JO JINSO{ISIP JO 98],

g8-¢t

BEANURLES

CONPUTER TiINME
TOTAL

INTAL DIAGNOSTICS

NUHRER
i
13
RECOMPILATION ANVISORIESS

UPTIUNS IN EFFECY

(Always produced unless a Container is not generated)

00300305.010

LEVEL
NOTE
ERROR

NONE
SOURCEs REFORMAT. PRIVATE,
NOTESe ATTRIBUTEs XREFe STATISTICS, .

BACHINE, DIAGNGSVICS, CODE_ON_MARNING,
CODE _GENERATION, OPVINIZE

Figure 3-11. Compilation Summary Listing

€861 JaquaaoN |

00Y-6500=-43-4) uotaeo1jroadg weqysiAs s3enBue epy

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.7.1.3.4 Diagnostic Messages. - The compiler shall produce diagnostic
messages when presented with wrong or questionable Ada text, or when thure
is an unusual circumstance. Diagnostic messages shall appear in the
source 1listing, 1if one is produced; each message shall be interspersed
with or immediately follow the diagnosed statement. Diagnostic messages
shall also be 1listed in the diagnostic summary listing described in
3.7.1.3.3.6. A complete list of all diagnostic messages produced by the
ALS is provided in Appendix 80.

Five severity levels of diagnostic situations shall be used:

a. A NOTE shall be used to inform the user of some unusual action
the compiler has taken, such as assuming a default. Tais shall
not be an indication of an error.

b. A WARNING shall be used to inform the user that, although the
text is legal according to the language definition, it does not
have the meaning that the user probably intended. An example
of a warning is an operation that always raises an exception at
runtime.

¢. An ERROR shall diagnose illegal Ada text.

d. A SYSTEM diagnostic shall be used to indicate an internal error
inside the ALS. Compilation shall continue.

e. A FATAL diagnostic shall be used to indicate an error (either a
user error or an -internal error) which is so severe that
compilation must be aborted. Since a compilation may consist
of multiple compilation units, a FATAL diagnostic may terminate
the compilation process before even starting processing of some
of the units. Production of listings cannot be guaranteed, but
the FATAL diagnostic shall be printed.

If there are diagnostics of severity ERROR, SYSTEM, or FATAL, the
Container will not be wusable as input to a linking tool, compiler,
assembler, or exporter. Under the user option CODE _ON_WARNING, the
Container will be, or will not be, usable when WARNINGsS are the most
severe diagnostics. (If there are FATAL diagnostics, a Container may not
be produced.)

If at any time during processing, the Compiler detects more than 50
diagnostics of severity ERROR or greater, the compiler shall issue a
diagnostic of severity FATAL and shall terminate processing.

The format of a diagnostic message is described in 80.1.

3-86

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

When diagnostics appear in the source 1listing, the diagnostics shall
frequently be accompanied by the character # under the text being
diagnosed. This character shall highlight the particular lexical units to
which the diagnostic refers.

3.7.1.3.5 Special Diagnosties. - The compiler shall produce diagnostic
messages known as special diagnosties to indicate either that it was
unable to effect the start of compilation due to an inability to recognize
all of its inputs, or that a FATAL diagnostic was encountered during the
compilation. Special diagnostics are routed to MESSAGE_OUTPUT.

The special diagnostics produced by the compiler shall be as described in
Appendix 80. All special diagnostics result in termination of the
compilation process.

3.7.1.4 Maintemance Aids. - The compiler shall produce maintenance aid
listings that will be accessible to the user, but not documented for his
use. These aids shall be documented in the.operator's manuals, but not in
the user reference manuals. These listings shall include those described-
in 3.7.1.1.1.2.

-
.

3.7.1.5 ALS Compiler Machine-Independent Section. - The
machine-independent section of the compiler shall perform full syntax
checking, shall check all operations and parameters for type
compatibility, and shall verify that all semantic restrictions on the Ada
language source text are met. It shall translate the source input into an
1ntermedlate language representation,

3-87

"Use or dlsclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.7.1.5.1 Intermediate Language. - A machine-independent intermediate
language shall be used in the compiler. The intermediate language shall
be based on DIANA (2.2), and shall be described in the Intermediate
Language Specification (see 3.4.2.).

3.7.1.5.2 Machine~Independent Section Design Goals. - The design goals of
the ALS Compiler Machine-Independent Section shall be to parameterize
target dependencies, and to implement optimizations that will reduce the
use of runtime resources.

3.7.1.6 Code Generators. - A code generator for each target environment
listed in 3.1.1.2 shall be included in the compiler.

3.7.1.6.1 Code Generator Design Goals. - The design goals of the code
generators include: commonality of design, similarity of implementation,
isolation of target dependencies, and parameterization of target
dependencies. The code generator shall be re-entrant.

3.7.1.6.2 Code Generator Execution. - Only one code generator shall be in
execution during a compilation.

3.7.1.6.3 Code Generator Input. - The input to each code generator shall
include:

a. Intermediate language output of the ALS Compiler
Machine-Independent Section, and

b. User options to produce maintenance aid listings.

3.7.1.6.4 Code Generator Output. - Each code generator shall produce
Containers that include the machine text translation of the intermediate
language input. The generated code shall contain in-line insertions of,
or calls to, the appropriate runtime support library routines.

3-88

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP=-0059-A00
- 1 November 1983

3.7.1.7 Runtime Support Libraries. - Runtime support for each target
environment listed in 3.1.1.2 shall be provided by routines in runtime
support libraries.

3.7.1.7.1 Runtime Support Library Routines. - Each runtime support
library shall be a set of routines and data structures. The routines
shall provide those functions required to implement the semantics of the
language which, in general, include memory management, interrupt handling,
I/0 request handling, task management, runtime diagnostic support, error
detection, and recovery. These routines are not intended to be called
directly from Ada source text, but may be invoked from compiler-generated
machine code.

In the case of a program running on a distributed target, the runtime
support 1library uses the Software Communications Package (not part of the
ALS) to synchronize tasking between the primary and remote machines.

It is possible for the user to provide alternative runtime nuclei, and
select the correct nucleus at the time the exporter is invoked. Two
nuclei will be provided with the ALS: one with resource utilization
accounting and one without.

The members of the set of runtime support routines that are present in the
target environments shall vary as a function of the semantics invoked by
the programs being supported. That is, if a given program does not invoke
a particular language feature, then the runtime support for that feature
shall not be present., For those target environments that have resident an
operating system, maximum use shall be made of the appropriate resident
software to provide the runtime support required to implement the
semantics of the language and execution of Ada programs.

3.7.1.7T.2 Runtime Support Library Output. - The runtime support library
shall be capable of producing a summary of the computer resources (as a
user option), such as execution time and memory required, used in the
execution of a program. The runtime support library shall also produce
the runtime diagnostic messages described in Appendix 80.

3-89

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.7.2 Assembler Functional Area. - An assembler for each target
environment 1listed in 3.1.1.2 shall be included 1in the Ada Language
System. Each assembler shall be designed to accept assembly language
library subprogram bodies. The assembly language for each target machine
shall be consistent with the native language of the machine, and shall be
sufficient to permit access to the entire instruction set of the target
machine, Subprogram bodies written in assembly 1language and translated
with an assembler shall be callable from Ada text.

The assemblers shall diagnose all deviations from the requirements
delineated in Appendix 20. Appendix 80 contains a complete summary of all
diagnostic messages.

3.7.2.1 Assembler Design Goals. - The design goals of the assemblers
shall include: commonality of design, similarity of implementation,
isolation of target dependencies, parameterization of target dependencies,
and a reentrant capability.

3.7.2.2 Detailed Descriptions. - Detailed descriptions of the assemblers
in the Ada Language System are included in Appendix 20 to this
specification.

3.7.2.3 Maintenance Aid Options., =

SNAP_SHOT Creates two snap_dump files in the current working
directory:

asmvax_afe_snap_dump created after the AFE
pass.

asmvax_mtf_ snap_dump created after the MTF
pass just before the
Container is installed

into the program
library.
Default: NO_SNAP_SHOT
AFE_MAINT Debugging aids for the AFE. Sets tracing flags

"ON" during the AFE pass of the tool.
Default: NO_AFE_MAINT

MTF_MAINT Debugging aids for the MTF. Sets tracing flags
WONT during the MTF pass of the tool.
Default: NO_MTF_MAINT

QLM_MAINT Provides system information when PLM errors
arise. Default: NO_PLM MAINT

3-90

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
' 1 November 1983

DUMP_OBJECT Dumps the object code produced to MSGOUT in a
format that facilitates easy examination
through the standard VAX-11/780 editor. Each
byte of object code is represented as two ASCII
graphic characters. Default: NO_DUMP_OBJECT

SYM _TABLE DUMP Dumps the contents of the symbol table after
the AFE pass to the MSGOUT file.
Default: NO_SYM TABLE_DUMP

LIST_MAINT Dumps tracing information of the listing tool.
: Default: NO_LST MAINT

AFE_PLUS Used in conjunction with AFE_MAINT, it provides

additional debugging aids such as flag values,

counter values, and other information

associated with parsing. Default: NO_AFE_PLUS

MTF_PLUS Used in conjuction with MTF_MAINT, it provides
‘additional debugging aids such as flag values,
counter values, and other information
associated with machine text creation.
Default: NO_MTF_PLUS

3.7.3 Linker Functional Area. - A linker for each target environment
listed in 3.1.1.2 8hall be included in the Ada Language System. Each
linker shall contain a linking tool and an exporter. Linkers for target
environments requiring the integration of programs written in languages
other than Ada or assembly language shall include an importer. Linkers
for target environments without virtual memory or with small address
spaces shall include an overlay capability. Detailed descriptions of the
linkers in the Ada Language System are included in Appendices 30 and 40 to
this specification.

The linkers shall diagnose all deviations from the requirements delineated
in Appendices 30 and 40. Appendix 80 contains a complete summary of all
diagnostic messages.

3.7.3.1 Linker Design Goals. - The design goals of the 1linkers shall
include: commonality of design, similarity of implementation, isolation
of target dependencies, parameterization of target dependencies, and a
reentrant capability.

3-91

“Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-400
1 November 1983

3.7.3.2 Linking Tool Operation. - Each linking tool shall have the
capability of linking complete programs. In addition, each linking tool
shall be capable of operating in the absence of certain subprogram or
package bodies, thereby permitting creation of incomplete programs. The
linking tool shall enforce the elaboration order rules described in the
Military Standard, Ada Programming Language, ANSI/-STD-18154-1983, 17
February 1983 (2.1).

" 3.7.3.3 Exporters. - Each linker exporter shall be capable of translating
a Container into the appropriate format for loading in the applicable
target machine. If the target machine is a bare machine, i.e., a machine
with no resident operating system, the exporter shall be capable of
translating the Container into a format, called a "load module”, for
transmission- to the applicable target machine ALS loader. Load modules
shall be transferred on physical computer media compatible with the target
machine.

3.7.3.4 Importers. - An importer shall be included in the linker for
those target environments requiring the integration of programs written in
languages other than Ada or assembly language (see 3.2.1.5). The importer
output Container shall be stored in the environment database. (At
present, there are no target environments in the ALS that require an
importer.)

3.7.3.5 Linking Tool Maintenance Aids. - The following maintenance aids
are provided by the linking tool. They can be enacted by inecluding the
designated option keyword in the option_list on the command line.

SNAP_SHOT - Causes the linker to create a snapshot container at
various points during the link. The exact points at
which this done 1is dependent upon which other
maintenance options have been selected. The snapshot
container is always placed in the ALS node LNKVAX SNAP
under the current working directory.

MAINTO - Causes temporary files not to be deleted throughout the
link. This includes the temp container and files
created in parse_pkg.

MAINT1 - Maintenance aids from parse_ pkg.
- Container snapshot after parsing args if the SNAP_SHOT
option is also selected.

MAINT2 - Maintenance aids from build_cut.init_cut.
- Container snapshot after init_cut if the SNAP_SHOT
option is also selected.

3-92

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

MAINT3

MAINTY

MAINTS

MAINT6

MAINT7

MAINTS8

MAINT9

MAINT10

Ada Language System Specification CR-CP=0059-A00
1 November 1983

Maintenance aids from build_cut.linker_search.
Container snapshot after llnker search if the SNAP _SHOT
option is also selected.

Maintenance aids from build_ol graph.init graph.
Container snapshot after init_graph if the SNAP_SHOT
option is also selected.

Maintenance aids from build_ol_graph.fill graph.
Container snapshot after £i11 graph if the SNAP_SHOT
option is also selected.

Maintenance aids from link.link data.
Container snapshot after 1link data if the SNAP_SHOT
option is also selected.

Maintenance aids from link.link elab.
Container snapshot after 1link elab if the SNAP_SHOT
option is also selected.

Maintenance aids from link.link exec.
Container snapshot after 1link exec if the SNAP_SHOT
option is also selected. h

Maintenance aids from wrapup. -
Container snapshot after wrapup.build_subprog_defs if
the SNAP_SHOT option is also selected.

Maintenance aids from link a psect.

3.7.3.6 Exporter Maintenance Aids. - The following maintenance aids are

provided by the exporter. They can be enacted by including the designated
option keyword in the option_list on the command line.

MAINT1

MAINT2

MAINT3

Causes the exporter to create a file called testobj.obj

in your VMS current working directory. This file will
contain the object module created by the exporter and
will not be deleted. 1In addition, the executable image
will not be copied from the VMS file to 1its the
designated ALS node. It will be in a file called
linktemp.exe under the VMS current working directory at
the time the exporter was invoked.

This option causes ALSLINK.COM to link the final image
with the VMS debugger and to produce a VMS link map in
a file named alsmap.map in the VMS current working
directory.

This option causes output of various information during
the exporting process. Currently this information

includes:

3-93

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983 .

- echoing all of the arguments given to the exporter
- values of 1local variables during the relocation
process (in package build_1lm)

MAINT4 - The exporter will stop after creating the object module
and will output information for the user to invoke the
DEC VMS linker by hand. For example, you may want to
not 1link in the KAPSE shareable image or you may want
to use a different shareable image. In this way you
can provide some special options to the linker if
necessary.

3.7.4 Loader Functional Area. - In target environments having resident
operating systems the existing loaders shall be used. For each bare
target environment specified in 3.1.1.2, a loader shall be provided in the
Ada Language System. Each 1loader shall have the <capability of
transferring load module input from its storage medium into the applicable
target machine main memory for execution. Loaders shall be designed to be
brought into target machine main memory via an auto-bootstrapping
mechanism in the target machine.

The loaders shall diagnose all deviations from the requirements delineated
in Appendix 40. Appendix 80 contains a complete summary of all diagnostic
messages. ' '

3.7.4.1 Loader Design Goal. - Each loader shall be designed to minimize
the 1loader residue in the target machine main memory after loader

processing is complete.

3.7.4.2 Loading and Executing Programs. - Detailed descriptions of the
procedures for exporting, loading, and executing programs for each target
environment in the ALS are provided in Appendix 40 in this specification.

3.7.4.3 Loader OQutput. - Each 1loader shall have the capability of
printing, at the option of user, a memory map (Symbol Definition) similar
to that produced by the linking tool as well as a catalog listing. The
memory map shall describe - the 1locations of all globally-visible
subprograms and objects.

3-94

"Use or disclosure of technical data and/or computer software
_ is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.7.5 Text Editor and Formatter Functibnal Area. =

3.7.5.1 Text Editor. - The DEC VAX/VMS Text Editor in the host
environment shall be included- in the Ada Language System as a tool.
Information on this tool is provided in the reference documents published
by the Digital Equipment Corporation (2.2 e. and g.).

3.7.5.1.1 Invocation. - Like other tools, the Text Editor shall be
invoked by the ALS Command Language Processor and interface with the ALS
Database Manager for the input and output of text and listings.

3.7.5.1.2 Qutput. - The editor shall create file nodes in the environment
database. These nodes may provide source input to the compiler,
assemblers, Formatter, or ALS Command Language ProcessorM

3.7.5.2 Formatter. - The DEC Standard Runoff Formatter in the host
environment shall be inecluded in the Ada Language System as a tool. "
Information on this tool is provided in the reference documents published’
by the Digital Equipment Corporation (2.2 e. and i.).

3.7.5.2.1 Invocation. = Like other tools, the Formatter shall be invoked -

by the ALS Command Language Processor and interface with the ALS Database
Manager for the input and output of text and listings.

3.7.5.2.2 Input and Output. - The Formatter shall create formatted
listings. The input to the Formatter shall be file nodes from the
environment database.

3.7.6 Configuration Control Tools Functional Area., - Detailed
descriptions of the Configuration Control Tools are included in Appendix
70 of this specification.

The CCT shall diagnose all deviations from the language delineated in
Appendix TO. Appendix 80 contains a complete summary of all diagnostic
messages.

The CCT functional area includes the HELP facility, which allows users to
obtain information on how to use the ALS toolset. As a minimum, there
shall be a HELP file provided for each tool identified in Appendix 70.

3-95

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.7.7 Command Language Processor Functional Area. - The command language
processor shall interpret the command language input to the ALS to invoke
all the host-resident tools, and to provide user option and control
inputs. A complete description of the command language and the
methodology of its interpretation is provided in Appendix 60. The command
language processor interfaces are provided 1in 3.1.5.4.9. The command
language processor shall be re-entrant.

The CLP shall diagnose all deviations from the 1language delineated 1in
Appendix 60. Appendix 80 contains a complete summary of all diagnostic
messages.

3.7.7.1 Parameters To The CLP. - The ALS Command Language Processor (CLP)
is an ALS tool, like all other ALS tools, and has no distinguished status.
Like other tools, it has parameters which must be specified at the time it
is invoked. Since the CLP is never explicitly invoked in normal ALS use,
the CLP is not described in Appendix 70. This section describes the CLP
parameters and the wusual values for the initial program. If the CLP is
invoked as the initial program, it is called the initial CLP. The initial
CLP has a number of special properties:

(a) It does not terminate by default if a syntax error is
encountered.,

(b) Default values are assigned to the predefined substitutors.

(e¢) At startup, it searches for the user's prologue file (named
PROLOGUE) in the current working directory.

(d) The parameter PO has the null value.

The CLP takes four parameters:
(a) Command Stream or Command Name

For the Initial CLP, this parameter is the full pathname of the
device or file from which the command stream is to be read.
This is usually .STDIN. For non-initial CLP's, this 1is the
tool name as typed by the user in the tool command that
resulted in the CLP invocation. If this is appended to the
value of the second parameter, the resulting string is the full
pathname of the file containing the new command stream.

(b) ~ Command Directory or NULL for the initial CLP
For the Initial CLP, this parameter is null. - For other CLPs,

this p .ameter is the name of the directory in which the
selected tool resides.

3-96

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP=0059-A00
: 1 November 1983
(¢) Option List

This is a list of options, separated by commas and enclosed in
parenthesis. The options are described in 3.7.7.2.

(d) Parameter String
This parameter is a string of parameters to be passed ¢to the
invoked tool. For the 1Initial CLP, this parameter should
usually be omitted entirely. For other CLPs, the syntax must
conform to that used by the PARM_LIST Utility Package described
in Section 90.3.3 of the ALS System 3pecification.

The normal parameters for the invocation of the initial CLP are:

(.stdin,,(initial_eclp))

3.7.7.2 CLP Maintenance Options. - The options that may be specified to
the CLP are listed in the following subparagraphs:

READ_VERIFY This option instructs the CLP to write on message'
output how each 1line of command language text
looks as the CLP begins to process it.

SUB_VERIFY This option instructs the CLP to write on message
output how each command looks after substitution
has been performed.

EXPR_VERIFY This option instructs the CLP to write on message
output how each command 1looks after expression
evaluation has been performed

~ INITIAL_CLP This option informs the CLP that it 1is the
initial CLP. An initial CLP possesses the special
properties given in 3.7.7.1, above.

LIST_GLOBALS This option instructs the CLP to write on message
output the contents of the global substitutor list
each time a global command is executed,

LIST_LOOP_STACK This option instructs the CLP to write on message
output every value put on or removed from the loop
information stack.

LIST_PARAMETERS This option instructs the CLP to write on message
output the initial -alues of the parameter
substitutors.

3-97

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.7.8 Database Manager Functional Area. - The Database Manager functional
area shall provide all access to the environment database.

The Database Manager (DBM) functional area shall be re-entrant and
consists of three major parts:

a. Environment Data Manager (EDM)
b. Container Data Manager (CDM)

¢. Program Library Manager (PLM)

3.7.8.1 Environment Data Manager. - The EDM provides tools that enable
the user to examine and modify the ALS database from the command language.
In general, the primary function of these tools is to support a friendly
and forgiving human interface for more primitive KAPSE functions.

3.7.8.2 Container Data Manager. - The CDM provides primitive services to
Ada programs that enable them to examine and modify the contents of
Containers. Typical users of these services are compilers, linkers,
assemblers and debuggers, ete., (i.e., tools that deal with the compiled
form of Ada programs).

3.7.8.3 Program Library Manager. - The PLM provides primitive functions
to Ada programs for examining and modifying the contents of Program
Libraries. Typical users of these primitive functions are compilers,
linkers, assemblers, debuggers, and the Program Library Manager Tool
(LIB), etec.

3.7.9 Kernel Ada Programing Support Environment (KAPSE) Functional Area.

- The KAPSE shall provide services allowing ALS host-resident tools to be
host independent. The KAPSE and the Runtime Support Library provide the
exclusive interface between the host operating system and all ALS
host-resident tools. The KAPSE interface shall provide services such as
input/output (including support of the environment database), tool
invocation and symbolic debugger support. The shared portions of the
KAPSE shall be re-entrant.

3-98

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.7.10 Display Tools Functional Area. - The Display Tools are a set of
tools to provide displays of Container information. The tools can be
divided into two categories: those that provide user 1listings of the
results of assembles, compiles, and 1links; and those that provide
maintenance aids listings for use in maintaining the ALS tools which use
the Container Data Manager part of the Database Manager.

3.7.10.1 Listing Tools. - The Listing Tools provide 1listings of the
results of assembles, compiles, and 1links. The information for these
listings is recorded by the appropriate tool in the Container it produces.
The Listing Tools, described in Appendix 70, consist of the following:
GENLISTVAX and GENLISTMCF.

3.7.10.2 Maintenance Aids Tools. - The Maintenance Aids Tools provide
maintenance aid 1listings of the Container. These tools consist of two
interactive container dump tools: SNAP_DUMP and C_DUMP. Each tool has a
different invocation; however, their interaction with the user is
identical.

3.7.10.2.1 Maintenance Aids Tool Descriptions. - This section describes
the container dump tools. Their interaction with the user is described in
3.7.10.2.2.

3-99
"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR=CP-0059-A00
1 November 1983
NAME: . SNAP_DUMP - Dump the contents ofva snapshot Container.
FUNCTION:. Interactive dump of contents of a snapshot container;
has - subcommands for establishing display format,
displaying. ¢c-nodes in particular orders, establishing
selection criteria, and controlling the tool.
FORMAT: SNAP_DUMP (container_name)
PARAMETER DESCRIPTION:

container_name: is the name of the Environment Database node
holding the snapshot container.

DISPOSITION:
IN subcommand input
ouT Responses
MSG Confirmation and diagnostic messages
RSTRING Not used
RSTATUS See Appendix 80
NOTES:
none
EXAMPLE(S):
none

3-100

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

NAME:

FUNCTION:

FORMAT:

Ada Language System Specification CR-CP-0059-A00
1 November 1983

C_DUMP - Dump the contents of a Container in a program
library.

Interactive dump of contents of a container in a
program library; has subcommands for establishing
display format, displaying c-nodes in ‘particular
orders, establishing selection criteria, and
controlling the tool.

C_DUMP (ada_name, prog_lib)

PARAMETER DESCRIPTION:

ada_name
prog_lib
DISPOSITION:
IN
ouT
MSG
RSTRING
RSTATUS
NOTES:
none
EXAMPLE(S):
none

is the Ada name of the Container within the
program library.

is the name of the program library holding
the Container,

subcommand input

Responses

Confirmation and diagnostic messages
Not used

See Appendix 80

3-101

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983

3.7.10.2.2 Container Dump User Interaction. - The interactive subcommands

for the container dump tools can be divided into four categories:

a., Establish display format, .

b. Establish selection criteria for disp@aying nodes,

c. Display c-nodes, and

d. Control tools.

-

Each one of thé caéegories is described below.

3.7.10.2.2.1 Display Format Subcommands. - The following subcommand

establishes the output format that all subsequent subcommands shall follow
until the next FORMAT subcommand is encountered.

a. FORMAT (attr_list)
Establish display format to be used by the display subcommands.
The parameter is: ‘

attr_list -

as
asa
cd
cg
co
cut
fin
fmt
ft
in
lnk
1x
oa
ol
op
ot
sm
sma
tra
tri
trp
ut

a comma-3Separated 1list of attribute categories
indicating which groups of attributes will be
displayed whenever a c-node is displayed by the
dump tools. The possible values for attr_list
are:

structural attributes

shadow structural attributes

code attributes in Diana

code generator attributes

compiler extension attributes
compilation units table attributes
peephole optimizer attributes
formatted machine text attributes
front end temporary attributes
initial attributes

linker attributes

lexical attributes

optimizer auxiliary attributes
overlay graph attributes

optimizer permanent attributes
optimizer temporary attributes
semantic attributes

semantic shadow attributes
translated tree auxiliary attributes
locally optimized tree attributes
translated tree permanent attributes
utility attributes

3=102

‘qu or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR=-CP-0059-A00
. _ 1 November 1983

umt unformatted machine text attributes
vt visibility tree attributes

wt with table attributes

xa expanded tree auxiliary attributes
Xp expanded tree permanent attributes

Diana equivalent to lx,cd,sm,as
ngferx nupajednri ic Laere¢gf¢ge¢ehe¢h™
edd edd eiioalpinh ar e rcxn

Etn xnsepdi cr iced hieoipf ah &eddé&W

Sebt phn c¢s itn BH:.CE hplbe""erx nhieldahtnh e rnz sco"ei¢ itnk
eon rci exxaiajnW

Beo edd hplbe""erxh itei xahfdek b9rexnh¢ itn cpifpi sco"ei zadd 1in
eh scddczhA

T tng xavai onfonhnrieiacr
of the internad
c-node yalue

b'rexnA “b9rexn onsnonrbn jedpn{

18

node name = <name of c-node>
<attr name> = <attr value>

cdm_type.c_cnode_type

The value is displayed

in a form appropriate

to the type. If the
attribute is a c-node
reference, it will be
displayed as 8 hex digits.

{tmp attr name> = <attr valued>

<last tmp attr name> = <attr value>

3.7.10.2.2.2 Selection Subcommands. - The following subcommands establish
the selection criteria which determine what nodes are displayed in
multiple c-node Display subcommands,

a. ATTR_SELECT (attribute_name)
Select for display only nodes that have the specified attribute
and also match the NODE_SELECT criterion. This subcommand
supercedes all previous ATTR_SELECT and ATTRV_SELECT

subcommands. The parameter -is:
attribute name - indicates what attribute the node must
have to be selected. The possible values
are:

stmt_no - co_stmt_number

3-103

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

b.

Ce.

co_begin_stmt_nu
co_else_stmt_num
co_ end stmt Tumb
co exception stm
co_private_stmt

all - any attribute

The default is "all".

ATTRV_SELECT (attribute_name, value)

Select for display only nodes that have the specified
attribute, the specified attribute value, and also match the
NODE_SELECT criterion. This subcommand supecedes all
ATTR_SELECT and ATTRV_SELECT subcommands. The parameters are:

attribute_name -~ indicates what attribute the node must
have to be selected. The possible values -
are:

stmt_no - co_stmt_number
co_begin stmt_nu
co_else_stmt_num
co-end_stmt_numb
co_exception_stm
co_private_stmt -

value -~ indicates the value the attribute must
have to be selected.

NODE_SELECT (node_name)

Select for display only nodes of the specifled node type that
also match the ATTR_SELECT or ATTRV_SELECT criteria for
display. This subcommand supercedes all previous NODE_SELECT
subcommands. The parameter is:

node_name - a CDM node name to indicate the node type
or "all" to indicate that all nodes
should be selected.

3.7.10.2.2.3 Display Subcommands. - The following subcommands display

c~-nodes.

ALL
Display all nodes of the container that meet the selection

criteria.

3-104

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

g

Ada Language System Specification CR-CP-0059-A00
1 November 1983

NEXT_NODE(c_node_ref)
D1splay the node following the specified c-node. The parameter
is:

¢_node_ref - reference to a c-node in hex format.

NODE(c_node_ref)
Display the specified c-node. The parameter is:

¢_node_ref - reference to a c-node in hex format.

RANGE(from c_node_ref, to_c_node_ref)

Display all of the c-nodes within the specified range that meet
the selection criteria. The from and to c_node_refs need not
be legal c_nodes, the display will start at “the " first c_node
following “the from reference and will stop at the first c_ “node
containing the to reference. The parameters are:

from_c node ref - reference to a c-node which indicates the
display will start at the first c-node
following the reference.

to_c _node_ref - reference to a c-node which indicates the
display will stop at the first ¢ node
containing that reference.

ROOT
Display the root of the container.

SEQ_OBJ(c¢_node_ref, position)
Display the c-node for an object in a sequence at the specified
position. This subcommand will work for either list or array
sequences. The parameters are:

c¢_node_ref - reference to a c-node for a sequence head
in hex format.

position - position within the sequence of the
object that is displayed.

SEQUENCE(c_node_ref)
Display all of the elements of a sequence that meet the
selection criteria. The parameter is:

c_podg_fef - reference to a c-node for a sequence head
in hex format.

TREE(c_node_ref [direct]lshadow])

Display the c=-node and all c¢-nodes that it references through
either the structural or shad 7 structural attributes that meet
the selection criteria. The parameters are:

¢ node ref - reference to a c-node in hex format.

3-105

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

If the value of this argument is 00000000
then the root of the tree to be displayed
will be the Compilation node.

direct - Display only c-nodes that the specified
o=node directly references, otherwise
display all c-nodes. The default is
true.

shadow - Display the tree wusing the shadow ASA
attributes for traversal, otherwise use
“the structural AS attributes.

3.7.10.2.2.4 Control Subcommands. - The following subcommand controls the
processing of the Container dumper tools.

a.

EXIT_DUMP
Exit interactive mode and return to the ALS CLP.

3.7.11 File Administrator (FA) Functional Area. - The File Administrator

shall provide ALS tools supporting the following services. -

a,.

Comparison of nodes including the data portion of files, the
offspring portion of directories and variation headers, and
attributes and associations of all nodes.

Rollout of selected files from disk storage to magnetic tape¢
rollin of rolled-out files from tape back to disk storage, and
maintenance of an on-line table of contents of the 1library of
rolled-out portions of the database.

Backup of the database contents by producing tape copies of
information stored on disk. Such copies may be produced for
the entire database, on a subtree basis, i.e., the entire
contents of a subtree, or on an incremental basis, i.e., the
information changed since the previous backup.

Restoration of information previously copied to tape via
backup. Information can be returned to disk storage either
entirely as written to tape or selectively, on a node-by-node
basis.

ALS~to~-ALS data transmission. The capability of transmitting
one or more subtrees or essentially all of a disk-resident ALS
database is provided. The transmission medium 1is magnetic
tape. (The capability assumes that compatible hardware exists
on both host computers.) The transmission capability provides,
as a byproduct, a method for long-term preservation of database

3-106

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

contents as well as= a method for producing private backup
copies.

The list of File Administrator tools is shown in Table 3-3.

It is intended that the tools which involve handling of tapes
in the ALS host's tape 1library - BACKUP, BKPCHNG, BKPTREE,
RESTORE, ROLLIN, ROLLOUT - will be used directly or in command
procedures employed by a user acting in the capacity of a
system operator.

Tools such as ARCHIVE and UNARCHIVE are to be employed by users
in general to communicate with the rollout/rollin operations by
sending lists of pathnames to protected files whose contents
Wwill be used to build parameter information for the ROLLOUT and
ROLLIN tools. The name of the to-be -rolled-out file referred
to in the description of ARCHIVE is .ALS.ARCHIVE.ARCHIVE_LIST.
The name of the to-be-rolled-in file referred to in the
description of UNARCHIVE is .ALS.ARCHIVE.UNARCHIVE_LIST.

In general, there are provisions for tape swapping in the event
that data written by a tool cannot all be written on one tape
volume.

3-107

"Use or disclosure of technical data and/or computér software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-400
1 November 1983

Table 3-3

FILE ADMINISTRATOR TOOLS

NAME SPECIFIED IN DESCRIPTION

ARCHIVE Appendix 70 Archive a set of file revisions

BACKUP 3.7.11.3 Write backup copy of entire
database

BKPCHNG 3.7.11.3 Write backup copy of database

, changes

BKPTREE 3.7.11.3 Write backup copy of subtree(s)
of database

CMPFILE Appendix 70 Compare data of two file nodes

CMPNODE Appendix 70 Compare nodes except for file
data

CMPTEXT Appendix 70 Compare text files

RECEIVE Appendix TO Receive subtree from tape

RESTORE 3.7.11.3 Restore all or part of database
from backup copy

ROLLIN 3.7.11.3 Roll in file node(s) from archive
tape

ROLLOUT 3.7.11.3 Roll out file node(s) to archive

‘ tape
TRANSMIT Appendix 70 Transmit subtree to tape
UNARCHIVE Appendix 70 Unarchive a set of file revisions

3-108

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR=-CP-0059-A00
1 November 1983

3.7.11.1 Concepts of rollout/rollin. - Infrequently used file data,
associations, and attributes (except for a small number including
derivation_count, availability, and archive_volume, which must remain on
line) may be "rolled out" ¢to archive tapes to reduce disk storage
requirements,

Every time that an existing file node revision is rolled out, the ROLLOUT
tool performs the following sequence of activities.

a. The user (who, by means of execute access protection on the
ROLLOUT tool, is acting in the capacity of a system operator)-
is asked to mount an archive tape. Tapes containing archived
nodes are dedicated to this use.

b. The file node is written to the tape at the end of other rolled
out nodes previously written to this tape.

¢. The archive volume attribute is given a value which contains
the tape volume name, which has the syntax of a restricted form
of an Ada identifier.

d. The value of the availability attribute of the node is changed
from on_line to off line,

e. A protected directory called .ALS.ARCHIVE.TAPE_LIBRARY is
accessed and the primary absolute path name of the node is
appended to a file under this directory whose file name is the
tape volume name.

f. The disk space used by the node information which has been
written on tape is reclaimed.

From this time onward, even when ¢the node is rolled back in, the
information will remain on tape and the node's path name will remain in
the .ALS.ARCHIVE.TAPE_LIBRARY.<volume_name> file.

Subsequently, rolling in the node is accomplished by reading the node
information from tape and changing the value of the availability attribute
to on_line; this is done by the ROLLIN tool. The pathname entry in the
file .ALS.ARCHIVE.TAPE _LIBRARY.<{volume_name> is enclosed in parentheses to
indicate that the information is not current.

A full or tree backup of the ALS database (i.e., output of the BACKUP or
BKPTREE tool) will not capture the data and most of the attributes and
associations of a node which has been rolled out, However, the
archive_volume attribute, which names the archive tape containing the
node, will be captured by the full or tree backup. This implies that
archive tapes as well as backup tapes must be preserved if it is desired
to use backup tapes to retain the long-term state of the database.

The tapes produced by the backup and rollout tools are not interchangeable

between host systems. Interchange of subtrees of the database between

3-109

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

hosts is achieved by use of the TRANSMIT and RECEIVE tools.

3.7.11.2 Concepts of backup. - Tapes containing backup data are dedicated
to this use. Backup copies are created to permit reconstruction of all or
portions of a database in the event of loss. Typically the BACKUP and
BKPCHNG tools are employed periodically in an activity which is a part of
routine installation management.

The BACKUP tool writes a copy of the entire disk-resident database to one
or more tapes. The BKPCHNG tool writes to tape a record of all node
changes since the last use of BACKUP or BKPCHNG, in effect updating the
cumulative backup tape record begun with the most recent BACKUP. This
recording of changes is made possible by the KAPSE, which keeps a running
record of the names of all those nodes that have changed.

The KAPSE maintains two text files named .ALS.BACKUP.CHANGES 1 and
+ALS.BACKUP.CHANGES_2. At any given time one of these two files is
"active™., The name of the active changes file is the value of the ACTIVE
attribute of the directory .ALS.BACKUP; this attribute may have the value
"1" or "2". Every time the content of a node is changed, the node name is
appended to the active changes file.

When BACKUP or BKPCHNG is executed, the active and inactive files swap
roles before anything is written to tape. Specifically, the following
happens.

1. The inactive file is made empty.

2. The value of the ACTIVE attribute is toggled.

From the point in time that the ACTIVE attribute is toggled any node
changes will be recorded in the file which was just cleared. If the
BKPCHNG tool is the one which has caused this swap to occur, the names in
the newly inactive changes file denote all nodes for which a change record
must be written to tape.

The BKPTREE tool makes backup copies of subtrees of the database. It does
not cause the swapping process described above to occur. It is made
available for those who wish to create long-term copies or private backup
copies in the backup tape format.

3-110

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.7.11.3 Tape-library-oriented Commands. -

NAME:

FUNCTION:

FORMAT:

ALS COMMAND DESCRIPTION ROLLOUT

ROLLOUT - Roll out file nodes to archive tape

Write to archive tape a specified set of file data
revisions, altering the nodes' attributes availability
and archive_volume and reclaiming the disk space used
for data, associations, and most attributes. ROLLOUT
is typically used only by a system operator performing
scheduled rollout. Users may request rollout by means
of the ARCHIVE command.

ROLLOUT
(volume_name,file=>file list[,O0PT=>option_list])

PARAMETER DESCRIPTION:

volume name:

file list:

"Use or

An identifier which must matech the tape
volume label before writing can take place.

File list is a 1list of pathnames. Each
pathname denotes an ALS text file, each of~
which contains a 1list of pathnames for
rollout, one per line. Each node to be
rolled out must be a specific revision of a
frozen file node; it 1is processed as
follows.

If availability = on_line, prompt the user
to mount the specified archive tape, check
that the tape volume 1label matches the
volume name parameter, and write data,
associations, and most attributes to tape.
Change the value of availability to
off line, give the archive volume attribute
the value of the tape volume name and
reclaim the space used by the data,
associations, and attributes (except for the
attributes which remain on line).

3-111

disclosure of technical data and/or computer software

is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

option_list:
LIST LIST writes to standard output the name of
every node rolled out.
Default: NO_LIST.
DISPOSITION:

IN Not used

ouT Optional LIST output

MSG Confirmation and diagnostic messages.

RSTRING Not used

RSTATUS | See Appendix 80

- NOTES:

1. If any specified node does not exist, a diagnostic
message naming that node is produced, and the ROLLOUT
operation continues for,the other, remaining specified
nodes. ’

2. If any node specified for rollout is not a file node or
else 1is the most recent revision and has not been
explicitly frozen, a diagnostic message naming that
node is produced and the node is not rolled out, and
the ROLLOUT operation continues for the other,
remaining specified nodes.

3. If the user does not have attribute change access to
any node specified for rollout, a diagnostic message
naming that node is produced, the node is not rolled
out and the rollout operation continues for the other,
remaining specified nodes.

4, FAILS if volume_name does not match tape volume label.

EXAMPLE:
ROLLOUT (T1234,file=>rollout_list)

--Every node named in the file named rollout_list is a frozen
--file node. The user is asked to mount archive tape T1234,
—and all nodes named in the file rollout_list with availability
—attribute = on_line are written to tape; for each such node
--the archive_volume attribute is given the value T1734.

3-112

"Use or disclosure of technicai data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983

ALS COMMAND DESCRIPTION ROLLIN
NAME: - ROLLIN - Roll in file node(s) from archive tape
FUNCTION: Read a specified set of file data revisions from one

or more archive tapes, adjusting the values of their
availability attributes.

FORMAT: ROLLIN (file=>file list[,OPT=>option list])

PARAMETER DESCRIPTION:

file list:

option_list:

LIST

File list is a 1list of pathnames. Each
pathname denotes an ALS text file, each of
which contains a 1list of pathnames for
rollin, one per line. Each node specified
for rollin is a specific revision of a
frozen file node. Each node to be rolled in
is processed as follows.

1. If the value of the availability
attribute 1is on_line, no action is:
taken.

2. If the value of the availability.
attribute is off line, the user (who
is acting in the capacity of a system:
operator) is prompted to mount the
archive tape named by the
archive_volume attribute. Once that
is done and the identity of the tape
is verified, the tape is searched for
the node information. The data,
associations, and rolled out
attributes are read and attached to
the node, and the availability
attribute is given the value on_line.

LIST writes to standard output the name of

every node rolled in.
Default: NO_LIST.

3-113

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 19

DISPOSIT

NOTES:

EXAMPLE:

83

ION

IN Not used

out . Optional LIST output

MSG Confirmation and diagnostic messages
RSTRING Not used

RSTATUS See Appendix 80

1. If any node specified for rollin is not an existing
file node, a diagnostic message 1is produced and no
attempt is made to roll in the node.

2. A diagnostic message is produced if the user does not
have read access to any node named in file_list or to
any node named in any file named in file llst.

3. A diagnostic message is produced if the volume label of
a mounted tape does not match the tape volume
requested. The user is given the option of trying
again or of proceeding to the next node. If the latter
is chosen, the node is named in a diagnostic message.

ROLLIN (file=>config_c)

--The file config ¢ contains a list of file revision names.
--The user is prompted to mount the proper tape(s) and the files
--are rolled in.

3-114

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

NAME:

FUNCTION:

FORMAT:
PARAMETER DESCR

volume name:

search_name:

option_list:

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION BACKUP

BACKUP - Write backup copy of entire database

Write to tape a backup copy of the entire ALS
environment database.

BACKUP (volume_ name,search_name [,OPT=>option_list])
IPTION:

An identifier which must match the backup
tape volume label before tape writing can
take place. It has the form of an Ada
identifier 1limited in length to six
characters, and containing only digits and
upper-case alphabetic characters.

This is an identifier which 1is used as a
heading on tape for the entire output of one
use of the tool. It permits the RESTORE
tool to find the output of one or more
specific uses of the BACKUP, BKPTREE, or
BKPCHNG tool.

APPEND: NO_APPEND writes at beginning of tape.
APPEND appends information at end of written
information on tape.

Default: APPEND.

LIST LIST writes to standard output the name of
every node written to tape.
Default: NO_LIST.

DISPOSITION:
IN Not used
ouT Optional LIST output
MSG Confirmation and diagnostic messages.
RSTRING Not used
RSTATUS See Appendix 80
NOTES:
3-115
"Use or disclosure of technical data and/or computer software

is subject to the restrictions on the cover of this Document."

Ada Language System Speclflcatlon CR-CP-0059-A00

1 November 1983

2.

3.

EXAMPLE:

If a node is changed while BACKUP is executing, the new

. state of the node may not be captured; it will,

however, be captured by the next use of BACKUP,
BKPTREE, or BKPCHNG.

Before writing begins, the ACTIVE attribute of
+ALS.BACKUP is examined. If it is "1", then the data
part of .ALS.BACKUP.CHANGES 2 is made empty; if it is
n2n ., then the data part “of .ALS.BACKUP. CHANGES_1 is
made empty. Then the value of the ACTIVE attrlbute is
toggled between "1" and "2", after which writing
begins.

FAILS if volume_name does not match tape volume label.

FAILS if an attempt is made to create more than one set
of output with the same search_name on one tape. This
can only happen if the APPEND option is utilized.

BACKUP (T1234,£b781205,0pt=>no_append)

--Writes a backup copy of the entire database at the beginning of the

-=-tape T1234.

The inactive changes file under .ALS.BACKUP is cleared

--and then becomes the active changes file.

3-116

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION BKPTREE-
NAME: BKPTREE - Write backup copy of subtree(s)‘of database.
FUNCTION: Write to tape a backup copy of each subtree specified

by the command.

FORMAT: BKPTREE (volume_ name,search_ name
[NODE=>list_ 1JT,FILE=>1list 2]
[,OPT=>option_list])

PARAMETER DESCRIPTION:

volume name: An identifier which must match the backup
tape volume 1label before tape writing can
take place. It has the form of an Ada
identifier limited in length to six
characters, and containing only digits and
upper-case alphabetic characters.

search_name: This is an identifier which is used as a
heading on tape for the entire output of one
use of the tool. It permits the RESTORE
tool to find the output of one or more
specific uses of the BACKUP, BKPTREE, or
BKPCHNG tool.

list 1

list_2: The syntax of both list_1 and list_ 2 is a
list of pathnames. At least one NODE or
FILE parameter must be present. Each node
specified for backup, whether by the NODE or
FILE form, is the root of a subtree, all of
which will be written by the tool. The NODE
form specifies directly, in the parameter,
one or more nodes for backup. The FILE form
names one or more ALS text files each of
which contains a 1list of pathnames for
backup, one per line.

option list:

APPEND: NO_APPEND writes at beginning of tape.
APPEND appends information at end of written
information on tape.

Default: APPEND.

LIST LIST writes to standard output the name of

every node written to tape.
Default: NO_LIST.

3-117

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.*®

Ada Language System Specification CR-CP-0059-A00

1 November 1983

DISPOSITION:
IN Not used
ouT Optional LIST output
MSG Confirmation and diagnostic messages.
RSTRING Not used
RSTATUS See Appendix 80
NOTES:

1. If a node is changed while BKPTREE is executing, the
new state of the node may not be captured; it will,
however, be captured by the next use of BACKUP,
BKPTREE, or BKPCHNG.

2. The use of the BKPTREE tool does not alter the states
of the nodes .ALS.BACKUP.CHANGES 1,
+ALS.BACKUP.CHANGES_2, or .ALS.BACKUP,

3. FAILS if volume name does not match tape volume label.

4, A diagnostic message 1is issued if any pathname of
list_1, 1list_2, or any pathname contained in a file
named in 1list 2 does not exist or is not
read-accessible to the user,

5. FAILS if an attempt is made to create more than one set
of output with the same search name on one tape. This
can only happen if the APPEND option is utilized.

EXAMPLE:

BKPTREE (T1234,my_tree,node=>(),opt=>no_append)

--Writes a backup copy of the subtree rooted at the user s CWD
--on tape T1234, giving it the search name my_ tree,

3-118

“Use or discfosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983

ALS COMMAND DESCRIPTION BKPCHNG
NAME: BKPCHNG - Write backup copy of database changes
FUNCTION: Write, to tape, a backup copy for each database change

which has occurred since the 1last use of either
BKPCHNG or BACKUP. Changes include

1. Creation or deletion of a node,

2. Renaming or sharing of a node,

3. Any alteration to attributes or associations,

and

4., Any alteration to the data portion of files.

FORMAT: BKPCHNG (volume name,search name[,OPT=>option_list])

PARAMETER DESCRIPTION:

volume name:

Search_name:

option list:

APPEND:

LIST

An identifier which must match the backup
tape volume label before writing can take
place. It has the form of an Ada identifier
limited in length to six characters, and
containing only digits and upper-case
alphabetic characters.

This is an identifier which is wused as a
heading on tape for the entire output of one
use of the tool. It permits the RESTORE
tool to find the output of one or more
specific uses of the BACKUP, BKPTREE, or
BKPCHNG tool.

NO_APPEND writes at beginning of tape.
APPEND appends information at end of written

information on tape.
Default: APPEND.

LIST writes to standard output the name of

every node written to tape.
Default: NO_LIST.

3-119

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 19

DISPOSIT

NOTES:

EXAMPLE:

83

ION:

IN Not used

ouT Optional LIST output

MSG Confirmation and diagnostic messages.
RSTRING Not used

RSTATUS See Appendix 80

1. If a node is changed while BKPCHNG is executing, the
new state of the node may not be captured. If it is
not captured, the history of the node beginning with
this change will be captured by the next use of BACKUP,
BKPTREE, or BKPCHNG.

2. If a node has been changed more than once, changes
other than the most recent may not be written.

3. Before writing begins, the ACTIVE attribute of
.ALS.BACKUP is examined. If it is "1", then the data
part of .ALS.BACKUP.CHANGES 2 is made empty; if it is
"2®, then the data part of .ALS.BACKUP.CHANGES_1 is
made empty. Then the value of the ACTIVE attribute is
toggled between "1™ and "2", after which writing
begins. The nodes written to tape are those named in
the file named by the ACTIVE attribute prior to its
being toggled.

4, FAILS if volume name does not match tape volume label.
In this case the tool may be reinvoked without loss of
the file of changes.

5. FAILS if an attempt is made to create more than one set
of output with the same search name on one tape. This
can only happen if the APPEND option is utilized.

BKPCHNG (T1234,B810915)

--Appends to the backup tape T1234 the 1list of all node changes
—3ince the last use of BACKUP or BKPCHNG. This list is given
--the heading B810915.

© .

3=120

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983

ALS COMMAND DESCRIPTION RESTORE
NAME: RESTORE -~ Restore all or a portion of the ALS database
FUNCTION: Read a tape written by the BACKUP, BKPTREE, or BKPCHNG

tool and restore either all nodes or else only the
node(s) indicated by the command.

FORMAT: RESTORE (volume_name,search_name
[NODE=>1list_ 1][FILE= >list 2]
[,0PT= >option list])

PARAMETER DESCRIPTION:

volume_name:

search_name:

list_1

list_2:

An identifier which must match the backup
tape volume 1label before reading can take
place. It has the form of an Ada identifier
limited in 1length to six characters, and
containing only digits and upper-case
alphabetic characters.

This is an identifier which is wused as a
heading on tape for the entire output of one "
use of the tool. It permits the RESTORE
tool to find the output of one or more
specific uses of the BACKUP, BKPTREE, or
BKPCHNG tool.

The syntax of both list_1 and 1list 2 is a
list of pathnames. Neither, one, or both of
the NODE or FILE forms may be present, The
presence of neither form denotes a
restoration from tape of all node contents
(as written by BACKUP or BKPTREE) and/or
changes (as written by BKPCHNG). The
presence of one or both forms denotes a
reconstruction of only the specified nodes.
If neither form is present, the first
BACKUP, BKPTREE, or BKPCHNG output on the
tape with the same search name is found;
each node named therein is either
overwritten in the database, created, or
destroyed, as appropriate.

If either the NODE or FILE form is present,
the first file on the specified tape with
the same search name is found; then only
the node(s) denoted by the parameter(s)
is/are updated by overwriting, creation, or
deletion, as prescribed on tape; the

3=-121

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983

database must not initially be in an empty
state. The NODE form specifies directly (in
the parameter) one or more pathnames to be
selected from tape and updated. The FILE
form names one or more ALS text files, each
of which contains one or more path names,
one per line, to be selected from tape and
updated.

option_list:

LIST LIST writes to standard output the name of
every node restored.
Default: NO_LIST.
DISPOSITION:
IN Not used
ouT Optional LIST output
MSG Confirmation and diagnostic messages
RSTRING Not used
RSTATUS See Appendix 80
NOTES:

1. FAILS if volume_name does not match tape volume label.

2. FAILS if search_name cannot be found on tape.

3. A diagnostic message 1is issued if any pathname in
list_1 or 1list_2 or any pathname named in any file of
list_2 does not exist or is not read-accessible to the
user.

EXAMPLE:

RESTORE (BT53,BUOT0476)

-=The user is asked to mount tape volume BT53. After checking that
-the proper volume has been mounted, a search is made for the
--=backup record named BUQOTOA476.

-=All nodes are read in and the correspondingly named nodes of the
--ALS database are updated, created, or deleted, as appropriate.

3-122

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.7.12 Symbolic Debugger Functional Area. - The ALS VAX/VMS Symbolic
Debugger provides interactive, symbolic debugging facilities for programs
written in Ada and executing in the Ada Language System (ALS) environment.
The debugger permits the user to execute an Ada program in a special mode
that provides the following capabilites:

a. An executing Ada program may be interrupted and resumed.
b. The data and the control state of a program may be examined.
¢. Variables in a program may be modified, with some restrictions.

d. The nest of active subprograms and blocks associated with the
execution of a program and its tasks may be displayed.

e. Portions of the program, including comments, may be 1listed as
they appear in the source.

f. Breakpoints may be inserted in the program to provide
controlled execution. :

g. A program may be executed in a stepwise fashion, one or several -
statements at a time.

h. The ALS VAX/VMS Symbolic Debugger shall be designed to be
retargettable.

3.7.13 Statistical And Frequency Analyzer Functional Area. - The
statistical and frequency analyzer provides the capability to analyze the
timing and frequency execution characteristics of programs written in Ada
and executing on the host computer. The timing and frequency analyzer is
composed of the following three major components:

a. VAX/VMS Statistical Analyzer,
b. VAX/VMS Frequency Analyzer, and

c. Profile Display Tool.

3.7.13.1 Statistical Analyzer. - The VAX/VMS Statistical Analyzer
provides the .capability of monitoring the execution time characteristics
of Ada programs executing on the hos’ computer. The Statistical Analyzer
provides the following capabilities:

3-123

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A400
1 November 1983

a. Ability to monitor execution.by periodically recording the locus
of control.

‘b. Ability to control the sampling interval, see 40.1.2.

¢. Ability to name the file where timing data is to be recorded, See
40.1.2.

d. Ability to cause execution statistics to be monitored by using
the EXPVMS STAT option.

The Statistical Analyzer shall produce a file containing the recorded
data. This file can be subsequently used as lnput to the Profile Display
Tool, described in Section 3.7.13.3.

3.7.13.2 Frequency Analyzer. - The VAX/VMS Frequency Analyzer provides
the capability of monitoring the execution frequency characteristics of
Ada programs executing on the host computer. The Frequency Analyzer
provides the following capabilities:

a. Ability to monitor execution frequency at the basic block level.

b. Ability to cause frequency monitoring code to be created by using
the compiler FREQUENCY option.

¢. Ability to cause the inclusion of the frequency monitor kermel in
the target program image by using the EXPVMS FREQUENCY option.

d. Ability to name the file where frequency data is to be recorded.

The Frequency Analyzer shall produce a file containing the recorded
frequency data. This file can be subsequently used as input to the
Profile Display Tool, described in 3.7.13.3.

3.7.13.3 Profile Display Tool. - The Profile Display Tool provides the
capability to display the recorded timing and frequency data. This tool
is more fully described in Appendix 70. The Profile Display Tool accepts
files produced by the Statistical Analyzer and Frequency Analyzer as
input. As output, the Profile Display Tool generates one or more
histograms or "profiles" showing the distribution of execution time and
frequency with respect to program location. The format of this display is
shown 1in Figure 3-12 and may vary depending upon line length and other
display options.

3-124

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

<TBD>

Figure 3-12. Statistical and Frequency Data Display Format

3-125

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3.8 QOrder of Precedence. -

3.8.1 Conflict Resolution. - In the event of conflict between this
specification and other Ada Language System .specifications and documents,
the conflict shall be resolved by the government.)

3.8.2 Contract Preéedence. - This specification shall be subordinate to
Contract DAAK80-80-C-0507.

3-126

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

4. QUALITY ASSURANCE PROVISIONS

4.1 General. - The Ada Language System shall be tested in accordance with
the ALS Quality Assurance Plan and the approved Preliminary/Formal
Qualification Test Plan (2.1). Prior to formal qualification testing of
the ALS, each relevant CPCI listed in 3.1.1.5 shall be tested in
accordance with the Preliminary Qualfication Test Procedure for the item
prepared as specified in 3.4.4,

4.,1.1 Responsibility for Tests. - The contractor shall be responsible for
conducting the formal qualification tests. The tests shall be conducted
at Fort Monmouth, NJ, on the SDSS facility. The tests may be witnessed by
CECOM personnel and other designated government personnel. ’

4.2 Quality Conformance Inspections. - Compliance with the requirements
of Section 3 of this specification shall be demonstrated by fulfillment of
the criteria specified in the Preliminary/Formal Qualification Test Plan
(2.1) and in the Physical Configuration Audit.

41

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

5. PREPARATION FOR DELIVERY

5.1 Ada Language System. -

5.1.1 Delivery Format. - The Ada Language System source and object code
shall be delivered 1in a format compatible for installation on the SDSS
facility at Ft. Monmouth, New Jersey. When installed on the SDSS, the
ALS software shall be structured to allow partitioning for subsequent
distribution of Ada Language Systems supporting any subset of the target
environments specified in 3.1.1.2. The tape reels shall be labeled in
accordance with 3.3.3.

5.1.2 .Phased Delivery. - Separate deliveries shall be made for each
target environment in 3.1.1.2 in accordance with the schedule in the ALS
Design and Development Plan (2.1).

At the time of the first such delivery, installation will require the
establishment of an ALS Environment Database on the SDSS host facility.
Each subsequent delivery will consist of ALS nodes, introduced into the
existing database using the ALS File Administrator.

All deliveries will consist of source code as well as executable 1load
modules for all tools intended to run on the host machine. Runtime
libraries and loaders will be delivered in source code as well as in
Containers, acceptable for input to the appropriate Linker CPCI.

5.2 Ada Language System Documentation. - ALS documentation will be
delivered in accordance with the requirements of the Contract Data
Requirements List in Contract DAAK80-80-C-0507 and the referenced Data
Item Descriptions.

5.3 On-Line Documentation. -~ All specifications will be delivered on
magnetic tape in a format appropriate for input to the DEC Standard Runoff
Formatter.

5-1

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
‘ 1 November 1983

6. NOTES

6.1 Glossary. - A glossary of terms used in the Ada Language System 1is
provided in Table 6-1.

6.2 Acronyms. - A list of the acronyms used in the Ada Language System is
provided in Table 6-2.

6-1
"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983

Access type

Access value

Accessible Container Set

Accuracy constraint

Activation record

Adaname

Aggregate

Allocator
ALS prepared disk

ALS program

Table 6-1

GLOSSARY

An access type is a type whose objects are
created by execution of an allocator. An
access value designates such an object.

See access type.

The collection of Containers which are
accessible to a tool at anytime. This
collection consists of at most one current
Container and zero or more Program Library
Containers.

~See constraint.

An element of a runtime stack containing
both dynamic information about a block or
subprogram and objects (other than access
objects) local to the block or subprogram.

The name for a container or subtree in a
program 1library. Adanames are composed of
the source unit name dot-qualified by the
keywords SPEC, BODY, or ALL, referring to
the source unit specification, body or whole
subtree respectively. The source unit name
starts with the 1library unit name, with
subunit names appearing in
dot-qualification.

An aggregate is a written form denoting a
composite value. An array aggregate denotes
a value of an array type; a record
aggregate denotes a value of a record type.
The components of an aggregate may be
specified wusing either positional or named
association.

An allocator creates a new object of an
access type, and returns an access value
designating the created object.

»

4 disk which has undergone the
initialization process specified in the ALS
VAX Operator's Manual.

Any program executing in the VAX/VMS target

6-2

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ancestor compilation unit

Ancestor node

Attribute

Baseline

Baseline configuration

Basic block

Body

Ada Language System Specification CR-CP-0059-A00

1 November 1983

environment, and wutilizing services of the
KAPSE is said to be an ALS program.

An ancestor compilation unit of a
compilation unit currently being compiled is
a member of the following set:

a. A unit mentioned in a WITH clause of
the compilation unit currently being
compiled;

b. An outer textually-nested unit
containing the unit currently being
compiled, if that unit is a subunit;

¢. The specification part of a subprogram
or package body currently being
compiled;

d. One of the units mentioned in WITH
clause(s) of the ancestor compilation
units defined in parts (b) and (c)
above; and

e. Package STANDARD.

In short, it is any compilation wunit which
is made visible to a compilation unit
currently being compiled, not including the
unit currently being compiled itself.

See. node ancestors.

An attribute is a predefined characteristic
of a named entity.

An unchanging configuration used for a point
of reference., A snapshot of a configuration
representing the state of the configuration
at one point in time. Any modification of a
baseline results in a different baseline by
definition. Two baselines are the same if
and only if they have the same ' names and
contents, '

A baseline,

A sequence of one or more simple statements
th.., barring the occurrence of exceptions,
are always executed the same number of
times.

A body is a program unit defining the

6-3

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983

Body stub

CALL mechanism

CALL tree

Collection

Compilation unit

Complete program

Component

Composite type

Composite value

Configuration

execution of a subprogram, package, or task.

A body stub is a replacement for a body that
is compiled separately.

The KAPSE service by which one ALS program
invokes another, passes parameters to it,
and receives results back.

The KAPSE data structure that contains
information about the -executing programs in
a job. It is composed of one node for each
progranm.

A collection is the entire set of allocated
objects of an access type.

A compilation wunit 1is a program unit
presented for compilation as an independent
text. It is preceded by a context
specification, naming the other compilation

units on which it depends. A compilation
unit may be the specification or body of a
subprogram or package.

A program with no unresolved external
references,

A component denotes a part of a composite
object. An indexed component 1is a name
containing expressions denoting indices, and
names a component in an array or an entry in
an entry family. A selected component is
the identifier of the component, prefixed by
the name of the entity of which it is a
component.

An object of a composite type comprises
several components. An array type is a
composite type, all of whose components are
of the same type and subtype; the
individual components are selected by - their

indices. A record type is a composite type

whose components may be of different types;
the individual components are selected by
their identifiers.

See aggregate.
A named collection of database objects
treated as a single entity. Generally, a

configuration would be represented as one
subtree in the database, but this definition

6-4

“Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Constraint

Container

Q_node

Context specification

Current Container

Dgclarative part

Declaring unit

Derived type

Ada Language System Specification CR-CP-0059-A00

1 November 1983

does not produce a disjoint representation.

A constraint is a restriction on the set of
possible values of a type. A range

constraint specifies lower and upper bounds

of the values of a scalar type. An accuracy

constraint specifies the relative or

absolute error bound of values of a real
type. An index constraint specifies 1lower
and upper bounds of an array index. A
discriminant constraint specifies particular
values of the discriminants of a record or
private type.

A Container is a data structure which is
created by the Program Library Manager and
initialized by the Container Data Manager.
It consists of a collection of related
c-nodes which are inserted by a tool wusing
the services of the Container Data Manager.
A Container occupies the data portion of a
file. /

C_nodes are the records of which Containers
are composed. Each C node is a collection
of attributes, each of which has a name and
location. C_nodes are created and
maintained by the Container Data Manager for
use by ALS tools which need dynamic storage
allocation.

A context specification, prefixed to a
compilation unit, defines the other
compilation units upon which it depends.

A Container which is in the process of being
constructed by a tool. A current Container
may have permanent and temporary c-nodes,

A declarative part is a sequence of

declarations and related information such as

subprogranm bodies and representation
specifications that apply over a region of a
program text.

The declaring unit of an Ada subunit is the
compilation unit which has the declaration
of the subunit, .

A derived type is a type whose operations

and values are taken .from those of an
existing type.

6-5

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00

1 November 1983

Discrete type

Disceriminant

Discriminant constraint

Elaboration

Entity

Entry

Enumeration tybe

Evaluation ordering

Exception

Exception handler

A discrete type has an ordered set of
distinct values. The discrete types are the
enumeration and integer types. Discrete
types may be used for indexing and
iteration, and for choices in case
statements and record variants.

A discriminant is a syntactically
distinguished component of a record. The
presence of some record components (other
than discriminants) may depend on the value
of a discriminant.

A discriminant constraint specifies
particular values of the discriminants of a
record or private type.

Elaboration is the process by which a
declaration achieves its effect. For
example it can associate a name with a
program entity or initialize a newly
declared variable.

An entity is anything that can be named or
denoted in a progranm. Objects, types,
values, program units are all entities.

An entry is used for communication between
tasks. Externally an entry is called just
as a subprogram is called; its internal
behavior 1is specified by one or more accept
statements specifying the actions to be
performed when the entry is called,

"An enumeration type is a discrete type whose

values are given explicitly in the type
declaration. These values may be either
identifiers or character literals.

A restructuring of the prefix expressions
created by the WALKER function of the Code
Generator in order to generate more
efficient code.

~ An exception 1s an event that causes

suspension of normal program execution.
Bringing an exception to attention is called
raising the exception.

An exception handler is a piece of program
text specifying a response to the exception.
Execution of such a program text 1is called
handling the exception.

6-6

"Jse or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Expression An expression is a part of a program that
computes a value,

Foster child An offspring of a directory (or variation
header) acquired by a "share" operation (as
opposed to "make") is said to be a foster
child of that directory. (See also foster
parent, true parent, and true child.)

Foster parent : A directory (or variation header) which
acquires an offspring by a "share" operation
(as opposed to "make") is said to be a
foster parent of that offspring. (See also
foster child, true parent, and true child,)

Generic program unit A generic program unit is a subprogram or
package specified with a generic clause., A
generic clause contains the declaration of
generic parameters. A generic program unit
may be thought of as a possibly
parameterized model of program units.
Instances (that is, filled-in copies) of the
model can be obtained by generic’
instantiation. Such instantiated program
units define subprograms and packages that
can be used directly in a program.

Image file VMS name for a load module.

Incomplete program A program in which some external references
are unresolved.

Indexed component See component.

Index constraint See constraint.

Introduce An identifier is introduced Dby its
declaration at the point of its first
ocecurrence,

I/0 stream A (KAPSE-owned) data structure associated

with an open file. The stream contains all
information necessary to perform I/0
operations on the file.

Job The .total computational activity performed
on the behalf of a user from the time of ALS
log-in through ALS log-out.

Lexical unit . A lexical unit is one of the basic syntactic
elements making up a program. A lexical
unit is an identifier, a number, a character

. literal, a string, a delimiter, or a

6-7

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983

Library subprogram body

Link library

Literal

Load module

Locator

Logged program

Logged sequence

Main subprogram

Model number

Node ancestors

Node locator

comment .

The body df a subprogram which is not a
subunit.

A container presented to the 1linker whose
component compilation units are included in
the 1linked container only if they are
referenced.

A literal denotes an explicit wvalue of a
given type, for example, a number, an
enumeration value, a character, or a string.

A file containing machine code which
represents an executable program for a
particular target machine.

A short name for a node through which its
physical storage may be found. At any
instant, a locator uniquely identifies a
single node. When a node is destroyed its
locator may be recycled and used later for a
newly-created node. (See also serial
number.) :

An executable program for which derivation
information is kept and given to created
files.

A subtree of executing programs for which
the root is a logged program, and for which
the parent of the root is not a 1logged
program. :

The subprogram which initially receives
control at execution time.

A model number is an exactly representable
value of a real numeric type. Operations of
a real type are defined in terms of
operations on the model numbers of the type.
The properties of the model numbers and of
the operations are the minimal properties
preserved by all implementations of the real
type.

The ancestors of a node are its true and
foster parents plus the ancestors of these
parents. The root node has no ancestors.

See locator.

6-8

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR=-CP=0059-A00
1 November 1983

Node serial number See serial number.

Object An object is a variable or a constant. An
object can denote any kind of data element,
whether a scalar value, a composite value,
or a value in an access type.

Option An on/off switch used to control tool
execution. :
Original container An original container is a container

produced by a compiler, assembler, or
importer and represents only one compilation
unit.

Overloading Overloading is the property of literals,
identifiers, and operators that can have
several alternative meanings within the same
scope., For example an overloaded
enumeration literal is a literal appearing
in two or more enumeration types; an
overloaded subprogram is a subprogram whose
designator can denote one of several:
subprograms, depending upon the kind of its
parameters and returned value.

Package A package is a program unit specifying a
collection of related entities such as
constants, variables, types and subprograms.
The visible part of a package contains the
entities that may be used from outside the
package. The private part of a package
contains structural details that are
irrelevant to the user of the package but
that complete the specification of the
visible entities. The body of a package
contains implementations of subprograms or
tasks (possibly other packages) specified in
the visible part.

Parameter A parameter is one of the named entities
associated with a subprogram, entry, or
generic program unit. A formal parameter is
an identifier used to denote the named
entity in the unit body. An actual
parameter is the particular entity
associated with the corresponding formal
parameter in a subprogram call, entry call,
or generic instantiation. A parameter mode
specifies whether the parameter is used for
input, output or input-output of data. A
positional parameter is an actual parameter
passed in positioned order. A named

6-9

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00

1 November 1983

- Parent node

Pragma

Primary machine

Private type

Program

Program library

Program library Container

Qualified expression

parameter 1is an actual parameter passed by
naming the corresponding formal parameter.

A directory - or variation header that
contains a node 1is said to be a parent of
that node. (See also true parent and foster
parent) .

A pragma is an instruction to the compiler,
and may be language defined or
implementation defined.

When a program is running on a distributed
target, the primary machine is the machine
on which the declaring unit of the remote
task resides.

A private type is a type whose structure and
set of values are clearly defined, but not
known to the user of the type. A private
type 1is known only by its discriminants and
by the set of operations defined for it. A
private type and its applicable operations
are defined in the - visible part of a
package. Assignment and comparison for
equality or inequality are also defined for
private types, unless the private type is
marked as limited.

A collection of one or more compilation
units which have all been compiled relative
to each other with one of the subprograms
designated to be the main subprogram. (This
term can also refer to the source code for a
collection of compilation units where the
intention is that they will be compiled
relative to each other and that there is an
intended main program.)

The compilation units of a program are said
to belong to a program library. The program
library establishes the name scope for names
mentioned in WITH clauses. It is the set of
all units which have been compiled relative
to each other.

A Container which has been produced by a
tool and entered into the program library.

A qualified expression is an expression
qualified by the name of a type or subtype.
It can be used to state the type or subtype

of an expression, for example for an

6-10

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

Range

Range constraint

Rendezvous

Representation specificafion

Remote machine

Revision
Revision set

Runtime nucleus

Runtime stack

Scalar types

Scope

1 November 1983

overloaded literal.

A range is a contiguous set of values of "a
scalar type. A range is specified by giving
the lower and upper bounds for the values.

See constraint.

A rendezvous is the interaction that occurs
between two parallel tasks when one task has
called an entry of the other task, and a
corresponding accept statement is Dbeing
executed by the other task on behalf of the
calling task.

Representation specifications specify the
mapping between data types and features of
the underlying machine that execute a
program, In some cases, the specifications
completely specify the mapping, in other
cases the specifications provide criteria
for choosing a mapping.

When a program is running on a distributed:
target, the remote machine is the machine on
which the separated task is running. The
remainder of the program is on the primary
machine,

An instance of a file; each revision
supersedes all previous ones.

The collected revisions of a file viewed as
a single set of files.

The runtime nucleus is a portion of the
runtime support 1library that is 1linked
separately from the user programs.

A data structure, associated with a task
object, containing an activation record for
each currently-active block or subprogram in
the task object.

A scalar type is a type whose values have no
components. Scalar types comprise discrete
types (that is, enumeration and integer
types) and real types.

The scope of a declaration is the region of

text over which the declaration has an
effect.

6-11

“Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification ‘CR-CP-0059-A00

1 November 1983

Selected component

Serial number

Snapshot container

Software configuration

Static expression

Subprograms

Subtype

Task

True child

True parent

See component.

A short name by which a node may be
unambiguously identified. At the time of
creation, each node 1is assigned a unique
serial number. Serial numbers are never
recycled., (See also locator.)

An image of the current Container (including
temporary nodes) together with a list of
accessible Program Library Containers. A
snapshot Container can be used for the
restart of a tool from the point of the
snapshot or for input to the Display Tool.

See configuration,

A static expression is one whose value does
not depend on any dynamically computed
values of variables.

A subprogram is an executable program unit,
possibly with parameters for communication
between the subprogram and its point of
call. A subprogram declaration specifies
the name of = the subprogram and its
parameters; a subprogram body specifies its
execution., A subprogram may be a procedure,
which performs an action, or a function,

which returns a result.

A subtype of a type 1is obtained from the
type by constraining the set of possible
values of the type. The operations over a
subtype are the same as those of the type
from which the subtype is obtained.

A task is a program unit that. may operate in
parallel with other program units. A task
specification establishes the name of the

task and the names and parameters of its
entries; a task body defines its execution.
A task type is a specification that permits
the subsequent declaration of any number of
similar tasks.

An offspring of a directory (or variation
header) acquired by a "make" operation (as
opposed to "share") is said to be a true
child of that directory. (See also true
parent, foster parent, and foster child.)

A directory (or variation header) that

6-12

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

acquires an offspring by a "make" operation
(as opposed to "share") is said to be the
true parent of that offspring. (See also
true child, foster parent, and foster
child.,)

Type A type characterizes a set of values and a
set of operations applicable to those values
and a set of operations applicable to those
values. A type definition is a language
construct introducing a type. A type
declaration associates a name with a type
introduced by a type definition.

Usable container . Whenever an ALS tool produces a container it
is marked as usable or unusable. A usable
container can be used as input to a link, to
a compile as context or as export, as well
as input to the Display Tool CPCI. An
unusable container can be used only as input
to the Display Tool CPCI.

Use clause A use clause opens the visibility to

declarations given in the visible part of a
package.
Variable A variable is an object that is not constant

(that is, the reserved word constant does
not appear in its object declaration, and
the object is not a component of a constant
array or constant record).

Variant A variant part of a record specifies
alternative record components, depending on
a discriminant of the record. Each value of
the discriminant establishes a particular
alternative of the variant part.

Variation An element in a variation set,

Variation set A set of incarnations of an object, each
: element co-exists with the others. (See
also revision set.)

Visibility At a given point in a program text, the
i declaration of an entity with a certain
identifier is said to be visible if the
entity is an acceptable meaning for an
occurrence at that point of the identifier.

6-13

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Table 6-2

LIST OF ACRONYMS

ACRONYM MEANING
AFE " Assembler Front-End
ALS Ada Language System
CCT Configuration Control Tools
CDM Container Data Manager
CHD Current HELP Directory
CI Configuration Item
CL Command Language
CLP Command Language Processor
CcM Configuration Management
CPC Computer Program Component
CPCI Computer Program Configuration Item
CPT&E Computer Programming Test and Evaluation
CuT Compilation Units Table
CWD Current Working Directory
DBM | Database Manager
DT Display Tools
ECP Engineering Change Proposal
FA File Administrator
~ Far Formal Qualification Testing
IL Intermediate Language
KAPSE Kernel Ada Pr gramming Support Environmenft
MI Machine~Independent section of the ALS compiler
MTF Machine Text Formatter

6-14

"Use or disclosure of technical data and/or coniputer software
is subject to the restrictions on the cover of this Document."

ACRONYM

PL
PLM
PQT
PSECT
RO
RSL
RW
SCN
SOw
SDSS

WBS

Ada Language System Specification CR=CP=-0059-A00
’ 1 November 1983

Table 6-2 (cont,)

MEANING

Project Library

Program Library Manager

Preliminary Qualification Testing
Program section

Read-only

Runtime Support Library

Read-write

Specification Change Notice
Statement Of Work

Software Development Support System

Work Breakdown Structure

6-15

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

PREFACE
to
APPENDIXES

Descriptions of the functions of the Ada Language System included 1in
the following appendixes shall be considered as requirements for the
performance, development, and design of the system. In particular, the
word "will" in the appendixes shall be the same as "shall" as defined in
Par. 3.2.3.6 of MIL-STD-490 (2.1).

0-1

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

APPENDIX 10

10. ADA LANGUAGE. SYSTEM IMPLEMENTATION DEPENDENCIES

In accordance with the requirements of Appendix F of the Military
Standard, Ada Programming Language, ANSI/MIL-STD-1815A-1983, 17 February
1983 (2.1) descriptions of the Ada language implementation dependencies
for each target environment in 3.1.1.2 are provided on the following
pages.

This appendix contains:
a. The Ada Language for the VAX/VMS Target, and

b. The Ada Language for the MCF Target.

10-1

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November. 1983

10.1 The Ada Languagg For The VAX/VMS Target.

The source language accepted by the compiler is Ada, as described in
the Military Standard, Ada Programming Language, ANSI/MIL-STD-18154-1983,
17 February 1983 ("Ada Reference Manual") (2.1).

The Ada definition permits certain implementation dependencies. Each
Ada implementation is required to supply a complete description of its
dependencies, to be thought of as Appendix F to the Ada Reference Manual.
This section is that description for she VAX/VMS target. ‘

10.1.1 Pragmas.,
10.1.1.1 Pragma Definition.

The following are implementation-defined pragmas:
pragma PAGE;

This is a listing-control pragma. If the source text to be
listed contains any PAGE pragmas, the line on which the token
PAGE appears is placed at the first line available on a new page
in the source listing.

pragma TITLE (arg);

This is a listing control pragma. It specifies a CHARACTER
string that is to appear on the second line of each page of
every listing produced for a compilation unit. At most one such
pragma may appear for any compilation unit, and it must be the
first lexical unit in the compilaton unit (comments excepted).
The argument is a CHARACTER string.

The following notes specify the language-required definitions of the
predefined pragmas. Unmentioned pragmas require no notes. (See Appendix
B of the Ada Reference Manual.)

pragma INTERFACE (arg,arg);

No INTERFACE pragmas are recognized.
pragma MEMORY SIZE (arg)

The MEMORY_SIZE pragma is ignored, other than to verify that the
value of the argument is in the range 0..(2%%#30)-1.

pragma OPTIMIZE (arg)

This pragma is effective only when the "OPTIMIZE" option has
been given to the compiler, as described in 3.7.1.1.1.3 of this
specification. The pragma is ignored when applied to inline

10=2

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

) Ada Language System Specification CR-CP-0059-A00
1 November 1983

subprograms. The argument is either TIME or SPACE.
pragma PRIORITY (arg)

The PRIORITY argument is an integer static expression value in
the range 1..15. The pragma has no effect in a location other
than a task (type) specification or outermost declarative part
of a subprogram. If the pragma appears in the declarative part
of a subprogram, it has no effect unless that subprogram is
designated as the "main" subprogram at link time.

pragma STORAGE_UNIT (arg)

If the argument is a value other than 8, a diagnostic of
severity WARNING is generated. (See Appendix 80 for a complete
summary of all diagnostic messages.) Otherwise, no action is
taken.

pragma SUPPRESS (argl,argl)

SUPPRESS pragmas which mention the following CHECK names have no
effect: .

DIVISION_ CHECK
OVERFLOW_CHECK

These checks cannot be suppressed.
pragma SYSTEM (arg)

The SYSTEM argument is a value of the enumeration type.
SYSTEM.SYSTEM_NAME. The purpose of this pragma is to assert
that the Ada compilation unit is specially designed to execute
only on certain target environments.

The value VAX780_VMS means that the unit is designed to run on
VAX under the VMS operating system; VAX780 means VAX under any
or no operating system. For other values, a diagnostic of the
severity WARNING is generated. (See Appendix 80 for a complete
summary of all diagnostic messages).

10-3

’ 'jUse or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983

10.1.1.2 Scope of Pragmas.

CONTROLLED

INLINE

LIST

MEMORY_SIZE

OPTIMIZE

PACK

PAGE

PRIORITY

STORAGE_UNIT

SUPPRESS

SYSTEM

TITLE

Applies only to the access type named in 1its
argumeni

Applies only to the subprograms named in its
arguments. If the argument is an overloaded
subprogram name, the INLINE pragma applies to all
definitions of that subprogram name which appear
in the same declarative part as the INLINE
pragma.

In effect until the next LIST pragma in the

.source or included text, or if none, the end of

the compilation unit

Applies to the entire Program Library in which it
appears. Multiple, conflicting occurrences in a
Program Library are erroneous.

Applies to the entire compilation unit in which
it appears

Applies only to the array or record named in its
argumeni

No scope

Applies only to the task specification or main
subprogram in which it appears

Applies to the entire compilation wunit before
which it appears

Applies to the block or body that contains the
declarative part in which the pragma appears

Applies to the entire compilation unit before
which it appears

No scope

10-4

':Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

10.1.2 Attributes.

There is one implementation-defined attribute -in addition to the
predefined attributes found in Appendix A of the Ada Reference Manual.

X'DISP

A value of type DISPLACEMENT which corresponds to the
displacement that is used to address the first storage unit
occupied by a-data object X at a static offset within an
implemented activation record. The type DISPLACEMENT is defined
as: '

type DISPLACEMENT is range -(2¥*(U4#STORAGE_UNIT -1))..(2%**(U4*STORAGE_UNIT -1) -1);

This attribute differs from the ADDRESS attribute in that
ADDRESS supplies the absolute address while DISP supplies the
displacement relative to some base value (such as a stack frame
pointer). It is the user's responsibility to determine the base
value relevant to the attribute. The runtime environment is
described in Section 20.1.9.

The following notes augment the language-required definitions of the
predefined attributes found in Appendix A of the Ada Reference Manual.

T'MACHINE_ROUNDS is false.
T'MACHINE_RADIX is 2.

T'MACHINE_MANTISSA if the size of the base type of T is 32,
MACHINE MANTISSA is 24. Otherwise it is 56.

T'MACHINE_ EMAX is 127.
T'MACHINE_EMIN is -127.

T'MACHINE_OVERFLOWS is true.

10-5

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

10.1.3 Predefined Language Environment.

The Package STANDARD contains the following definitions in addition

to those specified in Appendix C of the Ada Reference Manual:

type INTEGER is range -2%%¥15,. 2##15-1;
type LONG_INTEGER is range -2%%31,.2%#31-1;
--SHORT_INTEGER is not defined

type FLOAT is digits 7 range
=(240. 1111_ 1111 _1111_1111_1111_11114E127)
.. (2i#0. 1111 1117 11 1111 1111 _11114E127) 5
type LONG FLOAT is digits 9 range
-(2#0.1111 IR 1111 _J1M_m_ 1 _ 1M1 _111_ 111

_11114E127)

..(2#0. 1111 (AR EIRAREIREEE) 1111 1111 1111 1111 1111 111 1111 11171 1111 _T111#E127

-SHORT "FLOAT is not defined

subtype PRIORITY is INTEGER range 1..15;

type DURATION is delta 2#.0000001# range -16777216.0 .. 16777215.99;

--Delta 1/128
Package SYSTEM is

type SYSTEM NAME is (VAX780_VMS, VAXT80, MCF);

NAME: constant SYSTEM NAME := VAX780_VMS;

STORAGE_UNIT: constant := 8§;

MEMORY SIZE: constant := (2%#30)-1;

MIN_INT: constant := -(2%%#31);

MAX_INT: constant := (2%#31)-1;

UNRESOLVED_REFERENCE: exception; --see Appendix 30 of this
-—-specification

end SYSTEM;

10-6

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

10.1.4 Representations and Declaration Restrictions.

Representation specifications are described in Chapter 13 of the Ada
Reference Manual. Declarations are described in Chapter 3 of that manual.

10.1.4,1 Integer Types.

Integer types are specified with constraints of the form
range L..R

where
R < SYSTEM.MAX_INT
L > SYSTEM.MIN_INT

Length specifications of the form: -
for T'SIZE use N;

may specify integer values N such that
N = 32 or
N in 2..16,

and such that
R < 2%#%(N=-1)-1
and L > ~2%#%¥(N-1)

or else such that
R (2%#N) -1
L>0

and 0 < N 15

via

When no length specification is provided, a SIZE of 16 is.used
when

R <
and L > -2%#¥15

Otherwise SIZE is 32.

10-7
"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
-1 November 1983

10.1.4.2 Floating Types.

Floating types are specified with constraints of the form:
digits D

where
D is an integer value in 1..9.

Length specifications of the form
for T'SIZE use N;

may specify integer values N = 32 when D < 7,
or N = 64 when D < 9.

Where no length specification is provided, a size of 32 is used
when D < 7, 64 when D is 8..9.

10.1.4.3 Fixed Types.
Fixed types are specified with constraints of the form
delta D rénge L..R
where

max (abs(R), abs(L)) < 2%#31-1
actual delta

The actual delta defaults to'the‘largest integral power of 2 1less
than or equal to the specified delta D. (This implies that fixed
values are stored right-aligned.) For specifications of the form:

for T'ACTUAL_DELTA use X;

X must be specified as an integral power of 2 such that
X<D

Length specifications of the form
for T'SIZE use N;

are permitted only when N = 32.
All fixed values have SIZE = 32.

10-8

"Use or disclosure of techriical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

10.1.4.4 Enumeration Types.

The default SIZE for an enumeration type is 8, unless there are more
than 256 values. In the latter case the default size is 16. The
size for the predefined type BOOLEAN is one. A length specification
of the form

for T'SIZE use N;
is permitted for N in.1..16.°

Enumeration types may have up to 2¥#*SIZE different values.
An enumeration type representation of the form

for T use aggregate;
may specify codes in the range 0..(2#%*SIZE)=-1

10.1.4.5 Access Types.

No representation specification is permitted for access types. If a
specification of this form is entered, a diagnostic message of severity
ERROR is generated. (See Appendix 80 for a complete 1list of all
diagnostic messages.)

10.1.4.6 Arrays and Records.

SIZE specifications of the form
for T'SIZE use N;

are not permitted for arrays and records. If a specification of this form
- is entered, a diagnostic message of severity ERROR is generated. (See
Appendix 80 for a complete list of all diagnostic messages.)

. The PACK pragma may be used to minimize wasted space between
components of arrays and records. The pragma causes the type
representation to be chosen such that storage space requirements are
minimized at the possible expense of data access time and code space. The
PACK pragma may not be used in conjunction with a representation
specification for the same type. If a specification of this form is
entered, a diagnostic message of severity ERROR is generated. (See
Appendix 80 for a complete list of all diagnostic messages.)

A record type representation specification may .e used to describe
the allocation of components in a record. Bits are numbered 0..7 from the
right. (Bit 8 starts at the right of the next higher-numbered byte.) Each
location specification must allow at least X bits of range, where X is the
SIZE of the type of the component being allocated. If X > 32, the range

10-9

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP-0059-400
1 November 1983

must” be of the form 0..X-1, thereby guaranteeing byte alignment. If X <
32, unaligned allocation is legal, with the range being any correct-lengtn
subrange of 0..31. Components that are arrays, records, tasks, or access
variables may not be allocated to specified locations. If a specification
of this form is entered, a diagnostic message of severity ERROR is
generated. (See Appendix 80 for a complete 1list of all diagnostic
messages.)

The alignment clause of the form
at mod N

may specify alignments of 1 (byte), 2 (woré). 4 (longword), or §
(quadword) .

10.1.4.7 Other Length Specifications.

Length Specifications are described in Section 13.2 of the Ada
Reference Manual.

T'STORAGE_SIZE for access type T -~ This length specification is
ignored.

T'STORAGE_SIZE for task type T - Specifies the number of bytes to be
allocated for the runtime stack of each task object of type T.

10-10

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1683

10.1.5 System Generated Names.

There are no system generated names.

10.1.6 Address Specifications.

Refer to Par. 13.5 of the Ada Reference Manual for a discussion of
Address Specifications. Address specifications are not permitted.

10.1.7 Unchecked Conversions.

‘Refer to Par. 13.10.2 of the Ada Reference Manual for a description
of UNCHECKED_CONVERSION.

A program is erroneous if it performs UNCHECKED CONVERSION when the
source and target have different size.

10.1.8 Input/OQutput.

Refer to Chapter 14 of the Ada Reference Manual for a discussion of
Input/Output.

The type COUNT that appears in Par. 14.2 and 14.3 is defined as
follows:

type COUNT is range O..LONG_INTEGER'LAST;

10.1.8.1 Naming External Files:.

An external file name can be any valid path name, as defined in
Appendix 50 of this specification.

10.1.8.2 The FORM Specification for External Files.

The "FORM" string parameter to the CREATE and OPEN procedures in
packages DIRECT_IO, SEQUENTIAL_ IO and TEXT_IO is saved as long as the file
is open to allow the user to retrieve its value via calls to the FORM
procedure, but it is not used in any way by these packages.

10-11

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

10.1.8.3 File Processing.

Processing allowed on ALS nodes is determined by the access controls
(see Appendix 50) set by the owner of the file and by the physical
characteristics of the underlying device, The following restrictions

apply:

« A user may open a file as an IN_FILE only if that user has read
access to the node. A user may open a file as an OUT_FILE only
if that user has write access to the node. Finally, a user may
open a file as an INOUT_FILE only if that user has read and
write access to the node.

. No positioning operations are allowed on files associated with
a printer or terminal. USE_ERROR is raised if this is
violated.

. Writing a record on a file associated with a tape adds the

record to the file such that the record just written becomes
the last record of the file.

10.1.8.4 Text Input/Qutput.

At the beginning of program execution, the STANDARD INPUT file and
the STANDARD OUTPUT file are open, and associated with the ALS-supported
standard input and output files.

A program is erroneous if concurrently executing tasks attempt to
perform overlapping GET and/or PUT operations on the same terminal.

Because of the physical nature of DecWriters and Video terminals, the
semantics of text layout as specified in Ada Reference Manual Par. 14.3.2
(especially the concepts of current column number and current line) cannot
be guaranteed when GET operations are interleaved with PUT operations.
Programs which rely on the semantics of text layout wunder those
circumstances are erroneous. For such devices, the function LINE raises
USE_ERROR.

The standard output file has default 1line length of 120.
SET_LINE LENGTH can be used to set a length no longer than the 120
maximum. (An attempt to set a longer length raises USE_ERROR).

DecWriter and Video input 1is inherently a variable-line—lengtﬁ
operation; SET_LINE_LENGTH raises USE_ERROR when applied, with a value
other than zero, to tre standard input-file.

10-12

':Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

10.1.8.5. Low Level Input-Output.

The subroutines SEND_CONTROL and RECEIVE_CONTROL do not exist.

10.1.8.6 Hardware Interrupts.

The runtime support library for the VAX/VMS target does not handle
hardware interrupts. All hardware interrupts are handled by the VMS
operating system. :

10.1.9 Character Set.

Ada compilations may be expressed using the following characters, in
addition to the basic character set:

. The lower case letters
.Y $2,86[NT° Y {)T
The following transliterations are not permitted (see Par. 2.10 of
the Ada Reference Manual):
. Exclamation mark for vertical bar,
. Colon for sharp, and

. Percent for double-quote.

10.1.10 Machine Code Insertions.

The Ada language definition permits machine code insertions as described
in Section 13.8 of the Ada Reference Manual. This section describes the
implementation specific details for writing machine c¢ode insertions as
provided by the predefined package MACHINE CODE.

10.1.10.1 Machine Features.

This section describes specific machine language features which are needed
to write code statements. These uachine features include the DISP and
ADDRESS attributes and the address mode specifiers. The address mode
specifiers make it possible to describe both the address mode and register
number of any operand as a single value by mapping these values directly
onto the first byte of each operand. The following is an enumeration of

10-13

"Use or disclosure of tech | data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification

1 November 1983

all mode specifiers:

CR-CP-0059-~A00

-- The first 64 are the short literal modes.
-- These mode specifiers signify (short literal mode, value)
-- combinations. The values are in the range 0 to 63.

LO, L1, L2' L3.
L4, Ls, L6, L7,
L8, L9, L10, L1,
Lie, L13, L4, L15,
L16, L17, L18, L19,
L20, La1, L22, La3,
L2u, L2s, L26, L27,
L28, L29, L30, L31,
L32, L33, L34, L35,
L36, L37, L38, L39,
L40, L41, Lua2, L43,
Luy, Lis5, L46, La7,
L48, Lu9, Lsa0, L51,
L52, L53, L54, L55,
L56, L57, L58, L59,
L60, Lé1, Lé62, L63,
-- Next are the (index mode, register) combinations.

X_RO, X_R1, X_R2,. X _R3,
X_R4, X_RS, X_R6, X_R7,
X_R8, X_R9, X_R10, X_R11,
X_AP, X_FP, X_sp, X_PC,

The following are the (register mode, register) combinations.

RO, R1, R2, R3,
R4, RS, ' R6, R7,
" RS, R9, - R10, R11,
AP, FP, Sp, PC,

-- The following are the (indirect register mode, register) combinations.

IRO, IR1, IR2, IR3,
IR4, IRS, IRS6, IR7,
IR8, IR9, IR10, IR11,
IAP, IFP, ISP, - IPC,

Next are the (autodecrement register mode, register) combinations.

10-14

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

DEC_RO, DEC_R1, DEC_R2, DEC_R3,
.. DEC_R4, DEC_R5, DEC_R6, DEC_R7,

DEC_R8, DEC_R9, DEC_R10, DEC_R11,

DEC_AP, DEC_FP, DEC_SP, DEC_PC,

Next are the (autoincrement register mode, register) combinations.
IMD (immediate mode) is autoincrement mode using the PC.

RO_INC, R1_INC, R2_INC, R3_INC,
R4_INC, RS_INC, R6_INC, RT_INC,
RE_INC, R9_INC, R10_INC, RIT_INC,
AP_INC, FP_INC, SP_INC, IMD,

The following are the (autoincrement deferred mode, register)
combinations. A (absolute address mode) is autoincrement

deferred using the PC.

IRO_INC, IR1_INC, IR2_INC, IR3_INC,
IRW_INC, IRS_INC, IR6_INC, IR7_INC,
IR§_INC, IR9_INC, IR10_INC, IR1T_INC,
IAPTINC, IFPCINC, ISP_INC, A,

The following are the (byte displacement mode, register)
combinations. B _PC is byte relative mode for the program counter.

B_RO, B_R1, B_R2, B_R3,
B_R4, B_RS, B_R6, B_R7,
B_R8, B_R9, B_R10, B_R11,
B_AP, B_FP, B_SP, B_PC,

Next are the (byte displacement deferred mode, register)
combinations. IB_PC is byte relative deferred mode
for the program counter.

IB_RO, IB R1, IB R2, IB_R3,
IE_R4, IB_RS, IB_R6, IB_RT,
IB_R8, IB_R9, IB_R10, IB_R11,
IB_AP, IE_FP, IB_SP, IB_PC,

The following are the (word displacement mode, register)
combinations. W_PC is word relative mode for
the program counter.

Ww_RO, W_R1, W_R2, W_R3,
W_R4, W_RS, W_R6, W_R7,
W_RS, W_R9, W_R10, W R11,
W_AP, W_FP, W_SP, W_PC,

The following are the (word displacement deferred mode, register)
combinations. IW_PC is word relative deferred mode for the
program counter.

10-15

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983 ’

IW_RoO, IW_R1, IW_R2, IN_R3,
IW_R4, IW_RS, IW_R6, IW_R7,
IW_R8, IW_R9, IW_R10, IW_R11,
IW_AP, IW_FP, IW_SP, IW_PC,

Next are the (longword displacement mode, register) combinations.
L PC is longword relative mode.

i

L_Ro, L_R1, L_R2, L_R3,
L_RY, L_Rs, L_R6, L_R7,
L_R8, L_R9, L_R10, L_RI1,
L_AP, L_FP, L_SP, L_PC,

The following are the (longword displacement deferred mode,
register) combinations. IL_PC is longword relative deferred mocde.

IL_RO, IL_R1, IL_R2, IL_R3,
IL_R4, IL_RS, IL_R6, IL_R7,
IL_R8, IL_R9, IL_R10, ILTR11,
IL_AP, IL_FP, IL_SP, IL_PC);

10.1.10.2 Restrictions on the ADDRESS and DISP Attributes.

The following restriction applies to the wuse of the ADDRESS and DISP
attributes:

All displacements and addresses (i.e., branch destinations, program
counter addressing mode displacements, etc.) must be static
expressions. Since neither the ADDRESS nor the DISP attributes
return static values, they may not be used in code statements.

10.1.10.3 Restrictions on Assembler Constructs.

The machine code insertion capability provided by the package MACHINE_CODE
does not allow for all assembler constructs. These unsupported constructs
are:

o The VAX/VMS Assembler's capability to compute the length of
immediate and 1literal data is not replicated in MACHINE_ CODE.
This means the user cannot supply a value without specifying
the length of that value. This disallows the assembler operand
general formats:

D(R)
G
GG
10-16
"Use or disclosure of technical data and/or computer software

is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ficons
f#cons[Rx]
D(R)[Rx]

G[Rx]
G"location{Rx]
eD(R)[Rx]
8G[Rx]

@éD(R)

G

where D and G are byte, word or long_word values. Operands must
contain address mode specifiers which explicitly define the
length of any immediate or literal values of that operand.

The radix of the assembler notation is decimal. To express a
hexidecimal 1literal, the notation 16#literal# should be used
instead of “X.

To construct an octword, quadword, g_float or h_float number,
it is important for the user to remember that the component
fields of the records which make up the long numeric types are
signed. This means that the user must take care to be assured
that the values for these components, although signed, are:
interpreted correctly by the architecture.

Edit instruction streams must be constructed through the use of
the VAX data statements described in Section 10.1.11.3.

Compatibility mode instruction streams must be constructed
through the use of the VAX data statements described in Section
10.1.11.3.

No error messages are generated if the PC is used as the
register for operands taking a single register, if the SP or PC
are used for operands taking two registers, or if the AP, FP,
SP, or PC is used for operands taking four registers.

No error message is generated if the PC is used in register
deferred or autodecrement mode. ‘

If any regir er other than the PC is wused as both the
simple_operand and as the index reg for an operand (see Section
10.1.171.1.1.2 for definitions of simple_operand and idex_reg),
no error message is generated. An example of this case is the
VAX/VMS Assembler operand (7)[7].

10-17

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

o Generic opcode selection is not supported. This means the
opcode which reflects the specified number of operands must be
used. For example, for 2 operand word addition, ADDW2 must be
used, not just ADDW,

o0 The PC is not supplied as a default if no register is specified
in an operand. The user must supply the mode specifier which
is mapped onto the PC. Examples are IMD, A, B_PC, W_PC, etc.

10.1.11 Machine Instructions and Data.

This section describes the syntactic details for writing code statements
(machine code insertions) as provided for the VAX by the pre-defined
package MACHINE CODE. The format for writing code statements is detailed,
as are descriptions of the values to be supplied in the code statements.
Each value is described by the named association for that value, and is
defined in the order in which it must appear in positional notation. The
programmer should refer to the VAX-11 Architecture Handbook (2.2) along
with this section to insure that the machine instructions are correct from
an architectural viewpoint.

To insure a proﬁer interface between Ada and machine code insertions, the
user must be aware of the calling conventions used by the Ada compiler,
described in Appendix 20.

10.1.11.1 Vax Instructions.

The general format for VAX code statements where the opcode is a one byte
opcode is

VAX1'(OP => opcode {,"opcode" 1 => operand
{,"opcode”_2 => operand
{,"opcode™_3 => operand
{,"opcode™__ 4 => operand
{,"opcode™ 5 => operand
{,"opcode"_6 => operand}}}}}1});

The general format for VAX code statements where the opcode is a two byte
opcode is

VAX2' (OP => opcode2 {,"opcode2" 1 => operand
{,"opcode2"_2 => operand
{,"opcode2"_3 => operand
{,"opcode2" 4 => operand
{,"opcode2" 5 => operand
{,"opcode2" 6 => operand}}}}}});

10-18

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

where "opcode" n and "opcode2" n is the result of the concatenation of the
VAX opcode, an underscore, and the position of the operand in the VAX
instruction. The VAX1 and VAX2 code statements always require an opcode
and may include from 1 to 6 operands. The opcode mnemonics are precisely
the same as described in the previously referenced VAX-11 Architecture
Handbook.

10.1.11.1.1 VAX Operands.

The VAX address modes divide the operands into six general categories,
namely:

10.1.11.1.1.1 Short Literal Operands.

The assembler format for short literal operands is

S”#cons
where cons iS an integer constant with an range from 0 to 63 (decimal).
The code statement format for short literal operands is

(OP => short_lit)

where short lit is one of the enumerated values, range LO to L63, of the
address mode specifiers in Section 10,1.10.1.)

The following are examples of how some VAX/VMS Assembler short 1literals
would be expressed in code statements.

S*#7 Dbecomes (OP =>
S"#33 becomes (OP => L33)
S*#60 becomes (OP =>

(For explanations of named and unnamed component association, see Section
4.3 of the Ada Language Reference Manual.)

10.1.11.1.1.2 Indexed Operands.

The VAX/VMS Assembler format for the indexed operands is, in general
simple_operand[Rx]

where a simple operand is an operand of any address mode except register,
literal, or index.

The general code statement format for indexed operands is

10-19

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

where index_reg is one of the enumerated address mode

(index_reg, simple operand) or
(OP => index_reg, OPND => simple_ operand)

specifiers,

range

X_RO to X_SP, from Section 10.1.10.1. - Simple_operand is-an operand of any
address mode except register, literal, or index.

For example, the following indexed assembler operands,

(a)
(b)
(e)
(d)
(e)
()
(8)
(h)
(1)
(3
(k)
(1
(m)
(n)
(o)
(p)
(q)

(r)

would be expressed in named

(a)
(b)
(e)

(R8)([RT]
(R8)+([RT]
I"#600(R4]
~(R#4) [R3]
B™4(R9)[R3]
W"800(R8) [RS]
L"34000(R8)[R4]
B*10(R9]

W™ 130[R2]
L"35000(R6]
€(R3)+[R5]
@#1432[R5]
@B™4(R9) [R3]
€w"8(R8) [R5]
€L"2(R8)[RY4]
@8~3(R1]
éw"150(R2]

€L~ 100000(R3]

(OP => X_RT, OPND
(OP => X_RT, OPND

(OP => X_R4, OPND

- becomes

becomes

becomes

becomes

becomes

becomes

becomes

becomes

becomes

becomes

becomes

becomes

becomes

becomes

becomes

becomes

becomes

becomes

(XR7,
(X_RT7,
(X_R4,
(X_R3,
(X_R3,
(X_RS,
(X_RY4,
(X_R9,
(X_R2,
(X_R6,
(X_RS,
(X_RS,
(X_R3,
(X_RS,
(X_RS,
(X_R1,
(X_R2,

(X_R3,

notation as:

=> (OP
=> (OP

=> (0P

=> IRT))

10-20

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

(OP => IRT))
(OP => R8_INC))
(IMD,600))

(OP => DEC_R4))
(B_R9,4))
(W_R8,800))
(L_R8,34000))
(B_PC,10))
(W_PC,130))
(L_PC,35000))
(OP => IR3_INC))
(A,1432))

IB R9,4))
(IW_R8,8))
(IL_R8,2))
(IB_PC,3))
(IW_PC, 150))

(IL_PC,100000))

=> R8_;NC))

=> IMD, W_IMD => 600))

(d) (OP => X_R3,
(e) (OP => X_R3,
(f) (OP => X_R5,
(g) (OP => X_R4,
(h) (0P => X_R9,
(1) (0P => X_R2,
() (OP => X_R6,
(k) (OP => X_R5,
(1) (0P => X_RS,
(m) (OP => X_R3,
(n) (OP => X_R5,
(o) (OP => X_R4,
(p) (OP => X_R1,
(g9 (OP => X_R2,
(r) (OP => X _R3,
10.1.11.1.1.3

Ada Language System Specification CR-CP-0059-A00

OPND

OPND

OPND

OPND

OPND

OPND

OPND

OPND

OPND

OPND

OPND

OPND

OPND

OPND

OPND

(oP
(OP
(oP
(OP
(op
(op
(op
(op
(op
(op
(op
(oP
(op
(op

(op

Register Operands.

DEC_RY4))

B_R9, BYTE_DISP

W_R8, WORD_DISP

1 November 1983

=> 4))

=> 800)

L_R8, LONG_WORD_DISP => 34000))

B_PC, BYTE_DISP

W_PC, WORD_DISP

=> 10))

=> 130))

L_PC, LONG_WORD_DISP => 35000))

IR3_INC))
A, ADDR => 1432)
IB_R9, BYTE_DISP

IwW_R8, WORD_DISP

)
=> 4))

z> 8))

IL_R8, LONG_WORD_DISP => 2))

IB_PC, B_BISP =>

IW_PC, WORD_DISP

3

=> 150))

IL_PC, LONG_WORD_DISP => 100000))

The VAX/VMS Assembler formats for register operands are

Rn
(Rn)
~(Rn)
(Rn)+
@(Rn)+

-=- Register mode
Register deferred mode
autodecrement mode
Autoincrement mode

== Autoincrement deferred mode

where Rn répresents a register numbered from 0 to 15.

The general code statement format for register 6perands is

‘OP => regmode__value)

where regmode value represents one' of the enumerated address mode
specifier range RO to PC, from Section 10.1.10.1.

The following are examples of how VAX/VMS Assembler register mode operands

10=21

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

would be written as code statements.

R7 becomes (OP => R7T)
(R8) becomes (0P => IR8)
-(R9) becomes (OP => DEC_R9)
(RD)+ becomes (OP => R1_INC)
@(R3)+ becomes (0P => IR3_INC)

10.1.11.1.1.4 Byte Displacement Operands.

The VAX/VMS Assembler syntax for the byte displacement operands is

B~d(Rn) -~ Byte displacement mode
@B"d(Rn) -- Byte displacement deferred mode

where d is the displacement added to the contents of register Rn. If no
register is specified, the program counter is assumed. The code statement
general format for the byte displacement and byte dlsplacement deferred
modes is

(byte_disp_spec, value) or (OP => byte_disp spec, BYTE DISP => value)

where byte _disp spec is one of the enumerated address mode specifiers,
range B | RO to B PC for byte displacement or IB RO to IB_PC for byte
displacement deferred, from Section 10.1.10.1. Value is in the range -128
to 127.

The following are examples of how VAX/VMS Assembler byte displacement
operands would be written in code statements.

B U(RS) becomes (B_RS, 4) or (OP => B_R5, BYTE DISP => 4)
B"200(R5) becomes (B_R5, 200) or (OP => B_R5, BYTE_DISP => 200)
B"33 becomes (B PC, 33) or (OP => B_PC, BYTE DISP => 33)
@8"4(R5) becomes (IB_RS, 4) or (OP => IB_RS, BYTE_DISP => 4)
@B"200(R5) becomes (IB_R5, 200) or (OP => IB_R5, BYTE_DISP => 200)
éB°33 becomes (IB_PC, 33) or (OP => IB_PC, BYTE_DISP => 33)

10.1.11.1.1.5 Word Displacement Operands.

The VAX/VMS Assembler syntax for the word displacement operands are

Q‘d(Rn) -= Word displacement
8W*d(Rn) -- Word displacement deferred

where d is the displacement to be added to the contents of register Rn.
If no register is specified, the program counter is assumed. In code
statements, word displacement operands are represented in general as

10=22

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

~ (word_disp_spec, value) or (OP => word_disp_spec, WORD_DISP => value)

where word_disp_spec is one of the enumerated address mode specifiers,
range W RO to W_PC for word displacement mode or IW RO to IW_PC for word
dlsplacement deferred mode from Section 10.1.10.1. Value is in the range
-2%¥%15 to 2##15 -1,

The following are examples of how VAX/VMS Assembler word displacement
operands would be written in code statements.

W 10(RS5) becomes (W_RS, 10) or (OP => W_RS, WORD DISP => 10)
wW°20 becomes (W_PC, 20) or (OP => W_PC, WORD DISP => 20)
6W"128(R7) becomes (W_R7, 128) or (OP => IW_R7, WORD_DISP => 128)

=> IW_PC, WORD_DISP => 324)

W~ 324 becomes (W_PC, 324) or (OP

10.1.11.1.1.6 Longword Displacement Operands.

The VAX/VMS Assembler general formats for the longword displacement

operands is ,
L"d(Rn) - Long_word displacement
€L d(Rn) -- Long_word displacement deferred

where d is the displacement to be added to the register represented by Rn.
Longword displacement operands are represented in code statements by the
general format

(lword_disp_spec, value) or
(OP => lword_disp_spec, LONG_WORD_DISP => value)

where lword disp spec is one of the enumerated address mode specifiers,
range L RO to L _PC for long word displacement mode or IL RO to IL PC for
longword displacement deferred mode, from Section 10.1.10.1. Value is in
the range -2%#31 to 2##31 ~ 1,

The following are examples of how VAX/VMS Assembler long_word displacement
operands would be written in code statements.

L"1000(R7) becomes (L_R7, 1000) or

(OP => L_R7, LONG_WORD_DISP => 1000)
L*25000 becomes (L_PC, 25000) or

(OP => L_PC, LONG_WORD_DISP => 25000)
6L"1000(R9) becomes (IL_R9, 1000) or

(OP => IL R9, LONG_WORD_DISP => 1000)

€L"3500. becomes (IL_PC, 3500) or
(OP => IL _PC, LONG_WORD I SP => 3500)

10-23

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

10.1.11.2 The CASE Statement.

The VAX case statements (mnemonics CASEB, CASEW, and CASEL) have the
following general symbolic form

opcode selector.rx, base.rx, limit.rx,
displ{0].bw, .. , displ{limit].bw

where x is dependent upon the opcode as to whether the operand is of type
BYTE, WORD, or LONG_WORD. Displ(O]l.bw, .. , displ{limit].bw is a list of
displacements to which to branch. Case statements would be written as
code statements as

VAXT*(OP => case_opcode, "case_opcode" 1 =>.operand,
"case_opcode" 2 => operand,
"case_opcode" 3 => case_operand)

where case_opcode is one of CASEB, CASEW, or CASEL. The type of operand
and case operand are as indicated in the opcode (BYTE, WORD, or
LONG_WORD). A case operand is a special case operand of the form

case_operand => (case_limit_address_mode, (case_enum))
or

case_operand => (LIMIT => case_limit_address_mode,
(CASES => case_enum))

if case_limit_address_mode is one of the short literal address specifiers.
If case_limit_address mode is the mode specifier IMD, the the case_operand
takes the form

case_operand => (IMD, (case_limit, (case_enum)))
or

case_operand => (LIMIT => IMD, CASE_LIST =>
(LIMIT => case limit. (CASES => case _enum)))

where case_operand is one of BYTE CASE_OPERAND, WORD_CASE_OPERAND, or
LONG_WORD_¢ CASE OPERAND. The case_! l1m1t address_mode is cne “of the short
literal mode specifiers or the mode : Specifier IMD. Case_enum is a list of
branch addresses. The branch addresses must be of type WORD. The
case_limit is a value of the type indicated by the case_opcode.

Scme examples of case statements written as code statements are:

<<START>> VAX1'(CASEB, (OP => R3), (IMD, 5), (IMD,
(2,(15,30,45)))); =-- Case statement using
-- immediate mode.

<<L82>> VAX1'(CASEW, (OP => (H_PC, 10)), (IMD, 100), (L2,
(10,20,30))); -- Case statement using short

10-24

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

-— literal mode.

10.1.11.3 VAX Data.

Constant values such as absolute addresses or displacements may be entered
into the code stream with any of these nine statements:

BYTE_VALUE' (byte)

WORD_VALUE' (word)
LONG_WORD_VALUE' (long_word)
QUADWORD_VALUE' (quadword)
OCTAWORD_VALUE' (octaword)
FLOAT_VALUE' (float)
LONG_FLOAT_VALUE'(long_float)
G_FLOAT_VALUE'(g_float)
H_FLOAT_VALUE'(h_float)

10.1.12 System Defined Exceptions

In additional to the exceptions defined in the Ada Language Reference
Manual, this implementation pre-defines the following exceptions :

Name Significance
UNRESOLVED_REFERENCE Attempted call to a routine not

linked into the user's image
(See Section 30.1.2)

SYSTEM_ERROR Serious error detected in underlying
operating system.

10=25

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

10.2 Blank.

10.3 Blank.

10.4 Blank.

10.5 Blank.

10-26

"Use or disclosure of technical data and/or coinputer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP-0059-A00
' 1 November 1983

10.6 The Ada Language For The MCF Target.

The source language accepted by the compiler is Ada, as described in
the Military Standard, Ada Programming Language, ANSI/MIL-STD-1815A-1983,
17 February 1983 ("Ada Reference Manual") (2.1).

The Ada definition permits certain implementation dependencies. Each
Ada implementation is required to supply a complete description of its
dependencies, to be thought of as Appendix F to the Ada Reference Manual.
This section is that description for the MCF target.

10.6.1 Pragmas.
10.6.1.1 Pragma Definition.

The following are implementation-defined pragmas:

pragma PAGE;

This is a listing-control pragma. If the source text to be
reformatted contains any PAGE pragmas, the line on which the
token PAGE appears is placed at the first line available on a
new page in the source listing.

pragma TITLE (arg);

This is a listing control pragma. It specifies a CHARACTER
string that is to appear on the second line of each page of
every listing produced for a compilation unit. At most one such
pragma may appear for any compilation unit, and it must be the
first lexical unit in the compilaton unit (comments excepted).
The argument is a CHARACTER string.

The following notes specify the language-required definitions of the
predefined pragmas. Unmentioned pragmas require no notes. (See Appendix
B of the Ada Reference Manual.) '

pragma INTERFACE (arg,arg);

No INTERFACE pragmas are recognized.
pragma MEMORY SIZE (arg)

The MEMORY_SIZE pragma is ignored, other than to verify that the
value of the argument is in the range 0..(2%#32)-1,

pragma OPTIMIZE (arg)

This pragma is effective only when the "OPTIMIZE" option has
been given to the compiler, as described in 3.7.1.1.1.3. The
pragma is ignored when applied to inline subprograms. The

10-=27

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

AAda Language System Specification CR=-CP-0059-A00
1 November 1983 -

argument is either TIME or SPACE.
pragma PRIORITY (arg) |

The PRIORITY argument is an integer static expression value in
the range 1..15. The pragma has no effect in a location other
than a task (type) specification or outermost declarative part
of a subprogram. If the pragma appears in the declarative part
of a subprogram, it has no effect wunless that subprogram is
designated as the "main" subprogram at link time.

pragma STORAGE_UNIT (arg)

If the argument is a value other than 8, a diagnostic of
severity WARNING is generated. (See Appendix 80 for a complete
summary of all diagnostic messages.) Otherwise, no action is
taken.

pragma SUPPRESS (argl,argl)

SUPPRESS pragmas which mention the following CHECK names have no
effect: ’ '

DIVISION_CHECK
OVERFLOW_CHECK

These checks cannot be suppressed.
pragma SYSTEM (arg)

The SYSTEM argument is a value of the enumeration type
SYSTEM.SYSTEM_NAME. The purpose of this pragma is to assert
that the Ada compilation unit is specially designed to execute
only on certain target environments.

The value MCF means that the unit is designed to run on a
machine with Nebula architecture. For other values, a
diagnostic of the severity WARNING is generated. (See Appendix
80 for a complete summary of all diagnostic messages).

10-28

"Use or disclosure of technical data and/or computer software
-is subject to the restrictions on the cover of this. Document."

10.6.1.2

CONTROLLED

INLINE

LIST

MEMORY_SIZE

OPTIMIZE

PACK

PAGE

PRIORITY

STORAGE_UNIT

SUPPRESS

SYSTEM

TITLE

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Scope of Pragmas.

Applies only to the access type named in its
argument

Applies only to the subprograms named in its
arguments. If the argument 1is an overloaded
subprogram name, the INLINE pragma applies to all
definitions of that subprogram name which appear
in the same declarative part as the INLINE
pragma.,

In effect until the next LIST pragma in the

~source or included text, or if none, the end of

the compilation unit

Applies to the entire Program Library in which it
appears. Multiple, conflicting occurrences in a
Program Library are erroneous.

Applies to the entire compilation unit in which.
it appears :

Applies only to the array or record named in 1its
argumeni

No scope

Applies only to the task specification or main
subprogram in which it appears

Applies to the entire compilation unit before
which it appears

Applies to the block or body that contains the
declarative part in which the pragma appears

Applies to the entire compilation unit before
which it appears

No scope

10-29

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

10.6.2 Attributes.

There is one implementation-defined attribute in addition ¢to the
predefined attributes found in Appendix A of the Ada Reference Manual.

X'DISP

A value of type DISPLACEMENT which corresponds to the
displacement that is used to address the first storage unit
occupied by a data objeet X at a static offset within an
implemented activation record. The type DISPLACEMENT is defined
as:

type DISPLACEMENT is new LONG_INTEGER;

This attribute differs from the ADDRESS attribute in that
ADDRESS supplies the absolute address while DISP supplies the
displacement relative to some base value (such as a stack frame
pointer), in the runtime enviromnent. It is the user's
responsibility to determine the base value relevant ¢to the
attribute. The runtime environment is described in Appendix
<TBD>.

The following notes augment the language-required definitions of the
predefined attributes found in Appendix A of the Ada Reference Manual.

T'MACHINE_ROUNDS is true.
T'MACHINE_RADIX is 2.

T'MACHINE_MANTISSA If the size of the base type of T is 32,
T'MACHINE MANTISSA is 24. Otherwise it is 53.

T'MACHINE_EMAX - If the size of the base type of T is 32,
T'MACHINE_EMAX is 127. Otherwise it is 1023.

T'MACHINE_EMIN If the size of the base type of T is 32,
T'MACHINE_EMIN is -126. Otherwise it is -1022.

T'MACHINE_OVERFLOWS is true.

The Nebula architecture allows software
manipulation of the status register which
controls rounding and response to overflow.
The ALS for the MCF will establish these values
at the beginning of a program execution, and
will assume them to be in effect throughout a
program. It is the user's responsibility to
refrain from usiig code statements or assembly
language to change these values in the status
register.

10-30

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

10.6.3 Predefined Language Environment.

The Package STANDARD contains the following definitions in addition
to those specified in Appendix C of the Ada Reference Manual:

type SHORT_INTEGER is range -2%#7,, 2%*7-1;
type INTEGER is range -=2#%##15, 2%#{5.1;
type LONG_INTEGER is range -2%%31,,2%#31.1;

type FLOAT is digits 7 range
(A AT_ 111 _ 11111111111 _11114E127)
LAV 1M1 _ 1111111 11114E127) 5
type LONG " FLOAT is digits 15 range

=(2#1. 1111 _1111_11n T1111_ 111111111111 _NM_ 111111111 _1111_1111#E1023)
2. 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1117 1111 _11114E1023);

-SHORT FLOAT is not defined

subtype PRIORITY is SHORT_INTEGER range 1..15;
type DURATION is delta 0. 01 range —2.0%%24 ,, 2,0%%24-0,01;
--actual delta is 1/128

Package SYSTEM is

type SYSTEM_NAME is (VAX780_VMS, VAX780, MCF);
NAME: constant SYSTEM_NAME := MCF;
STORAGE_UNIT: constant := 8;

MEMORY SIZE: constant := (2%%32);

MIN_INT: constant := -(2%#31);

MAX INT: constant := (2%#31)-1;

UNRESOLVED_BEFERENCE: exception; --see Appendix 30 of this specification

end SYSTEM;

10-31

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP-0059-A00
1 November 1983 :

10.6.4 Representations and Declaration Restrictions.

Representation specifications are described in Chapter 13 of the Ada
Reference Manual. Declarations are described in Chapter 3 of that manual.

10.6.4.1 Integer Types.

Integer types are specified with constraints of the form
range L..R

where
R SYSTEM.MAX_INT

<
L > SYSTEM.MIN_INT
Length specifications of the form:
for T'SIZE use N;

may specify integer values N such that
N = 32 or
"N in 2..16,

and such that
R < 2#%(N-1)-1
and L > -2%#%(N-1)

or else such that
R < (2%##N)-1
L>o0

0 <N<K 15

and

When no length specification is provided, the smallest SIZE of 8, 16,

or 32 is used !
such that
R £ 2#*(SIZE-1)-1
and L > -2%%(SIZE-1).

10.6.4.2 Floating Types.

Floating types are specified with constraints of the form:
digits D

where
D is an integer value in 1..15.

Length specifications of the form
for T'SIZE use N;
may specify integer values N = 32 when D £ 7,

10-32

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

or N = 64 when D < 15,

Where no length specification is provided, a size of 32 is used
when D < 7, 64 when D is 8..15.

10.6.4.3 Fixed Types.

Fixed typeé are specified with constraints of the form
delta D range L..R

where

max (abs(R), abs(L)) < 2##31-1 .
actual delta

The actual delta defaults to the largest integral power of 2 less
than or equal to the specified delta D. (This implies that fixed
values are stored right-aligned.) For specifications of the form:

for T'ACTUAL_DELTA use X;

X must be specified as an integral power of 2 such that
X<D

Length specifications of the form
for T'SIZE use N;

are permitted only when N = 32,
All fixed values have SIZE = 32.

10.6.4.4 Enumeration Types.

The default SIZE for an enumeration type is 8, unless there are more
than 256 values. In the latter case the default size is 16. The
size for the predefined type BOOLEAN is one. A length specification
of the form ’ .

for T'SIZE use N;
is permitted for N in 1..16.

Enumeration types may have up to 2%#SIZE different values.

An enumeration type representation of the form
for T use aggregate;
may specify codes in the range 0..(2%#SIZE)-1

10-33

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover .of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

10.6.4.5 Access Types.
No representation specification.is permitted for access types. If a
specification of this form is entered, a diagnostic message of severity

ERROR is generated. (See Appendix 80 for a complete 1list of all
diagnostic messages.)

10.6.4.6 Arrays and Records.

SIZE specifications of the form
for T'SIZE use N;

are not permitted for arrays and records. If a specification of this form
is entered, a diagnostic message of severity ERROR is generated. (See
Appendix 80 for a complete list of all diagnostic messages.)

The PACK pragma may be used to minimize wasted space between
components of arrays and records. The pragma causes the type
representation to be chosen such that storage space requirements are
minimized at the possible expense of data access time and code space. The
PACK pragma may not be used in conjunction with a representation
specification for the same type. If a specification of this form is
entered, a diagnostic message of severity ERROR is generated. (See
Appendix 80 for a complete list of all diagnostic messages.)

A record type representation specification may be used to desecribe
the allocation of components in a record. Bits are numbered 0..7 from the
left. (Bit 8 starts at the left of the next higher-numbered byte.) Each
location specification must allow at least X bits of range, where X is the
SIZE of the type of the component being allocated. If X > 32, the range
must be of the form 0..X-1, thereby guaranteeing byte aligmment. If X <
32, unaligned allocation is legal, with the range being any correct-length
subrange of 0..31. Components that are arrays, records, tasks, or access
variables may not be allocated to specified locations. If a specification
of this form is entered, a diagnostic message of severity ERROR is
generated. (See Appendix 80 for a complete 1ist of all diagnostic
messages.)

The alignment clause of the form
at mod N

may specify alignmments of 1 (byte), 2 (half-word), 4 (word), or 8
(double-word).

10-34

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

10.6.4.7 Other Length Specifications.

Length Specifications are described in Section 13.2 of the Ada
Reference Manual. '

T'STORAGE_SIZE for access type T - This 1length specification is
ignored.

T'STORAGE_SIZE for task type T - Specifies the number of bytes to be
allocated for the runtime stack of each task object of type T.

10.6.5 System Generated Names.

There are no system generated names.

10.6.6 Address Specifications.

Refer to Par. 13.5 of the Ada Reference Manual for a discussion of
address specifications.

For a task entry an address specification describes the address in
the interrupt vector table in which the address of the designated entry is
to be placed. The address specification allows the entry to be associated
with an interrupt.

For scalar objects, or records without discriminants, address
specifications may be used to designate a physical address in I/0 space in
which the object is to be permanently allocated. Such an address
specification can only appear in the declarative part of a library package
body, and may only specify an object declared in that body.

Address specifications may not designate subprograms.
Address specifications may be included at user risk. Since the ALS
uses the exception interruption, and I/0 space facilities of the machine,

it is the user's responsibility to ensure that address specifications do
‘not interfere with normal program execution.

10.6.7 Unchecked Conversions.

Refer to Par. 13.10.2 of the Ada Reference Manual for a description
of UNCHECKED CONVERSION.

A program is erroneous if it performs UNCHECKED CONVERSION when the
Source and target have different size. .

10-35

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

10.6.8 Input/Output.

Refer to Chapter 14 of the Ada Reference Manual for a discussion of
Input/Qutput.

The type FILE INDEX that appears in Par. 14.2 is defined as follows:

type FILE INDEX is range 0..LONG_INTEGER'LAST;

10.6.8.1 Naming External Files:

The only valid external file names are "disk", "tape:...",
"console_in" and "console out". Use of any other external file name
raises NAME_ERROR. The external files "console_in" and "console_out" are
reserved for the text I/0 standard files, and therefore cannot be used in
an OPEN. The others, "disk" and "tape:...", are pre-created and can be
opened or closed, but not created or deleted. Attempts to create or
delete any file raises NAME_ERROR. Both "disk" and "tape:..." can be
opened as IN_FILE, OUT | FILE, or INOUT FILE. The ellipses in the tape file
represent a user-specified string, identifying to the operator the reel
that is to be mounted on the tape drive.

10.6.8.2 File Processing. <TBD>

10.6.8.3 Text Input/Output. <TBD>

10.6.8.u' Low Level Input-Qutput. <TBD>

10.6.8.5 Hardware Interrupts.

If the programmer has equated an I/0 related hardware interrupt to a
task entry (by means of an address specification), then the runtime
support library converts such an interrupt into a conditional entry call.
I/0 related hardware interrupts which have not been equated to a task
entry are ignored.

10.6.9 Character Set.

Ada compilations may be expressed using the following characters, in
addition to the basic character set:

1. The lower case letters

2. ' $?2 eLlNTI" {1}~

- 10-36

"Use or disclosure of technicatl data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

The following transliterations are not permitted (see Par. 2.10 of
the Ada Reference Manual):
1. Execlamation mark for vertical bar,
2. Colon for sharp, and

3. Percent for double-quote.

10-37
“Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

10.6.10 Machine Code Insertions.

The Ada language definition permits machine code insertions as
defined by Paragraph 13.8 1in the Ada Reference Manual. This paragraph
describes the specific details for writing machine code insertions as
provided by the ALS~-supplied package MCF_INSTRUCTIONS.

10.6.10.1 Machine Features.

This paragraph describes specific machine language features, such as
registers, operand specifiers, etc., that are needed to code machine code
statements. In addition to the attribute DISP, the ALS-supplied package
MCF_INSTRUCTIONS will supply the following constants for use in code
statements:

R1..R15 register operand values

P1..P7 short parameter operand values

EXT_P © specifier constant for extended parameter mode
GEN_P specifier constant for general parameter mode
UNSC_IND specifier constant for unscaled index mode
SC_IND specifier constant for scaled index mode

B_IND(B..D,0..15) specifier constants for byte indexed mode
W_IND(B..D,0..15) specifier constants for word indexed mode

LIT(B..D) specifier constants for literal mode
ABS(B..D) specifier constants for absolute mode
IND(B..D) specifier constants for indirect register mode

The use of these constants is demonstrated in Section 10.6.11.1.1.

10.6.10.2 Restrictions on ADDRESS and DISP Attributes.

The following restrictions apply to the use of the ADDRESS and DISP
ATTRIBUTES:

a) ADDRESS - this attribute can only be safely applied to the
names of statically allocated objects and subprograms.

b) DISP - this attribute must be wused in conjunction with the
correct base address, such as a stack frame pointer, that
corresponds to the unit in which it was elaborated. To obtain
this, the user must have detailed knowledge of the object code
conventions and runtime enviromment of - the Ada system
(described in <TBD>»). In particular, the user is responsible
for insuring that the value supplied by DISP meets the range
constraints of the displacement or address field of the machine
code instruction.

10-38

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP=0059~A00
1 November 1983

10.6.11 Machine Instructions.

This section describes the syntactic details for writing code
statements in machine code insertions as defined by the package
specification MCF_INSTRUCTIONS. The format for writing code statements is
defined along with the descriptions of the values to be supplied in the
code statements. Each value is described by the named association for
that value and is defined in the order that it must appear if positional
association is used. The programmer should always refer to the Nebula
Instruction Set Architecture Standard (2.1) along with this section to
insure that the machine instructions are syntactically correct.

To insure a proper interface between high-level Ada and machine code
insertions, the user must be aware of the calling conventions employed by
the Ada compiler as described in <TBD>.

The value of any expression used in a code statement must be
statically determinable.

10.6.11.1 MCF Instructions.

The format for MCF Instructions, except CALL instructions, is
MCF' (CODE=> opcode {, operand});

The MCF code statement always requires an opcode, and may include 0
to U4 operands (see section 10.6.11.1.1). The opcodes are the same
mnemonics described in the Nebula architecture (previously referenced),
with the exception of substitutions to differentiate different opcodes
given identical mnemonics in the Architecture, or to avoid Ada reserved
words. The exceptions follow:

Nebula codes ALS MCF substitutions
ADD => ADD2,ADD3 — number of operands
SUB => SuUB2,SUB3
MUL => MUL2,MUL3
DIV => DIV2,DIV3
NEG => NEG1,NEG2
NOT => NOT1,NOT2
AND => AND1,AND2
OR => OR1,0R2
ADDF=> ADDF2,ADDF3
SUBF=> SUBF2,SUBF3
MULF=> MULF2,MULF3
DIVF=> DIVF2,DIVF3
NEGF => NEGF 1,NEGF2 .
BR => BR_B,BR_H -- size of displacement
BEQL=> BEQL B, BEQL H)
BNEQ=> BNEQ_B BNEQ_H
BLEQ=> BLEQ_B,BLEQ_H
10=39

'_'Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

BLSS=> BLSS_B,BLSS_H
BGEQ=> BGEQ_B,BGEQ_H
BGTR=> BGTR_B, BGTR_H
BCS => BCS_B,BCS_H
BCC => BCC_B,BCC_H
BTS => BTS_B,BTS_H
BTC => BTC_B,BTC_H
LOOP=> LOOP_MCF -— reserved words
MOD => MOD_MCF

REM => REM_MCF

XOR => XOR_MCF

RANGE => RANGE_MCF
RAISE = RAISE _MCF

CASE => , CASE_MCF

Procedure CALL instructions have the following format:

CALL_<n>' (PRIV=> .level, OPND1 => operand
[,PARAMS => (operand {, operand})]);

where:

a. <n> is to be the integer literal of the number of parameters
listed, in the range 0...255, to be appended by the programmer
to form an identifier, and

b. The level will be NORM, UNPRIV, or SUPV.

The first operand will resolve to the address of the procedure being
called (or the SVC vector index), and the first parameter operand (if
present) may be either the number of parameters to follow (parameter 0) or
the first actual parameter, as specified in the conventions of the Nebula
Instruction Set Architecture.

10.6.11.1.1 MCF Operands.

Except as noted in Sections 10.6.11.1.1.13 = 10.6.11.1.1.15, an MCF
operand field will be one of the 12 operand addressing modes. In named .
aggregate notation, they are to be designated by the names OPND1...0OPND4,
for normal operands, CALL instruction parameters are given as an array
aggregate. For example, the instruction

MOV %2,8%3"B
would be represented as

MCF'(CODE => MOV, OPND1 => (SPEC => R2),
OPND2 => (SPEC => IND(B,3)));

10-40

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

or MCF'(MOV,(SPEC => R2),(SPEC => IND(B,3)));

Branch instructions, the CASE_MCF instruction, and the WINDOW instruction
include special operand fields, named and formatted as outlined in
Sections 10.6.11.1.1.13 - 10.6.11.1.1.15, Note that Ada semantic rules
require that aggregates of a single component must be given in named
notation.

10.6.11.1.1.1 Short Literal Operands.

The format for short literal operands is
(SPEC => numeric value)
where numeric value is a value of type U BYTE in the range 0...31.

For example, the assembler 1literal value, #15, in the assembler
syntax would be expressed in the following manner:

(SPEC => 15)

10.6.11.1.1.2 Register Operands.

The format for register operands is
(SPEC => register constant)
where register constant is one of the package-supplied constants R1..R15.

For example, the assembler register field, %4, in the assembler
syntax would be expressed in the following manner:

(SPEC => R4)

10.6.11.1.1.3 Short Parameter Operands.

The format for short parameter operands is
(SPEC => parameter number)
where parameter number is one of the package-supplied constants P1..P7.

For example, the assembler parameter operand, ?5, 1i' the assembler
syntax would be expressed in the following manner:

(SPEC => P5)

10-41

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

A consequence of the nature of parameter operands and of the fact
that code statements are inserted in line is that parameter operands will
be resolved by the hardware as referring to parameters of the most
immediately encompassing Ada program unit on the active context stack.

10.6.11.1.1.4 Extended Parameter Operands.

The format for extended parameter operands is
(SPEC => EXT_P, PARM => parameter number)
where:
a. EXT P is a paékage-supplied field constant, and

b. Parameter number is a value of type U_BYTE in the range 0..255.

For example, ihe assembler parameter operand, ?9, in the assembler
syntax would be expressed in the following manner:

(SPEC => EXT_P, PARM => 9) or
(EXT_P,9)

A consequence of the nature of parameter operands and of the fact
that code statements are inserted in line is that parameter operands will
be resolved by the hardware as referring to parameters of the most
immediately emcompassing Ada program unit on the active context stack.

10.6.11.1.1.5 Literal Operands.

The format for literal operands is
(SPEC => LIT(SIZE), name => value
where:

a. Size designates the size of the value by the identifiers B, H,
W, or D,

b. Name is one of B LIT, H LIT, W_LIT, or D _LIT, appropriate to
the size, and ‘

¢. Value is of type SHORT_INTEGER, INTEGER, or LONG_INTEGER, for
size B, H, and W, respectively. The value of a double-word
literal ‘must be specified as a record aggregate of type DOUBLE,
which has two components, UPPER and LOWER, each of type
LONG_INTEGER.

10-42

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

For example, the assembler literal operands, # 100, and # =1000, in
the assembler syntax could be expressed in the following manner:

(SPEC => LIT(B), B_LIT => 100) or (LIT(B), 100)
(SPEC => LIT(W), W_LIT => -1000) or (LIT(W), -1000)

Alternately:

(SPEC => LIT(D), D_LIT => (UPPER => -1, LOWER => -1000))
or (LIT(D), (~1,-1000))

10.6.11.1.,1.6 Absolute Address Operands.

The format for absolute address operands is
(SPEC => ABS(SIZE), ADDR => ADDRESS)

where:

a. Size is B, H, W, or D, depending on the size of the referent of
the address, and

b. Address is a virtual memory address, transposed into a signed
integer value of type LONG_INTEGER.
For example, the assembler absolute operand, €(502)w, in the

assembler syntax would be expressed in the following manner:

(SPEC => ABS(W), ADDR => 502) or (ABS(W), 502)

10.6.11.1.1.7 Indirect Register Operands.

The format for indirect register operands is
(SPEC => IND(s8ize, register number))
where:

a. Size is B, H, W, or D, to indicate the size of the referent of
the operand, and)

b. Register number is a value of type INTEGER in the range 1..15.

For example, the assembler indirect register field, @%3"W, in the
assembler syntax would be expressed in the following manner:

(SPEC => IND(W,3))

10-43

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

10.6.11.1.1.8 Byte Indexed Operands.

The format for byte indexed operands is -
(SPEC => B_IND (size, register), B_DISP => offset)
where:
a. Size is B, H, W, or D, to indicate the size of the referent,

b. Registér is a value of type INTEGER in the range 0..15, to
indicate the register containing the address, and

c. Offset is a value of type SHORT_INTEGER.
For example, the assembler byte indexed field, 23(%2)W, in the
assembler syntax would be expressed in the following manner:

(SPEC => B_IND(W,2), B_DISP => 23) or (B_IND(W,2),23)

10.6.11.1.1.9 Word Indexed Operands.

The format for word indexed operands is
(SPEC => W_IND(size, register), W_DISP => offset)
where:
a. Size is B, H, W, D, to indicate the size of the referent,

b. Register is a value of type INTEGER in the range 0..15, to
indicate the register containing the address, and

c. Offset is a value of type LONG_INTEGER.
For example, the assembler word indexed field, =1024(%2)B, in the
assembler syntax would be expressed in the following manner:

(SPEC => W_IND(B,2),W_DISP => -1024) or (W_IND(B,2), -1024)

10.6.11.1.1.10 General Parameter Operands.

The format for genera’ parameter qperénds is
(SPEC => GEN_P, G P_SUB => simple operand)

where:

10-44

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

- " Ada Language Sysiem Specification CR-CP-0059~A00
1 November 1983

a. GEN_P is a package-supplied constant operand specifier, and

b. Simple operand is any operand except a scaled-index,
unscaled-index or another general parameter operand.

For example, the assembler operand, ?(%3), in the assembler syntax
would be expressed in the following manner: '

(SPEC => GEN_P,G_P_SUB => (SPEC => R3)) or
(GEN_P, (SPEC =>R3))

A consequence of the nature of parameter operands and of the fact
that code statements are inserted in line is that parameter operands will
be resolved by the hardware as referring to parameters of the most
immediately encompassing Ada program unit on the active context stack.

10.6.11.1.1.11 Unscaled Index Operands.

The format for unscaled index operands is

(SPEC => UNSC_IND,S_O_1 =>simple operand,S_O_2=>simple
operand

where:
a. UNSC_IND is a package-supplied constant operand specifier, and
b. The simple operands are any operands except scaled-index,
unscaled-index, or general parameter operands.
For example, the assembler unscaled index operands, €%3(%2)W, in the
assembler syntax would be expressed in the following manner:
(SPEC=>INSC_IND,S_O_1=>(SPEC=>R2),S_0_2=>(SPEC=>

IND(W,3)))
or (UNSC_IND,(SPEC=>R2),(SPEC=>IND(W,3)))

10.6.11.1.1.12 Scaled Index Operands.

The format for scaled index operands is

(SPEC=>SC_IND,S O_1=>simple operand,S_O_2=>simple
operand) :

where :

10-45

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983
a. SC_IND is a package-supplied constant operand specifier, and

b. The simple operands are any operands except scaled-index,
unscaled-index, or general parameter operands.

For example, the asembler scaled index operand, @%3[%2]W, in the
assembler syntax would be expressed in the following manner:

(SPEC=>SC_IND,S_0_1=>(SPEC=>R2),5_0_2=>(SPEC=>
IND(W,3)))
or. (SC_IND,(SPEC=>R2),(SPEC=>IND(W,3)))

10.6.11.1.1.13 Displacements.

The formats for displacements are

B_D_1st => signed byte value

H_D_1st => signed half-word value
H | D _3rd => signed half-word value
H | D 4th => signed half-word value

where:

a. BD 1st and HD 1st are of type SHORT_INTEGER or INTEGER,
respectively. and will appear as the first (and only) operands
of normal branch instructions,

b. HD_3rd is of type INTEGER, and will appear after two other
operands in the instructions IBLEQ, IBLSS, DBGEQ, DBGTR, and

¢. H_D 4th is of type INTEGER, and will appear after the first
three operands of the LOOP MCF instruction.

Displacements are signed integer values designating address offsets
from the program counter. Unlike the operand addressing modes, they are
not defined as record types, and therefore are not to be placed in
parentheses. For example, the assembler instruction

BR -10
would be represented as

MCF '(CODE => BR B, B D 1st => -=10)
or MCF '(BR_B, -10)"

10=-U46

“Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
' 1 November 1983

10.6.11.1.1.14 CASE MCF Jump Table.

The format for a CASE_MCF jump table is
JUMPS => (NUM => table size, TABLE => (displacement list))
Where:

a. Table size is the number of displacements in the table, a value
of type INTEGER in the range 0.. 2**15-1, and

b. Displacement list is a sequence of values of type INTEGER,
separated by commas.
The jump table appears after the first two operands of the CASE_MCF
instruction. For example, the assembler instruction
CASE %2,#6,4, 1000, 1004, 1008, 1012

would be represented as

MCF' (CODE => CASE_MCF, OP1 => (SPEC => R2), OP2 => (SPEC => 6),
JUMPS => (NUM => 4, TABLE => (1000,1004,1008,1012)))

or MCF' (CASE_MCF, (SPEC => R2), (SPEC =>6), (4,(1000,1004,1008,1012)))

10.6.11.1.1.15 WINDOW Instruction Information.

The format for the information passed by the WINDOW instruction to
the micromachine is

INFO => value

where value is of type U_BYTE.

For example, the assembler instruction
WINDOW “XFF

would be represented as

MCF'(CODE => WINDOW, INFO => 16#FF#)
or MCF'(WINDOW, 16#FF#)

10=47

':Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

APPENDIX 20

20. ADA LANGUAGE SYSTEM ASSEMBLERS

The Ada Language System includes the following assemblers:
a. ALS VAX-11/780 Assembler, and
b. ALS MCF Assembler.

Descriptions of the assembly language for each assembler are provided
on the following pages.

20=-1

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language Systém Specification CR-CP-0059-A00
1 November 1983

20.1 ALS>VAX Assembly Language.

RESTRICTIVE LEGEND

Material in this chapter has been taken with permission
from the VAX-11 MACRO Language Reference Manual published
by the Digital Equipment Corporation, Maynard, Mass.
Permission for the use of the material has been given for
this specific purpose only. Digital Equipment Corporation
retains full rights under its copyright of the material.
Accordingly, copies of this document shall not be made by
any organization or individual outside of the U.S.
Government without the prior written permission of the
Digital Equipment Corporation.

This section describes the ALS VAX assembly language, including the
syntax of assembly code statements and directives, assembler output, and
operation of the assembler. Readers should already be familiar with
assembly language programming and the VAX-11 instruction set,

The assembly language is intended to be wused for writing small
subprograms in order to access capabilities of the target machine that
cannot be reached from Ada. It is not intended for any large scale
development of software in assembly 1language. Accordingly, the ALS
VAX-~-11/780 Assembler does not contain all of the functions provided by the
assembler that may normally be supplied with the VAX-11/780. A comparison
of the assembly language accepted by the ALS VAX-11/780 Assembler and that
accepted by the assembler normally supplied with the VAX-11/780 is
provided in Section 20.1.8.

The ALS VAX-11/780 Assembler translates source programs into object
(i.e., binary) code and produces a listing file sent to the predefined
internal standard output file and a Container placed in the environment
database. The ALS VAX-11/780 Linker then combines this object information
from several assemblies, Ada compilations, and other links to produce an
executable program. '

An assembly language program consists of a series of source
statements representing an Ada 1library subprogram body or subunit
subprogram body. In addition to the body written in assembly language, a
subprogram specification, written in Ada, must also exist and must be
compiled prior to assembling the body if the assembly subprogram is a
library subprogram., If the assembly program is a subunit subprogram, then
the parent body must be compiled prior to assembling the assembly language
body .

20=-2

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00C
1 November 1983

The Ada subprogram specification must not include an INTERFACE
pragma. The assembly 1language subprogram body will be called with the
same linkage conventions used when calling subprograms written in Ada; it
is the assembly language programmer's responsibility to insure that the
subprogram body follows these conventions. The Ada entry/exit sequences,
and parameter and function-value-return conventions are described in
Appendix 20. (No checks are performed to make sure the subprogram body
matches the subprogram specification, except to see that the subprogram
names are identical.)

The following conventions are observed throughout this chapter:
. Brackets ([]) indicate that the enclosed argument is optional.

. Uppercase words and letters, used in formats, indicate that the
word or letter should be typed exactly as shown.

. Lowercase words and letters, used in formats, indicate that a
word or value of the user's choice is to be substituted.

. Curly Braces ({ }) indicate that the enclosed argument(s) may
appear zero or more times.

20-3

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

20.1.1 Source Statement Format.

A source program consists of a sequence of source statements. The
assembler interprets and processes the statements one by one, generating
object code or performing a specific assembly-time process. Only one
stdtement can appear on a line, and a statement cannot extend onto more
than one line. A source line can be up to 80 characters long.

Source statements can consist of up to four fields:

. Label field -- allows the programmer to symbolically define a
location in a program.

. Operator field -- specifies the action to be performed by the
statement; this field can be an instruction opcode or an
assembler directive.

. Operand field -- contains the instruction operand(s) or the
assembler directive argument(s).

. Comment field == contains a comment that‘explains the meaning
of the statement; this field does not affect program
execution.

The label field, the operator/operand fields combination, and the
comment field are all optional. If the operator field is not present the
operand field must also be not present. The operand field must conform to
the format of the instruction specified by the operator field.

The label field, if present, must begin in Column 1; the operator
field, if present, must begin in Column 2 or after. See Section 20.1.7
for a complete summary of the syntax of an assembly language statement.

Blank lines, although legal, have no significance in the source
program. :

The following sections describe each of the statement fields in
detail.

20.1.1.1 Label Field.

A label is a user-defined symbol that identifies a 1location in the
program. The symbol is assigned a value equal to the location counter at
the location in the program section in which the 1label occurs. The
user-defined symbol name can be up to 15 characters long and can contain
4any alphanumeric character. Section 20.1.2.3 describes the rules for
forming user-defined symbol names in more detail.

20-4.

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

If a statement contains a label, the label must start in the first
column of the line.

A label is said to be defined when it appears in a label field. Once
a label is defined, it cannot be redefined during the source program. If
a label is defined more than once, the assembler displays an error message
when the label is defined the second and subsequent times. A space, tab,
semicolon, or end of line terminates the label field.

20.1.1.2 Operator Field.

The operator field specifies the action to be performed by the
statement. This field can contain either an instruction or an assembler
directive. ’

When the operator is an instruction opcode, the assembler generates
the . binary code for that instruction; the instruction set and mnemonics
are described in the VAX-11/780 Architecture Handbook (2.2). When the
operator is a directive, the assembler performs certain control actions or
processing operations during source program assembly, the assembler
directives are described in Section 20.1.4.

A space, tab, semicolon or end of line terminates the operator field.

20.1.1.3 Operand Field.

The operand field can contain operands for instructions or arguments
for assembler directives.

Operands for instructions specify the locations in memory or the
registers that are used by the machine operation including the addressing
mode. Section 20.1.3 describes the VAX-11 addressing modes. The operand
field for a specific instruction must contain the number of operands
required by that instruction. See the VAX-11/780 Architecture Handbook
(2.2) for a description of the instructions and their operands.

Arguments for a directive must meet the format requirements of the
directive. Section 20.1.4 describes the directives and the format of
their arguments.

If two or more operands are specified, they must be separated by
commas. The operand field is terminated by a space, tab, semicolon, or
end of line.

,

20-5

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

20.1.1.4 Comment Field.

The comment field contains text that explains the meaning of the
statement. Comments do not affect assembly processing or program
execution,

The comment field must be preceded by a semicolon and is terminated
by the end of the line, The comment field can contain any ASCII
character. A comment can appear on a line by itself, even beginning in
Column 1.

20.1.2 Components of Source Statements.

This section describes the components of assembly language
statements: the character set, numbers, symbols, and expressions.

20.1.2.1 Character Set.

The following characters can be used in assembly language statements:

. Both upper-case and lower-case letters (A through Z, a through
zZ) are accepted; however, the assembler considers lower and
upper case as equivalent representations of the same character
set. E.g., "movw" is the same as "MOVW".

. The digits 0 through 9.

. The special characters listed in Table 20-1.

20-6

"Use or disclosure of technical data and/or computer software
_ is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Table 20-1

RPECIAL CHARACTERS USED IN ASSEMBLER STATEMENTS

Character Character Name Function
Tab Field separator
Space Field separator
Number sign Immediate addressing mode indicator
e At sign Deferred Qddressing mode indicator
. Comma | Operand separator
H Semicolon Comment field indicator
+ Plus sign Autoincrement addressing mode

indicator and arithmetic
addition operator

- Minus sign Autodecrement addressing mode
indicator and arithmetic
subtraction operator

Circumflex Radix specification and operand
size delimiter

_ Underscore Break character, word isolator
: Colon Optional label terminator
@) Parentheses Register deferred
{1 Square brackets Index addressing mode
20-7

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

20.1.2.2 Numbers.

Numbers can only be integers and c¢an be used in any opeﬁand
expression, (Section 20.1.2.4 describes expressions.)

Format
[rin
where:
r 1is an optional radix specification. "X indicates the following

number 1is hexadecimal; "0 indicates oectal; if the radix is not
specified, it is. decimal. ’

n 1is a string of alphanumeric characters that are 1legal for the
specified radix. Numbers must be representable in 32 bits:
decimal integers are 1limited to approximately 9 digits,
hexadecimal to 8, and octal to approximately 11 digitsM

The following numbers represent the same value: 16, “X10, ~020.

20.1.2.3 Symbols.

Two types of symbols are used in assembly language programs:
permanent symbols and user-defined symbols.

20.1.2.3.1 Permanent Symbols

Permanent symbols consist of the instruction mnemcnics (see Section -
20.1.7), the assembler directives (see Section 20.1.4), and the register
names. The permanent symbols are predefined. The instruction mnemonics
and assembler directives can also be user-defined (i.e., appear in a label
field), in which case the symbol can represent either its pre-defined or
user-defined meaning, depending on whether it appears in an operator or an
operand context. The register mnemonics cannot be user defined.

20-8

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

The sixteen general registers of the VAX-11/780 processor can be
expressed in a source program only as follows: :

Register
Name Processor Register
RO-R11 General register 0 through general register 11
R12 or General register 12 or argument pointer. If R12 is
AP . used as an argument pointer, the name AP is
recommended; if R12 is used as a general register,
the name R12 is recommended. ’
FP Frame pointer (register 13)
SP Stack ﬁointer (register 14)
PC Program counter (register 15)

20.1.2.3.2

With
user=defin
somewhere
that subpr

User-Defined Symbols.

the exception of the name on the SUBPROGRAM directive,

ed symbols are only 1local, appearing in the label field
in the assembly code subprogram and accessible only from within
ogram.

The following rules govern the creation of user-defined symbols:

User-defined symbols can only be composed of the 36 alphanumeric
characters and the underscore. Any other character terminates
the symbol.

The first character of a symbol must be a letter.

Two underscores must not be adjacent and the symbol must not
begin or end with an underscore.

The symbol must be no more than 15 characters long and must be
unique.

20-9 .

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

20.1.2.4 Expressions.

There are four kinds of expressions that can be used in an assembly
language program: ’
. number
. Ssymbol
. Symbol+number
. Symbol-number

-If the symbol is relocatable (i.e., defined by appearing as a label
other than on an EQU directive), the expression will be relocatable; if
absolute (defined by an EQU directive), the expression .will be absolute.

Expressions can Dbe used only in the displacement, 1literal, or
immediate field of operands.

20.1.3 Addressing Modes.

This paragraph summarizes the VAX-11 addressing modes and contains
examples of assembly language statements that use these addressing modes.
The VAX-11/780 Architecture Handbook describes the addressing modes in
detail.

Table 20-2 summarizes the addressing modes. Table 20-3 gives the
values of the exponent and fraction portions of the 6-bit short literals
that can be used in floating point instructions with 1literal mode
addressing. Table 20-4 shows the syntax for all indexed addressing modes.
The following pages include examples of each of the addressing modes.

20-10

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-005%-A00
1 November 1983

Register mode

CLRB RO + CLEAR LOWEST BYTE OF RO.
CLRA R1 s CLEAR R1 AND

TSTW R10 ; TEST LOWER WORD OF R10
INCL R4 + ADD 1 TO R3

Register deferred mode

MOVAL LDATA,R3 + MOVE ADDRESS OF LDATA TO R3
CMPL (R3),R0O ; COMPARE VALUE AT LDATA TO RO
MOVL (SP),R1 + COPY TOP ITEM OF STACK INTO R1

Autoincrement mode

MOVAL TABLE,R1

s GET ADDRESS OF TABLE
CLRO (R1)+ + CLEAR FIRST AND SECOND LONGWORDR
CLRL (R1)+ s AND THIRD LONGWORD IN TABLE

’

LEAVE R1 POINTING TO TABLE +712

Autoincrement deferred mode

ABSOLUTE ADDRESS IN PNTLIS
THEN ADD 4 TO R2

MOVAL PNTLIS,R2 s+ GET ADDRESS OF POINTER LIST

CLRQ @(R2)+ + CLEAR QUADWORD POINTED TO BY
s+ FIRST ABSOLUTE ADDRESS IN PNTLIS
+ THEN ADD 4 TO R2

CLRB @(R2)+ + CLEAR BYTE POINTED TO BY SECOND
’
’

Autodecrement mode

SUBTRACT 8 FROM R1 AND ZERO THE
QUADWORD WHOSE ADDRESS IS THEN

IN R1

PUSH THE ZERO-EXTENDED LOW BYTE
OF R3 ONTO THE STACK AS A LONGWORD

CLRQ =-(R1)

MOVZBL R3,-(SP)

we we we we we

Displacement mode

GET ADDRESS OF KEYWORDS

GET BYTE WHOSE ADDRESS IS

I0 PLUS ADDRESS OF KEYWORDS .
; THE DISPLACEMENT IS STORED

s+ AS A BYTE

MOVAB KEYWORDS,R3
MOVB B“IO(R3),R4

s we wo

20-11

- "Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Displacement deferred mode

MOVAL
CLRL

Literal mode

MOVAL

MOVF ™

Relative mode

CMPL

ARRPOINT,R6 ; GET ADDRESS OF ARRAY OF POINTERS

@B~ 16(R6) CLEAR LONGWORD POINTED TO BY
LONGWORD WHOSE ADDRESS IS 16

PLUS THE ADDRESS OF ARRPOINT

THE DISPLACEMENT IS STORED AS A BYTE

®e we wo we w

S"#1,R0 RO IS SET TO 1; THE 1 IS STORED
IN THE INSTRUCTION AS A SHORT
LITERAL

R6 IS SET TO THE FLOATING

POINT VALUE 2.75; IT IS STORED
IN THE FLOATING POINT SHORT

LITERAL FORM

S"#7023,R6

we we we v WO we we

COMPARE R10 WITH LONGWORD AT
ADDRESS DATA+4; THE ASSEMBLER
USES A WORD DISPLACEMENT

W' DATA+4,R10

-e wo we

Relative defered mode

INCB

- Absolute mode

CLRL
CLRB

Immediate mode

ADDL2

@L"COUNTS+4 ; INCREMENT BYTE POINTED TO BY

; LONGWORD AT COUNTS+4; ASSEMBLER

; USES A LONGWORD DISPLACEMENT
€#°X1100 s CLEAR THE CONTENTS OF LOCATION 1100(HEX)
@#ACCNT 7 CLEAR THE CONTENTS OF LOCATION

s ACCNT; THE ADDRESS IS STORED

; ABSOLUTELY, NOT AS A DISPLACEMENT
I%#5,R0 THE 5 IS STORED IN A LONGWORD

BECAUSE THE I" FORCES THE
ASSEMBLER TO USE IMMEDIATE MODE

we wo weo

20-12

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-400

Register deferred index mode

MOVAB BLIST,R9 H
MOVL S"#20,R1 H
CLRB (R9)[R1] '

’
CLRQ (R9) [R1] ;

Autoincrement index mode

CLRW (R9)+[R1]

*s we wo wo

Autoincrement deferred index mode

MOVAL POINT,R8
MOVL S“#30,R2
CLRW @(R8)+[R2]

®s we we wo Ve we

Displacement deferred index mode

MOVAL ADDARR,R9 :
MOVL I*#100,R1 :
TSTF @40(R9)[R1] :

H

Branch mode

ADDL3 (R1)+,R0, TOTAL ;

:
BLEQ LABEL1 H

’
BRW LABEL :

1 November 1983

GET ADDRESS OF BLIST
SET UP INDEX REGISTER
CLEAR BYTE WHOSE ADDRESS
IS THE ADDRESS OF BLIST
PLUS 20%1

CLEAR QUADWORD WHOSE
ADDRESS IS THE ADDRESS
OF BLIST PLUS 20%8

CLEAR WORD WHOSE ADDRESS
IS ADDRESS OF BLIST PLUS
20%2; R9 NOW CONTAINS
ADDRESS OF BLIST+2

GET ADDRESS OF POINT

SET UP INDEX REGISTER

CLEAR WORD WHOSE ADDRESS

IS 30%*2 PLUS THE ADDRESS

STORED IN POINT; R8 NOW

CONTAINS 4 PLUS ADDRESS OF POINT

GET ADDRESS OF ADDRESS ARRAY

SET UP INDEX REGISTER

TEST FLOATING POINT VALUE

WHOSE ADDRESS IS 100%*4 PLUS :
THE ADDRESS STORED AT (ADDARR+40)

TOTAL VALUES AND SET CONDITION
CODES

BRANCH TO LABEL1 IF RESULT IS
LESS THAN OR EQUAL TO 0O

BRANCH UNCONDITIONALLY TO LABEL

20-13

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Table 20-2

ADDRESSING MODES

Tvoe

Acdressing
Jeae

r HHexde

Farmat®

decimat
Vailve

Oescrintion

InGexadle

Ceneral
Register

ingex

8rancn

Register

Register
Oeferrec

Autorncrement

Autaingrement
Jeferrea

Autocecrement

Qisolacement

Qisplacement
Oeferrea

Litersl

indexn

3ranch

R

(Rn)

{Rna) e

HRA) e

-{Rn}

8 “gis(Rn)
W Qis{Ra)
L ‘distRn)

28 ‘gis(Rn)
W cis(Rn)
I "dis(Rn)

S sliterat

Ase-modet R i

Qaress

mn>

mom

3-3

Registar contans the operana

Regrster containg thé aadress of
the aperand :

Register contuns the adaress 3f ine

ooerand; (Ne Jrocessor 'ACrements
the register cantents By ine sile
of the aperang cata type

Ragister contains the aaaress of
the operand aacress. (Ne
processor increments ine
register contents Dy 3

The Drocessor decrements the
register contents Jy the size
af the coerang Cata (ype. (Ne
register then Containg the
aggaress of the ogerang

The sum of the contents of the
registar ang the Gisplacement 1§
the accress of tne aperand; 8°,
W, ang L indicate dyte. word,
ang longwara displacemant,
respectively

The sum of the contents of the
regisier andg tne displacament is
the iadress of the cperInd
agdress; 3°. W°, ana L.
ingicate byte, word, and long-
word displ. . ively

The literal specified is the
operand: the literal is siored
as a short literat

The Sase°mode specifies the Dase
address ang the register specifies
the ndex. the sum of tNe Dase
address and the product of the
contents of Rx ana tne size of
the aperand Gata type 13 the
sagress of ine coerand. base
made <an De any daresing moce
exceot register, immegiate,
fitaras. 1ndex. or Srancnh

The aadress soecified 13 the
dperand; this Jdaress s stored
33 a disolacement t0 PC. branch
mode Can only D@ used wih the
Branch instructions

No

No

No

No

¥ ey on following page

20-14

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

«°JUBWNDOQ SIYY JO JOAOD I UO SUOHIDIIISIJ 3YI 0} 3efgns st
34eM})08 JIINCWOD JO/ PuUe LIEP |EIIUYDI] JO IINSOIISIP 4O 3IsN),

Sl-02

Hexa-
Addressing decimal
Type Mode Format* Value Description Indexable?
Proyram Retative B "address A The address specified is the address Yes
Counter W address [o} of the operand; the address
L “address E specificd Is stored as a displacement
from PC; B", W", and L " indicale
byte, word, and longword dis-
placement, respectively
Relative 0" address | D The address specilicd is the address Yes
. Deferred W " address| D of the operand address; the address
oL " address] F specified Is stored as a displacement
from PC; B~, W~, and L " indicate
byle, word, and longword
displacement, respectively
Absolute @laddress 9 The address specified Is the address Yes
of the operand; the address specified
Is stored as an absolute virtual
address (not as a displacement)
Inmediale 1 "Niteral 8 The ltiteral specified is the operand ; No
the literal Is stored as a byte, word,
longword, or quadword
A Kay:
Rn
Any generad regloter RO through R12, AP (the same as RI2), FP, or SP.
Rx
Any general reglster RO chrough RI2, AP, FP, or SP. Rx cennot be the
same as the Rn spectfied tn the base-mode for certain base modes.
dis
An capression specifylog o displacement.
address .
Au expression specifying sn sddrcas.
Ifteral

An cupression
>

Table 20-2 (Continued)

ADDRESSING MODES

€861 J4aquaAoN |

00V=6500-d -4 UOTIEOTJT103dS waisAg aBenBueq epy

Ada Language System Specification CR-CP-0059-A00

1 November 1983
Table 20-3
FLOATING POINT SHORT LITERALS
Fraction
° 1 2) . s 6 7
Exponent

[] 0.5 0.582S 0.62% 0.687% 2.7% 9.8128$ 0.87% 9.937%
1 1.0 1.12% 1.28 1,178 1.8 1.6829 1.7% 1.87%
2 2.0 .18 s .78 3.0 3.28 s 378
3 3.0 L2] s.q $.8 6.0 §.35 1.0 1.5

L) 8.0 9.0 10.0 1.0 12.9 13.0 18.0 15.0

s 16.0 18.0 10.0 22.0 8.0 6.0 8.0 3Jo0.0

§ 3J2.0 36.0 %0.0 4.0 8.9 si.0 $6.0 50,0

7 8.0 7.0 80.0 8.0 9.0 108.0 112.0 120.0

Example:

MOVAL S°#1,RO RO IS SET TO 1; THE 1 IS STORED
.IN THE INSTRUCTION AS A SHORT
LITERAL

R6 IS SET TO THE FLOATING

POINT VALUE 2.75; IT IS STORED
IN THE FLOATING POINT SHORT

LITERAL FORM

MOVF S"#°023.R6

*e o0 w0 we we b ws

20-16

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Table 20-4

INDEX MODE ADDRESSING

Mode Format*
- —— — —— —— — — ————— ——— —————
Register Deferred index (Rn)[Rx] .
Autoincrement Index (Rn)+{Rx]
Autoincrement Deferred @Rn)+{Rx]
index
Autodecrement Index -(Rn)(Rx]
Displacement index ’ dis(Rn)(Rx]
Displacement Deferred edis(Rn)[Rx]
Index
Relative Index address{Rx]
Relative Deferred Index Gaddress[Rx])
Absolute index R%address{Rx]
* Key:
Rn
Any general register RO through R12, AP, FP, or SP.
Rx . ' _
* Any general register RO through R12, AP, FP, or SP. Rx
cannot be the same register as Rn in the autoincrement
index, autoincrement deferred index, and decrement index
addressing modes.
dis
An expression specifying a displacement.
address

An expression specifying an address.

20-17
"Use or disclosure of technical data and/or computer softwar:
is subject to the restrictions on the cover of this Document.

Ada Language System Specification CR-CP-0059-A00
1 November 1983

20.1.4 Assembler Directives.

Table 20-5 lists the assembler directives recognized by the ALS
VAX-11/780 Assembler, This paragraph describes these directives in
detail,’

Table 20-5

SUMMARY OF ASSEMBLER DIRECTIVES

.BLKB Space reservation/location control
.BYTE Data definition

.WORD . Data definition

. LONG Data definition

.END Subprogram termination

.EQU Symbol definition

.PSECT Subprogram sectioning

.SUBPROGRAM Subprogram initiation

.SEPARATE Subunit initiation

.EXTREF External reference definition

20.1.4,1 LBLKB,

The .BLKB directive reserves space in the current program section by
advancing the program counter by the value of the operand expression.

Format :

[label] .BLKB expression

where:

Label is an optional label that will be assigned the value of the
program counter before allocation of the space specified by the
directive.

Exp;ession is an éxpression as described in Section 20.1.2.4 that
must evaluate to an absolute value. The program counter will be
advanced by the number of bytes specified by the value of the
number.

20~18

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

20.1.4,2 LBYTE, .WORD, .LONG.

These directives allocate one, two, or four bytes, respectively, at
the current location and initialize the contents of that location to the
value of the operand expression. The expression can evaluate to either a
relocatable value or an absolute value.

Format:
[label] .BYTE expression
[label] .WORD expression
(label] .LONG expression
where:

Label is an optional label.

Expression is an expression described in Section 20.1.2.4 whose value
will become the contents of the current location in the program
section. The line will be flagged with an error if the value of
the expression is absolute and too large for the amount of space
specified. An error will be generated by the linker if the
value is relocatable and found to be too large for the specified
space.

20.1.4.3 L.END.

The .END directive indicates the end of the assembly code compilation
unit. It generates no code and is intended only to give the appearance of
completeness to a compilation unit. Any lines after the .(END directive
will be flagged with an error, and will not be otherwise assembled.

Format:

.END

20.1.4.4 .EQU.

The .EQU directive defines the symbol in the label field and sets it
equal to the value of the expression operand. The expression must
evaluate to an absolute value (not relocatable). If the expression
contains a symbol, that symbol must have been previously defined (in an
.EQU directive occurring before this one). :

Format:

20-19

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

label .EQU expression

where: -

Label is the symbol being defined.
Expression is an expression as described in Section 20.1.2.4 that
must evauluate to an absolute value.

20.1.4.5 . PSECT.

The .PSECT directive separates the assembly code into program
sections having different functions. There can be up to three program
sections:

1. Executable code - represents instructions to be executed - data
is not intended to be stored in the executable PSECT;

2. Reéd/write data - not intended to contain executable code; and

3. Read-only data - not intended to contain executable cocde, or
data which is the target of a store.

The .PSECT directive defines the beginning of a portion of assembly
code, continuing up to the next .PSECT or .END directive. An assembly may
have no more than one PSECT of each of the three types and must have at
least an executable PSECT. All code and data of the subprogram must
follow a PSECT directive of one of the three types.

The body of the subprogram text always starts at the beginning of the
executable PSECT.

Format:
.PSECT storage
where storage is one of the following storage area identifiers:
EXECUTABLE - the executable code of the subprogram body.
RWSTATIC - read/write data whose values will be maintained throughout
the execution of the whole program, i.e., maintained across

calls to this subprogram body.

ROSTATIC - read-only data maintained as in RWSTATIC. ’

20-20

'stc or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

20.1.4.6 .SUBPROGRAM,

The .SUBPROGRAM directive must appear exactly once 1in the assembly
and must appear as the first statement after any .EXTREF directives unless
this subprogram is a subunit, in which case the .SUBPROGRAM directive
follows the .SEPARATE and .EXTREF directives. It supplies the name of the
subprogram and must match the name in the Ada subprogram specification or
procedure stub of the parent if this assembler body is a subunit
subprogram.

Format:
.SUBPROGRAM name
where:

Name is the subprogram name and is constructed according to the rules
for symbols (see Section 20.1.2.3).

20.1.4.7 .SEPARATE.

This directive specifies that the assembly program is to be a subunit
subprogram of an Ada library unit package body. The assembly program will
take on the same context as the parent package body. The package body
which specifies this subprogram as a separate unit must be compiled before
the assembly program.

Format:
.SEPARATE (package name)
where:

The package name is the name of an Ada library unit package of which
the assembly program is to be a subunit. The package name is constructed
according to the rules for symbols (see Section 20.1.2.3).

20.1.4.8 LEXTREF.

This directive facilitates the referencing of variables and
subprograms declared in either library package specifications or library
subprograms.

Format:
Label .EXTREF package_name.name

where:

20-21

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

" 1. The label, package_name and name are constructed according to
the rules for symbols (see Section 20.1.2.3)

2. The label spelling is used in the symbol portion of an assembly
instruction operand. The external reference will then be to a
variable or subprogram specified by a package_name.name

20.1.5 Assembler Qutput.

This paragraph describes the outputs from an execution of the ALS
VAX-11/780 Assembler: the source listing, error message, and machine text
information.

20.1.5.1 Machine Text.

Machine text is what has been commonly referred to as "object module”
or M"relocatable binary" in other systems. In the Ada system there is no
" separate object module representation for the translator-generated
executable code. Instead, translators, like the Ada VAX-11/780 Assembler,
put their generated code into a Container in a program library.

20.1.5.2 Listing

At the option of the user a listing consisting of the source code
side by side with the assembled machine text in hexadecimal can be
produced by the assembler (see Section 20.1.6). The source 1line number
and the hexadecimal location relative to the start of the PSECT are also
listed. The total number of error messages is displayed at the end of the
listing. The listing is produced in the standard output file.

Figure 20-1 shows some sample lines of the assembly listing. Note
that the contents field in the listing is read right to left, i.e., the
rightmost byte corresponds to the address given in the 1location field;
the next byte to the left corresponds to that address plus one. Figure
20-2 shows the Ada library subprogram specification corresponding to the
subprogram body in Figure 20-1.

20-22

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR=~CP=0059-A00
1 November 1983

a_spec_asm PROGRAM LIBRARY=asmiib ASM VAXLL/780 ASSEMBLER Version O.4% ASSEMBLER Lo6=MAY=19R3 1433/
BYTESTREAM (HEXADECIMAL:

READ FROM RIGHT TO LEFT) ADDRESS STMT & LABEL OPCODE OrPERANDS
1 +SU3PROGRAN «x
2 «PSECT executanis:
3 ADDB3 ey
8¢ ASHNYAX E 10126 too te« operands for this instruction
4 RSB
5 +PSECT rustatic
[x «BYTE 3
7 y «LONG 3
8 «END

Figure 20-1. Sample Assembly Listing

Procedure x;

Figure 20-2. Matching Ada Subprogram Specification

20-23

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

20.1.5.3 " Diagnostic Messages.

Diagnostic messages are produced for all syntactic errors detected by
the assembler. The message(s) for any particular line of source appears
in the listing immediately following the source line. If no 1listing is
requested, diagnostic messages appear in the message output file. The
message number and text will be the same as the corresponding diagnostic
generated for a listing. An example of a diagnostic message sent to the
user through the message output file is as follows:

##¥ERROR ASMVAX 53403 AT SOURCE line Number 1 Subprogram Directive
Required

Messages indicating diagnostics in the assembler command are sent to
the user via the message output file. Assembler command diagnostics are
always sent to the user via message output regardless of the source option
specification. An example of an Assembler Command Diagnostic Message is
as follows: .

##2ERROR ASMVAX 56101 Command Diagnostic User Specified Source File
not found

If diagnostics of severity ERROR or FATAL are produced, a useable
Container is not produced.

The diagnostic messages produced by the ALS VAX-11/780 Assembler are
summarized in Appendix 80.

20.1.5.4 Summary Message.

At the completion of the assembly process, a summary message is sent
to the wuser via the message output file. This summary message indicates
the completion of the assembly process and the number of diagnostic
conditions detected for each severity level. An example of a summary
message is as follows:

ASMVAX Processing Complete
Number of Diagnostics Generated:
2 of Severity level WARNING
3 of Severity level ERROR
0 of Severity level SYSTEM
0 of Severity level FATAL

20-24

. "Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP-0059-A00
1 November 1983
20.1.6 Invoking the Assembler.
The assembler is invoked with the command:

ASMVAX (source, prog_lib [,OPTz>option_list])

where:
source the name of the source file

prog_lib the name of the program library into which the source is
: assembled. The name of the Container produced 1in the
program library is the name on the SUBPROGRAM directive.

option_list [NO_]SOURCE specifies whether to produce a source
listing or not. The default is SOURCE.

[NO_JCONTAINER GENERATION specifies whether a Container
is to be produced if diagnostic severity permits.
NO_CONTAINER _GENERATION means that no Container is to be
produced, regardless of diagnostic severity. If
NO_CONTAINER_GENERATION is in effect, listings cannot be
regenerated using the Display Tools CPCI. The default
is CONTAINER_GENERATION.

20.1.7 Assembly Language Syntax.

This paragraph gives the formal syntax of the ALS VAX assembly
language. The notation used here is a modified form of Backus-Naur Form
(BNF). Angle brackets, "<" and ">", are used to enclose a syntactic unit
which 1is defined to the left of a "::=". The symbol "::=" is read as "is
defined as"; the vertical bar, "|", is read as "or"; anything enclosed
in square brackets, "["™ and "]l", is optional; the curly braces "{ }"
indicate that the enclosed unit can appear zero or more times; and two
adjacent units (possibly on separate lines) indicate that the first must
be followed by the second without intervening spaces.

For example, the following alternative for <executable instruction>:

| ADD<BWLFD>2 <space><r>,<m>

indicates that one of the operations an <executable instruction> can be is
"ADD" immediately followed by one of the letters "B", "W",6 "L", "F", or
"D" (that is the definition of <BWLFD> further down the page) followed by
a "2", some number of spaces, a read (<r>) operand, a comma, and a modify
(<m>) operand. Looking up the definitions of all the syntactic units in
this example shows that

ADDW2 5°#59,(R10)+

20-25

':Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR—CP-0059;A00
1 November 1983

is a valid <executable instruction>.
The full syntax of the assembly language follows.

<assembly code subprogram> :

{ [<space>] <comment> <eol> }
<program_heading>

{ [<space>] <comment> <eol> }
<program_section>
(<program_section>]
[<program_section>]
<END_directive>

{ [<space>] <comment> <eol> 1}

<{program_heading> ::= <{subprogram directive>
| <subunit heading)
{ [<space>] <comment> <eol> }
<subprogram_directive>

<{subunit_heading> =
<space> .SEPARATE <space> (<{package name>) [<space>] [<comment>] <eol>
{ { [<space>] <comment> <eol> } <external_girect1ve> }

<subprogram directive> ::= {{[<space>] <comment> <col>} <external directives>}
<space> .SUBPROGRAM <space> <label> [<space>] [<comment>] <eol>

<{external_directive> ::=
<line_symbol> <space> .EXTREF <space> <external name>
[<space>] [<comment>] <eold>

<external_name> ::= <label>. <label> {.<label>}

<{package_name> ::= <label> -- where the label spelling is a
-- library unit package name

<program_section> ti= <PSECT_directive>
<assembly code_line> - there must exist
{ <assembly code_line> } — at least one

<PSECT_directive> i
<space> .PSECT <space> <PSECT_attribute> [<space>] [<comment>] <eol>
<PSECT attribute> ::= ROSTATIC { RWSTATIC | EXECUTABLE

<{assembly_ code line> =
{<line symbol>] <space> <instruction> [<space>] [<comment>] <eol>
i <line symbol> <space> .EQU <abs_expression> [<space>] [<comment>] <eol>
| [<space>] <comment> <eol>

<line_symbol> ::= <label> [:] -~ starting in column 1 of
- the source line,
<instruction> s {directive>

i <executable_instruction>

20-26

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

<directive>

CEND_direct

<space> .END [<space>] [<comment>] <eol>

ive>

Ada Language System Specification CR-CP-0059-A00
1 November 1983

<executable_instruction> ::=

ACBB
ACBD
ACBF
ACBG
ACBH
ACBL
ACBW
ADAWI
ADDB2
ADDD2
ADDF2
ADDG2
ADDH2
ADDL2
ADDW2
ADDB3
ADDD3
ADDF3
ADDG3
ADDH3
ADDL3
ADDW3
ADDPY
ADDP6
ADWC
AOBLEQ
AOBLSS
ASHL
ASHP
ASHQ
BBC
BBCC
BBCCI
BBCS
BBS
BBSC
BBSS
BBSSI
BCC
BCS
BEQL
BEQLU
BGEQ
BGEQU

<{space>
<{space>
<{space>
<{space>
<{space>
<{space>
<{space>
<space>
<{space>
<{space>
<{space>
<{space>
<{space>
<{space>
<{space>
{space>
{space>
<{space>
<{space>
<{space>
<{space>
<{space>
<{space>
<{space>
<{space>
{space>
<{space>

<{space>"

<{space>
<{space>
<{space>
<{space>
<{space>

<{space>"

<space>
<{space>
<{space>
<space>

<r>,<r> ,<m>,
<r>,<r>,<m>,
<r>,<r>,<m>,
<r>,<r>,<m>,
<r> ,<r>,<m> ,

<r>,Lr>,<m>,

<r>,<r>,<m>,
<r>,<m>

<>, <m>

<r>,<m>

<r>,<m>

<r>,<m>

<r>,<m>

<rd L <md>

<r>,<m>

<r> ,<r>,<m>
<>, <>, <>
<rd,4r>, ,<m>
<ro>,<r>,<m>

<rd> 4Lr> ,<m>

<rd> . <ro>,<m>

<r> 4r>, <m>
<{r>,<a>,<r>,<a>

<r>,<a’,<r>,{a>,<r>.,<a>

Lro,<m>

<r>,<m> ,
<r>,<m>,
<r>,<r>,<m>

<rd>,4<r>,£ad> Lr>,<r>,{a>

£r>,<ro>,<m>
<r>,<a>,
<r>,<a>,
<r>,<a>,
{r>,.<a>
<r>,<a>,
<r>,<a>,
<r>,<a>,
<r>,<a>,

ADD
ADD
ADD
ADD

COMPARE
COMPARE
COMPARE
COMPARE
COMPARE
COMPARE
COMPARE
ALIGNED

.BLKB <space> <abs_expression>

.BYTE <space> <relocatable_ expression>
.WORD <space> <relocatable_expression>
.LONG <space> <relocatable_expression>

BRANCH BYTE
BRANCH D_FLOAT
BRANCH F_FLOAT
BRANCH G_FLOAT
BRANCH H_FLOAT
BRANCH LONG
BRANCH WORD

WORD INTERLOCKED -

ADD
ADD
ADD
ADD
ADD
ADD
ADD

BYTE 2 OPERAND
D_FLOAT 2 OPERAND
F_FLOAT 2 OPERAND
G_FLOAT 2 OPERAND
H_FLOAT 2 OPERAND
LONG 2 OPERAND
WORD 2 OPERAND
BYTE 3 OPERAND
D_FLOAT 3 OPERAND
F_FLOAT 3 OPERAND
G_FLOAT 3 OPERAND
H_FLOAT 3 OPERAND
LONG 3 OPERAND
WORD 3 OPERAND
PACKED 4 OPERNAD
PACKED 6 OPERAND
WITH CARRY

<{space>
<{space>
<{space>
{space>
<{space>
{space>

20-27

ADD ONE BRANCH LESS EQUAL
ADD ONE BRANCH ON LESS
ARITH SHIFT LONG

ARITH SHIFT ROUND PACKED
ARITH SHIFT QUADWORD

BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH

ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON

"Use or disclosure of technical data and/or computer software

is subject to the restrictions on the cover of this Document."”

BIT
BIT
BIT
BIT
BIT
BIT

BIT

BIT

CLEAR

CLEAR AND CLEAR
CLEAR CLEAR INTER
CLEAR AND SET

SET

SET AND CLEAR

SET AND SET

SET SET INTERLOCK

CARRY CLEAR

CARRY SET

EQUAL

EQUAL (JNSIGNED)
GREATER EQUAL

GREATER EQUAL (UNSIGN)

Ada Language System Specification CR-CP-0059-A00
1 November 1983

— e e A e G eems W S W e i Eh W e e e S e s e e e Smde G M e e G T W S e et B S e e G T e e e e mem e e - —— -

BGTR {space>
BGTRU <{space>
BICB2 <space>
BICL2 <space>
BICW2 <space>
BICB3 <space>
BICL3 <space>
BICW3 <space>
BICPSW <space>
BISB2 <space>
BISL2 <{space>
BISW2 <space>
BISB3 <space>
BISL3 {space> .
BISW3 <space>
BISPSW <space>
BITB <{space>
BITL <{space>
BITW <{space>
BLBC <{space>
BLBS <{space>
BLEQ <{space>
BLEQU <{space>
BLSS <{space>
BLSSU <space>
BNEQ -{space>
BNEQU <{space>
BPT

BRB <{space>
BRW <{space>
BSBB <{space>
BSBW <{space>
BUGL <{space>
BUGW <{space>
BVC <{space>
BVS <{space>
CALLG <space>
CALLS <space>
CASEB <space>
CASEL {space>
CASEW <space>
CHME <{space>
CHMK <{space>
CHMS <space>
CHMU <{space>
CLRB <{space>
CLRD <{space>
CLRF <{space>
CLRG <{space>
CLRH <{space>
CLRL <{space>
CLRO <{space>
CLRQ <{space>

<r>,<m>
<r>,<m>
<r>,<m>
Lr>,<r>,<w
<r> <>, <m>
<r>,<r>,<m>
<r>

<r>,<m>
<r>, <m>

<r> <m>
<r>,<r>,<m>
<r>,4<r>,<m>
<r>,<r> ,<m>
<r>

<r>,<r>
<r>,<r>
L<ro>,4<r>
<r>,
<r>,

{e>

{e>

<r>

<r>

<a>,<a>
<r>,<a>
<r>,<ro> <
<r>,<r>,<r>
Lr> ,,<r>,<r>
<r>

{r>

<r>

<r>

<m>

<m>

<m>

<m>

<m>

<m>

<m>

<m>

20-28

BRANCH ON GREATER
BRANGH ON GREATER (UNSIGNED)
BIT CLEAR BYTE 2 OPERAND
BIT CLEAR LONG 2 OPERAND
BIT CLEAR WORD 2 OPERAND
BIT CLEAR BYTE 3 OPERAND
BIT CLEAR LONG 3 OPERAND
BIT CLEAR WORD 3 OPERAND
BIT CLEAR PSW

BIT SET BYTE 2 OPERAND

BIT SET LONG 2 OPERAND

BIT SET WORD 2 OPERAND

BIT SET BYTE 3 OPERAND

BIT SET LONG 3 OPERAND

BIT SET WORD 3 OPERAND

BIT SET PSW

BIT TEST BYTE

BIT TEST LONGWORD

BIT TEST WORD

BRANCH ON LOW BIT CLEAR
BRANCH ON LOW BIT SET
BRANCH ON LESS EQUAL

BRANCH ON LESS EQUAL (UNSIGN)
BRANCH ON LESS

BRANCH ON LESS (UNSIGNED)
BRANCH ON NOT EQUAL

BRANCH ON NOT EQUAL (UNSIGNED)
BREAK POINT FAULT

BRANCH WITH BYTE DISP
BRANCH WITH WORD

BRANCH TO SUBROUTINE WITH BYTE
BRANCH TO SUBROUTINE WITH WORD
BUGCHECK LONGWORD

BUGCHECK WORD

BRANCH ON OVERFLOW CLEAR
BRANCH ON OVERFLOW SET

CALL WITH GENERAL ARGUMENTS
CALL WITH STACK

CASE BYTE

CASE LONG

CASE WORD

CHANGE MODE TO EXECUTIVE
CHANGE MODE TO KERNAL
CHANGE MODE TO SUPERVISOR
CHANGE MODE TO USER

CLEAR BYTE

CLEAR D_FLOATING

CLEAR F_FLOAT

CLEAR G_FLOAT

CLEAR H_FLOAT

CLEAR LONG

CLEAR OCTALWORD

CLEAR QUADWORD

"Use or disclosure of technicai data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

- an G e M Gree W B T - T e A e W e e G N e M Ee ST MM Seee e SR MR e e W M e i S A = A M e e = e S e e e e = e e e e

CLRW <{space> <m> CLEAR WORD

CMPB <space> <r>,<r> COMPARE BYTE

CMPD <{space> <r>,<r> COMPARE D_FLOATING

CMPF <space> <r>,<r> COMPARE 'F_FLOAT

CMPG <{space> <r>,.,<r> COMPARE G_FLOAT

CMPH <space> <r>,<r> COMPARE H_FLOAT

CMPL <{space> <r>,<r> COMPARE LONG

CMPW <space> <r>,<r> COMPARE WORD

CMPC3 <space> <r>,<a>,<a> COMPARE CHARACTER 3 OPERAND
CMPCS <space> <rd>,<a>,<r>,<r>,<a> COMPARE CHARACTER 5 OPERAND
CMPP3 <space> <r>,<a>,<a> COMPARE PACKED 3 OPERAND-
CMPPY <{space> <r>,<a>,<r>,<a> COMPARE PACKED 5 OPERAND
CMPV <space> <r>,<r>,<v>,<r> COMPARE FIELD .

CMPZV <space> <r>,<r>,<v> ,<r> COMPARE ZERO EXTENDED FIELD
CRC <space> <a>,<r>,<r>,<a> CALC CYCLIC REDUND CHECK
CVTBD <space> <r>,<m> CONVERT BYTE TO D_FLOAT
CVTBF <space> <rd>,<m> CONVERT BYTE TO F_FLOAT
CVIBG <{space> <r>,<m> CONVERT BYTE TO G_FLOAT
CVIBH <space> <r>,<m> CONVERT BYTE TO H_FLOAT
CVIBL <space> <r>,{m> CONVERT BYTE TO LONG

CVTBW <space> <r>,<m> CONVERT BYTE TO WORD

CVIDB <space> <r>,<m> CONVERT D_FLOAT TO BYTE
CVTDF <{space> <r>,<m> CONVERT D_FLOAT TO F_FLOAT
CVIDH <space> <r>,<m> CONVERT D_FLOAT TO H_FLOAT
CVIDL <space> <r>,<m> CONVERT D_FLOAT TO LONG
CVIDW <space> <r>,<m> CONVERT D_FLOAT TO WORD
CVIFB <space> <r>,<m> CONVERT F_FLOAT TO BYTE
CVIFD <space> <r>,<m> CONVERT F_FLOAT TO D_FLOAT
CVIFG <space> <r>,<m> CONVERT F_FLOAT TO G_FLOAT
CVIFH <space> <r>,<m> CONVERT F_FLOAT TO H_FLOAT
CVIFL <space> <r>,{m> CONVERT F_FLOAT TO LONG
CVIFW <space> <ro>,<m> CONVERT F_FLOAT TO WORD
CVIGB <space> <r>.,<m> CONVERT G_FLOAT TO BYTE
CVIGH <space> <r>,<m> CONVERT G_FLOAT TO H_FLOAT
CVTGL <space> <rd>,<m> CONVERT G_FLOAT TO LONGWORD
CVIGW <space> <r>,<m> CONVERT G_FLOAT TO WORD
CVTHB <space> <r>,<m> CONVERT H_FLOAT TO BYTE
CVTHD <space> <r>,<m> CONVERT H_FLOAT TO D_FLOAT
CVIHF <space> <r>,<m> CONVERT H_FLOAT TO F_FLOAT
CVTHG <space> <r>,<m> CONVERT H_FLOAT TO G_FLOAT
CVTHL <space> <r>,<m> CONVERT H_FLOAT TO LONGWORD
CVTHW <space> <ro> ,<m> CONVERT H_FLOAT TO WORD
CVILB <space> <r>,<m> CONVERT LONG TO BYIE

CVILD <space> <r>,<m> CONVERT LONG TO D_FLOAT
CVILF <space> <r>,<m> CONVERT LONG TO F_FLOAT
CVILG <space> <r>,<m> CONVERT LONG TO G_FLOAT
CVITLH <space> <r>,<m> CONVERT LONG TO H_FLOAT
CVILW <space> <ro>,<m> CONVERT LONG TO WORD

CVTLP <{space> <r>,<r>,<a> CONVERT LONG TO PACKED
CVTPL <space> <r>,<a>,<m> CONVERT PACKED TO LONG
CVTPS <space> <r>,<a>,<r>, a> CONVERT PACKED TO LEAD SEP NUM
CVIPT <space> <r>,<a>,<a>,<r>,<a> CONVERT PACKED TO TRAIL SEP NUM
CVTRDL <space> <r>,<m> CONVERT D_FLOAT TO LONG

20-29

ROUNDED

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

- i S s S e S e - e S = e St dmer Sm e W ame SR e SN A e e M e M e WS e S meem e e M e M e e M mem aem Gmee e = —— ——— A ——

CVIRFL <space>
CVTRGL <space>

CVTRHL <space>
CVTSP <{space>
CVITP <{space>
CVIWB <space>
CVIWD <space>
CVIWF <space>
CVTWG {space>
CVIWH <space>
CVIWL <space>
DECB <{space>
DECL <{space>
DECW <{space>
DIVB2 <space>
DIVD2 {space>
DIVF2 <space>
DIVG2 <{space>
DIVH2 <space>
DIVL2 <space>
DIVW2 <space>
DIVB3 <space>
DIVD3 <space>
DIVF3 <space>
DIVG3 <space>
DIVH3 <space>
DIVL3 <space>
DIVW3 <{space>
DIVP <{space>
EDITPC <space>
EDIV <{space>
EMODD <space>
EMODF <space>
EMODG <space>
EMODH <space>
EMUL <{space>
EXTV <{space>
EXTZV <space>
FFC <space>
FFS <{space>
HALT

INCB <space>
INCL <space>
INCW {space>
INDEX <space>
INSQHI <space>
INSQTI <space>
INSQUE <space>
INSV <{space>
JMP <{space>
JSB <{space>
LDPCTX

LocC <{space>

<r>,<m>
<ro>,<m>
L<r>,<m>
<r>,<a>,<r>,La>

<r>,<a>,<a>,<r>,La>

<r>.,<a>,<a>,<a>
<r>,<r> ,<w ,<m>

CONVERT ROUNDED F_FLOAT TO LONG
CONVERT ROUNDED G_FLOAT TO LONG
CONVERT ROUNDED H_FLOAT TO LONG
CONVERT LEAD SEP NUM TC PACKED
CONVERT TRAIL SEP NUM TO PACKED
CONVERT WORD TO BYTE

CONVERT WORD TO D_FLOATING
CONVERT WORD TO F_FLOATING
CONVERT WORD TO G_FLOATING
CONVERT WORD TO H_FLOATING

DIVIDE D_FLOAT 2 OPERAND
DIVIDE F_FLOAT 2 OPERAND
DIVIDE G_FLOAT 2 OPERAND
DIVIDE H FLOAT 2 OPERAND

DIVIDE D _FLOAT 3 OPERAND
DIVIDE F_FLOAT 3 OPERAND
DIVIDE G_FLOAT 3 OPERAND
DIVIDE H FLOAT 3 OPERAND

<r>,<m>

<r>,<m>

<r>,<m>

<r>,<m>

L{r>,<{m> _
<r>,<mw CONVERT WORD TO LONG
<m> DECREMENT BYTE

<m> DECREMENT LONG

Am> DECREMENT WORD

<> <m> DIVIDE BYTE 2 OPERAND
<r>,<m>

<r>,<m>

<r>,<m>

<r>,<m> 8

<r>,<m> DIVIDE LONG 2 QPERAND
<r>,<m> DIVIDE WORD 2 OPERAND
<r> <>, <m> DIVIDE BYTE 3 OPERAND
<>, <> <m>

<r>,4$r> ,<m>

<r> L <r <>

<r>,4r>,<m> =

<r>,<r>,<m> DIVIDE LONG 3 OPERAND
<r>,<r>,<m> . DIVIDE WORD 3 OPERAND
<r>,<a>,<r>,<a>,<r>,<a> DIVIDE PACKED

EDIT PACKED TO CHARACTER
EXTENDED DIVIDE

<>, 4, 4r)> ,<m>,<m>
<r>,4r> 4&r> <m> ,<m>
<r> 4Ar> &r> ,<m>,<m>
Lr>,4r> <> < ,<m>

EXTENDED MODULUS D_FLOATING
EXTENDED MODULUS F_FLOAT
EXTENDED MODULUS G_FLOAT
EXTENDED MODULUS H_FLOAT

<r>,4r> <r>,<m>
<r>,4r> K <
<r> ,4Ar>,Kv> ,<m>
P>, Krd> v <>
<r>,&<rd> v <>

<m>
<m>
<m> .

<>, <rd>,<r>,<r>,<ro ,<m>

<a> ., a>

<a>,<a>

<a>,<a>

<r>,4<r> ,<r>,<a>
<a>

<a>

<rd> K>, <a>

- 20-30

EXTENDED MULTIPLY

EXTRACT FIELD

EXTRACT ZERO EXTENDED FIELD
FIND FIRST CLEAR BIT

FIND FIRST SET BIT

HALT

INCREMENT BYTE

INCREMENT LONG

INCREMENT WORD

COMPUTE INDEX

INSERT INTO Q HEAD INTERLOCKED
INSERT INTO Q TAIL INTERLOCKED
INSERT INTO Q

INSERT FIELD

JUMP

JUMP TO SUBROUTINE

LOAD PROCESS CONTEXT

LOCATE CHARACTER

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

e e e e . - e e e G S e T e S M TS e S e T G S S ST e M M W M S G M e e T Gee - e = e - eme e ama m = . -—

MATCHC
MCOMB
MCOML
MCOMW
MFPR
MNEGB
MNEGD
MNEGF
MNEGG

MNEGH -

MNEGL
MNEGW
MOVAB
MOVAD
MOVAF
MOVAG
MOVAH
MOVAL
MOVAOQ
MOVAQ
MOVAW
MOVB
MOVD
MOVF
MOVG
MOVH
MOVL
MOVO
MOVQ
MOVW
MOVC3
MOVCS
MOVP
MOVPSL
MOVTC
MOVTUC
MOVZBL
MOVZBW
MOVZWL
MTPR
MULB2
MULD2
MULF2
MULG2
MULH2 .
MULL2
MULW2
MULB3
MULD3
MULF3
MULG3
MULH3
MULL3

<{space>
<{space>
<{space>
{space>
<{space>
<{space>
{space>
<{space>
<{space>
{space>
<{space>
<{space>
<{space>
<{space>
{space>’
{space>
<{space>
<{space>
{space>
<{space>
<{space>
<{space>
{space>
<{space>
{space>
<{space>
<{space>
<{space>
{space>
{space>
<{space>
<{space>
<{space>
<{space>
<{space>
<{space>
<{space>
<{space>
<{space>
<space>
<{space>
<{space>
<{space>
<space>
{space>
<{space>
<{space>
<{space>
<{space>
<{space>
<{space>
<{space>
<{space>

Ada Language System Specification CR-CP-0059-A00
1 November 1983

<r>,<a>,<r>,La>
<ro,<m>
<r>,<m>
<r>,<m>
<ro>,Lro
<r>,<m>
<r>,<m>
<ro,<m>
<ro>,<m>
<r>,<m>
<r>,<m>
Lr>,<m>
<a>,<m> -
{a>,<m>

<a> ,<m>
<a>,<m>
<a>,<m>
<a>,<m>
<a>,<m>
<a>,<m>
<a>,<m>
<r>,<m>
<r>,<m>
<r>, <m>
<), <m>
<ro>,<m>

<{r> <m>
<r>,<m>
L<r>,<m>
<r>,<m>
<r>,,La>,<a>
<r>,<ad> ,<r>,<r>,La>
{r>,<a>,<a>
<m>

<r>,La> ,<r>,<a>,<r> ,<a>
<r>,<a>,<r>,La>,<r>,<a>
<r>,<m>
<r>,<m>
Lr>,<m>
<r>,<m>
<ro>,<m>
<ro>,<m>
<r>,<m>

<ro> <>
<ro>,<m>
<ro>,<m>
<rd>,<m>
<r> L, 4<r> ,,<m>
<r>,4{r>,<m>
<r>,<r> . <m>
<r>4r> ,<m>
<r>,<r>,<m>
<r> 4&r>,<m>

20-31

- MOVE

MATCH CHARACTERS

MOVE COMPLEMENTED BYTE
MOVE COMPLEMENTED LONG
MOVE .COMPLEMENTED WORD
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

NEGATED
NEGATED
NEGATED
NEGATED
NEGATED
NEGATED
NEGATED
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
BYTE
D_FLOAT
F_FLOAT
G_FLOAT
H_FLOAT
LONG
OCTALWORD

QUADWORD

WORD

CHARACTER 3 OPERAND
CHARACTER 5 OPERAND
PACKED

PROCESSOR STATUS LONG
TRANSLATED CHARACTERS
TRANSLATED UNTIL CHAR

BYTE
D_FLOATING
F_FLOAT
G_FLOAT
H_FLOAT

LONG

WORD

OF BYTE

OF D_FLOATING
OF F_FLOAT
OF G_FLOAT
OF H_FLOAT
OF LONG

OF OCTALWORD
OF QUADWORD
OF WORD

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE ZERO EXTENDED WORD LON
MOVE TO PRIVILEGE REGISTER
MULTIPLY BYTE 2 OPERAND

MULTIPLY D_FLOAT 2 OPERAND
MULTIPLY F_FLOAT 2 OPERAND
MULTIPLY G_FLOAT 2 OPERAND
MULTIPLY H_FLOAT 2 OPERAND
MULTIPLY LONG 2 OPERAND

MULTIPLY WORD 2 OPERAND

MULTIPLY BYTE 3 OPERAND

MULTIPLY D_FLOAT 3 OPERAND
MULTIPLY F_FLOAT 3 OPERAND
MULTIPLY G_FLOAT 3 OPERAND
MULTIPLY H:?LOAT 3 OPERAND
MULTIPLY LONG 3 OPERAND

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

FROM PRIVILEGE REGISTER

ZERO EXTENDED BYTE LONG
ZERO EXTENDED BYTE WORD

G

Ada Language System Specification CR-CP-0059-A00
1 November 1983

o T o W mee S S e e S G Gm Gver W Gmee TR G T e S G SN G e e GmE W e S e e e T G M e S e - e . e e e e mw e m- -

MULW3
MULP
NOP
POLYD
POLYF
POLYG
POLYH
POPR
PROBER
PROBEW
_PUSHAB
PUSHAD
PUSHAF
PUSHAG
PUSHAH
PUSHAL
PUSHAO
PUSHAQ
PUSHAW
PUSHL
PUSHR
REI
REMQHI
REMQTI
REMQUE
RET
ROTL
RSB
SBWC
SCANC
SKPC
SOBGEQ
SOBGTR
SPANC
SUBB2
SUBD2
SUBF2
SUBG2
SUBH2
SUBL2
SUBW2
SUBB3
SUBD3
SUBF3
SUBG3
SUBH3
SUBL3
SUBW3
SUBPY4
SUBP6
SVPCTX
TSTB
TSTD

<{space>
{sSpace>

{space>
<{space>
{space>
<{space>
<{space>
<{space>
{space>
{space>
<{space>
<{space>
<{space>
<{space>
<{space>
<{space>
{space>
<{space>
{space>
{space>

<{space>
<{space>
<{space>
<{space>
<{space>

<{space>
<{space>
<space>
{space>
<{space>
<{space>
<{space>
<{space>
<space>
<{space>
<{space>
<{space>
<{space>
<{space>
{space>
<{space>
<{space>
<space>
<{space>
<{space>
<{space>
{space>

<{space>
<{space>

<r>,<r> <m>

<r>,<a> ,<r>,Ka> ,<r>,Ka>

<r>,<{r>,{a>
<r>,<r>,<a>
<r>,.,{r>,<a>
<r>,<r>,<a>
<{r>
<r>,<r>,{a>
<rd> ,Lro>,Ka>
<a>
{a>
<a>

<La>

<a>
a>
{a>
<a>
<a>
L<r>
<r>

<a>,<m>
<a>,<m>
{a>,<m>
<r> <> <m>

<r>,<m>

<r>,<a>,<a>, ,<r>

L<r>,<r>,<a>
<m>,

-<m>,

<r>,<a>,<a> ,<{r>

Lr>,<m>
<r>,<m>
<r>,<m>
<r>,<m>
<r> <>
<r>,<{m>
<r>,<m>
<r>,<r>,<m>
Lr>,,<r> <>
<r>,<r>,<m>
<r> &Lr> ,<m>
<r>,<r>,<m>
<r> < <>
<r>,<r>,<m>

<{r>,<a>,<r>,<a>

<r>,<a>,<r>,<a>,<r>,{a>

<r>
Lr>

20-32

MULTIPLY WORD 3 OPERAND
MULTIPLY PACKED

NO OPERATION

EVALUATE POLYNOMIAL D_FLOAT
EVALUATE POLYNOMIAL F_FLOAT
EVALUATE POLYNOMIAL G_FLOAT
EVALUATE POLYNOMIAL H_FLOAT
POP REGISTERS

PROBE READ ACCESS

PROBE WRITE ACCESS

PUSH ADDRESS OF BYTE

PUSH ADDRESS OF D_FLOAT

PUSH ADDRESS OF F_FLOAT

PUSH ADDRESS OF G_FLOAT

PUSH ADDRESS OF H_FLOAT

PUSH ADDRESS OF LONG

PUSH ADDRESS OF OCTALWORD
PUSH ADDRESS OF QUADWORD
PUSH ADDRESS OF WORD

PUSH LONGWORD

PUSH REGISTERS

RETURN FROM EXCEPTION OR INTERUPT
REMOVE FROM Q HEAD INTERLOCKED
REMOVE FROM Q TAIL INTERLOCKED
REMOVE FROM Q

RETURN FROM CALLED PROCEDURE
ROTATE LONGWORD

RETURN FROM SUBROUTINE
SUBTRACT WITH CARRY

SCAN FOR CHARACTER

SKIP CHARACTER

SUB 1 BRANCH ON GREATER EQUAL
SUB 1 BRANCH ON GREATER

SPAN CHARACTERS

SUBTRACT BYTE 2 OPERAND
SUBTRACT D_FLOAT 2 OPERAND
SUBTRACT F_FLOAT 2 OPERAND
SUBTRACT G_FLOAT 2 OPERAND
SUBTRACT H_FLOAT 2 OPERAND
SUBTRACT LONG 2 OPERAND
SUBTRACT WORD 2 OPERAND
SUBTRACT BYTE 3 OPERAND
SUBTRACT D_FLOAT 3 OPERAND
SUBTRACT F_FLOAT 3 OPERAND
SUBTRACT G_FLOAT 3 OPERAND
SUBTRACT H_FLOAT 3 OPERAND
SUBTRACT LONG 3 OPERAND
SUBTRACT WORD 3 OPERAND
SUBTRACT PACKED 4 OPERAND
SUBTRACT F’ZKED 6 OPERAND
SAVE PROCLSS CONTEXT

TEST BYTE

TEST D_FLOAT -

‘:Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

1 TSTF <{space> <r> TEST F_FLOAT
i TSTG <space> <r> TEST G_FLOAT
i TSTH <{space> <r> TEST H_FLOAT
i TSTL <{space> <r> TEST LONG
{ TSTW <{space> <r> TEST WORD
{ XFC EXTENDED FUNCTION CALL
i XORB2 <space> <r>,<m> EXCLUSIVE OR BYTE 2 OPERAND
i XORL2 <space> <rd>,<m> EXCLUSIVE OR LONG 2 OPERAND
| XORW2 <space> <r>,<m> EXCLUSIVE OR WORD 2 OPERAND
i XORB3 <space> <r>,<r>,<m> EXCLUSIVE OR BYTE 3 OPERAND
i XORL3 <space> <r>.,<r>,<m> EXCLUSIVE OR LONG 3 OPERAND
| XORW3 <space> <r>,<r>,<m> EXCLUSIVE OR WORD 3 OPERAND
<m> HHE <memory_operand>
i <register_operand>
<a> S <memory_pperand$
<v> iz <memory_operand>
i <register_operand>
i <immediate_ operand>
/
<r> ¢t= <memory_operand>
i <register_operand>
i <literal operand>
i <immediate_operand>
] {label> --— within 127 of current instruction
<e> st= <label> -~ within 32K of current instruction
<memory_operand> = .
<base_operand> [<left_bracket> <general register><right bracket>]
<literal operand> ::= S"# <literal value>
<immediate_operand> ::= I"# <numeric_value>

<base_operand> ::=

(
-(
(
e(
BA
W
LA
():p
ew"

eL”

<register_designator>) - reg deferred
<register_ designator>) -- autodec
{register designator>)+ - autoinc
<register_designator>)+ - autoinc def
<byte_value> (<register_designator>)

-- byte disp
<word_value> (<register_designator>)

- word disp
<long_value> (<register_designator>)

-— long disp
<byte_value> (<register_designator>)

-= byte disp def
<word_value> (<register_designator>)

-- word disp def
<long_value> (<register_designator>)

- long disp def

20-33

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-AOO
1 November 1983

absolute

byte relative
word relative
long relative

i@ # <relocatable_expression>
! B" <byte_relative_value>

i - W' <word_relative_value>
i L% <long relative value>
[
;
:

es” <byte_relative:value> -- byte rel def
ew” <word_relative_value> - wWord rel def
6L" <long_relative_value> . -~ long rel def

<{register_operand>
<{register_designator>

<{general_register>
<general register> | PC

<{general register> : RO i R1 | R2 | R3
i R4 | RS | R6 | R7
i R8 | R9 § R10§ RM
| AP | FP | SP
irolrtir2ir3
prd4 i rs ré |7
i r8 1 r9iriolrn
i api fpi sp

<literal value> <abs_expression> — in the range 0..63

oo
e
(1]

<byte_value> ti= <abs_expression> - of 8 bits
<word_value> i:= <abs_expression> -- of 16 bits
<iong_value> :iz <abs_expression> -~ of 32 bits

<byte relative> :i=z {psect_relative expression> - of 8 bits
<word_relative> 11z <psect_relative expression> - of 16 bits
<long_relative> ::= {psect relative expression> -- of 32 bits

<psect_relative_expression> ::= <label>
i <label> + <numeric_value>
| <label> - <numeric value>
-- where label is defined in the current psect

<{relocatable_expression> 1i= <symbol>+<{numeric_value>
| <symbol>-<numeric_value>
{ <symbol>
i <case_expression> -- used exclusively for
- case statement displace-
-— ments

<{case_expression> t:2 <{symbol>-<symbold>

<abs_expression> ' ::= <numeric_value>
i <symbolic_constant> ,
i <symbolic_constant>+<numeric_value>
| <symbolic_constant>-<numeric_value>

<symbol> ::= <label>
<{symbolic_constant> ::= <label> -- assigned by an equ directive
20-34

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

= [=1<digit> { <digit> }
| “X<hex_digit> { <hex_digit> }
i "O<octal_digit> { <octal digit> }

<numeric_value> HH

<{space> iz <separator_char> { {separator_char> }
<{separator_char> ::z space character | horizontal tab character
<label> t:= <letter> { [_J] <alphanumeric> }
<left_bracket> sz [

<right_bracket> ::=]

<eol> ::= end of line character { end of line character }
<alphanumeric> 0= <letter> | <digit>

{letter> i= YA'L,L'Z') tal..'z

<digit> iz '0'..'9"

<hex_digit> ti= '0'..19 } tal..'fr | AL 'FY

<octal digit> i 100 LL'TY

<comment> s:= ; { <character> }

<{character> ::= Any ASCII character except null, del, or eol

20.1.8 Assembly Language Comparison

The differences between the ALS VAX-11/780 Assembly Language and the
Digital Equipment Corporation (DEC) VAX-11 Macro Language are generally a
result of the different intended purposes of the two languages. The DEC
VAX-11 Macro Language provides features necessary for efficient, large
assembly language program development and maintenance. The ALS VAX-11/780
Assembly Language 1is intended for use in writing small routines to allow
Ada programs direct access to machine-level operations.

The ALS VAX-11/780 Assembly Language will allow access to all
instructions and hardware features accessible through the DEC VAX-11 Macro
Language. The specific differences between the two assembly languages are
described in Tables 20-6, 20-7, and 20-8. For more details on the
VAX-11/780 Macro language sSee the VAX-11 Macro Language Reference Manual
published by the Digital Equipment Corporation (2.2).

20-35

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP-0059-A00
1 November 1983
Table 20-6

FEATURES IN THE DEC VAX-11 MACRO LANGUAGE THAT ARE
NOT INCLUDED IN THE ALS VAX-11/780 ASSEMBLER

Feature Comment
Listing Pseudo Ops There are no listing options such as nlist or

cref, as in DEC VAX-11 Macro.

Macros There is no Macro capability in the ALS
VAX-11/780 Assembler.

General Directives The only assembler directives that are included
in the ALS VAX-11/780 Assembler are: BLKB,
BYTE, WORD, LONG, and EQU. (PSECT is described

below.) '
Literals ‘ Only short literals are supported.
Symbol Table There is nb symbol table printed in the
listing.
Complex Expressions The ALS VAX-11/780 Assembler only supports

addition or subtraction of one symbol and a
constant in arithmetic expressions.

Psects Only three program sections are allowed.
Global Symbols Global symbols cannot be defined.
Current Location Count There is no access to the current location

counter as with the '.' symbol in the DEC
VAX-11 Macro.

External Program No external program references are allowed in
References the ALS VAX-11/780 Assembler,
Generic Instructions The precise opcode must be specified to the ALS

VAX-11/780 Assembler.

General Addressing The precise operand must be specified to the
ALS VAX-11/T780 Assembler.

Psect Relative Addressing Only variables and labels in the current psect

are accessible in the Psect Relative Addressing
mode.

20-36

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Table 20-7

FEATURES THAT ARE DIFFERENT IN THE ALS VAX-11/780
ASSEMBLER AND THE DEC VAX-11 MACRO LANGUAGE

Feature

Use of Colon
Character

Line Length

EQU instead of '='

Comment

The colon character is used to delimit
instruction labels in the DEC VAX-11 Macro
language. Colon, the label delimiter is
optional in the ALS VAX-11/780 Assembly
language.

The VAX-11 Macro language allows 80 characters
per line and a continuation character. The ALS
VAX-11/780 Assembler allows 132 characters per
line and no line continuation character.

The VAX-11 Macro language uses '=' to assign
symbol values. This directive is implemented
with the 'EQU' string in the ALS VAX-11/780
Assembler,

20-37

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983
Table 20-8.

FEATURES IN THE ALS VAX-11/780 ASSEMBLER
THAT ARE NOT IN THE DEC VAX-11 MACRO LANGUAGE

Feature Comment

.SUBPROGRAM Directive This directive is not applicable in the VAX-11
Macro Language.

.SEPARATE Directive This directive is not applicable in the VAX-11
Macro Language.

.EXTREF Directive This directive is not applicable in the VAX-11

Macro Language.

20-38

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

20.1.9 Runtime Conventions for Assembly Langﬁage Routines

Assembly language routines may be written as either Ada subprogram bodies
for which there is an Ada specification or as subunit bodies for which
there is an Ada stub. As such, they may be invoked from an Ada subprogram
or invoke an Ada subprogram as long as they are written in a manner that
is consistent with Ada conventions for calling subprograms and addressing
arguments, external data, and external subprograms,

20.1.9.1 QOrganization into Program Sections

Assembly language code must be organized into programs section (PSECTs)
for compatibility with code produced by an Ada compiler. The three types
of PSECTs that are used for assembly code are the executable, read-write,
and read-only which contain, respectively, executable code, data
variables, and constants. An assembly language subprogram or subunit may
have no more than one segment of each type. Elaboration code PSECTs,
which are produced by Ada compilers, may not be used for assembly code.
Data variables may also be placed on the stack as long as the appropriate
conventions for the layout of stack frames are observed. Variables for
reentrant routines must be placed on the stack rather than in a read-write
PSECT.

20.1.9.2 Register Use Conventions

The VAX-11/780 has sixteen 32-bit registers. They'are used as follows:

R15 is the program counter (PC) (reserved register),

R14 is the stack pointer (SP) (reserved register),

R13 is the frame pointer (FP) (reserved register),

R12 is the argument pointer (AP) (reserved register), and
RO=R11 are general purpose registers.

20.1.9.3 Starting Point of Executable Code

The starting point of executable code must contain an appropriate entry
mask 8o that the CALLS or CALLG instruction used to invoke the assembly
language routine will save the necessary registers. The first executable
instruction must follow the entry mask. (See the VAX-11 Architecture
Handbook for a detailed treatment of the entry mask format and functions.)

The entry mask must be preceeded by a .SUBPROGRAM and an executable .PSECT
directive in the source text for the assembly language routine, in that
order. If the routine is a separa’e subprogram body of an Ada package
body, the .SUBPROGRAM directive must be proceeded by a .SEPARATE directive
and any required .EXTREF directives. If present, .EXTREF directives
always follow the .SEPARATE directive.

20-39

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP=0059-A00
1 November 1983

20.1.9.4 External References

External references may be to any data declared in the specification of
any package used in the linked program. They may also refer to
subprograms declared in the visible part of any package specification or
to 1library subprograms. They may not refer to data declared in a package
or subprogram body, even if the stub for the routine is located in the
same package body or subprogram body. An .EXTREF directive is required
for each external reference. : -

20.1.9.5 Calls

20.1.9.5.1 From égglsubprograms

As indicated above, the starting point of the executable code is the entry
mask required by the CALLS instruction. The CALLS instruction adds the
saved registers, the mask, the PSW, and the exception handler table
pointer to the stack. The called assembly language routine must then
invoke the runtime support library routine RSLSTACK.ADA_STACK to add
information to the stack needed to properly handle Ada exceptions. Thus,
a JSB instruction to the routine RSLSTACK.ADA_STACK is normally the first
executable instruction following the entry mask. An .EXTREF directive is
required to address the routine RSLSTACK.ADA_STACK. Once the JSB
instruction has been executed, the routine may add any required local
stack variables to the stack.

The layout of the stack frame is shown in Figure 20-3.

The return from the assembly routine is accomplished with a RET
instruction. The space occupied by the stack frame for the routine is
automatically released.

20-40

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Argument List Put on by caller

\
Saved Register \
\
A\
\
Mask-PSW Put on by CALLS
/ instruction
/
/
Exception Handler Table Pointer /
/

Ada Exception Handling Information Put on by ADA_STACK

Put on by called
subprogram

Local Variables

Figure 20-3. Format of the Subprogram Stack Frame

20=41

" "Use or disclosure of technical data and/or computer software

is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983

20.1.9.5.2 To Ada Subprograms

The calling sequence used to call an external subprogram is as follows:
Push the a}guments on the stack.
Execute a CALLS instruction.

On return, all OUT arguments can be referenced from the argument list
and all registers are restored.

-

20.1.9.6 Arguments
20.1.9.6.1 Scalar Arguments

All scalar arguments are passed by value in a 32-bit longword for all but
double float; double float (64-bit) arguments are passed in two longwords
in normal DEC D-float format. Numeric values are right justified and sign
extended. Values without sign, such as characters, are zero filled.

»

20.1.9.6.2 Access Arguments

All access arguments are passed by value in a 32-bit longword. If an
access value is defined as pointing to an array of an unconstrained type,
the access value points to an access type descriptor (ATD). The first
component of the ATD is the pointer to the storage for the unconstrained
object (on the Heap). The second component is a pointer to the array
index descriptor (see array arguments below).

If the formal parameter is an access type pointing to any unconstrained
composite type, then an additional longword value is pushed on the stack
containing a boolean value indicating whether the actual argument is
constrained. This is for constraint checking in the called subprogram.
In any event, the actual argument will be a pointer to the ATD in the case
of arrays.

20.1.9.6.3 Task Arguments

All task arguments are 32-bit references(pointers) to a record which is
the task object.

20-42

':Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

20.1.9.6.4 Array Arguments

All array arguments are passed by reference using from one to three
longwords depending on the type of the formal parameter type according to
the following scheme:

b.

For unpacked constrained array types, one longword is used for
the reference address to the array storage.

For unpacked unconstrained array types, two longwords are used:
the first longword holds the reference address to array storage
and the second longword holds the address of the runtime array
index descriptor.

For packed constrained array types, two longwords are used;
the first longword holds the address of the first unit of the
array storage and the second longword holds the bit offset for
the start of the array in the first storage unit.

For packed unconstrained array types, three longwords are used;
the first longword holds the address of the first unit of array
storage, the second longword holds the bit offset for the/start
of the array in the first storage unit, and the third longword

holds the address of the runtime array index descriptor.

For these descriptions, "first" means closest to the argument pointer.

The format of the runtime array index descriptor depends on the number
dimensions of the array. It has the following Ada description:

type index record is
record
lower_bound,
. upper_bound,
span : long integer;
end record;

type index_record_array is
array (integer <>) of index records;

generic
n : long integer;

type array_desc is

record
- size,
virtual offset : long_integer;
index_desc : index_record array (0 .. n-1);

end record;

type one_dimension_desec is new array_desc
type two_dimension desc is new array_desc

N S
N =
NS N

20-43

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

of

Ada Language System Specification CR-CP-0059-A00
1 November 1983

20.1.9.6.5 Record Arguments

Record arguments are passed by reference to the base of the record.

20.1.9.7 Example-of an Assembly Language Subprogram

The sample program below has been designed to illustrate some of the
conventions described above. It obtains an arbitrary value from another
subprogram that is written in Ada, multiplies it by one of its input
arguments, subtracts "100" and returns the result. All local variables
are kept on the stack.

+SEPARATE (PACKAGE_A)

STACK .EXTREF RSLSTACK.ADA_STACK
PROGY +EXTREF PACKAGE_B.SUBPROG_Y
.SUBPROGRAM SUBPROG_X
.PSECT EXECUTABLE
JWORD ~X0000 ; entry register save mask
JSB @#STACK ; add Ada stack frame
s information
PUSHL ZERO s push the constant "O0" on the
s stack
CALLS #°50,@84PROGY s call an Ada subprogram
MOVL (SP)+,R6 ; create a local variable on the
; stack
MULL2 “B4(AP),R6 ; multiply returned value by an
; input argument
SUBL3 HUNDRED,R6,"B4(AP) ; subtract 100 and store as out
s argument
RET
.PSECT ROSTATIC
ZERO .LONG 0 ; define constant "O"
HUNDRED .BYTE 100 ; define constant of "100"
.END ~
20-44

'jUse or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983
20.2 Blank.
20.3 Blank.
20.4 Blank.

The removal of Sections 20.2, 20.3 and 20.4 included the following
tables and figures:

Tables 20-9 through 20-26,

Figures 20-4 through 20-9.

20=45

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specificatioh CR-CP-0059-400
1 November 1983

20.5 ALS MCF Assembler Language.

RESTRICTIVE LEGEND

Material in this chapter has been taken with permission
from the VAX-11 MACRO Language Reference Manual published
by the Digital Equipment Corporation, Maynard, Mass.
Permission for the use of the material has been given for
this specific purpose only. Digital Equipment . Corporation
retains full rights under its copyright of the material.
Accordingly, copies of this document shall not be made by
any organization or individual outside of the U.S.
Government without the prior written permission of the
Digital Equipment Corporation.

This section describes the ALS MCF assembly language, including the
syntax of assembly code statements and directives, assembler output, and
operation of the assembler. Readers should already be familiar with
assembly language programming and the Nebula instruction set.

The assembly language is intended to be used for writing small
subprograms in order to access capabilities of the target machine that
cannot be reached from Ada. It is not intended for any large scale
development of software in assembly language. Accordingly, the ALS MCF
Assembler does not contain all of the functions provided by the assembler
that may normally be supplied with the MCF. A comparison of the assembly
language accepted by the ALS MCF Assembler and that specified by the
Nebula Instruction Set Architecture (2.1) and The Nebula Assembler (2.2)
is provided in Section 20.5.8.

The ALS MCF Assembler translates source programs into object (i.e.,
binary) code and produces a listing file sent to the predefined internal
standard output file and a Container placed in the environment database.
The ALS MCF Linker then combines this object information from several
assemblies, Ada compilations, and other links to produce an executable
program.

An assembly language program consists of a series of source
statements representing an Ada library subprogram body or subunit
subprogram body. In addition to the body written in assembly language, a
subprogram specification, written in Ada, must also exist and must be
compiled prior to assembling the body.

20-46

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

The Ada subprogram specification must not include an INTERFACE
pragma. The assembly 1language subprogram body will be called with the
same linkage conventions used when calling subprograms written in Ada; it
is the assembly language programmer's responsibility to insure that the
subprogram body follows these conventions. The Ada entry/exit sequences,
and parameter and function-value-return conventions are described in
<TBD>. (No checks are performed to make sure the subprogram body matches
the subprogram specification, except to see that the subprogram names are
identical.)

The following conventions are observed throughout this chapter:

. Brackets ([]) indicate that the enclosed argument is
optional.

. Uppercase words and letters, used in formats, indicate that
the word or letter should be typed exactly as shown.

. Lowercase words and letters, used in formats, indicate that
a word or value of the user's choice is to be substituted.

. Curly braces ({ }) indicate that the enclosed argument(s)
may appear zero or more times.

20-47

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

20.5.1 Source Statement Format.

A source program consists of a sequence of source statements, The
. assembler interprets and processes the statements one by one, generating
object code or performing a specific assembly-time process. Only one
statement c¢an appear on a line, and a statement cannot extend onto more
than one line. A source line can be up to 80 characters long.

Source statements can consist of up to four fields:

. Label field -- allows the programmer to symbolically define
a location in a program.

. Operataor field -- specifies the action to be performed by
the statement; this field can be an instruction opcode or
an assembler directive.

. Operand field -- contains the instruction operand(s) or the
assembler directive argument(s).

. Comment field -- contains a comment that explains the
meaning of the statement; this field does not affect
program execution.

The label field, the operator/operand fields combination, and the
comment field are all optional. If the operator field is not present the
operand field must also be not present. The operand field must conform to
the format of the instruction specified by the operator field.

The label field, if present, must begin in Column 1; the operator
field, if present, must begin in Column 2 or after. See Section 20.5.7
for a complete summary of the syntax of an assembly language statement.

Blank lines, although legal, have no significance in the source
program. v

The following sections describe each of the statement fields in
detail.

20.5.1.1 Label Field.

A label is a user-defined symbol that identifies a location in the
program. The symbol is assigned a value equal to the location counter at
the location in the program section in which the 1label occurs, The
user-defined symbol name can be up to 15 characters long and can contain
any alphanumeric character. Section 20.5.2.3 describes the rules for
forming user-defined symbol names in more detail.

20-48

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR=-CP-0059-A00
1 November 1983

If a statement contains a label, the label must start in the first
column of the line. .

A label is said to be defined when it appears in a label field. Once
a label is defined, it cannot be redefined during the sourcé program. If
a label is defined more than once, the assembler displays an error message
when the label is defined the second and subsequent times. A space, tab,
semicolon, or end of line terminates the label field.

20.5.1.2 Operator Field.

The operator field specifies the action to be performed by the
statement. This field can contain either an instruction or an assembler
directive.

When the operator is an instruction opcode, the assembler 'generates
the binary code for that instruction; the instruction set and mnemonics
are described in the Nebula Instruction Set Architecture (2.1). When the
operator is a directive, the assembler performs certain control actions or
processing operations during source program assembly; the assembler
directives are described in Section 20.5.4.

A space, tab, semicolon or end of line terminates the operator field.

20.5.1.3 Qperand Field.

The operand field can contain operands for instructions or arguments
for assembler directives,

Operands for instructions specify the 1locations in memory or the
registers ‘that are used by the machine operation including the addressing
mode. Section 20.5.3 describes the MCF addressing modes. The operand
field for a specific instruction must contain the number of operands
required by that instruction. See the Nebula Instruction Set Architecture
(2.1). for a description of the instructions and their operands.

Arguments for a directive must meet the format requirements of the
directive. Section 20.5.4 describes the directives and the format of
their arguments.

If two or more operands are specified, they must be separated by
commas. The operand field is terminated by a space, tab, semicolon, or
end of line. '

20-49

"Use or disclosure of technica! data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

20.5.1.4 Comment Field.

The comment field contains text that explains the meaning of the
statement. Comments do not affect assembly processing or program
execution.

: The comment field must be preceded by a semicolon and 1is terminated

by the end of the line. The comment field can contain any ASCII
character. A comment can appear on a line by itself, even beginning in
Column 1. '

20.5.2 Components of Source Statements.

This section describes the components of assembly language
statements: the character set, numbers, symbols, and expressions.

20.5.2.1 Character Set.

The following characters can be used in assembly language statements:
. Both upper-case and lower-case letters (A through Z, a through z)
are accepted; however, the assembler considers lower and upper
case as equivalent representations of the same character set.
E.g., "mov" is the same as "MOV".
. The digits 0 through 9.

. The special characters listed in Table 20-27.

20-50

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

The sixteen general registers of the MCF processor can be expressed
in a source program only as follows:

Register :
Name : Processor Register
%0-%15 General register 0 through general register 15

20.5.2.3.2 User-Defined Symbols. .

With the exception of the name on the SUBPROGRAM directive,
user-defined symbols are only local, appearing in the 1label field
somewhere in the assembly code subprogram and accessible only from within
that subprogram, ’

The following rules govern the creation of user-defined symbols:

. User-defined symbols can only be composed of the 36
alphanumeric characters and the underscore. Any other
character terminates the symbol.

. The first character of a symbol must be a letter.

. Two underscores must not be adjacent and the symbol must not
begin or end with an underscore.

. The symbol must be no more than 15 characters long and must
be unique.

20.5.2.4 Expressions.

There are five kinds of expressions that can be used in an assembly
language program:

. number
. Ssymbol
. Symbol+number
. Symbol-number
. symbol-symbol

If the symbol is relocatable (i.e., defined by appearing as a label
other than on an "s" directiv-~‘, the expression will be relocatable; if
absolute (defined by an "=" d.rective), the expression will be absolute.

20-53

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR=CP=0059-400
1 November 1983

20.5.3 Addressing Modes.

This paragraph summarizes the Nebula addressing modes and contains
examples of assembly language statements that use these addressing modes.
The Nebula Instruction Set Architecture (2.1) describes the addressing
modes in detail.

The following pages include examples of each of the addressing modes.

Note: “B(byte), “H(halfword), “W(word), and “D(doubleword) qualify the
size of the operand. The size (width) is used when the operand is
evaluated and, in the case of scaled index, used to determine the
scaling factor. -

20-54

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Register mode

mov %3,%4

Short Literal Mode

mov #1,%4
Literal Mode
mov #“XFE,ZR

Indirect Register Mode

mov €%3°wW, %4

Register indexed Mode

Ada Language System Specification CR-CP=-0059-A00

.o -s we

e @0 we

mov 2(%8)°B, %5 H
Absolute Mode

mov €(9)°W,%5 :

mov 8(place)"H, %5 H

mov €(place+l4)"W,%5

Short Parametér Mode

mov ?4,%5

Extended Parameter Mode

©o we wo

1 November 1983

Register 3 => Register 4

Literal 1 => Register i
Literal must be in the range 0..31

Literal hexidecimal "FF" =>
Register 4

The word at the address
within Register 3 =>
Register U

The byte at the address
derived from adding 2 to the contents
of Register 8 => Register 5

The word at location 9 in memory =>
Register 5

Halfword at location symbolized by
place => Register §

Word at location symbolized by the
expression place+ld => Register 5

Parameter 4 => Register 5 .
Parameter number must be in the
range 1..7

20-55

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification

1 November 1983

mov

2250,%5

“s we we

General Parameter Mode

mov

mov

mov

mov

?(%8),%6 V

?(€%37B), %6

s we we

2(4(%5)"B) , %6

.e we we we

?(place”W), %6

.e we o

2(75),%6

Unscaled Index Mode

CR-CP-0059~400

Parameter 250 => Register 5
Parameter number must be in the
range 0..255

Parameter whose number is contained
in Register 8 => Register 6

Parameter whose number is contained
in the byte pointed to by Register 3 =>
Register 6

Parameter whose number is contained

in the byte pointed to by the result
of the addition of 4 to the contents
of Register 5 => Register 6

Paraméter whose number is contained
in the word at the address symbolized
by the symbol place => Register 6

Parameter whose number is contained
in parameter number 5 =>
Register 6

Operands of this mode take the form:

Base (Index) width

Where the base is any non-compound instruction mode that yields an

address and the index

is any other non-compound mode. (Compound modes

consist of Scaled Index modes, Unscaled Index modes, and General Parameter

modes.)

mov

mov

mov

€%24(%5)"B, %6

we we we we

€%4(6%37H) W, %6

we we we we

%4 (place™H) "W, %6

The byte at the address calculated
by the addition of the values of
Register 4 and Register 5 =>
Register 6

The word at the address calculated
by the addition of the halfword
pointed to by Register 3 and the
value of Register U4 => Register 6

; The word at the address calculated
s by the addition of the halfword
s located at the memory location

20-56

':Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

H symboliéally represented by the
; symbol place and the contents of
; Register 4 => Register 6

Scaled Index Mode
Operands of this mode take the form:
Base [Index] width

Where the base is any non-cbmpound mode that yields an address and
the index is any other non-compound mode. i

The address of the Scaled index operand is found by evaluating the
index specifier as a signed integer operand, multiplying it by the scale
factor, and adding the result to the base specifier. The scale factor is
1, 2, 4, or 8, depending on the number of bytes in the operand specified
by the base specifier size field ("B, “H, "W, "D).

The form of the instruction is exactly the same as the Unscaled Index
mode if the parenthesis are replaced by square brackets.

mov 8%4(€%3"H]"W,%6 ; The word at the address calculated

;s by the addition of the halfword pointed
s to by Register 3 scaled by 4 (multiplied
; by 4) and the value of Register 4 =>

1]

Register 6

20.5.4 Assembler Directives,

Table 20-28 lists the assembler directives recognized by the ALS MCF
Assembler. This paragraph describes these directives in detail.

Table 20-28

SUMMARY QF ASSEMBLER DIRECTIVES

.BLKB Space reservation/location control

.BYTE Data definition

HWORD Data definition

.WORD _ Data definition

.DWORD Data definition

.END Subprogram termination

UL Symbol definition

. PARM Paraneter line specifier

.SECT Subprogram sectioning

<ENTRY Entry point specifier
20-57

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR=-CP=-0059-A00
1 November 1983

. SUBPROGRAM Subprogram initiation
.SEPARATE Subunit initiation
.EXTREF External reference definition

20.5.4.1 LBLKB.

The BLKB directive reserves space in the current prcgram section by
advancing the program counter by the value of the operand expression.

Format:
[labell .BLKB expression
where:

Label is an optional label that will be assigned the value of the
program counter before allocation of the space specified by the
directive.)

Expression is an expression as deseribed in Section 20.5.2.4 that
must evaluate to an absolute value. The program counter will be
advanced by the number of bytes specified by the value of the
number.

20.5.4.2 ,BYTE, .HWORD, .WORD, .DWORD.

These directives allocate one, two, four, or eight bytes,
respectively, at the current location and initialize the contents of that
location to the value of the operand expression. The expression can
evaluate to either a relocatable value or an absolute value.

Format:

[label] .BYTE expression
[(label] .HWORD expression
[label]l .WORD expression
[label] .DWORD expression

where:

Label is an optional label.

Expression is an expression described in Section 20.5.2.4 whose value
will become the contents of the current location in the program
section. The line will! bYe flagged with an error if the value
of the expression 1is absolute and too large for the amount of
space specified. An error will be generated by the linker if
the value 1is relocatable and found ¢to be too large for the

20-58

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-=0059-A00
1 November 1983

specified space.

20.5.4.3 L.END.

The END directive indicates the end of the assembly code compilation
unit. It generates no code and is intended only to give the appearance of
completeness to a compilation unit. Any lines after the END directive
will be flagged with an error, and will not be otherwise assembled.

Format:

.END

20.5.4.4 n=n,

The "=" directive defines the symbol in the label field and sets it
equal to the value of the expression operand. The expression must
evaluate to an absolute value (not relocatable). If the expression
contains a symbol, that symbol must have been previously defined (in an
"=" directive occurring before this one).

Format:
label = expression
where:
Label is the symbol being defined.

Expression is an expression as described in Section 20.5.2.4 that
must evauluate to an absoclute value.

20.5.4.5 .SECT.

The SECT directive separates the assembli code into progfam sections
(psects) having different functionms. There can be up to three program
sections:

1. Executable code -~ represents instructions to be executed -
data is not intended to be stored in the executable psect;

2. Read/write data - not intended to contain executable code;
and

3. Read-only data - not intended to contain executable code. or
data which is the target of a store.
20-59

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

The SECT directive defines the beginning of a portion of assembly
code, continuing up to the next SECT or END directive., An assembly may
have no more than one psect of each of the three types and must have at
least an executable psect. All code and data of the subprogram must
follow a SECT directive of one of the three types.

The body of the subprogram text always starts at the beginning of the
executable psect.

Format :
.SECT storage

where storage is one of the following storage area identifiers:
CODE - the executable code of -.the subprogram body.

DATA - read/write data whose values will be maintained throughout the
execution of the whole program, i.e., maintained across calls to
this subprogram body.

READ - read-only data maintained as in DATA.

20-60

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

20.5.4.6 .SUBPROGRAM.

The SUBPROGRAM directive must appear exactly once in the assembly and
must appear as the first statement unless this subprogram is a subunit in
which case the .SUBPROGRAM directive follows the .SEPARATE and .EXTREF
directives. It supplies the name of the subprogram and must match the
name in the Ada subprogram specification.

Format:
.SUBPROGRAM name

where:

Name is the subprogram name and is constructed according to the rules
for symbols (see Section 20.5.2.3).

20.5.4.7 LENTRY.

The .ENTRY directive establishes the “entry conditions for a
subprogram.

Format:
label ENTRY [Karg>] { , <arg> }

where:

Label is the name of the entry point,
arg is one or more of the following list, separated by commas:

number of registers
number of parameters

REG=<unsigned int>
NP= <unsigned int>

USER Clear the UDLE bit

SUPV Set the UDLE bit

NOAE Clear. the enable Arithmetic
Exception bit ‘

EAE -- Enable Arithmetic Exception

20.5.4.8 .PARM.

This directive immediately follows an SVC, CALL or CALLU mnemonic and
defines the parameters to be passed to the subprogram indicated by the
preceeding call statement. Zero to 255 PARM directives may follow a call
statement.
rorm:

.PARM <operand>{,<operand>}
20-61

“Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983 :
where:

Koperand> is any operand whose addressing mode was cited in
Section 8.5.3.

20.5.4.9 .SEPARATE.

This directive specifies that the assembly program is to be a subunit
subprogram of an Ada library unit package body. The assembly program will
take on the same context as the parent package body. The package body
which specifies this subprogram as a separate unit must be compiled before
the assembly program.

Format:
.SEPARATE (package name)
where:
The package name is the name of an Ada library unit package of which

the assembly program is to be a subunit. The package name is constructed
according to the rules for symbols (see Section 20.5.2.3).

20.5.4.10 LEXTREF.

This directive facilitates the referencing of variables declared
globally in Ada package specifications. The ",EXTREF"™ directive may only
appear in an assembly program that is a subunit (i.e., a program with the
", SEPARATE" directive).

Format:
Label .EXTREF package name.name

where:

1. The label, package name and name are constructed according to
the rules for symbols (see Section 20.5.2.3) ‘

2. The label spelling is used in the symbol portion of an assembly

instruction operand. The external reference will then be to a
variable or subprogram specified by a package name.name.

20-62

"Use or disclosure of technical data and/or computel; software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

20.5.5 Assembler Output.

This paragraph describes the outputs from an execution of the ALS MCF
Assembler: the source listing, error message, and machine text
information. :

20.5.5.1 Machine Text.

Machine text is what has been commonly referred to as "object module"
or "relocatable binary" in other systems. In the Ada system there is no
separate object module representation for the translator-generated
executable code. Instead, translators, like the ALS MCF Assembler, put
their generated code into a Container in a program library.

20.5.5.2 Listing.

At the option of the user a listing consisting of the source code
side by side with the assembled machine text in hexadecimal can be
produced by the assembler (see Section 20.5.6). The source 1line number’
and the hexadecimal location relative to the start of the psect are also
listed. The total number of error messages is displayed at the end of the
listing. The listing is produced in the standard output file.

Figure 20-9 shows some sample lines of the assembly listing. Note
that the contents field in the listing is read left to right, i.e., the
leftmost byte corresponds to the address given in the location field; the
next byte to the right corresponds to that address plus one. Figure 20-10
shows the Ada library subprogram specification corresponding to the
subprogram body in Figure 20-9.

The listing is sent to the standard output file.

20-63

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November

Contents

0006

45 24
40 22 23
67

30FF

1983

Location Line Source.
00000000: 1 .SUBPGROGRAM Sample
00000000: 2 .SECT CODE
00000000: 3 sub1l: .ENTRY REG=6,NP=0
00000002: 4 s+ This subprogram is a sample for
00000002: 5 ; the A-spec
00000002: 6 ; '
000000022 7 CLR 24
- 00000004: 8 here: MOV %2,%3
00000007: 9 RET

30 3A22E3 3A25E3 00000008: 10 ADD @%3[%2]1°W,@%3[%5]1"W
0000000F : 11 .SECT READ
0000000F: 12 var: .BYTE *X30, " XFF
00000011: 13 .END

Figure 20-9 Sample Assembly Listing

PROCEDURE

SAMPLE ;

Figure 20-10 Matching Ada Subprogram Specification

20-64

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

20.5.5.3 Diagnostic Messages.

Diagnostic messages are produced for all syntactic errors detected by
the assembler. The message(s) for any particular line of source appears
in the listing immediately following the source line. If no 1listing is
requested, diagnostic messages appear in the message output file. The
message number and text will be the same as the corresponding diagnostic
generated for a listing. An example of a diagnostic message sent to the
user through the message output file is as follows:

#*#ERROR ASMMCF 53403 AT SOURCE line Number 1 Subprogram Directive
Required

Messages indicating diagnostics in the assembler command are sent to
the wuser via the message output file. Assembler command diagnostics are
always sent to the user via message output regardless of the source option

" specification. An example of an Assembler Command Diagnostic Message is
as follows:

#ERERROR ASMMCF 56101 Command Diagnostic User Specified Source File
not found

If diagnostics of severity ERROR or FATAL are produced, a wuseable
Container is not produced.

The diagnostic messages produced by the ALS MCF Assembler are
summarized in Appendix 80.

20.5.5.4 Summary Message.

At the completion of the assembly process, a summary message is sent
to the wuser via the message output file. This summary message indicates
the completion of the assembly process and the number of diagnostic
conditions detected for each severity 1level. An example of a summary
message is as follows:

ASMMCF Processing Complete
Number of Diagnostics Generated:
of Severity level WARNING
of Severity level ERROR
of Severity level SYSTEM
of Severity level FATAL

oowmNn

20-65

“Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983
20.5.6 Invoking the Assembler.

The assembler is invoked with the command:

ASMMCF (source, prog_lib [,0PT=Doption_list])

where:
source the name of the source file
prog_lib the name of the program library into which

the source is assembled. The name of the Container
produced in the program library 1is the name on the
SUBPROGRAM directive.

option list [NO_]SOURCE specifies whether to produce
a source listing or not. The default is SOURCE.

[NO_JCONTAINER_GENERATION specifies whether a Container
is to be produced if diagnostic severity permits.
NO_CONTAINER_GENERATION means that no Container is to be
produced, regardless of diagnostic severity. If
NO_CONTAINER_GENERATION is in effect, listings cannot be
regenerated using the Display Tools CPCI. The default
is CONTAINER_GENERATION.

20.5.7 Assembly Language Syntax.

This paragraph gives the formal syntax of the ALS MCF assembly
language. The notation used here is a modified form of Backus-Naur Form
(BNF). Angle brackets, "<" and ">", to enclose a syntactic unit which is
defined to the left of a "::=", The symbol "::=" is read as "is defined
as"; the vertical bar, "|", is read as "or"; anything enclosed in square
brackets, "[" and "]", is optional' the curly braces "{ }" indicate that
the enclosed unit can appear zero or more times; and two adjacent wunits
(possibly on separate lines) indicate that the first must be followed by
the second without intervening spaces.

For example, the following alternative for
<label>:
<letter> {<more labeld}
<more label> ::= [_] <alpha numeric>
indicates that label consists of at least one letter with optional

alph -.uumeric characters following. Note that the underscore is
positioned such that it may not appear at the beginning or end of a label.

20-66

':Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.*"

Ada Language System Specification CR-CP-0059-A00
1 November 1983

The full syntax of the assembly language follows:

{assembly code subprogram> ::=
{[<space>] <comment> <eold>}
<{program heading>
{{<space>] <comment> <eold>}

{program section> -- One executable psect is required
{<program section>} — only one of each psect type is
-~ allowed
<END directive>{<comment>}
<program heading> ::= <subprogram directive>

i <subunit heading>
<subprogram directive>
{program section> HH
<SECT directive>
{<assembly code lined>}
<{subunit heading> HH
<{space>.SEPARATE <{space> (<package name>) [<space>]
[<comment>] <eol>
{<external directive>}
<external directive
<{label><space>.EXTREF
<{space><{external name>
[<space>][<comment>]
<eol>
<SUBPROGRAM directive> L
<{space>.SUBPROGRAM <space><label>{[<space>] [<comment>] <eol>}

.o
.e
"

<END directive> : <space> .END[<space>] [<{comment>] <eol>
<SECT directive> - <space> ,SECT <space><SECT attribute>
{[<space>] [<comment>] <eol>}

<assembly code line> :¢= <regular code line>
{ <line symbol><symboled line>
{regular code line> sz [<instruction>]

{[<space>] [<comment>] <eold>}

i <space> .PARM <space> <oper>

{ ., <oper>}[<space>][<comment>] <eol>
{regular code line>

e
.o

<{symboled line>

{ <equ line>
| <entry>
<equ line> ::= <{space> = <abs expression> [<space>]
: [<comment>] <eol>
<entry> s:= <space> .ENTRY [<spaced><arg> { , <arg> }]

[<space>].[<comment>] <eol>

<line symbol> ::= <labeld>:

starting in column 1 of source line
{comment> e : {<character>}
<instruction> H <{space> <{executable instruction>

<space> <directive>
{package name>.<label>
<label>

<external name>
<package name>

{arg> 132 NP= <unsigned int)> - number of parms
i REG= <unsigned int> - number of regs
i EAE . == enable arith excepts
20-67

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

i NOAE -- no arith excepts
i USER -= exceptions by user
i SUPV -- Exceptions to supv

{directive> :

.BLKB <space><abs expression>

.BYTE <space><relocatable expression>
.HWORD <space><relocatable expression>
.WORD <space><relocatable expression>
.DWORD <space><relocatable expression>

<SECT attribute> ::= READ | DATA | CODE

<{space> ::z <3space character> {<space character>}
<{space character> ::= blank | tab

<executable instruction> ::=

ABS <{space> <oper> , <oper>
ABSF <{space> <oper> , <oper>
ADD <space> <oper> , <oper> [, <oper>]

ADDC <space> <oper> , <oper> , <oper>
ADDF <space> <oper> , <oper> [, <oper>]
ADDU <{space> <oper> , <oper> ,
{
,

<oper>.
AND <{space> <oper> <oper> , <oper>]
BCC <space> <label>
BCS <{space> <label>

BEQL <space> <label>
BGEQ <{space> <label>
BGIR <{space> <label>
BLEQ <space> <label>
BLSS <{space> <label>
BNEQ <space> <label>

BR <{space> <label>
BREAK

BTC <space> <label>
BTS <{space> <label>

CALL <space> <addr> [, <unsigned int>]
CALLU <space> <addr> [, <ungigned int>]

CASE <space> <oper> ,<{oper>, <unsigned int>
CLR {space> <oper>

CLRBIT <space> <oper> , <addr>

CLRF <{space> <oper>
CMP <{space> <oper>
CMPBK <space> <oper>
CMPF <{space> <{oper> , <oper>

CMPS <space> <oper> , <oper> , <oper>

, <oper>
1]
v
’
CMPU <{space> <oper> , <oper>
’
’
,
*

<addr> , <addr>

CMPWB <space> <oper> , <oper> , <oper>

COB <space> <oper> , <oper>

DBGEQ <space> <oper> , <oper> , <label>
DBGTR <space> <oper> <oper> , <label>

DEC <{space> <oper>
DIV <space> <oper> , <oper> [, <oper>]
DIVF <space> <oper> , <oper> [, <oper>]
DIVFIX <space> <oper> , <oper> , <oper> , <oper>
DIVU {space> <oper> , <oper> , <oper>

20-68

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

e e e She M S . are M M M S e S S e Gme P tem R W SE RS e amee e e M e mmae E T e M - e m—— e e e oma e aem - M mm e e mme e m—m— o ——

ECODE
EDIV
EMUL
EQL
ERET
ERP
EXCEPT
EXCH
FIX
FLOAT
GEQ
GTR
IBLEQ
IBLSS
INC
INC2
INCH
INCS8
INVBIT
JSR
JUMP
LBF
LBFS
LEQ
LOOP
LPSW
LSH
LSS
LTASK
MAP
MOD
MoV
MOVA
MOVBK
MOVF
MOVL
MOVM
MOVTR
MUL
MULF
MULFIX
MULU
NEG
NEGF
NEQ
NOP
NOT

OR
PCHECK
PINIT
POP
PRAISE
PSTART

<{space>
{space>
<space>
<{space>
<{space>
{space>
{space>
<{space>
{space>
<{space>
<{space>
<{space>

- <space>

<{space>
<{space>
<{space>
<{space>
<{space>
<{space>
<{space>
<{space>
<space>
{space>
<{space>
<{space>
{space>
<{space>
<{space>
<{space>
<space>
<{space>
<{space>
<{space>
<{space>
<{space>
{space>
<{space>
<{space>
{space>
<{space>
<{space>
<{space>
<{space>
<{space>
{space>

<{space>
<{space>
<{space>
<{space>
<space>
{space>
<{space>

Ada Language System Specification CR-CP-0059-A00

<oper>
<oper> ,
<oper> ,
{oper>
<oper>
<oper>
<addr>
<oper> ,
<oper> ,
<oper> ,
<oper>
<oper>
<oper> ,
<oper> ,
{oper>
<oper>
<oper>
<{oper>
<oper> ,
<addr>
<{label>
{oper> ,
<oper> ,
<oper>
<oper> ,
{oper>
{oper> ,
<oper>
<addr>
<oper>
<oper>
<oper>
<addr>
<{oper>
<oper>
<oper>
<{oper>
<addr>
{oper>
{oper>
<oper>
{oper>
<oper>
<oper>
{oper>

FAIF1e ¢ © ¢ @ o © o © o @ o =

<oper> [
<oper> ,
<oper>
<addr> ,
<oper>
{oper> ,
<oper>

1 November 1983

oper> , <oper> , <oper>
<oper> , <oper>

<oper>
{oper>
<oper>

<oper>
<oper>

<addr>

<oper>
<oper>

<oper>

<oper>

<{oper>
<{oper>
<oper>
<oper>
<addr>
<oper>
<oper>
{oper>
{oper>
<oper>
<oper>
<{oper>

[
[

<label>
<label>

<addr> , <oper>
<addr> , <oper>

<oper> , <label>
<oper>

<oper> , <oper>
<oper>

<addr>

<addr>

<addr> , <addr>
, <oper>]

. <oper>]
<oper> , <oper>

<oper> , <oper>

, <oper>]
. <oper>]}

, <oper>]

<oper> [, <oper>]

{oper>

<oper>

20-69

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

PUSH <{space> <oper>
RAISE <space> <oper>

RANGE <space> <oper> , <oper> , <oper>

REM <space> <oper> , <oper> , <oper>

REMF <{space> <oper> , <oper> , <oper>

REPENT <space> <oper> , <oper> , <oper>

RESET

RET

RNDI <space> <oper> , <oper>

ROT <space> <oper> , <oper> , <oper> -
RSR i

SBF <space> <oper> , <oper> , <oper> , <addr>

'
]
':
i
]
]
i
]
i
i
i
]
| SCALE <space> <oper> , <oper> , <oper>
| SCANB <space> <addr> , <addr> , <oper> , <oper>
| SCHECK <space> <oper>
| SETBIT <space> <oper> , <addr>
| SETCC <space> <oper>
| SETSEG <space> <addr> , <addr>
i SIZE <space> <oper> , <oper>
\ SPSW <space> <oper>
! SQRTF <space> <oper> , <oper>
{ STASK <space> <addr>
i STOREH <space> <oper>
{ SuB <space> <oper>
{ SUBC <{space> <oper>
i SUBF <{space> <oper> , <oper> [, <oper>]
| SUBU <space> <oper> , <oper> , <oper>
i SVC <space> <oper> [, <unsigned int>]
i TEST <space> <oper>
{ TINIT <space> <addr> , <oper>
! TRAISE <space> <oper> , <oper>
| TSTART <space> <oper>
| TSTBIT <space> <oper> , <addr>
i WAIT
| WINDOW <space> <literal value>
i XOR <{space> <oper> , <oper> , <oper>
<addr> ::= <unscaled index>
{ <scaled index>
! <memory operand>
| <general parm>
| <parameter>
:= <{scaled index>
| <unscaled index>
| <general parm>
' v
E
1
]

<oper> [, <oper>]
<oper> , <oper>

- ©® o

<oper> :

<simple>
<memory operand>
= ? (<memory operand>)
? (<simple>)
= <memory operand> <left bracket> <simple>
<right bracket> <width>
!* <memory operand> <left bracket>
<memory operand>
<right bracket> <width>

<general parm> :

<{scaled index> :

20-70

“Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Adé Language System Specification CR-CP-0059-A00
1 November 1983

<unscaled index> ::= <memory operand> (<simple>) <width>
i <memory operand> (<memory operand>)
<width>
<simple> ::= {general register>

i <literal value>
{ <parameter>
<memory operand> s:= {indirect reg>
i <register index>
{ <absolute>
<numeric value> (<general register>)<width>
::=@8<{general register><width>

%11 %2 1 %3

<register index>::=

<indirect reg> :

<{general register>

4 1 %5 | % %7

%8 1 %9 1 %10 | %11

212 1 %13 | %14 { %15

= @ (<abs expression>) <width>
{simple expression> <width>

#<abs expression>

? <unsigned int>

"Bt H "W D

<label>

<label>+<unsigned int>

<label>=<unsigned int>

{relocatable expression> ::= <numeric value>

<symbol> -

<{symbol>+<unsigned int>

<{symbol>-<unsigned int>

<{symbol>=<symbol>

<numeric value>

<{symbolic constant)>

<symbolic constant>+<numeric value>

{symbolic constant>-<numeric value>

<absolute>

<literal value>
<{parameter>

<width>

<simple expression>

"N

ee o0 eo0 oo
———— 06 68 00 08 m= 88 wm = == 05

HWa === n N =l ceoca

<abs expression>

<symbol> HH <label>
<symbolic constant>
{symbolic constant> :: <label> - assigned by an equ line
<unsigned int> 1= <digit> {<digitd>}
<numeric value> HH [-1<digit>{<digit>}

“X<hex digit> {<hex digit>}
“0<octal digit> {<octal digitd>}

<label>] <letter> {<more label>}
<more label> t3= [_] <alphanumeric>
<left bracket> sz

<right bracket> I

<eol>::= end of line character {end of line character}

<letter> te= ‘AL, 'ZY
; 13'"120
<digit> 3= 10'..'9"
<alphanumeric> 13= {letter>
<digit>
<hex digit> 2= <Ldigitd>
: 'Al..'F!
<octal digit> t:= '0'L.L'T!
20=T1

“Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

20.5.8 Assembly Language Comparison.

The differences between the ALS MCF Assembly Language and the Nebula
Assembly Language are generally a result of the different intended
purposes of the two languages. The Nebula Assembly Language provides
features necessary for efficient, large assembly language program
development and maintenance. The ALS MCF Assembly Language is intended
for use in writing small routines to allow Ada programs direct access to
machine-level operations.

The ALS MCF Assembly Language will allow access to all instructions
and hardware features accessible through the Nebula Assembly Language.
The specific differences between the two assembly languages are described
in Tables 20-29, 20-30, and 20-31. For more details on the Nebula
Assembly Language see The Nebula Assembler (2.2).

20-72

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Table 20-29

FEATURES IN THE NEBULA ASSEMBLY LANGUAGE THAT ARE
NOT INCLUDED IN THE ALS MCF ASSEMBLER

Feature

Type Propagation

ASCII character or
Floating Point Constants

Type Specifications

.GLOBAL

.FLOAT, .DOUBLE

.ASCII, .ASCIZ
.BLKH, .BLKW, BLKDW,
.BLKF, .BLKD

~ALIGN

«RADIX

-EXTERN

Access of the location
counter ’

Explicit Radix Specifiers

Comment

No type propagation is performed by the
ALS MCF Assembler.

ASCII and Floating point constants
are not supported.

Type specifications are not permitted
on operands.

The .GLOBAL directive is not supported.

Floating point directives are not
supported.

Character constant directives are not
supported.

These'storage directives are not
supported.

The .ALIGN directive is not supported.
The .RADIX directive is not supported.
The .EXTERN directive is not supported.

No access to the location counter is
allowed.

No explicit radix specifiers for binary
or decimal are provided in the ALS MCF
Assembler.

20-73

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983

Table 20-30

FEATURES THAT ARE RESTRICTED IN THE ALS MCF
ASSEMBLER AS COMPARED TO THE NEBULA ASSEMBLER -

Feature

Size Propagation

Default Size
Literals

.END

.SECT

Label Length

Expressions

Symbols

Comment

No size propagation and size checking
is done in the ALS MCF Assembler and
therefore no type specifiers may be
used. Only the size specifiers for
BYTE, HALFWORD, WORD, and DOUBLE WORD
("B, “H, "W, D) are recognized.

There will be no default size.
Only constants may appear in literals.

No expression defining the starting
address may be specified.

The only legal operands to this
pseudo-op are CODE, DATA, and READ.

Labels may only consist of 15
characters in the ALS MCF Assembler.
The colon terminating the label is
optional.

Expressions may consist of only a
constant or a label plus or minus a
constant.

Maximum length of a symbol is 15
characters. Symbols may not begin or
end with a special character.

The "=" may only equate a label to an
expression.

20-74

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Table 20-30 (cont.)

FEATURES THAT ARE RESTRICTED IN THE ALS MCF
ASSEMBLER AS COMPARED TO THE NEBULA ASSEMBLER

Feature Comment
CASE The CASE mnemonic has 1 or more HWORD

directives following it. The number
of HWORD expected by the Assembler is
specified as the third operand of the
instruction.

CALL, CALLU, SVC " The CALL, CALLU, and SVC instructions
have as their second operand a number
specifying how many parameters will
appear in the following PARM directives
following the instruction.

20-75

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Table 20-31

FEATURES IN THE ALS MCF ASSEMBLER
THAT ARE NOT FOUND IN THE NEBULA ASSEMBLER

Feature Comment
.SEPARATE Directive This directive is not applicable

in the Nebula Assembler.

.EXTREF Directive This directive is not applicable
- in the Nebula Assembler,

20-76

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

APPENDIX 30

30. ADA LANGUAGE SYSTEM LINKERS

The Ada Language System includes the following linkers:
a. ALS VAX-11/780 Linker, and

b. ALS MCF Linker.

Descriptions of these linkers are provided on the following pages.

30=-1

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-400
1 November 1983

30.1 Using The ALS VAX-11/780 Linker.

This section describes how to use the VAX-11/786 Linker in the Ada
Language System (ALS) to combine compilation units for execution on the
VAX-11/780 target environment.

The purposes of linking areﬁ

a. To combine many separately translated units into a single unit,
matching references to externally-defined names with their proper
definition;

b. To include the text of system runtime routines into the new
linked unit (Calls to system runtime routines are automatically
inserted by the compiler into the translated machine text; the
routines are predefined and need not be provided by the user.);

¢. To designate one subprogram as the "main subprogram", i.e., the
one that receives initial control when the program begins
execution;

d. To allocate storage space to all of the user-supplied code and
data, and to the necessary system runtime routines;

e. To check all units for compliance with the Ada language rules
regarding the order of compilation (for example, to ensure that a
library unit is compiled before any of its subunits);

f. To decide in what order library units are to be elaborated, and
to ensure that a legal order of elaboration exists, following the
rules of the Ada language; and

g. To produce listings that show the units that have been linked
together, and describe how storage has been allocated.

When invoking the linker, the user must designate the Containers that
are to be 1linked together. These Containers may have been generated by
the compiler, the ALS VAX-11/780 Assembler, or may have been created by a
previous invocation of the ALS VAX-11/780 Linker (see Section 30.1.2).
All of the Containers must represent compilation units intended for
execution on the VAX-11/780 target environment, and must reside in the
same program library.

If the user wants to modify an already linked Container, he may do so
by naming the Container to be modified and the new Containers to be used
as replacements in the UNITLIST. The replacement Containers should be
named first because the linker always uses the first definition of any
compilation unit.

30-2

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

The user may also designate the library subprogram that is to be the
"main" subprogram, i.e., the subprogram that initially receives control at
execution time, or may designate that there is no main program because the
output of the link is not intended for execution.

The linker will produce as output a Container. If the Containers
designated by the user contain all the elements that constitute a complete
program, then a complete program is produced. If some elements have been
omitted, the output is an incomplete program (see Section 30.1.2). The
Container produced by the linker can be supplied to the exporter (via the
environment database), so that it can be executed on a VAX-11/780 target
environment, or it can be used as input to a future link.

30-3

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-400
1 November 1983

30.1.1

Invoking the Linker.

To invoke the ALS VAX-11/780 target linker the user must supply a
command of the following form to the ALS Command Language Processor:

LNKVAX main_name prog_lib output_container [UNITLIST=>file name]
[OPT=>option_list]

The following paragraphs describe the 1linker arguments. Those
arguments enclosed in brackets ('[]') are optional.

a.

main_name: Either the name of the main subprogram or the keyword
"NULL". If NULL is used then there is to be no main subprogram.
In this case, the output Container is not eligible for
exportation and execution. (It may be used as input to a future
link as described in Section 30.1.2.)

If a main subprogram is designated then it must be a 1library
function or a 1library procedure. The IN string parameter, if
present, and return string, if needed, must be of type
STANDARD.STRING and must Dbe unconstrained. If the main
subprogram is a function, the return value is reflected in the
RSTRING substitutor. (The return value from the main function
must be a CHARACTER string.) Normally, the Containers that will
be linked are the ones in the program library whose compilation
units are referenced directly or indirectly by the WITH and
SEPARATE clauses of the main subprogram. (See Section 30.1.1.1
for the method of altering this procedure.)

prog_lib: Name of the program library which contains all of the
Containers to be 1linked and in which the new output Container
will be placed.

output_Container: Name for the new linked output Container.
This name must follow the Ada rules for a compilation unit. It
must - be distinet from names of library units and linked
containers already in the program library.

UNITLIST filename: Normally, the main subprogram name provides a
starting point for the 1linker search process that finds the
Containers to be linked. This argument is used to provide
additional starting points, or to enumerate specifically the
units to be linked. The file name designated here must be the
pathname of - a database file containing ASCII text. If the
main_name is null a UNITLIST is required.

The file should contain a list of units in the program library
that are to be linked one unit per line., If the search option is
off, exactly the units listed will be linked; otherwise, these
units .nd all units referenced by the designated units will be
linked.

30-4

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

e. option list: The form of the option list is:
(option_name {,option_name})

The parentheses may be omitted if there is only one option. The
options are discussed in detail in Section 30.1.1.1.

30.1.1.1 QOptions.

This section describes the options that may be specified to the
linker. Each option may be specified as shown, or may be preceded by the
three characters NO_, which indicate the opposite option. (For example,
SYMBOLS and NO_SYMBOLS.) It is an error to specify both an option and its
opposite.

SYMBOLS Provide a Symbol Definition Listing, if a
Container is produced. Default: NO_SYMBOLS

LOCAL_SYMBOLS If a Symbol Definition Listing is produced,
include names local to library package bodies as-
well as externally visible names. Default:
NO LOCAL SYMBOLS, means to include only names
that are externally visible.

UNITS Provide a Units Listing if a container is
produced. Default: UNITS.

SEARCH Linker will automatically follow the WITH and
SEPARATE clauses to find all of the units in the
program library that are referenced from the
designated starting point units. All of the
referenced units will be linked into the output
Container. If NO_SEARCH is specified, only the
starting point Containers and the runtime
routines referenced by the Containers are
included in the 1linked output. The SEARCH
procedure will take the first occurence of a
unit. Default: SEARCH.

30.1.1.2 Units Listing.
The Units Listing is a list of all the compilation wunits that are

represented in the 1linked Container. For each compilation unit, the
following information is provided:

30-5

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Name.
Siie, in bytes, including all code and statically-allocated data.
Compilation date.

The tool (compiler, assembler, linker) that created the Container
containing this unit.

Unit Status: L for Library Unit, S for subunit.

Diagnostic Status: R for recompilation advised, 0 for
out-of-date revision.

If the unit has status R, a recompilation advisory message has been
issued by the compiler, but the unit has not been recompiled (see Section

30.1.4).

If the unit has status 0, it is not the most recent revision of

that unit.

The UNITS option controls the production of Units Listings. An
example of a Units Listing is shown in Figure 30-1.

30-6

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

" IUIWND0QG SIYY JO JBAGD BUY) UO SUOHDLIISIJ Y3 0} 129(gns si

48M308 JAINCWOD JO/PUR BICP |EDIUYDIIT JO IINSOISIP 4O IS,

L-0¢

MYPRUG PROGRAM_L IBRARY=DENO_PROG

UNLE NAYC

MAIN.SPEC
MATN.BODY
MAIN.SUBL
FAST_HASH.SPEC
FAST_HASH.B80DY
PACKI.SPEC
PACKL.BODY
PACKE,SuBL

SLIRAGE UNLIS

LNKVAX

CREALLIY QAILR

SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP

16y
17
19,
| &
18,
16,
19,
10,

1980 315
1960 4300
1980 6112
1980 2336
1980 33145
1980 1L340
1980 93130
1980 12303

ALS VAX 11/78) LINKER V 1.0

CREALXS

ADA
ADA
ADA
ADA
ADA
ADA
ADA
ADA

Figure 30-1.

vi.l
vo.1
vo.1
¥3.1
ASSEMBLER V1.0
vl.l
va.1l
vd.t

Units Listing

SIalui

wrErEEwe e

UNITS LisT

MAY 27, 1981

PAGE 1

€861 JaquaaoN |

00¥=6500-d0=4) uorqeorjyroadg waisAg sSenBue] epy

Ada Language System Specification CR-CP-0059-400
1 November 1983

30.7.1.3 Symbol Definition Listing.

The Symbeol Definition Listing describes the allocation of objects and
compilation units, For the VAX-11/780 target, the listing is divided into
four parts showing the allocation of:

a. Elaboration code for library units,

b. Executable code for bodies,

¢, Static read/write data, and

d. Static read-only data.

An example Symbol Definition Listing is shown in Figure 30-2. The
option, SYMBOL, indicates whether a Symbol Definition Listing should be
produced.

The first two parts of the listing show the allocation of compilation
units, For each 1library unit or subunit, the following information is
provided:

a. The compilation unit name:

b. The location of the instructions representing the body and
elaboration of the unit (hexadecimal origin and length in storage
units);

¢. The location of entrances to externally visible subprograms
(hexadecimal address); and

d. If the LOCAL_SYMBOLS option is specified, the location of the

subprogram entrances for subprograms local to package bodies
(hexadecimal address).

The last two parts of the listing show the allocation of data in
library units., If the LOCAL_SYMBOLS option is provided, data declared in
the package body is included. For each object, the following information
is provided:

a. The object name, and

b. The location of the data (hexadecimal origin and length).

30-8

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

27 IUBWND0Q SIYY JO JIACD Y} UC SUOIIINIISSL 3yl 0} 329igns si
948M})0S JIINCWOD 40/ PuUe LIBP |EDIUYDIY JO IINSOIISIP 40 IS,

6=0¢

MYPRUG PRUGRAN_LIBRARY=DEMD_PRNG LNKVAX

ELAGORALIOY LNSERUCELON:
PACK3.B00DY

200X ANSIRUCLLIONS

MAIN.SPEC

MAIN.BODY
PACKL.SPEC
PACKL.B00Y
PACKI.ACCESS _GLOBAL
ePACKL.LOC

FAST _HASH.SPEC
FAST_HASH,800Y
PACKE.SUBL
MAIN.SUBY

BEAQZMRLIIE DAIA
PACKL.GLUBAL
SPACKL.TENP

BEAQZUNLY DAIA

PACKL.SIZ
PACK I MAX

¢indicates a local sudprogram or data ites.

3[AR1
00000000

00000000
00000000
00000026
00000026
00000030
00000025
00000065
00000066
00000076
0000008€

00000000
00000008

00000000
0000000¢

ALS VAKX L1/780 LINKER V 1.0

LENGIY
00000004

00000000
00000026
00000000
00000040
00000036
0000000A
00000000
00000010
00000010
00000032

00000008
00000004

00000004
00000006

Figure 30-2. Symbol Definition Listing

SYMBOL DIFINITION

€861 JaquaaoN |

00¥Y=6500~dD=¥0 uoljeorjroads weysis asenBue] epy

Ada Language System Specification CR-CP-0059-A00
1 November 1983

30.1.1.4 Link Summary Listing.

A Link Summéry Listing is produced each time the linker is invoked.
The listing includes:

a. Whether an output Container is produced.
b. The total size of instruction (hexadecimal bytes),

c. The total size of statically-allocated data (hexadecimal
bytes), '

d. The number of compilation units linked,

e, The name and hexadecimal address of the entrance to the main
subprogram, and

f. A summary of diagnostic messages.

An. example of a Link Summary Listing is shown in Figure 30-3.

30-10

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

» " IUBWNDOQ SIYY JO JOAGD YD UO SUONDIIISIL Ay 0} 359Igns si
94em3j0s JaINdwoD 4O/ pue BILP |EDIUYDRT JO IINSO[ISIP JO IS,

LL=0E

RYPRUG PROGRAN_L IBRARY=DENO_PROG LNKVAKX

A LINKED CONTARNER NAMED SY_PROG H#AS BEEN PRODUCE)

ENSTRUCT IONS 192 AYTES
DATA 22 BYTES

NUNBER OF CONPELATION UNITSS @
NAIN SUBPROGRAM NAMES NAIN
ENTRY POINT: 00000000

QLAGNOSTLC SUHBABY
1) PACK1.SUBL WAS NOT COMPILED AFTER PACK1.80DY

ALS VAX 11/780 LENKER V 1,0 LINK SUNMARY

\ Figure 30-3. Link Summary Listing

MAY 27,

1981

PAGE L

£86L JaquaAoN |

00Y=-6500-d0=40 uotr3eorJioads wseqsig sdendue] epy

Ada Language System Specification CR-CP-0059-A00
1 November 1983

30.1.2 Preparing Incomplete Programs.

It is possible to use the linker to prepare incomplete programs for
execution and test. An "incomplete program" consists of one or more Ada
compilation units which together do not constitute a complete Ada program
because: :

a. Some library subprogram or library packages bodies are omitted;
and/or

b. Some separate subprogram or package bodies are omitted.

Incomplete programs may be created and then exported for execution on
the target environment. Through the use of this facility, it is possible
for programmers to test portions of large programs before all the units of
the complete program are written, or to test portions of programs, then to
integrate the tested portions for further testing.

An omitted subprogram body or package body may be stubbed, using the
STUBGEN tool (see Appendix 70). STUBGEN creates a text file which is a
legal Ada package body or subprogram body, in conformance with the
declaration or specification. This stub may be compiled, producing a
Container in the program library for the omitted body. The Container may
be linked, exported, and executed in the normal manner.

When a stubbed subprogram is called, it returns legal values for all
OUT and INOUT parameters, and 1in the case of functions, it produces a
legal return value. Optionally, the stub prints the name of the
subprogram which was called.

It is possible that a body might not be available in the program
library, even in stub form. It is expected that an incomplete program
will not attempt to call subprograms whose bodies are not present. A call
of this type will raise the runtime exception,
SYSTEM.UNRESOLVED_REFERENCE, which will abort execution if the incomplete
program does not contain an appropriate exception handler.

If a unit body referenced by another part of the program cannot be
found in the program library the linker will warn the user of each missing
subprogram body or package body (see Section 30.1.5) and will create a
Container representing an incomplete program, This Container may be
exported and executed (see Appendix 40).

A Container may be resubmitted as input to a future link. For
example, when a programmer has tested part of his program and wishes to
add more units, or when many programmers have tested parts of programs and
wish to integrate the pieces for further testing, it is possible to input
to the linker one or more linker-created Containers, possibly along with
Containers crrated ', the compiler or assembler, In this case, the
linker-created Container represents a short-hand notation for all of the
compilation units of which it is composed, indicating that all these units
are to be included in the 1link. (Note that the original Containers

30-12

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR=-CP-0059-400
1 November 1983

representing the compilation units may need to be accessed by the linker.)

The following example illustrates the use of the 1linker to create
incomplete programs:

Assume that subprogram ENTER has two separate subunit procedures
CHECK and MODIFY. The application is a database update; CHECK
verifies the data and MODIFY updates the database. ENTER is the
driver that calls CHECK, then MODIFY. The subprogram ENTER and
CHECK are to be tested., When they are working, MODIFY will be
added and the whole program will be tested.

The user will compile ENTER, then CHECK.

Alternative 1: He will generate a stub for MODIFY, then compile
it. He will link the three Containers together, export, and test
them, When they are working, the real MODIFY is compiled,
producing a new revision of the Container. The three Containers,
including the most recent MODIFY, are 1linked, exported, and
tested. '

Alternative 2: He will link ENTER and CHECK into an incomplete
program named TEST1. During this link, the linker will warn the
user of the omission of MODIFY. TEST1 is exported and tested;
an exception will be raised when MODIFY is called. When TESTI is
working, MODIFY is compiled, and TEST1 and MODIFY are 1linked to
form a complete program.

30.1.3 Allocation of Storage.

The VAX-11/780 Linker allocates storage in four groups, each group
starting on a virtual-memory page boundary. The allocation is designed to
use VAX-11/780 hardware facilities to provide maximum protection against
modification of instructions and read-only data.

The four groups are:

o>
.

Executable code that elaborates library units;

Executable code that represents the bodies of subprograms and
packages;

Read-write static data, such as that declared in 1library units;
and

Read-only static data, including literals.

30-13

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Because of the large virtual address space of the VAX-11/780, there
is no requirement for an overlaying capability, or for allocating
instructions to a particular location in physical or virtual space.

30.1.4 Blank.

30.1.5 Diagnosties.

The diagnostic messages produced by the ALS VAX-11/780 Linker are
summarized in Appendix 80.

30-14

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

30.2 Blank.
30.3 Blank.
30.4 Blank.

Removal of Sections 30.2, 30.3 and 30.4 included Figures 30-4 through
30-21.

30-15

"Use or disclosure of technical data and/or computer software
_ is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-~A00
1 November 1983

30.5 Using The ALS MCF Linker.

This section describes how to use the MCF Linker in the Ada- Language
System (ALS) to combine compilation units for execution on the MCF Target
Environment.

The purposes of linking are:

a. To combine many separately translated units into a single unit,
matching references to externally-defined names with their proper
definition;

b. To include the text of =system runtime routines into the new
linked unit (Calls to system runtime routines are automatically
inserted by the compiler into the translated machine text; the
routines are predefined and need not be provided by the user.);

¢. To designate one subprogram as the "main subprogram", i.e., the
one that receives initial control when the program begins
execution;

d. To allocate storage space to all éf the user-supplied code and
data, and to the necessary system runtime routines;

e. Tc check all units for compliance with the Ada 1language rules
regarding the order of compilation (for example, to ensure that a
library unit is compiled before any of its subunits);

f. To decide in what order library units are to be elaborated, and
to ensure that a legal order of elaboration exists, following the
rules of the Ada language; and '

g. To produce listings that show the units that have been 1linked
together, and describe how storage has been allocated.

When invoking the linker, the user must designate the Containers that
are to be 1linked together. These Containers may have been generated by
the compiler, the ALS MCF Assembler, or may have been created by a
previous invocation of the ALS MCF Linker (see Section 30.5.2). All of
the Containers must represent compilation units intended for execution on
the MCF Target environment, and must reside in the same program library.

If the user wants to modify an already linked Container, he may do so
by naming the Container to be modified and the new Containers to be used
as replacements in the UNITLIST. The replacement Containers should be
named first because the linker always uses the first definition of any
compilation unit.

30-16

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR=-CP-0059-A00
' 1 November 1983

The user may alsc designate the library subprogram that is to be the
"main" subprogram, i.e., the subprogram that initially receives control at
execution time, or may designate that there is no main program because the
output of the link is not intended for execution,

The linker will produce as output a Container. If the Containers
designated by the user contain all the elements that constitute a complete
program, then a complete program is produced. If some elements have been
omitted, the output is an incomplete program (see Section 30.5.2). The
Container produced by the linker can be supplied to the exporter (via the
environment database), so that it can be executed on a MCF Target
environment, or it can be used as input to a future link. '

30-17

"Use or disclosure of technical data and/or computér software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

30.5.1 Invoking the Linker.

To invoke the ALS MCF Linker the user must supply a command of the
following form to the ALS Command Language Processor:

LNKMCF main_name prog_lib output_container [UNITLIST=>file name]
[OPT=>option_list]

The following paragraphs describe the 1linker arguments. Those
arguments enclosed in brackets ('[]') are optional.

a. main_name: Either the name of the main subprogram or
the keyword "NULL". If NULL is wused then
there 1is to be no main subprogram. In this
case, the output Container is not eligible
for exportation and execution, (It may be
used as input to a future link as described
in Section 30.5.2.)

If a main subprogram is designated then it
must be a library procedure., The IN string
parameter, if present, and return string, if
needed, must be of type Standard.String and
must be unconstrained. Normally, the
Containers that will be linked are the ones
in the program 1library whose compilation
units are referenced directly or indirectly
by the WITH and SEPARATE clauses of the main
subprogram. (See Section 30.5.1.1. for the
method of altering this procedure.)

b. prog_lib: Name of the program library which contains
" all of the Containers to be 1linked and in
which the new output Container will be
placed.

¢. output_Container: Name for the new linked output Container,.
This name must follow the Ada rules for a
compilation wunit. It must be distinct from
names of library units and linked containers
already in the program library.

d. UNITLIST filename: Normally, the main subprogram name provides
a starting point for the 1linker search
process that finds the Containers to be
linked. This argument is used to provide
additional starting points, or to enumerate
specifically the units to be linked. The
file name designated here must be the
pathname of a database file con* ‘ining ASCII
text, If the main name is nuil a UNITLIST
is required.

30-18

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

e. option_list:

30.5.1.1 Options.

Ada Language System Specification CR-CP-0059-A00
1 November 1983

The file should contain a list of wunits in
the program library that are to be linked
one unit per line. If the search option is
off, exactly the wunits 1listed will be
linked; otherwise, these units and all
units referenced by the designated units
will be linked.

The form of the option list is:
(option_name {,option_name})
The parentheses may be omitted if there is

only one option. The options are discussed
in detail in Section 30.5.1.1.

This section describes the options that may be specified to the
linker. Each option may be specified as shown, or may be preceded by the
three characters NO_, which indicate the opposite option. (For example,
SYMBOLS and NO_SYMBOLS.) It is an error to specify both an option and its

opposite.

SYMBOLS

LOCAL_SYMBOLS

UNITS

SEARCH

Provide a Symbol Definition Listing, if a
Container is produced. Default: NO_SYMBOLS

If a Symbol Definition Listing is produced,
include names local to library package bodies as
well as externally visible names. Default:
NO_LOCAL_SYMBOLS, means to include only names
that are externally visible.

Provide a Units Listing if a container is
produced., Default: UNITS.

Linker will automatically follow the WITH and
SEPARATE clauses to find all of the units in the
program library that are referenced from the
designated starting point units. All of the
referenced units will be linked into the output
Container. If NO_SEARCH is specified, only the
starting point Containers and the runtime
routines referenced by the Containers are
included in the 1linked output. The SEARCH
procedure will take the first occurence of a
unit. Default: SEARCH.

30-19

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983
30.5.1.2 Units Listing.

The Units Listing is a list of all the compilation units that are
represented in the 1linked Container. For each compilation unit, the
following information is provided:

a. Name,.

b, Size, in bytes, including all code and statically-allocated data.

c. Compilation date.

d. The tool (compiler, assembler, linker) that created the Container
containing this unit. .

e. Unit Status: L for Library Unit, S for subunit.
f. Diagnostic Status: R for recompilation advised, 0 for

out-of-date revision.

If the unit has status R, a recompilation advisory message has been
issued by the compiler, but the unit has not been recompiled (see Section
30.5.4). If the unit has status 0, it is not the most recent revision of
that unit,)

The UNITS option controls the production of Units Listings. An
example of a Units Listing is shown in Figure 30-22.

30-20

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

2 JUIWND0QG SIYD JO JSA0D S} UO SUONDIIISIL RYI O} 1IQNs st
| 34BM}OS J9INCAWOD JO/pUe BIEP |EDIUYDIY JO FINSOIDSIP 4O IS,

te~o€

MYPRUG PROGRAM_L 18RARY=DENN_PRNG
UNLL PA% S1JRAGE UNIIS
MAINGSPEC [}
MAIN.80ODY 38
MAEN.SUBY 50
FAST_HASH.SPEC o
FAST_HASH, BODY 16
PACKY.SPEC 18
PACKL,.B00Y 68
PACKL.SUBI 24

LNKNCF A_S MCF LINKER V 1.0 UNITS LISY
CBEALLDY DALE CBEALNS SIAlUS
SEP 16, 1900 3115 ADA V2.1 t
SEP 17, 1960 4100 ADA V3.1 L
SEP 19, 1960 6312 ADA vG.1 S
SEP 17, 1900 2136 ADA VO, L L
SEP 18; 1900 3145 ADA ASSEMBLER V1.0 L
SEP 16s 1980 L1840 ADA V)1 L
SEP 19, 19080 9130 ADA V0.1 L
SEP 18, 1980 12103 ADA V)L L]

Figure 30-22.

Units Listing

MY 27, 1981

2AGE 1

£861 JaquaAoN |

00Y=~6500=dJ~¥0 UOT3EOTIT08dS wa3shs sBendueT epy

Ada Language System Specification CR-CP-0059-AQ00
1 November 1983

30.5.1.3 Symbol Definition Listing.

The Symbol Definition Listing describes the allocation of objects and
compilation units. For the MCF Target, the listing is divided into four
parts showing the allocation of:

a. Elaboration code for library units,

b. Executable code for bodies,

¢. Static read/write data, and

d. Static read-only data.

An example Symbol Definition Listing is shown in Figure 30-23. The
option, SYMBOL, indicates whether a Symbol Definition Listing should be
produced .,

The first two parté of the listing show the allocation of compilation
units, For each 1library unit or subunit, the following informat ion is
provided:

a. The compilation unit name;

b. The location of the instructions representing the body and
elaboration of the unit (hexadecimal origin and length in storage
units);

¢. The location of entrances to externally visible subprograms
(hexadecimal address); and

d. If the LOCAL_SYMBOLS option is specified, the 1location of the

subprogram entrances for subprograms 1local to package bodies
(hexadecimal address).

The last two parts éf the listing show the allocation of data in
library units. If the LOCAL_SYMBOLS option is provided, data declared in
the package body is included. For each object, the following information
is provided:

a. The object name, and

b. The location of the data (hexadecimal origin and length).

30=-22

"Use or disclosure of technical data and/or computer software
is subject to.the restrictions on the cover of this Document."

NYPROG PROGRAM_L 1BRAKY=DEMU_PROG

ELAdOeALLIN LYSIBUCILQNG
PACKL, 80OV

200 LNIIBUCILONS

MAINLSPEC
NAIN.BODY
PACK1.SPEC
PACK1.900Y
PACKL.ACCESS_GLOBAL
*PACKILOC
FAST_HASH.SPEC
FAST_HASH,80DY
PACKT.SUBL
HATN,SUBL

HEAD/ZMRILIE DALS

PACKE .GLOBAL
SPACKL . TENP
lc.':," BEARLONLY QAIA
N PACKL.SIZ
w PACKL.HAX

¢®lndicates a local subprograe or data jtem.

4+ JUBWNDOQ SIYY JO JOAOD Y} UO SUOIIDILISBJ BY) O} 139(GNs sI
34EM1JOS J3INCWOD JO/PUR BILP [EDIUYDIT JO FINSO[ISIP JO ISN,,

LNKNCF

3[481
00000000

00000000
00000000
00000026
00000026
00000030
00000025
00000066
00000066
00000078
0000008E

00000000
00000008

00000000
00000004

ALS MCF LINKER V¥V 1,0

LEWGIY
0000000A

00000000
00000026
00000000
00000040
00000036
00000004
00000000
00000040
00000018
00000032

00000006
00000004

00000004
00000006

Figure 30-23. Symbol Definition Listing

SYMBOL DEFINIFION

£86L J4oqWAAON |

00¥Y—-6500-do—-40 uotgeotryioads weysis a8endue] epy

Ada Language System Specification CR-CP-0059-A00
1 November 1983

30.5.1.4 Link Summary Listing.

A Link Summary Listing is produced each time the linker 1is invoked.
The listing includes:

a. Whether an output Container is produced.

b. The total size of instruction (hexadecimal bytes),

c. The total size of statically-allocated data (hexadecimal bytes),
d. The number of compilation units linked,

e. The name and hexadecimal address of the entrance to the main
subprogram, and

f. A summary of diagnostic messages.

An example of a Link Summary Listing is shown in Figure 30-24.

30-24

"Use or disclosure of technical data and/or 'computer software
is subject to the restrictions on the cover of this Document.”

2" JUSWND0Q SIYY JO JIAOD BYI UG SUOHDLIISRL 3y} 0} 1d9igns si
94eM}JOS J9INAWOD JO/PUR BIEP |EIIUYDI] JO SJNSOJISIP 40 as(y,

s2-0¢

.

HYPROG PROGRAN_LIURARY=DEND_PRNG LNKMCF

A LINKE) CONTAINER NAMED NY_PROG HAS BEEN PRODUCE)D

INSTRUCT'ONS 192 BYTES
DATA 22 BYTES

NUNBER OF CONPILATION UNITS: 8
MALIN SUBPROGRAM WAME: NAIN
ENTRY POINT: 00000000

QIAGNOSILIC SUBBARY
13 PACKE.SUBL WAS NOV COMPILED AFTER PACK1.800Y

Figure 30-24.

ALS MCF LINKER V 1.0 LINK SUSRARY

Link Summary Listing

MAY 27, 1981

PAGE L

€861 JaquaaoN |

00Y=6500-d0=Y0 uol3es1jroads wajshs a3en3ue] epy

Ada Language System Specification CR-CP-0059-A00
1 November 1983

30.5.2 Preparing Incomplete Programs.

It is possible to use the linker to prepare incomplete programs for
execution and test. An "incomplete program" consists of one or more Ada
compilation units which together do not constitute a complete Ada program
because:

a. Some library subprogram or library packages bodies are omitted;
and/or

b. Some separate subprogram or package bodies are omitted.

Incomplete programs may be created and then exported for execution on
the target.environment. Through the use of this facility, it is possible
for programmers to test portions of large programs before all the units of
the complete program are written, or to test portions of programs, then to
integrate the tested portions for further testing.

An omitted subprogram body or package body may be stubbed, using the
STUBGEN tool (see Appendix 70). STUBGEN creates a text file which is a
legal Ada package body or subprogram body, in conformance with the
declaration or specification. This stub may be compiled, producing a
Container in the program library for the omitted body. The Container may
be linked, exported, and executed in the normal manner. v

When a stubbed subprogram is called, it returns legal values for all
OUT and INOUT parameters, and in the case of functions, it produces a
legal return value. Optionally, the stub prints the name of the
subprogram which was called.

It is possible that a body might not be available in the program
library, even in stub form. It is expected that an incomplete program
will not attempt to call subprograms whose bodies are not present. A call
of this type will raise the runtime exception,
SYSTEM.UNRESOLVED_REFERENCE, which will abort execution if the incomplete
program does not contain an appropriate exception handler.

If a unit body referenced by another part of the program cannot be
found in the program library the linker will warn the user of each missing
subprogram body or package body (see Section 30.5.5) and will create a
Container representing an incomplete program. This Container may be
exported and executed (see Appendix 40).

A Container may be resubmitted as input to a future link. For
example, when a programmer has tested part of his program and wishes to
add more units, or when many programmers have tested parts of programs and
wish to integrate the pieces for further testing, it is possible to input
to the linker one or more linker-created Containers, possibly along with
Containers created by the corniler or assembler, In this case, the
linker-created Container represeats a short-hand notation for all of the
compilation units of which it is composed, indicating that all these units
are to be included in the link. (Note that the original Containers

30-26

"Use or disclosure of technical data and/or computer software
- is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

representing the compilation units may need to be a ccessed by the

linker.)

The

following example illustrates the use of the linker to create

incomplete programs:

Assume that subprogram ENTER has two separate subunit procedures
CHECK and MODIFY. The application is a database update; CHECK .
verifies the data and MODIFY updates the database. ENTER is the
driver that calls CHECK, then MODIFY. The subprogram ENTER and
CHECK are to be tested. When they are working, MODIFY will be
added and the whole program will be tested.

The user will compile ENTER, then CHECK.

Alternative 1: He will generate a stub for MODIFY, then compile
it. He will link the three Containers together, export, and test
them. When they are' working, the real MODIFY is compiled,
producing a new revision of the Container. The three Containers,
including the most recent MODIFY, are 1linked, exported, and
tested.

Alternative 2: He will link ENTER and CHECK into an incomplete
program named TEST1. During this link, the linker will warn the
user of the omission of MODIFY. TEST1 is exported and tested;
an exception will be raised when MODIFY is called. When TEST1 is
working, MODIFY is compiled, and TEST1 and MODIFY are 1linked to
form a complete program.

30.5.3 Allocation g£ Storage.

The

ALS MCF Linker allocates storage in four groups. The allocation

is designed to use MCF hardware facilities to provide maximum protection
against modification of instructions and read-only data.

four groups are:
Executable code that elaborates library units;

Executable code that represents the bodies of subprograms and
packages;

Read-write static data, such as that declared in 1library units;
and .

Read-only static data, including literals.

30-27

"Use or disclosure of technical data’ and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Because of the large virtual address space of the MCF, there is no
requirement for an overlaying capability, or for allocating instructions
to a particular location in physical or virtual space.

30.5.4 Blank.

30.5.5 Diagnosties.

The diagnostic messages produced by the ALS MCF Linker are summarized
in Appendix 80.

30-28

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR=-CP-0059-A00
1 November 1983

APPENDIX 40

40. EXPORTING, LOADING, AND EXECUTING PROGRAMS IN THE ADA LANGUAGE SYSTEM

Descriptions of the procedures for exporting, loading, and executing
programs for the VAX-11/780 VAX/VMS and MCF Target Environments are
provided on the following pages.

The Ada Language System includes the following loaders:

a. ALS MCF Loader.

40-1

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

40.1 Exporting, Loading, Executing Programs On The VAX/VMS.

This section describes how to bring programs into execution on the
VAX/VMS Target Environment. The Ada program is compiled and linked on the
host ALS system, producing a Container containing the executable
representation of the program, Execution of the program from the
Container is performed as described below.

40.1.1 Exporting.

The Container created by the Linker must be exported to an ALS file
before it can be executed. This Container may represent a complete or
incomplete program as described in Section 30.1.

If a Container is to be exported, a main subprogram must have been
designated to the Linker., (See Section 30.1) The Exporter performs the
following actions:

a, Performs relocation of the user program and converts it to
VAX/VMS load module format, and-

b. Writes the load module into the designated ALS or VMS file.

The command to invoke the Exporter for the VAX/VMS Target Environment

is:
EXPVMS (name, prog_lib, output_medium [, OPT => option_list])
where:
name is the name of the Container to be exported;
prog_lib is the name of the program library that contains

the Container to be exported; and

output_medium is the name of the ALS or VMS file where the
load module is to be written.

option_list

DEBUG Directs the Exporter to activate a Débugger Kernel .
in the program image to allow debugging.
Default is: NO_DEBUG.

FREQUENCY Activate the frequency kernel to monitor execution
frequency. When NO_FREQUENCY is specified, or is in
effect by default, no execution frequency is monitored,
regardless of compile options. Default: NO_FREQUENCY.

150-2

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP=0059-A00
1 November 1983

STAT Activate the statistical kernel to monitor execution
timing. When NO_STAT is specified, or is in effect by
default, no execution timing is monitored.

Default: NO_STAT.

The Exporter does not produce any 1listings except for diagnostic
messages, as appropriate. The output consists of the load module in a
designated file and any diagnostic messages, summarized in Appendix 80, as
appropriate, -

40.1.2 Loading and Executing.

After compiling, linking, and exporting an Ada program, the program
can be executed under the ALS. The command to execute the program is:

<{file_name> <arguments>

The <file name> is the file produced by the Exporter. The <arguments>
portion 1is passed to the Ada Program as a character string input
parameter. (See Appendix 90 for details of parameters and return codes
for an Ada program running under the ALS.)

If the Ada program has been exported with the STAT option in effect,
then before the target program begins execution, prompts will be issued on
.STDOUT for <interval> and <statistical_data file>, explained. below.
Values for these parameters are read from .STDIN.

<interval> is the mean rate at which the locus of control (i.e.,
the value of the program counter) is sampled and
recorded. The interval is specified in milliseconds as
a decimal integer without exponent, in accordance with
the Ada syntax for unsigned integer literals. The
interval represents wall-clock time. The elapsed
process CPU time will be some fraction of this interval,
varying with the 1load on the target computer. If not
specified, a default interval of 10 milliseconds will be
used.

<statistical data file> is the name of the file that ‘is to contain
the time data. If the statistical datq_file already
exists, and is not frozen and not unmdaifiable, the new
data will be appended to the old data. Otherwise, it is
created. If the null string is given no data are
collected.

If the Ada program has been exported with the STAT option, and the
null string has been provided in response o the prompt for the
statistical_data_file, data are not collected and a warning diagnostic is
issued on the MSGOUT file.

40-3

“"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

If the Ada program has been compiled and exported with the FREQUENCY
option, the name of the <frequency datafile> will be requested by a prompt
on .STDOUT. The name is then read from .STDIN.

<{frequency data file> is the name of the file that contains the
frequency data. If the frequency_data file already
exists, and is not frozen and not unmodifiable, the
new data are appended to the file. Otherwise, a
new file is created. If the null string is given,
no data are collected.

If the Ada program has been exported with the FREQUENCY option, and
the null string has been provided in response to the prompt for the
frequency data file, frequency data are not collected and a warning
diagnostic is issued on the MSGOUT file.

Statistical and frequency analysis may be done at the same time. It
should be noted that frequency analysis alters the time characteristics of
the Ada program. Moreover, the presence of frequency monitors 1in the
compiled code (even if frequency monitoring is not turned on) may reduce
the amount of optimization that would otherwise be done by the compiler.

40.1.3 Termination of Execution.

Execution of the Ada program can terminate by the normal completion
of the main subprogram, by the occurrence of an unhandled exception, or by
a manual interruption by the operator/user.

Upon normal completion of the main subprogram, control is returned to
the user in the command language from which the program was invoked.

When an exception is raised, the runtime nucleus attempts to
propagate the exception as defined by the language. If there is no active
handler for the exception, execution of the program is terminated and a
message generated in the message output file. The message is of the form:

Exception <e name> raised, exception was
RAISED BY: <e_unit> <e_subprogram> (statement <e_statement>)
CALLED BY: <c_unitd> <c_subprogram> (statement <{c_statement>)

CALLED BY: <e_unit> <c_subprogram> (statement <c_statment>)
End of Traceback.

where:
<e_name> is the exception name (either pre-defined or
user-defined).
<e_unit> is the name of the compilation unit (library unit or

4o-4

"Use or disclosure of technicai data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP=0059-A00
1 November 1983

subunit) in which the exception occurred.

. <e_statement> is the statement number of the compilation unit in
which the exception occurred.

<e_subprogram> is the subprogram, if any, containing the statement
(The first and last lines of the message will not
show a subprogram if the exception occurred during
elaboration).

The list of "c_units", "c_statements", and "c_subprograms" following
the initial 1line of the message constitute a retrace of the subprogram
calls; the first is the caller of the executing procedure, the last is
the main subprogram.

For example, the message

Exception CONSTRAINT ERROR raised, exception was
RAISED BY: XYZ C (statement 350)
CALLED BY: XYZ B (statement 240)
CALLED BY: A A (statement 130)

End of Traceback.

could be generated by Subprogram C attempting to store an out-of-range
value into a variable at Statement Number 350. Subprogram A is the main
program and it called Subprogram B with a call at Statement 130; B then
called C from Statement 240. The three subprograms are in compilation
units A, XYZ, and XYZ, respectively. L

In the presence of optimization, the statement number given in the
traceback may not exactly match the statement number in the program
listing. The construct causing the exception, however, will lie in close
proximity to the statement identified in the traceback.

Units not containing traceback information (i.e., compiled with the
option NO_TRACEBACK see 3.7.1.1.1.3) will contain the output line,

CALLED BY: <UNIT WITHOUT TRACEBACK TABLES> (address <c_address>)

<c_address> is the address of the call statement instead of the normal
line with traceback information.

The termination of a task, as opposed to a program, due to an
unhandled exception does not cause a message to be generated since this is
defined within the language as a normal termination.

When executing under VMS, manual interruption can be effected by
using the Break-in facility described in Appendix 110.

40-5

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

40.2 Blank.

40.3 Blank.

40.4 Blank.

40.5 Blank.

Removal of Sections 40.2, 40.3, 40.4, and 40.5 included Figures 40-1,
40-2, and 40-3.

40-6

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

<7

Ada Language System Specification CR=-CP-0059-400
1 November 1983

40.6 Exporting, Loading, Executing Programs On The MCF.

This section is <TBD>.

40-7

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

h,

Ada Language System Specification CR-CP-0059-A00
1 November 1983

APPENDIX 50
50. THE ENVIRONMENT DATABASE

The environment database provides the wuser with a complete file
system. The services provided are very similar to those of many modern
file systems. In addition to storage, the services include structuring,
access control, sharing, and support for configuration management.

The environment database is a self-contained entity. Users are not
required to have any knowledge of the VAX/VMS file system.

50.1 Nodes

The objects in the database are called nodes. There are three basic
types of nodes: files, directories, and variation headers. Files and
directories are described here. Variation headers are described in
Section 50.5.

Nodes are created by the "mkfile", ™mkdir" and "mkvar" tools, and
deleted by the "delnode" tool. Many other tools are available for
manipulating nodes. Appendix 70 includes a complete description of all
the ALS tools.

All nodes have properties called attributes and associations.
Attributes are named properties with character string values.
Associations are named properties with values that are collections of
"pointers" to other nodes. Most attributes and associations are given to
nodes as "side effects" of the tools that process a node. Users may also
examine and manipulate attributes and associations with the simple tools,
such as "lstattr", "lstass", "chattr", "chass", "addref", and "delref™.

Attributes enable the database to contain character string
information about a node. Associations enable the database to contain
arbitrary networks of relationships among nodes. Each association is a
set of pointers emanating from the node possessing the association, such
that there is one pointer to each node referenced in the association.
Associations are primarily created by tools that need to maintain
“information about relationships between nodes. Associations and
attributes are further described in Section 50.7.

In addition to attributes and associations, file nodes contain a data
portion that may be read and written by Ada programs via the standard Ada
I/0 packages, Input_Output and Text_IO. As is common practice, the data
portion of file nodes does not have a type. Ada programs interpret the
data as a sequence of values of some type when an Ada (xnternal) file is
associated with an ALS (external) file.

50-1

"Use or disclosure of technical data and/or coinputer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

data associations
parentage l attributes
true
parent name name
specification
foster
parent value ;‘°de
specification reference
foster
parent node
specification reference
-] o
-] . Q
° name o
value
name
-]
-] node
reference
°
node
reference
)
o
o
o
Qo
o

Figure 50-1, File Node Structure

50-2

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Figure 50-1 shows the logical structure of a file node. The "true
parent" part of the "parentage" information is described in Section 50.3.
The "foster parent" part of the "parentage" information is described in
Section 50.10.

Directory nodes are used to name and group other nodes. When a node
is created, it is created "within" a directory. In addition to attributes
and associations, each directory contains a specification of the nodes
grouped in it. These nodes are called the "offspring" of the directory.
An empty directory is one with no offspring.

Figure 50-2 shows the logical structure of a directory node. The
"true parent" part of the "parentage" information is described in Section
50.3. The "foster parent"™ part of the "parentage" information 1is
described in Section 50.10.

The database is organized in a directed acyclic graph (DAG).
Variation headers and directories are nodes in this DAG. Files are leaves
in this structure. (Leaves may also be empty directories or empty
variation headers. An empty directory is a directory with no offspring.)
Every node in the database appears in this DAG. The DAG 1is further
described in Section 50.3. /

50.2 File Revisions

The environment database supports the tracking of changes made to a
file through time. This tracking is accomplished by the use of file
revisions.

The revisions are a linearly ordered set of numbered files. When a
file is created it is automatically assigned a revision number of one.
Subsequent revisions automatically receive revision numbers two, three,
etc. There is no fixed limit on the number of revisions of a file. Users
may create a new revision of a file with the "revise™ and other tools.

The most recent revision of a file is special; it is considered to
supersede all prior revisions. Use of a file name automatically selects
the most recent revision. For example, if alpha is a file with five
revisions, the command

1st (alpha)

will list the data portion of the fifth revision of alpha.

50-3

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983
descendants h association

parentage attributes
offsorin true
specii’icatigcan parent name name
specification
; foster
offspring node
. z Pt value reference
specification speeification
foster
Q
et re:eorifwce
° specification
o
Q T o
° -]
* ° name o
vajue
name
Q
° node
) reference
node
reference
-}
°
(<]
-]
o

Figure 50-2. Directory Node Structure

50-4

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Any particular revision may be selected by adding an integer index to
the name of the file. For example, the command

1st (alpha(3))

will list the data portion of the third revision of alpha. If the user
selects a revision that does not exist the "1lst" tool will produce a
diagnostic.

When a new revision of a file is created, ALS automatically freezes
the previous revision. The most recent revision of a file may also be
permanently frozen by the "freeze" tool. Revisions that have become
frozen by the creation of a subsequent revision, or by the freeze tool,
are said to be frozem. Such revisions may be never be unfrozen even if
the subsequent revision is later deleted. Frozen revisions may be
deleted.

In addition to freezing, the data portion of a file revision may not
be changed if the derivation_count attribute (see Section 50.8) is greater
than zero. Such revisions are said - to be unmodifiable. Since the
derivation count may decrease to zero, revisions which are unmodifiable,
but not frozen, may become modifiable again. Unmodifiable revisions may
not be deleted. These rules are summarized in Figure 50-3a.

All of the revisions of a file are collectively called a revision
set. Only the most recent revision of a set may ever be modified. The
data parts of all earlier revisions are permanently frozen and protected
from modification by the ALS. The attributes and associations of frozen
or unmodifiable revisions may, however, be modified. Since frozen
revisions can be deleted but not modified, the user can rely on the
permanence of the contents of any existing revision set, and yet have the
convenience of being able to delete unused revisions.

Unless specifically stated otherwise, ALS tools will overwrite the
latest revision if it 1is not frozen, and automatically create a new
revision if the latest is frozen or ummodifiable.

The most recent frozen revision of a file may be selected by using
the index "+". For example, the name alpha(+) selects the most recent
revision of a file alpha if it 1is frozen; otherwise it selects the
previous revision.

The entire revision set can be referenced by using the index "#n",
For example , the name alpha(*) refers to all revisions of the revision
set alpha. The command
delnode alpha(¥*)

deletes every revision of alpha.

50-5

"Use or disclosure of technical data and/or computer software
is ‘subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

a a
I ~
File Deletion = <
3 3
and Modification 8| o 8|
25| 8§
n b :‘: b
23132
File is: g5 § s
Q
=2 | 332
Frozen D -
Not Frozen M,D| -
M = text portion of file may be modified in-place

file may be deleted

Figure 50-3a. File Rule Summary

50-6

"Use or disclosure of technical data and for computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1. November 1983

50.3 Directory Hierarchy

As mentioned above, directories are organized in a DAG. The nesting
of directories may be arbitrarily deep (subject to the limitations of the-
total length of a path name, described in 50.12). The root of the
structure is an ALS-created directory called the Root. The nodes grouped
in a directory are called its offspring.

The directory in which a node is created is called the node's true
parent. Every node except the Root has exactly one true parent directory.
Parentage is described in Section 50.10.

A directory contains the identifiers that name its offspring. These
identifiers conform. to the rules for Ada identifiers, a sequence of
alphanumeric characters, the first of which must be alphabetic, possibly
containing isolated, embedded, underscore characters. As in Ada, there is
no distinction between upper and lower case characters. Unlike Ada, these
identifiers are limited to a maximum length of 20 characters. The names
of all offspring of a particular directory must be distinet, but offspring
of different directories may have the same name.

Figure 50-3b shows a directory hierarchy for a simple mathematics
package. Directories are drawn as ellipses, files are drawn as squares.
The offspring of a directory are drawn below the directory, connected to
it by lines. The name of each offspring labels the line. File revisions
are drawn in a "stack"™ of squares, the revision number appears within the
square.

50.4 Path Name Basics

The hierarchy of directories provides the naming structure for all
nodes in the database. Nodes are selected by entering their path names,
the sequence of directories that must be followed to find the node. A
simple path name consists of one or more node identifiers separated by
periods, and possibly starting with a period. Some simple path names are
a.b.c, .e.f.g and x. Path names may not contain embedded blanks. (More
complex forms of path names are described in Section 50.5 and Section
50.12).

Finding a node involves using the identifiers of its path name to
trace a path through the directory hierarchy. The final node in the path
is the named node. The final node may be a file, directory, or variation
header.

Absolute path names start with a period; the search for the node
begins at the Root. For example, the name .math pac.source.sin means that
the Root has an offspring named math pac, that iIs a directory with an
offspring named source, that is a directory with an offspring named sin,
that is the named node.

50-7

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

15)°.

factorial

source

documentation

50-8

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Directory Hierarchy Example

Figure 50-3b.

Ada Language System Specification CR~-CP=0059-A00
1 November 1983

Using absolute path names all of the time can be a burden when
dealing with the 1lower levels of the directory hierarchy. To ease this
burden, every user has a directory called his "current working directory"
(CWD). Path names ¢that do not begin with a period are relative to the
CWD, For example, the name, source.taylor, means that the CWD has an
offspring named source, that is a directory with an offspring named
taylor, that is the named node. As a trivial example, the name "tests"
names the node by that name that is an offspring of the CWD.

Figure 50-4 shows path names for the hierarchy of Figure 50-3. Both
absolute and relative path names are shown with the "math_pac" directory
assumed to be the CWD. '

Every user interacting with the ALS is automatically assigned a
default directory as his CWD at the time of 1log-in to the ALS.
(Logging-in to the ALS is fully described in Appendix 110.) The user may
use his default CWD, or use the "chwdir" tool to change his CWD to another
directory at any time during his ALS session. Each time the user logs on
to the ALS he will start with his default CWD even though he may have
previously logged off with another directory as his CWD. (A user's
default directory may be changed by a system administrator.)

50.5 Variation Sets

The environment database supports collections of related objects that
do not supersede one another, but that are "equal" alternatives. One
example is a collection of different bodies implementing the same Ada
package specification. These collections are called variation sets;
their elements are called variations. A variation set is an unordered set
of named nodes, with a header node called the variation set header.

Variation sets are created by the "mkvar" toocl, which creates an
empty variation set. The elements in a set may be files, directories, or
other variation sets. Elements of a single variation set may be a mixture
of different types of nodes; all the elements do not have to be the same
type of node. Elements are named by the user when created.

Variation sets have a variation header node, the third basic kind of
node (the other two are files and directories). A variation header node
is similar to a directory, it is created by the mkvar tool. The elements
of a set, called variations, may be thought of as the offspring of the
header node. The header node is the true parent of each variation created
"in the set. Directories may contain variation sets as offspring and
variation sets may have directories as offspring.

Figure 50-5 shows the logical structure of a variation header node.

The "foster parent"™ part of the "parentage" information is described in
Section 50.10.

50-9

"Use or disclosure of technical data and/or computer ‘software
is subject to the restrictions on the cover of this Document."

2 IUIWNDOQ SIYI JO JBAOD BY] UO SUDIIDLLISEL B O IDVIgns |
24eM30s JAINCWOD JO/PUR BIBD |EDIUYDD) JO 8ANSOIDSIP JO oSy,

0L-0S

math_pac

documentation

source tests .math_pac.tests(15)
or .math _pac.tests
or tests(15) or tests

15§

.math_pac.source
or source 1

.math_pac. tests(1)
or tests(1)

.math_pac.source. factorial

or .math_pac.source. factorial(1)
or source. factorial

or source. factorial(1)

Figure 50-4, Path Name Example

€861 JaqueAoN |

00Y-6500-d0-4) uotT3eoIJIdeds wagsAg afenBue epy

Ada Language System Specification CR-QP-OOSQ-AOO.
1 November 1983

Variations are selected by adding the variation name as an index to
the set name. For example, the path name, source(integer) names the
variation of source whose name is integer (where ™ source is a variation
header which is an offspring of the CWD).

Figure 50-6 shows variation sets using the math package of Figures
50-3 and 50-4, The source files have two variations, one for integer
hardware and one for floating point hardware. The floating point
variation is further subdivided into 1long and short variations. 'The
variation header node is drawn as a hexagon. Some of the nodes are
labeled with their path names.

Variations are added to a set by the normal node creation tools
"mkfile", "mkdir", "mkvar®" and "share". For example, the command

mkfile (source(decimal))

adds a variation named decimal (not shown in Figure 50-6) to the set
source., (The share tool is described in Section 50.10.)

A variation may also be selected by attributes. This can be
performed by giving an arbitrarily long sequence of attribute name and
value pairs as an index (subject to limitations on total path name length,
described in 50.12). For example, the path name,
source(mode=>flt pt,sizez>long)}, names the variation of source for which
the mode attribute has the value "flt pt" and the size attribute has the
value "long". It is an error if no variation has these attribute values,
or if more than one does. Selection by attribute may not be used to
create, to share, or to rename nodes,

Figure 50-7 shows an alternative organization for the example of
Figure 50-6. A single variation set whose element names are just
"placeholders" is used. Attribute selection is used to name the elements.

If an element of a variation set is a file with revisions, the name
of that element is the name of the file and the previously described rules
for revision selection apply. For example, the command

lst (source(integer).sin)

causes the latest revision of the sin file in the integer variation of the
source to be listed. Similarly,

1st (source(integer).sin(3))

causes the third revision of the sin file variation to be listed.

Nested variation sets behave analogously. For example,
"source(flt_pt)(long)" names the long variation of the set flt pt that is
3 variation of the set source. Since variation sets may be nested
arbitrarily deeply, an arbitrarily long sequence of variation indices may
appear. These indices may be a mixture of "name" selection and
Mattribute” selection in any order.

50-11

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983

membershio
L=l sk Ll
arentage attributes
element true
specification parent name
specification
element foster vai
specification parent ue
specification
e foster
parent
° specification
Q
Q
-}
- name
vaius

o 0 0 r———y

associations

name

node
referance

node
reference

Q
]

name

node
referencs

reference

[)

o 0 o

Figure 50-5. Variation Header Node Structure

50-12

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

«"UBWND0QG SIYY JO JIACD BKj} UO SUONDIIISL BYY O} 1RGNS s!
S4eM3j0S JAINCWOD JO/pue EleP |EDJUYDDT JO FINSOIISIP 4O 3N,

documentation

€L-08

.math_pac.source(integer)

taylor

th_pac. source(integer) . taylor|

factorial

math_pac

source

.math_pac. source lests

short

factorial

taylor

.math_pac.source(fit_pt)(long) . taylor(1)

Figure 50-6. Variation Set Example with "Name" Selection

factorial

€061 43QUAAON |

00¥=6G00~d0=¥) uor3jeo1JIoadg wajysig sBendue] epy

»*IUBWND0Q SIYY JO JBACD BYI UO SUOKDIIISIL Y} O 3d9iqns si
248M1J0S J2INCWOD JO/PUL BIEP JEIILYDISY JO SUNSOIISIP 4O BsNy,

f1l=0S

documentation

mode => integer

.math_pac.source(mode=>integer).taylor

math_pac

source

tests

vb
mode => flt_pt
size => long

ve
mode => fit_pt
size => short

factorial

/

.math_pac. source{mode=>flt_pt, size=>short) .taylor

Figure 50-7. Variation Set Example with "Attribute" Selection

£861 J4oquaAON |

00Y=-6500-dD—Y¥) uotaeo1jIoads weqsAs eBenBueq epy

Ada Language System Specification CR-CP-0059-A00
1 November 1983

A variation set may (but is not required ¢to) have one variation
specified as the default; the default variation attribute of the
variation header node gives its name. The default may be selected with an
empty index. For example, source() selects the default variation of the
variation set source. The "chattr" tool may be used to define a default.
For example, the command

chattr (source, default_ variation=> integer)

defines integer as the default variation. (Note that the default must be
explicitly chosen, the name source by itself selects the header node, not
the default variation.)

In a contiguous nest of variation sets, the empty index for default
selection may only appear once as the last (rightmost) variation index. A
default index causes selection of the default variation all the way to the
bottom of the variation set nesting. It is an error if any of these
"lower" sets do not have a default variation., To select a file at the
bottom of the nest, the default index may be followed by a revision index.

In selecting the default variation, the user is allowing his choice
of a variation to be decided by the person who set up the default. 1In
this case, the user should not care which variation is the default.
Furthermore, he should not care if the default is changed. In particular,
the way he names the default should not change if the default changes.

For example, consider the hierarchy shown in Figure 50-6. If the
".math_pac.source" variation header specifies the "integer" variation as
the default, the name

.math_pac.source().taylor
is the same as
.math_pac.source(integer).taylor

Now suppose the default is changed to the "flt pt" variation and that the
"long" variation is its default. Then the name

.math_pac.source().taylor
is the same as
.matn~pac.soufce(flt_pt)(long).taylor.
The user is not required to, and cannot, write

.math_pac.source()().taylor

in this latter case.

50-15

’ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP=-0059-A00
1 November 1983

50.6 Access Control

The ALS identifies each user by a user name consisting of a sequence
of one or more identifiers separated by periods. These identifiers follow
the syntax for Ada identifiers but are limited to a 20 character maximum
length. These user names are used in the control of access to ALS
database nodes,

Every node has a set of standard attributes specifying the access
controls for that node. The values of most of these attributes are lists
of names of users granted that means of access. The via attribute 1is
different in that it is a list of tool access names (described below).
Each user name and tool access name must be followed by a slash (/). (The
attribute value may be the empty string.) The names of these attributes
and their meanings are:

read : for files, the data portion may be read; for
directories and variation set headers, the node's
offspring names are visible.

append : for files, the data portion may be appended to;
for directoriess and variation set headers,
offspring (elements) may be added .

write : for files, the data portion may be rewritten or
appended to; for directories and variation set
headers, offspring (elements) may be added or
removed

attr_change : the values 6f attributes and associations may be
altered

execute : for files, the data portion may be 1loaded and
executed or interpreted by the command language
processor; for directories and variation set
headers, this attribute is meaningless

via : this node may only be accessed by specified tools

(further described below)

The ALS checks the legality of all node accesses. To check if a
request for access is legal, the node must first be found by tracing the
path name. Read access must be granted for every directory and variation
header along the path.

If the node is found, its access control attributes are examined.
(If the request 1is to open the node for reading, the read attribute is
checked, etc.) If the user is named in the appropriate access attribute
the requested access is granted.

The access control attributes may be set by the "chattr" tool. For
example, the commands

50-16

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

chattr (gyro_spec, read=z>"gyro.smith/thruster.jones/")
chattr (gyro_spec, write=>"gyro.smith/")

change the read and write attributes for the node named gyro_spec. Read
access is given to two users; user Smith on the gyro team, and user Jones
on the thruster team. Write access is only given to user Smith on the
gyro team,

It should be noted that access to examine the attributes and
associations of a node is automatically granted to every user who has
access to a pathname to the node. The data part of frozen file revisions
may not be changed regardless of the access control attributes. A user id
may have up to,but not more than, 20 characters. A wuser .name (user id
plus team name) may have up to, but not more than, 200 characters.

The rightmost identifier of the user name is called the user id and
is specified at the time of user log-in to the ALS. The rest of the user
name is called the team id; it may be null.

The team id is initialized automatically at log-in to the ALS. An
initial team id is defined and maintained for each user by the system
administrator. It may be changed during the ALS session by the "chteam"
tool. The ALS maintains a file of legal user names, and "chteam" checks
the validity of all requests to change the team id. The user names allow
for a flexible organization of project members into a hierarchy of teams.

To simplify the specification of groups of users, a single asterisk
(%) mdy be used to match zero or more characters in a user name. Only one
asterisk is allowed in the entire name, i.e., *.controller.®/ is illegal.
As an example the command,

chattr (switch.simul, execute=>"# ,wong/switch.io.®*/switch.qa.black/")

specifies who can execute the program in the file "switch.simul". Execute

permission is given to user Wong no matter what team, he is on, to any

user on the switch.io team, and to user Black on the switch.qa team.

(Note that the "io" team specification c¢ould include members of

"subteams". For example, any user on the switch.io.encoding team has:
execute permission.) Access may be granted to all users by specifying

either "#/m or " #/" for the appropriate access attribute value. The

attribute value "/" denies access to all users. The attribute value "./"

is not allowed.

When a node 1is created its access control attributes are
automatically initialized. The following accesses are allowed:

read : any member of the creating user's team
append ¢ only the creating user
write ¢ only the creating user

) 50-17

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983
attr_change : only the creating user
execute : any member of the creating user's team
via : the null string (no tools are named here)

For example, if the user's name is "thruster.roll.smith", the default
values of the access attributes will be:

read : thruster.roll.¥*/
write : thruster.roll.smith/
append : thruster.roll.smith/

attr_change : thruster.roll.smith/
execute : thruster.roll.¥/
via : (empty)

Tools may need access to nodes that should not be granted to ordinary
users. To provide this capability, the file node containing the tool may
be given an access_name attribute. The value of this attribute has the
form of a user name.

If a request for access is made to a node with a non-null via
attribute, the tool making the request must have an access_name attribute
that matches the via attribute. Thus, for example, a program library may
be protected from indiscriminant access by giving every node in it a via
attribute of "pl tool" and giving all tools that are allowed to manipulate
program libraries an access_name attribute of "pl_tool". (Program
libraries are described in Section 50.13.)

The access_name attribute may only be altered by the "chace" tool.

This tool sets the access_name to the invoking user's name, preventing a
user from granting more power to a tool than he himself possesses.,

50.7 Attribute and Association Details

Attributes and associations have several common characteristics.
Each has ‘a "name" and a "value”., The names conform to the syntax of Ada
identifiers with a restriction to a 20-character maximum length. The
names are not "declared" or "registered" with the ALS; they may be freely
chosen by tool writers and users. There is no fixed limit on the number
of attributes or associations that a node may possess.

An attribute is removed from a node by giving the attribute the empty

string as its value. Inquiry about the value of an attribute not
possessed by a node is not an error; the empty string is returned as the

50-18

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

value.

Similarly, an association is removed from a node when all of the
references in the association are deleted. Inquiry about the value of an
association not possessed by a node is not an error; an indication is
returned that the association contains no references.

The values of attributes and associations may be examined with the
"lstattr" and "lstass" tools. Attributes and associations may be given to
a node, modified, or removed with the "chattr", "chass", "addref", and
"delref™ tools.

The ALS does not require that all association references be to
existing nodes. The references must simply be syntactically legal path
names. Such "hanging" references can arise if the referenced node is
destroyed or renamed. References may also be created in a "hanging"
state. For example, tools may create an association before creating the
referenced nodes.

All references in an association must have the form of path names for
ALS nodes as described in Section 50.12.

The path names used as association references may be absolute path
names or relative path names. Relative path names in associations are
relative to the node possessing the association; they are not relative to
the CWD. The "chass", "addref"™ and "delref" tools allow specification of
both forms. See Appendix 70 for full details.

When examining the value of an association, the pathnames displayed
show the "mode" of each reference. Absolute pathnames are displayed for:
absolute (non-relative) references. Relative references are displayed as
relative pathnames, but note that these names should be interpreted
relative to the node possessing the association; they should not be
interpreted relative to the CWD.

In general, relative path names in associations are more compact than
full path names. Furthermore, they allow a subtree of the directory
hierarchy to possess self-contained associations that are immune to the
renaming of directories outside of the subtree. (Node renaming is
described in Section 50.11.)

The ALS and the standard tools utilize a set of standard attributes
and associations. Some of these attributes and associations contain
information crucial to the integrity of the database, and are protected by
the ALS. Users may change some of these protected attributes and
associations with special tools. For example, the "chacc™ tool is used to
change the access name attribute. Others, such as the creation date
attribute, may not be changed by users. There are no fixed limits to the
sizes of attributes or associations.

These attributes are maintained by the KAPSE to control the database:
node_type, creation date, derivation_ text, derivation count, no_access,
read, write, append, execute, via, attr_change, access_name, revision,

50-19

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CH-CP-0059-AOO
1 November 1983

default_yariatidn, purpose, locator, availability and archive_vclume.

Three assocations maintained by the KAPSE are: derived_from,
logged_inputs, and other_inputs. '

The following attributes and associations are controlled by the KAPSE
and cannot be directly modified by the user: node _type, creation_date,
derivation_count, revision, access_name, avallabllity, archive_volume,
locator, derived |_from, logged inputs and other_inputs.

The node_type attribute indicates whether a node is a file, a
directory or a variation header. The only legal values for it are "file",
"dir" and "var". It is assigned by the ALS when a node 1is created and
cannot be altered.

The creation_date attribute contains the date'and time that the node
was created. It cannot be altered. The attribute names "reference_date"
and "change_date" are reserved for use by automatic backup and archiving
tools.

The ~access control attributes: read, write, append, execute,
attr_change, via, and the access_name attribute, are described in Section
50.6. They may be freely modified but must obey the syntax specified in
50.6.

The revision attribute contains the revision number of a file. It
has the form of an Ada integer literal. It is assigned by the ALS when a
file is created and cannot be altered.

The default_variation attribute contains the identifier naming the
default variation of a variation set. Only variation header nodes should
have this attribute. It may be freely changed by users.

) The purpose attribute tells why the node exists. It should be a.
sentence documenting the purpose of the node. (As opposed to the category
which is a short description of the node's contents.) The purpose
attribute may be freely changed. It is not wused by the ALS or the
standard tools; it is intended to provide a standard place for
self-documentation of a node.

The locator attribute is a unique, invariant identification of an ALS
node. Locators persist for the life of a node. Locators of deleted nodes
may be reused.

The availability and archive_volume attributes are special attrzbutes
used in archiving (See 50.16). The availability attrlbute may have the
following values:

1. On_line is the normal value.
2. . 0ff_line indicates that the entire node (except for the

derivation count, availability, and archive_volume attributes)
has been rolled out and is not available. Only file nodes

50-20

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR=-CP-0059-A00
1 November 1983

which have been revised or explicitly frozen may be given this
attribute value. N

3. Other possible values are reserved for internal use.
The archive volume attribute has as its value the name of the archive
tape which contains a copy of the node. It assumes a value the first time

the availability attribute assumes the off line value.

Other attributes and associations maintained by the KAPSE not
described above are detailed in the next section.

50.7.1 Unique Identifiers Attribute.

A Unique Identifier Attribute (UID) is a name consisting of three fields:

a. Organization Name - Five characters for the Validation Number
assigned at the time of validation by the ALS System Manager of
the ALS Configuration Control Board. These are followed by
five characters identifying the organization to which this copy
of the ALS is delivered.

b. ALS ID - Seven characters ~distinguishing each ALS database
established within the organization.

c. Object Serial Number - Ten characters identifying each object
originated in the database.

Every validated ALS System is assigned a unique Validation Number.
The ALS System Manager of the ALS Configuration Control Board maintains a
list of all assigned Validation Numbers. Each successfully validated ALS
is assigned a new Validation Number.

A unique Organization Name is assigned to each validated ALS by the
person in charge of distributing the validated systems. The first five
characters are the Validation Number supplied by the ALS Configuration
Control Board. The distributing organization supplies the second five
characters. :The distributing organization must maintain a list of all the
assigned Organization Names and guarantee their uniqueness.. .

The ALS IDs are assigned by the 1local ALS Administrators of each
organization. Within each organization there will, again, have to be an
authority whose job it is to assign a unique ALS ID for every database
that is established.

Object Serial Numbers are assigned automatically by the ALS. If just
numeric digits are used, ten digits yields enough numbers to create 100
objects per second, 24 hours per day, 365 days per year for about 30
years., Using upper and 1lowercase alphabetics as well, expands that

50-21

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP=0059-A00
1 November 1983

capability manyfold. Serial numbers are independent of the system c¢lock,
and are, therefore, not affected if the clock is set incorrectly, or by
local time changes. Whenever 50 serial numbers have been used, the last
number is written in two files, the Change File used for incremental
backup and a special file called UID.DAT in VMS. When the ACP is
restarted after a crash or planned reboot, the serial number is read from
UID.DAT. Fifty is added to the number and the assignment of serial
numbers continues. In the event of a catastrophe, the last serial number
could be obtained from the Change File by the ALS Administrator and used
to re-establish UID.DAT. If both files are lost, the ALS would have to be
restored with the incremental or full backup. This may have been done
anyway if the Change File is lost.

Everytime a new file revision, directory, or variation header is
created, it is assigned a new UID by incrementing the Object Serial
Number. New UIDs are not created when restoring objects that previously
existed, by using the RESTORE tool, or when importing objects from other
databases using the RECEIVE tool. The rationale for restoration is
obvious; the rationale for importation is not so obvious.

By preserving UIDs in inter-ALS transfers, we are preserving the
capability of doing configuration management across ALS boundaries. When
moving revisions from one ALS to another, both the original revision on
the sending side and the new-copy on the receiving side are frozen. 3o,
by comparing UIDs, a configuration manager can be confident that the same
revision exists on both sides of the boundary. We believe that this
capability will be essential for use of the ALS in network situations. It
is also necessary to simply verify the correct installation of
configuration-managed software.

50.8 Derivations.

Any ALS file can, potentially, possess a derivation. A derivation is
a combination of attributes and associations that document the
circumstances under which a file was created and subsequently modified.
The purpose of derivations 1is to document the differences among files,
showing why files differ rather than the exact text of the differences
that would be obtained from a file comparison. Although derivations can
be used to recreate files, they are not intended for database backup, but
rather for configuration management.

Files in the ALS database can only be created or modified during the
execution of a tool which calls KAPSE services. The derivation is an
accounting of the conditions under which the tool executed. In
particular, the name of the tool, the parameters passed to the tool, and
files opened and read by the tool are automatically recorded in the
derivation. Since the creating or modifying tool may "know" that some of
this information is not significant and that other information may be more
sig.ificant, the tool can modify the derivation.)

50-22

“Use-or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

The use of derivations causes files to be 1locked into the ALS
database so that they cannot be deleted until all files that evolved from
those files have been deleted. In certain situations, this makes deletion
of unwanted files very difficult or impossible. For this reason, the use
of derivations is recommended only for baseline objects under strict
configuration management.

A derivation consists of the attributes: derivation_text and
derivation count, and the associations: derived from, logged inputs, and
other_inputs. Every file that has a derivation possesses all . of these
attributes and associations which together constitute the derivation.
Except for derivation text, these attributes and derivations are
controlled by the KAPSE and cannot be directly modified by a tool. The
functions of these are:

derivation_text

The value of this attribute is ASCII text conveying the name of
the tool or tools creating or modifying the file, the parameters
passed to those tools, and annotations posted by those tools.
This attribute may be altered by tools.

derivation_count

The value of this attribute is the character representation of
an integer which is the count of the number of other files that
were derived from the file possessing ¢this attribute. More
specifically, it is the total number of files in the ALS
database that have this file in their derived_from association.
If the derivation_count is greater than zero, the file may not
be deleted from the database. If referencing files are deleted,
the derivation count 1is appropriately decremented. All files
may have a derivation_count, even though they might not have
other derivation attributes and associations.

derived_from

This is a special association containing the locators of files
appearing in the logged inputs association. No other
association has references that are not valid pathnames.
Locators are immune to renaming. References in this association
cause the incrementation of the derivation count of the named
file.

logged_inputs

This association lists the full pathnames of files that were
read by the process that created the file possessing this
, association. The named files must have been opened and read
prior to the time the crested or modified file was closed and
the citation must not have ueen explicitly suppressed.. Note
that if a referenced node is subsequently renamed, the
association reference will no longer Dbe correct. The

50-23

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

derived_from association will still, however, be valid.
other_inputs

This association lists the full pathnames of files that were
open and read by the process that created the file possessing
this association, but were not entered in the logged_inputs
association because they were explicitly suppressed by the tool.
References in other_inputs do not cause incrementation of the
derivation_count of the named file.

The derivation mechanism of the KAPSE will not autcmatically create
derivations which are circularly dependent. Files involved in such
derivations are impossible to delete from the database by ordinary means.
Circularly dependent -derivations can arise from the use of files opened
for both input and output. To avoid this, the KAPSE will not
automatically include in the logged inputs association files that have
been opened for both input and output. Such files will be included,
instead, in the other_inputs association. Such references can be
explicitly moved from other_inputs to logged inputs. However, care must
be taken to avoid a circular derivation dependence. Since the notion of
files which are used for input and subsequently modified during tool
execution is counter to good configuration management, this practice is
strongly discouraged in tools that may be used in parts of the database
under configuration management.

50.9 Node Deletion.

Of fspring are deleted from directories and variation headers by the
"delnode™ tool. To delete a node, the user must have write access for the
directory (or variation header) from which the node is being deleted.
When a node 1is deleted from its true parent it is destroyed; all space
allocated to it is recyecled. :

It is an error to attempt to delete a node that has a non-zero
derivation_count. :

Either individual revisions or entire revisons sets may be deleted.
The deletion of an entire revision set will fail if any revision in the
Sset has a non-zero derivation_count; the deletion of an individual
revision will fail if the revision has a non-zero derivation count.

If an individual revision being deleted is the only existing revision
in the revision set, the entire revision set will automatically be

deleted. For example, if alpha(3) were the only remaining revision of
alpha, the deletion of alpha(3) would have the same effect as the deletion

of alpha(¥*).

50-24

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

To delete either an individual revision or an entire revision set,
the user must have write access to the directory containing the revision
set.

The "delnode" tool 1is used to delete both revision sets and
revisions. For example, the command

delnode (alpha(3))
deletes the third revision of alpha. The command
delnode (alpha(¥*))

deletes all revisions of alpha.

The delete tool will also delete directories and variation headers.
If the node has any offspring (elements), the tool will ask for
confirmation. If a positive response is received, the entire subtree will
be deleted.

To delete a subtree, the user need only have write access for the
directory containing the root of the subtree in its offspring list; no
access is required for any of the directories to be deleted.

To delete a subtree, each node is visited in a post-order traversal.
When visited, an attempt is made to delete the node as a single node.
This may fail due to any of the constraints mentioned above, excluding the
need for write access to the parent directory.

50.10 Node Sharing

The environment database supports the sharing of nodes among
directories and variation headers. (Throughout this paragraph the word
"directory" is used for brevity. It should be taken to mean "directory
and variation header".) The "share" tool is used to share a node.

A node may have two kinds of parents. The directory in which the
node is first created is the node's true parent. Every node has exactly
one true parent. Directories which share a node are foster parents of the
node. There is no fixed limit to the number of foster parents that a node
may possess,

Figure 50-8a shows a hierarchy with node sharing. A hierarchy 1like
the one in Figure 650-6 is shown, but with the sin, cos, and taylor
procedures the same for both forms of floating point hardware. The flt pt
(long) directory is the true parent of these three files, and the flt_pt
(short) directory is a foster parent.

50~-25

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A400
1 November 1983

As mentioned in Section 50.3, every node contains information that
identifies its true parent directory. Shared nodes also contain
information specifying all foster parents of the node.

Since directories specify the names of their offspring, the same node
may appear in different directories under different names. This allows
the foster parents of a node to use their own local names for the shared
node, if desired. For example, the foster parent may already have a node
with the same name as the node to be shared, or the user may wish to
denote that he is sharing the node. To illustrate, Project A may wish to
share Project B's flight navigation package and refer to it by the name
"proj_B navpak". The command to do this would be:

share (.project_B.flight_navigation. .project A.proj_B navpak)

Sharing of both revision sets and directories is permitted. However,
‘a directory may not have itself as a descendant. Only entire revisions
sets may be shared, not individual revisions in a set.

The "delnode”" tool is used to delete offspring from a directory.
Deletion of a shared offspring from a foster parent directory does not
destroy the shared node. A node is destroyed, however, when it is deleted
from its true parent directory. It is illegal to delete a node from its
true parent directory if it is shared by other directories.

A shared offspring, which is a directory, variation header, or
revision set, may always be deleted since its deletion does not cause the
node to be physically destroyed. The derivation_count, availability, or
number of offspring of the shared node are not checked. The user need
onlyhave write access to the foster parent from which the node is being
deleted.

Individual revisions, however may be deleted only when the revision
set to which they belong is not shared by other directories. The revision
set must have a single parent. For example, if the revision set .A.B.C
were shared by .X.Y it would be illegal to delete an individual revision
of C. In other words, if the command

share (.A.B.C, .X.Y)

were entered, the revision set C would have two parent directories, the
true parent .A.B and the foster parent .X . In this case, illustrated in
Figure 50-8b(a), the revision set has two names, .A.B.C and the alias
X. Y.

It is legal to delete individual revisions if the revision set is
only indirectly shared by virtue of the parent of the revision set or one
of its ancestors being shared. For example, if the directory .A.B is
shared. by .X.Y , then the revision set .A.B.C is indirectly shared, and
has the alias .X.Y.C . 1In other words , if the command

share(.A.B, .X.Y)

50-26

“Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

were entered, the revision set C would have one parent, .A.B . In this
case, illustrated by Figure 50-8b(b), the revison set has two pames ,A.B.C
and .X.Y.C. Here, individual revisions of C can be deleted since the
revision set has a single parent, which happens to be shared.

Sharing is always resolved to a '"real" node. For example, 1if
alpha.beta.gamma is a file, a user may type

share (alpha.beta.gamma, delta.epsilon)

Then delta.epsilon is not a real node but is a "link" to alpha.beta.gamma.
If another user then types

share (delta.epsilon, zeta)

zeta is a "link" to alpha.beta.gamma also. The effect is the same as
typing

share (alpha.beta.gamma, zeta)

50-27

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

factorial

math_pac
source

documentation

factorial

50-28

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Node Sharing Example

Figure 50-8a,

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Individual revisions may Individual revisions may
not be deleted. be deleted.
(a) (b)

Figure 50-8b. Revision Deletion with Sharing

50-29

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

50.11 Node Renaming

The offspring of directories may be freely renamed by the use of the
"rename" tool. (Tnroughout this paragraph the word "directory" is used
for brevity. It should Be taken to mean "directory and variation
header".) For example, the command

rename (alpha, beta)
renames node alpha in the CWD as beta.

Although a node cannot be destroyed if it is shared, it may be
renamed in its true parent or a foster parent directory. The renaming has
no effect on any directory except the one in which the node is renamed.

Association references pointing to a node will be "voided" if the
node is renamed. As mentioned in Section 50.7, associations can contain
references to non-existent nodes. One way in which such references arise
is from a referenced node being renamed.

The rename command can also be used to move a node from one directory
to another. For example,

rename (alpha.beta.gamma, .delta.epsilon)

moves the node named "gamma" from the directory "alpha.beta" under the CWD
to the directory "delta" under the Root. The node's name within delta is
"epsilon'.

A node may be moved from its true parent directory or a foster parent
directory. The move has no effect on any directories except for the two
involved in the move.

Individual revisions can also be renamed. This, in effect, deletes
the individual revision from one revision set and renames it to the latest
revision in the new revision set. For example, the command

rename (alpha(3), beta)

moves the revision alpha(3) to the latest revision of beta. All
attributes and associations of alpha(3) are moved together with its data
portion to the target revision set, beta. The node that was alpha(3)
becomes the latest revision in the revision set, beta. Standard rules
apply for creating a new revision or overwriting the latest existing
revision of the target revision set. It is illegal to specify a revision
number on the name of the target revison set.

50-30

"Use or disclosure of technical data and/or computer software
is subject to the rastrictions on the cover of this Document."”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

50.12 Path Name Details

Most of the syntax and semanties for path names has been presented in
previous paragraphs of this appendix. This paragraph presents a complete
collected syntax for names and introduces a few specialized forms.

As mentioned previously, if a node name begins with a period the
search starts at the Root; otherwise it starts at the current working
directory. A node name beginning with an exclamation point (!) searches
upwards from the CWD. For example, if the CWD is .alpha.beta.delta, the
name !.gamma is the same as .alpha.beta.gamma, !.!.gamma is the same as
.alpha.gamma, etc.

A name of the form "<KVMS>>string" selects a file from the VAX/VMS
file system. The content of the string is the VAX/VMS file name. This
form of name may only be used in a context where the file is to be opened
for reading or writing. For example, the command

1st ("<<VMS>>DB1:[EXAMPLES]CALENDAR. ;1")
lists the contents of the VAX/VMS file DB1:[EXAMPLES]CALENDAR.;1 on the
user's terminal. Note the upper and lower case are equivalent in VAX/VMS
file names. The above command could also be written

1st ("<<vms>>db1:[examples]calendar.;1")

The syntax for path names is:
object_name ::= path_name

i <KVMS>> character_string
path name ::= . [node_id {. node_id} [revision_index]]

i {! .} node id {. node_id} [revision_index]

Pty
node_id ::= identifier {variation_index} [default_index]

variation_index ::= (identifier)

i (attr_spec{,attr_spec})
default_index ::= ()

revision_iundex ::= (integer) | (+) | ("

50-31

':Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

attr_spec ::= identifier => attr_value

Identifiers, integers, and character strings are as defined by Par.
2.3, 2.4, and 2.6 of the Reference Manual for the Ada Programming Language
(2.1). Upper-and lower-case characters are equivalent in identifiers and
in the word <<KVMS>>., They are also equivalent in the (*) or (+) revision
index. Identifiers are limited to a 20-character maximum length. The
entire path name is limited to a maximum length of 65,535 characters.
(This includes the length of the CWD for relative path names.)

Embedded blanks are not allowed in path names. The grammar does not
show it but adjacent periods are allowed and are treated as a single
period. This is to facilitate the mechanical generation of pieces of path
names.

A default index may be applied to a file or directory (in addition to
a variation header). In these two cases it has no effect and can be
ignored. For example, if alpha is the name of a file, M"alpha()" is the
same as "alpha", and "alpha()(3)" is the same as "alpha(3)". This feature
facilitates mechanical generation of names in cases where variations may
or may not be present and where the default would be wanted if a variation
is present. The name generator may safely act as though variations are
always present.

The meaning of the revision_index has been presented in Section 50.2
of this appendix; the meanings of variation_index, default_index and
attr_spec in Section 50.5.

The "attr_value" is an optionally quoted sequence of characters.. . If
the value is not enclosed in quotes it starts at the first non-blank
character after the arrow (=>) and ends at the next blank, comma, or right
parenthesis that is not inside nested parentheses.

50.13 Program libraries

A program library (PL) is a subtree in which Containers are stored.
A PL holds the Containers comprising a single Ada program. (Program
libraries are discussed briefly in Section 10.4 of the Ada Language
Reference Manual, 2.1). The only objects in a PL are Containers produced
by the compilers, assemblers, importers and 1linkers, and the internal
directory nodes which provide links between the Containers. Ada source
files are not stored in a PL. ’

The PL is used to support the separate compilation facility of Ada
and to enforce Ada's order of compilation rules (see Section 10.3 of the
Ada Language Reference Manual, 2.1). The compiler can do type checking
across compilation units since it has access to all previously compiled
units.in the PL. It enforces the order of compilation rules by verifying
that all required compilatiov) units are in the PL. -

50-32

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

A user may have several PL's, one for each Ada program. All of the
Containers comprising one program must be stored in the same PL. One PL
can be used to store Containers for more than one program, although such
use violates the intent of program libraries.

Each PL has one target environment associated with it. Every
Container within a PL must be targeted for the same target environment.
Users are not allowed to place Containers intended for different targets
into the PL. In the case where multiple targets share a common hardware
architecture, it may be that a compiled Container can be targeted for more
than one target environment. The pragma SYSTEM allows the user to direct
the targets for which a Container can be used. (See Appendix 10 for a
discussion of pragma SYSTEM). When a Container is suitable for more than
one target, it can be inserted into a PL as long as one of the targets for
which it 1is intended 1is the target of the PL. For example, a compiled
Container created with a Pragma SYSTEM (VAX780) source 1line, could be
inserted into a PL intended for either the VAX780_VMS target environment
or the VAX780_SA target environment.

Each supported target enviroment has a System Program Library (SPL).
SPL's hold compiled packages that are automatically acquired (see 50-13.2)
when other program libraries are created. All SPL's contain the following
packages defined in the Ada Reference Manual:

STANDARD SEQUENTIAL_IO
ASCII DIRECT_IO

CALENDAR TEXT_IO

SYSTEM I0_EXCEPTIONS

MACHINE_CODE

UNCHECKED_DEALLOCATION

UNCHECKED_CONVERSION

SLP's for targets which are also hosts contain the following additional
packages of the KAPSE:

AUX_IO PARM_LIST
BASIC_IO PROG_CALL
COM_DEF PROG_CONTROL
FILE_DERIV PROG_DEFS
HOST_ESCAPE PROG_STRINGS
ID_DEFS STANDARD_NAMES
KAPSE_COM STRING_DEFS
KAPSE_DEFS STR_CONVERT
MISC_DEFS STRING_UTIL
MISC_SERVICE TAPE_IO

SPL's also contain packages not directly visible to the Ada programmer.
These packages are used for run-time support and for lower level KAPSE

support. SPL's are stored in the variation set
.als _tools.program library. There 1is one variation for each supported
target. The SPL for the YMsS host i: named

.als_tools.program library(vax780_vms).

50-33

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Typical tools which operate on a PL are the compilers, linkers,
assemblers, importers, exporters, and the interactive program library
manager tool, LIB. LIB allows the user to acquire,delete, examine and
manipulate the Containers in a PL. LIB is discussed in Section 50.13.4.
All of these tools operate with respect to a particular PL. They use a
single PL from which to retrieve Container input and into which to place
Container output.

50.13.1 PL structure

Each PL is a directory offspring of a user's directory. Users create
PL's with the MKLIB subcommand of LIB. Variations of PL's are allowea,
but the user must create the variation header before creating the first
variant PL. '

The internal structure of a PL is a tree structure which captures the
logical heirarchy of the source compilation units. The root of the tree
is a directory node of category "program_library". The ALS sets the via
attribute of this node to restrict access to the PL. Users must use tools
which operate on PLs to access the PL root node and all the nodes beneath
it. The user controls other users' access to the PL with the no_access,
read, write, append, attr_change, and execute access attributes of the
root node. These attributes can be altered with the CHATTR subcommand of
LIB. -

Files in the PL tree are Containers. Subtrees are either library
unit or subunit subtrees. A 1library unit subtree contains the
specification and body Containers for the 1library unit plus a subunit
subtree for each of the body's subunits. A subunit subtree contains the
body Container of the subunit plus a subunit subtree for each of the
subunit's body's subunits. Containers and subtrees in a PL are referred
to by their Adanames, defined below.

The Adaname of a compiled Container is determined by its
corresponding source unit name qualified by the keywords SPEC or BODY.
The Adaname of a Container of a library unit specification is the Ada
source unit name qualified by the keyword SPEC. For example, the Adaname
of the Container for the specification of the library unit TOP is TOP.SPEC
(Any combination of lower and upper case represents the same name.) The
Adaname of the Container for a library unit body or subunit body 1is the
Ada source unit name qualified by the keyword BODY. For example, the
Adaname of the Container for the body of subunit A of the library unit TOP
is TOP.A.BODY.

The Adaname of a linked Container is the outputname parameter given
to the linker when the Container was created. This name cannot duplicate
the name of a library unit already in the PL. Thus if the user specified
"TOP_LNK"™ as the output_name, the Adaname of the resulting 1linked
Container is TOP_LNK.

50-34

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

The Adaname of a library unit or subunit subtree is determined by the
corresponding Ada source unit name qualified by the keyword ALL. For
example, the Adaname of the subtree of the library unit TOP is TOP.ALL.
The Adaname of the subunit subtree of subunit A of the library unit TOP is
TOP.A.ALL. Similarly, the Adaname of an entire program 1library is the
qualifier ALL with no library unit or subunit name; that is, the Adaname
of every program library is ".ALL". ALL 1is the default whenever the
Adaname does not include any of the keywords SPEC, BODY or ALL. Thus the
Adaname TOP.A is the same subunit subtree as TOP.A.ALL and the Adaname TOP
is the same library unit subtree as TOP.ALL.

The Adaname of the compiled Container for the predefined . package
STANDARD is special, since STANDARD is the only package which is not a
library unit. The Adaname for STANDARD is STANDARD. PACKAGE. Since this
Adaname is different from library unit Adanames, users can have a library
unit named STANDARD without causing ambiguity. 1Its Containers would be
called STANDARD.SPEC and STANDARD.BODY. .

The Adaname of a Container can include a revision number. when a
revision number is not included, the latest revision is assumed. Revision
numbers are not allowed on Adanames which specify library unit or subunit
subtrees.

50.13.1.1 Revisions of Containers

When a tool such as the compiler or linker produces a Container, this
new Container either becomes the next revision of the Container, or
overwrites the latest revision of the Container. A new revision of a
Container is created only when the existing latest revision has been used
to derive another Container. When the latest revision has not been used.
to derive any Container, it is replaced by the new Container. The Ada
compilation order rules determine when Containers are used in derivationms.
For instance, a library unit's specification Container is used to derive
the library unit's body Container and Containers of compilation units
which mention that library unit in a WITH clause; and a body's Container
is used to derive the Containers of its separately compiled subunits,
Additionally all Containers used in a link are used to derive the linked
Container and a shared Container is used to derive the Containers which
share it (sharing is discussed in Section 50.13.2.) The following example
demonstrates when revisions are created and replaced.

a. The specification of TOP is compiled for the first time,
(The Container TOP.SPEC(1) is created.)
b. The body of TOP is compiled for the first time.

(The Container TOP.BODY(1) is created.)

50-35

':Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983
¢c. The specification of TOP is recompiled.

(A new revision of the Container top.spec is created. This. is
TOP.SPEC(2). ((TOP.SPEC(1) was used to derive TOP.BODY.))

d. The body of TOP is recompiled.
(The new Container for TOP.BODY replaces the first revision.
This 4is still TOP.BODY(1). ((The original TOP.BODY(1) was not
used in any derivation.))

e. Subunit A of TOP is compiled for the first time.
(The first revision of ﬁhe Container TOP.A.BODY is created.)

f. The body of TOP is recompiled.

(A new revision of the Container TOP.BODY is created. This is
TOP.BODY(2). (TOP.BODY(1) was used to derive TOP.A.BODY).

50.13.2 Sharing Containers

Containers may be shared across PL boundaries thereby sparing users
time-consuming recompilations and relinks and saving storage space. For
this discussion, the term "acquired Container" refers to the Container
originally produced by a compilation or 1link. The term, "acquiring
Container" refers to the Container produced by the sharing operation. The
term "acquiring PL" refers to the PL which contains the acquiring
Container.

Sharing in a PL is different from node-sharing in that sharing only
involves the data portion of a Container. Even an acquiring Container
exists as a separate object. It has its own attributes, associations and
parent. The data portion of an acquiring Container, however, is empty.
Whenever a reference is made to the data portion of the acquiring
Container, the data is automatically retrieved from the acquired
Container.

Containers are shared only upon the request of the user, The user
accomplishes this with the ACQUIRE subcommand of LIB. Container sharing
applies only to individual revisions, not to a revision set. The user
either explicitly or implicitly shares a specific revision of a Container.
(If he does not specify a revision on his ACQUIRE request, the latest
revision is assumed.) Thus if a new revision of an acquired Container is
created, the user must issue another ACQUIRE subcommand to acquire the new
revision. Unless he does so, he will continue to share only the old
revision of the Container. Sharing is always done between acquired and
acquiring Containers. If the user acquires a Container that is itself an
acquiring Cont ..ner, that acquisition is drawn from the PL that has the
acquired Container.. The intermediate acquiring Container is not acquired.

50-36

'ste or disclosure of technical data and/or computer software
is subject to the»restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983 -

A user can create his own revision of the acquiring Container by
recompiling or relinking into his own PL. When he does this, the rules
for creating new revisions of Containers apply. If the acquiring
Container has been used in a derivation, the acquiring Container remains
in the PL and the new revision becomes the next revision. If the
acquiring Container has not been used in a derivation, the new revision of
the Container replaces it and all the sharing 1links are deleted. In
either case, the wuser's revision will be a complete Container, not an
acquiring Container.

Sharing is permitted between Containers in any PL as 1long as the
acquired Container was created for a target compatible with the acquring
.PL. Containers created for the same target as the acquiring PL are always
compatible. Thus any Container in a PL for the VAX780_VMS target can be
acquired by another PL for the VAX780_VMS target. Users can force
Containers to be compatible with additional targets by using the SYSTEM
pragma in the source unit. For example, if the user included the pragma
SYSTEM VAX780 in a source unit, its compiled Container could be acquired
by either a PL for the VAX780_VMS target or a PL for the VAX780_SA target.

The PL keeps track of sharing by the absolute pathnames of the
acquired and acquiring Containers. The user must use caution whenever he
changes the pathname of a PL, since doing so could cause errors when
shared Containers are referenced.

50.13.3 Attributes and Associations

Containers within a PL have attributes and associations. These are
maintained solely by the tools which operate on the PL. Users may examine
the contents of attributes and associations with the LSTASS and LSTATTR
subcommands of LIB, but they are not allowed to delete or change them,
The pathnames referenced in associations or attributes are relative to the
PL root node if they refer to Containers within the same PL and are
absolute if they refer to Containers within other PLs.

Each Container in a PL has all of the standard attributes and
associations possessed by other database nodes. (See Section 50.7 for a
discussion of attributes and associations). Those intended for the
exclusive use of a PL are the depends on, referenced by and
acquiring containers associations and the acquired_data and
compatible_targets attributes.

A Container's depends on association contains the names of all
Containers which were required for its creation. The Containers appearing
in this association are a subset of those appearing in the Container's
derivation history. Containers for a body's specification, a-library unit
named in a WITH clause, and a body for a separately compiled subunit might
all appear in a depends on association. For example, this association in
the Container TOP.BODY lists the names of al) the library units or
subunits which must be acquired before acquiring TOP.BODY.

50-37

“"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

A Container's referenced_by association contains the names of all
compiled Containers which depend on that Container. This relationship is
the inverse of the depends_on association. However, unlike the depends_on
association, the referenced by association names only compiled Containers.
Linked, acquired, and other Containers are not included. For -example,
this association in the Container TOP.SPEC lists the library units and
subunits which must be recompiled once TOP.SPEC is recompiled.

A Container's acquiring containers association lists all the
acquiring Containers in other PLs which share the data portion of the
Container.

A Container's acquired_data attribute names the acquired Container in
another PL whose data it 1is sharing. This attribute appears in all
acquiring Containers.:

A Container's compatible targets attribute names each target for
which the Container might be used. As explained in Section 50.13,
compiled Containers can have multiple targets for which they are
compatible.

Every node within a PL has a category attribute. A Container's
category attribute always has the value "Container®.

A Container's creator attribute describes the class of tools that
created the Container. The creator attribute has values such as
"compiler”, "linker", Massembler",etc.

The PL root node also has all the standard associations and
attributes. Of special interest is the target attribute, which names the
intended target of all the Containers in the PL. A Container can be
shared only if the value of the target attribute of the acquiring PL
appears in the compatible targets attribute of the acquired Container.

50.13.4 LIB

LIB is the interactive program library manager tool which allows the
user to create, delete, examine and manipulate the contents of a PL. Its
subcommands are MKLIB, ACQUIRE, DELETE, CHATTR, LST, LSTASS, LSTATTR,
ARCHIVE and UNARCHIVE. '

The subcommand MKLIB allows the user to create a new PL. When the PL
"is created, it automatically acquires the predefined package STANDARD, and
the runtime support library for the target named by the user.

The subcommand ACQUIRE provides the PL sharing facility. It sets wup
links between. the acquired Container and acquiring Container by wr ting
the acquired data attribute in the acquiring Container and appending to
the acquiring Containers association in the acquired Container. It also

50-38

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

adjusts other associations and attributes so that pathnames refer to the
appropriate revisions in the acquiring PL. The user can acquire either
Containers or subtrees. He must acquire Containers according to
compilation order rules, so that Containers on which the acquired
Container depends already reside in the acquiring PL. When a library unit
or subunit subtree is acquired, the latest revision of every Container in
the subtree is acquired. Acquiring a subtree is simply shorthand for
acquiring each of the individual Containers. A subtree being acquired
must be ‘internally compatible; that is, Containers within it must depend
on only the latest revision of other Containers within the same subtree.
For instance, a library unit's body's Container must depend on the latest
revision of the specification's Container., When this is not the case, it
implies that the subtree is in the process of being recompiled and is
currently not suitable for acquisition.

The DELETE subcommand allows the user to delete Containers from a PL.
The wuser can delete subtrees, entire revision sets of Containers, or
individual Container revisions. When a library unit or subunit subtree is
deleted, all of the Containers within the subtree are deleted. Deletion
of a Container is allowed only when its derivation count is zero. The
derivation count is non-2ero when the Container has been used to derive

another Container. ,

The CHATTR subcommand allows the user to change the no_access, read,
append, write, attr_change, and execute attributes of the PL root node,
enabling users to control access to PLs.

The LST subcommand displays a directory of Adanames within a PL
beginning at a point specified by the user. '

The LSTASS subcommand displays the values of associations of
Containers. Additionally, it can be used to list all of the associations
held by a Container. The user can display the associations of a single
Container or of all the Containers within a subtree,

The LSTATTR subcommand displays the values of attributes of
Containers in a PL. Additionally it can be wused to 1list all the
attributes held by a Container. The user can display the information for
a single Container or for all the Containers within a subtree.

The ARCHIVE subcommand sends a list of Containers to be archived ¢to
the ALS. (See Section 3.7.11 for a discussion of the File Administrator.)
Only specific revisions of Containers can be archived.

The UNARCHIVE subcommand sends a list of Containers to be unarchived
to the ALS. (See Section 3.7.11.) Only specific revisions of Containers
can be unarchived.

50-39

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

50.14 HELP Database

The HELP database holds information on how to use the ALS as well as
installation-specific subjects. Two tools, HELP and QHELP, help the user
to extract information from the database. HELP is an interactive tool
which allows the user to explore the database, providing easy access to
extensive information. QHELP is a non-interactive tool which supplies
quick access to a single piece of information. :

The HELP database is designed so that users may easily extend it to
include installation or project specific information. The system HELP
database is stored as a subtree in the directory, .ALS_TOOLS. The root of
the sSubtree is the directory HELP_DATA. The predefined global
substitutor, CHD (current help directory), identifies the HELP database to
be used by the HELP and QHELP tools. 1Its default value, citing the system
HELP database, is ".ALS_TOOLS.HELP_DATA". If the user wishes to have his
own HELP database, he creates a HELP subtree in his own directory and
changes the value of CHD to his HELP directory node. A user's HELP
database subtree should share all of the offspring of the system HELP_DATA
directory so that a user has access to the system information.

The HELP_DATA database is a simple tree data structure (see Figure
50-9) where each subtree describes one subject. The root of each subtree
has an arbitrary number of directory offspring and either one or two file
offspring. These files are named "information" and "syntax". The
"information" file contains information text and exists for all subtrees
in the HELP database. The "syntax" file contains syntax information and
exists only for those subtrees for which such information is relevant.
Each offspring directory is a subtree describing a subtopic of the
subject. There is no fixed limit on either the nesting depth of subtrees
or on the number of subjects. When the user extends the HELP database, he
normally adds new subject subtrees which are direct offspring of the
HELP_DATA root.

50-40

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

into’

format

2
s (V]
- F 2
i i g
: &
0
% [24
] <<
i i n
§ i i 2
| 3
* L]
> i T
- g i
\ § R
H - @ -]
i 5 5
£ : =
: < =
£ &
&
1
3
. 50-41

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

50.15 Subtree Transmission

. The "transmit" and "receive" tools provide a method for communicating
subtrees of the on-line portion of the environment database of a
particular ALS host to magnetic tape, and then, using that information, to
create identical subtrees within the environment database of the same or
of a different ALS host.

The format of tapes written by the transmit tool and read by the
receive tool complies with a host-independent subtree format definition,
which permits porting of subtrees of ALS databases between ALS hosts.
(Non-text files may not be portable to another host or to another revision
of the ALS on the same host). These tapes may also be used for long-term
storage of snapshots of the progress of a development project.

50.16 Archiving

Economic considerations require that the totality of a large ALS
environment database not be entirely on line but be balanced between the
on-line disks and a magnetic tape library associated with the host. Since
the access time to information stored on tape is much larger than the
access time to information on disk, the information chosen to be stored on
tape is generally that which 1is less frequently used. The process by
which certain parts of the database are saved on tape in such a way that
they can be recalled to disk when they need to be accessed is called
"archiving". The actual process of writing the contents of a node on tape
and reclaiming the disk space used by that node is called "rollout"; its
inverse is called "rollin".

Only file nodes which have been revised or explicitly frozen may be
archived. When a specific file node is rolled out, its data, its
associations, and its attributes (except for availability, archive_volume,
and derivation_count) become inaccessible until that node is rolled back
in, at which time the values of the data, associations and attributes are
the same as before the rollout, with the possible exception of the
archive_volume attribute, which may have been changed as a result of the
rollout, and the derivation count attribute, which may have been
decremented as a result of the deletion of another node.

The choice of times at which rollout and rollin take place is a
matter of installation poliecy; for example, rollout and rollin may be
performed periodically. The ™archive" and "unarchive" commands give users
a mail facility with which they may send lists of file pathnames to system
files which can be used by operational personnel as input to rollin and
rollout operations.

50-42

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

50.17 Backup

There is a set of facilities within the ALS which provide a 1line of
defense against 1loss of a portion of the environment database due to
equipment failure or improper operation. This line of defense consists of
copying portions of the database to tape, at times which depend on
installation policy. It is possible to make a tape backup copy of the
entire database (full backup), of specified subtrees of the database (tree
backup), or only of nodes which have been changed (incremental backup)
since the previous full or incremental backup. The recovery function can
then rebuild the database (or a portion of it) from a full (or tree)
backup plus incremental backups; or node-by-node reconstruction is
possible in the case that damage is limited and recovery action needs to
be directed to a specific set of nodes.

The backup and recovery tools are provided for operational support
and are not available to users in general. It is important, however, that
users be aware that operation of a host installation includes these 1lines
of defense.

50-43

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

APPENDIX 60

60. ADA LANGUAGE SYSTEM COMMAND LANGUAGE.

The Command Language (CL) provides ‘a single, unitorm interface
between the user and the tools in the Ada Language System (ALS). The
command language is interpreted by the Command Language Processor (CLP).
The CLP is used to invoke other toois as well as other instances of
itself.

60.1 Structure of an ALS Session.

The command language used from the time a user enters the ALS to the
time he leaves 1is called an ALS Session. A session is divided into a
series of command streams. A command stream begins:

a. When the user enters the ALS from the VMS using the VMS command,
ALS, and

b. Each time, a command procedure is invoked. (Note: A command’
procedure is an ALS command sequence stored in the environment
database for subsequent invocation. Command sequence is defined
in 60.3.)

A command stream ends:

c. When the user leaves the ALS via the EXITALS Break-In command,

d. When an end-of-file is encountered, or

e. When the RETURN command is interpreted.

The command stream established at the time the user enters the ALS is

called the initial command stream. When the initial stream ends due to
conditions (c¢), (d) or (e) above, the ALS session is terminated.

A command stream is composed of commands., Each command is composed
of tokens. As the CLP reads the command stream, it identifies the token
and command boundaries. If any token or command boundary is ambiguous, a
syntax error will be diagnosed. :

During the process of identifying tokens, the CLP also performs
string substitution. This process is similar to the process commonly
called macro substitution in assembler languages and some high level
programming languages. The rules for defining and using - string
substitution are ou*‘ined below in greater detail.

60-1

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specificétion CR-CP-0059-400
1 November 1983

The CLP also performs expression evaluation. Unlike programming
. languages, the operands in an expression may only be literal strings.
However, since string substitution is performed before expression
evaluation, substitution can be used much the same way that variables are
used in a programming language. Substitution can also be used in ways
that variables would not. A substituted string can, for example, be an
entire command, an expression to be evaluated, an entire argument lisc, or
even the the name of one or more strings to be substituted again. In
using the CL, it is important to bear in mind the order in which the steps
of command processing occur, specifically:

1. Token acquisition i.e., get the next token from the keyboard or
other device, or from a database node, or from the internal stack
of the CLP (loops). String substitution takes place as a
by-product of token acquisition.

2. Parsing.
3. Expression evaluation. (This involves literal strings only.)

4, Execution.

Commonly used sequences of commands can be stored in database files
and subsequently invoked as any other tool would be ‘invoked. The
invocation of command procedures is indistinguishable from the invocation
of tools written in Ada.

Sections 60.6.1, 60.6.2, 60.6.4, and 60.7 describe how information is
passed to and from command procedures and other tools. Each command
procedure must be stored in a separate file. Command procedures may
invoke other command procedures, even themselves, to an arbitrary depth.

When an error occurs, an error message is generated. Some of the
conditions that result in error messages are described throughout this
chapter., The procedure for handling errors is described in Section 60.11.
A 1list of the diagnostic messages produced by the Command Language
Processor is provided in Appendix 80 of this specification.

60-2

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CRk-CP-0059-A00
1 November 1943

60.2 Basic Language Elements.

60.2.1 Character Set.
The character set for the command language is the same as defined in

Par. 2.1 of the Reference Manual for the Ada Programming Language, July
1980, called the "Ada Reference Manual",

60.2.2 Lexical Units and Spacing Conventionms.

The tokens recognized by the CLP are delimiters, reserved words, and
character string 1literals. A delimiter is any of the following special
characters in the basic character set:

E () ®eaa/ M=K >H#, ..
or any of the following compound symbols:
iz [z D>z (= ¥z ¥ #)y #/z Wz #)z) ##
Adjacent tokens are separated by spaces, delimiters, or by the end of

a command. An identifier or character string literal must be separated in
this way from an adjacent identifier or character string literal.

60.2.3 Identifiers.

Identifiers are used for substitutor names (see Section 60.2.9) and
reserved words, Command language identifiers conform to the rules for
identifiers specified in Par. 2.3 of the Ada Reference Manual, with the
additional restriction that the length of an identifier may not exceed 20
characters.

60.2.4 Character String Literals.

Character string literals conform to the rules cited in Par. 2.6 of
the Ada Reference Manual. For convenience, the Ada string bracket
character (") may be omitted except in the following cases:

1. To treat a reserved word as a string, and

2. To include spaces, quotation marks, other delimiters, 'or
unprintable control characters in a character string literal.

60-3

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

The value of a quoted literal is the string contained within - the gquotes.
The term character string is used to denote this construct.

60.2.5 Integer String Literals.

In the CL, some character string literals are converted to integers
during expression evaluation. The values of such character string
literals are. expected to conform to the Ada rules for integer literals
given in Par. 2.4 of the Ada Reference Manual. The term integer string
is used for this construct. Integers must lie in the range plus or minus
2,147,483,647, i.e., 32 bit signed arithmetic.

60.2.6 Boolean String Literals.

Some operators in the CL require Boolean strings. The Boolean
strings are: .

TRUE and FALSE
Boolean strings may be represented in any combination of corresponding

upper and lower case characters. The term Boolean string is used for this
construct.

60.2.7 Comments.

A comment starts with two hyphens and is terminated by the end of "a
command line, It has no effect on a command.

60.2.8 Reserved Words.

The following identifiers are reserved for wuse in the command
language.

ADD AND CLP_OPT ELSE ELSIF END EXIT GLOBAL IF 1IN INLINE LOOP
MOD MSG NOT NOWAIT NULL OR OUT REM RETURN THEN WHEN WHILE XOR

Reserved words are recognized without regard to upper or lower case.

60-4

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

60.2.9 Substitutors.

In the command language, substitutor identifiers, or simply
substitutors, are used to denote string substitution. Suppose that the
substitutor name "short" has been associated with a string value e.yg.
"long_file name" by use of the assign command (see Section 60.5.). When
the substitutor name subsequently appears in a command, prefixed by a "#",
the name is replaced by the value of the string for which it stands prior
to any syntactical interpretation, expression evaluation, or execution.
For example, given the following sequence of commands:

short := long_file name
cpydata (#short, myfile)

The command that is executed is:

CPYDATA (long_file name, myfile)

60.2.9.1 String Substitution Rules.

Substitution occurs as an integral part of token acquisition.
Substitution is performed by the following algorithm:

1. The command is scanned left-to-right, one character at a time.

2. When a sharp sign (#) is encountered, the next character is
examined. If it is another sharp sign, the pair of sharps is
replaced by a single sharp and scanning continues at the
character after the second sharp sign with no substitution
performed.

3. If the character after the first sharp sign is a left parenthesis
or letter string substitution is recognized. Any other character .
is a syntax error, causing the command to fail.

4, when string substitution is recognized, the substitutor
identifier is isolated by scanning to the right until a delimiter
is found. If substitution was introduced with a left
parenthesis, any delimiter other than right parenthesis or sharp
sign results in a syntax error and subsequent command failure.
In substitution of parenthesized identifiers, the parentheses are
absorbed, otherwise only the sharp sign and identifier are
absorbed. If the identifier has been defined (for example, by an
earlier assignment statement), then the appropriate string is
substituted. If the identifier has not been defined, then the
null string is substituted. The substituted string is then
reexamined for possible further string substitution.

60-5

"Use or disclosure of technical data arid /or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

5. The substitutor identifier itself may require string
substitution, in which case the inner substitution is performed
first.

6. The string which is substituted is scanned starting with the
first substituted character. Any substitutions required are
performed. Since recursive string substitution does not
terminate, the CLP detects this condition which subsequently
causes command failure.

7. Recursive substitution is defined as occurring when the expanded
value for a substitutor contains a substitution for itself.

8. The value of a substitutor may not be 1longer than 65,535
characters.

The substitution mechanism is activated for any token containing the
flag character, #. String substitution occurs within quoted literals, but
not within comments. Corresponding upper and lower case letters are
equivalent in substitutor identifiers. Section 60.6.2 contains additional
information about substitutors.

Error Conditions

The following conditions cause a syntax error to be recognized:

Unbalanced parentheses
Recursion

Identifier too long
Ill-formed identifier

Examples

-- Given:
short :=z "long_file_name"

-- Then:
#short -—— results in long_file_ name
this.#short -— results in this.long_file_name
thati#short -- results in thatlong_file_name
#(short)that -- results in long_file namethat
##short -- results in #short

== Given:

XYZ iz "HECYD)"
YY iz om23e

-- Then:

60-6

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ZZH#(XYZ)X -- results in Zz23X
-- note that the value of XYZ is #(YY)

-== Equivalently, given:

XYZ := YY
YY = 23
~= Then:

ZZ#(#(XYZ))X — vresults in ZZ23X

60.2.9.2 Sharing Substitutors.

There are three types of substitutors:
a. Global,
b. Local, and

¢. Local inherited.

Global substitutors are visible to all command streams in which they
have been declared in a GLOBAL command (see 60.11). The value of a global
substitutor set in one command stream is available in other command
streams that are in the same ALS session and that have been initiated
after the value was set. There is no guarantee that the altered value of
a global substitutor will be available in command streams that are
initiated prior to the time the value 1is changed. Global substitutors
should not be used to achieve asynchronous communication between command
procedures. Any command procedure which depends upon the value of a
global substitutor changing during the execution of that procedure is
erroneous in the sense of the Ada Reference Manual.

Local substitutors are visible only in the command stream in which
they are used. They are declared implicitly by their use as parameters,
see 60.6.1, or by appearing on the left-hand-side of an ASSIGN command,
see 60.5. The execution of a GLOBAL command will render invisible any
local substitutor having the same name as a global substitutor. Any
substitutor name that does not appear in an executed GLOBAL command is, by
definition, local.

The value of some local substitutors can be inherited from the
calling command stream. If the value of such a substitutor is changed,
the new value is inherited by any tools (command procedures or programs)
subsequently invoked by the command stream in which the ch'.ge was made.
The inherited local substitutors are described in the next section.

60-7

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

60.2.9.3 Predefined Substitutors.

For user convenience in controlling the operation of the CLP, - there
are a number of predefined substitutors. These are listed here with a
short explanation and reference to additional information.

60.2.9.3.1 Predefined Global Substitutors.

The following is a predefined global substitutor. Its vaiue -1is
obtained automatically by the tools that use it, i.e., HELP and QHELP, see
70.3.

NAME DESCRIPTION : INITIAL VALUE REFERENCE
CHD Current Help Directory .ALS_TOOLS.HELP_DATA. 70.3

60.2.9.3.2 Predefined Local Substitutors For Parameter Passing

The following are predefined local substitutors used for obtaining
parameters passed to tools.

NAME DESCRIPTION REFERENCE
ARGS Number of arguments passed 60.6.2

to the tool
NARGS Number of named arguments 60.6.2

passed to the tool

PARGS Number of positional arguments 60.6.2
passed to the tool

Pi Value of the ith positional 60.6.2
argument, where "i" is an
integer string and
0 <= i <= PARGS

Ni Name of the ith named argument, 60.6.2

where 1 is an integer string
and 1 = i <= NARGS

60-8

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

60.2.9.3.3 Predefined Local Substitutors For Obtaining

Tool Execution Status.

Values of the following local predefined

return from the execution of tools.

NAME
CSTATUS

RSTRING

RSTATUS

DESCRIPTION

Call status from the KAPSE

String generated and
returned by the tool

Status code from the tool

substitutors

1 November 1983

are set upon

REFERENCE

60.6.4

60.6.4

60.6.4, 60.6.7

If no tool command has been issued, CSTATUS has the value 0K, and RSTATUS

is 0.

60.2.9.3.4 Predefined Control Substitutors

The following substitutors aid in controlling the operation of the

CLP.

NAME

DESCRIPTION

CONFIRM

CWwD

ERROR

SEARCH

WARNING

TIME

Switch to control generation
of confirmation messages

Current working directory

Switch to control the CLP
response to command failure

Tool search string

Switch to supress WARNING
messages on MSGOUT

Switeh to control the
display of elapsed and
CPU times for tool commands

60-9

They are local inherited substitutors.

INITIAL value

REFERENCE

On

(From the auth.
access file)

Stop

.ALS_TOOLS. / CWD/

On

orf

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

60.14

T70.3 (chwdir)

60.13

60.6.5

60.13

60.14

Ada Language System Specification CR=-CP-0059-A00
1 November 1983

60.2.10 Expressions.

Expression evaluation in the command language is somewhat different
than Ada expression evaluation. Since all operands are character
literals, the operators determine the interpretation of the operand
values. String operators are not overloaded with integer and Boolean
operators. ’

Conversion is provided on an operator-by-operator basis to map
character strings to and from representations for Booleans and integers.
Canversion is performed on operands at the time the operator is executed.
Unsuccessful conversion causes the command to fail. .

60.2.11 Qperators.

Operators are "executed" in the following way:

a) The operands are checked for compliance with legal values (e.g.,
if the operation 1is +, the operands must be integer string
literals, as defined in Section 60.2.5). Command failure results
from non-compliance. :

b) The operation is performed, producing a string result. Any
problem, such as overflow, is diagnosed, causing command failure.
All intermediate results in expression evaluation must fall
within the 1legal range for integer strings defined in Section
60.2.5.

The operators in the command language are predefined and divide into
the following classes of increasing precedence:

logical operators AND | OR | XOR

relational operators < = 1 > | /= S H
. > 1} e | M=] ¥z

= | B

adding operators + | - i &

unary operators + | - i NOT

multiplying operators LR i MOD | REM

exponentiating operator bl

’,

Ada preceden~: rules are used. Specifically, operators of. higher
precedence are always applied first. For a sequence of operators of the
same precedence level, the operators are applied in left to right textual
order. Parentheses may be used to impose a specific order.

60-10

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

60.2.11.1 Logical Operators.

The logical operators require that the operands be Boolean strings.
The result of a logical operation is also a Boolean string. The short
circuit forms defined in Ada are not defined in the command language.

60.2.11.2 Relational Operators.

There are two subclasses of relational operators defined at the same
precedence level. The subclasses are:

1. String relational operators, and

2. Integer and Boolean relational operators.

Operators with an asterisk "#*" prefix are the string relational
operators. Others are integer operators. The operators are:

integer and Boolean less than
integer and Boolean less or equal to
integer and Boolean greater than or equal to
integer and Boolean not equal
integer and Boolean equal

integer and Boolean greater than
string less than

string less than or equal to

string greater than or equal to
string not equal

string equal

string greater than

Wk kVIE NV AN
v };f{'\/\ it un

Strings are compared lexically according to the ASCII collating
sequence. Integer comparisons conform to normal algebraic rules. No
membership operators are defined. If Boolean strings are compared with
string operators, upper-lower case equivalence will not be recognized. If
the left and right-hand operands of the integer/Boolean operators are not
both integer or both Boolean, an error will be diagnosed. FALSE is less
than TRUE in Boolean relational expressions.

60.2.11.3 Adding Operators.

The + and - adding operators are integer operators, requiring integer
string operands and yielding an integer string result. Ampersand (&) is
the string catenation operator taking character string operands and
yvielding a character string result.

60-11

':Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

60.2.11.4 Unary Operators.

The + and - unary operators are integer operators, requiring an
integer string operand and yielding an integer string result. NOT is a
Boolean operator requiring a Boolean string operand and yielding a Boolean
string result.

60.2.11.5 Multiplying Operators.

The *, /, MOD and REM operators are defined to operate on integer
string operands and yield a similar result.

60.2.11.6 Exponentiation.

Exponentiation is an integer operator yielding an integer result. As
in Ada, a negative exponent is not allowed.

60.2.11.7 Diagnostic Messages.

Diagnostic messages produced by the CLP are summarized in Appendix
80.

60-12

“"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

- Ada Language System Specification CR-CP-0059-A00
' 1 November 1983

60.2.11.8 Expression Formation.

The rules for building command language conditions and expressions
are very simiiar to the Ada language rules, and are summarized below.

condition

> expression >

Note: A condition is just an expression that yields a Boolean result.

60-13

‘qu or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

expression
" AND
i W refation — o
relation
XOR
rejation
relation

P simple_expression T relationai_operator ———simpie_sxpression T_

simple_expression

C‘ adding_operator —>

unary_operator term
' \ J

term

C— muitiplying_operator —3

factor

60-14

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

- Ada Language System Specification CR-CP-0059-A00

1 November 1983

factor
P——— DUiMATY - \ u‘**‘ primary 7-———-
primary
S integer_string _literal a P
L—— Boolean-_string_literal e}
= character_string_literal st
——— path._literal —
% uprusim %J
path_literal
—r————— DAtH_Name {) attribute name ——
60-15

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR=C P-0059-A00

1 November 1983

The construc;s not defined in the syntax charts are:

Construct Paragraph
relational operator 60.2.11.2
unary_operator 60.2.11.4
adding_operator 60.2.11.3
multiplying-operator 60.2.11.5
integer~string_literél 60.2.4
Boolean_string_literal 60.2.5
character_string_literal 60.2.6
path_name 50.11
attribute_name 50.7

The path_literal construct is used to obtain node attributes from the

environment database.

separated by an apostrophe.

Examples

nav < 100

naw < mioQn
2 < 100
2 % 100

"2" *< "100"
1+ 2

"1" + NZ" -

"1" & |I2"
1&2

aiz= "1 + 2"
"True" =z"true"
"True"*="true"

The node name and attribute name are specified,

The CLP will then substitute the value of the
attribute for the path_literal construct. Path_literals may only be used
in expression contexts, i.e., in conditions, the right—hand side of the
assignment command, and the return statement.

yields TRUE

yields TRUE

yields TRUE

yields FALSE, i.e. string compare
yields FALSE

yields 3
yields 3
yields 12
yields 12
ais 1 +2

yields TRUE
yields FALSE

60-16

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

60.2.11.9 Line marks.

A line mark on the VAX/VMS host is defined as a Carriage Return.

60.2.11.10 Line continuation.

Line continuation may be done by using the hyphen ("-"). If a hyphen
is the 1last character on a line before the line mark then the line mark
and the hyphen will be ignored. Lines may be continued at any place a
space may appear in the command language, except that continuation may not
occur within comments or quoted string literals.

Example

-- the following two commands are equivalent.

echo (this, is, an, =
example) ;
echo (this, is, an, example);

60-17

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983 :

60.3 Command sequence.

T

P <:i command

line_mark

A command sequence is a sequence of commands, each terminated by a
line_mark or semicolon (see Ada Reference Manual Par. 14.3.3). The
notion of command sequence has special significance when the CLP is
obtaining its commands from the user's keyboard. Whenever the CLP is
waiting for the user to enter a command sequence, the CLP will first issue
a prompt message to the user's terminal. The purpose of the prompt is to
remind the user that a response is expected from him and to identify the
tool that is expecting the response. The general format of a prompt is:

tool_id nest_level>
where:

tool_id is a short string identifying the tool expecting the
response. The initial command stream will use a
null string for the tool id.

nest_level is an integer indicating the level of nesting within
command language 1loops and conditionals. (Nested
command files do not cause the nest_level to
increase.) The first level of command blocks is the
zeroth level, for which the nest_level is null.

Since tools are free to alter the prompt, adherence to this prompt
protocol 1is optional. It will, however, be used within the standard tool
set,

60-18

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

60.4 Command.

The general command syntax is:

——) >
Ramae— assign_command]
s tool_command ——
e return_command E
D—— if_command e
e loop_command E —
— exit_command ---..J
asm— global_command E —
D null_command —————

The eight types of commands are described below.

60-19

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983)

60.5 Assign Command.

The syntax of the assign command is:

——— jdentifier @ expression !

</

The assign command is used to create a substitutor, or to replace the
current value of a substitutor with a new value specified by the
right-hand-side expression.

The value of a substitutor may be altered by subsequent
re-assignment. The value of the substitutor is the string resulting from
the expression evaluation. If expression evaluation fails, the command
fails and the substitutor value remains unaltered.

Example: B :=H
C := 1
A := #B + #C == Since expression evaluation fails
-— A is unchanged
C:=#C + 2 == 3Same as C :=

60-20

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR~CP-0059-A00
1 November 1983

Inside the body of the command procedure ANALYZE:

#PO -~ yields "ANALYZE"
#P1 -- yields "text"

#N1 . == yields "OPT"

#OPT -- yields "NO_LIST"
#pP2 == yields null string

Substitutors for named parameters are created when the command procedure
is initiated and may not be re-assigned like other substitutors. The
value of the ith named parameter can be obtained with the construct

#(#N1)

Three predefined substitutors aid in referencing parameters:

ARGS giving the total number of arguments in the call of the
command procedure,

PARGS giving the number of positional arguments specified in the
call, and

NARGS giving the number of named arguments. -

ARGS = PARGS + NARGS

To help build argument lists for nested tools, the notation
#(Pi..N3j)

can be used to denote the ith positional argument through Jjth named
argument, where i and j are integer strings >= 0. In this notation, the
ith positional argument through jth named arguments are substituted in the
order they appeared in the call. Named arguments appear with the arrow
notation; the list is not enclosed in parentheses; and commas and spaces
appear as delimiters. If i > #PARGS or j > NARGS, the null string is
substituted for all non-existent parameters an delimiters. If i or j are
not integer strings, a conversion error occurs and the command fails. The
notation #(Pi..Pj) and #(Ni..Nk) can 1likewise be denoted just the
positional or just the named arguments, where i and j are integer strings,
i<k=j, i>= 0, i <= K, j<=#PARGS, 2nd K<=#NARGS. For example, inside the
command procedure ANALYZE, invoked above)

#ARGS Ce— yields 2
#(P1..N1) — yields text,’OPT=>NO_LIST
60-23

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Speclficatlon CR—CP-OOSg-AOO
1 November 1983
60.6.3 Control Part.

The syntax for the control part is:

N v

~

!

object _name —

f. terminator ...
INLINE

object_name B

(Y

u
Vv

ADOD object name wemmmm

=D 0DjeCt_name emmun|
\-{ NOWAIT) A

OPTION

(]
\Y

When a tool is invoked, six predefined internal files are open and
ready for use. These files are referred to as:

1. Master input,

2. Master output,

3. Standard input,

4, Standabd outpﬁt,

5. Message output, and

6. The Null file.
Standard input and output are defined by the Ada TEXT_IO package. The
others are defined by the KAPSE. The null file is an infinite waste
basket. Information written to it disappears. Attempts to read from the

60-2U

’:Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

null file return an end-of-file indication. The standard names for these
files are:

1. .MSTRIN,

2. .MSTROUT,

3. .STDIN,

4, .STDOUT,

5. .MSGOUT, and

6. .NULL_FILE or .NF, respectively.

These names may be used anywhere a file name is expected; however,
attempts to destroy, create, rename, or otherwise alter the character of
these ‘predefined files will result in diagnostics and command failure.

The control-part is used to specify:

1. From what file or device the tool reads its standard input,

2. To what file or device the tool writes its standard output,

3. To what file or device the tool writes messages, and

4., Whether standard output is to be rewritten or appended.

(This type of control is called I/0 redirection or simply,
redirection.)

5. Background execution

6. Options to the CLP

The master input, master output, and null files may never be
reassigned. All predefined files are inherited from the calling command
procedure. This means that the predefined files are initially connected
to whatever files or devices were assigned in the calling command stream,
provided the tool command in the calling stream has no explicit
redirections. In the presence of explicit redirection, the called
procedure's standard files are connected as specified in the redirection.

In the initial command stream the assignments are:

1. Master input - keyboard of the user's terminal.

60-25

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983
2. Master output - crt display or printer of the user's terminal.
3. Standard input - master input.
4, Standard output - master output.

5. Message output - master output.

Standard output may be redirected by using the following form of tool
command :

" command OUT=>result

This command is interpreted by the CLP as an output redirection to the
file named result, in the current working directory. If result does not
exist, the CLP causes it to be created. In order to append output to a
file, the following notation may be used:

command ADD=>result

In this case, standard output from command is appended to the end of the
file named result. The standard input for a command may be obtained from
a file by using:

command IN=>source
In this example, the command reads standard input from the file named
source, Text for standard input can also come directly from the command
stream by using the construct: ‘
command IN=>INLINE
{text for standard input>
END_INLINE

An alternate closing terminator for in-line input can be specified
after INLINE. For example: '

command IN=>INLINE ZAP OUT =>RESULT
<text for standard input>
ZAP

In either case, the closing terminator must appear on a 1line by itself
after the text. Alternate terminators are in effect only for the command
in which they are specified. The inline text begins on the line following
the command. Other control_part specifications may occur within the
command after the INLINE specification. String substitution will be
performed within the inline text. Moreover, the terminator for the inline
input can result from substitution.

60-26

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
' 1 November 1983

60.6 Tool Command.

The syntax of the tool command is:

—fp—command name actual part Iontml parr
actual_phrt T@]

A tool command is used to invoke an Ada program or commaﬁd procedure.
The specification of a tool command is given by its command_name
optionally followed by an actual part and/or a control_part in that order.

The actual_part is used to pass input parameters to the tool. The
control part is used to control input output file assignment and
background execution. If the optional parentheses are used to enclose the
actual part, a space must separate the command name and the left
parenthesis. The parentheses are mandatory if the first parameter in the
actual part starts with a 1left parenthesis, In other words, if the
actual part begins with a left parenthesis, the actual part must be
enclosed in parentheses.

Examples
EDIT (myfile) -- invoke editor to create an Ada program

ADA1602 (myfile, local_library, OPT=>(LIST_INCLUDE, XREF))
OUT=>.LISTINGS
-~ compile an Ada program with options
- Send output listings to file .LISTINGS

PRINT myfile NOWAIT
- print myfile in background on the system printer

60-21

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983
60.6.1 Passing In Parameters.
Actual_part syntax in CL is very similar to the Ada syntax for

procedure calls. In the actual part the user may specify both posxtlonal
and keyword parameters. The syntax of the actual part is:

T fQW C @
actual parm identifier ctual_parm

actual_parm

. ~ string literal T o
N ettt p.th.name ——————]

)
(S
‘—-@-—g- actual_parm —}—@——‘

Actual parameters are delimited by blanks and/or commas. If the
parameter 1list is enclosed in parentheses, the right parenthesis is
sufficient to delimit the last actual parameter. Actual parameters are
character strings, path_names, or parenthesized lists of these. The arrow
(=>) notation of Ada is used to specify named parameters. All positional
parameters must be specified first and may not be intermingled with
keyword parameters.

60.6.2 Referencing Parameters.

In a command procedure, parameters are numbered from the left. The
string corresponding to a parameter is obtained via string substitution.
The ith positional argument from the left is substituted for #Pi, where 1
is a natural number. The name of the jth named argument from the left is
substituted for #Nj, where j is a natural number. If no ith positional
parameter or no Jjth named parameter was given in the call, the empty
string is substituted for #Pi or #Nj, respectively. The value of the
named parameter is obtained by using the parameter name as a substitutor.
#P0 becomes the command name as specified in the tool command, (not the
absolute path name of the tool).

60-22

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP=0059-A00
1 November 1983

Only a single control_ part specification of each type may appear in
one command. Duplicate "IN=>" specifications, for example, will cause a
control part error and subsequent command failure.

To assign a file for message output, the construct:
command MSG=>collector

is used. Here, messages are appended to the file named collector. If
such a node does not exist, it is created. Messages are always appended
to the message file. '

If a command procedure contains several commands which read from the
standard input, and the standard input is assigned to a file, then each
command obtains the standard input file at the beginning, irrespective of
what part of the standard input was read by previous commands. In other
words, the standard input is "rewound" between commands. If the standard
input is connected to a device, then the behavior is device dependent,
e.g. redirection from the keyboard would start with the next 1line
entered, not the first line of the session.

For standard output, a called command procedure inherits the mode of
redirection as well as the file or device. For example if CP is a command
procedure, and the tool command:

CP OUT=>file_out

is issued, then each tool within CP that does not have an explicit
redirection, will overwrite file out. If, on the other hand, the command:

CP ADD=>file out

is issued, then tools in CP will append to file out. Tools in CP which
explicitly overwrite the standard output will. overwrite the entire
file_out, not just the part appended by CP.

The control part of the tool command provides a mechanism for the
user to set options which produce output that enable the user to observe
intermediate processing of commands by the command language processor,
This output helps the user to debug command procedures. If the options
are set for a tool that is not a command procedure then a warning
diagnostic is generated and the options are ignored.

The options are:

READ_VERIFY - shows how each line looks as it is about to be
processed.,
SUB_VERIFY - shows “ow each command looks after substitution

has buen performed.

EXPR_VERIFY - shows how each command looks after expression
evaluation has been performed.

60-27

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

LIST_GLOBALS - shows all global substitutors whenever
the CLP encounters a global command.
LIST_PARAMETERS - shows the initial values of the parameter
substitutors for the command procedure.
The output produced by these options is directed to message output.

The options can be invoked by using the following forms of the tool
command :

command CLP_OPT=>EXPR_VERIFY

command CLP_OPT=>(READ_VERIFY, SUB_VERIFY)

60.6.4 Obtaining Returned Information.

After completion of a tool command, three predefined substitutors are
set to indicate the result of tool execution, CSTATUS, RSTATUS, and
RSTRING.

The value of CSTATUS is the completion status which is set by the
KAPSE. CSTATUS is wused to signal error conditions which are beyond the
purview of the tool itself. The strings returned in CSTATUS are 1limited
to the following predefined set.

Value Meaning
0K Tool invocation was successful, RSTATUS also

indicates success

NO_SUCH_NODE node specified by command_ name
could not be found
NODE_NOT_EXECUTABLE', specified node did not contain a
command procedure or executable program
ACCESS_PROHIBITED user does not have permission
to execute the tool
UNHANDLED EXCEPTION the tool terminated because of an unhandled
' exception
BAD_ARG_LIST bad arguments used to invoke tool.
PARM_LIST MISMATCH <currently undefine>
PROGRAM_ABORTED the tool was aborted
TIME_LIMIT_EXCEEDED the tool was terminated because
60-28

‘ste or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP=-0059-A00
1 November 1883
the allotted time expired

SPACE_LIMIT EXCEEDED the tool was aborted because the mass
memory allotment was exceeded

INSUFFICIENT_MEMORY too little main memory space is available
or allotted to support tool execution

CALL_FAILURE Tool invocation was successful, RSTATUS
indicates failure

NO_RETURN Tool did not return using ALS conventions.

I0_ERROR Tool caused an I/0 error.

DUPLICATE_ PROG Tool has same program identifiers as a

concurrently running tool.

The value of the RSTATUS substitutor is an integer wused to signal
error and other conditions within the purview of the tool. Values >=0
indicate successful c¢ommand execution. Values <0 indicate command
failure. The wvalue of the RSTRING substitutor is a string also returned
by the tool. See 60.7 for RSTATUS and RSTRING. If the tool does not set
the values of these substitutors for the CLP, the default values of zero
(0) for RSTATUS and blanks for RSTRING are used.

The values of CSTATUS, RSTATUS, and RSTRING are changed by the
execution of tool commands. Between tool commands they may be used in
expressions. These substitutors may not appear on the left side of an
assignment command. The CSTATUS, RSTATUS, and RSTRING values are written
to the message file at the completion of every tool command. (See 60.13.)

The CLP waits for tool commands to be completed before accepting the
next command. However, if NOWAIT is specified, the CLP will accept the
next command as soon as the tool has been started. The tool is then
viewed as executing concurrently with the CLP. The CSTATUS value is
available immediately after execution of a tool command with the = NOWAIT
option, along with the default values of RSTATUS (0) and RSTRING (blanks).

60.6.5 Search Rules.

When the CLP recognizes a tool command, it uses a set of search rules
to find the database file containing the tool. These rules are:

1. If the command name begins with a period denoting an absolute
node name, the CLP attempts to determine if the node is
executable. If the node cannot be executed, the command fails,
and a message is sent to the user via MSGOUT.

60-29

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983 '

2.

If the command_name does not begin with a period, the CLP
utilizes the predefined substitutor SEARCH. SEARCH contains a
list of partial pathnames used to build a series of pathnames by,
appending the command name to each partial pathname. These
pathnames are then used in sequence to search for the node
containing the command. For each partial pathname in' SEARCH, a
pathname consisting of the toolname appended to the partial
pathname is constructed, and Steps 3 and U4 are performed.

The CLP then attempts to find the tool by using the constructed
pathnames in order.

If the node is found, the CLP determines if the node is a program
or a command file. If the node cannot be executed, the command
fails and a message is sent to the user.

If the node is not found using the pathnames from SEARCH, the
command fails and a message is sent to the user.

SEARCH is a string formed according to the following rules:

a)
o)

c)

d)

. /
Partial pathnames are followed by a virgule (/).

The ending virgule (/) is mandatory.

A period is not automatically inserted when appending the
command_name .

Two special pathnames are recognized, ROOTPATH and CWD, described
below. These are recognized only if they occur as an entire
partial pathname entry.

CWD causes the current working directory to be searched for the tool.

ROQTPATH causes the path from the parent of the current working
directory to the root of the database to be searched for the tool. This
is accomplished with the following algorithm:

1.

2.

The search is started from the parent node of the current working
directory. '

The names of all offspring nodes are scanned for a match with the
command _name. (The tool name can itself be a relative pathname.)

If there is no offspring match, the search is continued at the
next parent and so on.

after searching the offspring of the database root without a
match, searching continues with the next pathname in SEARCH.

60-~30

"Use or discigsure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

The SEARCH string is a substitutor and may be modified by the wuser,.
When not explicitly modified, SEARCH is .ALS_TOOLS./CWD/

Examples of SEARCH:
.Tools./CWD/.my_directory.my_tools./Rootpath/
Searches the tools directory first,
the current directory next,

my tools directory, and finally
the rootpath

CWD/

-- Searches only the current directory

60-31

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

‘Ada Language System Specification CR-CP-0059-A00
1 November 1983

60.7 RETURN COMMAND.

The syntax of the return command is:

@ rstring_expressi fIO—
(() rstring express:f.f.- rstatus_expression

rstatus_expression

The return command is used to terminate the execution of a command
procedure and to send RSTRING and RSTATUS back to the calling procedure.
The returned value may be referenced in the calling command procedure by
using the predefined RSTRING substitutor, RSTATUS may be similarly
referenced by using the predefined substitutor RSTATUS.

If the rstring_expression starts with a left parenthesis, then the
clause containing the rstring_expression and the rstatus_expression (if
one is present) must also be enclosed in parentheses.

The expressions are evaluated before control returns to the calling
procedure. If both expressions are specified, they must be separated by a
comma. If the rstring expression is not specified, the null string is
returned. If the rstatus_expression is not specified, 0 is returned. The
rstatus_expression must evaluate to an integer string.

‘The value of RSTATUS is used to indicate success or failure of a
tool. It may be set to any value within the allowed integer range. Zero
and positive values indicate successful completion of the command. A
negative RSTATUS indicates failure of the tool when the return to the
caller is completed. The following table summarizes the RSTATUS protocol:

Value Meaning
K= =2 Tool-defined tool failure

-1 Bad rstatus_expression

>= 0 Tc;l-defined succes<ful tool completion

If a return is encountered in the initial command stream, the ALS 1is
terminated and control returns to the host operating system.

60-32

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

60.7.1 Error Conditions.

If an error is encountered in the evaluation of the
rstring_expression, the null string is returned. If the
rstatus expression does not evaluate to a legal integer string, RSTATUS in
the calTing command stream will be set to -1,

Diagnostic messages produced by the CLP are summarized in Appendix
80.

60-33

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

60.8 IF Command.

The syntax of an IF command is:

(ELSIE)
{ ELSIF)

condition THEN : ;ommand-sequence

ELSE ‘ command_sequence 7@40 H IF)—’—

- The if command may be used to conditionally execute a sequence of one
or more commands depending on the value of a Boolean expression. The
expression specifying the condition must yield a Boolean result.

The condition specified after IF and any conditions specified after
ELSIF are evaluated in succession until one evaluates to TRUE. A final
ELSE is treated as ELSIF TRUE THEN. The corresponding sequence of
commands is then executed. If none of the conditions evaluates to TRUE,
then none of the sequences of commands is executed in the absence of an
ELSE clause.

Example:

ADA1170 (sine, my_prog)
IF #RSTATUS >= 0 AND #CSTATUS #*z OK THEN - Link if
LNK1170 (myprog,main, new_mod) -- compile
| —=_ 3ucceeds
END IF;
IF #RSTATUS >= 0 AND #CSTATUS *= OK THEN
ECHO (DONE)
ELSE
ECHO (FAILED)
END IF

60-34

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP=-0059-A00
1 November 1983

60.9 Loop Command.

The syntax of the loop command is:

—T identifier —(:) WHILE condition T—]
LOOP command_sequence ~{ END HLOOP)T ‘identifier T»-

A loop command may be used to specify the repeated execution of a
sequence of commands zero or more times. If a loop identifier is used it
must be given both at the beginning and at the end of the identified loop.
(A loop identifier is used in conjunction with an exit command to escape
from nested loops.)

A loop command without a while clause specifies repeated execution of
the basic 1loop. If an exit or RETURN command is not used to terminate
such a loop, it will not be terminated.

In a loop command with a while clause, the condition is evaluated and
tested before each execution of the basic loop. If the condition is TRUE,
the sequence of commands within the basic 1loop is executed. If the
condition is FALSE, the loop is terminated. Commands in the loop body
undergo string substitution at each iteration.

The command sequence within a loop command is limited to 100 lines.

60-35

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983 :

60.10 Exit Command.

The syntax of the exit command is:

EXIT identifier T-I@— condition 7—»—

The exit command is used to terminate an enclosing loop. If a WHEN
condition is specified, the exit will be taken only if the condition is
true. If no condition is specified, the exit will always take place.

The loop exited is the innermost loop unless the name of an enclosing
loop 1is specified. The named loop 1is exited together with any loops
inside the named loop. A named exit command may only appear within the
named loop.

An exit command may only appear within a loop and is meaningless
otherwise. If an exit command appears outside ' a loop, a warning message
is posted to the message file.

60-36

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

60.11 Global Command.

The syntax of the GLOBAL command is:

(7)
(=)
—+——@ identifier

The GLOBAL command is used to declare one or more substitutors as
global. A substitutor referenced in a global command does not become
visible until the command is processed. Local substitutors by the same
name are hidden. Predefined local substitutors and parameter substitutors
(e.g., Pn) cannot be declared global.

Examples are:
GLOBAL xx,yy a =-- declares xx,yy and a as global substitutors

GLOBAL M - declares M to be a global substitutor

60-37

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

60.12 Null Command.

The syntax of the NULL command is:

NULL

The NULL command has no effect other than to pass to the next command.

60-38

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Speclficatlon CR-CP-0059-A00
1 November 1983

60.13 Error Handling.

ALS commands either succeed or fail. Command failure or success 1is
signalled by CSTATUS and RSTATUS. To succeed, both C and R status must
indicate success; an adverse indication in either indicator will cause
failure. Specifically, to succeed:

a) CSTATUS must be "OK", and

b) RSTATUS must be >= 0.

The predefined substitutor ERROR controls the behavior of command
procedures in which failures occur. If ERROR has the value "continue",
then processing of command procedures will continue even when some
commands fail. If ERROR has any other value, a command failure will cause
termination of the command procedure at that point and the failure of the
command procedure itself will be signalled at the next higher level. This
is accomplished by returning a CSTATUS of "PROCEDURE FAILURE" and a null
RSTRING. The RSTATUS returned will be 0 or the value resulting from the
last return command encountered in the failing command procedure.

The predefined substitutor WARNING can be used to suppress warning
messages issued on MSGOUT. If WARNING has any value other than "on",
warnings will be suppressed. Since the interpretation of WARNING is
performed by the individual tools, the correct behavior of user-supplled
tools cannot be ensured.

Diagnostic messages produced by the CLP are summarized in Appendix
80.

60-39

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

60.14 Command Completion Reporting.

The success or failure of all tool commands is reported on the MSGOUT
file. Each tool command causes a message containing the CSTATUS and
RSTATUS to be posted. If CONFIRM has any value other than "on" reporting
of successful completion will be disabled.

The elapsed and CPU times used by a process are displayed by the CLP,
if the TIME substitutor has the value "On". If this switch is On, the
elapsed and CPU time used by tool commands is displayed on the MSGOUT
file. The CPU time is the processor time used by the tool, including the
CPU time expended by any child processors in behalf of the parent. (CPU
time expended by ACP portions of the KAPSE are not included.) Times are
not reported for tools executed with the NOWAIT option.

60~40

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP=0059-A00
1 November 1983

60.15 Command Language.

60.15.1

Notation.

The syntax of the command language is described using the following
variant of Backus-Naur Form.

a)

b)

c)

d)

e)

Lower case words, some containing embedded underscores, denote
syntactic categories, for example

expression

Upper case words denote reserved words, for example
RSTRING

Square brackets enclose optional items, for example
RSTRING [expression]

Braces enclose a repeated item. The item may appear zero or more
times.

A vertical bar separates alternative items. Some alternative
items are grouped with parentheses. Such parentheses are
meta-parentheses only; they are not part of the command
language.

60.15.2 Grammar.

command_sequence ::= { command (;i{ line_mark) }

command

::= | assign_command
| tool_command
| rstring_command
i if_command
i loop_command
| exit_command
| global_command
'
]

null_command

assign command ::= identifier := expression

tool command ::= command_name [(actual part)] control_part

i command_name [actual_part] [control_part]

actual_part :: [actual_parm part] ([named_parm part]

60-41

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

| actual_parm_part [,] named_parm part
actual_parm part ::z actual_parm {[,] actual_parm}
command_name ::= object_ name
actual parm ::= string
string ::= string_literal | path_name | (étring {{,] stringl)
named_parm part ::= parm_name=>actual_parm {[,] parm_name=>actual_parm}
parm_name ::=z identifier
control_part ::= control_item {[,] control_item}
control_item ::= IN => object name | INLINE [terminator]
OUT => object name
ADD => object_ name
MSG => object name

NOWAIT
CLP_OPT => option_list

terminator ::= String_literal
option_list ::= option

i (option {,optionl)
option ::= identifier

object_name ::=z path_name
i <KVMS>> string_literal

path_name ::= .[node_id {.node_id} [revision_ index]]
i {!.} node_id {.node_id} [revision_index]
PoriLel

node_id ::= identifier {variation_index} [default_index]

variation_index ::= (identifier)
i (attribute_spec {,attribute_specl)

default_index ::= ()

revision_index ::= (integer) | (+) | (¥)

attr_spec ::z attribute_name z> attr_value

attr_value ::= string literal

return_command ::= RETURN [rstring_expression] [, rstatus_expression]

| RETURN ([rstring_expression] [, rstatus_expression])

60-42

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

rstring_expression ::z expression
rstatus_expression iz exﬁression
tool_sequence ::= {(tool_command | NULL) (;i line_mark)}
if command ::= IF condition THEN
command_sequence
{ELSIF condition THEN
command_sequence}
[ELSE
command_sequence]
END IF
loop_command ::= [loop _id:] [iterate_clause] basic_loop [loop_id]
loop id ::= identifier
iterate_clause ::= WHILE condition
basic_loop ::z LOOP command_sequence END LOOP
. /
exit_command ::= EXIT [loop_id] (WHEN condition]
global command ::= GLOBAL identifier {[,] identifier}
null_command ::= ([NULL]
condition ::i= expression
relation {AND relation}

{ relation {OR relation}
{ relation {XOR relation}

expression ::

relation ::= simplé_expression [relational_operator simple_expression]
simple_expression ::= [unary_operator] term {adding_operator term}
term ::= factor {multiplying_operator factor}

factor ::= primary [#** primary]

primary :: integer_string literal

Boolean_string_literal
character_string literal

path_literal
(expression)
relational operator ::=z = | /= | < | <= | > | >=
- I ESER VE I LR LT B O ST
adding_operator iz + | - | &
60-43

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983 '

unary_operator iz + | - | NOT

multiplying operator ::= * | / | MOD | REM
string literal ::= character_string_literal

character_string_literal ::= "{character}"” | [digit] identifier
{ integer_string literal

integer_string literal ::= integer [exponent]
integer ::=z digit {[underscore] digit} .
exponent ::= E integer

Boolean_string_literal ::= TRUE | FALSE
path_literal ::= path_name'attribute name
attribute_name ::= identifier

identifier ::z letter {[underscore] letter_or_digit}
letter or_digit ::= letter | digit

letter ::= Qppen_case_;etter i lower_case_letter
character ::= letter | digit | delimiter | underscore
digit ::=0 {1 1 {231 41516171819

underscore ::=

&

delimiter ::

-~

-
.
.
.
-
-
-
.
-
"
-
.
-

line mark ::= <carriage_return>

60-44

'jUse or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

APPENDIX 70

70.ADA LANGUAGE SYSTEM TOOLSET

This appendix describes the standard tools provided in the initial
ALS tool set. These tools may be invoked through the command language
processor or by an Ada program. Table 70-1 summarizes the tools.

70.1 Tool Description Format .

All tool descriptions in this appendix conform to the following
format:

NAME : Name and title of the tool

FUNCTION: Brief description of the operation of the tool

FORMAT: A prototype for the command (see below)

PARAMETER ,

DESCRIPTION: Description of the parameters named in the
prototype

DISPOSITION: A summary of how information is passed in and
out of the tool (see below)

NOTES: Conditions which may cause command failure and
any other pertinent information

EXAMPLE(S): One or more examples of the tool invocation

The meta-language used to express tool command formats is similar to
the meta-language used in the Military Standard, Ada Programming Language,
ANSI/MIL-STD~-1815-1983, 17 February 1983 (2.1). Specifically:

a) Square brackets enclose optional items,
b) Braces enclose repeated items, and
c¢) A vertical bar separates alternative items.

Words that are to appear with exact spelling are shown in upper case,
although they may be given in either upper or lower case in the actual
command. For clarity, the command formats have parentheses enclosing the
parameters, and commas separating them. The parentheses and commas may be
omitted and spaces used to separate parameters, A space must also be used
to separate the comm: .d name from the parameter 1list, even when
parentheses are used.

70-1

"Use or discliosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CTR-CP=0059-A00
"1 November 1983

Tne terms node and file, used in the format description, are defined
as follows:

a. Node: any environment database node, i.e., a file, directory, or
variation header. Any restrictions are stated in the parameter
description or notes, e.g., in chwdir, a node must be a
directory.

b. File: any environment database file node or any VAX/VHMS
file/device named with the "<KUMS>>" notation (described in
Secticon 50.11).

In the disposition description, IN, OUT, MSG, RSTRING, and RSTATUS
are used to denote standard input, standard output, message output file,
the tool return string, and the RSTATUS, respectively.

70.2 Tool Set Protocols.

A number of protocols are used to promote uniformity in the tool set.
These are enforced by tool design and usage.

.

70.2.1 Parameter Passing.

These protocols pertain to passing of tool parameters.

a. The parameters that must be given every time a tool 1is invoked
are specified positionally. As such, these parameters appear
first in the parameter list.

b. Inputs are specified before outputs. A corollary to this
protocol 1is that where there 1is a clear from-to relationship
between parameters, the from parameter is specified first, e.g.,
in a copy command.

¢. For some commands, the last (rightmost) positional parameter is
optional. There are no other optional positional parameters.

d. Named parameters are used to specify optional parameters and may
be given in any order after the positional parameters.

e. A toggle is an on/off switch used to control tool execution. . A
toggle may be used, for example, to turn off a listing produced
by a compiler. Toggles are represented as keywords and are
grouped into a sublist followir the named parameter OQPT (for
options). (OPT may be spelled in iower case.) The elements of
the option sublist are grouped by enclosure in parentheses or
quotes, and are separated by commas or spaces. If only one
toggle 1is specified, the quotes or parentheses may be omitted.

70-~2

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

"NO_" or "no_" preceding a toggle name inverts the sense of the
toggle, e.g., LIST and NO_LIST.

f. Some tools may optionally accept a sublist where a single
parameter would otherwise be specified. The use of .this
convention must be specifically mentioned in the tool
description.

70.2.2 Disposition of Output.

This protocol pertains to the creation or overwriting of file
revisions,

Whenever a tool is writing to an output file, and no revision number
is specified, it obeys the following rules: '

a If no revision set exists by the required pathname, the tool
creates one and output goes to Revision 1.

b If a revision set by that pathname already exists, the highest:
revision is always overwritten unless it is frozen, or has a-
derivation count greater than =zero. In this case, the tool
creates the next revision and uses it for output. (Note that
<KVMS>> files are never frozen, sSo are always overwritten.)

70-3

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

NAME

ADAMCF
ADAVAX
ADDREF
ARCHIVE
ASMMCF
ASMVAX
CHACC
CHASS
CHATTR
CHREF
CHTEAM
CHWDIR
CMPFILE
CMPNQDE
CMPTEXT
CONCAT
CPYALL

CPYDATA
DATE
DEBUGVMS
DELNQODE
DELREF
ECHO

EDT

EXPMCF
EXPVMS
FREEZE
GENLISTMCF
GENLISTVAX

CPCI*

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Table 70-1

TOOL SET SUMMARY

DESCRIPTION

DBM
FA

DBM
DBM
DBM
DBM
CLP
CLP
FA

FA

FA

cCT
cCT

ccT
ccT

CCT
DBM
CLP
CCT

DBM
DT
DT

MCF. compiler

VAX 11/780 compiler

add references to an association

archive a set of file revisions

MCF assembler

VAX 11/780 assembler

change access_name attribute

change an entire association

change attribute values

change references in an association

change team identification

change working directory

compare data of two file nodes

compare nodes except for file data

compare text files

concatenate text files

copy all of a file, data, attributes
and associations

copy only data portion of a file

get current date

debug an Ada program

delete a node and all its offspring

delete references from an association

print command arguments

VAX-~-11 EDT text editor

MCF exporter)

VAX/VMS exporter

freeze latest revision

MCF listing generator

VAX-11/780 listing generator

70-4

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Table 70-1 (continued)

NAME CPCI* DESCRIPTION

HELP CcCT get help information 5

LIB CCT program library manager

LNKMCF MCF linker

LNKVAX VAX-11/780 linker

LST CcCT list contents or offspring of a node

LSTASS DBM list contents of an association ’

LSTATTR DBM list value of an attribute

MKDIR DBM make a directory

MKFILE DBM make a file

MKVAR DBM make a variation header

PRINT CCT print file on line printer

PROFILEVMS DT VAX/VMS statistical and frequency profile
display

QHELP CCT supplies information from the HELP database

RECEIVE FA receive subtree written in interchange
format

RENAME DBM rename node

REVISE DBM make new revision of a file

RUNOFF cCcT DEC Standard Runoff Text Processor

SHARE DBM share a node

SHOW_SUBS CLP display substitutors

STUBGEN CCT generate a stub for a body

TCX CCT index generator for RUNOFF

TIME CCT get current time

TOC CcCT table of contents generator for RUNOFF

TRANSMIT FA transmit subtree in interchange format

UNARCHIVE Fa unarchive a set of file revisions

®NOTE: This column identifies those tools which are part of the Database
Manager (DBM) CPCI, the Configuration Control Tools (CCT) CPCI, the
Display Tools (DT) CPCI, the File Administrator (FA) CPCI, and the
Command Language Processor (CLP).

70-5

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

70.3 Tool Descriptions.

Descriptions of the ALS tools are provided in alphabetical order on
the following pages of this chapter.

70-6

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION ADAMCF

NAME: ADAMCF - Ada compiler for MCF Target

FUNCTION: Translate one or more Ada compilation units, generating
code for the MCF target

FORMAT: ADAMCF (source,prog_lib[,NEW_SRC=>out_src][,0PT=>option_list])

PARAMETER DESCRIPTION:

source

prog_lib

out_sre

option_list

Name of the file node or file nodes containing the
source text to be compiled.

Name of the program library into which the
Containers generated by this compilation will be
placed.

Name of the file node that is to receive the
reformatted source text. The NEW_SRC parameter
will have no effect if the REFORMAT option is not
in effect.

List of options that are in effect for this
compilation.

Listing Control Options:

SOURCE

REFORMAT

PRIVATE

Produce a listing of the source text. Default:
SOURCE

Reformat the source, the result being reflected in
the source listing, if present, and the out_src
node, if specified. Default: REFORMAT

If there is a source listing, text in the private
part of a package specifier is to be listed in
accordance with the selected Source or Reformat
option, subject to requirements of LIST pragmas.
Default: PRIVATE

70=-7

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983

NOTES

ATTRIBUTE

XREF

STATISTICS

MACHINE

DIAGNOSTICS

Other Options:

CODE_ON_WARNING

. Include diagnostics of severity NOTE in the source

listing, and in the diagnostic summary listing.
Default: NO_NOTES

. Produce a symbol attribute listing. Default:

ATTRIBUTE

Produce a cross-reference listing. Default:
NO_XREF

Produce a statistics listing. Default:
NO_STATISTICS

Produce a machine code listing if code is
generated. Code is generated when
CONTAINER_GENERATION is in effect and there
are no diagnostics of severity ERROR, SYSTEM,
or FATAL, and, if there are diagnostics of
severity level WARNING, CODE_ON_WARNING

is in effect. If a machine code listing is
requested, and no code is generated, a
diagnostic of severity NOTE is reported.
Default: NO_MACHINE

Produce a diagnostic summary listing. Default:
NO_DIAGNOSTICS

Generate code (and, if requested, a machine code
listing) when there are diagnostics of severity
level WARNING, provided there are no FATAL,
SYSTEM, or ERROR diagnostics.

NO_CODE_ON_WARNING means generate no code (and,
if requested, no machine code listing) when there
are diagnostics of severity level WARNING.
Default: CODE_ON_WARNING

CONTAINER_GENERATION

OPTIMIZE

Produce a Container if diagnostic severity
permits. NO_CONTAINER_GENERATION means that no
Container is to be produced, regardless of
diagnostic severity. If a Container is not
produced because NO_CONTAINER_GENERATION

is in effect, code is not generated (nor is

a machine code listing, if requested).

Default: CONTAINER GENERATION

Permit optimization in accordance with OPTIMIZE
pragmas that appear in the text. When NO _OPTIMIZE
is specified or is in effect by default, no
optimization is performed, regardless of pragmas.
When no optimize pragmas are included,

70-8

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification‘CR-CP-OOSQ-AOO
1 November 1983

optimization tries to conserve code space.
Default: NO_OPTIMIZE

DISPOSITION:
IN Source program if source parameter is ,STDIN
ouT Listings except for diagnostic summary
MSG Diagnostic summary listing and other messages
RSTRING Not used
RSTATUS See Appendix 80
Container Placed in specified program library

NOTES:

1. Five severity levels of diagnostic situations can arise. Refer
to 3.7.1.3.4 for a complete description.

2. FAILS if source cannot be found P
3. FAILS if program library cannot be found

4., FAILS if diagnostic severity level worse than WARNING occurs
(or worse than ERROR if CODE_ON_WARNING is specified)

5. FAILS if unable to create a Container

EXAMPLE:
ADAMCF (disk_drive, ground_sys, OPT=z=> xref)
-- compile disk drive into the ground_sys program library

-- generate code for MCF target, produce cross-reference
- listing

. T70-9

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION ADAVAX

NAME: ADAVAX - Ada compiler for VAX-11/780 target

FUNCTION: Translate one or more Ada compilation units, generating
code for the VAX-11/T780 target

FORMAT: ADAVAX (source,prog_lib(,NEW_SRCz>out_src][,0PT=>option_list])
PARAMETER DESCRIPTION:

source Name of the file node or file nodes containing the
source text to be compiled.

prog_lib Name of the program library into which the
Containers generated by this compilation will be
placed.

out_srec Name of the file node that is to receive the

reformatted source text. The NEW_SRC parameter
will have no effect if the REFORMAT option is not
in effect.

option_list List of options that are in effect for this
compilation.

Listing Control Options:

SOURCE Produce a iisting of the source text. Default:
SOURCE
REFORMAT Reformat the source, the result being reflected in

the source listing, if present, and the out_src
node, if specified. Default: REFORMAT

PRIVATE If there is a source listing, text in the private
part of a package specifier is to be listed in
accordance with the selected Source or Reformat
option, subject to requirements of LIST pragmas.
Default: PRIVATE

70-10

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

NOTES

ATTRIBUTE

XREF

STATISTICS

MACHINE

DIAGNOSTICS

Other Options:

CODE_ON_WARNING

Ada Language System Specification CR-CP-0059-A00
' 1 November 1983

Include diagnostics of severity NOTE in the source
listing, and in the diagnostic summary listing.
Default: NO_NOTES

Produce a symbol attribute listing. Default:
ATTRIBUTE '

Produce a cross-reference listing. Default:
NO_XREF

Produce a statistics listing. Default:
NO_STATISTICS

Produce a machine code listing if code is
generated. Code is generated when
CONTAINER_GENERATION is in effect and there
are no diagnostics of severity ERROR, SYSTEM,-
or FATAL, and, if there are diagnostics of
severity level WARNING, CODE_ON_WARNING

is in effect. 1If a machine code listing is
requested, and no code is generated, a
diagnostic of severity NOTE is reported.
Default: NO_MACHINE

Produce a diagnostic summary listing. Default:
NO_DIAGNOSTICS

Generate code (and, if requested, a machine code
listing) when there are diagnostics of severity
level WARNING, provided there are no FATAL,
SYSTEM, or ERROR diagnostics. NO_CODE_ON_WARNING
means generate no code (and, if requested, no
machine code listing) when there are diagnostics
of severity level WARNING.

Default: CODE_ON_WARNING

CONTAINER_GENERATION

FREQUENCY

OPTIMIZE

Produce a Container if diagnostic severity
permits. NO_CONTAINER_GENERATION means that no
Container is to be produced, regardless of
diagnostic severity. If a Container is not
produced because NO_CONTAINER_GENERATION

is in effect, code is not generated (nor is

a machine code listing, if requested).

Default: CONTAINER_GENERATION

Permit generation of code to monitor execution
frequency at the basic block level. Default:
NO_FREQUENCY.

Permit optimization in accordance with OPTIMIZE

70-11

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

pragmas that appear in the text. When NO_OPTIMIZE
is specified or is in effect by default, no
optimization is performed, regardless of pragmas.
When no optimize pragmas are included,
optimization tries to conserve code space.
Default: NO_OPTIMIZE

DISPOSITION:
IN Source program if source parameter is ,STDIN
ouT Listings except for diagnostic summary
MSG Diagnogtic summary listing and other messages
RSTRING Not used
RSTATUS See Appendix 80
Container Placed in specified program library

NOTES:/

1. Five severity levels of diagnostic situations can arise. Refer
to 3.7.1.3.4 for a complete description.

2. FAILS if source cannot be found
3. FAILS if program library cannot be found

4, FAILS if diagnostic severity level worse than WARNING occurs
(or worse than ERROR if CODE_ON_WARNING is specified)

5. FAILS if unable to create a Container

EXAMPLE:
ADAVAX (disk drive, ground_sys, OPT=z> xref)
— compile disk drive into the ground_sys program library -

-- generate code for VAX 11/780 target, produce cross-reference
- listing

70-12

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

“Ada LLanguage System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION ADDREF
NAME: ADDREF - Add association reference(s)

FUNCTION: Add reference(s) to an association of a node.

FORMAT: ADDREF (node,assocname=z> value_list

i (pos_val_list))

PARAMETER DESCRIPTION:

node

assocname

value_list

pos_val_list

position

new_value

DISPOSITION:
IN
ouT
MSG
RSTRING
RSTATUS

NOTES:

Name of the node possessing the association

Name of the association receiving the new
references. A new association is created if
necessary.

List of references to be added to the association.

List of (position,new_value) pairs which are
interpreted in the following manner:

The position number of the reference to be
added. Position must conform to the Ada rules
for integer literals.

The reference to be placed at the specified
position,

Not used
Not used
Confirmation and errors
Not used

See Appendix 80

1. FAILS if node does not exist

2. FAILS if the user does not have attr_change permiss{on.

3. FAILS if an attempt is made to rlter a KAPSE controlled
association.

70-13

'jUse or disclosure of tecr;nical data and/or computer software
" is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

4,

EXAMPLES:

FAILS if a reference in value_list or pos_val_list 1is not a
syntactically legal node name.

FAILS if a position in the pos_val_list is not a positive
number.,

When adding by value_lists:
a) No use of pos val lists is allowed.

b) The new references are appended after the references
that are already part of the association.

When adding by pos_val lists:
a) No use of value_lists is allowed.

b) The insertions are done in numerically ascending order.
The position numbers refer to the final positions of
the references and existing references are shifted to
higher numbered positions as necessary to accomodate
the new entries. Existing references are numbered from
one in ascending order with no holes in the sequence.

¢) No holes are allowed in the occupied referénce
positions. If a specified position number lies beyond
the first unoccupied position, then it is assigned to
the first unoccupied position. In this case, a WARNING
diagnostic is issued.

d) If the pos val_list contains multiple occurences of the
same position, the rightmost pair is used, the others
are discarded. 1In this case, a WARNING diagnostic is
issued.

This tool does not differentiate between absolute and relative
association references. The value of the current working
directory does not implicitly prefix old value or new_value
parameters; nor does it prefix values of existing association
references. (For input parameters, this can be achieved
explicitly by using the #CWD substitutor.)

ADDREF(signal_analyzer.doc, cross_ref=>(fft.doc, spectrum.doc))

-- appends the references "ff..doc" and "spectrum.doc" to the
-- "cross_ref" association of the "signal_analyzer.doc" node.
-- The association is created if it does not exist.

T70-14

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983
ADDREF(my_node,assoc_x=z=>(path1,street))

-- Creates the association "assoc_x" if it did not exist and appends
— "path1" and "street" onto the association.

ADDREF(my_node,assoc_x=>((1,path1),(3,street)))

— Insert "path1" and "street" into the association "assoc_x" in
-- positions 1 and 3.

70-15

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION ARCHIVE
NAME: ARCHIVE ~ Archive a set of file revisions

FUNCTION: Send a list of names of nodes to be archived to a
protected file which will subsecquently be used as input
to a rollout operation.

FORMAT: ARCHIVE ([NODE=>list 1][,FILE=>list 2](,0PT=>option_list])

PARAMETER DESCRIPTION:
list_1

list_2: The syntax of both list_1 and list_2 is a list of
pathnames. At least one NODE or FILE parameter
must be present. Execution of the ARCHIVE tool is
a request by the user to the system operator(s)
that the node(s) specified in the parameter list
be rolled out. Each node specified for rollout
whether by the NODE or FILE form, is a specific
frozen revision of a file. The NCDE form
specifies directly, in the parameter, one or more
nodes for rollout. The FILE form names one or
more ALS text files each of which contains a list
of pathnames for rollout, one per line.

The set of all nodes to be rolled out is appended
to a system file of to-=be-rolled-out pathnames
which is intended to be subsequently referenced by
an operator, In addition to transmitting the
list, the archive tool checks that each node named
is a frozen file revision whose availability
attribute has the value on_line. Pathnames found
to be invalid by this check are not sent to the
to-be-rolled-out file; instead, appropriate
diagnostic messages are written to the message
file.
option_list

LIST Default: NO_LIST. LIST writes to standard output
every pathname appended to the to-be-rolled-out
file.

70-16

':Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

DISPOSITION
IN
ouT

MSG

RSTRING

RSTATUS

NOTES:

2.

EXAMPLE:
_ ARCHIVE
-=- File

- file
-- Thes

Ada Language System Specification CR-CP-0059-A00
1 November 1983

' Not used
Optional LIST output
Confirmation and diagnostic messages.
Not used

See Appendix 80

For each node specified for rollout for which the user does not
have attribute change access, the pathname is not written to
the to-be-rolled-out file but is written to the message file
along with a diagnostic message.

Displays a diagnostic if the nodes have already been archived.

(FILE=>pre_config_c)

pre_config ¢ is a file of pathnames, one per line, of frozen
revisions to which the user has attribute-change access.
e names are appended to the to-be-rolled-out file.

70-17

':Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983 .

ALS COMMAND DESCRIPTION ASMMCF

NAME: ASMMCF - ALS MCF Assembier

FUNCTION: Translates ALS MCF assembly code

FORMAT: ASMMCF (source,prog_lib(,0PT=>option_list])
PARAMETER DESCRIPTION:

. source Name of the source file

prog_lib Name of the program library into which the
Source is to be assembled

option_list
SOURCE Produce a source listing or not. Default: SQURCE.

CONTAINER_GENERATION
Produce a Container if diagnostic severity
permits. NO_CONTAINER_GENERATION means that no
Container is to be produced, regardless of
diagnostic severity.
Default: CONTAINER_GENERATION

DISPOSITION:

IN If .STDIN is specified as the source parameter,
the standard input is used to get the source.

ouT Source listing and diagnostic message

MSG Confirmation and command diagnostics (and

h diagnostic messages if NO_SOURCE is

specified)

RSTRING Not used

RSTATUS A See Appendix 80

NOTES:

1. FAILS if input source node does not exist
2. FAILS if the program library does not exist

3. FAILS if errors are found in the source text

70-18

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-=-0059-A00
1 November 1983

EXAMPLE:

ASMMCF (my_prog, my_plib)
gets the input source from the node named my_prog
in the current working directory and puts assembled

object code and source listing into the program
library named my plib

70-19

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION ASMVAX
NAME: ASMVAX - VAX Assembler

FUNCTION: Translates ALS VAX-11/780 assembly code
FORMAT: ASMVAX (source,prog 1ib(,OPT=>option_list])
PARAMETER DESCRIPTION:

source Name of the source file

prog_lib Name of the program library into which the
source is to be assembled

option_lisi
SOURCE Produce a source listing or not. Default: SOURCE.

CONTAINER_GENERATION
Produce a Container if diagnostic severity
permits. NO_CONTAINER_GENERATION means that no
Container is to be produced, regardless of
diagnostic severity.
Default: CONTAINER_GENERATION

DISPOSITION:
IN If .STDIN is specified as the source parameter,
the standard input is used to get the source.
ouT _ Source listing and diagnostic message
MSG Confirmation and command diagnostics (and
diagnostic messages if NO_SOURCE is
specified)
RSTRING Not used
RSTATUS See Appendix 80
NOTES:

1. FAILS if input source node does not exist
2. FAILS if the program library does not exist

3. FAILS if errors are found in the ource text

70-20

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

EXAMPLE:
ASMVAX (my_prog, my_plib) -
-~ gets the input source from the node named my_prog
-= in the current working directory and puts assembled

-- object code and source listing into the program
=-— library named my_ plib

70=21

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION CHACC
NAME: CHACC - Change access_name attribute

FUNCTION: Change access name attribute of an executable
program to the invoking user's name

FORMAT: CHACC (file_name)

PARAMETER DESCRIPTION:

file_name , Name of the file containing the program
DISPOSITION:

IN : Not used

ouT Not used

MSG Confirmation and error messages

RSTRING Not used ’

RSTATUS See Appendix 80
NOTES:

1. FAILS if the file does not exist
2. FAILS if the user does not have ATTR_CHANGE access
3. FAILS if file does not have CATEGORY attribute with value of
"EXECUTABLE". .
EXAMPLE:
CHACC (new_tool)

-~ sets access_name attribute of "new_tool" to user name
— of the issuer

70-22

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

NAME:

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION CHASS

CHASS - Change the value of an entire association

FUNCTION: Replace all references of an association with new

FORMAT:

references.

CHASS (node,assocname=z>value_list)

PARAMETER DESCRIPTION:

node Name of the node possessing the association.
assocname Name of the association whose references are to be
changed.
value_list List of references to replace all of the current
references of the association. An empty list ("")
causes the association to be entirely deleted.
DISPOSITION:
IN Not used
ouT Not used
MSG Confirmation and error messages
RSTRING Not used
RSTATUS See Appendix 80
NOTES:
1. FAILS if node does not exist.
2. FAILS if the user does not have attr_change permission.
3. FAILS if an attempt is made to alter a KAPSE controlled
association.
4. FAILS if a reference in value_list is not a syntactically legal
node name.
5. This tool does not differentiate between absolute and relative

asociation references. The value of the current working
directory does not implicitly prefix elements of value_lis";
nor does it prefix values of existing association references.
(For input parameters, this can be achieved expllcltly by using
the #CWD substitutor.) .

70-23

':Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

EXAMPLES:
CHASS(netwk_comm.source,include file=>(incl_a,inecl_b))
-- makes the "include file" association of the node
-- "netwk comm.source" refer to just the nodes "inel_a"
-— and "incl b"

CHASS (gyro_control,documentation=>"")

— deletes the "documentation" association from the "gyro_control“
-— node

70-24

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0053%-A00
1 November 1983

ALS COMMAND DESCRIPTION CHATTR

NAME: CHATTR - Change the value of an attribute

FUNCTION: Changes the value of a node attribute. A new
attribute is created, or an old one deleted
automatically as appropriate.

FORMAT: CHATTR(node,attrname=> new_value

PARAMETER DESCRIPTION:

node

attrname

new_value

old_substring

new_substring

DISPOSITION;
IN
ouT
MSG
RSTRING
RSTATUS

. NOTES:

| (old_substring,new_substring))

Name of the node possessing the attribute.

Name of the attribute whose value is to be
changed.

The new value of the attribute. The string must
be enclosed in quotes (") if it contains any
delimiter characters.

The substring to be changed in the attribute
value. The string must be enclosed in quotes
(") if the string contains any delimiter
characters.

The substring to substitute in place of the
old_substring. If old substring is the null
string, then new_substring is appended to the
end of the attribute. If new_substring is the
null string, then the old_substring is just
deleted from the attribute. The string must be
enclosed in quotes (") if it contains any
delimiter characters.

Not used
Not used
Confirmation and error messages
Not used

See Appendix 80

70-25

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

EXAMPLES:

FAILS if node does not exist.
FAILS if the user does not have attr_change permission.

FAILS if an attempt is made to alter a KAPSE controlled
attribute. This includes the access_name attribute.

If quotes (") are to be embedded in the attribute value, then
they must be doubled and the string must be enclosed in quotes.

A new attribute is created if one does not already exist and
its new value is not null; an attribute is deleted if its new
value is null.

Each (old_substring,new_substring) pair substitutes for only
one occurrence of the substring and does no substitution if the
old_value cannot be found in the attribute., If old_value
cannot be found, a WARNING diagnostic is issued.

CHATTR(my_node,purpose=>"create a new attribute”)

- create a new attribute if it did not already exist and give it a
-= value.

CHATTR(my_node,purpose=>(""," add a string to the purpose attribute"))

-— add a string to the purpose attribute value.

CHATTR(my_node,read=>("thruster.roll.smith/","thruster.roll.jones/"))

— replace "thruster.roll.smith/" with "thruster.roll.jones/".

CHATTR(my_node,no_access=>("ada.doc.smith/ada.soft.jones/",""))

- delete a substring of an attribute value.

CHATTR(my_node,purpose=>"")

- delete an existing attribute.

70-26

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION CHREF

NAME: CHREF - Change some references of an association
FUNCTION: Alter selected references within the association.

FORMAT: CHREF(node,assocnamez> (val_val_list)

i (pos_val_list))
PARAMETER DESCRIPTION:
node Name of the node possessing the assoqiation.
assocname Name of the association whose references are to be
changed.
val_val_list List of (old_value,new_value) pairs which are
interpreted in the following manner:
old_value The reference to be changed in the
association.
new_value The reference to substitute in place of the

old_value in the association. 1If the
new_value is null (i.e., ""), the old value
is just deleted from the association. If
the old_value is null (i.e., ""), the
new_value is appended to the end of the
association.

pos_val_list List of (position,new_value) pairs which are
" interpreted in the following manner:

position The position number of the reference to be
changed. Position must conform to the Ada
rules for integer literals.

new_value The reference to substitute in place of the
existing reference at the specified position.
If the new_value is null (i.e., ""), the
reference at the specified position is deleted
from the association.

 DISPOSITION:
IN Not used
ouT ' Not used
MSG Confirmation and error messages
RSTRING ‘ Not used

70-27

'jUse or disclosure of technical data and/or co;nputer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-AOO
1 November 1983

RSTATUS

NOTES:

See Appendix 80

FAILS if node does not exist or if the association does not
exist for the node.

FAILS if the user does not have attr_change permission.

FAILS if an attempt is made to alter a KAPSE controlled
association.

FAILS if a reference in val_val_list, or pos_val list is not a
syntactically legal node name.

FAILS if a position in the pos_val_ list 1is not a positive
number.

When replacing by val_val_lists:
a) No use of pos_val lists is allowed.

b) The substitutions of (old_value,new_value) pairs is
performed in left to right order from the value_pair
list.

¢) For each pair, the existing references in the
association are scanned in ascending position number
order starting at one until a match with old_value is
found. The first matching reference is then changed to
new_value. The change is effective for the next value
pair in the val val_ list. If the old value is not
found, a warning diagnostic is issued. Processing of
remaining list entries continues.

d) Each (old_value,new_value) pair can substitute for only
one reference and does no substitution if the old_value
is not found.

7. When replacihg by pos_val lists pairs:

a) No use of value_lists or val_val_lists is allowed.

b) The substitutions are done in numerically ascending
order. The positions refer to the original positions
of the references, which are numbered from one in
ascending order with no holes in the sequence,

c¢) 1If a position in a (position,new_value) pair is greater
than any defined reference position, the new_value is
not substituted. 1In this case, a WARNING diagnostic is
issued.

70-28

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

EXAMPLES:

Ada Language System Specification CR-CP-0059-A00
1 November 1983

d) If the pos val_list contains multiple occurrences of
the same position, the rightmost value will be the
value set at that position. In this case, a WARNING
diagnostic is issued.

This tool does not differentiate between absolute and relative
association references. The value of the current working
directory does not implicitly prefix .old_value or new_value
parameters; nor does it prefix values of existing association
references. (For input parameters, this can be "achieved
explicitly by using the #CWD substitutor.)

CHREF (my_node,assoc_x=>(path1,path2))

or

CHREF (my_node,assoc_x=>(3,path2))

-~ Given the association assoc_x with the following values:

"trail road pathl street"

— both replace "pathi" with "path2". The first by value pair
-- replacement, the second by position value pair replacement.

CHREF(my_node,assoc_x=>((a,w),(d,x),(f,y),("",2))

-- Given that assoc_x contains the following values: "a,b,c.d.e.f,g".
-~ The new assoc_x is: ""w,b,c,x,e,y,g.,2".

70-29

':Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983 :

ALS COMMAND DESCRIPTION CHTEAM
NAME: CHTEAM - Change team id

FUNCTION: To change the user's team id without forecing
a logoff-logon sequence

FORMAT: CHTEAM (team_id)

PARAMETER DESCRIPTION:

team_id Name of the new team
DISPOSITION:

IN Not used

ouT Not used

MSG Confirmation and error messages

RSTRING Not used

RSTATUS See Appendix 80
NOTES:

1., FAILS if the user is not authorized to be a member of the new
team

2. FAILS if the new team does not exist

EXAMPLE:
CHTEAM (tel_switch.load_simul)

— changes team id to "tel switch.load simul"

70-30

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION CHWDIR

NAME: CHWDIR - Change the working directory

FUNCTION: Chénges the working directory to the named node
and updates the value of the CWD substitutor

FORMAT: CHWDIR (name)

PARAMETER DESCRIPTION:

name Pathname of the new working directory
DISPOSITION:

IN © Not used

ouT Not used

MSG Confirmation and error messages

RSTRING Not used

RSTATUS See Appendix 80
NOTES:

1. FAILS if the user does not have read access to the new
directory

2. FAILS if the node named by the pathname does not exist or is
not a directory
EXAMPLE:
CHWDIR (another_directory)

— changes the current working directory to another_directory

70-31

‘ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION CMPFILE
NAME: CMPFILE - Compare file nodes

FUNCTION: Compare the contents. of the data parts of two file
nodes and reports whether they are identical.

FORMAT: CMPFILE (path_name_1,path_name_2)

PARAMETER DESCRIPTION:

-patn_name_l: The n?me of the first of the two files
to be compared
path_name_2: The name of the second of the two files
to be compared
DISPOSITION:
IN : Not used
ouT Not used
MSG Confirmation and message output
RSTRING "EQUAL" if the data parts are identical
bit-for-bit, "UNEQUAL" otherwise.
RSTATUS See Appendix 80
NOTES:

1. FAILS if either node does not exist.
2. FAILS if the user does not have read access to both nodes.

3. FAILS if either node is not a file.

EXAMPLE:
CMPFILE (my_file(+),my_file)

-- The data parts of myfile(+) and my_file are compared bit-for-bit,
- independent of their structures. If they are identical, "EQUAL" is
-- returned to RSTRING; otherwise "UNEQUAL" is returned.

70-32

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION CMPNODE
NAME: CMPNODE - Compare nodes except for file data

FUNCTION: Compare the contents of the attribute,
association, and/or offspring lists of two nodes,
or the names of the attributes and/or associations.

FORMAT: CMPNODE (path_name_1,path_name_2
[ATTR=>attr_list][,ASSOC=z>assoc_list]
[,OPT=>option_list])

PARAMETER DESCRIPTION:

path_name_1: The name of the first of the two nodes
to be compared

path_name_2: The name of the second of the two nodes
to be compared

attr_list: Attr_list is a list of attribute names.
The values of the specified attributes are
compared and a list of differences among these
values is written to standard output.

assoc_list: Attr_list is a list of association names.
The values of the specified associations are
compared and a list of differences among these
values is written to standard output.

option_list:

OFFSPRING If the OFFSPRING option is selected, the
nodes being compared must be either both
directories or both variation headers. OFFSPRING
writes to standard output a list of differences
between the lists of immediate offspring names
of the first and second nodes.
Default: NO _OFFSPRING.

ATTR_NAMES - The list of names of the attributes
defined for the first node is compared to the
list of names of the attributes defined for the
second node. If one node has attribute names not
defined for the other node, the differences are
written to standard output.
Default: NO_ATTR_NAMES.

ASSOC_NAMES The list of names of the associations
defined for the first node is compared to the
list of names of the associations defined for
the second node. If one node has association

70-33

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983

DISPOSITION:
IN
ouT
MSG

RSTRING

RSTATUS

NOTES:

names not defined for the other node, the
differences are written to standard output.
Default: NO_ASSOC_NAMES.

Not used

Results of the node comparison

Confirmation and message output

"EQUAL" if the portions being compared
are all equal, "UNEQUAL" otherwise.

See Appendix 80

1. FAILS if either node does not exist.

2. FAILS if the user does not have proper access to both nodes.,

3. FAILS if neither ATTR nor ASSOC parameter is present and none
of the options is selected.

4, FAILS if the OFFSPRING option is selected and the two nodes are
not both directories or not both variation headers.

EXAMPLE:

CMPNODE (my_node,std_node,opt=z>(attr_names,assoc_names))

-= Produces a list of any attribute or association name differences
-- between my_node and std_node.

T0-34

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION CMPTEXT

NAME: CMPTEXT -~ Compare text files

FUNCTION: Compare the contents of the data parts of
two text file nodes.

FORMAT: CMPTEXT (path_name_1,path_name 2
[,OPT=>option_list])

PARAMETER DESCRIPTION:

path_name_1: The name of the first of the two text files
: to be compared.

path name 2: The name of the second of the two text files
to be compared.

option_list:

LIST - A report showing the correspondence between the
two files is generated on standard output.
Default: NO_LIST.

SCRIPT Write to standard output a file which may be
used as input to the EDIT tool to make the data
part of the first file the same as the data part
of the second file. A script is always produced,
even when the files are equal. LIST and SCRIPT
may not both be selected.

Default: NO_SCRIPT.

VERIFY Check the lines of the file with a string
comparison to verify that all reported matches
are really identical 1lines.

Default: NO_VERIFY.
DISPOSITION:
IN Not used
ouT Results of the node comparison
MSG Confirmation and message output
RSTRING "EQUAL" if the data parts are identical.
"UNEQUAL" otherwise.
RSTATUS See .ppendix 80
NOTES:

,70-35

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

EXAMPLES:

Suppose

file

This
This
This
This
This
This
This
This
This
This
This

file

This
This
This
This
This
This
This
This

This

This
This
This

a

is
is
is
is
is
is
is
is
is
is
is

b

FAILS if either node is not a text file.
FAILS if the user does not have read access to both nodes.
FAILS if both LIST and SCRIPT are selected.

For increased performance, the file comparator CMPTEXT uses a
hashing algorithm which can, very infrequently, consider two
differing lines to be identical. 1In this sense, the algorithm
is approximate. (The algorithm will never consider two
identical lines to be different.) In those circumstances when
an exact comparison is necessary, the VERIFY option should be
used. Though this option will increase the execution time used
by CMPTEXT, it will insure that all differences are detected.
The probability of an undetected difference is zero with the
VERIFY option and 1less than one in 100,000,000 lines without
VERIFY.

two text files, file_a and file_b, have the following contents:

line one of file A, and line one of B.
line two of file A, and line three of B.
line three of file A, and not in file B.
line four of file A, and line eight of B.
line five of file A, and line four of B.
line six of file A, and line five of B.
line seven of file A, and line six of B.
line eight of file A, and not in file B.
line nine of file A, and not in file B.
line ten of file A, and not in file B.
last line of both, different in B.

is line one of file A, and line one of B.
line is not in file A, and line two of B.
is line two of file A, and line three of B.
is line five of file A, and line four of B.
is line six of file A, and line five of B.
is line seven of file A, and line six of B.
line is not in file A, and line seven of B.
is line four of file A, and line eight of B.
line is not in file A, and line nine of B.
line is not ~in file A, and line ten of B.
line is not in file A, and line eleven of B.
is last line of both, modified in B.

70-36

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

The following command:
CMPTEXT (file_a,file_b,opt=>list)

will cause a comparison listing to be generated on Standard Output. In
these reports, the primary file is the file specified by path name_1 and
the secondary file is specified by path_name_2. The report is structured
to show what changes would have to be applied to the primary file to yield
the text of the secondary file. The first column shows the line numbers
in the primary file, the second column shows the line numbers in the
secondary file, and the third column shows the actual text of the lines.
A line is the smallest unit of text compared. Where a contiguous block of
lines is treated in the same way, only the first and 1last 1lines of the
block are shown. The interior 1lines of the block are reduced to an
ellipsis (...). If a line appears in the secondary file but not the
primary, the primary line number is shown as "INS" meaning that the line
has been inserted into the secondary file. In the opposite case, the
secondary 1line number is shown is "DEL" indicating that the line has been
deleted from the secondary file. Where a block of 1lines is involved,
"END-INS" and "END-DEL" are used to show, respectively, the last lines of
the inserted and deleted blocks. In the case where a 1line or block is
moved, the primary and secondary 1line numbers will be shown in the
respective columns. The above command will generate the following report::

PRIMARY: file_a
SECONDARY: file b

PRIMARY SECONDARY TEXT

1 1 This is line one of file A, and line one of B.
INS 2 This line is not in file A, and line two of B.
2 3 This is line two of file A, and line three of B.
3 DEL This is line three of file A, and not in file B.
5. 4 This is line five of file A, and line four of B.
7 6 This is line seven of file A, and line six of B.
INS 7 This line is not in file A, and line seven of B.
8 DEL This is line eight of file A, and not in file B.
11 END-DEL This is last line of both, different in B.

4 8 This is line four of file A, and line eight of B.
INS 9 This line is not in file A, and line nine of B.
END-INS 12 This is last line of both, modified in B.

Note that the block of lines 5 through 7 of the primary file have been
moved to 1lines 4 through six of the secondary file. The sense of the
comparison is entirely dependent upon the order in which the files are
specified in the command line. If the files are specified in the reverse
order, the following report will result:

70-37

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification
1 November 1983

PRIMARY: filq_b

SECONDARY: file_a

PRIMARY SECONDARY TEXT

1 1 This is line
2 DEL This line is
3 2 This is line
INS 3 This is line
8 y This is line
9 DEL This line is
1 END-DEL This is last
4 5 This is line
6 7 This is line
INS 8 This is line
END-INS 11 This is last
7 DEL This line is

CMPTEXT can be used to generate a

primary file into the secondary file.

CR-CP-0059-A00

one of file
not in file
two of file
three of file
four of file
not in file

line of both,
five of file

seven of file
eight of file

line of both,
not

script for EDT that will
The following command:

, and
and
and

, and

-

’
, and

A
A
A
A
A
A, and

line one of
line two of
line three of
not in file

line eight of
line nine of

modified in B.

A, and

A, and
A, and

line four of

line six of

not‘in file

different in B.

CMPTEXT (file_a,file b,opt=>script) OUT=>SCRIPT.A

will yield the following script:

MOVE 1 TO 2
INSERT ;THIS
MOVE 2 TO 4
DELETE 3
MOVE 5 thru
INSERT;This
DELETE 8
DELETE 9
DELETE °10
DELETE 11
MOVE 4 TO 9
INSERT;This

INSERT;This
INSERT ;This

EXIT

is

line is

line is
INSERT;This line is
line is

7T07
line is

last

not in file A, and line two

If the following command is issued:

CMPTEXT (my_file,your_file)

the data parts of text files my file anu your_file are compared.
RSTRING="UNEQUAL".

are identical, RSTRING="EQUAL";

otherwise,

70-38

of B.

not in file A, and line seven of B.

not in file A, and line nine of B.
not in file A, and line ten
not in file A, and line eleven of B.
line of both, modified in B.

of B.

in file A, and line seven of

If

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

B.
BQ
B.

B.

convert the

they

NAME:

Ada Language System Specification CR-CP-005$-A00
1 November 1983

ALS COMMAND DESCRIPTION CONCAT

CONCAT - Concatenate files together

FUNCTION: Concatenate the data parts of text files to standard output.

FORMAT:

CONCAT ([file_name {,file name}] [,FILES => file_list])

PARAMETER DESCRIPTION:

file_name A text file containing text to be concatenated.

file list A text file containing names of files to be

4.

EXAMPLE:

concatenated, one file name per line.

DISPOSITION:
IN Not used
ouT Output of concatenated files
MSG Confirmation and error messages
RSTRING Not used
RSTATUS See Appendix 80
. NOTES:

Output contains the files named in file name first, then the
files in the file list.

FAILS if the files do not exist or access rights do not grant
read permission.

FAILS if either file_name or file list is not specified.

FAILS if the output file also appears in the input file list.

CONCAT(this file,that file,another_file) outz> new_file;

— concatenates this_file, that_file, and another_file together,
-- with output in new_file)

70-39

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-AQ0
1 November 1983

ALS COMMAND DESCRIPTION v CPYALL
NAME: CPYALL - Copy data, attributes and associations of a file

FUNCTION: Copy all information in an existing node to a new node.
The new node is automatically created. Attributes initialized
by revise are not copied.

FORMAT: CPYALL (from_file,to_file)

PARAMETER DESCRIPTION:

from_file Name of file to be copied
to_file ‘ Name of file £o copy into
DISPOSITION:
IN ' Not used
ouT Not used
MSG Confirmation and error messages
RSTRING Not used
RSTATUS See Appendix 80
NOTES:

1. Both file names must be environment database file names (i.e.,
not VMS names)

2. FAILS if from_file does not exist, or issuer does not have read
access

3. FAILS if to_file already exists

4, Fails if issuer does not have append or write access to the
directory that will contain to_file

EXAMPLE:

CPYALL (.xyz_project.io.control, io)

- copies file "io control" from "xyz project" directory
- to file "io" in CWD data, attributes 'ani associations
- are copied

T70-40

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

NAME:

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION : CPYDATA

CPYDATA - Copy data part of a file

FUNCTION: Copy only data part of one file to another; destination

FORMAT:

file may exist, it will be created if it does not

CPYDATA (from file,to_file)

PARAMETER DESCRIPTION:

from file Name of file to be copied
to_file Name of file to copy into
DISPOSITION:
IN Not used
0ouT Nof used
MSG Confirmation and error messages
RSTRING Not used
RSTATUS See Appendix 80
NOTES:

EXAMPLE:

FAILS if issuer does not have read access to from_file

Fails if to_file must be created and issuer does not have
append or write access to the directory that will contain it

FAILS if to_file exists and issuer does not have write access

If the to_file is the name of an existing VMS file but does not
contain a revision number, then a file will be created with a
revision number one higher than the highest existing revision
of the file.

CPYDATA (fft.source,temp)

-— copies data of "fft.source" file to "temp" file

70-41

"Usg or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-400
1 November 1983 :

ALS COMMAND DESCRIPTION DATE

NAME: DATE - Display today's date
FUNCTION: Displays the current date in the format dd—mmm-yyyy, where:

dd is the two-digit day of the month; leading zero
is not suppressed

mmm is the three-character month name, i.e., JAN,
FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT,
NOV, or DEC.
yyyy is the four digits of the year.
FORMAT: DATE ([OPT=>option_list])
PARAMETER DESCRIPTION: v
option_list
DISPLAY Causes the date to be displayed on the standard

output. NO_DISPLAY causes the date to be put
in RSTRING. Default: DISPLAY

DISPOSITION:
IN Not used
ouT Date string unless NO_DISPLAY is specified
MSG Confirmation
RSTRING ' Date if NO_DISPLAY is specified
RSTATUS See Appendix 80
NOTES:

The date is obtained from the VAX/VMS operating system. There is no
way to guarantee that the clock is correct.

EXAMPLE(S):
DATE -- typed by user
04-JAN-1982 -- typed by the DATE tool

- DATE (OPT=>no_display)

typed by user

ECHO ("#RSTRING™) -- typed by user
O4-JAN-1982 -- typed by the echo tool
70-42

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION DEBUGVMS

NAME: DEBUGVMS - Debug an Ada program

FUNCTION: Initiates the symbolic debugger for an Ada program that has been
exported to the VAX/VMS target. The program will be executed on
the host computer under the ALS.

FORMAT: DEBUGVMS

PARAMETER DESCRIPTION:

No parameters

DISPOSITION:
IN Subcommandé to the debugger
OdT Normal part of the debugger-to-user dialogue
MSG Confirmation messages and notification of

any fatal errors in the debugger itself

RSTRING Not used
RSTATUS See Appendix 80

NOTES:

1. Depending upon how the program under test is
started, the program under test and the debugger
may share IN, OUT, and MSG.

EXAMPLE:

DEBUGVMS

INTERACTIVE SUBCOMMANDS:

See Appendix 100.

70-43

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983

ALS COMMAND DESCRIPTION DELNQDE

NAME: DELNODE - Delete a node and all of its offspring

FUNCTION: Delete a node revision set, or entire subtree

FORMAT: DELNODE (node,[OQPT=>option_list])

PARAMETER DESCRIPTION: .

node Name of node to be deleted
option list
CONFIRM This will cause the subtree confirmation to be
requested, i.e., confirmation will be requested
to delete a subtree. NO_CONFIRM will cause
the subtree confirmation to be supressed (this
is intended for use within command procedures.).
Default: CONFIRM. ‘
DISPOSITION:
IN Not used
ouT Not used
MSG Confirmation and error messages
RSTRING Not used
RSTATUS See Appendix 80
NOTES:

FAILS if node does not exist.

FAILS if issuer does not have write access to containing
directory (header) of node, or to containing directory of
the revision set in the case of an individual deletion.

Requests confirmation if node has offspring; the entire
subtree will be deleted if confirmation given., The prompt
and reply are passed over master output and input,
respectively. The NO_CONFIRM option causes the messages to
be suppressed.

FAILS if parent tries to delete an offspring shared by other
directories. :

70-44

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

EXAMPLES:

Ada Language System Specification CR-CP-0059-A00
1 November 1983

FAILS if any node being deleted has a non-zero derivation
count. '

If the node name includes the "*" index, every revision node
in the revision set 1is deleted. Otherwise, a single
revision is deleted.

FAILS if the node being deleted is a single revision and its
revision set is shared.

DELNODE (temp_file(2))
~-- deletes the second revision of temp file

DELNODE (temp file)
— deletes the latest revision of temp_file

DELNODE (temp_file(¥*))
-~ deletes all revisions of temp file

DELNODE (beta, opt=> no_confirm)
-- deletes the subtree beta without asking for
- confirmation of the deletion.

- 70=45

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Daocument."”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

AE§ COMMAND DESCRIPTION DELREF
NAME: DELREF -~ Delete association reference(s).

FUNCTION: Delete reference(s) from an association of a node.

FORMAT: DELREF (node.assocname?) value_list

iposition_list)
PARAMETER DESCRIPTION:
node Name of node possessing the association
assocname Name of the association from which the references

are to be deleted.

value_list List of references for which all occurrences are
to be deleted from the association.

position_list The 1list of positions at which references are to
be deleted from the association.

DISPOSITION:
IN Not used
ouT Not used
MSG Confirmation and error messages
RSTRING Not used
RSTATUS See Appendix 80
NOTES:

1. FAILS if node does not exist or if association does not exist for
the node.

2. FAILS if user does not have attr_change permission.

3. FAILS if an attempt is made to alter a KAPSE controlled
association.

4, FAILS if a reference in the value_list is not a syntactically
legal node name.

5. FAIIR if a position in the position_list is not positive.

6. If a specified position in a position_list is not occupied, a
WARNING diagnostic is issued. Similarly, a WARNING is issued if
an element in a value_list.cannot be found in the association.

70-46

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983
7. When deleting by value_lists:

a) No use of position_lists is allowed.

b) Only the first occurrence of a reference is deleted from
the association. Each value_list element results in the
deletion of at most one reference.

8. When deleting by position_lists:
a) No use of value_lists is allowed.

b) Deletion is done in descending order, from highest to
lowest. The position numbers apply to the association
prior to deletion of any reference.

¢) The remaining references are shifted to lower numbered

positions to fill any holes in the occupied positions.

9. This tool does not differentiate between absolute and relative
association references. The value of the current working
directory does not implicitly prefix old value or new value
parameters; nor does it prefix values of existing association
references. (For input parameters, this can Dbe achieved
explicitly by using the #CWD substitutor.)

EXAMPLES:

DELREF (netwk comm.source,include_files=>inecl_b)

— remove first occurrence of the reference "incl b" from the
-~ "include files" association of the "netwk comm.source" node.

DELREF(my_node,assoc_x=>(a,b,c))

- Delete first occurrence of the references "a", "b", and "e¢" from
— the association "assoc_x".

DELREF(my_node,assoc_x=>(1,3,5))

-~ Delete references in positions "1", "3", and "S" from "assoc_x".

T70-47

'.'Usc or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION ECHO
NAME: ECHO - Display the arguments

FUNCTION: Arguments to the command are written to standard output
FORMAT: ECHO ({arglh)

PARAMETER DESCRIPTION:

arg One or more arguments
DISPOSITION:

IN Not used

ouT Arguments

MSG Confirmation and error messages

RSTRING Not used

RSTATUS See Appendix 80
NOTES:

A single space is inserted between pairs of arguments.
If named parameters are specified, the name and value
are separated by an arrow.

EXAMPLE(S):

ECHO ("the date is:") -— typed by user
The date is: — typed by ECHO

today :="24 August 1980"
ECHO ("the date is:", #today) - typed by user

the date is: 24 August 1980 -- typed by ECHO

ECHO (Today) -- typed by user

Today -- typed by ECHO
T70-48

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION EDT

NAME: EDT - VAX-11 EDT Text Editor

FUNCTION: Invokes the VAX-11 EDT Text Editor.

FORMAT: EDT (file [,output => output_file]
[,command => command file]

[,opt => option_list])

PARAMETER DESCRIPTION:

file name of the file to edit

output_file Name of the output file. If none is specified,
the output file will be the same as the input
file,

command_file Name of a file containing editor commands which
EDT will execute before prompting the user for
input.

option list:

RECOVER RECOVER will cause EDT to apply the previous
: session's edit commands to the input file.
This allows the user to recover from aborted
EDT sessions. Default: NO_RECOVER.

READ _ONLY READ_ONLY will open the input file for read
access. No output file will be created. This
can be used to examine a file for which the
user has no write priveleges.

Default: NO_READ_ONLY.

DISPOSITION:
IN Not used
ouT Not used
MSG Confirmation and error messages not generated
directly by EDT.
RSTRING Not used
RSTATUS See Appendix 80
NOTES:

T0-49

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

1. The use of EDT is described in the VAX-11 EDT Editor Reference
Manual (AA-HQUUA-TE).

2. If file does not exist, it is created.

3. If the latest revision of the file is frozen, or has a non-zero
derivation count, a new revision is created. Otherwise the
latest revision is overwritten.

4, Communication with the user is via master input and master
output,

5. As for any other ALS tool, file names specified in the EDT tool
command line can refer to either ALS EDB nodes or to VMS files
(indicated by the <KVMS>> construct). VAX~-11 EDT, however,
will interpret all file names given in EDT commands as VMS file
names; therefore ALS EDB nodes cannot be referenced within
EDT. In EDT commands, all file names must comply with VAX/VMS
file name syntax. The <KVMS>> construct is not appropriate
within the context of EDT.

6. FAILS if the input file is not a file node.

7. FAILS if the user does not have appropriate access to the
files.

8. FAILS if the user specifies a command file that does not exist.

EXAMPLE:

EDT

(my_prog)

creates an edit session for the EDB node "my prog"

EDT (mi_prog, opt => recover)

EDT

EDT

creates an edit session for my_prog with recovery from the last
edit session of my prog. The edits from the last session of
editting my prog will be applied to the file.

(my_prog, output => new_prog, command => editinit)

creates an edit session for my_prog, with the edited output
going to the EDB node "new_prog". The editor commands in
the EDB node "edtinit™ will be executed prior to
EDT prompting for input.

(<KVMS>>my_prog, command '=> <KVMS>>edtinit.edt)

creates an edit session for the VMS file "my prog". The

70-50

'ste or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

— editor commands in the VMS file "edtinit.edt" will be executed
-- prior to EDT prompting for input.

EDT (my_prog, opt => read_only)

- creates a read-only edit session for my_prog. The user

— can examine the contents of my prog, but cannot alter it
-- permanently.

70-51

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983

ALS COMMAND DESCRIPTION EXPMCF
NAME: EXPMCF - Exporter to MCF target

FUNCTION: Transforms the input container to the MCF Target
format necessary for execution, and writes the
resulting output to the MCF target transport medium

interface

FORMAT: EXPMCF (name,prog_lib, output_medium [,0P_SYS=>nucleus_name]
[,OPT=>option_list])

PARAMETER DESCRIPTION:

name

prog_lib

output_medium

nucleus_name

option_list

INITIAL

DISPOSITION:
IN
ouT
MSG
RSTRING

RSTATUS

Name of the linked Container to be exported

Name of the program library containing program
to be exported

The ALS name for the file where the load module
is to be written

Specifies the name of a Container that represents
a runtime nucleus (other than the default runtime
nucleus) to be written onto the output file. This
option is only valid when the INITIAL option has
been specified. If this option is not specified
the Exporter will use the default runtime nucleus
for the MCF Target.

Commands the exporter to make this load module the
first one on the output tape file or in the
database file. If NO_INITIAL is specified, this
load module is appended to other load modules
already on the tape file or in the database file.
Default: NO_INITIAL.

Not used *

Not used

Confirmation and error messages
Not used

See Appendix 80

70-52

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

NOTES:

. 1. FAILS if the program library does not exist or access rights
are not appropriate

2. FAILS if linked Container to be exported does not exist

EXAMPLE:
EXPMCF (my_node, my_lib, new_node)

—- generates MCF format for my node from my lib to new_node

70-53

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION EXP VMS

NAME: EXPVMS - Exporter to VAX/VMS target

FUNCTION: Transforms the input container to the VAX/VMS target format
necessary for execution, and writes the resulting output to the
VAX/VMS target transport medium interface

FORMAT: EXPVMS (name,prog_lib, output _medium [,OPT => option_list])
PARAMETER DESCRIPTION: .

name Name of the linked Container to be exported

prog_-lib Name of the program library containing
program to be exported

output_medium The ALS name for the file where the
load module is to be written

option_list

DEBUG Directs the Exporter to activate the Debugger
Kernel in the program image to allow debugging.
Default: NO_DEBUG.

FREQUENCY Activate the frequency kernel to monitor execution
frequency. When NO_FREQUENCY is specified, or
is in effect by default, no execution frequency
is monitored, regardless of compile options.
Default: NO_FREQUENCY.

STAT Activate the timing kernel to monitor execution
timing. When NO_STAT is specified, or is in
effect by default, no execution timing is
monitored. Default: NO_STAT.

DISPOSITION:
IN Not used
ouT Not used
MSG Confirmation and error messages
RSTRING Not used
RSTATUS See Appendix 80

70-54

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP=0059-A00
1 November 1983

NOTES:
1. FAILS if the program library does not exist or access rights
are not appropriate
2. FAILS if the input Container does not exist
EXAMPLE:

EXPVMS (my_prog, my_lib, my_file)

-- generates target format for my_ prog in my_ lib
-- which is written to the ALS file my_file

70=55

’jUse or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION FREEZE
NAME : FREEZE - Freeze latest version

FUNCTION: Freezes the latest revision of a file, making it
unchangeabln

FORMAT: FREEZE (file_name)

PARAMETER DESCRIPTION:

file name E Name of the file whése latest revision is to be
frozen
DISPOSITION:
IN Not used
ouT Not used
MSG Confirmation and diagnostics
RSTRING Not used
RSTATUS See Appendix 80
NOTES:
1, FAILS if the named node is not a file, or user does not have READ
access,
EXAMPLE:

FREEZE (program.source)

-- make latest revision of the file "program.source" unchangeable

T0-56

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."‘

Ada Language System Specification CR-CP-=0059-A00
1 November 1983

ALS COMMAND DESCRIPTION GENLISTMCF

NAME: GENLISTMCF - generate listing for MCF target

FUNCTION: generates listings from the specified Containers
produced by the ADAMCF, ASMMCF, or LNKMCF tools.

FORMAT: GENLISTMCF(Ada_name, prog_lib [,OPT => option_list])

PARAMETER DESCRIPTION:
prog_lib

Ada_name

option list

The following option is
ADAMCF or ASMMCF,

SQURCE

The name of the program library

The name of the Container from which the listing
is to be extracted.

Genlist options

valid only if the creator of the Container was

Produce a source listing (Note: the compiler
source listing will be reformatted only if the
original compilation specified the REFORMAT
option). Default:NO_SOURCE.

The following options are valid only if the creator of the Container was

LNKMCF.

SYMBOLS

LOCAL_SYMBOLS

UNITS

Provide a symbol definition listing. Default:
NO_SYMBOLS.

If a symbol definition listing is produced,
include names local to library package bodies.

Default: NO_LOCAL SYMBOLS, means include only
names which are externally visible.

Provide a units listing. Default: NO_UNITS.

The following options are valid only if the creator of the Container was

ADAMCF

LIST_INCLUDE

PRIVATF

If there is a source listing, text brought in with
an INCLUDE pragma should be listed, subject to
requirements of list pragmas. Default:

NO_LIST_ INCLUDE.

If there is a source listing, text in the private
part of a package specifier is to be listed,
subject to specifications of LIST pragmas.
Default: PRIVATE.

70-57

"Use or disclosure of technical data and/or computer softwaré
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983

NOTES

ATTRIBUTE

XREF

STATISTICS

MACHINE

DIAGNOSTICS

DISPOSITION:
IN

OouT

MSG
RSTRING
RSTATUS

NOTES:

Include diagnostics of severity NOTE in source
listing, and in the Diagnostic Summary Listing.
Default: NOTES.

Produce a symbol attribute listing. When both

a Symbol Attribute Listing and a Cross Reference
Listing are requested, a single listing, called
the Attribute-Cross-Reference Listing, containing
both types of information will be produced.
Default: NO_ATTRIBUTE.

Produce a cross-reference listing. When both

a Symbol Attribute Listing and a Cross Reference
Listing are requested, a single listing, called
the Attribute-Cross-Reference Listing, containing
both types of information will be produced.
Default: NO_XREF

Produce a statistics listing. Default:
NO_STATISTICS

If there is machine code,, produce a machine code
listing, otherwise produce a diagnostic of
severity level WARNING. Default: NO_MACHINE

Produce a diagnostic summary listing. Default:
NO_DIAGNOSTICS

Not used

All listings except for the diagnostic summary
listing. :

Diagnostic summary listing and other messages.
Not used

See Appendix 80

1. FAILS if program library cannot be found

2. FAILS if.Container cannot be found

3. FAILS if the option is not appropriate for the creator.

70-58

"Use or disclosure of technical data and/or computer software

is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A06
1 November 1983

ALS COMMAND DESCRIPTION GENLISTVAX

NAME: GENLISTVAX - generate listing for VAX-11/780 target

FUNCTION: generates listings from the specified Containers
produced by the ADAVAX, ASMVAX, LNKVMS or LNKVAX tools.

FORMAT: GENLISTVAX(Ada_name, prog_lib [,OPT => option_list])
PARAMETER DESCRIPTION:
prog_lib ’ The name of the program library

Ada_name The name of the Container from which the listing
is to be extracted.

option_list Genlist options

The following option is valid only if the creator of the Container was
ADAVAX or ASMVAX.

SOURCE Produce a source listing (Note: the compiler
source listing will be reformatted only if the
original compilation specified the REFORMAT
option). Default: NO_SOURCE.

The following options are valid only if the creator of the Container was
LNKVAX or LNKVMS.

SYMBOLS Provide a symbol definition listing. Default:
NO_SYMBOLS.
LOCAL_SYMBOLS If a symbol definition listing is produced,

include names local to library package bodies.
Default: NO_LOCAL_SYMBOLS, means include only
names which are externally visible.

UNITS Provide a units listing. Default: NO_UNITS.

The following options are valid only if the creator of the Container was
ADAVAX

LIST INCLUDE If there is a source listing, text brought in with
an INCLUDE pragma should be listed, subject to
requirements of list pragmas. Default:
NO_LIST_INCLUDE.

PRIVATE If there is a source listing, text in the private
part of a package specifier is to be 1li .ed,
subject to specifications of LIST pragmas.
Default: PRIVATE.

70-59

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

NOTES Include diagnostics of severity NOTE in source
listing, and in the Diagnostic Summary Listing.
Default: NOTES.

ATTRIBUTE Produce a symbol attribute listing. When both
: a Symbol Attribute Listing and a Cross Reference
Listing are requested, a single listing, called
the Attribute-Cross-Reference Listing, containing
both types of information will be produced.
Default: NO_ATTRIBUTE.

XREF Produce a cross-reference listing. When both
a Symbol Attribute Listing and a Cross Reference
Listing are requested, a single listing, called
the Attribute-Cross-Reference Listing, containing
both types of information will be produced.
Default: NO_XREF

STATISTICS Produce a statistics listing. Default:
NO_STATISTICS
MACHINE If there is machine code, produce a machine code

listing, otherwise produce a diagnostic of
severity level WARNING. Default:. NO_MACHINE

DIAGNOSTICS Produce a diagnostic summary listing. Default:
NO_DIAGNOSTICS
DISPOSITION:
IN Not used
ouT All listings except for the diagnostic summary
listing.
MSG Diagnostic summary listing and other messages.
RSTRING Not used
RSTATUS See Appendix 80
NOTES:

1. FAILS if program library cannot be found
2. FAILS if Container cannot be found

3. FAILS if the option is not appropriate for the creator.

70-60

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION HELP

ELP - Interactive information tool

FUNCTION: Interactively supplies information from the HELP

NAME: H
d
FORMAT: H

atabase.

ELP ([subject])

PARAMETER DESCRIPTION:

subject

DISPOSITION
IN
ouT
MSG
RSTRING
RSTATUS

NOTES:

2.

Initial current subject for which to obtain
information. If this parameter is ommitted,
the initial current subject is the HELP root.

Subcommand input

Responses

Confirmation and diagnostic messages
Not used

See Appendix 80

HELP allows the user to interactively explore the HELP
database. It can be used to obtain extensive information. The
non-interactive tool QHELP also provides information from the
HELP database. QHELP extracts only a single piece of
information from the database, and is intended to be used for
quick reference.

The HELP database is a tree of subjects. Direct offspring of
the HELP root are main subjects. Each subject can be divided
into subtopics which can also be further divided. There is no
fixed 1limit to the number of 1levels in the HELP tree.
Information can be obtained from each level in the tree.

HELP maintains a "current subject". Upon entry to HELP the
current subject is either the subject named in the HELP command
or the HELP database root when-no subject is named, The user
may change the current subject with the CHSUB subcommand.

The subject parameter is optional on all of HELP's subcommands.
When it is omitted, the current subject is assumed.

70-61

‘ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November

5.

6.
EXAMPLE(S):

" HELP (LIB)

1983

The subject parameter can be either a main subject or a
subtopic of a subject or another subtopic. Subject names are
analogous to pathnames in the environment database where the
root 1is the HELP database .root and the current working
directory is the current subject. Thus "." designates the HELP
database root and "!"™ designates the parent subject of the
current subject. Subject names are either absolute starting at
the root or relative to the current subject.

Example(s):

.LIB.ACQUIRE

-— The subject is ACQUIRE which is a subtopic of the subject
-- LIB. This is an absolute pathname indicating that LIB is
— a direct offspring of the root and thus is a main subject
— under HELP.

ACQUIRE

- This subject is the subtopic ACQUIRE under the current
-= Subject.

— The HELP database root
!
-- Parent subject of the current subject.

Fails if the subject does not exist.

-- Initiates HELP with the current subject, LIB.

HELP

- Initiates HELP with the current subject being the HELP database

- root.

70-62

"Use or disclosure of technicail data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

INTERACTIVE SUBCOMMANDS:

70-63

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS SUBCOMMAND DESCRIPTION HELP.CHSUB

SUBCOMMAND: CHSUB - Change the current subject

FUNCTION: Change the current subject. Allows movement through
the HELP database.

FORMAT: CHSUB ([subject])
PARAMETER DESCRIPTION:

subject Name of the new current subject.
NOTES:

1. Displays a diagnostic if the subject does not exist.

EXAMPLES:

CHSUB (.LIB)
-~ Changes the current subject to LIB which is a main subject

-- under HELP.

CHSUB (ACQUIRE)
-- Changes the current subject to ACQUIRE which is a subtopic
-~ under the current subject.

CHSUB (.)
-- Changes the current subject to the root.

CHSuUB (!)
-— The parent of the current subject becomes the new current

— Subject.

70-64

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS SUBCOMMAND DESCRIPTION HELP.EXIT

SUBCOMMAND: EXIT - terminates a HELP session
FUNCTION: terminates a help session
FORMAT: = EXIT

'EXAMPLE:

EXIT
-~ terminates HELP

70-65

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS SUBCOMMAND DESCRIPTION HELP.FORMAT

SUBCOMMAND: FORMAT
FUNéTION: Display the command format of a subject
FORMAT: FORMAT ([subject])
PARAMETER DESCRIPTION:
subject Subject whose command format should bg displayed.

NOTES: |

1. Displays a diagnostic if the subject does not exist.

2. Displays a diagnostic if there is no command format for the

subject. '

EXAMPLE(s):

FORMAT (LST)
-« The format of the LST command is displayed.

T70-66

"Use or disclosure of technical data and/or computer software
. is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS SUBCOMMAND DESCRIPTION HELP.INFOQ

SUBCOMMAND: INFO - supply information on a subject
FUNCTION: Displays information
FORMAT: INFO ([subjectl])
PARAMETER DESCRIPTION:
subject Subject for which information should be displayed
NOTE:

1. Displays a diagnostic if the subject does not exist.

EXAMPLE(s):

INFO (.LSTATTR)
-— Gives information on the tool, LSTATTR.

INFO
- Displays information on the current subject.

INFO (.)
— Displays information on the HELP tool itself.

70-67

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR=-CP=0059-A00
1 November 1983 :

ALS SUBCOMMAND DESCRIPTION HELP.LSTSUB

SUBCOMMAND: LSTSUB - Display a directory of subjecfs
FUNCTION: Displays a directory of subjects.
FORMAT: LSTSUB ([subject] [,opt=> option_list])

PARAMETER DESCRIPTION:

subject Subject for which the subtopics will be
listed. '
option_list:
TREE Causes all of the subtopics in the subject's

subtree to be displayed in indented form.
NO_TREE means to list only the immediate subtopics.
Default NO_TREE.

NOTES:

1. Displays a diagnostic if subject does not exist.

2. Displays a diagnostic if no‘subtopics exist for the subject.

EXAMPLE(s):

LSTSUB (.)
-- Lists all the main subjects for which help is available.

LSTSUB (LIB)
- Lists the subtopies of LIB.

LSTSUB (.LIB.ACQUIRE)
~= Lists the subtopics of ACQUIRE which is a subtopic of LIB.

70-68

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION LIB

NAME: LIB - Program Library Manager

FUNCTION: Interactive program library manager; has
subcommands for creating, examining and
manipulating program libraries.

FORMAT: L

IB ([prog_libl)

PARAMETER DESCRIPTION:

prog_lib Name of program library to be used
DISPOSITION:

IN Command input

ouT Responses

MSG Confirmation and diagnostic messages

RSTRING Not used

RSTATUS See Appendix 80
NOTES:

1. LIB temporarily changes the CWD to be the PL directory node.

2. All interactive subcommands operate on the current program
library as specified by the user either via the prog_lib
parameter on the LIB command or via a MKLIB interactive
subcommand . The user must supply a current program library
before he can use any LIB interactive subcommand other than
MKLIB. ‘

3. FAILS if the program library does not exist.

4, FAILS if the user does not have read access to the program
library.

EXAMPLES:
LIB (my_pl)

,

-— Initiates a LIB session using thé program library "my pl".

70-69

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

INTERACTIVE SUBCOMMANDS:

70-70

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

SUBCOMMAND:
FUNCTION:
FORMAT:
PARAMETER D

prog_1li

Adaname

NOTES:

EXAMPLES:

ACQUIRE (fr

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS SUBCOMMAND DESCRIPTION LIB.ACQUIRE

ACQUIRE - Obtain Container from another PL.
Obtain Containers from another PL.

ACQUIRE (prog_lib, Adaname)

ESCRIPTION:

b Name of the program library which has the
Containers to be acquired.
Container or subtree to be acquired. If it is a
subtree, the latest revision of each Container in
the subtree will be acquired.

Displays a diagnostic if a current program library has not been
specified. ’

Displays a diagnostic if the program library does not exist.
Displays a diagnostic if the Adaname does not exist.

Displays a diagnostic if the Ada compilation order rules are
violated; that is, if the Containers being acquired depend on
Containers which have not yet been acquired.

Displays a diagnostic if a subtree being acquired is internally
incompatible; that is, if a Container in the subtree does not
depend on the latest revision of another Container in the
subtree.

Displays a diagnostic if a linked Container is being acquired
and the Containers used to create the linked Container have not
yet been acquired.

Displays a diagnostic if the target of the wuser's PL is not
listed in the compatible_targets attribute of the Container to
be acquired.

om_prog_lib, my_prog.spec)

-- The latest revisic of the Container "my_prog.spec"

-~ Which re
- 18 acqui

ACQUIRE (fr

sides in the program library "from prog. 1ib"
red into the user's program library.

om_prog_lib, my_prog.all)

70-71

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

-- The latest revision of each Container in the library
- unit subtree, "my_prog" in the program library

-- "from_prog_lib" is acquired into the user's, program
- library

ACQUIRE (from_prog_lib, my_prog.body(2))

-- The second revision of the Container for the body of
-- the library unit "my_prog" in the program library,

— "from prog 1ib" is acquired into the user's program
-=- library. (The specification for this revision of the
- body must already have been acquired into the user's
-~ program library.)

ACQUIRE (from prog lib, .all)
-- The latest revision of every Contianer in the program
— library "from prog_lib"™ is acquired.

70-72

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS SUBCOMMAND DESCRIPTION LIB.ARCHIVE

SUBCOMMAND: ARCHIVE - archive Containers

FUNCTION: Send a list of Containers to be archived
to a protected system file which will
subsequently be used by the ALS.

FORMAT: ARCHIVE ([ADANAME => 1isp_11 [,file=> list_2]
[,OPT=>option_list])

PARAMETER DESCRIPTION:
list_1: list of Adanames of Containers.
list_2: List of pathnames of ALS text files which

contain Adanames of Containers, one per line.
At least one ADANAME or FILE parameter must be

present.
option list:
LIST Default: NO _LIST. LIST writes to standard
output every Adaname appended to the system file.
NOTES:

1. Displays a diagnostic if a current program library has not
been specified.

2. Displays a diagnostic if the Adaname does not include a
revision number,

3. Displays a diagnostic if the Container has already been
archived.

4. Displays a diagnostic if any node named by list 2 is not a
text file.

EXAMPLES:

ARCHIVE (ADANAME=>my prog.spec(2), my_prog.body(1))

-- The names of the Containers for the second revision
- of the specification and the first revision of the

- body of the library unit "my prog" are sent to the

-— ALS for subsequent archiving.

ARCHIVE (FILE=>archive)

-- The names of the Contianers listed in the text file
-= "archive" in the user's directory are sent to the
-~ ALS for subsequent archiving.

70=73

‘ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-AC0
1 November 1983

ALS SUBCOMMAND DESCRIPTION LIB.CHATTR

SUBCOMMAND: CHATTR - Change the value of an access attribute
of a program library root node. .

FUNCTION: Changes the users who can access a program
library by changing an access attribute of the
program library root node.

FORMAT: CHATTR (attrname => new_value
i (old_substring,new_substring))

PARAMETER DESCRIPTION:

attrname Name of the access attribute whose value is to be

changed. Any access attribute except via can be
specified.
new_value Value to be given to the attribute.

old_substring The substring to be changed in the attribute value.
The string must be enclosed in quotes (") if the
string contains any delimiter characters.

new_substring The substring to substitute in place of the
old_substring. If old substring is the null string,
then new substring is appended to the end of the
attribute. If new_substring is the null string, then
the old_substring is just deleted from the attribute.
The string must be enclosed in quotes (") if it
contains any delimiter characters.

NOTES:

1. The current program library root node is implicitly the subject
of the CHATIR.

2. The access attributes of the container nodes within the program
library will be changed as appropriate to be consistent with
the program library root node,

3. Displays a diagnostic if a current program library has not been
specified.

4., Displays a diagnostic if the attrname names any attribute other
than no_access, read, append, write, attr_change or execute.

70-74

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
. . 1 November 1983

5. Displays a diagnostic if the user does not have attr_change
permission for the current program library.

EXAMPLES:
CHATTR (read => "thruster.roll.smith")

-~ Changes the value of the read attribute of the current
-- program library to "thruster.roll.smith",.

CHATTR(read=>("thruster.roll.smith/","thruster.roll. jones/"))
— replace "thruster.roll.smith/" with "thruster.roll.jones/".
CHATTR(no_access=>("ada.doc.smith/ada.soft.jones/",""))

— delete smith and jones from no_access,

70-75

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November

SUBCOMMAND:
FUNCTION:

FORMAT:

1983

ALS SUBCOMMAND DESCRIPTION LIB.DELETE

DELETE - delete a container
Delete Containers or subtrees from a program library

DELETE (Adaname)

PARAMETER DESCRIPTION:

Adaname Container or subtree to be deleted

NOTES:

EXAMPLES:

The user will be asked to reconfirm the deletion of an entire
program library.

Displays a diagnostic if a current program library has not been
specifed.

Displays a diagnostic if any Container in any program library
references the Container(s) being deleted.

If a Container Adaname includes the revision index "#" every
revision of the Adaname 1is deleted; otherwise a single
revision of the Adaname is deleted.

Displays a diagnostic if the Adaname does no exist.

Displays a diagnostic if the user does not have write access to
the program library.

DELETE (my_prog.all)
-~ Every Contianer in the library unit "my prog" is deleted.

DELETE (my_prog.apsec(2))
: —= The Container for the second revision of the specification of the

- library

unit "my prog" is deleted

DELETE (.all)
-= Delete the entire program library.

DELETE (my_prog.body)
-— Delete the latest revision of the body for the library unit "my prog".

DELETE (my_prog.body(¥))
— Delete every revision of the body for the library unit "my prog".

70-76

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS SUBCOMMAND DESCRIPTION LIB.EXIT

" SUBCOMMAND: EXIT - terminates a LIB session

FUNCTION: Terminates a LIB.session and returns the user

to the ALS
FORMAT: EXIT
EXAMPLE:
EXIT

-- Terminates the LIB session

70-77

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983 ‘

ALS SUBCOMMAND DESCRIPTION LIB.LST

SUBCOMMAND: LST - lists the contents of the program library
FUNCTION: Lists a directory of Adanames in a program library.
FORMAT: LST (Adaname)
PARAMETER DESCRIPTION:
Adaname Adaname where the directory display should begin.

If this parameter is omitted, a directory for the
entire program library is given.

NOTES:

1. Displays a diagnostic if a current program library has not been
specified.

2. Displays a diagnostic if the Adaname is non-existent.

EXAMPLES:

LST (my_prog)
-- Displays the Adanames in the library unit, "my_prog".

LST (my_prog.B))
- Displays the Adanames in the subunit, "my_ prog.B".

LST (my_prog.spec)
-~ Displays the Adaname for the specification of the
- library unit, "my prog".

LST (.all)
-- Display a directory for the entire program library.
— (same as LST with no parameter).

70-78

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

SUBCOMMAND:

FUNCTION:

FORMAT:

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS SUBCOMMAND DESCRIPTION LIB.LSTASS

LSTASS - List association contents
Lists the contents of an association

LSTASS (Adaname [,assochame])

PARAMETER DESCRIPTION:

Adaname Container or subtree for which association is to
be listed
assocname Association to be listed
NOTES: .

EXAMPLES:

LSTASS (my_

If the Adaname is the only parameter, then just the names of
all associations possessed by the Container or subtree are
listed.

If a subtree is named, only the Containers in the subtree
possessing the specified association are listed.

Displays a diagnostic if a current program library has not been
specified,

Displays a diagnostic if the Adaname does not exist.

Displays a diagnostic if the association does not exist.

prog.body, DEPENDS_ON)

-= Lists the contents of the assoclation, "DEPENDS_(ON"
-- in the Container "my prog.body".

LSTASS (my_:

— Lists al

prog.spec)
1 the associations possessed by the Container

— "my_prog.spec",

70-79

"Use or disclosure of technicél data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

SUBCOMMAND:

FUNCTION:

FORMAT:

ALS SUBCOMMAND DESCRIPTION LIB.LSTATTR

LSTATTR - List the value of an attribute
Lists the value of an attribute.

LSTATTR (Adaname [,attrname])

PARAMETER DESCRIPTION: °

Container or subtree for which the attribute value

Adaname
is to be listed
attrname Attribute to be listed
NOTES:.

EXAMPLES:

If the Adaname is the only parameter, then just the names of
all attributes possessed by the Container or subtree are
listed.

If a subtree is named, only the Containers in the subtree
possessing the specified attribute are listed.

Displays a diagnostic if a current program library has not been
specified.

Displays a diagnostic if the Adaname does not exist.

Displays a diagnostic if the attribute does not exist.

LSTATTR (.all, TARGET)

-- Lists the value of the target attribute of the program library
-- root node. No Containers are listed since Containers do not
-- possess the target attribute.

LSTATTR (my_prog.spec, creation_date)
— Lists the value of the attribute, "creation_date" for
-— the Container "my_ prog.spec”.

LSTATTR (my_prog.body)
-~ Lists all the attributes possessed by the Container
- "my_ prog.body".

LSTATTR (my_prog.all, creation_date)
-- Lists the values of the attribute "creation date"
-- for every Container in the library unit "myprog"

70-80

""Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS SUBCOMMAND DESCRIPTION ' LIB.MKLIB

SUBCOMMAND: MKLIB - Make a new program library
FUNCTION: Creates a new program library.
FORMAT: MKLIB (prog_lib [,TARGET=>target_name])

PARAMETER DESCRIPTION:
'prog_lib Name of the new program library.

target_name Name of the intended target environment for all
Containers in the program library. If this
‘parameter is omitted, the default target is
specified by the default variation attribute of
the system program library variation set. The
default is initially the host, but can be
changed by the system administrator.
Target_name is a value of enumeration type
SYSTEM.SYSTEM_NAME and must specify a single
target. (SYSTEM.SYSTEM_NAME is defined in
package SYSTEM which is a part of package
STANDARD. See Appendix 10.1.3)

/

NOTES:
1. Resets LIB's current program library to the one just created.

2. Displays a diagnostic if a program library by this name already
exists.

3. Displays a diagnostic if the target name is unrecognized.

4. Displays a diagnostic if the target name does not name a single
target.

5. Displays a diagnostic if the user has neither write nor append
access to the directory.

EXAMPLES:

MKLIB (new_prog_lib, target=>VAX780_VMS)

~-- Creates a new program library "new_prog 1ib" in the user's

- current working directory. All the Containers in this program
— library will be targeted for the VAX780_WMS. It will

-- automatically acquire STANDARD.PACKAGE and the runtime support
— library for the VAX780_VMS target.

MKLIB (my_dir.new_prog_lib, target=>ROLM1602B)
-- Creates a new program library "new_prog_lib" in the directory
70-81

"Use or disclosure of tech;\ical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

"my_dir"™. ALl the Containers in this program library will be
targeted for the ROLM1602B. It will automatically acquire
STANDARD.PACKAGE and the runtime support library for the
ROLM1602B target.

MKLIB (new_pl)

-= Creates a new program library "new_pl" in the user's current
-= Working directory. All of the Containers in this Program

-- library will be targeted for the host. It will automatically
-~ acquire STANDARD.PACKAGE and the runtime support library for
-- the host.

70-82

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

SUBCOMMAND:

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS SUBCOMMAND DESCRIPTION LIB.UNARCHIVE

UNARCHIVE - unarchives Containers

FUNCTION: Send a list of Containers to be unarchived
to a protected system file which will
subsequently be used by the ALS.

FORMAT:

UNARCHIVE ([ADANAME => list 1] [.FILE=> list_2]
(,OPT=>option_list])

PARAMETER DESCRIPTION:

list_1:

list_2:

option list:

LIST

NOTES:

EXAMPLES:

List of Adanames of Containers.

List of pathnames of ALS text files which
contain Adanames of Containers, one per line.

At least one ADANAME or FILE parameter must be
present.

Default: NO_LIST. LIST writes to standard
output every Adaname appended to the system file,

Displays a diagnostic if a current program library has not
been specified.

Displays a diagnostic if the Adaname does not include a
revision number.

Displays a diagnostic if the Container has not been
archived.

Displays a diagnostic if any node named in list 2 is not a
text file.

UNARCHIVE (ADANAME=>my prog.body(3))
—- The name of the Container "my_prog.body(3)
-~ is sent to the ALS for subsequent unarchiving.

UNARCHIVE (FILE=>UNARCHIVE)

- The names of the Containers listed in the text file
- "unarchive" in the user's directory are sent to the
-=- ALS for subsequent unarchiving.

70-83

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION LNKMCF

NAME: LNKMCF - ALS MCF linker

FUNCTION: Bind multiple Containers representing machine
text into a single Container by partial or full linking

FORMAT: LNKMCF (main_name,prog_lib,output_name(,UNITLISTz>file name]
[,OPT=>option_list])

PARAMETER DESCRIPTION:

main_name Either the name of the main subprogram or the
keyword NULL indicating that there is no main
subprogram. If a subprogram name is given, the
linker will normally link that subprogram and
any other units in the same program library
that are directly or indirectly referenced in
one of its WITH or SEPARATE clauses. This can
be altered through the use of the NO_SEARCH

/ option.

prog_lib Name of the program library where all of the
input Containers will come from and where the new
linked output Container will be placed.

output_name Name of the new linked Container. This name
must follow the Ada naming rules for compilation
units.

file name bName of a file containing a list of

Containers to be linked in addition to the main
subprogram. If main_name is NULL, file_name is
required.

option_list

SYMBOLS Provide a symbol definition listing, if a
Container is produced. Default: NO_SYMBOLS

LOCAL_SYMBOLS If a symbol-definition listing is produced,
include names local to library package bodies.
Default: NO_LOCAL SYMBOLS, means to include
only names which are externally visible.

UNITS Provide a units listing. Default: UNITS.

SEARCH Linker will automatically follow “he WITH and
SEPARATE clauses to find all of the units
in the program library that are referenced
from the designated starting point units.
All of the referenced units will be linked

70-84

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

into the output Container. If NO_SEARCH

is specified only the starting point
Containers and the runtime routines
referenced by the Containers are included
in the linked output. The SEARCH procedure
will take the first occurrence of a unit.
Default: SEARCH

DISPOSITION:
IN Not used
ouT Listing except for the summary and diagnostics
MSG Summary listing and diagnostics
RSTRING Not used
RSTATUS See Appendix 80
NOTES:

1. FAILS if the program library does not exist

2. FAILS if any of the containers to be linked do not exist

EXAMPLES:
LNKMCF (main_prog ,my_lib, new_prog, OPT=> NO_UNITS)

— links main prog and any other units in my_ lib that it
—— references into the new Container - new_prog

-~ additionally - no units listing is produced

LNKMCF (NULL, my_lib, partial prog, UNITLIST=>units file)
— links those units named in units file and any other units
-~ in my_lib that are referenced by any of those units

— the result goes into the Container - partial_ prog

LNKMCF (main_prog, my_lib, new_prog, UNITLIST:)unit;_file,
OPT=> NO_SEARCH)

— links main_prog and those units named in unit_file exactly
-- the result is placed into Container new_prog

70-85

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-400
1 November 1983

ALS COMMAND DESCRIPTION LNKVAX

NAME: LNKVAX - ALS VAX 11/780 linker

FUNCTION: Bind multiple Containers representing machine
text into a single Container by partial or full linking

FORMAT: LNKVAX (main_name,prog_lib,output_name(,UNITLIST=>file name]
(,OPT=>option_list])

PARAMETER DESCRIPTION:

main_name Either the name of the main subprogram or the
keyword NULL indicating that there is no main
subprogram. If a subprogram name is given, the
linker will normally link that subprogram and
any other units in the same program library
that are directly or indirectly referenced in
one of its WITH or SEPARATE clauses. This can
be altered through the use of the NO_SEARCH
option.

prog_lib Name of the program library where all of the
input Containers will come from and where the new
linked output Container will be placed. -

output_name Name of the new linked Container. This name
must -follow the Ada naming rules for compilation
units.

file name Name of a file containing a list of

Containers to be linked in addition to the main
subprogram. If main_name is NULL, file_name is
required.

option list

SYMBOLS Provide a symbol definition listing, if a
Container is produced. Default: NO_SYMBOLS

LOCAL_SYMBOLS If a symbol definition listing is produced,
include names local to library package bodies.
Default: NO_LOCAL_SYMBOLS, means to include
only names which are externally visible.

UNITS Provide a units listing. Default: UNITS.

SEARCH : Linker will automatically follow the WITH and
SEPARATE clauses to find all of the units
in the program library that are referenced
from the designated starting point units.
All of the referenced units will be linked

70-86

'ste or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

DISPOSITION:
IN
ouT
MS3G
RSTRING
RSTATUS

NOTES:

Ada Language System Specification CR-CP-0059-A00
1 November 1983

into the output Container. If NO_SEARCH

is specified only the starting point
Containers and the runtime routines
referenced by the Containers are included
in the linked output. The SEARCH procedure
will take the first occurrence of a unit.
Default: SEARCH

Not used

Listing except for the summary and diagnostics
Summary listing and diagnostics

Not used

See Appendix 80

1. FAILS if the program library does not exist.

2. FAILS if any of the Containers to be linked do not exist.

3. FAILS if any of the Containers to be linked is marked as
unusable or recompilation needed.

4, FAILS if the designated main subprogram does not exist or is

not legal.

5. FAILS if the designated main subprogram is ®"NULL"™ and no
UNITLIST parameter was provided.

6. FAILS if a designated UNITLIST file does not exist.

7. FAILS if the given output Container name is the same as an
existing library unit in the designated program library.

EXAMPLES:

LNKVAX

(main_prog ,my_lib, new_prog, OPT=> NO_UNITS)

— links main_prog and any other units in my_lib that it
-- references into the new Container - new_prog

-= additionally - no units listing is produced

LNKVAX

("NULL", my_lib, partial_prog, UNITLIST=>units_file)

— links those units named in units file and any other units-

70-87

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.*"

- Ada Language System Specification CR-CP-0059-A00
1-November 1983

-- in my_lib that are referenced by any of those units
-~ the result goes into the Container - partial_ prog

'LNKVAX (main_prog, my_lib, new_prog, UNITLIST=>units_file,
OPT=> NO_SEARCH)

— links main_prog and those units named in unit_file exactly
-- the result is placed into Container new_prog

70-88

"Use or disclosure of technicai data and/or computer software
is subject to the restrictions on the cover of this Document."

NAME:

FUNCTION:

FORMAT:

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION LST

LST - List contents or offspring of a node

List data portion of a file or list names of
offspring of a directory or variation header on the
standard output

LST ([node_name][,ATTR=>attr_name][,ASSOC=>assoc_name]
[,OPT=>option_list])

PARAMETER DESCRIPTION:

node_name Name of node to be listed. If omitted,

‘the current working directory is listed.

attr_name Name of one attribute whose value is to be
listed.
assoc_name Name of one association whose references are

to be listed.

option_list

TREE Causes the names of all the nodes in the

subtree to be displayed in indented form.
(The root of the subtree is the node given by
node name.) The data portions of files in
the subtree are not displayed. NO_TREE
means to list the names of only the immediate
offspring. Default: NO_TREE

DISPOSITIONA
IN Not used
ouT Output listing
MSG Confirmation and error messages
RSTRING . Not used
RSTATUS See Appendix 80
NOTES:

If node_name specifies a file, the data portion is listed. If
node_name specifies a directory or variation header, the names
of ofispring are listed. The revision number 1is also 1listed
for those offspring that are files.

70-89

“Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Speclficatlon CR-CP-0059~A00
1 November 1983

2.

-

3.

EXAMPLES:

FAILS if node_name does not exist or access rights forbid read
access.

If the TREE option is specified for 1listing of a file, a
WARNING will be issued. In other respects, the operation will
continue normally.

LST (my_directory)
-- Lists offspring of directory "my_directory".

LST (my_file,ATTR=>read)
-~ Lists the contents of the file "my_ flle" and the "read" attribute.

LST

-- Displays contents of the current working directory.

LST ATTR=>purpose
— Displays contents of the current working directory with
- the values of the purpose attribute.

70-90

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION LSTASS

NAME: LSTASS - List association contents

FUNCTION: Lists the contents of an association on the standard
output

FORMAT: LSTASS (node [,assoc_name])

PARAMETER DESCRIPTION:

node Node for which the association is to be listed
assoc_name Association to be listed
DISPOSITION:
IN Not used
ouT Qutput list of path names (one per line)
MSG Confirmation and diagnostic messages
RSTRING Not used
RSTATUS See Appendix 80
NOTES:

1. If assoc_name is omitted, the names of all associations
possessed by the node are listed. Otherwise, the contents of
the specified association are listed.

2. FAILS if the node does not exist or access is not granted.

3. The references in the association are printed exactly as
stored. Relative pathnames must be interpreted as relative to
the node possessing the association, not as relative to the
CWD.

EXAMPLE:
-- continuing the example from ADDREF, with the CWD being
.landsat .analysis:
LSTASS (signal_analyzer.doc,cross_ref)
-- Will list at least
.landsat.analysis.fft.doc
.landsat .analysis.spectrum.doc

70-91

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION LSTATTR
NAME: LSTATTR - List attribute value

FUNCTION: Lists the value of an attribute on the standard
output

FORMAT: LSTATTR (node [,attr_name])

PARAMETER DESCRIPTION:

node Node for which attribute value is to be listed
attr_name Attribute to be listed
DISPOSITION:
IN Not used
ouT ' Output list (a single line)
MSG Confirmation and diagnostic messages
RSTRING Not used
RSTATUS See Appendix 80
NOTES:

1. If attr_name is omitted, then the names of all attributes of
the node are 1listed. Otherwise, the value of the specified
attribute is listed.

2. FAILS if the node does not exist or access is not granted.

EXAMPLE:
LSTATTR (my_node)

«— lists names of all attributes of my_node

70-92

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION MKDIR
NAME: MKDIR - Make a direclory

FUNCTION: Makes an empty directory
FORMAT: MKDIR (name {,attr _name=>value})

~ PARAMETER DESCRIPTION:

name Name of directory to be created
attr_name Name of attribute to give to directory
value Value for attribute

DISPOSITION:
IN Not used
ouT _ Not used
MSG Confirmation and diagnostic messages
RSTRING Not used
RSTATUS See Appendix 80

NOTES:

1. FAILS if a node with this name already exists.

2. FAILS if the user does not have either append or write access
to the parent node.

3. If the attr_name is KAPSE-controlled, an error diagnostic will
be generated. The node will be created.
EXAMPLE:
MKDIR (my_dir)

-- creates the empty directory named my_dir

70-93

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP-0059-A0Q0
1 November 1983

ALS COMMAND DESCRIPTION MKF ILE
NAME : MKFILE - Make a file

FUNCTION: Makes a file with empty data portion
FORMAT: MKFILE (name {,attr_néme:)value})

PARAMETER DESCRIPTION:

name Name of file to be created
attr_name Name of attribute to give to file
value Value for attribute
DISPOSITION:
IN Not used
ouT Not used ,
MSG Confirmation and diagnostic messages
RSTRING Not used
RSTATUS See Appendix 80

NOTES:
1. If no category attribute is given, defaults to "text".
2. FAILS if a node by this name already exists.

3. FAILS if user has neither append nor write access to parent
node.

4. If the specified attr_name is KAPSE-controlled, an error
diagnostic will be generated. The node will be created.

5. FAILS if a revison nubmer is specified in the file name.

EXAMPLE:

MKFILE (my_dir.new_file,categoryz>source,purpose=z>"simple example
file™)

-~ make a file called "new_file" in "my dir",

- give it a category attribute of "source", and
-- a purpose attribute of "simple example file"

T0-94

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR=CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION MKVAR
NAME: MKVAR - Make a variation set

FUNCTION: Makes an empty variation set (header with no offspring)
FORMAT: MKVAR (name {,attr_names>value})

PARAMETER DESCRIPTION:

name ' Name of the new variation set.
attr_name Name of attribute to give to variation set
value ‘Value for attribute
DISPOSITION:
IN) Not used
ouT Not used
MSG Confirmation and message output
RSTRING Not used
RSTATUS See Appendix 80
NOTES: |

1. FAILS if a node by this name already exists.

2. FAILS if the user does not have either append or write access
to the parent node.

3. If the specified attr_name is KAPSE-controlled, an error
diagnostic will be generated. The node will be created.
EXAMPLE:
MKVAR (my_node)

-- creates my node as an empty variation set

70-95

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION PRINT
NAME: PRINT - print file contents

FUNCTION: Print data parts of text files on the system line printer
FORMAT: PRINT ([file_name {,file_name}] {,FILES => file_list})
PARAMETER DESCRIPTION:

file_name A text file containing text to be printed

file_list A text file containing names of files to be
printed, one file name per line.

DISPOSITION:
IN Not used
ouT Not used
MSG Confirmation and error messages
RSTRING Not used
RSTATUS See Appendix 80
NOTES:

1. FAILS if access rights do not grant read permission.

2. FAILS if at least one file_name or one file_list is not
specified.

EXAMPLE(S):
PRINT (this_file, that_file, another_file)

— print this_file, that_file, and another_ file.

70-96

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

NAME:

FUNCTION:

FORMAT:

Ada Language System Specification CR-CP-0059-A00
1 November 1933

ALS COMMAND DESCRIPTION PROFILEVMS

PROFILEVMS - display statistical and frequency data
Display the recorded statistical and frequency analyzer data.

PROFILEVMS (data_list,[,NAMEz=>name_list]
[,FILE=>file list]{,OPT=>option_list])

PARAMETER DESCRIPTION:

data_list A file or an aggregate of files where each file contains

either the recorded Statistical and Frequency Analyzer
" data to be displayed, or a list of files, one file name
per line.

name_list List of the subprogram names for which Statistical and

Frequency Analyzer data should be displayed. If both
name_list and file_list are empty, data are displayed
for all subprograms.

file_list List of files each of which contain subprogram names

(one name per line) for which Statistical and Frequency
Analyzer data should be displayed. If both name_list
and file list are empty, then data for all subprograms
are displayed.

DISPOSITION:
IN Not used
ouT Profile listings

MSG

Diagnostic messages

RSTRING Not used

RSTATUS See Appendix 80

NOTES:

1.

In order to create statistical data, an Ada program must be
exported with the STAT option (see Section 40.1.1), and executed
with the statistical_data_file name specified (see Section
uo' 1.2) L]

In order to create frequency data, an Ada program must be
compiled with the FREQUENCY option (see Section 3.7.1.1.1.3),
exported with the FREQUENCY option (see Section 40.1.1), and
executed with the frequency data_file_name specified (see Section
40.1.2).

70-97

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

3. Data are displayed on a subprogram basis, i.e. all counts within
each subprogram are summed.
EXAMPLE(S):
PROFILEVMS (data, NAME=>my prog, OPT=>BLOCKS)

- displays a profile analysis of the
-- data in data for the programs in my_prog

70-98

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

NAME: Q

FUNCTION: S

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION QHELP

HELP - Quick Help

upplies information from the HELP database.

FORMAT: QHELP (subject)

PARAMETER D
subject
DISPOSITION
IN
ouT
MSG
RSTRING
RSTATUS

NOTES:

2.

‘4.

EXAMPLES:

QHELP
-= Prin

QHELP (
— Prin

ESCRIPTION:
subject for which information should be supplied.
‘Not used
Explanatory text
Confirmation and diagnostic messages
Not used

See Appendix 80

QHELP extract a single piece of information from the HELP
database. It is intended for quick reference. The HELP tool
also supplies information from the HELP database. HELP allows
the user to interactively explore the database and is intended
to provide more extensive information.

The subject parameter can be either a main subject or a
subtopic of a subject or another subtopic. The subject name is
simply the pathname of the subject or subtopic relative to the
HELP database root. for example, the subject names LIB and
LIB.ACQUIRE would reference the main subject LIB and its
subtopic ACQUIRE respectively. '

If the subject is a tool, the command format of the tool is
provided.’ Information about the subject is always supplied.

FAILS if the subject does not exist.

(LIB)
ts information about LIB to st .andard output.

LIB.ACQUIRE)
ts information about the subtopic LIB.ACQUIRE.
70-99

"Use or disclosure of technical data and/or éomputer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION RECEIVE
NAME: RECEIVE - Receive external subtree from tape

FUNCTION: Read a new subtree from tape as written by the
TRANSMIT tool.

FORMAT: RECEIVE (volume_name,path_name[,NAMEz>search_name]
{,0PT=>option_list])

PARAMETER DESCRIPTION:

volume_name: An identifier which must match the tape volume
label before reading can take place. It has
the form of an Ada identifier limited in length
to six characters, and containing only digits and
upper-case alphabetic characters.

path_name: If this parameter names a directory or a
variation header, the node must not exist in the
database. It is created by the tool and is the
root of the new subtree. If this parameter names
a file without an explicit revision number, then
the latest revision on the tape will be written
into the ALS database, if that revision does not
already exist in the database. If this parameter
names a file with an explicit revision number,
that single revision will be written into the ALS
database if it exists on the tape and does not
exist in the database. If this parameter names a
file with a wildcard revision, then all revisions
which exist on the tape and do not exist in the
database will be written into the database.

search_name: This is the external identifier assigned to the
subtree by the NAME parameter of the TRANSMIT
tool. If the NAME parameter is present in the
RECEIVE parameter list, the tape is searched for
a subtree with the specified external name. If
the NAME parameter is absent, the subtree to be
read is the first one on the tape.

option list:
LIST Default: NO_LIST. LIST writes to standard output
the name of every node read from tape.
WARNINGS Default: WARNINGS. WARNINGS produces a

diasnostic message for each received node whose
availability attribute does not have the value
on_line. NO_WARNINGS suppresses these diagnostic
messages.,

70-100

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

DISPOSITION:
IN Not used
ouT Optional LIST output
MSG Confirmation and diagnostic messages
RSTRING Not used
RSTATUS _ See Appendix 80
NOTES:

1. FAILS if path name exists.

2. FAILS if NAME parameter is present and specified search name is
not found on the tape.

3. FAILS if user does not have write or append access to directory
containing path name.

4. FAILS if volume_name does not match the tape volume label.
5. If a revision already exists in the ALS database, it will not
be overwritten from the tape.
EXAMPLES:
RECEIVE (MYTAPE,interpreter ,NAME=z>interp_ 781205)
-- Searches tape volume named MYTAPE for a subtree
-- With the external name interp 781205.

-- Creates the node INTERPRETER in the user's CWD,
-- which becomes the root of the subtree being received.

70-101

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION RENAME

NAME: RENAME - Rename a node

FUNCTION: Changes the name of a node, possibly moving it to
a new directory

FORMAT: RENAME (old_name,new_name)

PARAMETER DESCRIPTION: .

old name ‘ Pathame of -the node to be RENAMEd
new_name New name of the node |
DISPOSITION: |
IN Not used
outT - Not used
MSG Confirmation and'error messages
RSTRING Not used
RSTATUS See Appendix 80
NOTES:

1. FAILS if new_name already exists, and either the old _name or

the new_name do not refer to files.
2. FAILS if the old_name does not exist
3. FAILS if user lacks WRITE access to source directory.

4, FAILS if user lacks WRITE or APPEND access to destination
" directory.)

" 5. FAILS if new_name includes a revison number.

6. FAILS if old_name includes the "*" index, and new_name already

exists.

T. FAILS if oldname is a single revision and its revision set is
shared.

EXAMPLE:

RENAME (my_node, my_new_node)

70-102

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983
-- changes the name of the my_node to my_new_node
RENAME (my_node(2),my_new_node)
- changes the name of the second revision of my node to be
-- the latest revision of my_new_node. A new revision of
— my_new_node is created if either the revision set did not
-- previously exist, or the latest revision is frozen, or
-— has a non-zero derivation count.

RENAME (my_node(*),my_new_node)

-- Moves the entire revision set my node to the
-- new revision set my_new_node.

70-103

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November 1983
ALS COMMAND DESCRIPTION REVISE
NAME: REVISE - Create a new revision of a file

FUNCTION: Create a new revision of a file with the data portion
of the new revision being initialized to a copy of the
data portion of the specified revision.

FORMAT: REVISE (file_name)

PARAMETER DESCRIPTION:
file_name Name of the file to be revised. If no revision is
specified, the data from the latest revision is
copied to make the new revision. Otherwise, the
specified revision is used.
DISPOSITION:
IN Not used
ouT Not used
MSG Confirmation and error messages
RSTRING Not used
RSTATUS See Appendix 80
NOTES:

EXAMPLES:

REVISE

FAILS if name does not refer to an ALS file.
FAILS if user does not have write access to the file.

FAILS if the specified revision does not exist.

This command causes the previous revision to be frozen,

(proj_dir.my_prog)

-- given that there are five existing revisions of my_prog, this
— command adds a 6th revision of the file, proj_dir.my_prog,
-- having the same data portion as the 5th revision.

REVISE

(oroj_dir.my_prog(1))

-~ given that there are five existing revisions of my_prog, this
- command creates Revision 6 with the data from Revision 1.

T70-104

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

NAME:

Ada Language System Specification CR-CP-0059-A00

ALS COMMAND DESCRIPTION

RUNOFF - DEC¥* Standard Runoff Text Formatter

FUNCTION: Documentation aid that does justification,

FORMAT:

page formatting and other text manipulations.

RUNOFF (in_file,out_file [,QUAL => qual_string]
[, CONTENTS=>binary_toc]
(,INDEX=>binary_index])

PARAMETER DESCRIPTION:

in_file Name of the input file.

out_file

qual_string

binary_toc

binary_index

1 November 1983

RUNOFF

Name of the output file containing the reformatted

text. A file will be created if it does not

exist.
to the VMS RUNOFF invocation.

table of contents is to be written.
construct is equivalent to the

String of command qualifiers (switches) to append

Name of the VAX/VMS file into which the binary

This

/CONTENTS:binary_toc qualifier. The

<KVMS>>... notation must be used.

Name of the VAX/VMS file into which the binary
index is to be written. This construct is

equivalent to the /INDEX:binary_index qualifier.
The <KVMS>>... notation must be used.

DISPOSITION:
IN Not used.
ouT Not used.
MSG Confirmation and diagnostics not generated
directly by RUNOFF,
RSTRING Not used.
RSTATUS See Appendix 80

#Digital Equipment Corporation, Maynard, Mass.

70-105

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00

1 November

NOTES:

7.

9.

EXAMPLE(S):

1983

FAILS if in_file does not exist, cannot be read, or is not a
file.

If any output file does not exist, it is created. To do this,
the parent directory must exist and be writable.

FAILS if any output exists and cannot be written.

File specifications appearing in the qual string are VMS file
specifications, not ALS node names. The use of <<KVMS>> is not
appropriate in this context.

The input to RUNOFF is described in the DEC Standard Runoff
(DSR) User's Guide (2.2). Input to the ALS RUNOFF is the same,
except for the .REQUIRES command which will be replaced by a
set of lines as follows:

.!SYMBOL <user_defined_name> <pathname>
.require "<user defined name>:"

where <user_defined name> must be an alphanumeric string of up
to sixty-three, case-insensitive characters which is unique
within the entire text being runoff. The <pathname> is an ALS
pathname referring to a text file.

FAILS if an ALS file referenced indirectly in a RUNOFF
.REQUIRES command using the conventions specified in 5 cannot
be found or cannot be read.

The table of contents and indexing functions of RUNOFF are
supported in conjunction with the ALS TOC and TCX commands
which correspond to the VAX/VMS utilities of the same names.
The CONTENTS and INDEX optional parameters should be used
instead of the /CONTENTS and /INDEX qualifiers.

FAILS if the binary TOC file specified is NOT a VAX/VMS file
specification.

FAILS if the binary index file specified is NOT a VAX/VMS file
specification.

RUNOFF (my_file, new_file)
—- Invokes DEC* Standard Runoff Text Formatter to take the file
— my_file and produce the formatted file new_file.

RUNOFF (my_file, new_file, CONTENIS=>"<<VMS>>tocfile.toc")
-- Invokes DEC* Standard Runoff Text Formatter to take the file
-- my_file and produce the formatted file new_file.

70-106

"Use or disciosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

-- In addition, the VAX/VMS binary table of contents file
-- tocfile.toc is generated.

RUNOFF (my_file, <<VMS>>newfile.mem, QUAL=>"/right:20")

-=- Invokes DEC* Standard Runoff Text Formatter to take the file
-- my_file and produce the VAX/VMS file newfile.mem. In

-~ addition, the qualifier /right:20 is to be used in the
invocation.

70-107

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR=-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION SHARE
NAME: SHARE - share a node
FUNCTION: Adds an existing node as an offspring of some other node,
thereby sharing it (see Appendix 50 for a full description
of node sharing)
FORMAT: SHARE (old name,new_name)
PARAMETER DESCRIPTION:
old_name Existing name of the node to be SHAREd
new_name New name of the node to be SHAREd
DISPOSITION:
IN Not used
ouT Not used
MSG Confirmation and error messages
RSTRING Not used
RSTATUS See Appendix 80
NOTES:

1. FAILS if old_name does not exist.

2. FAILS if name given by new_name already exists

3. FAILS if user lacks READ access for the directory containing
the file named by <old_name>.

4, FAILS if user lacks WRITE or APPEND access for the directory
containing the file named by <new_name>.

5. FAILS if oldname or new name specify a revision index other
than n#n, Since files are always shared as entire revision
sets, the "#" jis optional.

EXAMPLE:
SHARE (engine_control.revolution_sensor.source, rev_src)

- creates an alias in CWD for a long file name

70-108

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0053-A00
1 November 1983

ALS COMMAND DESCRIPTION SHOW SUBS
NAME: SHOW_SUBS. - Show currently defined substitutors and values

FUNCTION: Display the currently defined substitutors and their
values on the standard output

FORMAT: SHOW_SUBS ([OPT=>option_list])

PARAMETER DESCRIPTION:

option_list

LOCALS - Display the local substitutors.

GLOBALS - Display the global substitutors.

The default will show both local and global substitutors.

DISPOSITION:

IN

ouT
MSG
RSTRING
RSTATUS

NOTES:

Not used

Table of names and values
Confirmation and error messages
Not used

See Appendix 80

Substitutors are typed in alphabetical order.

EXAMPLE:

SHOW_SUBS

ARGS
CONFIRM
CSTATUS
DOC

0

off
ok
manual

-- typed by user

-- typed by SHOW_SUBS

-- a user-=defined substitutor

70-109

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
"1 November 1983 ’

ALS COMMAND DESCRIPTION STUBGEN
NAME: STUBGEN - Stub Generator

"FUNCTION: Generate Ada source code for a library package body or
subprogram body, given a unit which is its declaration; or for
a subunit package or subprogram body, given a unit which
contains its body stub.

FORMAT: STUBGEN (name, prog_lib, output_name [, unit_name]
[, OPT=>option_list])

PARAMETER DESCRIPTION:

name ‘Name of the compilation unit which is the
declaration, or which contains its body stub.

prog_lib Name of the program library where the
Container for the compilation unit is stored.

_output_name Pathname of the output text file.

unit name The name of the unit to be stubbed.

This argument is supplied if the unit to be
stubbed is a subunit.

option list
PRINT The generated stub contains calls to Text_IO
to print out the name of the subprogram.
Default: PRINT,
DISPOSITION:
IN Not used
OUT‘ Not used
MSG Confirmation and diagnostics messages
RSTRING Not used
RSTATUS See Appendix 80
NOTES:

1. Fails if program library does not exist.

2. Fails if name s not found in program libr~ry.

70-110

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

7.

Ada Language System Specification CR-CP-0059-A00
1 November 1983

Fails if declaration or specification of unit name is not found
in the Container,

Fails if access controls prohibit output of text file.

Fails if any subprogram being stubbed is a function which returns
a task or private value, or a record or array containing such
valyes, a return statement is made without a return value. If a
function returns a record type with discriminants, an initial
value is given to the discriminants.

The stub contains initialization of all output parameters. In
the case of task, limited, or private types, or record or array
components of task, private, or limited types, an assignment is
made without a value. If a parameter is a record type with

discriminants, no assignment is made.

FAILS if the unit to be stubbed contains errors.

70=-111

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION TCX

NAME: TCX - Index Generator

FUNCTION: Index generator to be used in conjunction with
RUNOFF. This is equivalent to the VAX/VMS
TCX utility.

FORMAT: TCX (in_file,out_file)
PARAMETER DESCRIPTION:

in_file Name of the input file. This should be a binary
‘index file produced by RUNOFF and stored in VMS.
The <<KVM3>> notation must be used.

out_file Name of the output file. A file will be created
. if it does not exist. This file is equivalent to
the .RNX file. It can be input to RUNOFF, or
inserted into other RUNOFF input by use of

.REQUIRES.
DISPOSITION:
IN Not used.
ouT Not used.
MSG Confirmation and diagnostics not generated
directly by TCX.
RSTRING Not used.
RSTATUS See Appendix 80
NOTES:

1. FAILS if in_file does not exist, cannot be read, is not a file,
or is not a VAX/VMS file specification.

2. If out_file does not exist, it is created. To do this, the
parent directory must exist and be writable.

3. FAILS if out_file exists and cannot be written.

70-112

- "Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1883

ALS COMMAND DESCRIPTION . TIME

NAME: TIME - Display the TIME

" FUNCTION: Displays the current time in the format hh:mm:ss.fff
with zeros not suppressed, where:

hh is the hour number using a 2i4-hour clock
mm is the minute reading

ss 1is the second reading

fff is the fractional seconds

FORMAT: TIME (OPT=>option_list)

PARAMETER DESCRIPTION:

option_list

DISPLAY Causes the time to be displayed on the standard

output; NO_DISPLAY causes the time to be
returned via RSTRING; Default: DISPLAY

DISPOSITION:
IN Not used
ouT Time string unless NO_DISPLAY is specified
MSG Confirmation
RSTRING Time if NO_DISPLAY is specified
RSTATUS See Appendix 80
NOTES:

EXAMPLE(S):

TIME
18:27:3

TIME (O
echo "#

14:27:56,.890

The TIME is obtained from the host operating system. There is
no way to guarantee that the clock is correct.

Note that the precision of the fractional portion of the
current time is host dependent.

-= typed by user
3.457 -- typed by the TIME tool
PT=>no display) typed by user

RSTRING" typed by user

typed by the echo tool

© T0-113
"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR-CP-0059-A00
1 November 1983

" ALS COMMAND DESCRIPTION ToC

-

NAME: TOC - Table of Contents Generator

FUNCTION: Table of contents generator to be used in
conjunction with RUNOFF. This is equivalent
to the VAX/VMS TOC utility.

FORMAT: TOC (in_file,out_file)
PARAMETER DESCRIPTION:

in_file Name of the input file. This should be a binary
table of contents file produced by RUNOFF and
stored in VMS. The <<KVMS>> notation must be
used.

out_file Name of the output file. A file will be created
if it does not exist. This file is equivalent to
the .RNT file. It can be input to RUNOFF, or

/ ~ inserted into other RUNOFF input by use of
.REQUIRES.
DISPOSITION:
IN Not used.’
ouT Not used.
MSG Confirmation and diagnostics not generated

directly by TOC.

RSTRING Not used.
RSTATUS See Appendix 80
NOTES:

1. FAILS if in _file does not exist, cannot be read, is not a file,
or is not a VAX/VMS file specification.

2. If out_file does not exist, it is created. To do this, the
parent directory must exist and be writable.

3. FAILS if out_file exists and cannot be written.

Id

70-114

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Language System Specification CR=CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION , TRANSMIT
NAME: TRANSMIT - Write subtree to tape

FUNCTION: Write to tape the indicated subtree in a format
receivable by the RECEIVE tool on an ALS host.

FORMAT: TRANSMIT (volume_ name,path_name[,NAME=>search_name]
[,OPT=>option_list])

PARAMETER DESCRIPTION:

volume_name An identifier which must match the tape volume
label before writing can take place. It has the
form of an Ada identifier limited in length to
six characters, and containing only digits and
upper-case alphabetic characters.

path_name The root node of the subtree to be written.
Both owned and shared offspring nodes are
written. Shared nodes within the subtree
are written only once. If the availability
attribute of any transmitted node does not
have the value on_line, the node is written
as it is on disk. If this parameter names a
file without an explicit revision number,
only the latest revision will be transmitted.
If an explicit revision number is given, only
that revision will be transmitted. If a
wildcard revision is given, all existing
revisions will be transmitted.

search_name The external identifier which will be given
to the subtree on tape if this parameter is
present. It is employed by the NAME parameter
of the RECEIVE tool and bears no necessary
relationship to any name in the existing ALS

database.
option list

APPEND Default: APPEND. NO_APPEND rewinds the tape
before writing. APPEND appends information to
end of tape.

LIST Default: NO_LIST. LIST writes to standard
output the name of every node transmitted.

WARNINGS Default: WARNINGS. WARNINGS produces a

diagnostic message for each transmitted node
whose availability attribute does not have the
value on_line. NO _WARNINGS suppresses these

5T T0-115

"Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document.”

Ada Languag
1 November

DISPOSITION
B
ouT
MSG
RSTRING
RSTATUS

NOTES:

EXAMPLE:

e System Specification CR-CP-0059-A00
1983
-diagnostic messages.
Not used
Optional LIST output.
Confirmation and diagnostic messages
Not used

See Appendix 80

FAILS if subtree does not exist.

FAILS if the user does not have read access to any node of the
subtree.

FAILS if volume_name does not match tape volume label.

TRANSMIT (TWB,synthesizer ,NAMEz>prog_8012)

-- Prom
-- reco
- the

pts the user to mount tape TWB and positions to the end of
rded information. Writes ALS subtree named synthesizer under
user's CWD, giving it the external identifier proj_8012.

o

R TSN A L L
“Use or disclosure of technical data and/or computer software
is subject to the restrictions on the cover of this Document."

Ada Languag
1 November
DISPOSITION
IN
ouT
MSG
RSTRING
RSTATUS
NOTES:

1.

EXAMPLE:
UNARCHI
-- File

- of r
- to t

e System Specification CR-CP-0059-A00
1983 -

Not used

Optional LIST output

Confirmation and diagnostic messages.
Not used

See Appendix 80

A diagnostic message is produced for any pathname of iist_1 or
list 2 or for any node named in list_2 which is not a file to
which the user has read access.

A diagnostic message is produced for each node specified for
rollin which is in a directory to which the user dces not have \
read access.) s ‘

VE (FILE=>pre_config c)

pre_config ¢ is a file of pathnames, one per line,
olled-out file revisions. These names are appended
he to-be-rolled-in file. .

70-118
SF el
"Use or disclosure of technical data and/or computer software

is subject to the restrictions on the cover of this Document.”

Ada Language System Specification CR-CP-0059-A00
1 November 1983

ALS COMMAND DESCRIPTION , . UNARCHIVE
NAME: UNARCHIVE - Unarchive a set of file revisions

FUNCTION: Send é list of names of nodes to be rolled in from
archive tape(s) to a protected file which will
subsequently be used as input to a rollin operation.

FORMAT: UNARCHIVE ([NODE=>1list 1](,FILE=>list 2][,0PT=>option_list])

PARAMETER DESCRIPTION:
list_1

list_2:

option_list

LIST

The syntax of both list_1 and list 2 is a list of

pathnames. At least one NODE or FILE parameter
must be present. Execution of the UNARCHIVE tool
is a request by the user to the system operator(s)
that the node(s) specified in the parameter list
be rolled in. Each node 'specified for rollin
whether by the NODE or FILE form, is a specific
revision of a frozen file node which has been
rolled out. The NODE form specifies directly, in
the parameter, one or more nodes for rollin, The
FILE form names one or more ALS text files each of
which contains a list of pathnames for rollin, one
per line.

The set of all nodes to be rolled in is appended
to a system file of to-be-rolled-in pathnames
which is intended to be subsequently referenced by
an operator in a rollin operation. In addition to
transmitting the list, the UNARCHIVE tool -checks
that each node specified for rollin is a file node
whose availability attribute has the value
off_line. Pathnames found to be invalid by these
checks are not sent to the to-be-rolled-in file;
instead, appropriate diagnostic messages are
written to the message file.

Default: NO LIST. LIST writes to standard output
every pathname appended to the to-be-rolled-in
file.

70-117

'qu or disciosure of technicsl data and/or computer software
is subject to the restrictions on the cover of this Document."

