SO~ =y

MICROSYSTEaems

Software
Reference Library

-1he MacAdvantage™:
UCSD Pascal’

Thank you for your purchase of The MacAdvantage: UCSD
Pascal. You have selected a precision engineered product that
will allow you to write sophisticated applications on your
Macintosh. But before you start, please read the following:

REGISTRATION CARD. Please complete and return the
enclosed registration card immediately. Not only will it serve
as your "key" to our Customer Support Department, but it
will also allow us to keep you informed of new releases and
other information that may interest you. '

UPGRADES. We are continually making our software
better by adding new features and by correcting problems.
Customers who return their registration card will be eligible
to upgrade their software for a nominal charge to cover our
costs. You will be notified by mail when new releases are
available.

INSIDE MACINTOSH. Although we have documented our
software in detail, we highly recommend that you obtain a
copy of Inside Macintosh for more information on developing
Macintosh applications. Inside Macintosh is available
through:

Apple Computer, Inc.

467 Saratoga Avenue; Suite 621

San Jose, CA 95129 :

APPLICATIONS. If you plan to distribute applications
that you write using this product, you will be pleased to know
that we offer several economical licensing plans. . Please
contact our Customer Sales Department at (619) 451—1230
for more information. Additionally, we may be interested in
publishing your application through our distribution channels.
If you .are interested in having SofTech Microsystems market
your application, please contact our Applications Product
Marketing Manager.
‘BofTech Microsystems, Inc.

The MacAdvantage:
UCSD Pascal

SofTech Microsystems, Inc.
San Diego, California

1-182-MA

Copyright © 1984 by SofTech Microsystems, Inc.

All rights reserved. No part of this work may be reproduced in
any form or by any means or used to make a derivative work
(such as a translation, transformation, or adaptation) without the
written permission of SofTech Microsystems, Inc.

Finder, System, Imagewriter, RMaker and Editor are copyrighted
programs of Apple Computer, Inc. ‘that are licensed to SofTech
Microsystems, Inc. +to distribute for use only in combination with
The MacAdvantage: UCSD Pascal. Apple software shall not be
copied onto another diskette {except for archive purposes) or into
memory unless as part of the execution of The MacAdvantage:
UCSD Pascal. When The MacAdvantage: UCSD Pascal has
completed execution, Apple software shall not be used by any
other program.

Portions of this manual relating to Editor and RMaker have been
reproduced with permission of Apple Computer, Inc.

Apple is a registered trademark of Apple Computer, Inc.
Macintosh is a trademark licensed to Apple Computer, Inc. Lisa
is a registered trademark of Apple Computer, Inc.

UCSD and UCSD Pascal are registered trademarks of The
Regents of the University of California. Use thereof in
conjunction with any goods or services is authorized by specific
license only, and any unauthorized use is contrary to the laws of
the State of California.

The MacAdvantage is a trademark of SofTech Microsystems, Inc.

Printed in the United States of America.

Disclaimer

This document and the software it describes are subject to change
without notice. No warranty expressed or 1mplled covers their
use. Neither the manufacturer nor the seller is responsible or
liable for any consequences of their use.

APPLE COMPUTER, INC. MAKES NO WARRANTIES,
EITHER EXPRESS OR IMPLIED, REGARDING THE
ENCLOSED COMPUTER SOFTWARE PACKAGE, ITS
MERCHANTABILITY OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED
WARRANTIES IS NOT PERMITTED BY SOME STATES.
THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS
WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL
RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU
MAY HAVE WHICH VARY FROM STATE TO STATE.

PREFACE

Congratulations on your purchase of UCSD Pascal for your
Apple Macintosh computer!

The discussions in this manual assume that you are already
familiar with your Macintosh. If you are not, we suggest that
you first read the introductory chapters of Macintosh, your
owner’s guide.

The product you have purchased contains a UCSD Pascal
compiler and a group of program development tools. The tools
include a program and text file editor, a resource compiler, a
symbolic debugger, a librarian utility, a runtime option
configuration utility, and a set of interface units to the Macintosh

ROM.

With these tools, you can build sophisticated application
programs directly on a Macintosh with 128K or 512K of memory.
The Macintosh interface units give you access to virtually all of
the Macintosh ROM routines. Thus, you can write programs
that make use of overlapping windows, a menu bar and desk
accessories. We have included an example program that shows
you how to access some of these features.

The Pascal language supported by the compiler is an extended
version of UCSD Pascal designed for access to the Macintosh
ROM. The new language features include:

e Support for 32—bit integers (type integer2).

e A new setlength intrinsic that makes it easier to set the length
of a string.

1200301:00B : v

PREFACE

e New bit manipulation intrinsics: band, bor, bxor, shiftleft,

and shiftright.

e An enhanced sizeof intrinsic that allows you to specify the
units that sizeof counts in.

" e Pointer intrinsics that help you to make use of 32-bit
absolute addresses used by the Macintosh ROM: adr, pointer,
offset, ptrinc, absadr, reladr, absmove, derefhnd, and locate.

e A new type of external procedure that generates an in—line
call to a Macintosh ROM routine.

UCSD Pascal programs are supported by a sophisticated runtime
package that eliminates many of the worries associated with
writing large programs. The runtime package

e provides simplified I/O through the Pascal I/O intrinsics.

o supports dynamic memory management through the Pascal
intrinsics new and dispose.

e handles dynamic segment overlays automatically.

vi - 1200301:00B

TABLE OF CONTENTS

GETTING STARTED ittt it it iieie s 1-1
HARDWARE REQUIREMENTS 1-1
DISK.CONTENTS ... ittt iiin s 1-2
BACKINGUPDISKSottt iiceii i 1—-4
RUNNING APROGRAMciiiiiiiiinnn.n. 1—4
ORGANIZATION OF THE MANUAL 1-7

GENERAL OPERATIONSttt 2-1
CREATINGPROGRAMScoiiiiiiieiiicnnnns 2-2
RUNNING PROGRAMS ittt it iieniennns 2-9
USINGEXECUTIVEoiiiiiiiiiiiiinnnnns 2—-25
ACCESSINGFILESoiiviiiiiiiennniraennnns 2-28
BUILDING AN APPLICATIONcvl.. 2-38

EDITOR ..ottt ittt it ciininonaeann 3-1
USINGTHEEDITORccoiiiiiiiiiiiiiinenonnnn 3-2
SELECTING TEXTottt iiiiiiiiiannnenes 3-6
SCROLLING AND MOVING THE DISPLAY 3-8
THEFILEMENU iiiiiiiiiiiiiiennn., 3-10
THEEDITMENU0tiiiiiiiiienininnnnnnnn 3-11
THESEARCHMENUoiiiiiiiiiiiiinennen. 3—14
THEFORMAT MENUoiiiiiiiiiionnnnennss 3-16
THEFONTMENUoiiiiiiiiiiiiciienneonns 3—-17
THESIZEMENUiiiiiiiiniiininiiornennns 3—18

PASCALLANGUAGEciiiiiiiiiiiiiiiiiasncnanns 4-1
OVERVIEW iiiiiiiiitineiricnonneansoncons 4-1
USING THE HANDBOOK e eeeeeiieaaa 4—-4
INTEGERZDATATYPEo, 4-8
PASCAL INTRINSICSiviieiiiiiiiienennnnn 4-14
IN-LINE PROCEDURES AND FUNCTIONS 4-25

SELECTIVE USES DECLARATIONS 4-26

TABLE OF CONTENTS

CONFORMANT ARRAYS iiviiiiiiiiiee.. 4-30
COMPILER OPTIONScciiiiieinen, 4-36
CONDITIONAL COMPILATIONooivinnnn 4—43
MACINTOSHINTERFACEcoiiiiiiiiieinennen 5-1
HOW TO USE THE INTERFACEUNITS 5—3
DATA CONVENTIONS ittt ciiiennenns 5—-7
DIFFERENCES FROM INSIDE MACINTOSH 5—20
SPECIFICTECHNIQUEScoiiiiiiioinnnn, 5—-25
EXAMPLE APPLICATIONoiiiiiiiiinnenn, 5-31
RMAKER ... it ittt e cneencconnanns 6—-1
ABOUTRMAKERt iiiiiiiiinneincnsanns 6—-2
RMAKERINPUTFILESc.iiiiiieiiinionennns 6-2
DEFINED RESOURCE TYPESc..ooviintn. 6—5
CREATING YOUROWNTYPEScovevnen 6—10
USINGRMAKERciiiiiiiiicin i cinenens 6—12
LIBRARIAN ... it it ieievientcnnnnscnnacnss 7-1
USINGTHE LIBRARIAN0ciiiveniiecnennnns 7-2
LIBRARIAN COMMANDSiiiiviiiiiocnnienns 7-4
DEBUGGERttt iiiiiiiiiiienioneeencanennoens 8—-1
GENERAL INFORMATIONoveiiiiiienineinnnnn 8—2
DEBUGGER COMMANDSciiiiviiniannnnnns 87
EXAMPLES OF DEBUGGER USAGE 8—24
PERFORMANCE MONITORccvvviivennnes 8—26
MEMORY MANAGEMENToiivoconcrncncnnanse 9-—1
OVERVIEW ... it iincionnnocnocnsas 9-1
MEMORY ORGANIZATIONiieviieiinonnoonns 92
FAULTHANDLING it it iieiiiiiennansnans 9-—-9
‘RUNTIME SUPPORTLIBRARYcovvennnnnn. 913
P-MACHINE ARCHITECTUREccc0veunnens 10-1
OVERVIEW iiiieiiiiiienococonannnonns 10-1
STACKENVIRONMENTiiiiviveicoonosncs 10-2
CODEFILEFORMATiiiiiiiiiiiioonnonnne 10—-4
CODE SEGMENT ENVIRONMENT 1018

TASK ENVIRONMENTcociiiiiiiiiennnenn 10-20

TABLE OF CONTENTS

FAULTS AND EXECUTION ERRORS 10—24
P-MACHINE REGISTERScoioiieienienrnn 10-31
P—CODE DESCRIPTIONS iiiiiieieinnnenn 10-33
Constant Loadscoviieniiiiiniiiiiienes 10-38
Local Loads and Storescovivienian.., 10-39
Global Loads and Storescoviiviiieieann.. 10—41
Intermediate Loads.and Stores 10—42
Extended Loads and Storesovviieieenn. 10—44
Indirect Loads and Storeso iiiiiiiiiinnn 10—45
Multiple Word Loads and Storesocvvnen.. 10—46
Parameter Copyingcvovueeeeeceeereoanconens 10—48
Byte Load and Store..cciiiiiiiiiiiiiien, 10—49
Packed Field Loads and Storesc.ov0ts 10—49
Structure Indexing and Assignmentccc0.... 10-50
Logical Operators e s e 10-53
Shift Operators......ccovviiiiereernrocacoannns 10-55
Integer Arithmetic.......cccviieievonneronnns 10-57
Unsigned Arithmetic........c.c0viiiiiienereenns 10-63
Real Arithmeticovvieiiiiiiioncennnnennn 10—64
Set Operationscveviiiiiiieiieneeroneeonss 10—-66
Byte Array Comparisonscovvvevococaeeacons 10—69
JUMPS ¢t v vttt it e i i e 10-70
Routine Callsand Returnsoovevevinnnen, 10-72
Concurrency SUPPOrt « o ov v v venceenoencoaesonsos 10-76
String Operationsoccuoeeeereconesscaceasnns 10-77
Operand Type Conversion Operators.............. 10-79
Miscellaneous Instructionscoveeieniennn. 10—-83
STANDARD PROCEDURESc.covevvnee.. 10—87
LONGINTEGERScciiiiiiiiinintnnnnnnns 10-95
The DECOPS Routineccoviiiennneonns 10-99
APPENDICES ..t tiiiiiit ittt iiinicntennnsonnnnns A-1
A: MACINTOSHINTERFACEccivvceniaennn. A-1
A.1 Table of Compile Time Dependencies A-1
A.2 Identifier Cross—Reference List A-3
A.3. Control Manager (ControlMgr).............. A-17
A.4. Desktop Manager (DeskMgr).......ccoovennnn A—20
A.5. Dialog Manager (DialogMgr)covvnennn. A-21
A.6. Event Manager (EventMgr) A—24
A.7. File Manager (FileMgr)c.coeevenennns A-26
A.8. Font Manager (FontMgr)cco0vven.. A-29
A.9. Global Types (MacCore)covovuneen.s A-31

A.10. Global Data (MacData)covvvunnsn A-32

TABLE OF CONTENTS

A.11. Error Codes (MacErrors).........ccoeevnnn. A-33
A.12. Memory Manager (MemoryMgr) A-36
A.13. Menu Manager (MenuMgr)............c..... A-38
A.14. Operating System Types (OsTypes).......... A-41
A.15. Operating System Utilities (OsUtilities)....... A-44
A.16. Package Manager (Packages)............... A—47
A.17. Parameter Block I/O Manager (PBIOMgr). ... A-51
A.18. Print Manager (PrintMgr)...... e A—54
A.19. Printer Driver. (PrintDriver) A-57
A.20. Quickdraw Types (QdTypes).....ocovveennn A-58
A.21. Quickdraw (QuickDraw)...........coven.n. A—-60
A.22. Resource Manager (ResMgr)................ A—-67
A.23. Scrap Manager (ScrapMgr)oviioinen. A-70
A.24. Serial Driver (Serial)c.ccoenns A-71
A.25. Sound Driver (Sound)oivencannan. A-73
A.26. ToolBox Utilities (TBoxUtils)ovun. A-75
A.27. ToolBox Types (TBTypes)....c.ccvvvven... A-717
A.28. Text Edit {(TextEdit)covviennen. A-179
A.29. Window Manager (WindowMegr) A-81
B:ERRORMESSAGES ciivririivrrrcoanancnnn B-1
B.1. Program Startup Errorscccveveeccocnn.. B-1
B.2. Execution Errorscovonvnveconocnoconcan B-2
B3.I/JOEMmoOrs..ooovviiiiiieioeneconnncns ce... B-3
B.4. Syntax Errorsocvvenrvenieronncaccanaaas B-5
C:P-CODETABLESciiiiiiiieinrienrcnnnnns C-1
C.1. Numerical Listingcooniniiennnn.n. C-1
C.2. Alphabetical Listingc.viienin... C—-6
C3.p—Codelndexovoviiiiinnnnninnennnnn C-11

1 :
GETTING STARTED

This chapter gets you started writing UCSD Pascal programs for
your Macintosh. The chapter is organized into the following
sections:

HARDWARE REQUIREMENTS discusses the hardware
components that are required or recommended for effective use of
this product.

DISK CONTENTS details the composition of the disks you
received with this product.

BACKING UP DISKS tells you how to make back up copies of
your master disks.

RUNNING A PROGRAM guides you through the steps of
creating and running a simple UCSD Pascal program.

ORGANIZATION OF THE MANUAL introduces you to the
organization of the remainder of this user manual.

HARDWARE REQUIREMENTS

The product you have purchased is designed to work on the
Macintosh with 128K or 512K bytes of memory and on Lisa
under MacWorks. Programs may operate slightly differently in
different hardware environments, based on memory size. In
particular, when running on a machine with more memory,
programs will tend to run faster and be able to handle more data.

1200301:01B 1-1

GETTING STARTED Chapter 1

Although this product will run on a one drive Macintosh, if you
plan on developing programs that use the Macintosh interface we
strongly suggest that you use two disk drives.

One option of the Debugger allows you to interact with it using
an external terminal attached to the Printer port on the back of
your Macintosh. An external terminal is not necessary for using
the Debugger, but if you have one, it can make debugging easier,
particularly when writing programs which put up windows on the
screen.

DISK CONTENTS

You received two disks when you purchased this product. One of
the disks, labeled UCSD Pascal 1, is a bootable Macintosh disk.
The other disk, labeled UCSD Pascal 2, is not bootable.

The following files are located on UCSD Pascal 1:

e Set Options. Set Options is a utility program that allows
you to set the runtime options of a code file.

e ‘Mac Library. Mac Library is a collection of interface units
that are used by programs that access the Macintosh ROM
routines.

e Compiler. Compiler is the UCSD Pascal compiler.

¢ Editor. Editor is a program and text file editor.

¢ Executive. Executive provides menu style access to your
program development tools.

¢ Pascal Runtime. Pascal Runtime is the runtime support
package for Pascal programs.

e p-—Machine. p—Machine is the virtual machine emulator

that supports running the p—code generated by the UCSD
Pascal compiler.

1—2 1200301:01B

DISK CONTENTS

Empty Program. Empty Program contains the standard
program resources.

Three of the files, Pascal Runtime, p—Machine and Empty
Program, are located within a folder called Pascal Folder.

The fol]o‘wing files are located on UCSD Pascal 2:

RMaker. RMaker is a resource compiler program that allows
you to add your own resource definitions to a program.

Librarian. Librarian is a utility program that allows you to
combine UCSD Pascal units into a single library file.

Debug Runtime. Debug Runtime is a version of Pascal
Runtime that contains the Debugger and performance
monitor.

Errorhandl.CODE. Errorhandl.CODE is a utility unit that

provides various program control functions to the user.

Mac Interface. Mac Interface is a library of code files that
contain the interface to the Macintosh ROM routines.

Grow. Grow is the source to an example UCSD Pascal
program that accesses the Macintosh ROM to handle a menu
bar, windows and desk accessories.

Grow.R. Grow.R is the resource definition file for the Grow
program.

Two of the files, Grow and Grow.R, are located within a folder
called Example Folder.

1200301:01B 1-3

GETTING STARTED Chapter 1

BACKING UP DISKS

You should immediately make a backup copy of the disks that
you received with this product. This will insure that you don’t
accidentally loose any information contained on the disks.

Macintosh, your user’s guide, describes in detail how you make
backup copies of disks on the Macintosh. Here is a summary of
the steps:

1. Insert the disk you want to copy.
2. Insert the disk you want to copy to.

3. Drag the icon of the disk you want to copy to the icon of the
other disk.

If you have a one drive Macintosh it is faster for you to use the
Disk Copy program to make backup copies of your disks.

Once you have made the backup copies, put the copies in a safe
place.

WARNING: You cannot arbitrarily move UCSD Pascal
programs to different volumes and expect them to run. The
names of the two runtime support files are embedded in each
code file. If you move a code file to a different volume, you may
need to update the runtime support file names with the Set
Options utility. See the GENERAL OPERATIONS chapter for
details.

RUNNING A PROGRAM

This section guides you through the steps of compiling and
running a simple Pascal program. Even if you don’t know the
Pascal language, you should be able to follow the steps outlined
here.

1-4 1200301:01B

RUNNING A PROGRAM

Boot up your Macintosh with the UCSD Pascal 1 disk. All of
the operations described below will be done on this disk.

Editing the Program

First you must create a text file to compile. You create a text file
" by using the Editor. - Start the Editor by double—clicking its
icon.

You can probably figure out by yourself how to run the Editor,
based on your knowlege of MacWrite. If you are not familiar
with MacWrite, or if you have trouble using the Editor, refer to
the EDITOR chapter.

Enter the program listed below, or a program of your own
design:

rogram first;
egin

writeln(’hi there’);
reedin;
end.

Now exit the editor, saving what you have typed in a file called
FIRST.

Compiling the Program

The compiler translates the program you have edited into an
executable code file. You start the compiler by double—clicking
its icon. The compiler will ask you four questions:

1. Compile what text? Type FIRST, then press <Return>.

2. To what code file? Press <Return>. The output will be
put in FIRST.CODE, by default.

1200301:01B 1-5

GETTING STARTED Chapter 1

3. Use what resource file? Press <Return>. The compiler
will use the standard resources from the Empty Program file.

4. File for listing? Press <Return>. This disables listing
generation.

If all goes well, the compiler will write something like the
following to your screen:

< Oo>..
TEST
< 2>..

TEST
& lines compiled in 0:00:20, 16 -lines per minute

If the compiler finds a problem in your program, it will generate
a syntax error message. At this point, you should press
<Enter> to exit the compiler, then fix the problem using the
Editor. Check that you typed in the example program exactly
like it appears above, then recompile the program.

Running the Program

If the compiler has run to completion, you will find a file called
FIRST.CODE on your disk. This file contains the Pascal code
generated from your text file by the compiler. Running the
program Is easy—just double—click its icon. If you used the
example program listed above, you should see the words

hi- there

printed to the screen when you run the program. Press
<Return> to terminate the program.

This section showed you how to run a very simple Pascal
program. For more information about compiling and running
programs, refer to the GENERAL OPERATIONS chapter.

1—6 1200301:01B

RUNNING A PROGRAM

ORGANIZATION OF THE MANUAL

This section describes the content of each chapter in the manual
and gives some hints on how to use the manual.

Chapter 2, GENERAL OPERATIONS, discusses how to compile

and run a program and how to develop an application.

Chapter 3, EDITOR, covers how to run the program and text file
editor.

Chapter 4, PASCAL LANGUAGE, is a supplement to The UCSD
Pascal Handbook. It describes the new language features found in
this version of UCSD Pascal.

Chapter 5, MACINTOSH INTERFACE, discusses how to use the
Macintosh interface units to call the Macintosh ROM.

Chapter 6, RMAKER, describes the resource compiler program,
which allows you to add resources to a code file.

Chapter 7, LIBRARIAN, describes the Librarian utility, which
allows you to combine Pascal units into a single library file.

Chapter 8, DEBUGGER, describes the operation of the Pascal
debugger, which allows you to set break points, single step
p—code, and examine and patch memory.

Chapter 9, MEMORY MANAGEMENT, describes the memory
management of this implementation of UCSD Pascal. This
chapter will be useful if you need to understand Pascal’s memory
management in order to write an application program.

Chapter 10, P-MACHINE ARCHITECTURE, describes the
p—code instruction set that is supported by the underlying
p—Machine. You will need to refer to this chapter if you use the
Debugger. ‘

1200301:01B 1-7

GETTING STARTED Chapter 1

Appendix A, MACINTOSH INTERFACE, contains listings of the
Macintosh interface units, and index of interface identifiers and a
table of unit dependencies.

Appendix B, ERROR MESSAGES, lists the error messages that
may be generated by programs and the runtime support package.

Appendix C, P—CODE TABLES, contains numerical and
alphabetical p—code tables. An index is also provided which you
can use to locate the description for a p—code within the

P-MACHINE ARCHITECTURE chapter.

If you are not a Pascal programmer, we suggest that you read the
tutorial section (Part II) of The UCSD Pascal Handbook first.
This will give you a quick introduction the the Pascal language.
You can use some of the example programs to practice editing
and compiling programs on the Macintosh. WARNING: a few
of the programs are not appropriate for this version of UCSD
Pascal.

If you are already a Pascal programmer, start by reading the first
two sections of the GENERAL OPERATIONS chapter. This will
give you the details of compiling and running Pascal programs. .
Next, you should read the EDITOR and PASCAL LANGUAGE
chapters. The UCSD Pascal Handbook will be useful if you are
not familiar with the UCSD dialect of Pascal. You may want to
read the DEBUGGER chapter to learn how to use the Debugger.
Some further secions of the GENERAL OPERATIONS chapter
may be useful.

If you want to write programs that call the Macintosh ROM
routines to do graphics or to display windows and menu bars,
you.must first acquire a copy of the Inside Macintosh manual. As
of this printing, Inside Macintosh is only available in draft form
from Apple. Inside Macintosh gives you the definitions of the
Macintosh ROM routines. You must use Inside Macintosh in
conjunction with the MACINTOSH INTERFACE chapter of this
manual. Also, vou will need to be very familiar with the UCSD
Pascal extensions described in the PASCAL LANGUAGE
chapter.

1—8 1200301:01B

ORGANIZATION OF THE MANUAL

Finally, if you want to build sophisticated applications on the
Macintosh you will need to read the RMAKER chapter and the
later sections of the GENERAL OPERATIONS chapter.

1200301:01B 1-9

GETTING STARTED Chapter 1

1—-10 1200301:01B

2
GENERAL OPERATIONS

This chapter contains information and instructions on using The
MacAdvantage: UCSD Pascal. It explains how to use this
product to create UCSD Pascal programs for your Macintosh.
Your programs can take full advantage of the power of UCSD
Pascal and the Macintosh ROM to provide meaningful solutions
to the kind of applications the Macintosh was designed to solve.

This chapter consists of five sections as follows:
CREATING PROGRAMS instructs you on use of the compiler.

RUNNING PROGRAMS contains the information you need to
take full advantage of the UCSD Pascal runtime environment.

USING EXECUTIVE explains the operation of the Executive
utility which you can use to make your program development
process easier and faster.

ACCESSING FILES describes how your programs can interact
with Macintosh files and serial devices.

BUILDING AN APPLICATION outlines the steps you need to go
through in order to construct a sophisticated Macintosh
application.

1200301:02B 2-1

GENERAL OPERATIONS Chapter 2

CREATING PROGRAMS

This section discusses how to run the UCSD Pascal compiler to
- create programs for your Macintosh. For information on the

UCSD Pascal language, refer to The UCSD Pascal Handbook and
. the PASCAL LANGUAGE chapter.

Using the Compiler

The Compiler takes a text file as input and generates a code file
as output. The code file generated consists of two parts: the data
fork and the resource fork. The data fork contains p—code,
which is executed by a p—Machine emulator. The resource fork
contains information about the runtime environment required by
your program. More information on the resource fork of an
application can be found later in this chapter and in the chapter
RMAKER.

The Compiler will accept for input any standard Macintosh text
file. This file will usually be generated by the Editor supplied
with this compiler, but it could be generated by MacWrite or by
another Pascal program. If you use MacWrite files as input to
the compiler, you must specify that the output file from
MacWrite be stored in "text only" mode.

You start the Compiler by opening its icon:

Compiler

Figure 2—1. Compiler Icon.
Responding To Startup Questions

The Compiler begins by asking four questions to obtain file
names. Either the Macintosh or Pascal I/O conventions for file
names may be used. These conventions are defined in File

2—-2 1200301:02B

CREATING PROGRAMS

Naming Conventions later in this chapter.- The Compiler accepts
only 40 characters of input to each question, so be sure to enter
no more than 40 characters. Entering more than 40 characters
will cause a string overflow runtime error to occur.

The first question asked is:

Compile whet text?

The possible responses to this question are:

e Entering the name of the text file you wish to compile. The
Compiler uses the name exactly as you specify it, including
leading, embedded, and trailing blanks. It does not append
any kind of suffix to the name you specify in order to locate
the file.

e Pressing <Return> or <Enter> <Return> to terminate
the compilation without generating an output code file.

The second question asked is:

To what code file?

You should respond to this question in one of the following ways:

e Entering the name of the code file you wish the compiler to -
create. The Compiler will add a .CODE suffix to the name
you specify. (The suffix is added by the Compiler only as a
safeguard to prevent the accidental destruction of text files.
It is not necessary to maintain the suffix for execution of the
resulting code file.)

e Pressing <Return>. This causes the Compiler to generate
its output to a code file with the same name as the input file
with a .CODE suffix added. If you choose to use this default,
be sure that you did not specify an input text file name longer
than 35 characters.

1200301:02B 2-3

GENERAL OPERATIONS Chapter 2

¢ Pressing <Enter> <Return> to immediately terminate the
compilation.

The third question asked is:

Use what resource file?

This question is asking you to specify a source for the resources
that the Compiler should copy to the output code file. You
should respond to this question in one of the following ways:

e Entering the name of a file that contains the resources you
want copied.

e Pressing <Return>. This directs the Compiler to attempt to
copy the resources from the file Empty Program. (The file
Empty Program must be on the same disk as the Compiler.)
As supplied to you, Empty Program contains the standard set
of resources required by a UCSD Pascal program.

o Pressing <Enter> <Return> to terminate the compilation.

The resource file name you specify should either be Empty
Program or another file known to have valid UCSD Pascal
resources. Such files can be created either with the Compiler or
RMaker. The Compiler will use the resources of the file you
specify, regardless of whether they are valid UCSD Pascal
resources. Should the file you specify not have valid UCSD
Pascal resources, the resultant object code file will be unuseable.
For more information on creating resource files, see the

RMAKER chapter.

If the text file you are compiling is not a program (i.e. you are
compiling one or more units), the standard set of resources in
Empty Program will always be sufficient.

You cannot specify the same name for your resource file source as
you specified for the code file. This means that if you want to
preserve a unique set of resources for your program to be used
-each time it is compiled, these resources will have to be stored in

2—4 1200301:02B

CREATING PROGRAMS

a file which has a different name than that which you are giving
to your program.

The fourth question asked by the Compiler is:

File for listing?

You should respond to this question in one of the following ways:

e Pressing <Return> if you do not want the Compiler to
- generate a listing. '

¢ Entering the name of the file or Macintosh serial device to
which you want the compiled listing written. Unless the first
character of the file name is a period, the suffix .LIST will be
added.

e Pressing <Enter> <Return> to terminate the compilation.

After the Compiler is finished, you may examine or print the
listing file using the Editor. Note, however, that listing files
consume large amounts of disk space. Should the disk containing
the listing file become full during compilation, the Compiler will
abort and both the code and listing files will be lost. A common
listing output file is .BOUT, which directs the listing to the
printer. Other permissable listing output files include the other
serial devices: .AOUT, .CONSOLE, and .DBGTERM; the
characteristics of these files are discussed in Serial Devices later in
this chapter.

NOTE: When using the Apple Imagewriter in normal text mode,
some print lines generated by the Compiler will be longer than
8.5". The extra characters past the end of the page margin will
be over—printed on top of the beginning of the line. To avoid
this, you can change the character pitch selected when the printer
is powered on to ultracondensed. Page 40 of the Imagewriter
User’s Manual describes how to do this.

1200301:02B 2-5

GENERAL OPERATIONS Chapter 2

The $L compiler option can also be used to specify a name for the
listing file.

Evaluating Compiler Progress

While the Compiler is running, it displays a report of its progress
on the screen:

< O coeoencenasncconccns
INITIALI

...........

...................

INITIALI .
MYPROG .

166 lines compilad in 0:00:258, 396 |ines per minute

During the first pass, the Compiler displays the name of each
routine (INITIALI, AROUTINE and MYPROG in this example).
The numbers enclosed by angle brackets, < >, are current line
numbers. Each dot represents one source line compiled.

During the second pass, the names of the segments are displayed
(INITIALI and MYPROG in the example). Here, each dot
represents the compilation of one procedure or function.

You can suppress this output by using the $Q compiler option in
your input textfile.

Syntax Errors

If the Compiler detects an error while compiling a program, it
generates a syntax error. When this happens, the text where the
error occurred is displayed along with an error number and
message. Here is an example:

2—6 1200301:02B

CREATING PROGRAMS

q,r,s: string;
w,x,y: reel {---
Syntax Error 104:Undeclared identifier
Line 7
Type <{space) to continue, <(Enter) to terminate

For each syntax error, a message like the one above is displayed.

The Compiler gives you the option of pressing either <Space>

to continue the compilation or <Enter> to terminate the

compilation. Error numbers greater than 400 are always

considered fatal and the Compiler will abort regardless of your
input.

The Compiler issues three additional fatal error messages. Their
occurrance is rare, as they usually mean that some kind of
internal error condition has been detected. All three messages
wait for you to respond to them by pressing any key on the
keyboard. The actual response is immaterial; it is just an
acknowledgement that you have seen the message. This is done
because the screen contents will be erased by the Finder after the
Compiler terminates.

Compiiation asborted due to I/0 error XXX
Press any key to exit.

The Compiler was unable to perform an I/O operation on one of
the files it has open. XXX is the ioresult code passed back from
the Macintosh Operating System. A list of these result codes
appears in Appendix B. You should check that your Macintosh
and its peripherals are all working correctly and then retry the
compilation.

Error writing file, not enough room.
Press any key to exit.

The Compiler was unable to write a block of information to disk
because the disk it was trying to write to was full. This error
usually occurs when you are trying to write a listing file to disk.
It can also happen when trying to write out the .CODE file you
are creating. Make sure that the disk you are trying to write to
is not full. Alternatively, if you are making a listing file, try

1200301:02B 2~7

GENERAL OPERATIONS Chapter 2

sending it to the file . BOUT. Then retry the compilation.

Compilation sborted due to back-end error XXX
Press any key to exit.

The Compiler has detected an abnormal condition within the files
it creates while compiling your program. XXX is an internal
code signifying the error. Retry the compilation. Please contact
your technical support representative if the error appears again.

Compiled Listings

The Compiler optionally produces a compiled listing of the
program. This listing contains source text, along with
information about the compilation. Compiled listings are useful
when you’re using the Debugger.

You can produce a compiled listing in two ways. You can give a
file name to the compiler’s listing file question, or you can use the
$L compiler option.

Here is the entire compiled listing for a small program:

UCSD Pascal Compiler [1RO.0] 10/ 8/84
1 2 1:d i program Fsct;
2 2 i:d i var
3 2 1:d 1 i: integer;
4 2 1:d 2 prod: real;
1) 2 1:0 (o] begin
8 2 1:1 writeln(’n factorisl of n?);
7 2 1:1 18 prod:= 1.0;
8 2 1:1 23 for i:= 1 to 20 do
9 2 1:2 41 begin
10 2 1:3 41 prod:= prod = i;
11 2 1:3 60 writeln(i,’ ?,prod);
12 2 1:2 89 end;
13 2 :0 o end.

End of Compilation.

The numbers that precede each source line are:

2—-8 1200301:02B

CREATING PROGRAMS

e The first column is the line number. Line numbers start with
1 and are incremented for each line encountered by the
Compiler during compilation. Lines found in files which are
included by the $I compiler directive and the uses statement
are also counted. :

e The second column is the Pascal segment number. This entire
example is segment 2.

e In the third column is the procedure number followed by a
colon and the statement nesting level. All of the example is
procedure 1. Procedure numbers are important in
determining program locations either in the Debugger or when
a runtime error occurs. The statement nesting level is an
indication of how deeply the text is nested within Pascal
structured statements. The statement nesting level field of
data lines contains the letter "d".

e The fourth column contains the word offset of data or the
byte offset of code. Data word offsets are relative to either
the start of a segment for global data, or to the beginning of a
procedure’s activation record for a procedure’s local data.
Data offsets are useful for finding data using the Debugger.
Code offsets are useful for setting break points with the
Debugger.

RUNNING PROGRAMS

To run a program, either one that you have compiled or one
someone else compiled, you just double—click its icon. Executing
a program in this manner causes the disk it is on to become the
default disk.

Once you have become familiar with creating and running
programs as described here, you should also explore the faster
method offered by the Executive utility which is discussed in
USING EXECUTIVE.

1200301:02B 2-9

GENERAL OPERATIONS Chapter 2

Pressing the interrupt button on the programmer’s switch will
cause the currently executing UCSD Pascal program to be
interrupted. The button to the rear of the programmer’s switch
is the interrupt button. The button to the front of the
programmer’s switch is the reset button. Pressing the reset
button will cause the Macintosh to be restarted. Obviously, if
you are in the middle of a hard to reproduce situation, you don’t
want to accidently press the wrong button.

When a program is interrupted, a standard Runtime Error dialog
box will appear on the screen as described later on in the
Runtime Errors section. Refer to that section for instructions on
the options available when a Program interrupted by user
runtime error occurs.

NOTE: The Runtime Support Library disables the interrupt
button while it is starting up a program. Also, if you have one of
Apple Computer’s MacsBug debuggers installed, pressing the
interrupt button while running a UCSD Pascal program will
cause you to enter MacsBug. If you are running UCSD Pascal
programs under the MacWorks software on a Lisa, there is no
way to interrupt a program and receive the standard Runtime
Error dialog box.

You may need to do some more steps before a program you just
compiled is ready to run. You may need to run the Set Options
utility to change the default runtime environment for your
program; you may also need to run RMaker to install some
additional resources.

The p—code produced by the UCSD Pascal compiler resides
within the data fork of the output file. The resource fork of the
file usually contains a standard set of resources that are used to
start up (bootstrap) the p—code file. The standard resources are
explained in detail in the section Standard Resources.

The important thing you need to know about the standard
resources i1s that some of them define the runtime environment a
program starts up in. The effects of the settings of these
standard resources are explained in the next three sections.

2—-10 1200301:02B

RUNNING PROGRAMS

Required Files

In order to run a program that was compiled with the UCSD
Pascal compiler, two Pascal Runtime Files must be available to
the program. One of the files is named Pascal Runtime and the
other is named p—Machine. The p—Machine file is the
p—Machine emulator program, which allows p—code to run on
the Macintosh. The Pascal Runtime file is a group of Pascal and
assembly language routines that support running UCSD Pascal
on the Macintosh. The Pascal Runtime file is also called the
Runtime Support Library. Usually, these files are found in the
folder called Pascal Folder. As it is supplied to you, the Pascal
Folder is located on the UCSD Pascal 1 disk.

Fascal Runtime p-Machine
Figure 2—2. Pascal Runtime and p—Machine Icons.

The resource fork of every UCSD Pascal program contains
references which define the location and names of these files.
These references consist of file names which adhere to the
Macintosh file naming conventions. These conventions are
described in File Naming Conventions later in this chapter.
Should the Pascal Runtime Files be on the default disk, you can
omit the volume name. Note that the two files do not need to be
on the same disk. The p—Machine file is read only when your
program is started and not used thereafter. This means that you
can keep it on a separate disk which can be removed from the
Macintosh after the program starts.

Two versions of the Runtime Support Library were shipped to
you. The first, named Pascal Runtime, is on the UCSD Pascal
1 disk. It contains the necessary runtime support for executing
UCSD Pascal applications. The other, named Debug Runtime, is
on the UCSD Pascal 2 disk. It provides the same runtime
services as Pascal Runtime and in addition, provides the
Debugger and the Performance Monitor tools. The usage of these
additional tools is described in the DEBUGGER chapter.

1200301:02B 2—-11

GENERAL OPERATIONS Chapter 2

Empty Program, in its original form, as supplied to you on the
UCSD Pascal 1 disk, specifies no volume name in the references
to the Pascal Runtime Files. Hence, the resources in Empty
Program assume that the required files are located on the default
disk. Furthermore, the names of these files are assumed to be
Pascal Runtime and p—Machine.

Any program you compile that uses Empty Program as its source
for resources will inherit these references to the required Pascal
Runtime Files. Should this configuration (i.e. the names of the
files or their locations) not suit your requirements, you can use
Set Options to change the file names and locations in each
program you compile. Alternatively, Set Options can be used to
change the names and locations specified in Empty Program.

If one or the other of these Pascal Runtime Files is not available
to your program, an error message describing the problem will be
displayed when you attempt to start the program.

Startup Options

The settings of five Startup options are contained within a
program’s standard resources that specify the the runtime
environment in which your program executes. These option
settings are obtained by the Compiler from the resource file you
specify when a program is compiled. Each option is described
below, along with the default setting specified in Empty
Program.

e Create Default Window. The default value of this option is
enabled. If this option is enabled, a standard program
window is opened by the bootstrap. The title of the window
is the value of the version number string, if it is nonempty.
‘Otherwise, the title is the file name of the program. (The
version number string is another type of resource. See
Standard Resources for instructions on defining a non—empty
version number string.) If this option is disabled, no default
window is opened. To see how this affects which ROM
initialization routines are done by the bootstrap, see
Initialization in the MACINTOSH INTERFACE chapter.

2-—-12 1200301:02B

RUNNING PROGRAMS

Create .DBGTERM Device. The default value of this
option is disabled. If this option is enabled, the .DBGTERM
device is available to the program. See Special Devices for
details about the .DBGTERM device.

Startup in Debugger. The default value of this option is
disabled. If this option is enabled, the bootstrap calls the
Debugger before the program starts.. See the DEBUGGER
chapter for instructions on using the Debugger. The
Debugger interacts either by using the Macintosh screen and
keyboard through the .DBGTERM device, or by using an
external terminal, based on the setting of the Debug to
Modem Port option. The Startup in Debugger option must be
enabled if you intend to use the Debugger at all.

Enable Performance Monitor. The default value of this
option is disabled. If this option is enabled, the Performance
Monitor is enabled for the duration of your program. See the
DEBUGGER chapter for information on using the
Performance Monitor. The Performance Monitor writes
information about the faults that occur during the execution
of a UCSD Pascal program. This information is written
either to the .DBGTERM device or to an external terminal
based on the setting of the Debug to Modem Port option. See
the MEMORY MANAGEMENT chapter for an explanation of
the various kinds of faults.

Debug to Modem Port. The default value of this option is
disabled. This option has no meaning unless either the
Startup in Debugger option or the Enable Performance
Monitor option is enabled. If this option is enabled, the
Debugger interacts using an external terminal connected to
the modem port of the Macintosh. The modem port is the
one with the telephone icon, and corresponds to the channel
used for the serial devices .AIN and .AOUT.

In addition to using Set Options to change the option values

assigned to your program by the Compiler, you may also override
them by specifying the type which define them when using

RMaker. The implementation of the Runtime Options as

resources is discussed in Standard Resources.

1200301:02B 2—-13

GENERAL OPERATIONS Chapter 2

As with the required files, the default settings are obtained by the
Compiler from Empty Program. Should modifying your
program with Set Options after compilation become cumbersome,
you can use Set Options on Empty Program to change the
default settings. This way, every time you compile, the compiler
will automatically give you the file locations and option settings
that you prefer.

Library Files

All of the units that a program references with the uses
statement must be available to the program when it is executed
This can be accomplished three ways:

e Each unit can be moved into the same code file as the
program. The Librarian utility, described in the LIBRARIAN
chapter, does this.

¢ The units may be combined into a single library code file
using the Librarian. If this is done, you can then use Set
Options to add the name of your library code file to your
program’s Library Files list. The file Mac Library on UCSD
Pascal 1 is an example of such a library of units that can be
referenced by your program.

e You can use Set Options to add the names of all your code
files containing individual units to your program’s Library
Files list. This works provided that you don’t have more
than five code files that you want your program to reference
in this manner.

As outlined above, a program’s Library Files list is usually
specified using Set Options. Set Options allows you to specify up
to-five code files. It is also possible to augment a program’s
Library Files list by adding the appropriate resources using
RMaker, but using Set Options is easier and less error prone.

The Library Files list is used by the Runtime Support Library
when it needs to locate a referenced unit that it cannot find
inside your program’s code file. When it searches for a unit, the
Runtime Support Library examines the code files in the order in

2—14 1200301:02B

" RUNNING PROGRAMS

which you have listed them. If a library code file listed in your
program’s Library Files list cannot be found, the Runtime
Support Library simply ignores that entry in the list and
continues its search.

The limit of five code files in the Library Files list imposed by Set
Options is a practical limit rather than an absolute limit. The
Macintosh Operating System limits the number of files that a
program can have open simultaneously, and every code file that
must be opened and examined by the Runtime Support Library
increases the time required to start a program.

Using Set Options

Set Options is the utility program that you use to modify a
UCSD Pascal program’s Runtime Options. A program’s Runtime
Options specify the location of the Pascal Runtime Files, the
Library Files list, and the settings of the Startup options.

Set Options is executed just like any other application: just
double—click its icon.

Set Options initially presents you with a standard Macintosh file
selection box. See Figure 2—3. Select the file you wish to modify
by clicking its name in the selection box and then select the Open
button. You can cause the files residing on the disk in the other
drive to be shown by selecting the Drive button. Selecting the
Eject button causes the disk in the indicated drive to be ejected;
this allows you to insert another disk if you wish. To terminate
Set Options, select the Cancel button.

1200301:02B ’ 2—-15

GENERAL OPERATIONS Chapter 2

Compiler
Editor
Empty Program
Executive

Mac Library
Set Options

- UCSD Pascal 1

(Cancel | (Drive |

Figure 2—3. Set Options File Selection.

Once you have selected a file, a Macintosh dialog box is displayed
that presents you with the settings of the current Runtime
Options. See Figure 2—4.

Runtime Options for file Empty Program
[0 set Bundie for FINDER

Pascal Runtime Files Save

p-Machine ||n-Mathine |

[Cancel]

Runtime [Pascel Runtime]

Library Files Startup

Create Default Windouw
[CJCreate .DBGTERM Dewice
[startup in Debugger

[J Enabie Perf. Monitor

[Debug to Modem Port

Figure 2—4. Runtime Options.

Four option groups are available:

¢ Pascal Runtime Files. These entries are the program’s
specification of the names and locations of the required files.
Use the Mouse to move the cursor into the box for the name
you wish to change. Normal Macintosh editing rules and file

2—16 1200301:02B

RUNNING PROGRAMS

naming conventions apply.

e Startup. These check boxes are used to specify the settings of
the Startup options. An empty box indicates that the option
is disabled; an X through the box indicates that it is enabled.
To change the setting, move the cursor into the box and click
the mouse button.

e Library Files. These entries make up the program’s Library
Files list. As explained previously, the Library Files list can
identify the name and location of up to five library files.
Enter or change these boxes using the methods described for
changing the Pascal Runtime Files entries.

e Set Bundle for Finder. This check box is used to specify
the setting of the program’s Finder "bundle bit." The usage
of the bundle bit is explained in the Application Interface to
the Finder section later in this chapter. You should not
change this option unless you understand why you are doing
so. Indiscriminate setting of the bundle bit can cause the
Desktop to become "polluted" with conflicting icon and other
resource definitions. This is a condition which is often
evidenced by the Finder using the wrong icons to decorate
files.

To save the changes you have made, click the Save button, and
Set Options will update the program with the Runtime Options
shown on the screen and return you to the file selection box it
presented to you earlier. Clicking the the Cancel button causes
Set Options to return to the file selection box without updating
the program, effectively discarding any changes you have made.

Once you have been returned to the file selection box, you can
select another program and change its options, or click the
Cancel button to exit Set Options.

NOTE: Set Options will not allow you to change the Runtime
Options in the Set Options code file being used. To change the
settings of the Runtime Options within Set Options, first use the
Finder’s Duplicate command to create a copy of Set Options.
Then run the copy, and modify the original copy of Set Options.

1200301:02B 2—-17

GENERAL OPERATIONS Chapter 2

Finally, exit back to the Finder and drag the copy of Set Options
to the trash. '

Program Startup Errors

If the Runtime Support Library has trouble starting your
program, you will get a program startup error displayed within a
dialog box on your screen. Actually, there are two catagories of
program startup errors. The first catagory contains those
startup errors which are detected and reported by the initial
"bootstrap" program which is located in your program’s standard
resources. The second catagory contains the startup errors that
can be generated by the Runtime Support Library during its
construction of your program’s execution environment.

The startup errors generated by the bootstrap are:

e Could not open p—Machine file. This error occurs if the
file p—Machine could not be opened. The runtime
environment description for the program’s p—Machine file is
wrong. Execute Set Options to correct the reference and then
try the program again.

e :Could not allocate memory for p—~Machine. This error
occurs if the bootstrap cannot allocate memory to read in the
:p—Machine file. This error should not occur; if it does,
contact your technical support representative.

¢ Error reading p—Machine file. This error occurs if the
bootstrap has trouble reading the p—Machine file. It is likely
that your p—Machine file is damaged. Replace it, and try
again.

¢ ‘Could not locate MSTR resource. This error occurs if
-your program is missing the standard MSTR resource. You
must use RMaker in such a way that all the standard
program resources are in the resource fork of an application in
addition to any new resources you define.

2—18 ‘ 1200301:02B

RUNNING PROGRAMS

Could not open program data fork. This error occurs if
the bootstrap has trouble opening the p—code portion of your
application program. Make sure you have not done any
operation in building the application that might delete the
p—code generated by the Compiler.

Could not open Runtime Support Library file. This
error occurs if the bootstrap could not open the Pascal
Runtime file. Make sure that a Runtime Support Library file
is installed where the program’s runtime environment
description says it should be. The two runtime libraries are
Pascal Runtime and Debug Runtime.

Could not allocate stack/heap. This error occurs if the
bootstrap could not allocate a 64K byte area of memory for
the Pascal Data Area. This error also should not occur and
indicates a serious hardware or software failure.

The program startup errors generated by the Runtime Support
Library are:

Error reading segment dictionary. This error indicates
that an I/O error occurred reading the segment dictionary
within the program code file or a code file listed in the
Library File list.

Error reading library. This error indicates that an 1/O
error occurred reading a library code file.

Required unit not found (). The unit whose name
appears in the error message enclosed in parentheses is
referenced by your program, but it cannot be found in the
program code file or in any of the library code files listed in
the Library File list.

Duplicate unit (). This error indicates that there is more
than one instance of the indicated unit in the program, or the
unit’s name is the same as one of the Runtime Support
Library’s units.

1200301:02B 2—-19

GENERAL OPERATIONS Chapter 2

e Too many library code files referenced. This error
indicates that the units used by your program are distributed
into too many separate library code files. Use the Librarian
utility to combine library code files.

¢ Too many system units referenced. This error should not
occur. If it does, contact your technical support
representative.

e No program in code file to execute. This error indicates
that you have attempted to run a library code file that
doesn’t contain a program.

e Program or unit must be linked first. This error
indicates that your program or one of the units that you are
using needs to have one or more assembly language routines
linked into it before it can be used. If this error occurs, it
may be due to an improperly constructed Macintosh Interface
unit, so you should contact your technical support
representative.

¢ Obsolete code segment (). The indicated code segment
was either not created properly or it was created by an
incompatible version of the UCSD Pascal compiler.

¢ Insufficient memory to construct environment. There
isn’t enough memory for the Runtime Support Library to
construct your program’s environment. The best work
around for this error is to combine separate library code files
together into a fewer library code files. Another possible
remedy is to eliminate any unneccesary entries in your
program’s Library File list.

o Program environment too complicated: run
QUICKSTART first. This error indicates that the number
of units used by your program and the complexity of their
relationships is greater than can be handled directly by the
Runtime Support Library. The QUICKSTART remedy
suggested by the error message refers to a preprocessor
program that you can use to prepare your program for
execution. A version of this preprocessor utility is not
currently available for the Macintosh environment. If you get
this startup error, try using the Librarian utility to package

2—-20 : : 1200301:02B

RUNNING PROGRAMS

all of the units required by your program together with the
program’s code segments. If this doesn’t eliminate the error,
you may have to resort to merging the services provided by
several small units into a single unit.

e Error reading program code file. This error indicates an
1/O error reading your program code file.

e Error reading library code file. This error indicates an
I/O error reading one of your library files.

e Insufficient memory to allocate data segment. Your
program or one of the units it references has a large amount
of global variables, and the Runtime Support Library is
unable to allocate the storage for them in the Pascal Data
Area. The most likely cause of the trouble is a declaration of
one or more large array variables.

e Insufficient memory to load fixed position segment. A
code segment containing one or more nonrelocatable assembly
language routines cannot be loaded into the Pascal heap due
to a lack of space in the Pascal Data Area.

¢ Unknown environment construction error. This error
indicates an internal error in the Runtime Support Library’s
environment construction process. If you get this error,
contact your technical support representative.

Runtime Errors

When the p—Machine emulator and Runtime Support Library
detect certain errors, the Runtime Support Library will generate
an execution error. If the Debugger is enabled and currently in
its active state, then the Debugger is entered, and an error
message is printed. Otherwise, the system displays the execution
error message within a dialog box on the screen, and the user is
given a choice of how to procede. Here is a sample execution
error dialog box:

1200301:02B 2-21

GENERAL OPERATIONS Chapter 2

@ Ualue range error

Seg LONGTEST P#*3 0¥44

[ok]} [continue| [Debug |

Figure 2—5. Execution Error.

The first line is the error message. The second line gives the
p—code coordinates of where the error happened. In this
example, LONGTEST is the segment. The procedure number is
3 and the offset within the procedure is 444. The coordinates can
be checked against a compiled listing of the program to
determine where in the program the error occurred.

Depending on the error, there is either one or three continuation
buttons. If it is a fatal error, only the OK button is shown.

e OK button. Clicking this button will cause the program to
terminate.

o Continue button. Clicking this button will cause the
‘program to continue execution. Only some execution errors
may be continued from, so you cannot depend on continuing
from arbitrary errors.

o Debug button. Clicking this button will cause the Debugger
to be invoked if it is enabled in the Runtime Options. The
Debugger is enabled when the Start in Debugger runtime
option is true. If the Debugger is not enabled, this button
does nothing.

Here is a short explanation of each of the execution error
messages:

e Fatal runtime support error. This error indicates a
corrupted Runtime Support Library file.

2--22 ' 1200301:02B

RUNNING PROGRAMS

Value range error. This error occurs if (1) an array
subscript is out of range, or (2) an assignment to a subrange
variable is out of range. You can disable detection of this
error by using the $R compiler option.

No proc in segment table. This error should not occur on
the Macintosh.

Exit from uncalled proc. This error occurs when exit(A) is
executed and A is not in the dynamic call chain.

Stack overflow. This error occurs when there is no room in
memory to expand the runtime stack by the desired amount.

Integer overflow. This error occurs if (1) an integer2
operation overflows, or (2) a conversion to integer or integer2
is too large to fit in the destination type.

Division by zero. This error occurs whenever a divide or
mod operation is performed with a zero denominator.

Invalid memory reference. This error indicates an attempt
to access memory through a bad pointer or handle value.

Program interrupted by user. This error occurs if the user
presses the interrupt button on the programmer’s switch and
the Debugger is not enabled.

Runtime support I/O error. This message indicates an
I/O error was detected either during startup of the Runtime
Support Library, or later attempting to read in a program
segment. This is a fatal error.

I/O Error. This error occurs if an I/O operation detects an
error. You can disable I/O checking by using the $I compiler
option.

Unimplemented instruction. This error occurs if the
p—Machine attempts to execute an invalid p—code. If you get
this execution error, then something has gone drastically
wrong in your program.

1200301:02B 2—-23

GENERAL OPERATIONS Chapter 2

e Floating point error. This error occurs when a floating
point operation overflows the size of floating point numbers.

e String overflow. This error occurs if (1) the source string is
too large in string assignment, or (2) conversion of a number
to a string overflows the size of the string.

e Programmed halt. This error occurs upon execution of the
halt intrinsic.

e Illegal heap operation. This error indicates improperly
paired mark and release operations, or an illegal dispose
operation.

e Break point. This error occurs if a BPT p—code is executed
and the debugger is not enabled. The BPT p—code is used by
the debugger to implement break points.

e Incompatible real number size. This error cannot occur on
the Macintosh unless you use the $R2 compiler directive,
which is something you should not do.

o Set too large. This error occurs if an attempt is made to
create a set larger than the maximum allowed size of a set. A
:set 1s allowed to have 4080 members.

e Segment too large. This error occurs if an attempt is made
‘to load a segment that is over 32K bytes in size.

¢ Heap expansion error. This error occurs if there is no room
for the heap to expand. This is most likely to occur due to
-the presence of a nonrelocatable Macintosh heap block
immediately above the Pascal heap in memory. The
‘Compiler will likely terminate with this message if you try to
compile a program having too many symbols.

e Insufficient memory to load code segment. This error
occurs if there is no more room in memory to load a required
code segment. Again, the presence of locked or nonrelocatable
Macintosh heap blocks can interfere with the acquisition of
memory for code segments.

2—-24 1200301:02B

RUNNING PROGRAMS

Refer to the P-MACHINE ARCHITECTURE chapter for

additional information on execution errors.

USING EXECUTIVE

The Executive utility provides you with menu access to all of the
programs that comprise The MacAdvantage: UCSD Pascal.
That is, you can run the Editor, Compiler, RMaker, Set Options,
and Librarian programs by selecting the appropriate entry in a
pull-down menu. Other options on the Executive menu allows
you to run any other program, or return to the Macintosh Finder
program.)

The advantage of using the Executive to start programs instead
of the Finder is that a transition from one program to another is
considerably faster. = Moving between programs using the
Executive is faster, because the time consuming activities related
to the saving and recreation of the desktop display (done by the
Finder) are avoided.

For example, the time it takes to go from the Compiler to the
Editor should be reduced by approximately 50% if you use the
Executive instead of the Finder to accomplish the transition. Of
course, you may notice more or less time reduction depending on
the number of disks you have inserted, the number of files on
those disks, and the complexity of your current desktop
arrangement.

When a program started by the Executive terminates, the
Executive is restarted. This means that once you have started
the Executive, you effectively remain inside it until you use its
Quit option to reactivate the Finder.

The Executive isn’t intended to be a complete substitute for the
Finder. You will still need to use the Finder for a variety of
tasks. Most notably, these tasks include: transferring files
between disks, copying disks, maintaining the organization of the
folders on your desktop, and running the Desk Accessories.

1200301:02B 2—-25

GENERAL OPERATIONS Chapter 2

Note that it is possible to have your Macintosh start up in the
Executive utility instead of the Finder if you wish. (See how to
use the Finder "Set Startup" command in Macintosh, your user
guide.)

The operation of the Executive utility is described in the
following sections.

Starting The Executive

As it is supplied to you, the Executive is located on the UCSD
Pascal 1 disk. To start the Executive, double click its icon.
Since the Executive is not a UCSD Pascal program, it can be run
off of any disk without configuring it with Set Options.

The Executive Menu Bar
The Executive utility’s menu bar consists of the following menus:

Set. The Set menu allows you to set the locations of the
programs that comprise The MacAdvantage: UCSD Pascal.

Edit. The Edit menu will start the Editor program.

Compile. The Compile menu will start either the Compiler or
RMaker (the resource compiler).

Utilities. The Utilities menu will start either Librarian or Set
Options.

Run. The run menu puts up a standard file selection box. To
run a program, select the program file name and select the Open
button. (Or simply double—click the file name.)

Quit.The Quit menu allows you to exit back to the Macintosh
FINDER.

2—-26 ' 1200301:02B

USING EXECUTIVE

The Editor, Compiler, RMaker, Librarian, and Set Options can
also be started by entering a command key sequence from the
keyboard. This is done by holding down the command key and
typing the appropriate letter. The command key sequences
supported by the Executive are shown in its pull down menus.

Setting Program Locations

The Executive is preconfigured to know about the locations of the
Compiler, RMaker, Set Options, Editor and Librarian programs
as they are shipped on the UCSD Pascal 1 and UCSD Pascal
2 disks. If you wish to execute these programs from other
volumes (such as a hard disk) you must use the Set menu to
change the location of these programs.

In the Set menu, there is-one menu item for each program. Select
the item that corresponds to the program whose location you
wish to change. After you select the item, a dialog box will
appear that contains the current location setting for the program.
Type in the new location of the program, or click the Cancel
button to retain the previous location setting. When specifying
the location of a program, you must specify both a volume name
and a file name using the standard Macintosh file name
conventions. After typing in the new location, select the Save
button to make the change permanent.

NOTE: If you are moving the Compiler, Librarian or Set
Options programs to another volume don’t forget to move the
files in the Pascal Folder. You will also need to run the Set
Options utility on these programs to change the location of the
p—Machine and Pascal Runtime files.

If you receive the error message

Program XXX is not on-line

when attempting to start a program using Executive, check that
the location for the program is set correctly.

1200301:02B 2-27

GENERAL OPERATIONS Chapter 2

ACCESSING FILES

Your UCSD Pascal program can access Macintosh files two ways.
First, it can use the UCSD Pascal intrinsics described in The
UCSD Pascal Handbook. Second, Inside Macintosh describes the
interfaces to the Macintosh Operating System File Manager. By
using the UCSD Pascal interfaces to these ROM routines, your
program can have full access to all the file handling capability of
your Macintosh.

Programs which use UCSD Pascal intrinsics to access files
generally need to be aware of disk volume names or disk drive
assignments. Their user interface has to be tailored accordingly.
Two examples of programs like this are the Compiler and
Librarian. Programs which use the Macintosh Standard File
Package and File Management units generally don’t need to
worry about these details. Examples of this type of program are
Editor, Set Options, and RMaker.

Regardless of which method you choose to use, this section
provides you with information to help interface your program to
Macintosh files.

File Naming Conventions

File names can be specified using the conventions of the
Macintosh Operating System. These file naming conventions are
as follows. A file name consists of up to 255 characters. Any
character except a colon (:) may be used in a file name. In
particular, spaces are allowed in a file name. File names are not
case—sensitive for the purpose of comparison. However, the
original type case of the name is retained in the directory when a
file-is created. Here are some example file names:

MYFILE
A rather long file neme.
My File

2—-28 1200301:02B

ACCESSING FILES

The first and the third file names in the example are distinct
names, because of the presence of a space in one of them.
Remember that all spaces are considered part of the file
name—even trailing spaces.

NOTE: According to Inside Macintosh there is a practical limit
of about 40 characters for a file name.

A file name may be preceeded by an optional volume name,
separated from the file name by a colon. A volume name may be
up to 27 characters long, and may consist of any characters
except a colon (:). Volume names follow the same case
convention as file names. Here are some examples of file names
preceeded by volume names:

°

My Disk:My File
Mac Boot:PBOOT

Any file name that is opened using the Pascal reset or rewrite
calls may use some additional conventions supported only by the
Pascal Runtime Package. These conventions are called Pascal
I/0 file naming conventions.

A volume may be refered to by the drive number of the disk
drive it is mounted in. A drive number is represented by a
number sign (#) followed by a positive integer representing the
drive number. #1 refers to the internal drive. #2 refers to the
external drive. Higher numbers refer to other drives that your
Macintosh knows about. Which numbers correspond to which
drives is system—specific.

WARNING: Drive numbers are used to open the named file on
any disk in the specified drive. Should you be using multiple
disks in the specified drive, the use of drive numbers is
dangerous. A file will not be found or will be created on the
wrong disk if the disk in the disk drive changes before the file is
opened.

1200301:02B 2—-29

GENERAL OPERATIONS Chapter 2

Here are some file names preceeded by drive numbers:

#1:My File
#2 :RMaker

You may also specify a device by name. The syntax of a device
name is the same as for a volume name, except that a device
name may not be followed by a colon or a file name. All device
names begin with a period (.) character, by convention. Here is
a list of the standard Macintosh device names:

e AIN is used to receive input from the modem port.
e .AOUT is used to send output to the modem port.
e .BIN is used to receive input from the printer port.

e .BOUT is used to send output to the printer port.

The Runtime Support Library also supports some nonstandard
serial devices:

e .CONSOLE refers to a terminal—like device that uses the
keyboard and the current QuickDraw grafport on the
Macintosh screen.

e .SYSTERM refers to a device that is identical to characters
are not echoed to the screen on input.

e .DBGTERM refers to a terminal—like device that uses the
keyboard and the bottom eight lines of the Macintosh screen.

For more information on these devices, see Serial Devices.

2—-30 1200301:02B -

ACCESSING FILES

File Types

Disk files that are created by the Runtime Support Library are
one of three types. Each type has its own icon that distinguishes
the file type. It is possible to associate your own icons to these

file types. See BUILDING AN APPLICATION.

Using the facilities in the Error _Handling unit, your program
can exercise additional control over the file types and creator
identifiers for the files it creates. See Execution Environment
Control later in this chapter for more information. ’

The file types and standard icons are as follows:

=l

Temporary Text

Figure 2—6. File Icons.

e text file. A text file results when a program creates a file of
type text or file of char.

e data file. A data file results when any other type of file is
created.

e temporary file. A temporary file results when a file has not
been properly closed. A temporary file may not be opened
using the Runtime Support Library. Currently, there is no
utility program that will change a temporary file into a
permanent file.

1200301:02B 2-31

GENERAL OPERATIONS Chapter 2

Pascal I/0O Operation

This section is a collection of notes on how the Pascal I/O
operations work under the Macintosh. Most operations will
produce the result you would expect, but there are some
restrictions imposed by the Macintosh Operating System and by
this implementation of Pascal that you should be aware of.

When you read certain types of text data from one of the
special serial devices (.CONSOLE, .SYSTERM or
.DBGTERM) you may use the <Backspace> key to correct
typing errors. The data types that allow this are strings and
the numeric data types. This handling of the <Backspace>
key is independent of the general—purpose backspace
character handling that is done by the special serial device
driver, and works even if you are not using a fixed—pitch
font.

The standard file input defaults to the .CONSOLE device, as
does the standard file output. This means that read, readin,
write, and writeln intrinsics that do not specify a file name
will cause output to go to the current window and input to
come from the keyboard. If the program doesn’t have a
current window, output is written to the QuickDraw grafport
which defines the screen. A program which has the Create

Default Window runtime option enabled gets a current

window which satisfies the requirements for these intrinsics.

Tabs are expanded, as you would expect, on the special serial
devices. That is, writing a tab character to one of the special
serial devices causes the QuickDraw character drawing pen to
be positioned at the start of next column to the right of its
current position. FEach column has a width of eight space

characters. (This means that font and character size used

determines the actual width of the columns on the screen.)

‘Note that this same style of tab expansion may not occur

when you write text on an Imagewriter printer unless you
have set the tab stops on the printer.

2-—-32 1200301:02B

ACCESSING FILES

e A disk file that is opened with reset or rewrite is opened with
both read and write permission. Therefore, disk files may not
be opened more than once simultaneously within an
application. An important consequence of this is that none of
the files that the system opens automatically may be opened
by a program.

e Devices, on the other hand, are opened with whatever
permissions are available. Thus, one device (like .BOUT) may
be opened more than once simultaneously within an
application. There are however some anomalies regarding the
standard Macintosh devices .AIN and .BIN which you need to
be aware of. You must open the corresponding output device
first, before you open one of these input devices, otherwise the
system will crash. For example, if you want to open a file to
.AIN, first open it to .AOUT, close it, then re—open it to
.AIN.

e Disk files are stored as normal Macintosh files, and share all
the properties of Macintosh files. For instance, disk files may
be located in multiple extents on a disk. Thus, a file may
expand until the disk is completely full without the user
worrying about the placement of files on the disk.

e The Runtime Support Library returns an I/O result code for
each I/O operation. The codes that are returned correspond
to the I/O result codes used by the Macintosh Operating
System. Where possible, I/O result codes manufactured by
the Runtime Support Library will be one of the codes known
to the Macintosh Operating System. However, a few new
codes have been defined that are unique to the Runtime
Support Library.

e When the Runtime Support Library is reading a character
from one of the special serial devices, this condition is made
known to the user through the display of a block cursor at the
current pen position on the screen.

1200301:02B 2-33

GENERAL OPERATIONS Chapter 2

Limits On Open Files

A UCSD Pascal program can have a maximum of eight files open
at one time on the Macintosh. The Macintosh Operating System
imposes a limit of 12 open files, but the Pascal Runtime Library
keeps four files open while a normal program is running. These
are the files that the system keeps open:

1. Pascal Runtime (data fork)
2. Pascal Runtime (resource fork)
3. Application (data fork)

4. Application (resource fork)

In addition, each library code file that your program uses will be
open at runtime. Therefore, if you plan to have many files open
at once in your application, you will need to restrict your use of
library code files.

Special Keyboard Sequences

The Macintosh Operating System takes special actions on certain
keyboard inputs. These actions take the form of special key
sequences that the Macintosh Operating System recognizes. Your
application can disable these actions by using GetOSEvent to
retrieve keyboard input rather than GetNextEvent or Pascal I/0.
These key sequences are as follows:

o < command—shift—1> ejects the disk in the internal
drive.

o <command—shift—2> ejects the disk in the external
drive.

e < command-—shift—3> writes a copy of the current
window to a disk file that is suitable for input to MacPaint.
If <Caps Lock> is also down, then it writes the whole screen
contents. The file is written to the default disk.

2—-34 : : 1200301:02B

ACCESSING FILES

e < command—shift—4> writes a copy of the current
window to the printer. If <Caps Lock> is down, then it
writes the contents of the entire screen image (print screen).

Serial Devices

This section describes the special serial devices that are supported
by the Runtime Support Library. The Macintosh Operating
System does not treat the screen and keyboard as files at all, so
these are really just virtual devices to give the screen and
keyboard a file interface.

The Runtime Support Library uses QuickDraw to draw
characters on these virtual devices. Therefore, QuickDraw
terminology (eg. font, pen location) is used to describe the
output characteristics of these devices.

e .CONSOLE refers to a terminal—like device that uses the
Macintosh screen and keyboard. A write to .CONSOLE
writes characters to the current window in the currently
selected font. If the Create Default Window runtime option is
enabled, this default window is the current window when a
program starts. The default font is Geneva—12. A read from
.CONSOLE reads characters from the keyboard. These

characters are echoed on the screen in the current window.

o .SYSTERM refers to a device that is identical to
.CONSOLE, except that characters read from the keyboard
are not echoed on the screen.

e .DBGTERM refers to a terminal—like device that uses the
keyboard and the bottom eight lines of the Macintosh screen.
Characters written to .DBGTERM will appear in Monaco—9
font. The .DBGTERM device does not write to the screen
within a window. Instead, it destructively modifies the bits at
that position of the screen. Because the characters may be
superimposed over other information on the screen,
.DBGTERM draws its characters with some surrounding
white space. This device is used by the Debugger when the
External Terminal Debugging runtime option is disabled. It
is also useful for programs that want to display their own

1200301:02B 2—-35

GENERAL OPERATIONS Chapter 2

debugging information without interfering with the current
window. Like .SYSTERM, .DBGTERM does not echo
characters on input. @ When the .DBGTERM device is
available, the size of the default window created for the
.CONSOLE and .SYSTERM devices is made smaller so that
.DBGTERM output is not intermingled with .CONSOLE
output. Of course, if you are not using the default window
option, it depends on the current grafport as to whether or
not .CONSOLE output will ever conflict with .DBGTERM
output.

The three serial devices mentioned have. a number of
characteristics in common. All of them display a block cursor
when the program reads from the device. This block cursor is an
indication to the user that keyboard input is expected.

The following special characters are handled by the special serial
devices:

e carriage return. Writing a carriage return character (0D
hex) causes the current pen position to be moved to the
beginning of the next line. The vertical distance the pen is
moved is based on the height of the current font. The pen is
qmoved horizontally to coordinate 0. If the new pen location is
below the bottom of the grafport, the grafport is scrolled by
one line to accomodate the new line of characters.

¢ line feed. Writing a line feed character (0A hex) performs no
action. Line feed is ignored on output.

e tab. Writing a tab character (09 hex) aligns the pen location
at the next tab stop. The tab stops have a width of eight
spaces in the current font, and are spaced evenly across the
grafport starting at horizontal coordinate 0. If the pen is
currently at a tab stop, writing a tab advances the pen to the
next tab stop.

e backspace. Writing a backspace character (08 hex) erases a
character the width of a space (in the current font)
immediately before the current pen location, and moves the
pen location to the left by the width of a space. Backspace is
most useful 'if you are using a fixed—pitch font like

2—36 : - 1200301:02B

ACCESSING FILES

Monaco—89.

e bell. Writing a bell character (07 hex) causes an audible beep
to be generated. The volume of the beep can be controlled via
the Control Panel desktop accessory.

Disk Swapping

All of the disks having icons on the desktop prior to the start of a
program are accessible to the program. This means that files
may be opened or created on these disks, even if the disk is no
longer in the disk drive. Additionally, any disks inserted in a
disk drive while a program is executing are also accessible to the
program, provided that the disk is inserted prior to its being
accessed to open or create a file. Once a file has been opened, the
Macintosh Operating System will request that the disk it is on be
inserted into a disk drive whenever the file is referenced. This
capability increases the amount of disk storage available to
Macintosh programs, but at a severe cost in access speed.

If your application is going to depend on using multiple disks per
drive, you should be aware of several factors:

e Swapping disks places additional burdens on the amount of
stack slop required by your program. This is explained
further in How to Set Stack Slop in the MACINTOSH
INTERFACE chapter.

e Programs which use UCSD Pascal intrinsics to access files can
use either Macintosh or Pascal I/O file naming conventions in
the reset or rewrite statements. However, use of explicit drive
numbers in file names can be dangerous because there is no
assurance that the correct disk will be in the disk drive when
the file is actually opened.

e Programs which use the high—level Macintosh File Manager

unit can use Macintosh file naming conventions to open their
files.

1200301:02B 2—-317

GENERAL OPERATIONS Chapter 2

When they are requesting the names of the files that they are to
operate on, the Compiler and the Librarian accept file names
which contain explicit drive numbers. However, care should be
taken when using the explicit drive number notation with these
programs when using multiple disks in a drive.

BUILDING AN APPLICATION

This section discusses more advanced topics regarding putting
together an application using UCSD Pascal on the Macintosh.

Putting it All Together

This section describes the use of segments, units, and libriaries.
It presents some useful strategies for designing a large program.

Units and segments are used to divide large programs into
independent modules. On the Macintosh, the main bottlenecks in
developing large programs are:

e A large number of declarations that consume space while a
program is compiling.

e Large pieces of code that use up memory space while the
program is executing.

The use of units solves the first problem by: (1) allowing
separate compilation; and (2) minimizing the number of
identifiers needed to communicate between separate tasks. The
use of segments alleviates the second problem by allowing the
code for a large program to be partitioned into manageable
chunks in such a way that only portions of the program need to
be in main memory at any given time, and any unused portions
reside on disk.

You can write a program with runtime memory management and
separate compilations already planned, or you can write as a
whole and then break it into segments and units. The latter
approach is feasible when you’re unsure about having to use

2—-38 1200301:02B

BUILDING AN APPLICATION

segments or quite sure that they will be used only rarely. The
former approach is preferred and is easier to accomplish.

The following steps outline a typical procedure for constructing a
relatively large application program: -

1. Design the program (user and machine interfaces).

2. Determine needed additions to the library of units, both
general and applied tools.

3. Write and debug units and add them to libraries.
4. Code and debug the program.

5. Tune the program for better performance.

During the design of a program, try to use existing procedures to
decrease coding time and increase reliability. You can accomplish
this strategy by using units.

To determine segmentation, consider the expected execution
sequence and try to group routines inside segments so that the
segment routines are called as infrequently as possible.

While designing the program, consider the logical (functional)
grouping of procedures into units. Besides making the
compilation of a large program possible, this can help the
program’s conceptual design and make testing easier.

Units may contain segment routines within them. You should be
aware that a unit occupies a segment of its own; except, possibly,
for any segment routines it may contain. The unit’s segment,
like other code segments, remains disk resident except when its
routines are being called.

You can put into the interface section the headings for procedures
and functions that are needed by other units. Then you can hide
the implementation sectian from the users of the unit.

1200301:02B 2—-39

GENERAL OPERATIONS Chapter 2

Steps 2 and 3 of the typical construction procedure are aimed at
capturing some of the new routines in a form that allows them to
be used in future programs. At this point, you should review,
and perhaps modify, the design to identify those routines that
may be useful in the future. In addition, useful routines might be
made more general and put into libraries.

Write and test the Library routines before moving on to writing
the rest of the program. This adds more generally useful"
procedures to the library.

The interface part of a unit should be completed before the
implementation part, especially if several programmers are
working on the same project.

Tuning a program usually involves performance tuning. Since
segments offer greater memory space at reduced speed,
performance is improved by turning routines into segment
routines or turning segment routines back into normal routines.
Either route is feasible. Pay attention to the rules for declaring
segments.

Segmenting a Program

An entire program need not to be in main memory at runtime.
Most programs can be described in terms of a working set of code
that is required over a given time period. For most (if not all) of
a program’s execution time, the working set is a subset of the
entire program, sometimes a very small subset. Portions of a
program that are not part of the working set can reside on disk,
thus freeing main memory for other uses.

When your program executes, it is read into main memory.
When the code has finished running, or the space it occupies is
needed for some action having higher priority, the space it
occupies may be overwritten with new code. Code is swapped
into main memory a segment at a time.

2—40 1200301:02B

BUILDING AN APPLICATION

In its simplest form, a code segment includes a main program and
all of its routines. A routine may occupy a segment of its. own;
this is accomplished by declaring it to be a segment routine.
Segment routines may be swapped independently of the main
program; declaring a routine to be a segment is useful in
managing main memory.

Routines that are not part of a program’s main working set are
prime candidates for occupying their own segment. Such routines
include initialization and wrap—up procedures and routines that
are used only once or only rarely while a program is executing.
Reading a procedure in from disk before it is executed takes time.
Therefore, the way that you divide up a program is important.

The UCSD Pascal Handbook describes the syntax for creating
separate segments in a program.

Separate Compilation

Separate compilation is a technique in which individual parts of a
program are compiled separately and subsequently executed as a
coordinated whole.

Many programs are too large to compile within the memory
confines of the Macintosh. Such programs might comfortably
run though, especially if they are segmented properly. Compiling
small pieces of a program separately can overcome this memory
problem.

Separate compilation also allows small portions of a program to
be changed without necessarily affecting the rest of the code.
This saves time and is less error prone. Libraries of routines may
be built up and used in developing other programs. This
capability is important if a large program is being developed and
is invaluable if the project involves several programmers.

In UCSD Pascal, separate compilation is achieved by the unit
construct—a unit being a group of routines and data structures.
The contents of a unit usually relate to some common

1200301:02B 2—41

GENERAL OPERATIONS Chapter 2

application, such as screen control or data file handling. A
program or another unit may use the routines and data
structures of a unit by simply naming it in a uses declaration. In
addition to being a separately compiled module, a unit is also a
code segment; it can be swapped, as a whole, into and out of
memory.

A unit consists of two main parts: the interface section, where
constant, type, variable, procedure, process, and function
declarations, which are "public" (available to any client module)
are found; and the implementation section, where private
declarations are found.

The UCSD Pascal Handbook describes the syntax for creating and
using units.

Libraries

This section describes where you may place the code files that
contain units so those units are available at compile time or
runtime. At compile time, only the interface section of a called
unit is needed. At runtime, only the implementation section is
needed. (It is allowed, however, to have both the implementation
and interface sections available at both runtime and compile
time.) If you wish, a unit can be compiled with the complete
interface section, but with empty routines defined in the
implementation section. This allows clients which require the
interface section to be compiled before the unit has been fully
implemented. Also, for runtime purposes, the interface section
can be stripped out of a unit’s code file using the Librarian. This
leaves only the implementation section and saves disk space at
runtime.

A program or a unit which uses another unit is called a client of
that unit. An anology can be made with someone who offers a
service (the unit) and someone else who is a client of that service
(the using program or unit). At runtime, the Runtime Support
Library searches for a unit in the following places:

2—42 1200301:02B

BUILDING AN APPLICATION

e The Runtime Support Library
e The client code file

e The files listed in the client’s Library Files list.

The Runtime Support Library units reside in either Pascal
Runtime or Debug Runtime. DO NOT place units that you write
there.

To place a unit directly into a program’s code file, use the
Librarian. After the unit’s code and the program’s code are
unified, the unit will be available when the program is executed.
Refer to the LIBRARIAN chapter for more information on
placing units into a client’s code file.

A library can be a code file which is a collection of compiled units
(usually stitched together with the Librarian) or it can contain
just a simple unit within a code file created by the Compiler
when you compile that unit. The Library Files section in this
chapter describes how to modify the client’s runtime environment-
description to reference libraries.

At compile time, as opposed to runtime, the code for a unit
resides in a code file specified in the text you are compiling. The
UCSD Pascal Handbook describes how clients can use the interface

section of units at compile time.
Standard Resources

This section describes the RMaker input used to create the
generic resources for Empty Program. This is the file used by the
Compiler on the Macintosh to install resources into the program
code files that it creates. Various parts of the Runtime Support
Library expect to access these resources using the resource type
identifiers and numbers defined here. You should be careful
when defining resources for your program that you do not
accidently redefine the resources described here.

1200301:02B ' 2—43

GENERAL OPERATIONS Chapter 2

The first input specifies the RMaker output file name. Following
that is the file type and signature:

UCSD Pascal 1:Empty Program
APPLPROG

The next resource entry is the applications’s signature and
version number string. The generic application signature is
PROG; Generic version data is the empty string. (Used as the
title for the default screen 1/O window.) If you want the title of
the default screen 1/O window to be other than the name of the
program’s code file, change the third line of the following
example from the empty string to whatever string of characters
you want to use. See the RMAKER chapter for instructions on
how to append new resources onto an existing resource fork.

TYPE PROG = STR
32)

,0

The required Pascal Runtime Files location names are next. First
is the file name of file containing the Runtime Support Library.
Next is the file name of file containing the p—Machine.

TYPE SYSF = STR
32)

Pa;cal Runtime
s 1 2
p-Mschine

Next is the number of Macintosh Memory Manager master
pointer blocks to preallocate before the Pascal Heap Block is
allocated as a nonrelocatable heap block. (Master pointer blocks
are-nonrelocatable, and must never be allowed to reside above the
runtime support’s heap block. If any nonrelocatable blocks are
allocated above the Pascal Heap Block, it may not be possible for
the Runtime Support Library to extend the Pascal Heap Block,
even when sufficient free memory space is available. See the
MEMORY MANAGEMENT chapter for more details on the
Pascal Heap Block.)

2—44 1200301:02B

BUILDING AN APPLICATION

Each allocated master pointer block has room for 64 master
pointers. The Macintosh Finder starts any application with a
single master pointer block (i.e. 64 master pointers).

TYPE MSTR = GNRL
32)

,0

.H
0001

The Startup option settings are defined next. Options are
specified by individual characters in the string resource. A plus
(+) enables an option, a minus (—) disables it. The position of
the character in the string determines which option is set. The
following table lists the Startup options and their default settings
in Empty Program:

Option Position Default

Create Default Window 1
Create .DBGTERM Device 2
Startup in Debugger 3
Enable Performance Monitor 4
Debug to Modem Port 3

The following resource specifies the default settings:

TYPE OPTN = STR
32)

,0

- ————

The following strings define the text used in the bootstrap’s error
messages:

TYPE PRME = STR
,0 (32)
Could ngt open p-machine file

»
Could not allocate memory for p-machine

»2 (32)
Error reading p-machine file
2
Could not locate MSTR resource
»4 (32)
Could not open program data fork
Could not open Runtime Support Library file

Could not allocate stack/heap

1200301:02B 2—45

GENERAL OPERATIONS ‘ Chapter 2

The following resource definitions are used for the bootstrap’s

ALERT Dialog boxes:

TYPE DITL
» ,266 (32)

BtnItem Enebled
32 267 110 337

StetText Disabled
}8 60 70 380

TYPE ALRT

, 266 (32)
80 81 180 431
268 :
1333

One additional resource type is needed to complete the definition
of Empty Program. It causes the assembly language bootstrap
program to be included in the resource fork. This is the native
Macintosh application which begins executing when you open the
icon of a UCSD Pascal program. This bootstrap reads in the
p—Machine. The p—Machine builds a runtime environment and
reads in the Runtime Support Library. The Runtime Support
Library stitches the pieces of your program together and begins
executing it. The actual resource definition is not included here
because it does not follow the conventions and syntax of the
Macintosh RMaker.

Execution Environment Control

The Error _Handling unit may be used by a UCSD Pascal
program to control its execution environment, or perform certain
special functions. This unit may be found in the file
Errorhandl.CODE on the UCSD Pascal 2 disk. The entry
points to the Error _Handling unit allow a program to:

1. Override the standard handling of runtime errors performed
by the Runtime Support Library by installing a custom error
handling routine. Such an error handler routine can attempt
some corrective action for certain errors, or simply report
runtime errors in a different manner.

2—46 1200301:02B

BUILDING AN APPLICATION

2. Force entry into the Debugger.
3. Cancel a process.

4. Establish a procedure as the "interaction procedure" which is
activated by the Debugger’s "I" command.

5. Turn the Performance Monitor output ON and OFF.
6. Adjust the "stack slop" for the main task.

7. Establish a specific Macintosh file type identifier and
signature for an open file variable.

The following is the interface to the Error _Handling unit:

unit error_handling;
interface

type eh_resuits = (cant_handle, re_initialize, continue);
eh_info = record
fused internally by operating system}
a:tinteger; b:tinteger; c:integer;
d:tinteger; e:tinteger; f:tinteger;
end;

eh_file_ptr = tinteger; f$Actually o pointer to a
file voriable.}
eh_res_type = packed array[1..4] of char;
A Macintosh Resource Type
Identifier.}

fUser error handling facilities.}
procedure set_err_handler(

var info:eh_info;

function err_handler(err, ior: integer):
procedure clr_err_handler(var info: eh_info);
procedure err,to_messageierr: integer; var message: s(ring;;
procedure ior_to_message(ior: integer; var message: string
procedure debugger;

B

{Process control.}
procedure cancel(taskid: processid);

§{Performance monitor control.}
procedure set_pm_interaction(procedure pm_interactive);
procedure pm_start_stop(start: boolean);

§Stack space checking control.}
procedure set_stack_slop(slop: integer);
function get_stack_slop: integer;

{File type ond signature control.}
procedure set_file_type(f: eh_file_ptr; ftype: eh_res_type);
procedure set_file_signature(f: eh_file_ptr;

signature: eh_res_type);

1200301:02B 2—47

GENERAL OPERATIONS Chapter 2

The following paragraphs discuss each of the entry points to the
Error _Handling unit:

1.

The routine SetErrHandler establishes its parameter
ERR _ HANDLER as an error—handling function. After such
an error—handling function is established, the UCSD Pascal
Runtime Support Library will call it whenever a non—fatal
runtime error occurs. The runtime error number and the
current ioresult values are passed to an error—handling
function in its ERR and IOR parameters.

An error—handling function returns one of these possible
results:

Relnitialize. Causes immediate termination of the program.

Continue. Asks the UCSD Pascal Runtime Support Library
to attempt to continue execution.

CantHandle. Indicates that the particular runtime error
cannot be handled by this error—handling function, and that
it should be reported to any previously established
error—handling function (if any). If none of the established
error—handling functions can handle the error, the standard

-UCSD Pascal Runtime Support Library error—handling

mechanism is used to report the error.

The INFO parameter passed to SetErrHandler is an
information record which is used internally by the UCSD
Pascal Runtime Support Library. Each distinct

error—handling function you establish must have a separate

information record. To cancel the establishment of an
error—handling function, you should call ClrErrHandler

passing the appropriate information record.

‘The following is a simple example of how you might create

your own error—handling function and use it in a program:

PROGRAM no_interruptions;

USES éSU UCSD Passce! 2:Errorhandi .CODE}
rror_Hendling;

VAR info: eh_info;

2—48 1200301:02B

BUILDING AN APPLICATION

FUNCTION my_error_routine(
errnum; iorslt: integer): eh_results;

BEGIN -
IF errnum = 8 {User Break)} THEN
my error _routine := continue
ELsE- -

my_error_routine := cant_hendle;
END; {my_error_routine}

BEGIN

{Assume program is entering some critical
operation that shouldn’t ge interrupted.}

SetErrHendler (info, my_error_routine?;

{Do the critical operation}

{Restore User Break facility.}
ClrErrHandler (info);

EﬁRosumo normal processing.}
D. {no_interruptions}

In the example, an error—handling function is used to prevent
the user from interrupting the program during a certain
critical section of the program. All runtime errors except
User Break will be handled in the usual fashion by the UCSD
Pascal Runtime Support Library.

You can establish an error—handling function anywhere in
your program. However, be sure that you call ClrErrHandler
prior to leaving the context in which your function is
declared.

Error—handling functions may be nested, and the most
recently established function is called first. A unique
information record variable must be used each time

SetErrHandler is called.

WARNING: The exit intrinsic cannot be used to exit a
function that is established as an Error—handling function.

2. ErrToMessage and IorToMessage are routines that you can
call to obtain a textual message describing a particular
runtime error or ioresult value. Both routines return the text
of the message in the string variable you pass as the
MESSAGE parameter. The possible messages returned by
these routines are listed in Appendix B.

1200301:02B ' 2—49

GENERAL OPERATIONS Chapter 2

3. To enter the UCSD Pascal Debugger from an error—handling
function (or from anywhere else in a UCSD Pascal program),
you can call the routine Debugger. This facility is intended
for use only during the development and checkout of a
program. . If you call the Debugger without having the
appropriate runtime options set (those which are required in
order to use the Debugger), your program will fail
unpredictably.

4. The Cancel entry point cancels a process that was previously
started via the start intrinsic. You pass the processid value
returned by start to designate the process to be cancelled.
Cancel cancels the process immediately, interrupting
whatever was happening, and releases the space used for its
stack. The canceled process is effectively forced to do an
"exit(process)" statement, since the routine activations on
the process’s stack are "unwound" and any exit code for those
routines is executed.

5. SetPmlinteraction is used to establish a procedure within your
program as the Debugger’s "interaction procedure". The
interaction procedure is called when the Debugger "I"
command is typed from the Macintosh keyboard. (In order to
use the interaction procedure mechanism, the Performance
Monitor must be activated by setting the appropriate options
with Set Options.) One typical kind of interaction procedure
is one which produces a formatted display of the contents of
some variables or a complicated data structure. Using the
interaction procedure facility, you can make the debugging of
a large and complex program much easier, since you are
effectively customizing the Debugger to suit the needs of your
program .

6. PmStartStop is used to control the built—in Performance
Monitor. The Boolean value you pass as the parameter
START indicates whether the Performance Monitor output
should be enabled or disabled. If the Performance Monitor is
not active when your program starts its execution,
PmStartStop does nothing.

2—-50 1200301:02B

BUILDING AN APPLICATION

7. The routines SetStackSlop and GetStackSlop are used to
control the stack slop for the currently executing task.
SetStackSlop sets the stack slop to the number of words that
you specify. GetStackSlop returns the current stack slop
setting. SetStackSlop will not allow the slop setting to be less
than the minimum setting of 1024 (2Kb). For further details
concerning the usage of these routines, see the MACINTOSH
INTERFACE chapter.

8. SetFileType and SetFileSignature are used to specify the
permanent file type or signature for a Macintosh file being
created by your program using the standard Pascal file I/O.
The first parameter to these routines is a Pascal pointer value
that points to a file variable that you have opened using the
standard Pascal procedure rewrite. (Use the adr intrinsic to
obtain this pointer value.) The second parameter is the four
character file type or signature. When you close the file
variable with the LOCK option, the created file’s type and
signature are set as specified. If your program creates a
Macintosh file without calling SetFileType, the file type is set
according to the type of the file. If you don’t call
SetFileSignature, the signature of your program is used when
you close the file.

Application Interface to the Finder

The default interface between applications and the Macintosh
Finder program simply allows programs to be started by the
Finder. If you want your application to be started when an
associated document is clicked or you wish to have special
program and document icons displayed on the desktop then you
must go through a little extra work.

Associating Programs With Documents

In order for the Finder to associate a document with an
application two conditions must be met:

1200301:02B 2-51

GENERAL OPERATIONS Chapter 2

1. The application program must be "bundled" into the
Desktop.

2. The document must have the same "creator" as the
application.

For more details on these topics see the section entitled "FILE
INFORMATION USED BY THE FINDER" in the FILE
MANAGER chapter of Inside Macintosh.

To bundle a UCSD Pascal program into the desktop you run the
Set Options program and set the "Set Bundle for FINDER"
checkbox. The Set Options utility was described earlier in this
chapter.

Since UCSD Pascal programs normally have a creator of PROG
any document with the same creator that is double clicked from
the Finder will start your program (assuming no other programs
with the same creator have been bundled into the desktop). Note
that files created by the UCSD Pascal Runtime package do not
have a creator of PROG. You will have to use the File Manager
interface unit to create documents with the correct creator or use
the appropriate Error _Handler entry point.

In order to override the default application creator you use the
RMaker program to set a new creator. For example:

Example.Rsrc ;33 Output File Name
APPLEXMP 3; Type is APPL , Creator is EXMP

INCLUDE UCSD Pascal 1:Empty Program
;; Resources required by all
33 UCSD Pascal Programs

Running RMaker using the above example will produce a
resource file of type APPL with a creator of type 'EXMP’. Using
this as the resource input file to the UCSD Pascal compiler will
produce a UCSD Pascal program with the same creator and type.
In order to make this creator type known to the Finder you need
to run Set Options on the program and set the bundle bit.

2--52 1200301:02B

BUILDING AN APPLICATION

NOTE: Apple Computer would like to maintain a unique set of
creator identifiers. If you wish to bundle your application into
the desktop then you should call Apple Technical Support to get
a unique creator identifier.

Associating Icons With Files

In addition to being able to let the Finder know an application’s
creator, you can also bundle in other information into the
desktop. This is achieved by defining a resource of type 'BNDL’.

For example suppose you wanted to define two new file icons, one
for your application and another for the data files that your
application will create and use. You could create a resource file
for your program as follows:

Examp le.Rsrc ;; Resource Output File
APPLEXMP

INCLUDE UCSD Pascal 1:Empty Program

TYPE EXMP = STR ;3 Version String

;0 (32
Version 1 of Example Program

TYPE ICN# = GNRL 3; The program Icon
,2000 (32) ;; Defined later

OOOO 0000 0000 0000
00000000 0000 6600

TYPE ICN# = GNRL 33 The Date File Icon
,2001 (32) ;; Defined later

0000 0000 0000 0000
00000000 6000 6660

TYPE FREF ;3 File References

2000 33 for application file
APPL O i3 Type fot lowed by Local

33 con

2001 ;33 for dota file
DATA
TYPE BNDL ;; Bundle Resource

, 2000
EXMP 5; Signature and Version ID
ICN ;3 ICONs
0 2 1 2001 ;; Local IDs to Resource IDs
FREF ;3 File References
O 2000 1 2001 ;3 Local IDs to Resource IDs

1200301:02B 2—-53

GENERAL OPERATIONS Chapter 2

In the above example we have defined a Version String, two icon
lists, and two file references. A file is associated with a particular
icon list using the FREF resource. This resource defines a file
type and a local icon identifier. The mapping from resource

identifiers to local identifiers is accomplished in the BNDL

resource.

After you have created your program using the UCSD Pascal
compiler you still need to run the Set Options program and set
the bundle bit. After Set Options is run you will normally see
your program icon switch from the standard application icon to
the icon you defined as the program icon.

Defining Icons Using RMaker

An icon is defined as two 32 by 32 bit images. The first image is
the icon in its dormant (unclicked) state. The second image is an
icon mask which is used by the Finder to produce the image
representing the icon in its active (clicked) state. ~The mask
should be a filled in outline of the first icon.

The UCSD Pascal compiler icon is defined using the following
icon list:

TYPE ICN# = GNRL
QZOOO (32) ;3 Resource ID

0001 0000 0002 8000 P R
0004 4000 0008 2000

0010 1000 0020 4800
0040 0400 0081 0200
0100 0100 0204 0080
O4EO 0040 0820 1020

The first set of
of 168 rows define
the ICON.

e o we
e o wo

(o]
O
(e}
Py
B
[0
o
o
[*]
(%4
o
(o]
[+]
(o4
o
(o]

The next 168 rows
define the ICON
mesk .

o
-
n
m
mn
mn
o
o
o
o
mn
mn
n
mn
[+]
o

2—-54 1200301:02B

7FFF FFFF 3FFF
1FFF FFFC OFFF
O7FF FFFF O3FF
O1FF FFFF OOFF
007F FFFF OO3F
O01F FCO7 OOOF
0007 FOOO 0003
0001 CO00 0000

1200301:02B

FFFE
FFEF
FFFF
FFFF
FE1F
F800
EO0O
8000

BUILDING AN APPLICATION

;

H

GENERAL OPERATIONS

Chapter 2

1200301:02B

3
EDITOR

The Editor is used to create and modify text files. These files can
be used for many purposes including input to the Pascal
Compiler and creating textual data for Pascal program
consumption.

If the file you are editing is too big to fit on the screen, a portion
of the file is displayed. This "window" into the file can be moved
to display any part of the file you want. An example of the
Editor display is shown in Figure 3—1.

file Edit Search Fformat Font Size

lprogram Factorial;
war '
¥ integer;

procedure FACT (N integer
begin
iTN=0
then FACT = 1
else FACT = N * FACTI(N-1),
end; {FACT}

begin
write('enter ¥ '),
readin{x};

Figure 3—1. The Editor Display.

The basic editing operations are inserting characters, cutting a
portion of the text, and pasting text into a new location. Text
that is cut goes into a special window called the Clipboard. Text
in the Clipboard can be pasted into any place in the file or into

1200301:03B 3—-1

EDITOR - Chapter 3

another file. The Clipboard also allows you to transfer data
between applications.

All editing action takes place at the insertion point. The
insertion point is marked by a blinking vertical line where the
next character will be placed. Any characters typed or pasted
from the Clipboard are inserted at this point. This is true even if
the insertion point is not currently displayed in the window. The
window is automatically scrolled to show the insertion point.

The mouse is used to scroll the text in the wmdow, move the
insertion point, select text to be cut or copied, point to menus,
and select items on menus.

The Editor is disk based. This means that the size of a file you
can edit is limited only by the available space on the disk.
However, as a file grows larger it takes longer to do simple
editing operations on it. When a file becomes very large, you
should split it into multiple pieces.

USING THE EDITOR

Start the Editor by double—clicking the Editor icon. For more
information on starting applications refer to Maciniosh, your
owner’s guide.

You direct the Editor to work on a file by using the New or
Open... command in the File menu. Selecting a command from
a menu is discussed below in The Menus.

The file that you are working on is called the "active document."
Although you can have several documents open and accessible at
any one time, you can edit only the active document. The active
document appears in the "active window," which is indicated by
a darkened title bar and scroll bars, and is always on top of all
the other windows.

3—-2 1200301:03B

USING THE EDITOR

To leave the Editor, select Quit from the File menu, and you will
return to the Finder.

Entering and Deleting Text

Text is entered into the active window at the insertion point by
typing characters. Text is deleted at the insertion point by
typing the <Backspace> key. Large deletions are done by
selecting the text with the mouse and then typing <Backspace>.
You change text by selecting the text to change and then typing
the replacement text.

Editing Operations

The basic editing operations are cut, copy, and paste. To cut or
copy text, you must first select the text to be cut or copied, then
select either Cut or Copy from the Edit menu. Select text by
moving the mouse while holding down the button. See
SELECTING TEXT for complete information on selecting text.
Text that is selected and then cut is removed from the active
document and placed in a special window called the Clipboard.
Text that is copied is placed on the Clipboard and also left in
place in the active document.

The contents of the Clipboard can be pasted at any point in the
active document by placing the insertion point where you want
the text inserted and choosing Paste from the Edit menu.

The Menus

Operations are provided in six menus:

e The File menu is used to access files, print text, and exit the

Editor.

e The Edit menu is used to edit text.

1200301:03B 3-3

EDITOR Chapter 3

e The Search menu provides commands to find and change
strings in the active document.

o The Format menu handles setting the tab stops and enabling
auto indent mode. T

e The Font menu allows you to select the font of the current
document for display and printing.

e The Size menu allows you to set the size of the current font.

Each of these menus is described in more detail in the sections
that follow.

Creating, Opening and Closing Files

Files are created, opened and put away using the functions of the
File menu. The New command creates a new file. The Open...
command opens an existing file. The Close command puts away
the active document.

The Open... function uses the Open Box to help you select the
file to open. This dialog box is shown in Figure 3—2.

FACT
FIRST

[

Figures

(cancel]f Drive |

<

Figure 3—2. The Open Box.

To open a file, first scroll the file list by clicking the mouse in the
scroll arrows until the file you want to open is in the list. Next,
select the file by using the mouse to click its file name. Finally,

3—4 1200301:03B

USING THE EDITOR

click the Open button to open the file. An alternative method of
opening a file is to double—click its file name.

The file list displays only the files in the current drive that have
a file type of TEXT. The name of the disk in the current drive is
displayed above the Eject button. The other buttons are as
follows: Cancel aborts the operation, Drive switches to the other
drive, and Eject ejects the disk from the current drive.

Various File menu functions cause the active document to be
saved. If the Editor needs you to supply a file name it uses the
Save Box, shown in Figure 3-3.

Save document as Figures

[Figures:FIRST |

(save] (Cancel] (Drive]

Figure 3—3. The Save Box.

To save a file, first type its file name. Next, use the Eject and
Drive buttons to make the disk it is to be saved on the current
drive. (The current drive name is shown above the Eject button.)
Finally, click the Save button. The Cancel button is to abort the
save operation and return to the Editor.

The field where you type the file name is a standard Macintosh
editable text field. This means that you can use the mouse to
edit the file name until it is correct. See Macintosh for more
information on editing text fields.

1200301:03B 3—5

EDITOR Chapter 3

Editing Multiple Files

Up to four documents can be open at one time, but only one
document is the active document. To read in a document when
you already have an active document, choose Open... from the
File menu. It asks you for the document name. The new
document is read into a window on the screen and becomes the
active document. To make another document that is already
open the active document, use the mouse to move the pointer into
a portion of that document and click the mouse button. If you
have several documents open, you might have to move some out
of the way.

This capability of working with more than one document at a
time can be used to copy text from one document to another.

This process is described in detail in EDIT FUNCTIONS.

SELECTING TEXT

The basic editing functions are cut, copy and paste. Before you
can cut or copy text, you must select the text to be cut or copied.
Before you can paste, you place the insertion point by using the
mouse to move the pointer on the screen.

Within an active document, the pointer will have one of three
shapes:

e Text pointer in a document.
¢ Arrow pointer for menus and scroll bars.

e ‘Wrist watch when an operation will take some time.

Use the mouse to move the pointer on the screen. The shape of
the pointer changes when you move into and out of the document
window.

3—6 1200301:03B

SELECTING TEXT

Within the window, the text pointer is used to move the insertion
point and to select text.

In selecting text, you can select characters or words. You can
also select any number of characters or words. Selected text is
displayed in reverse video.

Moving the Insertion Point

The insertion point is indicated by a blinking vertical line where
the next character will be inserted. All insertion, whether from
typing or pasting, takes place at this point in the file, even if it is
not visible in the window.

To move the insertion point, move the mouse, directing the
pointer to where you want it to be and click. Note that the
insertion point moves when you select text. The insertion point
is never placed beyond the end of a document.

Selecting Characters

To select characters, move the text pointer to the beginning of
the characters you want to select, press and hold the mouse
button while moving to the last character you want to select.
You may select in either a forward or backward direction
through the file.

An alternate method of selecting characters that is especially
useful when selecting a large block of text is also available. Using
this method, you move the pointer to the beginning of the text
you want to select and click the mouse button. Then you move
the pointer to the end of the text you want selected and
shift—click. Shift—click means to hold down the shift key on the
keyboard and click the mouse button. You can use the scrolling
controls to display the end of the text you want selected if it is
too big to fit in the window.

1200301:03B 3-7

EDITOR Chapter 3

Selecting Words

To select a word, move the pointer into the word and click the
mouse button twice. To select multiple words, click the mouse
button twice and hold. Move the pointer to the last word you
want selected and release. If you double—click, and hold down
the mouse button while you move the insertion point to the left
or right, the selection expands or contracts by words.

Adjusting the Amount of Text Selected

To change the amount of text selected, move the pointer to the
position that you want the selection to extend to and shift—click.
This can be used to either expand or contract the selection.

SCROLLING AND MOVING THE DISPLAY

When a document is longer than will fit into the display window,
only part of the document is displayed at one time. You can
change what part is displayed by "scrolling" through the display
either horizontally or vertically. The vertical bars on the right
and bottom sides of the active window are the scroll bars. An
example of a text window showing the scroll bars is in Figure
3—-1.

The display window can be changed in size and moved on the
screen. This enables you to have multiple documents displayed
on the screen. These operations are done using the title bar. and
size control box (See Moving the Window, below.)

Scrolling the Display

There are three ways of moving the display window through the
document. In the first method you use the elevators. The
elevators are the white rectangles in each scroll bar. Its position
in the grey portion of the scroll bar (the "elevator shaft")
indicates the relative position of the currently displayed text
window in the document. If it is near the middle, the text

3—8 1200301:03B

SCROLLING AND MOVING THE DISPLAY

displayed in the window is near the middle of the document, and
so on. To change the position of the text window, you can move
the pointer into the elevator, click and hold the mouse button
down while you move the elevator to another position in the
elevator shaft. When you release the button, the window will
display the new position in the file.

The second way of moving the window uses the scroll arrows,
which are just to either side of the elevator shafts. If you move
the arrow pointer to the bottom scroll arrow and click, the
display window will move one line toward the end of the
document. If you hold the button down, the window will
continue to move a line at a time until you release it. The other
three arrows work in a similar way.

The third way of moving the window uses the gray regions to
either side of the elevators. Clicking the mouse in one of the gray
regions causes the Editor to scroll one window—full of
information. You can use this feature to page through a file.

Moving the Window

You can move the window on the screen and change its size. This
lets you display multiple documents on the screen. You can make
any visible window the active window by moving the pointer into
it and clicking.

To move the position of a window on the screen, move the
pointer to the title bar (but not in the close box!), press the
mouse button and hold it while you move the window. When
you release the button, the window is redisplayed at the new
location.

To change the size or shape of the active window, move the
pointer to the size control box, press the button, and move the
pointer until the window is the right size and shape. Release the
button and the resized window is displayed. The size control box
is the box in the lower right hand corner of the window. Only
the active window can be resized.

1200301:03B 3—9

EDITOR Chapter 3

THE FILE MENU

The File menu provides functions for reading in and writing out
documents, updating documents, printing documents, and exiting
the Editor. The File menu is-shown in Figure 3—4. Each
function is explained below.

r

Edit Search

Format Font Size

SRR

Figure 3—4. The File Menu.

New. The New command creates a new document with the
name Untitled and makes it the active document. You can

also execute the New command by typing N while holding

down the Command key.

Open... This tells the Editor to get a new document. It
prompts you for the document name using the Open Box,
then reads it in and makes it the active document. You can
also execute the Open... command by typing O while holding

‘down the Command key. Another method of opening a new

document is to type K while holding down the Command key,
and then type in the name of the document you want to open
followed by <Return>. This option does not appear in the
menu.

Open. This opens a file whose name corresponds to the
contents of the currently selected text in the active window.
This is used primarily to open an include file based on its
name in the current document. You can also execute the
Open command by typing D while holding down the

3—10 1200301:03B

THE FILE MENU

Command key.

e Close. This puts away the active document discarding any
changes that have been made. You are asked to confirm
whether the changes are to be discarded. If the document
does not have a name, you are asked to supply one using the
Save Box.

e Save. This writes out the active document, but does not close
it.

e Save as... This writes out a copy of the active document to
another document name. You are prompted for the name of
the document to write to with the Save Box.

e Revert to Original. This returns the document to the way it
was before you started editing it, or when you last saved it.
This is done by reading the document from the disk.

e Print. The Print command prints the active document using
the current font and font size. Executing the Print command
causes the standard Print dialog box to be displayed in which
you select various print options. If the Print dialog box fails
to appear, you probably do not have an Imagewriter file on
the same disk as the Editor. Refer to MacWnrite for more
information on the standard Print dialog box.

e Quit. This first asks you if you want to put away any
modified documents. If you answer yes, they are written out
to disk. Then it exits the Editor.

THE EDIT MENU

The Edit menu provides editing functions and tab setting. It is
shown in Figure 3—5.

The three basic edit functions are cut, paste and copy. These
make use of the special window called the Clipboard. The
Clipboard can hold only one piece of text. Text is put into the
Clipboard by selecting it in the active document, and either
cutting it or copying it. Text is copied from the Clipboard and

1200301:03B 3—11

EDITOR Chapter 3

inserted at the insertion point with the paste operation.

i kSearch Format Font Size

Cut F
Copy #C
Paste AL
Clear

Align ;
Move Left %L
Move Right i

oard

Hide Clipb

R

Figure 3—5. The Edit Menu.

For example, to move text from one place in a document to
another:

1. “Select the text to be moved.

2. Choose cut from the Edit menu. The text is removed from
the active document and placed on the Clipboard.

3. Place the insertion point where you want the text to be.

4. Choose Paste from the Edit menu. The text on the Clipboard
‘is inserted at the insertion point.

The Edit menu also enables you to adjust selected text left or
right by inserting or deleting spaces. Here are the Edit functions:

¢ Undo. This command puts the document back the way it was

before the previous operation, if possible. If there is no
change to undo, the function is called Can’t Undo.

3—-12 1200301:03B

THE EDIT MENU

e Cut. Cut places a copy of the currently selected text onto the
Clipboard and removes the text from the active document.
You can also Cut by pressing the X key while holding down
the Command key.

e Copy. Copy places a copy of the currently selected text onto
the Clipboard, but does not remove it from the active
document. You can also copy by presing the C key while
holding down the Command key.

e Paste. Paste inserts a copy of the text on the Clipboard at
the insertion point in the active document. If a section of text
is selected, Paste replaces it. You can also Paste by pressing
the V key while holding down the Command key.

e Clear. Clear removes the currently selected text from the
active document. The text is not placed in the Clipboard.

o Align. The Align command lines up the left edges of the
selected lines. The align command is most often used to undo
indentation in Pascal programs. You can also Align by
pressing the A key while holding down the Command key.

e Move Left. Move Left moves selected text left by deleting a
single space from the left of each line. It does not delete any
characters other than spaces. It is most often used to adjust
the left margin of a block of text. You can shift left by
pressing the L key while holding down the Command key.

e Move Right. Move Right is similar to Move Left, except that
it moves the selected text to the right by inserting spaces at
the beginning of each line. This can also be done by pressing
the R key while holding down the Command key.

e Show Clipboard. This enables the display of the Clipboard

window and selects it. If the Clipboard is already displayed,
this command is called Hide Clipboard.

1200301:03B 3—-13

EDITOR Chapter 3

THE SEARCH MENU

The Search menu gives you the ability to search for a text string
in the active document. The basic operation is Find, which
locates the next occurrence of the string and selects it. Change
allows you to find a string and replace occurrences of it with a
different string. Both of these operations search from the current
insertion point to the end of the document. If you want to search
from the beginning of a document, you must move the insertion
point to the beginning of the document. The Search menu is
. shown in Figure 3—86.

Size

Figure 3—6. The Search Menu.

All searches start at the insertion point, and go to the end of the
document. The search functions are as follows:

e Find. Find enables the Find Window, and displays it on the
screen. The Find command can also be executed by pressing
the F' key while holding down the Command key.

e Change. Change enables the Change Window and displays it
on the screen. The Change command can also be executed by
-pressing the S key while holding down the Command key.

¢ Hide Find. If the Find Window is enabled, the Hide Find
command will close the Find Window. If the Change Window
is enabled, this command is called Hide Change.

3—14 1200301:03B

THE SEARCH MENU

The Find Function

The Find function is performed using the Find Window, shown in
Figure 3—7. To find an occurrence of a string, first, you edit the
string to be found by using the standard Macintosh editing
functions. Next, select Whole Word search or Partial Word
search by clicking the appropriate box with the mouse. In Whole
Word search, the string will only match complete words
separated by spaces or other punctuation. In Partial Word
search, the string may match any part of a word. Finally, you
click the Find Next button.

Find What: [proc O whole word
[Find Next | [Partial Word

Figure 3—7. The Find Window.

If there is an occurrence of the string, it is selected. If no
occurrence can be found, the Editor gives a warning message.
Succeeding occurrences of the string can be found by just clicking
the Find Next button.

To put away the Find Window, click in the close box within the
title bar of the Find Window.

The Change Function

The Change function is performed using the Change Window,
shown in Figure 3—8. To change all occurrences of a string for
another, first edit the Find What and Change To strings in the
Change Window. This is done using the standard Macintosh
editing functions. Next, select Whole Word search or Partial
Word search. Whole Word search only allows the string to
match words separated by spaces. Partial Word search allows
the string to match any string of characters. Finally, you click
the Change All button.

1200301:03B 3—15

EDITOR Chapter 3

EO=
Find What: |x
Change To: [H+1
(findNewt] (2o " | [...| [Changenn

= (hange =

[0 whole Wword Partial Wovd

Figure 3—8. The Change Window

The other Change options are as follows: Find Next finds and
selects the next occurrence of the Find What string; Change,
Then Find changes the current selection, then finds the next one;
and Change changes the current selection.

To put away the Change Window, click in the close box within
the title bar of the Change Window.

THE FORMAT MENU

The functions in the Format menu allow you to set the spacing of
the tab stops, configure auto indenting mode, display nonprinting
characters, and set the printing page format. The Format menu
is shown in Figure 3—9.

% File
T

R

Edit Search BigulLidp Font Size
| Set Tabs
ARute Indent Off
Show Inuisibles

Figure 3—9. The Format Menu.

e Set Tabs. Set Tabs enables you to set the spacing of the tab
stops. You may only select a spacing between 1 and 20. Note
that the compiler listing pass assumes 8 spaces per tab stop.
If you create Pascal source text with different tab settings,

3—16 1200301:03B

THE FORMAT MENU

your listing won’t precisely match you source text.

e Auto Indent Off. This toggles the auto indent mode on and
off. In auto indent mode, carriage returns puts the insertion
point in line with the indenting of the previous line. This
option is especially useful for indenting Pascal programs. If
auto indenting is already off, this function is called Auto
Indent On.

e Show Invisibles. Show Invisibles will display the non—
printing characters (i.e. blanks, carriage returns, and tabs) in
the currently active window. If the non—printing characters
are currently being displayed, this command is called Hide
Invisibles.

e Printing Format. The Printing Format command brings up
the standard Page Setup dialog box. Refer to MacWrite for
more information.

THE FONT MENU

The Font menu enables you to change the display font. The
Font menu is shown in Figure 3—10. A check appears in front of
the font in which the active document is currently displayed.
You can change the font by selecting another font from the
menu.

& File Edit Search Format
A N PR

Chmégo
| Geneva
,2? vMonaco

Figure 3—10. The Font Menu.

The font selected affects how many characters can be displayed
on a line, and whether or not the display is proportionally
spaced. Different fonts can be active in different windows at the
same time. Which fonts can be selected depends on the fonts
available on the system disk that you booted with.

1200301:03B 3—-17

EDITOR Chapter 3

NOTE: The UCSD Pascal 1 disk has a System file that
contains only the Chicago—12, Geneva—12, and Monaco—9 fonts
installed on it. If you wish to use other fonts from the Editor,
you must replace the System file, or use the Font Mover program
to augment the font set of the System file.

THE SIZE MENU

The Size menu enables you to choose the size of the current font.
The Size menu is shown in Figure 3—11. A check appears in
front of the font in which the active document is currently
displayed. You can change the font size by selecting another size
from the menu.

r

Size A
O Poind
10 Point

Search Format Font

File Edit

S

i< Point
18 Point
24 Point

Figure 3—11. The Size Menu.

For each font, only certain sizes are available. These sizes are
shown within the size menu in hollow letters. The font will look
best if one of these sizes is selected. Otherwise, the Macintosh
must do "scaling" which can detract from the appearance of the
characters and slow down the speed of drawing characters.

3—18 1200301:03B

4
PASCAL LANGUAGE

OVERVIEW

This chapter is a supplement to The UCSD Pascal Handbook
which describes the version of the UCSD Pascal language
supported by The MacAdvantage: UCSD Pascal.

The UCSD Pascal Handbook contains a thorough description of
the basic UCSD Pascal language as it is implemented under
Version IV of the p—System. The MacAdvantage: UCSD
Pascal is an extended version of this UCSD Pascal language. In
the creation The MacAdvantage: UCSD Pascal, some major
new language features were introduced, and a few p—System
specific features were removed.

In addition to the language features added for interfacing to the
Macintosh, this supplement describes all of the enhancements to
UCSD Pascal that have been introduced since the publication of
The UCSD Pascal Handbook. There is also a section that identifies
material in The UCSD Pascal Handbook that is not applicable to
The MacAdvantage: UCSD Pascal environment. The last
two sections contain revised descriptions of the compiler options
and the conditional compilation facility.

Throughout the remainder of this chapter, the name UCSD
Pascal refers to The MacAdvantage: UCSD Pascal version of
the language.

1200301:04B 4—1

PASCAL LANGUAGE Chapter 4

Language Enhancements

The language features not described in The UCSD Pascal
Handbook include:

1.

The rules regarding the ordering of label, const, type, var,
procedure, and function declarations within a declaration
section have been relaxed. Identifiers must still be
appropriately declared before they are used, but the usage of
include files no longer influences the ordering that the
compiler will accept. This gives you considerable freedom in
the logical arrangement of large declaration sections.
However, the compiler does require that it be able to resolve
any accumulated forward references within pointer type
declarations upon encountering a procedure or function
declaration.

A new form of uses declaration called the "selective" uses
declaration has been added to the language. This form of
uses declaration is useful for economizing on symbol table
space and resolving name conflicts between units.

Procedural and functional parameters are supported. This is
a Standard Pascal construct for passing procedures and
functions as parameters which was not implemented in earlier
versions of UCSD Pascal.

‘Conformant arrays are supported. Conformant arrays are

array parameters in which the array bounds are not fixed.

The implementation follows the definition in the ISO Pascal

standard.

‘A variant of the conformant array parameter construct called
an "interface conformant array" is also supported. This

construct is primarily useful in system programming for
writing procedures which operate on parameters of arbitrary

types.

The sizeof and pmachine intrinsics have been enhanced to
make the writing of portable and efficient programs easier.
These enhancements make it possible to (1) obtain the size of
a variable or type in whatever units you wish, (2) store

4-2 1200301:04B

10.

11.

12.

OVERVIEW

pointer values in a size independent manner, and (3) easily
generate the set of two byte p—code opcodes used by The
MacAdvantage: UCSD Pascal.

Long integer arguments may be passed to the standard
functions pred, succ, ord, and abs.

Due to a need for a clean interface to the Macintosh
Operating System, a 32—bit integer data type, integer2, is
supported. Unlike the long integers in UCSD Pascal, this
data type may be used in all of the contexts where the integer
data type may be used. (Long integers are still available, and
have the same characteristics as before.)

Pointer manipulation intrinsics have been added to support
manipulation of 32—bit absolute addresses. These intrinsics
are: absadr, reladr, derefhnd, absmove, locate. Additional
pointer manipulation intrinsics were added which can be used
to manufacture or manipulate pointers in a size and
implementation independent manner. These intrinsics are:
adr, pointer, offset.

Bit manipulation intrinsics have also been added. These
include band, bor, bxor, bnot, shiftleft, shiftright. These new
intrinsics make efficient data manipulation operations easier
to write:

An intrinsic called setlength has been added for setting the
length of a string variable in an implementation independent
fashion.

A new type of external procedure, called an "in-line
procedure," is supported. A call to an in—line procedure
becomes a direct call to a Macintosh Operating System
routine.

1200301:04B 4-3

PASCAL LANGUAGE Chapter 4

Language Changes

The following are the language changes from the UCSD Pascal
language under the p—System:

1.. Two unadvertised constructs involving pointers are no longer
allowed: (1) The standard function ord does not accept
pointer arguments, and (2) pointers may only be compared
for equality (=) or inequality (< >).

2. The unit I/O intrinsics are not supported. These are:
unitread, unitwrite, unitstatus, unitbusy, unitwait, unitclear.

3. The gotoxy intrinsic is not supported due to the ambiguity of
such an operation when a proportionally spaced character
font is used for the .CONSOLE device.

USING THE HANDBOOK

This section is intended to bring to your attention certain
material in The UCSD Pascal Handbook which either does not
apply to you, or needs to be interpreted differently because you
will not be writing UCSD Pascal programs under the
p—System.

Using the Macintosh version of UCSD Pascal isn’t radically
different from what is described in the handbook. Most of the
differences involve small details which will become clearer after

you have absorbed the material in this chapter and the
GENERAL OPERATIONS chapter.

In the handbook, there are a number of places where you are
referred to manuals that are not included with the version of
UCSD Pascal that you have purchased. The following table may
give you some clues as to which chapter of this user manual to
read in order to look up some of the topics referred to in The
UCSD Pascal Handbook. The short explanations given here are
intended to help you quickly sort out the differences between the
descriptions in the handbook and the way things work with your
Macintosh version.

4—4 1200301:04B

p. 16: Library
handling

p. 17: Runtime
Errors

p- 19: Textfile
maintenance

p. 27: Predeclared
identifiers

p. 27: pmachine
intrinsic

p. 59: trunc(L)

p. 86: Character—
devices

p. 87: Keyboard
End Of File

p- 95: Space
Allocation

p- 97: Real numbers

p- 101: sizeof
intrinsic

p. 103: declaration
ordering

1200301:04B

USING THE HANDBOOK

See the LIBRARIAN chapter. _

See the GENERAL OPERATIONS
chapter.

See the EDITOR chapter.

List is not complete and includes
identifiers that are no longer
predeclared.

The pmachine intrinsic is described in
this chapter.

Produces overflow error if long integer L
is outside of the range —maxint2—1 .
maxint2.

The names of the character—devices are
slightly different. Redirection of I/O on
these devices is not supported. See the
GENERAL OPERATIONS chapter.

This feature is not available.

See the P-MACHINE
ARCHITECTURE chapter.

Only 64—bit real numbers are supported.

The warning about the sizeof intrinsic is
no longer accurate. See the revised
description of the sizeof intrinsic in this
chapter.

Include files no longer influence the
ordering of declarations that the

compiler will accept. See the discussion
of this topic in the OVERVIEW section

4-5

PASCAL LANGUAGE

p. 115: Library files

p. 133: Debugger

p. 135: input
and output

p. 140: File naming
conventions

p. 146: keyboard

p- 146: Device I/O

p. 151: ioresult values

p-152: Screen 1/0O

p. 153: Memory
Management

p. 163: Interrupts

Chapter 4
of this chapter.
There is no file called
*SYSTEM.LIBRARY. See the

GENERAL OPERATIONS
LIBRARIAN chapters.

and

See the DEBUGGER chapter.

The standard files input and output are
permanently opened to the .CONSOLE
device. See the GENERAL
OPERATIONS chapter.

The Macintosh file naming conventions
are similiar, but slightly different. See
the GENERAL OPERATIONS chapter.

The file keyboard is opened to the
.SYSTERM device. See the GENERAL
OPERATIONS chapter.

Material in this section is not applicable
to the Macintosh environment. Low
level device I/O can be done using the
Macintosh interface unit PBIOMGR
instead. See the MACINTOSH
INTERFACE chapter.

The ioresult intrinsic returns values
different from those listed. In fact,
ioresult can return negative values. See

the ERROR MESSAGES Appendix.
The

There is no screen control unit.
gotoxy intrinsic is not supported.

See the MEMORY MANAGEMENT

chapter.

No p—Machine events are supported.
Thus the attach intrinsic cannot be used.

1200301:04B

p. 167: Quiet
compile option

p. 167: Realsize
compile option

p. 170: Copyright
notices

p. 171: U(ser

restart command

p. 172: External
routines

p. 280: BOOT _ COPY
program

p. 307: ord(odd)

1200301:04B

USING THE HANDBOOK

Default setting is always "—". There is

no file SYSTEM.MISCINFO.

Only 64 bit real numbers are supported.

Up to 77 characters of copyright notice
can be placed into the segment
dictionary. The structure of the segment
dictionary 1is described in the

P-MACHINE ARCHITECTURE
chapter.

This feature is not available.

The compiler will allow the form of
external routine declaration shown
here; but you need the appropriate
assembler and linker to write external
routines in assembly language. See
IN-LINE PROCEDURES AND
FUNCTIONS.

This example program uses the
unsupported unit I/O intrinsics,
therefore it will not compile.

Technique discussed here still works with
type integer; but will not work with type
integer2. Use the bit manipulation
intrinsics instead. See Bit Manipulation
Intrinsics and Integer2 Routines.

PASCAL LANGUAGE Chapter 4

INTEGER2 DATA TYPE

UCSD Pascal supports a 32—bit integer data type called integer2,
which represents integral values in the range —2147483648 to
2147483647. The i nteger2 data type can be used in all contexts
where it is legal to use integer. The integer2 data type is an
extension to Standard Pascal.

Except for their differing sizes, the only difference in operation
between integer2 and integer is the way that overflow is handled.
Operations on the i integer data type do not report integer
overflow—the result of an overflow "wraps" back into the
integer range, producing strange arithmetic results. Operations
on integer2 report an execution error if the result of an expression
is out of range.

Since the type integer2 can be used anywhere it is legal to use
type integer, it is possible to:

o Index arrays with integer2 values.
e Use integer2 variables as for statement control variables.

e TUse integer2 constants as case label constants in record type
declarations and case statements.

o Use integer2 typed expressions as selectors in case statements.

e Define functions that return integer2 results.

Generally, you should use the integer2 type only when a
particular Macintosh interface requires that you use it, or when
the program you are writing requires the extended range of
values offered by the integer2 type. This is because integer2
variables occupy twice the amount of memory as integer
variables, and integer2 operations are somewhat slower than

integer operations.

4-8 1200301:04B

INTEGER2 DATA TYPE

Integer2 Format

An integer2 constant value is represented by a sequence of digits,
preceded by an optional '+’ or ’~’. If no sign is present, the

constant is positive.

Each of the following is an integer2 constant:

0]
7777777
-4582364

Integer2 constant values can be specifed in the range —maxint2 ..
maxint2. The identifier maxint2 is a UCSD Pascal predeclared
constant identifier that has the value 2147483647. The constant
identifier maxint2 is an extension to Standard Pascal. As with
the integer data type, there is a negative integer2 value
(—2147483648) that does not have a corresponding positive value.

An integer constant takes its type from the context in which it
appears. Thus, 0 may represent an integer constant in one
context and an integer2 constant in another, depending on what
the compiler judges to be the required type.

Integer constants outside the range of values —maxint2 .
maxint2 are considered to be long integer constants.

Type Compatibility

As with the standard type integer, additional 32—bit integer data
types may be declared via subrange type declarations. Any
integer subrange type which includes integer values outside the
range —maxint .. maxint is considered a subrange of the integer2
type. If either bound of such a subrange type lies outside of the
range —maxint2 .. maxint2, the compiler reports a syntax error,
since long integer subrange type declarations are not allowed.

1200301:04B 4-9

PASCAL LANGUAGE Chapter 4

The following example contains subranges of the integer and
integer2 types:

O..maxint an integer subrange)
. -56666. .4 an integer2 subrange
B..maxint2 an integer2 subrange

The integer2 data types are assignment compatible with the
integer data types, and vice versa. However, there can be a
difference in meaning between a use of integer2 and integer,
because the overflow conditions of the two types differ.

The type compatibility rules between the integer2 data types and
the long integer data types are identical to the compatiblity rules
between type integer and long integers. Briefly, these rules are as
follows:

e In an expression, any integer or integer2 operand is
compatible with a long integer operand. The conversion from
integer or integer2 to long integer is done automatically.

e Long integers may be assigned the values of expressions of
either integer or integer2 types. The conversion to long
integer is done automatically.

e A variable of type integer or integer2 cannot be assigned the
value of an expression of a long integer type. First, the long
‘integer must be converted to an integer2 using the standard
function trunc.

Integer2 Comparisons

All the comparisons legal for integer are also legal for the
integer2 data type:

... Means ... equal to
not equal to
grester than
?re-ter then or equal to
ess than
less than or equal to

AAVVA L
v

4-10 1200301:04B

" INTEGER2 DATA TYPE

Integer2 Operations

All the operations legal for integers are also legal for the integer2
data type.

These are the legal operations on a single integer:

+ ... means ... unary plus
- unary minus

A unary operator may not be strung together with a binary
operator. The following example shows this:

- il
ficts Sl

These are the legal operations on two integer2 operands:

+ plus

- minus

- times

div integer divide

mod remainder of integer divide

If the second operand of div is zero, a runtime error occurs. If
the seond operand of mod is less than or equal to zero, a runtime
error occurs. The integer2 div and mod operations are defined
to perform the same functions as the integer div and mod
operations.

The multiplicative operators *, div, and mod take precedence
over the additive operators + and —. To override operator
precedence, subexpressions may be grouped together with
parentheses.

1200301:04B 4—11

PASCAL LANGUAGE Chapter 4

Integer2 Routines

The following routines take an integer2 parameter and return an
integer2 result.

abs(I2) returns the absolute value of 12, which is an integer2.
sqr(I2) returns the square of 12, which is an integer2.
succ(I2) returns the 12+1, where 12 is an integer2.

pred(I2) returns the 12—1, where 12 is an integer2.

The standard functions (odd, chr, and ord) accept integer2
arguments. The functions ord, sqr, and abs will return type
integer2 values when passed integer2 arguments.

NOTE: The standard function odd, when supplied with an
integer2 argument produces exactly the Boolean values true and
false. That is, ord(odd(E)), where E is an expression of type
integer2, will always return zero (0) or one (1). This is not the
case when the argument to odd is an expression of type integer,
since odd only serves to change the type of the expression to
Boolean and does not change the value in any way. What this
implies is that you should NOT use odd as a type conversion
function. Use the bit manipulation intrinsics instead of tricks
which rely on the implementation of odd. For example, the
obscure statement

Y := ord(odd(X) and odd(Z))

should be written as:

Y := band(X, 2Z)

4—12 1200301:04B

INTEGER2 DATA TYPE

The standard procedures read, and readln can be used to read
values into integer2 variables. Similiarly, write and writeln can
be used to write integer2 values to text files.

The standard functions trunc and round return type integer2.

Integer2 Conversions

In arithmetic expressions involving a mixture of data types,
operands are automatically converted so the two operands of any
one operation are of the same type.

The result type of an operation is established from the type of the
operands. If both operands are of the same type, the type of the
expression is the same as the type of the operands. If on the
other hand the operands are of different types, the type of an
expression is the type of whichever operand has the highest type—
precedence.

The term "type—precedence" refers to a conceptual ordering of
the various arithmetic data types. The type—precedence of a
given type may be thought of as a measurement of the number of
different types whose values can be converted to that type. Type
real has the highest type—precedence, followed by integer2, and
integer, in that order.

NOTE: Long integers are not compatible with type real. In an
expression with a mixture of long integer operands and integer or
integer2 operands, the type—precedence ordering is as follows:
long integer, integer2, integer.

Two type conversion intrinsics called extend and reduce are
defined which provide the programmer with facilities for
controlling the type of an integer expression:

extend(X) causes the integer expression X to be converted to
integer2 type. If the expression X is of the integer2 type,
extend(X) is a null operation. It is natural to use extend in
situations where both operands are of type integer, but the result

1200301:04B 4—13

PASCAL LANGUAGE Chapter 4

of an operation is expected to be outside the range of type
integer. For example, the assignment statement

Grand_total := Last_year + This_year

could be written as

Grand_total := extend (Lest_year) + This_year

in order to force the calculation to be performed using 32—bit
integer arithmetic. In the situation depicted in the above
example, GRAND _TOTAL would be a variable of type integer2,
and the sum of the two integer values LAST_YEAR and
THIS _ YEAR is potentially larger than maxint.

reduce(X) causes the integer expression X to be reduced to type
integer. If the value of X is outside the range of values
—maxint—1 .. maxint an Integer Overflow execution error is
reported. If X is already an expression of integer type, reduce(X)

is a null operation.

PASCAL INTRINSICS
Setlength Intrinsic

A new string intrinsic called setlength is available in UCSD
Pascal. Its definition is as follows:

setlength(DESTINATION, SIZE) is a procedure. It sets the
current length of the string variable DESTINATION to the value
of the integer expression SIZE.

For example,

Y h(s, | h(S s
§‘t..33%§<§>j :Z"?:”f I+

4-—-14 1200301:04B

PASCAL INTRINSICS

appends an asterisk to S.

An advantage of using setlength as opposed to making an
assignment to the "length character" is that range checking does
not have to be disabled around the statement that sets the length
of the string.

Bit Manipulation Intrinsics

UCSD Pascal contains a set of bit manipulation intrinsics to aid
in disecting integer and integer2 values into fields. These are:
band, bor, bxor, bnot, shiftleft, shiftright. Each of these intrinsics
is a function. The four logical operations (band, bor, bxor, and
bnot) provide a clean alternative to the old style " ord(odd()
and odd(Y))" constructions.

band(P,Q) where P and Q are integer or integer2 expressions
returns the bit—wise and of P and Q as an integer or integer2. If
both P and Q are integer the result is an integer. Otherwise, the
result is an integer2.

Xi=m b.ndéX,ZSS) masks X to its lower byte)}
X:= band(X,-2) forces X to be even}

bor(P,Q) where P and Q are integer or integer2 expressions
returns the bit—wise or of P and Q as an integer or integer2. If
both P and Q are integers the result is an integer. Otherwise, the
result is an integer2.

X:i= bor§X,256) turns on bit 8 of X}
X:= bor(X,1) forces X to be odd}

bxor(P,Q) where P and Q are integer or integer2 expressions
returns the bit—wise ezclusive—or of P and Q as an integer or
integer2. If both P and Q are integers the result is an integer.
Otherwise, the result is an integer2.

Xs= bxoréx,-l) inverts the bits of X}
X:= bxor(X,1) changes the parity of X}

1200301:04B 4-15

PASCAL LANGUAGE Chapter 4

bnot(P) where P is an integer or integer2 expression returns the
bit—wise ones—complement of P as an integer or integer2. The
type of the result is the same as the type of P.

X:= bnot (X) {inverts the bits of X}

shiftleft(P,N) where P and N are integer or integer2 expressions
returns the value of P shifted left by N bits. The bits that are
shifted out of P are lost. The bits that are shifted into P are zero
bits. 1f P is an integer, the result is an integer. Otherwise, the
result is an integer2.

X:= shi ftleftﬁx »1) {doubles the value of X}
X:= shiftleft(band(X,6265),
{ch'ft the low byte of X}

shiftright(P,N) where P and N are integer or integer2 expressions
returns the value of P shifted right by N bits. The bits that are
shifted out of P are lost. The bits that are shifted into P are zero
bits. If P is an integer, the result is an integer. Otherwise, the
result is an integer2.

X:= shiftright(X,1) {halves the value of X}
X:= b.nd(shlftrlght(x 8) ,265)
{reburns the second byte of X}

Here is an example routine that uses the bit manipulation
intrinsics to multiply (the hard way) two positive integers.

function TIMES(X,Y: integer): integer;
var

RESULT,I: integer;

be
SESULT i= O
for I:= O to 15 do
begtn
if band(X,1) = 1
thon RESOLT = RESULT+Y;
X:e= chifbrught(x, 1);

Y:= shiftlett(Y,1);
end'
TIMES: RESULT;
end; {TI S)

4—16 1200301:04B

PASCAL INTRINSICS

Pointer Intrinsics

UCSD Pascal contains a set of pointer manipulation intrinsics.
These intrinsics were added to the language for the following
reasons.

o They eliminate much of the need. for the pmachine intrinsic
and the ord(POINTER) construct to do pointer manipulation.
This makes system—level pointer manipulation much cleaner
and in some instances more efficient.

e They make pointer manipulation code independent of the
representation or size of pointers. This paves the way for a
larger pointer size in UCSD Pascal.

e They make it possible to manipulate data outside the Pascal
Data Area. This is necessary in order to communicate with
the Macintosh Operating System. -

WARNING: The use of these intrinsics should be restricted to
use in systems and application programs that must do unusual
pointer manipulation or must call the Macintosh Operating
System. Many of these routines do little or no type checking, so
their use could be error—prone.

Besides the 16—bit representation of pointers used by UCSD
Pascal for pointer variables, there are two other representations
of pointers in UCSD Pascal. First, there is the "offset"
representation of a pointer. An offset is a 16—bit signed integer
that maps to a unique UCSD Pascal memory location. The
representation of pointers as offsets is undefined. However,
offsets have the following properties:

e Higher pointer addresses are represented by higher offset
values. Thus offsets may be compared to determine the
ordering of their respective pointers.

e A one word difference in pointer values is represented by an

offset value change of 1. Thus offsets may be subtracted to
determine the distance between two pointers in words.

1200301:04B 4—-17

PASCAL LANGUAGE Chapter 4

The routines pointer and offset map between pointers and offsets.

The second alternative pointer representation is the "absolute
pointer". An absolute pointer is represented by a positive
integer2 value which is a 68000 32—bit address. The absolute
pointer is provided in order to pass data to and from the
Macintosh Operating System. The routines absadr and reladr
map between pointers and absolute pointers.

Here are the pointer intrinsics:

offset(P) is a function which returns the word memory offset of
the pointer P. The parameter P can be any expression of a
pointer type. The result of offset(nil) is undefined.

pointer(O) is a pointer valued function which returns the
pointer indicated by the offset O. The type of the result is the
same type as the universal pointer constant nil.

adr(V) is a pointer valued function which returns a pointer to
the variable reference V. (V may not be a component of a
packed array or a field of a packed record. The variable
reference V may be a reference to a subcomponent of a variable,
as long as that subcomponent is word aligned and occupies at
least one word of storage.) The type of the result is the same
type as the universal pointer constant nil.

ptrinc(P,N) is a pointer valued function which returns the word
pointer value obtained by adding the positive word offset N to
the word pointer value P. The parameter P is an expression of
any pointer type. The value of the parameter P may not be the
same as the value of the pointer constant nil. The parameter N is
an sexpression whose type is compatible with type integer or
integer2. If the value of the parameter N is negative, the result of
this function is undefined. The type of the result is the same
type as the universal pointer constant nil.

418 \ 1200301:04B

PASCAL INTRINSICS

NOTE: ptrinc is designed to be an efficient mechanism for
stepping a pointer in short increments thru an allocated variable.
If it is necessary to "back up" a pointer (i.e. add a negative
offset) this can be done using offset and pointer.

absadr(P) is a function which returns the absolute address of the
word pointed to by pointer expression P. The result is undefined
if P is the pointer constant nil.

reladr(A) is a pointer valued function which returns a pointer to
the word at the absolute address A. The result is undefined if the
absolute address A is odd, or is not in the range of addresses that
can be represented by a pointer. The type of the result is the
same type as the universal pointer constant nil.

derefhnd(A) is an integer2 valued function which returns the
absolute address of the word pointed to by the Macintosh handle
A. (A handle is an abolute pointer to another absolute pointer
called a "master pointer." The function derefhnd returns the
low order three bytes of the master pointer.)

locate(V) is an integer2 valued function which returns the
absolute address of the variable reference V. (V may not be a
component of a packed array or a field of a packed record.
The variable reference V may be a reference to a subcomponent
of a variable, as long as that subcomponent is word aligned and
occupies at least one word of storage.) The construction
locate(V) is equivalent to absadr(adr(V)).

An alternative form of locate, locate(PROC, N), returns the
absolute address of a PME entry—point which will cause
activation of the routine specified by the procedure or function
identifier PROC. The parameter N is an integer expression
which specifies the number of the PME entry—point to be
associated with the routine PROC. N must be in the range 1 to
9. (PME entry—point 0 is reserved for use by the Runtime
Support Library.) The association of the entry—point with
PROC remains in effect until a subsequent locate operation uses
the same entry—point. The entry—point may only be called
during the execution of an assembly language routine or during

1200301:04B 4—19

PASCAL LANGUAGE Chapter 4

an in—line procedure call.

absmove(SRC,DEST,NBYTES) is a procedure that moves
NBYTES of data from SRC to DEST. SRC and DEST are
absolute addressesr NBYTES is an integer2 expression. The
action performed by absmove is equivalent the action of moveleft
intrinsic, except that it can move data that is outside the Pascal
Data Area. absmove is often used to move data into the Pascal
Data Area so that it can be manipulated in a Pascal variable.

(32 -bit absolute address J

. locate
reladr l absadr
- . variable
[16-bit P‘”nt"a " adr | reference
A
offset l pointer

16-bit offset

Figure 4—1. Pointer Intrinsics.

For more information on use of these pointer intrinsics, see the

examples in the MACINTOSH INTERFACE chapter.
Pmachine Intrinsic

This section describes the pmachine intrinsic. =~ The pmachine
intrinsic allows you to generate in—line p—code. Its primary use
is for performing tasks which the compiler does not ordinarily
allow. In—line p—code can be useful in very low—level system
programming. To use pmachine, you must understand the
p—code operators described in the P-—-MACHINE
ARCHITECTURE chapter.

4—20 1200301:04B

PASCAL INTRINSICS

The use of pmachine is discouraged for the following reasons:

1. In some cases, the p—codes you specify are altered by the
compiler at compile time, producing unpredicatable results.

2. Software written with pmachine is often less maintainable
than other software.

3. Software written using pmachine may be incompatible with
future UCSD Pascal environments.

WARNING: Absolutely no protection is provided by this
intrinsic or the system; use it with EXTREME CAUTION.

The following example shows the form of a call to pmachine:

"pmechine® " (" pmachine-item { "," pmachine-item } ")*

The parameters to pmachine are a list of one or more
p—Machine—items. A p—Machine—item describes a portion of
p—code, and causes one or more bytes to be generated.

The following list describes the four wvarieties of
p—Machine—item:

1. p—code syllable: The simplest item is a scalar constant. This
item produces a single p—code. If the constant is less than
255, the constant is the p—code. If the constant is greater
than or equal to 255, a two byte p—code is generated
consisting of a byte containing the value 255 followed by a
byte containing the value (constant—255).

2. Expression value: If the item is an expression enclosed in

parentheses, then a p—code sequence is generated which will
compute the value of the expression and leave it on the stack.

1200301:04B 4-21

PASCAL LANGUAGE ' Chapter 4

3. Address reference: If the first token of the item is a caret (*),
then the item is the specification of a variable, and p—code is
generated which leaves the address of that variable on the
stack. {The generated address is a pointer value, not an
absolute address.)

4. Indirect store of pointer value: If the item consists of the
Pascal assignment symbol, :=, the compiler is directed to
generate code which accomplishes the storing of a p—Machine
pointer value on the top of the stack into the pointer variable
pointed to by a second pointer value on the stack (see the
explanation below).

Given the following declarations:

const
STO = 196;

type
gEC = record
FIRST,SECOND: integer;
end;
RECP = “REC;

ver
VECTOR: erray[0..9] of RECP;
I: integer;

pmachine (“VECTOR[E]"~.FIRST, (IsI), STOD);

would cause the square of I to be stored in the first field of the
sixth element of the array VECTOR.

The fourth type of p—Machine—item is a syntactic mechanism for
directing the compiler to generate the correct p—code sequence
for an indirect store of a p—Machine pointer value regardless of
pointer size.

The following pmachine construct illustrates the old way of
storing a pointer value:

pmachine (*VECTOR[0], “MYREC, STO);

4—-22 1200301:04B

PASCAL INTRINSICS

The pmachine construct in the example pushes the address of
VECTOR[0] onto the stack; pushes the address of the variable
MYREC onto the stack; and finally uses the p—Machine STO
instruction to store the pointer into VECTOR[0].

The following example shows how this same operation could be
coded in a manner independent of the size of p—Machine pointer
values: '

pmachine ("VECTOR[0], “MYREC, :=);

The appearance of the Pascal assignment symbol, :=, as a
p—Machine—item causes the Pascal compiler to generate the
p—Machine STO instruction.

NOTE: Always use the assignment symbol syntax to store
pointer values into variables. This keeps your software
independent of the size of p—Machine pointers. Also, DO NOT
use the assignment symbol syntax to store anything other than
pointer values; otherwise, your software may be invalidated by
future UCSD Pascal implementations in which pointers are larger
in size than a single p—Machine word.

Sizeof Intrinsic

The sizeof intrinsic has been enhanced in two ways. First, you
may supply an optional units field, which allows you to select the
units in which sizeof is to return the size. Second, you may
supply optional tag fields, which allow sizeof to calculate the size
of a particular variant of a record.

The syntax for sizeof is as follows:

"sizeof"™ " (" Et*pe—identifier | variable)
," units { "," case-constant}] ")"

1200301:04B 4-23

N

PASCAL LANGUAGE Chapter 4

The optional UNITS parameter is an integer constant that
specifies the units in which the size of the type or variable is to be
returned. If UNITS is omitted, a default value of 8 (the number
of bits in a byte) is assumed. The units specification is a number
of bits. If the size of the specified type or variable is N bits, the
value returned is obtained by the following formula:

. (N + UNITS - 1) div UNITS

The UNITS parameter may be followed by a list of tag field
values that select a specific variant of a record type. The syntax
and rules used for the specification of a variant are the same as
for the standard procedure new.

The sizeof intrinsic may be used to determine the size of the
actual parameter which corresponds to a formal conformant
array parameter. When sizeof is used for this purpose, the
compiler generates code to calculate the size of the actual
parameter at runtime. In all other situations, the result is a
constant value calculated by the compiler at compile time.

The following examples illustrate the various forms of the syntax
for sizeof:

sizeof Vg Returns size of veriable V in bytes.
‘sizeof (T Returns size of type T in bytes.
sizeof (V, 1 Returns size of V in bits.

sizeof(V, 8 Returns size of V in bytes.

sizeof (V,16 Returns size of V in words.

sizeof (R, 8, T1, T2,

Returns size of the specified
variant of the record type or
variable R in bytes.

sizeof (P*.A[X], 18)

Returns size of the variable
P*.A[X] in words.

The following example also illustrates the use of tag fields in
sizeof:

tyge
= record
Fl: integer;
9
cese HAS_MORE_THINGS: boolean of
false:" ();

4—24 1200301:04B

PASCAL INTRINSICS

true: (F2, F3: integer);

end;
var
I: integer;
V: R;
P: “R;
begin
new (P, false);
V.F1 : 3

=
V.HAS_MORE_THINGS := false;
:oveloft(v, P", sizeof (R, 8, false));
end.

The moveleft call moves only the F1 field of R, because the tag
field of sizeof selected the false variant of R, which contains no
additional fields.

IN—-LINE PROCEDURES AND FUNCTIONS

UCSD Pascal has an alternative form of an external procedure
or function declaration that allows you to gain immediate access
to the Macintosh Toolbox routines. This form of external
routine declaration is called an "in—line" routine. The syntax for
declaring an in—line routine requires that you follow the reserved
word external in your declaration by an integer constant
enclosed in parentheses. The integer constant specifies the
Macintosh "trap" instruction for the routine you wish to call.
This syntax is illustrated by the following example:

procedure GetMouse(mouselLoc: PointPtr);
external (-22188) ; {A972)

The example shows the declaration of the interface to the
Macintosh Event Manager GETMOUSE routine, which is
accessed by executing the trap instruction A972 (hexadecimal).
The integer constant —22158 is the decimal value equivalent to
A972. (UCSD Pascal does not allow you to specify constants in
hexadecimal.)

When an in—line routine is called, the compiler generates code to
pass the indicated parameters on the stack and then generates a
special p—code which causes your program to execute the
Macintosh machine instruction you have specified.

1200301:04B : 4-25

PASCAL LANGUAGE Chapter 4

When you declare in—line routines, you do have to make sure
that the number and types of the parameters are correct for the
Macintosh routine you intend to call. It is also crucial that the
function result type (if any) and the trap instruction number be
correct. See the MACINTOSH INTERFACE chapter for detailed

information about interfacing to the Macintosh Toolbox routines.

Unlike ordinary external routines, in—line routines may be
declared within the interface section of a unit. Thus units can
be used to organize collections of Macintosh Toolbox interfaces
into manageable packages. This is precisely what was done to
create the Macintosh Interface listed in Appendix A.

SELECTIVE USES DECLARATIONS

A selective uses declaration is a special form of the UCSD Pascal
uses declaration that allows a client of a unit to select only
those declarations that it needs from the interface section of the
unit. (A client is a program or unit that uses another unit.)
Selective uses declarations have two primary purposes. First,
the client can better document which parts of a unit it is using
by only selecting the pertinent declarations. Second, by only
selecting declarations that are needed, symbol table space is
conserved, so larger programs may be compiled.

Declarations from the unit are selected by listing the appropriate
identifiers in parentheses after the unit name. The following
defines the complete syntax of a uses declaration.

uses~declaration = "uses" unit-identifier
["(" identifier-list ")"] ";"

unit-identifier = identifier .

identifier-list = { identifier } .

A selective uses declaration consists of a simple uses declaration
followed by a list of one or more identifiers enclosed in
parentheses. Each of the identifiers in the list must be defined in
the interface section of the unit being used. If a selected
declaration is not present in the interface section, a syntax error

4-26 1200301:04B

SELECTIVE USES DECLARATIONS

results.

Here is an example of a selective uses declaration:

uses MYUNIT (A_CONST, VAR1, VAR2, MY_ROUTINE);

A selective uses declaration specifies that only those declarations
whose identifiers are listed are imported from the unit. The
compiler first compiles the interface text for the unit, then
discards the portions of the symbol table that describe
declarations which were not selected. Thus, only the symbol
table entries for the selected declarations are retained in the
symbol table. The net result is a considerable savings in symbol
table space when a client only requires a few declarations from a
unit whose interface section is large. This makes it possible to
compile larger programs than would otherwise be possible
without selective uses.

While the primary advantage of the selective uses declaration is
that the compiler’s symbol table need not contain unnecessary
declarations, there are other advantages as well.

First, a selective uses declaration can be a valuable
documentation aid. The selective uses makes it easy to identify
the specific declarations that a client needs from the unit.

Second, a selective uses declaration can remedy situations where
there is a name conflict between units. This is done by not
selecting one of the colliding declarations.

For example, suppose your program has a procedure called
NEXT _LINE, and you decide to use a unit that also declares
NEXT _LINE in its interface section. If you try to compile
without a selective uses, you will get the syntax error
"101:Identifier declared twice". You can avoid this situation by
using a selective uses declaration to select only the identifiers
you need, thereby avoiding the conflict with NEW _ LINE.

1200301:04B 4-27

PASCAL LANGUAGE - Chapter 4

WARNING: Despite the advantages of selective uses
declarations, there are two anomalies which you should be aware

of:

1. You must still have enough memory to compile the interface
sections of the units that you use. Only after the interface for
the unit is fully compiled does the compiler eliminate the
declarations which are not selected.

2. Because selective uses declarations can be used to correct

conflicts due to multiple declarations of the same identifier, a
client which contains selective uses declarations may not
compile successfully if the selective uses declarations are
changed to simple uses declarations.

Here are the rules for inclusion of identifiers in a selective uses
clause: .

If a selected declaration is not present in the interface section
of the unit, a syntax error is issued by the compiler.

Many identifiers do not need to be named explicitly in the
selective uses list if they are referred to directly or indirectly
within a selected identifier. For instance, field identifiers of a
record are automatically included. An exception is that the
names of type identifiers are never included.

The following is an example of selective uses.

unit TOOLS;

interface

by
ALPHA = packed array[0..7] of ch

ar
SYM TYPE = (BAD_ SYMBOL, IBENTIFIER, OPERATOR) ;

SYM REC P = “SYM REC;
SYM_REC™= recordd
NAME: ALPHA;
LLINK, RLINK : SYM_REC_P;
END ;

function CLASSIFY (NAME: ALPHA): SYM_TYPE;
{ Classifies e ;ymbol as BAD SYMBOL, IDENTIFIER

or OPERATOR.

procedure ENTER (NAME: ALPHA; var P: SYM REC P);
{ Creates a symbol table record with symbol RAME

4—-28 1200301:04B

SELECTIVE USES DECLARATIONS

and installs it in the symbol table. }
imp lementation

.ﬂ&:)

TOOLS is a unit with two procedures that manipulate a symbol
table. Some clients of the unit call the procedure CLASSIFY
while others call ENTER. If a client does not call ENTER, then
the identifiers SYM _REC _P, SYM _REC, NAME, LLINK and
RLINK are not needed. Likewise, if a client does not call
CLASSIFY then the identifiers SYM _TYPE, BAD _ SYMBOL,
IDENTIFIER and OPERATOR are not needed.

The use of selective uses is demonstrated by two programs that
are clients of unit TOOLS. Here is the first client of TOOLS:

program EXAMPLE_A;
uses {3U TOOLS.CODE} TOOLS (CLASSIFY,ALPHA);

var
S: ALPHA;

begin
t= NewSymwws’;
if CLASSI%Y(S) = BAD_SYMBOL
d then writeln(’the symbol is bed’);
end.

EXAMPLE _ A selects declarations for CLASSIFY and ALPHA
from TOOLS. The following identifiers are imported from
TOOLS: CLASSIFY, ALPHA, BAD _SYMBOL, IDENTIFIER,
OPERATOR. The first two were specified explicitly in the
selective uses declaration. The last three were included
automatically because they are the constants of the scalar type
SYM TYPE, which is the function result type of CLASSIFY.
Note that SYM TYPE was not included, because 1nd1rectly
referenced type names are never mcluded That is why
EXAMPLE _ A needed to specify type ALPHA explicitly in the
selective uses declaration.

As expected, identifiers ENTER, SYM__REC_P, SYM_REC,
NAME, LLINK and RLINK were not included, since none of

them were even indirectly referenced.

1200301:04B 4—29

PASCAL LANGUAGE Chapter 4

EXAMPLE _B is a second client of TOOLS:

program EXAMPLE_B;
uses {3U TOOLS.CODE} TOOLS (ENTER,SYM_REC_P);

var
REC_P: SYM_REC_P;

be

gNTER(NewSym:-’ REC _P);

if REC_P”~.NAME) NewSymms’

g then™ wr.toln(’aymbol not entered?’);
end.

EXAMPLE _ B specifies identifiers ENTER and SYM__REC _P
in the selective uses declaration. The following identifiers are
imported from TOOLS: ENTER, SYM REC P, NAME,
LLINK, RLINK. As in EXAMPLE A, the first two 1dent1fiers
were named explicitly in the selective uses declaration. The last
three identifiers were included automatically because they are
fields of SYM REC, which is indirectly referenced by both
ENTER and SYM REC P. No other identifiers are imported
from TOOLS.

CONFORMANT ARRAYS

This section describes conformant array parameters.
Conformant arrays are array parameters in which the array
hounds are not known until the procedure is called. Different size
arrays of the same index type and base type may be passed on
each call. The size of the array is determined by the upper and
lower bound parameters, which are automatically passed to the
routine.

Since the rules for using conformant arrays are a bit complicated,
we :will start with a small example. Here is an example
conformant array parameter:

procedure A(var X: .rr.y[LO.,HI: integer] of integer);

4—30 1200301:04B

CONFORMANT ARRAYS

The occurrence of "array [...] of ..." signifies that x is a
conformant array parameter. This syntax should be familiar
from array declarations. However, instead of constant array
bounds this array definition contains bounds parameter
declarations (HI and LO in the example).

In the example, X is a conformant array parameter that may
take any array of integers indexed by integers as a parameter.
When procedure A is called, the bounds parameters LO and HI
are set to the constant bounds of the actual parameter. Here is
an example of two calls to A:

r
B: array integer;
C: orrnyE %0] of nnteg‘r,
boécn
A[B]; LO is O, HI is 9 }
AlCl; LD is -4, HI is 20 }
end;

Conformant arrays make it possible to write procedures that
perform the same function on an assortment of array sizes.
Consider the following example:

program CONFORMANT_ARRAYS;
var
X: array 10] of integer;
Y: array 100 100] of integer;
X1,Y1: nnbeger,

functlon SUM(A: array[LO..HI: integer] of integer): integer;
va
I RESULT: integer;

°3
ESULT 1= O;
I := LO to HI do
RESULT 1= RESULT + A[I];
SUM := RESULT
end; {S M)

begin
Assume the nrrays contain some values. }
X1 := SUM
Y1l := SUM
end. {CONFORMANT _ARRAYSY}

SUM is a general purpose function to calculate the sum of an
integer array. Because the parameter is a conformant array
parameter, SUM is able to calculate the SUM of any integer

1200301:04B A 4-31

PASCAL LANGUAGE Chapter 4

array it is passed. The first time SUM is called, LO will be 1
and HI will be 10. On the second call LO will be —100 and HI
will be 100. The bounds parameters may be used in the
procedure just as if they were normal integer parameters, except
that you cannot assign anything to them or pass them as var
parameters. The actual array parameter may be either a value
or var parameter as desired.

The syntax of a conformant array parameter definition is as
follows:

conformant-array-schema =
packed-conformant-array-schems |
unpecked-conformant-srray-schema

packed-conformant-array~schema =
"packed"” "array" ";" index-type-specification "]"
"of" type-identifier .

uneackeduconformant-nrr-y-‘chem- =
array™ "[" index-type-specification
" index-type-specification } "]"
"of" (type-identifier
conformant-erray~-schema)

index-type-specification =
identifier ".." identifier ":"
ordinal-type-identifier .

A conformant array may be multidimensional. A
multidimensional conformant array is specified by separating
multiple index type specifications by semicolons, or by declaring
an array of an array. The symbol ";" is a short—hand notation
for "] array of [". Here is an example of a multidimensional
conformant array parameter:

procedure A(var X: array[LOl..HI1l: integer;
LO2. .HI2: char] of integer);

Note that only the last index component of a conformant array
may be specified as packed. Thus, a two dimensional
conformant array with a packed second component must be
specified:

procedure A(var X:
array [LO1..HIl: integer] of
packed array[L02..HI2: char] of integer);

4—-32 1200301:04B

CONFORMANT ARRAYS

The short cut version using the semicolon notation may not be
used in this case.

Any array that "conforms" to the conformant array parameter
definition may be passed to the conformant array parameter.
An array conforms if:

1. It has the same base type as the conformant array.

2. It has the same number of dimensions as the conformant
array.

3. The type of each index is compatible with the index
components in the conformant array.

4. The range of values of each index is within the range of the
corresponding index type in the conformant array.

5. The array’s packing matches the packing of the conformant
array.

A conformant array may be passed to another conformant
array parameter as long as the parameter is declared as a var
parameter. This restriction is due to the fact that the size of the
value conformant array parameter must be known at compile
time in order to allocate temporary storage for a copy of the
actual parameter.

If more than one formal array parameter is named in an
identifier list sharing the same conformant array definition, the
actual parameters passed to those formal parameters must have
the same bounds. Standard Pascal requires that the actual
parameters be declared with the same type identifier. UCSD
Pascal is not so strict. Consider the following example. Some of
the calls are illegal:

program MORECONFORMANTARRAYS;
var
A,B: array[1..10] of integer;
C. array[0..99] of integer;
D: erray[1..10] of integer;

procedure SWAP (var X,
.rrny[LO .HI: integer] of integer);

1200301:04B 4-33

PASCAL LANGUAGE Chapter 4

var
I,TEMP: integer;

be
?or I := L0 to HI do
bog
EMP := X[I];
X[I] := Y[I];
Y[I] := TEMP;
end;
end; {SWAP}

begin
{Assume the arrays have some values.}
SWAP (A, B); {Legsl .}
SWAP (A, C ; Illegel--a and ¢ have different bounds.}
SWAP (A, D OK in UCSD Pascal,
$ Standard Pascal. >
end. {MORECONFDRMAN ARRAYS}

Interface.-Conformant Arrays

UCSD Pascal supports a variant of the conformant array
parameter called an interface conformant array that is even
more flexible than the conformant array in the type of
parameters it will accept. The interface conformant array is
used primarily in system programming, where the need to write
procedures that operate on arbitrary types is common.

WARNING: Because interface conformant arrays skirt all the
type checking inherent in Pascal, they should be used only when
necessary and with care.

An interface conformant array is declared just like a
conformant array, except that the reserved word interface
appears in front of the declaration. The following are some
restrictions on interface conformant arrays.

e An interface conformant array must be a var parameter.

4—34 1200301:04B

CONFORMANT ARRAYS

e An interface conformant array must be one dimensional.

Here is an example of an interface conformant array parameter
declaration:

procedure A(var X:)
interface array[LO..HI: integer] of integer);

Here are some calls to the procedure:

v

.9

e
P: set of cha

Q p.ckod urray[O .100] of (red,green,blue);
ﬂ

5!

o
0.))10

en

As this example shows, an interface conformant array will
accept absolutely any type of variable as an actual parameter.
Within procedure A, both P and Q are looked at as if they were
each an array of integers.

The bounds parameters in an interface conformant array
behave somewhat differently than in a conformant array. First,
the low bound parameter is always set to zero. Second, the high
bound parameter is set to the lowest value such that the
interface conformant array will access all of the actual
parameter. How large the high bound is set depends on the
storage size of the actual parameter and the base type of the
interface conformant array.

The following example shows how interface conformant arrays
might be used in order to calculate a check sum of various pieces
of data:

:rogram SHOWINTERFACECDNFORMANTARRAYS,
Y
gYTE = 0..265;

var
S: string
BLOCK: p.cked array[0..511] of 0..2855;
A: array[l..10] of |ntegor,

1200301:04B 4-35

PASCAL LANGUAGE Chapter 4

I: integer;

function CHECKSUM
(var X: interface packed arrey[L..H: integer] of
BYTE): integer;

var
I,SUM: integer;

begin
gUM t= 03
for I := L to H do
SUM := SUM + X[I];
CHECKSUM := SUM;
end; {CHECKSUM}

begin

{Assume the variables have some useful veslues.}
writeln (CHECKSUM(S)) ; L=0, H=80}>}
writeln(CHECKSUM(BLOCK)); { L = O, H = B11 }
writeln (CHECKSUM(A)) ; L=0, H= 19 }
write!ln (CHECKSUM(I)) ; H=1>53%

L=0
end. {SHOWINTERFACECONFORMANTARRAYSS

COMPILER OPTIONS

You may direct some of the compiler’s actions by the use of
compiler options embedded in the source code. Compiler options
are a set of commands that may appear within "pseudo
comments," and like any other Pascal comment, they are
surrounded by either of the following pairs of delimiters:

Eorenbhose./a-terisks é‘ -u;
races

The only difference is that a dollar sign ($) immediately follows
the left—hand delimiter, for example:

$I+,S-,L+}

$I+)
»3$U MOLD.CODEw)
»3R" »)

There are two kinds of compiler options: "switch" options and
"string" options. A switch option is a letter followed by a
plus (+), minus (—), or a caret (). A string option is a letter
followed by a string. (In the examples shown above, the second
one is a string option; the others are switch options.) A pseudo
comment may contain any number of switch options (separated
by commas), and zero or one string options.

4-36 1200301:04B

COMPILER OPTIONS

NOTE: If a string option is present in a pseudo comment, it
must be the last option. The string is delimited by the option
letter and the end of the comment. Also, if the pseudo comment
uses the parenthesis/asterisk delimiters, (* and *), the string in
the string option must not contain an asterisk.

Some options may appear anywhere within the source text.
Others must appear at the beginning of the file (before the
reserved word program or unit).

Switch options are either "toggles" or "stack" options. If a
switch option is a toggle, a plus (+) turns it ON, and a minus (=) -
turns it OFF. The options '1,” ’L,” and 'R’ are stack options, as
are the conditional compilation flags (see below).

With each stack option, the current state, either plus (+) or
minus (—), is saved on the top of the stack, which can be up to 15
states deep). The stack may be "popped" by a caret (") thus
enabling the previous state of that option again. If the stack is
"pushed" deeper than 15 states, the bottom state of the stack is
lost. If the stack is popped when it is empty, the value is always
minus ().

{8I-} ... current value is ’-’ — no I/0 checking
{3I+} ... current value is ’+°
{3I"} s current value is ’-’ again

‘e
SI“; cvo current value i

s ’+’, (this wes the default)
$I- . current value is ’-°,

the stack is now empty)

The individual compiler options are described below in
alphabetical order. If you do not use any compiler options, their
default values will be in effect. Here are the default values for
the compiler options:

{8Q-,R+,I+,L-,U+,P+,D~-,N-}

These remain in effect unless you override them. The settings of
the U and N options should not be changed.

1200301:04B 4-37

PASCAL LANGUAGE Chapter 4
Conditional compilation is also controlled by compile time
options as described below.

$B — Begin Conditional Compilation

$B is a string option. It starts compilations of a section of
conditionally compiled source code. See the section on
conditional compilation, below.

$C — Copyright Field

$C is a string option. It places the string directly into the
copyright field of the code file’s segment dictionary. The purpose
of this is to have a copyright notice embedded in the code file.

$D — Conditional Compilation Flag

There are two $D compiler options. This one is a string option.
It is used to declare or alter the value of a conditional
compilation flag. See the section on conditional compilation,
below.

$D — Symbolic Debugging

The second $D Compiler option is a switch option. $D+ turns on
symbolic debugging information. $D— turns off symbolic
debugging information. The default is $D—.

$E — End Conditional Compilation

$E‘is a string option. It ends a section of conditionally compiled

438 1200301:04B

COMPILER OPTIONS

source code.
$I — I/O Check Option

There are two options named by $I. The first is a stack switch
option (IOCHECK).

$I+, which is the default, instructs the compiler to generate code
after each I/O statement in a program. This code verifies, at
runtime, that the I/O operation was successful. If the operation
was not successful, the program terminates with a runtime error.

$I— instructs the compiler not to generate any I/O checking code.
In the case of an unsuccessful I/O operation, the program
continues.

When you use the $I— option, your programs should specifically
test joresult when there is the chance of an I/O failure. If $I— is
used and you don’t test ioresult, the effects of an I/O error are
unpredictable.

$I — INCLUDE File

This is a string option. The string (delimited by the letter 'I’ and
the end of the comment) is interpreted as the name of a file. If
that file can be found, it is included in the source file and
compiled. .

{31 PROG2)

The example shown above "includes" the file PROG2 into the
compilation unit’s source code.

If the attempt to open the include file fails, or if an I/O error
occurs while reading the include file, the compiler reports a fatal
syntax error.

1200301:04B 4—-39

PASCAL LANGUAGE "' Chapter 4

Include files may be nested up to a maximum of three files deep.

NOTE: Any leading spaces in a file name are discarded by the
compiler. On the Macintosh, trailing spaces are significant in file
names. Thus it is important that the end of comment delimiter
be immediately adjacent to the last character in the file name.
Furthermore, if a file name begins with a plus (+) or minus (-),
a space must be inserted between the letter 'I’ and the string.
For example:

(81 +PROG2w»)

$L — Compiled Listing

$L is a stack option. You may use $L option either as a toggle
switch option or as a string option. When used as a toggle, it
turns the listing ON or OFF at that point in the source text.
When used as a string option, it indicates the name of the listing
file.

When used as a toggle, $L+ turns the listing ON and $L— turns
it OFF. Using these options, you can list only parts of a
compilation if you wish. The default for the toggle is $L— if you
have not named a listing file using the compiler prompt or by
using $L with a string option. The default value is $L+ if you
have named a listing file in either of these ways. No matter

which way you name the listing file, you can switch the listing
ON or OFF by using $L+ or $L—.

If you do not specifically name a listing file and $L+ is in effect,
the compiler writes to the file *SYSTEM.LST.TEXT.

4—-40 1200301:04B

e

COMPILER OPTIONS

$N — Native Code Generation

This is a switch option. $N+ outputs compiler information
which allows native code generation to take place. $N— doesn’t
output this information. The default is $N—. Until such time as
a Native Code Generator is available for this version of UCSD
Pascal, you should not use $N+.

$P — Page and Pagination

The compiler can place page breaks in the compiled listing. It
does this so that listings sent to the printer break across page
boundaries. A form feed character (ASCII FF) is output every 66
lines if $P+ is in effect (this is the default). If you don’t want
this, use $P—.

You can cause a page break at any point in a compiled listing by
using the $P option without a plus or minus sign.

$Q — Quiet

This is used to suppress the compiler’s standard output to the
console. $Q+ causes the compiler to suppress this output and
$Q— causes it to resume outputting status information. If you
have specified $Q+ and are obtaining a listing, the compiler does
not pause when syntax errors are reported.

$R — Range Checking

$R is a stack switch option. The default value, $R+, causes the
compiler to output code after every indexed access (for example,
to Pascal arrays) to check that it is within the correct range.
This is called range checking. The value $R— turns range
checking off.

Programs compiled with the $R— are slightly smaller and faster
since they require less code. However, if an invalid index occurs
or a invalid assignment is made, the program isn’t terminated

1200301:04B 4—-41

PASCAL LANGUAGE Chapter 4

with a runtime error. Until a program has been completely
tested, it is suggested that you compile with the R+ option left
on.

$R2 and $R4 — Real Size

$R2 causes the code file’s floating point arithmetic operations to
be performed with two word (32—bit) precision. $R4 causes four
word (64—bit) precision. The default and only supported real
size for the Macintosh version of UCSD Pascal is four word reals.
Therefore, you cannot use the $R2 directive, and never need to
use the $R4 directive.. If you do use the $R4 directive, it must
occur before the first non—comment symbol in the compilation
unit.

$T — Title

$T is a string option. The string becomes the new title of pages
in the listing file.

$U — Use Library

Two options are indicated by $U. One is a string option (Use
Library). The other, described below, is a toggle switch option
(User Program).

With the Use Library option, the string is interpreted as a file
name. This file should contain the unit(s) that your program is
about to use. If the file is found, the compiler attempts to locate
the -unit(s) that it needs for the subsequent uses declarations. If
a particular unit isn’t found there the compiler issues a syntax
error.

If a client (program or unit) contains uses declarations but no
$U option, the compiler looks for the used units in the units (if
any) that were compiled previously in the same compilation
source file as the client.

4—42 1200301:04B

COMPILER OPTIONS

The following is an example of a valid USES clause using the $U
option:

USES UNIT1,UNIT2, { Found in current l|ibrary }

{3U A.COBE}
UNIT3, { Found in A.CODE }
{3U B.LIBRARY}

UNIT4,UNITE; { Found in B.LIBRARY }

NOTE: Any leading spaces in a file name are discarded by the
compiler. On the Macintosh, trailing spaces are significant in file
names. Thus it is important that the end of comment delimiter
be immediately adjacent to the last character in the file name.

$U — Uéer Program

The $U— directive is used to specify that you are compiling a
Runtime Support Library unit. This is how the Runtime Support
Library units are compiled using the set of reserved unit names.
$U~ also sets $R— and $I—. You should not use $U—, and you
never need to specify §U+. If you do specify $U+, it must
appear before the heading (that is, before the reserved word
program or unit).

CONDITIONAL COMPILATION

You may conditionally compile portions of the source text. At
the beginning of a program’s text you can set a compile time
flag which determines whether or not the conditionally compiled
text will be compiled.

In order to designate a section of text as conditionally compilable,
you must delimit it by the options $B (for begin) and $E (for
end). Both of these options must name the flag which determines
whether the code between them is compiled. The flag itself is
declared by a $D option at the beginning of the source. $D
options may be used at other locations in the source to change
the value of an existing flag.

1200301:04B 4—43

PASCAL LANGUAGE Chapter 4

Here is an example:

{30 DEBUG} {declares DEBUG and sets it TRUE}
rogram SIMPLE;
egin

{SB DEBUGY {if DEBUG is TRUE,

his sect-on is compaled}
writeln(’There is & bug.’);
{sE DEBUG)} <{this ends the section}

{SB DEBUG-}> {if DEBUG is FALSE,

this section ns compi led}
writeln(’Nothing has failed.?);
{$E DEBUG)

end {SIMPLE}.

Each flag in a program must appear in a $D option before the
source heading. The name of the flag follows the rules for Pascal
identifiers. If the flag’s name is followed by a minus (—), that
flag is set false. The flag may be followed by a plus (+), which
sets it true. If no sign is present, the flag is true. The flag’s
name may also be followed by a caret (") as shown below.

The state of a flag may be changed by a $D option which appears
after the source heading, but the flag must have first been
declared before the heading.

The $B and $E options delimit a section of code to be
conditionally compiled. The $B option may follow the flag’s
name with a minus (—), which causes the delimited code to be
compiled if the flag is false. In the absence of a minus (—), the
code is compiled if the flag is true. The flag’s name may also be
followed by a plus (+) or a caret ("); these are ignored. In a $E
option, the flag’s name may be followed by a plus (+), minus (—),
or a.caret (*); these symbols are ignored.

The state of each flag is saved in a stack, just as the state of a
stack switch option is saved. Thus, using a $D option with a
caret (*) yields the previous value of the flag. Each flag’s stack
may be as many as 15 values deep. If a 16th value is pushed, the
bottom of the stack is lost. If an empty stack is popped with a
caret ("), the value returned is always false.

4—44 1200301:04B

CONDITIONAL COMPILATION

If a section of code isn’t compiled, any pseudo comments it may
contain are ignored as well.

{80 DEBUG- édeclares DEBUG and sets it FALSE}
rogr.m SIM L

{30 DEBUG+} {changes DEBUG to TRUE}

{88 DEBUG} <{if DEBUG is TRUE, this section is
compiled}

writeln(’There is 2 bug.’);

{8E DEBUG} <{this ends the section}

o e

{SD DEBUG™) {r.ctores previous value of DEBUG)
in this case, FALSE}
{3%8 DEBUG-} {r ‘DEBUG is FALSE,
this section |s compvled}
writeln(’Nothing has failed.’);
{SE DEBUG)

end {SIMPLE}.

1200301:04B 4—45

PASCAL LANGUAGE Chapter 4

4—46 1200301:04B

5
MACINTOSH INTERFACE

-

This chapter describes the UCSD Pascal interface to the
Macintosh Operating System and Toolbox. Because it is so large

and complex, the Toolbox is not described in full here. You are

encouraged to reference the Macintosh technical guide,

Inside Macintosh, for a complete description of the Toolbox. The

intent of this chapter is to describe the differences between the

UCSD Pascal interface to the Toolbox and the Lisa Pascal

interface described in Inside Macintosh.

Throughout this chapter "Toolbox" will refer to both the
Macintosh Operating System and the Macintosh Toolbox. As far
as the interface units are concerned, there is little difference
between Toolbox routines and Operating System routines.

The Toolbox is a very complex piece of software. No one can be
expected to learn how to use it in one reading, or even a few
readings. The best thing to do is to learn the Toolbox in pieces,
writing small programs as you go.

The most important part of this chapter (as well as the most
complicated) is the section on DATA CONVENTIONS. You
should probably skim this section on your first reading, then refer
to it as necessary while writing programs that use the Toolbox
interface.

Overall, the UCSD Pascal Toolbox interface is quite consistent
with Inside Macintosh. However, for various reasons there are
some restrictions and omissions in the UCSD Pascal interface.
These are described in DIFFERENCES FROM INSIDE
MACINTOSH.

1200301:05B 5—1

MACINTOSH INTERFACE Chapter 5

The UCSD Pascal Toolbox interface is also quite consistent with
the organization of Inside Macintosh. In general, each manager
described in Inside Macintosh corresponds to a unit bearing the
same name. There are some differences in the organization,
however.

e There is a set of four "core" units that provide type
declarations that are shared by the other units. In
Inside Macintosh these declarations are included in the
interface units themselves. Separating out some declarations
saves having to use a whole unit where only some of its
declarations are needed.

¢ The file manager and device manager routines have been
redistributed as follows. High level file and device I/O have
been combined in a unit called FileMgr. Low level file and
device I/O have been combined in a unit called PBIOMgr
(Parameter Block I/O Manager).

e The routines CountAppFiles, GetAppFiles, and ClrAppFiles
have been moved from the Segment Loader to the OsUtility
unit. There is no Segment Loader unit.

The rest of this chapter is arranged as follows:

HOW TO USE THE INTERFACE UNITS discusses making the

interface units available to a program.

DIFFERENCES FROM INSIDE MACINTOSH discusses how use
of the Toolbox routines from UCSD Pascal differs from
Inside Macintosh.

DATA CONVENTIONS discusses issues regarding how Toolbox
data.is represented in UCSD Pascal. In particular, this affects
how parameters are passed to the Toolbox routines.

SPECIFIC TECHNIQUES contains a set of example
programming techniques that are helpful when using the Toolbox
interface.

5—2 1200301:05B

EXAMPLE APPLICATION contains a complete small
application that uses the interface units.

HOW TO USE THE INTERFACE UNITS

This section discusses how to use the Toobox interface units from
a UCSD Pascal program. There are two issues to consider.

1. How to make the interface sections of the units available at
compile time.

2. How to make the code of the units available at runtime.

The use of units in general is discussed in The UCSD Pascal
Handbook. This section focuses on the special considerations for
use of the Toolbox interface units.

Appendix A contains listings of the interface sections of the
interface units.

Compile Time Considerations

The interface units are contained in the file Mac Interface on the
disk UCSD Pascal 2. The Librarian utility can be used to
examine this file.

You make an interface unit available to yoﬁr application through
use of the uses statement. Often it is convenient to use the
selective uses feature. Suppose you need to use the EraseRect
and DrawChar routines from QuickDraw. Here is how you make
them available.

program APPLICATION;

uses

{3U UCSD Pascal 2:Mac Interface}
MacCore,
QDTypes,

QuickDraw (EraseRect,DrawChar);

1200301:05B 5—-3

MACINTOSH INTERFACE . Chapter 5

In the above example, the $U compiler option is used to open the
library file Mac Interface on the volume UCSD Pascal 2. The
volume prefix would not be needed if the library file were on the
same volume as the UCSD Pascal compiler (the default volume).
If you will not be swapping disks when compiling, you may also
use #1: (which specifies the internal drive) or #2: (which
specifies the external drive) to specify volume locations.

Nearly all of the interface units make use of other interface units.
If one unit wses another unit within its interface section, you
must include references to both units in your uses statement.
The order of the units in the uses statement is important. In the
example above, QuickDraw needs definitions from MacCore and
QDTypes. Thus, they are both included in the uses statement
before QuickDraw. QDTypes needs definitions from the MacCore
unit, so MacCore is included before QDTypes. The selective uses
declaration is discussed further in the PASCAL LANGUAGE
chapter.

Appendix A contains a table of dependencies among the interface
units. This table should help you to figure out which units are
needed by other units. The column called 'Compile Time
Dependencies’ contains codes that indicate the units that are
required by each unit.

The interface sections of the Toolbox interface units are very
large. One of the problems with developing programs on a
Macintosh with 128K bytes of memory is the lack of symbol table
space while compiling. This can critically limit the size of a
program that can be compiled unless steps are taken to conserve
symbol table space.

Here are the things you can do to conserve symbol table space.

5—4 1200301:05B

HOW TO USE THE INTERFACE UNITS

e Use selective uses to prevent unused definitions from being
kept in the symbol table.

e Use the largest units with selective uses first, so that there is
more symbol table space available while they are being
compiled.

e Divide your program into units to minimize the number of
interface units needed by each unit.

Here is an example of the first two points. Suppose you are using
the Control Manager and QuickDraw. These require the use of
MacCore, QDTypes and TBTypes. However, QuickDraw does
not need any definitions from TBTypes. Therefore, you should
arrange the units this way.

uses
{8V #2:Mac Interface)}
MecCore,
QDTyEes,
QuickDraw(.
TBTypes,
CntriMgr (.)

QuickDraw is much larger than the Control Manager, so it goes
first. MacCore and QDTypes are used by QuickDraw so they
must preceed QuickDraw. The Control Manager needs TBTypes
in addition to MacCore and QDTypes.

It is possible to do even better than this. By looking at the uses
declarations of QuickDraw and the Control Manager (in
Appendix A), it is possible to make selective uses with the
auxiliary units. QuickDraw needs all of MacCore and QDTypes,
so nothing can be gained there. The Control Manager needs
(GrafPort, GrafPtr, Point, VHSelect, FPoint, Rect, RectPtr)
from QDTypes, and (EvtRecPtr, EventRecord, windowptr,
windowhandle) from TBTypes. Therefore, the uses declaration
could be made as follows.

uses
{8U #2:Mac Interface}
MacCore,
QDTyEes,
QuickDraw),
TBTypes (EvtRechr,EventRecord windowptr,

1200301:05B 5—5

MACINTOSH INTERFACE Chapter 5

windowhandie),
CntriMgr(...);

You would add to the above uses statement any additional
symbols your program requires from the QuickDraw and
CntrlMgr units. This declaration makes optimum use of symbol
table space.

If you have used these methods, and you still have trouble with
running out of room while compiling, there is one other space—
saving method that will help.

e Use in—line Toolbox routines right in your application
without including a unit. This method is explained in detail
in the section SPECIFIC TECHNIQUES.

Runtime Considerations

At runtime you must make the interface units available to your
program. This is done by using the Library Files list facility in
the Set Options utility or by using the Librarian utility to
combine the units with your program. The Set Options utility is
described in the chapter GENERAL OPERATIONS. The
Librarian utility is described in the chapter LIBRARIAN.

Some of the interface units do not contain any code, and thus do
not need to be included at runtime. The table in Appendix A
indicates which units have code by a 'C’ in the column called
Code. The interface units that contain code are bound together
in a library called Mac Library on the disk UCSD Pascal 1.

While you are developing and testing your program, we suggest
that you use the Set Options utility to make Mac Library
available to your program. This has the advantage that you can
run the program immediately after compiling. When you
complete the final version of the program, you should probably
use the Librarian utility to include the interface units from Mac
Library directly in your program. This makes the program self—
contained, and reduces startup time.

5—6 1200301:05B

HOW TO USE THE INTERFACE UNITS

DATA CONVENTIONS

UCSD Pascal is a different dialect and implementation of Pascal
than Lisa Pascal, so there are differences in the interface units,
accordingly. Most of these differences stem from the differences
in the implementation of the Pascal language. Some of these
implementation differences are related to different
representations for data types, while others are a consequence of
the different storage allocation algorithms used in the two
implementations. Also, parameter passing methods differ
between the two implementations.

An attempt has been made to provide Toolbox interface units
whose interface is as close as possible to what is described in
Inside Macintosh. In particular, it is nearly always the case that
an interface routine takes the same number of parameters in the
same order as in Inside Macintosh.

This section describes the data representation scheme used in the
interface units. For information on the actual parameters of a
particular routine in an interface unit, you must look at the
description of the routine in nside Macintosh and the declaration
of the routine in Appendix A.

Passing Parameters to the ToolBox

Most of the ToolBox procedures in the Macintosh ROM were
designed to work with the Lisa Pascal data and parameter
passing conventions. In order to accommodate that interface,
UCSD Pascal was extended to produce The MacAdvantage:
UCSD Pascal. The extensions that are important to the
Macintosh interface units are:

1200301:05B 517

MACINTOSH INTERFACE Chapter 5

o A new type, integer2, was added to support 32—bit integers
and addresses.)

o The intrinsics locate and absadr were added to allow
conversion from 16-—bit UCSD Pascal addresses to 32—bit
Lisa Pascal addresses.

e The intrinsic derefhnd was added to enable programs to
dereference Macintosh Memory Manager handles.

¢ The intrinsic absmove was added to allow programs to move
data to and from the Pascal Data Area.

"o The new external procedure syntax externmal(...)] was added
to allow the UCSD Pascal compiler to generate in—line
ToolBox calls in much the same way as the Lisa Pascal
compiler.

In order to call the ToolBox procedures it is important that you
understand all of these features. They are all documented in the
PASCAL LANGUAGE chapter. Most of these features are used
in the example program, GROW, located at the end of this
chapter. They are also discussed with respect to their use in
calling the ToolBox procedures later in this chapter.

The primary difference between UCSD Pascal and Lisa Pascal is
that UCSD Pascal uses 16—bit addresses while Lisa Pascal uses
32—bit addresses. This affects the way in which you pass
parameters to most of the ToolBox procedures. For example, a
var parameter must be passed as a 32-—bit pointer value
parameter. Any Lisa Pascal value parameter that is larger than
32 bits must also be passed as a 32—bit pointer to the parameter.

Where necessary, the interface units make use of what are called
"substitution types" instead of types whose declaration exactly
matches those of Inside Macintosh. For example, the following
types are declared in the MacCore unit (which contains most of
the basic substitution type declarations):

type
MacPtr = integer2 ;
StringPtr = MacPtr ;

5—8 1200301:05B

DATA CONVENTIONS

MacPtr represents a 32—bit pointer, while StringPtr represents a
32—bit pointer to a string variable. The StringPtr type is
substituted in many of the interface unit procedures for the
Str255 type that appears in Inside Macintosh. When you see
StringPtr in a procedure declaration it means that you should be
passing a 32—bit pointer to a string variable. Note that MacPtr
and StringPtr types are the same type as integer2. Since the
UCSD Pascal compiler will allow any integer2 value to be passed
you must be careful to pass the correct value.

The following sections discuss all of the data representation and
parameter passing differences between Lisa Pascal and The
MacAdvantage: UCSD Pascal. After you read these sections,
study the GROW program source. By looking at GROW you
should begin to see how the ToolBox routines are called from a
UCSD Pascal program.

UCSD Pascal Pointers vs Lisa Pascal Pointers

Lisa Pascal pointers are 32—bit absolute addresses, while UCSD
Pascal pointers on the Macintosh are 16—bit offsets from the
68000 A6 register. This difference in pointer format between
UCSD Pascal pointers and Toolbox pointers must be thoroughly
understood in order to make use of the Toolbox interface.

An absolute address is represented in the Toolbox interfaces by
the substitution type integer2. Two intrinsics are provided in
UCSD Pascal to convert between pointers and absolute addresses:
absadr converts a pointer into an absolute address; reladr
converts an absolute address into a pointer.

NOTE: The pointer constant nil does not convert to the
Macintosh value of nil. The constant AbsNil, declared in the
MacCore unit, corresponds to a Lisa Pascal nil pointer. Also,
there is no pointer value that corresponds to a odd absolute
address.

The intrinsic adr takes a variable reference as a parameter and
returns a pointer to that variable. The intrinsic locate takes a
variable reference as a parameter and returns the absolute

1200301:05B 5—9

MACINTOSH INTERFACE Chapter 5

address of that variable. The variable reference may be a
reference to a sub—component of a variable, as long as that sub—
component is word—aligned and occupies at least one word of
storage. Locate(x) is equivalent to absadr(adr(x)).

Here are some examples of using absadr, reladr, locate,and adr.

var
X: integer;
P: “integer;

b A,B: MecPtr; {ectually an integer2}

egin
g:: adr (X); points p at the variable x}
A:= absadr (P); sets a to the absolute address of x}
B:= .absadr(adr(X)); {sets b to the same thing)}
B:=- locate (X); a shorter version of the last |ine}
::: reiadr (A); points p et the varisbie x}

end;

Two more intrinsics round out the set of intrinsics that deal with
pointer manipulation. The intrinsic derefhnd (dereference
handle) returns the absolute address of the location the handle
references. A handle is a Macintosh pointer—to—a—pointer used
to reference relocatable blocks on the Macintosh heap.

NOTE: Derefhnd returns only the iower three bytes of the
address. The upper byte, which contains Memory Manager
attribute bits, is set to zero. For more information on Memory
Manager attribute bits, see the Memory Manager chapter of
Inside Macintosh.

Finally, the routine absmove is a block move intrinsic that acts
like moveleft with absolute source and destination pointers. This
intrinsic is useful for moving Macintosh—created data into a

UCSD Pascal variable.

An example of the use of derefhnd and absmove is given below.
This example allocates a 256 byte relocatable block by using the
Memory Manager procedure NewHandle. It dereferences the
handle returned in order to get the 32—bit absolute address of the
block. Absmove is then used to move the string S into the block.

var
sHandle : Handle ;

5—10 1200301:05B

DATA CONVENTIONS

s : String ;
P : MacPtr ;
begin
s := ’Move this string to a relocatable block’ ;
sH-ndIe := NewHandle (266) ;
:= DeRefHnd (sHandle) ;
Abu Move (Locate (s), p, Sizeof (s)) ;
end ;
LonglInt

The Lisa Pascal type Longint is used throughout the Toolbox as
a parameter type and function result type. The UCSD Pascal
equivalent to Longlnt is integer2. In the MacCore unit there is a
type declaration for LonglInt:

type
LongInt = integer2;

Pointer Types

All pointers within the Toolbox are represented in the interface
units by the substitution type integer2 (interpreted as an absolute
address). Because all Toolbox pointer types are integer2, there is
effectively no type checking done when pointers are passed as
parameters to a Toolbox routine. You should be very careful
when passing pointer values to the Toolbox.

OpenPort in QuickDraw takes a pointer as a parameter. The
following code fragment shows how a locally declared GrafPort
could be passed to OpenPort:

var
GP: GrafPort;

be
gpenPort(lcc-te(GP));
end;

1200301:05B 5—-11

MACINTOSH INTERFACE Chapter 5

Call—by—reference Parameters

Call—by—reference parameters are parameters that are passed
indirectly by passing a pointer to the item. One example of call—
by—reference in Pascal is var parameters. Another example (one
which depends on the implementation) is passing value
(non—var) structures (e.g. arrays and records). In Lisa Pascal,
value structures that are over 32 bits in size are always passed by
reference.

Since call—by—reference parameters in UCSD Pascal are passed
as 16—bit pointers on the stack, they cannot be used in calls to
the Toolbox. Therefore, all call—by—reference parameters to the
Toobox are passed as value absolute addresses.

For example, the Lisa Pascal definition

procedure GetFontInfo(var info: FontInfo);

is transformed into the UCSD Pascal definition

type
FontInPtr = integer2;

procedure GetFontInfo(info: FontInPtr);

This calling mechanism is used for all var parameters and all
value structure parameters over 32 bits in size. Here is an
example call to GetFontInfo (declared in QuickDraw):

var
FI: FontInfo;

begin
etFontInfo (locate(FI));
end;

Var pointer parameters are an especially confusing case. Here is
an example:

var

5—12 1200301:05B

DATA CONVENTIONS

P: GrafPtr;
GP: GrafPort;

begin

etPortElocnte(P));

:bsmove P, locate(GP),sizeof (GP));
end;

This example loads the contents of the current GrafPort record
into the local copy GP. If you understand this example, you
should have no problems with call-by—reference parameters in
the Toolbox interface.

Boolean

The Lisa Pascal representation of type Boolean differs somewhat
from the UCSD Pascal representation, as follows:

e The UCSD Pascal Boolean is represented in a full 16—bit
word. Only bit 0 of the word is significant. Zero (0)
represents false. One (1) represents true.

e A Lisa Pascal Boolean value is represented in an 8—bit byte.
As a parameter it is passed in the upper byte (bits 8 to 15) of
a 16—bit word. All of these 8 bits are significant. Zero (0)
represents false. Any nonzero value represents true. As a field
in a record, a Boolean value is automatically packed into a
byte.

Because of these differences, type Boolean is represented by the
substitution types MacBool and SmallBool. MacBool is for
Boolean parameters and SmallBool is for Boolean fields in a
record. Unfortunately, MacBool and SmallBool are not
compatible types. It is necessary to use the conversion routines
when converting between them and UCSD Pascal Booleans.

Four conversion functions are available in the MacCore unit to
map between MacBool or SmallBool and UCSD Pascal Boolean
values:

TcMacBool%UB; converts UCSD format --> MacBool
FrMacBool (LB converts MacBool ~~> UCSD format
ToSmal | (UB) converts UCSD format --> SmallBool

1200301:05B 5—13

MACINTOSH INTERFACE Chapter 5

FrSma! ! (SB) {converts Smal! iBoo! -=-> UCSD fTormat}

GetPixel in Quickdraw returns a Boolean value. Here is a call to
GetPixel:

if FrMacBoo!l (GetPixel (100,100))
then ...

WARNING: When converting from SmallBool to MacBool it is
necessary to go through the intermediate type Boolean; there are
no provisions for converting directly between MacBool and
SmallBool.

For example, suppose you want to pass the contrlVis field of a
ControlRecord (a SmallBool) into the Visible parameter (a
MacBool) of the Control Manager procedure NewControl. It is
done as follows:

CH:= NeawControl (..., ToMacBee!l (FrSmall(CR.contr!IVie)), . ..);

Packed Data

Lisa Pascal packs data differently from UCSD Pascal. The
following differences have an effect on the Toolbox interface:

e Type Boolean within a record is automatically packed into a
byte in Lisa Pascal. UCSD Pascal does not automatically
pack any type.

e Lisa Pascal packs the fields of a record in a different order
from UCSD Pascal.

Because of these differences, packed data is represented
somewhat differently in the UCSD Pascal interfaces to the
Toolbox.

5—14 1200301:05B

DATA CONVENTIONS

First, records containing Booleans that will be automatically
packed by Lisa Pascal are declared packed. Second, the order of
declaration of fields in a packed record may be changed.

For example, the data type WindowRecord in the unit TBTypes
contains four SmallBool fields. They are represented thus:

type
WindowRecord = peacked record
port: GrafPort;
windowKind: integer;
hilited: Smal IBool ;
visible: Smal IBoo| ;
spareFlag: SmallBool;

goAwayFlag: SmaliBool;

end;

The record has been packed and the four SmallBool fields are
declared in a different order from the Lisa Pascal interface.

Procedure Pointers

Procedure pointers are used to implement a procedure data type
(including procedural parameters) in the Toolbox. Procedure
pointers are usually used to pass some sort of "action procedure”
to a Toolbox routine. For example, TrackControl in the Control
Manager takes a parameter called actionProc. Periodically
during a call to TrackControl, the Toolbox may call the user
procedure actionProc. This procedure is passed to TrackControl
as a procedure pointer, which is represented by the absolute
address of its entry point.

The procedure pointer concept is supported in UCSD Pascal by
an alternative form of the intrinsic locate. In this form, locate
takes two parameters: a procedure or function identifier and an
entry point number. It returns the absolute address of the entry
point.

There are nine entry point numbers available for use by
application programs. They are numbered one (1) through nine
(9)-

1200301:05B 5—15

MACINTOSH INTERFACE Chapter 5

Here is an example of how to use locate.

rocedure MYPROC;
egin
ené;.

begin
?:: TrackControl (CH,P, locate (MYPROC,1)) ;

ené;

CH and P are other parameters to TrackControl (which is
declared in the Control Manager unit) that can be ignored for the
purpose of this discussion. Locate installs MYPROC in entry
point 1, and passes the address of entry point 1 to TrackControl.
When TrackControl wants to call the actionProc, it calls entry
point 1, which causes MYPROC to be invoked.

Some action procedures are called immediately by the routine
they are passed to. Others are called at a later time, or are not
passed directly as parameters, but instead are installed in a data
structure. There is a convention for selection of entry point
numbers that will help eliminate some errors when using
procedure pointers.

The convention is as follows.

e Entry point 0 is reserved for UCSD Pascal’s grow zone
procedure. You may not use entry point O in your
application.

e Entry point 1 should be used for action procedures that have
very limited scope. The parameter to TrackControl is an
example. There, actionProc will only be called while
TrackControl is executing. When TrackControl returns

control to the user program, actionProc will no longer be
called.

5—16 1200301:05B

DATA CONVENTIONS

e The entry points greater than 1 should be used by action
procedures of larger scope—those that will be called long
after they are installed. The user is responsible for making
sure that there is no conflict of entry point numbers within an
application. Otherwise, serious errors will result.

Here is an example of using entry points greater than one. The
grafProcs field of a GrafPort contains an array of low—level
procedures that replace the default procedures in QuickDraw.
You can customize QuickDraw by installing your own version of
these procedures.

var
GP: GrafPort;
QDP: QDProcs;

begi
egeZdeProcs(lccabe(QDP));

QDP.rectProc:= locate (MYRECT,2);
QDP .rRectProc:= locate (MYRRECT, 3) ;
gP.grafProcszz locate (QDP) ;

end;

In the example, entry points 2 and 3 must not be reused until the
original rectangle and rounded rectangle primitives have been
restored.

Enumerated Types

Enumerated types are affected by the order in which Lisa Pascal
packs byte sized quantities. Lisa Pascal expects the small
enumerated types to be passed in the upper half of a word.
UCSD Pascal expects it in the lower half. Therefore, enumerated
type parameters are represented by the substitution type integer,
and the values of the enumerated type are represented by integer
constants. DateForm in the Package Manager and GrafVerb in
QuickDraw are two examples of enumerated types that have been
replaced with constants.

1200301:05B 5—-17

MACINTOSH INTERFACE Chapter 5

Packed Array of Bit

Packed arrays of bits also suffer from byte—order problems. Lisa
Pascal arranges the array indices in a word as follows:

7 6 5 4 3 2 1 015 14 13 12 11 10 9 8

3

UCSD Pascal arranges the indices in a word as follows:

1614 1312 11 10 9 8 7 6 6 4 3 2 1 0

The best way to handle this rearrangement is to write an index
mapping function from the Lisa Pascal index to the UCSD Pascal
index. Here is an example mapping function for type KeyMap
(declared in the Event Manager unit), which is a packed
array(1..128] of Boolean.

zungbicn MKI(i: integer): integer; {Map Key Index}
ag i n
?f (i-1) mod 16 < 8
then MepKeyIndex:= i+8
else MapKeyIndex:= i-8;
end;

This function works by "switching" the upper and lower halves of
each index range within a word. Suppose you want to set bits 32
and 55 in a KeyMap:

var
KM: KeyMap;

begin
bt (8837 2 Srus)
end;

Other bit arrays will require different mapping functions.

5—18 1200301:05B

DATA CONVENTIONS

OSType and Point

OSType and Point are two Toolbox data structures that require
special care when passed as value parameters. These two records
fall into the category of structures that are 32 bits in size. When
they are passed as value parameters, they are passed directly on
the stack, instead of by reference. OSType is declared in the
MacCore unit and Point is declared in the QDTypes unit.

Both these data types are represented by the substitution type
integer2. The UCSD Pascal declarations of OSType and Point are
case variant records that have a parameter field that is an
integer2. This field must be passed as the parameter.

EqualPt in QuickDraw takes two value point parameters.

var |
P,Q: Point;

begin
1f EqualPt(P.Param,Q.Param)
hen ...

end;

CountResources in the Resource Manager takes a value
parameter of type OSType.

var

theType: OSType;
x: integer;
begin

theType.c:= >STR ’;
x:= CountResources (theType.p);
end;

NOTE: If a Point or an OSType is passed as a var parameter,
you must not pass it by the method shown above. Instead, it
should be passed in the same way that other var parameters are
passed.

\

1200301:05B 5—19

MACINTOSH INTERFACE Chapter 5

DIFFERENCES FROM INSIDE MACINTOSH

The last section explained the differences between the UCSD
Pascal Toolbox interface and the Lisa Pascal interface with
regard to data representation. This section deals with the
differences from Inside Macintosh with regard to which Toolbox
routines may be called.

The differences explained here stem from three causes. First,
UCSD Pascal uses memory in a slightly different way than Lisa
Pascal does. Second, the UCSD Pascal implementation performs
many of the necessary initialization steps described in
Inside Macintosh. Finally, the implementation of procedure
pointers (ProcPtrs) imposes some restrictions.

Memory Restrictions

This section explains briefly how UCSD Pascal uses Macintosh
memory, and how this affects application programs. For a more
detailed description of memory usage see the chapter MEMORY
MANAGEMENT.

The important points about UCSD Pascal memory usage are as
follows:

e UCSD Pascal uses the Macintosh stack for its stack.
o The UCSD Pascal heap is implemented as a nonrelocatable
Macintosh block within the Application Heap Zone. This

block expands and contracts according to heap usage. All
data allocated with new or varnew is allocated here.

5—20 1200301:05B

DIFFERENCES FROM INSIDE MACINTOSH

e The boundary between the end of the Application Heap and
the stack (ApplLimit) moves to accomodate the growth of the
stack.

The rule to remember when making Memory Manager calls from

UCSD Pascal is:

e DON’T allocate a nonrelocatable block immediately above the
UCSD Pacal heap if you plan to make use of the Pascal heap.
The nonrelocatable block you allocate will most likely be
positioned immediately above the heap by the Macintosh
Memory Manager. This will prevent expansion of the Pascal
heap. When you need to create a nonrelocatable memory
area, you should use the UCSD Pascal intrinsics new or
varnew. You can then convert the 16—bit pointer returned by
these intrinsics into a 32—bit address by using the function
absadr.

For reference, here is a list of the ways that a nonrelocatable
block can be created.

o A call to NewPtr creates a nonrelocatable block.
e A call to HLock makes a relocatable block nonrelocatable.

o A call to NewHandle can cause a new block of master pointers
to be allocated. These are put in a nonrelocatable block. The
UCSD Pascal runtime software preallocates a block of 64
master pointers. In order to increase this number you need to
define a new resource file for your program. The example
RMaker input below will allocate 2 master pointer blocks for
a total of 128 master pointers. The GNRL type MSTR
defines the number of master pointer blocks that should be
prellocated.

MY .RSRC ;3 Output file name
APPLPROG ;; Type = APPL, Creator = PROG

INCLUDE UCSD Pascal 1:Empty Program
;; Required resources

TYPE MSTR = GNRL
QO (32)

0002 ;; Allocates 2 master pointer blocks

1200301:05B 5—-21

MACINTOSH INTERFACE Chapter 5

Here is a list of which routines from the memory manager must
be used differently from what is described in Inside Macintosh.

SetGrowZone. You must not install your own grow zone
function for the Application Heap Zone. The Pascal runtime
system already has one. You may, however, use your own grow
zone function in a heap zone of your own creation.

InitApplZone. This routine is not supported, because calling it
will corrupt the UCSD Pascal code and data structures that are
kept in the Application Heap Zone.

SetAppiBase. This routine is not supported, because it will
interfere with Pascal’s use of the Application Heap Zone.

SetApplLimit. This routine is not supported, because the UCSD
Pascal runtime support software automatically adjusts the
Macintosh’s ApplLimit variable for you. Calling this routine will
interfere with Pascal’s use of the Application Heap Zone.

There are two general strategies of memory use that an
application can employ. An application could make use of the
Pascal heap. If so, the program must be especially careful about
use of the Macintosh memory management routines.
Alternatively, an application could avoid use of the Pascal heap
altogether. In this case, the program may use the Macintosh
memory management routines with a little less care than if the
Pascal heap were being used.

There are some special considerations regarding dereferencing a
handle under UCSD Pascal. In particular, there are more ways
that the Memory Manager can be called "behind your back"
when UCSD Pascal code is running. Here is a list of ways that
the memory manager may be called.

5—22 1200301:05B

DIFFERENCES FROM INSIDE MACINTOSH

e Calling a procedure (especially one with local data) can cause
a stack fault, which will result in some memory management
functions being performed. A stack fault can also occur when
using long integers and sets in UCSD Pascal.

e Calling an external procedure or a system intrinsic can cause
a segment fault, which causes a code segment to be read into
memory. This action will result in some memory
management functions being performed.

e Allocating data on the Pascal heap with new or mark can
cause a heap fault, which can result in memory management
functions being performed.

NOTE: Calling a Macintosh ROM routine that is declared as an
in—line procedure or is an external procedure implemented in
assembly language will never cause a stack fault. Thus, it is safe
to pass a dereferenced handle to most ROM routines.

Initialization

This section describes some initialization routines described in
Inside Macintosh that do not need to be called from a UCSD
Pascal program. Some of these routines are not available at all.

InitGraf. InitGraf is not available in the UCSD Pascal interface
to QuickDraw. The operations performed by InitGraf are done
automatically.

FlushEvents. FlushEvents(everyEvent,0) is done by the UCSD
Pascal runtime support initialization code. There is no need to
call FlushEvents in the initialization of your program.

InitDialogs. InitDialogs is done by the UCSD Pascal runtime
support initialization code. You may call InitDialogs yourself if
you want to install a restart procedure in the system.

1200301:05B 5—-23

MACINTOSH INTERFACE Chapter 5

InitFonts. InitFonts is done by the UCSD Pascal runtime
support initialization code. There is no need for your application
to call InitFonts.

InitWindows. InitWindows is done by the UCSD Pascal
runtime support initialization code. You should not call
InitWindows yourself, since it allocates a nonrelocatable block on
the Application Heap Zone.

TEInit. TEInit is done by the UCSD Pascal runtime support
initialization code. You must not call TEInit yourself.

The following calls are made for your program when the "Create
Default Window" option described by Runtime Parameters in
GENERAL OPERATIONS is enabled. In that case, you do not
need to call them.

SetPort. If the "Create Default Window" option (which can be
enabled or disabled by using the utility Set Options) is disabled,
you must call SetPort yourself before using any QuickDraw
routines.

NewWindow. If the "Create Default Window" option is
disabled, you must open a window yourself before you do any
writing to the screen.

InitCursor. If the "Create Default Window" option is turned off
you will need to call InitCursor from your application in order to
reset the cursor to be an arrow.

HideCursor. In order to make the cursor visible, call
ShowCursor.

5—24 1200301:05B

DIFFERENCES FROM INSIDE MACINTOSH

Procedure Parameter Restrictions

Due to the implementation of procedure parameters to the
Macintosh Toolbox, there are some restrictions on their use
beyond what is described in Inside Macintosh. These restrictions
are as follows.

e You may not supply an I/O completion routine to an
asynchronous 1/O call. Instead, you must poll the parameter
block to determine I/O completion.

e You may not implement a vertical retrace procedure.

These restrictions are due to the fact that the implementation of
ProcPtrs will not handle asynchronous calls to an action
procedure.

SPECIFIC TECHNIQUES

This section presents some techniques that will be of use in
writing applications that use the interface units. Some
complicated topics from earlier sections of this chapter were
postponed until this section, because a more thorough discussion
could be accomplished here.

Data Outside the Pointer Range

As discussed above, UCSD Pascal pointers have limited scope. In
particular, they are only able to address memory within the 64K
region that encompasses the Pascal Data Area. When it is
necessary to access some data outside the Pascal Data Area, there
are two ways it may be done.

1200301:05B 5—25

MACINTOSH INTERFACE Chapter 5

1. Copy the data into a Pascal variable. After it is copied into
the Pascal Data Area, it may be examined directly. If it is to
be modified, then the modified copy must be installed by
copying the data back into the original.

2. Access the data in place. Here, modification may be done
directly, although without the help of record field names.
With this method, you must know much more about how
data is represented in the interface units.

The routine absmove is used to move data from one location to
another within Macintosh memory.

Suppose you want to update the grafProcs field of the current
GrafPort. Using method 1, it would be done as follows:

var

GPP: GrafPtr; pointer to a graf port }

GP: GrafPort; will contain copy of grafport record }
b QQP: QDProcs; the graf procedures record }

egin

getPort locate (GPP)) ;

absmove (GPP , locate (GP), s-zeof(GP)),

GP. grafPracs = locste(Q

:bsmove(loc.te(GP) , GPP, s0zeof(GP)),
en

Using method 2, it would be done as follows:

var
GPP: GrafPtr;
QDPP: MacPtr;
QDP QDProcs;
begin
GetPort(locate(GPP)),
QDPP:= locate (QDP
;bsmovo(locate(QDPP),GPP+sizecf(Grachrt)—4,sizeof(QDPP);
end;

5—-26 1200301:05B

SPECIFIC TECHNIQUES

Accessing a Macintosh Operating System Global

Globals may be accessed by manufacturing a pointer to them.
For instance, the global ScrVRes is at location 102H. This word
may be accessed as follows:

var

CopyOfScrVRes: integer;
begin
absmove (268 {102H}, locete (CopyOfScrVRes) ,sizeof (integer));
end;

How to Dereference a Handle Safely

In UCSD Pascal, a handle is dereferenced into a pointer by using
the intrinsic derefhnd. However, you must be somewhat careful
when dereferencing a handle in UCSD Pascal, because there are
some additional places where memory management routines will
be called that may invalidate the dereferenced handle. Memory
management routines are called "behind your back" when Pascal
handles one of its internal faults (stack fault, heap fault or
segment fault).

The following actions may cause a fault to occur:
e Calling a procedure may cause a stack or segment fault.

e Calling a Toolbox interface procedure that is not declared
using the external(...) syntax may cause a stack or segment
fault. Procedures declared with the external(...) syntax will
never cause segment or stack faults. They may, however,
cause relocatable blocks to move.

e Allocating data on the Pascal heap with new or varnew may
cause a heap fault.

If you must dereference a handle across one of the dangerous calls
mentioned above (or across one of the dangerous calls mentioned
in Inside Macintosh), you must work on a copy of the data or use
the Memory Manager procedure HLock to position lock the data.

1200301:05B

w
|
[\
3

MACINTOSH INTERFACE Chapter 5

How to Set Stack Slop

UCSD Pascal operates its stack in an unusual way, by Macintosh
standards. In particular, UCSD Pascal moves the boundary
between the stack and the application heap. Most Macintosh
applications leave this boundary fixed.

In order to detect when the boundary needs to be moved, the
runtime system knows about a "stack slop" value that represents
the minimum distance between the top—of—stack and the top of
the application heap. This stack slop has a minimum size of 2K
(2048) bytes. '

Most of the time, 2Kb of slop is plenty of extra stack space for
calling Macintosh ROM routines. (ROM routines steal stack
space without telling UCSD Pascal or your program.) However,
there are some ROM routines that place an extra burden on stack
space.

If you are going to be calling one of these routines, you should
increase the stack slop by calling the routine SetStackSlop in the
Error _Handling unit. This unit is not in the Pascal Runtime
library, so you will have to make sure its code is available at
runtime by using the user library feature in Set Options, or by
using the Librarian utility to include its code in your application.

Suppose you need 6Kb of stack slop for a portion of your
program. This can be set as follows:

var
default_slop : integer ;

begin
default_slop := GetStackSlop ;

SetStackSlop(6+812 {words});
{ put code that needs large slop factor here }

3et$t.ck$!op(defnult_slop); { restore default slop }
end;

5—28 1200301:05B

SPECIFIC TECHNIQUES

Each separate UCSD Pascal process has its own stack slop. Many
programs do not use processes, so they only need to worry about
one stack slop. If your application uses processes, and you are
doing ToolBox calls from them, be sure that you keep in mind
that different processes have different slop factors. In particular,
the default slop factor for a subsidiary process is forty (40) words.
You set the slop factor for a process by calling SetStackSlop from
within that process.

When your program is started by the UCSD Pascal runtime
support software, it is running as the "main task", and the stack
slop is set to a default value of 5Kb. This amount of slop allows
the Macintosh Operating System to save the screen image bits for
the portion of the screen image that is obscured by "disk swap
boxes." A disk swap box appears when your program or the
runtime support software attempts to access a file on a volume
that is mounted, but not physically present in the appropriate
disk drive. After you supply the requested disk, the Macintosh
Operating System will restore the affected portion of the screen
image, provided there was enough space to save it.

If your program uses the Error _Handling unit to set the stack
slop below the default value of 5Kb, the disk swap boxes will still
appear, but will remain visible on the screen until the next time
your program or the runtime support software calls the Event
Manager routine GetNextEvent. GetNextEvent will fill the
affected area of the screen with the appropriate background
pattern. Usually, you would set the stack slop to less than 5Kb
only if there is a critical need to maximize your program’s
utilization of memory. For example, the UCSD Pascal compiler
sets the stack slop to its minimum value of 2Kb so as to
maximize the capacity of its symbol table.

The SetStackSlop routine will not let you set the stack slop below
the minimum of 2K bytes. (Otherwise your program would
probably crash, as discussed below.) A convenient way to set the
stack slop to its minimum setting, without placing the "magic"
2K byte number in your program is to pass zero (0) for the
argument to SetStackSlop.

1200301:05B 5—29

MACINTOSH INTERFACE Chapter 5

NOTE: Once you set the stack slop below the default setting of
5Kb, the saving of the screen contents underneath disk swap
boxes becomes permanently disabled (i.e. even if you later set the
slop back to 5Kb, disk swap boxes wll continue to remain on the
screen until GetNextEvent is called).

While your application is running as the main task, the
Macintosh’s "stack sniffer" is enabled. The stack sniffer detects
when the stack expands into the Macintosh heap. If your
application gets a stack sniffer error (a "bomb" with ID==28) you
have probably failed to provide enough stack slop to your
application. The stack sniffer is not enabled while you are within
a subsidiary task—you are on your own if you make use of
processes.

Declaring ToolBox Interface Procedures

There may be some instances when you need to use only one or
two procedures from an interface unit. If the declarations of
these procedures in the interface unit ends with an external
then you can declare them yourself. For example, the following
program calls the QuickDraw procedure InitCursor without using
the QuickDraw interface unit.

program doint ;
procedure InitCursor ; external (-22448) ;
begin

nitCursor ;
end.

The above program will compile much faster than the program
below which uses the QuickDraw unit.

program doint ;

Uses {QU Mac Interface}

MacCore,
QD Types,
QuickDraw (InitCursor) ;
begin
nitCursor ;
end.

5-30 1200301:05B

SPECIFIC TECHNIQUES

This technique would be particularly useful if the only procedure
you needed from QuickDraw was the InitCursor procedure, which
uses none of the type declarations found in MacCore or QDTypes.

EXAMPLE APPLICATION

This section presents an entire (although small) Macintosh
application complete with scroll bars, grow box, menu bar and
desk accessories. The source code for this example is located in
the files GROW and GROW.R on the UCSD Pascal 2 disk. In
order to see the application in action you must use RMaker, the
Compiler and the Set Options program as outlined in the
following steps.

1. Use the RMaker utility on GROW.R. This will create the file
GROW.RSRC.

2. Compile GROW. Use GROW.RSRC as the resource input
file.

3. Use the utility Set Options to set the locations of the Pascal
Runtime, p—Machine and Mac Library files. You must
disable the "Create Default Window" option (GROW creates
its own window).

The GROW.Code program puts up a single window in which you
can insert and edit text. The window can be sized and moved.
The text in the window can be scrolled horizontally and
vertically.

You should use the GROW program source as an example of:

1200301:05B 5—-31

MACINTOSH INTERFACE Chapter 5

e the handling of Macintosh events. Notice that window update
events are generated by the Macintosh ROM. The GROW
window is updated as a response to these events.

e the calling conventions for many of the ToolBox procedures.

e the relationship between resources defined in a resource file
and the program code that uses those resources.

In addition the GROW program demonstrates the use of the
ToolBox from UCSD Pascal. For example, in procedure Initialize
the line:

SetRect (locate(DragRect), 4, 24, 508, 338) ;

initializes the rectangle DragRect. The call to locate returns the
32—bit address of DragRect. This address is passed as a
parameter to the SetRect procedure.

In procedure CursorAdjust the line:

if FrMacBoo!l (PtinRect(mousePt.param, locate(TRect)) then

tests to see whether the point specified by mousePt is in the
rectangle specified by TRect. Notice the use of the param field of
the mousePt variable. This field is used to pass the value of
mousePt to the procedure PtlnRect. FrMacBool is used to
convert the Lisa Pascal Boolean, returned by PtlnRect, to the
UCSD Pascal representation of Boolean.

Modifying data outside of the UCSD Pascal Data Area is
demonstrated by the following lines of code from the procedure
GrowWnd.

abs_move (derefhnd (hTE), locate (dummy), sizeof (dummy))
dummy .viewrect := TRect ;
sbs_move (lecnte (dummy), derefhnd (hTE), sizeof (dummy))

5—32 1200301:05B

H

H

EXAMPLE APPLICATION

The above code copies the first part of the text edit record,
pointed to by the handle hTE, to a local variable (dummy).
Dummy is updated and put back into the text edit record.

The use of ToolBox procedure pointers is demonstrated by the
following line of code in procedure DoMouseAction.

tc := TrackControl (whichControl, MouseEvent.where.param,
locete (Scrollup,l)) ;

The procedure Scrollup (declared earlier in the program) is being
passed to the ToolBox procedure TrackControl. Scrollup is
called by TrackControl to scroll the bits of the text edit window.

program Grow;

§ This example program is based on a program of the same name
written by Cary Clark of Macintosh Technical Support. }

$$L-1
Uses §$U UCSD Pascal 2:Mac Interface}
MacCore,
QDTypes,
TBTypes
($types} EvtRecPtr, EventRecord, WindowRecord, WindowPtr,
WindowHandle, TEHandle, TEPtr, TERec),
OsTypes
($types} QElemPtr, QHdrPtr),
MacData
($§vars } Arrow, thePort),
QuickDraw
{procs} SetCursor, SetRect, PtinRect, SetPort, GetPort,
EraseRect, GlobalTolLocal, ClipRect),

EventMgr
(§const} everyevent, mousedown, keydown, autokey, activateEvt,
updateEvt,
{procs} GetMouse, GetNextEvent, StillDown),
WindowMgr

(§const} inDesk, inMenuBar, inContent, inDrag, inGrow, inGoaway,
inSysWindow,
f{procs} GetNewWindow, FrontWindow, DrawGrowlcon, BeginUpdate,
EndUpdate, FindWindow, DragWindow, TrackGoAway, SelectWindow,
InvalRect, SizeWindow, GrowWindow),
MenuMgr
(Itypesi MenuHandle,
procsi InitMenus, GetMenu, AddResMenu, InsertMenu, DrawMenuBar,
MenuKey, MenuSelect, HiliteMenu, Getltem, Enableltem,
Disableltem) ,
ControlMgr
(iconsti inUpButton, inDownButton, inPageUp, inPageDown, inThumb,
types{ ControlHandle, ControlPtr, ControiRecord,
procsi GetNewControl, ShowControl, HideControl, DrawControls,
FindControl, TrackControl, GetCtiValue, SetCtiValue,
TestControl, MoveControi, SizeControl),
TBoxUtils
(§procs} GetCursor, HiWord, LoWord) ,
DeskMgr
(§procs} SystemTask, SystemClick, SystemEdit, OpenDeskAcc),
TextEdit
($§procs} TENew, TEIdie, TEKey, TEActivate, TEDeactivate,
TEUpdate, TEClick, TECut, TECopy, TEPaste, TEScroll) ,

1200301:05B 5—-33

MACINTOSH INTERFACE Chapter 5

OsUtilities
giprocsi Delay);

f$Lt
sonst
applemenu = 1, Menu ID for desk accessory menu }
filemenu = 1000 Menu 1D for my File Menu
edi tmenu = 1801; Menu ID for my Edit Menu
lastmenu = 3; there are 3 menu items
wndwid = 1000; Window ID for theWindow }
ibeamiD = 1, IBeam Cursor 1D
VScrol 11D = 1000; Control ID for Vertical Scrolting }
HScrol 11D = 10071; Control 1D for Horizontal Scrolling §
UnDol! tem = 1; ltem # for UNDO Menu |tem
rar
donefFlag: boolean;
MyMenus: ARRAY [1..lastMenu] OF MenuHandle;
Handles to Menu resources §
GrowRect: Rect; Limits the size of window during grow }
DragRect: Rect; Limits the dragging of the window
wRecord: WindowRecord; The window we operate on
theWindow: WindowPtr A pointer to the window }
tRect: Rect; Rectangle containing Text
hTE: TEHandie; handle to our edit record
ibeamCursor: Handle; Handle to IBeam Cursor System Resource }
VScraoll: ControlHandle; Vertical scrolling control
HScraol l: ControliHandle; Horizontal scrolling control i
TheQrigin: Point; Current Origin in the Window
rrocedure ResizeTRect; forward;
iegment procedure initialize;
ar
drvrtype: OsType; Used to pass parm to AddResMenu §
i integer; a counter
regin

donefFlag:= false;

§ initialize menu manager }
InitMenus;

$ pick up handles to menu resources }
mymenus [1]:= GetMenu(app!eMenu):
mymenus [2]:= GetMenu filemenug;
mymenus [3)]:= GetMenu(editmenu

$ pick up driver nomes of desk accessories }
drvrtype.c:= 'DRV
AddResMenu(mymenus[l] drvrtype.p);

§ insert menus into menu list }
for i:= 1 to lastmenu do
InsertMenu(mymenus[i],8);

DrawMenuBar ;

SetCursor(Arrow);
SetRect}VQca(eédragRect;,4,24,568,338);
SetRect(locate{growRect),108,60,512,302);

theWindow:= GetNewWindow(wndw!D, tocate(wRecord), -1);:
SetPort(thewindow);

{ set text edit window size }
ReSizeTRect;

} set window text font }
wRecord.port. txFont:= 2;

{ Allocate the Edit Record }
RTE:= TENew(locate(tRect),locate(tRect));

§ get I-beam cursor resource }

5—34 ' : ’ 1200301:05B

EXAMPLE APPLICATION

IbeamCursor:= GetCursor(ibeamiD);

§f establish scrolling controls }
vScroll:m= Ge(NewControlgchrolllD, (hewindow;;
hScroll:= GetNewControl(hScroll1D, theWindow
theOrigin.h:= 0,
theOrigin.v:= 9;

end finitiatize};

B

procedure ReSizeTRect:
{ Resets the bounds of the non-control portion of the window. }
begin §ReSizeTRect}
TRect:= wRecord.Port.PortRect;
with TRect do
begin
left:= left + 4; right:= right = 15;
bottom:= bottom - 15;
end;
end;

procedure CursorAdjust;
{ Makes the cursor an I-beam if the mouse is inside the application’s
content portion and an arrow otherwise.
var
mousePt: Point; § Current Mouse Location }
begin
GetMouse(locate(mousePt));
if theWindow = FrontWindow
then
it FrMacBool(PtinRect(mousePt.param, locate(TRect)))
then SetCursor€DeReand(iBeamCursor))
else SetCursor(Arrow);
end;

procedure GrowWnd(where: Point);
var
hw: Longint;
height, width:integer;
cRect: Rect; Rectangle used for movement calics
dummy: Record Dummy Record for updating Textedit record }
destRect:Rect;
viewRect:Rect;
end;
begin

§ Grow the entire window
hw:= GrowWindow(theWindow, where.param, locate(growRect));
height:= HiWord(hw); width:= LoWord(hw);

§ remove scroll bars from update region }
cRect:= wRecord.Port.PortRect;
cRect.left:= cRect.right - 16;
InvalRect(locate(cRect));

cRect:= wRecord.Port.PortRect;
cRect.top:= cRect.bottom - 16;
InvalRect(locate(cRect));

{ now draw the window }
SizeWindow(theWindow,width,height,MacTrue);

{ move the scroll bars }
With wRecord.port.PortRect do
begin

HideControl (vScroll);
MoveControl(vScroll,right=15,top-1);
SizeControl(vScroll,16,bottom—top-13);
ShowControl (vScroll);
HideControl(hScroll);
MoveControl hScroIl.lef(—T,botlom-15;;
SizeControl(hScroll,right—left-13,16
ShowControl (hScroll)

end;

1200301:05B 5—35

MACINTOSH INTERFACE Chapter 5

{ adjust text edit rectangle }

ResizeTRect;

abs move(derefhnd(hTE) locate(dummy) ,sizeof(dummy));
dummy .viewrect:= TRect

abs_move(locate(dummy), derefhnd(hTE) sizeof(dummy)):

§ add scroll bars to update region }
cRect:= wRecord.Port.PortRect;
cRect.left:= cRect.right - 16;
InvalRect(locate(cRect));

cRect:= wRecord.Port.PortRect;
cRect.top:= cRect.bottom - 16;
InvalRect(locate(cRect));

end: §GrowWwnd}

procedure DraowWindow;
Erase the current contents of theWindow and redraw it. 3}
begin
ClipRect(lcco!e(wRecord.porl.portrecl)gz
EraseRect(locate(wRecord.port.portrect))
DrawGrowlcon(theWindow) .
DrawControls(theWindow);
TEUpdate(locate(TRect) hTE);
end;

procedure ScrolliBits;
var
01dOrigin: Point;
dh, dv: integer;

degin
with wRecord do
begin

oldOrigin:= TheOrigin:

TheOrigin.h:= 4OGetCt|Volue§hScrollg;
TheOrigin.v:= 4sGetCtiValue(vScroll
dh:= o0l1dOrigin.h = theOrigin.h;

dv:= 01dOrigin.v — theOrigin.v;
TEScroll(dh,dv,hTE);

end;
and §ScrolIBits};

>rocedure ScrollUp(theControl: ControlHandle; theCode: integer);
>egin
?f theCode = inUpButton
then
begin
SetCtiValue(theControl, GetCtIValue(theControl)=1);
ScrollBits;

end;
:nd;
>rocedure ScrollDown(theControl: ControlHandle; theCode: integer);
regin
if theCode = inDownButton
then
begin
SetCtiValue(theCantrol, GetCtlValue(theControl)+1);
ScroliBits;
end;
'nd;
yrocedure PageScroll(code: integer; theControl: ControlHandle;
amount: integer);
‘ar
pt: Point;
regin
repeat
GetMaouse(locate(pt));
if TestControl(theControl,pt.param) = code
then
begin
SetCtiValue(theControl,GetCtiValue(theControl)+amaount);
ScrollBits;

5—36 ©1200301:05B

-

EXAMPLE APPLICATION

end;
until not FrMacBool(StillDown);
end;

procedure DoCommand(menu_command: Longint);
§ Execute a command from the menu bar. 3

var
theMenu: integer; the menu selected }
thel tem: integer; the item in themenu }
name : String[255]: Name of the desk accessory selected }
refNum: integer; Reference number of the desk accessory }
ticks: Longint;

begin

theMenu:= HiWordEmenu_commondg;
thel tem:= LoWord(menu_command
case theMenu of

B

applemenu:
begin
open Desk Accessory with item’'s name g
Getltem(myMenus[1],theitem, locate(name));
refNum:= OpenDeskAcc(locate(name));
end;

filemenu: doneflag:= true;

editmenu:
process edit command if not System's }
if not FrMacBool(SystemEdit(theltem—1)) then
begin
Delay is used to keep menu lit }
Delay (30, ticks);
Case theltem of
3: TECut(hTE);
4: TECopy(hTE);
5: TEPaste(hTE);
end;
end;

end; fcase}
{ unhilite the menu selected }
HiliteMenu(9);
end; §DoCommand}

procedure DoMouseAction(MouseEvent: EventRecord);

var
code: integer; where mouse was pressed }
whichWindow: WindowPtr; Window where mouse was pressed
mycontrol: integer; Part of control where mouse was pressed 3
whichControl: ControlHandle;} Control where mouse was pressed
te: integer; Code returned by TrackControl }

begin

code:= FindWindow(MouseEvent.where.parom,locate(whichwindow));
case code of

inMenuBar:
DoCommand(MenuSelect(MouseEvent.where.paraom));

inSysWindow:
SystemClick(locate(MouseEvent),whichWindaw);

inDrag:
DragWindow(theWindow, MouseEvent.where.param, locate(dragRect));

inGoAway:
doneflag:=
FrMacBool (TrackGoAway(whichWindow,MouseEvent.where.param));

inGrow:
if theWindow = FrontWindow
then GrowWnd(MouseEvent.where)
else SelectWindow(theWindow);

1200301:05B 5—37

MACINTOSH INTERFACE Chapter 5

inContent
if theWindow <> FrontWindow
then SelectWindow(theWindow)

else
begin
GlobalToLocal(locate(MouseEvent.where));
I'f FrMacBool (PtInRect(MouseEvent.where.param, locate(TRect)))
then
if BAnd(MouseEvent modifiers,512) <> 0
then TEClick(MouseEvent.where.param,MacTrue,hTE)
else TEClick(MouseEvent.where.param,MacFalse, hTE)
else
begin
mycontrol =
FindControl (MouseEvent.where.param, theWindow,
locate(whichcontraol));
Case mycontrol of
inUpButton:
tc:=
TrackControl(whichControl, MouseEvent.where.param,
locate(ScroliUp,1));
inDownButton:
tec: =
TrackControl(whichControl, MouseEvent.where.param,
locate(ScrollDown,1));
inPageUp:
PageScroll(mycontrol, whichcontrol, =10);
inPageDown:
PageScroll(mycontrol, whichcontrol, 10);
inThumb:
begin
tc:=
TrackControl (whichControl, MouseEvent.where.param,
Abs_Nil);
Scrollbits;
end;
end; fcasel
end;
end;

end; jcase}
'nd; {DoMouseActioni

rrocedure CheckEvents;
Handle one event from the event queue. 3

‘ar
myevent: EventRecord;
theChar: Char;
savepor t: GrafPtr;
egin
if FrMacBoo!(GetNextEvent(everyevent, locate(myevent))) then

case myevent.what of
mousedown: DoMouseAction(myEvent);

keydown, autokey:
if theWindow = FrontWindow then
begin
theChar:= Chr(myEvent.message mod 256);
if BAnd(myEvent.modifiers,256) <> ©
then DoCommand(MenuKey(theChar))
else TEKey(theChar , hTE);
end;

activateEvt:
begin
DrowGrowlcon(theWindow);
if Band(myevent.modifiers,1) = 1

5—38 1200301:05B

EXAMPLE APPLICATION

then
begin
SetPort(theWindow);
TEActivate(hTE):
ShOwControlfchroll;;
ShowControl (hScrol!
end
else
begin
TEDeactivate(hTE):
HideControl(chroll;;
HideControl (hScroll
end;

B

end;

updateEvt:

begin
GetPor(§tocote(scveport));
SetPort(theWindow);
BeginUpdate(theWindow);
DrawWindow;
EndUpdate(theWindow);
SetPort(saveport);

end;

end;
end §CheckEventsi;

begin §Grow}
Initialize;

repeat
CursorAdjust; adjust cursor shape to location }
SystemTask; allow desk accessories to run }
TEldlie(hTE): blink insertion point
CheckEvents; check for events
until DonefFlag;
end.

RMAKER Input for the GROW Program

The following text defines the resources used by the GROW
program. The first two lines define the output resource file and
the file type/Creator. The INCLUDE statement pulls in the
resources that are required for all UCSD Pascal programs. The
rest of the text defines resources that are specific to the GROW
program.

GROW.RSRC
APPLPROG

INCLUDE UCSD Pascal 1:Empty Program
TYPE MENU

1
\ia
, 1000
ile

Fil

Quit

1200301:05B 5—39

MACINTOSH INTERFACE

Copy/C
Paste/V

TYPE WIND
, 1000
UCSD Pascal Sample
80 40 300 480
Visible GoAway

(o]

(o)
TYPE CNTL
1000

F
vertical scroill bar
-1 396 236 411
Visible
16
[o}
O BO O
TYPE CNTL

, 1001
horizontal scroll bar
236 -1 261 396
Visible
16

o]
O 80 O

Chapter 5

1200301:05B

6
RMAKER

This chapter describes RMaker, the utility program that is used
to produce resource files for UCSD Pascal programs. The use of
resources is described in Inside Macintosh. The sections of this
chapter are organized as follows:

ABOUT RMAKER describes the function of the RMaker utility.

RMAKER INPUT FILES describes the structure of RMaker

input files, including suggested file naming conventions.

DEFINED RESOURCE TYPES describes the syntax for
predefined resource types. This section will tell you the syntax
for defining menus, dialog boxes, alert boxes and other ToolBox
resources.

CREATING YOUR OWN TYPES describes how you use the
predefined type GNRL to create your own resource types.

USING RMAKER describes how to run the RMaker utility and
how to create resource files for input to the UCSD Pascal
compiler.

1200301:06B 6—1

RMAKER Chapter 6

ABOUT RMAKER

RMaker is the resource compiler supplied with The
MacAdvantage: UCSD Pascal. It is very similar to the
RMaker program in the Lisa Workshop, but some changes have
been made to the syntax. Be careful if you are converting
resource files from one system to the other.

RMaker takes a text file as input, and produces a resource file.
The text file contains an entry for each resource to be defined, as
described in the section DEFINED RESOURCE TYPES. The
input text file also specifies the location and type of the output
resource file.

The output from RMaker can be used as an input to the UCSD
Pascal compiler. The compiler will copy the resources from the
resource file specified to the UCSD Pascal program’s resource
fork. You can also use RMaker to append new resources to the
resource fork of an existing UCSD Pascal program.

RMAKER INPUT FILES

An RMaker input file is a text file, as created using the Editor.
By convention, RMaker input files have the extension .R. If you
follow this convention you will easily be able to tell which text
files on your disk are resource text files.

RMaker ignores all comment lines and blank lines between
resource definitions. It also ignores leading and embedded spaces
(except in lines defined to be strings). Comment lines begin with
an asterisk. To put comments at the end of other RMaker lines,
precede the comment with two consecutive semicolons (;;).

6—2 1200301:06B

RMAKER INPUT FILES

Creating New Resource Files

The first non—blank and non—comment line of the input file
specifies the name of the resource file to be created. The file
should have the extension .RSRC. The line following the file
name should either specify the file type and creator bytes for the
Finder, or be blank. For example, the first two lines below
designate the file NewResFile.Rsrc as the output file. The file is
an application (type APPL) with a creator of PROG. The
standard file type and creator for all UCSD Pascal programs is
"APPLPROG’. If you do not specify the type and creator, they
default to 0 (a null string).

NewResFile.Rsrc

APPLPROG
» The following include statement will read in the
* resources theat are required by all UCSD Pascal programs.

INCLUDE UCSD Pascal 1:Empty Program

» Program specific resources go here

The- RMaker output file NewResFile.Rsrc, created by the above
input file, can be used as input to the UCSD Pascal compiler.

Appending to an Existing Resource File

The other type of resource input file starts with an exclamation
point, followed by the name of the existing resource file that you
wish to change. For example

'MyProgram.Code ;33 must be followed by a blank line.

» New resource definitions go here

tells RMaker to add new resources to the UCSD Pascal program
called MyProgram.Code.

WARNING: You may not follow a file name with a comment
(the above example is illegal.)

1200301:06B 6—3

RMAKER Chapter 6

Include Statements

The rest of the resource input text file consists of INCLUDE
statements and TYPE statements.

INCLUDE statements are used to read in existing resource files.
An INCLUDE statement looks like this:

NewResF i le.Rsrc

APPLPROG
= The following include statement will read in
» the resources that are required by all UCSD Pascal

= programs.
INCLUDE UCSD Pascal 1:Empty Program

« Program specific resources go here

Typically you will use an INCLUDE statement to include the
standard UCSD Pascal resources into a resource file that contains
resources specific to your application program. Standard UCSD
Pascal resources are in the file Empty Program on the disk

UCSD Pascal 1.
Type Statements

TYPE statements consist of the word "TYPE" followed by the
resource type and, below that, one or more resource definitions.
The resource type must be capitalized to match a predefined
resource type.

The following statement creates three resources of type 'STR .

TYPE STR

1
This is = string
Another String

b
Another string resource

6—4 1200301:06B

RMAKER INPUT FILES

It is not necessary for all resources of a given type to be declared
together. However, all resources of a type must have unique
resource ID’s. If you specify a resource ID that is already in use,
the new resource replaces the old one.

A resource definition looks like this:

[resource name] ,resource ID [(resource attribute byte)]
type-specific data

The square brackets indicate that the resource name and resource
attribute bytes are optional. Don’t place these brackets in your
input file. The comma before the resource ID is mandatory.
Attribute byte numbers are given in decimal. Attribute byte
values are defined in the Resource Manager chapter of
Inside Macintosh. The default attribute byte value is 0. Here are
some sample resource definitions:

TYPE STR
NewStr ,4 (32) ;3 32 means resource is purgeable
This resource has a name and an attribute byte!!

28 32) .
This one has only an attribute byte.

KNowstr
This one has only a name (the sttribute byte is 0).

The type—specific data is different for each resource type. As
you have probably guessed, the type specific data for a "STR ’
resource is simply a string. The next section describes the type
specific data for the resource types defined by RMaker.

DEFINED RESOURCE TYPES

RMaker has 11 defined resource types: ALRT, BNDL, CNTL,
DITL, DLOG, FREF, GNRL, MENU, STR , STR# and WIND.
The format of the type—specific data for each type is shown by
example, below. The type GNRL is used to define your own
resource types. It is explained later.

1200301:06B 6—5

RMAKER Chapter 6

Syntax of RMaker Lines

There are just a few general rules that apply to lines read by
RMaker.

e Leading and embedded blanks are ignored, except when
necessary to separate multiple numbers on a line, or when
they are part of a string.

e Blank lines should not be placed inside a resource definition,
unless required (the exceptions are pointed out below).

e Numbers are decimal, unless specified otherwise.
e RMaker is sensitive to line breaks. Thus if a type description

shows four values on a single line, you must put four values
on a single line.

Two special symbols can be used in resource definitions: the
continuation symbol (++) and the enter ASCII symbol (\).

++ goes at the end of a |line that is continued
on the next |ine.
\ precedes two hexadecimal digits. That ASCII

character is entered into the resource
definition.

Look at the description of the 'STR ’ type for examples of these
special symbols.

The use of most of the TYPEs listed below are described in the
appropriate chapter in Inside Macintosh. For example, the use of
the type DLOG 1is described in the Dialog Manager chapter of
Inside Macintosh.

6—6 1200301:06B

DEFINED RESOURCE TYPES

ALRT——Alert Resource

TYPE ALRT
28 resource ID

5O B0 250 250 i} top left bottom right
1 ;; resource ID of item |ist
7FFF ;; stages word in hexadecimal

BNDL——Application Bundle Resource

The BNDL resource is used to implement the Macintosh Finder
interface to an application program. It allows the application to
define its own desktop icons and associate documents with
specific programs. The BNDL resource is discussed more fully in
the section APPLICATION INTERFACE TO THE FINDER in
the chapter GENERAL OPERATIONS.

TYPE BNDL
,128 ;3 resource ID
MPNT O ;; bundle owner
ICN# ;; resource type
O 128 1 129 353 ID O maps to resource ID 128, 1 to 129
FREF ;3 resource type
O 128 1 129 33 ID O maps to resource ID 128, 1 to 129
33 Must be followed by & blank |ine.

NOTE: The number of mappings.from local ID to resource ID is
variable. Simply include multiple mappings on a single line.

NOTE: If the BNDL resource is present in an RMaker input file,
the resulting output file will have its bundle bit set.

CNTL——Control Resource

TYPE CNTL
,130 ;3 resource ID
Stop 3 title
244 40 280 80 ;; top left bottom right
Invisible ;; see note
(o] 33 ProcID écontrcl definition ID)
[o} ;; RefCon (reference value)
010 33 minimum maximum value

1200301:06B 6—7

RMAKER Chapter 6

NOTE: Controls can be defined to be Visible or Invisible. Only
the first character (V or I) is significant.

DITL——Dialog or Alert Item List Resource

TYPE DITL
,129 ;; resource ID

;; B items in list
StaticText ;; static text item (see note)
20 20 32 100 ;; top left bottom right
Whoopie ;; message

;3 blank |lines are optional here.
EditText ;; editable text item (see note)
20 120 32 200 ;3 top left bottom right
Default message ;; message
radioButton ;; radio button item (see note)
40 40 60 180 ;; top left bottom right
Hel lo ;; message
CheckBox Disabled ;; disabled item (see note)
76 40 95 180 ;; top left bottom right
GoodBye ;; message
Button ;; button item (see note)
75 160 95 200 ;; top left bottom right
Hi! ;; message

NOTE: Five types of dialog items are defined: Static text,
Editable text, Radio Buttons, CheckBoxes, and Buttons. These
items are assumed to be enabled. Otherwise you may specify

Disabled. Only the first character of these item definition words
are significant (S,E,R,C,B,D).

DLOG-——Dialog Resource

TYPE DLOG
< ;; resource ID
This is a dialog box. ;; message
100 100 190 2B0O ;; top left bottom right
Visible GoAway ;; box status (see note)
[o] 33 procID (dialog definition ID)
o) ;; refCon (reference value)
200 ;; resource ID of item list

NOTE: A dialog box can be Visible or Invisible. GoAway and
NoGoAway determine whether or not the box can be closed.
Only the first characters (V,I,G,N) are significant.

6—8 1200301:06B

DEFINED RESOURCE TYPES

FREF ——File Reference Resource

The FREF resource is used to associate file types with icons.
Used in conjunction with the BNDL resource, the FREF resource
allows applications to define their own desktop icons. For more
information see the section APPLICATION INTERFACE TO
THE FINDER in the chapter GENERAL OPERATIONS.

TYPE FREF
,128 ;; resource ID
APPL O ;3 File type, local ID of icon
;; Blank |lines ok between resocurce
;; definitions.
,129 ;; resource ID
TEST 127 myFile ;; File type, local ID of icon, file name

If there is no file name, it can be omitted.

MENU-——~Menu Resource

TYPE MENU
5 ;; resource ID
Treansfer ;; menu title
Edit ;; item 1
Asm ;3 item 2
Link ;5; item 3
- item 4 (draw a |ine)
xec 33 item

33 MUST be followed by an empty |ine!!

WARNING: An empty line must follow a MENU resource
definition. The line must not have comments (the example above
is illegal) or spaces.

STR ——String (space required)

TYPE STR ;3 ’STR ’ (spece required)
L ;3 resource ID
This is & string ;; and a string
;23 ;3 resource ID
This is a string ++ ;; and a long string

that shows the ++
|line continuation characters.

s (32) ;3 resource ID, attribute byte
I’ve got attributes! ;; and a string
, 27 ;; resource ID

1200301:06B 6—9

RMAKER Chapter 6

Testing, \31, \32, \33 ;; ’Testing, 1, 2, 3’ the hard way

STR# ——String List Resource

This resource type allows you define a number of strings using
one resource identifier. The procedure GetIndString in the
OsUstilities unit (listed in Appendix A) can be used to index into a
string list.

TYPE STR#

) ;; resource ID
4 ;3 number of strings
This is string one ;; and the strings...

And string two
Third string
Bench wermer

WIND—-—Window Resource

TYPE WIND
;128
Wonder Window ;; title
40 80 120 300 ;; top left bottom right
Invisible GoAway ;3 window status (see note)
33 ProcID (window definition ID)
(o] ;; RefCon (reference value)

NOTE: A Window can be Visible or Invisible; GoAway and
NoGoAway determine whether or not the window has a close
box. Only the first character of each option (V,I,G,N) is
significant.

CREATING YOUR OWN TYPES

There are two ways to create your own resource types. The first
is to equate a new type to an existing type. For example, you can
create a resource of type ERRM like this:

6—10 1200301:06B

CREATING YOUR OWN TYPES

TYPE ERRM = STR ;3 type ERRM is just |ike STR
,17 (32) ;; resource ID, attribute byte
Bad input file name ;; the error message

In the example, we have defined type ERRM to be an STR type.
This allows us to avoid resource identifier conflicts at runtime
with other resources of type STR .

The other way to create your own type is to equate the new type
to GNRL, and then to specify the precise format of the resource.
A set of element type designators lets you define the type of each
element that is to be placed in the resource.

Here are the element type designators:

hexadecimsal

.P pescal strin

.S string without length byte
I decimal integer

.L decimal long integer

.H

.R

Read resource from file. Followed by three
parameters: file name type

For example, to define a resource of type CHRG consisting of the
integer 57 followed by the Pascal string 'Finance charges, you
could use the following type statement:

TYPE CHRG = GNRL ;; define type CHRG
, 200 ;; resource ID
Si ;3 @ decimal integer

. ;; a pascal string
Finance charges
33 MUST be followed by a blank line.

A more practical example: An application that has its own icon
must define an icon list, and reference it using FREF (described
above). Such an icon list can be defined as follows:

1200301:06B 6—11

RMAKER : ‘ *Chapter 6

TYPE ICN# = GNRL ;; icon iist for an appliication
,128 ;3 resource ID
H ;; enter 2 icons in hexadecimal
0001 0002 0003 0004 ;; easch is 32 bits by 32 bits

0070 '007E OO7F 0080 5; for 128 words total
;3 MUST be followed by a blank |ine.

The .R type designator is used to include an existing resource as
part of a new resource type. For example, to read an existing
FONT resource into a new resource of type FONT, use the
following resource definition:

TYPE FONT = GNRL ;; define a new type
,268 ;; resource ID
.R System FONT 268 ;; read from the System file

;; the FONT resource with ID=268

USING RMAKER

Once you have created the input file to RMaker, the hard work is
done. Simply select and open the utility RMaker. The standard
file selection window is automatically opened. Select the file you
want to compile, and off it goes.

By default, the standard file selection window displays all the
text files on the disk. If you want to display only the .R files,
Cancel the selection window, select .R Filter from the File menu,
then select Compile from the File menu to redisplay the file
selection window.

When RMaker is compiling a file, the name of the source file is
displayed in the upper left of the window, and the name of the
output file is displaved in the upper right. As the file is
compiled, the current size of the resource data, the size of the
resource map, and the total size are tracked on the right half of
the screen. In addition, as each line is compiled, it is displayed
on the screen. When RMaker is finished, the Quit button in the
lower left hand corner of the window will blink.

6—12 1200301:06B

USING RMAKER

If there are no errors in the RMaker input file, a resource file
with the specified name is created.

WARNING: The TRANSFER menu is not supported. Trying
to transfer out of RMaker could cause unpredictable results.

UCSD Pascal Compiler Input

Most of the time you will want to generate resource files that can
be used as input to the UCSD Pascal compiler. UCSD Pascal
programs require a minimum set of resources. These resources
are in the file Empty Program on the UCSD Pascal 1 disk. A
typical application resource text file would be:

program.rsrc ;3 Output file name
APPLPROG 33 Type , Creator

INCLUDE UCSD Pascal 1:Empty Program

» Your program’s resource TYPEs go here.

Note the use of the volume prefix on the file Empty Program.
The volume prefix is not needed if Empty Program is on the
same disk as RMaker (the default volume). Volume prefixes must
follow Macintosh file naming conventions, as defined in the

chapter GENERAL OPERATIONS.
Errors in the Input File

If an error occurs, the line containing the error is the last line on
the screen. RMaker then displays a box with an error message in
it. These are the possible error messages. A brief description
accompanies the error messages that are not self—explanatory.

1200301:06B 6—13

RMAKER . Chapter 6

e An Input/Output error has occured.
e Can’t open the output file.

¢ Can’t create the output file.

e Syntax error in source file.

e Bad type or item declaration.

e Bad ID Number.

e Bad Attributes Parameter.

e Can’t load INCLUDE file.

e Bad format resource designator in GNRL type. This is
any error in a user—defined resource type.

¢ Out of memory.

e Can’t add to the file —— disk protected or full.
e Bad bundle definition.

e Unknown type. Specified resource type is undefined.

¢ Bad Object definition. This can happen if the specified file
is of the wrong type.

e Bad item type.

e Bad format number.

6—14 1200301:06B

7
LIBRARIAN

The Librarian is a utility program that allows you to manipulate
code segments within library files. Libraries are a useful means
of grouping the separate code pieces needed by a program or
group of programs. Libraries generally contain routines relating
to a certain area of application; they can be used for functional
groupings much as units can. Thus, you might want to maintain
a math library, a data file—mmanagement library, and so
forth—each of these libraries containing routines general enough
to be used by many programs over a long period of time.

Maintaining units in well organized libraries is more convenient
than maintaining a larger number of separate files. It allows you

e to manipulate an entire collection of units easily.

e to reduce the number of library files you must specify in the
Library Files list for a program (see the Set Options utility).

e to reduce the number of files that are open when the program
is executing (each library file will be an open file).

e to think of your application in a more organized way.

Individual programs may also take advantage of the library
construct. If a program uses several units suitable for compiling
separately, but the units logically belong within the program, you
may want to construct a single library containing the program
and all of those units.

Library files created by the Librarian have the same structure as
code files created by the compiler. Thus, a library file which
contains a single unit is equivalent to the code file produced by

1200301:07B 7—1

LIBRARIAN - Chapter 7

the compiler for that unit.

NOTE: The Librarian is useful for determining what units and
segments are in the Pascal Runtime and Debug Runtime library
files. However, it cannot be used to change these files. Changing
them will make them unusable.

This chapter uses the term compilation unit to refer to a program
or unit and all the segments declared inside it. The segment for
the program or unit is called the host segment of the compilation
unit. Segment routines declared inside the host are called
subsidiary segments. Information in the host segment called
segment references referes to units used by the compilation unit.
The segment references contain the names of all segments
referenced by a compilation unit. When a program is executed,
the runtime system searches all the library files specified in the
program’s Library Files list to find the referenced segments.

Some routines called from hosts exist in units in the Runtime
Support Library and therefore appear in segment references, even
though there is no explicit uses declaration for them. For
example, writeln resides in the Runtime Support Library unit
PASCALIO, so the name PASCALIO appears in the segment
references of any host that calls writeln.

USING THE LIBRARIAN

When the Librarian is executed, it first asks you for the name of
an output file. This can be any legal Macintosh file name
including a volume prefix. The UCSD Pascal Compiler appends
.CODE to the end of every code file name to avoid confusing code
files with source files. We recommend that you use the same
convention when creating library files. The Librarian removes an
old file with the same name as the output file.

The Librarian then asks you for the name of an input file. If the
name you enter cannot be found, the Librarian appends .CODE
to the end of the name and looks again. If you do not want to
specify an input file at this time, press <Return> in place of a

7-2 1200301:07B

USING THE LIBRARIAN

file name.

Here is a screen display from the middle of a run of Librarian.
Pascal Runtime has been specified as the input file, and three
segments have been copied to the output file:

Librarian: N(ew, 0-9(sliot-to-slot, E(very, S(elect, ?
Input file? PASCAL RUNTIME

O u KERNEL 20156 10 u REALOPS 2092
1 s USERPROG 1460 11 u LONGOPS 1364
2 u CONCURRE 431 12 u ASSOCIAT 207
3 u FILEOPS 864 13 s CREATEEN 877
4 u EXTRAIO 221 14 s PEDBUILD 1466
B u PASCALIO 994
6 u HEAPOPS 234
7 u EXTRAHEA 786
8 u STRINGOP 234
9 u OSUTIL 340

Output file? NEW.CODE

OQutput file is 20 blocks long.
O u KERNEL 2016
1 s USERPROG 1460
2 u CONCURRE 431

The screen display consists of the prompt line, the question line,
the input display, the output file line, the output file size line,
and the output display. The input and output displays each
show a list of code segments entries. Each entry consists of the
slot number, the segment code, the segment name, and the
segment length (in words). The segment codes are as follows:
"p" refers to a main program unit, "u" refers to a unit, and "s"
refers to a subsidiary segment. Some Librarian commands have
you specify a segment by its slot number.

To build a library, you copy segments from various input files to
the output file. Normally, the Librarian will not allow you to
transfer more than one segment with the same name to the
output file. However, the 0—9(slot—to—slot command allows you
to override this restriction.

1200301:07B 7-3

LIBRARIAN Chapter 7

LIBRARIAN COMMANDS

This section describes the Librarian commands.

The N(ew command displays a prompt asking for a new
input file. This file becomes the file from which segments
may be copied. The segments contained in the input file are
displayed in the input display.

The A(bort command stops the Librarian without saving the
output file.

The Q(uit command stops the Librarian and saves the output
file. Just prior to terminating, the Librarian asks you to
enter a copyright notice. The Quit command also copies
resources to the resource fork of the output file.

When the Librarian displays the prompt "Notice?" at the top
of the screen, you should enter a copyright notice and press
<Return>. The copyright notice is placed in the segment
dictionary of the output file. Pressing <Return> without
entering a copyright notice exits the Librarian without writing
a copyright notice.

After the copyright notice is processed, the Librarian copies
resources to the resource fork of the output file. The source
for the resources is determined as follows:

If you have transferred one or more segments of type program
to the output file, the Librarian attempts to copy the
resources for the file in which the last such segment was
located.

If, instead, you have transferred only segments of type unit
(or subsidiary segments), the Librarian attempts to copy the
resources from the last input file that was specified.

If you enter Q(uit prior to copying any segments to the
output file, the Librarian attempts to copy the resources from
the file "Empty Program" to the output file.

7—4 1200301:07B

LIBRARIAN COMMANDS

If the Librarian can’t find a source from which to copy the
resources or the copy was unsuccessful, an error message will
be displayed. If you are trying to create a program that you
intend to execute and this error occurrs, you will have to
rebuild the program, making sure a source for the resources is
available. If you are just building a library file, the
occurrance of this error is not critical, since the library file
should still be useable.

e The T(og command toggles a switch that determines whether
or not interface sections of units are copied to the output
file. The interface sections are required if you reference the
library file in a uses statement while compiling a program.
Since the interface sections make your library file bigger,
you should exclude them from the library file when
development of you application is complete (i.e., no more
compilations will be done using it) to save disk space.

e The R(efs command lists the names of each entry in the
segment reference lists of all segments currently in the output
file. The list of names also includes the names of all
compilation units currently in the output file, even though
their names may not occur in any of the segment references.
To refresh the output display, press <Space>.

e The I(nput command "scrolls" the display of segments in the
input display if there are more segments than will fit on the
screen. Type I(nput multiple times to cycle through the input
display.

e The O(utput "scrolls" the display of segments in the output
display if there are more segments that will fit on the screen.
Type O(utput multiple times to cycle through the output
display.

The remaining five commands transfer code segments from the
input file to the output file.

1200301:07B 7—5

LIBRARIAN Chapter 7

The 0—9(slot—to—slot command transfers a segment the
segment from a specified slot in the intput file to a specified
slot in the output file. When you enter the first digit,
Librarian displays the prompt: "From slot # ?". Terminate
the entry with <Space>. Librarian displays the prompt "To
slot #?". Enter the number of the slot that the segment is to
be copied to in the output file. To abort the command, press
<Return> with an empty output slot number.

NOTE: You may not use the <Backspace> key to correct
typing errors. To abort the command after specifying a input
slot, press <Return> in response to the second question.
You cannot abort the command after the specxfymg the
output slot.

This command will allow you to copy a segment with a
duplicate name into the output file.

The E(very command copies all of the code segments in the
input file to the output file. Each segment is copied to the
first available output file slot, provided that its name does not
conflict with the name of a segment already in the output file.

The S(elect command causes the Librarian to loop through
each segment in the input file, asking you whether you would
like to have it transferred to the output file. For each code
segment not already in the output file, the Librarian asks:
"Copy from slot #?". Press Y to copy the segment. Press N
to skip the segment. Press E to copy the rest of the code
segments in the input file (as in the E(very command). Press
<Space> or <Return> to abort the S(elect command.
Each segment is copied to the first available slot.

The C(omp—unit command causes the Librarian to ask:
"Copy what compilation unit?". You should enter the name
of a compilation unit. The compilation unit named is
transferred to the output file, along with any segment
procedures that it contains.

7—6 1200301:07B

LIBRARIAN COMMANDS

e The F(ill command does the equivalent of a Clomp—unit
command for all the compilation units referenced by the
segment references in the output file.

1200301:07B 7-7

LIBRARIAN Chapter 7

7-8 1200301:07B

8
DEBUGGER

This chapter describes the Symbolic Debugger and the
Performance Monitor. The Debugger is a tool for detecting and
correcting errors in programs that you develop. The
Performance Monitor is a mechanism for gathering performance
information and for extending the capabilities of the Debugger.

The Debugger gives you the following program diagnostic
capabilities:

e setting and removing breakpoints.

single stepping p—code.

e displaying and altering memory and p—Machine registers.

disassembling p—code.

To use the Debugger effectively, you must be familiar with the
p—Machine architecture and understand the p—code operators,
stack usage, and variable and parameter allocation. These topics
are discussed in the P-MACHINE ARCHITECTURE chapter.
Other useful information will be found in The UCSD Pascal
Handbook and the MACINTOSH INTERFACE chapter.

A compiled listing of your program is helpful when using the
Debugger. The listing helps you to determine p—code offsets and
variable offsets. .

1200301:08B 8—1

DEBUGGER Chapter 8

WARNING: The Debugger is a low—level tool, and as such, you
must use it with caution. If you use the Debugger incorrectly,
your program can fail.

GENERAL INFORMATION

This section discusses general information about using the
Debugger. The individual Debugger commands are covered in
the next section, DEBUGGER COMMANDS.

Installation

To use the Debugger, you must be using the Debug Runtime file
as your Runtime Support Library, and you must have the
Startup in Debugger option enabled in your program’s startup
options. Both of these may be configured by using the Set
Options utility, as described in the GENERAL OPERATIONS

chapter.

Set Options also allows you to select whether the Debugger will
communicate via an external terminal, connected to the modem
port, or the .DBGTERM device (the lower eight lines of the
Macintosh Screen). If the Create .DBGTERM Device and Create
Default Window options are simultaneously enabled, the screen
I/O window will appear smaller on the screen in order not to.
overlap the .DBGTERM screen region.

If you have properly installed the Debugger, when you start your
program it will immediately enter the Debugger, displaying the
following prompt:

LE'CSD Pascal Debugger [1R0.0]

- 8-2 1200301:08B

GENERAL INFORMATION

Command Format

The Debugger prompts you for input by printing a left
parenthesis character ’(". There are no menus explaining the
Debugger commands because they would detract from the
information displayed on the screen by the Debugger. However,
when you enter a command, the Debugger may display several
short prompts that ask you for information.

Many of the Debugger commands require you to enter two
characters (such as ’LP’ for List P—code, or 'LR’ for List
Register). To abort a command after entering the first character,
press <Space>.

Here is a sample of a debugging session:

UCSD Pascal Debugger [1R0.0]
385 Set breokf? @ Segname? EXAMPLE Procname or §#? 1 Offsetf? 0

BL
(ge S=EXAMPLE P#1 Of0

Hit break#0 at S=EXAMPLE P#1 O0f0
VG; Varname or offsetf? 1
g S=EXAMPLE P#1 Of1 000012E6:01 04 81 56 81 A8 00 80 —-—-V-—-v

Most lines of Debugger interaction are prefaced with a command
code or response code surrounded by parentheses. If the code is
in upper—case letters, it is a command that you entered. If the
code is in lower—case letters, it is a Debugger response line.
There is a table of the possible Debugger response codes and their
meanings in the Summary of Response Codes section.

When the Debugger prompts you with questions, you type the
response and terminate it by pressing <Space> or <Return>.
When you are asked for the name of a segment or an identifier,
you may type only eight characters of the name. Most numeric
input is in decimal radix (base 10). However, when you are
requested for an address the Debugger expects hexadecimal
notation to be used.

1200301:08B 8—3

DEBUGGER Chapter 8

If you make a mistake when typing a response to a question, you
may use the <Backspace> key to fix the entry. However, you
cannot edit a response after you have gone on to the next
question. Terminate the command and reenter it.

Some commands display more information than will fit on the
display device. If so, the Debugger will print out a "screen full"
of output, then ask you to type <Space> to continue. If you
would like to terminate the output, press any other character.

Entering and Exiting

There are several ways to enter the Debugger. (You can tell that
you are in the Debugger by the presence of the left parentheses
prompt.) When the Debugger is enabled, the Runtime Support
Library will enter the Debugger in the following situations:

e upon starting your program.

e upon execution of the Debugger procedure in the
Error _Handling unit.

e upon encountering a break point.

e upon completing a single step operation.

e upon detecting an execution error.

e upon execution of the halt intrinsic.

e upon recognition that the break button has been pressed.

e upon recognition that the Debug "button" in an execution
error dialog box has been pressed.

You exit the Debugger by executing one of the following
commands:

8—4 1200301:08B

GENERAL INFORMATION

e The Quit command puts the debugger in a dormant state.

e The Resume command continues program execution from
where it left off.

e The Step and Trace commands execute a single p—code, then
automatically reenter the Debugger.

If any display options are enabled, then the Debugger will print
the enabled options just after reentering the Debugger. See
Configuring the Display for details.

Debugger State

When the Debugger is reentered after a Resume, Step or Trace
command, it remembers its previous state, including the
condition of the break points, its memory locked state, and its
display modes. 'However, if the Debugger is entered after it has
been made dormant by the Quit command, it starts up in a
"fresh" state, with no break points set.

Two other features of the debugger state are its current activation
record and its current address.

The current activation record determines the environment for
displaying variables. On reentry to the Debugger, it corresponds
to the most recent activation record. However, it can be changed
for a series of commands by using the Chain Down and Chain Up
commands.

The current address corresponds to the last address that was
displayed by a memory examine command. The slash (/) and
back slash (\) commands alter memory at the current address,
and the plus (+) and minus (—) commands display memory in the
vicinity of the current address.

1200301:08B 8—5

DEBUGGER Chapter 8

Symbolic Debugging

The Debugger becomes a Symbolic Debugger with a little
cooperation from the UCSD Pascal compiler. If you compile your
program with the symbolic debugging compiler options around
portions of your program (see the PASCAL LANGUAGE
chapter), you can then access variables by name rather than by
data offset, and you can access code by line number rather than
by p—code offset. Also, break points may be specified by
procedure name and line number, and disassembled code will
display procedure names rather than numbers.

Having a current compiled listing of your program is still
essential for serious debugging efforts.

To use symbolic debugging, it is necessary that the code being
debugged is compiled with $D+ compiler options. The $D+
option instructs the compiler to output symbolic Debugger
information for those portions of a program that are compiled
with $D+ turned on.

Once you have debugged your program, you should recompile it
without the symbolic debugging flags, because the symbolic
debugging information increases the size of your code file.

When you use symbolic debugging, you may specify locations in
your code by line number. The line number corresponds to the
line number in a compiled listing of your program. Of course,
you can also specify locations in your code by offset. When you
specify variable or procedure names symbolically, you may only
type the first eight characters of the symbol’s name.

The example debugging sessions in the rest of this chapter are a
mixture of symbolic and non—symbolic debugging examples.
When you are running the Debugger, the Debugger will make it
clear to you what the permissible command options are by the
content of its questions. FEach question is explicit about what
type of response it expects.

8—6 ‘ 1200301:08B

GENERAL INFORMATION

DEBUGGER COMMANDS
The following sections describe each of the Debugger commands.
Resuming Execution

You resume program execution by using one of the following
commands:

Q The Quit command puts the Debugger in a dormant
state, disabling all break points, and continues program
execution.)

R The Resume command continues program execution from

where it left off.
Using Break Points

The Debugger allows you to maintain up to five break points
within a program at one time. A break point is a location within
p—code that will cause the Debugger to be entered when the
p—code is about to be executed.

You specify a break point by its break point number. Break
points are numbered 0 through 4. The location of the break
point is specified by the segment name, procedure number and
code offset. If symbolic debugging is enabled, you may specify
the procedure by name and the location within the procedure by
line number. A compiled listing of your program is indispensible
for specifying breakpoints in code, because both code offsets and
line numbers are printed in the listing. Line numbers can be
determined "on the fly" by using the File command to examine a
compiled listing that is stored in a file on disk.

The following commands manipulate break points:
BS The Breakpoint Set command enables one break point.

You are asked to specify (1) the number of the
breakpoint to set, (2) the segment name, (3) the

1200301:08B 8—7

DEBUGGER Chapter 8

procedure name or number, and (4) the code offset or line
number.

BR The Breakpoint Remove command disables one break
point. You are asked to specify the number of the break
point to remove.

BL The Breakpoint List command lists the break points that
are currently in effect.

Here is an example of using the break point commands:

S=EXAMPLE P#1 ofe
Set break #7? 1 Segncm':e’> EXAMPLE Procname or #? 2 Offset#? 25

g Set break #7? 9 Segname? EXAMPLE Procname or f? 1 Offsetf? 0
Remove breakf? ©

b1) S=EXAMPLE P#2 o#25

When you have resumed execution with the Resume command
and a break point is encountered, the Debugger is reentered and
the following message will appear on the screen:

?3t break#O at S=EXAMPLE P#2 O#26

This message means that breakpoint 0 was encountered in
segment EXAMPLE, procedure number 0, code offset 25.

Single Stepping

The Debugger allows you to execute the p—code in your program
a single instruction at a time by using the single step commands.
Single stepping is most effective when used in conjunction with
the enable command, which allows you to set the display options.
(See Configuring the Display.)

Using one of the single step commands causes one or more
p—codes to be executed. Nothing is left on the screen to indicate
that a single step operation has been performed. However, you

8-8 1200301:08B

DEBUGGER COMMANDS

Q

may notice that the left parenthesis prompt disappears for a
moment, the reappears. Most often you will want to run single
stepping with the P—code option enabled so you can tell where
you are in the program you are debugging. This option will
cause each p—code to be printed on the screen before it is
executed.

Here are the single step commands:

S This command causes a single p—code to execute.
Execution of a procedure call instruction will cause the
Debugger to "step into" the procedure.

T This command causes a single p—code to execute unless
the p—code is a call instruction, whereupon the Debugger
will execute the entire call and stop on the p—code
following the call. This command "steps over" procedure
calls, i.e., it allows you to single step through a procedure
without worrying about what goes on within the
procedures that it calls.

Here is an example of single stepping with the P—code display
option enabled. Note that the Trace command has been used to
"step over" procedure calls. The format of the p—code
disassembly is discussed, below, in Disassembling P—code.

EP

cd) S=EXAMPLE P#1 o#1 SRO 3
cd) S=EXAMPLE P#1 0#3 SLDC 5
cd) S=EXAMPLE P#1 o#4 SRO 2
cd) S=EXAMPLE P#1 048 CPG 2
cd) S=EXAMPLE P#1 048 RPU o

Disassembling P—code

The P—code command allows you to look at disassembled
p—code for portions of your program.

P This command disassembles a section of p—code. You
are asked to specify (1) a segment name, (2) the
procedure name or offset, (3) the start offset or line
number, and (4) the end offset or line number.

1200301:08B 8—9

DEBUGGER Chapter 8

Here is an example disassembly:

(P) Segname? EXAMPLE Procname or #7? SETCIFD
First# 10 La;b# 12 Start Line#? 10 ggd Ligo#? 12
P: Su

cd) S=EXAMPLE O#0

cd) S=EXAMPLE P#2 O#1 SLDO 2
cd) S=EXAMPLE P#2 o#2 LEQI

cd) S=EXAMPLE P#2 o#3 BNOT

cd) S=EXAMPLE P#2 O#4 SSTL 1
cd) S=EXAMPLE P#2 O#6 SLOL 1
cd) S=EXAMPLE P#2 O#6 FJP B
cd) S=EXAMPLE P#2 o#8 SLDO 3
cd) S=EXAMPLE P#2 O#9 SLDO 2
cd) S=EXAMPLE P#2 O#10 MPI

cd) S=EXAMPLE P#2 O#11 SRO 1
cd) S=EXAMPLE P#2 O#13 RPU 1

Each p—code instruction is presented, along with the
"coordinates" of the instruction (i.e., the segment, procedure and
offset). The p—code names correspond to the instructions

described in the P—-MACHINE ARCHITECTURE -chapter.

P—code operands are in decimal radix (base 10).

Disassembling p—code is useful in analyzing the exact cause of
certain runtime errors, and discovering the exact p—code
coordinates for a break point. If you press <Return> to the line
number prompts, the Debugger assumes the first and last line
numbers for the procedure you have indicated. (Similarly, when
not using symbolic debugging, pressing <Return> in response to
the start and stop offset prompts causes the Debugger to assume
a starting offset of zero and an ending offset equal to the offset of
the last p—code instruction in the procedure.)

Examining and Modifying Memory

The commands described in this section allow you to examine
and modify memory. The Address Data and Address Code
commands ask you to specify a memory address in hexadecimal
(base 16) notation.

For the Address Data command you must specify a 16—bit
address in the range 0000—FFFF. This address is interpreted as
an address within the Pascal Data Area. If you enter the value of
any Pascal pointer variable, the Debugger will display the
memory that it points to.

8-10 : 1200301:08B

DEBUGGER COMMANDS

For the Address Code command you must specify a 32—bit
absolute address in the range of legal memory address for your
Macintosh. This address is interpreted as a 68000 absolute
address. Note that the 16—bit addresses mentioned above do not
correspond to the same absolute address. If you enter the value
of a Macintosh absolute pointer, the Debugger will display the
memory that it points to.

For more information on the relationship between Pascal pointers
and absolute addresses, refer to the MACINTOSH INTERFACE
and PASCAL LANGUAGE chapters.

A memory examine command displays memory to the screen in
the following format:

(AD; Data address? B0OO
(a 00000B00:2D F8 2D FD 2E 03 2E F§ —----.-.-

The address is followed by two representations of the eight bytes
stored at that address. First they are displayed in hexidecimal,
then in ASCII. If the byte does not have a printable ASCII
representation, it is represented as a dash (—).

After you have entered a memory examine command, you can
examine words in the immediate vicinity by using the plus (+)
and minus (—) commands. The slash (/) and back slash (\)
commands allow you to alter the memory displayed by the
previous memory examine command.

Here are the memory examine and modify commands:

AD The Address Data command displays eight bytes starting
at the specified address, and sets the current address to
this address. The address is a 16—bit pointer within the
Pascal Data Area.

AC The Address Code command displays eight bytes starting

at the specified address, and sets the current address to
this address. The address is a 32—bit absolute address.

1200301:08B 8—11

DEBUGGER Chapter 8

+ The plus command increments the current address by
eight bytes, and displays the eight bytes at the current
address.

— The minus command decrements the current address by
eight bytes, and displays the eight bytes at the current
address.

/ The slash command allows you to alter in hexadecimal
the memory at the current address. You alter the bytes
by typing two hexadecimal characters for each byte and
using < Space> or <Return> to skip to the next byte.

\ The back slash command allows you to alter in ASCII
the memory at the current-address. You alter the bytes
by typing a character for each byte. If you wish to skip
a byte, press <Return>.

Here is an example of displaying and modifying memory
contents:

AD; Data address? 1000

a 00001000:52 42 67 82 76 09 E3 48 RBg-v-—K
a 90001008:70 63 B6 40 6F 08 96 49 pc-00-—@
/ B7 FF

\ abdefghi

Examining and Altering Variables

The following commands allow you to examine the areas of
memory where variables are stored. The display is not formatted
based on the type of the variables. Instead, you must interpret
the variables in hexadecimal or ASCII form.

These commands may be used in conjunction with the slash (/)
and back slash (\) commands to alter the value of variables.
They may also be used in conjunction with the plus (+) and
minus (—) commands to display memory in the vicinity of the
initial memory examine command.

8—12 1200301:08B

DEBUGGER COMMANDS

To use the variable examine commands you must be somewhat
familiar with the storage of variables in the p—Machine. See

P-MACHINE ARCHITECTURE for details.

e Local variables refer to the variables declared in the procedure
that corresponds to the current activation record.

e Global variables refer to the variables declared at the
outermost level of the program or unit that contains the
procedure that corresponds to the current activation record.

o Intermediate variables refer to variables declared in
procedures that are nested lexically between the global level
and the procedure that corresponds to the current activation
record.

e [External variables refer to variables stored at the global level
of a unit accessible to the procedure that corresponds to the
current activation record.

The current activation record is normally the activation record
that the p—code instruction that is about to be executed is
located within. You may change the current activation record by
changing the frame of reference with the Chain Up or Chain
Down commands. See Changing the Frame of Reference.

Each of these commands asks for a variable by name or by offset.
The offset is a word offset of the variable within an activation
record. You can determine the offset of a variable by using a
compiled listing. Variable offsets are numbered starting with 1.
If you specify an offset that is out of range, the Debugger gives
you an error message and aborts the command.

Here are the variable examine commands:

VL The Var Local command displays eight bytes of the local
variables of the current activation record. You are asked
to specify either a variable name or a variable offset.
This command sets the current address.

VG The Var Global command displays eight bytes of the

1200301:08B 8—13

DEBUGGER Chapter 8

VI

VE

VS

global variables in the context of the current activation
record. You are asked to specify either a variable name
or a variable offset. This command sets the current
address.

The Var Intermediate command displays eight bytes of
the variables for an activation record at an intermediate
lexical level with respect to the current activation record.
You are asked to specify (1) a lexical offset and (2) a
variable name or variable offset. A lexical offset of one
refers to the lexical parent of the current activation
record. This command sets the current address.

The Var Extended command displays eight bytes of the
global variables for a unit that is accessible to your
current procedure. You are asked to specify (1) a
segment number, and (2) a variable name or offset. This
command sets the current address.

The Var Segment command displays eight bytes of the
variables for a segment that is part of the Runtime
Support Library or part of your program. The segment
in question does not have to be accessible to your current
procedure. You are asked to specify (1) a segment name,
(2) a procedure name or number, and (3) a variable name
or offset. This command sets the current address.

The Var Procedure command displays eight bytes of the
variables for a specified procedure. You are asked to
specify (1) a segment name, (2) a procedure name or
number, and (3) a variable name or offset. The
procedure must currently by in the call chain. This
command sets the current address.

Here is an example of examining and modifying variables:

Varname or offsetf? 1

! S=EXAMPLE P#3 Of3 000DE776:00 00 00 060 4E 1A 080 00 ~———N-———
| S=EXAMPLE P#3 O#7 QOQOE77E:65 94 00 4E FE 12 QA CD e-—N——--

Varname or offsetf? A

[¢] S=EXAMPLE P#1 V=A 000061A00:00 01 3F 3F 3F 3F 3F 3F —--777727

8—14

Delta lex level? 1 Offset#? 3

S=EXAMPLE P#2 O#3 OOOOEBFE:00 65 090 00 3F 3F 3F 3F —e——7777
g#? 1 Offsetf? 5

e S=KERNEL P#1 O#5 OOOOBAE4:11 65 00 06 91 84 06 3IF —e————— ?

66

1200301:08B

DEBUGGER COMMANDS

VS; Segname? FILEOPS Offsetf? 5

e S=F | LEOPS P#1 O#f5 00000530: out of range

VP; Segname? KERNEL Procname or #? 31 Offsetf? 1

P S=KERNEL P#310#1 @OOOFFE2:3F 3F 3F 3F 3F 3F 3F 3F 7?22?2777

Changing the Frame of Reference

It is possible to change the current activation record, thereby
changing the frame of reference from which the global, local,
intermediate, and external variables are viewed. This is
accomplished by "chaining up" and "chaining down" the call
chain. The following commands examine the call chain and cause
the Debugger to move up and down the call chain:

CL The Chain List command prints out the activation
records on the entire call chain.

CD The Chain Down command sets the current activation
record to be the caller of the current procedure. If there
are no more procedures in the call chain, this command
does nothing.

Cu The Chain Up command sets the current activation
record to be the procedure that was called from the
current procedure in the actual call chain. If the current
procedure is the last procedure that was called, this
command does nothing.

Here is an example of using these commands:

cL

émsg S=EXAMPLE P#2 O#f3 stat=00006530 dyn =00006530
env =00000996 ipc =0024

(ms) S=EXAMPLE P#1 0f6 stat=00006542 dyn =08Q0FFCE
env =00000996 ipc =0036

(ms) S=KERNEL P#31 OF25 stat=0000004E dyn =000OFFDS
env =000802B6 ipc =0BAS

(ms) S=EXAMPLE P#1 O0f8 stat=0000004E dyn =000OFFE4

env =000002B6 ipc =0BC10
VL Offsetf? 1
éD S=EXAMPLE P#1 Of1 00006520:00 00 00 00 00 00 00 080 ————————
ms) S=EXAMPLE P#1 0O#6 stat=00006542 dyn =000OFFCE
env =0008002B6 ipc =0C10
éVLg Offsetf? 1

! S=KERNEL P#31 Of6 QOOOFFE2:65 94 99 4E FE 12 9A CD e——N———-

1200301:08B ' 8—15

DEBUGGER Chapter 8

The call chain display shows a list of the procedure activations
currently on the stack. Each activation is listed with the p—code
coordinates of where the activated procedure will return, and four
values from the MSCW record, which are used to restore the

state of the caller upon leaving the procedure activation. For
more information on the MSCW, see the P-MACHINE
ARCHITECTURE chapter.

Displaying Registers

The following commands display the p—Machine registers and
related information. These commands are closely related to the
display options described in the next section.

LR The List Registers command displays the contents of the
following p—Machine registers: MP, SP, EREC, SEG,
IPC, CURTASK, READYQ. These registers may not be
modified. CURTASK is called TIB in the display.

LP The List P—code command displays the p—code that is
about to be executed.

LM The List MSCW command displays the Mark Stack
Control Word of the current procedure.

LS The List Stack command displays the top portion of the
stack, where expression evaluation is taking place. If
more than eight words of partial results are currently on
top of the stack, the command displays eight words and
indicates the number of words not displayed in square
brackets.

LA The List Address command displays the eight bytes at
the current address.

LE The List Every command is a combination of all the
other List options.

Here is an example of each list option, with a description of what
is displayed:

8—16 1200301:08B

DEBUGGER COMMANDS

(LR
(rg; mp =000OFFD8 sp =0000FFD4 erec=000002B6 seg =0000839C
tib =00000030 rdyq=00000030 ipc =0BAB ior =0000

The Register display shows eight p—Machine registers. MP, SP,
EREC, TIB and RDYQ are Pascal pointers within the Pascal
Data Area. SEG is an absolute handle to the segment base. IPC
is a byte offset from the beginning of the segment. IOR is a
signed integer value. SEG does not correspond directly to a
p—Machine register; it is actually a field of the SIB. TIB is the
CURTASK register.

LP :
§cd§ S=KERNEL P#31 0431 NFJ 11

The P—code display shows the current p—code in disassembled
form and the coordinates of the p—code.

LM
Emsg S=KERNEL P#31 O0#31 stat=0000EBBA dyn =0000OFFD8
env =000002B6 ipc =OBAB

The MSCW display shows the coordinates of the current p—code

and a representation of the current mark stack record. STAT,
DYN and ENV are pointers in the Pascal Data Area. IPC is a
byte offset from the beginning of the segment.

Ls
E.f,; [0] FEDO 0001 0002 0001

The Stack display shows the contents of the partial expression
results stored on the runtime stack. The rightmost word is the
top of the stack. Only the region of the stack between the SP
and MP registers is shown. If more than eight words are on the
stack, the number in brackets indicates how many words are not
shown.

(a) S=HEAPOPS P#3 O#23 2C1A: @B 05 53 43 41 4C 43 61 —-=SCALCa

1200301:08B) 8—17

DEBUGGER Chapter 8

The Address display shows the eight bytes of memory at the
current address.

(ms)

(rg) mp e
tib =00000030 rdyq=0000003¢ ipc =0BAB ior =0000

(o)
(st)
(cd)

S=KERNEL P#31 O#31 stat=00005BBA dyn =0000FFD8

env =000002B6 ipc =0BAB
=0000FFD8 sp =00BOFFD4 erec=000002B6 seg =000B839C

00000000:00 00 Q0 ©1 80 04 B0 01 ————————
] evea oooe

S=KERNEL P#31 O#31 NFJ "

The Every display prints all the options of the List command.

Configuring the Display Options

Normally, when the Debugger is entered it does so quietly,
printing only the right parenthesis prompt. You may configure
the display to show register and other information on entry to
the Debugger. Each option of the List command described in the
last section may be enabled or disabled within the display.

The following commands affect the display:

E

The Enable command is a two character command that
enables a given option in the display. The options are:
Register, P—code, MSCW, Stack, Address, and Every.

The Disable command is a two character command that
disables the indicated option in the display. The options
are: Register, P—code, MSCW, Stack, Address, and
Every.

Miscellaneous Commands

ML

MS

The Mem Lock command causes the Debugger segment
to be locked in memory. This will remain in effect until
the next Mem Swap command or Quit command.

The Mem Swap command causes the Debugger segment
to be swappable.

The Zseg command prints a formatted listing of the

1200301:08B

DEBUGGER COMMANDS

current environment. The format of its display is
described below.

1 The Interaction command calls a Debugger Interaction
Procedure, if you have supplied one to the Pascal
Runtime Library by using the Error _Handling unit.
This command allows you to expand the capabilities of
the Debugger by writing your own command routine.
See GENERAL OPERATIONS for more information on
using the Error _ Handling unit.

F The File command allows you to examine a portion of a
text file between two line numbers that you select.

This is a sample of the output generated by the Zseg command:

LONGOPS evec OO0002AA sib OOOOO47E

1 KERNEL erec 000002B6 sib 00000346 seg 0000839C res=1
2 LONGOPS erec OOOOO31E sib OOOOO47E seg 00000000 res=0
3 PASCALIO erec OOOQ02DE sib OOOOO3BE seg 00008340 res=0
4 OSUTIL erec OOOO02E6 sib 000003D6 seg 0000837C res=0

CONCURRE evec 0O00002A0 sib 00000466

1 KERNEL erec 000002B6 sib 00000346 seg 00000000 res=0
2 CONCURRE erec 00000316 sib 00000466 seg OOOQO4BEC res=0
3 EXTRAHEA erec 000002C8 sib 00000376 seg 00008378 res=0

FILEOPS evec 00000292 sib OO00044E

1 KERNEL erec 000002B6 sib 00000346 seg 0000839C res=1
2 FILEOPS erec OOOO030E sib OOOOO44E seg 00008380 res=0
3 PASCALIO erec OOOOO2DE sib OOOOO3BE seg 00008340 res=0
4 OSUTIL erec OOOO02E6 sib 0O00003D8 seg 0000837C res=0 '
B STRINGOP erec OOOOO2BE s8ib OOOOO3BE seg 00000000 res=0

press (space) to continue, (esc)> to abort

The Zseg command prints the segment reference list for each unit
in your program’s execution environment. Each unit in your
program’s environment is indicated by a line without a line
number, along with the location of the segment’s EVEC and SIB.
Following the header line for a segment, each segment referenced
in its EVEC is indicated. The number at the left of each line is
the local segment number of the referenced segment. For each
referenced segment, a pointer to its EREC and SIB, and a handle
to the segment itself is printed. The RES field at the end of the
line corresponds to the seg res field of its SIB, and indicates
whether or not the segment is swappable.

1200301:08B 8—-19

DEBUGGER Chapter 8

The Interaction command allows you to expand the capabilities
of the Debugger by calling a Debugger Interaction Procedure that
your program provides to the Debugger via the Error _ Handling
unit. Here is an example of a program that installs a Debugger
Interaction Procedure.

program dbgtest;
uses {3U UCSD Pascal 2:Errorhand|.CODE} error_handling;

const
mex_friend = 100;

type
friend rec = record
- neme: string;
age: integer;
end;
var
num friends: integer;

my Friends: array[l..max_friend] of friend_rec;
df? interactive;

procedure my_debug_command;
var
n: integer;
begin
write(df,’entry #7);
read!in(df,n);
writeln(df,n);
if (n > 0) and (n <= num_friends)

then
begin
writeln(df,’ name=’,my friends n}.n.me);
writeln(df,’ age=’,my _friends{n].age);
end; -
end;
begin
reset (df,’ .DBGTERM?) ;
num friends:= O;

set:pm_interactfve(my_debug_command);

end.

In order to make use of the Interaction command, you must have
the Performancé Monitor option enabled in your program. See
GENERAL OPERATIONS for information on using the Set
Options utility. After the call to SET_PM_INTERACTIVE,
the Debugger is augmented with a new command. Here is a
sample Debugger session using the above program:

Program Begin

Seg Fault on DBGTEST at Seg KERNEL P#31 0O#23
Seg Fault on ERRORHAN at Seg DBGTEST P#1 O#28
Seg Fault on DEBUGGER at Seg ERRORHAN P#6 O#26

8—-20 1200301:08B

DEBUGGER COMMANDS

Seg Fault on SEGDEBUG at Seg DEBUGGER P#2 O#1
Hit break#0 at S=DBGTEST g# 0#100
(I) entry #’1

name=bi | |

age=100

The output before the break point is Performance Monitor
output. See PERFORMANCE MONITOR, below, for more
information on the Performance Monitor.

The File command allows you to examine a portion of a text file.
This command is especially useful if you are using symbolic
debugging and have a compiled listing stored in a file on disk.
The File command allows you to examine the compiled listing in
a range of line numbers that you specify. Here is an example:

(F) Filename? PMTEST First Line#? 10 Last Line#? 12
name: string;
age: integer;
end;

Summary of Commands

AC Displays bytes at an absolute address.
AD Displays bytes in Pascal Data Area.
BL Lists current break points.

BR Removes a break point.

BS Sets a break point.

CD Chains down one activation record.

CL Lists the call chain.

CU Chains up one activation record.
D Disables a display option: A,E,M,P,R,S.
E Enables a display option: A,E,M,P,R,S.

1200301:08B 8—21

DEBUGGER Chapter 8

F Displays a portion of a text file.

1 Calls the Debugger Interaction Procedure.
LA Lists memory at the current address.

LE Lists every option.

LM Lists current activation record.

LP Lists current p—code instruction.

LR Lists p—Machine registers.
LS Lists the top of the evaluation stack.
ML Memlocks the Debugger.

MS Memswaps the Debugger.

P Disassembles p—code.

Q Quits the Debugger.

R Resumes program execution.

S Steps a single p—code.

T Steps a single p—code without entering procedures.

VE Displays external variables.

VG Displays global variables.

Vi Displays intermediate variables.
VL Displays local variables.
VP Displays variables of indicated procedure.

VS Displays global variables of indicated segment.

8—22 1200301:08B

DEBUGGER COMMANDS

Z Displays program environment.
+ Displays next eight bytes.

- Displays p.revious eight bytes.

/ Modifies memory in hexadecimal.

\ Modifies memory in ASCII.

Summary of Response Codes
(a) Memory address.

(b0) Break point 0.

(b1) Break point 1.

(b2) Break point 2.

(b3) Break point 3.
(

b4) Break point 4.

(c) Absolute memory address.
(cd) Code.
(e) External variable.

(8) Global variable.

(i) Intermediate variable.
1) Local variable.

(ms) MSCW record.

(r) Procedure variable.

(rg) Registers.

1200301:08B ’ ’ 8—-23

DEBUGGER Chapter 8

(st) Stack.

EXAMPLES OF DEBUGGER USAGE

Suppose the following program is to be debugged:

program not_debugged;
var

i,j,k: integer;

bi’82: booloan,
begin

r:= 1;

J:=1;

i f k<> 1

then writeln(’What’’s wrong?’);

end.

QUONONAWNK
NNNNNNRNNNN
0 b e e e
OrHHHOLQOQ
ONOWOOAHKHK

[y

First we enter the Debugger and set a break point at the
beginning of the if statement:

UCSD Pascal Debugger [1R9.9]
(BS) Set break #? @ Segname? NOTDEBUG
Procname or #? 1 Offset #? 6
(EP)
(R)

After setting the break point we enable p—code (EP) and resume
(R). When the program reaches offset 6, the Debugger break
point is encountered. We single—step twice:

Hit break #0 at S=NOTDEBUG P#l o#e

cd) S=NOTDEBUG P#1 SLDO 1
cd) S=NOTDEBUG P#1 0#7 SLDC 1
cd) S=NOTDEBUG P#1 o#8 NFJ 18

We see that our first single—step did a short load global 1.

NOTE: The allocation of memory offsets to variables is a bit
confusing. Normally, the offset line in the listing indicates the
word offset of a variable. However, if more than one variable is
allocated at once in a list, the variables are allocated in reverse
order. Thus, K has offset 1, J as offset 2, and I has offset 3.

8—24 1200301:08B

EXAMPLES OF DEBUGGER USAGE

The second single—step did a short load constant 1 onto the
stack. Now we are about to do an integer comparison and jump.
But this is where our error shows up, so we decide to look at
what is on the stack before doing this comparison:

?s-f,; [0] CB14 0001

We list the stack and then see two words on the stack. We
discover a 1 on top of the stack followed by a word of what
appears to be garbage. This leads us to suspect that K was not
initialized. Looking over the listing, we realize that this is the
case.

Symbolic Debugging Example

To use symbolic debugging, some part of a Pascal compilation
unit must be compiled with the {$D+} compiler—time option.
After this code has been generated, it is possible to reference
variables and procedures by name rather than offset. The
following example is a small Pascal program that has been
compiled with the $D+ option.

1 o] O:d 1 {3D+)}

2 2 1:d 1 program example;

3 2 1:d 1 var a,b,c:integer;

4 2 1:d 4

3 2 1:d 4 procedure set ¢ if _d;
6 2 2:d 1 var d:boolean =
7 2 2:0 (o] begin

8 2 2:1 [e] d:=adb;

9 2 2:1 B if d then

10 2 2:2 8 c:=a=b;

11 2 1:0 o} end;
12 2 1:0 [o)

13 2 1:0 o} begin

14 2 1:1 [} a:=0;

156 2 1:1 3 b:=6;

16 2 1:1 8 set ¢ if_d;

17 2 :0 (o) end. T~ 7

The following listing is an example of a debug session.

UCSD Pascal Debugger [1R0O.O]
(BS) Segname=EXAMPLE Procname or # = SETCIFD
R symbolic seg not in mem Line#?

1200301:08B 8—25

DEBUGGER Chapter 8

Hit breek#0 at S=EXAMPLE P=SETCIFD L#8
(BS) Segname:EXAMPLE Procname or # = SETCIFD
R irst#8 Lest#10 Line#? 9

)
Hit bresk#l at S=EXAMPLE P:SETCIFD L#9
§VL; Vername or offset#?
| S=EXAMPLE P=SETCIFD V—D
OOOOE7B2:00 00 94 48 BE E7 00 00 190C-H-

@)

The first time the Debugger is entered, the program example isn’t
in memory and hence the symbolic segment isn’t in memory.
However, a break point can still be set symbolically providing
you know on which line number to stop. For the second break
point, the symbolic segment is in memory; because of this, its
first and last line numbers are given.

Notice the variable:D was accessed symbolically, and its contents
are displayed.

If you try to access symbolically when the actual code segment is
in memory and its symbolic segment counterpart isn’t present,
the system displays the error message ’symbolic seg not in mem’.
Use the Zseg command in the symbolic Debugger to find out if
symbolic information is available for a particular segment.

PERFORMANCE MONITOR

If you are using the Debug Runtime version of the Pascal
Runtime Library, you have available to you a performance
monitor that can help you detect performance bottlenecks in your
program that are related to segment swapping.

You enable the performance monitor by using the Set Options
utility. (See GENERAL OPERATIONS.) The output generated
by the performance monitor is displayed on the same device that
you have enabled for the debugger.

Here is a sample of the performance monitor output:

Program Begi
Seg Fault on DBGTEST st Seg KERNEL P#31 O#23

8—26 1200301:08B

PERFORMANCE MONITOR

Seg Fault on ERRORHAN at Seg KERNEL P#1 O#28
Seg Fault on DEBUGGER at Seg KERNEL P#6 0#25
Seg Fault on SEGDEBUG at Seg KERNEL P#2 O#1

Information is displayed about each fault (segment fault, stack
fault or heap fault) that occurs while the performance monitor is
running. This information can help you to arrange the segments
of your program to avoid faulting. The performance monitor
also displays a message indicating when the program has begun
and when the program has ended.

The performance monitor can be controlled from the
Error _Handling unit. See GENERAL OPERATIONS for
details.

1200301:08B 8—-27

DEBUGGER ' Chapter 8

8—28 1200301:08B

9
MEMORY MANAGEMENT

OVERVIEW

This chapter describes the memory management activities
performed by the Runtime Support Library. The discussions in
this chapter are intended to give you enough of a basic
understanding of these memory management activities, so that
you should have little difficulty writing sophisticated programs
that utilize the Macintosh’s memory well. Also, the reasons for
some of the "DON'Ts" in regard to using the Macintosh Interface
should become clearer.

The chapter begins with a section containing a general discussion
of the machine’s memory configuration while a UCSD Pascal
program is running, and the overall memory management
strategies used by the Runtime Support Library.

03

Next, there is a section which describes the memory management
activities that take place when special events called "faults"
occur. Understanding the various kinds of faults and how the
Runtime Support Library responds to them is important due to
their adverse effect on a program’s performance.

The final section of this chapter is your guide to the composition
of the Runtime Support Library. It details the duties performed
by the major routines within the Runtime Support Library units.
This information should help you in understanding which
Runtime Support Library units will be brought into memory
when you use certain UCSD Pascal constructs.

1200301:09B 9-1

MEMORY MANAGEMENT Chapter 9

MEMORY ORGANIZATION

All of the memory management activities done by the Runtime
Support Library affect the Application Heap Zone and the stack.
Figure 9—1 shows the organization of the region of the
Macintosh’s memory which is dedicated to the Application Heap
Zone and the stack.

High rmermory

Stack

-
= +— 5F
k3 f A ‘ :E;] (] p) .
— ApplLimit
Faans] + HeapEnd
[rata

Internal Code

Ares Poal Region
. . conde seqrnent
CEAK) :

[Containg code
segrents | fres
blocks, and ather
allocated blocks

Fesouroes

4
¢ HeapTop
— : Y HespBase (AG)
rizc. allocated heap block —

KERMEL code -

External Code
p-Machine code Fool Region

(0n 3 S12K Macintosh,
thiz region iz mu
larger and iz e
roest code segrrents
rezide)

Low mermory

Figure 9—1. Application Heap Zone Organization:

92 1200301:09B

MEMORY ORGANIZATION

Organization At Program Startup

When a UCSD Pascal program executes, it runs under the control
of the p—Machine component of the Runtime Support Package.
A small bootstrap routine contained in one of the UCSD Pascal
program’s resources performs the initial setup of the Application
Heap Zone, then it reads in the p—Machine emulator (PME) from
the p—Machine file, and transfers control to it.

The primary memory configuration task done by this bootstrap
routine is the establishment of the Pascal Data Area. As
illustrated in Figure 9—1, this is a 64K region of memory
extending from the top of the stack (where the 68000 register A7
points) to the base of a nonrelocatable block in the Application
Heap Zone called the Pascal Heap Block. The establishment of
the Pascal Data Area involves the proper positioning of the
Pascal Heap Block. To create this nonrelocatable heap block, the
bootstrap program extends the Application Heap Zone.

The Pascal Data Area is the region of the Macintosh’s memory
that can be addressed using a UCSD Pascal pointer variable.
The PME keeps the 68000 register A6 pointed at the base of the
Pascal Heap Block. (As shown in Figure 9—1, this address is
given the name HeapBase.) Thus, UCSD Pascal pointer values
are actually 16—bit byte offsets off of A6. Because of the limited
range of these pointer values, the bootstrap program is careful
that the Pascal Data Area is not larger than 64K bytes.

On a Macintosh with 128K bytes of memory, the size of the
Pascal Data Area may be smaller than 64K bytes. This is
because the bootstrap program must also reserve enough space
below the Pascal Heap Block for the p—Machine code and the
KERNEL wunit from the Runtime Support Library.
Furthermore, if you have one of the Macintosh debuggers
supplied by Apple Computer (e.g. MacsBug) installed, there is a
substantial drain on the size of the Pascal Data Area. If you are
using a Macintosh with 512K bytes of memory, or the MacWorks
software on a Lisa, you will always end up with a 64K Pascal
Data Area.

1200301:09B ' 9—3

MEMORY MANAGEMENT Chapter 9

The Pascal Heap Block is where the UCSD Pascal intrinsics new
and varnew allocate variables. It is expanded as necessary to
accomodate the allocation requests of your program. It is also
possible for the Runtime Support Library to shrink the size of
Pascal Heap Block whenever there is surplus space in it created
by a call to the release, dispose, or vardispose intrinsics.
Throughout this chapter, the term "Pascal heap" refers to the
heap contained in the Pascal Heap Block.

The PME code and the KERNEL unit must always be present
and cannot move around in memory. Since it must be possible to
expand the size of the Pascal Heap Block when warranted by the
UCSD Pascal program’s demands for additional variables in the
Pascal heap, these position locked pieces of code are positioned
below the heap block. This way, they are out of the way of the
Pascal heap. They are not allocated inside the Pascal heap, since
that would "waste" approximately 16K of the 64K p—Machine
data space. (The p—Machine occupies approximately 12K;
KERNEL occupies almost 4K.)

Code Segments And Their Location

Any code file created by the UCSD Pascal compiler contains one
or more code segments. A code segment is a section of executable
code which is brought into memory as a whole unit. Every
"compilation unit" (a separately compiled UCSD Pascal
program or unit) results in a "principal segment" of code. In
addition, there may be "subsidiary segments," if the program or
unit contains segment routines.

A code segment may contain either p—code or native code (or
both). Each segment consists of a collection of routines
(procedures, functions, and so forth), together with descriptive
information, and (usually) a pool of constants. The information
embedded within a principal code segment includes references to
other compilation units (if any) that it utilizes. The code and
information in a segment are contiguous since the code segment is
the "unit of movement" for code. There may be up to 255
routines within a segment, numbered 1 through 255.

9—4 1200301:09B

MEMORY ORGANIZATION

At compile time, segments are assigned a name and a number.
The name is eight characters long. It is used by the Runtime
Support Library to resolve intersegment references during the
construction of a program’s execution environment, and during
the maintainance of code files using the Librarian utility. A
segment’s number is used to reference the segment at runtime.

The segments of a running program compete for space in memory
with each other. The segments also compete with the stack and
the Pascal heap for space in the Pascal Data Area. The principal
constraint (as far as code segments are concerned) is that both
the calling and called segment must be present in memory for an
intersegment call to succeed.)

When a code segment which is not in memory is referenced, it is
read from the disk on which it resides into a purgeable and
relocatable heap block within the Application Heap Zone. The
Runtime Support Library keeps a handle to the code segment
within its execution environment data structures. In terms of the
memory organization shown in Figure 9—1, code segments are
located in one of two regions of the Application Heap Zone: the
Internal Code Pool Region, or the External Code Pool Region. A
segment remains in memory until it is purged by the Macintosh
Memory Manager in order to satisfy an allocation request, or
until a fault occurs which causes the Runtime Support Library to
purge the block containing the segment.

On a Macintosh with 128K bytes of memory, the External Code
Pool Region is very small, and usually becomes clogged with
small nonpurgeable blocks. This means that most code segments
are located within the Internal Code Pool Region. On a
Macintosh with 512K bytes of memory, the situation is
dramatically different, since the External Code Pool Region is
quite large and most code segments will be located there.

1200301:09B 9-5

MEMORY MANAGEMENT Chapter 9

Tasks And Their Stacks

A task is a routine that is executed concurrently with other
routines. In UCSD Pascal, a task is known as a process. The
"main task" is the thread of execution that is the UCSD Pascal
program as it is started by the Runtime Support Package. The
program may have subsidiary tasks which it starts itself.

The stack used by the main task (your program) is the standard
Macintosh application program stack. As shown in Figure 9-1,
this stack grows downward in memory and can extend down to
where the Macintosh global variable ApplLimit points. As
described in Inside Macintosh, ApplLimit is the lower limit on the
stack, and HeapEnd marks the end of the Application Heap Zone.
The Runtime Support Library manages the settings of ApplLimit
and HeapEnd for you. In order to maximize your program’s
utilization of the Macintosh’s memory, ApplLimit and HeapEnd
are usually quite close to each other. This means that the shaded
unused memory region between ApplLimit and HeapEnd shown
in Figure 9—1 is usually nonexistent. Instead, most of this
unused memory will show up as unallocated blocks of memory
inside the Application Heap Zone.

During execution, each subsidiary task uses its own stack instead
of the main task stack. The stacks for all subsidiary tasks are
allocated within the Pascal heap. The size of a subsidiary task’s
stack is specified when it is started as a parameter to the start
intrinsic. As described in the P-MACHINE ARCHITECTURE
chapter, the p—Machine has a Task Information Block (TIB) for
each task that has been started. One field in a TIB is called
SPLOW, and is the lower limit on the stack pointer when that
task is being executed. For the main task, SPLOW always points
to the same memory location as the Macintosh ApplLimit
variable. The Macintosh’s "stack sniffer" (a vertical retrace
process that checks that the stack has not encroached on the
Application Heap Zone) is enabled while the main task is
executing, and is disabled whenever a subsidiary task is
executing.

9—6 1200301:09B

MEMORY ORGANIZATION

Another field of importance in a TIB is the TASKSLOP field.
This field specifies the amount of unused stack space that must
be available for use after a call to a procedure has occurred, and
any local variables have been allocated on the stack. For the
main task, this unused stack space is the "stack slop" area shown
in Figure 9—1.

TASKSLOP can be adjusted by a task via an entry point in the
Error _Handling unit. (See the GENERAL OPERATIONS
chapter.) For the main task, the default setting for TASKSLOP
is 2560 (5K bytes), and the minimum setting is 1024 (2K bytes).
For subsidiary tasks, the default and minimum settings are both
40 words. (Adjusting the main task’s stack slop setting can affect
the behavior of your program. This is described in the
MACINTOSH INTERFACE chapter.)

Because of the sizeable amount of stack space that they can
require, it often isn’t practical to call Macintosh Toolbox routines
or do I/O operations on disk files from within a subsidiary task.

Controlling Segment Residence

As mentioned previously, a code segment is loaded into a
purgeable and relocatable heap block within the Application
Heap Zone. Using the memlock and memswap intrinsics, your
program can control the residency of a code segment. (See The
UCSD Pascal Handbook for a discussion on how to use memlock
and memswap. The discussion here is aimed at explaining how
memlock and memswap are implemented on the Macintosh.)

The memlock instrinsic increments a residency counter for a
segment, and memswap decrements this same counter. The
transition of the counter’s value from zero to one causes the
Runtime Support Library to do a Macintosh Memory Manager
HNoPurge operation on the heap zone block containing the code
segment. As described in Inside Macintosh, this has the effect of
making the heap block nonpurgeable, but still moveable.
Conversely, a transition of the counter’s value from one to zero
results in an HPurge operation being done, which makes the heap
block purgeable again.

1200301:09B ' 9-7

MEMORY MANAGEMENT ’ Chapter 9

In addition to the controlling of code segment residency through
memlock and memswap, some additional residency controls are
applied by the PME when a Macintosh Interface routine written
in assembly language or an in—line procedure is called.

When handling a call to an assembly language routine, the PME
does a memlock operation on the calling segment, and if
necessary, an HLock operation on the heap block containing the
code segment in which the assembly language routine resides.
This insures that the calling code segment cannot be purged, and
that the code for the assembly language routine cannot be moved
during the execution of that routine. After the assembly
language routine returns to the PME, a memswap operation is
done on the calling segment, and an HUnLock operation is done
on the called segment.

Similiarly, when an in—line procedure is called (i.e. an RCALL
p—code is executed), the PME does a HLock operation on the
current code segment before executing the Macintosh trap
instruction in order to prevent it from being moved or purged.

Actually, the mechanism used by the PME for doing HLock and
HUnLock operations on code segments is more complicated than
described in the preceeding paragraphs. Because it is possible for
a call to a Macintosh Toolbox routine to result in the activation
of an "action procedure," situations can arise where HLock
operations on a given segment must be nested, and then undone
so that the segment remains locked until the initial Toolbox call
is completed. To implement this sort of thing, a counter used for
HLock /HUnLock operations is also kept for every segment. This
counter is used in much the same way as the other residency
counter used by memlock and memswap to control when HPurge
and HNoPurge operations should be done.

9-—-8 1200301:098B

MEMORY ORGANIZATION

FAULT HANDLING

When memory space is required by the stack or the Pascal heap,
or entry into a nonresident code segment is attempted, a fault is
issued. When this happens, a process called the Faulthandler
within the Runtime Support Library KERNEL unit is activated.
This Faulthandler process is started at bootstrap time. Most of
the time it is idle, since it does a wait operation on a Pascal
semaphore variable. When the semaphore is signaled (either by
the PME or another unit within the Runtime Support Library),
the Faulthandler immediately begins executing, since it is the
highest priority task.

In a special tricky maneuver, the Faulthandler switches from its
tiny subsidiary task stack to the main task stack. This allows
the Faulthandler to take advantage of the stack slop space (which
is guaranteed to be at least 2K bytes in size) for its operations.
This is one reason why the Error _Handling unit will not let you
set the stack slop below 2K bytes: there must be enough slop for
the Faulthandler to do its job. This arrangement of having the
Faulthandler use the main task’s stack slop area works especially
well, since it allows the Faulthandler to economize on space in its
own stack, without having to forgo the ability to have the screen
image preserved when it is marred by "disk swap boxes". (The
Faulthandler causes a disk swap box to appear on the screen
whenever it attempts to read in a code segment which resides on
a mounted disk that is not physically present in a disk drive.) It
is also convenient that the manner of disappearance for all disk
swap boxes (whether they appear due to segment faults or normal
disk file I/O operations) can be controlled through the
adjustment of the size of the main task stack slop area. (See the
discussion in the MACINTOSH INTERFACE chapter on how
setting the stack slop influences the disappearance of "disk swap
boxes.")

The PME detects two kinds of faults: segment faults and stack
faults. A segment fault occurs when a reference to a nonresident
segment happens. Stack faults occur when there isn’t enough
unused stack space between the stack pointer and the stack limit.
The Runtime Support Library causes a third type of fault, called
a heap fault, when there isn’t sufficient space in the Pascal Heap

1200301:09B 9-9

MEMORY MANAGEMENT Chaptér 9

Block to satisfy an allocation request in the Pascal heap.
The Memory Collector

An important part of the memory management software within
the Runtime Support Library is the Application Heap Zone "grow
zone" function called the Memory Collector. (See Inside
Macintosh for a complete introduction to grow zone functions.)
Like any grow zone function, the Memory Collector can be
activated any time the Macintosh Memory Manager is called
upon to allocate some memory in the Application Heap Zone.
The Faulthandler also calls the Memory Collector directly prior
to making a call to the Macintosh Memory Manager. This is
done primarily to insure that the Application Heap Zone is
always extended as far as possible toward the stack, and that
heap blocks containing code segments are purged only when there
is no other possible means of obtaining the required memory.
(The normal inclination of the Macintosh Memory Manager is to
purge things from the heap zone first, then expand the zone
toward the stack if necessary.)

Through a set of variables in the KERNEL’s data, the Memory
Collector can tell what kind of fault the Faulthandler is
attempting to handle, and it tailors its actions to suit that
particular situation. First the Memory Collector calculates the
amount of unused space in the main task stack and in the Pascal
heap. If the handling of a heap fault is currently in progress, the
Memory Collector tries to gain the needed space by expanding
the Application Heap Zone. (In terms of Figure 9—1, this is done
by repositioning ApplLimit and HeapEnd higher in memory.)
When a stack fault is in progress, the Memory Collector takes
away any excess space in the Pascal heap by shrinking the Pascal
Heap Block. When neither a stack or heap fault is being handled
(i.e. when a segment fault occurs), the needed bytes of space are
collected from both the stack and the Pascal heap in proportion
to the amount of unused space in each.

9—10 1200301:09B

FAULT HANDLING

Effect On Other Heap Zones

As described in the Memory Manager documentation in Inside
Macintosh, you can set aside a heap block within the Application
Heap Zone and initialize it as a heap zone in its own right. You
can then establish such a heap zone as the "current" zone, and
allocate heap blocks within that zone.

Creating additional heap zones in this fashion can be done
without interfering with the activities of the Faulthandler. In
fact, establishing such a zone is one way of preventing the
Faulthandler from utilizing a region of memory for code
segments, or anything else. This is because the Faulthandler
makes the current zone the Application Heap Zone prior to
making any Macintosh Memory Manager requests. After it has
handled the fault, the Faulthandler restores the setting of the
current zone to what it was when it started its activities.

Segment Faults

Segment faults are handled by first calling the Memory Collector,
then doing a NewHandle or ReAllocHandle Memory Manager
request. (ReAllocHandle is used to bring in a code segment that
was previously faulted in and subsequently purged.) Since the
Memory Collector only collects space by giving up space in the
Pascal heap or the stack and doesn’t actually purge any heap
blocks from the Application Heap Zone, the Faulthandler relies
on the Macintosh Memory Manager to purge whatever purgeable
heap blocks it has to in order to find enough space for the
segment being faulted in. The Faulthandler does a memlock
operation on the currently executing segment to prevent it from
being purged by the Macintosh Memory Manager. This is
necessary because the p—code instruction on which the fault
occurred must be re—executed by the PME. A fatal runtime
error is reported if it isn’t possible to free up enough contiguous
memory for the code segment, or if an I/O error is detected when
the attempt is made to read the segment into memory.

1200301:09B ’ 9—-11

MEMORY MANAGEMENT Chapter 9

Heap Faults

The handling of a heap fault begins with an attempt to expand
the Pascal Heap Block. This is done by calling the Macintosh
Memory Manager ResrvMem and SetPtrSize routines. If this
initial attempt fails, the Memory Collector is given a chance to
take space away from the stack (through an expansion of the
Application Heap Zone), and the enlargement of the Pascal Heap
Block is reattempted. If this second attempt fails, the fatal
runtime error "Heap Expansion Error" is reported.

It is possible to get a heap expansion error even in situations
where there is plenty of space available to the Application Heap
Zone. This happens when there is a locked or nonrelocatable
heap block in the way of the expansion of the Pascal Heap Block.
This is why it is a bad idea to allocate nonrelocatable heap blocks
or lock relocatable blocks in a program which intends to allocate
variables in the Pascal heap.

Stack Faults

A stack fault within a subsidiary task results in a fatal runtime
error, since the stack for a subsidiary task cannot be expanded.
A stack fault within the main task occurs when the value (SP —
TASK _SLOP) is less than SPLOW (ApplLimit). Stack faults
are handled as follows. First the desired new setting for
ApplLimit is calculated and compared to HeapEnd. If this new
ApplLimit setting (termed "NewApplLimit" in the remainder of
this discussion) is greater than HeapEnd, then all the
Faulthandler has to do is set ApplLimit to the value
NewApplLimit. Otherwise, the Faulthandler must attempt to
shrink the Application Heap Zone before setting ApplLimit to its
new value.

The shrinking of the Application Heap Zone is the most elaborate
task done by the Faulthandler. First the Faulthandler scans the
blocks in the zone above the Pascal Heap Block. During this
scan, it calculates the maximum amount of space that it can turn
into stack space, and records the location of the highest
immovable block in the zone. If the highest immovable block is

9—-12 1200301:09B

FAULT HANDLING

the Pascal Heap Block, the Faulthandler calls the Memory
Collector in the hope that the amount of space it can reclaim
from the Pascal Heap Block will result in enough stack space once
all the heap blocks are compacted up against the Pascal Heap
Block. (Basically, this strategy results in code segments being
purged only when absolutely necessary, but at the possible
expense of additional heap faults.)

Next, the Faulthandler begins compacting the Application Heap
Zone. If the Memory Collector wasn’t called, or if it was unable
to free up enough space, the Faulthandler purges any blocks that
it can during the compaction process, until it judges that enough
space has been freed. Throughout the compaction process, any
nonpurgeable blocks are moved downward in memory against the
highest immovable block in the zone, and adjacent free blocks are
combined.

After the compaction and purging process is complete, a new
value for HeapEnd is established. If this lowest possible HeapEnd
is still above NewApplLimit, a stack overflow runtime error is
reported. Otherwise, ApplLimit is set so as to give the stack the
space that it needs, plus half of any surplus space reclaimed from
the Application Heap Zone.

The compaction and purging process described here does not
affect the contents of the External Code Pool Region. The
Macintosh Memory Manager does all of the management of that
region of the Application Heap Zone.

RUNTIME SUPPORT LIBRARY

The following tables identify the Runtime Support Library
routines that the Pascal compiler generates calls to. The first
table summarizes the routines in each unit. The second table is
indexed by the names of the UCSD Pascal intrinsics that result in
calls to Runtime Support Library routines.

1200301:09B 9—-13

MEMORY MANAGEMENT

Chapter 9

Unit Proc # Proc Name Pascal Construct
CONCURRE 3 SStartP start

4 SStopP < exit code>

6 SExitProcess exit
EXTRAHEA 2 . SDispose dispose

3 SVarNew varnew

4 SMemLock memlock

5 SMemAvail memavail

6 SVarAvail varavail

7 SMemSwap memswap
EXTRAIO 2 FBlockIO blockread,blockwrite
FILEOPS 2 FOpen reset,rewrite

3 FClose close, <exit code>

4 Flnit <entry code>

5 FSeek seek

8 FReset reset
HEAPOPS 2 SMark mark

3 SRelease release

4 SNew new
KERNEL 15 Moveleft moveleft

16 MoveRight moveright

17 SExit exit

20 Time time

21 Fillchar fillchar

22 Scan scan

23 I0Check < after I/O operation>

29 SAttach attach

30 1OResult ioresult

32 PwrOfTen pwroften

35 Halt halt

37 Idsearch idsearch

38 Treesearch treesearch
LONGOPS 2 Decops ~ <long integer

arithmetic>,
trunc,str

9—14 1200301:09B

OSUTIL

PASCALIO

REALOPS

STRINGOPS

1200301:09B

* RUNTIME SUPPORT LIBRARY

FReadDec
FWriteDec

IntToStr
Int2ToStr
GotIntStr
Upcase

FGet

FPut

FEof

FEoln
FReadInt
FWritelnt
FReadChar
FReadString
FWriteString
FWriteBytes
FReadln
FWriteln
FWriteChar
FPage
RdInt2
Wrlnt2
ReadBytes
WriteBytes

ReadTextChar

Sin

Cos

Log

Ln

ATan

Exp

Sqrt
FReadReal
FWriteReal

SConcat
Slnsert
SCopy
SDelete
SPos

read,readln
write,writeln

str,PASCALIO
str,PASCALIO
PASCALIO
PASCALIO,EXTRAHEA

get
put

eof

eoln
read,readln
write,writeln
read,readln
read,readln
write,writeln
write,writeln
readin
writeln
write,writeln
page
read,readln
write,writeln
EXTRAIO
EXTRAIO
REALOPS

sin
cos
log
In
atan
exp

X
sart
read,readln
write,writeln

concat
insert

:

delete

E

MEMORY MANAGEMENT

Chapter 9

Intrinsic Param Type Routine Called
arctan REALOPS,6
atan REALOPS,6
attach KERNEL,29
blockread EXTRAIO,2
blockwrite EXTRAIO,2
close FILEOPS,3
concat STRINGOPS,2
copy STRINGOPS,4
cos REALOPS,3
delete STRINGOPS,5
dispose EXTRAHEA,2
eof PASCALIO,5
eoln - PASCALIO,6
exit <proc/func> KERNEL,17
exit program KERNEL,17
exit process CONCURRE,6
exp REALOPS,7
fillchar KERNEL,21
get PASCALIO,3
halt KERNEL,35
idsearch KERNEL,37
insert STRINGOPS,3
ioresult KERNEL,30
In REALOPS,5
log REALOPS,4
mark HEAPOPS,2
memavail EXTRAHEA,5
memlock EXTRAHEA 4
memswap EXTRAHEA,7
moveleft KERNEL,15
moveright KERNEL,16
new HEAPOPS 4
page PASCALIO,16
pos STRINGOPS,6
put PASCALIO,4
pwroften KERNEL,32
read char PASCALIO,9
read integer PASCALIO,7
read integer2 PASCALIO,17
read Long Integer =~ LONGOPS,3

1200301:09B

<entry code>

1200301:09B

PA of char

real

string

char

Integer

integer2
Long Integer
PA of char
real

string
(named)
(nameless)

integer

- integer2

Long Integer

Long Integer

char

integer

integer2
PA of char

real
string
char

integer

integer2
PA of char

real

string

RUNTIME SUPPORT LIBRARY

PASCALIO,10
REALOPS,9
PASCALIO, 10
PASCALIO,13
PASCALIO,9
PASCALIO,?
PASCALIO,17
LONGOPS.3
PASCALIO,10
REALOPS,9
PASCALIO,10
HEAPOPS,3
FILEOPS,2
FILEOPS,6
FILEOPS,2
KERNEL,22
FILEOPS,5
REALOPS, 2
REALOPS,8
CONCURRE,3
OSUTIL,3
OSUTIL 4
LONGOPS,2
KERNEL,20
KERNEL,38
LONGOPS,2
EXTRAHEA,6
EXTRAHEA,3
PASCALIO, 15
PASCALIO,8
PASCALIO,18
PASCALIO,12
REALOPS, 10
PASCALIO,11
PASCALIO, 14
PASCALIO, 15
PASCALIO, 8
PASCALIO,18
PASCALIO,12
REALOPS, 10
PASCALIO,11
KERNEL,23
FILEOPS, 4

9—-1

-~

MEMORY MANAGEMENT

<exit code> CONCURRE 4

< exit code > FILEOPS,3

<Long integer arith> LONGOPS,2
9-—-18

Chapter 9

1200301:09B

10
P—-MACHINE ARCHITECTURE

OVERVIEW

Object code produced by the UCSD Pascal compiler is p—code
rather than 68000 machine ("native") code. This p—code is
object code for the p—Machine, which is an idealized machine.
This chapter describes the p—Machine in general and the p—codes
that are produced by the compiler. The information contained in
this chapter is most useful when you are debugging a UCSD
Pascal program.

p—Code is designed to be compact, so that programs in p—code
are much shorter than equivalent programs in native code.
p—Code is also designed to be easily generated by a compiler.

Emulative Execution

The "p" in p—code and p—Machine stands for pseudo. The
p—Machine emulator program is written in 68000 native code for
the Macintosh. It is responsible for executing p—code instructions
and interfacing with the Macintosh operating system to obtain
system services. The p—Machine emulator is also referred to as

the PME.

At runtime, the user’s program (or a portion of it) is in main
memory. The PME fetches each p—code instruction in sequence,
and performs the appropriate action.

1200301:10B 10-1

P—-MACHINE ARCHITECTURE Chapter 10

STACK ENVIRONMENT

UCSD Pascal programs manipulate data in the stack and the
heap. The stack is used for static variables, bookkeeping
information about procedure and function calls, and evaluation of
expressions. The heap is used for dynamic variables, including
the structures that describe a program’s environment. It is also
used to store private stacks for subsidiary processes and to store
code segments that are position—locked.

The stack is an integral part of the p—Machine architecture.
Most p—code instructions affect the stack in one way or another.
Each time a procedure is called, an activation record is created on
the stack which contains some housekeeping information about
the calling environment. Space for the procedure’s variables is
allocated along with some extra space for expression evaluation.

The heap is also an integral part of the system, but is primarily
supported by the Runtime Support Library, rather than the
p—Machine. The heap contains global data for programs and
units (data not declared inside of a named procedure). The
global data is allocated when a program is started and remains in

memory until the program is terminated. The heap also contains
SIBs, ERECs, and EVECs.

10—2) 1200301:10B

STACK ENVIRONMENT

Activation Records

An activation record is created for each invocation of an active
routine (procedure or function). Figure 10—1 shows the structure
of an activation record.

Tovws address

ternporary expression

results

MESTAT
l MEDYN
MECY ¢ MSIPC
i MSENY
MSPROC

local variables and ternpararies
(DATASIZE words)

parameters

funtion result

ternporary expression results

MSCW of caller

high address

Figure 10—1. Activation Record.

1200301:10B 10-3

P—-MACHINE ARCHITECTURE ~ Chapter 10

The parts of an activation record are:

1.

Mark Stack Control Word (MSCW). This area contains five
words of housekeeping information:

a. MSSTAT — pointer to the activation record of the lexical
parent.

b. MSDYN — pointer to the activation record of the caller.

c. MSIPC — segment relative byte pointer to point of call in
the caller.

d. MSENV — EREC pointer of the caller.

e. MSPROC — procedure number of caller.

Local and temporary variables. This area is DATA _SIZE
words long. The DATA _ SIZE value is taken from the code
segment that contains the procedure being called. See the

CODE FILE FORMAT section for more information.

Parameters. This area (which may be empty) contains:

sa. Addresses — for VAR parameters, and record and array

value parameters.

‘b. Values — for other value parameters.

. .Function value. This area is present only for functions, and

‘is the size of the function result (one, two, or four words).

CODE FILE FORMAT

A code file is composed of a segment dictionary and at least one

code segment.

The first block of the code file contains the first record of that

file’s segment dictionary. A segment dictionary consists of a
linked list of dictionary records; if the dictionary is longer than
one record, subsequent records are embedded in the code file.

10—4 1200301:10B

CODE FILE FORMAT

These are each one block long, and are located between code
segments.

A single dictionary record can deéscribe up to 16 distinct
segments. The information describing a segment is contained in
six arrays; the information describing a segment is found by using
a single index value to select a component from each of these
arrays. Entries in the segment dictionary describe only segments
whose code bodies are included in the code file.

The Segment Dictionary

The following Pascal declarations describe a segment dictionary
record:

CONST Max_Dic_Seg = 15; {maximum seg dict record entry}
TYPE Seg_Dic_Range = 0. .Max_Dic_Seg; §range for seqg dict entries}
Segment_Name = PACKED ARRAY [0..7] OF CHAR; §{segment name}

{segment types}

Seg_Type = (No_Segq, empty dictionary entry}
Prog_Seg, program outer segment¥
Unit_Seg, unit outer segment}
Proc_Seg, program or unit}

Seprt_Seg); §native code segment}

f{machine typesi}
M_Type = (M_Psuedo, M_6809, M_PDOP_11, M_80890, M_Z_89,
M_GA_440, M_6502, M_68090, M_9909,
M_8086, M_Z8000, M_68000, M_HP87);

fp-machine versions}
Version = (Unknown, 11, 11_1, 11l, IV, V, VI, VIi);

{segment dictionary record}
Seg_Dict = RECORD
Disk_info:
ARRAY [Seg_Dic_Range] OF §disk info entries}
RECORD

Code_Addr: integer; §segmeni starting block}
Code_Leng: integer; words in segment
END §of RECORD};
Seg_Name:
ARRAY [Seg_Dic_Range] OF Segment_Name;
Seg_Misc:
ARRAY [Seg_Dic_Range] OF imisc entries}
PACKED RECORD
Seg_Type: Seg_Types; segment type} -
Filler: 0..31; reserved for future use}
Has_Link_Info: boolean; need to be linked?}

Relocatable: boolean; segment relocatable?}
END fof PACKED RECORD};
Seg_Text:
ARRAY [Seg_Dic_Range] OF integer; finterface text}
Seg_Info:

ARRAY [Seg_Dic_Range] OF §segment information entries}
PACKED RECORD
Seg_Num: 9..255; $1ocol segment number}

1200301:10B 10-5

P—-MACHINE ARCHITECTURE Chapter 10

machine type}
reserved for future use}
p-Machine version}

Filler: 0..1

Major_Version: Versions;
END !0(PACKED RECORDY;

Seg_Famly:
ARRAY fSeQQDic;Ronge] OF $segment family entries}

RECORD

CASE Seg_Types OF

Unit_Seg, Prog_Seg:
(Data_Size: integer; zdoto size}

M_Type: M_Types;

Seg _Refs: integer; segments in comp uni t}
Max_Seg_Num: integer; }num segments in file}
Text_Size: integer); # of biks interface text}
Seprt_Seqg, Proc_Seq:
(Prog_Name: Segment_Name): jhost unit name}
END }of Seg_Famiy},

Next_Dict: integer; tblock num of next dictionary record}
Filler: ARRAY [1..2] OF integer;

Checksum: integer; see QuickStart in Chapter 6
Ped_Block: integer; see QuickStart in Chapter 6
Ped_Blk_Count: integer; see QuickStart in Chapter 6
Par{_Number: PACKED ARRAY [©8..7] of ©..15;

Copy Note: strung[77] icopyrught not»cei
_Byte_Sex: integer; §machine sex (Sex = 1)}
END fof SEG DICTY};

DISK _INFO contains information about the segment’s location
within the file. Segment code always starts on a block boundary.
CODE _ ADDR is the number of the block where the segment
code starts (relative to the start of the code file). CODE_LENG
is the number of 16—bit words in the segment. This size includes
the relocation list but doesn’t include the segment reference list.
All unused entries in this array are zero.

SEG_ NAME contains the first eight characters of the program,
unit, segment, or assembly procedure name. Unused entries are
filled with blanks.

SEG MISC contains miscellaneous information about the
segment. SEG TYPE indicates the type of segment.
PROG SEG and UNIT SEG are outer segments of programs
and units, respectively. PROC SEG is a segment routine within
either a unit or a program.

SEG TEXT contains the starting block of the segments
INTERFACE text section, relative to the start of the code file.
The INTERFACE text section can appear anywhere within the
code file that contains the code segment it describes. The
SEG _ TEXT array entry, in conjunction with the TEXT _ SIZE
field in the SEG _FAMLY record, indicates the address and

10-6 1200301:10B

CODE FILE FORMAT

length of the INTERFACE section in blocks. The INTERFACE
text section always starts on a block boundary. Only segments
with a SEG__TYPE of UNIT SEG may have INTERFACE

sections. All other segments and unused entries are zero—filled.

SEG _INFO contains further information about the segment.
SEG _NUM is the segment number. M_ TYPE tells what kind
of object code is in the segment. If there is any native code in the
segment, then M_ TYPE will have one of the processor—specific
M_TYPE’s. If the segment consists exclusively of p——code, then
its M_TYPE is M_PSUEDO. MAJOR _ VERSION gives the
version of the p—Machine on which the code file is intended to
run.

SEG_FAMLY contains information about the code segment’s
compilation unit. The information contained in this array
depends on whether SEG_TYPES indicates a principal or a
subsidiary segment.

If the segment is a subsidiary segment, then SEG_FAMLY
contains the first eight 51gn1f1cant characters of the parent
compilation unit’s name, stored in PROG _ NAME.

If the segment is a principal segment, then the information in
SEG _ FAMLY consists of four fields:

e DATA_SIZE is the number of words in this segment’s base
data segment. The variables of principal segments are
referenced from any location, including their own outer
routine bodies, via global loads and stores (rather than local
operations). Therefore, the DATA _SIZE field associated
with the body of a code segment is 0, so that no superfluous
memory will be allocated in an unused local data area.

1200301:10B 10-7

P-MACHINE ARCHITECTURE Chapter 10

e SEG _REFS is the size in words of the segment reference list
for this segment.

e MAX SEG_NUM is the total number of segment numbers
assigned to this compilation unit. MAX_SEG_NUM
includes all segments with assigned numbers, regardless of
whether the segment body is contained in this file or not.

e TEXT _SIZE is the number of blocks of INTERFACE text
within the compilation unit. TEXT _‘SIZE is used in
conjunction with the SEG _TEXT array to specify the
INTERFACE text for a compilation unit of type
UNIT _SEG; it is zero—filled for all other compilation unit

types.

If the segment is unused (SEG_TYPES = NO _SEG), then
SEG _FAMLY is zero—filled.

NEXT _DICT contains the block number of the next segment
dictionary record, relative to the start of the code file. In the last
record of the segment dictionary, NEXT _DICT is zero.

PART NUM contains the SofTech Microsystems internal part
number for the file.

FILLER is reserved, for future use and should always be
zero—{illed.

COPY _NOTE is reserved for a copyright message, which can be
created with either the Librarian utility or via a compiler
_directive.

DICT _BYTE _SEX indicates the byte sex of the segment
dictionary. It is a full word that contains the value 1, with the
same byte sex as the rest of the dictionary record. On the
Macmtosh the segment dictionary and all code segments are
most——sxgmficant byte—{first sex.

10—8 1200301:10B

CODE FILE FORMAT

Code Segment Structure

The beginning (low address) of a code segment contains the
following information about the segment:

e segment—relative pointer to the procedure dictionary
e segment—relative pointer to the relocation list

e the 8—character name of the segment (four words)

e Dbyte sex indicator

e segment—relative pointer to the constant pool

e real size indicator

e part number (two words)

Figure 10—2 illustrates a code segment as it would be loaded into
memory.

1200301:10B 10-9

P—MACHINE ARCHITECTURE Chapter 10

v address

proc. dictionary pointer

relocation st pointer

2 char

sy ribolic

zeqrient | narme of segrrent

header) by b zes indicator word = 1

constant poal pointer

real number size

part nurnber

P,
code object code
for procedurs 2

constant pool

pointer to procedure M

proc.

dict. pointer to procedurs 2

pointer to procedure

nurnber of procedures +———]

relocation list

high addreszs

Figure 10—2. Executable Code Segment Format.

10-10 1200301:10B

CODE FILE FORMAT

The Routine Dictionary

The first word in a code segment points to word 0 of the
segment’s routine dictionary (also called the procedure
dictionary). The routine dictionary is a list of pointers to the
code for each routine in the segment. Each routine dictionary
pointer is a segment—relative word pointer.

Routines within a segment are numbered 1 through 255. A
routine’s number is a negative index into the routine dictionary;
the n’th word in the dictionary contains a pointer to the code for
routine n.

The first word (word 0) of the dictionary contains the number of
routines in the segment.

Routine Code

The code of a routine consists of two words: DATA_ SIZE and
EXIT _IC, followed by the executable object code. The object
code may be entirely p—code, entirely native code, or a mixture
of the two.

DATA _SIZE is the number of words of local data space that
must be allocated when the procedure is called. DATA_SIZE
doesn’t include parameters; the routine’s parameters are assumed
to already be on the stack. The first executable instruction starts
at the word immediately following the DATA _SIZE word. If
the first executable instruction is native code, DATA _SIZE is
negative. No local data space is allocated for assembly language
procedures.

If this first instruction is a p—code instruction, then EXIT _IC is
a segment—relative byte pointer to the code that must be
executed when the procedure is exited. Otherwise, EXIT IC is
undefined at runtime.

1200301:10B 10—-11

P-MACHINE ARCHITECTURE Chapter 10

The Constant Pool/Real Constants

Multi—word constants are stored together in a single constant
pool for the entire segment. The constant pool begins
immediately after the last body of procedure code in the segment.

The location of the constant pool is contained in the constant
pool pointer, a segment—relative word pointer that immediately
follows the byte sex indicator word at the beginning of the
segment; it points to the low address of the constant pool. If the
constant pool pointer is equal to 0, the segment doesn’t contain a
constant pool.

Constants are referenced by word offsets relative to the beginning
(low address) of the constant pool.

The constant pool is divided into two subpools: the real pool and
the main pool.

The first word-of the constant pool points to the beginning of the
real pool. This is a word pointer relative to the start of the
constant pool; if there are no real constants in the code segment,
this word will be 0. The first word of the real pool contains the
number of real constants in the real pool.

Figure 10—3 shows the format of a constant pool with an
embedded real subpool.

Real constants are compiled to a processor—independent
("canonical") format and are converted, at segment load time,
into a processor—specific internal format.

The real size at compilation time is embedded in every code
segment (even though it may not reference any reals). The
REAL _SIZE word at the base of the segment contains this
value. :

10—-12 1200301:10B

CODE FILE FORMAT

Towr address

real subpoal pointer

teal subponl

high address

Figure 10—3. Constant Pool

A real constant is represented by a four to six word record. The
first word contains a signed integer representing the exponent
value. The following words contain the mantissa digits. A
mantissa word representing significant mantissa digits contains
an integer whose absolute value is between 0 and 9999; its value
corresponds to four mantissa digits. The first mantissa word is
signed and, thus, contains the mantissa sign. The second and
succeeding mantissa word may contain a negative value; in this
case, it doesn’t contain any significant digits and is disregarded
when constructing the internal representation of the real
constant. It serves as a terminator word for the constant
conversion routines. The decimal point is defined to lie to the
right of the four digits in the last valid (used) mantissa word.
The digits in the last mantissa word are left—justified. For
example, if the real value is 1.1, the first mantissa word contains
1100 decimal (or 044C hexadecimal).

Real constants are converted to native machine format when a
code segment is loaded into memory.

1200301:10B 10—-13

P—-MACHINE ARCHITECTURE Chapter 10

The Relocation List

The last (high address) body of information in a code segment is
the relocation list. The second pointer at the beginning of the
code segment points to the last (highest address) word in the
relocation list. This pointer is a segment relative word pointer; if
there is no relocation list, it is equal to 0.

The relocation list contains all the information necessary to fix
any absolute addresses used by code within the segment,
whenever the segment is loaded or moved in memory. Such
absolute addresses are needed only by native code. Segments
containing exclusively p—code are completely position—
independent; no relocation list is needed.

A relocation list consists of 0 or more relocation sublists. Each
sublist contains code offsets for objects that must be relocated,
and specifies the type of relocation that must be done. Sublists
can occur in any order, and more than one sublist can have the
same type of relocation.

The following code fragment shows the format of the heading of
a sublist:

Loc_Types=(Reloc_End, §signals end of entire relocation tist}
Seg_Rel, relative to address of base of this segment}

Base_Rel , relative to data segment given in DATASEGNUM}
Interp_Rel,jrelative to PME's interp—relative table}
Proc_Rel); jrelative to address of 1st instruction in proci

List_Header=PACKED RECORD
List_Size: integer; fnumber of pointers in sublist}
Datg_Seg_Num: ©..255; ilocal segment number for Base_Rel}
€ geloc_Type: Loc_Types; jrelocation type of sublist entries}
ND;

Each sublist contains a LIST _HEADER and 0 or more segment
relative byte pointers to the objects which must be relocated.
The RELOC _ TYPE field in the LIST _HEADER defines what

kind of relocation will be applied to all objects designated by the
sublist. -

10—-14 : 1200301:10B

CODE FILE FORMAT

The DATA _SEG _NUM field in the LIST HEADER is used
only in sublists with a RELOC TYPE of BASE REL, and in
all other cases should be zeroed. It specifies the local segment
number of the data segment to which all the sublist’s pointers are
relative.

The LIST _SIZE field in the LIST _HEADER contains the

number of pointers in the sublist.
Figure 10—4 illustrates a relocation list with multiple sublists.

The relocation list is intended to be used from high address down
to low address. Each sublist in turn is processed from high to
low until a sublist with a relocation type of Reloc End is
encountered. The DATA SEG NUM should be 0 for the
terminating entry; LIST _SIZE is left out for the terminating
entry.

lovws address

datasegnurn=0

creloctype

relocation

. X lizt pointer
relocation pointers F

relocation [
sublist —
list size
reloctype | dataseqrum

high address

Figure 10—4. Relocation List.

1200301:10B 10—-15

P-MACHINE ARCHITECTURE Chapter 10

Segment Reference List

In the p—Machine, each code segment is associated at runtime
with an "environment vector" that defines the mapping of each
segment number to the segment or unit that it designates. Each
compilation unit has its own independent (that is, local) series of
segment numbers, and its own environment vector. In this way,
a particular unit may be referenced by more than one unit, and
each unit that references it may use a different segment number.

When a compilation unit references one or more other
compilation units, the principal segment of the compilation
contains a segment reference list. This list defines the connection
between the segment numbers that appear in the object code
(they are created by the compiler), and the names of the units to
which they refer. Only principal segments contain segment
reference lists.

The segment reference list, when present, is located above the
relocation list {it grows toward higher memory addresses). The
list is used by the operating system at associate time. It doesn’t
occupy any space in memory during the program’s execution
(since the segment length field doesn’t include it).

The segment reference list associates the name of each
compilation unit (which doesn’t change) with the number by
which that compilation unit is referenced.

The following Pascal declaration describes a record in the
segment reference list:

Seg_Rec= PACKED RECORD
Seg_Name: PACKED ARRAY [@..7] OF CHAR; freferenced segment name}
Seg_Num: PACKED ARRAY [@. 1] of ©..255 @ is SEG_ NUM 1 is unused}
END;

The SEG _REFS entry in the segment dictionary (described
below) contains the number of words in the segment reference
list. The CODE_LENG field in the segment dictionary can be
used as a segment relative word pointer to the start of the
segment reference list. The segment reference list consists of one

10-16 : 1200301:10B

CODE FILE FORMAT

or more SEG _RECs, starting directly above the relocation lists
(or procedure dictionary) and continuing towards higher memory
addresses. A SEG REC consists of SEG_NAME, which
contains the name of the segment; SEG _ NUM][0], which contains
the number by which the segment is referenced within this
current code segment; and SET _ NUM][1], a filler byte.

The segment reference list is terminated by a SEG_ REC with a
blank—filled SEG_ NAME and SEG_ NUM of 0.

SEG RECs with a SEG NAME of *** are generated so that
the Runtime Support Library can execute the initialization and
termination code sections of a unit.

When the initialization/termination section of a unit (which is
procedure 1) is compiled, the following instruction is emitted
between the initialization and termination parts:

CXG (***’s Seg Num)>, 1

where CXG is the p—code representation of a global procedure
call. A local segment number is reserved for the "***" segment
reference, and the Runtime Support Library creates a linear list
that links together the units of a program that require
initialization. At the end of this list is the outer body of the
main program. The Runtime Support Library invokes the
program by calling the first initialization code on this list, which
calls the next, and so forth up to the body of the main program.
When the main program terminates, the calling chain is
"popped," and termination sections are executed in the reverse
order.

1200301:10B 10—-17

P—-MACHINE ARCHITECTURE - Chapter 10

CODE SEGMENT ENVIRONMENT

At program startup time, the Runtime Support Library creates a
runtime "environment" that describes each code segment and its
references to other code segments. A segment’s runtime
environment is defined by three data structures: the environment
record (EREC), the environment vector (EVEC), and the segment
information block (SIB).

The Segment Information Block (SIB)

A segment information block (SIB) is a record that contains
information about a code segment of a running program. The
SIB contains information about the current state of a segment
and about the segment’s location in memory and on disk. SIBs
are created at program startup time for each code segment that
the program references and each segment in the Runtime Support
Library. SIBs are permanently allocated on the heap for the
duration of program execution.

The following Pascal record definition describes a SIB:

SIB. = record
seg_base: mem_handle;

seg_residency® integer;
seg_locks: integer;
seg_neme: packed array [0..7] of char;
seg file: integer;
seg_ “addr: nnteger,
seg” leng: lnteger,
seg data_size: integer;
end;
seg _base This field is a handle (absolute pointer to an

absolute pointer) that points to the base of the
segment in memory. If seg__base is 0 or
derefhnd(seg _base) returns 0, then the segment
is not currently in memory.

seg _residency This field contains the memory residency status
of the segment. When equal to —1 the segment
is position locked. A zero value indicates that
the segment is swappable. A value greater than
zero is a count of the number of outstanding

10—-18 1200301:10B

CODE SEGMENT ENVIRONMENT

memlock operations that have been applied to
the segment.

seg _locks This field contains the count of the number of
conceptual HLock operations that have been
done on the segment. (HLock causes a Macintosh
heap block to become position—locked in
memory.) A value of —1 indicates that the
segment 1is position—locked and HLock
operations are inappropriate for the segment.

seg__name This field contains the first eight characters of
the segment’s name, space filled.

seg_ file This field contains the Macintosh file reference
number of the open file that the segment is
stored in.

seg__addr This field contains the block number of the
segment within the file whose reference number
is seg _file.

seg _leng This field contains the number of words that the
segment occupies, including the relocation list
but excluding the segment reference list.

seg_data_ size This field contains the number of words in the
segment’s global data. This field only applies to
unit and program segments.

The Environment Record (EREC)

A code segment enviroment is a mapping from local segment
numbers to the ERECs of the segments they represent. Within
the p—code instruction set, segments are referred to by local
segment number (an integer in the range 1..255).

The segment environment is represented by two data structures:
the environment record (EREC) and the environment vector
(EVEC). The EVEC describes the mapping from local segment
numbers to the ERECs of those segments. It is implemented as a

1200301:10B 10-19

P-MACHINE ARCHITECTURE Chapter 10

word array of pointers to ERECs, indexed by the local segment
number. Entry zero of the EVEC is a count of the number of
segments in the environment.

The following Pascal record describes ERECs and EVECs:

evecp = “evec;
erecp = “erec;
evec = record
vec length: integer;
map? array[l..1] of erecp;
end;
erec = record
env_data: memptr;
env _vect: evecp;
env_ sib: sibp;
env next: erecp;
end; ~
env _data This field points to the segment’s global data.
The global data is allocated on the heap at
program startup time.
env _ vect This field points to the environment’s EVEC,
which provides the mapping from local segment
numbers to ERECs.
env _sib This field points to the segment’s SIB.
env _ next This field is used by the Runtime Support

Library to keep track of ERECs.

TASK ENVIRONMENT

The p—Machine supports the implementation of the concurrent
tasks of UCSD Pascal. FEach task has its own set of the
p—Machine registers and its own private stack space in which to
save local data. The main task, which is the thread of execution
for the user program, uses the Macintosh system stack for its
stack. Other tasks use stacks of fixed size allocated within the
heap. All tasks share a common heap for dynamic variable
allocation.

10—-20 1200301:10B

s

TASK ENVIRONMENT

The main data structure for the implementation of concurrency is
the Task Information Block, or TIB, which saves a task’s private
set of p—Machine registers when it is dormant. A system of task
queues is used to handle synchronization of waiting tasks and
tasks that are ready to run.

The Semaphore

The Pascal semaphore data type is implemented as a two word
construct described by the following Pascal record structure:

sem = record
sem_count: integer;
sem_wait_q: tib_p;

end; ~

The sem _count field contains the current value of the semaphore
count. The sem wait q field points to the queue of tasks that
are currently waiting on the semaphore.

The Task Information Block (TIB)

The Task Information Block (TIB) data structure contains all the
information necessary to awaken a task that has been dormant.
TIBs are linked into queues of waiting and ready—to—~run tasks.

The following Pascal record describes a TIB:

tib = packed record

regs: packed record
walt _q: tib_p;
prior: bytej
fla? : byte;

ow: mem_ptr;

sp upr: mem _pbtr;
sp: mem ptr,
mp: mScw_p;
task_ llnF "tib _P;
ipc: integer;
env: e_rec_p;
procnum: byte;
m_depend: ﬁyte,
hang p: sem _P;
tlbnoresult integer;

main bask boolean;
system_task: boolean;

1200301:10B 10—-21

- P-MACHINE ARCHITECTURE

. Chapter 10

reserved: 0..18383;
start_mscw: mscw_p;
task_siop: integer;

end;

wait _q

prior

flags

sp__low

Sp__upr

sp

mp

task _link

ipc

env

procnum

m _depend

10-22

This field points to the next task on a queue.

This field contains the task priority, a number
between 0 and 255. Higher numbers represent
higher priority.

This field is reserved for future use.

This field points to the lower address bound for
the stack pointer of the task. In the main task,
sp__low is compared with the SP register to
determine whether a stack fault should be
generated.

This field points to the upper address bound for
the stack pointer of the task.

This field is used to save the tasks stack pointer
register (SP) when the task is dormant.

This field is used to store the task’s mark stack
pointer register (MP) when the task is dormant.

This field is used by the Runtime Support
Library to link together all TIBs.

This field is used to store the task’s instruction
pointer register (IPC) when the task is dormant.
The value is a byte offset within the current
segment.

This field is used to store the task’s enviromnent
record register (EREC) when the task is

dormant.

This field is used to store the task’s procedure
number register when the task is dormant.

This field is reserved for future use.

1200301:10B

TASK ENVIRONMENT

hang_p This field points to the semaphore that the task
is waiting on, or has the value nil if the task is
not waiting on a semaphore.

tibioresult This field is used to store the task’s ioresult
register when the task is dormant.

main _ task This field is true if this is the main task and false
otherwise.

system _task This field is true if this task is part of the
Runtime Support Library and false if this task
was started by a user program.

start _mscw This field points to the first MSCW record in the
task’s stack.

task _slop This field is used to store the stack slop value for
this task when the task is dormant.

Task Queues

Two p—Machine registers figure in the maintenance of the task
enviromnent.

CURTASK This register points to the TIB of the currently
executing task, which is also linked into the
ready queue.

READYQ This register points to the queue of tasks that are
ready to run.

Tasks that are waiting to run are linked onto a queue in priority
order (tasks with high priority toward the front of the queue). A
task queue is a list of TIBs linked through their WAIT _ Q fields.
The queue is terminated by a pointer to nil. If the task is ready
to run, it is linked on the queue pointed to by the READYQ
register. If the task is waiting on a semaphore it is linked onto
that semaphore’s wait queue (the SEM_ WAIT _ Q field).

1200301:10B 10—-23

P—-MACHINE ARCHITECTURE Chapter 10

Task Switching

Tasks are synchronized through the use of the Pascal intrinsics
signal and wait. These, in turn, are implemented by the p—Code
instructions SIGNAL and WAIT. See P—-CODE
DESCRIPTIONS for their operational details.

Both signal and wait can cause a "task switch" to occur. Task
switch is the term used to describe the shutting down of one task
and the revival of another task. The signal intrinsic causes a task
switch when it causes a task of higher priority than the current
task to be put into the ready queue. The wait intrinsic causes a
task switch to occur when it hangs the current task on a
semaphore.

During the operation of a task switch, the p—Machine saves the
current state of the p—Machine registers in the TIB of the task
that it is shutting down, and restores the registers from the TIB
of the task that it is awakening.

FAULTS AND EXECUTION ERRORS

This section describes faults and execution errors, which are
exception conditions that may occur during a program’s
execution.

Faults

A fault is a special condition recognized by the PME during
execution of a p—code that requires runtime support assistance to
fix. After handling the problem, control returns to p—code
execution at the point at which the fault was detected. The
p—code where the fault was detected is reexecuted.

Two types of faults may be issued by the PME: segment faults
and stack faults. A segment fault is issued when a segment that
must be accessed is not in memory. A stack fault is issued if not
enough room is available on the stack for a p—code to perform its

10—24 1200301:10B

FAULTS. AND EXECUTION ERRORS

operation. Stack height checking is done only on p—codes that
will place multiple words on the stack, except in the case of real
number operations, which do no stack checking. ’

When the fault is detected, the p—Machine is to be returned to
the state it was in prior to execution of the p—code. This is so
that the p—code may be reexecuted on return from the fault.

The following p—codes may issue a segment fault:

CAP, CSP, CXL, SCXGn, CXG, CXI, CFP, RPU, SIGNAL (if
a task switch occurs), WAIT (if a task switch occurs)

The following p—codes may issue a stack fault:

LDC, LDM, ADJ, SRS, CLP, CGP, SCIPn, CIP, CXL,
SCXGn, CXG, CXI, CFP

Execution Errors

An execution error is a special error condition that the PME may
recognize during execution of a p—code. When an execution error
is detected, the system reports the error to the user. After an
execution error has been detected, the user may choose either to
continue execution or reinitialize the system.

Each p—code that can cause an execution error will leave the
p—Machine in a consistent state on detection of the error. The
IPC will point to the next p—code, putting "dummy" results on
the stack; that way the p—code won’t be reexecuted on return.

Below is a list of the execution errors, along with the execution
error number, the p—codes that may issue the error and a
description of what the error means.

1200301:10B ' ' 10-25

P—-MACHINE ARCHITECTURE . Chapter 10

Fatal Runtime Support Error Execution Errror 0

p—Codes <none>

This error should not occur. It indicates a corrupt Runtime
Support Library.

Value Range Error Execution Errror 1

p—Codes CHK, CSTR, REDU, RED2, SRS

A value range error is issued if an array index or scalar is out of
bounds. This is detected only with one of the special check
instructions. Generation of these range checks is suppressed by
the $R— compiler directive.

Exit from Uncalled Procedure Execution Errror 3

p—Codes <EXIT>

This error occurs when an attempt is made to exit a procedure
that is not currently active.

Stack Overflow Execution Errror 4

p—Codes LDC, LDM, ADJ, SRS, CLP, CGP, SCIPn, CIP,
CXL, SCXGn, CXG, CX1, CFP

A stack overflow error occurs when there is no room left in
memory to expand the stack by the desired amount.

10-26 1200301:10B

-FAULTS AND EXECUTION ERRORS

Integer Overflow Execution Errror 5

p—Codes ADI2, SBI2, INC2, DEC2, MPI2, ADIU, SBIU,
INCU, DECU, MPIU, <long integer routines>,
ABS2, NEG2

An integer overflow error is issued when an integer2 operation
result value is too large to represent in an integer2 variable. It
can also occur when converting from real, long integer or integer2
to integer, where the resulting integer is too large to fit into 16
bits.

Divide by Zero Execution Errror 6

p—Codes DVI, MODI, DVR, DVI2, MDI2, DVIU, MDIU,
<long integer routines>

This error occurs whenever division or the remainder function is
attempted with a 0 denominator.

Invalid Memory Reference Execution Errror 7

p—Codes <none>

This error occurs when a memory reference is made through a
pointer variable that currently contains nil. This condition is not
always detected.

Program Interrupted by User Execution Errror 8

p—Codes <none>

This error occurs if the user presses the break button and the
debugger is not enabled.

1200301:10B 10-27

P—-MACHINE ARCHITECTURE Chapter 10

Runtime Support I/O Error Execution Errror 9

p—Codes <none>

This error occurs if an I/O error occurs during program startup.

I/0O Error Execution Errror 10

p—Codes <IOCHECK >

This error occurs when the IOCHECK standard procedure detects
the IORESULT is nonzero. Calls to IOCHECK that follow 1/O
operations can be suppressed with the $I— compiler directive.

Unimplemented Instruction Execution Errror 11

p—Codes < any unimplemented p—code>

This error occurs when an attempt is made to execute an illegal
or reserved p—code. This error may not always be detected.

Floating Point Error Execution Errror 12

p—Codes LDCRL, LDRL, STRL, FLT, TNC, RND, ABR,
NGR, ADR, SBR, MPR, DVR, EQREAL,
LEREAL, GEREAL, RFLT, FLT2, RFLTZ,
FLTU, RFLTU, TRUNC, ROUND, TRNCZ2,
ROND2, <POWEROFTEN >

This error occurs when the result of a floating point calculation is
not a legal floating point number. This may happen on floating
point overflow.

10—-28 1200301:10B

.. FAULTS AND EXECUTION ERRORS

String Overflow Execution Errror 13

p—Codes CSP, ASTR, <long integer routines>

This error occurs when a string assignment is made to a string
that is too small to hold the source string.

Programmed Halt Execution Errror 14

p—Codes <HALT>

This error occurs upon execution of the halt intrinsic in a user
program.

Illegal Heap Operation Execution Errror 15

p—Codes <VARNEW >

This error occurs when a varnew of 0 or fewer words is
attempted. It can also occur when calls to mark and release are
not properly paired.

Breakpoint . Execution Errror 16

p—Codes BPT

This error occurs when a breakpoint p—code is executed. This
error will result in entering the debugger if the debugger is
currently in an active state.

1200301:10B 10—-29

P—-MACHINE ARCHITECTURE Chapter 10

Incompatible Real Number Size Execution Errror 17

p—Codes < none>

This error occurs if you attempt to run a program compiled with
the $R2 compiler option.

Set Too Large Execution Errror 18

p—Codes SRS

This error occurs when an attempt is made to create a set that is
larger than the largest allowed set size (4080 members).

Segment Too Large Execution Errror 19

p—Codes CAP, CXL, SCXGn, CXG, CXI, CFP, RPU,
SIGNAL, WAIT

This error occurs if an attempt is made to load a segment that is
more than 32K bytes in size.

Heap Expansion Error Execution Errror 20

p—Codes < heap operations>

This error occurs if there is no room for the heap to expand.
This is most ‘likely to occur due to the presence of a
nonrelocatable Macintosh heap block immediately above the
Pascal heap in memory.

10-30 1200301:10B

FAULTS AND EXECUTION ERRORS

Insufficient Memory to Load Segment Execution Errror 21

p—Codes CAP, CXL, SCXGn, CSG, CXI, CFP, RPU,
SIGNAL, WAIT

This error occurs if there is not enough room in memory to load a
required code segment.

P—-MACHINE REGISTERS

Like other processors, the p—Machine has registers which are a
fundamental part of its architecture. Since the p—Machine is
emulated by a program on the host 68000 processor, only some of
these registers correspond to actual 68000 processor registers.

Unlike most processors, the p—Machine doesn’t allow its registers
to be used in a general fashion. All registers have specific uses.
The p—Machine stack takes the place of general purpose
registers—all temporary data is stored there.

Here is a list of the p—Machine registers, along with a description
of how they are used.

CURPROC The CURPROC register contains the procedure
number of the currently executing procedure. It
changes whenever a procedure call is made.
There is a maximum of 255 procedures per
segment, so CURPROC will have a value in the
range 1 through 255.

CURTASK The CURTASK register is a pointer to the TIB
of the currently executing task. It changes
whenever a task switch occurs.

EREC The EREC register is a pointer to the EVEC of
the current environment. It changes whenever a
call or return is made to a procedure in a
different segment. The EREC contains pointers

1200301:10B 10-31

"+ P-MACHINE ARCHITECTURE Chapter 10

EVEC

IORESULT

IPC

READYQ

10-32

to the global data, EVEC, and SIB. The pointer
to the global data (called BASE) is kept in the
68000 Al register. A pointer to the base of the
current segment is kept in the 68000 A2 register.

The EVEC register is a pointer to the EVEC
(environment vector) of the current environment.
It changes whenever a call or return is made to a
procedure in a different segment. The EVEC is
a redundant register, because it is a field of the
EREC. The EVEC register is used to find the
EREC of a different segment in order to access
its data or to call a procedure in that segment.

IORESULT contains the error code resulting
from the last I/O operation. This is the only
register that may be accessed directly from a
program (via the ioresult intrinsic).

The IPC register (interpreter program counter) is
a pointer to the next p—code that will be
executed. This register is located in the 68000
A4 register. IPC changes during each p—code
execution. Whenever the IPC register is saved
temporarily (for instance, in an MSCW) it is
stored as a byte offset from the base of the
current segment.

The MP register points to the current activation
record (MSCW). This register is located in the
68000 AO register. It changes whenever a
procedure call or return is made. All variables
(except those that have been dynamically
allocated on the heap) are accessed from an
MSCW. Local variables are accessed from MP,

global variables from BASE (see EREC, above),

and intermediate variables from an intermediate

MSCW.
The READYQ register points to the TIB at the

head of the queue of tasks ready to be run. It
may change on a SIGNAL or WAIT p—code.

1200301:10B

P—MACHINE REGISTERS

SpP The SP register points to the word that is on the
top of the p—Machine stack. The SP register
corresponds to the 68000 stack pointer register in
AT. SP changes on nearly every p—code,
whenever an item is pushed on or popped off the
stack.

P—CODE DESCRIPTIONS
Introduction

The p—codes generated by the compiler are described in this
section. Instructions for the p—machine consist of an opcode,
which is one or two bytes long, followed by zero to three
parameters.

The following example illustrates the format that is used in this
chapter to describe the p—codes. (The format of the description
is the same for all p—codes.)

LDCB UB Load Constant Byte
[:word] 80

The constant UB with high byte 0 is pushed onto the stack.
LDCB is used to load a constant in the range 0 through 255.

The top line of each p—code description contains the p—code
mnemonic, any in—line parameters, and the title of the p—code.
(An in—line parameter follows the p—code byte in the p—code
stream.) There will be zero to three in—line parameters for each
p—code. The symbol for each in—line parameter defines its type.
Here the format is UB, meaning unsigned byte. UB and the other
parameter formats are discussed below.

1200301:10B 10-33

P—-MACHINE ARCHITECTURE Chapter 10

The second line of each p—code description contains the stack
values on the left in brackets and the p—code hexadecimal
instruction value on the right. The stack values consist of two
lists of operand types separated by a colon. The list to the left of
the colon contains the type of each operand that will be on the
stack before the instruction is executed. Following the colon, the
type of each operand that the instruction places on the stack as a
result is listed. When multiple operands are listed, the operand
on the right of each list is at the top of the stack. For this
example, the LDCB instruction uses no operands from the stack,
but leaves a word result on the stack. The operand types are
discussed below.

NOTE: Most p—Machine instructions don’t have specific in—line
parameters but instead deal with operands that are on the stack.

Finally, there is a brief description of the p—code function. The
terms TOS, TOS—1, etc. are used in this description to refer to
operands on the stack. TOS is the operand at the top of the
stack. TOS—1 is the stack operand just below the operand at
TOS.

NOTE: The TOS, TOS—1, etc. terminology only represents the
position of an operand relative to other operands; it does not
necessarily indicate the displacement on the stack. For example,
an operand at TOS—1 would be four words below a floating point
operand at TOS, two words below an integer2 operand at TOS,
or one word below an integer operand at TOS.

Instruction Parameters

The parameters to a p—code instruction contain information
about the size and number of the instruction’s operands. (In

some cases,- the parameter may be an operand itself, as in the
case of LDCB, shown above.)

10—-34 1200301:10B

P—CODE DESCRIPTIONS

The parameter formats are:

B

DB

Dw

PD

SB

UB

Big. This is a parameter with variable length. If bit 7
(MSB) of the first byte is 0, the remaining 7 bits
represent a positive integer in the range 0 through 127.
If bit 7 of the first byte is 1, then bit 7 is cleared; the
first byte is the high—order byte of a 16—bit word, and
the following byte is the low—order byte of that word.
The big format may represent positive integers in the
range 0 through 32767.

Don’t Care Byte. Represents a positive integer in the
range 0 through 127. Bit 7 is always 0. When
converted to a 16—bit value, the most significant byte
is zeroed.

Doubleword. This is a 4—byte parameter. It is a
32—bit two’s complement value that represents an
integer2 in the range —2147483648..2147483647. The
doubleword is always represented most significant word
first, and each of these words is least significant byte
first.

Packed Descriptor. This is a one byte packed field
descriptor. The size of the packed field minus 1 (in
bits) is stored in the high order nibble of the byte. The
bit number of the rightmost bit of the packed field is
stored in the low order nibble.

Signed byte. Represents a two’s complement 8—bit
integer in the range —128 through 127. ‘When
converted to a 16—bit two’s complement value, the
most significant byte is a sign extension (all bits equal
bit 7 of the low byte (SB)).

.Unsigned byte. Represents a positive integer in the

range 0 through 255. When converted to a 16—bit
value, the most significant byte is zeroed. When more
than one UB parameter is needed in an instruction,
they will be referred to by the description as UB1, UB2,
etc.

1200301:10B 10-35

. P-MACHINE ARCHITECTURE Chapter 10

This is a 2—byte parameter. It is a 16—bit

two’s complement value that represents an integer in
the range —32768 through 32767. The word is always
represented as least significant byte first in the code
stream.

Dynamic Operands

This section describes the stack—oriented dynamic operands of
p—Machine instructions.

activation

addr

abs—ptr

‘bleck

bool

byte—ptr

dword

func

int

10-36

Activation record for a procedure. See the

STACK ENVIRONMENT section for more
details.

Addr represents a 16—bit p—Machine pointer
within the Pascal Data Area.

An 32—bit absolute memory address. 1t is stored
in memory as most significant word first; both
word are stored as most significant byte first.

Block represents a group of 0 or more words.
(Used in instructions with variable length
operands.)

Bool represents a 16—bit quantity treated as a
logical value. If bit 0 is 0, the value is FALSE.
If bit 0 is 1, the value 1s TRUE.

A 16—bit byte offset from the base of the Pascal
data area.

A 32—bit p—Machine doubleword.
Function result. The actual type depends on the
function type. The func operand is null for

procedures.

Int represents a 16—bit two’s complement
integer.

1200301:10B

int2

nil

offset

pack—ptr

param

proc—ptr

real

set

uint

word

word—ptr

1200301:10B

P—-CODE DESCRIPTIONS

Same as a doubleword, but interpreted as a
signed two’s complement integer value.

Nil represents a constant that references an
invalid address.

Offset represents a byte offset into a code
segment.

Pack—ptr represents three words that designate
a bit field within a 16—bit word. TOS is the
number of the rightmost bit of the field, TOS—1
is the number of bits in the field, and TOS-2 is
the address of the word. ’

Parameters for a procedure. The number of
parameters and their types depend on the code
that put them onto the stack.

Pointer to a procedure.

Real represents a 64—bit floating point quantity.
A set represents 0 through 255 words of bit flags,
preceded by a word that contains the number of

words in the set.

A 16—bit unsigned integer value in the range
0..65535.

Word represents a 16—bit quantity that may be
treated in any way—as an integer, boolean,
address, and so forth.

A 16—bit byte offset from the base of the Pascal

data area. It must point to a word memory
boundary (even address).

10-37

P-MACHINE ARCHITECTURE Chapter 10

Constant Loads

Constant p—codes are used to place constant values from the
intruction stream onto the stack.

LCO B Load Constant Offset
[:offset] 82

B is a word offset into the constant pool of the current segment.
The address of the indicated constant is converted into a segment
relative byte offset. The computed offset is pushed onto the
stack.

LDCB UB Load Constant Byte
[rword] 80

The constant UB with high byte 0 is pushed onto the stack.
LDCB is used to load a constant in the range 0 through 255.

LDCD DwW Load Constant Doubleword
[:dword] FF 00

The doubleword constant DW is pushed onto the stack.

LDCI W Load Constant Integer
[rword] 81

The constant word W is pushed onto the stack.

LDCN Load Constant NIL
[:ni]] 98"

A NIL value is pushed onto the stack. The value zero is used to
represent NIL.

10-38 . 1200301:10B

" P—CODE DESCRIPTIONS

SLDCn Short Load Constant
[rword] 00..1F

The constant word whose value is encoded in the opcode is
pushed onto the stack. The value n is the value of the opcode
itself. SLDCn is used to load a constant between 0 and 31.

SLDCDO Short Load Doubleword Constant Zero
[:dword] 41

A doubleword containing the value zero is pushed onto the stack.
Local Loads and Stores

The local load and store p—codes are used to transfer data
between the stack and the local activation record.

LDL B Load Local
[rword] 87

The word with word offset B in the local activation record is
pushed onto the stack.

LDLD B Load Local Doubleword
[:dword] : 58

The doubleword at offset B in the local activation record is
pushed onto the stack.

LLA B Load Local Address
[:addr] 84

The address of the variable with offset B in the local activation
record is pushed onto the stack.

1200301:10B 1039

P—-MACHINE ARCHITECTURE : Chapter 10

SLDLn Short Load Local
[:word] . 20..2F

The word with word offset n in the local activation record is
pushed onto the stack. SLDLn is used to load one of the first 16
local words. The value of n is 1..32.

SLDLDn Short Load Local Doubleword
[:dword] 42..47

The doubleword at offset n in the local activation record is
pushed onto the stack. SLDLDn is used to load any of the
doubleword data containers whose first word is one of the first 6
local words. The value of n is 1..6.

SLLAnN . Short Load Local Address
[:addr] 60..67

The address of the variable with offset n in the local activation
record is pushed onto the stack. SLLAn is used to load the
address of local variables with offsets between 1 and 8.

SSTLn Short Store Local
[word:] 68..6F

TOS is stored in the word with offset n in the local activation
record. SSTLn is used to store in one of the first eight local
words. The value of n is 1..8

STL B Store Local
[word:] A4

TOS is stored in the word with offset B in the local activation
record.

10—40 1200301:10B

P—CODE DESCRIPTIONS

STLD B Store Local Doubleword
[dword:] - 5D

The doubleword operand at TOS is stored into the doubleword
located at word offset B in the local activation record.

Global Loads and Stores

The global load and store p—codes are used to transfer data
between the stack and the global data storage of the current code
segment.

LAO B Load Global Address
[:addr] 86

The address of the variable with offset B in the global activation
record is pushed onto the stack.

LDO B Load Global
[:word] 85

The word with offset B in the global activation record is pushed
onto the stack.

LDOD B Load Global Doubleword
[:dword] 5A

The doubleword at word offset B in the global activation record
is pushed onto the stack.

SLDOn Short Load Global
[rword] 30..3F

The word with offset n in the global activation record is pushed
onto the stack. SLDOn is used to load global words with offsets
between 1 and 16. The value of n is 1..16.

1200301:10B 10—41

P-MACHINE ARCHITECTURE Chapter 10

SLDODn Short Load Global Doubleword
[:dword] 48..4F

The doubleword at word offset n in the global activation record
is pushed onto the stack. SLDODn is used to load any of the
doubleword data containers whose first word is one of the first 8
global words.

SRO B Store Global
[word:] A5

The word at TOS is stored in the word with offset B in the global
activation record.

SROD B Store Global Doubleword
[dword;] _5F

The doubleword at TOS is stored into the doubleword at word
offset B in the global activation record.

Intermediate Loads and Stores

The intermediate load and store p—codes are used to transfer
data between the stack and a specific activation record in the
stack.

LDA DB,B Load Intermediate Address
[:addr] 88

DB indicates the number of static links to traverse to find the
activation record to use. (DB=0 indicates the local activation
.record; DB=1 indicates the parent activation record; and so
forth.) The address of the variable with offset B in the indicated
activation record is pushed onto the stack.

10—42 1200301:10B

P—-CODE DESCRIPTIONS

LOD DB,B Load Intermediate
[rword] 89

DB indicates the number of static links to traverse to find the
activation record to use. (DB=0 indicates the local activation
record; DB=1 indicates the parent activation record; and so
forth.) The word with offset B in the indicated activation record
is pushed onto the stack.

LODD DBB Load Intermediate Doubleword
[:dword] 59

DB indicates the number of static links to traverse to find the
activation record to use. (DB=0 indicates the local activation
record; DB=1 indicates the parent activation record; and so
forth.) The doubleword with offset B in the indicated activation
record is pushed onto the stack.

SLODn B Short Load Intermediate
[rword] AD..AE

The word with offset B in the activation record of the parent
(SLOD1) or grandparent (SLODZ2) of the local activation record is
pushed onto the stack.

STR DB,B Store Intermediate
[word:] AS

DB indicates the number of static links to traverse to find the
activation record to use. (DB=0 indicates the local activation
record; DB=1 indicates the parent activation record; and so
forth.) The word at TOS is stored into the word with offset B in
the indicated activation record.

1200301:10B 10—-43

P—MACHINE ARCHITECTURE Chapter 10

STRD DB,B Store Intermediate Doubleword
[word:] 5E

DB indicates the number of static links to traverse to find the
activation record to use. (DB=0 indicates the local activation
record; DB==1 indicates the parent activation record; and so
forth.) The doubleword at TOS is stored into the doubleword
with offset B in the indicated activation record.

Extended Loads and Stores

The extended load and store p—codes are used to transfer data
between the stack and the global data storage of a code segment
that is not the current segment.

LAE UB,B Load Extended Address
[:addr] 9B

The address of the variable with offset B in the global activation
record of local segment UB is pushed onto the stack.

LDE UB,B Load Extended Word
[:word] SA

The word at offset B in the global data segment of local code
segment UB is pushed onto the stack.

LDED UBB Load Extended Doubleword
[:dword] 5B

The doubleword at offset B in the global data segment of local
code segment UB is pushed onto the stack.

10—44 1200301:10B

P—CODE DESCRIPTIONS

STE UB,B ’ Store Extended Word
[word:] D9

The word at TOS is stored into the word with offset B in the
global activation record of local segment UB.

STED UB,B ' Store Extended Doubleword
[dword:] F6

The doubleword at TOS is stored into the doubleword with word
offset B in the global data segment for the local code segment
UB.

Indirect Loads and Stores

The indirect load and store p—codes are used to transfer data
between the stack and an address specified by an operand on the
stack.

IND B Index and Load Word
[addr:word] E6

The word offset specified by B is added to the word pointer at
TOS. The word pointed to by the resulting word pointer is
pushed onto the stack.

INDD B Load Indirect Doubleword
[addr:dword] 5C

The word offset specified by B is added to the word pointer at

TOS. The doubleword pointed to by the resulting word pointer
is pushed onto the stack.

1200301:10B 10—45

P—-MACHINE ARCHITECTURE - Chapter 10

SINDn Short Index and Load Word
[addr:word] 78..7F

The word offset n is added to the word pointer at TOS, and the
word pointed to by the resulting word pointer is pushed onto the
stack. The value of n is 0..7.

SINDDn Short Index and Load Doubleword
[addr:dword] 50..57

The word offset n is added to the word pointer at TOS, and the
doubleword pointed to by the resulting word pointer is pushed
onto the stack. The value of n is 0..7.

STO Store Word Indirect
[addr,word:] C4

The word at TOS is stored into the word pointed to by the word
pointer at TOS—1.

STOD Store Doubleword Indirect
[addr,dword:] Fs

The doubleword at TOS is stored into the doubleword pointed to
by the word pointer at TOS—1.

Multiple Word Loads and Stores

The multiple word load and store p—codes are used to transfer
multiple word data between the stack and memory.

LDC UB1,B,UB2 Load Constant
[:block] 83

If less than UB2+STACK SLOP words are available on the

stack, a stack fault is issued.

10—46 1200301:10B

P—CODE DESCRIPTIONS

B is a word offset into the constant pool of the currently
executing segment. UB2 words starting at that offset are pushed
onto the stack, preserving the order of the words. If UB1, the
mode, is 2, and the current segment is of opposite byte sex from
the host processor, the bytes of each word are swapped as they
are loaded.

LDCRL B Load Constant Real
[sreal] F2

The real constant at offset B in the constant pool of the currently
executing segment is loaded onto the stack.

LDM UB Load Multiple
[addr,block] DO

If less than UB+STACK SLOP words are available on the
stack, a stack fault is issued.

TOS is a pointer to a block of UB words. The block is pushed
onto the stack, preserving the order of the words.

LDRL Load Real
[addr:real] F3

TOS is the address of a real variable. TOS is replaced with the
indicated real.

STM UB Store Multiple
[addr,block:] 8E

TOS is a block of UB words. The block is stored at address
TOS—1, preserving the order of the words.

1200301:10B 10—47

P-MACHINE ARCHITECTURE Chapter 10

STRL Store Real
[addr,real;] . ' F4

TOS is a real value. TOS—1 is an address. TOS is stored at the
address TOS—1.

Parameter Copying

These instructions are generated by the compiler to copy multiple
word parameters which are passed to a procedure by value.

CAP B Copy Array Parameter
[addr,addr:] AB

TOS is the address of a parameter descriptor for a packed array
of characters. The parameter description is a two—word record.
The first (low) word is either NIL or a pointer to an EREC. If
the first word is NIL, the second word is the address of the
parameter. If the first word points to an EREC, the second word
is an offset relative to the segment indicated by the EREC. This
offset was created with an LCO instruction.

A segment fault is issued if the parameter descriptor indicates a
nonresident segment. Otherwise, the array (which is B words
long), is copied to the destination at address TOS—1.

CSP UB Copy String Parameter
[addr,addr:] AC

TOS is the address of a parameter descriptor for a packed array
of characters. The parameter description is a two—word record.
The first (low) word is either NIL, or a pointer to an EREC. If
the first word is NIL, the second word is the address of the
parameter. If the first word points to an EREC, the second word
is an offset relative to the segment indicated by the EREC. This
offset was created with an LCO instruction.

10—48 1200301:10B

P—CODE DESCRIPTIONS

A segment fault is issued if the parameter descriptor indicates a
nonresident segment. Otherwise, the dynamic length of the
designated string is compared to UB (the declared size of the
destination formal parameter). If the string is larger than the
destination size, a string overflow execution error is issued.
Otherwise, the string is copied to the address TOS—1.

Byte Load and Store

These instructions transfer a byte of data between the stack and
a storage area designated by an address on the stack.

LDB Load Byte
te—ptr:wor A7
[byte—p d]

TOS is a byte pointer. TOS is replaced by the indicated byte
with the high byte 0.

STB Store Byte
[byte—ptr,word:] Cs8

The low byte of TOS is stored in the location pointed to by byte
pointer TOS—1.

Packed Field Loads and Stores

The packed field p—codes are used to transfer packed data
between the stack and an address specified by an operand on the
stack.

LDP Load Packed
[pack—ptr:word] C9

The packed field pointer TOS is replaced with the field it

designates. Before being pushed onto the stack, the field is
right—justified and zero—filled.

1200301:10B 10—49

P—-MACHINE ARCHITECTURE Chapter 10

SSTP PD Short Stored Packed
[addr,word:] . 40

The word operand at TOS contains a right justified value which
is stored into a field within the word pointed to by the word
pointer at TOS—1. The packed field descriptor PD specifies the
size and location of the field within the word.

STP Stored Packed
[pack—ptr,word;] ‘ CA

TOS contains right—justified data. TOS—1 is a packed field
pointer. TOS is masked to the field width indicated in TOS—1,
then stored into the field described by TOS—1.

UPACK PD Unpack Field from Top of Stack
[word:word] AF

The field of the word operand at TOS described by the packed

field descriptor parameter PD replaces the word operand at TOS.
The value of the packed field is right justified in the result word.

Structure Indexing and Assignment

These instructions are used to index into and copy array and
record structures.

AMOVE Absolute Move Left
[abs—ptr,abs—ptr,int2:] FF 35

This instruction moves a number of bytes of memory starting at
where the absolute address value at TOS—2 points into the
successive memory locations starting at where the absolute
address value at TOS~—1 points. The number of bytes to move is
contained in the integer2 operand at TOS.

10-50 : : 1200301:10B

P—CODE DESCRIPTIONS

INC B Increment
[addr:addr] E7

The word pointer TOS is indexed by B words, and the resulting
pointer is pushed.

INCBI Increment Pointer with Integer Byte Offset
[addr,word:addr] FE

The integer operand at TOS (containing a byte offset) is added to
the pointer operand at TOS—1, and the resulting pointer value
replaces the operands on the stack.

INCB2 Increment Pointer with Integer2 Byte Offset
[addr,dword:addr] FF 0D

The integer2 operand at TOS (containing a byte offset) is added
to the pointer operand at TOS—1, and the resulting pointer value
replaces the operands on the stack.

IXA B Index Array
[addr,word:addr] D7

The operand at TOS—1 is a word pointer which locates the base
of an array. The word operand at TOS is an index into the
array, where the value 0 selects the first element in the array.
The value B specifies the size (in words) of the array elements.
The operands are replaced on the stack by a word pointer which
points to the selected array element.

IXA2 B Index Array Integer2
[addr,dword:addr] FF 0B

The operand at TOS—1 is a word pointer which locates the base
of an array. The doubleword operand at TOS is an index into
the array, where the value 0O selects the first element in the array.
The value B specifies the size (in words) of the array elements.
The operands are replaced on the stack by a word pointer which

1200301:10B 10-51

P-MACHINE ARCHITECTURE Chapter 10

points to the selected array element.

IXP UB1,UB2 Index Packed Array
[addr,word:pack—ptr] D8

This operation performs an indexing operation for an array in
which multiple elements are packed into a word, and pushes a
packed field pointer onto the stack which points to the selected
array element. The parameter UB1 specifies the number of array
elements that are packed into a word. The parameter UB2
specifies the size of an array element in bits. The word pointer
operand at TOS—1 locates the base of the packed array. The
integer2 operand at TOS is the index into the array, where the
value zero selects the first array element.

IXP2 UB1,UB2 Index Packed Array Integer2
[addr,dword:pack—ptr] FF oC

This operation performs an indexing operation for an array in
which multiple elements are packed into a word, and pushes a
packed field pointer onto the stack which points to the selected
array element. The parameter UB1 specifies the number of array
elements that are packed into a word. The parameter UB2
specifies the size of an array element in bits. The word pointer
operand at TOS—1 locates the base of the packed array. The
integer2 operand at TOS is the index into the array, where the
value zero selects the first array element.

MOV UB,B Move
[addr,word:] Cs

TOS is either the address of a word block (if UB==0) or the offset
of a constant word block in the current segment (if UB< >0). B
words are moved from the source designated by TOS to the
destination address TOS—1. IF UB=2, and the current segment
has opposite byte sex from the host processor, the bytes of each
word are swapped as the words are moved.

10-52 1200301:10B

P—-CODE DESCRIPTIONS

Logical Operators

These instructions perform logical operations on stack data.

BNOT Boolean Not
[word:bool] _ gF

The one’s complement of the word at TOS is masked to one bit,
and the result is pushed on the stack. BNOT produces a 1
(TRUE) or a 0 (FALSE) on the stack, regardless of how many
bits were set in TOS.

GEUSW Greater Than or Equal Unsigned
[word,word:bool] B5

The boolean result of the unsigned comparison TOS—1 >= TOS
is pushed onto the stack.

LAND Logical AND Word
[word,word:word] Al

The word operands at TOS and TOS—1 are removed from the
stack, ANDed together, and the resultant word is pushed onto the
stack.

LANDD Logical AND Doubleword
[dword,dword:dword] FF 27

The doubleword operands at TOS and TOS—1 are removed from

the stack, ANDed together, and the resultant doubleword is
pushed onto the stack.

1200301:10B 10-53

P—-MACHINE ARCHITECTURE .Chapter 10

LEUSW Less than or Equal Unsigned
[word,word:bool]- B4

The boolean result of the unsigned comparison TOS—1 <= TOS
is pushed onto the stack.

LNOT Logical NOT Word
[word:word] E5

The word operand at TOS is removed from the stack, one’s
complemented, and pushed onto the stack.

LNOTD Logical NOT Doubleword
[dword:dword] FF 29

The doubleword operand at TOS is removed from the stack,
one’s complemented, and pushed onto the stack.

LOR Logical OR Word
[word,word:word] A0

The word operands at TOS and TOS—1 are removed from the
stack, ORed together, and the resultant word is pushed onto the
stack.

LORD Logical OR Doubleword
[dword,dword:dword] FF 28

The doubleword operands at TOS and TOS—1 are removed from

the stack, ORed together, and the resultant doubleword is pushed
onto the stack.

10—-54 1200301:10B

P—CODE DESCRIPTIONS

LXORD Logical Exclusive OR Doubleword
[dword,dword:dword] FF 2B

The doubleword operands at TOS and TOS—1 are removed from
the stack, XORed together, and the resultant doubleword is
pushed onto the stack.

LXORW Logical Exclusive OR Word
[word,word:word| FF 2A

The word operands at TOS and TOS—1 are removed from the
stack, XORed together, and the resultant word is pushed onto the
stack.

Shift Operators

These instructions perform shifting operations on stack data.

ASRD Arithmetic Shift Right Doubleword
[dword,int:dword] FF 26

The doubleword operand at TOS—1 is shifted to the right by the
number of bits in the value of the word at TOS. The sign of the
doubleword operand is propagated into the vacated bit positions.
If the count is negative, zero, or greater than 32, the result of the
operation is undefined.

ASRW Arithmetic Shift Right Word
[word,int:word] FF 23

The word operand at TOS—1 is shifted to the right by the
number of bits in the value of the word at TOS. The sign of the
word operand is propagated into the vacated bit positions. It the
count is negative, zero, or greater than 16, the result of the
operation is undefined.

1200301:10B 1055

'P—MACHINE ARCHITECTURE Chapter 10

LSLD Logical Shift Left Doubleword
[dword,int:dword] FF 24

The doubleword operand at TOS—1 is shifted to the left by the
number of bits in the value of the word at TOS. If the count is
negative, zero, or greater than 32, the result of the operation is
undefined.

LSLW Logical Shift Left Word
[word,int:word] FF 21

The word operand at TOS—1 is shifted to the Teft by the number
of bits in the value of the word at TOS. If the count is negative,
zero, or greater than 16, the result of the operation is undefined.

LSRD Logical Shift Right Doubleword
[dword,int:dword] FF 25

The doubleword operand at TOS—1 is shifted to the right by the
number of bits in the value of the word at TOS. If the count is
negative, zero, or greater than 32, the result of the operation is
undefined.

LSRW v Logical Shift Right Word
[word,int:word] . FF 22

The word operand at TOS—1 is shifted to the right by the
number of bits in the value of the word at TOS. If the count is
negative, zero, or greater than 16, the result of the operation is
undefined.

10—-56 1200301:10B

P—CODE DESCRIPTIONS

Integer Arithmetic

These instructions peform arithmetic operations on data in the
stack.

ABI Absolute Value Integer
[int:int) E0

TOS is replaced by the absolute value of TOS. If TOS is
—32768, the result will be —32768.

ABS2 - Absolute Value Integer2
[int2:int2] FF 06

The integer2 value at TOS is replaced with its absolute value.
An Integer Overflow execution error occurs if the initial value is
—2147483648.

ADI Add Integers
[int,int:int] A2

TOS is replaced by TOS—1 + TOS. The result should be
computed as if it were an unsigned operation on 32—bit operands,
and only the lowest 16 bits were retained for the result. Thus,
overflow or underflow will "wrap around" to the opposite sign.

ADI2 Add Integer2
[int2,int2:int2] F7

The integer2 operands at TOS and TOS—1 are replaced on the
stack by the sum of the two operands. An Integer Overflow
execution error is reported if the sign bits of the operands are
equal and the sign bit of the result has the opposite sign.

1200301:10B 10—-57

-P—MACHINE ARCHITECTURE - Chapter 10

CHK Check Subrange Bounds
[int,int,int:int] CB

TOS is an upper—bound. TOS—1 is a lower—bound. If it isn’t
the case that TOS—1 <= TOS—-2 <= TOS, a value range

execution error is issued. TOS—2 remains on the stack.

CHK2 Integer2 Range Check
[int2,int2,int2:int2] FF OF

This operator performs a check on the range of the integer2
operand at TOS—2. If it isn’t true that TOS—1 <= TOS-2
<= TOS, a Value Range Error execution error is reported. The
integer2 operands at TOS and TOS—1 are removed from the
stack. The value at TOS—2 remains as the new TOS.

DECI Decrement Integer
[int:int] EE

TOS is decremented by 1. If TOS is —32768, the result will be
32767.

DEC2 Decrement Integer2
[int2:int2] FF 04

The integer2 value at TOS is decremented and the result is
pushed onto the stack. An Integer Overflow execution error is
reported if the initial value is —2147483648.

DVI Divide Integer
[int,int:int] 8D

If TOS is 0, a divide—by—zero execution error occurs.

Otherwise, TOS is replaced by TOS—1 DIV TOS. The division
operation is an integer division truncated toward 0.

10—58 1200301:108B

P—CODE DESCRIPTIONS

DVI2 Divide Integer2
[int2,int2:int2] FA

The integer2 operands at TOS and TOS—1 are replaced on the
stack by the integer2 result obtained by dividing the operand at
TOS—1 by the operand at TOS. If the divisor equals zero, a
Divide by Zero execution error is reported. The division
operation is an integer division truncated toward zero.

EQUI Equal Integer
[int,int:bool] BO

The Boolean result of the comparison TOS—1 = TOS is pushed
onto the stack.

EQI2 Equal Integer2 Comparison
[int2,int2:bool] FF 07

The integer2 operands at TOS and TOS—1 are replaced on the
stack by the Boolean result determined by comparing the
operands.

GEI2 Greater Than or Equal Integer2 Comparison
[int2,int2:bool] FF 0A

The integer2 operands at TOS and TOS—1 are replaced on the

stack by the Boolean result obtained by the comparison TOS—1
>= TOS.

GEQI Greater Than or Equal Integer
[int,int:bool] B3

The Boolean result of the signed comparison TOS—1 >= TOS is
pushed onto the stack.

1200301:108B 10—-59

P—-MACHINE ARCHITECTURE Chapter 10

INCI Increment Integer
[int;int] ED

The word at TOS is incremented by 1. If TOS was initially
32767, the result will be —32768.

INC2 Increment Integer2
[int2:int2] FB

The integer2 operand at TOS is incremented. If an overflow
occurs, an Integer Overflow execution error is reported.

LEI2 Less Than or Equal Integer2 Comparison
[int2,int2:bool] FF 09

The integer2 operands at TOS and TOS—1 are replaced on the
stack by the Boolean result obtained by comparing TOS—1 <=
TOS.

LEQI Less Than or Equal Integer
[int,int:int] B2

The Boolean result of the signed comparison TOS—1 <= TOS is
pushed onto the stack.

MDI2 Modulo Integer2
[int2,int2:int2] FF 03

If the integer2 value at TOS is zero, a Divide by Zero execution
error is reported.

Otherwise, the integer2 operands at TOS and TOS—1 are
replaced on the stack by the value obtained by performing
TOS—1 modulo TOS. The operation is undefined if the value at
TOS is negative, but no execution error occurs. The result is
always an integer2 value in the range 0 <= result < TOS. This
result is calculated as if the value at TOS was added or

10—-60 1200301:10B

P—-CODE DESCRIPTIONS

subtracted from the value at TOS—1 until the result is in the
proper range.

MODI Modulo Integers
[int,int:int] 8F

If the integer value at TOS is zero, a Divide by Zero execution
error is reported.

Otherwise, the integer operands at TOS and TOS—1 are replaced
on the stack by the value obtained by performing TOS—1 modulo
TOS. The operation is undefined if the value at TOS is negative,
but no execution error occurs. The result is always an integer
value in the range 0 <= result < TOS. This result is calculated
as if the value at TOS was added or subtracted from the value at
TOS—1 until the result is in the proper range.

MPI Multiply Integer
[int,int:int] 8C

TOS is replaced by TOS—1 * TOS. The result should be
computed as if it were an uhsigned operation on 32—bit operands
and only the lowest 16 bits were retained for the result.

MPI2 Multiply Integer2
[int2,int2:int2] F9

The integer2 operands at TOS and TOS—1 are replaced on the
stack by the product of the two operands. An Integer Overflow
execution error is reported if the value of the result is outside the
range of values which can be represented in the integer2 format.

NEG2 Negate Integer2
[int2:int2] FF 05

The integer2 value at TOS is replaced with its negated value

found by taking the two’s complement. An Integer Overflow
execution error is reported if the initial value is —2147483648.

1200301:10B 10-61

P—-MACHINE ARCHITECTURE Chapter 10

NEI2 Not Equal Integer2 Comparison
[int2,int2:bool] . FF 08

The integer2 operands at TOS and TOS—1 are replaced on the
stack by the Boolean result obtained by comparing the operands.

NEQI Not Equal Integer
[int,int:bool] B1

The Boolean result of the comparison TOS—1 <> TOS is
pushed onto the stack.

NGI Negate Integer
[int:int] E1

TOS is replaced by the negative (two’s complement) of TOS. If
TOS was initially —32768, the result should be —32768.

SBI Subtract Integer
[int,int:int] » A3

TOS is replaced by TOS—1 — TOS. The result should be
computed as if it were an unsigned operation on 32—bit operands,
and only the lowest 16 bits were retained for the result. Thus,
overflow or underflow will "wrap around" to the opposite sign.

SBI2 Subtract Integer2
[int2,int2:int2] F8

The: integer2 operands at TOS and TOS—1 are replaced on the
stack by the difference obtained by subtracting TOS—1 from
TOS. An Integer Overflow execution error is reported if the sign
bits of the operands are not equal and the sign bit of the result
has the same sign as the TOS—1 operand.

10—-62 - 1200301:10B

'P—CODE DESCRIPTIONS

Unsigned Arithmetic

The instuctions perform operations on unsigned integer data on
the stack.

ADIU Add Integer Unsigned
[uint,uint:uint] FF 14

The unsigned operands at TOS and TOS—1 are replaced on the
stack by the value of TOS—1 + TOS. An Integer Overflow
execution error is reported if TOS—1 + TOS is greater than
65535. :

CHKU Unsigned Integer Rangecheck
[uint,uint,uint:uint] FF 1B

The unsigned integer operands at TOS and TOS—1 are removed
from the stack and a range check on the value of the unsigned
integer operand at TOS—2 is performed. A Value Out of Range
execution error is reported if the following is not true: TOS-1

<= TOS8-2 <= TOS.

DECU Decrement Integer Unsigned
[uint:uint] FF 1A

The unsigned integer operand at TOS is decremented and the
result replaces the operand on the stack. An Integer Overflow
execution error is reported if TOS — 1 is less than zero.

DVIU Divide Integer Unsigned
[uint,uint:uint] FF 17

The unsigned operands at TOS and TOS—1 are replaced on the

stack by the value of TOS—1 div TOS. A Divide by Zero
execution error is reported if TOS is zero.

1200301:10B 10—63

P—-MACHINE ARCHITECTURE Chapter 10

INCU Increment Integer Unsigned
[uint:uint] FF.19

The unsigned integer operand at TOS is incremented and the
result replaces the operand on the stack. An Integer Overflow
execution error is reported if TOS + 1 is greater than 65535.

MDIU Modulo Integer Unsigned
[uint,uint:uint) FF 18

The unsigned operands at TOS—1 is divided by the unsigned
integer at TOS and the remainder replaces both operands on the
stack: A Divide by Zero execution error is reported if the original
operand at TOS is zero.

MPIU Multiply Integer Unsigned
[uint,uint:uint) FF 16

The unsigned operands at TOS and TOS—1 are replaced on the
stack by the value of TOS—1 * TOS. An Integer Overflow
execution error is reported if TOS—1 * TOS is greater than
65535.

SBIU Subtract Integer Unsigned
[uint,uint:uint] : FF 15

The unsigned operands at TOS and TOS—1 are replaced on the
stack by the value of TOS—1 — TOS. An Integer Overflow
execution error is reported if TOS—1 — TOS is less than zero.

Real Arithmetic

These instruction perform operations on floating point data on
the stack.

10—-64 : 1200301:10B

P-CODE DESCRIPTIONS

ABR Absolute Value of Real
[real:real] E3

TOS is replaced by the absolute value of S.

ADR Add Reals

[real,real:real] Co

TOS is replaced by the value TOS—1 + TOS. The result should
be 0 on underflow. A floating point execution error is issued on
overflow.

DVR Divide Reals
[real,real:real] C3

If TOS is 0, a divide—by—1zero execution error is issued.

Otherwise, TOS is replaced by the value TOS—1 / TOS. The
result will be 0 on underflow. A floating point execution error is
issued on overflow.

EQREAL Equal Real
[real,real:bool] CD

The Boolean result of the comparison TOS—1 = TOS is pushed
onto the stack. .

GEREAL Greater than or Equal Real
[real,real:bool] CF

The Boolean result of the comparison TOS—1 >= TOS is
pushed onto the stack.

1200301:10B 10—-65

- P=MACHINE ARCHITECTURE Chapter 10

LEREAL Less than or Equal Real
[real,real:bool] CE

The Boolean result of the comparison TOS—1 <= TOS is
pushed onto the stack.

MPR Multiply Reals

[real,real:real] C2

TOS is replaced by the value TOS—1 * TOS. The result will be 0
on underflow. A floating point execution error is issued on
overflow.

NGR Negate Real
[real:real] E4

TOS is replaced by the inverse of TOS.

SBR Subtract Reals
[real,real:real] C1

TOS is replaced by the value TOS—1 — TOS. The result will be
0 on underflow. A floating point execution error is issued on
overflow.

Set Operations

These instructions perform operations on set data on the stack.

ADJ UB Adjust Set
[set:block] C7

If less than STACK _SLOP words on the stack will be available
after the completion of the adjust, a stack fault is issued.

10—66 1200301:10B -

" P—CODE DESCRIPTIONS

The set operand at TOS is stripped of its length word and then
expanded or compressed so that it is UB words in size.
Expansion is done by adding words of zeros "between" TOS and
TOS—1. Compression is done by removing high words of the set.
It is legal for adjust to remove "significant" words of the set
during compression.

DIF Set Difference
[set,set:set] DD

The difference between sets TOS—1 and TOS is pushed onto the
stack. The difference is computed as bit—wise (TOS—1 AND
NOT TOS).

EQPWR Equal Set
[set,set:bool] B6

The Boolean result of the comparison TOS—1 = TOS is pushed
onto the stack. The sets need not be the same size—only the
elements must match. :

GEPWR Greater than or Equal Set
[set,set:bool] B8

TRUE is pushed if TOS—1 is a superset of TOS. Otherwise,
FALSE is pushed.

INN . Set Membership
[int,set:bool] DA

The Boolean result of the check whether TOS is contained in the
set TOS—1 is pushed onto the stack.

1200301:10B 10—-67

"P~MACHINE ARCHITECTURE Chapter 10

INT Set Intersection
[set,set:set] DC

The intersection (bit—wise AND) of sets TOS and TOS—1 is
pushed onto the stack.

LEPWR Less than or Equal Set
[set,set:bool] B7

TRUE 1is pushed if TOS—1 is a subset of TOS. Otherwise,
FALSE is pushed.

SRS Build a Subrange Set
[int,int:set] BC

If less than STACK _SLOP words will be available on the stack
after this operation, a stack fault is issued.

The integers TOS and TOS—1 must be in the range 0 through
4079. (Refer to The UCSD Pascal Handbook for an explanation of
set limitations in UCSD Pascal.) If not, a value range execution
error is issued.

If TOS—1 > TOS, the empty set is pushed. Otherwise, a set is
created containing the elements between TOS—1 and TOS,
inclusive, as members. This set is pushed on the stack.

UNI Set Union
[set,set:set] DB

The wunion (bit—wise OR) of the sets TOS and TOS—1 is pushed
onto the stack.

10—-68 1200301:10B

P—-CODE DESCRIPTIONS

Byte Array Comparisons

These instructions perform comparison operations on data
structures (arrays and records).

EQBYT UB1,UB2,B Equal Byte Array
[word,word:bool] B9

UB1 and UB2 are mode flags. If UB1 (or UB2) is 0, then TOS (or
TOS—1) is a pointer to a byte array. If UB1 (or UB2) is 1, then
TOS (or TOS—1) is an offset within the current segment of a
constant byte array. B is the size (in bytes) of the array.

The Boolean result of the comparison TOS—1 = TOS is pushed
onto the stack. The bytes are compared one by one in the
natural byte order of the processor until a mismatch is found or
the end of the arrays is reached. If there is a mismatch in any
character position, FALSE is pushed onto the stack. Otherwise,
TRUE is pushed.

GEBYT UB1,UB2,B Greater than or Equal Byte Array
[word,word:bool] BB

UB1 and UB2 are mode flags that refer to TOS and TOS-1,
respectively. If UB1 (or UB2) is 0, then TOS (or TOS—1) is a
pointer to a byte array. If UB1 (or UB2) is 1, then TOS (or
TOS—1) is an offset within the current segment of a constant
byte array. B is the size (in bytes) of the array.

The Boolean result of the comparison TOS—1 >= TOS is
pushed on the stack. The bytes are compared one by one in the
natural byte order of the processor until a mismatch is found or
the end of the arrays is reached. If there is a mismatch and the
character in TOS—1 < the character in TOS, FALSE is pushed
onto the stack. Otherwise, TRUE is pushed.

1200301:10B 10—-69

P—MACHINE ARCHITECTURE Chapter 10

LEBYT UB1,UB2,B Less than or Equal Byte Array
[word,word:bool] BA

UB1 and UB2 are mode flags that refer to TOS and TOS-1,
respectively. If UB1 (or UB2) is 0, then TOS (or TOS—1) is a
pointer to a byte array. If UB1 (or UB2) is 1, then TOS (or
TOS—1) is an offset within the current segment of a constant
byte array. B is the size (in bytes) of the array.

The Boolean result of the comparison TOS—1 <= TOS is
pushed onto the stack. The bytes are compared one by one in the
natural byte order of the processor until a mismatch is found or
the end of the arrays is reached. If there is a mismatch and the
character in TOS—1 > the character in TOS, FALSE is pushed
onto the stack. Otherwise, TRUE is pushed.

Jumps

These instructions perform conditional and unconditional jumps
within the p—code instruction stream.

EFJ SB Equal False Jump
[int,int:] D2

If TOS <> TOS—1, a jump is made, relative to the next
instruction, by the byte offset SB.

FIP SB False Jump
[bool:] D4

If TOS is FALSE, a jump is made, relative to the next
instruction, by the byte offset SB.

10-70 1200301:10B

P—CODE DESCRIPTIONS

FJPL W False Long Jump
[bool:] D5

If TOS is FALSE, a jump is made, relative to the next
instruction, by the byte offset W.

NFJ SB Not Equal False Jump
[int,int:] D3

If TOS = TOS—1, a jump is made, relative to the next
instruction, by the byte offset SB.

TIP SB True Jump
[bool:] F1

If TOS is TRUE, a jump is made, relative to the next instruction,
by the byte offset SB.

UJP SB Unconditional Jump
(1] 8A

A jump is made, relative to the next instruction, by the byte
offset SB.

)

UJPL w Unconditional Long Jump
[:] 8B

A jump is made, relative to the next instruction, by the byte
offset W.

XJ P B Case Jump
[int:] D6

B is the offset of the case jump table within the constant pool of
the current code segment. The integer value at TOS is an index
into this jump table.

1200301:10B 10-71

P-MACHINE ARCHITECTURE Chapter 10

The case jump table is structured as follows:

e —————— +
MIN minimum index
MAX maximum index
= table = (MAX - MIN) + 1

word table containing
relative jump offsets

If TOS is in the range MIN through MAX, inclusive, a jump is
made, relative to the next instruction, by the word quantity in
table entry (TOS — MIN). (The jump table is word—indexed
starting at zero, and follows the MAX value in memory). If the
TOS operand has a value outside of the range MIN..MAX, no
jump occurs and the next p—code instruction in sequence is
executed.

XJP2 B Indexed Jump Integer2
[int2:] FF OE

This instruction performs the same operation as XJP, except that
the index value on the stack and the MIN and MAX values in the
table.are integer2 values rather than integer values. The table
entries are still word values.

Routine Calls and Returns
These instructions perform procedure calls and returns.
For each procedure call, the following actions occur.

If the Data _ Size word for the procedure being called (procedure
number at TOS) is negative, nothing is allocated on the stack and
a native code call is made. Execution resumes with the following
p—code.

10-72 1200301:10B

P—-CODE DESCRIPTIONS

Otherwise, DATA _SIZE words and an Mark Stack are allocated
on the stack. If STACK _SLOP words are not left on the stack
after the MSCW and data are allocated, a stack fault is issued.
For intersegment calls, EREC and EVEC are set to reflect the
new environment.

BPT Breakpoint
[:activation] 9E

A breakpoint execution error is issued unconditionally.

CPF Call Formal Procedure
[addr,addr,int:activation] 97

TOS contains a procedure number. TOS—1 contains an EREC
pointer; TOS—2 contains a static link. The procedure TOS in
the segment indicated by TOS—1 is called. If the segment
indicated by TOS—1 is not in memory, a segment fault is issued.

CPG UB Call Global Procedure

[param:activation] 91

Global procedure UB in the currently executing segment is called.
The static link field of the MSCW is set to the value of BASE
(the global data MSCW).

CPI DB,UB Call Intermediate Procedure
[param:activation] 92

Intermediate procedure UB in the currently executing segment is
called. The static link field of the MSCW 1is set to the
intermediate MSCW that is DB lexical levels above the current
MSCW.

'1200301:10A 10—-73

"P-MACHINE ARCHITECTURE Chapter 10

CPL UB Call Local Procedure

[param:activation] 90

Local procedure UB in the currently executing segment is called.
The static link field of the MSCW is set to the old value of MP.

CXG UB1,UB2 - Call External Global Procedure
[param:activation] 94

The global procedure UB2 in segment UB1 is called. If segment
UBI1 isn’t in memory, a segment fault is issued. The static link
field of the MSCW is set to the new value of BASE (the global
data MSCW).

If UB1 is 1 and the procedure number matches one of the
standard procedure numbers, the p—code performs the standard
procedure instead of the call. See the STANDARD
PROCEDURES section of this chapter.

CX1 UB1,DB,UB2 Call Intermediate External Proc
[param:activation] 95

The intermediate procedure UB2 in segment UBI1 is called. If
segment UB1 isn’t in memory, a segment fault is issued. The
static link field of the MSCW is set to the intermediate MSCW
that is DB lexical levels above the current MSCW.

CXL UB1,UB2 Call Local External Procedure
[param:activation] 93

The local procedure UB2 in segment UB1 is called. If segment

UBI isn’t in memory, a segment fault is issued. The static link
field of the MSCW is set to the old value of MP.

10-74 1200301:10B

- P—CODE DESCRIPTIONS

LSL DB Load Static Link onto Stack
[:addr] 99

DB indicates the number of static links to traverse. A pointer to
the MSCW that is DB links above the current MSCW is pushed
onto the stack.

RPU B Return from Procedure
[activation:func] 96

Execution returns to the calling procedure.

The EREC pointer in the MSCW indicates the segment to return
to. If the segment is not in memory, a segment fault is issued.

Otherwise, MP is set to the Dynamic__Link field of the MSCW.
If the MSPROC field of the MSCW is positive, IPC is restored
from the MSCW. Otherwise, IPC is set to the Exit _IC value
found just before the procedure code in the segment. CURPROC
is restored from the MSCW (negating the value, if necessary). If
the EREC pointer of the MSCW differs from EREC, EREC and
EVEC are set to reflect the new segment.

If the MSPROC field of the MSCW indicates that the return is to
a Macintosh ROM routine, the RPU restores the processor
registers and returns to the ROM. (See the description of the
SETAR p—code for more details.)

SCIPn UB Short Call Intermediate Procedure
[param:activation] EF.FO

Intermediate procedure UB in the currently executing segment is

called. The Static__Link field of the MSCW is set to the lexical
parent (SCPI1) or grandparent (SCPI2) of the current MSCW.

1200301:10B 10-75

P—-MACHINE ARCHITECTURE Chapter 10

SCXGn UB Short Call External Global Procedure
[param:activation] 70..77

The global procedure UB in segment n is called. If segment n
isn’t in memory, a segment fault is issued.

If the instruction is SCXG1 and the procedure number matches
one of the standard procedure numbers, the p—code performs one
of these standard procedures, instead of the call. See the
STANDARD PROCEDURES section of this chapter.

Concurrency Support

SIGNAL Signal
[addr:] DE

The operand at TOS is the address of a semaphore. If the
semaphore’s wait queue is empty or the count is negative, the
count is incremented by one. Otherwise, the TIB at the head of
the semaphore’s wait queue is put on the ready queue, and its
hang p is set to NIL. If the new task has a higher priority than
the.current task, a task switch occurs.

WAIT Wait
[addr:] DF

The operand at TOS is the address of a semaphore. If the
semaphore’s count is greater than zero, the count is decremented
by one. Otherwise, the current TIB is put on the semaphore’s
wait queue, its hang __ p is set to TOS, and a task switch occurs.

10-76 1200301:10B

P—CODE DESCRIPTIONS

String Operations

The following instructions perform string assignment and
comparison operations.

ASTR UBI1,UB2 Assign String
[addr,word:] EB

TOS—1 is the address of the destination string variable. UB2 is
the declared size of that string (the number of characters it may
hold). TOS is either the address of a string variable (if UB1 is 0),
or the offset of a string constant in the constant pool of the
current segment.

A string overflow execution error is issued if the dynamic size of
the source string is greater than the declared size of the
destination string.

Otherwise, the source string is copied to the destination string.

CSTR Check String Index
[:] EC

TOS—1 is the address of a string variable. TOS is an index into
that variable.

If the index is less than 1 or greater than the dynamic length of
the string variable, a value range execution error is issued.

EQSTR UB1,UB2 Equal String
[word,word:bool] : E8

UB1 and UB2 are mode flags that refer to TOS and TOS-1,
respectively. If UB1 (or UB2) is 0, then TOS (or TOS—1) is a
pointer to a string. If UB1 (or UB2) is 1, then TOS (or TOS—1)
is an offset of a string within the current segment.

1200301:10B ' 10-77

P—-MACHINE ARCHITECTURE - Chapter 10

The Boolean result of the comparison TOS—1 = TOS is pushed
onto the stack. The bytes are compared one by one in the
natural byte order of the processor until a mismatch is found or
the end of the shorter string is reached. The comparison begins
at the second element of the strings. If there is a mismatch in
any character position, FALSE is pushed on the stack.
Otherwise, the lengths of the strings are compared, and the
Boolean result of the comparison length(TOS—1) = length(TOS)
is pushed.

GESTR UB1,UB2 Greater or Equal String
[word,word:bool] EA

UB1 and UB2 are mode flags that refer to TOS and TOS-1,
respectively. If UB1 (or UB2) is 0, then TOS (or TOS—1) is a
pointer to a string. If UB1 (or UB2) is 1, then TOS (or TOS—1)
is an offset of a string within the current segment.

The Boolean result of the comparison TOS—1 >= TOS is
pushed onto the stack. The bytes are compared one by one in the
natural byte order of the processor until a mismatch is found or
the end of the shorter string is reached. The comparison begins
at. the second element of the strings. If there is a mismatch in
any character position and the character in TOS—1 < the
character in TOS, FALSE is pushed on the stack. Otherwise, the
lengths of the strings are compared, and the Boolean result of the
comparison length(TOS—1) >= length(TOS) is pushed.

LESTR UB1,UB2 Less or Equal String
[word,word:bool] E9

UB1 and UB2 are mode flags that refer to TOS and TOS-1,
respectively. If UB1 (or UB2) is 0, then TOS (or TOS—1) is a
pointer to a string. If UB1 (or UB2) is 1, then TOS (or TOS—1)
is an offset of a string within the current segment.

The Boolean result of the comparison TOS—1 <= TOS is
pushed onto the stack. The bytes are compared one by one in the
natural byte order of the processor vatil a mismatch is found or
the end of the shorter string is reached. The comparison begins

10-78 1200301:10B

P-—-CODE DESCRIPTIONS

at the second element of the strings. If there is a mismatch in
any character position and the character in TOS—1 > the
character in TOS, FALSE is pushed onto the stack. Otherwise,
the lengths of the strings are compared, and the Boolean result of
the comparison length(TOS—1) <= length(TOS) is pushed.

Operand Type Conversion Operators

The following instructions convert data on the stack from one
data type to another.

ATP Absolute Address to Pointer
[abs—ptr:word—ptr] FF 34

The machine absolute address value at TOS is replaced on the
stack by the p—machine word pointer value that points to the
same memory word.

DEREF Dereference Absolute Handle
[abs—ptr:abs _ ptr] FF 36

The operand at TOS is a machine absolute address that points to
a doubleword containing another absolute address. This
instruction replaces the pointer at TOS by a value which is equal
to the low order three bytes of the doubleword that it points to.

EXTI Extend Integer to Integer2
[int:int2] FD

The integer operand at TOS is replaced on the stack by the
integer2 operand which contains the same value.

EXTU Extend Unsigned Integer to Integer2
[uint:int2] FF 1D

The unsigned integer operand at TOS is converted to an integer2
operand.

1200301:10B ' 10-79

P-MACHINE ARCHITECTURE Chapter 10

" FLT Float Top—of—Stack
[int:real] CC

Integer TOS is converted to a floating point number, and the
result is pushed onto the stack.

FLT2 Float Integer2
[int2:real] FF 12

The integer2 operand at TOS is converted to a floating point
number and the result replaces the integer2 operand on the stack.

FLTU Float Unsigned Integer
[uint:real] FF 1F

The unsigned integer operand at TOS is converted to a floating
point number on top of the stack.

PTA Pointer to Absolute Address
[word—ptr:abs—ptr] FF 33

The p—machine word pointer value at TOS is replaced on the
stack by the 32—bit machine absolute address which points to the
same memory location.

OTP Word Offset to Pointer
[int:word—ptr] FF 2D

The integer operand at TOS contains a word memory offset,
which is replaced on the stack by a word pointer which points to
the memory word indicated by the memory offset. This
operation is performed by shifting the word offset to the left by
one bit to form a word pointer.

10—-80 1200301:10B

P—-CODE DESCRIPTIONS

PTO Pointer to Word Offset
[word—ptr:int] FF 2C

The word pointer operand at TOS is converted to a word
memory offset. The memory offset replaces the operand at TOS.
This operation is performed by shifting the pointer (a byte offset)
to the right by one bit to form a word offset.

RED2 Reduce Integer2 to Integer
[int2:int] FC

The integer2 operand at TOS is reduced to an integer. An
Integer Overflow execution error is reported if the result is
outside the range —32768..32767.

REDU Reduce Integer2 to Unsigned Integer
[int2:uint] FF 1C

The integer2 operand at TOS is removed from the stack,
converted to an unsigned integer, and the result pushed onto the
stack. An Integer Overflow execution error is reported if the
value is negative or greater than 65535.

REXTI Reversed Extend Integer
[int,int2:int2,int2] FF 10

The integer operand at TOS—1 is converted to an integer2
operand and inserted into the stack below the integer2 operand at
TOS. Following the operation, there are two integer2 operands
on the stack.

REXTU Reversed Extend Unsigned Integer to Integer2
[uint,int2:int2,int2] FF 1E

The unsigned operand at TOS—1 is replaced on the stack by an

integer2 of the same value. The integer2 operand at TOS
remains on top of the stack.

1200301:10B 1081

P—-MACHINE ARCHITECTURE Chapter 10

RFLT Reversed Float Integer
[int,real:real,real] FF 11

The integer operand at TOS—1 is converted to a floating point
number and the result replaces TOS—1 on the stack. Following
the operation, the real operand at TOS remains the top operand
on the stack.

RFLT2 Reversed Float Integer2
[int2,real:real,real] FF 13

The integer2 operand at TOS—1 is converted to a floating point
number and the result replaces the integer2 operand at TOS—1.
Following the operation, the real operand at TOS remains the
top operand on the stack.

RFLTU Reversed Float Unsigned Integer
[uint,real:real,real] FF 20

The unsigned integer operand at TOS—1 is converted to a
floating point number. The real operand at TOS remains on top
of the stack.

ROUND Round Real
[real:int] BF

Real TOS is converted to an integer by rounding, and the result
is pushed onto the stack. If the result is outside the range
—32768 to 32767, a floating point execution error is issued.

ROND2 Round Real to Integer2
[real:int2] FF 2F

This performs the same operation as RND, but the integer result
is of type integer2. A Floating Point execution error is reported
if the result is outside the range of integer2 values.

10—-82 1200301:10B

P—-CODE DESCRIPTIONS

TRNC2 Truncate Real to Integer2
[real:int2] FF 2E

This performs the same operation as TRUNC, but the integer
result is of type integer2. A Floating Point execution error is
reported if the result if outside the range of integer2 values.

TRUNC Truncate Real
[real:int] BE

The floating point operand at TOS is converted to an integer by
truncating, and the result is pushed onto the stack. If the result
isn’t in the range —32768 to 32767, a Floating Point execution
error is issued. :

Miscellaneous Instructions

These instructions perform miscellaneous operations that do not
fit into one of the previous categories.

DUPD . Duplicate Doubleword
[dword:dword,dword] FF 01

The doubleword operand at TOS is replicated on the stack.

DUPR Duplicate Real

[real:real real] C6
s '

The real operand at TOS is duplicated on top of the stack.

DUPW Duplicate One Word
[word:word,word] E2

The word operand at TOS is replicated on the stack.

1200301:10B 10-83

P—-MACHINE ARCHITECTURE Chapter 10

LEREC Load Current EREC Pointer
[rword—ptr] AA

A word pointer addressing the EREC corresponding to the
currently executing code segment is pushed onto the stack.

NOTE: EREC produces the same result as "SLDC 8; LPR" but
an update of the TIB for the currently executing task does not
occur.

LPR Load Processor Register
[int:word] 9D

TOS is a register number. The value of the register indicated in
TOS is pushed onto the stack. If TOS is negative, the following
table indicates which register is pushed:

-1 CURTASK
-2 EVEC
-3 READYQ

If TOS is positive, the current p—Machine registers are saved in
the T1B, and TOS is the word index of the register in the TIB to
be pushed. If TOS is less than —3 or greater than the size of a
TIB, the result of LPR is undefined.

NATIVE Enter Native Code
[:] A8

This instruction cannot be generated on the Macintosh by the
UCSD Pascal compiler.

NATINFOB ° Native Code Information
[A9

The instruction pointer is incremented to B bytes beyond the

byte starting after B in the p—code stream. The bytes after B
contain information that is not used by UCSD Pascal on the

1084 1200301:10B

P—CODE DESCRIPTIONS

Macintosh. This instruction acts like a long form of NOP or a
forward jump.

NOP No Operation
[:] 9C

No operation is performed. Execution continues.

RCALL w Macintosh ROM Call
[params:result] FF 32

The Macintosh ROM trap instruction contained in W is executed.
The parameters that must be on the stack before this instruction
and the results left on the stack by executing this instruction are
dependent on the ROM call being executed.

SETAR Set Action Routine
[word—ptr,word—ptr,int,int:abs—ptr] FF 37

To explain this p—code, mnemonic names for the stack operands
will be used. STATLNK is the word pointer operand at TOS—3.
ERECPTR is the word pointer operand at TOS—2. PROCNUM
is the integer operand at TOS—1. SLOTNUM is the integer
operand at TOS. Each of these stack operands will be removed
by this instruction and an absolute pointer operand ADDR will
be pushed onto the stack as the result.

This instruction establishes a p—code routine as an "action
routine”. STATLNK is the static link pointer required in the
MSSTAT field of the MSCW built for a call to the action
routine. ERECPTR is a p—Machine pointer to the EREC for the
segment containing the action routine. PROCNUM is the
procedure number for the routine. SLOTNUM is a number in the
range 0 thru 9 which selects which p—Machine caller routine is to
be used.

1200301:10B 10—85

-P-MACHINE ARCHITECTURE Chapter-J0mma

The p—Machine remembers which p—code routines have been
associated with its caller routines in a table.

Conceptually, the mechanism involves associating each p—code
action routine with a unique native code "caller" routine in the
p—Machine. The 32—Dbit absolute address of the caller routine is
returned as the result ADDR. The address ADDR can then be
passed to the Macintosh operating system and ROM routines.
When the Macintosh ROM decides to call an action routine, it in
fact calls the native code caller routine in the p—Machine. The
native code caller routine in turn forces the p—Machine to do a
call to the p—code action routine to which it has been "attached".
When the p—code action routine returns, the native code caller
routine returns to its caller.

There are ten native code "caller" routines (numbered 0 thru '9)
available for use.

NOTE: p—code action routines must reside in code segments that
are loaded in memory when they are called by the p—Machine’s
caller routines. (The caller routines cannot handle a segment
fault because there is no p—code call instruction to re—execute
after the segment has been brought into memory.)

When one of the caller routines calls a p—code action routine, bit
8 of the MSPROC word of the MSCW is set to 1. This is a
special flag used to indicate to the RPU instruction that control
should be transferred back to the Macintosh ROM or operating
system. This technique takes advantage of the fact that
MSPROC is normally in one of the following ranges of
hexadecimal values when an RPU is executed:

0001 .. OOFF (Normal return)

If the RPU handler detects bit 8 of MSPROC turned on, and bit
15 isn’t turned on, it causes a return to the appropriate
Macintosh ROM routine.

10--86 1200301:10B

P—-CODE DESCRIPTIONS

SPR Store Processor Register
[int,word:] D1

TOS—1 is a register number. If TOS—1 is negative, TOS is
stored in one of the following registers:

-1 CURTASK
-2 EVEC
-3 READYQ

Otherwise, the current p—Machine registers are stored in the
TIB. TOS is stored in the TIB at offset TOS—1. Finally, the
p—Machine registers are restored from the TIB.

SWAP Swap

[word,word:word,word] BD

Word TOS is swapped with word TOS—1 on the stack.

SWAPD Swap Doublewords
[dword,dword:dword,dword] FF 02

The two doubleword operands at TOS and TOS—1 are exchanged
on the stack.

STANDARD PROCEDURES

The standard procedures are procedures that are implemented in
the PME directly, either for speed or because the nature of the
procedure requires that it be written in native code. A standard
procedure is called via a CXG or SCXGI1 instruction. The
procedure executed is determined by the procedure number.

Most of the standard procedures require parameters on the stack,
and some expect a function return value to be passed back. In
some sense they act more like individual p—codes than
procedures, because no RPU instruction is executed to return

1200301:10B 10—-87

P—MACHINE ARCHITECTURE Chapter 10

control to the caller. For this reason, the procedure descriptions
that follow are presented in a format similar to that of the
p—code descriptions—showing the stack before and after
execution. The first line of each description gives the name of the
procedure and its parameters; the second line gives the stack
values and procedure number.

Standard procedures fall into several categories: I/O support,
string procedures, compiler procedures, code pool procedures,
concurrent procedures, and miscellaneous procedures. The
procedures in each category are discussed in the paragraphs that
follow.

I/O Support

IORESULT
[zero:int) 1E

TOS is a return word. JIORESULT returns the value of the
p—Machine register IORESULT.

IOCHECK
] 17

IOCHECK tests the p—Machine register IORESULT for 0. If the

register is nonzero, an 1/O execution error is issued.

String

The standard string procedures are MOVELEFT, MOVERIGHT,
FILLCHAR, and SCAN.

10—88 1200301:10B

STANDARD PROCEDURES

MOVELEFT
[byte—ptr,byte—ptr,int:] OF

The integer operand at TOS is the number of bytes to move.
The operand at TOS—1 is a byte pointer to the destination. The
operand at TOS—2 is a byte pointer to the source. If TOS is 0 or
negative, no bytes are moved. Otherwise, the bytes are moved
one at a time starting from the left (low order byte).

MOVERIGHT
[byte—ptr,byte—ptr,int:] 10

The integer operand at TOS is the number of bytes to move.
The operand at TOS—1 is a byte pointer to the destination. The
operand at TOS—2 is a byte pointer to the source. If TOS is 0 or
negative, no bytes are moved. Otherwise, the bytes are moved
one at a time starting from the right (high order byte).

FILLCHAR
[byte—ptr,int,word:] 15

The operand at TOS is the character. The integer operand at
TOS—1 is the length to fill. The operand at TOS—2 is the
starting address for the fill. If TOS—1 is 0 or negative, no filling
is done. Otherwise, memory is filled with the byte TOS for
TOS—1 bytes starting at address TOS—2.

SCAN
[zero,int,bool,byte,byte—ptr,word:int] 16

The word operand at TOS is a mask field (unused). The operand
at TOS—1 is a byte pointer to the array to scan. The operand at
TOS—2 is the byte to look for. The boolean operand at TOS—3
is the scan kind (0 means until equal, 1 means until not equal).
The integer operand at TOS—4 is the length to scan. If the
length is negative, the scan proceeds to the left. The zero
operand at TOS—5 is the function result word.

1200301:10B 10—-89

P-MACHINE ARCHITECTURE Chapter 10

The array at TOS—1 is scanned in the direction indicated in
TOS—4 until the character TOS—2 is found (TOS—3 = 0) or a
nonmatching character is found (TOS—3 = 1) or until the length
in TOS—4 is exhausted. The distance between the character
where SCAN stopped and the start character is passed back as
the function result.

Compiler

The standard compiler procedures are TREESEARCH and
IDSEARCH.

TREESEARCH
[zero,addr,addr,addr:int) 26

The operand at TOS is a pointer to the target string, which is a
packed array of eight characters. The operand at TOS—1 is a
pointer to where the result of the search will be saved. The
operand at TOS—2 is a pointer to the root of the identifier tree
to be searched. The zero operand at TOS—3 is the return word.

TREESEARCH searches the symbol table tree TOS—2 for the
target string TOS, returning a pointer to where the target was
found in the variable pointed to by TOS—1. If the target wasn’t
found, the variable pointed to by TOS—1 will point to the leaf
node of the tree that was searched last. The function result
returns status information:

o target was found
1 terget is to the right
-1 target is to the left

10-90 1200301:10B

STANDARD PROCEDURES

Each node of the tree contains the following fields at the
indicated byte offsets:

(o] name (8 characters)
8 right link (pointer)
10 left link (pointer)

IDSEARCH ‘
[addr,addr:] 25

The operand at TOS is the address of a buffer. The operand at
TOS—1 is the address of a record that has the following fields at
the indicated byte offsets:

SYMCURSOR
SY

OP

ID

e N O

IDSEARCH scans the buffer at byte offset SYMCURSOR for an
identifier (string beginning with a letter, containing letters,
digits, and underscores), ignoring underscores and masking
lowercase to uppercase. The identifier is blank—filled to eight
characters, then placed in ID for a maximum of eight characters.
SYMCURSOR is updated to point to the last character past the
identifier.

Finally, the identifier is looked up in a table of reserved words,
and its two characteristics are filled into SY and OP. If the
identifier is not found in the table, SY is set to 0 and OP is set to
15.

Here is the table of reserved words, along with the SY and OP
values for each one:

D sY oP
AND 39 2
ARRAY 44 15
BEGIN 19 15

1200301:10B 10-91

P—-MACHINE ARCHITECTURE Chapter 10

CASE 21 15
CONST 28 15
DIV 39 3
DO 6 15
DOWNTO 8 15
ELSE 13 15
END 9 15
EXTERNAL 53 15
FOR 24 15
FILE 46 15
FORWARD 34 15
FUNCTION 32 15
GOTO .26 15
IF 20 15
IMPLEMEN 52 15
IN 41 14
INTERFAC 51 15
LABEL 27 15
MOD 39 4
NOT 38 15
OF 11 15
OR : 40 7
PACKED 43 15
PROCEDUR 31 15
PROCESS 56 15
‘PROGRAM 33 i5
‘REPEAT 22 15
RECORD 45 15
SET 42 15
SEGMENT 33 15
SEPARATE 54 15
THEN 12 15
TO 7 15
TYPE 29 15
‘UNIT 50 15
~UNTIL 10 15
USES 49 15
VAR 30 15
WHILE 23 15
WITH 25 15

10—-92 1200301:10B

- - STANDARD PROCEDURES

Code.Pool

The standard code pool procedure is RELOCSEG.

RELOCSEG
[addr:] 04

The operand at TOS is the address of an EREC. RELOCSEG
relocates the segment pointed to by the EREC. Since
RELOCSEG is called after a segment is first read into memory,
all necessary relocation is performed.

Concurrency

The standard concurrency procedures are: QUIET, ENABLE,
and ATTACH.

QUIET
[2] 1B

QUIET must disable all p—Machine events such that no attached
semaphore is signaled until the corresponding call to ENABLE is
made.

ENABLE

[1] 1C
ENABLE reenables p—Machine events that have been disabled by
QUIET.

ATTACH
[addr,int;] _ 1D

The integer operand at TOS is the number of a p—Machine event

vector. It must be in the range 0 through 63. The operand at
TOS—1 is the address of a semaphore.

1200301:10B 10-93

P-MACHINE ARCHITECTURE : Chapter 10

ATTACH associates the semaphore pointed to by TOS—1 with
the vector TOS such that whenever the event TOS is recognized,
the semaphore is signaled. If the semaphore pointer is NIL,
vector TOS must be unattached from any sempahore it was
formerly attached to. If TOS is not in the range 0 through 63, no
operation is performed.

Miscellaneous

Standard procedures classified as miscellaneous are TIME and
POWEROFTEN.

TIME
[addr,addr] 14

The operand at TOS is a pointer to where the high word of the
time will be saved. The operand at TOS—1 is a pointer to where
the low word of the time will be saved.

TIME saves the high and low words of the system clock (ba 32—bit
60 Hz clock) in the indicated words. The clock value returned is
the Macintosh time (number of ticks since January 1, 1904).

.

POWEROFTEN

7€ro,%zero,zero,zero,int:real 20
b b b b

The integer operand at TOS is a positive integer power.
POWEROFTEN returns the real value ten to the power of TOS.
If TOS is negative or TOS is greater than the largest expressible
power, a floating point execution error is issued. The four words
of zero are the return value.

10-94 1200301:10B

STANDARD PROCEDURES

LONG INTEGERS

The long integer data type is a nonscalar data type unique to
UCSD Pascal. Long integers may be up to 36 decimal digits long.
Although they lack some of the flexibility of scalar types, long
integers allow operations on integers outside the range of UCSD
Pascal integer2 type (—2147483648..2147483647). In
computations, long integers act like real numbers; however, they
act more like sets in the way they are implemented and in the
way they are passed as parameters. ’

Number Format

On the stack (when used in calculations), long integers are of
variable length, and consist of a length word followed by a
number component.

A long integer five words long that is on the top of stack looks
like this:

B R ittt + {--SP
length (1 word) 13
number
number (6 words) component
rest of stack J17777771171777

When a long integer is assigned to a variable, or stored in a file
on disk, only the number component is present. The length word
is present only when the number is on the stack. FEach long
integer variable is allocated a fixed number of words. When a
long integer is assigned to a variable, the number must be coerced
to the storage size of the variable. If this can’t be done, an
Integer Overflow execution error occurs.

The storage size for long integers is from two to ten words, based
on the number of digits specified in the declaration statement.

1200301:10B 10—-95

P—-MACHINE ARCHITECTURE Chapter 10

The following table shows the allocation size for each declared
size.

digits size (words)

1..
5..
9..

— 00 W

2

13..16
17..20
21..24
25..28
29..32
33..36

WO 003D U WY

it
(=]

The declaration size reflects the approximate number of digits
that may be stored in the number. More digits than the declared
number of digits may sometimes be stored in a long integer
variable. As a result, the overflow value for a long integer may
vary depending on the size of the long integer. The fact that
more digits than the declared size may be stored in a long integer
variable shouldn’t be relied upon. The number of digits specified
in the declaration of a long integer should be treated as the
maximum number of digits that the number will ever hold.

The following paragraphs show the format of the long integer
number component.

®

UCSD Pascal on the Macintosh stores long integers by using a
sign—magnitude binary—coded decimal (BCD) format with the
first word a sign word. The magnitude part of the long integer is
stored in natural byte order (the most significant digits in the
byte with the lowest address); the number is right—justified
within the field. In the sign word, 0 means positive, and FFFF
means negative.

Examples:

00 00 OO0 02 76 99 is 27699
FF FF 00 10 is -10

00 00 00 00 is O

FF FF 00 00 is also O

10—-96 1200301:10B

LONG INTEGERS

Long Integer Constants

Long integer constants are constructed at run time by code
generated by the compiler. This code builds each constant by
doing a series of calculations on integers and integer2s.

Example 1. To build the long integer constant 12, the compiler
generates code to do the following:

ILI(12)

where 12 is an integer constant, and ILI is the routine to convert
an integer to a long integer.

Example 2. To build —8733442, the compiler generates code to
do the following:

- (I2LI(8733442))
Example 3. To build the long integer constant 123456789012345,
the compiler generates code to do the following:

I2LI(1234567890) «I2LI(100000) + I2LI(12345)

1200301:10B 10—-97

-P-MACHINE ARCHITECTURE Chapter 10

Here is a listing of the actual p—code generated for the last
example. The long integer routines called to do each operation
are described in detail later.

LAO 1 8610

LDCD 1234567890 FFO0499602D2

SLDC 22 16

SCXG LONGOPS 2 7202 I2LT
LDCD 100000 FFOOO00186A0

SLDC 22 16

SCXG LONGOPS 2 7202 I2L1
SLDC 8 08

SCXG LONGOPS 2 7202 MPLI
LDCI 12345 813930

EXTI FD

SLDC 22 16

SCXG LONGOPS 2 7202 I2L1
SLDC 2 - 02

SCXG LONGOPS 2 7202 ADLI
SLDC 3 OB

SLDC [¢) 00

SCXG LONGOPS 2 7202 ADJL
STM 6 8EOB

The LONGOPS Unit

LONGOPS is the UCSD Pascal unit that implements the long
integer functions. LONGOPS contains three procedures:
FREADDEC reads a long integer, FWRITEDEC writes a long
integer, and DECOPS performs the long integer arithmetic
functions.

Although LONGOPS isn’t part of the p—Machine, it isn’t a
normal UCSD Pascal unit either. Normally, a UCSD Pascal
procedure or function must have fixed—size parameters, where
the :parameter’s size is known at compile time. There is one
procedure in LONGOPS (DECOPS) that takes variable size
parameters. One way to view this is that each call to DECOPS is
like the execution of a single p—code in the PME. Different
functions of DECOPS take different parameters and return
different results, just as different p—codes do. In fact, DECOPS

10—-98 1200301:10B

.

LONG INTEGERS

performs functions very similar to the set p—codes in the PME.
The DECOPS Routine

DECOPS is an external (assembly language) procedure in unit
LONGOPS that performs the long integer functions.

Parameters are passed to DECOPS on the stack. On every call,
the stack looks like this:

B + {--SP
1-2 words return address
1 word function code
n words per;r;:;ters

“ e

rest of stack |/////////////77

The return address is the standard return information for an
assembly language routine.

The function code is a word that describes the function to be
performed. The actions performed by each function are discussed
below, along with the numeric value of the associated function
code. Function codes are even integers between 0 and 34. Even
integers are used to facilitate jumping indirectly through a word
array of addresses.

The parameters vary for each long integer function. The
parameter requirements for each routine are included in the
description of the routine.

Below are the descriptions of each routine in DECOPS. The first
line of each description contains the function name and
mnemonic. The second line contains a list of the stack operands
before and after the function, and the function code (in hex).
The stack lists are in brackets, separated by a colon. The list to
the left of the colon is the stack before the function; the list to
the right of the colon is the stack contents after the function.

1200301:10B 10—99

‘P-MACHINE ARCHITECTURE Chapter 10

The rightmost operand in each list is the top of stack operand.
Finally, there is a detailed description of the function, including
any error conditions that should be recognized.

Here are the abbreviations used in the descriptions:

longint Long Integer. A variable—length long integer,
containing a length word.

alongint Adjusted Long Integer. A fixed length long integer
that does not contain a length word.

int A 16—bit signed integer quantity.

bool Boolean. A boolean quantity (1=TRUE,
0=FALSE).

uint Unsigned Integer. A 16—bit unsigned integer in the
range 0..65535

int2 Integer2. A 32—bit signed integer.

addr Address. A 16—bit offset within the Pascal data
area.

ADIJL Adjust Long Integer

[longint,int:alongint] 00

Adjusts the longint operand at TOS—1 into an adjusted long
integer suitable for assignment to a variable. It does this by
stripping off the size word from the longint, then expanding or
contracting it until it is the number of words in length as specfied
by: the integer operand at TOS. If a contraction can’t be done
because of overflow, an Integer Overflow execution error is
reported.

10—-100 1200301:10B

LONG INTEGERS

ADLI Add Long Integer
[longint,longint:longint] 02

Adds the two long integer operands at TOS—1 and TOS, placing
the result on the stack. If the result has more than 36 digits, an
Integer Overflow execution error may be reported.

SBLI Subtract Long Integer
[longint,longint:longint] . 04

Subtracts the long integer operand at TOS from the long integer
operand at TOS—1, placing the result on the stack. If the result
has more than 36 digits, an Integer Overflow execution error may
be reported.

NGLI Negate Long Integer
[longint:longint] 06

The long integer operand at TOS is negated.

MPLI Multiply Long Integer
[longint,longint:longint] 08

The long integer operands at TOS—1 and TOS are multiplied,
and the result is pushed onto the stack. If the result has more
than 36 digits, an Integer Overflow execution error may be
reported.

DVLI Divide Long Integer
[longint,longint:longint] 0A

The long integer operand at TOS—1 is divided by the long
integer operand at TOS, and the result is pushed onto the stack.
If the result has more than 36 digits, an Integer Overflow
execution error may be reported. If the divisor is zero, a Divide
by Zero execution error is reported.

1200301:10B 10—-101

.

P-MACHINE ARCHITECTURE Chapter 10

LISTR Long Integer to String
[longint,addr,int:] ocC

The long integer operand at TOS—2 is converted into a string,
placing the result at the location pointed to by the operand at
TOS—1. The integer operand at TOS is the maximum length of
the string. If the long integer requires more than characters than
specified by the maximum length, a String Overflow execution
error is reported.

RILI Reversed Integer to Long Integer
[int,longint:longint,longint] O0E

The integer operand at TOS—1 is converted into a long integer.
The long integer at TOS is left unchanged at the top of the stack.

CMPLI Compare Long Integers
[longint,longint,int:bool] 10

The long integer operand at TOS—2 is compared with the long
integer operand at TOS—1 and the boolean result of the
comparison is pushed onto the stack. The type of comparison to
be .performed is indicated by the integer operand at TOS as
follows:

0 less than

1 less than or equal

2 greater than or equal

3 greater than

4 not equal

'5 equal
111 Integer to Long Integer
[int:longint] 12

The integer operand at TOS is converted into a long integer and
pushed onto the stack.

10—-102 : 1200301:10B

LONG INTEGERS

LII Long Integer to Integer
[longint:int] 14

The long integer operand at TOS is converted into an integer and
pushed onto the stack. If the conversion can’t be made (long
integer isn’t in the range —32768..32767), an Integer Overflow
execution error is reported.

12L1 Integer2 to Long Integer
[int2:longint] 16

The integer2 operand at TOS is removed from the stack,
converted into a long integer, and the result is pushed onto the
stack.

RI2LI) Reversed Integer2 to Long Integer
[int2,longint:longint,longint] 18

The integer2 operand at TOS—1 is removed from the stack,
converted into a long integer, and the result is pushed onto the
stack. Following the operation, the long integer operand at TOS
remains at the top of the stack.

LII2 Long Integer to Integer2
[longint:int2] 1A

The long integer operand at TOS is removed from the stack,
converted to an integer2 operand, and the result is pushed onto
the stack. If the value of the long integer is outside the range of
values that can be represented by an integer2 operand, an Integer
Overflow execution error is reported.

ULI Unsigned Integer to Long Integer
[uint:longint] 1C

The unsigned integer operand at TOS is removed from the stack,

converted to a long integer, and the result is pushed onto the
stack.

1200301:10B 10—103

P—-MACHINE ARCHITECTURE Chapter 10

RULI Reversed Unsigned to Long Integer
[uint,longint:longint,longint] 1E

The unsigned integer operand at TOS—1 is converted to a long
integer on the stack. Following the operation, the long integer
operand at TOS remains at the top of the stack.

LIU Long Integer to Unsigned Integer
[longint:uint] 20

The long integer operand at TOS is removed from the stack,
converted to an unsigned integer, and the result is pushed onto
the stack. If the long integer operand is negative, or greater than
65535, an Integer Overflow execution error is reported.

ABLI Absolute Value Long Integer
[longint:longint] 22

The long integer operand at TOS is replaced by the long integer
result containing its absolute value.

10—104 : 1200301:10B

APPENDIX A
MACINTOSH INTERFACE

A.1. Table of Compile Time Dependencies

The following table indicates the compile time dependencies
between the Macintosh interface units. For example, if your
program uses the unit ControlMgr then it must first use the units
MacCore, QdTypes, and TbTypes. All of the units with a ’C’ in
the code column contain code and are therefore included in the
Mac Library file. Some of the units that contain code reference
other units that contain code. Runtime dependencies are listed
after the ’C’ in the code column. For example, the FileMgr
references the PBIOMgr. If your program uses the FileMgr then
you must make the FileMgr, PBIOMgr and MacCore units
available to your program at runtime.

1200301:0AB A-1

MACINTOSH INTERFACE Appendix A

Unit Name Code Compile Time Dependencies

MacCore (M) C
MacData (D) C/ M M Q
MacErrors (E)
OSTypes (0)
QDTypes (Q®
TBTypes (@D]

T
0 o
-

ControlMgr
DeskMgr
DialogMgr C

=4 -

EventMgr
FileMgr C
FontMgr

MemoryMgr (MM) C / M
MenuMgr
OSUtilities C / M MM
Packages

PBIOMgr (P) C
PrintDrvr
PrintMgr C
QuickDraw

ResMgr

[g]
N NN
x

MM P

(2}
NN
z
p2)y)) 0 0 0 P2l iy iyl

ScrapMgr

Serial C
Sound C / M
"TBoxUtils
"TextEdit
WindowMgr

~
z E<
TXTFFTTITTTITTTITTTLTTTTI

0 0D
-

A-2 1200301:0AB

Table of Compile Time Dependencies

A.2 Identifier Cross—Reference List

The following list defines the two—letter codes used for the
ToolBox Managers.

CM ControlMgr
DS DeskMgr
DL DialogMgr
EM EventMgr
FL FileMgr
M FontMgr
MC MacCore
MD MacData
ME MacErrors
MM MemoryMgr
MN MenuMgr
oT OSTypes
ou OSUtilities
PK Packages
PB PBIOMgr
PR PrintMgr
PD PrintDrvr
QT QDTypes
QD QuickDraw
RM ResMgr

SM ScrapMgr
SD Serial

SN Sound

TU TBoxUtils
TT TBTypes
TE TextEdit
WM WindowMgr

The following cross reference list contains the identifiers from the
Macintosh interface units. The two—letter code to the right of
each identifier indicates which unit it is in.

A5 MD AbortErr ME abs _nil MC
AbbrevDate PK abortEvt EM activateEvt EM
abbrLen PK abortMask EM activMask EM

1200301:0AB A-3

MACINTOSH INTERFACE

AddPt
AddReference
AddRefFailed
- AddResFailed
AddResMenu
AddResource
aDefltem
AinRefNum
alarm

Alert
AlertTemplate
AlertTHndl
AlertTPtr
Allocate
AllocPtr
altDBoxProc
amplitude

AngleFromSlop

AoutRefNum
ApFile
applEvt
applMask
app2Evt
app2Mask
app3Evt
app3Mask
app4Evt
app4Mask
AppendMenu
appleSymbol
applFont
ApplicZone
arcProc
arrow

ascent

ascent

athens
autoKey
autoKeyMask
autoTrack

BackColor
BackPat

A—4

BadBtSlpErr
BadCkSmErr
BadDBtSlp
BadDCkSum
BadMDBerr
BadUnitErr
baseAddr
baud1200
baud1800
baud19200
baud2400
baud300
baud3600
baud4800
baud57600
baud600
baud7200
baud9600
BdNamErr
bDraftLoop
BeginUpdate
bFileVers
BinRefNum
BitClr
BitMap
BitMapPtr
Bits16
BitSet
bitsProc
BitTst
bJDocLoop
bJobx
bkColor
BkLim
bkPat

black
blackBit
blackColor
BlockMove
blueBit
blueColor
bold

bold

Appendix A

ME bothAxes WM
ME botRight QT
ME bottom QT
ME bounds QT
ME boundsRect DL
ME boundsRect DL
QT BoutRefNum SD
SD bPatScale PR
SD bPort PR
SD BreakRecd ME
SD BringToFront WM
SD bSpoolLoop PR
SD btnCtrl DL
SD bUIOffset PR
SD bUlShadow PR
SD BUIThick PR
SD bUserlLoop PR
SD bUser2Loop PR
ME Button EM
PR bXInfoX PR
WM Byte MC
PR

SD calcCRgns CM
TU CalcMenuSize MN
QT CalcVis WM
QT CalcVisBehind WM
QT Cancel DL
TU CantStepErr ME
QT CaretTime EM
TU CautionAlert DL
PR century PK
PR ChangedResour RM
QT Chars TE
MM CharsHandle TE
QT CharsPtr TE
MD CharWidth QD
QD checkBoxProc CM
QD Checkltem MN
MM checkMark MN
QD CheckUpdate WM
QD chkCtrl DL
QT ClearMenuBar MN
FM ClipAbove WM

1200301:0AB

ClipRect
clipRgn
ClkRdErr
ClkWrErr
CloseDeskAcc
CloseDialog
CloseDriver
ClosePicture
ClosePoly
ClosePort
CloseResF'ile
CloseRgn
ClosErr
CloseWindow
ClrAppFiles
CntEmpty
CntHandles
CntNRel
CntRel
CntrlParam
ColorBit
colrBit
commentProc
CompactMem
condense
contRgn
contrlAction
contrlData
contrlDefProc
contrlHilite
contriMax
contrlMin
contrlOwner
contrlRect
contrlRfCon
contrlTitle
contrlValue
contrlVis
Control
ControlErr
ControlHandle
controlList
ControlPtr

1200301:0AB

Identifier Cross—Reference List

ControlRecord
copy

CopyBits
copyCmd
CopyRgn
CorErr
CouldAlert
CouldDialog
count

count
CountAppFiles
CountMItems

CountResources

CountTypes
Create
CreateResFile
crOnly
CSCode
CSParam
ctnlcon
ctrlltem
CTSHold
cumErrs
CurResF'ile
currFmt
currLeadingZ
currNegSym
currSyml1
currSym?2
currSym3
currSymTrail
currTrailingZ
Cursor
CursorPtr
cutCmd
cyanBit
cyanColor

data

datab
datab
data’7
data8

cM
PK
QD
DS

QD

DL
DL

dataHandle
DataVerErr
Date2Secs
dateF'mt
dateOrder
dateSep
DateTimeRec
day
dayLeading0
dayLeadingZ
dayOfWeek
days
DBoxProc
decimalPt
Delay
DeleteMenu
DeltaPoint
denom
Dequeue
descent
descent
destRect
DetachResourc
device

device
dialogKind
DialogPeek
DialogPtr
DialogRecord
DialogSelect
DialogTemplat
DialogTHndl
DialogTPtr
DIBadMount
DiffRgn
DIFormat
DILoad
DInstErr
DirFulErr
Disableltem
diskEvt
diskMask
dispCntl

WM

DL
DL
DL
DL
DL
PK
QD
PK
PK

ME
MN
EM
EM
CM

. MACINTOSH INTERFACE

DisposDialog
DisposeControl
DisPoseMenu
DisposeRgn
DisposeWindow
DisposHandle
DisposPtr
DIUnload
DIVerify
DiZero
dkGray
DlgCopy
DlgCut
DlgDelete
DlgPaste
DMY
DocumentProc
DoubleTime
dQDrive
dQDrvSize
DQFSID
dQRefNum
dragCntl
DragControl
DragGrayRgn
DragWindow
DrawChar
drawCntl
DrawControls
DrawDialog
DrawGrowlcon
DrawMenuBar
DrawNew
DrawPicture
DrawString
DrawText
DRemovErr
driverEvt
driverMask
DrvQEl
drvQElem
drvQType
DSAddressErr

A-6

DL DSBadLaunch ME

CcM
MN
QD
WM
MM
MM
PK
PK
PK
MD
DL
DL
DL
DL
PK
WM
EM
oT
OT
OT
oT
cM
cM
WM
WM
QD
CcM
cM
DL
WM
MN
WM
QD
QD
QD
ME

EM
EM
OoT
oT
oT
ME

DSBusError
DSChkErr
DSCoreErr
DSFPErr
DSFSErr
DSIlInstErr
DS10CoreErr
DSIrqErr
DskFulErr
DSLineAErr
DSLineFErr
DSLoadErr
DSMemFullErr
DSMiscErr
DSNotThel
DSOvFlowErr
DSPrivErr
DSRelnsert
DSStknHeap
DSSysErr
DSTracErr
DSZeroDivErr
dummyType
DupFNErr
duration
duration

editField
editOpen
editText
Eject
EmptyHandle
EmptyRect
EmptyRgn
enableFlags
Enableltem -
EndUpdate
Enqueue
EOFErr
EqualPt
EqualRect
EqualRgn

Appendix A

EqualString ou

ME Erase QD
ME EraseArc QD
ME EraseOval QD
ME ErasePoly QD
ME EraseRect QD
ME EraseRgn QD
ME EraseRoundRec QD
ME errNum FM
ME ErrorSound DL
ME errs SD
ME evenParity SD
ME Event OoT
ME EventAvail EM
ME EventRecord TT
ME everyevent EM
ME eveStr PK
ME EvQEl oT
ME evQElem oT
ME evQType oT
ME EvtRecPtr TT
ME evts SD
ME extend QT
OT ExtFSErr ME
ME extra FM
SN
SN face FM
family ™M
DL FBsyErr ME
DL ({CTS SD
DL fdCreator oT
FL fdFlags oT
MM fdFldr oT
QD fdLocation OoT
QD f{dType oT
MN FeedCut PR

MN FeedFanFold PR
WM FeedMechCut PR
FeedOther PR

ouU
ME
QD
QD
QD

FFmode SN
fFromUsr PR
FFSynthRec SN
fgColor QT
1200301:0AB

fiCreator
fiflags

fifldr

fih
FileParam
Fill

FillArc
FillOval
fillPat
FillPoly
FillRect
FillRgn
FillRoundRect
fiLocation
flmaging
FindControl
finderInfo
FindWindow
Finfo

fInX

firstBL
fiType

fiv

Fixed
FixMul
FixRatio
FixRound
Flags
FlashMenuBar
FLckdErr
FlushEvents
FlushVol
FMInPtr
FMlInput
FMOutPtr
FMOutput
fname
fname
FNFErr
FNOpnErr
font
fontHandle
FontInfo

1200301:0AB

QT

. Identifier Cross—Reference List

FontInPtr
ForeColor
FOsType
fPgDirty
FPoint
Frame
FrameArc
FrameOval
FramePoly
FrameRect
FrameRgn
FrameRoundRe
framingErr
FreeAlert
FreeDialog
FreeMem
freeWave
FrMacBool
FrontWindow
FrSmall
FSClose
FSDelete
FSDSErr
FSOpen
fsQType
FSRead
FSWrite
FTmode
FTSoundRec
FTSynthRec
ftype

ftype
fversion

fvrefnum
fXon

geneva
GetAlrtStage
GetAppFiles
GetAppParms
getCancel
GetClip
GetCRefCon

GetCTitle CcM
GetCtlAction CM
GetCtlMax CM
GetCtlMin CM
GetCtlValue CM
GetCursor TU
GetDItem DL
getDlgld PK
getDrive PK
GetDrvQHdr PB
getEject PK
GetEOF FL
GetFInfo FL
GetFNum FM
GetFontlnfo QD
GetFontName FM
GetFPos FL
GetFSQHdr PB
GetHandleSize MM
Getlcon TU
GetIndResourc RM
GetIndString OU
GetIndTypes RM
Getltem MN
GetItemIcon MN
GetltemMark MN
GetltemStyle MN
GetIText DL
GetKeys EM
GetMenu MN
GetMenuBar MN
GetMHandle MN
GetMouse EM
GetNamedResouRM
GetNewControl CM
GetNewDialog DL
GetNewMBar MN
GetNewWindo WM
GetNextEvent EM
getNmLst PK
getOpen PK
GetOsEvent EM
GetPattern TU
A-7

- MACINTOSH INTERFACE

GetPen
GetPenState
getPicProc
GetPicture
GetPixel
GetPort
GetPtrSize
GetResAttrs
GetResFileAtt
GetResInfo
GetResource
GetScrap
getScroll
GetSoundVol
GetString
GetSysPPtr
GetTime

GetTrapAddres

GetVCBQHdr
GetVinfo
GetVol

GetWindowPic

GetWMgrPort
GetWRefCon
GetWTitle
GetZone
GFPErr
GlobalToLocal
goAwayFlag
goAwayFlag
good

gport

gProcs
GrafDevice
GrafPort
grafProcs
GrafPtr

gray

greenBit
greenColor
GrowWindow
GZCritical
GZProc

A-8

QD
QD
QT
TU
QD
QD
MM
RM
RM
RM
RM
SM
PK
SN
TU
oU
ouU
ouU
PB
FL
FL
WM
WM
WM
WM
MM
ME
QD
TT
DL
PK
PR
PR

GZSaveHnd

h
HandAndHand
Handle
HandleZone
HandToHand
hAxsOnly
hAxisOnly
HeapData
HFstFree
HideControl
HideCursor
HidePen
HideWindow
HiliteControl
hilited
HiliteMenu
HiliteWindow
hiLong
HiWord
HLock
HNoPurge
HomeResFile
hotSpot

hour

hPic

hPrint
HPurge
hrLeadingZ
hText
HUnlock

hwOverrunErr

iBandH
iBands
iBandV
iconltem
iCopies
iCurBand
iCurCopy
iCurPage
iDev

MM

QT
ouU
MC
MM
ou
WM
CM
MM
MM
CM
QD
QD
WM
CM
TT
MN
WM
TU
TU
MM
MM
RM
QT
ouU
PR
PR
MM
PK
TT
MM
SD

PR
PR
PR
DL
PR
PR
PR
PR
PR

Appendix A

iDevBytes PR
iFileVol PR
iFMgrCtl PD
iFstPage PR
iHRes PR
iLstPage PR
inButton CM
inCheckBox CM
inContent WM
inDesk WM
inDownButton CM
inDrag WM
InfoScrap SM
inGoAway WM
inGrow WM
initCntl CM
InitCursor QD
InitIWMerr ME
InitMenus MN
InitPort QD
InitQueue PB
InitUtil oU
InitZone MM
inMenuBar WM
inPageDown CM
inPageUp CM
inPort TT
InsertMenu MN
InsertResMenu MN
InsetRect QD
InsetRgn QD
inSysWindow WM
Int64Bit TU
IntegerPtr MC
inThumb CcM
int10Hndl PK
intl0Ptr PK
intlORec PK
intl0Vers PK
intl1Hndl PK
intl1Ptr PK
intl1Rec PK
intl1Vers PK
1200301:0AB

inUpButton
InvalRect
InvalRgn
inverseBit
Invert
InvertArc
InvertOval
InvertPoly
InvertRect
InvertRgn
InvertRoundRe
ioActCount
10AIBISt
ioBuffer
ioCmdAddr
ioCompletion
IO0Err
ioFDirlndex
ioFlAttrib
ioF1CrDat
ioF1Fndrlnfo
ioFlLglLen
ioFIMdDat
ioFINum
ioF1PyLen
ioFIRLgLen
ioFIRPyLen
ioF1IRStBlk
10F1StBlk
ioF1VersNum
ioFRefNum
ioFVersNum
ioMisc
ioNamePtr
ioPermssn
ioPosMode
ioPosOffset
ioQElem
ioQType
ioRefNum
ioReqCount
1oResult
ioTrap

1200301:0AB

- Identifier Cross—Reference List

ioVAIBIkSiz
ioVAtrb
10VblLn
ioVClpSiz
ioVCrDate
10VDirSt
ioVersNum
ioVFrBlk
ioVLsBkUp
io0VNmAIBIks
ioVNmFls
10VNxtFNum
ioVollndex
ioVRefNum
iPageH
iPageV
iPrBitsCtl
iPrDevCtl
iPrEvtCtl
iPrIOCtl
iPrVersion
iRowBytes
IsDialogEvent
italic

italic
itemDisable
items

itemsID
itemsID
iTotBands
iTotCopies
iTotPages
IUDatePString
IUDateString
IUGetIntl

IUMagIDString

IUMagString
IUMetric
IUSetIntl

IUTimePString

IUTimeString
iVRes

just

kbdPrint
keyDown
keyDownMask
KeyMap
KeyMapPtr
keyUp
keyUpMask
KillControls
KillIO
KillPicture
KillPoly

leading
leading

left

length

Line
lineHeight
lineProc
lineStarts
LineTo
listSep
LoadResource
LoadScrap
localrtn
LocalToGlobal
loLong
london
LongDate
Longlnt
LongIntPtr
LongMul
LoWord
1PaintBits
1IPrEvtAll
IPrEvtTop
IPrLineFeed
IPrPageEnd
IPrReset
1ScreenBits
1tGray

TT

oU
EM
EM
EM
EM
EM
EM
CM
FL

QD
QD

QT
FM
QT
TT
QD
TT
QT
TT
QD
PK
RM

QD

- MACINTOSH INTERFACE

MacBool
MacBoolPtr
MacPtr

mac _ false
mac _ true
magentaBit
magentaColor
MapPoly
MapPt
MapRect
MapRgn
mask
MaxMem
MaxINRel
MaxRel
mChooseMsg
mDownMask
mDrawMsg
MDY
memAdrErr
memAZErr
memBCErr
MemError
MemFullErr
memPCErr
memPurErr
memSCErr
memWZErr
menuData
MenuHandle
menuHeight
menulD
Menulnfo
MenuKey
menuProc
MenuPtr
MenuSelect
menuWidth
message
metricSys
MFulErr
MinCBFree

A—-10

minLeadingZ
minute

misc
mntLeadingZ
ModalDialog
mode

mode

mode
modifiers
monaco
month
months
MoreMast
MoreMasters
mornStr
mouseDown
mouseUp
Move
MoveControl
MovePortTo
MoveTo
MoveWindow
mSizeMsg
Munger
mUpMask

needbits
networkEvt
networkMask
NewControl
NewDialog
NewHandle
NewMenu
NewPtr
NewRgn
NewString
NewWindow
new York
nextControl
nextWindow
NilHandleErr
nLines
NoAdrMkErr

SN

EM

FM
EM
EM
CcM
DL
MM
MN
MM
QD
TU
WM
FM
cM
TT
ME
TT
ME

.~ Appendix A
noConstraint CM
NoDriveErr ME
NoDtaMkErr ME
NoErr ME
noGrowDocPro WM
NoMacDskErr ME
noMark MN
NoNybErr ME
noParity SD
normalBit QD
noScrapErr ME
NoteAlert DL
notelcon DL
NotOpenErr ME
notPatBic QD
notPatCopy QD
notPatOr QD
notPatXor QD
notSrcBic QD
notSrcCopy QD
notSrcOr QD
notSrcXor QD
noTypeErr ME
NSDrvErr ME
NsVErr ME
null SD
nullEvent EM
nullMask EM
numer FM
ObscureCursor QD
oddParity SD
OffLinErr ME
OffsetPoly QD
OffsetRect QD
OffsetRgn QD
OK DL
OpenDeskAcec DS
OpenDriver FL
OpenErr ME
OpenPicture QD
OpenPoly QD
OpenPort QD

1200301:0AB

OpenResFile
OpenRgn
OpWrErr
OsErr
OsEventAvail
OsType
OsTypePtr
outline
ovalProc

Paint
PaintArc
PaintBehind
PaintOne
PaintOval
PaintPoly
PaintRect
PaintRgn

PaintRoundRec QD

Param

ParamBlkType OT

ParamBlockRec OT

ParamErr
ParamText
parityErr
ParmBlkPtr
pasteCmd
patBic
patCopy
patOr
patStretch
Pattern
PatternPtr
patXor
PBAllocate
PBClose
PBControl
PBCreate
PBDelete
PBEject
PBFlIshFile
PBFlshVol
PBGetEof

1200301:0AB

Identifier Cross—Reference List

RM PBGetFInfo PB pnloc

QD PBGetFPos PB pnMode

ME PBGetVInfo PB pnMode

MC PBGetVol PB pnPat

EM PBKillIO PB pnPat

MC PBMountVol PB pnSize

MC PBOffLine PB pnSize

QT PBOpen PB pnVis

QT PBOpenRF PB Point
PBRead PB PointPtr

QD PBRename PB polyBBox

QD PBRstFLock PB Polygon

WM PBSetEof PB polyPoints

WM PBSetFInfo PB polyProc

QD PBSetFLock PB polySave

QD PBSetFPos PB polySize

QD PBSetFVers PB port

QD PBSetVol PB portA
PBStatus PB portB

OT PBUnmountVol PB portBits
PBWrite PB portRect
PenMode QD PortSize

ME PenNormal QD posCntl

DL PenPat QD PosErr

SD PenSize QD PostEvent

OT PenState QT pPrPort

DS PenStPtr QT pPrPort

QD PermErr ME PrClose

QD pFileName PR PrCloseDoc

QD pGPort PR PrClosePage

QT PicComment QD PrCtlCall

QT picFrame QT PrDrvrClose

QT picltem DL PrDrvrDece

QD picLParen QD PrDrvrOpen

PB picRParen QD PrDrvrVers

PB picSave QT PrError

PB picSize QT prinfo

PB Picture QT prinfoPt

PB pldleProc PR PRInitErr

PB PinRect ‘WM PrintDefault

PB plainDBox WM printx

PB Plotlcon TU prJob

PB pnloc QT PrJobDialog

PrJobMerge
PrNoPurge
proclD
ProcPtr
PrOpen
PrOpenDoc
PrOpenPage
PrPicFile
PrPurge
PrSetError
prStl
PrStlDialog
PrValidate
PRWrErr
prXInfo
PScrapStuff
Pt2Rect
PtInRect
PtIlnRgn
PtrAndHand

PtrFFSynthRec

PtrFTSndRec
PtrFTSynth
Ptrint64Bit
PtrSFReply

PtrSFTypeList

PtrSWSynth
PtrToHand
PtrToXHand
PtrZone
PtToAngle
PurgeMem
PurgeProc
PurgePtr
pushButProc
putCancel
putDlgID
putDrive
putEject
putName
putPicProc
putSave
PutScrap

A—12

. QD

-+ MACINTOSH INTERFACE

-PR

PD QDProcs
DL QDProcsPtr
MC QElem R
PR QElemPtr
PR QErr

PR QFlags

PR QHdr

PD QHdrPtr
PR .QHead

PR " qLink

PR QTail

PR qType

ME QTypes

PR

SM radCtrl

QD radioButProc

QD Random
randSeed

RevrErr

RDIBadMount

RDIFormat

RDILoad

RDIUnload

RDIVerify

RDIZero

RDocProc

rdPend

ReadDateTime

MM ReadErr

QD RealFont

MM ReallocHandle

MM RecoverHandle

MM Rect

CM RectInRgn

PK rectProc

PK RectPtr

PK RectRgn

PK redBit

PK redColor

QT refCon

PK refCon

SM Region

ou
SN
SN
SN
TU
PK
PK
SN
ou
ouU

QT

oT
oT
ME
oT

oT
oT
oT

oT
oT

DL

CM
QD
MD
ME
PK
PK
PK
PK
PK
PK

. Appendix A

ReleaseResour RM
Rename FL
resChanged RM
resCtrl DL
ResError RM

ResetAlrtStag DL
ResFNotFound ME

resLocked RM
ResNotFound ME
resPreload RM
resProtected RM
resPurgeable RM
ResrvMem MM
resSysHeap RM
resSysRef RM
resUser RM
RFNumErr ME
rgnBBox QT
rgnProc QT
rgnSave QT
rgnSize QT
right QT

RIUDatePStrin PK
RIUDateString PK
RIUGetIntl PK
RIUMagIDStrin PK

WM RIUMagString PK

SD
ouU

ME
M

MM

RIUMetric PK
RIUSetIntl PK
RIUTimePStrin PK
RIUTimeString PK
RmveReference RM
RmveResource RM
RmvRefFailed ME
RmvResFailed ME

rowBytes QT
rPage PR
rPaper PR
rRectProc QT
RSFGetFile PK
RSFPGetFile PK
RSFPPutFile PK
RSFPutFile PK
1200301:0AB

RstFLock

sanFran
SaveOld
ScalePt
ScanBT
ScanLR
ScanRL
ScanTB
scrapCount
scrapHandle
scrapName
scrapSize
scrapState
ScrapStuff
screenbits
scrollBarProc
ScrollRect
secLeadingZ
second
Secs2Date
SectNFErr
SectRect
SectRgn
SeekErr
SelectWindow
selEnd
SellText
selStart
SendBehind
SerClrBrk
SerGetBuf
SerHShake
SerReset
SerSetBrk
SerSetBuf
SerShk
SerStaRec
SerStatus
SetClip
SetCRefCon
SetCTitle
SetCtlAction

1200301:0AB

FL

FM
WM
QD
PR
PR
PR
PR
SM
SM
SM
SM
SM
SM
MD
CM
QD
PK
ou
ouU
ME
QD
QD

..Identifier Cross—Reference List

SetCtlMax CM
SetCtIMin CM
SetCtlValue CM
SetCursor QD
SetDAFont DL
SetDateTime OU
SetDItem DL
SetEmptyRgn QD
SetEOF FL
SetEventMask EM
SetFInfo FL
SetFLock FL
SetFontLock FM
SetFPos FL
SetGrowZone MM
SetHandleSize MM
Setltem MN
Setltemlcon MN
SetltemMark MN
SetltemStyle MN
SetIText DL
SetMenuBar MN
SetMenuFlash MN
SetOrigin QD
SetPenState QD
SetPort QD
SetPortBits QD
SetPt QD
SetPtrSize MM
SetRect QD
SetRectRgn QD
SetResAttrs RM
SetResFileAttrs RM
SetResInfo RM
SetResLoad RM
SetResPurge RM
SetSoundVol SN
SetStdProcs QD
SetString TU
SetTime OouU
SetTrapAddress OU
SetVol FL

SetWindowPic WM

SetWRefCon WM
SetWTitle WM
SetZone MM
SFGetFile PK
SFPGetFile PK
SFPPutFile PK
SFPutFile PK
SFReply PK
SFTypeList PK
shadow QT
shadow M
ShieldCursor TU
ShortDate PK
ShowControl CM
ShowCursor QD
ShowHide WM
ShowPen QD
ShowWindow WM
shrtDateFmt PK
Size MM
size FM
SizeControl CM
SizeResource RM
SizeWindow WM
SlopeFromAngl TU
SmallBool MC
sndRec SN
sound1Phase SN
sound1Rate SN
sound1Wave SN
sound2Phase SN
sound2Rate SN
sound2Wave SN
sound3Phase SN
sound3Rate SN
sound3Wave SN
sound4Phase SN
sound4Rate SN
sound4Wave SN
SoundDone SN
SpaceExtra QD
spareFlag TT
SparePtr MM

A—-13

MACINTOSH INTERFACE

SpdAdjErr
spExtra
srcBic
srcCopy
srcOr
srcXor

st0

st

st2

st3

st4
StageList
stages
StartSound
statText
Status
StatusErr
StdArc
StdBits
StdComment
StdGetPic
StdLine
StdOval
StdPoly
StdPutPic
StdRect
StdRgn
StdRRect
StdText
StdTxMeas
StillDown
stopl0
stoplb
stop20
StopAlert
stoplcon
StopSound
Str255
StringHandle
StringPtr
StringWidth
strucRgn
StuffHex

A—14

Style
Styleltem
SubPt
supressDate
SwapFont
SWmode
swOverrunErr
SWSynthRec
SysBeep
SysParmType
SysPPtr
SystemClick
SystemEdit
SystemEvent
systemFont
SystemMenu
SystemTask
SystemZone

TEActivate
TECalText
TEClick
TECopy
TECut
TEDeactivate
TEDelete
TEDisPose
TEGetText
TEHandle
TEIdle
TElInsert
teJustCenter
teJustLeft
teJustRight
TEKey
TENew
TEPaste
TEPtr
TERec

TEScrapHandle

TEScrapLen
TEScroll
TESetJust

ou
ou
TE
TE

Appendix A
TESetSelect TE
TESetText TE
testCntl CM
TestControl CM.,
TEUpdate TE
TextBox TE
TextFace QD
TextFont QD
textH DL
textMenruProc MN
TextMode QD
textProc QT
TextSize QD

- TextWidth QD
TFeed PR
thePort MD
thousSep PK
THPrint PR
thumbCntl CM
THz MM
TickCount EM
timelSuff PK
time2Suff PK
time3Suff PK
time4Suff PK
timebSuff PK
time6Suff PK
time7Suff PK
time8Suffl PK
timeCycle PK
timeFmt PK
timeSep PK
title DL
titleHandle TT
titleWidth TT
TkO0BadErr ME
TMFOErr ME
ToMacBool MC
Tone SN
Tones SN
top QT
topLeft QT
TopMem MM

1200301:0AB

toronto
ToSmall
TPPort
TPPrint
TPPrPort
TPrlnfo
TPrint
TPrJob
TPrPort
TPrStatus
TPrStl
TPrXInfo
TrackControl
TrackGoAway
triplets
TScan
TwoSideErr
txFace
txFace
txFont
txFont
txMeasProc
txMode
txMode
txSize
txSize

ulOffset
ulShadow
ulThick
underline
undoCmd
UnimpErr
UnionRect
UnionRgn
Uniqueld
UnitEmptyErr
UnloadScrap
UnMountVol
unused
updateEvt
updateMask
UpdateResFile

1200301:0AB

Identifier Cross—Reference List

updateRgn
UprString
UseResFile
userltem

userKind
useWFont

A%

valid
ValidRect
ValidRgn
vAxsOnly
vAxisOnly
vblAddr
vblCount
vblPhase
vblQElem
VBLTask
VCB
vcbAIBIkSiz
vcbAIBISt
vcbAtrb
vcbBILn
vcbBufAdr
vebClpSiz
vcbCrDate
vebDirBlk
vebDirIndex
vebDirSt
vcbDRefNum
vebDrvINum
vcbFlags
vcbFreeBks
vcbFSID
vcbLsBkUp
vecbMAdr
vcbMLen
vcbNmBlks
vcbNmFls
vebNxtFNum
vcbQElem
vcbSigWord
vcbVN

TT
OouU
RM
DL
WM
CM

vcbVRefNum
venice
verBritain
verFrance
verGermany
verltaly
version

QT verUS

OU vh

WM VHSelect
WM viewRect
WM visible

CM visible

OT visRgn

OT VLckdErr
OT volClick

OT VolOffLinErr
OT VolOnLinErr
OT VolumeParam
OT vRefNum
OT vType

OT VTypErr
oT
oT
OoT
OoT
oT
oT
OoT
oT
oT
OoT
oT
oT
oT
oT
oT
oT
oT
oT
OoT
OoT
oT

WaitMouseUp
Wave
waveBytes
WavePtr
wCalcRgns
wDev
wDispose
wDraw
wDrawGlcon
wGrow

what

when

where

wHit

white
whiteColor
widMax
widmax
winContent
window

--MACINTOSH INTERFACE Appendix A

windowDefProc TT
WindowHandle TT
windowKind TT
windowPic TT
WindowPtr TT
WindowRecord TT

winDrag WM
winGoAway WM
wlnGrow WM
wNew WM
wNoHit WM
WPrErr ME

WriteParam ou
WriteResource RM
WritErr ME
wrPend SD

WrPermErr ME
WrUnderRun ME

xoff SD
XOFFHold SD
XOFFSent SD
xOffWasSent SD

xon SD
XorRgn QD
year ou
yellowBit QD
yellowColor QD
YMD PK
ZCBFree MM
ZeroScrap SM
Zone MM

A—-16 1200301:0AB

Control Manager (ControlMgr)

A.3. Control Manager (ControlMgr)

unit ControlMgr ;

interface

gse§ Maccore, QdTypes, TBTypes}
L-
uses $$U MACCORE.CODE} MocCore ,
$U ODTYPES.CODE{ QDTypes (GrafPort, GrafPtr, Point, VHSelect,
FPoint, Rect, RectPtr),
$$U TBTYPES.CODE} TBTypes (EvtRecPtr, EventRecord,
windowptr,windowhandle) H
$$L13
const
{ Control Definition Ids
pushButProc =9 ; simple button }
checkBoxProc = 1 ; check box
radioButProc =2 ; radio button }
useWFant =3 ; add to above window's font 3}
scrollBarProc = 4 ; scroll bar 3}
{ Part Codes }
inButton =10 ; simple button }
inCheckBox = 11 ; check box or radio button 3
inUpButton = 20 ; up arrow of a scroll bor }
inDownButton = 21 ; down arrow of a scroll bar }
inPageUp =22
inPageDown = 23
inThumb = 129 ; thumb of a scroll bar }
{ Axis constraints for DragControl }
noConstraint = ; no constraint 3
hAxisOnly =1 ; horizontal axis only 3}
VAxisOnly =2 ; vertical axis only 3}
§ Messages to control definition function }
drawCnt ! =90 ; draow the control (or control part) 3}
testCntl =1 ; test where mouse button was pressed
calcCRgns =2 calculate control's region (or indicator's) 3}
initCntl = 3 ; do any additional control initialization
dispCnti = 4 ; take any additional disposal actions
posCntl =5 ; reposition control’'s indicator & update it
thumbCnti =6 ; calculate parameters for dragging indicator
dragCntli =7 3 drag control (or its indicator)
qutoTrack =8 ; execute control's action procedure }
Type
ControlHandle = MacPtr ;
ControlPtr = MacPtr ;
ControlRecord = PACKED RECORD
nextControl: ControlHandle ; next control }
contriOwner: MacPtr ; Pointer to control’s window }
contrliRect: Rect ; enclosing rectangle
contriHilite: Smal lBool ; highlite state
contriVis: Smal lBool TRUE if visible '
contrliValue: integer ; current setting
contriMin: integer ; minimum setting
contriMax: integer maximum setting
contriDefProc: Handle ; control definition functiaon }
contriData: Handle data used by contriDefProc }
contriAction: ProcPtr default action procedure }
contriRfCon: Longlint ; control’'s reference value }
contriTitle: str255 ; control's Title
End ;
$ Initialization And Allocation H

1200301:0AB

A—-17

MACINTOSH INTERFACE

FUNCTION

FUNCTION

PROCEDURE
PROCEDURE

} Control

PROCEDURE

PROCEDURE

PROCEDURE
°ROCEDURE
>ROCEDURE

?ROCEDURE

{ Mouse Lo

TUNCTION

TUNCTION

TUNCTION

Control

'"ROCEDURE

'"ROCEDURE

A-18

Appendix A

NewControl (theWindow: WindowPtr
boundsRect: RectPtr
title: StringPtr ;
visible: MacBool ;
value: integer ;
min,max: integer
procliD: integer
refCon: Longint
ControlHandle ; externol(—”?l&&) $A954%
GetNewControl (controliD: integer
theWindow: WindowPtr)
ControlHandle ; external (—-22082); §{A9BE}
DisposeControl(theControl: ControlHandle) ;
external (-22187); $A955%
KillControls (theWindow: WindowPtr)
external (—=22186); {A9563%
Display 3
SetCTitle (theControl: ContrclHondle ;
title: StringPtr)
external (- 22177) $A95F 3
GetCTitle (theControl: ControlHandle ;
title: StringPtr) ;
external (- 22178) $A95E}
HideControl (theControl: ControlHandle) ;
external (— 22184) $A958%
ShowControl (theControl: ControlHandle) ;
external (- 22185) $A9573%
DrawControls (theWindow: WindowPtr)
external (- 22\67) $A9691%
HiliteControl (theControl: Con(rolHondle H
hiliteState: integer)
externol(22179) $§A95D%
cation H
TestControl (theControl: ControlHandle ;
thePoint: FPoint
integer ; external (-=22170); §{A9663
FindControl (thePoint: FPoint ;
theWindow: WindowPtr
whichControl: MacPtr
integer ; external (-22164); {A96C}
TrackControl (theControl: ControlHandle ;
startPt: FPoint ;
actionProc: ProcPtr)
integer ; external (-22168); {A968}
Movement and Sizing H
MoveControl (theControl: ControlHond!e 5
h , v : integer)
external (— 22183) $§A959%
DragControl (theControl: ControlHandle
startPt: FPeint ;
iimitRect: RectPtr
slopRect: RectPtr
axis: integer) ;
external (-22169); }A967}

1200301:0AB

PROCEDURE SizeControl (theControl:
w , h:
§ Control Setting and Range
PROCEDURE SetCtiValue (theControl:
theValue:
FUNCTION GetCtiValue (theControl:
: integer
PROCEDURE SetCtlIMin (theControl:
minValue:
FUNCTION GetCtIMin (theControl:
: integer ;
PROCEDURE SetCtIMax (theControl:
maxValue:
FUNCTION GetCtiMax (theControl:
. integer ;
{ Miscellaneous Utilities
PROCEDURE SetCRefCon (theControl:
data:
FUNCTION GetCRefCon (theControl:
: Longlint ;
PROCEDURE SetCtlAction (theControl:
actionProc:
FUNCTION GetCtlAction (theControl:
: ProcPtr ;
1200301:0AB

Control Manager (ControlMgr)

Controchndle H
integer
externol(22186)

§A95C}
}

ControlHandle ;
integer
external(

ControlHandle)

external (-22176);

Con!rochndle H
integer
external (- 22172)

ControlHandle)

external (=22175);

Con(rolHondle B
integer)
external (— 22171)

ControlHandle)

external (-22174);

—22173);

$A9633

1A960}

{A9643

$A9613

§A965%

$A962%

Con!rochndte H
Longlint
external (- 22181)

ControlHandle)

external (-22182);

Con!rochndIe B
ProcPtr
external (- 22165)

ControlHandle)

external (-22166);

i

§A95B}

$§A95A%

1A968}

§A96A3

A—-19

MACINTOSH INTERFACE Appendix A

A.4. Desktop Manager (DeskMgr)

unit DeskMgr ;

interface
¥$Us?s Maccore, QdTypes, TbTypes }
L=
Uses }$U MACCORE.CODE{ Maccore,
$U ODTYPES.CODE$ QDTypes (Ponn(PointPtr, GrafPort, GrafPtr, Style,
Rect) ,
$$U TBIYPES.CODE} TBTypes (EventRecord,EviRecPtr ,WindowPtr);
3L}

const
cutCmd =0 ; Cut command }
copyCmd =1 ; Copy command }
pasteCmd =2 ; Paste command }
undoCmd =3 Undo command }
§ Opening and Closing Desk Accessories H
FUNCTION OpenDeskAcc (theAcc: StringPtr)
integer ; external (—=22090); (A9861%
PROCEDURE CloseDeskAcc (refNum: integer)
external (- 22089) 1A9B7
§ Handling Events in Desk Accessories H
PROCEDURE SystemClick (theEvent: EvtRecPtr ;
theWindow: windowPtr)
external (-22993); $A9B3%
FUNCTION SystemEdit (editCmd: integer)
MacBool ; external (-22878); }{A9C2}
{ Performing Periodic Tasks H
PROCEDURE SysiemTask ; external (-22092); §{A9B4}
§ Advanced Routines 3
FUNCTION SystemEvent (theEvent: EvtRecPtr
: MacBool ; external (-22094); §A9B2}
>ROCEDURE SystemMenu (menuResul t: Longint

)
external (— 22691) $A9B5}

A—-20 1200301:0AB

A.5. Dialog Manager (DialogMgr)

unit DialogMgr ;

interface

% Uses MacCore,

QDTypes,

TBTypes }

uses §$U MACCORE.CODE} MacCore

Dialog Manager (DialogMgr)

{$U ODTYPES.CODE} ODTypes (GrafPort, GrafPtr, Point,
FPoint, Rect, RectPtr),
$$U TBTYPES.CODE} TBTypes (EvtRecPtr, EventRecord,windowrecord,

windowptr,windowhandle, TEHandle,

VHSelect,

TEPtr,TERec) 5
IR IR
const
$ Item Types }
ctrlitem = 4 ; add to following four constants 3
btnCtr! =0 ; standard button control
chkCtrl = 1 ; standard check box control }
radCtri =2 standard
resCtri =3 ; control defined in control template 3}
statText =8 ; static text
editText =16 ; editable text (dialog only) 3}
iconltem = 32 ; icon
picltem = 64 ; QuickDraw Picture }
user|tem =9 ; application defined item (dialog only) 3}
itemDisable = 128 ; add to any of above to disable ?
{ ltem numbers of OK and Cancel buttons }
OK =1 ;
Cancel =2,
{ Resource I1Ds of Alert lcons }
stoplcon =0 ;
notelcon =13
ctnicon =2 ;
type
DialogPtr = MacPtr ;
DialogPeek = MacPtr
DiologRecord = RECORD
window: WindowRecord ; dialog window }
items: Handle ; item list
textH: TEHandle ; current edit Text item }
editField: integer editText item number minus 1 }
editOpen: integer ; internal use only
aDefltem: integer ; default button number 3
End ;
DialogTHndl = MacPtr
DialogTPtr = MacPtr

DialogTemplate
boundsRect:
proclD:
fillert:
visible:
filler2:
goAwayFlag:
refCon:
itemsiD:
title:

End ;

Stagelist = PA

= PACKED RECORD

becomes window's portRect }

ID

list

integer ; window definition

Smal IBool NOT USED

SmallBool ; TRUE if visible 3

Smal 1Bool NOT USED 3}

Smal IBool TRUE if has go away region }
Longint ; window's reference value
integer ; resource ID of item

Str255 ; window's title 3}

CKED ARRAY[1..4] o

1200301:0AB

f Byte ;

A-21

MACINTOSH INTERFACE

AlertTHnd! = MacPtr
AlertTPtr = MacPtr
AlertTemplate =

boundsRect: Rect

items|D: integer

stages: Stogelist
End

Appendix A

becomes window's portRect }

resource

5 alert stage

item list

information }

§ Initialization

PROCEDBURE ErrorSound (

PROCEDURE SetDAFont (

{ Creating and Disposing of Dialogs

FUNCTION NewDialog (

FUNCTION GetNewDialag (

PROCEDURE CloseDialog (
°ROCEDURE DisposDialog (
°ROCEDURE CouldDialag (
"ROCEDURE FreeDialog (
} Handling Dialog Events
ROCEDURE ModaiDialog (
UNCTION IsDialogEvent (

'UNCTION DialogSelect (

'ROCEDURE DigCut
'ROCEDURE DIgCopy
'ROCEDURE DIgPaste
ROCEDURE DlgDelete

A~ N~~~

ROCEQDURE DrawDialog

soundProc:

ProcPtr)
external (-

22132) $A98C}

fontNum: integer) ;
H
dStorage: MacPtr
boundsRect: RectPtr ;
title: StringPtr ;
visible: MacBoo!
proclD: integer ;
behind: windowPtr ;
goAwayFlag: MacBool
refCon: Longlint
items: Handle
DialogPtr external (-22147); {A97D}
diatogld: integer ;
wStorage: MacPtr ;
behind: WindowPtr)
DiatogPtr ; external(—-22148); }A97C}
theDialog: DialogPtr) ;
external (—22142); }{A982}
theDialog: DiatogPtr)
external (—-22141); §{A983}
dialoglD: integer)
external (- 22151) ${AS79%
dialoglD: integer)
external (~ 22150) $A97A%
H
filterProc: ProcPtr
I temHit: integerPtr) ;
external (— 22?27) §A991}
theEvent: EvtRecPtr)
MacBool external (-22145); {A97F}
theEvent: EvtRecPtr
theDialog: DialogPtr ;
itemHit: integerPtr)
MacBool ; external (—22144); }A980}
theDialog: BialogPtr) ;
theDiatog: DiaglogPtr) ;
theDialog: DialogPtr) ;
theDialog: DialogPtr) ;
theDialog: DialogPtr) ;
external (—22143); §{A981}

Invoking Alerts

A-22

}

1200301:0AB

FUNCT ION

FUNCTION

FUNCTION

FUNCTION

PROCEDURE

PROCEDURE

{ Manipulating ltems in

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

FUNCTION
PROCEDURE

Alert

StopAtlert

NoteAlert

CautionAlert

CouldAlert

FreeAlert

ParamText

GetDl tem

SetDltem

GetliText

SetiText

SellText

GetAlrtStage

ResetAlrtStage

1200301:0AB

Dialog Manager (DialogMgr)

alertiD:
filterProc:
integer ;
alertiD:
filterProc:
integer
alertiD:
filterProc:
integer
alert!D:
filterProc:
integer
alertlD;
alertlD:

Dialogs and Alerts

param®:
paraml:
param?2:
param3:

theDialog:
itemNo:
kind:
item:

box:

theDialog:
itemNo:
kind:
item:

baox:

item:
text:

item:
text:

theDialog:
itemNO:
startSel:
endSel:

integer ;

integer ;
ProcPtr)
external (-22139);

integer ;
ProcPtr
external (-22138):

integer ;
ProcPtr)
external (=22137);

integer ;
ProcPtr)
external (-22136);

integer)
external (- 22135)

intege
externol(22134)

$A9853

§A9861

$A987%

§A9883
$A989}

$A98A}

StringPtr
StringPtr
StringPtr ;
StringPtr)
external (- 22133);

DialogPtr ;
integer ;
integerPtr
Handle ;

RectPtr
exlernol(22131)

DialogPtr ;
integer
integer ;

Handle ;

RectPtr)
external (- 22139)

Handle ;
StringPtr)
external(-22128);

Handle ;
StringPtr) ;
external (-22129);

DialogPtr ;
integer ;
integer ;
integer)
external (- 22146)

3

$A98B1

$A9803

$A9BE}

$A9903

§A98F}

$A97E}

A—23

MACINTOSH INTERFACE

Appendix A

A.8. Event Manager (EventMgr)

unit EventMgr

interface

gsai MACCORE, QDTypes, TBTypesi
L._
Uses }$U MACCORE.CODE} Maccore,
$U QDTYPES.CODE{ QDTypes EPoint,PointP!r, GrafPort,GrafPtr, Rect)
$U TBTYPES.CODE{ TBTypes (EventRecord,EvtRecPtr)
fLrd
const
§ event codes }
nul lEvent =0 ; null }
mouseDown =1 ; mouse down }
mouselp =2 mouse up
keyDown =3 ; key down
keyUp =4 ; key up 3
autoKey =5 ; auto—key 1}
updoteEvt =6 ; update §
diskEvt =7 ; disk inserted }
activateEvt =8 ; activate 3
abor tEvt =9 abort
networkEvt = 18 ; network 3}
driverEvt = 11 ; 1/0 driver }
applEvt = 12 ; application—defined .
app2Evt = 13 , application—defined
app3Evt = 14 ; agpplication—defined
app4Evt = 15 ; application—defined
§ event Masks }
everyevent = -1 ; § all events }
nul IMask =1 3
mDownMask =2 ;
mUpMask = 4 ;
keyDownMask =8 ;
keyUpMask = 16
autoKeyMask = 32 ;
updateMask = 64 ;
diskMask = 128 ;
activMask = 256
abor tMask = 512
networkMask = 1824 ;
driverMask = 2048 ;
appi1Mask = 4096 ;
app2Mask = 8192 ;
app3Mask = 16384
app4Mask = -32768
ype
KeyMapPtr MacP t ;
KeyMap. = PACKED ARRAY [1 .128] of Boolean
Accessing Events
UNCTION GetNextEvent (eventMask: integer ;
theEvent: EvtRecPtr)
MacBool ; external (-22168); §{A970
UNCTION EventAvail (eventMask: integer ;
theEvent: EvtRecPtr)
MacBool ; external (-22159); {A971
Posting and Remaving Events
UNCTION PostEvent (eventCode: integer ;
A—24 1200301:0AB

$

H
i

Event Manager (EventMegr)

eventMessage: Longlint)
integer ;
PROCEDURE FlushEvents (eventMask: integer
stopMask: integer B
PROCEDURE SetEventMask (theMask: integer) ;
FUNCTION OQOsEventAvail (theMask: integer ;
theEvent: EvtRecPtr)
MacBoo!l ;
FUNCTION GetOsEvent (theMask: integer
theEvent: EvtRecPtr)
MacBoo! ;
{ Reading the Mouse 3
PROCEDURE GetMouse (mouseloc: PointPtr)
external (-22158); §A972%
FUNCTION Button MacBool external (-=22156); §A974}
FUNCTION StillDown MacBool ; external (-22157); $A973}
FUNCTION WaitMouseUp MacBool ; external (-22153); {A977%
§ Miscellaneous Utilities 3
PROCEDURE GetKeys (k KeyMapPtr)
external (-22154); §A976}
FUNCTION TickCount Longlint ; external (-22155); {A975}
FUNCTION DoubleTime Longint ;
FUNCTION CaretTime Longlint ;
1200301:0AB A-25

TOSH INTERFACE

A.7. File Manager (FileMgr)

unit FileMgr;
interface

§USES MacCore}
$L-3

Appendix A

uses $$U MACCORE.CODE} MacCore
feL13
type
finderinfo = RECORD
fiType OsType ; The type of the file }§
fiCreator OsType ; The creator of the file }
fiflags integer Hasbundle, Invisible, etc. 3}
filocation Record Point Location }
fiv : integer ;
fih integer ;
end ;
fifidr integer ; { folder containing the file }
End ;
H High Level File Manager Routines ———————————————— 3
§ Accessing Volumes H
FUNCTION GetVinfo (DrvNum: integer
voliName: StringPtr
VAR vRe fNum: integer ;
VAR freeBytes: Longint)
OsErr
FUNCTION GetVol (voiName: StringPtr
VAR vRe fNum: integer
OsErr
FUNCTION SetVol (volName: StringPtr
vRe fNum: integer)
OsErr
FUNCTION FlushVol (volName: StringPtr
vRe fNum: integer)
OsErr ;
FUNCTION - UnMountVol (volName: StringPtr;
vRe fNum: integer)
OsErr ;
TUNCTION Eject (volName: StringPtr;
vRe fNum: integer)
OsErr
{ Changing File Contents H
TUNCTION Create (filename: Str255;
vRefNum: integer;
creator: OsType;
filetype: OsType)
OsErr
"UNCTION FSOpen (filename: Str255;
vRe fNum: integer;
VAR refNum: integer)
OsErr
‘UNCTION FSRead (refNum: integer;
VAR Count: Longint;
A—-26 1200301:0AB

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

{ Changing

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

12003

OsErr
FSWrite (
VAR
OsErr
GetFPos
VAR
OsErr
SetfFPos (
OsErr
Ge tEOF (
VAR
OsErr
Se tEOF (
OsErr
Allocate (
VAR
OsErr
FSClose
OsErr
Information About Fi
GetFinfo (
VAR
OsErr
SetFinfo (
OsErr
SetFlock (
OsErr
RstFLock (
OsErr
Rename (
OsErr
FSDelete (
OsErr
—————— High Level Devi
OpenDriver (
VAR
OsErr
CloseDriver (
OsErr
Control (
VAR
01:0AB

File Manager (FileMgr)

buffPtr: MacPtr)
refNum: integer;
Count: Longlint;
buffPtr: MacPtr)
refNum: integer;
filePos: Longlint)
refNum: integer;
posMode: integer;
pasOff: Longint)
refNum: integer;
| 0gEOF : Longint)
refNum: integer;
logEOF : Longint)
refNum: integer;
Count: Longlint)
refNum: integer)
es H
filename: Str255;
vRefNum: integer;
fndrinfo: Finderinfo)
filename: Str255;
vRe fNum: integer;
fndrinfo: Finderinfo)
filename: Str255;
vRe fNum: integer)
filename: Str255;
vRe fNum: integer)
oldname: Str255;
vRe fNum: integer;
newname : Str255)
filename: Str255;
vRe fNum: integer)
ce Manager Routines -3
name : Str255 ;
refNum: integer)
refNum: integer)
refNum: integer ;
csCode: integer ;
csParam: |INTERFACE PACKED

A-—27

-"MACINTOSH INTERFACE

- : OsErr
FUNCTION Status (refNum:
csCode:
VAR csParam:
OsErr
FUNCTION Kill10O (refNum:
OsErr

Appendix A

ARRAY[min..max:integer]
OF CHAR)

integer

integer ;
INTERFACE PACKED
ARRAY[min..max:integer]
OF CHAR)

integer)

1200301:0AB

Font Manager (FontMgr)

A.8. Font Manager (FontMgr)

unit FontMgr ;
interface

%Uses MACCORE,
$L-3

Uses §$U MACCORE.CODE
$U QDTYPES.CODE

QDTypes}

Maccore,
QDTypes (Style,

Paoint) ;

$$Ly
const
{ Font Numbers }
systemFont =0 ; System Font
applFont =1 application Font }
newYork =2
geneva =3 ;
monaco = 4 ;
venice =5
london =6 ;
athens =7
sanfran = 8 ;
toronto =9 ;
type
FMinPtr = MacPtr ;
FMOutPtr = MacPtr ;
FMinput = PACKED RECORD
family: integer ; font number 3}
size: integer font size
needbits: smallbool ; TRUE if drawing z
face: style Character style
device: integer ; device number }
numer : Point ; numerators of scaling factors }
denom: Point denominators of scaling factors }
End ;
FMOutput = PACKED RECORD
errNum: integer; not Used }
fontHandle: Handle ; handle to font record }
itatic: byte ; italic factor
boid: byte ; bold factor 3}
ulShadow: byte ; underline shadow §
ulOffset: byte underline of fset
shadow: byte ; shadow factor 3}
ulThick: byte ; underline thickness 3}
ascent: byte ; ascent
extra: byte ; width of Style }
widmax: byte ; maximum character width }
descent: byte ; descent }
unused: byte ;
leading: byte leading §
numer : Point ; numerators of scaling factors }
denom: Point ; denominators of scaling factors }
End ;
§ Getting Font Informatian H
PROCEDURE GetFontName (fontNum: integer ;
theNaome : StringPtr) ;
external (—22273); {A8FF}
PROCEDURE GetFNum (fontName: StringPtr
theNum: integerPtr) ;
external (—22272); {A9083%
FUNCTION RealFont (fontNum: integer ;
size: integer)

1200301:0AB

A—29

MACINTOSH INTERFACE

Appendix A

: MacBoo! external (-22279),; {A9021%
{ Keeping Fants in Memory 3
PROCEDURE SetFontlLock (lockflag: MacBool) ;
external (-22269); §A983}
§ Advanced Routine H
FUNCTION SwapFont (inRec: FMInPtr) :
: FMOutPtr external (-22271); {A901}

1200301:0AB

Global Types (MacCore)

A.9. Global Types (MacCore)

unit MacCore;
interface

const
abs_nil = 0 ;
mac_true = 256
mac_false = 0

$ nil

value associated with MacPtr }

interface

used by many Macintosh

type

% General purpose declarations for use with Macintosh 0.S.
procedures.

MacPtr = integer?2;

Handle = integer2;

ProcPtr = integer?2;

MacBool = integer;

Smal lBool = 0..255;

MacBoolPtr = MacPtr ;

Longint = integer?2;

LongintPtr = MacPtr ;

Str255 = string(255];

StringPtr = integer2;

StringHandle =Handle

IntegerPtr = MacPtr ;

Byte = 9..255;

OsErr = integer ;
OsType is the basic 4 character identifier
Facilities. OsTypePtr is for passing VAR parometer addresses.
FOsType is for passing VALUE parameters.

OsTypePtr = MacPtr

FOsType= integer2 ;

OsType = RECORD
case boolean of
true E c
false p : FOsType
End ;

g Functions for

conversion between ToolBox dota

PACKED ARRAY [1..4] OF CHAR) ;

UCSD Pascal data representation.
Function ToMacBool ub Boolean MacBool ;
Function FrMacBool mb MacBool Boolean ;
Function ToSmall ub Boolean Smal |Bool
Function FrSmall mb SmallBool) Boolean

1200301:0AB

representation and

A-31

- MACINTOSH INTERFACE Appendix A

A.10. Global Data (MacData)

unit MacData ;
interface

;Uses MacCore, QdTypesi
$L-3
Uses %$U MocCore.Code% MacCore
$U QdTypes.Code{ QdTypes
(GrafPtr, PatternPtr, CursorPtr, BitMapPtr) ;

f$L1}

Var
thePort GrafPtr H pointer to quickdrow default port }
white PatternPtr pointer to white pen pattern T
black : PatternPtr ; pointer to black pen pattern
gray PatternPtr pointer to gray pen pattern
ItGray PatternPtr pointer to light gray pen pattern }
dkGray PaotternPtr pointer to dark gray pen pattern }
arrow CursorPtr ; pointer to arrow cursor
screenbits BitMapPtr pointer to screen bitmap
randSeed LonglintPtr ; pointer to random function seed }
A5 MacPtr Register A5 value

A—-32 1200301:0AB

A.11. Error Codes (MacErrors)

unit macerraors ;

interface
{ Macintosh Error Codes

1200301:0AB

const
{ General System Errors }§
NoErr =0 ;
QErr = -1
VTypErr = -2 3
CorErr = -3 ;
UnimpErr = -4 ;
$ 1/0 System Errors }
ControlErr = -17
StatusErr = -18 ;
ReadErr = —-19 ;
WritErr = -20 ;
BadUnitErr = =21
UnitEmptyErr = =22 ;
OpenErr = =23 ;
ClosErr = -24 ;
DRemovErr = =25 ;
DinstErr = =26 ;
AbortErr = =27
NotOpenErr = -28 ;
§ File System Errors }
DirFulErr = =33 ;
DskFulErr = —-34;
NsVErr = =35 ;
10€Err = -36 ;
BdNamErr = =37 ;
FNOpnErr = -38 ;
EOFErr = -39 ;
PosErr = —40 ;
MFulErr = —41 ;
TMFOErTr = —42 ;
FNFErr = —43 ;
WPrErr = —44 ;
FlckdErr = —45
V0ickdErr = —46 ;
FBsyErr = —47
DupFNETrr = —48 ;
OpWrErr = —49
ParamErr = =58 ;
RFNumErr = =51 ;
GFPErr = =52 ;
VolOffLinErr = =53 ;
PermErr = —-54 ;
VolOnLinErr = =55 ;
NSDrvErr = =56 ;
NoMacDskErr = =57
ExtFSErr = -58 ;
FSDSErr = -59 ;
BadMDBerr = —-60 ;
WrPermErr = —-61 ;
$§ Disk, Serial Ports, and
NoDriveErr = —-64 ;
OffLinErr = -65 ;
NoNybErr = —66 ;

Error Codes (MacErrors)

no error occurred }

queue element not found during deletion }
invalid queue element

core routine number out of
unimplemented core routine

range 1}

Tried to remove an open driver }
Drvrinstall couldn’t find driver
1/0 call aborted by Killio }
driver not opened

in resources }

directory full }

disk full

no such volume {

1/0 Error }

bad name }

File not open }

End of File 3}

tried to position before start of
memory too full to load file

too many files open

File not found

diskette

fite 3

is busy

duplicate file name

file already open with write
error in user parameter list
refnum error

get file position error
volume not on line (was Ejected) 3}
permissions error (during file open) }
drive volume already on—line at MountVol 3}
no such drive

not a macintosh diskette

volume belongs to an external file system }
during rename old entry was deleted but

not be restored

bad master directory block }

write permissions error}

ermission }

Clock specific errors }
drive not installed }

r/w request for an offline drive }
couldn’t find 5 nybbles in 200 tries }

A-33

MACINTOSH INTERFACE

NoAdrMkErr
DataoVerErr
BadCkSmErr
BadBtSipErr
NoDtaMkErr
BadDCkSum
BadDBtS!Ip
WrUnderRun
CantStepErr
TkOBadErr
InitiwMerr
TwoSideErr
SpdAdjErr
SeekErr
SectNFErr

Wowon o

ClIKkRdErr
CIKkWrErr
PRWrErr
PRInitErr

oo

RcvrErr
BreakRecd

{ Memory Manager

MemFul lErr
NilHandieErr
memWZErr
memPurErr
memAdrErr
memAZErr
memPCErr
memBCErr
memSCErr

Wwnwn

-67
-68
-69
-70
=71
=72
-73
~74
-75
~76
=77
-78
=79
-80
-81

-85
-86
-87
-88

-89
-99

Errors }

-108
-109

-11

-112
=110
-113
-114
=115
-116

1

{ Resource Manager Err

ResNotFound

ResFNotFound
AddResFaiied
AddRefFailed
RmvResFailed
RmvRefFailed

LI]

{ Scrap Manager

noScraopkrr
noTypeErr

§ APPLICATION

§ Dead System Al
DSSysErr
DSBusError
DSAddressErr
DSIttinstErr
DSZeroDivErr
DSChkErr
DSOvFiowErr
DSPrivErr
DSTracErr
DSLineAErr
ODSLineFErr
DSMiscErr
DSCorekrr
DSirqErr
DS10CoreErr
DSLoadErr
DSFPErr

Pw

A B a S OONO U AW

N O PEHN =D

DSMemFul 1 Err

A—34

-192
—-193
-194
—195
—1986
=197

Errors

—1089
-102

ert
32
1
2

[

§

couldn’t

read verify compare failed
address mark checksum didn't check }
baod addr mark bit slip nibbles }

couldn’t

bad data mark checksum }
bad dato mark bit slip nibbles }
write underrun occured

step handshake

failed

track @ doesn't detect change

unable to
tried to
unable
track number
sector number

initialize
read 2nd side on 1
to correctly adjust disk speed }
wrong on address mark

never

I'WM
S

found on

Appendix A

find valid address mark }

find a data mark header }

§

ide drive }

a track 3}

unable to read same clock value twice }
time written did not verify

parameter
Initutil

SCC Receiver
Break received

not enough
Handle was Nil

ram didn't
found the param ram unitialized }

read—ver

error }

in Handle Zone

ify

room in heap zone }

WhichZone failed (applied to free block) }

block was

locked or non—-purgable

address was odd or out of range }

Address
Pointer

in zone check failed
check failed

Block Check Failed }

size check

Resource not

foiled 3

found }
Resource file not

found }

Addresource failed }
Addreference failed §

RmveResource
RmveReference

No scrap exists
that

No object of

ldentifiers }

767

general
bus error

Address error
illegal

failed

failed }

3

type in scr

CODE ERRORS FROM —1824 TO -4895 }

system error 3}

instruction error }

divide by zero error

check trap error 3}

overflow trap error 3
privilage violation error }
trace mode error }

line 1018 trap error §

line 1111

trap error

ap 1}

miscel laneous hardware exception error }

unimplemented core
interrupt error }

uninstalled
1/0 Core Error
Segment Loader

routine er

§

error ;

Floating Point error

out of memory

§

ror}

1200301:0AB

DSBadlLaunch

DSStknHeap
DSFSErr
DSRelnsert
DSNotThel

o

1200301:0AB

Error Codes (MacErrors)

con’t launch file }

stack has moved into application heap 3
file system map has been trashed }

request user to reinsert off—line volume }
not the disk | wanted

A—35

MACINTOSH INTERFACE Appendix A

A.12. Memory Manager (MemoryMgr)

unit MemoryMgr;

interface
Uses MacCore}
$L-

uses }$U MACCORE.CODE} MacCore;

fLtd
type

Size = Longint;

THz = MocPtr { Points to a Zone Record }

Zone = RECORD
BkLim: MacPtr;
PurgePtr: MacPtr;
HFstFree: MacPtr;
ZCBFree: Longint;
GZProc: ProcPtr;
MoreMast: integer;
Flags: integer;
CntRel: integer;
MaxRel: integer;
CntNRel : integer;
MaxNRel : integer:
CntEmpty: integer;
CntHandles: integer;
MinCBFree: Longlint;
PurgeProc: ProcPtr;
SparePtr: MacPtr;
AllocPtr: MacPtr;
HeapDaota: integer;

End;

{ Initialization and Allocation

>ROCEDURE MoreMasters ;

ROCEDURE InitZone (growProc : ProcPtr ;
masterCount : integer ;
limitPtr, StartPtr : MacPtr) ;

i Heap Zone Access

>ROCEDURE SetZone (hz : THz) ;
"UNCTION GetZone : THz;
"UNCTION SystemZone : THz;
TUNCTION ApplicZone : THz;

Allocating and Releasing Relocatable Blocks

'UNCTION NewHandle (byteCount: Size)
: Handle;
'ROCEDURE DisposHandle (g: Handle);
‘UNCTION GetHandleSize (h: Handle)
: Size;
'ROCEDURE SetHandlieSize (h: Handle;
newSize: Size);
UNCTION HandleZone (h: Handle)
MacPtr;

UNCTION RecoverHandle (MacPtr)

p:
Handle;

A—-36 1200301:0AB

Memory Manager (MemoryMgr)

PROCEDURE Real locHandle (Haondle;

h:
byteCount: Size);

§ Allocating and Releasing Nonrelocatable Blocks

FUNCTION NewPtr (byteCount: Size)
MacPtr;
PROCEDURE DisposPtr (p: MacPtr);
FUNCTION GetPtrSize (p: MacPtr)
: Size;
PROCEDURE SetPtrSize (p: MacPtr;
newSize: Size);
FUNCTION PtrZone p: MacPtr)
MacPtr;
{ Freeing Space on the Heap
FUNCTION FreeMem : Longlnt;
FUNCTION MaxMem (VAR grow: Size)
Size;
FUNCTION Compac tMem (cbNeeded: Size)
: Size;
PROCEDURE ResrvMem cbNeeded: Size;;
PROCEDURE PurgeMem cbNeeded: Size);
PROCEDURE EmptyHandle h: Handle);

{ Properties of Relocotable Blocks

PROCEDURE HLock h: Handle);
PROCEDURE HUnlock h: Handle);
PROCEDURE HPurge h: Handle);
PROCEDURE HNoPurge h Handle);

{ Grow Zone Functions —-—

PROCEDURE SetGrowZone (growZone: ProcPtr);
FUNCTION GZCritical : Boolean;
FUNCTION GZSaveHnd : Handle;

$ Utility Routines

PROCEDURE BlockMove (srcPtr,

. destPtr: MacPtr;
byteCount: Size);

FUNCTION TopMem : MacPtr;

FUNCTION MemError : integer;

1200301:0AB A-37

MACINTOSH INTERFACE

A.13. Menu Manager (MenuMgr)

unit MenuMgr
interface

iUses MacCore, QDTypes}
$L-%

Uses §$U MACCORE .CODE} MacCore
$U ODTYPES.CODE
oL}

const
noMar k

checkMark
appleSymbol

[}

© N= N=O0
[Xe

mDrawMsg
mChooseMsg
mSizeMsg

o

! draow the menu

textMenuProc

type

MenuPtr = MacPtr ;
MenuHandle = Handle

Menulnfo = RECORD

menulD: integer ;
menuWidth: integer ;
menuHeight: integer
menuProc: Handle ;
enableFlags: PACKED ARRAY [@.
menuData: Str255

End ;

QDTypes (FPoxn(style)

Appendix A

tell which item was chosen and hilite it }
calculate the menu’'s dimensions

.31] OF Boolean ;

{ Initialization aond Allocation
PROCEDURE InitMenus ;
FUNCTION NewMenu (menuld:

menuTitie:

MenuHandle ;

FUNCTION GetMenu (menuld:
MenuHandle ;
PROCEDURE DisPoseMenu (menu:
2ROCEDURE AppendMenu (menu:
data:
>ROCEDURE AddResMenu (menu:
theType:
>ROCEDURE InsertResMenu (menu:
theType:

afterltem:

H
external (-22224); {A938}

integer
StringPtr)
external (—~22223); {A931}

integer)
external (—-22081); ${A9BF}

MenuHandle) ;
external (— 22222) $A9323

MenuHandle ;
StringPtr) ;
external(—-22221); }{A9333

MenuHandle
FOSType)
externol(22195) $§AS4D}

MenuHandle ;

FOSType

integer)

external (— 22191) §A9514

} Forming the Menu Bar

>ROCEDURE InsertMenu (menu:
beforelD:

i

MenuHandle ;
integer)
external (— 22219) $A9351%

1200301:0AB

PROCEDURE DrawMenuBar

PROCEDURE DeleteMenu

PROCEDURE ClearMenuBar

FUNCTION GetNewMBar

FUNCTION GetMenuBar

PROCEDURE SetMenuBar

§{ Choosing from a Menu

FUNCTION MenuSelect

FUNCTION MenuKey

PROCEDURE HiliteMenu

§ Controlling Items"’

PROCEDURE Setltem

PROCEDURE Getltem

PROCEDURE Disableltem

PROCEDURE Enableltem

PROCEDURE Checkl tem

PROCEDURE Setlitemlcon

PROCEDURE Getltemlcon

PROCEDURE SetltemStyle

PROCEDURE GetltemStyle

PROCEDURE SetltemMark

1200301:0AB

B

Menu Manager (MenuMgr)

external (=22217); §$A937}
(menulD: integer)
external (- 22218) §A936%
H external (=22220); $A934}
(menuBar1D: integer)
: Handle ; external (-220880); {A9C8}
Handle external (-22213); $A938B}
(menuBar : Handle)
external (- 22212) $A93C}
}
(startPt: FPoint
: Longint ; exlernol(22211); $A93D}
(ch: Char)
: Longlint external (-22210); §A93E}
(menulD: integer)
external (- 22216) $A938}
Appearance e 3
(menu: MenuHandle ;
item: integer ;
itemString: StringPtr) ;
external (-22201); §A947}
(menu: MenuHandle ;
item: integer ;
itemString: StringPtr)
externol(22202); $A946}
(menu: MenuHandle ;
item: integer)
external (— 22214) $A93A}
(menu: MenuHandle
item: integer
external (- 22215) $A939}
(menu: MenuHandle
item: integer
checked: MacBool)
external (-22283); §A945%
(menu: MenuHandle ;
item: integer ;
iconNum: integer) ;
external (-22208); {A940}
(menu: MenuHandle ;
item: integer
iconNum: integerPtr) ;
external (-22209); §{A93F}
(menu: MenuHandle ;
item: integer
chStyle: style)
exlerncl(22206); {A942%
(menu: MenuHandle ;
item: integer
chStyle: integerPtr) ;
external (-22207); {A941}
(menu: MenuHandle

A-39

MACINTOSH INTERFACE

PROCEDURE Getl temMark (

{ Miscellaneous Utilities
PROCEDURE SetMenuFiash (
PROCEDURE CalcMenuSize (
FUNCTION CountMltems (
FUNCTION

Ge tMHand l e

PROCEDURE FlashMenuBar (

Appendix A

item: integer ;
markChar: char)
externol(22204); $A9443
menu: MenuHandle ;
item: integer o
markChar: MacPtr)
external (— 22285) $A9433
§
menu: MenuHondle H
flashCount: integer
externcl(22198) $A94A%
menu: MenuHandle) ;
external (—22200); {A9483
menu: MenuHandle)
integer ; external (-22192); {A950}%
menulD: integer)
MenuHandle ; external (-22199); §A949}
menuiD: integer)
external (- 22196) $A94CH
1200301:0AB

- Operating System Types (OsTypes)

A.14. Operating System Types (OsTypes)

unit OsTypes;
interface

iUses MacCore, ODTypes, TBTypes}

$L-3

uses $$U MACCORE.CODE} MacCore,
$U ODTYPES.CODE{ QDTypes EPoinl,VHSeIect,GrofPorl,GrofPlr,Rec(),
$U TBTYPES.CODE{ TBTypes (EventRecord) ;

f$L1}

type

QElemPtr = MacPtr ;
QHdrPtr = MacPtr ;
ParmB1kPtr = MacPtr ;

Finfo = RECORD

fdType : OsType ; The type of the file 3}
fdCreator : OsType ; The creator of the file }
fdFlags : integer ; hasbundle, invisible, etc.
fdLocation : Point ; file's location in the folder 3}
fdFidr : integer ; folder containing the file

end ;

DrvQEl = RECORD
qLink : QElemPtr ;
qType : INTEGER

dQDrive : INTEGER ;
dORe fNum : INTEGER ;
DOFSID : INTEGER
dQDrvSize : INTEGER
End ;
VCB = RECORD
qLink: QElemPtr next queue entry 1}
qType: integer ; not used
vebFlaogs: integer

bit 15=1 if dirty 3}
always Hex D207 ¥

date volume was initialized }
date of last bocku?

vebSigWord: integer
vcbCrDate: Longint
vcblsBkUp: Longlint

vcbAtrb: integer volume attributes

VCbNmF Is: integer number of files in directory }
vebDirSt: integer directory’'s first block }
vebBIlLn: integer length of file directory }
vcbNmB I ks: integer number of allocation blocks 3

vebAIBIKkSiz:Longlnt size of allocation blocks 3
vebCipSiz: Longlnt number of bytes to allocate }

VCbAIBISY: integer ; first block in block map
vcbNx tFNum: Longint ; next unused file number i
vcbFreeBks: integer number of unused blocks
VCbVN: String[27] volume name 3}
vebDrvNum: integer ; drive number }
vcbDRefNum: integer ; device reference number 3}
vebFSID: integer file system identifier }
vcbVRe fNum: integer ; volume reference number }
vcbMAdr : MacPtr location of block map
vcbBufAdr: MacPtr ; location of volume buffer }
vcbMLen: integer ; number of bytes in block map }
vebDirlndex:integer used internally
vebDirBlk: integer ; used internally

End ;

VBLTask = RECORD
qLink: OElemPtr next queue entry 3}
qType: integer ; queue type 3
vblAddr: ProcPtr ; task address }
vbiCount: integer ; task frequency }
vblPhase: integer ; task phaose

1200301:0AB A—41

MACINTOSH INTERFACE

End

EvOEl = RECORD
qlink: QElemPtr ;
gType: integer
Event: EventRecord ;

End ;

ParamBlkType = (loParam,

ParamBlockRec = PACKED RECORD

§ 12 BYTE heoder used by
qlink QElemPtr

qType integer

ioTrap integer

ioCmdAddr MacPtr

{ Common head to all variants
ioCompletion ProcPtr ;
ioResult OsErr ;

ioNameP tr StringPtr;
ioVRe fNum integer

§ different components for
Case ParamBlkType OF
ioParam :

(ioRe fNum integer
ioPermssn Byte ;
ioVersNum Byte
ioMisc MacPtr
ioBuffer MacPtr ;
ioReqCount Longl!int ;
ioActCount Longint ;
ioPosMode integer ;
ioPosOffset Longlint

FileParaom

(ioFRe fNum integer ; H
fillert Byte ;
ioFVersNum Byte
ioFDirlndex integer
ioFiVersNum Byte ;
ioFlAttrib Byte ;
iofFIFndrinfo Finfo
iof I Num Langlint
ioF1StBlk integer
ioFlLglen Longint
ioFIPylLen Ltonglint ;
ioFIRStBIk integer ;
iroF tRLglen Longint
ioFIRPylLen Loanglint ;
ioF1CrDat Longint ;

)ioFIMcht Longlint

VolumeParam :

Gfiller2 Longint ;
-ioVoillndex ‘tnteger ;
ioVCrDate tongint ;
ioVlLsBkUp tonglnt ;
ioVAtrb integer
ioVNmFis integer ;
ioVDirSt integer ;
ioVblLn integer
ioVNmA{Blks integer
ioVAIBIkSiz Longint
ioVCipSiz Longint ;
ioAlBISt integer ;
ioVNx t FNum Longlint ;
ioVFrBlk integer

A—42

FileParam,

the file and

the different

Appendix A

next queue entry 3
queue type
event record description }

VolumeParam, CntriParam) ;

1/0 system }

queue link in header }

type byte for safety check }
FS: the Trap

FS: address to dispatch to }

completion routine oddr }

result code

pointer to Vol:filename string }
volume reference number

types of parameter blocks }

refnum for |/0 operation }
Open Permissions
version number

Rename new name }

Ge tEOF,SetEOF logical end of file }
Open optional ptr to buffer }
SetFileType new type

data buffer ptr

requested byte count }

actual byte count completed }
initial file positioning

file position offset

reference number for file operation }
version number
GetFilelnfo directory

File version number

index 3}

GetFilelnfo: in-use bit=7, lock bit=7}
Finder Info

GetFilelnfo File Number }

start file block (8 if none)}

logical length (Eof)

physical length

Start block of resource fork

file logical length of resource fork §
file physical length of rsrc fork

file creation time & date

la

modified time & date

volume index number }
creation date and time 3}
last backup date and time }
valume attribute

number of files
start block of
GetVollinfo

in directory 3
directory
length of dir in blocks§
GetVolinfo # biks (of alloc size)
GetVollinfo alloc blk byte size
GetVallnfo #bytes in one alloc
starting disk block in block map
GetVollinfo next free file

H
GetVollinfo # free biks for the val }

1200301:0AB

CntriParam:

(filler3 integer ;
CSCode integer ;
CSParam integer

End ;‘i ParamBlockRec 1}

QHdr = RECORD
QF lags integer ;
QHead QElemPtr ;
QTailt QElemPtr
End ; § QHdr 3}

QTypes =
(dummyType ,
viype ,
ioQType ,
drvQType ,
evQType ,
fsQType) ;

QElem = RECORD
CASE QTypes of

viype : vblQE!lem:
ioQType ioQElem:
drvQType drvQElem:
evQType : § evOElem:
fsQType vcbQElem:
End ;
1200301:0AB

- Operating System Types (OsTypes)

i word specifying status operation }

device contral or

1/0 request queue
drive queue type
event queue type

VBLTask) ;
ParamBlockRec) ;
DrvQE!l)

EVQE!l)
VvCB)

status parameter }

Miscellaneous Flags }
first element on queue }
last element on queue

vertical retrace queue type 3

type

volume control block queue type }

"MACINTOSH INTERFACE

A.15. Operating System Utilities (OsUtilities)

Ptr)

atus }

t(
ng }

application font
auto-key thresh/rate;

Appendix A

(Point,VHSelect,GrafPort,GrafPtr,Rect),

§

printer’'s port

dbl-click/caret blink }

ng;

year

January through December

Sunday

rence number
e

in high byte }

through Saturday }

H

MacCore,
QDTypes
TBTypes (EventRecord)
O0STypes (QElemPtr,QHdr
H validity st
; modem port
H printer por
H alarm setti
H default
; vol level;
H mouse scal
B four—digit
H 1 to 12 for
H 1 to 31
H 8 to 23
H 0 to 59
: 9 to 59
H 1 to 7 for
H volume refe
H type of fil
B version §
) file name
nipulation
(VAR theHnd! :
OsErr ;
(srcPtr:
VAR dstHnd! :
size:
OsErr
(srcPitr:
dstHndl:
size:
OsErr
(aHndl, bHndl
: OsErr
(ptr:
hndl:
size:
OsErr

Handle)

MacPtr
Handle ;
Longint)

MacPtr
Handle ;
Longint)

Handle)

MacPtr ;
Handle ;
Longint)

unit OsUtilities

interface

$oL-3

uses $$U MACCORE.CODE
$U ODTYPES.CODE
$U TBTYPES.CODE
§$U OSTYPES.CODE

§sL1}

type

SysParmType = RECORD
valid: Longlint
por tA: integer
portB: integer
alarm: Longint
font: integer
kbdPrint: integer
volClick: integer
misc: integer

End

SysPPtr = MacPtr ;

DoteTimeRec = RECORD
year: integer
month: integer
day: integer
hour: integer
minute: integer
second: integer
doyOfWeek: integer

End ;

ApFile = RECORD
fvrefnum: integer
ftype: OsType
fversion: integer
fname: Str255

End

i Pointer and Handle Ma
TUNCTION HandToHand
TUNCTION PtrToHand
'UNCTION PtrToXHand
'UNCTION HandAndHand
UNCTION PtrAndHand

String Comparison
A—44

1200301:0AB

§

boot disk; menu blink }

3

- Operating System Utilities (OsUtilities)

FUNCTION EqualString (aStr, bStr: StringPtr
caseSens, diacSens: Boolean
MacBool ;
PROCEDURE UprString (theString: StringPtr ;
diacSens: Boolean) ;

{ Dote and Time Operations

FUNCTION ReadDateTime (VAR secs: Longlint)
: OsErr
FUNCTION SetDateTime (secs: Longlint)
: OsErr ;
PROCEDURE Date2Secs (VAR date: DateTimeRec
VAR secs: Longlint)
PROCEDURE Secs2Date (secs: Longlint
VAR date: DateTimeRec
PROCEDURE GetTime (VAR date: DateTimeRec
PROCEDURE SetTime (VAR date: DateTimeRec

§ Parameter RAM Operations

FUNCTION Initutil : OsErr ;
FUNCTION GetSysPPtr : SysPPtr ;
FUNCTION WriteParam : OsErr

§ Queue Manipulation

PROCEDURE Enqueue (qElement QElemPtr
theQ : QHdrPtr)
FUNCTION Dequeue (qElement : QElemPtr
theQ : QHdrPtr)
OsErr ;

{ Dispatch Table Utilities

PROCEDURE SetTrapAddress(trapAddr: | Longint ;
trapNum: integer) ;
FUNCTION GetTrapAddress(trapNum: integer)
: Longlint ;

§ TextEdit / Scrap Utilities
FUNCTION TEScrapHandle : Handle ;

FUNCTION TEScraplLen : integer ;

{ Finder Interface Utilities

PROCEDURE CountAppFiles (VAR Message: integer ;
VAR Count: integer)

PROCEDURE ClrAppFiles (index: integer) ;

PROCEDURE GetAppFiles (index: integer ;
VAR theFile: ApFile)

§ Miscellaneous Utilities

PROCEDURE Delay (numTicks: Longlint ;
VAR finalTicks: Longlnt) ;

PROCEDURE SysBeep (duration: integer) ;

1200301:0AB

A—45

MACINTOSH INTERFACE

PROCEDURE GetlindString

(VAR

theString:
StrListid:
index:

‘Appenaix A

external (-22072)
Str255 ;

integer ;

integer) ;

1200301:0AB

; $A9csi

Package Manager (Packages)

A.16. Package Manager (Packages)

Unit Packages ;
interface

§SL-
Uses §$U MACCOREACODEg
$U ODTYPES.CODE

($Types} Point,
fsLt3

Const

§ Standard File Routine
RSFGetFile =
RSFPGetFile
RSFPPutFile
RSFPutFile

MacCore ,
QdTypes
FPoint)

Numbers 3

;

—- BN

H
»

§ Disk Initilization Routine Numbers }

RDiIBadMount =0 ;

RDIFormat =6 ;

RDILoad =2 ;

RDIUnload = 4

RDIVerify = 8 ;

RDlZero = 10 ;

§ International Utilities Routine Numbers }

RI1UDatePString = 14 ;

RI1UDateString =0 ;

RiIUGetint! =6 ;

RIUMag!DString =12 ;

RI1UMagString =10 ;

RIUMetric = 4

RIUTimePString = 16 ;

RIUTimeString =2 ;

RiUSetintl =8 ;

{ Standard File Package Constants }

putDIgID = -3999 ; SFPutFile dialog template ID }
putSave R = 1 ; save buttaon

putCancel =2, Cancel button }

putEject =5 ; Eject Button

putDrive =6 ; Drive Button

putName =7 ; EditText item for file name 1}
getDlgid = —-4000 ; SFGetFile diglog template 1D }
getOpen =1 ; Open Button

getCancel =3 Cancel button }

getEject =5 ; Eject button ;

getDrive =6 ; Drive buttan

getNmLst =7 3 userltem for file name list }
getScroll = 8 ; userltem for scroll bar }

§ International Utilities Package Constants }

§ DateForm Constonts }

ShortDate = 3

LongDate = 256 ;

AbbrevDate = 512 ;

§ Currency formot flags 3}

currleadingZ = 128 ; Mask for leading zero }
currTrailingZ = 64 ; Mask for trailing zero
currNegSym = 32 ; Mask for for minus sign / brackets 3}
currSymTrail = 16 ; Mask for currency symbol location }

1200301:0AB

A—47

"MACINTOSH INTERFACE Appendix A

§ Short Date Form Constants }
DMY =2 ; day, month, year
YMD =1 ; year, month, day
MDY =0 ; month, day, year

{ date element format masks }

mntleadingZ = 64 ; Mask for leading zero on month }
dayleadingZ = 32 Mask for leading zero on day }
century = 128 ; Mask for century / no century 3}

{ time element format masks }

hrlLeadingZ = 128 ; Mask for leading zero on hour }
minLeadingZ = 64 ; Mask for leading zero on minutes i
secleading?Z = 32 ; Mask for leading zero on seconds

§ contry codes for version numbers }
verus =0 ;
verFrance =1 ;
verBritain =2 ;
verGermany =3 ;
verltaly = 4 ;
Type

§ Standord File Types }
SFReply = PACKED RECORD

copy: SmallBool ; not used 3}
good: SmallBool ; ignore command if false }
ftype: OsType file type or naot used }
vRe fNum: integer ; volume reference number 3
version: integer ; file version number
fname : String[63] ; file name

End ;

SFTypelist = ARRAY [0..3] of OsType ;

PtrSFReply = MacPtr ;
PtrSFTypelist = MacPtr

§ International Resources Interface }

inti@Hndi = Haondle ;

intloPtr = MacPtr ;

intl@QRec = PACKED RECORD
thousSep: char ; ASCI| character for thousand seperator }
decimalPt: char ; ASCI | character for decimal point
currSymi1: char ; Acurrency symbol (3 bytes)
listSep: char ; ASCI1 character for list seperator }
currSym3: char ;
currSym2: char ; :
dateOrder: Byte ; short Date form — DMY, YMD or MDY 3}
currFmt: Byte ; currency format flags
dateSep: char ; ASCI| for date seperator }
shrtDateFmt:Byte ; date elements format flags ;
timeFmt: Byte ; time elements format flags
timeCyclie: Byte ; indicates 12 or 24 hour cycle }
mornStr: PACKED ARRAY [1..4] of char

. trailing string from ©0:00 to 11:59 3}
eveStr: PACKED ARRAY [1..4] of char ;
trailing string from 12:80 to 23:59

timelSuff: char ; suffix string used in 24 hr mode (8 chars) }
timeSep: char time seperator N

time3Suff: char
time2Suff: char
timeS5Suff: char
timed4Suff: char

time6Suff: char -
e

time7Suff: char

metricSys: Byte § indicates metric or English system 3}

time8Suff: char ;

intl@Vers: integer ; § vrsn: hi byte = country / lo byte = vers }
End ;

A—48 1200301:0AB

- Package Manager (Packages)

intl1Hnd! = Handle ;
intl1Ptr = MacPtr ;
intl1Rec = PACKED RECORD
days: ARRAY [1..7] of String[15]
Sunday through Monday }
months: ARRAY [1..12] of String[15]
January through December }
dateFmt: Byte ; expanded date faormat @ or 255}
supressDate:Byte ; @ for day of week, 255 for no day of week }
abbrlLen: Byte ; month length for short—-expanded date
dayleading®:Byte ; 255 for leading 8, @ for no leading © }
sto: PACKED ARRAY([1..4] of char ;
st1: PACKED ARRAY([1..4] of char ;
st2: PACKED ARRAY([1..4] of char ;
st3: PACKED ARRAY[1..4] of char ;
sté4: PACKED ARRAY[1..4] of char
intl1Vers: integer g version word H
localrtn: integer ; -routine to handle exceptions for mag comp }
End ;
{ Standard File Package 3
PROCEDURE SFPutFile (where: FPoint ;
prompt: StringPtr ;
or igName: StringPtr ;
dligHook: ProcPtr ;
reply: PtrSFRep!y
RSFPutFite: integer)
external(22838) $A9EAL
PROCEDURE SFPPutFile (where: FPoint ;
prompt: StringPtr
arigName: StringPtr ;
dlgHook: ProcPtr ;
reply: PtrSFReply ;
digiD: integer ;
filterProc: ProcPtr ;
RSFPPutFile: integer)
external (-22838); {A9EA}
PROCEDURE SFGetFile (where: FPoint ;
prompt: StringPtr ;
fileFilter: ProcPtr ;
numTypes: integer ;
typelist: . PtrSFTypelist ;
dlgHook: PraocPtr ;
reply: PtrSFRepIy B
RSFGetFile: integer)
B external (- 22838) $A9EA}
PROCEDURE SFPGetFile (where: FPoint ;
prompt: StringPtr
fileFilter: ProcPtr ;
numTypes: integer ;
typelList: PtrSFTypelist ;
dligHook: ProcPtr ;
reply: PtrSFReply ;
digiD: integer ;
filterProc: ProcPtr ;
RSFPGetFile: integer) ;
external (—22038); {A9EA}
§ Disk Initialization Package 3
PROCEDURE DlLoad (RD!Load: integer) ;
external (—22039); §A9EQ}
PROCEDURE D!Unload (RDIUnLoad: integer) ;
external (-22039); $A9E93}
FUNCTION DiBadMount (where: FPoint ;
eviMessoge: Longint ;

1200301:0AB A—49

MACINTOSH INTERFACE

FUNCT ION

FUNCTION

FUNCTION

§ Internat

PROCEDURE

PROCEDURE

PROCEDURE

"ROCEDURE

TUNCTION

TUNCTION

’ROCEDURE

"UNCTION

‘UNCT ION

A—50

DiFormat (
DiVerify (
DiZero (
ional Utilities

1UDateString (

1UDatePString (

IUTimeString (

IUTimePString (

IUMetric
IUGetintl (
1USetintl (

1UMagString (

IUMagiDString (

Appendix A

RDIBadMount: integer
integer externol(22039); $A9E9}
drvNum: integer ;
RDIFormat: integer)
OsErr ; external (~22039); {A9E9}
drvNum: integer ;
RDIVerify: integer
OsErr . - externol(22039); JA9E9}
drvNum: integer ;
volName: StringPtr
RDIZero: integer)
OsErr ; external (—-220839); §A9E9}
Package H
doteTime: Longint ;
DateForm: integer ;
resul t: StringPtr ;
RiUDateString: integer)
external (—22035); §A9ED}
dateTime: Longint ;
DateForm: integer ;
result: StringPtr ;
intiParam: Handle ;
R1UDatePString: integer)
external (- 22935) $A9ED}
dateTime: Longint ;
wantSeconds: MacBool ;
result: StrtngPtr B
RIUTimeString: integer B
externol(-22035); }A9ED}
dateTime: Longint ;
wantSeconds: MacBool! ;
resul t: StringPtr ;
intiParam: Handle ;
RIUTimePString: integer)
external (- 22035) AQED}
RIUMetric: integer)
MacBool ; external (-22035); $A9ED}
thelD: integer ;
RIUGetIntl: integer)
Handle ; external (-22835); {A9ED}
refNum: integer ;
thelD: integer
intiParom: Handle ;
RiUSetIntl: integer)
external (— 22035) $A9ED}
a: StringPtr
b: StringPtr ;
alen: integer ;
blLen: integer ;
R1UMagString: integer)
integer ; external (-22035); {A9ED}
a: StringPtr ;
b: StringPtr
alen: integer ;
bLen: integer ;
RiUMag!DString: integer)
integer ; external (-22035); }A9ED}

1200301:0AB

- Parameter Block I/O Manager (PBIOMgr)

A.17. Parameter Block I/O Manager (PBIOMgr)

unit PblOMgr ;

interfoce

igSE§ Maccore, QDTypes, TBTypes,OsTypes}
L—-

uses {$U MACCORE.CODE} Maccore,
$U QDTYPES.CODE{ QdTypes (Point,VHSelect,GrafPort,GrafPtr, Rect),
$U TBTYPES.CODE{ TBTypes (EventRecord),
P $U OSTYPES.CODE{ OsTypes (ParmBIkPtr, ParamBlockRec ,QHdrPtr);
Lt
H Low Level File Manager Routines 3
f Initializing the File 1/0 OQueue H
PROCEDURE InitQueue; EXTERNAL(-24542); {A0223%
§ Accessing Volumes H
FUNCTION PBMountVol (paramBlock: ParmBIkPtr)
: OsErr
FUNCTION PBGetVinfo (paramBlock: ParmBIkPtr;
async: boolean)
OsErr
FUNCTION PBGetVol (paramBlock: ParmBIkPtr;
async: boolean)
OsErr ;
FUNCTION " PBSetVol (paramBlock: ParmBIkPtr;
async: boolean)
OsErr ;
FUNCTION PBFishVol (paramBlock: ParmBikPtr;
async: boolean)
OsErr ;
FUNCTION PBUnmountVol (paramBlock: ParmBIkPtr)
: OsErr
FUNCTION PBOffLine (paramBlock: ParmBIkPtr;
async: boolean)
OsErr
FUNCTION PBEject (paromBlock: ParmBIkPtr;
async: boolean)
OsErr
{ Changing File Contents H
FUNCTION PBCreate (paramBlock: ParmBIkPtr;
async: boolean)
OsErr ;
FUNCTION PBOpen (paramBlock: ParmBIkPtr
async: boolean)
OsErr ;
FUNCTION PBOpenRF (paramBlock: ParmBlkPtr;
async: boolean)
OsErr
FUNCTION PBRead (paramBlock: ParmBlkPtr;
async: boolean)
OsErr ;
1200301:0AB A-51

" MACINTOSH INTERFACE

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

TUNCTION

TUNCTION

TUNCTION

TUNCTION

"UNCTION

"UNCTION

Accessin

"'UNCTION

UNCT ION
UNCTION

UNCTION

A—52

Appendix A

PBWrite (paramBlock: ParmBIkPtr;
async: boolean)
OsErr
PBGe tFPos (paramBlock: ParmBIkPtr;
async: boolean)
OsErr
PBSetFPos (paramBlock: ParmBIkPtr;
async: booliean)
OsErr
PBGetEof (paramBlock: ParmBIkPtr;
async: boolean)
OsErr
PBSetEof (paramBlock: ParmBIkPtr;
async: boolean)
OsErr ;
PBAllocate (paramBlock: ParmBIkPtr;
async: boolean)
OsErr
PBFiIshFile (paramBlock: ParmBIkPtr;
async: boolean)
OsErr
PBClose (paramBlock: ParmBikPtr;
async: boolean)
OsErr ;
PBGetfFinfo (paramBlock: ParmBIlkPtr;
async: boolean)
OsErr
PBSetFinfo (paramBlock: ParmBlkPtr;
async: boolean)
OsErr ;
PBSetflLock (paramBlock: ParmBIkPtr;
async: boolean)
OsErr
PBRstFLock (paramBlock: ParmBIkPtr;
async: boolean)
OsErr ;
PBSetFVers (paramBlock: ParmBIkPtr;
async: boolean)
OsErr
PBRename (paramBlock: ParmBIkPtr;
async: boolean)
OsErr ;
PBDelete (paramBlock: ParmBikPtr;
async: boolean)
OsErr 3
g Queues 3
Ge tFSQHdr QHdrPtr
Ge tVCBQHdr QHdrPtr ;
GetDrvOHdr OHdrPtr ;
~~~~~~ Low Level Device Routines I
PBContral ( paramBlock: ParmBlkPtr ;

1200301:0AB



Parameter Block 1/O Manager (PBIOMgr)

async: Boolean )
OsErr ;
FUNCTION PBStatus ( paramBlock: ParmBIkPtr ;
async: Boolean )
OsErr
FUNCTION PBKilllO ( paramBlock: ParmBIkPtr ;
async: Boolean )
OsErr ;

1200301:0AB A—53



MACINTOSH INTERFACE

A.18. Print Manager (PrintMgr)

Unit PrintMgr ;

Interface

§$L-3

Uses §$U MACCORE.CODE% MaCCore,

$U ODTYPES.CODE

QdTypes

( GrafPort, GrafPtr, Rect,

Ly

Const

§ Printing Methods }

bDraftLoop =0 ;
bSpoollLoop =1
bUseriLoop =2 3
bUser2Loop =3 ;
{ Printer feed type constants }

FeedCut

FeedFanFold
FeedMechCut

FeedOthe

{ Scan Types }§

ScanTB
ScanBT
ScanlR
ScanRL

‘ype

r

]
1
2
3

oo
[FENEER

TPPrPort = MacPtr ;
TPrPort = Record

gport
Procs
othe

End ;

r

GrafPort ;
QDProcs ;

TPPort = RECORD
Case Integer of

[} pGPort GrafPtr) ;
1 pPrPort : TPPrPort)
End ;
TPrinfo = RECORD
iDev integer ;
iVRes integer ;
iHRes integer ;
rPage Rect ;
End ;
TPrSt1 = PACKED RECORD
wDev integer ;
iPageV integer ;
iPageH integer
TFeed Byte ;
bPaort Byte ;
End ;

TPrXtnfo = PACKED RECORD
iRowBytes : integer ;

iBandV
iBandH

iDevBytes : integer ;

A—54

integer ;
integer

RectPtr, QDProcs )

Draft Print
Spooling 1}

Printer Specific,
Printer Specific,

hand~-fed ,

Appendix A

ing }
method 1
method 2
indivually cut }

continuos—feed FanFold Paper }
mechanically fed cut sheets
other types of paper

Top to Bott
Bottom to T
Left to Rig
Right to Le

om
op
ht
ft

GrafPort to be drawn in }
Pointers to drawing routines }
fields for internal use only

Driver Information }

Printer ver
Printer hor
page rectan

Used intern

tical re
izontal
gle

ally }

Paper height
Paper Width }

Paper feed

type 3}

solution }
resolution }

Printer or modem port }

Bytes per r

Vertical dots

Horizontal
size of bit

ow E
dots 3
image 1}

1200301:0AB



Print Manager (PrintMgr)

iBands : integer ; bands per page }
BUIThick : Byte ; underline thickness }
bPatScale : Byte ; used by quickdraw }
bUlShadow : Byte ; under!line descender }
bUIOffset : Byte ; underline offset
bXInfoX : Byte ; not used
TScan : Byte ; Scan Direction }

End ;

TPrJob = PACKED RECORD
iFstPage : integer ; First Page to print }
iLstPage : integer Last Page to print
iCopies : integer Number of copies to print
fFromUsr Smal IBoo!l TRUE if called from application }
bJDoclLoop : Byte ; document style, Draft, Spool, etc.
pldleProc : ProcPtr ; The proc to call while waiting on 1/0 }
pFileName : StringPtr ; Spool file name
iFilevol : integer ; spool file volume }
bJobx : Byte ; unused
bFileVers : Byte ; spool file version }

End ;

THPrint = Handle ;

TPPrint = MacPtr

TPrint = RECORD
iPrversion :integer ; Printing Manager Version Number 1}
prinfo : TPrinfo ; printer information
rPaper : Rect ; paper rectangle }
prSti TPrStl style information 3}
prinfoPt : TPrinfo ; copy of prinfo }
prXxinfo : TPrXInfo ; band information }
prJob : TPrdob ; job information }
printx : Array [1..19] of integer ;

End ;

TPrStatus = PACKED RECORD
iTotPaoges : integer ; total number of pages } °
iCurPage : integer ; poge being printed
iTotCopies :integer ; number of copies
iCurCopy : integer ; current copy being printed }
iTotBands : integer ; bands per page
iCurBand : integer current band being printed }
flmaging : SmallBoo! ; TRUE if imaging
fPgDirty : SmallBool ; TRUE if started printing page }
hPrint : THPrint ; the print record
pPrPort : TPPrPort ; print port
hPic : Handle ; used internally }

End ;

{ Initializaotion and Termination H

PROCEDURE PrOpen
PROCEDURE PrClose ;

$ Print Records and Dialogs 3
PROCEDURE PrintDefault ( hPrint : THPrint ) ;
FUNCTION PrValidate ( hPrint : THPrint )

MacBoot ;
FUNCTION PrStiDialog ( hPrint : THPrint )

MacBool ;
FUNCTION PrJobDialog ( hPrint : THPrint )

MacBool ;
PROCEDURE PrJobMerge ( hPrintScr,

hPrintDst : THPrint )

{ Document Printing 3

1200301:0AB A—55



MACINTOSH INTERFACE

FUNCTION PrOpenDoc

PROCEDURE PrCloseDoc
PROCEDURE PrOpenPage

PROCEDURE PrClosePage
{ Spoo!l Printing ———-
PROCEDURE PrPicFile

Appendix A

{ Handling Errors
FUNCTION PrError
PROCEDURE PrSetError

hPrint THPrint ;
pPrPort TPPrPort ;
plOBuf MacPtr )
TPPrPort ;
pPrPort TPPrPort ) ;
pPrPort TPPrPort ;
pPagef rame RectPtr )
pPrPort TPPrPort )
hPrint THPrint
pPrPort TPPrPort ;
plOBuf MacPtr
pDevBuf MacPtr ;
prStatus MacPtr ) ;
integer
iErr integer )
1200301:0AB



Printer Driver (PrintDriver)

A.19. Printer Driver (PrintDriver)

Unit PrintDriver ;

Interface

§$L-3

Uses §$U MACCORE.CODE} MacCore

f$L13

Const
$ Printer Driver Control call parameters }
iPrBitsCtli = 4 ; { bitMap Printing }
1ScreenBits =0 ; configurable }
IPaintBits =1, 72 by 72 dots }
iPrioCtl =5 ; text streaming
iPrEvtCtl =6 ; screen printing 3}
IPrEVtALL = 196605 ; i print whole screen }
IPrEvtTop = 131069 print top most window }
iPrDevCtl =7 ; § device control )
IPrReset = 65536 ; reset printer }
IPrPageEnd = 131072 start new page
IPrLineFeed = 196608 start new line
iFMgrCt| =8 ; { used by Font Mgr

{ Initialization and Termination
FUNCTION PrDrvrOpen : OsErr
FUNCTION PrDrvrClose : OsErr

§ Printer Control

FUNCTION PrCtiCall ( iWhichCtl : integer ;
paraml,
param?2,
param3 : Ltonglint ) : OsErr ;

§ Memory Allocation Control
PROCEDURE PrPurge ;
PROCEDURE PrNoPurge

{ Miscellaneous
FUNCTION PrDrvrDce : Handle ;
FUNCTION PrDrvrVers : integer ;

1200301:0AB A—57



MACINTOSH INTERFACE ~ ~Appendix A

A.20. Quickdraw Types (QdTypes)

unit ODTypes ;
interface
§Uses MacCore}

Uses¥§$u MacCore.Code} MacCore ;

feL
type

{ The following Pointers are used to poss parameters by ADDRESS }
PatternPtr = MacPtr ; Pointer to Pattern Array }
Bi tMapPtr = MacPtr ; Pointer to BitMap
QDProcsPtr = MacPtr ; Pointer to QDProcs Record }
CursorPtr = MacPtr ; Pointer to Cursor Record
FontinPtr = MacPtr ; Pointer to Fontlnfo Record
PenStPtr = MacPtr ; Pointer to PenState Record
PointPtr = MacPtr ; Pointer to Point Record
GrafPtr = MacPtr ; Pointer to Graph Port Record }
Pattern = packed array[@..7] of ©..255;
Bits16 = orroy[@..]Sﬁ of integer;
FPoint = Longlint; { faoke point for on—the-staock parameters
VHSelect = (v,h) ;
Point = record case integer of

8: (v: integer;

h: integer);
1: Evh: array[VHSelect] of integer);
2: (param: Longlint);

end;

RectPtr = MacPtr ;

Rect = record case integer of
8: (top: integer;
left: integer;

bottom: integer;

right: integer);
1: (toplLeft: Point;

batRight: Point);

end;
Styleltem = (bold,italic,underline,outline,shadow,condense,extend);
Style = set of Styleltem;
Fontinfo = record
ascent: integer;
descent: integer;
widMax: integer;
leading: integer;
end;
Bi tMap = record
boseAddr: MacPtr;
rowBytes: integer;
bounds: Rect;
end;
Cursor = recaord
data: Bits16;
mask: Bitsi6;
hotSpot: Point;
end;
PenState = recaord

A—58 1200301:0AB



.Quickdraw Types (QdTypes)

B

polyPoints:array[@..8] of Point;

pnLoc: Point;
pnSize: Point;
pnMode: integer
pnPat: Pattern
end;
Polygon = record
polySize: integer
polyBBox: Rect;
end;
Region = record
rgnSize: integer
rgnBBox: Rect;
${ plus more data i
end;
Picture = record
picSize: integer;
picFrame: Rect;
{ plus byte codes
end;
QDProcs = record
textProc: ProcPtr
lineProc: ProcPtr
rectProc: ProcPtr
rRectProc: ProcPtr
ovalProc: ProcPtr
arcProc: ProcPtr
polyProc: ProcPtr
rgnProc: ProcPtr
bitsProc: ProcPtr

; ${ rgnSize = 10 for

f not rectangular }

for picture content }

B
’

commentProc:ProcPtr;
txMeasProc:ProcPtr;
getPicProc:ProcPtr;
putPicProc:ProcPtr;

end;

GrafPort = record
device:
portBits:
portRect:
visRgn:
clipRgn:
bkPat:
fillPat:
pnbLoc:
pnSize:
pnMode:
pnPat:
pnVis:
txFont:
txFace:
txMode:
txSize:
spExtra:
fgColor:
bkColor:
colrBit:
patStretch:
picSave:
rgnSave:
polySave:
grafProcs:

end;

1200301:0AB

integer
Bi tMap;
Rect;

Handle;
Handle;
Pattern
Pattern
Point;

Point;

integer

5

5

Pattern;

integer
integer
Style;

integer
integer
Longint
Longint
Longint
integer
integer
Handle;
Handle;
Handle;
MacPtr;

B

B
B
B

rectangular 3}

A-59



MACINTOSH INTERFACE Appendix A

A.21. Quickdraw (QuickDraw)

unit QuickDraw;
interface
;Uses Maccore, QDTypes}

$L-4
uses ;SU MACCORE.CODE§ MacCore,

$U QDTYPES.CODE{ QDTypes;
$$L13
canst
srcCopy = 0; § the 16 transfer modes }
srcOr = 1;
srcXor = 2;
srcBic = 3;
notSrcCopy = 4;
notSrcOr = 5;
notSrcXor = 6,
notSrcBic = 7;
patCopy = 8;
patOr = 9;
patXor = 10,
patBic = 11;
notPatCopy = 12;
notPatOr = 13;
notPatXor = 14;
notPatBic = 15;
} QuickDraw color separation constants §
normalBit = 9;
inverseBit = 1;
redBit = 4;
greenBit = 3;
blueBit = 2;
cyanBit = 8;
magentoBit = 7;
yellowBit = 6
biackBit = 5;

blackColor
whiteColor
redColor
greenColor
biueColor
cyanColor
magentaColor
yellowColor

[ I O]
N
s
©0

69;

piclParen = 0;
picRParen = 1;

GrofVerb constants for the Standard Procedures }

Frame =0 ;

Paint = 256 ;

Erase = 512

Invert = 768 ;

Fiti = 1024 ;

GrafPort Routines H
rocedure OpenPort port: GrafPtr B external(—22417);, }A86F
rocedure InitPort port: GrafPtr B external (—22419); }A86D
rocedure ClosePort port: GrafPtr) ; external (—-22403); 3A870
rocedure SetPort port: GrafPtr) ; external (—22413); :$A873

A—60 1200301:0AB



procedure
procedure
procedure

procedure

procedure

procedure
procedure
procedure
procedure
procedure

§ Cursor Routines

procedure
procedure
procedure
Procedure
procedure

§ Line Routines

procedure
procedure
procedure
procedure
procedure

procedure

procedure
procedure
procedure
procedure
procedure
procedure
procedure

§ Text Routines

procedure
procedure
procedure
procedure
procedure
procedure
procedure

procedure

function

function

function

procedure

§ Point Calculations

procedure

Quickdraw (QuickDraw)

GetPort port: MacPtr) external (-22412); }{A874
GraofDevice device: integer); external(—22414); 3A872
SetPortBits bm: BitMapPtr) ; external(—-22411); }AB75
PortSize (width,
height: integer); external (-22410); $A876}
MovePortTo (leftGlobal
topGlobal: integer); external (-22409); {A877}
SetOrigin h,v: integer); external (-22408); }A878
SetClip rgn: chdleg; external (-22407); }A879
GetClip rgn: Handle); external (—22406); }A87A
ClipRect r: RectPtr); external (—22405),; $A878
BackPat pat: PatternPtr); external(—22404); }A87C
H
InitCursor; external (—22448); }AB850
SetCursor (crsr: CursorPtr); external(—-22447); }A851
HideCursor; external (-22446); $A852
ShowCursor; external (—22445); 3A853
ObscureCursor; external (—-22442),; 3A856
H
HidePen; external (-=22378); }A896
ShowPen; external (—-22377). 3A897
GetPen pt: PointPtr): external (-=22374); }{A89A
GCetPenState pnState: PenStPtr); external (—=22376); 3$A898
SetPenState pnState: PenStPtr); external (=22375); {A899
PenSize (width,
height: integer); external (-22373); }A898}
PenMode ﬁmode: integer); external (-=22372); }A89C
PenPat pat: PatternPtr); external(—-22371); }A890D
PenNormal ; external (-22370);: $A89E
MoveTo h,v: integer): external (-22381); 3A893
Move dh,dv: integer); external (-22380); {A894
LineTo h,v: integer): external (-22383); 3A891
Line dh,dv: integer); external (-22382); {A892
H
TextFont font: integer); external (-22393); }{A887
TextFace face: Style); external (-22392); 3A888
TextMode mode : integer); external (-22391); $A889
TextSize size: integer); external (—22390); $A88A
SpaceExtra extra: Longlint); external (-22386); 3A88E
DrowChar ch: char); external (—-22397); }A883
DrawString s: StringPtr); external(—22396); }A884
DraowText (textBuf: MacPtr;
firstByte,
byteCount: integer); external (-22395); §{A885%
CharWidth (ch: char)
: integer; external (-22387); {A88D}
StringWidth (s: StringPtr)
integer; external (-22388); ${A88C}
TextWidth (textBuf: MacPtr;
firstByte,
byteCount: integer)
integer; external (-22394); {A8863%
GetFontinfo (info: FontinPtr); external(-22389); {A888}
3
AddPt (src: FPoint;
A—61

1200301:0AB



MACINTOSH INTERFACE

procedure SubPt

procedure SetPt
function

EqualiPt

procedure ScalePt

procedure

MapPt

procedure
procedure

{ Rectangle Calculations

procedure SetRect

function EqualRect

function EmptyRect

orocedure OffsetRect

>rocedure MapRect

>rocedure InsetRect

function SectRect

>rocedure UnionRect

function PtlinRect

»rocedure Pt2Rect

Graphical

FrameRect
PaintRect
EraseRect
Inver tRect

>rocedure
yrocedure
yrocedure
rrocedure

rrocedure FillRect

RoundRect Routines

A—62

LocaliToGlobal
GlobalTolocal

Appendix A

dst PointPtr); external (—-22402); ${A87E}
(src FPoint;
ds PointPtr); external (-22401); §A87F}
(pt: PointPtr;
h,v integer); external (-22400); }{A8801%
(pt1,pt2: FPoint)
: MacBool ; external (-22399): ${A881}
(pt: PointPtr;
fromRect,
toRect: RectPtr); external (-22280); {A8F8}
(pt: PointPtr;
fromRect,
toRect: RectPtr); external (-22279); $A8F9}
pt: PointPtr); external (—-22416); }A870
pt: PointPtr); external (-22415); }A871
H
r: RectPtr;
left,
top,
right,
bottom: integer); external (-22361); §{A8A7}
(rectt,
rect2: RectPtr)
MacBool ; external (-22362); §{ABA6}
(r: RectPtr)
MacBool ; external (-22354); {ABAE}
r: RectPtr;
dh,dv: integer); external (-22360); }{A8A8}%
r: RectPtr;
fromRect,
toRect: RectPtr); external (-22278); {A8FA}
r: RectPtr;
dh,dv: integer); external (—-22359); §{A8A9}
(src1,src2: RectPtr;
dstRect: RectPtr)
MacBool ; external (-22358); }{ABAA}
(srcl,src2: RectPtr;
dstRect: RectPtr); external (-22357); }{A8AB}
(pt: FPoint;
r: RectPtr)
MacBool ; external (—22355); §ABAD}
(pt1,pt2: FPoint;
dstRect: RectPtr); external (—=22356); $ABAC}
Operations on Rectangles H
r: RectPtr); external (-22367); }ABA1
r: RectPtr); externagl(—22366); ABA2
r: RectPtr); external (—-22365); 3A8A3
r: RectPtr); external (—22364); ABA4
(r: RectPtr;
pat: PatternPtr); external (—22363); }ABAS5}
H

1200301:0AB



Quickdraw (QuickDraw)

procedure FrameRoundRect(r: RectPtr;

ovWd,ovHt: Integer); external (-22352); ${A8B0}
procedure PaintRoundRect(r: RectPtr;

ovWd,ovHt: Integer); external (-22351); {A8B1}
procedure EraseRoundRect(r: RectPtr;

ovWd,ovHt: Integer): external (-22350); §$A8B2%
procedure InvertRoundRect(r: RectPtr;

ovWd,ovHt: Integer); external (—=22349); §$A8833%
procedure FillRoundRect (r: RectPtr;

ovWd,ovHt: Integer;

pat: PatternPtr); external(~-22348); $A8B4}
{ Oval Routines 3
procedure FraomeOval r: RectPtr); external (-22345); }{A8B7
procedure PaintOval r: RectPtr); external (—22344); }A88B8
procedure EraseOval r: RectPtr); external(~22343); }A8B9
procedure lnvertOval r: RectPtr); external (—-22342); }A8BA
procedure FillQOval (r: RectPtr;

pat: PatternPtr); external(-22341); §A88BB}
{ Arc Routines 3
procedure FrameArc (r: RectPtr;

startAngle,

arcAngle: integer); external (-22338); }{A8BE}
procedure PaintArc (r: RectPtr;

startAngle,

arcAngle: integer); external (-22337); §A8BF}
procedure EraseArc (r: RectPtr;

startAngle,

arcAngle: integer); external (-22336); {A8CO}
procedure InvertArc r: RectPtr;

startAngle,

arcAngle: integer); external (-22335); {A8C1}
procedure FillArc (r: RectPtr;

startAngle,

arcAngle: integer;

pat: PatternPtr);external (-22334); §A8C2}
procedure PtToAngle (r: RectPtr;

pt: FPoint;

angle: integerPtr);external (-22333); {A8C3}
{ Polygon Routines H
function OpenPoly Handle; external (-22325); }{A8CB
procedure ClosePoly; external (=22324); $A8CC
procedure KillPoly (poly: Handle); external (-22323); }A8CD
procedure OffsetPoly (poly: Handle;

dh,dv: integer); external (-22322); §{ABCE}
procedure MapPoly (poly: Handle;

fromRect,

toRect: RectPtr); external (-22276); }{A8FC}
procedure FramePoly poly: Handle); external (—-22330); }A8C6
procedure PaintPoly poly: Handle); external (-22329); }A8C7
procedure ErasePoly poly: Handle); external (-22328); }A8CS
procedure InvertPoly poly: Handle): external (~-22327); 3IA8C9
procedure FillPoly (poly: Handle;

pat: PatternPtr); external(-22326); $A8CA}

1200301:0AB A—63



MACINTOSH INTERFACE

§ Region Colculations

function
procedure
procedure

procedure

procedure

procedure

procedure
procedure

procedure

procedure

procedure

procedure

>rocedure

>rocedure

>rocedure

‘unction

‘unction

‘unction

unction

NewRgn
DisposeRgn
CopyRgn

SetEmptyRgn
SetRectRgn

RectRgn

OpenRgn;
CloseRgn

OffsetRgn

MapRgn

InsetRgn

SectRgn

UnionRgn

DiffRgn

XorRgn

EqualRgn

EmptyRgn

PtinRgn

RectlnRgn

Graphical Operations

irocedure
rocedure
rocedure
‘rocedure

rocedure

FrameRgn
PaintRgn
EraseRgn
Inver tRgn

FiliRgn

Appendix A

H
Handle; exlernq!€—22312§; %ABDB%
(rgn: Handle); external (~22311); 3A8D9
(srcRgn,
dstRgn: Handle); external (-22308); }{A8DC}
(rgn: Handle); external (-22307); {A8BDD}
(rgn: Handle;
left,
top.,
right,
bottom: integer); external (-22306); }ABDE}
(rgn: Handle:
r: RectPtr); external (-22305); {A8DF}
externol£—22316§; iABDA%
(destRgn: Handle): external (-22309); $A8D08
(rgn: Handle;
dh,dv: integer); external (-22384); }ABEQ}
(rgn: Handle;
fromRect,
toRect: RectPtr); xternal (-22277); {ABFB}
(rgn: Handle;
dh,dv: integer); external (-22303); $ABE1}
(srcRgnA,
srcRgnB,
dstRgn: Handle); external (—-223808); {ABE4}
(srcRgnA,
srcRgnB,
dstRgn: Handle); external (-22299); §{ABES}
{srcRgnA,
srcRgnB,
dstRgn: Handle); external (-22298); §ABE6}
(srcRgnA,
srcRgn8B,
dstRgn: Handle); external (-22297); $ABE7}
(rgnA,rgnB: Handle)
MacBool ; external (=22301); }ABE3}
(rgn: Handle)
MacBool ; external (-223082); }{ABE2}
(pt: FPoint;
rgn: Handle)
MacBool ; external (—-22296); $AB8E8}
(r: RectPtr;
rgn: Handle)
MacBool ; external (—22295); {ABE9}
on Regions H
rgn: Handle); external (—22318); ${A8D2
rgn: Handle); external {—22317); $A8D3
rgn: Handle); external (-22316); }A8BD4
rgn: Handle); external{=22315); }A8D5
(rgn: Handle;
pat: PatternPtr); external(-=22314); §{A8D6}

1200301

:0AB



‘Quickdraw (QuickDraw)

$§ Graphical Operations on BitMaps H
procedure ScrollRect (destRect: RectPtr;

dh,dv: integer;

updateRgn: Handle); external (-22289); }{ABEF}
procedure CopyBits (srcBits,

dstBits: BitMapPtr

srcRect,

dstRect: RectPtr;

mode: integer;

maskRgn: Handle): external (-22292): }ABEC}
§ Picture Routines " }
function OpenPicture (picFrame: RectPtr)

: Handle; external (-22285); $A8F3}
procedure ClosePicture; external (-22284); }{ABF4}
procedure DrawPicture (myPicture: Handle;

dstRect: RectPtr); external (-22282); }{A8F6%
procedure PicComment (kind,

dataSize: integer;

dataHandle:Handle); external (-22286); §{A8F2}
procedure KillPicture (myPicture: Handle); external (-22283); §ABF5}
{ The Bottleneck Interface: 3
procedure SetStdProcs (procs: QDProcsPtr); external(-22294); $ABEA}
procedure StdText (count: integer;

textAddr: MaocPtr;

numer,

denom: FPoint); external (-22398); §A8821%
procedure StdlLine (newPt: FPoint); external (-22384); $A890}
procedure StdRect (verb: integer ;

r: RectPtr); external (-22368); §A8A01%
procedure StdRRect (verb: integer ;

r: RectPtr;

ovWd,ovHt: integer); external (-22353); {ABAF}
procedure StdOval (verb: integer ;

r: RectPtr); external (-22346); §{A8B6}
procedure StdArc (verb: integer ;

r: RectPtr;

startAngle,

arcAngle: integer); external (-22339); {A8BD}
procedure StdPoly (verb: integer ;

poly: Handle); external (-22331); $A8CS5}%
procedure StdRgn (verb: integer ;

rgn: Handle); external (-22319); §{A8D1}
procedure StdBits (srcBits: BitMapPtr;

srcRect,

dxtRect: RectPtr;

mode : integer;

maskRgn: Handlie); external (-22293); $A8EB}
procedure StdComment (kind,

dataSize: integer;

dataHandle:Handle); external (-22287); §A8F1}

function StdTxMeas (count: integer;

textAddr: MacPtr;

1200301:0AB A—65



" MACINTOSH INTERFACE

Appendix A

numer , .

denom: PointPtr;

info: FontinPtr)

integer; external (~22291); $ABED}
procedure StdGetPic (dataPtr: MacPtr

byteCount: integer); external (-22290); }ABEE}
procedure StdPutPic (dataPtr: MacPtr;

byteCount: integer); external(-22288); {A8F@}
§ Misc Utility Routines H
function GetPixel (h,v: integer)

MacBool ; external (-22427); {A865}
function Random . integer; external (-22431); §{A861}
procedure StuffHex (thingPtr: MacPtr;

s: StringPtr); external(-22426); }AB66%
procedure fForeColor color: Longint); AB623%
procedure BackColor color: Longint); AB63
procedure ColorBit whichBit: integer); AB64

A—88

1200301:0AB



A.22, Resource Manager (ResMgr)

unit ResMgr
interface

%Uses MacCore}

Resource Manager (ResMgr)

$L-3
Uses §3U MACCORE.CODE} Maccore
§$L13
,const ’
{ Resource A(trvbule bits }
resSysRef = 128 . set if system reference 3
resSysHeap = 64 ; set if read into Mac System heap }
resPurgeable = 32 ; set if purgeable }
resLocked = 16 ; set if locked }
resProtected = 8 ; set if protected }
resPreload = 4 set if to be preloaded }
resChanged = 2 set if to be written to resource file
resUser = 1, available for use by your application
{ Opening and Closing Resource Files H
PROCEDURE CreateResFile ( filename: StringPtr) ;
external (- 22095) $A9B13
FUNCTION OpenResFile ( filename: StringPtr)
integer ; external (-22121); §{A997%
PROCEDURE CloseResFile ( refnum: integer) ;
external (-22118); }{A99A}
{ Checking for errors 3
FUNCTION ResError : integer external (-22097); }{A9AF}
{ Setting the Current Resource File H
FUNCTION CurResFile : integer external (—22124); $A994}
FUNCTION HomeResFile ( theResource: Handle)
integer ; external (-22108); }A9A4}
PROCEDURE UseResFile ( refNum: integer)
. external (- 22128) $A9983
{ Getting Resource Types 3
FUNCTION CountTypes : integer ; external (=22114); $A99E}
PROCEDURE GetindTypes ( theType: OsTypePtr ;
index: integer) ;
external (- 22113) $A99F3
{ Getting and Disposing of Resources 3
PROCEDURE SetResload ( load: MacBool) ;
. external (— 22117) §A9983
FUNCTION CountResources( theType: FOsType )
: integer ; external (-22116); $A99C3
FUNCTION GetlndResource ( theType: FOsType ;
index: integer )
Handle ; external (-=22115); $A99D}
FUNCTION GetResource ( theType: FOsType ;
thelD: integer )
1200301:0AB A—67



MACINTOSH INTERFACE

:Appendix A

Handle external (-=22112); }{A9AB}
FUNCTION GetNamedResource ( theType: FOsType ;
name : StringPtr
Handle ; external (-22111); §A9A1}
PROCEDURE LoadResource ( theResource: Handle )
external (- 22116) $A9A23
PROCEDURE ReleaseResource ( theResource: Handle ) ;
external (-22109); §A9A3}
PROCEDURE DetachResource ( theResource: Handl e R
exlernol( 122126); $A9923
{ Getting Resource Information 3
FUNCTION Uniqueld theType: FOsType )
integer ; external (-22679); §$A9C1}
PROCEDURE GetReslinfo ( theResource: Handle ;
theld: integerPtr ;
theType: OsTypePtr ;
name : StringPtr H
external (~ 22104) {A9AB3
FUNCTION GetResAttrs ( theResource: Handle
integer ; externol( 22106); $A9A63
{ Modifying Resources H
PROCEDURE SetReslinfo ( theResource: Handle ;
thelD: integer
name : StringPtr )
external (-22103); }{A9A9}%
PROCEDURE SetResAttrs ( theResource: Handle ;
attrs: integer )
external (- 22105) $A9A73
PROCEDURE ChangedResource ( theResource: Handle )
ex{evnclk—42162/, $ASAAL
PROCEDURE AddResource ( theDota: Handle ;
theType: FOsType ;
thelD: integer ;
name: StringPtr )
external (-22101); $A9AB}
PROCEDURE RmveResource ( theResource: Handle )
. external (- 22999) $A9AD}
PROCEDURE RmveReference ( theResource: Haondle
externol( 22098) $A9AE}
PROCEDURE AddReference ( theResource: Handie ;
thelD: integer ;
name : StringPtr )
external (-22100); }A9AC}
PROCEDURE UpdateResFile ( refNum: integer ) ;
external (—-22119); §A999}
PROCEDURE WriteResource ( theResource: Handle )
external (- 22996) {A9B0B3
PROCEDURE SetResPurge ( install: MacBool
externol( 22125) $§A9933
FUNCTION SizeResource ( theResource: Handle )
: Longlnt ; external (-22107); }A9A5}%
{ Advanced Routines 3

A—68

1200301:0AB



FUNCTION GetResFileAttrs ( refNum:
: integer

PROCEDURE SetResFileAttrs ( refNum:

attrs:

1200301:0AB

Resource Manager (ResMgr)

integer )
external (-22026); {A9F6}

integer ;
integer ) ;
external (=22025); §A9F7}

A—69



MACINTOSH INTERFACE

A.23. Scrap Manager (ScrapMgr)

unit ScrapMgr
interface

$$L-3
Uses {$U MACCORE.CODE} MacCore
fsL13

type

PScrapStuff = MacPtr ;

ScrapStuff = RECORD
scrapSize: Longlint
scropHandle:Handle

scrapCount: integer ;

scrapState: integer ;

scrapName: StringPtr
End ;

{ Getting Scrap Information

Appendix A

!

FUNCTION InfoScrap PScrapStuff ; external (-22023); $A9F93
{ Keeping the Scrap on the Desk 3
FUNCTION UnloadScrap Longlint ; external (-22822); }A9FA}
FUNCTION LoadScrap Longint ; external (-22021); §A9FB}
§ Reading from the Scrap §
FUNCTION GetScrap ( hDest: Handle ;
theType: FOsType
offset: LongintPtr )
Longint ; external (-22019); §{A9FD}
{ Writing to the Scrap H
FUNCTION ZeroScrap Longlint ; external (-22020); §A9FC}
FUNCTION PutScrap ( length: Longlint ;
© theType: FOsType ;
source: MacPtr )
Longint ; external (-22018); §$A9FE}
A-70 1200301:0AB



Serial Driver (Serial)

A.24. Serial Driver (Serial)

unit Serial ;

interface

§$L-}
Uses $$U MACCORE.CODE} MacCore ;
fsL1}
Const
{ RefNums for the serial ports }
AinRefNum = -6 ; serial port A input }
AoutRe fNum = -7 ; serial port A output }
BinRe fNum = -8 ; serial port B input
BoutRe fNum = -9 ; serial port B output }
{ baud rate constants }
baud300 = 380 ;
baud600 = 189 ;
baud1200 = 94 ;
baud 1800 = 62
baud2400 = 46 ;
baud3600 = 30 ;
baud4800 = 22 ;
baud7200 = 14 ;
baud9600 = 10 ;
boud19200 = 4
baud57600 =0 ;
{ SCC channel configuration word masks 3}
stopl@ = 16384 ;
stop15 = -32768
stop20 = —-16384
noParity = 8192 ;
oddParity = 4096 ;
evenParity = 12288 ;
datad = H
data6 = 2048
data? = 1024 ;
data8 = 3872 ;
{ serial driver error masks }
swOverrunErr = 0 ;
parityErr = 16 ;
hwOverrunErr = 32 ; .
framingErr = 64 ;
§ serial driver message constant }
xOf fWasSent = 128 ;
Type
SerShk = PACKED RECORD
fCTS: Byte ; CTS flow control enable flag
fXon: Byte ; XON flow control enable flag
xoff: char XOFF character
xon: char XON character
evts: Byte ; event enable mask bits }
errs: Byte ; errors mask bits
null: Byte unused
finX: Byte ; Input flow control enable flag }
End ;
SerStaRec = PACKED RECORD
XOFFSent: Byte ; XOFF Sent flag 3
cumErrs: Byte cumulative errors report 3

wrPend: Byte ; write pending flag
rdPend: Byte ; read pending flag }

1200301:0AB A-T1



"MACINTOSH INTERFACE

; XOFF flow control

Appendix A

hold flag }

XOFFHoId: Byte ;
CTSHold: Byte ; CTS flow control hold flag }
End ;
{ Changing Serial Driver Information
FUNCTION SerReset ( refNum: integer ;
serConfig: integer )
OsErr
FUNCTION SerSetBuf ( refNum: integer ;
serBPtr: MacPtr
serBlLen: integer )
OsErr
FUNCTION SerHShake ( refNum: integer ;
flags: - SerShk )
OsErr
FUNCTION SerSetBrk ( refNum: integer )
: OsErr
FUNCTION SerClirBrk ( refNum: integer )
: OsErr
§ Getting Serial Driver Information
FUNCTION SerGetBuf ( refNum: integer ;
VAR count: Longint )
OsErr
FUNCTION SerStatus ( refNum: integer
VAR serSta: SerStaRec )
OsErr ;
A-T2

1200301:0AB



Sound Driver (Sound)

A.25. Sound Driver (Sound)

Unit Sound ;

interface

§$L—
Uses §$3$U MACCORE.CODE} MacCore ;
$$L13
Const
SWmode = -1
FTmode = 1 ;
FFmode = 0 ;
Type

Wave = PACKED ARRAY [@..255] of Byte ;
WavePtr = MacPtr ;

PtrFTSndRec = MacPtr ;
FTSoundRec = RECORD

duration: integer ;
soundiRate: Longint ;
soundi1Phase: Longlnt ;
sound2Rate: Longint ;
sound2Phase: Longtnt
sound3Rate: Longint
sound3Phase: Longint ;
sound4Rate: Longint ;
sound4Phase: Longint ;
soundiWave: WavePtr ;
sound2Wave: WavePtr ;
sound3Wave: WavePtr ;
sound4Wave: WavePtr ;

End ;

PtrFTSynth = MacPtr ;

FTISynthRec = RECORD
mode: integer ;
sndRec: PtrFTSndRec ;

End ;

Tone = RECORD
count: integer ;
amplitude: integer ;
duration: integer ;

End ;

Tones = ARRAY[©..5008] of Tone ;

PtrSWSynth = MacPtr ;
SWSynthRec = RECORD

mode : integer ;
triplets: Tones
End ;

freeWave = PACKED ARRAY[©..30000] of Byte ;

PtrFFSynthRec = MacPtr ;
FFSynthRec = RECORD

mode : integer ;
count: Longlint ; § FIXED Point }
waveBytes: freeWave ;

End ;

{ Sound Driver Procedures

PROCEDURE StartSound ( synthRec: MacPtr ;

1200301:0AB A-T73



"MACINTOSH INTERFACE

PROCEDURE StopSound
FUNCTION SoundDone
PROCEDURE SetSoundVol
PROCEDURE GetSoundVol

numBy tes:
Async:
Boolean ;
( level:
( VAR level

Longint
Boolean

integer

integer

Appendix A

1200301:0AB



ToolBox Utilities (TBoxUtils)

A.26. ToolBox Utilities (TBoxUtils)

unit TBoxUtils ;
interface

$$L-}

Uses §$U MACCORE.CODE% MocCore ,
$U QDTYPES.CODE

$sLrd

type

Fixed = Longlint ;
Ptrint64Bit = MacPtr ;
Int64Bit = RECORD
hilang Longint ;
loLong Longlint ;
End ;

QDTypes (RectPtr,Rect,FPoint,Point);

{ Getting Appiico!ion input file names 1
PROCEDURE GetAppParms ( apName StringPtr ;
apRe fNum integerPtr ;
apParam MacPtr ) ;
external (-22027); }A9F5%
{ Fixed Point Arithmetic H
FUNCTION FixRatio ( numerator: integer
denominator: integer )
Fixed ; external (-22423); }A869%
FUNCTION FixMul ( a ., b Fixed )
: Fixed ; external (-22424); }{A868%
FUNCTION FixRound ( X Fixed )
: integer ; external (-22420); $A86C}
$ String Manipulation 3
FUNCTION NewString ( s: StringPtr )
: StringHandle ; external (-22266); ${A906}
PROCEDURE SetString ( h: StringHandle ;
s: StringPtr ) ;
external (-22265); {A907}
FUNCTION GetString ( StringlD: integer )
: StringHandle ; external (-22086); §{A9BA}
§ Byte Manipulation H
FUNCTION Munger ( h: Handle
offSet: Longint ;
ptr1: MacPtr ;
lent: Longlint ;
ptr2: MacPtr
len2: Longint )
Longint ; external (-22048); {A9EB}
{ Operations on Bit Strings 3
FUNCTION BitTst ( bytePtr: MacPtr ;
bitnum: Longlint )
MacBool ; external (-22435); §A850D%
PROCEDURE BitSet ( bytePtr: MacPtr ;
bitNum: Longlint ) ;
. 1200301:0AB A-T5



MACINTOSH INTERFACE

Appendix A

external (-22434); }AB85E}
PROCEDURE BitClr ( bytePtr: MacPtr :
bitNum: Longint
ex(erncl( 22433) $ABS5F}
§ Other Operations on Long integers 3
FUNCTION HiWord ( X Longl
: integer externol( 22422) $ABBAY
FUNCTION LoWord ( X : Longlint )
: integer external (—-22421); }A868B}
PROCEDURE LongMul ( a . b Longint ;
dest Ptrinté4Bit ) ;
external (~22425); §A867%
§ Graphics Utilities i
FUNCTION Getlcon ( iconlD integer )
: Handle ; external (-22085); }A9BB}
PROCEDURE Plotlcon ( theRect RectPtr P
thelcon Handle )
external (— 22197) $A948B3
FUNCTION GetPattern ( patiD integer
: Handle ex\ernol( 22088); $A9B8}
FUNCTION GetCursor ( cursorliD integer )
: Handle ; external (-22887); {A9B9}
PROCEDURE ShieldCursor ( shieldRect RectPtr B
offsetPt: FPoint )
external (- 22443) $A8553
FUNCTION GetPicture ( picturelD: integer )
: Handle external (-22084); }A9BC}
FUNCTION SlopefromAngle( angle: integer )
: Fixed ; external (—-22340); }A88C}
FUNCTION AngleFromSlope( slope: Fixed )
: integer ; external (-22332); §{A8C4}
FUNCTION DeltaPoint ( ptA, ptB FPoint )
: Longint ; external (-22193); $A94F}
A--T78 1200301:0AB



ToolBox Types (TBTypes)

A.27. ToolBox Types (TBTypes)

unit TBTypes ;
interface

§Uses MacCore, QDTypes}
$L-%

Uses §$U MACCORE.CODE! MacCore,
$U QDTYPES.CODE{ QODTypes (Point,VHSelect,GrafPort, GrafPtr,
R .

ect)
§$L1}
type
The following Ptrs are used for passing variobles by ADDRESS. }
EvtRecPtr = MacPtr ; Pointer to EventRecord }
WindowPtr = MacPtr ; Pointer to WindowRecord }§
TEPtr = MagcPtr ; Pointer to TERec

{ Event Manager Record }
EventRecord = RECORD

what integer ;

message Longlint

when Longlint ;

where Point ;

modifiers : integer ;
End ; R

{ Window Manager Record
WindowHandle = MacPtr ;
WindowRecord = packed record

port: GrafPort;
windowKind: integer;
hilited: Smal IBool;
visible: Smal lBool;
spareflag: Smal 1Bool;
goAwayFlag: SmallBool;
strucRgn: Handle;
contRgn: Handle;
updateRgn: Handle;
windowDefProc: Handle;
dataHandle: Handle;
titleHandle: Handle;
titleWidth: integer;
controllList: Handle;
nextWindow: MacPtr;
windowPic: Handle;
refCon: Longint;
end;
§ TextEdit Record }
TEHandle = Handle ;
TERec = RECORD
destRect: Rect ; destination rectangle }
viewRect: Rect ; view rectangle
lineHeight: integer ltine height }
firstBL: integer ; position of first baseline }
selStart: integer ; start of selection range
selEnd: integer ; end of selection
just: integer ; justification
length: integer ; length of text
hText: Handle ; text to be edited }
txFont: integer; text font
txFace: integer ; character style |
txMode: integer ; pen mode
txSize: integer ; type size }
inPort: GrafPtr ; grafPart
crOnly: integer ; new line at Return if < @ }
nLines: integer ; number of lines }

1200301:0AB A-T1



MACINTOSH INTERFACE Appendix:A

lineStarts: ARRAY [@..320800] of Integer ;
{ positions of line starts }
{ other fields for Mac 0.S. Internal use only
End ;

A-78 : 1200301:0AB



Text Edit (TextEdit)

A.28. Text Edit (TextEdit)

unit TextEdit ;

interface
$$L-3
uses §$U MACCORE.CODE} MacCore :
§$U ODTYPES.CODE§ QDTypes (GrofPort GrafPtr, Point, VHSelect
Point, Rect, RectPtr),
§$U TBTYPES.CODBE} TBTypes (EvtRecPtr, EventRecord,windowrecord.
windowptr,windowhandle, TEHandle,
TEPtr,TERec) 5
$$LT3

canst
tedJustleft =0 ;
teJustCenter H
teJustRight == 1 ;

type
CharsHandle = Handle
CharsPtr = MacPtr ;
Chars = PACKED ARRAY [@..32008] OF char ;
f Initialization }
FUNCTION TENew ( destRect : RectPtr ;
viewRect : RectPtr )
TEHandle ; external (-22062); }A9D2%
{ Manipulating Edit Records 3
PROCEDURE TESetText ( Text : MacPtr ;
length : Longlint
hTE : TEHandl e 3
external (— 22965) $A9CF}
FUNCTION TEGetText ( hTE : TEHandle )
CharsHandle ; external (-22069); ${A9CB}
PROCEDURE TEDisPose ( hTE : TEHandle )
external (— 22867) $A9CD}
{ Editing }
PROCEDURE TEKey ( key char ;
hTE : TEHandle ) ;
externatl (— 22952) §A9DCS
PROCEDURE TECut ( hTE : TEHandle )
external (~ 22058) $A9D63
PROCEDURE TECopy ( hTE : TEHandle ) ;
external (-22859); $A9D5%
PROCEDURE TEPaste ( hTE : TEHandle )
external (- 22053) $A9083%
PROCEDURE TEDelete ( hTE : TEHandle )
external (- 22857) $A9D73
PROCEDURE TElnsert ( text : MacPtr ;
length : Longint ;
hTE : TEHandl e
external (- 22656), $A9DE}
} Selection Range and Justificotion H

1200301:0AB A-79



"MACINTOSH INTERFACE

PROCEDURE TESetSelect

PROCEDURE TESetJust

Appendix A

{ Mice and Carets

PROCEDURE TEC!ick

PROCEDURE TEldle

PROCEDURE TEActivate

PROCEDURE TEDeactivate

§ Text Display
PROCEDURE TEUpdate

PROCEDURE TextBox

{ Advanced Routines

PROCEDURE TEScroil

PROCEDURE TECalText

selStart Longint ;
selEnd Longlint
hTE TEHandle )
external (- 22063) $A9D1}
j o integer ;
hTE TEHandle )
external (— 22649) $A9DF
§
pt FPoint ;
extend MacBool ;
hTE TEHandle )
external (— 22966) $§AOD4}
hTE TEHandle
external (- 22854) $A9DAY
hTE TEHandle )
external (— 22856) $A9D8}
hTE TEHandle )
external (- 22955) $A9D9}
i
rUpdate RectPtr ;
hTE : TEHandle
external (— 22861) - $A9D3}
text : MacPtr ;
length Longint
box RectPtr ;
style integer )
external (-220866); ${A9CE}
H
dh , dv integer ;
hTE TEHandle ) ;
external (— 22951) $A9DDY
hTE TEHandle
external (- 22864) {A9DO}

1200301:0AB



Window Manager (WindowMgr)

A.29. Window Manager (WindowMgr)

Unit WindowMgr;

Interface

Use§ MacCore, QdTypes, TbTypesi
$L-

uses §3%U MACCOREACODE§ MacCore

QDTypes (GrafPort, GrafPtr, Point, VHSelect
FPoint, Rect, RectPtr),

§$U TBTYPES.CODE] TBTypes (EvtRecPtr, EventRecord,windowrecord,

windowptr,windowhandle) R

$U ODTYPES.CODE

FL13

const

{ types of windows }

dialogKind = 2;
userKind = 8;

{ window definition procedure IDs }

DocumentProc
DBoxProc
plainDBox

al tDBoxProc
noGrowDocProc
RDocProc

L

§ FindWindow result codes }

inDesk = 9;
inMenuBar =13
inSysWindow = 2;
inContent =3,
inDrag = 4;
inGrow = 5;
inGoAway = 6;
§ ... hit test codes }
wNoH i t = 0;
winContent = 1;
winDrag = 2;
winGrow = 3;
winGoAway = 4;

§ Window Messages }

wDraw =0 ;

wHit =1

wCalcRgns =2

wNew =3 3

wDispose = 4 ;

wGrow =53

wDrawGlcon =6 ;

§ Axis constraints for DragGrayRgn call }

bothAxes =0 ;

hAxsOnly =13

vAxsOnly =2 ;
{ Initiaglization and Allocation 3
procedure GetWMgrPort (wPort: MacPtr); external (-22256); }A910}
function NewWindow (wStorage: MacPtr;

1200301:0AB A-381



MACINTOSH INTERFACE . Appendix A

boundsRect:RectPtr;

title: StringPtr;

visible: MacBool ;
theProc: integer;
behind: MacPtr;

goAwayFlag:MacBool ;

refCon: Longint)

WindowPtr ; external (-22253); {A913}
function GetNewWindow (windowlD: integer;

wStorage: MacPtr;
behind: MacPtr)

WindowPtr ; external (-22083); {A98D}
procedure CloseWindow theWindow: Windothrg H ex\ernclé—22227); A920§
procedure DisposeWindow (theWindow: WindowPtr . external (—-22252); 3}A914
{ Window Display - 3
procedure SetWTitle (theWindow: WindowPtr ;

title: StringPtr ) ;external(-22246); {A91A}
procedure GetWTitle (theWindow: WindowPtr

titie: StringPtr); external(-22247); $A9193}
procedure SelectWindow (theWindow: WindowPtr ;external (=22241); $A91F
procedure HideWindow (theWwindow: WindowPtr ;external (=22259); A916
procedure ShowWindow (theWindow: WindowPtr ;external (=22251); $A915
procedure ShowHide (theWindow: WindowPtr ;

showFlag: MacBool); external (-22264); {A908}%

procedure HiliteWindow (theWindow: WindowPtr ;
fHilite: MacBool); external (-22244); {A91C}

procedure BringToFront (theWindow: WindowPtr ) ;external(-22248); }A920}

srocedure SendBehind (theWindow: WindowPtr ;
behindWindow: WindowPtr);external (-=22239); §A921}

function FrontWindow : WindowPtr external (-22236); {A924}

>rocedure DrawGrowlcon (theWindow: WindowPtr ) ;external(-22268); {A904}

{ Mouse Location 3
function FindWindow (thePt: FPoint;

whichWindow: WindowPtr )

integer; external (—22228); {A92C}
function TrackGoAway (theWindow: WindowPtr ;

thePt: FPoint)

MacBool ; external (—22242); ${A91E}
i Window.Movement and Sizing 3
>rocedure MoveWindow (theWindow: WindowPtr ;

hGlobal,

vGlobal: integer;

front: MacBool); external (-22245); {A91B}
>rocedure DragWindow (theWwindow: WindowPtr

startPt: FPoint;

boundsRect:RectPtr); external (-22235); §A925%
‘unction GrowWindow (theWindow: WindowPtr ;

startPt: FPoint;

sizeRect: RectPtr)

Longint; external (—22229); {A928B}
yrocedure SizeWindow (thewindow: WindowPtr

w,h: integer;

fUpdate: MacBool); external(—-22243); {A910}

A—82 1200301:0AB



procedure
procedure
procedure
procedure
procedure
procedure

procedure

function

procedure

function

function

function

~Window Manager (WindowMgr)

{ Update Region Maintenance H
InvalRect badRect: RectPtr); external (-22232); }A928
InvalRgn badRgn: Handle); external (-22233); }A927
ValidRect goodRect: RectPtr); external (—=222308); }A92A
ValidRgn (goodRgn: Handle); external (-22231); $A929
BeginUpdate %thewindow: Windothrg . external (-22238); }A922
EndUpdate theWindow: WindowPtr ; external (-22237); }A923

§ Miscellaneous Utilities 3
SetWRefCon (theWindow: WindowPtr ;

data: Longint); external (-22248); ${A918}
GetWRefCon (theWindow: WindowPtr )
: Longlnt; external (—22249): $A9173
SetWindowPic (theWindow: WindowPtr
pic: Handle); external (-22226); }A92E3}
GetWindowPic (theWindow: WindowPtr )
: Handle; external (-22225); §A92F}
PinRect (theRect: RectPtr;
thePt: FPoint)
Longint; external (-22194); §A94E}
DrogGrayRgn (theRgn: Handle;
startPt: FPoint;
limitRect,
stopRect: RectPtr;
axis: integer;
actionProc:ProcPtr)
Longint; external (-22267); §A99053

§ Low-Level Routines

function

procedure

procedure

procedure

procedure

procedure

procedure

procedure

CheckUpdate (theEvent

MacBool;
ClipAbove (window:
PaintOne (window:

clobbered:

EvtRecPtr)

WindowPtr) ;

WindowPtr
Handle);

PaintBehind (startWindow:WindowPtr ;

clobbered: Handle);
SaveOld (window: WindowPtr);
DrawNew (window: WindowPtr

update: MacBool);
CalcVis (window: WindowPtr);

CalcVisBehind (startWindow:WindaowPtr ;

clobbered:

1200301:0AB

Handle);

i

external (-22255); §A911}

external (—=22261); §{A9088B}

external (-22260); §A96C}

external (-22259); {A90D}

external (—-22258); $A90E3

external (-22257); {A90F}

external (-22263); §A9993

external (-22262); }{A90A}



" MACINTOSH INTERFACE : Appendix A

A—84 1200301:0AB



APPENDIX B
ERROR MESSAGES

B.1. Program Startup Errors

Could not open p—machine file

Could not allocate memory for p—machine
Error reading p—machine file

Could not locate MSTR resource

Could not open program data fork

Could not open Runtime Support Library file
Could not allocate stack/heap

I/O error while booting

Memory allocation error while booting

Error reading segment dictionary

Error reading library

Required unit not found

Duplicate unit

Too many library code files referenced

Too many system units referenced

No program in code file to execute

Program or unit must be linked first
Obsolete code segment

Insufficient memory to construct environment
Program environment too complicated: run QUICKSTART first
Error reading program code file

Error reading library code file

Insufficient memory to allocate data segment
Insufficient memory to load fixed position segment
Unknown environment construction error

1200301:0BB B-1



ERROR MESSAGES

B.2. Execution Errors

O 0~ DU A W O

(D D PO DO et bk bt bt bt kb et e
WO 00~ O WO T U Whd ~O

Fatal runtime support error
Value range error

No proc in segment table
Exit from uncalled proc
Stack overflow

Integer overflow

Division by zero

Invalid memory reference
Program interrupted by user
Runtime support I/O error
1/0 Error:

Unimplemented instruction
Floating point error

String overflow
Programmed halt

Illegal heap operation

Break point

Incompatible real number size
Set too large

Segment too large

Heap expansion error
Insufficient memory to load code segment
Unknown I/O Error #

Unknown runtime support error

Appendix B

1200301:0BB



1/0 Errors

B.3.1I/0 Errors

0
—-17
—18
—19
—20
—21
—22
-23
—24
—25
—26
—27
—28
—33
—34
—35
—36
—37
—38
-39
—40
—41
—42
—43
—44
—45
—46
—47
—48
—49
—50
—51
—52
—53
—54
—55
—56
—57
—58
—59
—60

No error

Control error

Status error

Read error

Write error

Bad unit

Unit empty

Open error

Close error

Driver removal error

Driver resource not found
Cancelled I/O operation

Driver not open

Directory full

Disk full

No such volume mounted

Data transfer error

Bad file name

File not open

End of file

File positioning error

Insufficient memory for file operation
Too many files open

File not found

Diskette is write protected

File is locked

Volume is locked

File is in use and cannot be deleted
Duplicate file name

File already open with write permission
Invalid file operation parameter list
Invalid file reference number
Error establishing file position
Mounted volume not on line
Invalid file open permissions
Volume already on line

Invalid drive number

Not a Macintosh diskette

Not a Macintosh volume
Directory corrupted by file system
Bad master directory block

1200301:0BB B-3



ERROR MESSAGES

—61 Write permissions error
—64 Drive not installed
—65 . Drive not on line

—1024 Bad input format

Appendix B

1200301:0BB



Syntax Errors

B.4. Syntax Errors

CO 1 O U1 W W D =

63
101
102

Error in simple type

Identifier expected

unimplemented error

')’ expected

" expected

This symbol is illegal in this context
Error in parameter list

"OF’ expected

’(> expected

Error in type

'[’ expected

']’ expected

'END’ expected

Semicolon expected

Integer expected

'=’ expected

'BEGIN’ expected

Error in declaration part

Error in <field—list>

’.” expected

*? expected

'INTERFACE’ expected
'IMPLEMENTATION’ expected
"UNIT’ expected

Case label out of range

Error in constant

;=" expected

"THEN’ expected

"UNTIL’ expected

DO’ expected

"TO’ or ' DOWNTO’ expected in for statement
TF? expected

'FILE’ expected

Error in <factor> (bad expression)
Error in variable

Must be of type 'SEMAPHORE’
Must be of type 'PROCESSID’
Process not allowed at this nesting level
Only main task may start processes
Identifier declared twice

Low bound exceeds high bound

1200301:0BB



ERROR MESSAGES Appendix B

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

\

Identifier is not of the appropriate class

Undeclared identifier

Sign not allowed

Number expected

Incompatible subrange types

File not allowed here

Type must not be real

<tagfield > type must be scalar or subrange
Incompatible with <tagfield > part

Index type must not be real

Index type must be a scalar or a subrange

Base type must not be real

Base type must be a scalar or a subrange

Error in type of standard procedure parameter
Unsatisified forward reference

Forward reference type identifier in variable declaration
Re—specified params not OK for a forward declared procedure
Function result type must be scalar, subrange or pointer
File value parameter not allowed

A forward declared function’s result type can’t be re—specified
Missing result type in function declaration

F—format for reals only

Error in type of standard function parameter

Number of parameters does not agree with declaration
Illegal parameter substitution

Result type does not agree with declaration

Type conflict of operands

Expression is not of set type

Tests on equality allowed only

Strict inclusion.not allowed

File comparison not allowed

Illegal type of operand(s)

Type of operand must be Boolean

Set element type must be scalar or subrange

Set element types must be compatible

Type of variable is not array

Index type is not compatible with the declaration
Type of variable is not record

Type of variable must be file or pointer
unimplemented error

Illegal type of loop control variable

Illegal type of expression

Type conflict

1200301:0BB



146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
182
183
184
185
186
187
188
189
190
191
192
193

Syntax Errors

Assignment of files not allowed

Label type incompatible with selecting expression
Subrange bounds must be scalar

Index type must be integer

Assignment to standard function is not allowed
Assignment to formal function is not allowed
No such field in this record

Illegal type of parameter for READ

Actual parameter must be a variable

Control variable cannot be formal or non—local
Multidefined case label

Too many cases in case statement

No such variant in this record

Real or string tagfields not allowed

Previous declaration was not forward

Again forward declared

Parameter size must be constant

Missing variant in declaration

Substition of standard proc/func not allowed
Multidefined label

Multideclared label

Undeclared label

Undefined label

Error in base set

Value parameter expected

Standard file was re—declared

Undeclared external file

Fortran procedure or function expected

Pascal function or procedure expected
Semaphore value parameter not allowed
Undefined forward procedure

Nested units not allowed

External declaration not allowed at this level
External declaration not allowed in INTERFACE section
Segment declaration not allowed in INTERFACE section
Labels not allowed in INTERFACE section
Attempt to open library unsuccessful

Unit not declared in previous USES

"USES’ not allowed at this nesting level

Unit not in library

Forward declaration was not segment

Forward declaration was segment

Not enough room for this operation

1200301:0BB B-7



ERROR MESSAGES - Appendix B

194  Flag must be declared at top of program
195  Unit not importable

201  Error in real number — digit expected

202  String constant must not exceed source line
203  Integer constant exceeds range

204 8 or 9in octal number

250  Too many scopes of nested identifiers

251  Too many nested procedures or functions
252 Too many forward references of procedure entries
253  Procedure too long .

254  Too many long constants in this procedure
256  Too many external references

257  Too many externals

258  Too many local files

259  Expression too complicated

300  Division by zero

301  No case provided for this value

302  Index expression out of bounds

303  Value to be assigned is out of bounds

304  Element expression out of range

305 Maximum segment number exceeded

306  Unit name same as program name

307  Unit name declared twice

308 Invalid array bounds

309  Bounds may not be of type real

310  Only one dimension may be conformant
311  Must be a variable parameter

312 Must be a conformant array

313 Segment declaration not permitied here
314 PROCEDURE, FUNCTION or PROCESS expected
315  HOST call not permitted here i )
316  May not be formal procedure

317  May not be formal parameter

318  Invalid file type

319  Must be an untyped file

320  Segment entry not found

321  May not be a conformant array index bound
322  Must be a string constant

323  Must be a variable

324  Must be a declared procedure

325 May not call the main program

326  May not be an expression

327 Maximum code size exceeded

B-8 1200301:0BB



328
329
330
331
333
398
399
400
401
402
403
404
405
406
407
408
409
410
500

Syntax Errors

May not be a conformant array

Structured type too large

Too many array elements

Inline procedure or function not allowed here

Must be declared EXTERNAL to have untyped parameters
Implementation restriction

Illegal language construction or internal compiler error
Illegal character in text

Unexpected end of input

Error in writing code file, not enough room

Error in reading include file

Error in writing list file, not enough room
'"PROGRAM’ or "UNIT’ expected

Include file not legal

Include file nesting limit exceeded

INTERFACE section not contained in one file

Unit name reserved for system

Disk file read or write error

Assembler Error

1200301:0BB B—9



ERROR MESSAGES

- Appendix B

1200301:0BB



APPENDIX C
P—-CODE TABLES

C.1. Numerical Listing

0 00

1 91
2 02
3 93

4 04
5 25
6 06

7 o7
8 28
9 29
10 QA
11 o8
12 ocC
13 2]
14 QE
15 oF
16 19
17 11
18 12
19 13
29 14
21 15
22 16
23 17
24 18
25 19
26 1A
27 18
28 1C
29 10
30 1E
31 1F
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
49 28
41 29
42 2A
43 28
44 2C
45 20
46 2E
47 2F
48 30
49 31
50 32
51 33
52 34

1200301:0CB

sSLoC:
SLoC:
sSLdC:
SLDC:
SLDC:
SLDC:
SLDC:
sLbC:
SLDC:
SLbC:
SLDC:
stbC:
SLDC:
SLDC:
SLDC:
SLDC:
SLDC:
SLOC:
SLDC:
SLbC:
SLDC:
SLDC:
SLDC:
SLDC:23
SLDC: 24
SLDC:25
SLDC:26
SLDC:27
sSLDC:28
SLbBC:29
SLDC: 30
SLbC: 31
SLDL:1
SLoOL:2
SLbL:3
SLDL: 4
SLbL:5
SLOL:6
SLoL:7
SLDL:8
SLbL:9
1
1
1
1
1
1
1
1
2
3
4

NRN= 2t a s a s s @ONOO S UWN—=®

N=SQOUANONPLPUN—=O

SLDL:
SLDOL:
SLOL:
SLOL:
SLoL:
SLDL:
SLDL:
SLDO:
SLDO:
SLDO:
SLDO:
SLDO:5

DO PUN=O

Shor t
Short
Shor t
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Shor t
Short
Short
Short
Short
Short
Shor t
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short

Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load

Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constaont
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Word Constant
Local Word
Local Word
Local Word
Local Word
Local Word
Local Word
Local Waord
Local Word
Local Word
Local Word
Local Word
Local Word
Local Word
Local Word
Local Word
Local Word
Global Word
Global Word
Global Word
Global Word
Global Word



P—CODE TABLES Appendix C

53 35 SLDO: 6 Short Load Global Word

54 36 SLDO:7 Short Load Global Word

55 37 SLDO:8 Short Load Global Word

56 38 SLDO:9 Short Load Global Word

57 39 SLBO: 10 Short Lood Global Word

58 3A SLDO: 11 Short Load Global Word

59 38 SLBO:12 Short Load Global Word

60 3C SLDO:13 Short Load Global Word

61 30 SLDO: 14 Short Load Global Word

62 3E SLDO: 15 Short Load Global Word

63 3F SLDO:16 Short Load Global Word

64 40 SSTP Short Store Packed

65 41 SLDCD: 9 Short Load Doubleword Constant Zero
66 42 SLOLD:1 Short Load Local Doubleword

67 43 SLDLD:2 Short Load Local Doubleword

68 44 SLDLD:3 Short Load Local Doubleword

69 45 SLOLD: 4 Short Load Local Doubleword

70 46 SLDLD:S Short Load Local Doubleword

71 47 SLOLD: 6 Short Load Local Doubleword

72 48 SLDOD: 1 Short Lood Global Doubleword

73 49 SLBOD: 2 Short Load Global Doubleword

74 4A SLDOD: 3 Short Load Global Doubleword

75 48 SLDOD: 4 Short Load Global Doubleword

76 4C SLDOD:5 Short Load Global Doubleword

77 4D SLDOD:6 Short Load Global Doubleword

78 4E SLDOD:7 Short Load Global Doubleword

79 4F SLDOD: 8 Short Lood Global Doubleword

80 50 SINDD: @ Short Index and Load Doubleword

81 51 SINDD:1 Short Index and Load Doubleword

82 52 SINDD:2 Short Index and Load Doubleword

83 53 SINDD:3 Short Index and Load Doubleword

84 54 SINDD: 4 Short Index and Load Doubleword

85 55 SINDD:5 Short Index and Load Doubleword

86 56 SINDOD:6 Short index and Load Doubleword

87 57 SINDD:7 Short Index and Load Doubleword

88 58 LDLD Load Local DBoubleword

89 59 LODD Load Intermediate Doubleword

90 S5A LDOD Lood GlLobal Doubleword

91 58 LDED Load External Doubleword

92 5C INDD Load Indirect Doubleword

93 50 STLD Store Local Doubleword

94 S5E STROD Store Intermediaote Doublewaord

95 5F SROD Store Global Doubleword

96 60 SLLA:1 Short Load Local Address

97 61 SLLA:2 Short Lood Local Address

98 62 SLLA:3 Short Load Local Address

99 63 SLLA: 4 Short Load Local Address

100 64 SLLA:S Short Load Local Address

181 65 SLLA:6 Short Loaod Local Address

102 66 SLLA:7 Short Load Local Address

163 67 SLLA:8B Short Load Local Address

104 68 SSTL:1 Short Store Local Word

185 69 SSTL:2 Short Store Local Word

106 6A SSTL:3 Short Store Local Word

107 6B SSTL: 4 Short Store Local Word

108 6C SSTL:S Short Store Local Word

109 6D SSTL:6 Short Store Local Word

118 6E SSTL:7 Short Store Local Word

111 6F SSTL:8 Short Store Local Word

112 79 SCXG: 1 Short Call External Global Procedure
113 71 SCXG:2 Short Call External Global Procedure
114 72 SCXG:3 Short Call External Global Procedure
115 73 SCXG: 4 Short Call External Global Procedure
116 74 SCXG:5 Short Call External Global Procedure
117 75 SCXG: 6 Short Call External Global Procedure
118 76 SCXG:7 Short Call External Global! Procedure
119 77 SCXG:8 Short Call External Global Procedure
120 78 SIND:© Short index and Load Word

121 79 SIND:1 Short Index and Load Word

122 7A SIND:2 Short Index and Load Word

123 78 SIND:3 Short Index and Load Word

124 7C SIND: 4 Short Index and Load Word

125 70 SIND:5 Short Index and Load Word

C—2 1200301:0CB



126 7€
127 7F
128 80
129 81
130 82
131 83
132 84
133 85
134 86
135 87
136 88
137 89
138 8A
139 88
140 8C
141 8D
142 8E
143 8F
144 90
145 91
146 92
147 93
148 94
149 95
150 96
151 97
152 98
153 99
154 9A
155 98
156 9C
157 9D
158 9E
159 9F
160 A0
161 Al
162 A2
163 A3
164 A4
165 A5
166 A6
167 A7
168 A8
169 AS
170 AA
171 AB
172 AC
173 AD
174 AE
175 AF
176 B9
177 B1
178 B2
179 B3
1890 B4
181 B5
182 86
183 87
184 B8
185 B9
186 BA
187 88
188 8C
189 BD
190 BE
191 BF
192 Cco
193 Cc1
194 2
195 Cc3
196 C4
197 CS
198 cé

1200301:0CB

SIND:6
SIND:7
LoCB
LDC!

LocC
LLA
LDO
LAO
LDOL
LDA
LOD
uJpP
UJPL
MP |
ovi
STM
MOD |
CPL
CPG
CP1
CXL
CXG
cxt
RPU
CPF
LDCN
LSL
LDE
LAE
NOP
LPR
BPT
BNOT

LAND
AD!I
SBi
STL

STR
LDB
NATIVE
NATINFO
LEREC
CAP
csp
SLOD1
SLOD2
UPACK
EQUI
NEOQ!
LEQ!
GEQ!
LEUSW
GEUSW
EQPWR
LEPWR
GEPWR
EQBYT
LEBYT
GEBYT

SWAP
TRUNC
ROUND
ADR

MPR
DVR
ST0
MOV
DUPR

Numerical Listing

Short Index and Load Ward
Short Index and Load Word
Load Constant Byte

Load Constant Word

Load Constant Offset

Lood Mulitiple Word Constant
Load Local Address

Load Global Word

Lood Global Address

Lood Local Word

Load Intermediote Address
Load intermediate Word
Unconditional Jump
Unconditional Long Jump
Multiply Integers

Divide lIntegers

Store Multiple Words
Modulo Integers

Call Local Procedure

Call Global Procedure

Call Intermediate Procedure

Call Local External Procedure

Call Global External Procedure

Call Intermediate External Procedure
Return From Procedure

Call Procedure Faormal

Load Constant NIL

Load Static Link

Load External Word

Load External Address

No Operation

Load Processor Register

Breakpoint

Boolean NOT

Logical OR

Lagical AND

Add Integers

Subtract Integers

Store Local Word

Store Global! Word

Store Intermediate Word

Load Byte

Native Code

Native Code Information

Load Current EREC Pointer

Copy Array Parometer

Copy String Parameter

Short Load Intermediate Word Eporent)
Short Load Intermediate Word (grandparent)
Unpack Field From Top Of Stack

Equal Integer Comparisaon

Not Equal Integer Comparison

Less Than or Equal Integer Comparison
Greater Than or Equal lInteger Comparison
Less Than or Equal Unsigned Word Comporison
Greater Than or Equal Unsigned Word Comparison
Equal Set Comparison

Less Than or Equal Set Comparison (subset)
Greater Than or Equal Set Comparison (superset)
Equal Byte Array Comparison

Less Than or Equa! Byte Array Comparison
Greater Than or Equal Byte Array Comparison
Subrange Set

Swap Words

Truncate Real

Round Real

Add Reals

Subtract Reals

Multiply Reals

Divide Reals

Store Word Indirect

Move Words

Duplicate Real



P—CODE TABLES

199 c7 ADJ
200 c8 ST8
201 o<} LDP
2082 CA STP
203 c8 CHK
204 cC FLT
205 ch EQREAL
206 CE LEREAL
207 CF GEREAL
208 Do LOM
209 D1 SPR
210 02 EFJ
211 B3 NFJ
212 D4 FypP
213 05 FJPL
214 D6 XJP
215 07 I XA
2186 b8 I XP
217 b9 STE
218 DA I NN
219 08B UNI
220 bC INT
221 DD DIF
222 DE SIGNAL
223 DF WAIT
224 EQ ABI
225 £1 NG
226 E2 DUPW
227 E3 ABR
228 E£4 NGR
229 ES LNOT
230 E6 IND
231 E7 INC
232 £8 EQSTR
233 E9 LESTR
234 EA GESTR
235 EB ASTR
2386 EC CSTR
237 ED INCI
238 EE BECI
239 EF SCP 11
240 Fo SCP12
241 F1 TJP
242 F2 LDCRL
243 F3 LORL
244 Fa STRL
245 F5 STOD
246 Fé STED
247 F7 ADI2
248 Fg sB12
249 F9 MP 12
250 FA Dvi2
251 FB INC2
252 FC RED2
253 FD EXTI
254 FE INCBI
@ FF 00 LBCO
1 FF @1 DUPD
2 FF @2 SWAPD
3 FF 63 MD 12
4 FF @4 DEC2
5 FF 05 NEG?2
6 FF 06 ABS2
7 FF @7 EQ12
8 FF 08 NEI2
9 FF 09 LEIZ
16 FF QA GEIZ2
11 FF 9B 1 XA2
12 FF 8C 1XP2
13 FF @0 INCB2
14 FF OE XJP2
15 FF oF CHK?2
16 FF 10 REXTI

Q
L

Appendix C

Adjust Set

Store Byte

Load Pocked Field

Store Packed Field

Range Check

Float Integer

Equal Real Comparison

Less Than or Equal Real Comparison
Greater Than or Equal Rea! Comparison
Loaod Multiple Words

Store Processor Register

Equal False Jump

Not Equal False Jump

False Jump

False Long Jump

Indexed Jump

Index Array

Index Packed Array

Store External Word

Set Membership Test

Set Union

Set Intersection

Set Difference

Signal Semaphore

Wait On Semaphore

Absolute Value Integer

Negate integer

Duplicate Word

Absolute Value Real

Negate Real

Logical NOT (1's complement)

Index and Load Word

Increment Word Address

Equal String Comparison

Less Than or Equal String Comparisaon
Greater Than or Equal String Comparison
Assign String

Check String Index

Increment Integer

Decrement Integer

Short Call Intermediate Procedure épqrent)
Short Call Intermediate Procedure

True Jump

Load Real Constant

Load Real

Store Real

Store Indirect Doubleward

Store External Doubleword

Add Integer?

Subtract Integer2

Multiply Integer?2

Divide Integer?2

Increment Integer?2

Reduce Integer2 to Integer

Extend Integer To Integer?2

Increment Pointer With Integer Byte Offset
Load Constant Doubleword

Duplicate Doubleword

Swap Doublewords

Modulo Integer2

Decrement Integer?2

Negate Integer?2

Absolute Value integer?2

Equal Integer2 Comparison

Not Equal integer2 Comparison

Less Than Or Equal Integer2 Comparison
Greater Than Or Equal Integer2 Comparison
Index Array Integer2

Index Packed Array lInteger?2

Increment Pointer With Integer2 Byte Offset
Indexed Jump Integer?2

Integer2 Rangecheck

Reversed Extend Integer

1200301:0CB

grandparent)



17 FF 11
18 FF 12
19 FF 13
28 FF 14
21 FF 15
22 FF 16
23 FF 17
24 FF 18
25 FF 19
26 FF 1A
27 FF 1B
28 FF 1C
29 FF 1D
36 FF 1E
31 FF 1F
32 FF 20
33 FF 21
34 FF 22
35 FF 23
36 FF 24
37 FF 25
38 FF 26
39 FF 27
40 FF 28
41 FF 29
42 FF 2A
43 FF 2B
44 FF 2C
45 FF 2D
46 FF 2E
47 FF 2F
48 FF 30
49 FF 31
50 FF 32
51 FF 33
52 FF 34
53 FF 35
54 FF 36
55 FF 37

1200301:0CB

RFLT
FLT2
RFLT2
ADIU
SBIU
MP U
OVvViu
MDIU
INCU
DECU
CHKU
REDU
EXTU
REXTU
FLTU
RFLTU
LSLw
LSRW
ASRW

LANDD
LORD
LNOTD
LXORW
LXORD
PTO
oTP
TRNC?2
ROND?Z

RCALL
PTA
ATP
AMOVE
DEREF
SETAR

Ntumerical Listing

Reversed Float Integer

Floot Integer?2

Reversed Float Integer?2

Add Integer Unsigned

Subtract Integer Unsigned
Multiply Integer Unsigned

Divide Integer Unsigned

Modulo integer Unsigned

Increment Integer Unsigned
Decrement integer Unsigned
Unsigned Integer Rangecheck
Reduce Integer2 To Unsigned Integer
Extend Unsigned Integer To Integer?
Reversed Extend Unsigned Integer To
Float Unsigned Integer

Reversed Float Unsigned Integer
Logical Shift Left Word

Logical Shift Right Word
Arithmetic Shift Right Word
Logical Shift Left Doubleword
Logical Shift Right Doubleword
Arithmetic Shift Right Doubleword
Logical AND Doubleword

Logical OR Doubleword

Logical NOT Doubleword

Logical Exclusive OR Word

Logical Exclusive OR Doubleward
Pointer To Word Offset

Word Offset To Pointer

Truncate Real to Integer2

Round Real to Integer?2

Unassigned

Unassigned

Macintosh ROM Call

Pointer To Absolute Address
Absolute Address To Pointer
Absolute Move Left

Dereference Absolute Handle

Set Action Routine

integer?2



P—CODE TABLES Appendix C

C.2. Alphabetical Listing

ABI 224 E@ Absolute Value Integer

ABR 227 E3 Absolute Value Real

ABS2 6 FF 86 Absolute Value Integer?2

ADI 162 A2 Add Integers

ADI2 247 F7 Add Inteqger?2

ADIU 20 FF 14 Add Integer Unsigned

ADJ 199 C7 Adjust Set

ADR 192 Co® Add Reals

AMOVE 53 FF 35 Absolute Move Left

ASRD 38 FF 26 Arithmetic Shift Right Doubleword

ASRW 35 FF 23 Arithmetic Shift Right Word

ASTR 235 EB Assign String

ATP 52 FF 34 Absolute Address To Pointer

BNOT 159 9F Boolean NOT

BPT 158 9E Breokpoint

CAP 171 AB Copy Array Parameter

CHK 203 CB Range Check

CHK?2 15 FF OF Integer2 Rangecheck

CHKU 27 FF 1B Unsigned Integer Rangecheck

CPF 151 97 Call Procedure Formal

CPG 145 91 Call Global Procedure

CPI 146 92 Call Intermediate Procedure

CPL 144 99 Call Local Procedure

CcSP 172 AC Copy String Parameter

CSTR 236 EC Check String Index

CXG 148 94 Call Global External Procedure

CcX1 149 95 Call Intermediaote External Procedure

CXL 147 93 Call Local External Procedure

DEC2 4 FF B4 Decrement Integer?2

DEC! 238 EE Decrement Integer

DECU 26 FF 1A Decrement Integer Unsigned

DEREF 54 FF 36 Dereference Absolute Handle

DIF 221 DD Set Difference

DuUPD 1 FF 81 Duplicate Doubleword

DUPR 198 C6 Duplicate Real

DUPW 226 E2 Duplicate Word

ovi 141 80 Divide Integers

DVi2 250 FA Divide Integer?2

oviu 23 FF 17 Divide Integer Unsigned

DVR 195 C3 Divide Reals

EFJ 210 D2 Equal False Jump

EQBYT 185 B9 Equal Byte Array Comparison

EQI2 7 FF 87 Equal Integer2 Comparison

EQPWR 182 B6 Equal Set Comparison

EQREAL 285 CD Equal Real Comparison

EQSTR 232 E8 Equal String Comparison

EQuU1t 176 B® Equal Integer Comparison

EXTH 253 FD Extend Integer To Integer?2

EXTU 29 FF 1D Extend Unsigned Integer To Integer2

FJP 212 D4 False Jump

FJPL 213 D5 False Long Jump

FLT 204 CC Float Integer

FLT2 18 FF 12 Floaot Integer?2

FLTU 31 FF 1F Float Unsigned Integer

GEBYT 187 B8 Greater Than or Equal Byte Array Comparison
GEI2 18 FF OA Greater Than Or Equal Integer2 Comparison
GEPWR 184 B8 Greater Than or Equal Set Comparison (superset)
GEQ! 179 B3 Greater Than or Equal lInteger Comparison
GEREAL 207 CF Greater Than or Equal Real Comparison
GESTR 234 EA Greater Than or Equal String Comparison
GEUSW 181 BS Greater Than or Equal Unsigned Word Comparison
INC 231 E7 Increment Word Address

INC2 251 FB Increment Integer?2

INCB2 13 FF 9D Increment Pointer With Integer2 Byte Offset
INCB1 254 FE Increment Pointer With Integer Byte Offset
INCH 237 ED Increment Integer

INCU 25 FF 19 Increment Integer Unsigned

IND 238 E6 Index and Load Word

C—6 : 1200301:0CB



INDD 92
INN 218
INT 220
I XA 215
I XA2 11
I XP 216
1 XP2 12
LAE 155
LAND 161
LANDD 39
LAO 134
LCO CL
LDA 136
LDb8 167
LbC 131
LDCB 128
LDCD 0
LbCI 129
LDCN 152
LDCRL 242
LDE 154
LDED 91
LoL 135
LOLD 88
LDM 208
LBO 133
LDOD 90
LoP 201
LORL 243
LEBYT 186
LEI2 9
LEPWR 183
LEQI 178
LEREAL 206
LEREC 170
LESTR 233
LEUSW 180
LLA 132
LNOT 229
LNOTD 41
LOD 137
LODD 89
LOR 160
LORD 40
LPR 157
LSL 153
LSLD 36
LSLW 33
LSRD 37
LSRW 34
LXORD 43
LXORW 42
MO12 3
MDIU 24
MOD | 143
MOV 197
MP | 140
MP 12 249
MP U 22
MPR 194
NATINFO 169
NATIVE 168
NEG2 5
NEI2 8
NEQI 177
NFJ 211
NG 225
NGR 228
NOP 156
oTP 45
PTA 51
PTO 44
RCALL 50

1200301:0CB

FF
FF

FF

FF

FF

FF

FF

FF
FF

Alphabetical Listing

Load Indirect Doubleword
Set Membership Test

Set Intersection

Index Array

Index Array Integer?2
Index Packed Array

Index Packed Array Integer?2
Load External Address
Logical AND

Logical AND Doubleword
Load Global Address

Load Constant Offset

Load Intermediate Address
Load Byte

Lood Mulitiple Word Constant
Loaod Constant Byte

Load Constant Doubleword
Load Constant Word

Load Constant NIL

Load Real Constant

Load External Word

Load External Doubleword
Load Local Word

Load Local Doubleword
Load Multiple Words

Load Global Word

Load GLobal Doubleword
Load Packed Field

Load Real

Less Than or Equal Byte Array Comparison
Less Than Or Equal integer2 Comparison
Less Than or Equal Set Comparison (subset)
Less Than or Equal Integer Comparison

Less Than or Equa! Rea! Comparison
Load Current EREC Pointer

Less Than or Equal String Comparison
Less Than or Equal Unsigned Word Comparison
Load Local Address

Logical NOT (1's complement)
Logical NOT Doubleword

Load Intermediate Word

Load Intermediate Doubleword
Logical OR

Logical OR Doubleword

Load Processor Register

Load Static Link

Logical Shift Left Doubleword
Logical Shift Left Word

Logical Shift Right Doubleword
Logical Shift Right Word
Logical Exclusive OR Doubleword
Logical Exclusive OR Word
Modulo integer?2

Modulo Integer Unsigned

Modulo Integers

Move Words

Multiply Integers

Multiply Integer?2

Multiply Integer Unsigned
Multiply Reals

Native Code Informatian

Native Code

Negate Integer?2

Not Equal Integer2 Comparison
Not Equal Integer Comparison
Not Equal False Jump

Negate Integer

Negate Real

No Operation

Word Offset To Pointer

Pointer To Absolute Address
Pointer To Word Offset
Macintosh ROM Call



P—=CODE TABLES : Appendix C

RED?2 252 FC Reduce Integer2 to Integer

REDU 28 FF 1C Reduce Integer2 To Unsigned Integer
REXT1 16 FF 10 Reversed Extend Integer

REXTU 30 FF 1E Reversed Extend Unsigned Integer To Integer?2
RFLT 17 FF 11 Reversed Float Integer

RFLT2 19 FF 13 Reversed Float Integer?2

RFLTU 32 FF 20 Reversed Float Unsigned Integer
ROND?Z2 47 FF 2F Round Real to Integer?2

ROUND 191 BF Round Real

RPU 150 96 Return From Procedure

S8 163 A3 Subtract Integers

SB12 248 F8 Subtract Integer?

sBiuU 21 FF 15 Subtract Integer Unsigned

SBR 193 C1 Subtract Reals

SCP11 239 EF Short Call Intermediate Procedure Eporent)
SCP12 240 FO Short Call Intermediate Procedure (grandparent)
SCXG:1 112 70 Short Call External Global Procedure
SCXG:2 113 71 Short Call External Globa!l Procedure
SCXG:3 114 72 Short Cal) External Global Procedure
SCXG: 4 115 73 Short Call External Global Procedure
SCXG:5 116 74 Short Call External Global Procedure
SCXG:6 117 75 Short Call External Globai Procedure
SCXG:7 118 76 Short Call External Globa!l Procedure
SCXG:8 119 77 Short Call External Global Procedure
SETAR 55 FF 37 Set Action Routine

SIGNAL 222 DE Signal Semaphore

SIND:© 120 78 Short Index and Loaod Word

SIND:1 121 79 Short Index and Load Word

SIND:2 122 7A Short Index and Load Word

SIND:3 123 78 Short Index and Loaod Word

SIND: 4 124 7C Short Index and Load Word

SIND:5 125 70 Short Index and Load Word

SIND:6 126 78 Short Index and Load Word

SIND:7 127 7F Short index and Lood Word

SINDD: D 80 50 Short Index and toad Doubleword
SINDD: 1 81 51 Short Index and Load Doubleword
SINDD:2 82 52 Short Index and Load Doubleword
SINDD:3 83 53 Short Index and Load Doubleword
SINDD: 4 84 54 Short Index and Load Doubleword
SINDD:5 85 55 Short Index and Load Doubleword
SINDD:6 86 56 Short Index and Load Doubleword
SINDD:7 87 57 Short Index and Load Doubieword
SLDBC: @ [ 08 Short Load Word Constant

SLbC:1 1 91 Short Loaod Word Constant

SLDC:2 2 2 Short Load Word Constant

SLDC:3 3 93 Short Load Word Constant

SLDBC: 4 4 04 Short Load Word Constant

SLDC:5 5 95 Short Load Word Constant

SLDC:6 6 86 Short Load Word Constant

sSLbC:7 7 @7 Short Lood Word Constant

SLDC:8 8 68 Short Load Word Constant

SLDBC:9 9 09 Short Load Word Constant

SLbC:19 19 A Short Load Word Constant

SLDC: 11 11 8B Short Load Word Constant

SLDC:12 12 0C Short Load Word Constant

SLDC:13 13 00 Short Load Word Constant

SLDC: 14 14 GE Short Load Word Constant

SLOC:15 15 9F Short Load Word Constant

SLDC: 16 16 16 Short Load Word Constant

SLDC:17 17 11 Short Load Word Constant

SLDBC:18 18 12 Short Load Word 'Constant

SLDC:19 19 13 Short Load Word Constant

SLDC: 289 20 14 Short Load Word Constant

sStbC:21 21 15 Short Load Word Constant

SLBC:22 22 16 Short Load Word Constant

SLDC:23 23 17 Short Load Word Constant

SLDC:24 24 18 Short Load Word Constant

SLDC:25 25 19 Short Load Word Constant

SLDC:26 26 1A Short Load Word Constant

SLOC:27 27 18 Short Loaod Word Constant

SLOC: 28 28 1C Short Load Word Constant

SLDC:29 29 10 Short Load Word Constant

SLDC: 30 30 1€ Short Load Word Constant

C—8 1200301:0CB



SLDC: 31 31
SLDCD: 0 65
SLDL:1 32
SLOL:2 33
SLoL:3 34
SLOL:4 35
SLDOL:S 36
SLOL:6 37
SLoL:7 38
SLDL:8 39
SLOL:9 40
SLbL: 1@ 41
SLoL: 11 2
SLobL:12 43
SLDL:13 44
SLOL: 14 45
SLDOL: 15 46
SLOL:16 47
SLOLD:1 66
SLOLD:2 67
SLOLD:3 68
SLDLD: 4 69
SLOLD:5 70
SLDLD:6 71
SLDO:1 48
SLDO:2 49
SLDO:3 56
SLDO: 4 51
SLDO: S 52
SLDO:6 53
SLDO:7 54
SLDO:8 55
SLDO:9 56
SLDO: 10 57
SLDO: 11 58
SLbO: 12 59
SLDO:13 60
SLDO: 14 61
SLDO: 15 62
SLDO:16 63
SLDOD:1 72
SLDOD: 2 73
SLDOD:3 74
SLDOD: 4 75
SLDOD: 5 76
SLDOD: 6 77
SLDOD:7 78
SLDOD:8 79
SLLA:1 96
SLLA:2 97
SLLA:3 98
SLLA: 4 99
SLLA:S 100
SLLA:6 101
SLLA:7 102
SLLA:8 193
SLOD1 173
SLOD2 174
SPR 209
SRO 165
SROD 95
SRS 188
SSTL:1 104
SSTL:2 1085
SSTL:3 186
SSTL:4 107
SSTL:5 188
SSTL:6 109
SSTL:7 110
SSTL:8 111
SSTP 64
STB 200
STE 217

1200301:0CB

Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Shaort
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Short
Store
Store
Store

Short
Short
Short
Short
Short
Short
Short
Short
Short
Store
Store

Load Word C

Alphabetical Listing

onstant

Load Doubleword Constant Zero

Lood Local
Load Local
Load Local
Load Local
Load Local
Load Local
Load Local
Load Local
Lood Local
Load Local
Load Local
Load Local
Load Local
Load Local
Lood Local
Load Local
Load Local
Load Local
Load Local
Load Local
Load Local
Load Local
Load Global
Load Global
Load Global
Load Global
Load Global
Load Global
Load Global
Load Global
Load Global
Load Global
Load Global
Load Global
Load Global
Load Global
Load Global
Load Global
Load Global
Load Global
Load Global
Load Global
Load Global
Load Global
Load Global
Load Global
Load Local
Load Local
Load Local
Load Local
Load Local
Load Local
Load Local
Load Local

Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Doubleword
Doubleword
Doubleword
Doubleword
Doublieword
Doubleword
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Doubleword
Doublieword
Doubleword
Doubleword
Doubleword
Doubleword
Doubleword
Doubleword
Address
Address
Address
Address
Address
Address
Address
Address

Load Intermediate Word
Load Intermediate Word

Processor R
Global Word

egister

Global Doubleword
Subrange Set

Store Local
Store Local
Store Local
Store Local
Store Local
Store Local
Store Local
Store Local
Store Packe
Byte

External Wo

Word
Word
Word
Word
Word
Word
Word
Word
d

rd

E

parent)
grandparent)



P—-CODE TABLES

STED

STLD
STM
STO
STOD
STP
STR
STRO
STRL
SWAP
SWAPD
TJP
TRNC?2
TRUNC
UJpP
UJPL
UN1
UPACK
WAIT
XJP
XJP2

Store External Doubleword
Store Local Word

Store Local Doubleword
Store Multiple Words
Store Word Indirect

Store Indirect Doubleword
Store Packed Field

Store Intermediate Word
Store Intermediate Doubleword
Store Real

Swap Words

Swap Doublewords

True Jump

Truncate Real to Integer?
Truncate Real
Unconditional Jump
Unconditiona! Long Jump
Set Union

Unpack Field From Top Of Stock
Wait On Semaphore

Indexed Jump

Indexed Jump Integer?

Appendix C

1200301:0CB



p—Code Index

C.3. p—Code Index

The following list defines the codes used in the p—code index that

follows.

Each code corresponds to the name of a section of the

P-MACHINE ARCHITECTURE chapter.

BAC
BLS
CL
CS
DLS
ELS
GLS
1A
ILS
JMP
LLS
LO
Ml
MLS
oTC
PC
PF
RA
RCR
SET
SIA
SO
STR
UA

Byte Array Comparisons

Byte Load and Store

Constant Loads

Concurrency Support

Indirect Load and Stores
External Loads and Stores
Global Loads and Stores

Integer Arithmetic

Intermediate Loads and Stores
Jumps

Local Loads and Stores

Logical Operators

Miscellaneous Instructions
Multiple Word Loads and Stores
Operand Type Conversion Operators
Parameter Copying

Packed Field Loads and Stores
Real Arithmetic

Routine Calls and Returns

Set Operators

Structure Indexing and Assignment
Shift Operators

String Operations

Unsigned Arithmetic

The following index indicates for each p—code which section of

the P-MACHINE ARCHITECTURE chapter it may be found in.

ABI
ABR
ABS2
ADI
ADI2
ADIU

1A ADJ SET ATP OTC
RA ADR RA BNOT LO
1A AMOVE SIA BPT RCR
IA ASRD SO CAP PC
1A ASRW SO CHK 1A
UA ASTR STR CHK2 1A

1200301:0CB C—-11



“P—CODE TABLES Appendix C

CHKU UA INC SIA LEUSW LO
CPF RCR  INC2 IA LLA LLS
CPG RCR  INCB2 SIA LNOT LO
CP1 RCR INCBI SIA LNOTD LO
CPL RCR  INCI 1A LOD ILS
CSP PC INCU UA LODD ILS
CSTR STR IND DLS LOR LO
CXG RCR  INDD DLS LORD LO
CX1 RCR INN SET LPR Ml
CXL RCR INT SET LSL RCR
DEC2 1A IXA SIA LSLD SO
DECI IA IXA2 SIA LSLW SO
DECU UA IXP SIA LSRD SO
DEREF OoTC IXP2 SIA LSRW SO
DIF SET LAE ELS LXORD LO
DUPD Ml LAND LO LXORW LO
DUPR Ml LANDD LO MDI2 1A
DUPW Ml LAO GLS MDIU UA
DVI 1A LCO CL MODI IA
DVI2 1A LDA ILS MOV SIA
DVIU UA 1LDB BLS MPI 1A
DVR RA LDC MLS  MPI2 1A
EFJ JMP  LDCB CL MPIU UA
EQBYT BAC LDCD CL MPR RA
EQI2 1A LDCI CL NATINFO Ml
EQPWR SET LDCN CL NATIVE Ml
EQREAL RA LDCRL MLS NEG2 1A
EQSTR STR LDE ELS NEI2 1A
EQUI 1A LDED ELS NEQI 1A
EXTI OTC LDL LLS NFJ JMP
EXTU OTC LDLD LLS NGI 1A
FJP JMP  LDM MLS NGR RA
FIJPL JMP LDO GLS NOP Mi
FLT OTC LDOD GLS oTP oTC
FLT2 OTC LDP PF PTA oTC
FLTU OTC LDRL MLS PTO OoTC
GEBYT BAC  LEBYT BAC  RCALL Ml
GEI2 IA LEI2 1A RED2 OTC
GEPWR SET LEPWR SET REDU oTC
GEQI 1A LEQI IA REXTI oTC
GEREAL RA LEREAL  RA REXTU oTC
GESTR STR LEREC Ml RFLT oTC

GEUSW LO LESTR STR RFLT2 OTC

C—-12 1200301:0CB



RFLTU
ROND2
ROUND
RPU
SBI
SBI2
SBIU
SBR
SCPH1
SCPI2
SCXGn
SETAR
SIGNAL
SINDn
SINDDn
SLDCn
SLDCDO
SLDLn
SLDLDn
SLDOn
SLDODn
SLLAn
SLOD1
SLOD2
SPR
SRO
SROD
SRS
SSTLn
SSTP
STB
STE
STED
STL
STLD
STM
STO
STOD
STP
STR
STRD
STRL
SWAP

1200301:0CB

OTC
oTC
oTC
RCR
1A
1A
UA
RA
RCR
RCR
RCR
MI
CS
DLS
DLS
CL
CL
LLS
LLS
GLS
GLS
LLS
ILS
ILS
Ml
GLS
GLS
SET
LLS
PF
BLS
ELS
ELS
LLS
LLS
MLS
DLS
DLS
PF
ILS
ILS
MLS
MI

SWAPD
TIP
TRNC2
TRUNC
UJP
UJPL
UNI
UPACK
WAIT
XJpP
XJP2

Ml
JMP
OTC
OTC
JMP
JMP
SET
PF
CSs
JMP
JMP

p—Code Index



- P=CODE TABLES Appendix C

C—-14 1200301:0CB



INDEX

£ 1017

abs, 43, 4—12

absadr, 4—3,4—18, 4—19,
5—8, 5—9

absmove, 4—3, 4—20, 5—8,
5—10, 5—26

absnil, 5—9

activation record, 10—3

adr, 2—51, 4—3, 4—18, 59

Application Heap Zone, 9—2,
9-3,9-5, 9-6, 9—7,
9—10, 9—11, 9—12,
9—-13

grow zone function, 9—10
ApplLimit, 9—6, 9—10, 9—12
attach, 4—6

backing up disks, 1—4

band, 4—3, 4—15

bnot, 4—3, 4—15, 4—16

boolean, 2—50, 5—13

bootstrap, 2—10, 2—12, 2—486
errors, 2—18, 2—45

bor, 4—3, 4—15

break facility, 2—9, 2—23

bundle bit, 2—17, 2—51,

252, 6—7
bxor, 4—3, 4—15

1200301:010

chr, 4—12
Clipboard, 3—1, 3—3, 3—11,
3—13
close, 2—51
ClrErrHandler, 2—48
compilation unit, 7—2, 9—4
Compiler, 1-2, 2—2, 2—25,
927, 9-37, 243
backend errors, 2—8
example listing, 28
fatal errors, 2—7, 2—38
input resource file, 2—4,
2—12
input text file, 2—3
interpreting listings, 2—8
listing file, 2—5, 2—7, 2—8
output code file, 2—3,
2-7
progress report, 2—86
startup questions, 2—2
syntax error
reporting, 2—86
termination, 2—3, 2—4,
2-5, 27
compiler options, 2—6, 4—36
$B Begin Conditional
Comp, 4—38, 4—43
$C Copyright, 4—38
$D Conditional Comp
Flag, 4—38, 4—43
default settings, 4—37
$D Symbolic
Debugging, 4—38
$E End Conditional
Comp, 4—38, 4—43




Index

$1 INCLUDE File, 4—39
$11/O Check, 4—39
$L Compiled
Listing, 4—40
$N Native Code
Generation, 4—41
$P Page, 4—41
$Q Quiet, 4—41
$R2 and $R4 Real
Size, 4—42
$R Range Checking, 4—41
$T Title, 4—42
$U Use Library, 4—42
$U User Program, 4—43
concurrency, 9—9, 10—-20
process cancelation, 2—47
subsidiary tasks, 9—6,
9—12
task queues, 10—23
task switch, 10—24
constant pool, 10—12
ControlMgr, A—17
CURPROC, 10-31
cursor, 2—33, 2—36, 3—6
CURTASK, 10—23, 10—31

Debugger, 2—8, 2—9, 2—11,
2-13, 221, 2-22,
247, 2-50, 8—1
“break points, 8—7
changing the frame of

reference, 8—15
command codes, 8—21
command format, 8—3
command summary, 8—21
current activation

record, 8—5
current address, 8—5
disassembling p—

code, 8—9
displaying registers, 8—16

display options, 8—5,
8—18
examining memory, 8—10
examining
variables, 8—12
installation, 8—2
interaction
procedure, 2—47, 2—50
modifying memory, 8—10
modifying variables, 8—12
single stepping, 8—8
symbolic debugging, 8—6
Debug Runtime, 1—3, 2—11,
219, 2—43, 7—2
DECOPS routine, 10—99
derefhnd, 4—3, 4—19, 58,
510, 5—27
DeskMgr, A—20
desktop, 2—17, 2—25, 2—37,
2—-51, 253, 67
DialogMgr, A—21
disk swap boxes, 5—29, 9—7,
9-—9
disk swapping, 2—29, 2—37
dispose, 2—24, 9—4
div, 4—11
drive numbers, 2—29, 2—37

Editor, 1—-2, 2—5, 2—25,
2-927,3-1
basic editing, 3—3
deleting text, 3—3
entering text, 3—3
file size limit, 3—2
multiple files, 3—6
scrolling, 3—2, 3—8
selecting text, 3—6
Editor Commands
Edit, 3—3, 3—11, 3—12
File, 3—2, 3—3, 3—4, 3—6,
3—10

1200301:010



Find, 3—15
Font, 3—4, 3—17
Format, 3—4, 3—16
Search, 3—4, 3—14
Size, 3—4, 3—18
ejecting disks, 2—34
Empty Program, 1-3, 2—4,
211, 2-12, 213,
243, 2—45, 246,
2-52, 6—3, 6—4, 6—13
Environment Record
(EREC), 10—-2, 10—19,
10—22, 10—31
Environment Vector
(EVEC), 10-2, 10—16,
10—-19, 10—32
Errorhandl.CODE, 1-3
Error Handling unit, 2—31,
246, 2—52, 528
interface, 2—47
ErrToMessage, 2—49
EventMgr, A—24
executing programs, 2—25
execution error, 10—25
Executive, 1—2, 2—9, 2—25
exit, 2—49, 2—50
extend, 4—13
external, 4—7, 4—25, 4—26,
5—30
External Code Pool
Region, 9—5, 9—13

Faulthandler process, 9—9,
9-10, 9—11, 9—12,
9-13
faults, 9—1, 9—5, 10—24
detection, 9—9
heap, 5—23, 5—27, §—9,
9-10, 9—-12, 9—13
segment, 5—23, 527,
9—9, 9—11, 10—24

1200301:0I0

Index

stack, 5—23, 5—27, 99,
912, 10—24
FileMgr, A—26
files
accessing, 2—28
data files, 2—31
data fork, 2—2, 2—10,
2—18,2-34
disk files, 2—32, 2—33
icons, 2—31, 2—53
limits on open files, 2—34
naming
conventions, 2—28,
2—-29, 2-30, 237
opening, 2—37
open permissions, 2—32
resource fork, 2—2, 2—11,
218, 234, 2—44
signature, 2—44, 2—47,
2-51, 2—52
simultaneous opens, 2—32
standard icons, 2—31
temporary, 2—31
text files, 2—31
types, 2—31, 2—47, 2-51,
6—3
unique signatures, 2—53
Finder, 2—17, 2—25, 2—45,
2-51, 2—52, 253,
2-54, 67
FIRST program, 1—5
FlushEvents, 5—23
FontMgr, A—29
FrMacBool, 5—13
FrSmall, 5—13

GetIndString, 6—10
GetNextEvent, 2—34
GetOSEvent, 2—34
GetStackSlop, 2—51

gotoxy, 4—4, 4—6

I-3



Index

grafports, 2—32, 2—36
Grow, 1—3, 5—8, 5—31
Grow.R, 1-3, 531

grow zone functions, 9—10

halt, 2—24
handle, 5—10

dereference, 5—10, 5—27
hardware requirements, 1—1
heap, 10—2
HeapEnd, 9-6, 9—10, 9—12,

9—13

heap expansion error, 9—12
heap zones, 9—11
HideCursor, 5—24

icons, 2—17, 2—31, 2—-37,
251, 253, 67,
6—11

Imagewriter printer, 2—5

tab expansion, 2—32

implementation, 2—40,
2—42

InitApplZone, 5—22

InitCursor, 5—24

InitDialogs, 5—23

InitFonts, 5—23

InitGraf, 5—23

InitWindows, 5—24

input, 2—32, 4—6

Inside Macintosh, 2—28,
229,252, 5-1,
5-7, 5—8, 5—9, 510,
5-20, 525, 527,
6—1, 6—5, 6—6, 9—10,
9-—11

integer2, 4—3, 4—8, 4—10,
4-15, 4—16, 58,
5—11

integer, 4—10, 4—15, 4—16

integer2
comparisons, 4—10

constants, 4—9
conversions, 4—13
operations, 4—11
routines, 4—12
subrange types, 4—9
usage, 4—8
values, 4—38
interface, 2—40, 2—42
Internal Code Pool
Region, 95
Interpreter Program Counter
(IPC), 10—22, 10—32
interrupt button, 2—9
interrupts, 4—6
I/O errors, 2—7
I/O operations, 2—32
loresult values, 2—33
keyboard, 2—32
IORESULT, 10-32
ioresult, 2—33, 2—47, 4—8,
4—39
JorToMessage, 2—49

keyboard
special sequences, 2—34
keyboard, 4—6

Librarian, 1-3, 2—14, 2—189,
2-25, 2—27, 237,
242, 243, 7—1,
9-5

menu, 7—4

library code files, 2—14,
220, 2—34, 2—38,
2—41, 2—42, 2—43

Library Files list, 2—14,
2-15, 2—17, 219,
920, 7—1, 7—2

1200301:010

—



Lisa computer, 2—10

locate, 4—3, 4—19, 5—8, 5—9,
5-15, 5—26

long integer, 10—95

LONGOPS unit, 10—98

MacBool, 5—13
MacCore, A—31
MacData, A—32
MacErrors, A—33
Mac Interface, 1—3
Macintosh
debuggers, 9—3
device names, 2—30
File Manager, 2—28, 2—37
grow zone
functions, 9—10
interrupt button, 2—9
Memory Manager, 2—44,
9-5, 9-7, 910,
9-11, 9—12
Operating System, 2—15,
228, 2—34, 235,
4-3,4-17
stack sniffer, 9—6
Macintosh, 0—5, 1—4, 2—26,
3-5
Macintosh Interface
Units, 5—1
accessing globals, 5—27
booleans, 5—13
differences, 5—20
enumerated types, 5—17
example program, 5—31
intialization, 5—23
organization, 5—1
packed data, 5—14, 5—18
parameters, 5—7
pointers, 5—8, 5—9, 5—11
procedure parameter
restrictions, 5—25

1200301:010

Index

procedure
parameters, 5—15
use at compile time, 5—3
use at runtime, 5—6
variable
parameters, 5—12
Mac Library, 1—-2, 2—14
5—6
MacPaint, 2—34
MacsBug, 2—10, 9-3
MacWorks, 2—10, 9—3
MacWrite, 2—2, 3—11, 3—17
main task
stack, 9—2, 9—6, 9—9,
9—10
mark, 2—24
Mark Stack Control Word
(MSCW), 10—4
Mark stack Pointer
(MP), 10—22, 10—32
master pointer blocks, 2—44
maxint2, 4—9
memlock, 9—7, 9—11
Memory Collector, 9—10,
9—11, 9—12, 9—13
Memory Manager, 5—20
master pointers, 5—21
restrictions, 5—21, 5—22
strategy of use, 5—22
MemoryMgr, A—36
memswap, 9—7
MenuMgr, A—38
mod, 4—11

’

new, §—4
NewHandle, 9—11
NewWindow, 5—24

odd, 4—7, 4—12, 4—15
offset, 4—3, 4—18



Index

ord, 4—3, 4—4, 4—7, 4—12,
4—15,4-17

OSType,5—19

OsTypes, A—41

OsUtilities, A—44

output, 2—32, 4—6

Packages, A—47

Pascal Data Area, 2—19,
221, 4-17, 521,
525, 9—3, 9—5

Pascal Folder, 2—11, 2—27

Pascal heap, 2—19, 2—-21,
9—4,9-5,9-9, 9—10,
9—12

Pascal Heap Block, 2—44,
9-3, 9—4, 910,
9-12, 9—13

Pascal Runtime, 1-2, 2—11,
219, 2—43, 7—2

PBIOMgr, A—51

p—code, 2—10, 9—4, 9—11,
10—-1

p—System, 4—4

Performance Monitor, 2—11,
213, 2—47, 250,
8—1,8-26

p—Machine, 1-2, 2—11,
944, 246, 93,
9—4,9-9, 10—1

pmachine, 4—3, 4—5, 4—-20

p—Machine Emulator

(PME), 10—1
PmStartStop, 2—50
Point, 5—19

pointer, 4—3, 4—18

pred, 4—3, 4—12

PrintDriver, A—57

PrintMgr, A—54

process, 2—50, 9—6, 9—9

program, 2—42, 9—1, 9-3,
9—4, 9—6

p—System, 4—1, 4—4

QdTypes, A—58
QuickDraw, 2—32, 2—-35,
A—60
character drawing
pen, 2—32, 2—33,
2—36
QUICKSTART, 2—20

read, 2—32, 4—13
readln, 2—32, 4—13
READYQ, 10—23, 10—-32
ReAllocHandle, 9—11
reduce, 4—14
reladr, 4—3, 4—18, 4—19,
5—9
release, 2—24, 9—4
relocation list, 10—14
required files, 2—11, 2—18,
2—44
locations, 2—12
reset, 2—29, 2—-32, 237
ResMgr, A—67
resources, 2—10, 2—12, 2—13,
2—14, 2—18, 2—43,
6—1, 6—4
attribute byte, 6—5
definition, 6—4
identifiers, 6—5
names, 6—5
ResrvMem, 9—12
rewrite, 2—29, 2—32, 2—37,
2—-51
RMaker, 1-3, 2—10, 2—13,
2—14, 2—18, 225,
2—27,2—43, 2—52,
6—1
comments, 6—2
errors, 6—13

1200301:010



file name
conventions, 6—2, 6—3
generating Pascal
compiler input, 6—13
include statement, 6—4
input file, 6—2
output file, 6—2
syntax, 6—6
type statement, 6—4
round, 4—13
routine dictionary, 10—11
runtime errors, 2—9, 2—21,
246
fatal, 9—11, 9—12, 9—13
Runtime Files, 2—11
Runtime Options, 2—13,
2—15
default settings, 2—13
Runtime Support
Library, 2—11, 2—14,
215, 219, 220,
221, 231, 232,
2-33, 235, 242,
243, 244, 248,
9—1, 9-3, 9—5, 9—6,
9-7
bootstrap, 9—3
composition, 9—13
icons, 2—11
KERNEL unit, 9—4,
9-9, 9—10
startup errors, 2—18,
2—19
Runtime Support
Package, 9—3
bootstrap, 9—9

ScrapMgr, A—70
screen window
title, 2—12
segment, 2—38, 2—40, 9—4,
9—10, 9—11, 10—4,

1200301:0I0

Index

10—-9
controlling residency, 9—7
handles to, 9—5
host, 7—2
intersegment calls, 9—5
location, 9—5
names, 9—5
number of routines, §—4
principal, 9—4
structure, 9—4
subsidiary, 7—2, 9—4
segment dictionary, 10—4
Segment Information Block
(SIB), 10—2, 10—18
segment reference list, 10—16
selecting text, 3—6
selective uses
declaration, 5—5
semaphore, 10—21
separate compilation, 2—41
Serial, A—T71
serial devices, 2—7, 2—12,
2--30, 2-35
LAIN, 213, 2—30, 2—33
.AOUT, 2—13, 2—30,
2—33
BIN, 230, 2—33
BOUT, 2—30, 2—33
nonstandard, 2—30
open permissions, 2—33
SetApplBase, 5—22
SetApplLimit, 5—22
SetErrHandler, 2—47
SetFileSignature, 2—51
SetFileType, 2—51
SetGrowZone, 5—22
setlength, 4—3, 4—14
Set Options, 1—2, 1—4,
2-10, 2—13, 2—14,
215, 225, 227,
252, 7—1
SetPminteraction, 2—50



Index

SetPort, 5—24
SetPtrSize, 9—12
SetStackSlop, 2—51, 5—28
shiftleft, 4—3, 4—15, 4—16
shiftright, 4—3, 4—15, 4—16
signal, 10—24
sizeof, 4—3, 4—23
SmallBool, 5—13
Sound, A—73
special devices, 2—30, 2—35
backspace
characters, 2—36
backspace key, 2—32
bells, 2—36
carriage returns, 2—36
.CONSOLE, 2—30, 2—32,
2-35, 236
.DBGTERM, 2—12, 2—13,
2--30, 232, 2—35,
8—2
line feeds, 2—36
reading characters, 2—33
special keystrokes, 2—34
SYSTERM, 2-30, 2—32,

2—35
tab expansion, 2—32
tabs, 2—36
sqr, 4—12
stack, 10—2 :
Stack Pointer (SP), 10—-22,
10-33

stack slop, 2—37, 2—47,
2-51, 528, 529,
9—6
adjustment, 9—7
default setting, 5—29
minimum setting, 5—29
stack sniffer, 5—30
Standard Pascal, 4—2, 4—8,
4-9
I1SO standard, 4—2
standard procedures, 2—51,
10—-87

standard resources, 2—10,
2-11, 2—12, 2—13,
218, 2—43

start, 2—50, 9—6

Startup options, 2—12, 2—15,
2—16

default settings, 2—45
substitution types, 5—38
succ, 4—3, 4—12

tab expansion, 2—32, 2—38

Task Information Block
(TIB), 9—6, 10—21

TBoxUtils, A—75

TBTypes, A—T77

TEInit, 5—24

TextEdit, A—79

ToMacBool, 5—13

Top Of Stack (TOS), 10—34

ToSmall, 5—13

trunc, 4—5, 4—10, 4—13

UCSD Pascal, 2—11, 4—1
absolute pointers, 4—18
array indexing, 4—8
assignment

compatibility, 4—10
bit manipulation, 4—3,

4—7,4-12, 4—15
case label constants, 4—8
case statement, 4—8
comments, 4—36
compiler, 2—2
conditional

compilation, 4—43
conformant arrays, 4—2,

4—-30
declaration ordering, 4—2
enhancements, 4—2,

4—14, 423

1200301:010



extensions, 4—8, 4—9,
4—13, 4—14, 4—15,
4—17, 4—20, 425

for statement, 4—8

include files, 4—39

in—line procedures, 4—3,
4—25, 9—8

interface conformant
arrays, 4—2, 4—34

intrinsics, 2—28, 2—32,
237, 4—3, 4—4,
4—12,4—-13, 4—14,
4—17, 4—20, 4—23,
9—4,9-7,9-13

language changes, 4—4

limits on open files, 2—34

long integers, 4—3, 4—5,
4—9,4-10, 4—13

Macintosh 1/0, 2—32

offsets, 4—17

operator
precedence, 4—11

pointer comparisons, 4—4

pointer
manipulation, 4—3,
4—17

pointers, 4—17, 9—3

predeclared
identifiers, 4—5

procedural
parameters, 4—2

processes, 9—6

selective uses
declaration, 4—2,
4-26

standard functions, 4—3,
4—7,4—10, 4—12,
4—13, 4—15

standard
procedures, 4—13

type compatibility, 4—9,
4—10

1200301:0I0

Index

type—precedence, 4—13
unit I/O, 4—4, 4—6
uses declaration, 2—14,
4—42
UCSD Pascal 1, 1-2, 3—18
UCSD Pascal 2, 1-2
The UCSD Pascal
Handbook, 1-8, 2—2,
2—28, 2—41, 2—42,
2—43,4—1, 4—4, 97
unit, 2—41, 2—42, 9—4
unitbusy, 4—4
unitclear, 4—4
unitread, 4—4
units, 2—38
unitstatus, 4—4
unitwait, 4—4
unitwrite, 4—4
uses, 5—3

vardispose, 9—4
varnew, 9—4
version number string, 2—12,
2—44
volume names, 2—29
by drive number, 2—29

wait, 10—24
WindowMgr, A—81
write, 2—32
writeln, 2—32

I-9



1200301:010



~z

~USUS: UCSD p—System User’s Society

USUS: UCSD p—System User’s Society

USUS is the society devoted to users of the p—System and UCSD
Pascal. Its goal is to promote and influence the development of
the p—System and UCSD Pascal, as well as to help users learn
more about their systems.

USUS provides both formal and informal opportunities for
members to communicate with and learn from each other. Its
semiannual national meetings and quarterly newsletters feature
technical presentations and discussions as well as news about the
p—System and its derivatives. Electronic mail bulletin boards
put you in touch with a member network that can provide
up—to—the—minute information, and special interest groups zero
in on specific problem areas. USUS also supports a Software
Exchange Library from which members can obtain software
source code for a nominal reproduction charge.

USUS stands for the UCSD p—System User’s Society and is

~ pronounced "use us." It is nonprofit and vendor independent.

As a user of UCSD Pascal, USUS is for you. USUS links you
with a community of users who share your interests. The
following benefits are available to USUS members:

SOFTWARE EXCHANGE LIBRARY
Tools, games, aides
Pascal source
Nominally priced

INFORMATIVE NATIONAL MEETINGS
Tutorials
Technical presentations
Special interest group meetings
Low—cost software library access
Hardware/software demonstrations
Query "major vendors"



USUS: UCSD p—System User’s Society

HELP VIA ELECTRONIC COMMUNICATIONS
CompuServe/MUSUS SIG
Bulletin board
Data bases
Software library
Telemail

USEFUL QUARTERLY NEWSLETTER
Technical articles and updates
SIG reports
Software vendor directory
Library catalog listings
Organizational news

ACTIVIST SPECIAL INTEREST GROUPS

TECHNICAL ARCHIVE

PN



- USUS MEMBERSHIP APPLICATION

I am applying for:

$25 individual membership (North America residents)
$40 individual membership (For those residing
outside North America; includes $15 airmail
service surcharge.)
[] $500 organizational membership

Name

Address

City State Zip Country
Phone { ) TWX/Telex/EMail

Title/Affiliation

Option: [] Do not print my phone number in USUS rosters.
Option: [ | Print only my name and country in USUS rosters.
Option: [ | Do not release my name on mailing lists.

Computer System:

7—80 8080 D PDP/LSI——ll
6502/ Apple H 6800 [ 6809

9900 D 8086/8088 728000

68000 MicroEngine { | IBM PC
Macintosh HOther




USUS MEMBERSHIP APPLICATION

I am interested in the following Committees/Special Interest

Groups (SIGs):

Advanced System Editor SIG
Sage SIG

IBM Display Writer SIG
Application Developer’s SIG
Technical Issues Committee
Mettings Committee

DEC SIG

UCSD Pascal Compatability SIG

Publications Committee

CIrrryrrrruri

Graphics SIG

Apple SIG

Software Exchange Library
IBM PC SIG
Communications SIG
Texas Instruments SIG
Modula—2 SIG

File Access SIG

Word Processing SIG

o

I am willing to volunteer some time and/or talent in the

following area(s):

Mail completed application with check or money order payable to
USUS and drawn on a U.S. bank or U.S. office, to
Secretary,USUS, P.O. Box 1148, La Jolla, CA 92038, USA.



