
· ENGINEERING
TECHNICAL

REPORT

SINGER
AEROSPACE & MARINE SYSTEMS.

DOCUMENT NO. Y240A30JM0810 REV-=-

SKC3120

ASSEMBLER LANGUAGE (KAL31)

REFERENCE MANUAL

JULY ~1916

ORR NO. 01911(NP) TOTAL ~AGES 83

THE SINGER COMPANY. KEARFOTT DIVISION. 1150 MC BRIDE AVENUE. LITTLE FALLS, N. J. 07424

F4200-. 2/72

F4202,..1 a/75

THE SINGER COMPANY
KEARFOTT DIVISION

SKC3120

ASSEMBLER LANGUAGE (KAL31)

REFERENCE MANUAL

Prepared by:

DEPARTMENT 5760

Y240A301M0810 REV __

ENGINEERING PROGRAMMING AND COMPUTATION

JULY 1976

i

REV

RELEASE -

REV - ..
PAGE COVER

F4201 2/72·

THE SINGER COMPANY
KEARFOTT DIVISION

REVISION RECORD

DESCRIPTION

.

I

i

!

REVISION SY~BOL OF REVISED PAGES

i)

'~> ,

Y240A30 1 MO 810 REV _-_

APPROVAL
AND DATE

JULY 1976
,9n~'-"

-
OTHER
PAGES

Y240A301M0810 REV __
THE SINGER COMPANY

KEARFOTT DIVISION

SKC3120
ASSEMBLER LANGUAGE (KAL31)

REFERENCE MANUAL

ABSTRACT

This manual describes the syntax and function of KAL31, the
SKC3120 Assembly Language. This language is • derivative of the
FOCAP Language developed for the SKC2000 computer. . An SKC3120
computer program written in this language is automatically
converted to machine language by the SKC3120 P6rtable Assembler
Program. The Portable Assembler was carefully designed to permit
It to be easily transferred from one host machine to another, hence
the term Portable.

This document, in conjunction with the SKC3120 Principles of
Operation Manual (Y240A300M0801) and the SKC3120 Assembler/ Linkage
Editor/Simulator Users. Manual (Y240A301M0811) provides sufficient
information for a programmer to prepare an SKC3120 computer
program. Details on the use of the Portable Assembler with a
particular host computer can be found in the appropriate Host
Procedures Manual.

Users are encouraged to make suggestions for improving the
information content of this manual by using the form supplied on
the last page.

F4202-1 2/75 iii

THE SINGER COMPANY
KEARFOTT DIVISION

TABLE OF CONTENTS

1. I NTRODUCT I ON

2. LANGUAGE STRUCTURE

2.1 SOURCE LANGUAGE STATEMENT

2.1.1
2.1. 2
2.1. 3
2.1. 4
2.1. 5
2.1. 6

LABEL ENTRY
OPERATION ENTRY
OPERAND ENTRY
COMMENT ENTRY
CHARACTER SET
STATEMENT FORMAT

2.2 LANGUAGE ELEMENTS

2.2.1 SYMBOLS

2.2.1.1 SET-SYMBOLS
2.2.1.2 EXTERNAL SYMBOLS
2.2.1.3 THE ASTERISK SYMBOL
2.'2.1.4 SYMBOL REFERENCE
2.2.1.5 RELATIVE ADDRESSING

2.2.2 EXPRESSIONS

3. ADDRESSING AND LOADING

3.1 INTRA-DECK ADDRESSING

3.1.1 LOCATION COUNTERS

3.2 INTER-DECK ADDRESSING

3.2.1
3.2.2
3.2.3

ENTRY POINTS
EXTERNAL Svt1BOLS
BLOCK DATA

3.3 LINKAGE EDITOR PROGRAM

4. MACHINE LANGUAGE INSTRUCTIONS

4.1 ARITHMETIC INSTRUCTIONS

4.1.1 OPERATION FIELD
4.1.2 OPERAND FIELD

F4202-1 2/15 iv

Y240A301M0810

PAGE

1 -1

"1 •• 1

2-1
2-2
2-2
2-2
2-2
2-3

2-3

2-5

2-6
2-6
2-6
2-7
2-8

2-9

3-1

3-1

3-1

3-3

3-3
3-3
3-4

3-5

4-1

4-2

Y240A301M0810 - THE SINGER COMPANY
REV_ KEARFOn DIVISION

4.2 JUMP INSTRUCTIONS 4-7

4.2.1 OPERATION FIELD 4-7
4.2.2 OPERAND FIELD 4-7

4.3 INDEX REGISTER INSTRUCTIONS 4-9

4.3.1 OPERATION FIELD 4-9
4.3.2 OPERAND FIELD l~-9

4.4 SHIFT INSTRUCTIONS 1~-11

4.4.1 OPERATION FIELD I~ ':'" 11
4.4.2 OPERAND FIELD 4-11

4.5 NON-MEMORY REFERENCE INSTRUCTIONS l~-12

4.5.1 OPERATION FIELD 4-12
4.5.2 OPERAND FIELD l~ -13

4.6 INPUT-OUTPUT INSTRUCTIONS 4-1I~

4.6.1 OPERATION FIELD 4-11~
4.6.2 OPERAND FIELD 4-1't

4.7' BLOCK TRANSFER INSTRUCTION 4-15

4.7.1 OPERAT,ION FI ELD 4-15
4.7.2 OPERAND FIELD 4-15

s. ASSEMBLER OPERATIONS 5-1

5.1 LOCATION COUNTERS 5-L~

5.1.1 ORG - SPECIFY ABSOLUTE ORIGIN FOR
THE PROGRAM 5-5

5.1. 2 USE - START USE OF LOCATION COUNTER 5-6

",

F4202-1 2/75
v

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A301M0810 -_______ REV _

5.2 DATA GENERATION OPERATIONS

5.2.1 DEC - DECIMAL DATA DEFINITION (FIXED)
5.2.2 HEX - HEXADECIMAL DATA 'DEFINITION
5.2.3 SCLB - BINARY SCALE OPERATION
5.2.4 SCLW - WEIGHTED SCALE OPERATION
5.2.5 SCLBD - DOUBLE LENGTH BINARY SCALE
5.2.6 SCLWD - DOUBLE WEIGHTED LENGTH
5.2.7 PTR - POINTER TO ADDRESS
5.2.8 . DECD - DECIMAL DATA DEFINITION (FLOATING)

5.3 STORAGE ALLOCATION OPERATIONS

5.3.1 BSS - BLOCK STARTED BY SYMBOL
5.3.2 BES - BLOCK ENDED BY SYMBOL
5.3.3 BLKDTA - BEGIN BLOCK DATA

5.4 SYMBOL DEFINITION OPERATIONS

5-7

5-7
5-8
5-9
5-11
5-13
5-13
5-14
5-15

5-18

5-18
5~1!,}

5-19

5-20

5.4.1 EQU - EQUATE SYMBOL TO EXPRESSION 5-20
5.4.2 SETD - SET TEMPORARY SYMBOL TO DECIMAL

NUMBER 5-22
5.4.3 SETX - SET TEMPORARY SYMBOL TO HEX VALUE 5-23

5.5 . SUBROUTINE OPERATIONS

5.5.1 ENTRY - ENTRY POINT DESIGNATION

5.6 PROGRAM CONTROL PSEUDO-OPS

5.6.1 END
5.6.2 ENDBLK

5.7 LIST CONTROL PSEUDO-OPS

F4202-1 ans

5.7.1
5.7.2
5.7.3
5.7.4
5.7.5,

LIST - RESUME LISTING
UNLIST - SUSPEND LISTING
TTL - DEFINE PAGE TITLE
EJECT - START NEW PAGE
SPACE - SKIP BLANK LINES

vi

5-24

5-2L~

5-25

5-25
5-25

5-26

5-26
5-26
5-27
5-27
5-28

Y240A301M0810 -_______ REV_ THE SINGER COMPANY
KEARFOTT DIVISION

6. THE ASSEMBLER OUTPUT LISTING

6.1 ERROR MESSAGES
6.2 CROSS REFERENCE

6-1

r: _? u ...

G-2

APPENDIX A ASSEMBLER ERROR DIAGNOSTICS A-l
APPENDIX B ASSEMBLER CONTROLS AND OPTIONS B-1
APPENDIX C SAMPLE PROGRAM LISTING C-1
APPENDIX D SKC3120 MACHINE INSTRUCTION FORMAT SUMMARY D-1

F4202-1 2/75 vii

THE SINGER COMPANY
KEARFOTT DIVISION

1. INTRODUCTION

Y240A301M0810 REV--=-

The SKC3120 Assembler program accepts KAL31 source code and
produces absolute or relocatable object programs which, after
processing by the Linkage Editor program, will execute on the
SKC3120 computer. The KAL31 Assembler is a "cross assembler." in
that it executes on a general purpose computer, hereby designated
as a "host" computer, and produces code for the SKC3120, hereby
designated as the "target" computer. This Assembler Is an element
of Kearfott's complement of machine-portable, modular software.
The SKC3120 (KAL31) Assembler, in particular, has been designated
as both host and target machine portable, since only a relatively
few modules require modificat·ion when it is desir~dto change
either the host or target computer. Host machine portability
allows Kearfott to provide this Assembler for execution on the
customer's host computer, without the entailment of expensive
conversion costs. Furthermore, since approximately 85 percent of
the modules are completely machine Independent, the introduction-of
errors due to conversion from one host to another is minimal.
Target-machine portabil ity allows expeditious adaptation of the
software when the target computer's configuration is altered.
Changes in the instruction set, data word length, etc. are easily
implemented in the Assembler since only a very few modules are
effected for each of these changes. Additionally, target-machine
portabil ity provides a significant step towards the production of
error-free code.s. Since the majority of the modules are common to
Kearfott assemblers for oth~r target computers, errors detected in
one application, and corrected, do not always have to be
rediscovered in other applications.

The SKC3120 Assembler contains several features usually available
only on larger" computers. The Assembler is capable of producing
relocatable object code, whose absolute locations are assigned by
the Linkage Editor Program. This relocatabil ity feature allows the
use of location counters: for aiding in the organization of the
source program, for eliminating the need for the programmer to
choose absolute addresses, and for OPtimizing memory allocation.

1-1

Y240A30 1M0810 REV -
, ' . ..--

THE SINGER COMPANY
KEARFOTT DIVISION

The user has complete control over the assembly process. This
control is exercised via control cards and assembler options (see
Appendix B, Assembler Controls and OptIons). Subroutines may be
assembled individually or in groups. The Assembler detects
syntactic programming errors, illegal opcodes, some types of
addressing errors, and checks the source coding in general for
conformance. On user oPtion the Assembler wIll perform a load, and
produce a memory load map onto magnetIc tape and/or the printer.
The map indicates the exact memory loading of the SKC3120. In
addition to those features already implemented, Kearfott has
developed a general purpose macro processor to be used in
conjunction with all Its assemblers. The capabilIties of this
macro processor include complete arithmetic, logical, and character
expression handling, the nesting' of macros, recursive macro
invocation, and a conditional assembly facility.

The Assembler output Includes:

* A prInted lIsting containing:

a. Program source code
b. Line numbers
c. Hexadecimal representation of the assembled source code
d •. Relative ~ddress of each instruction
e. Error mnemonics
f. Current locat10n co~nter

* An object deck if requested by the user.

* A magnetic tape for use eventually in the simulator or to be
converted to punched tape and loaded into the SKC3120 for
execution.

1-2

THE SINGER COMPANY
KEARFOn DIVISION

2. LANGUAGE STRUCTURE

Y240A301M0810 ________ REV_

The SKC3120 Computer Assembler Program was developed to run on an
IBM 360/370 computer. The Portable Version of the Assembler was
written almost exclusively in ANSI Fortran. Hence, it can be
easily converted to run on similar host computers using a similar
Fortran compiler. The source language processed by this Assembler
is described in this document. Some basic language features are
described in this section.

The language provides a mnemonic (literally, memory-aiding) machine
instruction operation code for each machine Instruction in the
SKC3120 airborne computer. The Assembler language also contains
mnemonic codes for Assembler di rective oper.atlons. These are used
to provide the dlrec~ton necessary for the Assembler to perform its
wide variety of auxililary functions.

Assembler processing involves the translation of. source statemen~s
into machln~ language, the assignment of· memory words to
instructions and data, and the development of all Information
required by the Linkage Editor Program for final memory allocation.
The output of the Assembler program is a relocatable or absolute
object program module, a machine language translation of the Input
source program module.' The Assembler generates a printed listing
of the source statements, side by side with their machine language
translation, relocatable or absolute addresses, and additional
information useful to the programmer in analyzing his program, such
as error indications.

2.1 SOURCE LANGUAGE STATEMENT

An SKC3120 Assembly program consists of a sequence of source
language statements or symbolic instructions. Each statement
consists of one to four entries, which are from left to right: a
label entry, an operation entry, an operand entry, and a comments
entry. T~ese entries must be separated by one or more blanks and
must be written in the order stated. A brief description of each

. en try follows.

2.1.1 Label Entry

The label entry is a symbol created by the programmer to identify a
statement. The label symbol is used to reference the statement in
the operand entry of other statements. A'label entry Is usually
optional. like ~ll symbols, the label entry may consist of . up to
.eight alphanumeric (or alphameric) characters, the first of which
must be alphabetic.

2-1

F4202-1 2/75

Y240A301M0810 REV --
2.1.2 Operation Entry

THE SINGER COMPANY
KEARFOTT DIVISION

The operation entry is the mnemonic operation code specifying the
SKC3120 machine operation, or assembler directive operation
desired. An operation entry is mandatory (except for a full
comment statement). Valid mnemonic operation codes for each
machine operation are listed in an appendix. All assembler
directive operation codes are listed in Section 5 (Table 5-1).

2.1.3 Operand Entry

Operand entries identify and describe data to be acted upon by the
machine or assembler operation. The operand entry has a variety of
formats described in Sections 4 and 5. Depending on the
requirements of the operation, one or more or no operands can be
specified. Multiple operand entries must be separated by commas,
and they cannot include embedded blanks.

2.1.4 Comment Entry

Comments are descriptive items 'of information about the statement
or the, program that are included to clarify the program listing.
Any printable character may be included in a comment, including
blanks. An entire statement field can be used for a comment if an
asterisk or period is punched in the first column.

2.1.5 Character Set

The standard FORTRAN character set forms the basis for the KAL31
character set (except that any printable character may be used for
comments). The character set for the label field Is the alphabetic
A-Z and the numbers 0-9. The character set for the operation field
is in the alphabetic characters A-Z combined to form a legal
Assembler mnemonic operation code. The character set of the
operand field is the alphabetic characters A-Z, the numbers 0-9 and
the special characters shown below:

* . , + - b 1 an k

For comments, any printable character is acceptable. For the IBM
360/370 version of the Assembler, the EBCDIC character set is used.

2-2

F4202-1 2/75

2.1.6 Statement Format

THE SINGER COMPANY
KEARFOn DIVISION

Y240A301M0810 ________ REV_

The primary input medium to the Assembler is the punched card.
Source statements are punched one per card in the following format:

LABEL FIELD

Must start in col. 1
may be up to 8 char.
in length; must be a
symbol (see Section
2.2.1>

OPERATION FIELD

May not start in col. 1
Must be legal mnemonic
operation code. One
or more blanks must
separate the label and
the operation fields.

OPERAND FIELD

Format depends on
instr. used. One
or more blanks
must separate the
operation and the
operand fields.

Comments may be placed on a card in
least one blank following the
asterisk(*) or period C.) in column
the next field is assumed to be the

one of two ways: after at
operand field, or after ~n

1. I f co 1 urnn 1 i s 1 eft b 1 an k,
operation field.

The fields are free format, with the exception that a label field
or comment statement must start in column 1; however, standard card
columns for starting fields are recommended for the sake of
legibll ity. Figure 2-1 shows the standard Assembler coding form,
in which the operation field starts in column 10 and the operand
field begins in column 16. In general, blanks delimit fields and
commas delimit subfields. The operand field varies with the type
of the operation (see Sections 4 and 5).

2.2 LANGUAGE ELEMENTS

Before describing the various assembler operations in detail, it is
appropriate to discuss the basic language elements of the
Assembler. Principal among these are expressions, symbols, and
their attributes. Of course, the principal use of symbols and
expressions is the mnemonic representation of a memory address or
other numeric value. These language elements have their prime
util tty as constituents of the operand entry in assembly
statements.

2-3

'1J ..
N
o
N
I

N
I
~

Kearfott Coding Form SINGER
M.ea.""'OTT DIVISION

NAM.E IPROGRAM ID~TE' I PAGE_ of __

LABEL OPERATION OPERANfI

I 1213141516171819 10 '111'211~+iI6 I I ~ I ?120121 pJ!p.;p~;~1;r;~p9 JO~ 113N3413~~137138139H'~~FF~]~flfffi~~415~~157158p9~q61~~3~4~5~6 ~ 7~816tOp lin 73174175pq77178HB

...l.-.L- .-L.LI I I I I ! I ! I ! I ! ! ! ! ! ! ! I

LLL . I I I I .. L _L.L.L..LLL.LL.L.L...L I I I I I I ! 1.L.l....! I I I I I ! ! I I ! I I ! I

f..-.<-.LLL-LL-L..L I I! I LL.LLL.L. ! ! ! ! I ! ! I ! LL1-LL ! ! I I .1.1
I 11.1 I I I ! I ! I ! ! ! I I

! I ! ! ! I I I I ! ! I I

I I I I I I I I I I ! ! I I I I ! I I I ! ! I I I .l..-L...L I I I I I I ! I

I

....L I ! I

I I I I

LL.LLl 1 1 I I I I I I I I I I I I I I I I
-

L I ! I I I I I I I I 1 I I I I I I I 1.1 I

.1 il. I I I I I I I I I I I

! _I 1 I 1 I I. I I

....L..L.L.J....L. . .1 I I I I I I I I I I I I ! I I ! I I I I ! I !

I I I I I I I I I II L .L • I

-<
N
.f:'
0
l>
V'
0
~
0
co
0

"T1 =-
Qq :!
c

I · .,
~

N

....
-4

~X

"'''' >(1)
:0_

~ "'z
m ~~ l>
:::0 Cn "T1
0 <0
-f -3:

!!!" -f 0> zz
0 -<
0
C

Z
G')

"T1
0
:::0
~

THE SINGER COMPANY
KEAR.FOn DIVISION

Y240A301M0810 ________ REV _

2.2.1 SYMBOLS

A symbol. is represented by a string of one to eight alphameric
characters (A-Z, 0-9), the first of which must be alphabetic. A
symbol is defined by its appearance in the label fiel.d of a
statement. A symbol may be defined only once in an assembly,
unless it is a set-symbol. That is, each symbol used as tbe label
of a statement must be unique within that assembly. Anumeric
value is associated with each symbol. Generally, a symbol in the
label field of an instruction is assigned the value of the current
location counter. The only exceptions are the SETD, SETX, and. EQU
operations whose label symbol is assigned the value specified by
the operand field. When the Asse~bler assigns values to symbols in
the label field of statements defining instructions, constant data
words, or variable data words, it chooses the address of the
designated memory word. If the designated item occupies more than
one memory word, the address of the first word is assigned to the
symbol. '

Although the value of a symbol is its principal attribute, several
other attributes are worthy of mention. A symbol value may be
either absolute or relocatable based on the type of location
counter under which It"was allocated. The symbol is then said to
be e'lther absolute "or relocatable, accordingly. The value of a
relocatable symbol" is Its displacement, in words, from the origin
of the location counter. A symbol vCilue may be any integer from
zero to 65K (I.e. 65,535). This is the maximum addressing range·
of the SKC3120 computer.

Symbols can also be distinguished
contained in the address they
symbol value may represent the
constant data word, a variable
In the latter case, the symbol
addressing capability.

by the nature of the information
are referencing. Fom example, a
address of an instruction, a

data word, or an address pointer.
may be said to have indirect

*Two popular alternate designations for "symbol" are "tag" and
"label".

2-5

F4202-1 anl5

Y240A301M0810
REV --=-

2.2.1.1 Set-Symbols

THE SINGER COMPANY
KEARFon DIVISION

Symbols normally assume a specific (absolute or relocatable) value
which is retained throughout the assembly of the deck. However,
the operations SETD and SETX can be used to define temporary
symbols or SET symbols whose value can be changed during the
assembly of a single deck. Once a symbol value has been specifded
by one of the SET operations, a subsequent definition of the same
symbol by a SET operation is considered an assembly-time
redefinition of the symbol value. A set-symbol may be redefined
any number of times. However, regular permanent symbols (defined
by an operation other than SETD or SETX) cannot be redefined via
the two SET operations. Similarly, a set-symbol cannot be
subsequently given a permanent value by appearing in another
statement. By virtue of the variable nature of a set-symbol, it
must be defined in a SET statement prior to any use of the symbol.

2.2.1.2 External Symbols

Symbols which are used In a deck but not defined (assigned a value)
within the deck are assumed to be defined as entry points in
another deck. Hence, these are referred to as external symbols. A
table of external symbols is provided in the cross reference at the
end of each assembly listing. If a deck is processed by the
Linkage Editor with other decks which provide entry points for each
of its ~xternal symbols, the Linkage Editor will automatically
resolve these interdeck address references. If no entry point is
found for an external symbol, the Linkage Editor will print an
appropriate error message.

2.2.1.3 The Asterisk Symbol

The asterisk character (*) is used to specify a special symbol.
When -used in the operand field of an operation, it represents the
current value of the location counter (either absolute or
relocatable). Consequently, the asterisk (*) need not be defined
(assigned a value) like other symbols and, therefore, should never
appear in the label field of a statement. By its nature, the
asterisk assumes a different value each time it Is used. In this
respect, it is similar to a temporary symbol or set-symbol,
although it is not explicitly defined or redefined via the SET
operations.

2-6

F4202-1 2/75

Y240A301M0810 -THE SINGER COMPANY
KEARFOTT DIVISION ________ REV_

2.2.1.4 Symbol Reference

A symbol is said to be defined by its appearance in the label field
of a statement. A symbol is said to be referenced by its
appearance in the operand field of a statement. There is, In
general, no sequence restriction on the definition and reference of
a permanent symbol; both forward referencing (reference procedtng
definition) and backward referencing (definition preceding
reference) is permitted, except where otherwise noted (e.g. EQU
operation). The following two examples illustrate the definition
and use of symbols.

Forward Reference:

LOA 5MBL1

5MBL1 DEC 1235

Backward Reference:

5MBL2 LOA 5MBLl

JU 5MBL2

2-7

F4202-1 2/75

Y240A301M0810 -________ REV_ THE SINGER COMPANY
KEARFon DIVISION

2.2.1.5 Relative Addressing

As described above, the Assembler permits one statement to be
referenced in another's operand field if the first statement
defines a symbol in its label field. However, it also permits more
complex forms of symbolic referencing including relative
addressing. Once a statement has been named by the presence of a
symbol in its label field, it is possible to refer to a statement
preceding or following the statement named by indicating its
position relative to the named statement. This procedure Is called
relative addressing, and the operand entry would take the form:

s + n or s - n

where:
s represents the symbol in the label field of the named
instruction

n is a positive decimal integer which represents the difference
between the current values of the location counter at each
statement.

A more specific example would be:

SYMBOL + 6 .

where the referenced memory address is six greater than the address
labeled SYMBOL. Another common form of relative addressing is
illustrated below:

loco ctr. values

(1000)
(1001)
(1002)

JEQ
JU
STA

*+2
LOOP
ANGLE

The asterisk (*) symbol is used to refer to the current value of
the location counter. Relative addressing serves to introduce the
more general concept of using expressions to represent operand
address references which is discussed In Section 3.

2-8

F4202-1 2/1&

2.2.2 Expressions

THE SINGER COMPANY
KEARFOn DIVISION

Y240A301M0810 ________ REV_

This section discusses the expressions used in coding operand
entries for regular source statements. Two types of expressions,
absolute and relocatable, are presented along with the rules for
determining the attributes of an expression. The earlier paragraph
on relative addressing introduced the simplest type of expression
of the form s + n. The more general case is discussed here.

THe smallest component of a regular expression is the element. An
element is either a single symbol or a single decimal integer less
than 2**16. Three types of symbols may be used specifically:

The permanent symbol

The temporary or set-symbol

The asterisk, representing the current location counter
value

An expression consists of a single element or is formed as the sum
or difference of two elements according to the Following
restrictions:

The difference of two relocatable elements is a valid expression
if and only if both elements are defined under the same location
counter.

The sum of two relocatable elements is always invalid.

Since expressions, like symbols, represent memory addresses,
they cannot have a negative value and must be less than 2**16.

An external (or virtual) symbol cannot be combined with an
asterisk or permanent symbol to form a vaild expression. It can
only be combined with a decimal integer or a set-symbol.

A numeric value is associated with each expression.

2-9

Y240A301M0810 -________ REV_ THE SINGER COMPANY
KEAR.FOTT DIVISION

An expression Is called absolute if its value is unchanged by
program relocation. An expression is called relocatble if its
value depends upon program relocation.

An absolute expression can be an absolute symbol or any sum or
difference of absolute elements. The difference of two relocatble
elements (under the same location counter) is an absolute
expression. Since each element would be relocated by the same
amount, the difference value remains constant and is not effected
by the relocation value. Hence the expression's value Is absolute.
If each element were defined under different location counters,
each element would have its own relocation value and the difference
value of the relocated element would not be· constant.
Consequently, this combination Is· specifically prohibited.

A relocatable expression is one whose value changes by n if the
program In which it appears is relocated n words away from its
original storage location. The simplest form of relocatabl.
expression is the single symbol.

The above combinational rules can be summarized by a listing of
legal expression constituents, an example of legal expression type,
and a classification of the resulting expression as being absolute
or relocatable. Such a listing is presented in Table 2-1 using the
followln~ notationr

n represents a positive decimal integer

s represents a permanent symbol

st represents a set-symbol

(r) represents a relocatable symbol (ie. defined under a
relocatable location counter)

(a) represents an absolute symbol (ie. defined under an
absolute location counter)

Note that all relocatable symbols are assumed to be defined under
the same location counter. Otherwise the difference would be
lJlegal as described above.

Table 2-1 contains all legal combinations of the following six
basic elements:

n s(r) sea) st

By implication, all missing sums or dlferences of these elements
are illega~ based upon the above prohibitions and should not be
used.

2-10

F4202-1 2/7&

THE SINGER COMPANY Y240A301M0810
KEARFOn DIVISION REV_

TABLE 2 - 1 LEGAL EXPRESSION TYPES

EXPRESSION FORM TYPE EXAMPLE

*(r) relocatable *
*(a) absolute *
s(r} relocatable SYMREL
sea} absolute SYMABS
n absolute 100
st absolute SETSYM
*(r}-s'(r) absolute *-SYMREL
*(r}+s(a) reloc~table *+SYMABS
*(r};;'s(a) relocatable *-SYMABS
*(a}+s(r) relocatable *+SYMREL
*(a}+s(a) absolute *+SYMABS
*(a}-s(a) absolute *-SYMABS
*(r}+n relocatable *+1
*(r}-n relocatable *-2
*(a}+n absolute *+3
*(a}-n absolute *-4
s(r)-s(r} absolute SYMR1-SYMR2
s(r}+s(a) relocatable SYMREL+SYMABS
s(r}-s(a) relocatable SYMREL-SYMABS
s(a)+s(rl relocatable SYMABS+SYMREL
s(a)+s(a} absolute SYMA1+SYMA2
seal-sea} absolute SYMA1-SYMA2
s(r}+n relocatable SYMREL+10
s(r}-n relocatable SYMREL-20
s(a)+n absolute SYMABS+100
s(a}-n absolute SYMABS-50
*(r)+st relocatable *+SETSYM
*(r}-st relocatable *-SETSYM
*(a}+st absolute *+SETSYM
*(a}-st absolute *-SETSYM
s(r)+st relocatable SYMREL+SETSYM
s(r)-st relocatable SYMREl:.-SETSYM
s(a}+st absolute SYMABS+SETSYM
s(a)-st absolute SYMABS-SETSYM
st+n absolute SETSYM+10
st-n absolute SETSYM-4
st+st absolute SETS1+SETS2

" st-st absolute SETS1-SETS2

2-11

F4202-I',. 2/76

Y240A30kM0810

F4202-1 a/1'5

REV
THE SINGER COMPANY

KEARFOTT DIVISION

THIS PAGE INTENTIONALLY LEFT BLANK

2-12

THE SINGER COMPANY
KEARFOn DIVISION

3. ADDRESSING AND LOADING

Y240A30J.~10e1{1
REV --=-

The SKC3120 computer architecture provides a variety of techniques
for addressing and intra-program communication. These capabilities
are augmented by the Assembler and Linkage Editor programs. This
section is intended to provide the programmer with sufficient
information about these techniques to use them effectively.

3.1 INTRA-DECK ADDRESSING

A program deck is a sequence of source program statements
terminated by an END statement. A deck may cont~in several
subroutines. The techniques available to permit one statement to
reference another, within a deck, are discussed here.

3.1.1 Location Counters

A location counter is used to assign memory addresses to program
statements within a deck. It is assigned a starting value at the
beginning of a block (typically the address of the first word in
the block) and is incremented by the length of each subsequent
statement within a deck. Thus, a location counter always points to
the next avai lable address. If a statement is named by a symbol in
its label field, the symbol value is set equal to the current value
of the location counter with the exception of the BES Pseudo-Op
(see 5.3.2). Similarly, if an asterisk symbol is used in the
operand field of a statement, it is assigned the current value of
the location counter. An asterisk symbol in the operand field of a
machine instruction statement is equivalent to placing a symbol in
the label field and using that symbol in the operand field. The
Assembler listing includes the location counter value for each
statement, whether labeled or unlabeled.

Only those statements which generate object code or allocate
storage cause the location counter to be incremented.

Since the length of each operation can vary, the location counter
may be incremented by various values. For instance, some Assembler
operations such as USE or SETD, do not cause computer memory
allocation and therefore, the location counter is unchanged. Other
operations such as machine instructions or single preCISion data
words occupy one location and increase the location counter by one.
Long instructions (e.g. JS) and double precision data words occupy
two locations and increase the location counter by two. Finally,
some Assembler operations such as the BSS generate many locations
and the location counter value is correspondingly increased. The
Assembler has 25 location counters numbered 0 through 24 which can
be established and controlled by the user.

3-1
F4202-1 2/75

Y240A301M0810 -REV ____
THE SINGER COMPANY

KEAR.FOTT DIVISION

The use of more than one location counter provides the user with
the facility to write instructions in one sequence and have them
loaded in another. This enables the user to write subroutines and
assign various data areas in-line. The Assembler identifies the
necessary origins at assembly time, but repositioning of
instructions under the various location counters is a function of
the Linkage Editor and occurs at load time. The object deck
produced by an assembly will have the same sequence as the
corresponding source deck. The Linkage EdJtor processes the
location counters of the same type within a deck in numerical
sequence. That is, instructions or data assembled under location
counter 0 are loaded first; instructions or data assembled under
Location Counter 24 are loaded last.

A program segment assembled under a location counter can be
absolute or relocatable. Hence, the location counter is said to be
correspondingly absolute or relocatable for that assembly. Since
all relocatable addresses are assembled relative to the first·
location under the. location counter, the first location has a
relative address of zero with subsequent addresses assigned in
ascending order as described earlier.

Each deck has at least one location counter. If none is specified,
location counter O' is assumed. It is recommended that different
types of memory words (e.g. instruction, constant data, variable
data, etc.) be segregated by' use of location counters. In fact,
the Linkage Editor program recognizes several distinct types of
memory blocks during the load process. These are listed In Table
3-1.

F4202-1 2/75

TABLE 3-1. LOCATION COUNTER TYPE TABLE

TYPE OF MEMORY WORD

Instructions
Instructions
Constant Data
Constant Data
Variable Data
Variable Data

3-2

USAGE

Absolute
Relocatable
Absolute
Relocatable
Absolute
Relocatable

THE SINGER COMPANY
KEARFOn DIVISION

Y240A301M0810 -________ REV_

3.2 INTER-DECK ADDRESSING

This section is devoted to a description of the several
alternatives available for transmitting information between program
decks. As before, a deck is defined as a sequence of source
statements, terminated by an END statement.

3.2.1 Entry Points

Symbols may be defined in one program and referred to in another,
thus effecting symbol ic linkages between independently assemb)ed
programs. The linkages can be effected only if the Assembler
program is able to provide information about the symbol to the
Linkage Editor program, which resolves these linkage reference at
load time. In the program (deck) where the 1 Inkagesymbol is
defined, it must also be Identified to the Assembler by means of
the ENTRY Assembler operation. It is Identified as a symbol that
names an entry point, which means that another program rnay use that"
symbol in order to effect a Jump operation or a data reference.
The Assembler places this information in the object deck for
transmission to the Linkage Editor.

3.2.2 External Symbols

I f a symbol I s used I na program deck (,i. e,. appears I n an operand
field) but is not defined in the same pr:Qgram deck, the Assembler
assumes that it represents a symbol defined as an entry point in
another program deck (see previous paragraph). It Is identified
then as an external or virtual symbol. The Assembler .places this
information in the object deck for transmission to the Linkage
Editor, which resolves these linkage references at load time.

If, at load time, no entry point can
symbol, an appropriate error message
Editor.

3-3

F4202-1 2/75

be found for
is printed by

I'

an external
the Linkage

Y240A301M0810 -________ REV_

3.2.3 Block Data

THE SINGER COMPANY
KEARFOTT DIVISION

Symbols may be made global by defining them in a block data deck.
A block data deck is defined by placing a BlKDTA Pseudo-Op at the
beginning of the deck and ending with the ENDBlK Pseudo-Op.
Symbols defined in a block data deck may be referenced in any deck
in that assembly provided that the block data deck has been
assembled prior to the reference of any of the symbols. To avoid
assembl ing the block data deck each time a block data symbol is
referenced the block data symbols may be saved and retrieved in
subsequent assemblies by using control card options. A block data
deck should not appear in the Assembler input stream if the control
card calls for the retrieval of an earlier Block Data deck.
Symbols referred to in a non-block data deck, that are defined In
block data, are so indicated in the cross reference listing.

The following rules apply to the use of block data symbols:

A symbol defined locally in a subroutine
definition of the symbol in a block data deck.

overrides the

Symbols defined in a block data deck may not appear in the
operand field of an EQU Pseudo-Op in another deck. Symbols in
the operand fiel'd of an EQU Pseudo-Op which are not locally
defined are considered to be external symbols by the Assembler.

, Symbols that have to be defined before they are used (e.g.
operand of ORG) cannot be block data symbols.

3-4

F4202-1 2/16

3.3 LINKAGE EDITOR PROGRAM

THE SINGER COMPANY
KEARFOn DIVISION

Y240A301M0810 ________ REV_

The output of the SKC3120 Assembler Program is an Object Module
which contains object code (binary machine language) for each
instruction or data word designated in the source deck. However,
the relocatable code will not yet be assigned a memory address and
any instructions which directly reference relocatable or external
operands will have an unresolved operand address field. The Object
Module also contains information on the number and type of location
counter under which each word was assembled. All the Object
Modules comprising a program are processed by the Linkage Editor
Program which assigns an absolute memory address to each data and
instruction word and resolves all operand address references to
relocatable or external operands. The result is a Load Module
which contains absolute machine code with its assigned memory
address. The Load Module can be directly loaded into the SKC3120
Computer. An outl ine of the process is shown in figure 3-1.

Further description of the Linkage Editor Program and the Linkage
Editor output can be found in the SKC3120 Assembler/Linkage
Editor/Simulator Users Manual (Y240A301M0811).

3-5

F4202-1 2/75

Y240A301M0810 REV~
THE SINGER COMPANY

KEARFOTT DIVISION

SOURCE
STATEMENTS

SOURCE
STATEMENT
FILE

1--__ _...oI-!.SSEtlB.1E.! -­
HOST COMPUTER

.--____ -1 FORTRAN CONTROL

OBJECT
MODULE
FILE

LINKAGE
EDITOR

~----41~ - -- - -

HOST
COMPUTER

FORTRAN
_'£Q..MPILER.. _
HOST COMPUTER

HOST MACHINE
LINKAGE­
EDITOR

PROGRAM (FCP)

OPERATIONAL
PROGRAM

HOST COMPUTER 100II--------,

--------~~------~
TARGET
COMPUTER

PRINTOUT
• TRACE
.MEMORY DUMP
• DIAGNOSTICS

REPORT
GENERATOR

HOST
COMPUTER

SIMULATOR
& FCP MODELS

HOST COMPUTER

Figure ,3-1. Support Software Data Flow

3-6

ENVIRONMENT
SIMULATION
ROUTINES
(FORTRAN).

(RELOCATABLE)

THE SINGER COMPANY
KEARFOTT DIVISION Y240A301M0810

4. MACHINE LANGUAGE INSTRUCTIONS

REV -=-
This section describes the rules for preparing source language
statements which, when processed by the Assembler program, produce
SKC3120 machine language instructions. The Assembler uses the
mnemonic in the operation field of a KAL31 statement to generate
the operation code of the corresponding machine instruction. The
operand field of a KAL31 statement contains any designator for
other fields in the machine instruction.

In describing the syntax of the operand field, some general
notation will be used. Lower case characters are employed in a
symbol which represents a family of possible source code items.
For example, u represents any valid KAL31 expression such as: X,
RANGE, Y2, X+Y, R-9, etc. In general, upper case characters are
used to indicate source code in a literal sense. Several other
notations are employed in describing the source code syntax. The
more general of these are defined below:

NOTATION
-----"---

()

u

N

K

XR

IXR

Bl

B2

DEFINITION

designates. the contents of the register or instruction
subfield which is specified within the parentheses.

represents an absolute or relocatable expression (see
Section 2.2) which is used to define the address field
in a symbolic instruction.

designates the address field in object code
instructions.

designates the count field in object code
instructions.

specifies the active index register.

specifies the inactive index register.

specifies base register one.

specifies base register two.

Further notation used in specific statement descriptions Is defined
in the relevant sections. The descriptions for the SKC3120
Instructions are grouped according to source statement syntax and
object code format. Each group is discussed separatly below.

4-1

Y240A301M0810 -________ REV_ THE SINGER COMPANY
KEAR.FOn DIVISION

4.1 ARITHMETIC INSTRUCTIONS

The majority of SKC3120 machine instructions are In the arithmetic
group. The arithmetic group can be divided into sub-classes, In a
natural way, which parallels the machine code Instruction format.

4-2

F4202-1 2/76

THE SINGER COMPANY
KEAR.Fon DIVISION

Y240A301M0810 -________ REV _

4.1.1 Operation Field

This section lists all the valid mnemonic code entries for the
operation field of an arithmetic Instruction.

MNEMONIC

ADA
ADAB
ADAX
ADF
ADFI
ADMEM
AND
ANDM
CMS
DIV
DSZ
INCMS
LOA
LDAB
LDABI
LDABX
LOAM'
LDAX
MLF
MLFI
MUL
MULAB
MULX
OM
ORM
SBA
SBAB
SBAX
SSF
SBFI
SKPMZ
SKPM1
STA
STAB
STABI
STABX
STAX
STB

F42Q2-1 2./75

OPERATI ON SUMMARY

Add fixed point to A-Register direct
Add fixed point to AS Register direct
Add fixed point to A-Register indexed
Add floating point to AB Register direct
Add floating point to AB Register Indirect
Add fixed point to memory direct
Logical AND to A-Register direct
Logical AND to memory based
Compare fixed point and skip if (A) < (memory)
Divide fixed point AB Register direct
Decrement memory fixed point and skip if (memory)=O
Increment fixed point and skip if result> 0
Load A-Register direct
Load AB Register direct
Load AS Register indirect
Load AB Register Indexed
Load A-Register Immediate
Load A-Register indexed
Multiply AB Register floating point direct
Multiply AB Register floating point Indirect
Multiply A-Register fixed point direct
Multiply AB Register fixed point direct
Multiply A-Register fixed point indexed
Logical OR A-Register direct
Logical OR to memory based
Subtract fixed point from A-Register direct
Subtract fixed point from AB Register direct
Subtract fixed point from A-Register indexed
Subtract floating point from AB Register direct
Subtract floating point from AB Register indirect
Skip on (memory) = 0 based
Skip on (memory) = 1 based
Store A-Register direct
Store AB Register direct
Store AB Register Indirect
Store AB Register Indexed
Store A-Register indexed
Store B-Reglster direct

4-3

Y240A301M0810 REV--=-

4.1.2 Operand Field

THE SINGER COMPANY
KEARFOTT DIVISION

The operand field of most arithmetic instructions may be an
expression, represented by u, or either a decimal integer or
set-symbol, represented by z. In some instructions, an operand
field is not required. The syntax of an expr,ession, decimal
integer, and set-symbol is described in section 2.2.2.

The interpretation of the operand field is governed by the mnemonic
appearing in the operation field of the arithmetic Instruction and
is presented in Table 4.1.

4-4

. "4202-1 2/75

"II ...
'" o
'" I

,J:"
I

V1

~4NEMON I C TYPE

Direct

Immediate

Indexed
Type 1

Indexed
Type 2

Indirect

Based

Global
Direct

Table 4.1 Arithmetic Instructions

INTERPRETATION

u specifies the effective
address of the operand;
u -) N

u specifies the immediate
operand; u -) N

u forms an explicit displacement;
u -) N

u forms an explicit displacement;
u -) K

z forms an explicit displacement;
z -) K

z forms an explicit displacement;
z -) K

u specifies the effective
address of the operand;
u -) N

NOTES

This form valid for: ADA,ADAB,
AND,ADMEM,DIV,DSZ,CMS,STAB,
MUL,LDA,LDAB,OR,STA,STB,SBA,
SBAB.

This form val id for: LDAM.

This form valid for: LDAX,STAX,
ADAX,SBAX,MULX.

This form valid for: LDABX,STABX.

This form valid for: ADFI,MLFI,
LDABI,STABI,SBFI.

This form valid for: ORM,ANDM,
SKPMZ,SKPM1,INCMS.

This form valid for: ADF,SBF,
MLF,MULAB.

....
~x
1"11"1

~~
."z
Oeil
:::!~
On <0
-3:
~"'O
0>
zz

-<

-<
N
,J:"
o
»
Vol
o
::;:
o
00
o

a
~ ,.

Y240A301M0810 REV --
THE SINGER COMPANY

KEARFOn DIVISION

Some arithmetic instructions are double word machine code
instructions. For INCMS, the second word is generated via the
specification of a PTR instruction immediately following its
occurence in the code stream. (see Section 5.2.7 for PTR syntax).
The instructions ANDM, ORM, SKPMZ, and SKPMl require a data
generation Pseudo-Op to define th~ second word of the machine
instruction (see Section 5.2 for data generation Pseudo-Op syntax).
The instructions ADF, SBF, MLF, and MULAB are also double word
instructions, however, the Assembler automatically generates the
second word of the machine instruction using the specified operand.
Figure 4.1 presents valid forms for representatives in each of the
double word arithmetic instruction class~s.

Figure 4.1 Typical Arithmetic instructions

LABEL OPERATION OPERAND
----- --------- -------
ONE LOA ALPHA+ 1
TWO STAX 4
THREE MULX SETSYM
FOUR ADF I 10
FI'VE ADF OPRADR+I0
SEVEN ANDM SETsym

DEC 16
EIGHT INCMS SETSYM

PTR OPRADR+ 10

4-6

F4202-1 2/15

4.2 JUMP INSTRUCTIONS

THE SINGER COMPANY
KEARFOTT DIVISION Y240A301M0810 REV --=-

All jump instructions, except for Jump Indirect (JI), specify a
destination address in the operand field of a KAL31 statement. For
some of the jumps (JEQ, JGE, JGT, JLE, JLT, JNE, and JU), the,
expression field Cu) generates an rmplicit (or rel~tive) address.
In the discussion of relative jumps, the symbol 'loci will be used
to refer to the location of the Instruction following the jump. In
the Jump to Subroutine (JS) Instruction, one of the sub-field
expressions (u), generates an explicit (or global) address, white
in the Jump Indirect (JI) instruction, the expression' field (u)
specifies the address of a poin1;er word through which the branch is
effected.

4.2.1 Operation Field

The val id mnemonic code entries for the operation field of a jump
instruction are listed below.

MNEMONIC

JEQ
JGE
JGT
J I
JLE
JLT
JNE
JS
JU

4.2.2 Operand Field

OPERATION SUMMARY
----~------------

Jump relative if CA) register .EQ. 0
Jump relative if CA) register .GE. 0
Jump relative if CA) register • GT. 0
Jump indirect
Jump relative If CA) register • LE. 0
Jump relative if CA) register • LT. 0
Jump relative if (A) register .NE. 0
Jump global direct to subroutine
Unconditional jump relative

The operand field of most jump Instructions consists of a single
expression, represented by u. The Jump to Subroutine in.truction
operand field consists of two expressions, represented by u,u1.
The interpretation of the expressionCs) is governed by the mnemonic
appearing In the operatlon field of the jump Instruction and is
presented in Table 4.2.

4-7
F42Q2-1 2./75

Y240A301M0810 REV--=-
THE SINGER COMPANY

KEARFOTT DIVISION

Table 4.2 Jump Instructions

MNEMONIC TYPE INTERPRETATION

Jump relative u forms a signed relatlv~
address; +(-)Iu-locl -) N

Jump direct u specifies the explicit
destination address
ul specifies the effective
address where the return
address is to be stored;
ul -> N

Jump indirect u specifies the effective
address of the pointer word
through which the branch is
effected; u -> N

NOTES

This form valid for:
JEQ,JGE,JGT,JLE,JLT,
JNE,JU.

this form valid for:
JS

This form valid for:
JI

Figure 4.2 present~ valid forms for representatives In each of the
sub-clas~es of the Jump instructions.

Figure 4.2 Typical Jump Instructions

LABEL OPERATION OPERAND
----- --------- -------
ONE JU *+4
TWO JS SINE"R~JADR
THREE JI RETADR'~
RFOUR JLT LABEL

4-8

F4202-1 2/75

THE SINGER COMPANY
KEARFOTT DIVISION

4.3 INDEX REGISTER INSTRUCTIONS
----.----------------------

Y240A301M0810 REV~

The instructions (EXR, LOR, STR, ADX, DXS) in the nonmemory
reference group (see Section 4.5 for descriptions of these
instructions) operate on the active index register.

The KAL31 statements discussed in this section (LOX, LOXM, STX)
along with the previously noted Instructions constitute the index
register instructions.

4.3.1 OPERATION FIELD

The mnemonic code entries for the index register instructions
discussed in this section are listed below.

MNEMONIC OPERATION SUMMARY

LOX
LOXM
STX

Load Active Index Register from memory
Load Active Index Register immediate
Store Active Index Register into memory

4.3.2 Operand Field

The operand field of the index register instructions Is similar to
that of the arithmetic instructions. The operand field consists of
an expression, represented by u, or either a decimal integer or
set-symbol, represented by z. The Interpretation of the operand
field is presented in Table 4.3.

Table 4.3 Index Register Instructions

MNEMONIC TYPE INTERPRETATION

Direct u specifies the effective
address of the operand;
u -) N

Immediate z specifies the immediate
operand; z -) K

4-9

F4202-1 2/75

NOTES

This form valid for:
LDX,STX

This form valid for:
LDXM.

Y240A301M0810 -________ REV _ THE SINGER COMPANY
KEAR.FOn DIVISION

Figure 4.3 presents valid forms for representatives in each of the
sub-classes of the index register instructions.

F4202-1 2./15

Figure 4.3 Typical 1ndex Register Instructions

LABEL

ONE
TWO

OPERATION

LOX
LDXM

OPERAND

TABLE+4
SETSYM

4-10

4.4 SHIFT INSTRUCTIONS

4.4.1 Operation Field

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A301M0810 ________ REV_

This section 1 ists all valid mnemonic entries for the operation
field of the shift instructions.

MNEMONIC

SOX
SlC
Sll
SllD
SRA
SRAD
SRC

4.4.2 Operand Field

OPERATION SUMMARY

Variable shift (indexed>
Shift A-Register left circular
Shift A-Register left logical
Shift AB Register left logical
Shift A-Register right arithmetic
Shift AB Register right arithmetic
Shift A-Register right circular

The oper~nd field of a shift Instruction must be either a decimal
Integer or set-symbol, represented by z, with one exception; SOX
does not require an operand.

Figure 4.4 presents valid forms for the sWift instructions.

Figure 4.4 Typical Shift Instructions

LABEL OPERATION OPERAND
----- --------- -------
ONE SllD 10
TWO SRC SETSYM
THREE SOX

4-11

F4202-f 2/75

X24QA3QIMQ81 Q . REV--=-
THE SINGER COMPANY

KEARFOTT DIVISION

4.5 NON-MEMORY REFERENCE INSTRUCTIONS

4.5.1 Operation Field

This section 1 ists all valid mnemonic entries for the operation
field of the non-memory reference instructions.

MNEMONIC

ABSF
ADC
ADX
ATB
ATB1
ATB2
ATP
ATX
ATY
BTA
B1TA
B2TA
CFX
CLA
CLB
CMA
CPA
CPAB
CXF
DPI
D~S
EAB
EPI
EXR
FNEG
HLT
LOR
NOP
PTA
SBC
STR
TRAP1
TRAP2
TRAP3
TRAP4
XTA
YTA

F4202-1 2/16

OPERATION SUMMARY

Floating absolute AB Register
Add fixed point carry to A-Register
Add A to Active Index Register
Move A to B-Register
Move A to B1 Register
Move A to B2 Register
Move A to PC Register
f/1ove A to Active Index Register
Move A to Inactive Index Register
Move B to A-Register
Move B1 to A-Register
Move B2 to A-Register
Convert floating point to fIxed poInt
Clear A-Register

. Clear B-Reglster
One's complement A-Register
Two's complement A-Register
Two's complement AB Register
Convert fixed point to floating point
Disable program interrupts
Decrement active Index Register
Exchange A-Register and B-Register
Enable program interrupts
Exchange Active and Inactive Index Registers
Floating negate AB Register
Halt
Move A to B, PC, B1, 82, IXR, or XR Registers
No operation (equivalent to SRC 0) .
Move PC to A-Register
Subtract fixed point carry from A-Register
Move B, PC, B1, B2, IXR, or XR to A-Register
Trapon~
Trap two
Trap three
Trap four

. Move active Index Register to A-Register
Move Inactive Index Re&ister to A-Register

4-12

4.5.2 Operand Field

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A301M0810 -________ REV_

Most nonmemory reference Instructions do not employ an operand
field since they have no matching instruction subfields beyond the
secondary (and tertiary) operation code. The exceptions (LOR, STR,
TRAP2) require an operand field to define an instruction subfield.
The operand field designator is either a decimal integer or
set-symbol, represented by z.

Figure 4.5 presents val id forms for representatives in each
sub-class of the nonmemory reference Instructions.

F4202-1 2/15

Figure 4.5 Typical Nonmemory Reference Instructions

LABEL

ONE
TWO
THREE

OPERATION

ABSF
LOR
TRAP2

OPERAND

SETSYM
5

4-13

Y240A301M0810 -________ REV_ THE SINGER COMPANY
KEAR.FOn DIVISION

4.6 INPUT-OUTPUT INSTRUCTIONS

4.6.1 Operation Field

This section 1 ists all the valid mnemonic entries for the operation
field of the input-output Instructions.

MNEMONIC

DIAX
DOAX

4.6.2 Operand Field

OPERATION SUMMARY

Input data to A-Register indexed
Ouptut data from A-Register Indexed

The operand field for the DIAX, DOAX Instructions must be an
expression, represented by u. The expression Cu) defines a
relative device code In the' instruction subfield.

The targ~t device code of an Input-output instruction Is computed
at execution time, using:

dc = u + CXR)

Figure 4.6 presents valid forms for the Input-output instructions.

F4202-1 a/75

Figure 4.6 Typical Input-Output Instructions

LABEL

ONE
TWO

OPERATION

DIAX
DOAX

OPERAND

VIRTUAL+7
SETSYM

4-14

THE SINGER COMPANY
KEARFOn DIVISION

Y240A301M0810 -________ REV_

4.7 BLOCK TRANSFER INSTRUCTION

The block transfer (MOV) instruction moves a block of data or
instructions from one region of memory to another. The source and
destination addresses and the number of· words to be transferred
must be preloaded into the B, A, and XR registers, respectively.

4.7.1 Operation Field

MNEMONIC OPERATION SUMMARY

MOV Block transfer

4.7.2 Operand Field

Specification of an operand in the operand field is not required.

Figure 4~7 present~ the valid form of a block transfer instruction.

Figure 4.7 Typical Block Transfer Instruction

LABEL OPERATION OPERAND

ONE MOV

4-15

F420Z-1 ans

Y240A301M0810 R~V __
THE SINGER COMPANY

KEARFOTT DIVISION

THIS PAGE INTENTIONALLY LEFT BLANK

4-16

THE SINGER COMPANY
KEARFOn DIVISION

5. ASSEMBLER OPERATIONS

Y24(fA301M0810 __ ~ _____ REV_

In the Assembler some operations generate executable code, some
alloca~e storage, and some initialize location counters. All
Assembler directives which do not cause the Assembler to generate
instructions are termed Pseudo-Operations. Table 5-1 lists and
summarizes the Assembler-Operations. In the summary and subsequent
subsections, the following notation is employed.

u represents an absolute or relocatable expression
as defined in Section 2 •. 2.2

v represents a single virtual (or external) symbol

OR operator - designates a choice of one of the two items
separated by the vertical bar

n represents a decimal integer ranging from 0 to 24
if designating a location counter

[] designates enclosed items as oPtional

d represents a FORTRAN decimal integer. A FORTRAN decimal
integer is a' string of digrts, 0 through 9 which may
optionally be preceded by a plus(+) 0 rminus(-) sign. A

. decimal integer must not be terminated by a decimal point.

f represents a floating real number In FORTRAN "REAL"
format or a decimal integer

h represents up to four hexadecimal digits

aa ••• a represents a string of alphanumeric characters

op represents an operand address designation in
the same format as the operand field of a
basic arithmetic instruction

s represents a KAL31 symbol or label

st represents a set symbol or temporary symbol

As in the description of the machine language instruction formats,
lower case characters are used to form sympols which represent a
family of possible source c6de items. In general, upper case
characters are tised to indicate source code in the literal sense.

5-1

Y240A301M0810 ~--=-

TABLE 5-1.

LABEL OPERATION OPERAND
FIELD FIELD FIELD

[sJ BES dlst

[sJ

[sJ

[sJ

BLKDTA

BSS

DEC

DECO

EJECT

END

dlst

d

dlf

[s]

THE SINGER COMPANY
KEARFOTT DIVISION

SUMMARY OF ASSEMBLER PSEUDO-OPS

SUMMARY

Reserve next d locations for
scra.tch data (see note 3)

Start a Block Data Deck

Reserve next d locations for
scratch data (see note 2)

Convert d to binary and insert
at current location

Convert dlf to floating; insert
double word binary result
in reverse order into current
and following locations

Print next line of assembly
at top of page

End of deck. Terminate assembly,
starting address at s

Terminate a Block Data Deck ENDBLK

ENTRY sl,s2 ••• Each listed symbol (51 ••) is
defined as an ENTRY point

s

[sJ

[s]

[s]

[s]

F4202-1 2/75

EQU

HEX

LI ST

ORG

PTR

SCLB

ulv

h

dlst

op

f,d

Assign the value of u (om v)
to the symbol s

Convert h to binary and insert
at current location

Resume listing after UNLIST

Set current Location Counter to d

Insert Pointer to operand address

Convert f to binary, shift d
places, insert in current
location

5-2

THE SINGER COMPANY
KEARFOn DIVISION

Y~01301M0810
.u: REV ~

TABLE 5-1. SUMMARY OF ASSEMBLER PSEUDO-OPS, CON'T.

LABEL OPERATION OPERAND
FIELD FIELD FIELD

[5] SCLBD f,d

[5] SCLW fl,f2

[5] SCLWD f1,f2

st SETD uld

st SETX h

SPACE d

TTL aa. 0-. a

UNLI ST

SUMMARY

Convert f to binary, shift d
places; insert double womd in
reverse order into current and
following locations

Divide f1 by the LSB, f2; insert
binary result in current location

Divide f1 by the LSB,f2; insert
double word binary result
In reverse order into current
and following locations

Assign the value of uld as the
temporary value of st

Assign h as the temporary
value of st

Generate d blank lines in
assembly listing

Place a title aa ••• a on each page
of assembly

Suspend listing source statements
during assembly

USE nlPREVIOUS Subsequent instructions or data
under nth (or previous)
locatlon counter

Notes:

1. Symbol s in label field t s set equal to current value of
location counter unless otherwise noted.

2". Symbol s in label field is set equal to first location in
group.

3. Symbol s in label field is set equal to the last location in
group plus 1".

5-3

F4202-1 2/75

Y240A301M0810 -________ REV_

5.1 LOCATION COUNTERS

THE SINGER COMPANY
KEARFOn DIVISION

This section describes the operation which can activate a location
counter during an assembly (USE) as well as the operation (ORG)
which can effect the value of an activ~ location counter. The
Assembler provides 25 location counters (numbered 0 to 24) which
can be activated by the user. All the code generated under a
single location counter will be allocated to a contiguous area of
memory. However, the source code under a single location counter
need not be consecutive in the source deck. The sequence of source
code is typically interrupted by the activation of other location
counters and then subsequently reactivated.

The principal purpose of location
different memory allocation types
Li nkage Ed i tor.

counters is
for separate

to segregate
action by the

Because of the read-only-memory feature of the SKC3120 Computer and
the resulting Assembler/Linkage Editor design, anyone location

"counter should control only constants or variables but not both.
The first instruction or data allocation following a USE operation
which designates a given location counter for the first time,
determ i nes whether" the words allocated wi 11 be pl aced in protected
(read-o~lY) memory or not. Protected memory should contain only
instructions and constant data. Unprotected memory can be writtten
into as well as read out of and, therefore, should only contain
variables. If the user violates this separation rule, he may find
out, at execution time, that his "protected" variables cannot be
stored into or his "unprotected" constants were inadvertently
destroyed during execution.

For more details on the location counter allocation process, see
Section 3.1.

5-4

F4202-1 2/75

THE SINGER COMPANY
KEAR.FOTT DIVISION V240A301M0810

5.1.1 ORG - Specify an Absolute Origin for the Program Segment

REV --=-

The ORG Pseudo-Op redefines the value of the current location
counter to be the absolute address specified. The format of this
instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (OPtional) ORG dlst

where:

d represents a FORTRAN decimal integer

st represents a set symbol or temporary symbol

The current location counter will be reset to the absolute .address
specified and the next instruction to be assembled under this
location, counter' wi 11 be assigned to that absolute 'address.
Location counters are always relocatable unless modified via the
ORG Pseudo-Op. If there . is a symbol in the label field it is
defined as thIs new ori'gin. All symbols defined while ORG is in
effect will be assigned absolute locations. Other location
counters remain unaffected. The ORG should be the first operation
coded following the first USE statement for an absolute location
counter.

5-5

F4202-1 a/75

Y240A301M0810 -_________ REV_ THE SINGER COMPANY
KEARFOTT DIVISION

5.1.2 USE - Start Use of Location Counter

The USE Pseudo-Op specifies the location counter under which the
following sequence of instructions or data Is to be assembled. The
format of the instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(blank) USE nlPREVIOUS

where:

n represents a decimal integer ranging from 0 to 24

When the operand field contains a decimal integer, it designates
which of the 25 location counters (numbered 0-24) should be
activated. The location. counter in control up to the time the
USE is encountered (location counter 0 is used if none is
previously specified) is suspended and temporarily preserved as the
"previous" counter. Location counter n is activated to control
memory allocation for the following instructions or data, until the
next USE operation is encountered. If the USE PREVIOUS option is
selected, the previously suspended location counter Is reactivated.
Note that only one suspended location counter is preserved at one
time. Consequently, nesting of these susPended location counters
is not permitted. The following sequehce is provided as an
example:

F4202-1 2/76

This series of
instructions

USE 1

USE 2

.
USE PREV10US

5-6

is equivalent to
this serfes of

instructions

USE 1

•
USE 2

•
USE 1

THE SINGER COMPANY
KEARFOTT DIVISION

5.2 DATA GENERATION OPERATIONS

Y240A301M0810 -________ REV_

Memory allocation Pseudo-Ops are used to reserve data storage for
constant data (usually In protected memory) and variable data
words. The current location counter controlling the respective
storage areas is incremented by the number of words generated by
the Pseudo-Ops. BSS and BES allocate blocks of storage for
variable data. Constant data is allocated by DEC, DECO, HEX, SCLB,
SCLBD, SCLW, SCLWD, and PTR.

5.2.1 DEC - Decimal Data Definition

The DEC Pseudo-Op is used to enter a fixed point binary data word
into a program. The data word is expressed as a decimal integer in
the source coding. If there is a symbol in the label field, it is
assigned to the address of the data word generated.

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) DEC d

where:

d represents a FORTRAN decimal integer

The maximum absolute value of a decimal tnteger permitted by the
DEC pseudo operation is (2**(n-1»-1, w~e~e n is the width in bits
of a data word. Integers are internally represented by a right
justified binary equivalent. Negative numbers are represented in
their two's complement form.

Examples of the DEC Pseudo-Op are:
RESULTING

LABEL OPERATION OPERAND (HEX) MEMORY WORD

INTGR1 DEC 52 0034
INTGR2 DEC -52 FFCC
INTGR3 DEC 19 0013

5-7

_Y_2_4_0 A_3_0_1_M_0_8_1_0 _ REV -=- THE SINGER COMPANY
KEAR,FOTT DIVISION

5.2.2 HEX - Hexidecimal Data Definition

THe Hex Pseudo-Op is used to enter binary data expressed in
hexadecimal digits. The digits are: 0-9 and A-F, where 0-9 have
the same meaning as .decimal digits 0-9, and A~F have the decimal
values 10-15 respectively. This directive is used to generate 1
word of constant value. If there Is a symbol in the label field,
it is assigned to the address of the data word generated. The
format of this Pseudo-Op is:

LABEL FIELD OPERATION FIELD

Symbol (Optional) HEX

where:

h represents up to four hexadecimal digits

Example. of the HEX Pseudo-Op:

LABEL·

ALPHA
BETA
GAMMA

OPERATION

HEX
HEX
HEX

OPERAND

ABC
o
BA359E

OPERAND FIELD

h

RESULTI NG
(HEX) MEMORY WORD

OABC
0000
359E

NOTE: The hexadecimal characters in the operand field are right
justified with truncation on the left if more than one memory word
is specified (see the third example above).

5-8

F4202-1 2/75

THE SINGER COMPANY
KEARFOn DIVISION

Y240A301M0810 -________ REV_

5.2.3 SCLB - Binary Scale Operation

The SCLB Pseudo-Op is for the user's convenience when generating
fixed point constants. The user specifies a decimal numbe~ and the
scaling factor, and the Assembler performs the appropriate shift to
create the scaled number and assigns storage for the data. If
there is a symbol in the label field, it is assigned to the
location of the data word generated. The format is as follows:

I
LABEL FIELD I OPERATION FIELD OPERAND" FIELD

I
I

Symbol (OPtional) I SCLB f,d
I

where:

f represents a FORTRAN real number which designates the number
to be generated

d represents a FORTRAN integer constant (in the range -64 to
+64) Which desi~nates the scaling factor

The scal ing factor may be in"terpreted either of two ways. It is
either the number of" non-sign positions to the left (or to the
right, if scale factor is negative) of the specified binary point,
or it is the number of bits the generated word is right shifted (or
left shifted, if negative) out of normal position. See examples
below.

The number generated by
forma t • 1ft h e fir s t
generated will be the
positive number with the

the Assembler will be in fixed-point
subfield is a negative number, the number
two's complement of the corresponding

same scaling factor. That Is,

SCLB -N,B = -(SCLB N,B)

For futher clarification of the use of the SCLB (Binary Scale)
operation, consider the following example:

5-9

F4202-1 2/75

Y240A301M0810 -________ REV_

Example 1

ALPHA SCLB 1.5,4

THE SINGER COMPANY
KEARFOn DIVISION

bit value 0 0 0 0 1 1 0 0 0 0 0 0 0·0 0 0
bit pos. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BIT POSITION 4 HAS THE VALUE 1 x 2**0 = 1.0
BIT POSITION 5 HAS THE VALUE 1 x 2**-1= .5

1.5

A scal ing factor of 4 causes the number to be
places to the right of its normal ized position.
value 2**0 and bit position 5 is 2**(-1).
between bit positions 4 and 5.

5-10

F4202-1 2/15

positioned 4 bit
Bit position 4 has

The binary point is

Y240A301M0810 -THE SINGER COMPANY
KEARFOn DIVISION ________ REV_

5.2.4 SCLW - Weighted Scale Operation

The SCLW Pseudo-Op is for the user's convenience when generating
fixed point constants. It is an alternate to SCLB. The user
specifies a decimal number and the value, or weight, of the least
significant bit (lSB). If there is a symbol in the label field, it
is assigned to the location of the data word generated. The format
is as follows:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) SClW f1,f2

where:
f1 represents a FORTRAN real number which designates the number
to be generated, and

f2 represents a FORTRAN real number which designates the
weighting factor. The weighting factor can be interpreted as
the value associated with the least significant bit. See
examples below.

The number generated by the Assembler will
format. If the signs of the two subfields of
the Assembler will generate a negative number
form. The following relationships hold true.

SClW
SCLW
SCLW

-N,-W
-N,W

N,-W

=
=
=

SClW N,W
-(SlCW N,W)
- (SCLW N, ~~)

be in fixed-point
the operand differ,
in two's complement

In all cases, the number generated is equal to the value of the
first subfield, adjusted according to the weighting factor. For
further clarification, consider the following examples:

5-11

Y240A301M0810 THE SINGER COMPANY
REV_ KEARFOn DIVISION

Example 1

ALPHA SCLW 1.5,.5

bit value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
bit pOSe 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BIT POSITION 14 HAS THE VALUE 0.5 x 2**1 = 1. 0
BIT POSITION 15 HAS THE VALUE 0.5 x 2**0 = • 5

1.5

Example 2

BETA SCU~ 1.5,.0625

bit value 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
bit pOSe 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BIT POSITION 11 HAS THE VALUE .0625 x 2**4 = 1. 0
BIT POSITION 12 HAS THE VALUE .0625 x 2**3 = . 5

1.5

Example 3

GAMMA SCLW 24.0,1.2

bit value 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
bit pOSe 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BIT POSITION 11 HAS THE VALUE 1. 2 x 2**4 = 19.2
BIT POSITION 13 HAS THE VALUE 1. 2 x 2**2 = 4.8

24.0

5-12

F4202-1 2/75

THE SINGER COMPANY
KEARFOTT DIVISION

5.2.5 SCLBD - Double Length Binary Scale

Y240A301M0810 REV __ _

The SCLBD Pseudo-Op is similar to the SCLB Pseudo-Ope The format,
inputs and operation are the same as the SCLB except for the size
of the data word and therefore, the range of the operand value that
is input.

The SCLBD Pseudo-Op will generate a double length data word. The
double length word is stored in memory in reversed order, i.e., the
least significant word In the first memory location, and the most
significant word stored in the next memory location.

5.2.6 SCLWD - Double Length Weighted Scale

The SCLWD Pseudo-Op is similar to the SCLW Pseudo-OPe The format,
inputs and operation are the same as the SCLW except for the size
of the data word and therefore, the range of the operand value that
is input.

The SCLWD Pseudo-Op will generate a double length data word. The
double length word is stored in memory in reversed order, i.e., the
least significant word in the first memory location, and the most
significant word stored in the next memory location.

5-13
F4202~1 2/15

Y240A301M0810 -________ REV_ THE SINGER COMPANY
KEARFOTT DIVISION

5.2.7 PTR - Pointer to Address

The word generated by the PTR operation is not executed but is used
as a pointer to another location. It is commonly accessed via
Indirect addressing which causes it to be interpreted as the
operand address field of the original instruction. The PTR address
field has the same syntax as the address field of a basic
arithmetic instruction.

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (OPtional) PTR ulv

where:

u represents an absolute or relocatable ,xpression

v represents a single. virtual (or external) symbol

Note: The evaluated operand address should not exceed the
addressing capacity of the machine.

5-14

F4202-f a/75

THE SINGER COMPANY
KEARFon DIVISION

5.2.8 DECD - Decimal Data Definition

Y240A301M0810 ________ REV_

The DECD Pseudo-Op is used to enter a double length binary data
word into a program. The data word Is expressed in decimal in the
source coding. If an Integer or real number is specified, a
floating point constant is generated. The resultant double word
constant is stored In reverse order in memory, I.e., the least
significant part of the mantissa is assigned to location n, and the
most significant part to location n+1. If there Is a symbol in the
label field, it is assigned to the address of the least significant
portion (exponent part) of the double word constant generated.
(see examples below)

lABEL FIELD OPERATI ON FIELD OPERAND FIELD
I
I ____________________ ____________________ ------------------_1

Symbol (OPtional) DECD dlf
I
I ____________________ _____________________ ------------------_1

where:

d represents a FORTRAN decimal integer

f represents a FORTRAN real number

There are two components to f, a principal part and an exponent
part. The principal part Is a signed or unsigned decimal number of
up to 18 decimal digits. It normally contains a decimal point
which may appear at the beginning, at the end, or within the
decimal number. If the exponent part of a real number is present,
the decimal point may be omitted, in which case it is assumed to be
located at the right-hand end of the decimal number.

The exponent part consists of the letter E followed by a signed or
unsigned decimal integer. The exponent part may be omitted if the
principal part contains a decimal point. If used, it must
immediately follow the principal part. The exponent part, if
present, specifies a power of ten by which the principal part will
~e multipl led during conversion. The maximum range of a real
number is I imited to approximately 2**127 by the size of the
exponent field in an SKC3120 floating point binary data word.

5-15

F4202-1 2/75

Y240A301M0810 -________ REV_
THE SINGER COMPANY

KEARFOTT DIVISION

Real numbers are internally represented in the form of a signed
binary fraction(the mantissa) and a biased exponent(the
characteristic). The exponent is the power to which the base (2)
must be raised so that when multiplied by the fraction, the result
is a binary representation of the real value being expressed. A
bias of 128 is added to the exponent to form the characteristic
which indicates either a positive or negative exponent; the
greatest value of the exponent (+127) will be expressed as 255 and
the smallest value of the exponent (-128) will be expressed as O.
Negative numbers' have their fractional parts represented in Two's
complement form. Representation of the floating point format is
given in Figure 5-1.

Figure 5-1. FLOATING POINT FORMATS

1--- MANTISSA (FRACTIONAL PART) ------------------1

I S I
IG I 15 MOST SIGNIFICANT
IN I BITS OF THE MANTISSA

8 LEAST SIGNIFICANT
BITS OF THE MANTISSA

EXPONENT
(8 bits)

I--I------------------~----- _______________________________ _

o 1 15 0 7 8 15

16 BIT'DATA WORD

5-16

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A301M0810 -________ REV_

The exponent bias can be represented as hexadecimal 80 (binary
10000000) the most significant bit (MSB) is the high order bit of
the exponent. Note the following examples:

DESIRED POWER OF 2

2**(+127)

2**(3)

2**(2)

2**(1)

2**(0)

2**(-1)

2**(-2)

2**(-3)

2**(-128)

CHARACTERISTIC IN BINARY

11111111

10000011

10000010

10000001

10000000

01111111

01111110

01111101

00000000

For a complete illustration, four examples are given below
including all combinations of signs. The decimal is given on the
left and the hexadecimal (32 bit) equivalent is given on the right.

EXAMPLE 1 0.75 x 2**(3)

EXAMPLE 2 -0.75 x 2**(3)

60000083

A0000083

NOTE: . The mantissa is in two's complement form because the number
is negative.

EXAMPLE 3 0.75 x 2**(-3) 60000010

NOTE: The mantissa is not in two's complement form since the
number is positive. The characteristic is less than the bias value
of 80 (hex), indicating a negative exponent.

EXAMPLE 4 -0.75 x 2**(-3) A000007D

NOTE: The mantissa is in two's complement form and the
characteristic "is less than the bias value of 80 (hex), indicating
a negative number and a negative exponent.

5-17

F4202-1 2/75

Y240A301M0810 -________ REV_
THE SINGER COMPANY

KEARFOn DIVISION

5.3 STORAGE ALLOCATION OPERATIONS

Storage Allocation Operations are used to reserve data storage
areas for constant data and variable data words. The current
location counter controlling the respective storage area is
incremented by the number of words generated by the Pseudo-Ops.

5.3.1 BSS - Block Started by Symbol
----------------~------------

The BSS Pesudo-Op is used to reserve an area of memory for use by
the program as data storage or. work area. The start location of
the block is determined by the value of the current location
counter at the time the BSS Pseudo-Op is encountered.

The format of this Pseudo-Op is:

1
LABEL FIELD 1 OPERATION FIELD OPERAND FIELD

--------------------1-------------------- __________________ _
. 1

Symbol (OPtional) 1 BSS dlst ------------------_1------------------- _________________ _
where:

d represents a FORTRAN decimal integer

st represents a set symbol or temporary symbol

If there is a symbol in the label field, it is assigned to the
first location of storage reserved by the BSS Pseudo-Ope BSS
reserves a block of consecutive storage locations, the length of
which is determined by the value in the operand field. For
example:

ALPHA BSS 20

A block of 20 storage locations Is reserved and the symbol ALPHA is
assigned to the first of these. These storage locations are not
i~itially cleared (it may not be assumed that they contain zeros).

5-18

F4202-1 2/75

THE SINGER COMPANY
KEARFOTT DIVISION

5.3.2 BES - Block Ended by Symbol

Y240A301M0810 ________ REV_

The BES Pseudo-Op is used to reserve an area of memory for use by
the program as variable data storage or work area. The start
location of the block is determined by the value of the current
lcoation counter at the time the BES Pseudo-Op is assembled. The
format of this Pseudo-Op Is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

SymboleOPtional) BES dlst

where:

d represents a FORTRAN decimal Integer

st represents a· set symbol or temporary symbol

If there is a symbol in the label field, It is assigned fo the next
location following· the last location of the block. The BES
Pseudo-O~ reserves a block of consecutive storage locations the
length of which is determined by the value In the operand field.
For e x amp 1 e i n:

ALPHA BES 20

a block of 20 storage locations is reserved and the symbol ALPHA is
ass igned to the location after the last of the block, i.e. the
21st location from the beginning. These storage locations are not
initially cleared elt may not be assumed that they contain zeros).

5.3.3 BLKDTA - Begin Block Data

The BLKDTA Pseudo-Op Is used an as initiator for the block of data
that will follow. All symbols defined within the block data will
be globally defined. Only one BLKDTA Pseudo-Op may appear in a
program and its format is as follows:

1
1 LABEL FrELD OPERATION FIELD OPERAND FIELD 1------------------- ___________________________________ __
r
1 BLKDTA
1------------------- _______________ ----------------------

5-19

F4202-1 1.116

Y240A301M0810 -________ REV_ THE SINGER COMPANY
KE.ARFOn DIVISION

5.4 SYMBOL DEFINITION OPERATIONS

Most operations may be used to define a symbol simply by placing
the symbol to be defined in the label field of an operation. The
symbol is defined to be the value of the location counter in
control at the time the symbol is encountered during assembly.
However, the symbol definition Pseudo-Ops EQU, SETD, and SETX exist
solely for the purpose of extending this symbol definition
capabil ity.

5.4.1 EQU - Equate Symbol to Expression

The EQU Pseudo-Op Is used to assign a value to a symbol which is
equal to the value of the expression in the operand fi~ld. The
format of the EQU Instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol EQU ulv

where:

u represents an absolute or relocatable expression

v represents a single virtual (or external) symbol

Note that unlike most other operations, EQU defines a symbol in the
label field to have a value other than the current value of the
location counter. (The other two such exceptional operations are
SETD and SETX). EQU is also special in that the symbol(s) used in
the expression in the operand field must have been defined in
preceding source statements; that is, forward symbol reference is
forbidden.

Observe the following examples:

E'xample 1

ALPHA EQU BETA

The value of ALPHA is set equal to the value of'iBfTA. BETA may be
a virtual (external) symbol. ~1

5-20

F4202-1 2/76

Example 2

GAMMA
LOA BETA
EQU *
STA DELTA

THE SINGER COMPANY
KEAR.FOn DIVISION

Y240A301M0810 ________ REV_

If the Instruction LOA BETA is assigned to location 0172 then GAMMA
has the value 0173 and the Instruction STA DELTA is assigned to
location 0173.

NOTE: If an asterisk (*) Is used in the operand field, the value
of the symbol Is the present value of the current location counter.

Example 3

DELTA EQU ALPHA+BETA

DELTA is set equal to the value of the expression ALPHA+BETA a~
evaluated at assembly time. Either ALPHA or BETA or both may be
previously defined symbols or set-symbols; however, only one can be
relocatable. Neither ALPHA nor BETA may be externally defined
symbols.

5-21

F4292-1 2/75

Y2~OA301M0810 -________ REV _ THE SINGER COMPANY
KEARFOTT DIVISION

5.~.2 SETD - Set Temporary Symbol to Decimal Number
-----------------------------------~---------

The SETD Pseudo-Op is used to define or redefine a temporary symbol
for use in instructions as an element In the operand field. The
format of the SETD Pseudo-Op is:

1
1 LABEL FIELD OPERATION FIELD OPERAND FIELD 1--------------------- ______________________________________ _
1
I Symbol SETD uld 1--------------------- ______________________________________ _

where:

u represents an absolute or relocatable expression

d represents a FORTRAN decimal integer

The use of the SETD Pseudo-Op assigns the numeric value of the
operand field to the ~ymbol in the label field regardless of any
prior "temporary" value of the symbol. The new value becomes the
value mainta,ined 'by the symbol until it is redefined (by another
SETD or SETX). In this manner, a set symbol or temporary symbol
may assume several values during assembly of the program. If a
symbol is thus defined to be a set symbol, it cannot be used
elsewhere in the program as a conventional (or permanent) symbol
referring to an absolute or relocatable memory address.

The value of the symbol is the current value of the expression, u.
All, symbols employed in the expression must be previously defined
set symbols. Neither externally defined symbols (virtual symbols)
nor conventional symbols may be used in the expression.

5-22

F42Q2-1 2/76

THE SINGER COMPANY
KEARFOn DIVISION

5.4.3 SETX - Set Temporary Symbol to Hex Value

Y240A301M0810
REV -=-

The SETX Pseudo-Op Is used to define a temporary symbol f~r use In
instructions as an element In the operand field. The format of the
SETX Instruction is:

I
LABEL FIELD OPERATION FIELD I OPERANDFIELP

I
I

Symbol SETX I h .
I

where:

h represents up to four hexadecimal digits

The SETX Pseudo-Op assigns the binary integer specified by.h as the
value of the symbol In the label field regardless of. any prior
"temporary" value of the symbol. The new value becomes the value
mainta.ined by the symbol.until it is redefined (by another SETD or
SETX). In this manner, a set symbol or temporary symbol may assume
several values durfng assembly of the program. If a symbol is thus
defIned to be a set symbol, it cannot be used elsewhere in the
pr.ogram as a conventional (or permanent) -symbol referring to an
absolute or relocatable memory address.

Unlike the SETD Pseudo-Op, the SETX Pseudo-Op may not have
expressions in Its operand field.

5-23

Y240A301M0810 ___ ~ ____ REV_

5.5 SUBROUTINE OPERATIONS

THE SINGER COMPANY
KEAR.Fon DIVISION

Subroutine directives are ,used to provide communication between a
call ing program and its subroutines.

5.5.1 ENTRY - Entry Point Designation

The ENTRY Pseudo~Op identifies a symbol as having the ability to be
referenced by a routine other than the one in which it has been
defined. The format of the ENTRY Pseudo-Op is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(blank) ENTRY s1,s2 •••

where:

s1,s2 ••• are the symbols separated by commas

These symbols can be any ordinary symbol defined in the program
deck by having appeared in the label field of an instruction,
Pseudo-Op, or macro. Data symbols as well as instruction labels
may appear in ENTRY Pseudo-OPs to indicate that they will be
ava.llable to other subroutines as external symbols or references.
However, it is more typically used to designate the starting
location for a subroutine. Set-symbols are not permitted.

5-24

F4202-1 2/78

THE SINGER COMPANY
KEARFon DIVISION

5.6 PROGRAM CONTROL PSEUDO-OPS

Y240A301M08l0
________ REV_

Program Control Pseudo-Ops are used to control the Assembler's
processing of the program.

5.6.1 END - Program Terminator

The END Pseudo-Op indicates to
terminate the assembly of a
instruction is:

the Assembler
program. The

LABEL FIELD OPERATION FIELD

that it should
format of this

I
OPERAND FfELD I

I
--------------~I

(blank) END Symbol (Optional)1
___________________ --1

When the Assembler reaches an END card, it terminates the assembly
and if there is a symbol in the operand field, it will b~ used by
the Linkage Editor'as the pointer to the starting location of the
program.' Only one program in anyone computer load may have a
symbol in the operand field of the END Pseudo-Op, and that is the
name of the main program of the load. All other subprograms are
~onsldered to contain only subroutines of the main program and must
have blanks in the operand field. Each program or subprogram must
have an END Pseudo-Op, which must appear as the last source
statement.

The comment field should not be used in an END statement.

5.6.2 ENDBLK - Block Data Terminator •

The ENDBLK Pseudo-Op is required as the terminator of the block
data definition. All symbols defined within the block data will be
globally defined. Only one ENDBLK Pseudo-Op may appea·r in a
program and its format is as follows:

LABEL FIELD OPERATION FIELD OPERAND FIE tD

(blank) ENDBLK (blank)

5-25

F4202-12/75

Y240A301M0810 REV
THE SINGER COMPANY

KEARFOTT DIVISION

5.7 LIST CONTROL PSEUDO-OPS

The List Control Pseudo-Ops allow the user to control the format of
the program 1 isting that is output by the Assembler. These
directives specify the contents of the 1 ist, the spacing of printed
lines, page ejection and the printing of page titles.

5.7.1 LIST - Resume Listing

The LIST Pseudo-Op is used to resume the listing of the assembly
output following an UNLIST Pseudo-Ope The format of the
instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(blank) LI ST (blank)

5.7.2 UNllST - Suspend Listing

The UNLIST Pseudo-Op is used to suspend the 1 isting of the assembly
output. The format of this instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(blank) UNLI ST (blank)

The UNLIST instruction does not appear in the listing, and source
statements that follow are not listed until a LIST instruction is
encountered in the assembly process. Instructions that follow the
UNLIST are assembled even if they are not 1 isted.

5-26
F4202-f 21715

THE SINGER COMPANY
KEARFon DIVISION

5.7.3 TTL - Define Page Title

Y240A301M0810 -________ REV_

The TTL Pseudo-Op Is used to place a subheading or title on each
page of the listing of the Assembler's output. The format of this
ins t r u c t i on is:

1
1 LABEL FIELD OPERATION FIELD OPERAND FIELD 1------------------- ___________________ __ ______________ __
1
1 (blank) TTL Character String
1_·------------------------------------- _________________ _

The string of characters. of the operand field may contain any
~BCDIC character, including embedded blanks. Each TTL Pseudo-Qp
causes page ejection and generates a subheading on each succeeding
page until another'TTL Instruction Is encountered. Termination of
the printing of a subh~ading is performed by a second TTL Pseudo-Op
with an operand field containing blanks or a new title.

The comment field cannot. be used.

~.7.4 EJECT - Start New Page

The EJECT Pseudo-Op is used to cause the next line In the
listing to be printed at the top of a new page.
Pseudo-Op Is not printed In the listing. The format
instruction Is:

1

assembly
The EJECT
of this

1 - LABEL FIELD OPERATION FIELD OPERAND FIELD 1------------------- ___________________________________ __
I
I (blank) EJECT (blank)

1------------------- _____ ~------------------------------

5-27

F4~02-1 a/715

Y240A301M0810 ________ REV_
THE SINGER COMPANY

KEARFOTT DIVISION

5.7.5 SPACE - Skip Blank Lines

The SPACE Pseudo-Op is used to generate any number of blank lines
in the assembly listing. limited by the end of a page. That Is,
regardless of the number of spaces requested, the maximum effect is
a page change. The format of this instruction is:

LABEL FIELD OPERATI ON FIELD OPERAND FIELD

(blank) SPACE n

The number n Indicates the number of blank lines that are to appear
in the assembly listing.

5-28

F4202-1 2/75

THE SINGER COMPANY
KEARFOn DIVISION

Y240A301M0810 -________ REV _

6. THE ASSEMBLER OUTPUT LISTING

Each page of the Assembler listing
the side-by-slde listing. The
version, the deck name, title, and
labels the varioui sections of the

will consist of a heading and
heading contains the Assembler
page number. The heading also
side-by-side listing as follows:

a. DIAGNOSTICS

b. LI NE

c. ADRES

d. DADRES

e. LC

f. PROGRAM

g. SOURCE

a sequence of zero to four one or two letter
mnemonics for error messages

11 ne number

absolute .or
hexadecimal

relocatable address in

absolute or relocatable address In decimal

location counter

1. LC • 0 to 24 current location counter

2. LC • -1 symbol defined Is absolute (EQU
only)

3. LC • -2 symbol defined Isa set-symbol

4. LC • ** symbol defined Is synonym for an
external reference

machine Instructions or data
I

symbolic Instructions

See the Appendices for a sample program listing and a list of
Assembler Error Diagnostics.

6-1

F420Z-1 2/75

Y240A30lMOSlO -________ REV_ THE SINGER COMPANY
KEARFOTT DIVISION

6.1 ERROR MESSAGES

After each SJde-By-Slde Object/Listing an e~panded error message
printout Is provided if any errors occurred at assembly time. The
error message printout consists of a heading, containing the
deckname, followed by an ordered error message listing which
contains the full error diagnostIc and the lIne on which the error
occurred. In addition, the Assembler provides an error message
summary of the form

**********THERE ARE xxxx ERRORCS) IN THIS ASSEMBLY**********

at the end of all assemblies. xxxx is the sum of the errors that
occurred in all the assemblies.

6.2 CROSS REFERENCE

Each page of the cross reference listing will consist of a heading
and a sorted list of all symbols in the assembly. The heading
contains the deckname and page number. The heading also labels the
various columns of the cross reference as follows:

a. R~LATIVE ADDRESS OR SET VALUE

ale HEX - value of symbol In hexadecimal.
a2. DEC - value of symbol in decimal.
If the symbol Is undefined *****UNDEFINED***** is printed.

b. LC - Location counter of the symbol

c. VARIABLE NAME - One to eight character symbol names

d. LINE NUMBERS OF OCCURRENCES

F4202-1 a/75

dl. DEFINED - the line number at which the symbol is
defined. If the symbol Is a Block Data
Symbol,BLKDTA appears in this entry.

d2. REFERENCES - the line numbers of all refer~nces to
the symbol.

, '6-2

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A30IM0810 -________ REV _

APPENDIX A

ASSEMBLER ERROR DIAGNOSTICS

A-I

Y240A301M0810 REV--=-
THE SINGER COMPANY

KEARFOTT DIVISION

The assembly errors which may be generated by a program are listed
below. For a more detailed explanation see SKC3120 Assembler/
Linkage Editor/Simulator Users Manual Y240A301M0811.

F4202-1 2/75

Error

A
AR
BD
o
DC
E
ES
L
LC
M
NE
OP
OR
R

RE
SH
T
UE

Description

Symbols have differing location counters
Address out of Range
More than one block data
Symbols in operand must be defined
Invalid device code
Illegal Expression in Operand
Entry Symbol is also a Set Symbol
Improper Label
Illegal location counter number
Multiply Defined Symbol
No end card
Illegal OP Code
Ope ran dIn Err 0 r
Attempt to mIx Data/InstructIons

. and Variables
Origin out of range
Shift count too large
Truncation Error
Undefined Entry Point

A-2

F42Q2-1 2115

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A301M0810 ________ REV _

APPENDIX B

ASSEMBLER CONTROLS AND OPTIONS

B-1

Y240A301M0810 -________ REV_
THE SINGER COMPANY

KEARFOTT DIVISION

$ASM

The $ASM control card must precede each source
assembled. This card causes the Assembler to process
deck immediately following the $ASM control card
stream. An END Pseudo-Op card must be added to the
source program. This Pseudo-Op causes the Assembler
the assembly process and return control to the control

deck to be
the source

in the input
end of the
to terminate
routine.

the format of the $ASM control card is:

column:
1 2 3
$ A S

where:

$ASM

nnnnnn

4
M

=

=

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
n n n n n n 0 P T I· 0 N S

Request for the Assembler function

Source deck
characters>'
character.

name (up to 6 alphabetic or numeric
Must begin in column 6 with a alphabetic

OPTIONS = One letter Assembler option codes. Option codes must
begin in column 16 and are written one code per column
with no embedded blanks •. Option codes are:

F4202-1 2/75

D - No Object Deck (Object Deck-Default)
L - Suppress Assembly 1 isting (Listing-default)
P - 16 Bit Data Option (19 Bit Data Option-Default)
R - Retrieve Saved Block Data Symbols (Use instream

Block Data Symbols or no Block Data Symbols­
Default)

S - Save Block Data Symbols (Do not save Block Data
Symbols or no Block Data Symbols-Default)

X - Suppress Assembly Cross Reference listing
(Cross Reference listing-Default)

B-2

",

F4202-f 2/75

THE SINGER COMPANY
KEARFOTT DIVISION

APPENDIX C

SAMPLE PROGRAM LI ST I NGS

C-l

Y240A301M0810 -________ REV_

Y240A301M0810 ________ REV_ TH.E SINGER COMPANY
KEARFOTT DIVISION

SI<r300 0 ASS E M B l E R
YERHn", 8.10 DECK N4MEuUT Iln*

DI4GNnSTlCS LINE ADRES DADRES lC PROGRAM
SASM UTIlIT , USE

2 O~G 1402
3 ENTRY AUN
4 005H 1402 -I ATAN EQU *
5 0057A 141)2 1 Oj91C STA ~TEM3
6 0057A 140J 1 0;.440 CLB
7 0057C 1404 1 0,,80Z SlLD i!
8 00510 11105 1 OAAOII AND foIJFFFF
9 01)57£ 140b 1 0.'~9lA Su RTEMI

10 0057F tI~07 1 0; 11A MUL RTEMI
11 00580 1408 1 O~918 SU RTEMC!
12 00581 1409 1 oiZIZ I'UL UCTII
13 00582 1410 I 0~Al0 ADAB UCT9
14 0058] 11111 1 Ot 118 toIUL RTEM2
15 1)05811 utZ 1 OS20E SBAe UCT7
16 00585 1"13 1 Ot 118 MUL RTEM2
17 00586 IlItli 1 OIljAOC AoAS UCT5
18 00587 1411) 1 Ot ItB MuL RTEMi!
1«1 00588 11116 1 OdOA SBAS UCT}
ZO 005A9 1417 1 Ot 118 MUL ATEM2
21 0058A 11118 1 0,,408 AoAB UCTI
22 00588 141 9 1 Ot 114 MUL ATEMI
Zl 0058e 1420 I 0;914 STA RTEM,

.24 0058D 142t 1 oallC LOA RTFM]
25 0058£ 1422 I 0,A07 AND H701)00
26 01)58r 1423 I 0:c91C SlA RlEMJ
27 00590 14211 I 0,A03 AND Hl0000
28 00591 11125 1 O~002 JEQ ADD
29 00592 1426 1 O""IA SBA RTEM,
30 00593 1427 1 0~801 JU ADDI
31 00594 111211 1 O"llA ADD ADA RTEpH
32 00595 14211 1 On11C Aool ADA RTEM]
33 00596 1430 I Or.807 JI UTLRET
311 F.NTRY pAUN
35 00597 1431 .1 PATAN F.Qu *
36 005«17 1411 1 O~118 SUB RTEP12
J7 005«18 1432 1 0;.A40 CLI!
38 00r;«14 1431 1 O;il tA 8TB RTEP11
39 005CJA 14111 1 0;801 JLT NEGN
40 O"5q~ 1435 1 0,.e07 JU POSN
III OOS9C 143& .1 NEGN f-QU '" 112 00S9C 11136 1 0~9CO CPA
113 00590 11137 1 07 80 1 JLT NEGNS
1111 OI'lS«1E t438 I 0111801 JU ~EGNOK
45 0059F 143«1 1 odOIl NEGN8 LDA fo!3FFFF
46 on5 Ae 1441'1 1 0';91C NEGNOI< STA RTEM2+1
47 005Al 1114t t 011201 LOA H7000n
48 005A2 14112 t O~9lA STA RTEM!
119 005 A3 1443 .1 POSN EAU '" 50 005A3 t114] I 011 lie LOA RTEM2

.

C-2

F4202-1 2/16

V E R S ION 8 • I 0

SOURCE

VF.R'U"", 8.10

DlAr;Nn~Tte9 LINE AOPES
51 OOSAIl
52 005A'5
53 OO~A&
511 00'5A6
55 005A7
5b 00'548
57 005A8
58 . 005A9
59 005AA
60 005A8
&1 005Ae
&2 005AD
&3 005AE
611 0054F
65 00580
6b OOSBo
67 005RI
68 00582
69 00583
70 00584
71 005B5
72 005B6
73 00587
74 00588
75 00589
7b 0058A
77 00588
78 005BC
H 005BC
80 00580
81 005BF.
82 005BF
83 005CO
8U 005el
85

THE SINGER COMPANY
KEARFon DIVISION

DECK NAME-.UTILIT.

OAORfS L.C PROGIUM
,11114 1 0;803 JL.T
1111.15 1 OASOA JU
11146 -I OEQN EQU
11111& 1 04202 lOA
11l1l? 1 0 .. 818 JU
11148 -I NEGD EQU
111 118 1 02 9C O CPA
11149 t 07801 JLT
1450 1 OA801 JU
1451 1 0112011 NEGD8 L.OA
,452 1 oj91B NEGOOI(SU
1453 1 04205 lOA
14511 I 0~91A SBA
145'5 1 O,9U STA
145b -I Pos~ eQU
11I5b 1 oulte LDA
1457 1 Oti911i S8A
Il158 1 07809 JI.T
1459 I 0,.7F2 JEQ
1460 1 OiJ9t8 LOA8
t461 1 O~880 EAB
11162 1 O:!l18 STAB
1463 1 OullA LOA
14b4 1 0;882 SU:
t465 1 oti206 ADA
146& 1 O~BC2 SRC
1467 1 O,;9lA BfA
14b8 -I OGTN fQU
lU&8 1 OuitC LOA
1469 1 O~A40 CI.8
1470 1 Oi91B DIV
1471 1 O;lB42 sruo
1472 1 I)pllA RESULT OR
1473 1 OC807 JI

END

C-3

Y240A301M0810 -________ REV_

SOURCE
NEGO
poso
•
MOFFFF
RESULT
•
NEGDB
NEGDOI<
H3FFF'
RTfM;!
H]OOOO
RTEMI
RTEMt

* RTEM2+1
RHH2
DGTN
CEQN
RTEM2

RTEM2
RTfMl
2
... 40000
2
RTEMI

* RTEM2+t

RTEM2
2
RTEMt
UTLRET

"1\
b

'" 0

'" !. -<
N

N ~

"- 0 ..., > en
XqEF 1 DECK NM"E-.UTIl IT. SKC 3000 CROSS RE~ERF.NCf DICTIONARY VI

RElATyvE AODRESS 0
~

(OR qFT VALUE) VARIABLE NAMF lINE NUMRERS OF 0 UPRENCFS ::;::
flEX eEe lC OEFINfD REFERENCES 0

00

005'l4 11126 AOO 31 28 ~
0

005'l5 I/.Izq AODI 32 ·30
0l)57A la02 ATAN II]
01)5A6 111116 oEnN 53 ('9 lID l '" OI)S'\C 1/.16A OGlN 78 68 <
0(21)2 '5111 HOf'FFF BlKOTA 54

I· 002(}] 515 H10000 alKOTA '27
002u4 516 H]FFFF BlKOT" 8 45 (,0
002!)5 511 H30000 BlKOTA 62
01)206 518 HlIOOOO 8lKOTA 75
00207 51 9 Hlnooo alKOTA 25 a7
005~e 11151 t NEGnB 60 58
OO~AC taS2 t NEGOOK 61 59 ~
005 48 laa8 t NEGO 56 51 ~x

005 QF til 39 1 NEGN8 45 a]
,.,,.,
>(1)

('"') 005 40 111110 t NEGNOK 46 all :0_

I OOS'lC 1/.136 1 NEGN 111 3q "T1Z
Oeil

~ OOS'H 11131 1 PATAN 35 311 :Ha 005"0 1456 1 POSO 65 52
005 A] lall] 1 POSN 119 110 Cn
oosr.o 11172 1 RESULT 83 55 <0

-3:
0011 A 282 RTf loll BlKOTA q 10 22 ?3 zq 31 38 48 &l 64 13 77 5!!"

83 0>
ZZ

0011B 283 RTFM2 alKOTA 11 14 lb !8 20 3b lib 50 61 66 67 70 -<
72 H 81

oottC Z811 RTE"'3 BlKOTA 5 24 2b 32
00212 '530 \JCTII alKOlA 12
00208 520 UCT! alKOTA 21
002,)A 522 UCTl alKOTA 19
0021lC 52a UCTS elKOU 17
0020E 526 UCT7 alKOr A 15
00210 '526 . UCT9 alKOTA 13
00007 7 UTlRET alKorA .]3 84 .*. * •••• .", H'ERE ApE o ERROR(S~ TI\I THIS ASSEMBLy ••••••••••

F4~o~-r a/75

THE SINGER COMPANY
KEARFOTT DIVISION

APPENDIX 0

Y2M301M0810 ________ REV_

SKC3120 MACHINE INSTRUCTION FORMAT SUMMARY .

0-1

Y240A301M0810 ~--=- THE SINGER COMPANY
KEARFOn DIVISION

IvlNEM.

ABSF
ADA
ADAR
AOAX
AOC
AOF
ADFI
AOlvlEI~
ADX
AND
ANDM
CFX
CLB
CNA
CMS
CPA
CPAB
CXF
DIAX
DIV
DOAX
DPI
DSZ
OXS
EAB
EPI
EXR
FNEG
flLT
I NCt1S

JEQ
JGE
JGT
J I
JLE
JLT
JNE
JS
JU
LDA
LDAR

F4202-1 2/15

TABLE 0 - 1 SKC3120 INSTRUCTION SET

OPERATION NAME

ABSOLUTE OF A
FIXED ADD MEMORY TO A
FIXED ADD MEMORY TO AB
FIXED ADD MEMORY TO A INDEXED
FIXED ADD CARRY TO A
FLOAT ADD MEMORY TO AB
FLOAT ADD MEMORY TO AB, INDIR
FIXED ADD A TO MEMORY
FIXED ADD A TO ACTIVE INDEX
LOGICAL AND
LOGICAL AND TO MEMORY, BASED
CONVERT FLOAT TO FIXED IN AB
CLEAR B
ONE'S COMPLEMENT A
SKIP ON A .LT. MEMORY
TWO'S COMPLEMENT A
TWO'S COMPLEMENT AB
CONVERT FIXED TO FLOAT IN AB
INPUT DATA INTO A INDEXED
FIXED DIVIDE A BY MEMORY
OUTPUT DATA OUT OF A 1NDEXED
DISABLE PROGRAM INTERRUPTS
DECREMENT MEMORY, SKIP IF 0
DECREMENT ACT INDEX, SKIP'IF 0
EXCHANGE A AND B
ENABLE PROGRAM INTERRUPT
EXCH ACTIVE AND INACTIVE INDEX
FLOAT NEGATE AB
HALT
FIXED INCREMENT MEMORY

AND SKIP IF 0
JUMP IF (A) .EQ. 0
JlJl1P IF (A) ~GE. 0
JUMP IF (A) .GT. 0
JUt·1P I NO IRE CT
JUMP IF (A) .LE. 0
JUMP IF (A) .LT. 0
JurlP I F (A) .NE. 0
JUIIP TO SUBROUTINE
JUMP UNCONDITIONAL
LOAD A FROM MEMORY
LOAD AB FROM I1EMORY

0-2

MNEM. OPERATI ON NAME

LDABI LOAD AB FMOM MEMORY, INDIR
L.DA~.", LOAD AB FROM MEMORY, INDEXED
LDA~'.",'lIl LOAD A~ I MMED I ATE
LDAX LOAD A,fROM MEMORY INDEXED
LDR LOAD REG I STER FROM A
LD~, __ , LOAD ACTIVE INDEX FROM MEMORY
LDXI'1 ~ LOAD ACTI VE INDEX IMMEDI ATE
MLF 1-: FLOAT MPY AB BY MEMO< Y, I NO I R
MOV MOVE MEMORY TO MEMORY
MUL FIXED MPY A BY MEMORY
MULAB FIXED MPY AB BY MEMORY
MULF FLOAT MPY AB BY MEMORY-
I1ULX FIXED MPY A BY MEMORY INDEXED
OR LOGICAL OR
ORM LOGICAL 011 TO MEMORY
SBA FIXED SUB I1EMORY FROM A
SBAB FIXED SUB MEMORY FROM AB
SBAX FIXED SUB MEMORY FMOM A INDEXD
SBC FIXED SUB CARRY FROM A
SBF FLOAT SUB MEMORY FROM AB
SBFI FLOAT SUB MEMORY FROM AB,INDIR
SOX VARIABLE SHIFT, INDEXED
SKPMZ SKIP ON MEMORY BITS 0, BASED
SKPMl SKIP ON MEMORY BITS I, BASED
SLC SHIFT A LEFT, CIRCULAR
SLL SHIFT A LEFT, LOGICAL
SLLD SHIFT AB LEFT, LOGICAL
SRA SHIFT A RIGHT, ARITH
SRAD SHIFT AB RIGHT, ARITH
SRC SHIFT A RIGHT, CIRCULAR
STA STO< E A I N MEMORY
STAB STORE AB IN MEMORY
STABI STORE AB IN MEMORY, INDIR
STABX STORE AB IN MEMORY, INDEXED
STAX STORE A INDEXED
STB STORE B IN MEMORY
STR STORE REGISTER IN A
STX STORE ACTIVE INDEX IN MEMOMY
TRPI TRAP 1
TRP2 TRAP 2
TRP3 TRAP 3
TRP4 TRAP 4

THE SINGER COMPANY
KEARFOTT DIVISION

COMMENTS AND EVALUATtONS

I
Y2'40,«\301M0810

----o.! '----- REV _

Your evaluation of this document is welcomed by the Singer Company.

Any errors, suggested corrections or general comments may be made
and continued on the reverse side. Please Include page number and
reference paragraph and forward to:

Name

Company Affiliation

Address

The Singer Company
Aerospace and Marine Systems
Kearfott DivisJon
150 Totowa Road
Wayne, New Jersey 07470
Attention: Department 5760

-------~--------------------------------------

,
--~~------------ ----

Comments:

.'

