DOCUMENT N0.Y240A301M0810 REV —

ENGINEERING SKC3120

TECHNICAL ASSEMBLER LANGUAGE (KAL3I)
REPORT | REFERENCE MANUAL
JULY 1976

SINGER

AEROSPACE & MARINE SYSTEMS

DRR NO. 01911(NP) TOTAL PAGES 83

THE SINGER COMPANY ¢ KEARFOTT DIVISION ¢ 1150 MCBRIDE AVENUE ¢ LITTLE FALLS, N. J. 07424

F4200-4 2/72



THE SINGER COMPANY
KEARFOTT DIVISION Y240A301M0810 ggy_ =

SKC3120
ASSEMBLER LANGUAGE (KAL31)
REFERENCE MANUAL

Prepared by:
DEPARTMENT 5760
ENGINEERING PROGRAMMING AND COM#OTATION
JULY 1976

F4202-1 2/75




THE SINGER COMPANY
KEARFOTT DIVISION

'REVISION RECORD

Y240A301M0810 REV -

—

REV DESCRIPTION APPROVAL
AND DATE
- RELEASE JULY 1976
VN Fre
REV — -
PAGE | cover » OTHER
’ REVISION SYMBOL OF REVISED PAGES PAGES

F4201  2/72



THE SINGER COMPANY

F4202-1|

Y240A301M0810 Rev - KEARFOTT DIVISION

SKC3120
ASSEMBLER LANGUAGE (KAL31)
REFERENCE MANUAL

ABSTRACT

This manual describes the syntax and function of KAL31l, the

SKC3120 Assembly Language. This language is a derivative of the
FOCAP Language developed for the SKC2000 computer. . An SKC3120
computer . program written in this Jlanguage 1is automatically
converted to machine language by the SKC3120 Portable Assembler
Program. The Portable Assembler was carefully designed to permit
it to be easily transferred from one host machlne to another, hence
the term Portable. ‘

This document, 1in conjunction with the SKC3120 Principles of
Operation Manual (Y240A300M0801) and the SKC3120 Assembler/ Linkage
Editor/Simulator Users. Manual (Y240A301M0811) provides sufficient
information for a programmer to prepare an SKC3120 computer
program. Details on the use of the Portable Assembler with a
particular host computer can be found in the appropriate Host
Procedures Manual.

Users are encouraged to make suggestions for (improving the
information content of this manual by using the form supplied on
the last page. E

2/75 ili



THE SINGER COMPANY
KEARFOTT DIVISION Y240A301M0810 Rev _ -

TABLE OF CONTENTS

PAGE

1. [INTRODUCTION 1-1
2. LANGUAGE STRUCTURE 2
2.1 SOURCE LANGUAGE STATEMENT 2=l
2.1.1 LABEL ENTRY 2-1

2.1.2 OPERATION ENTRY 2-2

2.1.3 OPERAND ENTRY 2-2

2.1.% COMMENT ENTRY 2-2

2.1.5 CHARACTER SET 2-2

2.1.6 STATEMENT FORMAT 2-3

2.2 LANGUAGE ELEMENTS 2-3
2.2.1 SYMBOLS 2-5

2.2.1.1 SET-SYMBOLS 2-6

2.2.1.2 EXTERNAL SYMBOLS 2-6

2.2.1.3 THE ASTERISK SYMBOL 2-6

2.2.1.4 SYMBOL REFERENCE 2-7

2.2.1.5 RELATIVE ADDRESSING 2-8

2.2.2 EXPRESSIONS 2-9

3. ADDRESSING AND LOADING 3-1
3.1 |INTRA-DECK ADDRESSING 3-1

~ 3.1.1 LOCATION COUNTERS 5-1

3.2 INTER-DECK ADDRESSING 3-3
3.2.1 ENTRY POINTS 3-3

3.2.2 EXTERNAL SYMBOLS 3-3

3.2.3 BLOCK DATA 3l

3.3 LINKAGE EDITOR PROGRAM : 3-5

L. MACHINE LANGUAGE INSTRUCTIONS b-1
4.1 ARITHMETIC INSTRUCTIONS ‘ 4=2
4.1.1 OPERATION FIELD h=3

4.1.2 OPERAND FIELD =1

F4202-1 2/75



Y24,0A301M0810 -

THE SINGER COMPANY
REV KEARFOTT DIVISION

5.

F4202-~1

L4

4

L

L

.2

.3

.u

’5

L.6

"’07'

JUMP INSTRUCTIONS

4.2.1 OPERATION FIELD
4.2.2 OPERAND FIELD

INDEX REGISTER INSTRUCTIONS

4L.3.1 OPERATION FIELD
4L.3.2 OPERAND FIELD

SHIFT INSTRUCTIONS

L.4.1 OPERATION FIELD
b.4.2 OPERAND FIELD

NON-MEMORY REFERENCE INSTRUCTIONS

L.5.1 OPERATION FIELD
4L.5.2 OPERAND FIELD

INPUT=-OQUTPUT INSTRUCTIONS

L.6.1 OPERATION FIELD
L.6.2 OPERAND FIELD

BLOCK TRANSFER INSTRUCTION

4.7.1 OPERATION FIELD
4.7.2 OPERAND FIELD

ASSEMBLER OPERATIONS

5

2/75

.1

LOCATION COUNTERS

5.1.1 ORG - SPECIFY ABSOLUTE ORIGIN FOR
THE PROGRAM
5.1.2 USE - START USE OF LOCATION COUNTER

L}
~N o~ ~

= B — =

=9
-9

=11

=11
L-11

h-12

h-12
=13

L-14

h-1n
=1k

4-15
=15



5.3

5.!‘

5.5

5.6

5.7

F4202-1 2/75

THE SINGER COMPANY Y24L0A301M0810

KEARFOTT DIVISION REV
DATA GENERATION OPERATIONS 5-7
5.2.1 DEC - DECIMAL DATA DEFINITION (FIXED) 5-7
5.2.2 HEX - HEXADECIMAL DATA DEFINITION £-2
5.2.3 SCLB - BINARY SCALE OPERATION 5-9
5.2.4 SCLW - WEIGHTED SCALE OPERATION 5-11
5.2.5 SCLBD - DOUBLE LENGTH BINARY SCALE 5-13
5.2.6 SCLWD - DOUBLE WEIGHTED LENGTH 5-13
5.2.7 PTR - POINTER TO ADDRESS 5-14
5.2.8 DECD - DECIMAL DATA DEFINITION (FLOATING) £-15
STORAGE ALLOCATION OPERATIONS 5-18
5.3.1 BSS - BLOCK STARTED BY SYMBOL 5-1¢8
5.3.2 BES - BLOCK ENDED BY SYMBOL 5-19
5.3.3 BLKDTA - BEGIN BLOCK DATA 5-19
SYMBOL DEFINITION OPERATIONS 5-20
5.4.1 EQU - EQUATE SYMBOL TO EXPRESSION 5=-20
5.4.2 SETD - SET TEMPORARY SYMBOL TO DECIMAL
NUMBER 5=-22
5.4.3 SETX - SET TEMPORARY SYMBOL TO HEX VALUE 5-23
SUBROUTINE OPERATIONS 5-24
5.5.1 ENTRY = ENTRY POINT DESIGNATION 5=2h
PROGRAM CONTROL PSEUDO-OPS 5-25
5.6.1 END 5-25
5.6.2 ENDBLK 5-25
LIST CONTROL PSEUDO-0PS 5-26
5.7.1 LIST - RESUME LISTING 5-26
5.7.2 UNLIST - SUSPEND LISTING ;-25
5.7.3 TTL - DEFINE PAGE TITLE =27
5.7.4 EJECT - START NEW PAGE 5=-27
5.7.5 SPACE - SKIP BLANK LINES 5=-228

vi



Y24L0A301M0810 - THE SINGER COMPANY

REV KEARFOTT DIVISION

6.

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

F4202~1

THE ASSEMBLER OUTPUT LISTING

2/75

ERROR MESSAGES
CROSS REFERENCE

ASSEMBLER ERROR DIAGNOSTICS

ASSEMBLER CONTROLS AND OPTIONS

SAMPLE PROGRAM LISTING

SKC3120 MACHINE INSTRUCTION FORMAT SUMMARY

vii

O™ >
[}

I
R —



F4202~1

THE SINGER COMPANY
KEARFOTT DIVISION Y240A301M0810 Rev

1. INTRODUCTION

The SKC3120 Assembler program accepts KAL31 source code and
produces absolute or relocatable object programs which, after
processing by the Linkage Editor program, will execute on the
SKC3120 computer. The KAL31l Assembler is a ‘''cross assembler" in
that it executes on a general purpose computer, hereby designated
as a "host" computer. and produces code for the SKC3120, hereby
designated as the '"target" computer. This Assembler is an element
of Kearfott's complement of machine-portable, modular software.
The SKC3120 (KAL31) Assembler, in particular, has been designated
as both host and target machine portable, since only a relatively
few modules require modification when it 1is desired to change
either the host or target computer. Host machine portability
allows Kearfott to provide this Assembler for execution on the
customer's host computer, without the entailment of expensive
conversion costs. Furthermore, since approximately 85 percent of
the modules are completely machine independent, the introduction of
errors due to conversion from one host to another is minimal.
Target-machine portability allows expeditious adaptation of the
software when the target computer's configuration 1is altered.
Changes in the instruction set, data word length, etc. are easily
implemented in the Assembler since only a very few modules are
effected for each of these changes. Additionally, target-machine
portability provides a significant step towards the production of
error-free codes. Since the majority of the modules are common to
Kearfott assemblers for other target computers, errors detected in
one application, and corrected, do not always have to be
rediscovered in other applications. '

The SKC3120 Assembler contains several features usually available
only on larger  computers. The Assembler is capable of producing
relocatable object code, whose absolute locations are assigned by
the Linkage Editor Program. This relocatability feature allows the
use of 1location counters: for aiding in the organization of the
source program, for eliminating the need for the programmer to
choose absolute addresses, and for optimizing memory allocation.

1-1

2/75



THE SINGER COMPANY
Y24OA301M0810 Rrev___= KEARFOTT DIVISION

F4202-1

The user has complete control over the assembly process. This
control is exercised via control cards and assembler options (see
Appendix B, Assembler Controls and Options). Subroutines may be
assembled individually or 1in groups. The Assembler detects
syntactic programming errors, illegal opcodes, some types of
addressing errors, and checks the source coding in general for
conformance. On user option the Assembler will perform a load, and
produce a memory load map onto magnetic tape and/or the printer.
The map indicates the exact memory loading of the SKC3120. In
addition to those features already implemented, Kearfott has
developed a general purpose macro processor to be used in
conjunction with all its assemblers. The capabilities of this
macro processor include complete arithmetic, logical, and character
expression handling, the nesting of macros, recursive macro
invocation, and a conditional assembly facility. .

The Assembler output includes:
* A printed listing containing:

a. Program source code

b. Line numbers ,

c. Hexadecimal representation of the assembled source code
d. Relative address of each instruction

e. Error mnemonics

f. Current location counter

* An object deck if requested by the user.
* A magnetic tape for use eventually in the simulator or to be

converted to punched tape and loaded into the SKC3120 for
execution. .

1-2

2/75



THE SINGER COMPANY Y24L0A301M0810
KEARFOTT DIVISION

2. LANGUAGE STRUCTURE

The SKC3120 Computer Assembler Program was developed to run on an
IBM 360/370 computer. The Portable Version of the Assembler was
written almost exclusively in ANSI Fortran. Hence, it can be
easily converted to run on similar host computers using a similar
Fortran compiler. The source language processed by this Assembler
is described 1in this document. Some basic language features are
described in this section.

The language provides a mnemonic (literally, memory-aiding) machine
instruction operation code for each machine instruction in the
SKC3120 airborne computer. The Assembler language also contains
mnemonic codes for Assembler directive operations. These are used
to provide the direction necessary for the Assembler to perform its
wide variety of auxililary functions.

Assembler processing involves the translation of source statements
into machine language, the assignment of memory words to
instructions and data, and the development of all information
required by the Linkage Editor Program for final memory allocation.
The output of the Assembler program is a relocatable or absolute
object program module, a machine language translation of the input
source program module. The Assembler generates a printed listing
of the source statements, side by side with their machine 1language
translation, relocatable or absolute addresses, and additional
information useful to the programmer in analyzing his program, such
as error indications.

2.1 SOURCE LANGUAGE STATEMENT

An SKC3120 Assembly program consists of a sequence of source
language statements or symbolic instructions. Each statement
consists of one to four entries, which are from left to right: a
label entry, an operation entry, an operand entry, and a comments
entry. These entries must be separated by one or more blanks and
must be written in the order stated. A brief description of each
entry follows.

2.1.1 Label Entry

The label entry is a symbol created by the programmer to identify a
statement. The label symbol is used to reference the statement in
the operand entry of other statements. A label entry is usually
optional. Like all symbols, the label entry may consist of up to
eight alphanumeric (or alphameric) characters, the first of which
must be alphabetic.

F4202-1 2/75



THE SINGER COMPANY

Y240A301M0810 pey KEARFOTT DIVISION

F4202-1

2.1.2 Operation Entry

The operation entry is the mnemonic operation code specifying the
SKC3120 machine operation, or assembler directive operation
desired. An operation entry is mandatory (except for a full
comment statement). Valid mnemonic operation codes for each
machine operation are 1listed 1in an appendix. A1l assembler
directive operation codes are listed in Section 5 (Table 5-1).

2.1.3 Operand Entry

Operand entries identify and describe data to be acted upon by the
machine or assembler operation. The operand entry has a variety of
formats described in Sections 4 and 5. Depending on the
requirements of the operation, one or more or no operands can be
specified. Multiple operand entries must be separated by commas,
and they cannot include embedded blanks.

2.1.4 Comment Entry

Comments are descriptive items of information about the statement
or the program that are included to clarify the program listing.
Any printable character may be included in a comment, including
blanks. An entire statement field can be used for a comment if an
asterisk or period is punched in the first column.

2.1.5 Character Set

The standard FORTRAN character set forms the basis for the KAL31

character set (except that any printable character may be used for
comments). The character set for the label field is the alphabetic
A-Z and the numbers 0-9. The character set for the operation field
is in the alphabetic characters A-Z combined to form a legal
Assembler mnemonic operation code. The character set of the
operand field is the alphabetic characters A-Z, the numbers 0-9 and
the special characters shown below:

* , , + - blank

For comments, any printable character is acceptable. For the |BM
360/370 version of the Assembler, the EBCDIC character set is used.

2-2

2/75



THE SINGER COMPANY Y2L0A301M0810
KEARFOTT DIVISION REV

2.1.6 Statement Format

The primary input medium to the Assembler 1is the punched card.
Source statements are punched one per card in the following format:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Must start in col. 1 May not start in col. 1 Format depends on

may be up to 8 char. Must be legal mnemonic instr. used. One
in length; must be a operation code. One or more blanks

symbol (see Section or more blanks must must separate the
2.2.1) separate the label and operation and the

the operation fields. operand fields.

Comments may be placed on a card in one of two ways: after at
least one blank following the operand field, or after an
asterisk(#) or period (.) in column 1. |If column 1 is left blank,
the next field is assumed to be the operation field.

The fields are free format, with the exception that a 1label field
or comment statement must start in column 1; however, standard card
columns for starting fields are recommended for the sake of
legibility. Figure 2-1 shows the standard Assembler coding form,
in which the operation field starts in column 10 and the operand
field begins in column 16. 1In general, blanks delimit fields and
commas delimit subfields. The operand field varies with the type
of the operation (see Sections 4 and 5).

2.2 LANGUAGE ELEMENTS

Before describing the various assembler operations in detail, it is
appropriate to discuss the basic language elements of the
Assembler. Principal among these are expressions, symbols, and
their attributes. Of course, the principal use of symbols and
expressions is the mnemonic representation of a memory address or
other numeric value. These 1language elements have their prime
utility as constituents of the operand entry - in assembly
statements. :

F4202-1 2/75



I-202vd

sL/2

v-¢

Kearfott Coding Form |

SINGER

KEARFOTY DIVISION

NAME lPRDGRAM -
DATE: PAGE____of
LABEL OPERATION OPERAND

l|2|3 IJIS o 7l8|9lon|l.2llllullfllél IBII')IZOIZIIZ'—.?[?-}I?.IIQ‘J|26127I28|2930}1!l3?|3;i§4l3%!6|3ﬂ38[39|;({1!}12l»l:{u}t:;}lﬁluld#d&!solsl}52'53[54]55]56[57[5?';-91&({6l}éZléBléAlﬁSléélﬂkBléﬁbopI|7273174'75[76’77[78[7‘480
PR T T O S Y B [ I I TR VN T TS N O | TSN O T T T T S T T T W T Y O T U Y U I 1 U T I |
VI T O B | I | | S T T Y Y T I | S N N TN I T T Y T T T U T O T T A O Y T U Y O Y O N1 | I
BT T T D T W | . | N T U T N S LS T I N | T T N N Y T T T T Y N T TN Y O N T O T T NS N N YUY T T T T I O 1 T TS O Y T B
T T T O 111 11 Y T T Y I T | {1 VO TN VNS W W T NN NN NN WO S TN U T T O S N [ Y O OO N I O 0 S 1 | S T O I |
SO T T I T | L1111 § N T WO T O Y W I | [ Y U U TN N TR WA YO U SO 1SN T TN TN TN T TN U WS O TS U O VO OO N O U T N | 1 | S I T R S I |
I T N S B I | [ . W1 IS W S T B O O O Y 1L|1|1|..11|1|11|1!|L1||||||||||||' 1 { R U T T
S T N T U T | | S SN | | NN T N T T N O O I I | | N T TN O TN N VNS U U WO T N T N IS N TN O TN N N TN VNN VS TR W U U U T 1 | I U
S TS W WO SO SO B T | | B T T B T T O T T T Y O 1 | N U S TN NSNS YU U [N TNUN VS OO NN N NN NN A NONY U AN NN NU NN G N W NN O U A N A N N | 1 | I I |
I T NS W G B T | W T T | | I T WY TN W OO WS G N 1 [ NS NN N TS TN VNN U NS SO U NN SN N W N TN T TN NN N NN TN Y TN TSN NN SO YONNY N S TN N NN | 1 | I T W . |
I N W T O B | 11 1.1 ¢ T O T T T T TR W | [ WA A T T Y WY NN N T W N TN U U NS N TN T WO U T TN AN T T TN WO W W Y | ! | I I
B I T T A 111 11 | I U T TR T T B W TS S U U U T O T U U S0 TN U W U O W T U O Y O T O IO O O 0 O | I O O I I A
U N WS O O I B | 1111y § Y O G55 N N O T Y O I | NN T TN TR TN TN T S N T SN O T O T O O O U A NN U N T A | 1 I T O O O I |
PN N N B O W | | T S TS O T I T W A O | lllllllllllllllllllllllrlllllllllil i TN O I T S T
S W W S U | | I A T T U T W T T ') NN N TN U S N T T TN N N TN N N T TS TN Y TN O TSN IS U N N U N N NN N U A | 1 U T U |
I U W T S ) § N T | | I T I TN A O O T 1 I TN VN T N T U N TN N U VOO W U O U TN YN UUN [N TN T TN NN TR WY U N N . | 1 PO O O |
§ U O U O I | | NN N OO TN WO Wt O T O | | S TSN NS T N T NS Y N N U VO VSO T T N T VO U O NS NN T DU TN S N N U N W | ] I T T T W B |

I - Z 24n3y4

WY0d4d ON100J L1104dV3IN

NOISIAIQ 1104¥V3IN
ANYJIWOD H3IONIS IHL

AN

OT8OWTOSLVYOhZA



THE SINGER COMPANY Y24L0A301M0810
KEARFOTT DIVISION REV

2.2.1 SYMBOLS

A symbol* is represented by a string of one to eight alphameric
characters (A-Z, 0-9), the first of which must be alphabetic. A
symbol is defined by 1Its appearance in the 1label field of a
statement. A symbol may be defined only once in an assembly,
unless it is a set-symbol. That is, each symbol used as the 1label
of a statement must be wunique within that assembly. A numeric
value is associated with each symbol. Generally, a symbol 1in the
label field of an instruction is assigned the value of the current
location counter. The only exceptions are the SETD, SETX, and EQU
operations whose 1label symbol is assigned the value specified by
the operand field. When the Assembler assigns values to symbols in
the label field of statements defining instructions, constant data
words, or variable data words, It chooses the address of the
designated memory word. |f the designated item occupies more than
one memory word, the address of the first word is assigned to the
symbol.

Although the value of a symbol is its principal attribute, several
other attributes are worthy of mention. A symbol value may be
either absolute or relocatable based on the type of 1location
counter under which it was allocated. The symbol is then said to
be either absolute or relocatable, accordingly. The value of a
relocatable symbol 1is its displacement, in words, from the origin
of the location counter. A symbol value may be any integer from
zero to 65K (i.e. 65,535). This is the maximum addressing range
of the SKC3120 computer.

Symbols can also be distinguished by the nature of the information
contained in the address they are referencing. Fom example, a
symbol value may represent the address of an instruction, a
constant data word, a variable data word, or an address pointer.
In the latter case, the symbol may be said to have indirect
addressing capability.

*Two pﬁpular alternate designations for '"symbol" are '"tag" and
"label''.

2-5

F4202-1 2/75



_ THE SINGER COMPANY
Y240A301M0810  pey KEARFOTT DIVISION

2.2.1.1 Set-Symbols

Symbols normally assume a specific (absolute or relocatable) value
which 1is retained throughout the assembly of the deck. However,
the operations SETD and SETX can be used to define temporary
symbols or SET symbols whose value can be changed during the
assembly of a single deck. Once a symbol value has been specifded
by one of the SET operations, a subsequent definition of the same
symbol by a SET operation s considered an assembly-time
redefinition of the symbol value. A set-symbol may be redefined
any number of times. However, regular permanent symbols (defined
by an operation other than SETD or SETX) cannot be redefined via
the two SET operations. Similarly, a set-symbol cannot be
subsequently given a permanent value by appearing in another
statement. By virtue of the variable nature of a set-symbol, it
must be defined in a SET statement prior to any use of the symbol.

2.2.1.2 External Symbols

Symbols which are used In a deck but not defined (assigned a value)
within the deck are assumed to be defined as entry points in
another deck. Hence, these are referred to as external symbols. A
table of external symbols is provided in the cross reference at the
end of each assembly 1listing. If a deck is processed by the
Linkage Editor with other decks which provide entry points for each
of its external symbols, the Linkage Editor will automatically
resolve these interdeck address references. |f no entry point is
found for an external symbol, the Linkage Editor will print an
appropriate error message.

2.2.1.3 The Asterisk Symbol

The asterisk character (*) is used to specify a special symbol.
When used in the operand field of an operation, it represents the
current value of the location counter (either absolute or
relocatable). Consequently, the asterisk (*) need not be defined
(assigned a value) like other symbols and, therefore, should never
appear in the 1label field of a statement. By its nature, the
asterisk assumes a different value each time it is used. In this
respect, it is similar to a temporary symbol or set-symbol,
although it is not explicitly defined or redefined via the SET
operations.

2-6

F4202~-1 2/75



THE SINGER COMPANY -
KEARFOTT DIVISION Y240A501M0810 REV

2.2.1.4 Symbol Reference

A symbol is said to be defined by its appearance in the label field
of a statement. A symbol is said to be referenced by its
appearance in the operand fleld of a statement. There is, in
general, no sequence restriction on the definition and reference of
a permanent symbol; both forward referencing (reference proceding
definition) and backward referencing (definition preceding
reference) is permitted, except where otherwise noted (e.g. EQU
operation). The following two examples illustrate the definition
and use of symbols. '

Forward Reference:

LDA SMBL1

SMBL1 DEC 1235
Backward Reference:

SMBL 2 LDA SMBL1

Ju ’ SMBL2

2-7

F4202-1 2/75



Y240A301M0810 - THE SINGER COMPANY
REV KEARFOTT DIVISION

2.2.1.5 Relative Addressfng

As described above, the Assembler permits one statement to be
referenced in another's operand field if the first statement
defines a symbol in its label field. However, it also permits more
complex forms of symbolic referencing including relative
addressing. Once a statement has been named by the presence of a
symbol in its label field, it is possible to refer to a statement
preceding or following the statement named by indicating its
position relative to the named statement. This procedure is called
relative addressing, and the operand entry would take the form:

s +n ors -n
where:
s represents the symbol in the 1label field of the named
instruction
n is a positive decimal integer which represents the difference
between the current values of the location counter at each
statement. :
A more specific example would be:
SYMBOL + 6
where the referenced memory address is six greater than the address
labeled SYMBOL. Another common form of relative addressing is
illustrated below:

loc. ctr. values

(1000) JEQ *+2
(1001) JU LOOP
(1002) STA ANGLE

The asterisk (*) symbol is used to refer to the current value of
the 1location counter. Relative addressing serves to introduce the
more general concept of using expressions to represent operand
address references which is discussed in Section 3.

2-8

F4202-1 2/756



THE SINGER COMPANY Y240A301M0810
KEARFOTT DIVISION

2.2.2 Expressions

This section discusses the expressions used in coding operand
entries for regular source statements. Two types of expressions,
absolute and relocatable, are presented along with the rules for
determining the attributes of an expression. The earlier paragraph
on relative addressing introduced the simplest type of expression
of the form s + n., The more general case is discussed here.

THe smallest component of a regular expression is the element. An
element is either a single symbol or a single decimal integer 1less
than 2**16. Three types of symbols may be used specifically:

The permanent symbol

The temporary or set=symbol

The asterisk, representing the current location counter
value

An expression consists of a single element or is formed as the sum
or difference of two elements according to the rfollowing
restrictions: ‘

The difference of two relocatable elements is a valid expression
if and only if both elements are defined under the same location
counter.

The sum of two relocatable elements is always invalid.

Since expressions, like symbols, represent memory addresses,
they cannot have a negative value and must be less than 2*+16.

An external (or virtual) symbol cannot be combined with an
asterisk or permanent symbol to form a vaild expression. It can
only be combined with a decimal integer or a set-symbol.

A numeric value is associated with each expression.

F4202-1 2/75



S THE SINGER COMPANY
Y2L0A301M0810 opy KEARFOTT DIVISION

An expression Is called absolute Iif its value 1Is unchanged by
program relocation. An expression is called relocatble if its
value depends upon program relocation.

An absolute expression can be an absolute symbol or any sum or
difference of absolute elements. The difference of two relocatble
elements (under the same 1location counter) is an absolute
expression. Since each element would be relocated by the same
amount, the difference value remains constant and is not effected
by the relocation value. Hence the expression's value is absolute.
If each element were defined under different location counters,
each element would have its own relocation value and the difference
value of the relocated element would not be . constant.
Consequently, this combination is specifically prohibited.

A relocatable expression is one whose value changes by n if the
program in which it appears is relocated n words away from its
original storage 1location. The simplest form of relocatable
expression is the single symbol.

The above combinational rules can be summarized by a 1listing of
legal expression constituents, an example of legal expression type,
and a classification of the resulting expression as being absolute
or relocatable. Such a listing is presented in Table 2-1 using the
following notation: ‘

n represents a positive decimal integer

s represents a permanent symbol

st represents a set-symbol

(r) represents a relocatable symbol (ie. defined under a
relocatable location counter) '

(a) represents an absolute symbol (ie. defined under an
absolute location counter) .

Note that all relocatable symbols are assumed to be defined under
the same location counter. Otherwise the difference would be
illegal as described above. :

Table 2-1 contains all legal combinations of the following six
basic elements:

n  *(r) *(a) s(r) s(a) st
By implication, all missing sums or diferences of these elements
are illegal based upon the above prohibitions and should not be
used.
2-10

F4202-1 2/75



F4202-1" 2/75

TABLE 2

EXPRESSION FORM

*(r)

*(a)

s(r)

s(a)

n

st
*(r)-s(r)
*(r)+s(a)
*(r)-s(a)
*(a)+s(r)
*(a)+s(a)
*(a)-s(a)
*(r)+n
*(r)=-n
*(a)+n
*(a)-n
s(r)=-s(r)
s(r)+s(a)
s(r)=-s(a)

~s(a)+s(r)

s(a)+s(a)
s(a)-s(a)
s(r)+n
s(r)-n
s(a)+n
s(a)-n
*(r)+st
*(r)-st
*(a)+st
*(a)-st
s(r)+st
s(r)-st
s(a)+st
s(a)-st
st+n

st-n
st+st
st-st

THE SINGER COMPANY

KEARFOTT DIVISION

TYPE

relocatable
absolute
relocatable
absolute
absolute
absolute
absolute
relocatable
relocatable
relocatable
absolute
absolute
relocatable
relocatable
absolute
absolute
absolute
relocatable
relocatable
relocatable
absolute
absolute
relocatable
relocatable
absolute
absolute
relocatable
relocatable
absolute
absolute
relocatable
relocatable
absolute
absolute
absolute
absolute
absolute
absolute

2-11

Y24L0A301M0810

LEGAL EXPRESSION TYPES

EXAMPLE

*
%*

SYMREL

SYMABS

100

SETSYM
*-SYMREL
*+SYMABS
*-SYMABS
*+SYMREL
*+SYMABS
*-SYMABS

*+]

*=2

*+3

*=U
SYMR1-SYMR2
SYMREL+SYMABS
SYMREL-SYMABS
SYMABS+SYMREL
SYMA1+SYMA2
SYMA1-SYMA2
SYMREL+10
SYMREL-20
SYMABS+100
SYMABS-50
*+SETSYM
*=SETSYM
*+SETSYM
*-SETSYM
SYMREL+SETSYM
SYMREL-SETSYM
SYMABS+SETSYM
SYMABS-SETSYM
SETSYM+10
SETSYM-4
SETS1+SETS2
SETS1-SETS2



THE SINGER COMPANY
Y240A30kM0810 REV _ — KEARFOTT DIVISION

THIS PAGE INTENTIONALLY LEFT BLANK

2-12

F4202 -1 2/15



THE SINGER COMPANY
KEARFOTT DIVISION Y2LOA30IMCEL0 ey _ =

3. ADDRESSING AND LOADING

The SKC3120 computer architecture provides a variety of techniques
for addressing and intra-program communication. These capabilities
are augmented by the Assembler and Linkage Editor programs. This
section is intended to provide the programmer with sufficient
information about these techniques to use them effectively.

3.1 INTRA-DECK ADDRESSING

A program deck is a sequence of source program statements
terminated by an END statement. A deck may contain several
subroutines. The techniques available to permit one statement to
reference another, within a deck, are discussed here.

3.1.1 Location Counters

A location counter is used to assign memory addresses to program
statements within a deck. It is assigned a starting value at the
beginning of a block (typically the address of the first word in
the block) and is incremented by the length of each subsequent
statement within a deck. Thus, a location counter always points to
the next available address. |If a statement is named by a symbol in
its label field, the symbol value is set equal to the current value
of the location counter with the exception of the BES Pseudo-0Op
(see 5.3.2). Similarly, if an asterisk symbol is used in the
operand field of a statement, it is assigned the current value of
the location counter. An asterisk symbol in the operand field of a
machine instruction statement is equivalent to placing a symbol in
the label field and using that symbol in the operand field. The
Assembler listing includes the locatiocn counter value for each
statement, whether labeled or unlabeled.

Only those statements which generate object code or allocate
storage cause the location counter to be incremented.

Since the length of each operation can vary, the 1location counter
may be incremented by various values. For instance, some Assembler
operations such as USE or SETD, do not cause computer memory
allocation and therefore, the location counter is unchanged. Other
operations such as machine instructions or single precision data
words occupy one location and increase the location counter by one.
Long instructions (e.g. JS) and double precision data words occupy
two locations and increase the location counter. by two. Finally,
some Assembler operations such as the BSS generate many locations
and the 1location counter value is correspondingly increased. The
Assembler has 25 location counters numbered 0 through 24 which can
be established and controlled by the user.

3-1

F4202-1 2/75



- THE SINGER COMPANY
Y240A301M0810 REV KEARFOTT DIVISION

The use of more than one location counter provides the user with
the facility to write instructions in one sequence and have them
loaded in another. This enables the user to write subroutines and
assign various data areas in-line. The Assembler identifies the
necessary origins at assembly time, but repositioning of
instructions under the various location counters is a function of
the Linkage Editor and occurs at Jload time. The object deck
produced by an assembly will have the same sequence as the
corresponding source deck. The Linkage Editor processes the
location counters of the same type within a deck in numerical
sequence. That 1is, instructions or data assembled under location
counter 0 are loaded first; instructions or data assembled under
Location Counter 24 are loaded last.

A program segment assembled under a location counter can be
absolute or relocatable. Hence, the location counter is said to be
correspondingly absolute or relocatable for that assembly. Since
all relocatable addresses are assembled relative to the first
location under the 1location counter, the first location has a
relative address of zero with subsequent addresses assigned in
ascending order as described earlier.

Each deck has at least one location counter. |If none is specified,
location counter 0 is assumed. It is recommended that different
types of memory words (e.g. instruction, constant data, variable
data, etc.) be segregated by use of location counters. In fact,
the Linkage Editor program recognizes several distinct types of
memory blocks during the load process. These are listed in Table
3-1. , '
!
TABLE 3-1. LOCATION COUNTER TYPE TABLE

TYPE OF MEMORY WORD : USAGE
Instructions . Absolute
Instructions - Relocatable
Constant Data . Absolute
Constant Data Relocatable
Variable Data ' Absolute
Variable Data Relocatable
3-2

F4202~1 2/75



THE SINGER COMPANY -
KEARFOTT DIVISION Y240A301M0810 REV

3.2 INTER-DECK ADDRESS I NG

This section 1is devoted to a description of the several
alternatives available for transmitting information between program
decks. As before, a deck 1is defined as a sequence of source
statements, terminated by an END statement.

3.2.1 Entry Points

Symbols may be defined in one program and referred to in another,
thus effecting symbolic 1linkages between independently assembled
programs. The linkages can be effected only if the Assembler
program 1is able to provide information about the symbol to the
Linkage Editor program, which resolves these linkage reference at
load time. In the program (deck) where the linkage symbol is
defined, it must also be identified to the Assembler by means of
the ENTRY Assembler operation. It is identified as a symbol that
names an entry point, which means that another program may use that
symbol in order to effect a jump operation or a data reference.
The Assembler places this information in the object deck for
transmission to the Linkage Editor.

3.2.2 External Symbols

If a symbol is used in a program deck (i.e. appears in an operand
field) but is not defined in the same program deck, the Assembler
assumes that it represents a symbol defined as an entry point in
another program deck (see previous paragraph). It is identified
then as an external or virtual symbol. The Assembler . places this
information in the object deck for transmission to the Linkage
Editor, which resolves these linkage references at load time. '

If, at load time, no entry point can be found for an external

symbol, an appropriate error message is printed by the Linkage
Editor.

3-3

F4202-1 2/75



_ THE SINGER COMPANY
Y24OA501M0810 pey KEARFOTT DIVISION

3.2.3 Block Data

Symbols may be made global by defining them in a block data deck.
A block data deck is defined by placing a BLKDTA Pseudo-0Op at the
beginning of the deck and ending with the ENDBLK Pseudo-0p.
Symbols defined in a block data deck may be referenced in any deck
in that assembly provided that the block data deck has been
assembled prior to the reference of any of the symbols. To avoid
assembling the block data deck each time a block data symbol is
referenced the block data symbols may be saved and retrieved in
subsequent assemblies by using control card options. A block data
deck should not appear in the Assembler input stream if the control
card calls for the retrieval of an earlier Block Data deck.
Symbols referred to in a non-block data deck, that are defined in
block data, are so indicated in the cross reference listing.

The following rules apply to the use of block data symbols:

A symbol defined 1locally in a subroutine overrides the
definition of the symbol in a block data deck.

Symbols defined in a block data deck may not appear in the

~operand field of an EQU Pseudo-Op in another deck. Symbols in
the operand field of an EQU Pseudo-0Op which are not 1locally
defined are considered to be external symbols by the Assembler.

- Symbols that have to be defined before they are used (e.g.
operand of ORG) cannot be block data symbols.

3-4

© F4202-1 2/75



THE SINGER COMPANY Y240A301M0810
KEARFOTT DIVISION

3.3 LINKAGE EDITOR PROGRAM

The output of the SKC3120 Assembler Program 1is an Object Module
which contains object code (binary machine language) for each
instruction or data word designated in the source deck. However,
the relocatable code will not yet be assigned a memory address and
any instructions which directly reference relocatable or external
operands will have an unresolved operand address field. The Object
Module also contains information on the number and type of location
counter under which each word was assembled. A1l the Object
Modules comprising a program are processed by the Linkage Editor
Program which assigns an absolute memory address to each data and
instruction word and resolves all operand address references to
relocatable or external operands. The result is a Load Module
which contains absolute machine code with its assigned memory
address. The Load Module can be directly loaded into the SKC3120
Computer. An outline of the process is shown in figure 3-1.

Further description of the Linkage Editor Program and the Linkage

Editor output can be found 1in the SKC3120 Assembler/Linkage
Editor/Simulator Users Manual (Y240A301M0811).

3-5

F4202-1 2/75



THE SINGER COMPANY

Y240A301M0810 REV =
SOURCE
STATEMENT
FILE
¥
SOURCE | | ASSEMBLER _ _
STATEMENTS HOST COMPUTER

TARGET
COMPUTER

PRINTOUT
. TRACE

+MEMORY DUMP
.DIAGNOSTICS

NEW OBJECT
(RELOCATABLE
OR ABSOLUTE)

LINKAGE
EDITOR

bosse aves e — — c— o

HOST
COMPUTER

REPORT
GENERATOR

HOST

_ COMPUTER

Figure 3-1.

KEARFOTT DIVISION

1

FORTRAN
COMPILER

HOST COMPUTER

Y

| FCP.
LOAD MODULE
(RELOCATABLE

FORTRAN CONTROL
PROGRAM (FCP)

STMULATOR
(RELOCATABLE)

HOST MACHINE [
LINKAGE-
EDITOR

HOST COMPUTER [

l

SIMULATOR
& FCP MODELS

HOST COMPUTER

RAW
DATA |
FILE

Support Software Data Flow

36

<>
ENVIRONMENT
SIMULATION
ROUTINES

(FORTRAN)
(RELOCATABLE)

N~




THE SINGER COMPANY
KEARFOTT DIVISION Y24L0A301M0810 Rgv _-

L. MACHINE LANGUAGE INSTRUCTIONS

This section describes the rules for preparing source language
statements which, when processed by the Assembler program, produce
SKC3120 machine language instructions. The Assembler uses the
mnemonic in the operation field of a KAL31l statement to generate
the operation code of the corresponding machine instruction. The
operand field of a KAL31l statement contains any designator for
other fields in the machine instruction.

In describing the syntax of the operand field, some general
notation will be used. Lower case characters are employed in a
symbol which represents a family of possible source code items.
For example, u represents any valid KAL31l expression such as: X,
RANGE, Y2, X+Y, R-9, etc. In general, upper case characters are
used to indicate source code in a literal sense. Several other
notations are employed in describing the source code syntax. The
more general of these are defined below: .

NOTAT I ON DEFINITION

() designates. the contents of the register or instruction
subfield which is specified within the parentheses.

u represents an absolute or relocatable expression (see
Section 2.2) which is used to define the address field
in a symbolic instruction.

N designates the address field in object code
instructions.

K designates the count field in object code
instructions. :

XR specifies the active index register.

I XR specifies the inactive index register.

Bl specifies base register one.

B2 specifies base register two.

Further notation used in specific statement descriptions is defined
in the relevant sections. The descriptions for the SKC3120
instructions are grouped according to source statement syntax and
object code format. Each group is discussed separatly below.

F4202-1 2/75



Y240A301M0810 - THE SINGER COMPANY
- REV KEARFOTT DIVISION

4L.1 ARITHMETIC INSTRUCTIONS

The majority of SKC3120 machine instructions are in the arithmetic
group. The arithmetic group can be divided into sub-classes, in a
natural way, which parallels the machine code instruction format.

b-2

F4202-1 2/75



THE SINGER COMPANY
KEARFOTT DIVISION Y240A501M0810 REV

4.1.1 Operation Field

This section lists all the valid mnemonic code entries for the
operation field of an arithmetic instruction.

F4202~1

MNEMONIC

2/75

OPERATION SUMMARY

Add fixed point to A-Register direct

Add fixed point to AB Register direct

Add fixed point to A-Register indexed

Add floating point to AB Register direct

Add floating point to AB Register indirect

Add fixed point to memory direct

Logical AND to A-Register direct

Logical AND to memory based

Compare fixed point and skip if (A) < (memory)
Divide fixed point AB Register direct
Decrement memory fixed point and skip if (memory)=0
Increment fixed point and skip if result > 0
Load A-Register direct

Load AB Register direct

Load AB Register indirect

Load AB Register indexed

Load A-Register immediate

Load A-Register indexed

Multiply AB Register floating point direct
Multiply AB Register floating point indirect
Multiply A-Register fixed point direct
Multiply AB Register fixed point direct
Multiply A-Register fixed point indexed
Logical OR A-Register direct

Logical OR to memory based

Subtract fixed point from A-Register direct
Subtract fixed point from AB Register direct
Subtract fixed point from A-Register indexed
Subtract floating point from AB Register direct
Subtract floating point from AB Register indlrect
Skip on (memory) = 0 based

Skip on (memory) = 1 based

Store A-Register direct

Store AB Register direct

Store AB Register indirect

Store AB Register indexed

Store A-Register indexed

Store B-Register direct

4-3



THE SINGER COMPANY
Y24LOA301M0810 Rey - KEARFOTT DIVISION

4.1.2 Operand Field

The operand field of most arithmetic instructions may be an
expression, represented by u, or either a decimal integer or
set-symbol, represented by z. In some instructions, an operand
field is not required. The syntax of an expression, decimal
integer, and set-symbol is described in section 2.2.2.

The interpretation of the operand field is governed by the mnemonic

appearing in the operation field of the arithmetic instruction and
is presented in Table 4.1.

F4202-1 2/75



1-202vd

gL/2

S-h

MNEMONIC TYPE

Direct

Immediate
I ndexed
Type 1

I ndexed
Type 2

Indirect

Based

Global
Direct

u

Table 4.1 Arithmetic Instructions

INTERPRETATION

specifies the effective

address of the operand;

u

u

-> N

specifies the immediate

operand; u -> N

u
u

z

u

forms an explicit displacement;
-> N

forms an explicit displacement;
-> K

forms an explicit displacement;
-> K

forms an explicit displacement;
-> K

specifies the effective

address of the operand;

u

-> N

This form valid for: ADA,ADAB,
AND, ADMEM,DIV,DSZ,CMS,STAB,
MUL,LDA,LDAB,OR,STA,STB,SBA,
SBAB.

This form valid for: LDAM.

This form valid for: LDAX,STAX,
ADAX,SBAX(MULX.

This form valid for: LDABX,STABX.
This form valid for: ADFI,MLFI,
LDABI,STABI, SBFI.

This form valid for: ORM,ANDM,
SKPMZ,SKPM1, I NCMS.

This form valid for: ADF,SBF,
MLF,MULAB.

NOISIAIQ LLO4¥V3IN
ANVdINOD ¥3ONIS 3HL

AN

OTBOWTOSLVONTZA



THE SINGER COMPANY
Y240A301M0810 mev __- KEARFOTT DIVISION

Some arithmetic Instructions are double word machine code
instructions. For |INCMS, the second word is generated via the
specification of a PTR instruction immediately following Iits
occurence in the code stream. (see Section 5.2.7 for PTR syntax).
The instructions ANDM, ORM, SKPMZ, and SKPM1l require a data
generation Pseudo-Op to define the second word of the machine
instruction (see Section 5.2 for data generation Pseudo-Op syntax).
The instructions ADF, SBF, MLF, and MULAB are also double word
instructions, however, the Assembler automatically generates the
second word of the machine instruction using the specified operand.
Figure 4.1 presents valid forms for representatives in each of the
double word arithmetic instruction classes.

Figure 4.1 Typical Arithmetic instructions

LABEL OPERATION OPERAND
ONE LDA ALPHA+1
TWO STAX 4
THREE . MULX SETSYM
FOUR ADF | 10
FIVE ADF OPRADR+10
SEVEN ANDM SETsym
' DEC 16
EIGHT ~  INCMS SETSYM
PTR OPRADR+10
-6

F4202-1 2/75



THE SINGER COMPANY

KEARFOTT DIVISION Y240A301M0810  Rev

L.2 JUMP INSTRUCTIONS

A1l jump instructions, except for Jump Indirect (Jl), specify a
destination address in the operand field of a KAL31l statement. For
some of the jumps (JEQ, JGE, JGT, JLE, JLT, JNE, and JU), the
expression field (u) generates an implicit (or relative) address.
In the discussion of relative jumps, the symbol 'loc' will be used
to refer to the location of the instruction following the jump. In
the Jump to Subroutine (JS) instruction, one of the sub=-field
expressions (u), generates an explicit (or global) address, while
in the Jump Indirect (Jl) instruction, the expression field (u)
sg:cifigs the address of a pointer word through which the branch is
effected.

4.2.1 Operation Field

The valid mnemonic code entries for the operation field of a jump
instruction are listed below.

MNEMONIC 4 OPERATION SUMMARY
JEQ ~ Jump relative if (A) register .EQ. 0
JGE Jump relative if (A) register .GE. 0
JGT ‘ Jump relative if (A) register .GT. 0
Ji Jump indirect
JLE Jump relative if (A) register .LE. 0
JLT Jump relative if (A) register .LT. O
JNE : Jump relative if (A) register .NE. 0
JS Jump global direct to subroutine
Ju Unconditional jump relative

4,2.2 Operand Field

The operand field of most jump instructions consists of a single
expression, represented by u. The Jump to Subroutine instruction
operand field consists of two expressions, represented by u,ul.
The interpretation of the expression(s) is governed by the mnemonic
appearing in the operation field of the jump Instruction and is
presented in Table 4.2. :

L=-7

F4202-1 2/76



Y240A301M0810 pgy

THE SINGER COMPANY
KEARFOTT DIVISION

MNEMONIC TYPE

Jump relative

Jump direct

Jump indirect

Table 4.2 Jump Instructions

INTERPRETATION

u forms a signed relative
address; +(-)|u=-loc| => N

u specifies the explicit
destination address

ul specifies the effective
address where the return
address is to be stored;
ul -> N

u specifies the effective
address of the pointer word
through which the branch is
effected; u =-> N

This form valid for:
JEQ,JGE,JGT,JLE,JLT,
JNE, JU.

this form valid for:
Js

This form valid for:
Ji

Figure 4.2 presents valid forms for representatives in each of the
sub-classes of the jump instructions.

Figure L.

LABEL

ONE
TWO
THREE
RFOUR

F4202-1 2/75

2 Typical Jump lInstructions

OPERATION OPERAND
Ju kel
Js SINE,RETADR
Ji RETADR
JLT LABEL

4-8



THE SINGER COMPANY
KEARFOTT DIVISION Y24L0A301M0810 Rey _ -

4.3 INDEX REGISTER INSTRUCTIONS

The instructions (EXR, LDR, STR, ADX, DXS) in the nonmemory
reference group (see Section 4.5 for descriptions of these
instructions) operate on the active index register.

The KAL31 statements discussed in this section (LDX, LDXM, STX)
along with the previously noted instructions constitute the index
register instructions.

4.3.1 OPERATION FIELD

The mnemonic code entries for the index register instructions
discussed in this section are listed below.

MNEMONIC OPERATION SUMMARY
LDX Load Active Index Register from memory
LDXM A Load Active Index Register immediate
STX ‘ Store Active Index Register into memory

4.3.2 Operand Field

The operand field of the index register instructions is similar to
that of the arithmetic instructions. The operand field consists of
an expression, represented by u, or either a decimal integer or
set-symbol, represented by z. The interpretation of the operand
field is presented in Table 4.3.

Table 4.3 Index Register Instructions

MNEMONIC TYPE INTERPRETATION NOTES
Direct u specifies the effective This form valid for:
address of the operand; LDX,STX
u =-> N .
Immediate z specifies the immediate . This form valid for:
operand; z =-> K LQXM.
k-9

F4202-1 2/75



- THE SINGER COMPANY
Y240A301M0810 ooy KEARFOTT DIVISION

Figure 4.3 presents valid forms for representatives in each of the
sub-classes of the index register instructions.

Figure 4.3 Typical Index Register Instructions

LABEL OPERATION OPERAND

ONE LDX TABLE+4

TWO LDXM SETSYM
4-10

F4202-1 2/75



THE SINGER COMPANY Y240A301M0810
KEARFOTT DIVISION

L.4 SHIFT INSTRUCTIONS

This section lists all valid mnemonic entries for the operation
field of the shift instructions. ‘ :

MNEMONIC OPERATION SUMMARY
SDX Variable shift (indexed)
SLC Shift A-Register left circular
SLL Shift A-Register left logical
SLLD Shift AB Register left logical
SRA Shift A-Register right arithmetic
SRAD Shift AB Register right arithmetic
SRC Shift A-Register right circular

4.4,2 Operand Field

The operand field of a shift instruction must be either a decimal
integer or set-symbol, represented by z, with one exception; SDX
does not require an operand.

Figure 4.4 presents valid forms for the shift instructions.

Figure 4.4 Typical Shift Instructions

LABEL OPERATION OPERAND
ONE SLLD 10

TWO SRC SETSYM
THREE SDX

L-11

F4202-1 2/75



THE SINGER COMPANY
—t240A301MO810 REV = KEARFOTT DIVISION

4.5 NON-MEMORY REFERENCE INSTRUCTIONS

This section lists all valid mnemonic entries for the operation
field of the non-memory reference instructions.

MNEMONIC , OPERATION SUMMARY
ABSF Floating absolute AB Register
ADC Add fixed point carry to A-Register
ADX Add A to Active Index Register
ATB Move A to B-Register
ATB1 Move A to Bl Register
ATB2 Move A to B2 Register
ATP ' Move A to PC Register
ATX llove A to Active Index Register
ATY Move A to Inactive Index Register
BTA Move B to A-Register
B1TA . Move Bl to A-Register
B2TA Move B2 to A-Register ;
CFX Convert floating point to fixed point
CLA - Clear A-Register
CLB "Clear B-Register
CMA One's complement A-Register
CPA Two's complement A-Register
CPAB Two's complement AB Register
CXF Convert fixed point to floating point
DPI Disable program interrupts
DXS Decrement active Index Register
EAB Exchange A-Register and B-Register
EPI Enable program interrupts
EXR Exchange Active and Inactive Index Registers
FNEG Floating negate AB Register
HLT Halt
LDR Move A to B, PC, Bl, B2, IXR, or XR Registers
NOP No operation (equivalent to SRC 0)
PTA Move PC to A-Register
SBC Subtract fixed point carry from A-Register
STR Move B, PC, Bl, B2, IXR, or XR to A-Register
TRAP1 Trap one :
TRAP2 . Trap two
TRAP3 ‘ Trap three
TRAPL Trap four
XTA .Move active Index Register to A-Register
YTA - Move Inactive Index Register to A-Register

4L-12

F4202-1 2/75



THE SINGER COMPANY
KEARFOTT DIVISION Y240A301Mo810 REV

4.5.2 Operand Field

Most nonmemory reference instructions do not employ an operand
field since they have no matching instruction subfields beyond the
secondary (and tertiary) operation code. The exceptions (LDR, STR,
TRAP2) require an operand field to define an instruction subfield.
The operand field designator is either a decimal integer or
set-symbol, represented by z.

Figure 4.5 presents valid forms for representatives in each
sub-class of the nonmemory reference instructions.

Figure 4.5 Typical Nonmemory Reference Instructions

LABEL OPERATION OPERAND
ONE ABSF
TWO LDR SETSYM
THREE TRAP2 5

4L-13

F4202-1 2/75



) THE SINGER COMPANY
Y2L0A301M0810 ppy KEARFOTT DIVISION

4L.6 INPUT-OUTPUT INSTRUCTIONS

This section lists all the valid mnemonic entries for the operation
field of the input-output instructions.

MNEMONIC OPERATION SUMMARY

DIAX Input data to A-Register indexed

DOAX Ouptut data from A-Register indexed

4,.6.2 Operand Field

The operand field for the DIAX, DOAX instructions must be an
expression, represented by u. The expression (u) defines a
relative device code in the instruction subfield.

The target device code of an input-output instruction 1is computed
at execution time, using:
dc = u + (XR)

Figure L.6 presents valid forms for the input-output instructions.

Figure 4.6 Typical Input-Output Instructions

LABEL OPERATION OPERAND

ONE DIAX VIRTUAL+7

TWO DOAX SETSYM
L-14

F4202-1 2/75



THE SINGER COMPANY
KEARFOTT DIVISION Y2L0A301M0810 REV

4.7 BLOCK TRANSFER INSTRUCTION

The block transfer (MOV) instruction moves a block of data or
instructions from one region of memory to another. The source and
destination addresses and the number of words to be transferred
must be preloaded into the B, A, and XR registers, respectively.

4.7.1 Operation Field

MNEMON I C | OPERATION SUMMARY

MOV Block transfer

Specification of an operand in the operand field is not required.

Figure 4.7 presents the valid form of a block transfer instruction.
Figure 4.7 Typfcal Block Transfer Instruction

LABEL OPERATION OPERAND

L-15

F4202-1 2/75



THE SINGER COMPANY
Y240A301M0810 REV. _— KEARFOTT DIVISION

THIS PAGE INTENTIONALLY LEFT BLANK

F4202-t 2/75 4-16



THE SINGER COMPANY Y240A301M0810
KEARFOTT DIVISION .

5. ASSEMBLER OPERATIONS

In the Assembler some operations generate executable code, some
allocate storage, and some initialize 1location counters. All
Assembler directives which do not cause the Assembler to generate
instructions are termed Pseudo-Operations. Table 5-1 lists and
summarizes the Assembler-Operations. In the summary and subsequent
subsections, the following notation is employed.

u represents an absolute or relocatable expression
as defined in Section 2.2.2

v represents a single virtual (or external) symbol

] OR operator =- designates a choice of one of the two {tems
separated by the vertical bar

n represents a decimal integer ranging from 0 to 24
if designating a location counter

] designates enclosed items as optional
d represents a FORTRAN decimal integer. A FORTRAN decimal
integer 1Is a string of digits, 0 through 9 which may
~optionally be preceded by a plus(+) o rminus(-) sign. A
decimal integer must not be terminated by a decimal point.

f represents a floating real number in FORTRAN "REAL"
format or a decimal integer :

h represents up to four hexadecimal digits
aa...a represents a string of alphanumeric characters
op represents an operand address designation in
the same format as the operand field of a
basic arithmetic instruction
s represents a KAL31l symbol or label
st represents a set symbol or temporary symbol
As in the description of the machine language instruction formats,
lower case characters are used to form symbols which represent a

family of possible source code items. In general, upper case
characters are used to indicate source code in the literal sense.

- F4202-1 2/75



' ; - THE SINGER COMPANY
YZ10A30140310 @ KEARFOTT DIVISION

TABLE 5-1. SUMMARY OF ASSEMBLER PSEUDO-OPS
LABEL OPERATION OPERAND

FIELD FIELD FIELD SUMMARY
[s] BES dlst Reserve next d locations for
scratch data (see note 3)
BLKDTA Start a Block Data Deck
[s] BSS dlst Reserve next d locations for

scratch data (see note 2)

[s] - DEC d ~ Convert d to binary and insert
at current location

[s] DECD d|f Convert d|f to floating; insert.
double word binary result ‘
in reverse order into current
and following locations

EJECT Print next line of assembly
at top of page
END [s] End of deck. Terminate assembly,
starting address at s
ENDBLK : Terminate a Block Data Deck
ENTRY sl,s2... Each listed symbol (sl..) is
defined as an ENTRY point
s EQU ulv Assign the value of u (om v)
to the symbol s
[s] HEX h Convert h to binary and insert
at current location
LIST Resume listing after UNLIST
[s] ORG dist Set current Location Counter to d
[s] PTR op Insert Pointer to operand address
[s] SCLB f,d ‘ Convert f to binary, shift d
‘ places, insert in current
location o L
5=-2

F4202-1 2/75



THE SINGER COMPANY YZ(’-lO '301M0810 -
KEARFOTT DIVISION J REV

TABLE 5-1. SUMMARY OF ASSEMBLER PSEUDO-OPS, CON'T.

LABEL OPERATION OPERAND

FIE
[s]

[s]

[s]

st

st

LD FIELD FIELD SUMMARY

SCLBD f,d Convert f to binary, shift d
places; insert double womd in
reverse order into current and
following locations

SCLW fl,f2 Divide fl by the LSB, f2; insert
: binary result in current location

SCLWD fl,f2 Divide fl1 by the LSB,f2; insert
double word binary result
in reverse order into current
and following locations

SETD uld Assign the value of ul|d as the
temporary value of st

SETX h Assign h as the temporary
value of st

SPACE d Generate d blank lines in
assembly listing

TTL aa...a ' Place a title aa...a on each page
of assembly

UNLIST Suspend listing source statements
during assembly

USE n| PREVIOUS Subsequent instructions or data
under nth (or previous)
location counter

Notes:

1.

2.

F4202-|

Symbol s in label field 1is set equal to current value of
location counter unless otherwise noted. :

Symbol s in label field is set equal to first 1location in
group.

Symbol s in label field is set equal to the 1last 1location in
group plus 1. '

5=3

2/75



- THE SINGER COMPANY
Y240A301MO810 pey KEARFOTT DIVISION

5.1 LOCATION COUNTERS

This section describes the operation which can activate a location
counter during an assembly (USE) as well as the operation (ORG)
which can effect the value of an active 1location counter. The
Assembler provides 25 1location counters (numbered 0 to 24) which
can be activated by the user. A1l the code generated under a
single 1location counter will be allocated to a contiguous area of
memory. However, the source code under a single 1location counter
need not be consecutive in the source deck. The sequence of source
code is typically interrupted by the activation of other location
counters and then subsequently reactivated.

The principal purpose of 1location counters is to segregate
different memory allocation types for separate action by the
Linkage Editor. :

Because of the read-only-memory feature of the SKC3120 Computer and
the resulting Assembler/Linkage Editor design, any one 1location
-counter should control only constants or variables but not both.
The first instruction or data allocation following a USE operation
which designates a given 1location counter for the first time,
determines whether the words allocated will be placed in protected
(read-only) memory or not. Protected memory should contain only
instructions and constant data. Unprotected memory can be writtten
into as well as read out of and, therefore, should only contain
variables. If the user violates this separation rule, he may find
out, at execution time, that his "protected" variables cannot be
stored into or his '"unprotected" constants were inadvertently
destroyed during execution.

For more details on the location counter allocation process, see
Section 3.1.

5-4

F4202-1 2/75



THE SINGER COMPANY

KEARFOTT DIVISION Y2L4L0A301MO0810 -

REV

5.1.1 ORG - Specify an Absolute Origin for the Program Segment

The ORG Pseudo-0Op redefines the value of the current location
counter to be the absolute address specified. The format of this
instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) ORG dlst

d represents a FORTRAN decimal integer
st represents a set symbol or temporary symbol

The current location counter will be reset to the absolute address
specified and the next instruction to be assembled under this
location counter will be assigned to that absolute address.
Location counters are always relocatable unless modified via the
ORG Pseudo-0p. If there is a symbol in the label field it is
defined as this new origin. All symbols defined while ORG is in
effect will be assigned absolute 1locations. Other 1location
counters remain unaffected. The ORG should be the first operation
coded following the first USE statement for an absolute location
counter.

5=5

F4202-1 2/75



- | THE SINGER COMPANY
Y2u0A301M0‘810 REV KEARFOTT DIVISION

5.1.2 USE - Start Use of Location Counter

The USE Pseudo-0Op specifies the location counter under which the
following sequence of instructions or data is to be assembled. The
format of the instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(blank) USE n|PREVIOUS

where:
~ n represents a decimal integer ranging from 0 to 24

When the operand field contains a decimal integer, it designates
which of the 25 1location counters (numbered 0-24) should be
activated. The location counter in control up to the time the
USE is encountered (location counter 0 1is used if none is
previously specified) is suspended and temporarily preserved as the
"previous" counter. Location counter n Is activated to control
memory allocation for the following instructions or data, until the
next USE operation is encountered. |f the USE PREVIOUS option s
selected, the previously suspended location counter Is reactivated.
Note that only one suspended location counter is preserved at one
time. Consequently, nesting of these suspended location counters
is not permitted. The following sequence is provided as an

example:
This series of is equivalent to
instructions this series of
instructions
USE 1 , USE 1
USE 2 USE 2
USE PREVIOUS USE 1

F4202-1 2/75



THE SINGER COMPANY -
KEARFOTT DIVISION Y240A301M0810 REV

5.2 DATA GENERATION OPERATIONS

Memory allocation Pseudo-Ops are used to reserve data storage for
constant data (usually in protected memory) and variable data
words. The current location counter controlling the respective
storage areas is incremented by the number of words generated by
the Pseudo-0Ops. BSS and BES allocate blocks of storage for
variable data. Constant data is allocated by DEC, DECD, HEX, SCLB,
SCLBD, SCLW, SCLWD, and PTR.

5.2.1 DEC - Decimal Data Definition

The DEC Pseudo-0Op is used to enter a fixed point binary data word
into a program. The data word is expressed as a decimal integer in
the source coding. |If there is a symbol in the label field, it is
assigned to the address of the data word generated.

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbo1(Optional) DEC

where:
d represents a FORTRAN decimal integer

The maximum absolute value of a decimal integer permitted by the
DEC pseudo operation is (2**(n-1))-1, where n is the width in bits
of a data word. Integers are internally represented by a right
justified binary equivalent. Negative numbers are represented in
their two's complement form.

Examples of the DEC Pseudo-0Op are:

RESULTING
LABEL OPERATION OPERAND (HEX) MEMORY WORD
INTGR1 DEC 52 ‘ 0034
INTGR2 DEC : =52 FFCC
INTGR3 DEC 19 0013

5-7

F4202-1 2/75



Y2L0A301M0810 - THE SINGER COMPANY
REV KEARFOTT DIVISION

5.2.2 HEX - Hexidecimal Data Definition

THe Hex Pseudo-0Op is wused to enter binary data expressed in
hexadecimal digits. The digits are: 0-9 and A-F, where 0-9 have
the same meaning as decimal digits 0-9, and A-F have the decimal
values 10-15 respectively. This directive is used to generate 1
word of constant value. |If there is a symbol in the 1label field,
it is assigned to the address of the data word generated. The
format of this Pseudo-Op is:

OPERAND FIELD

| | | |
| LABEL FIELD | OPERATION FIELD | |
| | | |
| | | |
| Symbol(Optional) | HEX | h I
| | | |
where:
h represents up to four hexadecimal digits
Examples of the HEX Pseudo-0Op:
. RESULTING
LABEL . OPERATION OPERAND (HEX) MEMORY WORD
ALPHA HEX . ABC 0ABC
BETA HEX 0 0000
GAMMA HEX BA359E 359E

NOTE: The hexadecimal characters in the operand field are right
justified with truncation on the left if more than one memory word
is specified (see the third example above).

5-8

F4202-1 2/75



THE SINGER COMPANY
KEARFOTT DIVISION Y2h0A301M0810 REV

5.2.3 SCLB - Binary Scale Operation

The SCLB Pseudo-0Op is for the user's convenience when generating
fixed point constants. The user specifies a decimal number and the
scaling factor, and the Assembler performs the appropriate shift to
create the scaled number and assigns storage for the data. |If
there is a symbol in the 1label field, it 1is assigned to the
location of the data word generated. The format is as follows:

LABEL FIELD OPERATION FIELD OPERAND- FIELD

Symbol (Optional) SCLB f,d

where:

f represents a FORTRAN real number which designates the number
to be generated

d represents a FORTRAN integer constant (in the range =64 to
+64) which designates the scaling factor

The scaling factor may be interpreted either of two ways. It is
either the number of non-sign positions to the left (or to the
right, if scale factor is negative) of the specified binary point,
or it is the number of bits the generated word is right shifted (or
left shifted, if negative) out of normal position. See examples
below.

The number generated by the Assembler will be in fixed-point
format. If the first subfield is a negative number, the number
generated will be the two's complement of the corresponding
positive number with the same scaling factor. That is,

SCLB -N,B = -(SCLB N,B)

For futher clarification of the use of the SCLB (Binary Scale)
operation, consider the following example: v

5=-9

F4202-1 2/75



THE SINGER COMPANY

Y240A301M0810 ey KEARFOTT DIVISION

Example 1
ALPHA SCLB 1.5,4

bit value 0 0 0 0 1 1 0 0 0 0 0 0 O0 O0 O0 O
bitpos. 0 1 2 3 &4 5 6 7 8 91011 12 13 14 15

BIT POSITION 4 HAS THE VALUE 1 x 2*%0 = 1.0
BIT POSITION 5 HAS THE VALUE 1 x 2%**-1= .5

A scaling factor of 4 causes the number to be positioned 4 bit
places to the right of its normalized position. Bit position 4 has
value 2**0 and bit position 5 is 2**(-1). The binary point is
between bit positions 4 and 5. .

5-10

F4202-1 2/75



THE SINGER COMPANY Y24L0A301M0810
KEARFOTT DIVISION REV

5.2.4 SCLW - Weighted Scale Operation

The SCLW Pseudo-0Op is for the user's convenience when generating
fixed point constants. It is an alternate to SCLB. The user
specifies a decimal number and the value, or weight, of the least
significant bit (LSB). |If there is a symbol in the label field, it
is assigned to the location of the data word generated. The format
is as follows:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol1(Optional) SCLW fl,f2

s Gm— am—— S— — e——

where:
fl represents a FORTRAN real number which designates the number
to be generated, and

f2 represents a FORTRAN real number which designates the
weighting factor. The weighting factor can be interpreted as
the value associated with the 1least significant bit. See
examples below.

The number generated by the Assembler will be 1in fixed-point
format. If the sighs of the two subfields of the operand differ,
the Assembler will generate a negative number in two's complement
form. The following relationships hold true.

SCLW =N, -W = SCLW N,W
SCLW =N, W = =(SLCW N, W)
SCLW N, =W = ~(SCLW N, W)

In all cases, the number generated is equal to the value of the
first subfield, adjusted according to the weighting factor. For
further clarification, consider the following examples:

5-11

F4202-1 2/75



Y2L0A301M0810 - THE SINGER COMPANY
REV KEARFOTT DIVISION

Example 1
ALPHA SCLW 1.5,.5

bit value 0 0 0 0 0 0 O
bit pos. 0 1 2 3 L4 5 6

0o 0 0 0 0 0 1 1
8§ 910 11 12 13 14 15

0
7
BIT POSITION 14 HAS THE VALUE 0.
0

5 x 2**x1 = 1.0
BIT POSITION 15 HAS THE VALUE 0.5 x 2#*0 = .5
1.5
Example 2
BETA SCLW 1.5,.0625
bit value 0 0 0 0 0 0 0 0 O O0 O 1 1 0 0 O
bit pos. 0 1 2 3 4 5 6 7 8 910 11 12 13 14 15

BIT POSITION 11 HAS THE VALUE .0625 x 2**4 = 1.0
BIT POSITION 12 HAS THE VALUE .0625 x 2**3 = .5

Example 3
GAMMA SCLW 24.0,1.2
bit value 0 0 0 0 0 0 O

o 0 0 0 1 0 1 0 O
bitpos. 0 1 2 3 4 5 6 7 8 910 11 12 13 14 15
BIT POSITION 11 HAS THE VALUE 1.2 x 2*«4 = 19.2
BIT POSITION 13 HAS THE VALUE 1.2 x 2**2 = 4.8
24.0
5-12

F4202-1 2/75



F4202-(

THE SINGER COMPANY
KEARFOTT DIVISION Y240A301M0810 gey

5.2.5 SCLBD - Double Length Binary Scale

The SCLBD Pseudo-Op is similar to the SCLB Pseudo-Op. The format,
inputs and operation are the same as the SCLB except for the size
of the data word and therefore, the range of the operand value that
is input.

The SCLBD Pseudo-Op will generate a double length data word. The
double length word is stored in memory in reversed order, i.e., the
least significant word in the first memory location, and the most
significant word stored in the next memory location.

5.2.6 SCLWD - Double Length Weighted Scale

The SCLWD Pseudo-Op is similar to the SCLW Pseudo-Op. The format,
inputs and operation are the same as the SCLW except for the size
of the data word and therefore, the range of the operand value that
is input. ,

The SCLWD Pseudo-Op will generate a double length data word. The
double length word is stored in memory in reversed order, i.e., the
least significant . word in the first memory location, and the most
significant word stored in the next memory location.

5-13
2/75




Y24L0OA301M0810 - THE SINGER COMPANY
REV KEARFOTT DIVISION

5.2.7 PTR - Pointer to Address

The word generated by the PTR operation is not executed but is used
as a pointer to another location. It is commonly accessed via
indirect addressing which causes it to be interpreted as the
operand address field of the original instruction. The PTR address
field has the same syntax as the address field of a basic
arithmetic instruction.

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) PTR ulv

where:
u represents an absolute or relocatable expression
v represents a single virtual (or external) symbol

Note: The evaluated operand address should not exceed the
addressing capacity of the machine.

5-14

F4202-1 2/75



THE SINGER COMPANY Y2L0A301M0810
KEARFOTT DIVISION

5.2.8 DECD - Decimal Data Definition

The DECD Pseudo-0Op is used to enter a double length binary data
word into a program. The data word is expressed in decimal in the
source coding. |If an integer or real number is specified, a
floating point constant is generated. The resultant double word
constant is stored in reverse order in memory, 1I.e., the least
significant part of the mantissa is assigned to location n, and the
most significant part to location n+l. |If there is a symbol in the
label field, it is assigned to the address of the least significant
portion (exponent part) of the double word constant generated.
(see examples below)

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) DECD d|f

where:
d represents a FORTRAN decimal integer
f represents a FORTRAN real number

There are two components to f, a principal part and an exponent
part. The principal part is a signed or unsigned decimal number of
up to 18 decimal digits. It normally contains a decimal point
which may appear at the beginning, at the end, or within the
decimal number. |[|f the exponent part of a real number is present,
the decimal point may be omitted, in which case it is assumed to be
located at the right-hand end of the decimal number.

The exponent part consists of the letter E followed by a signed or
unsigned decimal integer. The exponent part may be omitted if the
principal part contains a decimal point. If used, it must
immediately follow the principal part. The exponent part, |if
present, specifies a power of ten by which the principal part will
be multiplied during conversion. The maximum range of a real
number is 1limited to approximately 2**127 by the size of the
exponent field in an SKC3120 floating point binary data word.

5-15

F4202-1 2/75



Y240A301M0810 - THE SINGER COMPANY
REV KEARFOTT DIVISION

Real numbers are internally represented in the form of a signed
binary fraction(the mantissa) and a biased exponent(the
characteristic). The exponent is the power to which the base (2)
must be raised so that when multiplied by the fraction, the result
is a binary representation of the real value being expressed. A
bias of 128 is added to the exponent to form the characteristic
which indicates either a positive or negative exponent; the
greatest value of the exponent (+127) will be expressed as 255 and
the smallest value of the exponent (-128) will be expressed as 0.
Negative numbers have their fractional parts represented in Two's
complement form. Representation of the floating point format is
given in Figure 5-1.

Figure 5-1, FLOATING POINT FORMATS

|--- MANTISSA (FRACTIONAL PART) ======ceccacaaaa-- |
IS | I | I
IG | 15 MOST SIGNIFICANT | 8 LEAST SIGNIFICANT | EXPONENT |
IN | BITS OF THE MANTISSA | BITS OF THE MANTISSA | (8 bits) |
—I I : I I
I ~ 15 0 78 15

16 BIT DATA WORD

5-16

F4202-1 2/75



THE SINGER COMPANY -
KEARFOTT DIVISION 1240A501M0810 REV

The exponent bias can be represented as hexadecimal 80 (binary
10000000) the most significant bit (MSB) is the high order bit of
the exponent. Note the following examples:

DESIRED POWER OF 2 CHARACTERISTIC IN BINARY
2¢%(+127) 11111111
2%%(3) 10000011
2#%(2) | 10000010
2#%(1) 10000001
2%%(0) 10000000
2%%(=1) 01111111
2%#(=2) 01111110
2%%(-3) 01111101
2¢%(-128) 00000000

For a complete illustration, four examples are given below
including all combinations of signs. The decimal is given on the
left and the hexadecimal (32 bit) equivalent is given on the right.

EXAMPLE 1 0.75 x 2*%(3) 60000083
EXAMPLE 2 =0.75 x 2%*(3) A0000083

NOTE: - The mantissa is in two's complement form because the number
is negative.

EXAMPLE 3 0.75 x 2#%(-3) 6000007D

NOTE: The mantissa is not in two's complement form since the
number is positive. The characteristic is less than the bias value
of 80 (hex), indicating a negative exponent.

EXAMPLE 4 =0.75 x 2%%(-3) A000007D
NOTE: The mantissa 1is in two's complehent form and the

characteristic -is less than the bias value of 80 (hex), indicating
a negative number and a negative exponent.

5-17

F4202-1 2/75



o THE SINGER COMPANY
Y2h0A301M0810 REV KEARFOTT DIVISION

5.3 STORAGE ALLOCATION OPERATIONS

Storage Allocation Operations are used to reserve data storage
areas for constant data and variable data words. The current
location counter controlling the respective storage area is
incremented by the number of words generated by the Pseudo-Ops.

5.3.1 BSS - Block Started by Symbol

The BSS Pesudo-Op is used to reserve an area of memory for use by
the program as data storage or work area. The start location of
the block is determined by the value of the current location
counter at the time the BSS Pseudo-0Op is encountered.

The format of this Pseudo=-Op is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

BSS dist

Symbol(Optiqnal)

where:

d represents a FORTRAN decimal integer

st represents a set symbol or temporary symbol
If there is a symbol in the label field, it 1is assigned to the
first 1location of storage reserved by the BSS Pseudo-Op. BSS
reserves a block of consecutive storage locations, the 1length of
which is determined by the value in the operand field. For
example:

ALPHA BSS 20

A block of 20 storage locations is reserved and the symbol ALPHA is

assigned to the first of these. These storage locations are not
initially cleared (it may not be assumed that they contain zeros).

5-18

F4202-1 2/75



THE SINGER COMPANY
KEARFOTT DIVISION Y240A301M0810 REV

5.3.2 BES - Block Ended by Symbol

The BES Pseudo-Op is used to reserve an area of memory for use by
the program as variable data storage or work area. The start
location of the block is determined by the value of the current
lcoation counter at the time the BES Pseudo-Op is assembled. The
format of this Pseudo-0Op Is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) BES

dlst

where:
d represents a FORTRAN decimal integer
st represents a set symbol or temporary symbol
If there is a symbol in the label field, it is assigned to the next

location following the 1last 1location of the block. The BES
Pseudo-0p reserves a block of consecutive storage locations the

length of which is determined by the value in the operand field.

For example in: :
ALPHA BES 20

a block of 20 storage locations is reserved and the symbol ALPHA is
assigned to the location after the last of the block, i.e. the
21st location from the beginning. These storage locations are not
initially cleared (it may not be assumed that they contain zeros).

5.3.3 BLKDTA - Begin Block Data

The BLKDTA Pseudo-Op is used an as initiator for the block of data
that will follow. A1l symbols defined within the block data will
be globally defined. Only one BLKDTA Pseudo-Op may appear in a
program and its format is as follows:

LABEL FIELD OPERATION FIELD "OPERAND FIELD

BLKDTA

5-19

F4202~1 2/75



" - THE SINGER COMPANY
Y240A301M0810 REV KEARFOTT DIVISION

5.4 SYMBOL DEFINITION OPERATIONS

Most operations may be used to define a symbol simply by placing
the symbol to be defined in the label field of an operation. The
symbol is defined to be the value of the location counter in
control at the time the symbol is encountered during assembly.
However, the symbol definition Pseudo-Ops EQU, SETD, and SETX exist
solely for the purpose of extending this symbol definition
capability.

5.4.1 EQU - Equate Symbol to Expression

The EQU Pseudo=-0p is used to assign a value to a symbol which s
equal to the value of the expression in the operand field. The
format of the EQU instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

EQU Culv

|
|
|
|
| Symbol
|

where:

u represents an absolute or relocatable expression

v represents a single virtual (or external) symbol
Note that unlike most other operations, EQU defines a symbol in the
label field to have a value other than the current value of the
location counter. (The other two such exceptional operations are
SETD and SETX). EQU is also special in that the symbol(s) used 1In
the expression in the operand field must have been defined in

" preceding source statements; that is, forward symbol reference is

forbidden.
Observe the following examples:
Example 1

ALPHA EQU BETA

The value of ALPHA is set equal to the value of BETA. BETA may be
'a virtual (external) symbol.

5-20

F4202-1 2/75



THE SINGER COMPANY Y240A301M0810

KEARFOTT DIVISION

Example 2
LDA BETA
GAMMA EQU =
STA DELTA

If the instruction LDA BETA is assigned to location 0172 then GAMMA
has the value 0173 and the instruction STA DELTA is assigned to
location 0173.

NOTE: |If an asterisk (*) is used in the operand field, the value
of the symbol is the present value of the current location counter.

Example 3

DELTA EQU ALPHA+BETA
DELTA is set equal to the value of the expression ALPHA+BETA as
evaluated at assembly time. Either ALPHA or BETA or both may be
previously defined symbols or set-symbols; however, only one can be

relocatable. Neither ALPHA nor BETA may be externally defined
symbols.

5-21

F4202-1 2/75



. THE SINGER COMPANY
Y240A301M0810 opy KEARFOTT DIVISION

5.4.2 SETD - Set Temporary Symbol to Decimal Number

The SETD Pseudo-Op is used to define or redefine a temporary symbol
for use in instructions as an element in the operand field. The
format of the SETD Pseudo-0Op is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol SETD uld

where:
u represents an absolute or relocatable expression
d represents a FORTRAN decimal integer

The use of the SETD Pseudo-Op assigns the numeric value of the
operand field to the symbol in the label field regardliess of any
prior "temporary'" value of the symbol. The new value becomes the
value maintained by the symbol until it is redefined (by another
SETD or SETX). |In this manner, a set symbol or temporary symbol
may assume several values during assembly of the program. |If a
symbol is thus defined to be a set symbol, it cannot be used
elsewhere in the program as a conventional(or permanent) symbol
referring to an absolute or relocatable memory address.

The value of the symbol is the current value of the expression, u.
A1l symbols employed in the expression must be previously defined

set symbols. Neither externally defined symbols (virtual symbols)
nor conventional symbols may be used in the expression.

5-22

F4202-1 2/75



THE SINGER COMPANY

KEARFOTT DIVISION Y240A301M0810  pev _-

5.4.3 SETX - Set Temporary Symbol to Hex Value

The SETX Pseudo-0Op is used to define a temporary symbol for use in
instructions as an element in the operand field. The format of the
SETX instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol SETX

where:
h represents up to four hexadecimal digits

The SETX Pseudo-Op assigns the binary integer specified by h as the
value of the symbol in the label field regardless of any prior
"temporary'" value of the symbol. The new value becomes the value
maintained by the symbol until it is redefined (by another SETD or
SETX). |In this manner, a set symbol or temporary symbol may assume
several values during assembly of the program. |If a symbol is thus
defined to be a set symbol, it cannot be used elsewhere in the
program as a conventional (or permanent) symbol referring to an
absolute or relocatable memory address.

Unlike the SETD Pseudo-0Op, the SETX Pseudo-Op may not have
expressions in its operand field.

5-23

F4202-1 2/75



Y24L0A301M0810 - THE SINGER COMPANY
REV KEARFOTT DIVISION

5.5 SUBROUTINE OPERATIONS

Subroutine directives are .used to provide communication between a
calling program and its subroutines.

5.5.1 ENTRY - Entry Point Designation

The ENTRY Pseudo-Op identifies a symbol as having the ability to be
referenced by a routine other than the one in which it has been
defined. The format of the ENTRY Pseudo-0Op is: :

LABEL FIELD OPERATION FIELD OPERAND FIELD

(blank) ENTRY

|
|
|
|
| sl,s2...
|

where: ‘
sl,s2... are the symbols separated by commas

These symbols can be any ordinary symbol defined in the program
deck by having appeared in the 1label field of an instruction,
Pseudo-0Op, or macro. Data symbols as well as instruction labels
may appear in ENTRY Pseudo-OPs to indicate that they will be
available to other subroutines as external symbols or references.
However, it is more typically used to designate the starting
location for a subroutine. Set-symbols are not permitted.

5-24

F4202~1 2/75



THE SINGER COMPANY Y240A301M0810
KEARFOTT DIVISION REV

5.6 PROGRAM CONTROL PSEUDO-OPS

Program Control Pseudo-Ops are used to control the Assembler's
processing of the program.

5.6.1 END - Program Terminator

The END Pseudo-Op indicates to the Assembler that it should
terminate the assembly of a program. The format of this
instruction is: : A

LABEL FIELD OPERAT!ON FIELD OPERAND FIELD

(blank) END Symbo1(Optional)

When the Assembler reaches an END card, it terminates the assembly
and if there is a symbol in the operand field, it will be used by
the Linkage Editor as the pointer to the starting location of the
program. Only one program in any one computer load may have a
symbol in the operand field of the END Pseudo-Op, and that 1is the
name of the main program of the load. All other subprograms are
considered to contain only subroutines of the main program and must
have blanks in the operand field. Each program or subprogram must
have an END Pseudo-Op, which must appear as the last source
statement.

The comment field should not be used in an END statement.

5.6.2>ENDBLK - Block Data Terminator e

The ENDBLK Pseudo-Op is required as the terminator of the block
data definition. All symbols defined within the block data will be
globally defined. Only one ENDBLK Pseudo-Op ma appear in a
program and its format is as follows:

| | | |

| LABEL FIELD | OPERATION FIELD | OPERAND FIELD |

| - | | |

| | | |

| (blank) | ENDBLK | (blank) |

| | | |
5=25

F4202-1 2/75



THE SINGER COMPANY

F4202-1

Y240A301M0810 Rev = KEARFOTT DIVISION

5.7 LIST CONTROL PSEUDO-OPS

The List Control Pseudo-Ops allow the user to control the format of
the program 1listing that 1is output by the Assembler. These
directives specify the contents of the list, the spacing of printed
lines, page ejection and the printing of page titles.

5.7.1 LIST - Resume Listing

The LIST Pseudo-0Op is used to resume the listing of the assembly
output following an UNLIST Pseudo=-0p. The format of the
instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(blank) LIST (blank)

5.7.2 UNLIST - Suspend Listing

The UNLIST Pseudo-0p isAused to suspend the listing of the assembly
output. The format of this instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(blank) UNLIST

|
|
|
| (blank)
|

The UNLIST instruction does not appear in the listing, and source
statements that follow are not listed until a LIST instruction is
encountered in the assembly process. Instructions. that follow the
UNLIST are assembled even if they are not listed.

5-26

2/75



THE SINGER COMPANY
KEARFOTT DIVISION Y24L0A301M0810 o0 -

5.7.3 TTL - Define Page Title

The TTL Pseudo-Op is used to place a subheading or title on each
page of the listing of the Assembler's output. The format of this
instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

|
|
|
(blank) TTL Character String |
|

The string of characters of the operand field may contain any
EBCDIC character, including embedded blanks. Each TTL Pseudo-0p
causes page ejection and generates a subheading on each succeeding
page until another TTL instruction is encountered. Termination of
the printing of a subheading is performed by a second TTL Pseudo-0p
with an operand field containing blanks or a new title.

The comment field cannot be used.

5.7.4 EJECT - Start New Page

The EJECT Pseudo-0Op is used to cause the next line in the assembly
listing to be printed at the top of a new page. The EJECT
Pseudo-0p is not printed in the listing. The format of this
instruction is:

LABEL FIELD

| | | |

| - | OPERATION FIELD | OPERAND FIELD |

| I | |

| | | |

| (blank) | EJECT | (blank) |

| | | |
5-27

F4202-1 2/75



Y240A301M0810 - THE SINGER COMPANY
- REV KEARFOTT DIVISION

5.7.5 SPACE - Skip Blank Lines

The SPACE Pseudo-0Op is used to generate any number of blank 1lines
in the assembly listing. 1limited by the end of a page. That is,
regardless of the number of spaces requested, the maximum effect is
a page change. The format of this instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(blank) SPACE

The number n indicates the number of blank lines that are to appear
in the assembly listing.

5-28

F4202-1 2/75



THE SINGER COMPANY
KEARFOTT DIVISION Y240A301M0810 REV

6. THE ASSEMBLER OUTPUT LISTING

Each page of the Assembler listing will consist of a heading and
the side-by-side 1listing. The heading contains the Assembler
version, the deck name, title, and page number. The heading also
labels the various sections of the side-by-side listing as follows:

a. DIAGNOSTICS a sequence of zero to four one or two letter
mnemonics for error messages

b. LINE 1ine number

c. ADRES absolute or relocatable address in
hexadecimal

d. DADRES absolute or relocatable address in decimal

e. LC location counter
1. LC =

2. LC
only)

3. LC = -2 symbol defined is a set-symbol

‘4, LC = ** symbol defined is synonym for an
g external reference

f. PROGRAM machine instructions or data
g. SOURCE symbolic instructfons

See the Appendices for a sample program listing and a 1list of
Assembler Error Diagnostics.

6-1

F4202-1 2/75

0 to 24 current location counter

-1 symbol defined is absolute (EQU v:‘



THE SINGER COMPANY

Y240A301M0810 ppy KEARFOTT DIVISION

6.1 ERROR MESSAGES

After each Side-By-Side Object/Listing an expanded error message
printout 1is provided if any errors occurred at assembly time. The
error message printout consists of a heading, containing the
deckname, followed by an ordered error message 1listing which
contains the full error diagnostic and the line on which the error
occurred. In addition, the Assembler provides an error message
summary of the form

*xxxxxxxx*THERE ARE xxxx ERROR(S) IN THIS ASSEMBLY#*#*##anukwx

at the end of all assemblies. xxxx is the sum of the errors that
occurred in all the assemblies.

6.2 CROSS REFERENCE

Each page of the cross reference listing will consist of a heading

and a sorted 1list of all symbols in the assembly. The heading

contains the deckname and page number. The heading also labels the
~ various columns of the cross reference as follows:

a. RELATIVE ADDRESS OR SET VALUE
al. HEX - value of symbol in hexadecimal.
a2. DEC - value of symbol in decimal.
If the symbol is undefined ***x%**UNDEFINED***** {s printed.
b. LC - Location counter of the symbol
c. VARIABLE NAME - One to eight character symbol names
d. - LINE NUMBERS OF OCCURRENCES |
dl. DEFINED - the 1line number at which the symbol is
defined. If the symbol is a Block Data
Symbol, BLKDTA appears in this entry.

d2. REFERENCES - the line numbers of all references to
the symbol. ‘

6-2

F4202-1 2/75



F4202~1

2/78

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A301M0810

REV

APPENDIX A
ASSEMBLER ERROR DIAGNOSTICS

A-1



THE SINGER COMPANY
Y240A301M0810 gy - KEARFOTT DIVISION

The assembly errors which may be generated by a program are listed
below. For a more detailed explanation see SKC3120 Assembler/
Linkage Editor/Simulator Users Manual Y240A301M0811.

Error Description
A Symbols have differing location counters
AR Address out of Range
BD More than one block data :
D Symbols in operand must be defined
DC Invalid device code
E I1legal Expression in Operand
ES Entry Symbol is also a Set Symbol
L Improper Label
LC I11egal location counter number
M Multiply Defined Symbol
NE No end card
opP ‘ I1legal OP Code
OR Operand in Error
R Attempt to mix Data/lnstructions
-and Variables
RE Origin out of range
SH Shift count too large
T Truncation Error
UE Undefined Entry Point
A-2

F4202-1 2/75



F4202-1

_2/75

THE SINGER COMPANY

Y240A301M0810
KEARFOTT DIVISION

APPENDIX B
ASSEMBLER CONTROLS AND OPTIONS

B-1



Y24L0A301M0810 - THE SINGER COMPANY
REV KEARFOTT DIVISION

$ASM

The $ASM control card must precede each source deck to be
assembled. This card causes the Assembler to process the source
deck immediately following the $ASM control <card in the input
stream. An END Pseudo-Op card must be added to the end of the
source program. This Pseudo-Op causes the Assembler to terminate
the assembly process and return control to the control routine.

the format of the $ASM control card is:

column:
1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22
$ A S M n N n n n n O P T I O N IS
where: '
$ASM = Request for the Assembler function

nnnnnn = Source deck name (up to 6 alphabetic or numeric
characters). Must begin in column 6 with a alphabetic
character.

OPTIONS

One letter Assembler option codes. Option codes must
begin in column 16 and are written one code per column
with no embedded blanks. fOption codes are:

No Object Deck (Object Deck-Default)

Suppress Assembly listing (Listing-default)

16 Bit Data Option (19 Bit Data Option-Default)
Retrieve Saved Block Data Symbols (Use instream
Block Data Symbols or no Block Data Symbols-
Default)

Save Block Data Symbols (Do not save Block Data
Symbols or no Block Data Symbols-Default)

X = Suppress Assembly Cross Reference listing
(Cross Reference listing-Default)

IUVUr o
| I I I |

w
]

B-2

F4202-1 2/75



THE SINGER COMPANY -
KEARFOTT DIVISION Y240A501M0810 REV

APPENDIX C
SAMPLE PROGRAM LISTINGS

Cc-1

F4202-1 2/75



Y240A301M0810 -

REV

VERSINN

8.‘0

DIAGNNSTICS LINE

F4202-1

2/75

-
_—0 VTN UNTE il

- s b o i
VNN WN

IR YY)
S N O

N
o

wwhun N
—_0 O DdPNS

W N W
B Wi

B St i
-0 0 ®N> N

PR
BwN

FIP - N 1
o~V

wn
(=]

SKec 3000

THE SINGER COMPANY

KEARFOTT DIVISION

DECK NAMEmaUTILITH

ADRES DADRES LC

1
!

00574 1402 =1

00574 1402
00578 1403
0057¢C 1404
00570 1405
00S7E 1406

0057F 1407
00580 1408
00581 1409
00582 14140
00583 1411
00584 1a12
00585 1413
00586 1414
00587 1415
00588 1416
00589 1417
0058A  ju18
00588 1419
0058¢C 1420
00580 1421
0058€ 1422
0058F 1423
00590 1424
00591 1425
00592 1426
00593 1427
00594 1428
00595 1429
00596 1430

G Gt G D Gt Gt G P Pl P P (b G Sl b G (b Sh f P Gt (D P (md (i JuB juh fu fub

005A2 1442
005A3 1443
005A3 1443

00597 1431 wi
00597 1431 1§
00598 1432 |
00599 1433
00594  tu34 1
00598 1435
0059C 1436 1
0059C 1436 4
00590 4437
0059E 1438 1
0059F 1439 1
00549  qu4l80
005A1 1441 9

1}

1

1

PROGRAM

0191C
02A40
02802
0AA04
031914
01114
01948
01212
05A10
01118
0520E
01118
05A0C
01118
05204
01118
05A08
091114
01914
04i1C
0AAOY
0194C
0aAO3
0R002
0091A
0R801
00iiA
0nticC
0r807

0t11B
07A40
0P41A
07801
or807

029Co
07804
0”801
04204
0191C
04207
0191A

04118

ASSEMBLER

$ASM UTILIT

ATAN

ADD
ADD1

PATA

NEGN

NEGN
NEGN

POSN

USE

ORG

N

B
Ok

ENTRY
£QU
3TA
CLB
SLLD
AND
3TA
MUL
8TA
MUL
ADAB
MUL
$BAB
MUL
ADAB
MUL
8BAB
MUL
ADAB
MUL
STA
LDA
AND
STA
AND
JEQ
$BA
Ju
ADA
ADA
JI
ENTRY
EQu
$TAB
CLB
8T8
JuT
Ju
EQU
cPA
Jur
Ju
LDA
8TA
LDA
8TA
EQU
LDA

1

1402
ATAN
‘ .
RTEM3

2
H3IFFFF
RTEMY
RTEMY
RTEM?
UcT1t
ucr9
RTEM2
ucr?
RTEM?2
ucrs
RTEM2
ucTts
RTEM2
ucry
RTEMY
RTEMY
RTEM3
H70000
RTEMY
H10000
ADD
RTEMY
ADDY
RTEMY
RTEM3
UTLRET
PATAN
*
RTEM2

RTEMY
NEGN
POSN
*

NEGNB
NEGNOK
H3IFFFF
RTEMA+1
H70000
RTEMY

*

RTEM2

VERSION

8 .

SOURCE

10



THE SINGER COMPANY
KEARFOTT DIVISION Y2L0A501M0810 REV

VERSInNN 8,10 DECK NAME=aUTILIT*

DIAGNNSTICS LINE ADRES DADRES LC PROGRAM SOURCE
51 005A4 444 1 07803 JLT  NEGD
52 005A5 1445 { 0a80A Ju POSD
53 00546 1446 e} DEQN EQU  «

54 00546 1446 § 04202 LDA  HOFFFF
S5 005A7 1447 | 0aB818 Ju RESULT
S6 00548  {U44B =i NEGD EQU  «
57 005A8 1448 § 029Co CPA
58 00549 449 1 07804 JLT  NEGDR
59 005AA 1450 1 0RBOY Ju NEGDOK
60 005AB 1451 1 04204 NEGDB LDA  H3FFFF
61 00SAC 1452 1 01918 NEGDOK  8TA  RTEM2
62 00SAD 1453 1 04205 , LDA  H30000
63 00SAE 1454 | 0991A 8BA  RTEM1
64 005AF 1455 | 0191A STA  RTEM{
65 005B0 1456 =1 POSD EQU
66 00580 . 1456 | oOuticC LDA  RTYEM2e{
67 00581 1457 | 04918 8BA  RTEM2
68 00582 1458 1 07809 JLT  DGTN
69 00583 1459 1 oOa7F2 JER  DEQN .
70 00584 1460 § 04918 LDAB RTEM?
74 00585 1461 | 07880 EAB
72 00586 1462 1 01118 STAB RTEM?2
73 00587 1463 § OultA LDA  RTEM1
74 00588 1464 } 03882 sLc 2
75 005B9 1465 { 00206 ADA  H40000
76 005BA  qu66 | 02RC2 SRC 2 .
77 00588 1467 1 0391A STA  RTEMY
78 00SBC ~ 1468 i OGTN EQU  #
79 005BC  qu6B 1 OuttcC LDA  RTEM2+1
80 005BD 469 1 03440 cL8
81 00SBE  Ju470 § 01918 DIV  RTEM2
82 005BF 1471 -1 05B42 SRAD 2 .
83 00sCo0 1472 1 OpilA RESULT OR RTEM
84 005Cy 1473 { 0cB07 Ji1 UTLRET
85 END

c-3

F4202-1 2/75



I-202¢vd

sL/%

-3

XREF 1 DECK NAME=#UTILIT®
RELATrvE ADDRESS

(OR gFT VALUE) VARTABLE NAMF

HEX CEC Lc

00594 1428 1 ADD
00595 1429 1 ADD1t
0NS7A 1402 1 ATAN
00546 1446 1 DEQN
0058C 1468 1 DGTN
00202 514 HOFFFF
00203 515 H10000
00204 516 H3IFFFF
00295 s17 H30000
00206 . 518 H40000
00207 519 HT6000
005A8 1451 1 NEGDB
00%AC 1452 1 NEGDOK
00548 1448 1 NEGD
0059F 1439 1 NEGNB
00540 1440 1 NEGNOK
0059C 1436 1 NEGN
00597 143y 1 PATAN
00580 1456 1 POSD
00543 1443 1 PQOSN
00500 1472 1 RESULT
00114 - 282 RTEM{
00118 283 RTFM2
0911C 284 RTEM3
00212 530 ucr1y
00208 520 ) ucT!
0020A 522 ucTs
0020¢ 524 ucrs
0020E 26 ucr?
00210 528 ucr9
00007 7 UTLRET

wkakauparan THERE ARE

SKC 3000 CROSS REFERENCE DICTIONARY

LINE NUMRERS OF 0 URRENCES
DEFINED REFERENCES

31

32

4

53

78
BLKDTA
BLKDTA
BLKDTA
BLKDTA
BLKDTA
BLKDTA

60

61

1)

4s

ue

41

35

65

49

83
BLKDTA

BLKDTA

BLKDTA
BLKD?A
BLKDTA
BLKNTA
BLKDTA
BLKDTA
BLKDTA
BLKDTA

28
‘30
3
69
68
54
21
8
62
75
25
58
59
51
43
a4
39
34
5e
40
S5
9
83
it
72
9
12
21
19
17
15
13
33

0 ERROR(S) TN THIS ASSEMB| Yawwswwaspn

45

a7

10
14
24

84

60

22

16
81
26

23
18
32

29
20

3
36

38
46

48
‘50

63
61

64

66

73
67

77
70

NOISIAIQ 1104¥V3N
ANVdWOD ¥3ONIS 3HL

AN

OT80WTOSLVOhCZA



THE SINGER COMPANY Y2M301M0810
KEARFOTT DIVISION

APPENDIX D
SKC3120 MACHINE INSTRUCTION FORMAT SUMMARY

D-1

F4202-1 2/75



KEARFOTT DIVISION

Y240A301M0810 U - THE SINGER COMPANY
3

TABLE D -1 SKC3120 INSTRUCTION SET

MNEM. OPERATION NAME : MNEM. OPERATION NAME
ABSF ABSOLUTE OF A LDAB! |LOAD AB FMOM MEMORY, INDIR
ADA FIXED ADD MEMORY TO A LDABX | LOAD AB FROM MEMORY, INDEXED
ADAB FIXED ADD MEMORY TO AB LDAME LOAD A™ IMMEDIATE
ADAX FIXED ADD MEMORY TO A INDEXED LDAX LOAD A FROM MEMORY INDEXED
ADC FIXED ADD CARRY TO A LDR LOAD REGISTER FROM A
ADF FLOAT ADD MEMORY TO AB LDX LOAD ACTIVE INDEX FROM MEMORY
ADF | FLOAT ADD MEMORY TO AB, INDIR LDXM—X{ LOAD ACTIVE INDEX IMMEDIATE
ADMEM {FIXED ADD A TO MEMORY ’ MLF1 FLOAT MPY AB BY MEMXXY, INDIR
ADX FIXED ADD A TO ACTIVE INDEX Mov MOVE MEMORY TO MEMORY
AND LOGICAL AND MUL FIXED MPY A BY MEMORY
ANDM LOGICAL AND TO MEMORY, BASED MULAB |FIXED MPY AB BY MEMORY
CFX CONVERT FLOAT TO FIXED IN AB MULF FLOAT MPY AB BY MEMORY"
CLB CLEAR B MULX FIXED MPY A BY MEMORY INDEXED
CMA ONE'S COMPLEMENT A OR LOGICAL OR )
CMS SKIP ON A .LT. MEMORY ORM LOGICAL OM TO MEMORY
CPA TWO'S COMPLEMENT A SBA FIXED SUB MEMORY FROM A
CPAB TWO'S COMPLEMENT AB : SBAB FIXED SUB MEMORY FROM AB
CXF CONVERT FIXED TO FLOAT IN AB SBAX FIXED SUB MEMORY FMOM A INDEXD
DIAX I'NPUT DATA INTO A INDEXED SBC FIXED SUB CARRY FROM A
DIV FIXED DIVIDE A BY MEMORY SBF FLOAT SuB MEMORY FROM AB
DOAX OUTPUT DATA OUT OF A INDEXED SBF1 FLOAT SUB MEMORY FROM AB, INDIR
DPI DISABLE PROGRAM INTERRUPTS SDX VARIABLE SHIFT, INDEXED
DSZ DECREMENT MEMORY, SKIP IF 0 SKPMZ {SKIP ON MEMORY BITS 0, BASED
DXS 'DECREIMENT ACT INDEX, SKIP'IF 0 SKPM1 |SKIP ON MEMORY BITS 1, BASED
-EAB EXCHANGE A AND B . SLC SHIFT A LEFT, CIRCULAR
EPI ENABLE PROGRAM INTERRUPT . SLL SHIFT A LEFT, LOGICAL
EXR EXCH ACTIVE AND INACTIVE INDEX SLLD SHIFT AB LEFT, LOGICAL
FNEG FLOAT NEGATE AB ‘ SRA SHIFT A RIGHT, ARITH
HLT HALT SRAD SHIFT AB RIGHT, ARITH
INCMS JFIXED INCREMENT MEMORY SRC SHIFT A RIGHT, CIRCULAR

AND SKIP IF 0 STA STXE A IN MEMORY
JEQ JUMP 1F (A) .EQ. 0 STAB STORE AB IN MEMORY
JGE JUMP IF (A) .GE. O STABI |STORE AB IN MEMORY, INDIR
JGT JUMP IF (A) .GT. O STABX |STORE AB IN MEMORY, INDEXED
Ji JUMP INDIRECT STAX STORE A INDEXED
JLE JUMP IF (A) .LE. O STB STORE B IN MEMORY
JLT JUMP IF (A) .LT. O STR STORE REGISTER IN A
JNE June IF (A) .NE. 0 STX STORE ACTIVE INDEX IN MEMOMY
J§s JUMP TO SUBROUTINE TRP1 TRAP 1
Ju JUMP UNCONDITIONAL TRP2 TRAP 2
LDA LOAD A FROM MEMORY TRP3 TRAP 3
LDAB LOAD AB FROM MEMORY TRPY TRAP &4

D-2

F4202-1 2/75



1
THE SINGER COMPANY Y2h0§301M0810 -

KEARFOTT DIVISION REV

COMMENTS AND EVALUATIONS
Your evaluation df this document is welcomed by the Singer Company.

Any errors, suggested correcfions or general comments may be made
and continued on the reverse side. Please include page number and
reference paragraph and forward to:

The Singer Company

Aerospace and Marine Systems
Kearfott Division

150 Totowa Road

Wayne, New Jersey 07470
Attention: Department 5760

Name

Company Affiiiation

Address

Comments:

F4202~1 2/75



