CPL

UTX/32™ Release 2.1
Input/Output Subsystem Guide

January 1988

== GOULD

Electronics

Limited Rights

This manual is supplied without representation or warranty of any kind. Gould Inc.
therefore assumes no responsibility and shall have no liability of any kind arising from
the supply or use of this publication or any material contained herein.

Proprietary Information

The information contained herein is proprietary to Gould CSD and/or its vendors, and its
use, disclosure or duplication is subject to the restrictions stated in the Gould CSD
license agreement Form No. 620-06 or the appropriate third-party sublicense agreement.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subdivision (b) (3) (ii) of the rights in Technical Data and Computer Software Clause at
52.277.7013.

Gould Inc., Computer Systems Division
6901 West Sunrise Boulevard
Fort Lauderdale, Florida 33313

PowerNode, SelBUS, and UTX/32 are trademarks of Gould Inc.

Ethernet is a trademark of Xerox Corporation.

HYPERchannel is a registered trademark of Network Systems Corporation.
UNIX is a registered trademark of AT&T Bell Laboratories.

Portions of the UTX/32 Operating System are proprietary to AT&T Bell Laboratories,
and portions are proprietary to Gould CSD.

Copyright © 1988 by Gould Inc.
All Rights Reserved
Printed in the U.S.A.

History

The Inpur/Output Subsystem Guide for Gould UTX/32, Release 2.0, Publication
Order Number 323-005430-000, was printed in September, 1986.

The UTX/32 Input/Output Subsystem Guide, Release 2.1, Publication Order
Number 323-005430-100, was printed in January, 1988.

This document contains the following pages:

Title page

Copyright page

History page, page iii/iv

Contents, pages v through vii

Figures, page viii

Chapter 1, pages 1-1 through 1-3/1-4
Chapter 2, pages 2-1 through 2-21/2-22
Chapter 3, pages 3-1 through 3-8
Chapter 4, pages 4-1 through 4-11/4-12
Chapter §, pages 5-1 through 5-4
Appendix A, pages A-1 through A-25/A-26
References, page RF-1/RF-2

UTX/32 Input/Output Subsystem Guide iii/iv

Contents

) A A LR ST e T RSP S - LL viii
1 I R OTUCEION .. ive i ncnrionionsinssesnssns iinesmensesassinssassnsssasesssnnssnaseds soaiadss Sooshssiis o5 s1asm 33 1-1
Lt Scope-and Purpose of thiS GUIHEcamwememisimisissisnmsmmssisiismstiiismism 1-1
L2 Sutnnriaty Ot COMBIES ... cimsiomiisnmdisinims B B b i eviniigss 1-1
1.3 LT TS 11 o R S NE = L LD O S LI SO 1-2
1.4 TYpographic CONVEMIONS .o ssssomsmserosssmssssonsimissassasssionisisins 1-2
2 The Input/Qutput INterface ... 2-1
2.1] F3134070 11152 (01 [SteMmr ey S YL, ORI S O TR0 PO B0 .o o SO O 2-1
2.2 TR L ACES, v cronnmenes v s o st asabsso b st o se s men oA d FERR ST TR SR TS S OO T oA AR SRS AR S s s 2-2
2.2.1 Device DIIVEr INEITACE .iviiiieiiiieiieiiiie e ceereereeeereneieseiieesre e s see e eesaeenens 22
2:2.9 LB 77 (o 111 () 1 1 Lo = A R 2-3
223 Maintenance INTEITACEcoeivuiriirieieiererrirree e e e e eree e e eeaeees s saaasresasseeesesases 2-3
224 System Configuration INErfacecocoevveniinnnnnisiinnnn, 2-5
23 Systenn INIIalIZAtON. ..ismpeimsismsmonssmmmymomsrinssensssinsssisimasssisssssosssssisn 2-5
2.3.1 LOZEINE .oviiviiitiniiecieiie st sttt ettt s sb s st bbbt st bbb s 2-5
24 DA1A SEIUCTUTES oovveeeeeeeeeeeeeseeeesteerassessesssesseessseesseeseasaesseesssessssasseennsessseeseeaneenns 2-7
24.1 Processor Scratchpad (SCR) EDMFES ..oeiiiiiiiiiininiiiiiisec e 2-7
24.2 Service Interrupt Vector (SIV) ..., 2-9
243 Interrupt Context BIock (ICB)cccccocemruiiiiiniseesssisionssnsmsnemsistasasssasssssensassss 2-9
244 Device Conttol BlockiDEBY .. citiriivioriniteiniiihotatbiedos aiseisssesssessatinsvanes 2-9
245 Device Parameter Table (DPT)iivosiveeisiniimmsmisminsstaiansiosssassassnarsisosss 2-10
2.4.6 Subchannel Interrupt Routing Table (SRT)coooiiiiniiini i 2-11
24.7 Minor-device-to-DCB Mapping Table (MTD) ..o 2-11
25 TOI EXEcution Pathis ii....c..coctsievsisorssivessonmsisesesssionsaiiibibsitunmastinsmsspsbsstiismansiss 2-11
2.5.1 Calls from the Device DIVET :.:visiviniiivsmnmimsmenasisiiisissserinmassnsarasers 2-11
252 DEVICE INEITUPLS ..cvveiririiiererereresetesssssessstseseststse st seess e sssst st st bbb e 2-12
2.6 TOT Bitry POIDUS .0 s fititatssmsimscssiialossssisnasasssasassooiivuscinbinisssesssssaserssess 2-12
2.6.1 HOR BT 5o ncusisiisiimmiusimmesinmiimenaiion s vmet soon ket indbvims i nassani s s oS U eiaB RN Lnen 2-13
2.6.2 HOL_PRYS ..ocvieitii et e 2-13
2.6.3 BOT_ICEL 1ovviivuaisies st s 2-14
2.6.4 HOE_AIEE Lo s 2-14
2.6.5 HOB SHOociucniiniacciuisiascssssinstonssnassssssasassasmsnsessacdsssnsmasnsssasonsessmanssassnssinsnassassasas 2-15
2.6.6 FOI_EO vttt s s 2-16
2.6.7 HOE_SEPIO oottt s 2-16
2.6.8 HOE_FSCEL oot s 2-17
2.6.9 11 T 7 11 JE OO PRURURRRUUURIORPEROR PRSPPI S e 2-17

UTX/32 Input/Output Subsystem Guide v

2.6.10

2.7

27.1
2:7.2
273

3.1
3.2

33
381
33.2

3.3.3

4.1
42
43

4.4
44.1
442

443

444

445
4.4.6

vi

LOLISCLEIT cuoiiistessciusnsieissnnnsssiuinsosensidodinrinsivnssussaiusshivtintorsassnsnssnsnsnae TS LT ReR 2-17

Device DRt BRIy POIIS ..ol oniimmabuaissbmmssiismobus ottt 2-18
HEV _TBIY scscauivimmivesa il immamrs s e s s AT R BRSSOy 2-18
AEV MYumsiossnssiosassassssisasssissnasiosisvesenst buose soassavishnssnsssonassensnsinssonssabndsnssiise 2-19
dev_MAINL icisidsinn s o n i 2-20

101 Sitpport for Class E DeVICES .innuimanimismiasnsimnmvississbasmns 3-1

CICIVIEW .o sisiisimiacmniiionia it b T B s s S R ke 3-1

CHISS B IO oocnnnicmimmsamsmiinsniitmiob i s b i AR S S 3-1

YO Intertace MOBEIEENONS.cuc i sssiimmsstaminnsa bRl il 322
Extensions (0 EXiShing ROUHOES ..c....ciiauiminsainmasmsmomsamibs 3-2
INEW ROUIIIES 11teuiriniiinimmmmmuiinminiesinmmmienses s 3-3

H0L S0 B soorumrmunc messsiusuonss S i S s (o ST SRR s A v 3-3
(1) 1 1 1 QNN O L T s P 16 100 YR SURPUR TR VNN SO e ey 34
ioi_phys_e and ioi_physr_e ... 34
G s S e I e S AP T MY e 3-5
101 FSCH € innmasiasisssmsissmimmsvrssiossasmsiomssieis s 3-5
BOL G 10 1uiutensuiiniisinatinitossssviionssvits oqutomsss Koot 15 SUsa Byt G0N TR B IR 443 ¥R s sa 003 b b 3-6
BOL B € soisimmmusmmysrn sssssssam i soss e sy Gy ST S HSF S BESARERSRTATS 3-6
HOE IWEO) €., het e st i eiBese s bt o S5 4SS TP s T T2 B % deena eae b SateabEh e s e 3-7
J01 HCHL @ ovvsoisensinisosvetitorsinsivinesisionsitbas festemeses svnsutwanssosntosens sivonssssamasasiisions 3-7
101 €11 € i cuimisiinm s svamsresro o ST e e S e S T e R R 3-7
(4R L T TN CCRPIRL I (000, S et T 3-8
Data:STUCTULES! i coiuiiiviiiintainin i Rt stesin s te s s oo s ssesaasio 3-8

TheGenerie HSD DOINER ... mimiianii i snsbinin it i 4-1

OVEIVIEW.o.uiiiini oo iinb o ss isben o s s o T e o TSR SAo B ST R s 30 e b5 4-1

HESD Dot SHUHIES i il i 4-1

The Genernic PHVET i iunaniniminnnminmnsimisniinnmnnt haadsaims 4-3

CUSTOMIZATION ISSUES ...viuiiiiieiieeice ettt s 4-3
OVerview OFf TSSUES finismmssssrestosmitinssssessieinnistassassovsssuss s et vssssbrsheostongasssss 4-3
Buffering ApPproaches:c.cccviiiiiisiinnunininimnnsisisesionesssibsessie sossnssassssissss 4-4

Reading and Writing inl USEL SPACE ...uiicnissuiisieiusiveniisiosissaisaissesionssassisnss 4-4
Using Kernel BUffers ..o, 4-5
Blocking and Nonblocking I/ ...cuuiwusmersssivnimsssessmssasssssisssssiissessasis sivsasens 4-6
Managing Command QUEUESc.oeeeviiiniiiniiiiinieinieie e 4-6
Using a State Machine Model ... 4-7
Handling Sleeps and Wakeupsccooeoeinimiiiiiienieiii et 4-8
Checking for /O COMPIEHONS .vcisrssuvaresissessossssnessssasonsesssassssnansaisaivassesasss 4-8
ComMAND SEMANTIES ..t vneesiabis tetisiiiilin fons e o Ssatitstavsiio st stisesith i s T asahacsass 4-9
T0CHSEMANNCS: 4o nsiasnmmmnnarras niinnsmssi s dnssiamsinme 49
Network Device SETNATItICS uiiisssssssssisssssiosssvenssnnssissssssisissossasssessni snosss 4-9
Shared and Exclusive DeviCe ACCESS ...c.cciciciimisiisisssississonsassiississiassisssisses 4-10
Configuring the DEVICE ..ci..oiniiio ittt bisstiraiaivasse iitesivanusiestondistorssase 4-11

UTX/32 Input/Output Subsystem Guide

5 Direct INPUL/OULPUL «..cvvvunsenneemssssssssmsnsesssssssscssssssissesssssssssssassssssassasssssssssssess
5.1 BRI oo mmsmsiis i e s euss o3 S B R RS A A S RS S ST S A e 43
5.2 APPHCHHON ..cocueceraocccsnssscsssassinsinsssssssnssssssssssssassssmsassssassnssmssssssmssssssssasssssssssssosss
5.3 Issuing I/O Commands ... s
5.3:1 Virtual to Physical Address Translation ...
532 Ensuring Physical CONtIGUILY ...oeiemiiiiieeiiii e
5.3:3 Disabling Kernel ChecKingooeveimeereiinniiiiiii e
5.4 Priority OTAETINGcuvciiiireieiieisietsss s ss bt
9, I/O Request TrACKINGcvvvviiivrinirirsiisis sttt s ssssns
5.5.1 Identifying Outstanding REQUESLESo.ocevevniiivniiiiiiiiiiis e
3.5:2 Notification of I/O COMPIEtONSccreuureumiriiciisisssissssiss s
5.6 Connecting and DISCONNECHINGouvveiueieiiurieisceeiieieiis s
5.7 RESEIVING @ DEVICE ..ceuvaiviiinicie e e
Appendix A Input/Qutput Interface Specification Files ...
Al Sample Device Driver INerface ...
A2 GOMSEIIOUL cxcasrsscisrosmesssnsnssnss s e assasssmsmsssesnsss sasysasasmssaaasasev sasaeronsnsiososRodavnebans
A3 SEHOMOLI oottt s e sse s sasr st st st st s s s ssaststssbstssssssbsnsbansnsasss

REFETEIICES o.voeeeieeeieeetcteseseete e s s et e e st ste e sbea b sh e bbb s e sttt st st et ca s

UTX/32 Input/Output Subsystem Guide

vii

Figures

Figure Page
2-1 Location of the TOI in the Kemel ...icsissivensinessissnsassssissisisssessasssssassmssmsassss 2-1
2-2 Data Structure and IOI Execution Pathscccviieeeiiiiieeniiieieinine . 2-8
3-1 Class E Data STUCIULES c.o.e soveossssssssssssssssssssamssessaasssssvsisismssistssscriassssioss 3-2
4-1 HSD DAA STUCIUIES '1ivneesensessescossnsiresossissiodossssosiassationiosiomssisiissoiniain setimesnss 4-1
4.2 HSD Status and Error Return SIruCturescccovevieeeeeneesiesnnennsiesneinsesnnnens 4.2
4-3 State Transition Diagram for the Generic HSD Drivercoviiniinnienns 4-7

viii UTX/32 Input/Output Subsystem Guide

1 Introduction

This introductory chapter provides the following information about this guide:
« Its scope and purpose

e A summary of its contents

« Reader prerequisites

« Typographic conventions

1.1 Seape and Purpose of this Guide

This guide presents detailed information on the input/output (I/O) subsystem for
UTX/32TM including its real-time extensions and enhancements. The I/O
subsystem contains two major parts: the system configuration utility and
input/output interface (IOI). The system configuration utility allows sites
without source licenses to add custom device drivers to the system or to tune
system parameters. For more information on the configuration utility, refer to
the UTX/32 Operations Guide. The IOI, a portion of the UTX/32 kemel,
provides an interface between the UTX/32 device drivers and the devices
themselves.

1.2 Summary of Contents

This guide is divided into five chapters, an appendix, and a reference list.

Chapter 1 Provides general information about this guide

Chapter 2 Is an overview of the IOI, focusing on its general-purpose
(non-real-time) features

Chapter 3 Contains the basics of class E I/O and descriptions of the [OI
features that support it

Chapter 4 Is an overview of the generic, extensible device driver for the
high-speed data interface (HSD). a commonly used class E
device, and an example of how to customize it

Chapter 5 Explains how to use the direct [/O (DIO) facility, which
provides low overhead I/O services to real-time processes

Appendix A Contains samples of 101 specification files

References Contains full citations of the non-UTX/32 documents referred

to in this guide

You need not read the guide in the above order. Chapter 2 is an independent
module that can be read separately. Chapters 3 through 5 provide information
specific to real-time I/O.

UTX/32 Input/Output Subsystem Guide 1-1

1.3 Reader Prerequisites

Readers should be familiar with UTX/32 and to have access to its
documentation. See the UTX/32 Software Release Notes and the UTX/32
Documentation Guide.

1.4 Typographic Conventions

The typographic conventions for this guide are described below.

The following prompt is used in this guide:
$ Bourne shell prompt

Nonprinting and control characters
Nonprinting characters obtained by striking special keys are displayed
within angle brackets. For example, indicates the delete key, <CR>
a carriage return.

In this guide, a <CR> is assumed at the end of every command line unless
otherwise stated. The <CR> is displayed only if nothing else is entered on
the line or if the sequence of keystrokes would otherwise be unclear.

Control characters are represented using the caret notation. For example, "D
indicates <CTRL>-d. In examples, control characters are shown as echoing
on the terminal screen. Whether they echo on your terminal depends on its
settings; see stry(1).

Boldface
Command and utility names, filenames, pathnames, and words from code
are printed in boldface.

Example:
The nroff command is used to format text.

Exception: When such a term is long and all uppercase, such as
PLOCK_FRACTION, it is not printed in boldface.

1-2 UTX/32 Input/Output Subsystem Guide

N

Lineprinter and lineprinter bold
Displays of code and user sessions are printed in lineprinter font. In
displays of interactive user sessions, text typed by the user is printed in
lineprinter bold.

Example:
S 1s
filel file2 file3
Italics

Variable expressions that must be replaced with a value are printed in
italics. Square brackets ([]) around an italicized variable expression signify
that specifying the value is optional.

Example:
% cd [directory]

Italics are also used to introduce new terms, for titles of documents or
manual pages, and occasionally for emphasis.

Examples:

See mount(8) for further information.

The first tape, called the boor tape, contains three boot programs.

Blank pages
Since each major section of the document begins on a right-hand (odd-
numbered) page, blank left-hand (even-numbered) pages occasionally
precede new sections. You can be assured that such a page is intended to be
blank if the preceding page has a double page number, such as 4-5/4-6.

Manual pages
References to manual pages with manual section specifiers ending in RT
such as dioconnect(3RT) refer to real-time-specific manual pages in the
UTX/32 BSD Progranmwer's Reference Manual. If there is also a
FORTRAN version of the manual page, it will have a section specifier
ending in RF. A reference such as dioconnect(3RT/RF) indicates that there
are two manual pages, dioconnect(3RT) and dioconnect(3RF).

UTX/32 Input/Output Subsystem Guide 1-3/14

2 The Input/Output Interface

This chapter describes the input/output interface (IOI) of the Gould UTX/32
kernel for general-purpose features. Information provided includes:

Overview of the IOI

I0I external interfaces for device drivers, hardware devices, and the
maintenance program

Function of the IOI at system initialization
Data structures required by the 101
Description of IOI execution paths

IOI entry points through calls from the device driver and through hardware
interrupts

For information on IOI support for class E devices, see Chapter 3.

2.1 Introduction

Figure 2-1 illustrates the IOI as an interface between the device drivers and the
devices themselves. The IOl is shared by the device drivers and performs

APPLICATION MAINTENANCE
PROGRAM PROGRAM

USER
KERNEL

DEVICE

DRIVER

101
DEVICES

Figure 2-1. Location of the IOl in the Kernel

UTX/32 Input/Output Subsystem Guide 5.1

functions common to more than one device driver. Specifically, the IOI provides
the device drivers with the following services:

« Execution of /O instructions such as start I/O (SIO), stop [/O (STPIO), halt
1/O (HIO), and reset controller (RSCTL)

« Fielding and routing of interrupts

« Virtual address to physical address mapping
« Optional error-recovery assistance

. Reinitialization of SelBUS ™' controllers

In addition, the IOI directs the initialization of the I/O system during system
initialization and provides a maintenance interface to privileged user processes.
The manner in which these services are provided is discussed in the following
sections.

The IOI extends the idea of moving certain error-recovery operations (such as
issuing a sense-status channel program) into a separate section of code. This
reduces the number of states required by the driver for error-recovery. It also
allows for reasonable processing in situations such as the obtaining of a unit
check during a sense-status operation. The IOI does this by providing error-
recovery and similar services to all drivers. The design of the IOI allows drivers
to specify whether address mapping or error-recovery assistance is needed from
the IOL

2.2 Interfaces

Figure 2-1 illustrates the specific IOI external interfaces:
o Device drivers
« Hardware devices

o Privileged maintenance programs

2.2.1 Device Driver Interface

The interface between the IOI and the device drivers takes the form of routine
calls. The IOI has routines callable by the drivers to

. Initiate execution of the I/O instructions SIO, STPIO, HIO, and RSCTL
« Map virtual addresses to physical addresses in I/O command doublewords
« Reinitialize SelBUS controllers

Each device driver calls the appropriate IOI routine to perform each of these
three functions. Section 2.5, “*IOI Execution Paths,”” gives a specification for
each IOI routine called by a device driver. Appendix A contains typical device
driver applications of these routines.

UTX/32 Input/Output Subsystem Guide

Each device driver must provide routines for the IOI to call. The IOI calls the
following routines:

o dev_init() to initialize the driver during system initialization
« dev_intr() to process interrupts for that device

« dev_maint() to request or release a subchannel on behalf of a privileged
user process

where dev represents any one of a series of abbreviations for standard device
drivers (see Section 2.3.1, "Logging"). The device driver entry points are
specified in Section 2.7, *‘Device Driver Entry Points.”’

2.2.2 Device Interface

All interaction with devices occurs in the device interface. At the request of the
device drivers, the IOI uses data structures created during system
configuration/generation to send information to the devices by executing
extended I/O instructions. The IOI receives information from the devices
through condition codes set by the I/O instructions and through interrupts.
Condition codes are sent to the drivers as return codes from the routine calls
issuing the I/O instructions. Interrupt information is passed to the drivers
through calls to the drivers’ interrupt service routines.

Device status may also be presented to the IOI when an I/O instruction is
executed. When this occurs, the new status is presented to the driver’s interrupt
service routine. If the subchannel presenting status is equal to the subchannel to
which the I/O instruction referred, the instruction is not retried. Instead, the
caller is informed that an interrupt is pending on that subchannel.

2.2.3 Maintenance Interface

A maintenance interface is provided that allows a privileged user process to
execute channel programs and other /O commands for configured devices.
Additionally, a privileged user process may communicate with drivers that
provide an entry point for the purpose. The interface for executing I/O
instructions resides in the IOI, providing a consistent interface from device to
device, simplifying what each device driver must do to allow maintenance access
to its devices.

The following occurs when a privileged process requires direct access to a
device:

1. The process opens /dev/ioin, where n is a value 0 - 3.

2. The process fills in the maint_req data structure with the channel address of
the device to be accessed (see Appendix A, Section A.2).

3. After maint_req is built, the process calls the ioctl() routine with a pointer
to maint_req. The ioctl() operation code (opcode) used for this call is
IO_REQUEST. This call allows the process to request a device to be placed
in maintenance mode.

UTX/32 Input/Output Subsystem Guide .5

4. The IOI receives maint_req and determines if there is a device control
block (DCB) for the device. If not, the value -1 is returned and the external
variable errno contains the return value ENODEV.,

5. The IOI calls the device maintenance interface routine dev_maint. The first
parameter is the address of the DCB for the device. The second parameter
indicates that the request is for access to the device MR_REQUEST. The
device maintenance routine can also be called with the second parameter set
to values MR_RELEASE and MR_COMM, which will be described later.

6. The device driver either approves or denies the request. If the driver cannot
relinquish the device (for example, because it is in use), it returns the value
EBUSY. If the driver can relinquish the device, it notes internally that the
device is in use for maintenance and returns the value zero.

7. The IOI passes the result of the call back to the maintenance process
through the external variable u.u_error. A zero return value to the user
process indicates success. A -1 return value indicates failure, and the reason
is found in errno (see errno(3) and intro(2)).

8. The user process executes one device reservation IO_REQUEST ioctl() for
each subdevice needed to be simultaneously accessed.

9. The user process is now ready to perform I/O. The user process builds the
maint_rep data structure that describes the operation to be supported.
Procedures ioi_sio(), ioi_hio(), ioi_stpio() or ioi_ictl() may be accessed by
using the following opcodes with ioctl(): IO_SIO, IO_HIO, IO_STPIO or
IO_ICTL, respectively. Additional fields provide arguments to the call. For
definitions of the fields, see the data structure declarations in Appendix A,
Section A.3.

After the data structure is built, it is passed to the IOI by the ioctl() system
call with one of the opcodes specified above. In the event of error, errno
contains a value indicating the reason for failure. The call to ioctl() does
not block, so several channel programs may be executed simultaneously by
executing separate ioctl() calls requesting ioi_sio() calls on different
subchannels.

10. The user process now waits for an interrupt by executing an ioctl() system
call with IO_WAIT as the opcode. This call blocks until an event related to
one of the reserved DCBs occurs. When such an event occurs, the IOI
completes the system call by filling in the user-specified memory area with
a copy of the DCB, and with the maint_result data structure containing the
reason the ioctl() completed. The reason field of maint_result takes on the
same values as the reason parameter for a device driver’s interrupt service
routine.

11. The user process now takes the appropriate action such as building and
executing another channel program.

UTX/32 Input/Output Subsystem Guide

12. When the user process is finished with a subchannel, it may either explicitly
release the subchannel using an ioctl() call (with opcode IO_RELEASE), or
implicitly release all DCBs allocated to it by closing the /dev/ioin file.

13. For each DCB (that is, subchannel) released, the device maintenance routine
dev_maint is called. The first parameter is a pointer to the DCB describing
the subchannel being released. The second parameter indicates that the
DCB is being released (opcode MR_RELEASE).

The privileged maintenance process may use the ioctl() opcode IO_COMM to
communicate with drivers whose maintenance routines are written to support this
communication. Any channel address belonging to the driver may be used, and
the DCB associated with the channel address does not have to be reserved by the
maintenance process. The second parameter to the maintenance process is
opcode MR_COMM; the third parameter is the address of the maintenance
process comm buffer. The manner in which the driver and the maintenance
process use comm is device driver-dependent; not all drivers support this opcode.

Directory /usr/lib/libioi.a includes a library of routines to make some of the
previously mentioned actions easier to perform (see i0i(7)). If you have a source
software license, you may want to examine the SCM initialization daemon and
device driver.

2.2.4 System Configuration Interface

The IOI uses data structures and assembly language routines produced during
system configuration/generation. The content and use of these structures are
discussed in Section 2.4, **Data Structures.’’ For the declarations of these class F
I/O structures, refer to Appendix A, Section A.2.

2.3 System Initialization

At system initialization, the kernel initialization routine calls the ioi_init()
routine. ioi_init() initializes the SelBUS controllers, Multi-Function Processors
(MFPs), and IOPs, and calls each device initialization routine. See Section 2.6,
**TIOI Entry Points,”” for more information on ioi_init().

2.3.1 Logging

The IOI provides a debug logging facility. It consists of a circular buffer and
routines that do the following in the buffer:

o Make entries

. Print entries

UTX/32 Input/Output Subsystem Guide 2-5

2-6

« Enable the logging of entries
« Disable the logging of entries

As distributed, the kernel is compiled without the logging option. Source
software licensees can set the makefile variable DDOPTS to

DDOPTS=-DQQDEBUG
and recompile all /O modules.

The IOI and device drivers must have access to logging for debugging and
hardware diagnostic purposes.

The routine that makes entries in the buffer is called gqlog(). By convention,

aqlog() is invoked only by the define QQLOG(). QQLOG() accepts a variable
number of arguments of the format:

QQLOG((routine, reason, nargs [, arg ...]))

NOTE: The extra set of parentheses is required. nargs may be a value 0 - 4 and
should be followed by the appropriate arguments. Values for routine and reason
may be selected from file selio/ioi.h. Additional entries may be added. For
convenience, the predefined QQLOG LOG_ENTRY reason and LOG_EXIT
reason may be used on entry to and exit from a routine to delimit the routine’s
log activity.

The routine that prints the buffer is qgdump(). It is declared in file
selio/i_logging.c. Tables of strings corresponding to the defined routine names
and reasons passed to QQLOG(), allow gqdump() to decode the circular buffer
into legible text. After a system crash, gqgdump() may be invoked by setting the
program counter to the value of the symbol dogqdump() and placing the
processor in the RUN state.

Logging to the circular buffer may be disabled or reenabled by calling qqoff() or
gqon(), respectively. '

For hardware diagnostic purposes, the console printf() is used. The kernel keeps
the last 8-Kbyte characters printed to the console in a ring buffer. This buffer is
periodically read by a user process and written to a disk file. Later, the disk file
can be searched using grep or vi to locate error messages for specific devices.
Device drivers calling printf() use the following format in order to make the
searches successful:

dev: message
Standard device drivers use one of the following values for dev:
as 8-Line Asynchronous Communications Multiplexer (8-Line Async)

cn Console

UTX/32 Input/Output Subsystem Guide

dk Disk

en Ethernet ™
fl Floppy disk drive
Ip Lineprinter

md Memory disk

mt Magnetic tape

sc Synchronous Communications Multiplexer (SCM)

sd SCSI disk

st SCSI tape

Custom device drivers should usc the same two-letter identifier used in their

configuration file entry. The string ioi: precedes errors logged by the IOIL

2.4 Data Structures

The following data structures are produced and initialized during system
configuration/generation. They are required by the IOL.

SCR Device and interrupt entries portion of the processor scratchpad
SIvV Service interrupt vector for SelBUS interrupts

ICB Interrupt context block

DCB Device control block

DPT Device parameter table

SRT Subchannel interrupt routing table

MTD Minor-device-to-DCB mapping table

Figure 2-2 illustrates the relationships of the data structures discussed in the
following sections. See Appendix A, Section A.2, for the declarations of the
class F I/O structures.

2.4.1 Processor Scratchpad (SCR) Entries

The device address and interrupt priority information in the scratchpad is
fundamental to starting I/O operations and to servicing I/O interrupts. The
system configuration process generates 128 device and 112 interrupt entry
initializations. These are merged by kernel code with software-defined interrupt
entries and stored in the scratchpad at initialization time.

The processor indexes into the device or interrupt entries during an I/O operation
or an interrupt operation, respectively. During interrupt operations, the device
priority is used to index the service interrupt vector (SIV), which in turn is used
to find the ICB for the interrupting device.

UTX/32 Input/Output Subsystem Guide 2-7

SHUNITVIVA ¢——
MOT4 T0HLNOD s
SNLVLS
N NOILI1dN0D aN3IoI1
.“ H3ILINIOd
< 1 1001
WH3IL
_ H3I1NIOd $S3yvaav
1001 1901 HSI
JLVAIYd 43LNIOd
N30 1S
L. I,MFZ_O& HLON3T
< 14408 ISNIS
ASNIS
43LNIOd
H344N8 JLVIS 101 b > a0l
3SN3IS
301A30 40S
X3AdNI Lda Y3d (1)
1da y y
P gNS/NVHO <
<+
® < >
® (ndp ‘diersor) =
™ nur-ol
® Ul <ABp - A 4SI @ 90!
® ®
[L]
® ®
[®
® ®
(ndp ‘dieisor)
nur-iol
< < <
(TINNVHOENS YS| 401
H3d INO)
g0a nui—iol SHOLO3A
y LdNYYIALNI
JOINY IS
301A30 HONIW TINNVYHOENS < SS3004d
A8 3IX3AaNI A8 d3X3anN| N A31LdNYYILNI

aiw (801) H3d INO) LYS 181501

32 Input/Output Subsystem Guide

>

U

Figure 2-2. Data Structure and IOI Execution Paths

2.4.2 Service Interrupt Vector (SIV)

The SIV consists of a list of pointers to the ICBs. It is accessed by the processor
to locate the ICB for an interrupting device. The device priority (obtained from
the device entry in the scratchpad) is used to index the SIV. The address of the
SIV is stored in the scratchpad by the kernel initialization code. During system
initialization, the kernel merges the SIV with software-defined interrupt entries
and loads them into the scratchpad.

2.4.3 Interrupt Context Block (ICB)

The hardware requires an ICB for each SelBUS device that may cause an
interrupt. The ICB is used to save the old context when an interrupt or trap
occurs, and contains the new context for servicing the interrupt.

Each ICB associated with a class F I/O device contains a location where the
processor stores a pointer to the status word provided by the interrupting

controller. Each ICB for a class F I/O device also contains a word used to point
to the I/O command list for start I/O operations.

The IOT uses only ICBs involved in I/O operations.

2.4.4 Device Control Block (DCB)

The DCB is the central data structure for controlling I/O on a specific
subchannel. One structure is built for each subchannel configured. The structure
contains the following:

Channel/subchannel address
Read-only by the IOI and the device driver

This address is set during system configuration.

Minor device number
Read-only by the IOI and the device driver

This number is set during system configuration.

Device parameter table (DPT) index
Read-only by the IOI and the device driver

This index is set during system configuration.

[OI-state vector
For private use of the IOI

Sense buffer pointer
Read/write by the IOI; read-only by the device driver

The sense buffer pointer points to a sense buffer allocated by the IOI. The

length of the allocated sense buffer is specified by the device’s DPT entry.
This buffer is read/write by the IOI and read-only by the device driver.

UTX/32 Input/Output Subsystem Guide 2-9

Sense count
Read/write by the IOI; read-only by the device driver s

The sense count is set by the IOI during error-recovery to indicate how
many bytes of data are in the sense buffer. This count is intended to
accommodate devices that may return variable amounts of sense data. The
count never exceeds the maximum sense count for the device. A count of
zero indicates sense data is not present. The IOI may deallocate the sense
buffer after the device interrupt service routine returns control to the IOL

IOCL pointer
Read/write by the IOL; read-only by the device driver

The IOCL pointer points to the current [/O command list for the subchannel.

It is set by the 1OI when ioi_sio() is called. The driver may usc this valuc
during interrupt servicing for error-recovery or for deallocating the IOCL
after the successful completion of the I/O.

I/O completion status
Read/write by the IOI; read-only by the device driver

The I/O completion status contains the channel status doubleword pointed to
by the ICB when the interrupt occurred. The fields are as follows:

« Subaddress of completed I/O

. Pointer to terminating IOCD + 8 bytes

o Channel and device status flags

o Residual byte count

Normally, the driver uses only the last three fields of the structure.

Exclusive use word
This is read/write by the driver and is for the exclusive use of the driver.
This word may be used any way the driver needs. The IOI never touches it.

2.4.5 Device Parameter Table (DPT)

2-10

A DPT is a structure containing a list of device parameters. There is one entry
for each SelBUS controller, each IOP, and each IOP-based controller or MFP.
Each entry includes the following parameters:

. ICB pointer

« Sense length

« Driver initialization routine address

« Driver interrupt service routine address

. Driver maintenance routine address

UTX/32 Input/Output Subsystem Guide

» Number of subchannels (subchannel interrupt routing table length)
- Pointer to the subchannel interrupt routing table

o Type of controller

o Address of controller working storage

- Pointer to a character string containing the name of the device

2.4.6 Subchannel Interrupt Routing Table (SRT)

Entries in-the SRT map subchannel addresses to DCB addresses. The ioi_intr()
routine finds SRTs through the DPT entry for the interrupting device. ioi_intr()
indexes the SRT by the subchannel address to locate the DCB associated with the
subchannel. There is one SRT for each SelBUS controller and cach IOP or MFP,

2.4.7 Minor-device-to-DCB Mapping Table (MTD)

One MTD is built for each device driver. Each table has one entry per
subchannel. The tables are used by the device drivers to map minor device
numbers into DCB addresses. If the device type associates more than one
subchannel with a physical device, the subchannels are grouped together in the
MTD. Then the driver must index the MTD by the minor device number times
the number of subchannels per device.

If the minor device address space is not contiguous, the configuration program
/etc/config fills the holes in the address space with null entries. These null entries
appear in the table to reflect the holes. If the IOI initialization routines discover
that a controller is not present on the SelBUS, the IOI locates and changes the
proper MTD entries to zeros.

Drivers are responsible for refusing open requests on devices having null MTD
entries. Additionally, drivers such as disk or tape must issue a sense channel
program during their open() routine before completing the open request, to
ensure that there are mounted media.

2.5 IOI Execution Paths

Two major execution paths exist through the IOI (see Figure 2-2). One path
starts with calls from the device driver. The other path starts with device
interrupts. The following two sections discuss the paths.

2.5.1 Calls from the Device Driver

Driver routines call I0I service routines directly. All IOl routines that perform
I/O require a pointer to the DCB for that subchannel. Device driver routines such
as dev_read and dev_write obtain this pointer by using the driver’'s MTD array.

The device driver interrupt routine dev_intr does not reference the MTD array
because when called by the IOI, the routine receives the address of the DCB.

[§®]

UTX/32 Input/Output Subsystem Guide -11

The IOI service routines store state information in the DCB for the referenced
subchannel, and execute the requested I/O instruction. The SIO instruction
requires that the address of the channel program be stored in the ICB for that
controller. The ICB is found by indexing the device parameter DPT with the
DPT index from the DCB.

2.5.2 Device Interrupts

The following flow of control is illustrated in Figure 2-2.

1. When a hardware interrupt occurs, the processor finds the correct location in

the SIV by means of the entries in the hardware scratchpad SCR.

. The addressed SIV location points to the ICB for the particular SelBUS

device.

. The old processor status doubleword (PSD) and a pointer to the channel

status structure are stored in the ICB.

. The new PSD is fetched from the ICB and loaded.

5. The new PSD points to an assembly language routine (dev_isr) generated by

the system configuration process. This routine builds a new stack frame on
its own private stack, pushes the channel status doubleword address found in
the ICB and DPT index onto the stack, and calls ioi_intr().

.ioi_intr() accesses the channel status doubleword pointed to by the first

parameter to determine the subchannel address, indexes the DPT to
determine the SRT address, and then indexes the SRT with the subchannel
address to locate the DCB. ioi_intr() uses the channel status information
pointed to by the ICB, plus the IOI-state information in the DCB, to
determine whether to perform additional error-recovery or to call dev_intr.
ioi_intr() obtains the driver’s dev_intr address from the DPT.

Interrupts from devices for which there is no DCB are considered erroneous and
produce an error message on the console.

2.6 101 Entry Points
The IOl may be entered through

o

Calls from the device driver

Hardware interrupts

The following subsections describe IOI entry points.

UTX/32 Input/Output Subsystem Guide

2.6.1 ioi_init

Call format

Purpose

Parameters

Return value

2.6.2 ioi_phys

Call format

Purpose

Parameters

ioi_init()
ioi_init() is called by the system at system initialization. It

initializes the various SelBUS controllers, IOPs or MFPs, and
calls each driver initialization routine.

ioi_init() clears the MTD entries associated with controllers
found to be offline during System initialization.

None.

None.

ioi_phys(proto_ioclp, dest_ioclp, dest_len, procp)

ioi_phys() performs memory mapping functions for I/O
devices. This operation is performed by expanding channel
command words containing virtual addresses into channel
command words containing physical addresses. Data
chaining is used if the buffer described by the virtual
address(es), and the count(s) in the prototype I/O command
list proto_ioclp cross a page boundary.

ioi_phys() returns a value indicating whether the conversion
was successful or why it was not.

If the caller uses dynamically allocated memory, the caller
must later deallocate that memory, as the IOI does not
deallocate it.

ioi_phys() calls pvtophys(addr, procp, direction) to
convert virtual addresses to physical addresses. By using a
process table pointer, it is possible to perform mapping for
processes in memory, even when called from an interrupt
service routine.

proto_ioclp(*iocdT) is a pointer to the prototype I/O
command list to be converted from virtual to physical
addressing mode.

dest_ioclp(*iocdT) is a pointer to the destination area for the
converted /O command list. If it is zero, memory is
allocated for it.

dest_len(int) is the maximum number of I/O command lists
of the destination area for the converted I/O command list.

UTX/32 Input/Output Subsystem Guide 2-13

Return value

2.6.3 ioi_ictl

Call format

Purpose

Parameters

Return value

2.6.4 ioi_intr

2-14

Call format

Purpose

procp(struct proc*) is a pointer to the process table entry for
the process requesting the I/O. It should be set to zero for
requests involving kernel virtual addresses.

Zero indicates the conversion was successful.

EFAULT indicates that some part of the specified user buffer
is outside the virtual address range assigned to the user.

EINVAL indicates that the channel program to be converted
is too long or contains an illegal opcode such as transfer in
channel (TIC).

ioi_ictl(dpti)

ioi_ictl() reinitializes a SelBUS controller on behalf of a
SelBUS device driver. Currently, only disk initialization and
tape controller initialization are supported. As a last resort,
disk and tape drivers may call this routine in their error-
recovery process to clear a hung controller.

This routine cannot be used to initialize a device that was
found offline (with respect to the SelBUS) during system
initialization, because the DCB pointers in the MTD with
which the controller is associated have been permanently lost.

dpti(int) is an index into the device parameter table. The
index can be obtained from any DCB for the offending
device.

None.

ioi_intr(statp, dpti)

ioi_intr() performs the interrupt service operations common
to all device drivers. After performing the operations,
ioi_intr() calls the interrupt service routine for the associated
driver.

ioi_intr() is called by the assembly language interrupt
service routines generated during system configuration.
These routines set up the stack, push both a pointer to the
ICB through which the interrupt occurred and the appropriate

index to the device parameter table onto the stack, and call
ioi_intr().

UTX/32 Input/Output Subsystem Guide

Parameters

Return value

2.6.5 ioi_sio

Call format

Purpose

Parameters

statp(*iostatT) is a pointer to the channel status doubleword
presented to the CPU and stored in the ICB when the
hardware interrupt occurred.

dpti(int) is the index into the DPT. This is used to find the
address and length of the appropriate SRT.

None. However, ioi_intr() logs an error message to the
console if an interrupt occurs for a subchannel that is not
configured.

ioi_sio(dcbp, startiocp, timeoutvalue, errprocflags)

ioi_sio() starts I/O (that is, executes a channel program) on
behalf of the caller. If the channel program fails, various
error handling options are available. These options are
discussed in the section entitled deyv_intr.

dcbp(*dcbT) points to the DCB describing the subchannel
on which the I/O is to be performed.

startiocp(*iocdT) points to the IOCL to be executed. The
IOCDs in the IOCL must describe locations in physical
memory. The driver may use ioi_phys() to convert IOCLs
containing virtual addresses into IOCLs containing physical
addresses.

timeoutvalue(int) may be set to a nonzero value if the caller
wishes to have the channel program terminated by the IOI if
the program does not complete within a specified number of
seconds. In the event of a time out, the manner in which the
1/O is terminated is determined by the value of the error
processing flags errprocflags.

errprocflags(int) are error processing flags indicating the
action the IOI must take when the I/O cannot be completed
normally. Generally, the IOI obtains sense information for
the driver if these flags are set correctly. Error processing
flags perform the following functions:

I[E_SUC Obtains sense information on a unit check
I[E_SUE Obtains sense information on a unit exception
IE_SAT Obtains sense information on an attention
IE_SIL Obtains sense information on incorrect length

UTX/32 Input/Output Subsystem Guide 2-15

Return value

2.6.6 ioi_hio

Call format
Purpose

Parameters

Return value

2.6.7 ioi_stpio

-16

Call format

Purpose

Parameters

Return value

IE_RTYCBY Retries the operation if it is refused due to a
busy controller

IE_HTO Issues an HIO on time out
IE_RTO Issues a reset-controller instruction on an HIO
time out

The return value from ioi_sio() indicates whether the I/O was
started successfully.

IS_OK Indicates that I/O started successfully

IS_BY Indicates that I/O failed due to a busy
controller

IS_IP Indicates that /O failed due to an interrupt

pending on this subchannel

IS_RTCNT Indicates that I/O failed due to a busy
controller

I[S_BADSTATE Indicates that the IOI did not attempt to
start the I/O because the subchannel was in
the wrong state

ioi_hio(dcbp, timeoutvalue, errprocflags)
An HIO has been issued to the specified subchannel.

The meanings of the parameters dcbp, timeoutvalue,
errprocflags, and the return value are the same as for
ioi_sio(), except that IE_HTO is a no-op.

The return values are the same as for ioi_sio().

ioi_stpio(dcbp, timeoutvalue, errprocflags)

An STPIO instruction has been issued to the specified
subchannel.

The meanings of parameters dcbp, timeoutvalue,
errprocflags, and the return value are the same as for
ioi_sio(), except that IE_HTO is a no-op.

The return values are the same as for ioi_sio().

UTX/32 Input/Output Subsystem Guide

2.6.8 ioi_rsctl

Call format

Purpose

Parameters

Return value

2.6.9 ioi_wio

Call format

Purpose

Parameters

Return value

2.6.10 ioi_seterr

Call format

Purpose

Parameters

ioi_rsctl(dcbp, errprocflags)

ioi_rsctl issues a reset-controller instruction to the
subchannel indicated by the specified DCB.

The meaning of dcbp is the same as for ioi_sio(). The only
error-recovery bit defined in errprocflags for this call is
RTY_CBY. All other error-recovery bits are no-ops.

The return values are the same as for ioi_sio().

ioi_wio(dcbp)

ioi_wio() is called by the console routine when it must wait
for an I/O operation to complete with the interrupts disabled.
The routine must be called with interrupts disabled at, or
higher than, the priority level of the I/O for which the
ioi_wio() is waiting. The driver’s interrupt routine is called
when the I/O completes. After that, ioi_wio() returns to the
caller.

dcbp(*dcbT) points to the DCB that describes the
subchannel on which the I/O is to be performed.

IS_OK Indicates successful completion of the I/O

ioi_seterr(dcbp, errprocflags)

ioi_seterr() sets the error processing flags for spontaneous
interrupts. It is generally called from the device init routine,
but may be called at any time to set or reset the spontaneous
error processing flags. If a driver does not call ioi_seterr, the
IOI does not obtain sense information on a spontaneous
interrupt.

dcbp(*dcebT) points to the DCB describing the subchannel
on which the error processing is to be performed.

errprocflags(int) are error processing flags indicating the
action the IOI must take when the I/O cannot be completed

normally. Generally, the IOI obtains sense information for
the driver if the flags are set correctly. Error processing flags

perform the following functions:

UTX/32 Input/Output Subsystem Guide 2-17

Return value

IE_SUC Obtains sense information on a unit check

IE_SUE Obtains sense information on a unit exception
IE_SAT Obtains sense information on an attention
IE_SIL Obtains sense information on incorrect length
None.

2.7 Device Driver Entry Points

There is a DCB data structure allocated during system configuration for each
subchannel that a device driver handles. To enable a driver to find the DCBs for

its devices. an MTD is built for each driver during system configuration. The
MTD maps a minor device number to a DCB address.

In the following sections, the dev field is an abbreviation representing the
standard device driver (see Section 2.3.1, *‘Logging’’).

2.7.1 dev_init

Call format

Purpose

Parameters

dev_init()

dev_init() is called by the IOI at system initialization to
allow the device driver to perform any necessary device-
dependent initialization. Disk and tape drivers are not
required to initialize their controllers. Drivers for IOP-based
controllers requiring initialization (such as the SCM) may
choose to initialize their controllers now or when they receive
the first open request.

The DCB structure contains a word for the exclusive use of
the device driver. At initialization, the driver may choose to
link each DCB to its private data structure for that minor
device. The DCBs may be found through the MTD. A
global variable containing the length of the MTD is also
available.

dev_init() may be called more than once during system
initialization. The driver should keep a state variable to
indicate whether its initialization has been completed.
Redundant calls to dev_init() are treated as no-ops.

A parameter of zero value is currently passed. This
parameter may be used later to indicate whether
reinitialization is requested. This might occur, for instance, if
a controller was connected to a reinitialized IOP. Presently,
this parameter can be ignored.

UTX/32 Input/Output Subsystem Guide

Return value

2.7.2 dev_intr

Call format

Purpose

None.

dev_intr(dcbp, reason)

This routine is the addressed device driver’s ISR. It is
responsible for determining the reason for the call and for
taking the appropriate action. The reason parameter
distinguishes among the following cases:

Successful I/O completion
In most cases, dev_intr(dcbp) is called when I/O
successfully completes. In this case, the ISR notifies the
user or system task that originally requested the driver to
perform the I/O. The ISR starts the next I/O operation.

I/O completion with abnormal status
The interrupt fielded by the IOI had an abnormal status
(that is, it was not equal to channel end/device end). If
the error handling flags to ioi_sio() requested them,
sense data are obtained. The ISR is then responsible for
taking appropriate action. The availability of sense data
is indicated by a nonzero sense buffer count in the DCB.

Spontaneous interrupt
Some controllers may interrupt spontaneously. The ISR
may then take appropriate action. The IOI has already
attempted to obtain sense information if Attention or
Unit Check was set with the spontaneous interrupt.

I/O successfully halted by request or timeout
The executing channel program was cancelled by an
HIO or STPIO instruction. This may be due to a call to
ioi_hio() or ioi_stpio(), or to a timed out ioi_sio()
request. The ISR performs the appropriate action. A
typical use of this is in handling tandem flow control on
TTY lines.

I/O cancelled by reset controller after haltio timeout
The executing channel program was cancelled by an
RSCTL instruction. The ISR takes whatever action is
appropriate. The ISR is not notified if the RSCTL was
issued in response to a call to ioi_rsctl() because in this
case, it is assumed that the driver knows the RSCTL has
been executed.

Broken
The device failed to accept an HIO or RSCTL operation
and has been declared broken by the IOI, or the
command timed out and halt was not requested.

UTX/32 Input/Output Subsystem Guide 2-19

Parameters

Return value

2.7.3 dev_maint

Call format

Purpose

Parameters

dcbp(*dcbT) is a pointer to the DCB associated with the
subchannel. From the DCB, the driver can determine such
information as the reason for the interrupt, the presence of a
sense buffer, and the terminating address of the IOCL. The
terminating address may be useful for error-recovery on
devices such as the disk. See Section 2.4.4, "Device Control
Block (DCB)," for more information.

reason(int) is a code indicating the reason the driver's
interrupt service routine is being called. reason may have
one of the following values:

ICS_OK Successful I/O completion

ICS_AB I/O completion with abnormal status

ICS_SI Spontaneous interrupt

ICS_HIO I/O successfully halted by request or time out

ICS_RSCTL I/O cancelled by reset controller after haltio
time out

ICS_BROKEN The device failed to accept an HIO or
RSCTL operation and has been declared
broken by the IOI, or the command timed out
and halt was not requested

None.

dev_maint(dcbp, reason, id)

dev_maint is called by the IOI when a privileged user process
tries to access a subchannel controlled by this device driver.

dcbp(*dcbT) points to the DCB for the requested
subchannel.

reason(int) indicates the reason for the call and takes the
following values:

MR_REQUEST can be used when a privileged process tries
to access (and have exclusive use of) the subchannel
described by the DCB pointer. If the driver accepts the
request, the driver must set a state variable inhibiting the
driver from further access to the device until it is released.
The driver may refuse open requests for the device during
this time.

UTX/32 Input/Output Subsystem Guide

MR_RELEASE can be used when the privileged process
which controls the subchannel described by the DCB pointer
is relinquishing control of the subchannel to the device driver.
Note that some physical devices are described by more than
one subchannel. The release of one subchannel does not
imply the release of the device. The driver must wait until all
subchannels for a physical device are released before
accessing that device.

MR_COMM allows a buffer of data to be passed from the
privileged process to the driver's maintenance interface
routine. MR_COMM is currently used only for informing the
SCM device driver of an SCM download.

dev_maint should set u.u_error to EINVAL for reason
values it does not understand.

id(int) uniquely identifies the requesting process. The device
driver may choose to use this ID to prevent allocating two
DCBs describing a device to two processes.

Return value Zero indicates the request was accepted. The subchannel
now belongs to the privileged user process. The device driver
does not access this subchannel (or other subchannels directly
associated with this physical device) until it has been
released.

EBUSY indicates the driver cannot allow access to the device
at this time. Generally, this means that the device is already
open.

UTX/32 Input/Output Subsystem Guide 2-21/2-22

3 IOI Support for Class E Devices

3.1 Overview

This chapter provides information on class E data structures. It then describes
UTX/32 modifications to the I/O interface for class E [/O.

UTX/32 supports class E I/O devices. Most standard UTX/32 devices use class F
I/0. Compared to class F /O, class E I/O is a simple instruction set that requires
more bookkeeping by the software that uses it. However, class E I/O permits
specific devices to define more complex protocols and capabilitics on top of its
simple model. This simplicity and adaptability make class E devices appropriate
for real-time applications.

UTX/32 includes a generic, customizable class E device driver for the high-speed
data interface (HSD), a SelBUS controller that is a common class E device.

In this chapter, reference is made to IOCBs. IOCBs are I/O control blocks,
which are HSD-specific [/O control list (IOCL) elements. See Chapter 4, "The
Generic HSD Driver,” for a discussion of HSD data structures and the generic
HSD driver.

3.2 ClassE I/O

Class E I/O uses only the command device (CD) and test device (TD)
instructions. A CD instruction notifies the device that a command has been
placed in a standard place and that the device should begin executing the
command. A TD instruction gets the status of the device. Basic class E I/O
operations and the data structures that support them are summarized in this
section.

The following data structures underlie class E 1/O:

TAW Transfer address word, sometimes referred to as transfer control word
(TCW). This structure contains an address interpreted by the class E
device as a pointer to data or to operations to be performed.

IOCD I/O control doubleword. This structure contains a pointer to the TAW
and passes device-dependent commands to the device.

The IOCD and TAW are illustrated in Figure 3-1. Both structures are located in
device-specific locations in memory. The first word of the IOCD contains the
right half of the CD instruction, which has been loaded by the firmware. The
second word contains the TAW address, which must be loaded by software. The

TAW can contain either a definition (address and count, as shown) of data to be
transferred, or a pointer to a more detailed definition of the operations to be
performed. The interpretation is made by the device.

UTX/32 Input/Output Subsystem Guide 3-1

I0CD: Not used CD instr
Not used TAW address

TAW: Count Data address

Figure 3-1. Class E Data Structures

Memory has been reserved in the kernel for both IOCDs and TAWs. The
location of this memory can be found in the definition of E_EMUL_IOCDS and
E_TAWS in /usr/include/sel/selio_e.h. There are 16 words reserved for class E
TAWSs, one word for each possible class E interrupt level. There are 32 words
reserved for class E IOCDs, two words for each possible class E interrupt level.
This reserved memory resides in the low 64K bytes of memory. Note that the
class E IOCD’s base address can also be found in the processor scratchpad.

3.3 I/O Interface Modifications

The [/O interface (IOI) is a collection of I/O support routines in the UTX/32
kernel. These IOI services include the following generic operations for class F
devices:

« Virtual to physical IOCL address mapping

« Layered operations in which the IOI does the generic part of the operation
and then calls a device-specific routine

P Device and controller initialization
« Interrupt dispatching

Class E devices require somewhat different data structures and interrupt
handling. Therefore, UTX/32 extends the standard UTX/32 IOI to accommodate
class E devices. The following sections describe these extensions.

3.3.1 Extensions to Existing Routines

32

UTX/32 extends certain existing class F UTX/32 IOI routines. The following is
a list of the extended routines and extensions.

ioi_sio Panics for class E devices.

ioi_hio Panics for class E devices.

UTX/32 Input/Output Subsystem Guide

ioi_init Calls ioi_ictl_e to initialize class E devices.

ioi_timeout If a time out occurs with the device busy, does halt I/O with
ioi_hio_e.

3.3.2 New Routines

UTX/32 adds the following IOI routines specific to class E devices:

ioi_sio_e Starts I/O.

ioi_hio_e Halts 1/O.

ioi_phys e Performs memory mapping.

ioi_physr e Performs memory mapping in maintenance mode.
ioi_freemem Unlocks memory locked by ioi_physr_e.
ioi_rsctl_e Issues a reset controller and idles the affected devices.
ioi_ictl_e Initializes an HSD driver.

ioi_cd_e Issues a CD instruction.

ioi_td_e Issues a TD instruction.

ioi_wio_e Polls for I/O completion.

ioi_intr_e Performs common interrupt services.

ioi_ei_e Enables interrupts.

ioi_di_e Disables interrupts.

The following sections summarize the call format, purpose, parameters, and
return value for each of these routines. The routines are called by the device
driver. All return values are of type int.

ioi_sio_e
Call format:
ioi_sio_e(dcbp, startioclp, timeoutvalue, errprocflags)
Purpose:
Issues a start IO (SIO) on behalf of a class E device.
Parameters:
dcbp Type dcbT*. Device control block pointer.
startioclp Type iocbT*. Pointer to queue of available IOCBs.
timeoutvalue Type int. This may be set to a nonzero value if the
caller wants the IOI to terminate the request upon time
out.

UTX/32 Input/Output Subsystem Guide 33

errprocflags Type int. These flags control error-recovery:
IE_HTO Issues a halt I/O (HIO) on time out.

IE_RTO Issues a reset controller on HIO time out.

Return value:
IS_OK Indicates that I/O was started successfully.
IS_BY Indicates that I/O failed due to a busy controller.
IS_IP Indicates that I/O failed due to a pending interrupt.

IS_BADSTATE Indicates that the device is in the wrong state.

ioi_hio_e
Call format:
ioi_hio_e(dcbp, timeoutvalue, errprocflags)
Purpose:
Issues a halt I/O to a specified class E device.
Parameters:
dcbp Type debT*. Device control block pointer.
timeoutvalue Type int. The time out value. if nonzero.
errprocflags Type int. The error processing that should be done.
Return value:
IS_OK The request was accepted.
IS_BY The channel or subchannel is busy.
IS_IP An interrupt is pending.

ioi_phys_e and ioi_physr_e

Call format:
ioi_phys_e(sp, dp, dn, procp)
ioi_physr_e(sp, dp, dn, procp, im_mp, im_dsp)

Purpose:
Perform memory mapping functions for a class E device. ioi_physr e is
called in maintenance mode.

Parameters:

sp Type iocbT*. Source virtual IOCL address.

34 UTX/32 Input/Output Subsystem Guide

dp
dn

procp
im_mp

im_dsp

Return value:

0
EFAULT
EINVAL

ioi_freemem

Call format:

Type iocbT*. Destination physical IOCL address.

Type int. Destination physical IOCL size (number of
IOCBs).

Type procT*. Process pointer.

Type ioi_mstateT*. Maintenance process table
address.

Type im_dcbstateT*. Maintenance device control
block state table address.

Success.
Failure due to a memory fault.

IOCL too long or contains a transfer control block (not
supported).

ioi_freemem(l_iocl.n_iocbs)

Purpose:

Unlocks memory locked by ioi_physr _e.

Parameters:
1_iocl
n_iocbs

Return value:
0
EFAULT
EINVAL

ioi_rsctl_e

Call format:

Type iocbT*. The virtual [OCL address.
Type int. Virtual IOCL size (number of IOCBs).

Success.
Failure due to a memory fault.

IOCL too long or contains a transfer control block (not
supported).

ioi_rsctl_e(dcbp, errprocflags)

Purpose:

Issues a reset controller and idles affected devices. NOTE: This routine is
provided as a place for future extensions. It currently does nothing and

returns IS_BY.

UTX/32 Input/Output Subsystem Guide 7 3-5

Parameters:

dcbp Type dcbT*. Device control block pointer.
errprocflags Type int. Error processing options.

Return value:
I[S_OK Indicates that I/O was started successfully.
IS_BY Indicates that I/O failed due to a busy controller.
IS_IP Indicates that I/O failed due to a pending interrupt.

I[S_BADSTATE Indicates that the device is in the wrong state.

ioi_cd_e

Call format:
ioi_cd_e(dcbp, startiocp, opcode)

Purpose:
Issues a CD (command device) instruction to a specified class E device.

Parameters:
dcbp Type debT*. Device control block pointer.
startioclp Type iocbT*. Pointer to queue of available IOCBs.
opcode Type int. Opcode to instruction.

Return value:

IS_OK Indicates that I/O was started successfully.
ioi_td_e
Call format:
ioi_td_e(dcbp, opcode)
Purpose:
Issues a TD instruction to a specified class E the device.
Parameters:
dcbp Type dcbT*. Device control block pointer.
opcode Type int. Opcode for a TD instruction.
Return value:

Returns the device status.

UTX/32 Input/Output Subsystem Guide

ioi_wio_e
Call format:
ioi_wio_e(dcbp, docall)

Purpose:
Polls for I/O completion. NOTE: This routine currently does nothing.

Parameters:
dcbp Type debT*. Device control block pointer.
docall Type int. The driver interrupt handler.

Return value:
IS_OK Indicates that I[/O was started successfully.

ioi_ictl e
Call format:
ioi_ictl_e(dptp)

Purpose:
Initializes an HSD device.

Parameters:
dptp Type int. Device parameter table pointer for the
channel.

Return value:
None.

ioi_ei_e
Call format:

ioi_ei_e(level)

Purpose:
Enables interrupts for class E devices.

Parameters:

level Type int. The level to enable.

Return value:
None.

UTX/32 Input/Output Subsystem Guide 3.7

ioi_di e
Call format:

ioi_di_e(level)

Purpose:

Disables interrupts for class E devices.
Parameters:
level Type int. The level to disable.

Return value:
None.

3.3.3 Data Structures

UTX/32 adds Tocd_e_optypes, a table analogous to Iocd_optypes, which marks
legal HSD opcodes. This table is for use by HSD-based class E device drivers
(see Chapter 4, "The Generic HSD Driver").

A set of E_* flag bits is defined. E_VAL is included in the entry at
Tocd_e_optypes[opcode] if opcode is a valid HSD opcode.

UTX/32 Input/Output Subsystem Guide

4 The Generic HSD Driver

4.1 Overview

This chapter provides information about HSD data structures, describes the
generic UTX/32 HSD device driver, and provides information useful in
customizing the generic driver.

4.2 HSD Data Structures

As described in section 3.2, "Class E I/O," a TAW is a class E data structure (see
Figure 3-1). Each class E device is allowed to make its own interpretation of the
TAW content. As Figure 4-1 illustrates, the HSD interprets the TAW as a
pointer to an IOCL. The HSD IOCL is made up of one or more I/O control
blocks (IOCBs), which contain I/O instructions.

I0OCD: Not used CD instr
Not used TAW address
TAW: |Not used IOCB address
IOCB: | HSD op ¥ Transfer count

Not used Memory buffer address

Not used

Error/device status

*Device-dependent

Figure 4-1. HSD Data Structures

The CD instruction includes an extended operation field specifying what is to be

done with the IOCL. The operations currently supported are start I/O (SIO) and
halt I/O (HIO). This field is passed to the device along with the device-
dependent data field in the first word of the IOCB.

UTX/32 Input/Output Subsystem Guide 4-1

IOCD:

4-2

The HSD reads the IOCB and performs the operations specified by the HSD
opcode in the IOCB’s first word. This opcode has eight bits specifying
operations to perform or not perform. There are some semantic dependencies
among these bits. For details, see the High-speed Data Interface, Model 9130/
High-speed Data Interface II, Model 9131/ High-speed Data Interface, Model
9132] High-speed Data Inter-bus Link 11, Model 9135/ High-speed Data Inter-
bus Link, Model 9136 Technical Manual.

In Figure 4-1, the second word of the IOCB is shown as a memory buffer
address. This is true unless the transfer command bit is set in the HSD opcode.
If the bit is set, the second word is a device-dependent data word and no other
data transfer takes place.

If chaining ic cpacified at the completion of an operation specified by an IOCR,
the HSD goes on to the next IOCB in memory. If chaining is not specified, the
HSD posts status and stops.

The HSD speaks directly to the memory bus using unmapped physical memory
addresses. Upon completion or detection of an error, the HSD posts the service
interrupt (SI) status in the TAW, and the device-completion and error status in
the fourth word of the current IOCB. The SI status includes a pointer to that
IOCB’s fourth word. Figure 4-2 illustrates the relevant data structures in the
completion stage of the I/O operation.

Not used CD instr
Not used TAW address
TAW: |SI status Status address

\

IOCB3: | Status |Not used Residual count

Figure 4-2. HSD Status and Error Return Structures

UTX/32 Input/Output Subsystem Guide

4.3 The Generic Driver

UTX/32 provides the generic device driver ce for customer devices attached
to the SelBUS through the HSD. ce supports exclusive-use, synchronous
blocking I/O using the standard driver entry points (open, close, read, write,
etc.). It also supports direct I/O, described in Chapter 5. User data buffers
are locked into memory during I/O (see ce(7RT)).

The source code in selio/ce.c is commented with information useful in
customizing it for other class E devices. The following section discusses the
main issues involved in customization.

4.4 Customization Issues

There is no standard for UTX/32 device drivers. The simplest approach to
building a new device driver is to select a suitable existing driver as a model
and modify that driver to suit each particular device. The UTX/32 generic
HSD driver ce is a simple driver intended to serve as a model for custom
HSD drivers. ce is derived from the mpci driver and from a special-purpose
HSD driver built to support the HYPERchannel ™ network interface.

This section contains hints and suggestions for building a custom driver
based on ce. The discussion assumes that you have some knowledge of the
UTX/32 kernel, or at least general UNIX® kernels.

In doing your own customization, have the following documents on hand:

o If your machine is in the PN6000 series, Gould CONCEPT 32/67
Reference Manual

o If your machine is in the PN900O series. Gould CONCEPT 32/97
Computer Basic System

o High-speed Dara Inrerface, Model 9130/ High-speed Data Interface 11,
Model 9131/ High-speed Data Interface, Model 9132/ High-speed Data
Inter-bus Link II, Model 9135/ High-speed Data Inter-bus Link, Model
9136 Technical Manual

o UTX/32 BSD Programmer’s Reference Manual

o The hardware technical reference manual for the device you wish to
configure

4.4.1 Overview of Issues

Following are design decisions you must make for your driver:

1. Whether data is to be copied in and out of kernel buffers or buffered
through user-provided space.

UTX/32 Input/Output Subsystem Guide 43

2. Whether the driver is to work synchronously or asynchronously (use
blocking or nonblocking [/O).

3. Whether commands will use open/close/read/write semantics or ioctl
semantics.

4. Whether access to the device will be shared or exclusive.

Additional design problems may stem from the special needs of your device.

The following subsections address these basic design issues and how to
configure your device.

NOTE: When the driver detects a serious internal inconsistency when using
kernel printfs, the kernel printf function is used to display information on
the console. Kernel printfs interfere with normal system operation, however,
and should only be used during system startup, to report serious problems, or
when a panic is imminent. Kernel printfs should never be used in places
where the call might be repeated, such as in an error condition that could be
cleared but then might recur,

4.4.2 Buffering Approaches

44

Reading and Writing in User Space

The generic driver reads and writes data using memory space provided by
the user. The data is not transferred into kernel-owned buffers before its
address is supplied to the device. The user supplies the virtual address of the
data. The HSD, however, can only issue unmapped memory requests: its
requests must specify actual physical addresses rather than virtual addresses.
The HSD support routines in the IOI build a new version of the IOCL using
space provided by the driver, in which virtual addresses have been converted
to physical addresses. The IOI also locks the memory pages containing the
data so that the correspondence between virtual and physical addresses
cannot change during the operation. When an I/O operation completes, the
driver calls another IOI routine to unlock the memory pages.

This approach allows the user to provide whatever amount of memory is
needed; any kernel buffering scheme will have to do reblocking of data for
large requests. In designing your driver you will have to determine what
requests are going to be made to your device and what the critical timing
consideration is. The fastest transfers use buffers in user memory in a
process that has done a plock operation on itself (see p/lock(2RT/RF)).

UTX/32 Input/Output Subsystem Guide

Using Kernel Buffers

The UTX/32 kernel provides two data structures for buffering: bufs, which
can be allocated dynamically or statically, and mbufs. The possible
approaches in using kernel buffers are described below. If you use kernel
buffers, base your approach on the device you are interfacing, the data
transfers that will be done through it, and your speed requirements.

Using bufs
The fields of a buf make it especially suited to use as a buffer. If you
choose to use kernel buffering, you will want to use buf structures,
whether you choose to allocate them dynamically or statically. The
code for the MPCI device driver in selio/mpci.c is a good introduction
to the use of buf structures.

a. Dynamically allocated bufs

Disk devices typically use dynamically allocated bufs obtained
from a buffer-free list and cached in a buffer cache. The disk I/O
system uses a complicated buffer cache to avoid rereading recently
read or written blocks. In reading the drivers for disk devices, be
aware of the buffering scheme and of the separation of "strategy"
routines from command routines. Disk device commands are
queued and passed to lower level strategy routines that can
rearrange the execution order of commands to take advantage of
disk geometry. This complexity is not likely to be worthwhile in
most HSD applications.

b. Statically allocated bufs

Drivers for simple devices usually use statically allocated kernel
buffers. The buffers are usually buf stuctures allocated in the
per-device data structure (for the generic driver, this is the
ce_device structure). You may want to allocate more than one
buffer to devices with large amounts of data to transfer; some
drivers allocate multiple buffers in the per-device data structure,
and some allocate chains of buffers using the linking fields
provided in the buf structure. For example, the MPCI driver
mpci.c allocates two bufs per device and does double buffering,
switching between buffers for consecutive operations.

If you choose to do multiple buffering, you will need to (1) keep
track of the state of each buffer, (2) find a free buffer when you
need one, and (3) be able to block when you run out of buffer
space. For many simple devices, the gains from multiple buffering
do not reward the effort. For devices with high transfer rates and
low tolerance for delay, it may be absolutely critical.

UTX/32 Input/Output Subsystem Guide 4-5

Using mbufs
Network device drivers typically use mbufs because the networking
code uses them, and the data would otherwise have to be rebuffered.
mbufs are also appropriate for networks because they are designed to be
dynamically allocated and released, to be held in queues, and to be
filled and then passed to higher level routines.

The driver can call on existing routines to get and release mbufs and to
manipulate their contents. For simple drivers, however, mbufs are
usually unnecessarily complicated because one must worry about
allocation and deallocation, and because the access routines are
designed for the needs of the networking code and may be inconvenient
for the needs of a simple device driver. If you have a source software
license, sce the Ethernet device driver code in selio/en.c for examples of
this style.

4.4.3 Blocking and Nonblocking O

The generic driver uses blocking I/O semantics. Since the device itself is
asynchronous, starting I/O on the device and then sleeping until the
completion interrupt is returned accomplishes blocking. This means that
each command is completed before the driver returns to the user. The driver
assumes that only one process may issue commands for the device and that
this process will not issue any additional commands while an operation is in
progress. In reading the generic driver, be aware of this fundamental design
decision.

You may need to support asynchronous semantics in your driver. If so, you
will need to do the following:

. Decouple the issuing of commands from their execution, usually
through command queueing

. Add checks and state-maintenance code to your driver
o Handle sleeps and wakeups correctly
« Provide some way of checking for I/O completions

The following subsections discuss these tasks.

Managing Command Queues

The decoupling of command-issuing from command execution is usually
accomplished by queuing commands. Incoming requests are put on the
queue and executed, in turn, when the device is available.

Most drivers using command queues add a start entry point called internally
by any routine adding work to the queue or recognizing completion of an
operation. The start routine checks that the device is idle and, if so, starts
execution of the first command in the queue. In writing this routine, make
sure that it can be called regardless of the state of the queue or the device.

UTX/32 Input/Output Subsystem Guide

Calling start when the queue is empty or when the device is busy must not
cause confusion.

Since the device may complete I/O and enter its interrupt routine any time, if
you are in the middle of adding a command to the queue and the device tries
to execute the command, disaster may result. Therefore, block interrupts
while you are modifying the command queue. This is done by first building
the data block describing the operation to be put on queue, blocking
interrupts, adding the block to the queue, and unblocking interrupts. Similar
protection is needed when removing a block from the queue or modifying
the contents of a block on the queue.

Using a State Machine Model

If your driver is to be asynchronous, you will probably want to build it as a
state machine. A state machine driver has a single variable recording the
state of the device. Each event affecting the device alters the value of the
variable. At each device event (interrupt, command-queue change, or time
out), you can use the device state and the event to determine whether the
event is legal and what the new state should be.

A state transition diagram is a convenient means of reviewing whether your
driver will work as intended. The diagram represents the states as nodes in a
graph, with arcs representing legal transitions. The arcs are labeled with the
event causing the transition, in this case usually a function call name.

A simplified state transition diagram for the generic driver is shown in
Figure 4-3.

Figure 4-3. State Transition Diagram for the Generic HSD Driver

UTX/32 Input/Output Subsystem Guide 4-7

At each entry point, do two things: check that the device is in a reasonable
state for the requested operation, and change the state appropriately. If you
do command queuing, you can concentrate the state checks in the start and
interrupt routines, since a requested operation can be queued without
checking state.

Care in constructing the state transition scheme and care in coding so that the
transition takes place under well-defined conditions and in orderly places
will be rewarded.

The advice given in the previous section, "Managing Command Queues,"
about blocking interrupts around queue changes also applies to state changes.
You must not allow another process, which could be the interrupt handler for
your device, to run while your state is inconsistent or misleading.

Handling Sleeps and Wakeups

To provide asynchrony. you need to be aware of the way sleep and wakeup
are used in UTX/32. The sleep call puts a process into a list of sleeping
processes and provides a name under which the process will sleep. The
wakeup call wakens all processes sleeping under a particular name.

In building your asynchronous driver, you will need to select a convention
for naming sleeping processes. Like many other UTX/32 drivers, the generic
driver uses a single name for all its sleeps and wakeups. That name is the
address of the beginning of the table of per-device data structures for devices
using the driver. This naming convention simplifies the data-passing
requirements, since that address is known everywhere sleep or wakeup may
be called.

A more specific name, such as the address of the per-device structure for the
specific device, might require making more information visible at
inconvenient times. The timeout routine, for instance, is called with limited
information and might have difficulty identifying the particular device and
constructing its address. A less specific name, however, would mean that a
wakeup might reach many devices whose operations are not yet completed.

Your code should always sleep in a loop testing for a state change that
indicates the completion of the specific operation in progress.

Checking for /O Completions

An asynchronous driver must provide some way of checking for the
completion of pending I/O operations. Some drivers provide a wio operation
that waits for the completion of I/O before returning, allowing users to build
their own blocking I/O. If queued operations are supported, a decision must
be made on whether the wait will be for a particular operation or for all
operations (quiescence).

UTX/32 Input/Output Subsystem Guide

Some drivers allow the user to specify whether a command is to block or not.
To provide that option, build the driver to support nonblocking I/O, then
Check a flag in the user’s request and sleep if so requested. The sleep loop
will have to be more complicated than described in the previous section,
"Handling Sleeps and Wakeups," since it will have to check for completion
of the specific operation requested.

4.4.4 Command Semantics

The generic driver supports standard UTX/32 open, close, read, write, and
ioctl semantics. This provides a reasonable model of the use of many
devices, but it may be inappropriate for others. The following subsections
discuss the more extensive use of ioctl semantics and special considerations
for networking.

ioctl Semantics

If your driver really controls a device rather than doing I/O to it, you might
want to use purely ioctl semantics. If you do, your driver must contain
dummy routines for the unused routines and a more complicated ioctl
routine.

A device is a good candidate for this model if its operations are, for the most
part. insensitive to previous operations. If your device is, for instance, a
one-way device such as a sensor or actuator, the ioctl interface might be the
simplest basis for the driver. The device-status request ioctl in the generic
driver is an example of how to build commands in such a driver.

Network Device Semantics

Network devices generally have a semantics based on a queuing model,
since packets are passed to and from the driver on queues. A network device
must be able to accept data that was not requested by a user, and to dispense
data when it is requested. It must also be able to manage communications
with the other end of the link so that when queues are full, communications
can be suspended.

Instead of being driven by user commands like read and write, a network
driver is usually driven on one side by the availability of data from the
network, and on the other side from the upper protocol layers. The driver
and protocols provide entry points for getting data on and off queues and for
informing the other side that the queue has been modified.

In some cases such as with the Ethernet en driver, the driver also includes
read and write entry points that can be used for direct access to the device.
The semantics of such direct access may be confusing. For example, the en
driver read routine delivers an incoming packet to all users with outstanding
reads on the device.

UTX/32 Input/Output Subsystem Guide 4-9

Most network drivers contain more code supporting networking than
supporting the device. If you are going to write a driver for a network
device, use an existing network device driver as a starting point, and use the
low level routines in selio/ce.c to provide services to the higher level
routines in the network device driver. The Ethernet en.c and SCM scm _if.c,
etc. network devices are possible models.

4.4.5 Shared and Exclusive Device Access

4-10

The generic driver is explicitly an exclusive-use driver. This means that
« Only one process can use it at a time.
« Before being used, it must be opened by the user process.

o When no longer needed, it must be closed by the user process.

These assumptions simplify things for the driver, since it can determine
things about the user process when the device is opened and not do so again.

Many devices, however, are not or need not be used exclusively, or are used
for one command rather than for a series of commands. If your device will
be used on such basis, you will have to do more user validation in individual
command routines.

If you will not be using open and close to define user sessions, replace these
routines with dummies that return NULL. If, on the other hand, you allow
multiple users but still want to require each user to specifically bracket its
use of the device, use the open routine to build a block defining a session,
validate in all other operations that a valid session exists for the calling
process, and use the close routine to delete the session definition.

If shared use is permitted, the driver must take ownership into account in
sequencing operations. Only the process initiating an operation, for instance,
should be allowed to wait for the completion of that operation.

If you are writing a shared-use device driver, take all the precautions
described for manipulating command queues (see "Managing Command
Queues”) or the device state (see "Using a State Machine Model") in the
per-device data structure. Assume that one process may be suspended and
another may run any time you have not specifically blocked interrupts. A
partially completed queue modification or state change could cause disaster.

Network devices are, again, an exception. They usually provide a transport
service used by higher level protocols. They have no notion of users. It is
assumed that the protocol layers will assign data to specific users and that
the device will pass along whatever identifying address information the
protocols provide as part of the data.

UTX/32 Input/Output Subsystem Guide

4.4.6 Configuring the Device

To make your device available to UTX/32 users, do the following:

1. Add the device to the CONFIGURATION file for your system so that
the necessary kernel table entries are built.

2. Add your driver to the makefile in the selio directory.
3. Make the device entries for your device(s).

UTX/32 gets to the routines in your device driver through several kernel data
structures, including cdevsw, interrupt service routines, the device parameter
table Dpt, and the mounted device mtd tables. The config program (see
config(8)) builds the necessary table entries based on entries you insert in the
configuration file it reads.

To provide flexibility in assigning physical devices to device drivers, config
requires you to provide the driver name in the CONFIGURATION file entry.
The entry

hsd ce0 at 0x4000 priority 0Ox12

tells config that there is an HSD device at 0x4000 with priority 0x12 and that
it will be minor device 0 on the device driver named ce.

If you are interfacing multiple devices of the same type which will be used
through the same driver, give them successive minor device numbers with
the same driver-name prefix. Names of devices to be accessed through a
different driver would have a different prefix.

The system-building process must be aware of your driver. Add it to the list
of source files in the makefile in the selio directory (the list named SRCS)
and to the list of sources in the master makefile in the /sys directory (the list
named SELIOSRC). Do a make depend in the object directory after
changing the makefiles.

The config program will not automatically add your device to makedev.sh
because the script does not have enough information to determine your
device’s address. Use the major and minor device numbers reported in the
configuration report to run mknod for your devices. Since this must be done
whenever your system is built, add these mknod lines to makedev.sh so that
they will be run automatically.

UTX/32 Input/Output Subsystem Guide 4-11/4-12

S Direct Input/Output

5.1 Overview

The direct T/O facility (DIO) provides enhanced I/O services to real-time
UTX/32 processes.

In a typical UTX/32 system, the same system calls (open. close, read, write,
etc.) are used for all I/O, whether the interaction is with a file, terminal,
tape, or communications pipe. This uniform handling of I/O, while
appropriate in a time-sharing environment, is not suitable in a real-time
environment for two reasons. First, the operating overhead for these calls is
significant, including traversing multiple tables, sharing devices among
processes, buffering data in the kernel, translating between virtual and
physical addresses, and constructing IOCLs. Further, the response to any
given I/O request is unpredictable, since all requests are subject to standard
time-sharing prioritization and swapping rules.

UTX/32 avoids these problems by giving real-time processes direct access to
I/O devices. The gain is a higher I/O bandwidth at reduced CPU overhead.

DIO provides real-time processes with the following features:
« The ability to issue I/O commands directly to devices

« I/O service according to real-time priority

« Several mechanisms for notification of I/O completions
o The ability to connect to and disconnect from devices

o The ability to reserve devices

This chapter discusses each of these features.

The DIO routines mentioned here are described in detail in Chapter 3 of the
UTX/32 BSD Programmer’s Reference Manual. DIO is based on the DIO
device driver (see dio(7RT)).

WARNING: Careless use of DIO facilities may result in damage to data or
failure of the system.

5.2 Application

DIO is usable with any class E or class F device that has a UTX/32 device
driver with a functional maintenance interface entry point. The only
requirement is that the real-time process must be locked into memory (see
plock(2RT/RF)).

UTX/32 Input/Output Subsystem Guide 5-1

5.3 Issuing I/O Commands

A process requesting I/O must construct an IOCL, request that the IOCL be
executed, and perform the appropriate error-recovery.

On Gould PowerNode ™ hardware, IOCLs must meet two requirements:
they must be constructed with physical memory addresses, and be physically
contiguous. Since UTX/32 hides knowledge of page boundaries and
virtual-to-physical address mapping, DIO provides real-time processes with
IOCL translation services for both requirements, Note that these translations
can increase the size of the IOCL.

5.3.1 Virtual to Physical Address Translation

virtual addresses can be ranslated into physical addresses. The process cdi
proceed in either of two ways when building the IOCL:

o Build the IOCL with virtual addresses, convert these addresses into
physical addresses using dioconvert (see dioconvert(3RT/RF)). and
then issue the IOCL using diosiophys (see diosio(3RT/RF)).

. Use virtual addresses and issue the IOCL using diosiolog (see
diosio(3RT/RF)). DIO will do the translation.

In either case, the I/O is performed directly out of and into the user’s address
space; it is not buffered by or copied into the kernel. The I/O completion
status is returned into a status buffer specified by the user. The user must
check that the I/O completed successfully and take appropriate error-
recovery measures.

5.3.2 Ensuring Physical Contiguity

The user must ensure physical contiguity by placing an IOCL entirely on a
page. DIO uses data chaining to accommodate I/O requests specifying user
data extents that cross page boundaries.

5.3.3 Disabling Kernel Checking

5-2

To enhance performance, the user can disable the kernel’s checking of the
validity of IOCLs (see diosio(3RT/RF)).

WARNING: Use this option with extreme caution. IOCLs contain physical
memory addresses. Therefore, an incorrect IOCL can easily destroy the
integrity of other processes or the kernel. The destruction may be virtually
impossible to associate with an incorrect IOCL. Further, if IOCL checking
is disabled, the check for physical contiguity is also disabled.

If the user decides to disable kernel checking, it should be done only after the
IOCL-manipulation code has been thoroughly tested.

UTX/32 Input/Output Subsystem Guide

5.4 Priority Ordering

On Gould PowerNode hardware, a device subchannel can have only one
active request at any given time. The driver queues any additional I/O
requests according to the real-time priority of the requesting process. Within
each priority, I/O requests are serviced in FIFO order. When an I/O
completes, the next queued IOCL is issued. A connection request can be
aborted with dioabort (see dioabort(3RT/RF)).

5.5 /O Request Tracking

Real-time processes using DIO can track their I/O requests and govern
whether and how to be notified of I/O completions.

5.5.1 Identifying Outstanding Requests

Real-time processes can track outstanding I/O requests using the two
counters maintained for each connection. io_initiated is the number of I/O
requests accepted by DIO. io_completed is the number of [/O requests that
have been serviced successfully, with /O errors, or cancelled. The
difference between the counters is the number of I/O requests outstanding.
(Signed arithmetic works correctly even when the counters wrap.)

Since most devices allow only one active I/O request per subchannel, and
I/O requests on a busy device are queued in FIFO order, a process is aware of
pending requests. For devices that can handle multiple requests, a status
buffer associated with each request can be examined to determine the
completed I/Os.

5.5.2 Notification of /O Completions

The following I/O completion notification mechanisms are settable using
dioneotify (see dionotify(3RT/RF)):

Wait 1/O
The calling process is blocked until the I/O completes.

No-wait I/O, no completion notification
The calling process continues after issuing the I/O request. The process
does not receive any asynchronous notification. However, the process
can poll the above-mentioned two counters to determine when the [/O
completes.

No-wait I/O, completion notification via signals
The calling process continues after issuing the I/O request. The process
receives a signal when one or more I/O requests complete. Since the
completion of one or more I/O requests can be reported with a single
signal, the process should check the two counters to determine the
number of I/O completions.

UTX/32 Input/Output Subsystem Guide 53

A threshold value specifies when signals are sent. When an I/O
operation completes and the number of outstanding I/O requests is at or
below the threshold, a signal is generated. For example, a value of zero
indicates the user wants a signal only when all outstanding I/O requests
have completed. A large value such as 100 indicates the user wants a
signal each time an I/O completes.

5.6 Connecting and Disconnecting

A real-time process plocked into memory can connect to a specified device
and subchannel by issuing the connect command dioconnect (see
dioconnect(3RT/RF)). If the device is not being used by UTX/32 for another

purpose. UTX/32 relinquishes it to the real-time process.

Once established, the connection remains in effect until the real-time process
issues the disconnect command diodisconnect (see diodisconnect(3RT/RF)).
All pending I/O operations on a connection are flushed when disconnection
occurs.

5.7 Reserving a Device

Typically, UTX/32 has access to a device between DIO connections.
Sometimes, however, a real-time process requires greater predictability than
this arrangement allows — it needs guaranteed access. DIO therefore allows
for a device to be reserved for the exclusive use of a single process. If a
device is reserved using dioreserve, DIO acquires the specified device from
UTX/32 when the first connection to the device is established, and returns it
to UTX/32 only when the device is released with diorelease and the last
connection is closed (see dioreserve(3RT/RF) and diorelease(3RT/RF)).

UTX/32 Input/Output Subsystem Guide

Appendix A

Input/Output Interface Specification Files

The following sections contain specification files for the IOL

A.l Sample Device Driver Interface

The appropriate tables, table entries, and interrupt routines (CDEVSW, BDEVSW, ICB,

DPT, SRT, DCBs, and ISR) must first be built during the system generation process.

The device driver must provide the following entry points:

dev_open
dev_close
dev_init
dev_read
dev_write
dev_strategy
dev_ioctl
dev_intr

dev_maint

Block or character device
Block or character device
Block or character device
Block or character device
Block or character device
Block device

Character device

Block or character device

Block or character device

The code in the examples below is not mandatory, but is intended as a guide to the use of

the IOL

dev_init

The driver may choose to initialize the private use fields of its DCBs at this time.

dev_open

The driver obtains a pointer to DCB by indexing dev_mtd[]. It obtains a pointer to
its own private control block for that device by accessing the private use field of the

DCB.

dev_close

The driver performs cleanup. This may include calling ioi_halt().

dev_read

The driver performs any internal bookkeeping necessary, then calls physio() which
in turn calls the driver’s strategy routine.

dev_write

The driver performs any internal bookkeeping necessary, then calls physio() which
in turn calls the driver’s strategy routine.

UTX/32 Input/Output Subsystem Guide

A-1

dev_strategy
The driver places the request on its private queue. If the device is currently inactive,
the driver calls its internal start routine, which pulls the request off the queue and
calls ioi_sio(). In the case of new I/O, ioi _phys() is called either from the strategy
routine or from the start routine. Note, however, that ioi_phys() requires a process
pointer for the process requesting 1/O, and that the start routine may be called on the
interrupt stack.

dev_ioctl
The driver updates the internal state appropriately and perhaps does 1/O.

dev intr
The driver parses result code found in DCB. If no error is present, a wakeup is
performed on previous 1/0, and the next I/O is started by calling the driver’s internal
start routine. The start routine pulls the next entry off the driver’s queue and calls
ioi_sio.
If there is an error, the sense buffer status is examined to determine if sense
information was available.

If no sense information was obtained, the device is declared broken, the IOCL is
deallocated by calling ioi_daloc(), and the interrupt routine exits.

If sense information is available, the sense buffer is examined to determine the
reason for the I/O failing. Device-dependent action is then performed.

dev_maint
If the reason parameter indicates a REQUEST, the device driver determines if the
specified subchannel can be relinquished at this time.

If it can be relinquished, the device driver notes internally that the device is in use
by a maintenance process and returns zero or EBUSY.

If the reason parameter indicates RELEASE, the device driver marks the subchannel
available. All subchannels associated with a physical device must be released
before I/O to that physical device is performed.

UTX/32 Input/Output Subsystem Guide

A.2 sel/selio.h

#ifndef Hselio
#$define Hselio 1

/**4&#********1**!**##x******8*******i**t***#***tt**#**t*tz*tx**********t*******t***x*t*#****

* CLASS F I/O COMMAND DOUBLEWORD (iocd) *

*t**#*****#**t*t*#k***!*tt*t!*t#x**t*l*********************t**t*****tt****l#tt**tt*t*****x*&/

typedef struct ioccd iocdT;

struct iocd
{

unsigned char ioc_cmd; /* COMMAND (8 BITS) */
int ioc_addr:24; /* PHYSICAL ADDRESS (24 BITS) */
unsigned char ioc flgs; /* FLAG BITS (8 BITS) */
unsigned char ioc:junk; /* A HOLE (MUST BE ZERO) (8 BITS) */
unsigned short ioc_cnt; /* BYTE COUNT (16 BITS) */
i

/*

* CLASS F IOCD FLAG FIELD DEFINES

* /

#define IOC_DCHAIN 0x80 /* DATA CHAIN x/

#define IOC_CHAIN 0x40 /* COMMAND CHAIN */

#define IOC_SIC 0x20 /* SUPPRESS INCORRECT LENGTH x/

#define IOC_SKIP 0x10 /* SKIP x/

$define IOC_PCI 0x=08 /* PROGRAM CONTROLLED INTERRUPT */

#define IOC_RTI 0x04 /* REAL TIME OPTION */

#define IOC_NU1 0x02 /* NOT USED -- MUST BE ZERO */

#define IOC_NU2 0x01 /* NOT USED -- MUST BE ZERO x/

#define IS _CHAINED (x) ((x) & (IOC_DCHAIN | IOC_CHAIN))

/*
* CLASS F IOCD OPCODE FIELD DEFINES
(Generic and non-generic opcodes)

®i/
#define OP_INCH 0x00 /* ALL DEVICES - INITIALIZE CHANNEL *x/
#define OP_WRIT 0x01 /* ALL DEVICES - WRITE DATA x/
#define OP_READ 0x02 /* ALL DEVICES - READ DATA */
#$define OP_NOP 0x03 /* ALL DEVICES - NO OPERATION *x/
$define OP_SENS 0x04 /* ALL DEVICES - SENSE *x/
#¢define OP_SEEK 0x07 /* UDP DISC - SEEK (CYL, TRK, SEC) *x/
$define OP_LINEC 0x07 /* IOP SCM - LINE CONTRCL *x/
$define OP_TIC 0x08 /* ALL DEVICES - TRANSFER IN CHANNEL */
$¢define OP_RDECHO 0x0a; /* CONSOLE - READ WITH ECHO *x/
#¢define OP_WAIT 0x0b /* IOP SCM - WAIT (NOT IMPLEMENTED) *x/
#define OP_CONN 0x0f /* IOP SCM - CONNECT x/
#define OP_LPL 0x%13 /* UDP DISC - LOCK PROTECT LABEL */
#define OP_SENTC 0xl1l4 /* IOP SCM - SENSE TRANSFER COUNT x/
#define OP_DISC oxlf /* IOP SCM - DISCONNECT */
$¢define OP_LMR Ox1lf /* UDP DISC - LOAD MODE REGISTER */
#define OP_RES 0x23 /* UDP DISC - RESERVE DRIVE *x/
#define OP_OBTN 0x24 /* IOP SCM - OBTAIN LINK STATISTICS *x/

UTX/32 Input/Output Subsystem Guide A-3

A4

#define OP_IDENT 0x2f

$define OP_REL 0x33 /* UDP DISC - RELEASE DRIVE

#define OP_XEZ 0x37 /* UDP DISC - RECALIBRATE HEADS
#define OP_RSET 0x4f /* IOP SCM - RESET LINK STATISTICS
#define OP_SRM 0x4f /* UDP DISC - SET RESERVE TRACK MODE
#define OP_RTL 052 /* UDP DISC - READ TRACK LABEL
#define OP_XRM 0x5f /* UDP DISC - RESET RESERVE TRACK MODE
#define OP_SETP 0x7f£ /* IOP SCM - SET LINK PARAMETERS
#define OP_ECC 0xb2 /* UDP DISC - READ ECC INFORMATION
#define OP_LACS 0xfl /* IOP SCM - LOAD ACS
#define OP_RACS 0xf2 /* IOP SCM - READ ACS

#define OP_ICH 0zff /* IOP/UDP/TAPE- INCH

#define OP_MODE Oxff /* IOP SCM - MODE CONTROL
/*

* CLASS-F IOCD COMMAND FIELD DEFINES FOR IPI HOST ADAPTER

*/
#define HA INCH 0x00 /* ALL DEVICES - INITIALIZE CHANNEL
$define HA WD 0x01 /* BLL DEVICES - WRITE DATA
4¢define HA RD 0x02 /* BLL DEVICES - READ DATA
#)define HA NOP 0x03 /* ALL DEVICES - NO OPERATION
$define HA TIC 0x08 /* ALL DEVICES - TRANSFER IN CHANNEL
4¢define HA RDB 0x0C /* ALL DEVICES - READ DATA BACKWARDS
#define HA ASB 0x20 /* BALL DEVICES - ALLOCATE STATUS BUFFER
#define HA_WRAP 0x30 /* ALL DEVICES - DIAGNOSTIC WRAP TEST
#define HA HABU 0x40 /* ALL DEVICES - HOST ATTRIBUTE UPDATE
#define HA FIFW 0xBO /* ALL DEVICES - DIAG FIFO WRITE TEST
#define HA TSP OxE3 /* BLL DEVICES - TRANSFER SLAVE PACKET
#¢define HA FIFR OxFO /* ALL DEVICES =- DIAGNOSTIC FIFC READ TEST
#define HA_TCP OxF3 /* ALL DEVICES - TRANSFER COMMAND PACKET

/*
* IPI FLAG FIELDS FOR RESET CONTROLLER INSTRUCTION

* (PLANTED IN THE IOCLA FIELD OF THE DEVICE’S ICB)

* MUST BE ISSUED TO BRING IPI SLAVES OUT OF MAINTENANCE MODE
s/

#define IPI_RSCTL_ LI 0x02
#define IPI RSCTL_PI 0x04

/* RESET LOGICAL INTERFACE
/* RESET PHYSICAL INTERFACE

$define IPI_RSCTL_SOFT ((ioedT *)IPI_RSCTL_LI)
#define IPI_RSCTL_HARD ((iocdT *) (IPI_RSCTL_LI | IPI_RSCTL_PI))

/*
* A SIMPLE MACRO TO DUMP I/O COMMAND LISTS (IOCLs)
* (note: the macro argument is modified)
*/
#define DUMP_IOCL(sp) \
do \

printf("\t(%3x) 3x 3x\n", (sp),*(int *) (sp), *(((int *) (sp))+1)); A
while (IS_CHAINED((sp)++->ioc_flgs))

UTX/32 Input/Output Subsystem Guide

*/
i/
4
i)
*/
xif
*/
i/
*/
*/
*/
xi/

*
¥/
i
*/
*/
x]
*f
*/
*7
*/
L4
L4
*/

XY
&

e L T LT LT TR TR P R PR PSP S PSS P

% CLASS F I/O STATUS DOUBLEWORD (iostatus) il
BRI RER R RRRRRERR KOO OO RO RO oo R oo ko ks kR ok Rk ok k

typedef struct iostatus iostatusT;

struct iostatus

{

unsigned char ios_subaddr; /* DEVICE SUBADDRESS COMPLETING *if.
int ios iocdp:24; /* TERMINATION IOCD (+1 IOCD) */
short ios_flags; /* CHANNEL/DEVICE STATUS FLAGS */
unsigned short ios_resbytec; /* RESIDUAL BYTE COUNT L
}i
/*
* I/0 STATUS DOUBLEWORD FLAG FIELD DEFINES
*/
#define IF_ECHO x8000 /* ECHO */
#define IF_PCI 0x4000 /* PROGRAM CONTROLLED INTERRUPT *x/
#define IF_INCOR_LNGTH %2000 /* INCORRECT LENGTH i
#define IF_CPCHECK 0x1000 /* CHANNEL PROGRAM CHECK */
#define IF_CDCHECK 00800 /* CHANNEL DATA CHECK */
#define IF_CCCHECK 0x0400 /* CHANNEL CONTROL CHECK *f
#define IF_IFCHECK 0x0200 /* INTERFACE CHECK *x/
#define IF_CHCHECK 0x0100 /* CHAINING CHECK */
#define IF_BUSY 00080 /* BUSY */
#define IF_STATMOD 0x0040 /* STAUS MODIFIER *y/
#define IF_CTLEND 0x0020 /* CONTROLLER END (NOT USED) x/
#define IF_ATTN 0x0010 /* ATTENTION */
#define IF_CE 0x0008 . /* CHANNEL END R
#define IF_DE 0x0004 /* DEVICE END *x/
#define IF_UC 0x0002 /* UNIT CHECK *x/
#define IF_UE 0x0001 /* UNIT EXCEPTION */
#endif

UTX/32 Input/Output Subsystem Guide A-5

A.3 selio/ioi.h

A-6

/*
x (c) Copyright 1986 Gould Inc.

ki All Rights Reserved.

*/
/* @(#) UTX/32 2.0 ioi.h ver 2.0 */
/*

* @(#) -- file ioi.h, version 2.0. Last
*/

#ifndef Hioi

#define Hioi "@(#)ioi.h 2.0"
#ifndef Hselio

#ifdef KERNEL

#include "../sel/selio.h"

#else NOT KERNEL

#include <sel/selio.h>

#endif KERNEL

#endif Hselio

#ifndef Hsystypes
#ifdef KERNEL

#include "../h/types.h"
#else NOT KERNEL
#include <sys/types.h>
#endif KERNEL

#endif Hsystypes

#ifdef KERNEL

#include "../sel/psd.h"
#include "../sel/icb.h"
#else NOT KERNEL
#include <sel/psd.h>
#include <sel/icb.h>
#endif KERNEL

charged 5/22/86 18:25:08.

UTX/32 Input/Output Subsystem Guide

/***!**#******4¥*¥¥¥¥&t#t*****l&****#*******‘*l*#XX*t**t*******##*#***#****l**************l***

* SOME USEFUL DEFINES ¥
R R T T T PP PP P PP

#define spld spl5 /* ACI / DACI ON IOP DOESN’T WORK RIGHT */
#define ROUNDUP (thing,boundary) ((thing + (boundary-1)) & ~ (boundary - 1))
#define STATE (p) (p)->d_ioistate
#define ROUNDUP (thing,boundary)

((thing + (boundary-1)) & ~ (boundary - 1))

#define CN_DPTINX 1: /* GUARANTEED BY config(8) x/
#ifdef SYS5

#define Return(x) {u.u_error = x;return;}

#else SYS5

#define Return(x) return (x):

#endif SYS5

4define RETDVONT 4 /* NUMBER OF TIMES TO RETRY I/4 CPERATIONS *~/
#define RSCHNLCNT 300 /* DELAYS FOR RESET-CHANNEL TO COMPLETE */
#define INCHRETRYCNT 16 /* NUMBER OF TIMES TO RETRY INCH OPERATION */

#define SNS TIME 5 /* SECONDS TO WAIT FOR SENSE TO COMPLETE */
#define TIME OUT 60 /* # OF CLOCK TICKS BETWEEN TIME OUTS */
#defineDELAY_SHORT 2000 /* SHORT BUZZ LOOP DELAY VALUE (FOR POLL) */
#define DELAY LONG 32000 /* LONG BUZZ LOOP DELAY VALUE (FOR INCH) */
#define IPI_INCH T1 0 /* IPI SLAVE SELECT WAIT TIME (O=DEFAULT) =/
#define IPI_INCH_T2 o] /* IPI REQ INTERR WAIT TIME (O=DEFAULT) */
#define WIO_DOCALL 0 /* CALL INTERRUPT ROUTINE FROM ici_wio() */
#define WIO_DONTCALL 1 /* DON’T CALL INTERRUPT ROUTINE... */
#define DCB_NULL O /* NULL ENTRY *x/
/*

tad HARDWARE DEVICE ADDRESS MASKS

x/
#define M CHANNEL (0xFFO00) /* SelBUS CHANNEL FIELD MASK */
#define M CONTRCLLER (0xz00F0) /* SelBUS CONTROLLER FIELD MASK */
#define M DEVICE (C=x000F) /* SelBUS DEVICE FIELD MASK */
#define M SUBCHANNEL (M_CONTROLLER | M DEVICE)
/*

% HARDWARE DEVICE ADDRESSING

*/

#define CHANNEL (<) (c & M_CHANNEL) /* SelBUS CHANNEL ADDR */
#define CTRLR(c) (c & M_CONTROLLER) /* SelBUS CONTROLLER ADDR (MUXs) */
#define DEVICE (c) (c & M DEVICE) /* SelBUS DEVICE ADDR *x/
#define SUBCHANNEL(c) (c & M_SUBCHANNEL) /* SelBUS SUBCHANNEL ADDR *x/

/*

% ICB STATUS POINTER MANIPULATION

*x/
#define SET_CC_STORED (p)
#define CLR_CC_STORED (p)
#define CC_NOT STORED (iostatp)
#define CC_STORED (iostatp) ((

((

UTX/32 Input/Output Subsystem Guide

((iostatusT *) (((int)p) |
((iostatusT *) (((int)p)
((int) iostatp)
((int)

x40000000))
& Ox=O0ff£££f))

& 0x£0000000)
iostatp) & 0xf0000000) == 0z40000000)

A-7

'= 0x40000000)

/*
* FOR DPII AND UDP DISC CONTROLLERS:
*7

#define DISK_BUF_SIZE (224 * 4)

VR e T T T I

* IOI STATE TABLE *

tt*l**tt*tt*tz*!ttt**t**t**t*****t********xt*****t**#t***t**********x***************#***/

typedef struct iostate ioi_stateT;

struct iostate

{

unsigned char i_state; /* MAJOR STATE FOR THIS SUBCHANNEL L7
unsigned char i_queued; /* QUEUED I/O STATUS PRESENT */
unsigned char i_errflags; /* ERROR PROCESSING FLAGS */
unsigned char i_serrflags; /* SPONTANEOUS INTR ERROR PROC FLAGS x/
short int i_errcnt; /* ERROR RETRY COUNT *x/
short int i_timeout; /* HOW LONG BEFORE TIME OUT */
iostatusT i_giostat; /* QUEUED I/0 STATUS */
iocdT i _snsiocd; /* SENSE IOCD */
unsigned char i maint; /* SET TO INDICATE DCB IN MAINT. MODE */
unsigned char i_mreason; /* MAINTENANCE REASON *x/
unsigned char i mstate; /* MAINTENANCE STATE */
dev_t i_dev; /* /dev/ioi<nn> DEVICE IN MAINT. MODE */
bi
/*
* THE FOLLOWING DEFINE THE VALUES OF i_state
*/
#define IS_IDLE o] /* IDLE */
#define IS BUSY 1 /* I/0 IN PROGRESS */
#define IS_HALTWAIT 2 /* WAITING FOR INTR AFTER HALT I/O *x/
#define IS_STATWAIT 3 /* WAITING FOR INTR AFTER SENSE FOR ERR */
#define IS SPSTATWAIT 4 /* WAITING FOR INTR AFTER SENSE FOR ERR */
/* ...RECOVERY FOR SPONTANEOUS INTR */
$define IS IGNOREINTR 5 /* BUSY ON SUBCHANNEL. IGNORE NEXT */
- /* ...TO CLEAR PENDING INTR CONDITION x/
/*
* THE FOLLOWING DEFINE THE VALUES OF i_mstate
x/
#define IM IDLE 0 /* MAINTENANCE DEVICE IS IDLE */
#define IM_BUSY i /* MAINTENANCE DEVICE IS DOING I/O x/
$define IM:URINTR 4 /* MAINTENANCE DEVICE GOT AN INTERRUPT */

/*
* DEFINES FOR i_errflags. ALSO USED WHEN CALLING I/0 ROUTINES LIKE ioi_sio()
L7

#define IE SUC 0x01 /* OBTAIN SENSE INFO ON UNIT CHECK x/
#define IE SUE 0x02 /* OBTAIN SENSE INFO ON UNIT EXCEPTION */
#define IE SAT 0x04 /* OBTAIN SENSE INFO ON ATTENTION x/
#define IE:SIL 0x08 /* OBTAIN SENSE INFO ON INCORRECT LENGTH */
#define IE RTYCBY 0x10 /* RETRY IF REFUSED DUE TO BUSY DEVICE */
#define IE:HTO 0x20 /* ISSUE HALT I/O ON TIME OUT */
#define IE RTO 0x40 /* ISSUE RSCTL ON HALT I/O TIME OUT *7
#define IE—MAINT 0x80 /* MAINT MODE -- FOR IOI USE ONLY *x/

UTX/32 Input/Output Subsystem Guide

’/txtx*txtt**x**#**t**t********‘*****#**********t#**#tt**‘:It***t*#*********#*t#**t*******tt*!t

X DEVICE CONTROL BLOCK (dcb) STRUCTURE *
ittt#***t**tt#***t##tt***t*****t****t***###*#*tt*#ttttt:**t**t*t#itt*t#*t#ttt#tt*ttt#*#ttttt/

typedef struct dcb dcbT;

struct dcb
short int d_channel; /* CHANNEL/SUBCHANNEL ADDRESS *x/
dev_t d_dev; /* MAJOR/MINOR DEVICE NUMBER */
short int d dptinx; /* DEVICE PARAMETER TABLE INDEX */
short int d:snscnt; /* SENSE (IPI ASB) COUNT */
caddr_t d_sensep; /* SENSE (IPI ASB) BUFFER ADDR L
ioi_stateT d_ioistate; /* IOI STATE VECTOR *x/
iocdT *d_ioclp; /* CURRENT IOCL POINTER x/
iostatusT d iostat; /* CHANNEL COMPLETION STATUS */
int d_priv: /* PRIVATE USE FOR DEVICE DRIVER */

bi

/xxttt**tkx*:**t:***#x**t*****x*****x*****x*:x*xx*x::x*:*x*:**n*t***x*****:*x**t**t***ttx*x::

x DEVICE PARAMETER TABLE (dpt) STRUCTURE ®

************x#******t**:*****t*******t******iit**t*tt*tx**t**z**xt****x*xx*t**tx*x#****tx*u*/

typedef struct dpt dptT;

struct dpt
{
char *dp_name; /* ASCII XNAME CF CONTROLLER *x/
izbT *dp_icbp; /* INTERRUPT CCNTEXT BLOCK (ICB) POINTER */
int (*dp_intr) ()7 /* INTERRUPT SERVICE ROUTINE ADDRESS *x/
int (*dp_init) () : /* DRIVER INITIALIZATION ROUTINE ADDRESS */
int (*dp_maint) () ; /* MAINTENANCE ROUTINE ADDRESS */
int dp_snslen; /* SENSE (IPI STATUS BUFFER) LENGTH *x/
debT **dp srtp; /* SUBCHANNEL ROUTING TABLE POINTER x/
int dp_nsubchan; /* NUMBER OF SUBCHANNELS */
short dp_ctl_type; /* CONTROLLER TYPE */
caddr_t dp_dev_buf; /* CONTROLLER STATE (INCH) BUFFER ADDRESS */
short dp_chanaddr; /* CHANNEL ADDRESS */
short dp_mtdlen; /* LENGTH OF MTD (IF NON-ZERO) */
decbT **dp mtdp; /* POINTER TO ASSOCIATED MTD */
bi
/*
* DEFINES ON dp _ctl type (CONTROLLER TYPE FIELD)
*
* NOTE: CT_SELCUSTOM is used as a ’fence’ for certain tests in the IOI. It
* must be the highest numbered controller type that is still a SelBUS
* device. All SelBUS devices must fall belcw type CT_SELCUSTOM below.
*
* NOTE: CT_SELS/CT_SELE and CT_IPIS/CT IPIE are the lower/upper bounds
* for standard and ipi devices, respectively. Be careful that any new
* devices are placed within the appropriate bounded areas below.
*/
#define SELBUS_TYPE (type) (type <= CT_SELCUSTOM)
#define CT_DISK 0 /* SelBUS - DPII/UDP DISC *x/

UTX/32 Input/Output Subsystem Guide A-9

#define CT_TAPE | /* SelBUS - TAPE (HI, LOW, STREAMER) */
#define CT_IOP 2 /* SelBUS = IOP &
#define CT _ETHER 3 /* SelBUS - ETHERNET */
#define CT_HSD 4 /* SelBUS - HSD */
#define CT_IPI 5 /* SelBUS - IPI */
#define CT_SELCUSTOM 6 /* SelBUS - CUSTOM CONTROLLER */
#define SEL_TYPE (type) (CT_SELS <= type && type <= CT_SELE)

#define CT_SELS 7 Ve standard controller fence =------- %/
#define CT_8LINE 7 /* IOPBUS - 8 LINE ASYNCH */
#define CT_FLOPPY 8 /* IOPBUS - FLOPPY DISC */
#define CT_LPR 9 /* IOPBUS - LINE PRINTER */
#define CT_ScM 10 /* IOPBUS - SYNCHRONOUS COMMUNICATIONS MUX i/
#define CT_IOPCUSIOM 11 /* IOPBUS - CUSTOM CONTROLLER */
#define CT_CONSOLE 12 /* I0PO - CONSOLE */
#define CT_CLOCK 13 /* - CLOCK *x/
#define CT_GBEB 14 /* IOPBUS - GENERAL BIT/BYTE SCM *x/
#define CT_SELE 14 [Fmmmm——— standard controller fence ------- */
#define IPI_TYPE (type) (CT_IPIS <= type && type <= CT_IPIE)

#define CT_IPIS 15 [Fmmmm e ipi slave fence ----—-----—- *y
#define CT_DIM 15 /* IPIBUS = DISC INTELLIGENT MODULE (DIM) *x/
#define CT_IPIE 15 [Fmmm e ipi slave fence —-—-———————=u */

/***¥¥*************x**********t**********************************t*****************t*********

* MAINTENANCE INTERFACE STRUCTURES AND DEFINES *
ﬁ**’**X*&X*tx*X**i**l**t************************/
#define IM_CHECK 0 /* DEFINE TO ONE TO ALLOW DEBUG CODE *x/

#define IM MAXDEV 4 /* NUMBER OF IOI MAINTENANCE DEVICES */

#define IM_NVIOCD 4 /* MAX # OF USER IOCDs IN AN IOCL */

#define IM_NPIOCD 10 /* MAX # OF PHY IOCDs AFTER MAPPING */

#define IM_MAXDCBS 4 /* MAX # OF DCBs REQUESTABLE PER MAINT.DEV */

#define IM_PXNUM (IM_NPIOCD * IM MAXDCBS)

#define IM PSIZE 80 /* MAX 4 OF IPI COMMAND PACKET CHARACTERS */

typedef struct ioi_mstate ici _mstateT;

typedef struct im_waitlist im waitlistT;
typedef struct im pagelist im pagelistT;
typedef struct im dcbstate im_dcbstateT;

struct ioi mstate

{

int ms_pid; /* TO PREVENT MULTIPLE OPENS BY 1 PROCESS */
struct im waitlist /* MAINTENANCE STATE WAIT LIST */
{
short int msw_len; /* LENGTH OF WAITLIST x/
decbT *msw_dcbp [IM_MAXDCBS) /* DCBs FOR WAIT */

} ms waitlist;

A-10 UTX/32 Input/Output Subsystem Guide

struct im pagelist
{

/* MAINTENANCE STATE (LOCKED) PAGE LIST

short int msp_cnt; /1%
short int msp_page; A
} ms_pagelist [IM_PXNUM];

struct im dcbstate

{

/* MAINTENANCE D

decbT *msd_dcbp: /*
short int msd_plen; /*
short int msd_pxlist [IM_NPIOCD]; /*
iocdT msd_iocl[IM NPIOCD]; /*
char msd_packet [IM _PSIZE]; /*

} ms_dcbstate[IM_MAXDCBS];

struct mnt_result

¢

1

/* MAINTENANCE R

int mt_proc_result; /*

b

struct maint_sioreq

{

/* MAINTENANCE START I/O REQUEST STRUCTURE

iocdT *sr ioclp; /*
int sr_len; /*
int sr_errorflags; /*
int sr_timeoutva; /*

}s

struct maint_hioreqg

{

USAGE COUNT FOR PAGE
PAGE NUMBER

CB STATE STRUCTURE

POINTER TO DCB

NUMBER OF IOCL ENTRIES
IOCL ms_pagelist INDICES
RESIDENT PHYSICAL IOCL
RESIDENT IPI CMND PACKET

ESULT STRUCTURE

POINTER TO IOCL
NUMBER OF IOCDs
ERROR PROCESSING FLAGS
TIME OUT VALUE

/* MAINTENANCE EALT I/C REQUEST STRUCTURE

int hr errorflags; /*
int hr_timeoutva; /*

}:

struct maint_waitregq

{

ERROR PROCESSING FLAGS
TIME CUT VALUE

/* MAINTENANCE WAIT REQUEST STRUCTURE

int *wr_addrlist; /*
int wr_listlen; [*
dcbT *wr_dcbp; /*
caddr_t WIr_sensep; [*

}i

struct maint commreg

{

PTR TO LIST OF CHAN ADDRs
LENGTH OF ADDR LIST
PLACE TO COPY UP DCB

*/

*x/
L

*7

*/
x/
*/
k.
*/

Y

x/

*/

£/

LY
L]

*/
i
*/
*/
*/

e
*/

PLACE TO COPY UP SENSE INFO*/

/* MAINTENANCE COMM REQUEST STRUCTURE

int cr_len; 1%
caddr_t cr_combuf; /*

1o

Fr

UTX/32 Input/Output Subsystem Guide

LENGTH OF COMM BUFFER
BUF PTR TO PASS TO DRIVER

A-11

*x/

* /

*‘/

struct proberesult /* MAINTENANCE PROBE RESULT STRUCTURE
{
dptT *pr_dptbase; /* POINTER TO BASE OF DPT
dptT *pr_dptrow; /* POINTER TO ROW OF DPT
char pr_devname [3]; /* DEVICE NAME
dcbT *pr_dcbp; /* POINTER TO DCB
}:

struct maint_probereq /* MAINTENANCE PROBE REQUEST STRUCTURE

{
struct proberesult *pr probebuf;

}i

/* RESULT BUFFER POINTER

struct maint_reg /* MAINTENANCE REQUEST STRUCTURE

{
int mr_devaddr;
struct mnt_result *mr_result;
union mr_union
{
struct maint_sioreq mru_sr;
struct maint_hioreq mru_hr;
struct maint_waitreg mru_wr;
struct maint_commreq mru_cr;
struct maint probereq mru pr;
} mr_u;

/*
* DEFINES FOR CALLS TO THE DRIVER’S MAINTENANCE ROUTINE

i
#define MR _REQUEST 0 /* REQUEST SUBCHANNEL
#define MR_RELEASE a3 /* RELEASE SUBCHANNEL
#define MR_COMM 2 /* COMMUNICATE TO DRIVER
/’*

* MACRO ioi_phys():

* The ioi phys routine has been altered to allow two more arguments

* on the call. This simplifies the management of IOCLs for the new

* maintenance mode interface. To allow the old calling sequence, the
* name of the routine was changed to ioi physr and this macro has

* been defined. It is used by all non-maintenance mode calls to

% ioi_physr.

*

% 17 May 1984 Jonathan Bertoni of Compion Initial Coding

Y

/* CHANNEL ADDRESS
/* POINTER TO RESULT STRUCT

#define ioi_phys(viocl,piocl, lim, procp) \

ici_physr(viocl, piocl, lim, procp, (ioi_mstateT *) O, (im_dcbstateT *)

A-12

UTX/32 Input/Output Subsystem Guide

L7
*f
L
*f
G

*/

*/

*/

5
*/

il
*/
xy

0)

e At bttt it i

* MAINTENANCE DEBUG DEFINES *
Rk Rk kR Rk kR kkkkkkkkkkk kR kR AR AR R R R R R Rk R ok Rk kR R R R R R Rk R KRR kX kRk [
#define QQ MAXARGS 5

typedef struct
{
unsigned char q_routine;
unsigned char q_logtype;

unsigned char q_count;
long q_time; /* SECONDS SINCE REBOOT *x/
int q_arg[QQ MAXARGS]:;

} qu_entries;

/*

* INDICES FOR CALLS TO QQLOG

*y

#define IOI_NOTUSED =x00
#define IOI_PHYS 0x01
#define IOI_ICTL 0x02
#define IOI_DALLOC 0x03
#define IOI_INTR =04
#define IOI_TIMEOUT 0x05
#define IOI_DTIMEOUT 0x06
#define IOI_SIO x07
#define IOI_PGMIO 0x08
#define IOI_HIO 0x09
#define IOI_SHIO 0x0a
#define IOI_STPIO 0x0b
#define IOI_RSCTL 0x0c
#define IOI_QINTR 0x0d
#define IOI_SINTR 0x0e
#define IOI_SSENSE 0x0f
#define IOIOPEN 0x10
#define IOICLOSE 0x1l1l
#define IOIREAD 0x12
$define IOICLEAR 0x13
#define IOIWRITE O0x1l4
#define IOIIOCTL 0x15 .
#define IOI_MINTR 0x1l6
#define IOI_DSTAT 0x17
#define IOI_DCBDUMP 0x18
#define IOI_ISIO 0x19
#define IOI_WIO Oxla
#define IOI_INIT 0x1lb
#define I_TIS_BUSY 0xlc
#define I_TIS_ HALT 0x1ld
#define I_TIS_STAT Oxle
#define IOI_IRSCTL 0x1E
#define LP CLOSE 0x20
#define LP:INTR 0x21
#define LP_IO 0x22
#define LP_IOCTL 0x23
#define LP_OPEN 0x24
4define LP_OUTPUT 0x25

UTX/32 Input/Output Subsystem Guide A-13

A-14

#define LP_PUTBUF

#define
#define

LP_WRITE
LP_STIO

#define LP_MAINT

#define
#define
$define
#define
#define
#define

#define
$define
#define
#define
¥define
#define
#define
#define
#define
$define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
$(define
#define
$define
#define
#define
$define
#define
#define
#define
#define
$define
#define
#define
$define
$define
$define
¥define
#define
#define

#define S_SR_TRYSTART

$¢define
#define
$define

LP_3spare
LP_4spare
LP_Sspare
LP_6spare
LP_7spare
LP_8spare

CN_OPEN
CN_CLOSE
CN_READ
CN_WRITE
CN_IOCTL
CN_INTR
CN_RINT
CN_XINT
CN_PUTC
CN_MAINT
CN_INIT
CN_USTART
CN_PSTART
CN_HANG
CN_NU1
CN_NU2

S_IN FATAL
S_LI_DUMPREAD
S_LI_INIT

S _LI_INTR
S_LI_PROC
S_LI_READ
S_M_QDOWN
S_M Qup
S_QWRITE
s_sc_comM
S_SC_DISABLE
S_SC_DLBEGIN
S_SC_DLDONE
S_SC_INIT
S_SC_INTR
S_SC_MAINT
S_SC_NINIT
S_SC_RESET
S_SC_RQDL
S_SC_STAT
S_SC_WAIT
S_SR_CONN
S_SR_INIT
S_SR_INTR

S_TD_COMACK
S_TD_DOWN
S_TD_INIT

%26
0x27
0x28
0x29
O0x2a
0x2b
0x2c
0x2d
0x2e
0x2f

0x30
0x31
0x32
0x33
0x34
0x35
0x:36
0x37
0x38
0x39
0x3a
0x3b
0x3c
0x3d
0x3e
0x3f

0x40
0x41
0x42
0x43
0x44
0x45
0x46

=47
0x48
0=49
Ox4a
0x4b
Oxé4c
0x4d
Oxde
Ox4f
0x50
0x51
0x52
0x53
0x54
0x55
0x56
0x57
0x58
0x59
0x5a
0x5b

UTX/32 Input/Output Subsystem Guide

#define S_TD_ IODONE
#define S_TD_REJ
#define S_TD_TRYSEND
#define S_TD_TSD
#define S_TD_UP
#define S_TD_UR
$define S_TE_EXCP
#define S_TE_INIT
#define S_TE INTR
#define S _TE_TSD
#define S_NTSCIQ
#define S_NTSCOQ
#define S_NTSCOA
#define S_NTSCOS
#define S_NTLOOQ
#define & SC RSCTL
#define s:sc:IDLE
#define S_spareéd
#define S_spareébe
#define S_spare6f

#define MT_CLOSE
#define MT HCOMMAND
#define MT_INIT
#define MT_INTR
#define MT_IO
#define MT_IOCTL
#define MT_MAINT
#define MT_OPEN
#define MT_PHYS
#define MT_PRINT
#define MT_ READ
#define MT_RETRY
#define MT_START
#define MT STRATEGY
$define MT WRITE

#define S_spare7f

#define AS_INIT
#define AS OPEN
#define AS_CLOSE
#define AS_READ
#define AS_WRITE
#define AS_IOCTL
#define AS_INTR
#define AS_START
#define AS_STOP
#define AS MAINT
$define AS CMD
#define AS_DEVREAD
#define AS SIGNAL
ftdefine AS_HALT
#define AS_ERROR
#define AS I IOCTL
#define AS PARAM

UTX/32 Input/Output Subsystem Guide

0x5¢
0x5d
O0x5e
0x5f
0x60
0x61
0x62
0x63
0x64
0x65
0x66
0x67
0x68
0x69
O0x6a
0x6b
Ox6c
0x6d
Oxé6e
Ox6f

0x70
0x71
0x72

x13
0x74
0x75
0x76
0x77
0x78
0x79
0x7a
0x7b
Oxlc
0x7d
0x7e

0x7f

0x80
0x81
0x82
0x83
Cx84
0x85
0x886
0x87
0x88
0x89
0x8a
0x8b
O0x8¢c
0x8d
0x8e
Oox8f
0x90

A-16

#define AS_SCAN

#define AS 2spare
#define AS 3spare
#define AS_4spare
#define AS_S5spare
#define AS_6spare
#define AS_7spare
#define AS_8spare
#define AS_9spare

#define IM_HALTSTOPIO

#define IM_RSCTL
#define IM REQUEST
#define IM_RELEASE
#define IM_COMM

ffdsfinc IM WAIT

#define IM_CHAN2DCEP

#define IM_SIO
#define IM PROBE

#define IM SPARE3
#define IM SPARE4
#define IM SPARES
#define IM_SPARE5
#define IM_SPARE7

#define EZ_INIT
#define EZ_OPEN
#define EZ_CLOSE
#define EZ_IOCTL
4define EZ_ RESET
#define EZ__LDWCS
#define EZ_RUN
#define EZ_SETP
4define EZ_GETP
#defineEZ_CXINTR
#define EZ__ READ
#define EZ_RXENQ
#define EZ_RXSIO
#define EZ2_BTOM
#defire EZ_RXINTR
#define EZ_INPUT
#define EZ__WRITE
#define EZ_OUTPUT
#define EZ_TXENQ
#$define EZ_TXSIO
#define EZ_TXINTR
#define EZ_INTR
#define EZ_MAINT
#define EZ_STOP

#defire M ADJ
#define M _CAT
#defire M_CLALLOC
#define M COPY

0x91
0x92
0x93
0x94
0x95
0x96

x97

=98
0x99

0x%a
0x9b
0x9c

=9d
0x=%e
Qaes
0xal
O=xal
0xa2

0za3
0=ad
0=a$s
O0xaé6
0=a’7

0:za8
O0xad
Ozxaa
Oxab
O=zac
Oz=zad
Oxae
Ozaf
0xb0
0xbl
0xb2
0zb3
0xb4
0zb5
0xb6
0xb7
0xb8
0xb9
Oxba
0zbb
Ozbc
0xbd
Oxbe
Oxbf

0xcO
Oxcl
0=c2
Ozc3

UTX/32 Input/Output Subsystem Guide

#define M EXPAND 0xc4

#define M FREE 0xc5
#¢define M FREEM 0xc6
#define M GET 0xc?
#define M GETCLR 0xc8
#define M MORE 0xc9
#define M PGFREE Oxca
#define M PULLUP 0xcb
#$define MBINIT Oxcc
#define M GET_D Oxcd
#define M CLGET D Oxce
#define M FREE D Qzct
$define HY_CHANZHYIP 0xdo
#define HYATTACH 0xdl
$define HVREASET 0xd2

#define HYINIT 0xd3
#define HY TIMEOUT 0xd4
$define HYSTART 0xd5

$define HYINT zxd6
#define HY GET_STAT 0xxd7
$¢define HYQUTPUT 0xd8
#define HYACT 0xd9
$¢define HYRECVDATA Cxzda
$define HYXMITDATA Oxdb
#define HYCANCEL Oxdc
$¢define HYPRINTDATA 0xdd
#define HYWATCH Oxzde

#define HYLOG Oxdf
#define HYIOCTL 0xel

#define HS_INIT Oxzel

#define HS_INTR Oze2

#define HS MAINT Oxe3
#define HS_STOP Oxed

#define HS_SIO Oxe5
#define HS_HIO Oxeb
#define HS_EI ze7
#define HS DI Oxe8
#define HS DAI Oxed
#define HS TD Oxea
#define HS OPEN Oxeb

#define HS_CLOSE Oxec
#define HS_READ Oxzed

#define HS WRITE Oxee
#define HS_IOCTL zef
#define IF_BTOM 0xf0

#define IF_MTOB Oxfl

UTX/32 Input/Output Subsystem Guide

/*

* reasons

*/

#define LOG_ENTER 0x0

#define LOG_EXIT O0x1

#defineLOG_SIO 0x2

$define LOG_SHIO 0x

#define LOG_RSCTL 0x4

#define LOG_OPOINT 0x5

#define LOG_1POINT 0x6

#define LOG_2POINT 0x

#define LOG_3POINT 0 b

#define LOG_TIO O %9

#define LOG_SLEEP O0za

#define LOG_WAKEUP 0xb

#ifdef ILOG_STRINGS

char *q_rtn names[] =

{
"IOI_NOTUSED", /* 0=00 */
"IOI_PHYS", /* 0x01 */
"IOI_ICTL", /* 0x02 */
"IOI_DALLOC", /* 0x03 */
"IOI_INTR", /* 0:04 */
"IOI_TIMEOUT", /= 0x05 */
"IOI_DTIMEOUT ", /* 0x06 */
"IOI_sIO", /* 0x07 */
"IOI_PGMIO ", /* 0x08 */
"IOI_HIO", /* 0=09 */
"IOI_SHIO", /* 0x0a */
"IOI_STPIO", /* 0x0b */
"IOI_RSCTL", /* 0x0c */
"IOI QINTR", /* 0x0d */
"IOI_SINTR", /* 0x0e */
"IOI_SSENSE", /* 0xOf */
"IOIOPEN", /* 0x10 */
"IOICLOSE", /* 0x11 */
"IOIREAD", /* 0xz12 */
"IOICLEAR ", /* 013 %/
"IOIWRITE", /* 0x14 */
"IOIIOCTL ", /* 0xl5 */
"IOI_MINTR", /* 0x16 */
"IOI_DSTAT ", /* 0xl7 */
"IOI_DCBDUMP ",/* 0xl8 */
"IOI_ISIO", /* 0x19 */
"IOI_WIO", /* Oxla */
" TOL. INITY, /* 0xlb */
"I _TIS BUSY", /* 0xlc */
"I _TIS_HALT", /* 0xld */
"I. PTS STATY; /* Oxle */
"IOI_IRSCTL", /* 0x1lf */
"LP CLOSE", 1 OX20% X/
"LP INTR", /* 0x21 */
“wLp_ 10", /% 0x22 */
"LP_IOCTL", /* 0x23 */

A-18 UTX/32 Input/Output Subsystem Guide

"LP_OPEN", /* 0x24

— "LP_OUTPUT", /* 0x25
"LP_PUTBUF" ’ /* 0x26
"LP_WRITE", /* 0x27
"LP_STIO", /* 0x28
"LP_MAINT", /* 0x29
"LP_3spare", /* 0x2a
"LP_4spare", /* 0x2b
"LP_5spare", /* 0x2c
"LP_6spare", /* 0x2d
"LP_7spare”, /* 0x2e
"LP_8spare", /* Ox2f
"CN_OPEN", /* 0x30
"CN CLOSE", /% 0x31
"CN_READ", /* 0x32
"CN_WRITE", /* 0x33
"CN_IOCTL", /* 0x34
"CN_INTR", /* 0x35
"CN_RINT", /* 0x36
"CN_XINT", /* 0x37
"CN_PUTC", /* 0x=38
"CN_MAINT", /* 0x39
"CN_INIT", /* 0x3a
"CN_USTART", /* 0x3b
"CN_PSTART", /* 0x3c
"CN_HANG", /* 0x3d
"CN_NU1", /* 0x3e
"CN_NU2", /* 0x3f

s "S_IN_FATAL", /* 0x40
"S_LI_DUMPREAD", /* 0x41
"s LI_INIT", /* 0z42
"S_LI_INTR", /* 0z43
"S_LI_PROC", /* 0x44
"s_LI_READ", /* 0x45
"S M QDOWN", /* 0xz46
"S M QUP", /* 0x47
"S_QWRITE", /* 0xz48
"S_SC_comt”, /* 0x49

"S_SC_DISABLE",/* Ox4a */
"S_SC_DLBEGIN",/* Ox4b */

"S_SC_DLDONE", /* Oxzdc
"$_SC_INIT", /* 0x4d
"S_SC_INTR", /* Ozde
"S_SC_MAINT", /* 0x4f
"S_SC NINIT", /* 0x50
"S_SC_RESET", /* 0x51
"S_SC_RQDL", /* 0x52
"S_SC_STAT", /* 0x53
"S_SC_WAIT", /* 0x54
"S_SR_CONN", /* 0x%55
"S_SR_INIT", /* 0x56
"S_SR_INTR", /* 0x57
"S_SR_TRYSTART", /* 0x58
"S_TD_COMACK", /* 0x59

— UTX/32 Input/Output Subsystem Guide

*/
*/
<7
*/
L4
*/
*/
*/
*/

/
*/

%/
*/

)
*f
®f
i
*/
*/
*f
%)
i
i
i
o
*/
*
*]
&/

*/
*/
i,

*/ -

*/
%/
*,
*/
* /

* /

2/
*/
X/
*/
* /
xY
*F
*
*/
*/
*if
i/
i
*/

A-19

"S_TD_DOWN",
"S TD INIT",

"S_TD_IODONE",

"S_TD_REJ",

"S_ID_TRYSEND",/* Ox5e

"S_TD_TSD",
"S_TD_UP",

"S_TD_UR",

"S TE_EXCP",
"s TE INIT",
"S_TE_INTR",
"S_TE_TSD",
"S_NTSCIQ",
"S_NTSCOQ",
"S_NTSCOA",

"S__NTSCOS",

"S NTLOOQ",

"S spareéb",
"S_spare6c",
"S_spare6d",
"S_spareée",
"S_sparer",

"MT_CLOSE",

"MT_ HCOMMAND",

"MT_INIT",
“MT_INTR",
"MT 10",
"MT_IOCTL",
"MT_MAINT",
"MT_OPEN",
"MT PHYS",
"MT_PRINT",
"MT_READ",
"MT_RETRY",
"MT_START",

"MT_STRATEGY",

"MT_WRITE",
"S_spare7f",

“AS_INIT",
"AS_OPEN",
"AS_CLOSE",
"AS_READ",
"AS_WRITE",
*AS_IOCTL",
"AS_INTR",
"AS_START",
"AS_STOP",
"AS_MAINT",
"AS_CMD",

"AS_DEVRERD",

"AS_SIGNAL",
"AS_HALT",
"AS_ERROR",

/* 0x5a
/* 0x5b
/* 0x5c
/* 0x5d
L

/* O0XS£
/* 0x60
/* 0x61
/* 0x62
/* 0x63
/* 0x64
/* 0x65
/* 0x66
/* 0z67
/* 0x68
/* 0x69
/* O0=x6a
/* 0x6b
/* Oxéc
/* 0x6d
/* O0x6e
/* 0x6f

/* 0:70
/* 0x71
/* 0x72
/* 0x73
/* 0x74
/* 0x75
/* 0x76
/* 0x77
/* 0x78
/* 0xz79
/* 0x7a
/* 0xTb
/* 0x7c
/* 0x7d
/* 0xTe

/* 0x7f

/* 080
/* 081
/* 0x82
/* 0x83
/* 0x84
/* 0x85
/* 086
/* 0x87
/* 0x88
/* %89
/* 0xz8a
/* 0x8b
/* 0x8c
/* 0x8d
/* 0x8e

X
*
*/
L/

L
*/
*/
*/
Xl
*.
X/
71
-
*/
=i
XY
*/
¥y
L
*/
%

*/
*/
*/
* /
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*

*/
*:/
*f
il
*/
*/
*/
.74
*Y
*/
L4
x4
*/
*/
*/

UTX/32 Input/Output Subsystem Guide

SRS T TOOTLN,

"AS PARAM",
"AS_SCAN",

"AS_2SPARE",
"AS 3SPARE",
"AS_4SPARE",
"AS 5SPARE",
"AS_6SPARE",
"AS_7SPARE",
"AS_8SPARE",
"AS_9SPARE",

"IM HALTSTOPIO",

"IM RSCTL",

"IM REQUEST",
“IM RGLEASE™,

"IM_CoMM",
"IM WAIT",

"IM_CHAN2DCBP",/* 0xa0

"IM SIO",
"IM PROBE",

"IM_SPARE3",
"IM_SPARE4",
"IM SPARES5",
"IM SPARE6",
"IM SPARE7",

"EZ_INIT",
"EZ_OPEN",
"EZ_CLOSE",
"EZ_IOCTL",
"EZ_RESET",
"EZ_LDWCS",
"EZ_RUN",
"EZ_SETP",
"EZ_GETP",
"EZ_CXINTR",
"EZ READ",
"EZ RXENQ",
"EZ RXSIO",
"EZ_BTOM",
"EZ_RXINTR",
"EZ_ INPUT",
"EZ_WRITE",
"EZ_CUTPUT",
"EZ_TXENQ",
"EZ_TXSIO",
"EZ_TXINTR",

"EZ INTR",
"E‘.Z_MAINT" ’
"EZ_STOP",

"M_ADJ",

UTX/32 Input/Output Subsystem Guide

/*
/*

/*
/*
/] *
/*
/*
/*
/x
/*

/*
/*
/*
/-
/*
/*

/*
/-k

/*
/*
/*
/)\'

/*

/*
/*
/*
/*
/*
/*
/ %
/*
/*

/*

/*
/*
/*
/*
/*
/*
/x
/*
/*
/*
/*
/*
/*
/*

/*

O0xza3
O=za4
Ozas
Oxza6
Oxa?

/.
i
x/
*/
*/
*)
&/
*
*J
X/
*J

it
*/
L
=/
L7
*/

* /

*/

*
L
x4
*/
*J

*/
*/
*/
*/
*/
*/
*/
x
*/
* /
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

!

*/

A-22

M. CAT™,
"M_CLALLOC",
"M_COPY",
"M_EXPAND",
"M_FREE",
"M_FREEM",
"M_GET",
"M_GETCLR",
"M_MORE",
"M_PGFREE",
"M_PULLUP",
"MBINIT",

"M _GET D",
"M_CLGET D",
"M_FREE D",

"HY CHAN2HYIP",/*
"HYATTACH",
"HYRESET",
"HYINIT",

"HY TIMEOUT",
"HYSTART",
"HYINT",

"HY GET_ STAT",
"HYOUTPUT",
"HYACT",
"HYRECVDATA",
"HYXMITDATA",
"HYCANCEL",
"HYPRINTDATA",
"HYWATCH",
"HYLOG",
"HYIOCTL",

"HS INIT",
"HS INTR",
"HS MAINT",
"HS_ STOP",
"HS_SIO",
"HS_HIO",
"HS EI",
"HS DI",
"HS_DAI",
"HS_TD",
"HS_OPEN",
"HS_CLOSE",
"HS_READ",
"HS_WRITE",
"HS_IOCTL",

"IF_BTOM",
"IF_MTOB",

char *gq call types([] =

{

/*
/*
/*
/*
/*
/*
/*
/*
/x
/*
/*
/*
/*
/*
/*

/*
/ *
/*
/*
/1(
/x
/*
/*
/ x
/*
/ *
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/'K
/x
/*
/x
/x
/*
/*

/
/ *

/*
/*

/*
/*

Oxcl
0xc2
0xc3
Oxc4
0xc5
0xc6
0xc’7
0x%c8
0xc9
Cxca
Oxcb
Oxce
Oxcd
Oxce
Oxcf

Oxdl
0zd2
0xd3
0:zd4
0xd5

=xd6
0:2d7
0xd8
0xd9
Oxda
Oxdb
Oxdc
Oxzdd

xde

=xdf
0xel

Oxzel
Oxze2
Oxe3
Oxed
Oxzeb
Oxeb6
Oxze7
O0xe8
Oxe9
Oxzea
Oxeb
Oxzec
Oxed
Oxee
Oxef

xf0
Oxfl

*/
*
&
®f
*f
*/
i/
x
*/
=/
*/
*/
*/
i
5

*/
*/
*if
%y
74
iy
=
*o
* /

/
* /

Y
*/
74
*/
4
*y

*/
*/
*i
>y
L
*/
X/
*/
Xy
*/
4
*/
74
*
xy

£
*/

UTX/32 Input/Output Subsystem Guide

"LOG_ENTER", /* 0x0 */

"LOG_EXIT", /* 0zl */
"LOG_SIO", /* 0x2 */
"LOG_SHIO", /* 0x3 */
"LOG_RSCTL", /* 0x4 */
"LOG_OPOINT", /* 0x5 */
"LOG_1POINT", /* 0x6 */
"LOG_2POINT", % 0KT %/
"LOG_3POINT", /* 0x8 */
"LOG_TIO", /* 0x9 */
"LOG_SLEEP", /* Oza */
"LOG_WAKEUP" /* 0xb */

}:
#tendif ILOG_STRINGS

bifdef QQDEBUS
#define QQLOG (X) qqlog X

#else QQDEBUG

#define QQLOG (X) /* null */
#define qgoff () /* null */
¢define qgon () /* null */

#endif QQDERUG
#ifdef DEBUG

extern int Ioi_debug;

#define PRINTF (X) if (Ioi_debug) printf
#define DCBDUMP (X) ioi_dcbdump X
tdefine DSTAT (X) ioi_dstat X

$else DEBUG

#define PRINTF (X) /* null */
$#define DCBDUMP (X) /* null */
#define DSTAT (X) /* null */

#¥endif DEBUG

UTX/32 Input/Output Subsystem Guide

[EREEREEEEFRRERRRRRRRRRRERKKRRE KR KRR KR RRRR KRR KRR KRR KRR KKK KRR AR R R AR R kR k xRt 23 kX RAR LRk

* EXTENDED I/O INSTRUCTION CONDITION CODES *
R R T PR R T PP TP P PSPPI}
#define CC_ACT ECHO (0x0) /* (00) REQUEST ACTIVATE, WILL ECHO */
#define CC_BUSY (0x1) /* (08) CHANNEL BUSY */
#define CC_INOP (0x22) /* (10) CHANNEL INOPERABLE */
#define CC_SUBBUSY (0x3) /* (18) SUBCHANNEL BUSY */
#define CC_SSTORED (0x4) /* (20) STATUS STORED *x/
#define CC_UNSUPPORTED (0x5) /* (28) UNSUPPORTED TRANSACTION */
#define CC_UA 6 (0x6) /* (30) UNASSIGNED *x/
#define CC _UA 7 (027) /* (38) UNASSIGNED * 7
#define CC_REQ_ACC (0x8) /* (40) REQUEST ACCEPTED, NO ECHO *x/
#define CC_UA 9 (0x9) /* (48) UNASSIGNED x/
#define CC_UA A (0xza) /* (50) UNASSIGNED */
#define CC_UA B (0xzb) /* (58) UNASSIGNED */
#define CC_UA C (0zc) /* (60) UNASSIGNED *x/
#define CC_UA D (0xd) /* (68) UNASSIGNED L4
#define CC_UA E (Oxze) /* (70) UNASSIGNED */
#define CC_UA F (0xf) /* (78) UNASSIGNED */

VA e L e T I T T ™™,

* iccd optypes|[] DEFINES *
******x*****x*******x*****x***t**********:#**t************x*tx***********x*t**tx**xt******x*/
#define T NULL 0:x00 /* NOTHING *x/
#define T _MEM 0x01 /* MEMORY REFERENCE OPCODE *x/
#define T MEMRD 0x02 /* READS MEMORY *x/
#define T MEMWR 0:04 /* WRITES MEMORY */
#define T VAL 0x80 /* VALID FLAG */
#$define T DC 0x40 /* DATA CHAINABLE OPCODE *x/
#define T_CCTL (T_MEM|T_MEMRD]| T_VAL) /* CHANNEL CONTROL */
#define T_SENS (T_MEM|T_MEMWR | T_VAL) /* SENSE */
#define T_TIC (T_NULL) /* TRANSFER IN CHANNEL */
#define T _RDR (T_MEM{T_MEMWRIT_DC]T_VAL) /* READ REVERSE */
#define T WR (T_MEM|T_MEMRD|T DC|T_VAL) /* WRITE DATA */
#define T_RD (T_MEM|T_MEMWR|T_DC|T_VAL) /* READ DATA */
#define T_CTL (T_MEM|T MEMRD| T_VAL) /* DEVICE CONTROL */
#define IS _MEM REF (op) (op & T_MEM) /* OPCODE IS MEMEMORY REF TYPE */
#define IS_DCHAINABLE(OP) (op & T_DC) /* OPCODE IS DATA CHAINARLE *x/
#define IS_VAL (op) (op & T_VAL) /* OPCODE IS SUPPORTED */

/**t*****t**t********************t*******t*****************t***#*x*t******x***tt***********‘*

* RETURN VALUES FROM ioi_sio(), ioi_hio(), etc *
i e e R R L TPy
#define IS_OK 6] /* I/0 STARTED SUCCESSFULLY */
#define IS BY 1 /* I/0 FAILED - BUSY */
#define IS IP 2 /* I/0 FAILED - INTERRUPT PENDING */
#define IS_RTCNT 3 /* I/0 FAILED - TOO MANY BUSY RETRIES */
#define IS~BADSTATE 4 /* IOI IN WRONG STATE FOR OPERATION */
#define IS:NOCTL 5 /* (INTERNAL USE) - DEVICE INOPERABLE */
#define IS_TRYING it /* (INTERNAL USE) - LOOP CONTROL */

P e ALt s L EEE R DL

A-24 UTX/32 Input/Output Subsystem Guide

* VALUES PASSED AS "reason" TO DRIVER’S INTERRUPT SERVICE ROUTINE *
P T T T e LY

#define ICS_OK 0 /* SUCCESSFUL I/O COMPLETION L
#$define ICS AB 1 /* I/0 COMPLETION WITH ABNORMAL STATUS */
#define ICS:SI 2 /* SPONTANEOUS INTERRUPT x/
#define ICS HIO 3 /* I/0 COMPLETION BY HIO OR TIME OUT */
#define ICS_RSCTL 4 /* I/0 CANCELLED VIA RSCTL AFTER HIO xyf
#define ICS_BROKEN 5 /* DEVICE FAILED TO ACCEPT HIO or RSCTL*/

$ifdef ICS_STRINGS

char *Ioi icsreasons([] =
{

"ICS_OK "
" ICS—AB " 7
wIc8 51 "
"ICS HIO ",

"ICS RSCTL ",
"ICS_BROKEN",
}z

#endif ICS_STRINGS

i s b L L

* Flags passed to ioi_phys() in the "junk" field of the proto IOCL x
t**t**************X**X*tt**t*t***********t********t*#**t*****#*******#********#*********/
#define PIO_WRITE 0x00
#define PIO_READ 0x01
#define PIO_UAREA 0x02
#define PIO_DIRTY 0x04

#endif Hioi

/*
. (c) Copyright 1986 Gould Inc.
® All Rights Reserved.
Xy

UTX/32 Input/Output Subsystem Guide A-25/A-26

References

Gould Inc. CONCEPT 32/67 CPU and Gould SS6/CMOS CPU (Real-Time)
Reference Manual. Publication Order Number 301-000410.

Gould Inc. Gould CONCEPT 32/97 Computer Basic System Reference Manual.
Publication Order Number 301-003070.

Gould Inc. High-speed Data Interface, Model 9130/ High-speed Data Interface II,
Model 9131/ High-speed Data Interface, Model 9132/ High-speed Data Inter-bus
Link II, Model 9135/ High-speed Data Inter-bus Link, Model 9136 Technical
Manual. Publication Order Number 303-000270.

UTX/32 Input/Output Subsystem Guide RF-1/RF-2

Gould Inc., Computer Systems Division
6901 W. Sunrise Blvd.

P. 0. Box 409148

Fort Lauderdale, FL 33340-9148
Telephone (305) 587-2900

Users Group Membership Application

USER ORGANIZATION:

=2 GOULD

Electronics

REPRESENTATIVE(S):

ADDRESS:

TELEX NUMBER:

PHONE NUMBER:

NUMBER AND TYPE OF GOULD CSD COMPUTERS:

OPERATING SYSTEM AND REV. LEVEL:

APPLICATIONS (Please Indicate)
1. EDP

A. Inventory Control

B. Engineering & Production
Data Control

C. Large Machine Off-Load

D. Remote Batch Terminal

E. Other

4. Industrial Automation

. Continuous Process Control Op.
. Production Scheduling & Control
. Process Planning

. Numerical Control

. Other

mooO o>

7. Simulation

A. Flight Simulators

B. Power Plant Simulators
C. Electronic Warfare

D. Other

243-06-1 (1/86)

2.

Communications

A. Telephone System Monitoring
B. Front End Processors -

C. Message Switching

D. Other

Laboratory and Computational
. Seismic

. Scientific Calculation

. Experiment Monitoring

. Mathematical Modeling

. Signal Processing

. Other

TMOO ®@>»

8. Other

3. Design & Drafting

. Electrical

. Mechanical

. Architectural

. Cartography

. Image Processing
. Other

TMOO®>»

6. Energy Monitoring & Control

. Power Generation

. Power Distribution

. Environmental Control
. Meter Monitoring

. Other

mooO mw>»

Please return to:
Users Group Representative

Date:

Gould Inc., Computer Systems Division Users Group. . .

The purpose of the Gould CSD Users Group is to help create better User/User and User/Gould CSD
communications.

There is no fee to join the Users Group. Simply complete the Membership Application on the reverse side

and mail to the Users Group Representative. You will automatically receive Users Group Newsletters,
Referral Guide and other pertinent Users Group activity information.

Fold and Staple for Mailing

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO.947 FT. LAUDERDALE, FL

POSTAGE WILL BE PAID BY ADDRESSEE

GOULD INC., COMPUTER SYSTEMS DIVISION
ATTENTION: USERS GROUP REPRESENTATIVE
6901 W. SUNRISE BLVD.

P.O. BOX 409148

FT. LAUDERDALE FL 33340-9970

Fold and Staple for Mailing

=3 GOULD

Electronics

" 0 0 o e o i e B S o e e O B 0 S o o e o " = S " = = - - - - - - - = = = = = = = -

(Detach Here)

