1

${ }{ }^{E} P T$

$$
\begin{aligned}
& \text { D2 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { otseg pue Kao7s!H } \\
& \text { ~ }
\end{aligned}
$$

The Complete Guide to
Processor Technology Corporation Products

Published by
Proteus
The Processor Technology Users' Group 1690 Woodside Road, Suite 219
Redwood City, California 94061

ENCYCLOPEDIA PROCESSOR TECHNICA

The complete guide to
Processor Technology Corporation's Products

Edited by Stanley M. Sokolow, B.A., D.D.S. Sonya Sokolow, Ph.D.

Published by Proteus, Processor Technology Users
Copyright (C) 1982 Proteus

CONTENTS
Revised 4/19/82
Volume 1 -- History and basic operation of the Sol. Preface to the Encyclopedia Processor Technica. Includes the semi-technical Sol Users Manual that came with later Sols, functions of the Sol's buttons and switches, hookups to common printers, cassette operations, use as a dumb terminal, minor troubleshooting. Also a historical scrapbook of Processor Technology Corporation and of the Sol: reprints of articles which describe the way the Sol came to be, copies of old advertising, product catalogs, price lists, dealer list, historical accounts from insiders, Personal Computer Retailer newsletter for dealers, all issues of Access newsletter.

Volume 2 -- Technical manual on the Sol computer. It incorporates material from the big black looseleaf notebook that came with early Sol's, plus material taken from the PTC Sol Service Manual, from Access (PTC's newsletter to users), from proteus, and from other sources. Covers topics such as: theory of operation, schematics, assembly drawings, parts lists, troubleshooting, testing, hardware updating (rev D to rev R), constructing and using the ParaSol Debugger, input/output hookups, timing diagrams, testpoint voltages, hardware interfacing, user-originated modifications.

Volume 3 -- Programming the Sol. Solos user's manual. the 8080 microprocessor from the programmer's view, the 8080 instruction set, assembly language programming, communications interface programs, the Sol system architecture.

Volume 4 -- PTC Programming Manuals.
Volume 5 -- ALS-8, Assembly Language System. Including the user's manual, users' group newsletters, internal routines.

Volume 6 -- PTC memory boards. From the 2 KRO ROM board to the 64KRA-1 RAM board. Schematics, assembly drawings, theory of operation, switch settings, engineering changes, upgrades, troubleshooting, ROM listings, parts lists, etc.

Volume 7 -- PTC input/output interfaces. The $3 P+S$, the CUTS board, the VDM.

Volume 8 -- Helios Disk System Manual. Installation, testing, light maintenance, theory of operation, drawings.

Volume 9 -- Helios Service Manual. Sol/Helios System troubleshooting. Updates, Controller/formatter troubleshooting, PerSci Drive Maintenance.

Volume l0 -- Proqramming the Helios disk system. Users' manuals on the following: PTDOS 1.5, Extended Disk BASIC, Optional Precision BASIC, Level I Business BASIC (Demo version), Disk Basic/5.

Volume 11 -- SolPrinters and Hytype interface.
Volume 12 -- Sol a la carte. Using the Sol with other equipment, such as interfacing to other disks, modifyina memory boards to work properly in Sol, customizations for the Sol with CP/M, NorthStar, Micropolis, etc. (This volume to be published at a later date.)

Foreword to the Encyclopedia
by Stanley M. Sokolow, B.A., D.D.S.
Since August, 1977, I have been the de facto Executive Director of the organization for owners of Processor Technology Corporation Sol computers. Originally, we called ourselves "Solus" (pronounced like "solice"), a name coined by Bill Burns, the founder of the group. The name represented "SOL Users Society," but it really had a double meaning since the early Sol users actually needed a lot of solice to cone with Processor Technology Corporation's growing pains.

Later, I changed the name to "Proteus" (for processor TEchnology USers) to indicate a broader scope, covering all of the Processor Technology product line, not just the Sol. Proteus has continued to be the primary focal point for communication among Sol owners, mainly through our newsletter.

This Encyclopedia represents the accumulation of information which Proteus has been able to gather on Processor Technology products. It is envisioned as a living resource which will be updated as new information becomes available. Any reader who has information or literature on any Processor Technology hardware or software product is requested to submit this material to Proteus for inclusion into future editions of the Encyclopedia and its supplements. (The original documents will be returned to you if requested.)

I also urge all owners of Sol computers to subscribe to our newsletter, called Proteus News. This has been an invaluable source of practical information about the sol and other Processor Technology products. Our hope is that the organization will continue to keep the sol a viable computer as long as there is interest in it, and even far into the future when it is an antique.

Proteus's address is Proteus, c/o Stanley M. Sokolow, 1690 Woodside Road, Suite 219, Redwood City, California 94061.

Since the material in the Encyclopedia has come from many
sources, the original page numbering is out of seruence. Instead, we refer to new page numbers at the ton of each page. They have this form:

$$
5 \text { EPT } 7 \text { - } 123
$$

where "EPT" means Encyclopedia Processor Technica, the number before it means the volume number, the number following is the chapter number, and the number after the hyphen is the new page number. We left the old page numbers intact so that references to them in the body of the text could be found.

ENCYCLOPEDIA PROCESSOR TECHNICA
 Copyright (C) 1982 Proteus
 1690 Woodside Road
 Redwood City, California 94061

DISCLAIMER
The information presented in this and other volumes of the Encyclopedia Processor Technica is published in the interest of the owners of Processor Technology Corporation products. The publisher assumes no liability for the accuracy of the content presented, although we have done our reasonable best to include only accurate information. It is assumed that the reader will use due care in utilizing the information, especially with regard to suggested modifications to products.

ENCYCLOPEDIA PROCESSOR TECHNICA

Volume 1
History and Basic Operation of the Sol

CONTENTS

Page

Foreword to the Encyclopedia.
Preface to Volume 1.
Chapter l. Historical Scrapbook of Processor Technology... l"VDM-1" (Jan 1976).. 2"BYTE's Audio Cassette Standards Symposium (Feb 1976).. 4
"4KRA" (March 1976) 6
"Altair" (April 1976) 8
"8080 Expansion" (June 1976) 10
"Popular Electronics" (July 1976) 11.1
"BYTES'S Altair 8800 Users!" (September 1975 11.6
"8080 Compatible" (Sept 1976) 12
"Sol-20" (Nov 1976) 14
"Sol" (Dec 1976) 16
"Intelligent-Terminal Designers Opt for 8080-
Compatible Circuitry," by Lee Felsenstein and Robert Marsh (Feb l977) 22
Personal Computer Retailer, Vol. l No. l (March 1977). 23
The Small Computer Catalog, May 1977 31"Sol: The Inside Story," by Lee Felsenstein (July1977)53
"The Sol-20 Computer Terminal," by Rudolf Hirschmann (Aug 1977) 59
Sol System Suggested Retail Price List (Sept l, 1977). 61
"Why Sol Should be your Small Computer Choice." 63
"Helios II Disk Memory System." (Product description) 64
Sol Small Computer Systems (Catalog) 70
Personal Computer Retailer, May 3, 1978 78
"Build an all-in-one home computer," by J. Free (June 1978) 84
Sol System Suggested U.S. Retail Price List (July l, 1978) 85
Personal Computer Retailer, July 18, 1978 87
Technical Training Seminars Diploma 93
Sol Dealer List, August 1978 94
Personal Computer Retailer, Sept 7, 1978 95
Product Description: "WordWizard Electronic Typing System" 101
Sol System Suggested U.S. Retail Price List (Oct 1, 1978) 105
Retailer Memo, October 12, 1978 109
Personal Computer Retailer, November 20, 1978 113
Personal Computer Retailer, December 18, 1978 119
Personal Computer Retailer, January 26, 1979. 125
Processor Technology 90 Day Limited Warranty, 2/6/79..129
Personal Computer Retailer, April 18, 1979............... 130"Processor Technology Goes Under," by Tom Williams6/25/79.. 136
"A User's Reaction to the SOL-10 Computer" by Robert
Bumpous, BYTE, January 1978 137
"User's Report: The SOL-20" by Dennis Barbour, BYTE,
April 1978 143
Chapter 2. Processor Technology ACCESS Newsletter
Vol 1, No 1, February 1977 2
Vol 1, No 2, April 1977 14
Vol 1, No 3, June 1977 30
Vol 1, No 4, November 1977 50
Vol 2, No 1, March 1978 86
Cnapter 3. Sol Users Manual.
Section 1. Exploring the Sol System. 8
Section 2. At the Controls 18
Section 3. Introduction to Software 22
Section 4. Loading Programs from Cassette. 28
Section 5. At the keyboard (Key Functions) 36
Section 6. Unpacking and Installation. 45
Section 7. TLC for Your Sol (Light Maintenance) 54
Appendix l. Products Available from Processor Tec 59
Appendix 2. Cassette Recorder Supplement 65
Selecting a Cassette Recorder 65
Interconnect Requirements for Two Recorders 66
Appendix 3. Internal Controls (Switch Settings) 68
Appendix 4. Keyboard Tables. 72
Appendix 5. Sol Specifications 76

pREFACE

```
This first Vo-ume oE the Incvclopecia Erocessor Technica is intended to provide a general introciuction to tae Sol compueer ard its manufacturer, Processor Technology Corporation. The history is sketchy because wher, むie corporation went out of business the records were mostly all discarded and the employees scattered as they went on to rem projects. As more information is uncovered, we will pujlish it in our annual supplements to the Encyclopedia. Fe no:e tiat reacers who have something of value to add :iill contact pioteus and help us fill ir the gaps.
In addition to this volume, historical information can be glaaned from baci issues of Protaus News, the newsletter of the Processor Technolosy Users, publisher of this Encyciopedia. These back issues are available in a separate volume.
```

Stanley M. Sokoloi, Editor

1 EPT 1-1

Chapter 1. Historical Serapbook of Processor Technology..."VDM-1" (Jan 1976) .. 2"BYTE's Audio Cassette Standards Symposiun (Fab 1976).. S
"4KRA" (March 1976) 6
"Altair" (April 1976) 8
" 8080 Expansion" (June 1976) 10
"Popular Electronics" (July 1976) 11.1
"8080 Compatible" (Sept 1976) 12
"Sol-20" (Nov 1976) 14
"Sol" (Dec 1976) 15
"Intelligent-Terminal Designers Opt for $8080-$
Compatible circuitry," by Lee Felsenstein and
Robert Marsh (Feb 1977). 22
Personal Computer Retailer, Vol. 1 No. 1 (March 1977). 23
The Small Computer Catalog, May 1977 31
"Sol: The Inside Story," by Lee Felsenstein (uuly 1977) 53
"The Sol-20 Computer Terminal," by Rudolf Hirschmann (Aug 1977) 59
Sol System Suggested Retail Price List (Sept 1, 1977) 61
"Why Sol Should be your Small Computer Choice.". 63
"Helios II Disk Memory System." (Product description) 54
Sol Small Computer Systems (Catalog) 70
Personal Computer Retailer, May 3, 1978 78
"Build an all-in-one home computer," by J. Free (June 1978) 84
Sol System Suggested U.S. Retail Price List (July l, 1978) 85
Personal Computer Retailer, July 18,1978 87
Technical Training Seminars Diploma 93
Sol Dealer List, August 1978 94
Personal Computer Retailer, Sept 7, 1978 95
product Description: "WordWizard Electronic TypingSystem"101
Sol System Suggested U.S. Retail Price List (Oct l, 1978) 105
Retailer Memo, October 12, 1978 109
Personal Computer Retailer, November 20, 1978 113
Personal Computer Retailer, December 18, 1978 119
Personal Computer Retailer, January 26, 1979 125
Processor Technology 90 Day Limited Warranty, $2 / 6 / 79$. 129
Personal Computer Retailer, April 18, 1979 130
"Processor Technology Goes Under," by Tom Williams $6 / 25 / 79$ 136

features-

~ ultra high speed intelligent display
~generates 16, 64 character lines of alpha-numeric data
~ displays upper and lower case characters

- full 128 ascii characters
- single printed circuit card
- standard video output

SPECIAL FREE OFFER!

Scientific Notation Software Package with Formatted Output
The floating point math package features 12 decimal digits with exponents from +127 to -127 ; handles assigned and unassigned humbers. With it is a 5 function calculator package: $+-X \div 8$ sq. root. It includes 3 storage and 3 operating memories and will handie chain and column calculations.

> With the purchase of (1) VDM-1 and (1) 4KRA-4 Memory:

Just $\$ 299.00$ (Offer expires 2-1-76)

VIIDED

DINPLAY

MODDILE

Report:

BYTE's Audio Cassette Standards Symposium

Manfred and Virginia Peschke

BYTE Magazine sponsored a symposium on November 7 and 8, 1975 in Kansas City MO regarding the interchange of data on inexpensive consumer quality audio cassette drives. These drives may be used as one of the mass storage devices in the first generation of personal computers, and will retain importance for some time to come as a means of interchange of software between computer enthusiasts who purchase products of the small systems industry. In order to promote the growth of the industry, BYTE sought to achieve an industry standard on audio cassette data interchange through a working conference.

We extend our greatest appreciation to the 18 people who worked very hard until late Friday night and Saturday morning to discuss the multitude of problems and solutions associated with digital recording on auto cassettes. The names of the participants are listed in table 1. In spite of the short time available, the participants were able to draft a set of provisional standards which seems to promise great reliability and is rather inexpensive to implement; implementations may be entirely in hardware, or may require a mix of software and some minimal hardware. Considerations were given to the problems of speed variation among recorders and playback equipment, start and stop delays, recording density (or speed) versus reliability, and recording frequencies to avoid interference with the telephone network in case some users plan to transmit the tones of the cassette over the phone lines.

On Saturday afternoon, Mr. Felsenstein and Mr. Mauch volunteered to write up the consensus among the participants as to a provisional standard which has been reproduced below.

Provisional Audio Cassette Data Interchange Standard

The consensus among the participants of the audio cassette standards symposium at Kansas City MO sponsored by BYTE Magazine is as follows:

The proposed standard centers around the use of a frequency shift modulation method from which serial clock data can be extracted at rates of up to 300 baud. The system is intended to be used with low to medium cost cassette recorders incorporating electrical stop and start capability which may be operated under program control.

The technique proposed provides for long and short term tape speed variation, limitations in bandwidth due to effects such as tape misalignment, and the necessity to retain low cost and low complexity of the hardware. The technique allows for potential operation at higher tape speed than the nominal 1.875 inch $/ \mathrm{s}(4.75 \mathrm{~cm} / \mathrm{s})$.

A mark (logical one) bit consists of eight cycles at a frequency of 2400 Hz .

A space (logical zero) bit consists of four cycles at a frequency of 1200 Hz .

A recorded character consists of a space as a start bit, eight data bits, and two or more marks as stop bits.

The interval between characters consists of an unspecified amount of time at the mark frequency. In this respect the data format is similar to that of asynchronous data communication.

The eight data bits are organized least significant bit first, most significant bit last, and followed (optionally) by a parity bit. The total number of significant bits and the parity bit cannot exceed 8.

Where less than eight data bits are used, the unused bits (following the optional parity bit) at the end of the character are mark bits (2400 Hz).

Data will be organized in blocks of arbitrary and optionally variable length, preceded by a minimum of five seconds of marks.

To avoid errors due to splice and wrinkle problems common at the begining of tape, the beginning of the first data block will occur no sooner than 30 seconds from the beginning of clear leader.

The contents of the data block are not specified.

The data block ends after the stop bits of the final character.

Bit clocking information may be extracted from the recorded waveform, which is always an integer multiple of the bit rate, regardless of tape speed. This permits the recovery and retiming of data by means of a UART, which requires a clock of sixteen times the bit rate, although other simple circuitry may be used.

A reliable bandwidth of 3000 Hz was assumed in choosing mark and space frequencies due to the head misalignment expected between various cassette recorders. The recording technique is a redundant form of Manchester or bifrequency code which has a long history of reliability in the computer industry. In its present form it was proposed by three independent manufacturers at the conference. One cited reliability rates of one error in $10^{* *} 7$ characters for 200 passes.

Table 1: Participants at Audio Cassette Symposium.

Ray Borrill, 1218 Prairie Dr, Bloomington IN
Hal Chamberlin, The Computer Hobbyist, P O Box 5985, Raleigh NC 27607

Tom Durston, MITS, 6328 Linn NE, Albuquerque NM
Lee Felsenstein, LGC Engineering, 1807 Delaware St, Berkeley CA 94703

Joe Frappier, Mikra-D, 32 Maple St, Bellingham MA
Bill Gates, MITS
Gary Kay, Southwest Technical Products Corp, 219 W Rhapsody, San Antonio TX 78216

Bob Marsh, Processor Technology, 2465 Fourth St, Berkeley CA 94710
Harold A Mauch, Pronetics, 4021 Windsor, Garland TX 75042

Bob Nelson, PCM, San Ramon CA
George Perrine, HAL Communications Corp, Box 365, Urbana IL 61801
Ed Roberts, MITS
Richard Smith, The Computer Hobbyist, P O Box 5882, Raleigh NC 27607
Les Solomon, Popular Electronics, 1 Park Av, New York NY 10016

Michael Stolowitz, Godbout Electronics, Box 2355, Oakland Airport CA 94614
Paul Tucker, HAL Communications Corp
Mike Wise, Sphere, 791 S 500 W, Bountiful UT 84010

Bob Zaller, MITS

1K 475 ns STATIC RAM
 $\$ 4.25$ for one $\$ 4.00$ each for eight
 $\$ 3.75$ each for 32
 WHY PAY FOR BEING SMALL?
 Centi-Byte is a new source of memory components and other necessary items for the computer hardware builder. Our function is to be a voice to the manufacturing companies representing you, the modest volume consumer of special purpose components. Centi-Byte brings you this special introductory offer of fast memory chips, chips fast enough to run an MC6800 or 808D at maximum speed. These 2602-1's are new devices purchased in quantity and fully guaranteed to manufacturer's specifications.
 Centi-Byte works by concentrating your purchasing power into quantity buys of new components. Let us know what you need in the way of specialized components and subsystems for future offerings. With your purchasing power concentrated through us, together we will lower the cost of home computing.

 PO BOX 312
 BELMONT, MASS. 02178

OSI MODEL 300 COMPUTER TRAINER

THE MODEL 30015 A COMPLETELY ASSEMBLED AND TESTED, READY TO USE COMP UTER DESIGNED TO "BOOTSTRAP" THE STUDENT, HOBBYIST, AND ENGINEER INTO THE MICROPROCESSOR WORLD. THE UNIT IS BUILT AROUND THE MOS 6502 INTO THE MICROPROCESSOR WORLD. THE UNIT IS BUITT ARONN THE MNC 6502 8 DATA SWITCHES, 7 ADDRESS SWITCHES, MEORY LOAD, PROCESSOR RESET, PROCESSOR RUU, INTERRUPT, AND MEMORY WRITE PROTECT. THE DISPLAYS PROCESSOR RUN. INERRUPT, ANN PROGRRM EXECUTION. TWO INPUT LINES AND ONE OUTPUT LATCH ARE PROVIDED FOR $1 / 0$ PROGRAIMING. THE MODEL 300 COMES CIMPLETE WITH A LABORATORY MANUAL WITH 20 EXPERIIENTS STARTING with simply loading and reading memory and finishing with outputing to A TELETYPE.
MOIEL 300 COMPUTER TRAINER COMPLETELY ASSEMBLED With LAB MANUAL (REQUIRES +5VDC AT 500MA) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$

THE 6000 SERIES COMPUTER FAMILY (SIPERBOARD)

A COMPLETE MINICOMPUTER PC BOARD (DOUBLE SIDED EPOXY) WHICH ACCEPTS ANY 6000 SERIES PROCESSOR, SYSTEM CLOCK, 2- 1702
TYPE ROMS, IK X B RAM (2102 TYPE), I PIA, IACIA, CURRENT LOOP AND PARALLEL INTERFACES AND HAS BUS EXPANSION CAPABILITIES EACH SUPERBOARD COMES COMPLETE WITH DOCUMENTATION

ALSO AVVAL ARSIEL Support Parts
RAM - ROM MEMORY EXPANDER BOARD
SUPERI/O BOARD CONTAINING CASSETTE INTERFACE; x, y DISPLAY
AND A/D CONVERTER.
VIDEO GRAPHIC BOARD
COMING SOON

CAL (216) 653-6484 OR WRITE TODAY FOR OUR COMPLETE INFORMATION PACKAGE
051
OHIO SCIENTIFIC INSTRUMENTS
PO BOX 374 HUDSON OHIO 4236

4KRA
 LOW POWER MEMORIES ATANEWLOWPRICE!

 Want Details?

 Want Details?}

The Processor Technology 4KRA. 4 is the fastest, most reliable and yet, least expensive read/write memory mod. ule on the market today. The 4KRA. 4 is the only memory available of any kind that can be powered by two " D " size batteries for up to ten (10) hours. (Ask for our TB-101 technical bulletin on back-up tattery operation of the 4KRA-4).

Don't be mislead by "undirected" statements on the subject of memory power consumption. All RAM's used in the 4 KRA- 4 consume typically $1 / 3$ the power of 8101 or 2102 type memories. Under absolute worst case conditions our RAM's require only 30% more power than the "typical" consumption of any $4 K$ dynamic memory. Remember that dynamic memories use three power supplies, but static memories only one.

It's time to clear the air of any confusion anyone might have about memory speed. In any 8080 system, all memories with access times between 50 and 520 nanoseconds are the same speed! Access time alone is not a valid indicator of speed unless it is greater than 550 nanoseconds, thereby requiring slow-down "wait" states. However, two other factors affect overall system speed.

1) Dynamic memories must refresh themselves periodically, slowing down the micro processor. In a well designed dynamic memory system refresh slows the processor by a few percent. Static memories do not require any refreshing. When our 4KRA. 4 memories are used in the Altair 8800 the "wait" light goes out, indicating maximum speed operation.
2) Long cycle times can slow the system down during critical operations such as Direct Memory Access. DMA is used by most disk memories and by such devices as a soon to be announced color graphics generator. Most dynamic memories now on the market have a 1500 nanosecond cycle time, about three times that of our 4 KRA.4. This longer cycle time can slow down the DMA device by at least 33% !

Most important, our 4K.RA.4 Static Memories work, and keep on working! Processor Technology has four 8800 computers, each using at least 32 K Bytes of 4 KRA 4 memory. We use these machines heavily for program development and product testing. We have yet to lose a single bit in normal operation! Reports from our customers confirm our experience and indicate that we have one of the lowest failure rates in the industry.

Frankly, we have done everything we could to make the best read/write memory around, because, after all, memory is the most important part of any computer.

SPECIFICATIONS 4 KRA. 4
Maximum capacity: 4096 eight bit bytes
Operating mode. Static
Access time: 520 nano seconds, worst case maximum Cycle time: 520 nano-seconds maximum, read or write Bus Pinout: Plug in compatible with Altair 8800 Bus Edge contacts: Gold plated, 100 pins (dual 50) on $125^{\prime \prime}$ centers
Power requirements, operating: +7.5 to +10 VDC at 1.0 A maximum ($0^{\circ} \mathrm{C}$), 0.8A typ. ical at $25^{\circ} \mathrm{C}$.
standby: +1.6 to +2.5 VDC at 0.5 A maximum worst case, 0.4 A typical
Dimensions: $5.3^{\prime \prime} \times 10.0^{\prime \prime}(13.46 \mathrm{~cm} \times 25.4 \mathrm{~cm})$

$\$ 139$
 KIT FORM

Please don't think of the VDM-1 as an ordinary TV typewriter! The VDM-1 is an intelligent display whose capabilities are limited only by your imagination! All cursor and display formations are fully programmable - there are very few hardware limitations inherrent in the design.

The VDM-1 can be used as a terminal when running BASIC or our Resident Assembler using the FREE software drivers included with every kit.

The VDM- 1 contains 1024 bytes of low power high speed RAM memory which can be directly accessed by the
computer as any 1 K segment within its normal 65 K address range. The VDM-1 is a single pc card and is plug-in compatible with the Altair 8800 bus. Multiple cursors are possible, each fully programmable. The display can be black on white, white on black, or both simultaneously. Output is standard EIA video with a signal bandwidth of 7 Mhz , compatible with any video TV monitor. The VDM- 1 is so fast, efficient, and powerful we think it will soon become the standard against which other displays must be compared.

SPECIAL FREE OFFER!

Scientific Notation Software Package with Formatted Output

The floating point math package features 12 decimal digits with exponents from +127 to -127 ; handles assigned and unassigned numbers. With it is a 5 function calculator package: $+-X \quad$ \& sq. root. It includes 3 storage and 3 operating memories and will handle chain and column calculations.

With the purchase of
(1) VDM- 1 and (1) 4KRA-4 Memory:
$\$ 299^{00}$ (Offer Expires April 1, 1976)

Please write for details on these and other Altair bus compatible modules

pp. 48,49 Watch Your With Help, Of Course, From Line of Compatible Plug-in

All our products are compatible with the 8800 - they just plug in to become an integral part of your system. Each card can be used in the widest range of applications, giving maximum versatility to your Altair. Our "no compromise" philosophy assures you the highest possible quality. We use a conservative thermal design to provide for long life and reliable operation. We've also put hysteresis bus receivers on noise prone high-speed inputs, giving you maximum noise immunity. And, finally, we cover it with a full six- month warranty.

Video Display Module

Your Altair already has the intelligence, so let us provide the display module. This is not a limited "TV Typewriter", but an ultra-high speed computer terminal built into your computer. The VDM-1 generates sixteen 64 -character lines from data stored in the IK Byte on-card memory. Alphanumeric data is shown in a 7×9 dot matrix with a full 128 upper and lower case ASCII character set. The VDM-1 features EIA Video output for any standard video monitor. (Your TV set can be easily modified at your local television repair shop.) Multiple programmable cursors, automatic text scrolling and powerful text editing software are included free. Kit Price, \$160.

A Versatile I/O Card

Just one 3P + S card will fulfill the Input Output needs of most 8800 users. There are two 8 -bit parallel input and output ports with full handshaking logic. There is also a serial I/O using a UART with both teletype current loop and EIA RS-232 standard interfaces provided. The serial data rate can be set under software control between 35 and 9600 Baud. You can use your models 15, 28 or 33 TTY! This module gives you all the electronics you need to interface most peripheral devices with the 8800 . And, should you decide to buy a $3 P+S$, we'll be happy to advise you on the best way to implement your system with our module. Kit Price, \$125.

FOCAL!

Get a full 8080 implementation of 8 K FOCAL* (including the game of Lunar Lander). It's now at your local Processor Technology dealer. Object tape is available for the copying charge only; complementary source listing available with minimum purchase.
(*® Digital Equipment Corp.)

An EPROM Module

Read Only Memories do not lose their stored data when power is removed. Thus, they have an advantage when used in stored program applications. Some ROM's, called EPROM's, are both erasable and reprogrammable. Our 2KRO module will accept up to eight EPROM's, providing the user with up to 2048 eight bit words of nonvolatile storage for monitor, executive, loader, and other programs. (We recommend the use of 1702A and MM5203 EPROM types. They are not included, but are readily available for reasonable prices on the industrial and surplus markets.) Kit Price, $\$ 50$.

Altair Grow! Processor Technology's Growing Hardware and Software.

Low Power, Plus!

The $4 K R A$ is a 4096 word read/write static memory module. It provides faster, less expensive, lower power, and more reliable operation than any comparable memory module sold today. The static memories don't need refreshing, so the result is faster speed in actual operation. Lower power does not mean decreased reliability. All RAM's used in the 4 KRA are 91LO2A's by Advanced Micro Devices. These RAM's typically require one-third the power of standard 2102 or 8101 types, and, even under worst case conditions, draw only 30% more than any currently available dynamic memory. Each RAM is manufactured to military specification. Since our module draws so little standby current, memory can be maintained using a battery back-up, in case of power failure, allowing long term retention of data. Kit

Price, $\$ 139$.

Software

Our Assembly Language Listing (Package \#1) is $\$ 3$, and includes the source listing with hexidecimal object code. Each command is described and six pages of sample use are included. Paper tapes of this system are available from many Computer Clubs throughout the country. ,

An Interpretive Simulator...

Our SIM-1 Expansion Firmware runs 8080 programs, in an interpretive mode on the same 8080 that contains the Simulator. This isn't just a de-bug program, because the program actually "thinks" it's an 8080 ! A complete brochure explaining all its capabilities is available from Processor Technology. Price, $\$ 95$.

Abstract

\section*{Turn-On-The-Switch Power}

With our ALS-8, the full power of your computer is available at the instant you turn the switch. It provides 6 K of PROM's, preprogrammed with an expanded version of our Software Package $=1$. including advanced file management capabilities. Files can be appended together, re-numbered, moved, or taken apart . . . all the features you'd expect from a company willing to practically give away Software $=1$. We include a manual which explains the use of the program (with examples), each routine of the system, and how to call these routines from other programs you've written. You won't be locked into a ROM version - - you'll be able to customize your ALS-8 to your individual needs. The ALS-8 Firmware includes a module with all components capable of holding 8 K of "turn-on-the-switch" program, so it will be upward compatible with future software developments. And, two of these are up and running now. Kit Price, $\$ 250$.

Abstract

\section*{And, A Text Editor!}

Every ALS-8 includes the edit command. This command combined with our Expansion Firmware $=2$ (Text Editor) and the VDM adds the world of text editing to your system. Single characters, entre, lines, portions of lines can be inserted, deleted, moved and, ultimetely printed out. The addition of Firmware $=2$ to your ALS-8 will give you text editing capability equivalent to systems selling for $\$ 30.000$ just a few short years ago. It's been running at Processor Technology since January, and it's ready for shipment now. Price, $\$ 95$.

Abstract

Write us for complete specifications on these and other compatible plug-in products: Our single-piece Mother Boards will give you 16-card capacity in one installation. A Wire Wrap Board, to help you do your own wire wrap prototyping, creating custom interfaces. An Extender Board, which allows accessibility in servicing any 8800 compatible module.

All items postpaid if full payment accompanies order. COD orders must include 25° d deposit. Master Charge (minimum S25) accepted, but please send an order with your signature on it. Discounts on orders over $\$ 375$.

Let Processor Technology expand your Altaii al and reliable plug-in modules.

Your Altair already has the intelligence, so let our VDM-1 Display Module make the best of its capacity to communicate. This is not a limited "TV Typewriter." The VDM-1 is an ultra-high speed output device, built right into your 8800 system.

The VDM-1 generates sixteen 64character lines in a large easy-to-read font with both upper and lower case letters. It contains lK (1024) bytes of random access memory, to which the processor can read or write, just as though the memory were an integral part of the system. As the information is written in, contents of the on-card memory are displayed instantly without interrupting the operation of the processor.

Once the processor provides the display status parameters, the VDM-1 can be made to "scroll" its display upwards or downwards. A built-in timer allows scrolling at about 4 lines per second, eliminating complicated timing program routines. At top speed, the display scrolls through a
dump of 65 K of memory in two minutes; that's about 1000 lines per minute!

Multiple programmable cursor circuitry is built in. All 1024 cursors can be displayed at one time or begin anywhere in the display. Thus, the VDM- 1 can display white-on-black or black-on-white - perfect for many video games! The VDM-1 also features EIA Video output for any standard video monitor, or a television repair shop can easily modify your own TV set.

The VDM- 1 comes with free terminal mode software, designed for teletype replacement when used with BASIC or our own Resident Assembly system. (Powerful text editing soffware and various game packages are also available from Processor Technology Corp.)

Our detailed VDM-1 Owner's Manual is available for $\$ 4.00$, refundable with purchase of the VDM-1.

Kit Prices, $\$ 179$ (premium grade, low profile IC sockets included).

rnsion Principle.

 or IMSAI system-with innovative, excellent quality es. [At most agreeable prices,too!]

Sharpen your Memory!

Processor Technology's new 8KRA Static Memory Module will add double-capacity, lower power, and greater efficiency to your Altair or IMSAI system. We've actually improved on our already popular 4KRA board, by doubling the capacity (8192 eight-bit bytes!) and lowering the power-per-bit.

The 8KRA uses full speed, low power static RAM's-our prime supplier is AMD (91LO2A's). These RAM's are manufactured to stringent military specification, MIL STD-883A, to insure reliability. The 8KRA uses less power-per-bit than any other true static memory module - requirements so low, that two "D" flashlight cells will retain data for $4-5$ hours. (Recharging circuitry for Ni-Cad cells

Processor Technology monufactures a full line of plug-in modules compatible with the Altair and IMSAI minicomputers. Write us now - we have a lot to tell you!
and battery connectors are on the card.) Also, unlike dynamic memories, static memories do not require periodic refreshing, allowing them to run at the processor's maximum speed. The 8KRA occupies any 8 K segment at 1 K intervals within the 8080 addressing range (for example, from 3 K to 11 K , not just 0-8K). Card address is selected by a DIP switch, located conveniently at the top of the card. Each of the 76 Integrated Circuits has its own premium grade, low-profile IC socket. We've included this special feature to increase reliability, and to make assembly, testing and repairs many times easier.

MOBILE

COMMUNICATIONS：
CB vs．2－METER FM
Microwave Ovens
for the Home
CMOS Prohe Extends
Multimeter Use
Guide to Choosing TV \＆FM Antennas

Learning Electronic Theory With Hand Calculators

TEST REPORTS： Nikko 7075 AM／FM Stereo Receiver
MXR Stereo Equalizer SBE＂Oṕti／Scan＂

Scanner

Hickok 370
Analog Multimeter

THERE are essentially two types of video computer terminals in common use. The "dumb" terminallittle more than a "glass Teletype"is a simple data transmitter receiver whose only stand-alone function is its use as a TV typewriter. The "intelligent" (also known as "smart") terminal. on the other hand, offers powerful stand-alone features. Built around a sophisticated microprocessor, intelligent terminals allow you to write, store. and edit programs for transmission to a computer or a hard-copy device. It also provides very powerful word processing at relatively low cost.
The SOL video terminal project presented here is one of the most ad-

An Intelligent Computer Terminal

Based on an 8080 MPU, this hobbyist's computer terminal can compete with most commercial units
vanced of intelligent terminals it can interface with any mini- or microcom. puter via its bullt-in RS-232 or $20-\mathrm{mA}$ current-loop interfaces in either serial or parallel format it can also tie into a time-sharing computer via a telephone line and a modem (such as the Pennywhistle described in the March 1976 issue of Popular Electronics). In fact. it is even possible for two SOL terminals to communicate with each other without human supervision.

The key to SOL s versatility is its integral 8080 microprocessor ($\mu \mathrm{P}$) chip. The $\mu \mathrm{P}$ operates on instructions stored in PROMS (programmable

Fig. 1. Terminal accepts data from keyboard, parallel port, and $R S-232$ or $20-m A$ serial port. Ohitput is 1 volt p-p for conventional TV requirements. Memory can be extermally expanded to 6.5 k .

PARTS LIST

$\mathrm{Cl}-10-\mathrm{pF}$ disc capacitor
C2, C11, C21, C22-0.001- $\mu \mathrm{F}$ disc capacitor
C3, C7, C15, C16, C17, C18, C20, C27 through $\mathrm{C} 33-0 \quad 1-\mu \mathrm{F}$ disc capacitor
C4. C: $-680-\mathrm{pF}$ mica capacitor monolithic
C6-1.5- $\mu \mathrm{F}, 25$-volt ceramic capacitor
C8, C13-1- $\mu \mathrm{F}, 35$-volt dipped tantalum capacitor
C9, C $10-15-\mu \mathrm{F} .20$-volt dipped tantalum capacitor
$\mathrm{C} 12-0.01-\mu \mathrm{F}$ disc capacitor
C14, C23-680-pF disc capacitor
$\mathrm{C} 19-100-\mu \mathrm{F}$, 16 -volt upright aluminum electrolytic capacitor
$\mathrm{C} 24-0.1-\mu \mathrm{F}$ Mylar tubular capacitor
$\mathrm{C} 25-0.001-\mu \mathrm{F}$ Mylar tubular capacitor
C26-0.01- $\mu \mathrm{F}$ Mylar tubular capacitor
D1, D2, D4 through D9- 1 N 4148 diode
D3-5.1-volt, 1-watt zener diode (IN5231B or similar)
ICI. IC8, IC II, IC 12, IC23. IC39, IC73, IC74-74LSI75N quad latch IC
IC2, IC79-74LS20N dual 4-input NAND gate IC
IC3-74L586N quad exclusive-OR gate IC
K-4, IC42. IC 45, IC47, IC71, IC72. IC94 -74LSO2N quad 2 -input NOR gate IC
IC5, IC5I- 7406 N open-collector hex inverter IC
IC6-DC4049AE CMOS hex inverter IC
IC7, IC14, IC25, IC26, IC53, IC5774LS 161 or 74LS 163 4-bit synchronous counter IC
IC9-6575 MOS character generator IC
IC $10-74166$ N 8 -bit parallel-m shift register IC
IC13. IC24-CD4029AE 4-bit up/down counter IC
ICIS-74L161, 74L163, or 93L16 4bit synchronous counter IC (do not substiute)
IC16. IC93-74LSION triple 3 -input NAND gate IC
LCIT-CD400|AE CMOS quad 2-input NOR gate IC
IC 18 through IC21, IC29 through IC32-2ILOI-1 or 91L02APC MOS 1024-bit RAM IC
IC22, IC 33, IC40. IC46, IC66. IC67. IC68, IC75, IC80. IC8I, IC82-8T97 hex tristate buffer 1 C
IC27. IC 48, IC 78, IC95-74LSI09N dual JK flip-flop IC

IC28. IC50. IC89, IC96-74LS04N hex inverter IC
IC 34, IC 35 , IC $36-74 \mathrm{LS}$ 157N quad 2-input data selector IC
IC $37-74 \mathrm{HOON}$ high-speed quad 2 -input NAND gate IC (do not substitute)
IC38-74SO4N Schottiky hex inverter IC (do not substitute)
1C 41 -MH0026P MOS clock driver IC
IC 43, IC87, IC90-74LS74N dual D flipflop IC
IC 44 , JC83, IC86-74LS00N quad 2 -input NAKD gate IC
IC 49, IC88-74LS08N quad 2-input AND gate IC
ICS2-CD4046AE CMOS phase-locked loop IC
ICS4-TR1602B, AY-5-1013, or S 1883 UART IC
IC55, IC56-74173N quad tristate latch IC
IC58 through IC61-2ILO1 or 91LOIPC 256×4 MOS RAM IC
IC62. IC63, IC64, IC65-S5204A or MMS204人 512×8 MOS erasable PROM IC (optional; write to address below for details)
IC69-8080, 8080A, or 9080A microprocessor IC
IC 70 , IC 77 , IC84, IC91-74LS253N dual 4 -input tristate data selector IC
IC76-DM8836N quad 2 -input NOR gate $1 C$
IC85, IC92-74LSIS5 dual 2-t0-4 line decoder IC
J1-Right-angle PC mount (AMP206584-1 or DB25S)
Q1. Q2, Q3-2N2907 transistor
The following resistors are $1 / 4$-watt, 10%

- toterance:

R1, R2- 330 ohms
R3, R9, R10, R21, R23 through R30, R80-
10,000 ohms
R4. R5, R6, R14 through R20, R22. R31 through R35, R37, R39. R41. R43, R45, R46, R48, R52, R56, R57, R58. R65, R72, R73, R74, R76, R77, R78, R79.
R82, R83, R84, R89 through R98, R100, R101- 1500 ohms
R7, R8-47 obms
R36, R67, R68, R99-4700 ohms
R38. R40. R42, R47, R49, R53. R55- 2200 olms
R44, R60. R81- 3300 ohms
RS0. RS4. R64, R87-100 ohms

R51- 200 ohms
R59. R63- 33.000 ohms
R61. R62, R66- 1000 ohms
R69- 15,000 ohms
R70. R71. R113- 100.000 ohms
R75, R88- 3.3 megohms
R85- 75 ohms
R103, R105. R107. R109. R110, R111. R112-8200 ohms
R106, R108- 39.000 ohms
R11, R12. R13-100-ohm 1-watt, 10% tolerance resistor
R86-330-ohm, $1 / 2$-watt. 10% tolerance resistor
R102. R $104-50.000$-ohm trimmer potentiometer (Bourns No. 3352-1-503 or similar)
SI through S4-Four-position dual in-line switch
S5-Momentary-action spst switch
S6-Single-pole, seven-position rotary switch
S7, S8. Se-Spst witch
Slo-Spdt switch
XTAL- $14.318-\mathrm{MHz}, 0.01 \%$ or better tolerance, series-resonant crystal in HC18U case
Misc.-Two 40 -pin. five 24 -pin. 5416 -pin. and 31 14-pin IC sockets (optional): 75-ohm coaxial cable: TV monitor: ASCIl keyboard: power supply: suitable chassis: mounting hardware; hookup wire; solder: etc.
Note: The following items are available from Processor Technology Corp. 6200 Hollis St.. Emeryville, CA 94608: Complete SOL-PC kt of pars (does not include case, power supply, or keyboard) for $\$ 297.00$. Available separately are SOL-PCB etched and drilled printed circuit board for $\$ 40.00$: SOL-SS set of IC sockets for $\$ 40.00$, and SOL-FAN fan for $\$ 20.00$. A complete kit that includes all parts. pe board, power supply. ASCll keyboard. all cables and plugs, and a case is available for \$497.00; specify kit SOL-1. Free copies of the complete schematic, etching and drilting guide, and component placement guide are available from the same source on request when accompanied by a selfaddressed stamped ($26 x$) envelope ($9^{\prime \prime} \times$ 12").

1 EPT - 11.4

read-only memories). In its basic configuration. the SOL terminal consists of a printed circuit assembly that contains the $\mu P, 512$ eight-bit bytes of PROM, 2048 eight-bit words of RAM (random-access memory), 1024character video display generator, keyboard interface, serial and parallel interfaces for connection to external devices, and an edge connector for memory expansion. All you add are a power supply. TV receiver or video monitor. ASCll keyboard. and a case.

Since the SOL terminal is 8080 based. its memory capability can be expanded to 65 k bytes. Hence, one might ask. is the SOL an intelligent terminal or a powerful microcomputer? In essence, it is both.

How it Works. The complete schematic diagram for the SOL terminal is much too large to be reproduced in this article. Therefore, a complete schematic, an etching and drilling guide and component layout diagram for the printed circuit board are available on request simply by sending a selt-addressed stamped (26r) envelope $\left(9 \times 12^{\prime \prime}\right)$ to the source given in the Parts List.

The biock diagram shown in Fig. 1 will be used to explain circuit operation. Notice the similarity of this diagram to that of a conventional 8080 microcomputer. The 8080 (or 8080A or 9080A) microprocessor. IC69, is the "heart" of the terminal. It is supported by IC66 through IC97, which inciude address and data line drivers and selectors: "wait state" timers: flag latches for data ports and partial address decoding. Both address and data 10 (input output) ports are avallable for expansion using currently available 8080 -type memory cards

As many as four PROMS I/C62 through (C65) allow up to 2048 bytes of program to be installed in the terminal Up to 512 bytes of RAM can also be installed and are designated IC58 through IC61

- SOL TERMINAL SPECIFICATIONS

Display: 16 lines of 64 characters per 1 line. Black characters on white background or reverse.
Character set: 96 printable ASCII upper-and lower-case characters. Plus 32 control characters (optional).
Display position: Continuously adjustable both horizontally and vertically.
Cursor: Solid video inversion (switch selectable blink), cursors are prögramimable.
Serial interface: RS-232 and 20-mA current loop, 75 to 9600 baud, synchronous.
Parallel interface: Eight data bits for input and output: output bus is tristate for bidirectional interfaces:

* levels are standard TTL.

Keyboard interface: Seven-level ASCII encoded, TTL levels; requires strobe pulse with data stable for approximately $100 \mu \mathrm{~s}$ following positive edge.
Microprocessor: 8080, 8080A. or 9080A.
On-card memory: 512 bytes PROM (expandable to 2048 bytes), 1280 bytes RAM (expandable to 1560 bytes).
External Memory: Expandable to 56 k bytes total ROM, PROM, and RAM.
Signal output: 1.0 to 2.5 volts peak-topeak with composite negative sync; nominal bandwith is 7 MHz .
Power required: +5 volts at 2.5 amperes, +12 volts at 150 mA , and -12 volts at 200 mA ; all buses must be well regulated.

The heart of the video display section is character generator ROM IC9. The generator provides both upperand lower-case characters in a 7×9 dot matrix format. Descenders on lower-case characters g. J. P. q. and y go below the base line to provide true typewriter character formatting. The remainder of the $I C$ in the video section (IC1 through IC36) produce the horizontal and vertical sync. cursor options, video inversion (black characters on white background) and all video "handshake" requirements.

Fig. 2 Vides output is comcentional with negatice sync and l-colt p-p signal lecel.

JULY 1976

Large connector at left rear of assembled circuit board assembly is for external memory: coax cable is for composite video output. All mput and output connectors are on rear edge.

IC sockets (recommended for all IC's to make removal and replacement easy) in place. Next, mount and solder into place the resistors, capacitors, diodes, and transistors. Then mount the baud rate switch and connectors lush to the surface of the board; make sure they do not sit askew after soldering them down.

Once the crystal is mounted and soldered into place, pass a length of bare hookup wire over its case and into the holes flanking the case. Solder the wire to the crystal's case and board pads. install and solder into place the coaxial cable for the terminal's output.

Carefully check the board assembly for poor soldered connections, solder bridges between closely spaced pads and traces, and proper polarization of diodes and capacitors and basing of the transistors.

Checkout. Before installing any IC's. power up the circuit board assembly to verify that no short circuits exist. Measure the potential across zener diode D3; it should be -5 volts. Check the fine foil traces near R85 (at the video output) for short circuits on the +12 -volt line. If everything checks out. turn off the power.
Insert IC37 through IC41 in their Jckets, making sure you properly urient them. Install jumpers from pad A to pad B and pad D to pad E (next to IC37). Turn on the power and use an oscilloscope to check the 47 -ohm resistors next to 1 C4? for the clock
pulses. When you obtain the pulses, turn off the power.

Install/C1 through IC36. Be particularly careful when handling IC9 to avoid static discharges. After removing this IC from its protective foam carrier, be sure to touch the pc board with your other hand before bringing the IC into contact with its socket. Seat the IC carefully in its socket and gently press it home. (Note: If you encounter excessive resistance when trying to install IC9, replace the IC in its foam carrier. Then loosen the socket pin receptacles by repeatedly inserting and removing a non-MOS IC or piece of bare 24 gauge wire.) Install IC9.

Set horizontal and vertical sync controls R104 and R102 to midposition and the four-position dual in-line switch so that S1 and S4 are off and S2 and S3 are on. Connect SOL's video output cable to the video monitor and turn on the power to both monitor and terminal board. Displayed on the screen should be at least one line of random characters and white cursor blocks. Adjust the v and H controls on the terminal board for proper sync and the contrast and brightness controls on the monitor for the best display.

Set S3 to off and S4 to on: the cursor should flash at a slow rate. Set S2 to off; the background should change from black to white. Set S1 to on; the control characters (symbols or abbreviations, depending on the type of character generator being used) should disappear. Turn off the board's power supply

Install IC42 through IC50 and IC66 through IC97. Practice the same precautions for IC69, the microprocessor chip, that you took for IC9 above. Connect the "watt state" jumper at IC71 from pad W to pad 1.

With the video monitor still connected to the terminal and operational, turn on the board's power. The CRT screen should display one or more lines of alternating 9 and "null" characters and should flicker every few seconds. This indicates that the $\mu \mathrm{P}$ is working. If there is any doubt, briefly operate the RESET switch. If you observe no activity on the screen, turn off and remove power from the board and check that all IC's are in their proper sockets and properly oriented.

Install IC52 through IC61 and program PROM IC62. Use the same precautions detailed above for IC9 and IC69 when handling and installing IC54, IC58 through IC61, and IC62. Make sure that the socket for UART IC54 is not too tight. If you encounter difficulties during insertion, use a non-MOS IC or 24 gauge wire to loosen the socket pin receptacles.

Once everything seems to check out, power up the board. If the program is running properly. the monitor screen should display a blanked screen with the proper "message" at the bottom.
This completes construction of the SOL video terminal. You can now add an ASCII keyboard and hook up to the outside world via the serial and/or parallel ports.

Aclvertisement from Byte \#1 sept. 1975

1 EPT 1-11.6

ALTAIR 8800 USERS!

Did you anon noe.

- That all our modules are 100% compatible with the Altair 8800 computer, NO modifications necessary!
- That our 4KRA Static Read/Write Memory module doesn't have to lose it's data when you pull the plug!
- That our 3P+S Input/Output module will fully interface two TV Typewriters with keyboards and a modem or teletype at the same time!
- That we make the most powerful alphanumeric Video Display module anywhere!
- That our software is FREE, or close to it!
- That all our modules are truly high quality, computer grade, but that our prices are the lowest in the industry!
- That we have already shipped hundreds of modules on time, and we will continue to deliver what we promise, FAST!

CHECK THE SPECS:

4KRA Static Read/ Write Memory

This 4096 word STATIC memory provides faster, more reliable and less expensive operation than any currently available dynamic memory system. The 4 KRA permits Altair 8800 operation at absolute top speed continuously. All RAM's (Random Access Memories) used in the 4KRA are 91LO2A's by Advanced Micro Devices, the best commercial memory IC on the market: today. 91LO2A's require typically $1 / 3$ the power of standard 2102 or 8101 type RAM's and each one is manufactured to military specification MIL STD -883 for extremely high reliability. ?.lest memories can be operated from a battery backup supply in case of power failure with very low standby power consumption. (Ask for our technical bulletin TB-101 on power down operation.) n short we have done everything we could to make the best 4.6 memory module in the computer field, and because we buy in large quantity, we can make it for a very reasonable price. Available now

2KRO Erasable Reprogrammable Read Only Memory Module With this module the Altair 8800 can use 1702A or 5203 type Erasable Reprogrammable ROM's. The $2 K R O$ accepts up to eight of these IC's for a capacity of 2048 eight bit words. Once programmed this module will hold its data indefinite';' whether or not power is on. This feature is extremely useful when developing software. All necessary bus interícing logic and regulated supplies are provided but NOT the E'ROM in's. Both 1702A and 5203 PROM's are available from other advert ε. in this magazine for well under $\$ 25$. Available now.

3P+S Input/Output Module

Just one $3 P+S$ card will fulfill the Input/Output needs of most 8800 users. There are two 8 -bit parallel input arc output ports with full handshaking logic. There is also a serial i/O using a UART with both teletype current loop and EIA RS. $23 ?$ standard interfaces provided. The serial data rate can be set unde software control between 35 and 9600 Baud. You can use your od r.odel 19 TTY। This module gives you all the electronics you need to interface most peripheral devices with the Altair 8800, it's really the most useful and versatile $1 / 0$ we've seen for any computer. Available now.

MB. 1 Mother Board

Don't worry any more about wiring hundreds of wires in your Altair to expand the mainframe. Our single piece $1 / 8$-inch thick, rugged mother board can be installed as one single replacement for either three or four 88EC Expander cards, so you don't have to replace your already installed 88EC card if you don't want 10. The MB -1 has very heavy power and ground busses and comes with a piece of flat ribbon cable for connection to the front panel board of the 8800 . Available now.

VDM-1 Video Display Module

This module is the first real computer terminal display in kit form. Under software control the VDM-9 displays sixteen 64 character lines to any standard video monitor. Characters are produced in a 7×9 dot matrix, with a full 128 character set, upper and lower case plus control characters. Data is accessed by the VDM as a block from any 1 K segment within the 65 K address range of the 8800 computer. Multiple cursors are completely controlled by software and the display can begin anywhere on the screen (this is great for many video games). When the last line is filled the display scrolls up a line. Powerful editing capabilities are provided with the FREE software package included in every VDM-1 kit. Available in September ' 75.

SOFTWARE

Out s.s:-nbler Tret Fine and System Executive is being
 $\therefore \quad \therefore \quad$, mage capability in :re Altair 8800. The Executive $=c$ Ell: allow you to call programs by name (including IAS \cdot.: d then add, delete, charge. or list programs by line runner' . Tree assembler provides a sorTie Tied symbolic mnemonic listing is 'well a octal ni binary ciject code from Assembly Language programs written using the Editor. The Assem.r,ler also gives valuable error messages to help in debr'yging those irišitable errors. The Assembler, Editor, Executive Package No. 1 will be available in read only memory along with ?n expanded Executive and a powerful Interpretive Simulator by October or November of 1975.
We are working on two BASIC Language packages wti'ith should be ready by October. One will be a basic BASIC nee ding about* 8 K of memory as a minimum and the other will be an Extended version with additional string manipulation, matrix operations and double precision arithmetic cabal, iss's requiring input 12 K Both these packages will be available a . siod Only Mertory for a reasonable price.

Send for our FREE flyer fo ri:ore complete :rr ilcatirns : red for pricing on additional item,

TERMS: All teems post paid if fuel payment arcombse.es or jer.
 accepted, but please sens use, under with : our signature an it. DISCOUNTS: Orders over $\because 5 \mathrm{~m}$. subt:act 5%, orcine over $\$ 600$ may subtract 10%.

2465 F Tithe Berkeley, Ca. 94710
(415) 549-0857

```
T.L. Todcl
Box 3]?
Plattrville, WI 53818
```


Could you use a Resident Assembler, Editor and Monitor for the 8800?

We have them!

GET TOKNOW THE FULL POWER OF YOUR ALTAIR!

PROCESSOR TECHNOLOGY CORP. provides the hardware AND the software you really need to accomplish things with your Altair 8800.

Want specifics?

- The only CRT terminal display module ever offered that is actually part of the computer
- A reasonably priced, LOW POWER, 4K Memory
- A versatile input/output module designed to meet most common I/O requirements with one card
- A reprogrammable read only memory (EPROM) module
- A rugged full length mother board with improved power distribution and integral bus terminator and card cage
- FREE SOFTWARE, or close to it!
- Firmware ROM modules containing our Software programs

FEATURES:

- Full 8800 hardware and software compatibility: JUST PLUG IN!!
- Maximum versatility: each card can be used in the widest range of applications.
- Conservative thermal design for long life and reliable operation.
- Maximum noise immunity: hysteresis bus receivers on noise prone high speed inputs.
- Highest possible quality: No compromise design!
- 100% Guaranteed: six month warranty.

READ ON...

Each of our kits contains all necessary parts including double sided epoxy PC board with plated through holes and gold contacts, all IC's, voltage regulators, massive heatsink, and mounting hardware. Complete instructions are included for easy asser and checkout. Every kit and assembled unit also includes information on how to use the module most effectively, covering soft programming considerations as well as hardware connections.

THE DETAILS...

FAMILY SPECIFICATIONS:

Bus connection: Fully 8800 compatible, electrically and mechanically. Outputs to the 8800 bus are three state, standard TTL le Storage temperature range: -40 to $+85^{\circ} \mathrm{C}$
Operating environment: 0 to $50^{\circ} \mathrm{C}$, humidity to 95%, non condensing.

ALS- 8
Ever dream of just turning on your computer and having its full power available instantly? The ALS-8 Firmware Module gives you that kind of "turn on the switch" system with 4 K of PROM's pre-programmed with a greatly expanded version of our Software Package No. 1.

This powerful file oriented package is the finest Resident Assembly Language Operating System available today. 8080 assembly language programs can be stored as named files (5 letter names) and called at will to be assembled, edited, or listed by line number. Six files can reside in memory at once, or, they can be stored in either source or object code on paper tape, cassette or any other form of storage medium for re-input at a later time. Assembly of the source file can take place from a memory file or from any input device you choose.

The assembler converts the mnemonic codes and labels of the `embly source language program to object code at any address . choose. (The run address can be different from the location re the code is placed.) Symbolic addressing includes the - y to chain common symbols from one program to another though the other program was assembled long ago. Feaof the assembler include labels, comments, expressions, unts, relative symbolic addressing... in short a professystem just made for assembly language work.

Input/output for the program is so versatile that it defies imagination, the driver software can even change the configuration under program control. That's right . . . a pr-7 can output one batch of information to one port and a ditrer batch to another port, each seemingly at the same time with human intervention. The system can handle any I/O configi tion you can hook up and will call to any driving software . wish to implement for the I/O.

Also, if you are new to computers, the manual included v each module not only explains how to use the program (v examples), but goes on to explain each routine of the Syst and how to call these routines from other programs you h written. This combined with the 1/O handling along wit custom "command table" allows every ALS 8 to be customi within your system to your individual needs. You don't have worry about being locked into a ROM version, this one designed with your expansion and creativity in mind.

The ALS-8 Firmware comes complete with a module with components capable of holding 8 K of TURN ON THE SWIT program. So why 8 K ? Because we wrote this system to upward compatible with future software developments and first of these, an interpretive simulator, is up and running nc

LOW POWER . . . yes and don't be fooled by "undirected" statements about this subject. All RAM's used in the 4KRA are 91L02A's by Advanced Micro Devices (AMD). 91LO2A's require typically $1 / 3$ the power of standard 2102 or 8101 type RAM's and under worst case conditions draws only 30%.more than any currently available dynamic memory. In addition each RAM is manufactured to military specification MIL STD-883. This all adds up to low power and reliability, notice . . . we're the ones who publish the maximum worst case power required by our memory

Plus, our memory draws so little standby current that they can be operated from a battery back up in case of power failuré. This allows long term retention of data under loss of power conditions. Our TB-101 illustrates how to add a few simple
monnents to implement this feature and is shipped with every
: sold. In short we've done everything we could to make ins the best $4 K$ memory module in the computer field.

SPECIFICATIONS: 4KRA

Maximum capacity: 4096 eight bit words
Operating mode: Static
Access time: 520 nsec. maximum
Cycle time: 520 nsec. maximum, read or write
Bus pinout: Plug-in compatible with Altair 8800 bus
Edge contacts: Gold plated, 100 pins (dual 50) on $.125^{\prime \prime}$ centers
Power requirements: +8 to $+10 \mathrm{VDC}, 1.2 \mathrm{~A} \mathrm{Max}$, at $0^{\circ} \mathrm{C}, 0.9 \mathrm{~A}$ Typical.
Dimensions: $5.3^{\prime \prime} \times 10.0^{\prime \prime}(13.46 \mathrm{~cm} \times 25.4 \mathrm{~cm})$

2KRO EPROM MEMORY MODULE

Read only memories (ROM's) do not lose their stored data when power is removed and thus have an advantage (we specialize in understatements) when used in stored program applications. Some ROM's, called PROM's, are user programmable, and some PROM's, called EPROM's, are erasable and reprogrammable as well. The most common and least expensive types of EPROM's in use today are the 1702A and MM5203; both are organized as 256×8 bit arrays. Our 2 KRO module will accept up to eight of these IC's, providing the user with up to 2048 eight bit words of non-volatile storage for monitor, executive, loader, and other programs.

Each 2KRO module is jumper selectable to fit any one of thirty-two 2 K segments within the 65 K addressing range of the 8800 computer. Additional jumpers are provided to select the appropriate number of "wait" states as determined by the access time of the EPROM's used. The EPROM's are not provided (everything else is) but are readily available for reasonable prices on the industrial and surplus markets. The module will accept either of two types of EPROM: the 1702 1702A, MM5202 or 9702 made by AMD, Intel MIL and National, or the MM5203 made by National. However, both 1702 and 5203 types cannot be used at the same time.

Erasing and programming services for the 1702, 1702A or
72 will be provided by Processor Technology Company. A ly printed or typewritten listing in octal (base 8) code of pron-am or data must be submitted along with address
orr There will be a charge of $\$ 5.00$ per EPROM
gr: For additional information and pricing on our
RC for our programming bulletin.

SPECIFICATIONS: 2KRO

Maximum capacity: 2048 eight bit words
Operating Mode: Static
Access \& Cycle Time: Dependent of EPROM used, logic on card will work over an access time range of 30 to 2500 nsec.
Number of "wait" states jumper selectable from zero to four.
Voltage Requirements: +8 to $+10 \mathrm{VDC},-15$ to -18 VDC
Power Requirements: 10 W max., 8 W typical at $25^{\circ} \mathrm{C}$ with 8 1702A's. Replacement transformer available for full negative supply power (see price list).
Bus Pinout: Plug-in compatible with Altair 8800 bus
Edge contacts: 100 pins (dual 50) on .125" centers, gold plated Dimensions: $5.3^{\prime \prime} \times 10.0^{\prime \prime}(13.46 \mathrm{~cm} \times 25.4 \mathrm{~cm})$

3P+S INPUT/OUTPUT MODULE

Getting data into and out of a computer can be one of the most difficult and expensive tasks in bringing up a working system. Our 3P+S module was designed to provide maximum versatility to allow this one card to meet all the $1 / O$ needs of most 8800 system users. For example, one teletype and two TV Typewriters with keyboards can operate simultaneously with the 8800 via one $3 \mathrm{P}+\mathrm{S}$ module; or, one TV Typewriter, an EIA RS-232 modem, a teletype and another parallel data device can be fully interfaced at the same time.

In addition, one parallel output port is available to be used for setting up control conditions for both parallel and serial ports, as well as to set the serial I/O baud rate under program control. The Baud rate can be set between 35 and 9600 Baud and the module is the only one available that will allow 1.5 stop bits as required by the old model teletypes that are available at such low cost.

Also, one parallel input port is available for polling the Input Data Available flags and External Device Ready flags, as well as for checking the serial I/O error flags. Full handshaking with both input and output peripherals can be implemented with these provisions.

Interfacing to the 8800 vectored interrupt bus is provided on the card as a jumper selectable option, allowing any of the UART (Universal Asynchronous Receiver Transmitter) error flags or handshaking signals to be used to generate interrupts. The Vectored Interrupt Module is required for this purpose.

Addressing of the module is jumper selectable to any one of 64 four address segments within the 8800 range of 256 I/O addresses. Additional flexibility allows either the UART and control port, or the two parallel ports to occupy the lower two relative addresses.

Complete information on each of the options available is included with each $3 P+S$ sold. In addition, a letter to us describing your system configuration will be returned illustrating the best way to implement the system with our module.

SIM-1 EXPANSION FIRMWARE

INTERPRETIVE SIMULATOR????? Yes, an interpretive simulator that runs 8080 programs, in an interpretive mode, on e same 8080 that contains the Simulator. This isn't just a ,ebug program, because the program thinks it's an 8080! That's right, all registers, flags, program counter, and stack are SIMU. LATED! Breakpoints are in the simulator program, not a jump to a restart location. (How else would you debug a program that needed the restart location?) Also, when a call or jump instruction is encountered, full control remains with the simulator. This is the only system that will not lose control if a program error is made on this type of instruction.

All registers, flags, program counter, stack and memory contents can be changed at all times and there is even a single -en mode that allows full printout of all the registers, flags, after each instruction is executed.
input instructions within the simulated program can be handled three ways: Real Time, Simulated, and Pre-Set. In the simulated mode the simulator stops and asks "what input for input port X." You input from your regular input port for any of the 255 other input ports! Output instructions are also simulated directly to you from the simulator. The output to your regular output port identifies the data output as well as the port it would have been output to. Again, don't mistake this for a simple program that handles breakpoints, this simulator actually gets each instruction and runs it under simulator control.

The SIM-1 comes pre-programmed and ready to plug into the ALS-8 module. The ALS-8 is an integral part of the simulator and must be available for its operation. (It would have been a 6 K program if the customizing power of the ALS 8 hadn't been there.)

As you can see, this without a doubt is the most powerful nrogram development tool that has ever been resident on an 80 to this day. It's running now at Processor Technology and - sample print-out illustrating its operation is avalable on request.

Will paper tapes of the ALS-8 software be available? We imagine they will appear but . . . using 8K of RAM to receive a paper tape that takes the better part of a half hour to load each time a power glitch occurs just doesn't make a real system. Using this module, loaded with the ALS-8 "PERMANENT PROGRAM" will save that expensive RAM for data and development programs as well as giving the true convenience of a "turn-on-the-switch" system.

SOFTWARE NO. 1 FIRMWARE

We have had a number of inquiries about providing Software No. 1 as a PROM Module, so we decided to provide one. The Software No. 1 Firmware Module is the ALS-8's little brother. Software No 1, as we call it, contains the basic resident assembler, system monitor, and line oriented text editor. It has these features: 1) Teletype oriented I/O (i.e. only one I/O device permitted). 2) RAM resident files, perfect for small ograms, but difficult for files larger than about 1K Byte. 3)
tware No. 1 Firmware cannot assemble from files not in

1. 4) It is not upward compatible with Disc or Cassette
rat...c ${ }^{\text {stems or }}$ the Simulator.

SPECIFICATIONS: ALS-8, SIM-1, \& SW1F
MEMORY TYPE: 4096 word Erasable PROM's
CYCLE TIME: 1.0 micro-second worst-case
ACCESS TIME: same as cycle time
POWER REQUIREMENT: +8 to 10 VDC at 300 Ma maximum, -14 to -17 VDC at 300 Ma maximum.
BUS PINOUT: Plug-in compatible with Altair 8800 bus.
EDGE CONTACTS: 100 pins (dual 50) on .125" centers DIMENSIONS: $5.3^{\prime \prime} \times 10.0^{\prime \prime}(13.46 \times 25.4 \mathrm{~cm})$

Build a smart terminal into your Altair! Your Altair already has the intelligence, we provide the display module. This is not a limited "TV TYPEWRITER" but an ultra-high speed computer terminal built into your computer. The VDM-1 generates sixteen 64 character lines from data stored in the $1 K$ Byte on-card memory. Alphanumeric data is shown in a 7×9 dot matrix with a full 128 upper and lower case ASCII character set. The VDM-1 features EIA Video output for any standard video monitor. (A TV set can be easily modified at your local TV repair shop.) Multiple programmable cursors, automatic text scrolling and powerful text editing software are included FREE!

SPECIFICATIONS: VDM-1

CHARACTER SET: 96 character ASCII, plus control characters 7×9 matrix with descending lower case.
DISPLAY FORMAT: 16 lines, 64 characters per line.
DISPLAY MEMORY: 1024 8-bit Bytes LOW POWER Static Read/Write memory
DISPLAY POSITION: Continuously adjustable, horizontally and vertically
I/O, DATA: Addressable as a 1 K page of memory, Read or Write.
CURSOR: Solid video inversion (blinking optional) appears at all character positions when bit 7 is high.
I/O, CONTROL: Output from CPU is one 8 -bit Byte. The lower four bits control Beginning Line Address; the upper four bits control Beginning Display Offset. Input to CPU is a one bit (DI), Parameter Change Ready flag.
BLANKING CHARACTERS: CR (octal 015) blanks test, except cursor, to end of line. VT (octal 013) blanks text, except cursor, to end of screen.
SIGNAL OUTPUT: 1.0 to 2.5 VP-P video composite, negative sync
MONITOR BANDWIDTH: 6.0 MHz (at -3 dB) required video BW.

4KRA LOW POWER STATIC MEMORY MODULE

This 4096 word read/write memory module provides faster, less expensive, more reliable and lower power operation than any comparable memory module sold today.

Faster speed in actual operation results because static memories don't need periodic refreshing. Dynamic memories require a refresh period at least 500 times per second. During this period no data can be written or read from the memory and the computer must sit idle in a "wait" condition.

SPECIFICATIONS: 3P+S

Outputs: Two 8-bit paraliel ports, standard TTL levels, relative addresses at 0 \& 1, or 2 \& 3.
One Teletype 20 mA current loop output.
Four EIA RS-232C outputs for serial transmit data and/or control signals.
One Peripheral Interface Control driver (PIC) 50mA current source for paper tape reader control or cassette recorder control. Jumper selectable to control port output.
Inputs: Two 8 -bit paraliel ports, standard TTL voltage levels, input current is 0.36 mA max.
One Teletype 20 mA current loop receiver for UART data input.
Four EIA RS-232C receivers for received serial data and/or control signals.
Sontrol: One 8 -bit output port, relative card address selectable as 0 or 2. Lower four bits for baud rate control and/or EIA control outputs and/or PIC driver.
Upper four bits for UART control, i.e. word length, parity, and number of stop bits. Control conditions can be strapped on, off or to software controlled, latched output bits.
One 8 -bit input port, relative card address selectable as 0 or 2. Bits selectable with jumpers to read UART error flags, i.e. parity, overrun, and framing errors, and/or EIA control inputs, and/or Data Available flags for parallel input ports, and/or External Device Ready flags for parallel output ports.
Interrupt Control: Any control input, status flag, or UART output may be jumpered to the Interrupt Bus Driver. Interrupt operation requires use of a Vectored Interrupt Module to gate the Restart instruction to the processor.
Bus Pinout: Plug-in compatible with Altair 8800 bus
Edge Contacts: Gold plated, 100 pins (dual 50) on .125" centers.
Voltage Requirements: +8 to $+10 \mathrm{VDC},+15$ to $+18 \mathrm{VDC},-15$ to -18VDC
Power Requirements: 7.0 W maximum, 5.5 W typical at $25^{\circ} \mathrm{C}$
1/O connection: Two standard 44 pin (dual 22) edge connectors, $.156^{\prime \prime}$ centers
Dimensions: $5.0^{\prime \prime} \times 10.0^{\prime \prime}(12.7 \mathrm{~cm} \times 25.4 \mathrm{~cm})$

MB-1 MOTHER BOARD

Don't worry any more about wiring hundreds of wires in your Altair to expand the mainframe. Our single piece $1 / 8$-inch thick, rugged mother board can be installed as one single replacement for either three or four 88EC Expander cards, so you don't have to replace your already installed 88EC card if you don't want to. The MB-1 has very heavy power and ground busses and comes with a piece of flat ribbon cable for connection to the front panel board of the 8800, a built-in bus terminator, and card guide cage for sixteen plug-in slots.
Specify MB-12 for replacement of three 88-EC's, or MB-1 for placement of four $88-E C$'s. Both are the same price. Available v.

$$
\text { ensinn: } 125^{\prime \prime} \times 11^{\prime \prime} \times 14.5^{\prime \prime}(0.32 \mathrm{~cm} \times 27.94 \mathrm{~cm} \times
$$ $3 E$

WWB - WIRE WRAP BOARD
This is the card for all of you who do wire wrap prototyping. Now you can easily create your own custom interfaces or strange "Kluges" of any kind. The WWB has a "universal" pattern of seven rows of pads on . $3^{\prime \prime}$ centers, so that standard 14, 16, 24, and 40 pin DIP IC sockets can be plugged in. Power and ground are dedicated to pins 16 and 8 respectively (i.e. for 16 pin DIP's) but the layout is designed for fast conversion of each position to other IC sizes. Up to 62 sixteen pin DIP IC's can be used. An extra six wire wraps socket positions have been set aside for connections to the 8800 bus.

Each WWB Kit comes with one 5 volt regulator, a heat sink, and decoupling capacitors. Space is reserved on the card for two more regulators for positive or negative supplies.
Dimensions: $5.3^{\prime \prime} \times 10.0^{\prime \prime}(13.46 \times 25.4 \mathrm{~cm})$
Contacts: Gold plated, 100 pins (dual 50) on $.125^{\prime \prime}$ centers
Board Materials: 1/16" G-10 glass-epoxy, plated through holes, 2 oz. copper: solder plated.

EXB - EXTENDER BOARD

This Extender Board makes troubleshooting and servicing of any 8800 compatible module much easier. With the EXB you can plug in a troublesome module five inches above the Mother Board so that both sides of the Board can be reached easily with an oscilloscope, VTVM, or logic probe.
Dimensions: $5.3^{\prime \prime \prime} \times 10.0^{\prime \prime}(13.46 \times 25.4 \mathrm{~cm})$
Contacts: Gold plated, 100 pins (dual 50) on $.125^{\prime \prime}$ centers. Edge Connector: Viking 3VH50/1CV (one included).

Software

Package No. 1: This is the self contained Assembly Language Operating System developed and distributed by Processor Technology for an "almost free" $\$ 3.00$. The $\$ 3.00$ package includes the source listing with hexidecimal object code and ample comments throughout. Each command is described and six pages of sample use are included. Paper tapes of this System were sent to Computer Clubs across the nation and are available from them on request. Get the listing and the tape and you will be running one of the finest Assembly Language Systems developed to date.

Package No. 2: We are working on two BASIC Language packages which should be ready by December. One will be a basic BASIC needing about 8 K of memory as a minimum and the other will be an Extended version with additional string manipulation, matrix operations and double precision arithmetic capabilities requiring about 12 K . Both these packages will be available in Read Only Memory for a reasonable price.

Up \& Coming
 THE NEWS IN A NUTSHELL!

The last edition of Nutshell produced an overwhelming stream of input to our product development department. This input did not go to thin air as you see.

MASS STORAGE

We have always wanted a low cost, reliable, fast access storage device using standard Phillips cassettes (we bet you have too), so we got to work and designed one - here it is! With the CDS-VIII Cassette Data System you have computer controlled access to 128 K bytes of data within 20 seconds when using C-30 cassettes. We provide read/write electronics and transport controller, Altair interface, a case and power supply, and one or two multiple motor cassette transports plus FREE driving software! Yes, up to two cassette drives! Two drives provide much more powerful file handling and copying capabilities as well as, of course, twice the storage capacity. Data can be written and/or read asynchronously at any transfer rate up to 150 bytes/sec: at this rate 8 K BASIC can be loaded in about 50 seconds! We have also included provision for use of any read/write electronic plug-in section so that tapes using HIT, Computer Hobbyist or Digital Group formats may be read at lower data rates. Full details will be available in November, 1975.

PTCOS

What is PTCOS you may ask? It stands for Processor Technology Cassette Operating System and it means a real Operating System program based around our CDS-VIII dual Cassette Data transport System. When operating under this program you have true file handling power to create, delete, edit, relocate, and copy all kinds of files (e.g. BASIC and programs written in BASIC). PTCOS can handle multiple 1/O devices using a special type of file and suitable small driving routines. At last an integrated system concept for the 8800 is a reality! PTCOS is devilishly similar in its basic operation to an FDOS and is upward compatible with future software developments from Processor Technology.

TTK
The True Time Keeper is alive and well but had to take lower priority than the VDM \& CDS. It will be ready about December or January and will include standby power. Complete facilities for vectored interrupt and the very necessary functions of a real time clock will be included along with the month, day, hour, minutes, seconds. . . We're sorry it takes so long but this one is well worth waiting for. I WANT ONE, anyone?

MMM-1
Everyone was so firm about the CDS and VDM that the MMM's received hardly a mention. Our business guy insists on seeing the "I WANT ONE'S!" before he cuts us loose. Remember these modules really will play honest music under program control. Two tones on the first module with full program control of amplitude and frequency. Any other ideas?

PPM PROM PROGRAMMING MODULE

Did we really ask if you wanted both or "just" one or the other. We will make one of these as soon as we know the way pricing is going to go on the 5203 and 1702A's.

Warranty

PROCESSOR TECHNOLOGY COMPANY, in recognition of its responsibility to provide quality components and adequate instruction for their proper assembly, warrants its products as follows:

All components sold by Processor Technology Company are purchased through normal factory distribution and any part which fails because of defects in workmanship or material will be replaced at no charge for a period of 6 months following the date of purchase. The defective part must be returned postpaid to Processor Technology Company within the warranty period.

Any malfunctioning module, purchased as a kit and returned to Processor Technology within the warranty period, which in the judgement of P.T.Co. has been assembled with care and not subjected to electrical or mechanical abuse, will be restored to proper operating condition and returned, regardless of cause of malfunction, with a minimal charge to cover postage and handling. (This is really a good deal, we think.)

Any modules purchased as a kit and returned to P.T. Co. which in the judgement of P.T. Co. are not covered by the above conditions will be repaired and returned at a cost commensurate with the work required. In no case will this charge exceed $\$ 20.00$ without prior notification and approval of the owner.

Any modules, purchased as assembled units are guaranteed to meet specifications in effect at the time of manufacture for a period of at least 6 months following purchase. These modules are additionally guaranteed against defects in materials or workmanship for the same 6 month period. All warranted factory assembled units returned to P.T.Co. postpaid will be repaired and returned without charge.

This warranty is made in lieu of all other warranties expressed or implied and is limited in any case to the repair or replacement of the module involved.

2KRO	Erasable PROM Module	\$ 50.00	\$ 75.00	NOW
$3 \mathrm{P}+\mathrm{S}$	Three Port Input/Output Module	125.00	175.00	NOW
4KRA-4	4096 Word Low Power, Static RAM Memory RAM only, 1024×8	$\begin{array}{r} 139.00 \\ 25.00 \end{array}$	195.00	NOW
SW1F	Software No. 1 Firmware	189.00	245.00	NOW
ALS-8	Assembly Language Operating System Firmware Module	250.00	350.00	DEC. 15
SIM-1	Simulator Expansion Module	95.00	100.00	DEC. 15
VDM	Video Display Module	160.00	225.00	DEC. 15
EXB	Extender Board Module	35.00	45.00	NOW
- 10	Wire-Wrap Prototyping Module	40.00	-	NOW
MB-1/CC	16 -slot Mother Board with Bus Terminator and Card Cage (includes BT-1 \& CC 16)	70.00	-	NOW
CC-16	16-slot Card Cage for MB-1	20.00	-	NOW
44PC	Dual 22 pin edge connector (.156"), two required for use with 3P+S	3.00	-	NOW
100PC	Dual 50/50 pin edge connector (. $125^{\prime \prime}$ centers) ONE REQUIRED FOR EACH MODULE TO PLUG INTO 88EC or MB-1	8.50	-	NOW
DB25S	Socket, 25 pins for 1/O connections on 8800 rear panel	4.50	-	NOW
DB25P	Plug and hood, 25 pins for cables plugging into DB25S	4.50	-	NOW
TRF-1	High current transformer for PROM module replaces T3 in 8800	5.00	-	NOW

DELIVERY: From stock to 3 weeks after receipt of order.
TERMS: All items postpaid to U.S. and Canada if full payment accompanies order. COD orders must include 25% deposit. DISCOUNTS: Prepaid and COD orders over $\$ 375$ subtract 5%; orders over $\$ 600$ subtract 10%.
Prices, specifications, and delivery subject to change without notice.
PROCESSOR TECHNOLOGY CO., 2465 Fourth Street, Berkeley, Ca. 94710
Phone: (415) 549-0857
JER FORM
 ACCOMPANIES ORDER. C.O.D. ORDERS MUST
INCLUDE 25% DEPOSIT. MASTER CHARGE ACCEPTED. (MINIMUM \$25.00) NUMBER AND EXPIRATION DATE:

SIGNATURE

ADDRESS
 PRESENT AND FUTURE
PRODUCTS ON REVERSE SIDE.

HowFarCanYouGo Find out-by adding 8080 compatibl

3P+S Input/Output Module

Our $3 P+5$ is a simple inexpensive answer to handling a variety of peripheral devices. It has two 8-bit parallel I/O ports, with full handshaking logic. Plus, it has a serial I/O port, with a dota rate range from 35 to 9600 Baud. Simultaneously handle a paper tape reader, a keyboard, a TV terminal, a tape punch, and a telephone coupler! Available with premium grade low-profile IC sockets, \$149. Owner's Manual, \$4.95.*

ALS-8 Assembly Language Operating System

Just turn on the switch, and instantly you have the power to write, edit, assemble, de-bug, and run your own programs. The ALS-8 is the most useful software development tool available today. Optional firmware indudes SIM-1, an interpretive simulator, that simulates programs without running them in real time. Thus, errors encountered during testing do not endanger your entire system. The TXT-2 firmware adds the dimension of text editing. Insert, delete, move entire lines or single characters, and much more! ALS-8 (assembled only), $\$ 425$. SIM-1, \$95. DXT-2, \$95.

VDM-1 Video Display Module

If you're setting up just the system you really want, don't fall short by limiting its communicating ability. The VDM-1 is an ultrahigh speed video output device. Its 16 display lines have 64 characters each, upper and lower case. 1024 bytes of random access memory are on the card. It scrolls up or down, even to 2000 lines per minute! Any combination of the 1024 cursors can be displayed as black-on-white or vice versa. Free terminal mode software is included, along with premium grade. low-profile IC sockets. \$199. Owner's Manual, \$4.95:

8KRA Static MemoryModule

We now offer a low-power static memory module, with a full 8192 bytes of memory.

It has an exclusive $\mathrm{KSET}^{T M}$ address selection DIP switch, so you can conveniently set address boundaries in increments of 1 K . Our low-power RAM's typically require onethird less power than those commonly used by our competitors. They'll even retain memory for $4-5$ hours when powered by two "D" flashlight cells. On-board recharging circuitry and battery connectors make it possible to protect your data against sudden power loss. Each RAM has its own IC socket too, for easier assembly and repair. $\$ 295$. Owner's Manual, \$4.95.*

2KRO EPROM Module

The 2KRO Read Onty Memory will accept up to eight 1702A or 5203 EPROM's (not included), providing 2048 eight-bit words of non-volatile storage for monitor. executive, loader and other programs. Programming services available from your dealer or write us for details. \$65. Owner's Manual, \$4.95.*

4KRA Static Memory Module

The 4KRA (4096 bytes) was our first static memory module. It's still very popular, and uses the same low-power static RAM's as the 8KRA. Plus, we've added a DIP switch, and every RAM now has its own premium grade, low profile IC socket. On-board recharging circuitry (with battery backup) makes it possible to retain memory for $8-10$ hours during power failure. $\$ 159$. Owner's Manual, \$4.95.*

MB-1 MotherBoard

Our single piece Mother Board for the Altoir 8800 gives you 16 -card capacity in one single installation Availoble with 12 (MB-12) or 16 (MB-1) slots. $\$ 70$. (Discontinued; limited to stock on hand.)

WireWrapBoard

Do your own wire wrop protoryping with the WWB Wire Wrap Board. Up to 6216 -pin sockets or vorious combinations of 14.16 .24 and 40 -pin sockets. $\$ 40$.

EXB ExtenderBoard

The EXD Exrender Board allows accessibility in servieng any 8080-compatible module. \$35.
*Fully descriptive Owner's Manual available separately. Price refundable with purchase of kir.

THIS PAGE LEFT BLANK INTENTIONALLY.

1 EPT I - 13

OnThe 8080 Bus? products from ProcessorTechnology.

Whether your minicomputer system is Sol, IMSAI, or Altair, its real capabilities depend on what goes inside. Processor Technology Corp. now offers a full line of 8080 -compatible components. From fine static memories to a unique assembly language operating system. We also have a variety of useful software packages, available for little more than copying costs.

Kit Prices are shown, and they include the Owner's Manual. Assembled units available at slightly higher prices.

Write Us for further details on all our 8080-compatible products, and for the dealer nearest you.

As you thumb through this magazine, you'll see a lot of ads for small computers. For $\$ 600$ you can find a pretty good box with a power supply, four slot mother board, CPU module, and all the expected lights and switches.

But you know what? It won't work.
That's because in order to make the computer go you have to buy memory normally both read-write (RAM) and readonly (PROM), interfaces to the outside world (parallel, serial, and cassette), keyboard, video display module, and software.

Add this all up and it's going to cost you at least $\$ 1,400$ for a complete system.

Got the picture?
Now listen to this. The remarkable new Sol-20 Terminal Computer will give you all of the above... plus more!... as standard equipment for just $\$ 995$, in kit form. This is because the Sol-20-like no other small computer - was designed from the ground up to be complete.

Here's what the Sol-20 includes as standard equipment:

- 8080 microprocessor.
- Video display circuitry.
- 1024 words of static, low-power RAM.
- 512 words of preprogrammed PROM.
- Custom 85-key solid-state keyboard.
- Audio cassette tape interface.
- Both parallel and serial interfaces and connectors.
- Power supply.
- A beautiful case with solid walnut sides.
- Software that includes a preprogrammed PROM personality module and a cassette with BASIC-5 language plus two sophisticated computer video games.
- Full expansion capability with all S-100 bus (Altair/IMSAI/PTC bus) products.

It's a handsome terminal or computer that will even look good in your living room or office. Small systems start at just $\$ 475$.

Full expansion capability

The Sol-20 system can be tailored to your applications using the complete line of peripheral products from Processor Technology. These include the video monitor, audio cassette and digital tape systems, dual floppy disc system, memories, and interfaces... plus all other peripherals compatible with the S-100 bus.

The Sol-20 greatly simplifies the computer-buying process. It's a splendid package that will excite both present and prospective computer owners.

Our brochure tells all. Write for it today.

Processor Technology, 6200 Hollis Street, Emeryville, CA 94608.
(415) 652-8080.

Introducing Sol Systems
BYTE December 1976
pp. 71-76
A complete computer/ferminal concept with all the standard features, software and peripheral gear you want in your personal computer.

Sol Systems put it all together. One source for hardware and software. One source for engineered compatibility of computer and peripherals. That's the Sol plan.

Though the microprocessor made the powerful small computer possible, a lot of folks found out early efforts in the marketplace were selling the sizzle a lot more than the steak. After an initial investment of several hundred dollars, you ended up with some nice parts, but no memory of any kind, no I/O devices or interfaces, no display, printout or software.

The Sol plan ends all that. Processor Technology takes the position that it's far better to be right than first. So let's get down to the Sol no tricks plan.

For $\$ 995$ in kit form, the first complete small computer

Standard is a basic word at Processor Technology. The Sol-20 has more standard features than any other small computer we know of. Here's what you get.

8080 microprocessor* 1024 character video display circuitry* 1024 words of static low-power RAM* 1024 words of preprogrammed PROM* a custom, almost sensual 85-key solid-state keyboard* audio cassette interface capable of controlling two recorders at 1200 baud* both parallel and serial standardized interface connectors* a complete power supply* a beautiful case with solid walnut sides* software which includes a preprogrammed Prom personality module and a cassette with Basic-5 language plus two sophisticated computer video games* the ability to work with all S-100 bus (Altair 8800/IMSAI/PTC) products.

There are no surprises. Everything you need to make it work is here. In kit form, nominal assembly time from our fully documented instructions is four to seven evenings.

Or start with the Sol-PC for just \$475

You can begin your Sol system with the all on one board Sol-PC kit. It has all the
memory and interface electronics including video display, keyboard interface, audio cassette interface, all necessary software and the ability to accept the full Processor Technology line of memory and interface modules. Use the Sol-PC as the basis of a microcomputer, low cost CRT terminal or editing terminal

And these specs are standard

Display: 16 lines of 64 characters per line. Character set: 96 printable ASCII upper and lower case characters plus 32 selectable control characters.
Display position: Continuously adjustable horizontally and vertically.
Cursor: Selectable blinking. Solid video inversion. Programmable positioning standard. Serial interface: RS-232 and 20-mA current loop, 75 to 9600 baud, asynchronous. Parallel interface: Eight data bits for input and output; output bus is tristate for bidirectional interfaces; levels are standard TTL. Keyboard interface: Seven-level ASCII encoded, TTL levels.
Microprocessor: $8080,8080 \mathrm{~A}$, or 9080A. On-card memory: 1024 bytes PROM (expandable to 2048 bytes), 2048 bytes RAM. External Memory: Expandable to 65,536 bytes total ROM, PROM, and RAM. Video signal output: 1.0 to 2.5 volts peak-to-peak. Nominal bandwidth is 7 MHz . Power required ($\pm 5 \%$): +5 volts at 2.5 amperes, +12 volts at 150 mA , and -12 volts at 200 mA .

The Sol plan, completely expandable.

By filling the basic main frame with tailor made Processor Technology plug-in PC boards, you can really expand the computing power and flexibility of your Sol-20 Personal Computer.

New items are being announced frequently, but right now, here are some of the
things you can add to your Sol-20. The ALS-8 Firmware module is an assembly language operating system to give you the power to develop and run programs. Use \dagger to quickly write, edit, assemble, de-bug and run your own programs. Some say it's the most useful software development on the market today, but modesty prohibits.

And when it comes to add-on memory boards, you've come to the right place. We've probably got more than anyone else. Choose from 2 K ROM or 4, 8 or 16K RAM (read all about the 16KRA board on the last page of this ad). The PT 2KRO will accept up to eight 1702A or 5203Q erasable, reprogrammable memories (EPROM's) with the ability to store in a non-volatile fashion up to 2048 eight-bit words.

Our read/write memories are the industry standards for high reliability. We know, because we have literally scores of customer letters saying "Your memory modules work and keep on working."

To help you solve additional interfacing problems, add the $3 \mathrm{P}+\mathrm{S}$ I/O module. Here's a board with two 8-bit parallel I/O ports with full handshaking logic and a serial data rate that can be set anywhere between 35 and 9600 baud. Set up control conditions for both parallel and serial ports. Data and rror flags can be polled.

A full line of Sol-20 tailored peripherals

No computer can do the full job without the right set of peripheral gear. PT has sought out the best manufacturers of peripheral equipment and worked with them to give you a choice of quality so you can get the most out of your Sol-20. Choose from line and serial printers, perforated tape readers and punches, floppy disk memories, black and white or color graphics displays, $A / D, D / A$ converters and more.

Software, the Computer Power Essential

A big part of making the first complete small computer is providing you with a wide range of easy to use, easy to obtain, low cost software. For the Sol-20, we've developed a whole group of offerings. And more are on their way.

TREK 80

Based on the NBC television series -TARTREK, this 8 K assembly language program uses the VDM graphics capability for real time war with the Klingons. No holds
barred, they're out to get you from each of the 100 quadrants. TREK 80 resides and runs in 8 K of memory and requires the PTC Sol or VDM-1.

New PT 8K Basic

Processor Technology has the fast new BASIC you've needed for so long. Using our superior BCD math, the speed of the new language is double that of our own fast BASIC-5. To multiple program capability, we've added strings, multidimensional arrays and multi-line, multi-variable, user functions. This is the BASIC for full capability systems. Look at the BUSINESS ANALYSIS program example in the manual to find out how PT 8K BASIC gives you more while using less memory for the working program.

Five reasons why it's so good

1. Strings are not limited to a length of 256 characters and can extend to the bounds of memory.
2. Renumbering of lines with full gosub, etc. updating. Also EXAM and FILL allow for direct memory operations while IN and OUT provide direct I/O capability.
3. Every statement is fully implemented. RESTORE, for instance, restores the data pointer as usual. BUT, with PT 8K BASIC, RESTORE 100 will set the pointer to the data located at line 100.
4. Fully implemented string and math functions include all of the standards - VAL, STR, ASC . . . EXP and LOGI and LOG. Also, the more advanced statements such as ONGOTO and IF THEN ELSE along with a loop EXIT are provided.
5. PT 8K BASIC has a 'perfect' implementation of PRINT USING which saves program memory space while still providing more capability than the usual PRINT USING.

The new PT 8K BASIC is similar to the version we're developing for ROM. You use it here before buying the more expensive ROM.

You'll find your PT 8K BASIC also includes both a built-in VDM driver and special editor. The cassette version also includes named program SAVE and LOAD for the CUTS Cassette interface or Sol.

New 8080 FOCALTM Dec

8080 FOCAL has been updated to include operator precedence and all other standard FOCAL conventions. It also has a driver for VDM-1 display and PT Cassette program SAVE and LOAD This version is available only on CUTS Cassette and resides in 8 K of memory.

1 EPT 1-20

GAMEPAC 1 to entertain family and friends
Show off your VDM-I and computer with this lineup of video games. Each is included on the cassette or paper tape.

TARGET keeps track of your hits and misses while you blast away at the moving target. You and your family can get together for whole evenings at a time with this one.

ZING. Learn hexidecimal arithmetic fast with this VDM game as two players keep the five balls in the air. If both of you get too good... ZING, of course, will make it harder.

LIFE. The Sol or VDM makes a good display for the game of life and this version allows two modes of operation. The universe can be flat or wrapped around on itself. The real meaning of life we'll leave to you but it's fun to watch.

PATTERN. We haven't figured this one out ourselves but it's sure nice to have your computer doing it. You choose the geometric design and how rapidly it changes.

Sol Systems Price List

SOFTWARE

MEM with manual	Source	cuts cossette	Paper tape
BASIC 5 software \#2	yes	**	\$19.50
8K BASIC	no	\$29.00	\$37.00
New 8080 Focal	no	\$14.50	N/A
TREK 80 video game	no	\$ 9.50	\$14.50
GAMEPAC 1 video games	no	\$ 9.50	\$14.50
MATHPACK video calculator	yes	\$14.50	\$19.50
ASSEMBLER software \#1	yes	\$14.50	\$19.50

**CUTS cassette of BASIC 5 is included FREE with all orders for Sol units or CUTS cassette interfaces. Additional cassettes available for $\$ 14.50$

Sol system owners be sure to note Sol system on your order. These special versions use less code and provide easier loading along with more convenient operation.
SOLOS, SOLED and CONSOL all have provision for the special versions.

All Processor Technology software is distributed on an individual sale basis for personal use. No license to copy, duplicate or sell is granted with this sale. Each software package has been copyrighted by Processor Technology and all rights therein are reserved.

Sol Terminal Computers Kit Prike
SOL-PC SINGLE BOARD TERMINAL COMPUTER ${ }^{\text {m }}$
\$475.*
SOL-10 TERMINAL COMPUTER ${ }^{\text {TM }}$ Sol-PC with case, power supply and 70 key solid state keyboard. \$795.*

SOL-20 TERMINAL COMPUTER ${ }^{\text {M }}$ all features of Sol-10 with larger power supply, 85 key solid state keyboard, fan, and five slot expansion backplane.
\$995.*
*Sol prices include CONSOL
Personality Module. If SOLED Intelligent Editing Terminal Module or SOLOS Standalone Operating System Module is desired instead, add $\$ 100$. If ordered separately, personality modules are $\$ 150$ each.

Memory Modules		
ALS-8 PROM Resident Assembly Language Operating System		
SIM-I Interpretive Simulator add-on option for ALS-8		
TXT-2 Text Editing add-on option for ALS-8		
2 KRO Erasable PROM module		
4KRA 4096-word Low Power Static RAM		
8KRA 8192-word Low Power Static RAM		
16KRA 16384-word Dynamic RAM		
Interface modules		
$3 P+S$ Parallel,Serial I/O module	\$149	
CUTS Computer Users Tape System cassette interface	\$	
VDM-1 Video Display Module	\$199	\$29
Mass Storage Systems Helios II Disk System ${ }^{\text {™ }}$ includes dual PerSci 270 floppy disk drive, cabinet, fan,S-100 bus compatible controller, power supply, system diskette with complete PTDOS software	\$189	
Misc.		
EXB Extender Board	\$ 35	\$ 4
WWB Wire Wrap Board	\$ 40	
Prices, specifications subject to change without no up to two weeks for clearance checks. Mastercharge accept amounting to less than $\$ 30$ for handling.	del Ple pe All	$\$ 3$

1 EPT 1-21

FNew

16K RAM, fully assembled, \$529

More bits per buck than ever before on a fully burned in and tested board unconditionally guaranteed for one year.

Processor Technology made the first 4 K static RAM modules for the home computer market. Now in a price performance breakthrough we offer you a 16,384 byte dynamic memory module assembled, tested and burned in. Not a kit-and at $\$ 529$ who'd want to build it from scratch?

Processor Technology gives you the features to make 4 K dynamic RAMS work for you.

- Invisible refresh, no waiting while CPU is running.
- High speed $400 \mu \mathrm{sec}$ access time worst case Z-80 and 8080 compatible.
- Versatile addressing, each 4096 byte segment is individually addressed to any of the sixteen available 4 K segments.
- Low power - typically 5 watts when running - the same as most 4 K memory modules.
- BATTERY BACKUP capability built-in fór standby operation.
- IMPORTANT NOTICE - No 16K memory module available is fully, truly static. 4200/4402 type "static" RAM's have high level, high current clocks with high transient power levels. Any RAM with 12 volt 30 mA clock pulses should not be called "STATIC" just because each memory cell is a flip-flop.

Specifications

Access Time	400 nsec max
Cycle Time	500 nsec max
Rams Used	Intel 2104 or Mostek 4096 types
Capacity	16384 8-bit bytes
Memory Protect	standard on card
Addressing	each 4096 byte page addressable
Operating Power	+7.5 to 10 VDC at 0.4 A typical +15 to +18 V at 10 mA typical -15 to -18 VDC at 20 mA max

The new Processor Technology 16K board is available for immediate delivery. See your nearest dealer listed below or contact us directly. Address Processor Technology, 6200 Hollis Street, Emeryville CA 94608, Phone 415/652-8080.

Processor Technology Dealers

CALIFORNIA	The Bye
The Byte Shop 1514 University Ave	509 Francisco Bivd San Rafael CA 94901
Berkeley CA 94703	The Byte Shop
The Byte Shop 2559 South Bascom Ave	3400 El Camino Real Santa Clara CA 95051
Campbell CA 95008	
The Computer Mare 624 West Katella \# 10 Orange CA 92667	2989 North Main St. Wainut Creek CA 94596
The Byte Shop 2227 El Comino Real Paio Alto CA 94306	Microcomputer Systems Inc. 144 So. Dale Mabry Hy
The Computer Center 8205 Ronson Road San Diego CA 92111	Tampa FL 33609 GEORGIA
The Computer Store of San Francisco 1093 Mission Street San Francisco CA 94103	Atlanta Computer Mart 5091-B Buford Hwy. Atlanta GA 30340

ILLINOIS
The Numbers Racket 518 East Gr 518 East Green Street Champaign IL 61820
itty bitty
machine co, inc.
1316 Chicago Ave
Evanston IL 60201
The Chisago
Computer Store
517 lalcom Road
Park Ridge IL 60068
INDIANA
The Data Domain
111 South College Ave Bloomington IN 47401

MICHIGAN

The Computer Store
of Ann Arbor
310 East Washington
Ann Arbor Ml 48104

NEW JERSEY
The Computer Mart of New Jersey 151 Kline Boulevard Colonia NJ 07067
Hoboken Computer Works 56 Second Street Hoboken NJ 07030

NEW YORK
Audio Design Electronics 487 Broodway Ste 512 New York NY 10013
The Computer Corner 200 Hamilton Ave. White Plains NY 10601
The Computer Mart of Long island 2072 Front Stree East Meadow, L.I. NY 11554 TEXAS

The Computer Mart
of New York
314 Fifth Ave.
New York NY 10001
Synchro Sound Enterprises
193.25 Jamaica Ave. Hollis NY 11423

The Real Oregon
Computer Co
-

205 West 10 th Ave The Computer Place
Eugene OR 97401186 Queen St West

WASHINGTON
The Retail Computer Store
410 N.E. 72nd
Seattle WA 98115
WISCONSIN
The Milwaukee Computer Store
6919 W. North Ave
Milwoukee WI 53213

CANADA

Toronto, Ontario M5V IZ
Trintronics

The Micro Store
634 South Central
Expressway
Richardson TX 75080
160 Elgin St
$\begin{array}{ll}\text { Computer Power, Inc. } & 160 \text { Elgin St. } \\ \text { M24 Airport Mall } & \text { Otrawa, Ontario } \\ 1800 \text { Post Road } & \end{array}$
M24 Airport Mall
1800 Post Road
Warwick RI 02886

DESIQNINO CONBUMER. gYeTEM PERIPMERALS

INTELLIGENT-TERMINAL DESIGNERS OPT FOR 8080-COMPATIBLE CIRCUITRY

by Lee Folsenstain and Robert Mersh

Because the "home computer" serves a consumer market, both it and the peripherals designed for use with it must ex hibit high-volume production and adequate customer support. With these fundamental requirements in mind, we designed the Sol product line to simultaneously meet the needs of two applications. Both Sol- 10 and Sol- 20 function as intelligent terminals-each unit lacks only a CRT monitor. Additionally, Sol-20 incorporates a power supply and expansion chassis, which with adequate memory allow it to operate as a stand-alone computer. And the system's basic electronics, housed on one board and designated Sol-PC, serves OEM applications that require a single-board computer.

To provide Sol with the required customer support, we developed Basic and Focal language packages as well as ap. plication and game programs. We also developed two ROMresident programs-Solos, which optimizes Sol-20 functions for stand-alone computer applications, and Soled, which implements the functions of an intelligent terminal on either Sol-10 or Sol-20.

> Lee Felsenstein is the founder of LGC Engineering, Berkeley, CA, and a consultant to Processor Technology, Emeryville, CA. Robert Marsh is vice president of Processor Technology.

All of these actions hinged on one major development in the hobby-computer market. Within the past year, several peripheral-interface and memory kits have appeared, each of which utilizes the "hobbyist," or S-100, bus structure used in several 8080 -based computers. To take advantage of such kits, we decided to design the Sol famuly around this same $\mathrm{S}-100$ bus structure. In essence, Sol is the combination of a microprocessor circuit with several $S \cdot 100$ peripheral modules

implementing the design

As initially conceived by one of us (Marsh), Sol consists of a typewriter-sized cabinet on whose flat top a video monitor

can rest (Fig 1). One $10^{\prime \prime} \times 16^{\prime \prime}$ PC card contains all electronics except the unit's keyboard and power supply, and the video signal generated by the device serves any EIA. standard monitor. A PC edge connector on the board accepts a backplane daughter board that holds as many as five $\mathrm{S}-100$ cards. All I/O connectors, also available on the rear edge of the PC card, are accessible from the cabinet's rear

To implement this basic structure (Fig 2), we buffered the system's 8080 address and data lines to the circuit and bus connector through tri-state drivers, much as do other S-100-type processors. Next, we paralleled two unidirection al data buses to form a bidirectional bus and thereby eliminated the need to run eight additional lines around what promised and proved to be a very crowded card. We also connected a 4 -input multiplexer to select data input to the processor from the keyboard port, the paralle] port and an internal data bus, as well as from the external data bus.

We created the internal bus as a unidirectional circuit for low-drive, on-card memory and I/O devices that cannot meet the heavy drive requirement of the full external data bus, it allows maximum utilization of the tri-state capabili. ties of the universal asynchronous receiver/transmitters (UARTs) used in the serial and tape channels. The flag and status outputs of these devices arrive in parallel at the 8080 chip; port addresses from the board's address decoder section enable the outputs. The decoder aiso controls the mil. tiplexer's switching: default direction comes from the sysrem's external bus. We defined the 4 K bytes of memory in Page C (high-order hex digit of the address) as on-card memory, divided between 2 K of ROM, 1 K of RAM and 1 K of "visible RAM" in the video display circuit.

The display section treats its RAM as 2 -port memory: the processor has the highest priority. We placed the second port under control of the screen refresh circuitry, which calls up data as required for conversion by the character-generator ROM into video signals for display. We didn't connect the video display section to the internal bus because we felt we had to allow for its being loaded directly from an external DMA device, which can gain control of the data bus but not the internal bus. We made the data bus the source of all data fed 10 memory and I/O, both on-card and off, the only other data input to the processor from on-card circuitry through the data bus comes from the sense switches, an 8 . wide DIP array that lets the CPU sense an alterable parameter byte under program control through input port FF

We derived board timing from a $14.31818 \cdot \mathrm{MHz}$ crystal oscillator, the frequency, four times that of the NTSC color burst, provides compatibility with color video graphucs devices. This "dot clock" goes to an external connector and feeds the output shift register and character divider of the video display section as well as the 8080 clock divider. We configured the clock circuit using MSI and SSI TTL chups rather than the Intel 8224 LSI thip to allow for several selectable microprocessor clock rates; that way, we can retrofit higher-speed processor chips into the same board. When designing the clock, we took care to ensure non-overlapping

Fig 1 Housed in a typewriter-sized cabinet on which a CRT monitor can sit, Sol- 20 contains all circuitry necesary to function aither an an intalligent terminal or a stand-alone computer. The system's designers chose to configure it mound the "hobbyist," or S.100, bus structure sesed in several 8080 -based computers; Sol is besically the combination of several S. 100 peripheral modulas with a microprocessor circuit.

THE ERSOHALCOMPUTER RETALLER

1OL.I NO. 1 PUBLISHED BY PROCESSOR TECHNOLOGY CORP, 6200 HOUIS ST, EMERYVILLE,CA 94608 MARCH, 1977

This is the first issue of our new newsletter distributed solely to retail computer stores. PCR will be mailed monthly and is free to bona fide retail computer stores. In the newsletter we will try to give you advance notice of all Processor Technology ads in national magazines as well as the latest dope on new products. We will use PCR as a medium for discussion of detailed specifications, selling points, competitive comparisons, price changes, and special promotions as well as for quasi philosophical diatribes on business policy and general P.R.

We believe you will find the $P C R$ an invaluable source of information whether or not you are a Processor Technology dealer. Your responses are welcomed and encouraged since we hope to make $P C R$ an interactive medium of communication. In this vein take note of our $Q \in A$ column on page 7 where we will gladly respond in print to your questions about PTC products and policies. Yes, we'll even answer the nasty ones!

SOLOS?-CUTER?GPM?

What Is Going On?

Many of the PT dealers have long ago seen most of the software packages we recently advertised. Each package, in one form or another, has been fully implemented and essentially ready for delivery for a number of months. Why then have we created the two month void by not delivering? Quite simply the answer is: Real System Thinking.

The advent of the Sol-20 and CUTS cassette board opened an opportunity to at long last provide a ?ftware configuration that allows
n a major step forward in standardation. Think about it.

Someone using a parallel output keyboard with the $3 P+S$ had a hard
time getting status at port D and data at port 1 .

Bootstrap loaders for paper tape had to assume the user had memory at some location outside of the area required by the program. (For the paper tape version of TREK 80 we put the loader on the VDM screen!!)

The Sol System, however, has clearly defined I/O.
\square for Keyboard and Display
1 for Serial IN and out
2 for Parallel
3 for user defined
These numbers are used with the SOLOS "SET" commands to dynamically determine I/O. And, the Sol System always has available memory (IK worth) at C800. In addition, the Sol System has a cassette tape interface ready and willing to load or save programs.

As SOLOS became a reality, we discovered a method of using the CUTS board and CUTER software to make the "other" brands' mainframes almost as easy to use as the Sol.

CUTER defines the $3 P+S$ Ports in a manner similar to the Sol I/O. CUTER allows the user to have keyboard, serial and parallel I/O on the $3 P+S$ just as with the Sol-20.
(cont. on page 2)

What Is Going On?

But, more important, CUTER allows our software to run on any machine even though we designed it for the Sol System running SOLOS:! Was it worth the delay?? Yes, indeed!

Now for the Important Details
In case you haven't received it yet, SOLOS (CUTER, too) features 18 commands to provide super-convenient operation of the computer. Standardized Input/Output, Variable Display Speed and complete tape load and store provisions are some of the highlights. And, buried deep within the code are routines that provide BYTE BY BYTE access to the cassette tape data. SOLOS handles two buffers to read blocks of tape while the user calls for data one byte at a time:

Using this feature, Sol BASIC-5 allows the user to:

$$
\begin{aligned}
& 10 \text { READ \#1; A,B,C } \\
& 20 \text { PRINT \#2; A*2, B/C }
\end{aligned}
$$

But the "other brand" user must have CUTER to use these features.

CUTER is provided on a cassette tape for $\$ 11.00$ with each CUTS purchase. It loads to ANY selected memory address using a short bootstrap loader. Then, when the user loads a P.T. program he places his selected address into the loaded program. (We assume address $C D D D$ and the programs are provided with this address.)

CUTER assumes I/O is provided by a $3 P+S$ but can be modified for less conventional boards. A very new good VDM-l driver is also resident in CUTER.

Wouldn't it be nice if everyone had a $3 P+S$, VDM-I and CUTER IN ROM at CDDD? Well....the March issues of the magazines will announce the

Processor Technology GPM (General Purpose Memory) in a very special way. Here's how it goes.

The GPM has space for ROM, PRC and RAM. The GPM is given FREE wit. CUTER in ROM right at $C D D D$ and $I K$ of RAM starting at C8DO.

Have we lost our bananas?
Actually, we lost them a long
time ago but the GPM is FREE only with the purchase of a SUBSYSTEM "B" and the SUBSYSTEM "B" is the keynote of our forthcoming ads.

The user buys a $3 \mathrm{P}+\mathrm{S}, \mathrm{VDM}-1$, CUTS and any one of the PTC Memory Boards as a SUBSYSTEM "B". The total price is exactly the sum of the individual prices. The GPM, CUTER ROM and 1 K of RAM is then absolutely FREE.

The March ads for the Subsystem will create a little confusion because they refer to a "bootstrap" loader instead of CUTER. CUTER is provided!! This error is corrected in the April '77 issue.

If the entire Subsystem "B" is not needed, the price of the GPM with CUTER AND RAM is $\$ 129.00$ Kit or $\$ 169.00$ assembled.

The GPM can be ordered without CUTER and RAM for $\$ 89.00$ Kit, $\$ 100.00$ assembled for use in Sol Systems.

About Deliveries
Delivery of the GPM is solely dependent on our receipt of the CUTER ROM. For this reason each SUBSYSTEM "B" will be shipped with a mailing card for the buyer to receive his ROM. We have been promised 5-week delivery on the ROM's so please expect at least seven weeks per the usual.

The GPM is general purpose for another very special reason. The ALS-8 ROMS are now available and they reside on the GPM right along with CUTER.

The ROM's are sold separate of the GPM and are priced as follows: ALS-8 \$159.00 6144 bytes of ROM SIM-1 ε TXT-2 60.00 2048 bytes of ROM
(cont. on page

What Is Going On?

New Small Computer Catalog Available22 Pages!

Thus the price for the ALS-8, SIM-I, TXT-2, CUTER and 1 K of RAM is $\$ 348.00$ when not purchased with Subsystem "B", but for use in NON-Sol main frames.

Note: Subsystem "B" purchasers need only buy the ROM's. The GPM is free with their Subsystem purchase. The GPM module will fit in the Sol-l0 cabinet without a backplane, as well as into all other S-l00 computers. Don't forget the Sol version GPM is $\$ 40$ less than the Subsystem " B " version.

The First Issue Of Processor Technology

 ACCESS Is InThe MailThis is the "technical newsletter" we referred to in our Fall ' 76 new product flyer. We think you will find the ACCESS an extremely valuable information source. Yearly subscriptions are $\$ 4.00$ for 8 issues. The order of distribution will be as follows:

1) paid subscribers
2) complimentary copies to retailers and trade press, simultaneous with No. l
3) newsstand copies to retailers, about one week after Nos. 1 and ?
Newsstand copies are distributed free
, Processor Technology dealers to
sold for 75 ; per copy. Other re-
tail computer stores or suitable outlets may purchase the ACCESS from us for 30ξ each--minimum order $\$ 30.00$, i.e., 100 copies.

PTC's new color catalog is currently being distributed to all of our retail outlets. You should find these beautiful catalogs more than helpful in explaining the features of PTC equipment and software. We do not charge stores for these catalogs. The decision whether or not to charge customers for these catalogs is left up to each individual store owner, but we recommend that they be given out free to "qualified" customers. Initially we will be quite liberal with the number sent to each store. Expect us to get "uptight", however, when you have distributed 1000 catalogs, sold only three Sol-20's, and want more catalogs.

The March-April issue of PERSONAL COMPUTING MAGAZINE will contain the entire PTC catalog. Since most present personal computer owners get a copy of PERSONAL COMPUTING one way or another, the demand for actual catalogs from retail stores will be somewhat reduced.

TV/Monitor

The new catalog announces for the first time our PT-872 Video Monitor/TV Set. This is a Panasonic TV modified for selectable Monitor or Television operation. We added the unit to our line as a customer service to provide an excellent quality monitor at \$199.00. Because of the Customer Service aspects and because $\$ 199.00$ is very close to the retail price, the net discount for P.T. Dealers has been set at 25% regardless of quantity. Also, to limit our processing costs further, please place your PT-872 TV/Monitor orders along with regular orders.

Diatribe Department

You too can have your name in print when you become the famed author of a PCR Diatribe. This month we will monopolize the column, but we would really enjoy printing guest Diatribe editorials written by you. Send your double-spaced typewritten manuscript to PCR's Robin Content, Diatribe Dept.

Real SystemThinkingThis Month's Diatribe

A wise old sage named Anon once said "A mess of parts doth not a computer make." Anon was once also heard to utter the timely phrase
neither do working hard, firm, or soft-ware a Real System make."

Real Systems are more than a stack of different modules plugged into a main frame. Real Systems are more than a consistently interfaced and reliably connected group of peripherals. Real Systems are more than a series of different debugged programs that run on a given set of hardware.

So far the personal computer industry and the "movement" as a whole have shown a decided lack of system thinking. Home computers typically grow erratically and contain an eclectic blend of modules and programs from many sources that rarely work together without substantial modification. Usually the modification process is ongoing and continuous so that neyen is one guy's rig completely compatible with another's.

Much of the incompatibility problem has been created by manufacurers, PTC among them, who have not Deen able to get together with their competitors to agree on standardization of I/O or software. The problem derives though, not from this
seemingly inevitable inability to standardize, but from non-system thinking.

What is system thinking? System thinking's number one principle is "All system elements must always be compatible with all other elements." To the system owner and user this principle implies that his system should be:

1) consistent and reliable
2) easy to operate
3) easy to expand (or reduce)
4) easy to repair and maintain
5) easy to link to other systems
To the system designer and manufac-
turer this principle implies that his system should be:
6) conservatively rated, software too!
7) designed with strong user input and feedback
8) modular
9) pluggable, unpluggable, as simply as possible
10) conventionally interfaced whenever possible
What makes a Real System? Rea? Systems, i.e., real Computer system. always have these five elements:
11) Human Being(s) for and with whom the computer is working--the most important element
12) Hardware, everything you can touch, even if you shouldn't
13) Software, everything you can't actually touch that must be there for the system to function
14) Manufacturer(s) and Designer(s), they've got to support Nos. 1 and 5 as well as crank out Nos. 2 and 3 in volume
15) Sales and Service people, hopefully they will be organized and take prime responsibility for solving No. l's problems.

Notice that most of these system elements are people not products. Real Systems must have organized people backing them up. The people hat made the machine had better be capable of fixing it or you will certainly never be able to fix it. The people who wrote the systems software had better be able to listen to you and maintain and improve their programs or you won't be able to adapt, not even if you have a rare source listing. In general, they had better be able to help you solve your problems.

As for the hardware, all elements including CPU, memory, input/ output, expansion interfaces, keyboard, and power supply must be designed together in as simple a manner as possible without sacrificing versatility and the virtually certain necessity of future expansion. All of these elements must be both simple to operate and simple to build, test and repair. External peripheral devices should always be "plug-in-able" using commonly available connectors and cables. Keyboards are critical lements! Real Systems never scrimp n keyboard costs since this is the first place the user will discover the results of a cheap design.

As for software: rule No. 1-Real System software designers must talk to the hardware designers. Both designers should even ask each other for advice fairly often. This would be an unusual situation in the computer business, to say the least, but it is a very important principle. As an example of hard/software interaction, commonly used housekeeping programs should be accessible to all programs that run on the system. Accessibility should imply also that the whole works should run as soon as it is turned on.

Rule No. 2--System software must be modular and expandable, very much as the hardware must be. For example, a 4 K BASIC program has got to run in a 12 K BASIC system without .odification.

The author recommends the preceding ideas as guidelines to be followed by both computer owners and makers when considering buying, modifying or expanding a computer system. Whatever the application problems, if we can all direct our thoughts and energies toward integrating the multitudinous available pieces and parts into one systems package we will have taken a giant step toward eliminating the threat of the creeping Kludge.

CONSOL Update

All standard PTC software is designed around CUTER and SOLOS ROM's. Normally these ROM's reside at $C \| \varnothing D$ to C7FF (hex) on either a Sol personality module or GPM board. CONSOL, since it is a temporary introductory package, has its I/O routines in nonstandard locations. Therefore such programs as BASIC-5 will not work properly with CONSOL. PTC will be glad to reprogram without charge CONSOL modules to standard I/O locations if customers or retailers return them to us. However, we strongly recommend replacing the CONSOL module with SOLOS. ONLY SOLOS has the subroutines which permit cassette write operations, dynamic port switching and BASIC file manipulation.

Module Department

16 KRA
PTC's new l6KRA module is just about the lowest price per bit, high quality $S-100$ RAM module available. At $\$ 529$ the 16 KRA is a memory that is fully assembled, burned-in (for 12 hours at maximum rated temperature) and thoroughly tested. Only highest quality premium grade parts are used.

The Intel 2104-6 or Mostek MK4096-11 RAM's used are spec'd at 350 nanosec. access time and 500 nanosec. cycle time worst case. [NOTE: we can get faster RAM's--down to 150 nsec . If you need them, let us know right away.] The S-l00 bus interface circuiting is fully asynhronous and uses the latest low power Schottky and integrated Schottky delay time technology. There are no "one shots" in critical timing paths and refresh is automatic and invisible to the CPU. Each 4096 byte page is individually addressable, using four of the 16 DIP switches on the card, conveniently placed at the top edge. A connector is provided for optional battery backup during power failures.

The 16 KRA is guaranteed compatible with Sol, IMSAI 8080 and Altair 8800 mainframes as well as the Helios II DMA disk controller. The l6KRA is the perfect high density memory since the Sol has a limited number of expansion slots.

Important: Phantom, pin 67 in the $S-100$ bus is recognized by the 16 KRA and is required for proper operation of Sol's and ALS-8.

Deliveries: First deliveries of
l6KRA modules to retailers are now cheduled for late March with our large current order backlog eliminated in April. As is usual at PTC once this product is in production, we will be stocking it in depth!

CUTS

We will start delivering CUTS modules to all those with current back orders on March 9, 1977. The demand for this product has far exceeded our expectations so we expect it will take another month to eliminate our backlog.

CUTS, the Computer Users Tape System, is hardware, the key element required to make full use of our many systems software packages. The CUTS module is compatible with the builtin tape interface in Sol Systems and can read and write at either 300 bits per second, pure "Byte/Kansas City standard," or 1200 bits per second. All PTC CUTS cassettes are recorded at 1200 baud and cannot be read at 300 baud. Cassettes recorded with SWTPC, Poly 88, or Morrow boards can be read at 300 baud by CUTS or Sol hardware but the software in CUTER, CONSOL or SOLOS requires a specific data header format not used by these suppliers. So far as we know, Tarbell cassettes are not CUTS compatible.

Once PTC software is in your stores in volume, every $S-100$ bus computer owner will find the CUTS module indispensable--That is a promise!

Memories--4KRA, 8 KRA , 16 KRA
All three PTC RAM modules incorporate circuity which disables any RAM at location zero during power-on start up. This feature, called PHANTOM, is mandatory with Sol systems and only PTC memory modules have it! ALS-8's and GPM modules can generate PHANTOM for auto-start up operation in Altair and IMSAI mainframes.

Sol Department

We hardly need say that the Sol Terminal Computer is the highest quality and most cost effective Real System available in the small computer field. Inventories of Sol-20 in particular are being built up by PTC to-meet the quick turn around needs of your store. Once the SOLOS personality modules and Sol software are in the field in quantity we expect to see another surge in demand. We urge all PTC retail dealers to place realistic orders for Sol Systems soon (for up to three month's needs) to eliminate the possibility of demand exceeding our ability to supply retailers quickly. If you order Sol Systems for a two or three month period, we will allow you to schedule shipments with reasonable minimum quantities per shipment. Be advised: be accurate--we will ship the numbers you request.

SOL POSTERS!

PTC still has a good number of beautiful Sol-20 color posters. If you would like more of these posters to decorate your retail store or computer repair shop or to give to Sol buyers as a "freebie," let us know. They're off the shelf.

Q: Can a customer trade in his coNSOL module when upgrading to SOLOS?

A: Yes--PTC will credit the customer $\$ 30$ for a returned CONSOL module in working condition.

Q: What is the expansion power supply capacity of the Sol-20?

A: The Sol-20 can supply +8VDC unregulated at 8 A and \pm l7VDC at . 9A unregulated. These are conservative ratings for the five slot backplane only. The Sol-PC and keyboard supplies are separate from the backplane.

Q: How do I add more slots to my Sol?
A: One way is to add a Helios II disk system. The Helios cabinet has space for an additional optimal lo slots. We have not yet announced price or availability of this option to the Helios system.

Q: Why do we advertise before products are ready?

A: In the past we were forced to give in to that unfortunate temptation because of intense competitive pressure in an expanding marketplace.
We want you to know that we are committed to avoiding this practice in the future. Our goal is to have products on the dealers' shelves when the new announcements appear.

Subsystem "B" makes the computer you already have work almost as well as a new Sol-20.

Add it now, and for a limited time

 we'll throw in a new module with 2048 bytes of preprogrammed PROM or ROM and 1024 bytes of RAM memory free!Processor Technology's Subsystem "B" puts together the major system elements you need to get your Altair or IMSAI up and running.

You get both RAM and PROM memory. parallel. serial. cassette and video display interfaces, and software. Software includes a bootstrap loader program so you can load any Processor Technology CUTS ("Byte/Kansas City") 1200 baUD cassette tapes. Standardized subroutines in ROM. similar to those in a Sol personality module. are used by many Processor Technology software packages to improve program efficiency. You'll find you rarely need to touch your front panel switches. With our Subsystem "B" you are up and running as soon as you turn on the power.

Three subsystems are available. depending on your memory requirements. Each Subsystem " B " includes five $\mathrm{S}-100$ bus compatible modules as listed below. Each is dependent upon our new GPM module (GPM = General Purpose Memory) which provides 1024 bytes of low power static RAM and 2048 bytes of preprogrammed ROM or EPROM as well as space for up to 8192 bytes more of ROM or 2708 type EPROM. The GPM module accepts the new ROM version of our well known ALS-8 Editor/Assembler software package.

With Subsystem "B" you have guaranteed compatibility with all Processor Technology software and hardware products.

Subsystem Model	B70	B110	B190
Total memory			
provided (bytes)	7168	11264	19456
Display I/O	VDM-1	VDM-1	VDM-1
Parallel. Serial I/O	3P + S	3P + S	$3 P+$ S
Tape Cassette I/O	CUTS	CUTS	CUTS
Memory	4KRA	$\mathbf{8 K R A}$	$\mathbf{1 6 K R A}$
Price	S594	S730	S964

NOTE: The GPM module with both RAM and PROM is included FREE in all the above subsystems. The GPM kit is $\$ 129$ if purchased separately.
The ALS-8 ROM chip set is $\$ 159$. SIM-1 \& TXT- 2 ROM add-on set is $\$ 60$ and requires both GPM and ALS- δ ROM

I want Subsystem "B" to get my Altair or IMSAI up and running.\square Enclosed is a check for S \qquad California residents add \wp°. sales tax No shipping charge

I want:B70 at 5.54Mastercharye $=$ \qquad \square B110 at 5 ㄱ..3) (include Interbank No. and \square BIC) at syon expiration date 1Send more information

Addess

6200 Hollis Street. Box B
Emeryville. CA $946(1) \times(4151652-8(1)(1)$

The Small Computer Catolog.

AndSolSolution char

 showing applications in business,science, home entertainment and management, art, law; medicine and education.
One source for quality hardware,software, and peripherals.

Thot's the Sol plan:

The new Sol-20 is unique.
It's the first small computer designed as a complete system.

Most small computers simply "grew like Topsy" - a memory here, an expansion module there. They weren't conceived or integrated to provide maximum efficiency at lowest possible cost.

Sol-20, a true breakthrough in small computer systems, includes all the essential elements as standard equipment - central processor, memory, keyboard and display, software, a power supply, and appropriate packaging.

There are no "surprises". You don't have to buy expensive peripheral equipment to make it run. Its own keyboard and "smart" terminal are built-in.

Use it without being a programming expert.
In fact, you can operate it efficiently without any prior computer experience.

Unlike other small computers, Sol is already programmed to receive your commands the moment it's turned on, thanks to Sol plug-in Personality Modules.

And Sol systems are supported in depth by extensive software and additional peripherals - such as flexible disk memories - so it's appropriate for more sophisticated applications.

Sol computer systems never grow old. Add new modules to update and expand your computer's power.

Sol is easy to use

Sol operates like a typewriter so many applications require no special programming. Packaged in handsome cases with solid walnut sides, Sol computers look good in the living room, office or lab. Sol computers come in kit or fully assembled form.

Sol-20 is a scaled-down big computer system

Use Sol in a variety of applications.

In the home. Home uses are limited only by your imagination. Regulate heat and light to save fuel. Run a complex model railroad. Compute taxes. Play a variety of TV games, not only computer hockey and tennis, but more interesting, more complex games such as TREK-80, where your starship takes on a whole fleet of Klingons. Several sophisticated TV games come with the Sol-20. And you can even design your own.

At the office. Use it as a fullfledged business computer. Use it to compose and edit letters electronically, store and retrieve mailing lists, process orders, maintain journals and general ledgers, and produce statements and reports.

In the lab. Use Sol to reduce and analyze data statistically, control lab equipment, prepare graphics, and fit curves. Sol-20 frees your time and expands your overall capability.

In schools and universities. Use Sol-20 to teach computer programming. Use it for computer-aided instruction. Use it for notes, records and sorting.

So much is standard

Here's the computer with a microprocessor, display and input/output circuitry, memory, full alpha-numeric keyboard, big power supply, handsome cabinet, and software.

Add extras for more power

 Extras include a module to help write, edit, assemble, de-bug and run your own programs. There's no better collection of add-on memories anywhere... up to 16,384 words per module. Solve additional interfacing problems with our I/O module. Get big system performance with our Helios II "floppy" disk system. Display results on our video monitor. Output on line or serial printer. Other peripherals include joysticks, paper tape readers, A/D and D/A converters, and PROM programmers.

Sol computers are currently offered in three forms: the Sol-20, Sol-10, and Sol PC.

The Sol-20 Stand Alone Computer

Sol computer systems are currently offered in three forms: the Sol-20, Sol-10, and Sol PC.

Sol 20 is the most complete and sophisticated of the three packages, a fully contained "personal" computer able to take on an infinite variety of tasks. Sol- 20 comes with:

- 8080 microprocessor, still the most sophisticated computer-on-a-chip available and the "brains" of the Sol-20.
- 1024 character video display circuitry. View your output on any standard video monitor or specially adapted TV.
- 1024 words of static low-power read/write memory (RAM) for program storage.
- 1024 words of static low-power, preprogrammed permanent memory (ROM) takes care of important system "housekeeping" chores. ROM memory automatically readies the computer for your commands as soon as the Sol is turned on.
- a custom designed, beautifully laid-out 85 -key solid-state upper and lower case keyboard with cursor keys and arithmetic keypad.
- an audio cassette interface capable of controlling two recorders at 1200 bits per second. Store and retrieve programs and large amounts of data at very low cost.
- both parallel and serial standardized interfaces with connectors on card.
- a complete rugged power supply and quiet cooling fan.
- a handsome case of walnut and metal.
- software including a preprogrammed PROM personality module and a cassette with BASIC-5 language, plus two sophisticated computer video games.
- a design compatible with all S-100 bus products.
- a back plane capable of accepting five expansion modules.

The Sol-10 Terminal Computer

Sol-10 comes in the same handsome package as the Sol-20, but because of limited memory, it is designed more specifically for "smart" terminal applications. Price of the Sol-10 includes case, power supply, and 70 -key solid state keyboard. A fifteen key arithmetic pad is optional.

Later you can upgrade to a Sol-20 by adding an expansion backplane, extra power supply, fan and keypad.

Sol-PC Single Board Terminal Computer

Heres the heart of the Sol system. The Sol-PC is a single printed circuit board with microprocessor, memory, display and interface electronics, and plug-in personality module that is fully compatible with our complete line of memory and interface modules.

The board comes in kit or fully assembled form with all of the following:

- Display: 16 lines of 64 characters per line.
- Character set: 96 printable ASCII upper and lower case characters plus 32 selectable control characters.
- Cursor: Selectable blinking. Solid video inversion. Programmable positioning standard.
- Serial interface: RS-232 and 20 mA current loop, 75 to 9600 baud, asynchronous. 25 pin female "D-type" connector on card.
- Parallel interface: Eight data bits for input and output; output bus is tristate for bidirectional interfaces; levels are standard TTL. 25 pin male "D-type" connector on card.
- Keyboard interface: Seven-level ASCII encoded, TTL levels.
- Mieroprocessor: $8080,8080 \mathrm{~A}$, or 9080 A .
- On-card memory: 1024 bytes PROM (expandable to 2048 bytes); 2048 bytes low power static Ram.
- External Memory: Expandable to 65,536 bytes total ROM, PROM and RAM.
- Video signal output: 1.0 to 2.5 volts peak-to-peak. Nominal bandwidth is 7 MHz . Power required ($\pm 5 \%$) : +5 volts at 2.5 amperes. +12 volts at 150 mA , and -12 volts at $200 \mathrm{~m} . \mathrm{A}$.

A. Personality Modules

Sol Personality Modules allow you to choose three different levels of operation. Software in each module optimizes Sol for a particular application and at the same time provides a measure of general purpose capability. For custom applications and for volume OEM users personality modules are available without memory for three different types of EPROM and wo types of factory-mask ROM.

SOLOS, the most popular module, optimizes the Sol for stand-alone computer applications. Choose SOLOS if you intend to use your Sol system to store and retrieve business or personal records, control electronic instruments, perform independent calculations for business, science or education, or any other application where the Sol system will be "on its own" operating independently of other computers.

SOLOS is oriented around use of the Sol's built-in CUTS audio cassette data interface. Programs such as Sol-BASIC and ALS-8 can make extensive use of the cassette handling and screen-cursor manipulation routines contained in SOLOS. Commands included are: Dump. Enter, Execute Terminal (i.e. enter Terminal mode), Tape Load (reads CUTS format cassette tapes into memory), Tape Save (stores memory contents on CUTS tape) and Set I/O (permits dynamic switching of input and output devices under manual or program control). With SOLOS the Sol can also be used as a "smart" terminal in conjunction with other computer systems, but ordinarily the SOLED module is the better choice when the Sol system is often used as a terminal.

With the SOLED personality module installed the Sol becomes an advanced editing terminal system. Like SOLOS, SOLED uses the full 2048 byte capacity of its module. It contains programs and routines which allow remote direct cursor addressing and file and cassette tape editing. Data and text can be edited on or off-line and transmitted in blocks under local or remote control. Large cassette data files or text messages can also be transmitted and received automatically from remote locations.

SOLED has the ability to dynamically change input and output device assignments. Stored information can be transmitted via modem. printed on one of several printers or stored on additional cassettes or flexible disks.

CONSOL is a 1024 word low cost personality module which gives minimal capability to the system. Commands include Enter, Dump. Execute, Tape Load, and Terminal. CONSOL permits operation as a low level CRT terminal and is useful for simple stand-alone applications. Full keyboard cursor control, up, down, right, left. home, clear is provided. CONSOL is not needed with SOLOS or SOLED modules because its functions are duplicated.

1 EPT I - 38

B. Software

Software is the sine qua non of any computer system. It's the computer power essential. No computer can be more powerful than the software that goes with it.

That's exactly why Processor Technology has devoted more effort to the development of software than other small computer makers. Maybe that's why some of our worthy competitors have taken our source listings, added a few twists and taken title. But the truth will out.

All Sol systems software is designed to make full use of the routines and programs permanently stored in all Sol personality modules. User programs such as BASIC require less memory space, because personality module routines are called up whenever needed for functions such as keyboard input, screen formatting. and cassette tape storage operations. Interface with the user is straightforward and consistent because keyboard commands and control sequences are standardized for all Sol software.

Sol BASIC

Processor Technology offers three versions of BASIC language, each suited to a different application. BASIC-5 is a small version of this versatile language designed for applications requiring just mathematical manipulation without extensive processing of text. BASIC-5 is the perfect language for an introduction to computer programming because it's easy to learn and requires a small amount of memory storage. Many hundreds of programs already written in BASIC work with Sol BASIC-5 and our 8 K BASIC as well.

Processor Technology 8K BASIC is a very high speed full function language with all the virtues of BASIC-5's multiple program capability and $B C D$ floating point math. Speed is at least double that of the already fast BASIC-5. For even greater power, we've added strings. multidimensional arrays and multi-line, multi-variable. user functions. Heres the language for full capability systems. For instance, in our instruction manual, take a look at the Business analysis program. See how you get more power while using less memory for the working program.

Advantages of Sol BASIC

Processor Technology 8K BASIC offers several unique and unusual features. Versatile print statements provide fully formatted output to multiple devices. from CRT screen to teletype to line printer. Multi-dimensional arrays permit powerful fast processing of any data that can be organized graphically or in tabular form. Several statements are provided to give complete and direct high level language control over system memory and input/output channels. Ful' capability string functions simplify manipulation
and processing of text and alphabetic materials so they are more straightforward and easy to use than ever before. In short, with this BASIC, no effort has been spared to bring you high level problem solving power.

Extended Disk BASIC has all the powerful features of the 8 K memory-resident version and includes disk commands and big system file handling capability. Disk BASIC is perfect for such complex applications as inventory control and payables-receivables accounting.

BASIC CHART				
Commands:		BASIC-5	8K BASIC	$\begin{gathered} \text { Extended } \\ \text { Disk } \\ \text { BASIC } \end{gathered}$
ASAVE	ASCII DISK SAVE			+
CONT	Continue		$+$	+
CLEAR		+	+	+
GET	tape or disk	+	+	+
KILL	delete file			+
LIST		+	$+$	+
MEM	multiple programs	$+$	+	+
NULL	for printers	+	$+$	+
RESAVE				+
RNUM	Renumber		$+$	+
RUN		+	+	+
SAVE	tape or disk	+	+	+
SCR	Scratch	$+$	+	+
XEQ	Get - Run	+	+	+
Statements:				
CALL	call machine subroutine	$+$	$+$	+
CLEAR			+	+
CLOSE	disk file			+
DATA		+	+	+
DEF	define function		+	+
DIM (X)		+	+	+
DIM ($\mathbf{X}, \mathbf{Y}, \mathbf{Z}$,)			$+$	+
ELSE	if,then, else		$+$	+
END		$+$	+	+
EXAM	memory "dump"		$+$	$+$
EXIT		+	$+$	+
FILL	"deposit" memory		$+$	$+$
$\begin{aligned} & \text { FOR. } \\ & \text { NEXT } \end{aligned}$		$+$	$+$	+
FREE	free space		$+$	$+$
GOSUB		$+$	+	$+$
GOTO		$+$	+	+
IF...THEN		$+$	$+$	$+$

INP(X), Y	from inport x		$+$	$+$
INPUT		$+$	+	$+$
INPUT," "	suppress CRLF	$+$	+	$+$
LET		$+$	$+$	$+$
ON	ON... GOSUB		$+$	$+$
OPEN	disk file			$+$
OUT(N),	to out port N		$+$	$+$
PAUSE			$+$	$+$
PRINT		$+$	$+$	$+$
PRINT USING			$+$	$+$
READ		$+$	$+$	$+$
READ ${ }^{\text {N }}$	read file	+	+	$+$
REM		+	$+$	$+$
RESTORE		$+$	$+$	+
RESTORE	with line \#		$+$	+
RETURN		$+$	$+$	+
REWIND	rewind file pointer			$+$
SET I/O	for peripherals	+	$+$	$+$
STOP		+	+	$+$
WAIT	for input port bit(s)		$+$	$+$
WRITE	disk			$+$
BASIC Functions		BASIC-5	8K BASIC	DISK
ABS	absolute value	$+$	$+$	+
ARG	16 bit conversion	$+$	$+$	+
ASC	ASCII value		+	+
ATN	Arctangent		+	$+$
CHR	Decimal value of character		$+$	+
cos	Cosine	+	$+$	$+$
EOF	End of file			$+$
EXP	e^{x}		+	$+$
INT	Integer	$+$	+	$+$
LEN	String length		+	$+$
LOG	Natural logarythm		+	$+$
LOG10	LOG base 10		+	$+$
RND	Random number	+	+	$+$
SEARCH	Search string for string		$+$	$+$
SGN	Sign of number	+	$+$	$+$
SIN	Sine	+	+	$+$
SQR	Square root	$+$	+	$+$
STR	Convert no. to string		$+$	$+$
TAB	PrintTAB(X)	$+$	+	$+$
TAN	Tangent	$+$	$+$	$+$
VAL	Convert string to no.		$+$	$+$

The ALS-8 Program Development System

Applications with very high speed data manipulations or critical timing elements demand "custom fit" programs and subroutines. High level languages written for microprocessors such as FOCAL. BASIC or FORTRAN cannot always handle these assignments. In these cases the best solution is programs written in assembly language, a language much more closely related to actual real-time computer operations. Assembly language is easy to learn and, with either of our two assemblers, quite easy to use.

To simplify the development process as diagrammed on the right both Processor Technology assembler programs organize user programs as files.

Processor Technology's much imitated Software $=1$ package is a small assembler-monitor system designed for development of small to medium length programs which must be stored in system RAM memory for assembly. The ALS-8 is a more versatile and expanded development package with many additional powerful features.

With the ALS-8 up to six source programs can be stored in memory as named files and called at will to be listed. edited, assembled or simulated. Files may also be stored on tape or disk and can be assembled from any selected input device. "Files can be appended, moved, re-numbered. taken apart or linked together. Using the FCHK command, crashed files can be restored.

Assembly language source programs are entered using line numbers from paper or mag tape, keyboard or disk. All editing is done by line number but with the TXT-2 Text Editing software, it becomes possible to automatically add line numbers to un-numbered text.

The Assembler includes labels, comments, expressions and constants, along with relative symbolic addressing, which gives you the ability to chain common symbols from one program to another (even if the other program was assembled at some other time). Also, various assembly error messages are provided to help you eliminate program bugs.

ALS-8, a powerful, new development procedure

ALS -8 has the unusual ability to dynamically adjust the systems I/O handling configuration. The system includes an I/O driver table accessible through use of three resident commands or the drivers themselves. I/O device driver routines may switch themselves on and off or transfer I/O control to a different device driver under program control.

Your development system might have a CRT terminal, a high speed line printer, paper tape reader/punch and a teletype. The System can print a listing to the line printer, then input from the paper tape reader and return console control to the CRT terminal or teletype. all under program control.

Up to 20 custom commands can be entered by the user and called in exactly the same way as the standard resident commands. With the
custom commands, I/O driver table, dynamic I/O switching capability and common symbol tables, you can change your system's configuration and operating modes at any time.

Resident commands are:
ASSM CUST ENTR FIND MOVE SYME ASSME CUSTD EXEC FMOV NFOR SYML ASSMI CUSTE FCHK FORM SIMU SYSIO ASSMX D DUMP FILE IODR STAB SWCH AUTO EDIT FILES LIST SYMD TEXT Custom commands: Up to 20 specified by by user.

The ALS-8 requires 2048 bytes of random access memory (4096 is recommended) for symbol tables and system global area, addressed at D000 (hexidecimal).

The SIM-1: The SIM-1 Interpretive Simulator is a program that actually thinks it's an 8080! With the SIM-1/ALS-8 combination, simulate 8080 programs on your Sol, IMSAI, or Altair computer without actually running them in real time. All registers, flags, program counter, and stack are simulated. Try out programs with no fear of crashing your system if something goes wrong. The system doesn't lose control if a program error is encountered (e.g., an incorrect jump or call).

With SIM-1, you can set breakpoints, enable or disable register/memory content printout. I/O instructions can be run in real time. simulated from the system console, or set to predetermined values for any I/O port address.

SIM-1 is a powerful de-bugging tool for 8080 programming.

TXT-2, Text Editor

Adds the world of text editing to your system. Using TXT-2, insert, delete and move single characters, entire lines or portions of lines. Complete text files can be scanned at several user controlled rates, up to almost 2000 lines per minute when used with our VDM-1 Video Display Module.

Both ALS-8 and Software \#1 packages are available on "CUTS" 1200 bps cassette or paper tape. The ALS-8 is also available preprogrammed into permanent ROM memory to provide "Instant-on" efficiency and speed.

TREK 80

Based on the NBC television series STARTREK, this machine language program uses

8 K of memory and the VDM graphics capability for real time war with the Klingons. No holds barred, they're out to get you from each of the 100 quadrants. You can warp through hyperspace, fire phasers, photon torpedos or experimental rays, or if you just can't go on, selfdestruct. TREK 80 resides and runs in 8 K of memory and, if not used with a Sol, requires a Processor Technology VDM-1 Video Display Module.

New 8080 FOCAL (${ }^{\text {M }}$ DEC)

FOCAL is a high level math language originally written for the PDP-8 minicomputer. Many thousands of FOCAL programs are in existence and now they can run in the Sol. Our original 8080 POCAL has been updated to include operator precedence and all other standard FOCAL conventions. It also has a driver for VDM-1 or Sol displays and CUTS cassette program save and load. FOCAL is available only on CUTS 1200 bps Cassette and resides in 8 K of memory.

Gamepac 1

Show off your Sol system with this line up of video games. Each is included on the CUTS cassette or paper tape.

TARGET - Keeps track of your hits and misses while you blast away at the numerous flying objects. Includes sound effects. You and your family will spend whole evenings at a time with this one.

ZING - Learn hexidecimal arithmetic fast with this video game as two players keep the five balls in the air. If both of you get too good... ZING of course, makes it harder.

LIFE - The Sol or VDM-1 make a good display for the game of LIFE and this version allows two modes of operation. The universe can be flat or wrapped around on itself. The real meaning of life we'll leave to you, but it's fun to watch.

PATTERN - We haven't figured this one out ourselves, but it's sure fun to have your computer doing it. You choose the geometric design and how rapidly it changes. The computer dazzles you with its artistic genius.

All Processor Technology software is distributed on an individual sale basis for personal use. No license to copy. duplicate or sell is granted with this sale. Each software package has been copyrighted.

Sol Solution Chart

THE HOME COMPUTER

THE LEARNING MACHINE

Recipe storage and diet planning

Interactive learning programs

Research data storage and retrieval
Tax form preparation Financial records keeping

Sol-20 with SOLOS personality module

16000 words memory

B/W TV-Monitor

BASIC-5 language
Cassette recorder

PT 8K BASIC language

C. Memories

As your computing needs grow you will inevitably need more memory for storage of larger programs. Processor Technology offers one of the most complete lines of memory modules for small computers available. Choose either the 4096 word or the 8192 word static $\mathrm{read} / \mathrm{write}$ memories in kit or assembled form. Or add the completely assembled 16.384 word dynamic module. A 2 K erasable PROM module for permanent storage is available in kit or assembled form. A powerful software development tool, the ALS-8 firmware module, with its optional firmware SIM-1 and TXT-2, gives you the power to write, edit, assemble, debug and run your own programs the moment power is turned on.

All Processor Technology memory modules include our exclusive "Phantom Disable" feature which is necessary for proper power-on operation of the Sol mainframe. The ALS-8 firmware module also generates this signal as an option when used in Altair or IMSAI computers.

Two low power, highly reliable RAMS - 4 K and 8 K

Now you can have fast static random access memories with 4 K and 8 K capacity with all the bells, whistles you need plus Processor Technology quality.

The 4KRA Static Memory Module

Heres a 4096 word read/write static memory which gives you better operation for lower cost than any other 4 K memory on the market today. Run it at max MPU speed all the time.

Processor Technology uses only low power static RAM Integrated circuits. So you know you're getting outstanding reliability.

In fact our module draws so little power, you can use standard "D" cells to give you long term back up data retention. We've even built in a battery connector, and recharge circuitry.

The 8KRA Static Memory

PT’s 8 K memory gives you all the advantages of our 4 K with twice the capacity and more flexible addressing circuitry. The 8 KRA uses less power than two 4KRA memories.

All address and data lines are fully buffered. Noise immunity circuitry is built-in. The 8KRA has PT's exclusive built-in KSET switch giving you card address offset in 1 K increments. Address is set by a dual inline switch easily accessible at the top of the PC board.

Each IC - all 76 of them - has its own top quality IC socket so that assembly, test and repairs are far easier.

16KRA Memory

Fully burned in, tested and assembled, PT's new 16,384 byte memory offers a better price performance ratio than anything remotely comparable. It's the quality, reliable low-cost way to add high density memory to your system. Every board is "burned in" at high temperature for twelve hours before test to insure reliability in the field.

This PT memory offers invisible refresh. There's no waiting while the CPU is running. Worst case access time is 400 nsec . Each 4096 word block is independently addressable for maximum system flexibility. Power is typically 5 watts, the same as most single 4 K memory modules. It's got back-up battery capability built in.

2KRO Erasable Programmable Memory

Accepts up to 2048 bytes erasable programmable read-only memory. Stores data even when power is off. Great for your custom loader or monitor programs.

The 2 KRO is jumper selectable to fit any one of thirty-two 2 K segments within the 65 K addressing range of the 8080. Additional jumpers select the appropriate number of "wait" states, determined by the access time of the EPROMS in use.

The 2 KRO was designed for either the 1702A or MM5203 EPROMs. EPROMs are not included, but both are readily obtainable for reasonable prices on the industrial and surplus markets.

The ALS Firmware Module for fast software development

The ALS-8 is a low power "turn-on-theswitch" program developer. Quickly write, edit, assemble, de-bug and run your own programs. Here's an easy to use, easy to understand software development tool you can begin to use with only 15 minutes instruction.

Two firmware options are available, the SIM-1 Interpretive Simulator, a program that thinks its an 8080, and TXT-2 text editing firmware which adds the world of text editing to your system. For more details on this equipment please turn to the section in this brochure on software. The ALS-8 is only available factory assembled and tested.

PTC MEMORY MODULES					
	4 KRA	8 KRA	16 KRA	2 KRO	GPM/ALS-8
Maximum Capacity (8-bit words)	4096	8192	16,384	2048	5120 to 8192 bytes ROM
RAMS used	$\begin{aligned} & \text { 91LO2A or } \\ & \text { 2102LPC } \end{aligned}$	$\begin{aligned} & \text { 91LO2A or } \\ & \text { 2102LPC } \end{aligned}$	Intel 2104 or Mostek 4096 types	1702A EPROM	9216B ROM
Operating Mode	Static	Static	Dynamic	Static	Static
Access and Cycle Time	520 nanoseconds worst case maximum. Typical 400 nanoseconds.	Same	400 nsec access 500 nsec cycle	Dependent on EPROM used. Works over range of 30 to 2500 nsec	450 nsec
Bus Pinout	Plug in compatible with Sol, Altair 8800 and IMSAI 8080 bus	Same	Same	Same	Same
Power: Operating	$\begin{aligned} & +7.5 \text { to } 10 \mathrm{VDC} @ \\ & 1.0 \mathrm{~A} \max \left(0^{\circ} \mathrm{C}\right), 0.8 \mathrm{~A} \\ & \text { typical at } 25^{\circ} \mathrm{C} \text {. } \\ & 0.8 \mathrm{~A} \text { typical, } 1 \mathrm{~A} \text { max. } \end{aligned}$	+7.5 to +10 VDC at 1.4A typical ($25^{\circ} \mathrm{C}$); $1.9 \mathrm{~A} \max \left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$)	+7.5 to 10 VDC @ 0.4 A typical, 0.8A $\max -15$ to +18 @ 100 mA typical, 150 mA max. -15 to -18 VDC @ 20 mA max.	$\begin{aligned} & +8 \text { to }+10 \mathrm{VDC} @ \\ & 0.6 \text { max. }-15 \text { to }-19 \\ & \text { VDC @ } 350 \mathrm{~mA} \text { max } \\ & \text { with } 81702 \mathrm{As} \\ & \text { installed. (Replace- } \\ & \text { ment transformer } \\ & \text { available for full } \\ & \text { negative supply in } \\ & \text { Altair } 8800 \text {) } \end{aligned}$	$+7.5 \text { to }-10 \text { VDC @ }$ 600 max. -14 to 19 VDC@ 200 mA max. (with SIM-1 and TXT-2 options installed)
Power: Standby	+1.6 to 2.5 VDC at $0.5 A$ max worst case. 0.4 A typical	+1.6 v to 2.5 VDC typical; 0.9A max (power connector provided for battery connection)			-
Address Selection	Dual in line switches	Dual inline switch at top of PC board allows manual selection of any 8 K segment on 1 K increments	Each 4096 byte page addressable with dual in line switches at top edge of PC board	Jumper selectable to any 2048 byte block of the 32 available.	Fixed at EOOO to FFFF (hex)
Dimensions	$\begin{aligned} & 5.3^{\prime \prime} \times 10.0^{\prime \prime} \\ & (13.46 \mathrm{~cm} \times 25.4 \mathrm{~cm}) \end{aligned}$	5.4 " $\times 10.0$ "	$5.4 " \times 10.0$ "	$5.3^{\prime \prime} \times 10.01$	$5.3^{\prime \prime} \times 10.0^{\prime \prime}$
Phantom RAM (for Sol and ALS-8)	Yes	Yes	Yes	No	Yes

Disk Storage

Every computer owner longs for all the advantages of fast random access memory. We're ready when you are to put big system disk memory power at your command. The new Helios II is more than just a floppy disk drive and controller. It's more than just scattered pieces of wire and patches of software. Helios II is a complete, integrated disk storage system which should meet every program and data storage requirement your system is likely to have. The Sol-Helios pair forms a cost effective, high performance system without equal.

Helios II gives you BIG SYSTEM PERFORMANCE

Big system performance is unique to the Helios II. Used in any application requiring manipulation of large data files. Helios II will outperform all other microprocessor based systems by a factor of at least 10 to 1 .

Big system performance means all disk and memory buffer space allocation, all file management, all device interaction, comes from the system.

Big system performance means extended DISK BASIC, DISK FOCAL, and Processor Technology software support. DISK FOCAL is provided free on the system diskette and extended DISK BASIC is offered on a separate diskette for $\$ 50$. Using these simple languages you can immediately write programs for any application you have in mind. The file operations include random byte or block access as well as update and rewrite in place of standard sequential files. Other application packages are under continuous development at Processor Technology. And in line with our basic software philosophy, each will reach the market at the lowest possible cost.

Helios II comes complete with dual drive, controller, system diskette with DOS, power supply, case, all necessary cables and full systems documentation. A 12 K assembly language program to test and report on every aspect of your unit is included too.

Helios II loads an 8000 byte program with a look up in the system directory in $0.3 \mathrm{sec} . .$. a speed which becomes truly significant when you are working on two 100 K source files to create a third, adding up to a total of 200,000 bytes.

"Firm sectored" Controller raises disk storage to 386,000 bytes per diskette

The Helios controller is a genuine performance breakthrough, increasing formatted data capacity per diskette surface to over 386,000 bytes and at the same time assuring higher reliability than the older IBM format. Standard Helios II storage capacity is over 750,000 bytes. With two dual drives, capacity can be doubled to 1.5 M bytes.

Asynchronous data transfers are made directly to memory at an effective rate of one-half million bytes per second. A sixteen byte fifo memory accumulates the data to or from the drives, freeing the computer for useful work. A standard hardware CRCC error test is performed on each transfer of data and an optional read-after-write verification mode is easily selected. The controller requires at least one S-100 bus slot and is fully compatible with Sol, Altair or IMSAI systems.

No need to buy special, expensive diskettes - the controller will pre-format any standard 32 hole "floppy" diskette.

Software

PTDOS 1.4.0 is a proven disk operating system with total file and memory management. Features include:

Complete management of static, dynamic user buffers.

Device files for generality of input/output operations.

System calls for complete file operations from external programs.

Three level, triple option error handling/ trapping.

Random/Indexed Files for direct positioning to any word of a file, anywhere on the disk(s).

Command Line Interpreter accepts and executes a string of commands from you or a file.

System utility call performs a random search to the utility operation of your choice.

Helios II can be configured and reconfigured for any size buffer area. Over 40 files can be open at one time. System calls provide standardized access for all file operations from external programs and routines.

The Command Interpreter accepts input from the current command input file to provide direct file operations from the keyboard or another file. Support program calls are identical to commands. but executed outside of the system area (e.g. in low memory).

Want more information

A full product description of Helios II is available for 51 . We are also making the PTDOS 1.4.0 portion of the Helios II System Manual available for $\$ 20$. (which we credit toward your purchase of the system). But, if you are already familiar with the consistent quality, features and support given to all Processor Technology products. order your Sol-Helios system today. You'll have Big System Performance working for you that much sooner.

New extended DISK BASIC

Further increasing the value of your Helios II is our extended DISK BASIC. This powerful language offers advanced string and math functions plus direct commands (SAVE. RESAVE, ASAVE, KILL and XEQ) and program statements. DISK BASIC is the only available small computer BASIC with powerful disk file handling commands, statements and functions. These features make complex application programs for inventory control, data reduction and general accounting run ten times more efficiently on the Helios system.

E. Interfaces

When we talk about making the complete small computer, we mean interfaces, too. Nothing is left out. Theres a video display module designed to work with computing equipment you may already have or auxiliary equipment you may need. Theres the Computer Users Tape System so you can add additional audio cassette tapes for expanded program and data storage/ interchange. Theres a wire wrap extender board for anyone who does prototyping. If you're troubleshooting, you can see what you're fixing with Processor Technologys Extender Board. You can handle any additional input/output needs of your system with our $3 \mathrm{P}+\mathrm{S}$ Input Output Module.

In sum, Processor Technology has built every basic element you need into Sol for integral operation. And we have generated the extra equipment for use with peripheral devices or other existing computer you may have. Processor Technology is dedicated to helping you get optimum computer performance.

VDM-1 Video Display Module
We call it the communicator. It provides almost Sol-like performance for Altair and IMSAI computers. It's a high speed module which has 1024 bytes of random access memory. scrolling and multiple programmable cursor circuitry. Sixteen 64 -character lines are generated in a large easy to read upper and lower case font. Data handled by the read/write on-card memory is displayed instantaneously with no interference to the processor. Top display scroll speed is 2000 lines per minute!

VDM-1 lets you display white on black or black on white. VDM-1 offers EIA video output. Terminal mode software comes with the module at no extra cost so you can use it with your existing programs. Most Processor Technology software packages already include versions of these display driver routines, so no time comsuming software patching is necessary. The VDM-1 can be used in Sol systems to add a second display output for expanded special applications.

CUTS: The computer users tape system

Here's the low cost high speed audio cassette interface for computer program and data storage interchange.

Operate at 300 bits per second or 1200 bits per second in the new Processor Technology CUTS format, upward compatible with the "Byte/Kansas City" standard. (see Popular Electronics, p. 86, March 1976)

Using CUTS you can load programs ten times faster than with a teletype paper tape reader. You can load Processor Technology BASIC in 58 seconds. There are no critical adjustments. Just about any ordinary cassette recorder will do. CUTS has AGC in both read and write modes. So you won't lose bits at 1200 or 300 baud.

Software on CUTS cassettes costs less than equivalent paper tape.

The following software for the CUTS module is available for $\$ 11$, all on one cassette.
A. CUTER ${ }^{T M}$ - Computer Users Tape Entry and Retrieval monitor program.
B. BASIC-5 with CUTER compatible commands implemented.
C. Lunar Lander written in BASIC-5.

Many more programs are under development. You can reasonably expect a new one every few weeks.

Wire Wrap and Extender Boards

Wire wrap boards are designed for prototyping. Create custom interfaces or whatever your fancy dictates.

WWB has a "universal" seven-row pattern of pads on $.3^{\prime \prime}$ centers, so standard $14,16,24$ and 40 pin DIP IC sockets can be plugged right in. Power and ground are dedicated to pins 16 and 8 respectively (for 16 pin DIPs). Converts to other IC sizes easily. Use up to 62 sixteen-pin DIP ICs; six extra wirewrap socket positions have been set aside for wire wrap connections to any S-100 bus computer (Altair or IMSAI).

Use the Extender Board to help you troubleshoot any S-100 bus compatible module. Plug in a glitchy module $5^{\prime \prime}$ above the mother board for easy scope, VTVM or logic probe. Sol-20 systems already have a built-in extender connector on the back plane assembly.

3P+S Input Output Module

Processor Technology's $3 \mathrm{P}+\mathrm{S}$ input/output module offers a low cost way to handle virtually all the I/O needs of any $\mathrm{S}-100$ bus compatible computer system.

The $3 \mathrm{P}+\mathrm{S}$ has two 8 -bit parallel I/O ports, with full handshaking logic, plus a serial I/O port with a data rate that can be set anywhere between 35 and 9600 baud.

One parallel output port can be used to set up control conditions for both parallel and serial ports, as well as for setting the serial I/O baud rate under program control. One parallel input port is available for polling Input Data flags and External Device flags, and for checking the serial I/O error flags. You can implement full handshaking with both input and output peripherals.

Interfacing to the Sol System, Altair 8800. or IMSAI 8080 vectored interrupt bus is provided by a jumper selectable option which allows any of the UART (Universal Asynchronous Receiver Transmitter) error flags or handshaking signals to generate interrupts. (A Vectored Interrupt Module is also required for this mode of operation.)

Addressing of the module is selectable to any of 64 address segments within the range of 256 I/O addresses.

E Peripherals

Peripherals

Processor Technology has selected a number of quality peripheral devices from other manufacturers to help you put complete systems together for many different applications. All these devices are only available factory assembled and tested.

TV-Monitor

Here's an 11" diagonal completely solid state black and white television specially modified for use with the Sol or VDM-1 units. A switch allows use as either a standard UHF/VHF television or as a video monitor. These units provide extremely crisp and stable displays and are fully grounded for safety. Manufactured by Panasonic.

High Speed Paper Tape Reader

All programs produced on paper tape for the 8080 may be loaded into Sol at up to 1000 characters/second with this handy low cost paper tape reader. The OP-80 is completely solid state and has no moving parts. The unit comes with a cable for plugging directly into the Sol Parallel Data Interface connector. Made by Oliver Audio Electronics.

PROM Programmer

The Bytesaver ${ }^{T M}$ PROM programmer gives you two powerful features:

1) fast easy programming of 2708 Erasable Programmable Read-Only Memories (EPROMs).
2) Sol-bus compatible non-volatile storage of up to 8192 bytes of program.

The Bytesaver can be used to permanently store programs for use on custom application Sol personality modules or for expanded permanent storage.

Use the Bytesaver in any application where your special programs need to be permanently stored yet instantly accessed by the computer. Complete driving software included at no extra cost. Manufactured by Cromemco.

Multi-channel Analog Interface

The $\mathrm{D}+7 \mathrm{AI} / \mathrm{O}^{\text {TM }}$ module is the low cost efficient way to interface the Sol Systems digital computer with the analog world. Use this module when joysticks, instruments and amplifiers, voltage and temperature sensors or any other analog device needs to be controlled or monitored by the Sol Computer.

Provided are:

- 7 multiplexed analog input channels for Analog to Digital conversion with 8 bit resolution and 5.5 microsecond conversion time.
- 7 Digital to Analog output channels with 8 bit resolution.
- 8 bit parallel interface post for digital control applications.
- +2.56 to -2.54 VDC input and output signal range (20 mV monotonic increments).

The $\mathrm{D}+7 \mathrm{AI} / \mathrm{O}$ is software compatible with the ALS-8 development system and PT8K BASIC language. Manufactured by Cromemco.

JS-1 Joystick

The Joystick is the fastest data entry method for interactive prompted programs and games. The JS-1 has both two axis analog outputs and four on-off switches. Requires $\mathrm{D}+7 \mathrm{AI} / \mathrm{O}$ module. Manufactured by Cromemco.

See Sol now at your nearby dealer

ALABAMA
(P. Computerland 155() Montgomery Hwy Birmingham, AL 35226 2155)979.0707

ARIZONA

Byte Shop Tempe
xi.3 N. Scottsdale Rd.

Tempe. AZ 85281
(602) 894-1129

Byte Shop Phoenix
2654 N. 28th Dr
Phoenix. AZ 85029
(f)2) 942-7300

Byte Shop Tucson
2612 E. Broadway
Tucson. AZ 85716
(f()2) $327-4579$
CALIFORNIA
The Byte Shop
1514 University Ave
Berkeley. CA 94703
415) 845-6366

Byte Shop Computer Store (r)41 Greenback Lane

Citrus Heights. CA 95610
19161961-2983
Computer Center
1913 Harbor Blvd
Costa Mesa. CA 92627
(714) 646-0221

Data Consultants. Inc 2350 W. Shaw. Suite 114
Fresno. CA 93711
209) 431-6461

3 3ts ${ }^{\text {N Bytes }}$
679 S. State College Blvd.
Fullerton. CA 92631
(714) 879.8386

The Byte Shop
16508 Hawthorne Blvd.
Lawndale. CA 90260
(213) 371-2421

The Byte Shop
1063 El Camino Real
Mountain View. CA 94040
(415) 969-5464

Digital Deli
80 W. El Camino Real
Mountain View, CA 94040 (415) 961-2828

The Computer Mart 624 West Katella $=10$
Orange, CA 92667
(714) 633-1222

The Byte Shop
2227 El Camino Real
Palo Alto. CA 94306
(415) 327-8080

Byte Shop
496 South Lake Ave
Pasadena, CA 91101
(213) 684-3311

The Computer Store
of San Francisco
1093 Mission Street
San Francisco. CA 94103
(415) 431-0640

Byte Shop
321 Pacific Ave.
San Francisco, CA 94111
(415) 421-8686

The Byte Shop
2626 Union Avenue
San Jose, CA 95124
(408) $377-4685$

The Computer Room
124H Blossom Hill Rd.
San Jose. CA 95123
(408) 226-8383

The Byte Shop
509 Francisco Blvd
San Rafael. CA 94901
(415) 457-9311

The Byte Shop
3400 El Camino Real
Santa Clara. CA 95051
(408) 249-4221

Recreational Computer Centers
1324 South Mary Ave
Sunnyvale. CA 94087
(408) 735-7480

Byte Shop of Tarzana 18424 Ventura Blvd.
Tarzana, CA 91356
(213) 343-3919

The Byte Shop
2989 North Main St.
Walnut Creek. CA 94596
(415) 933-6252

Byte Shop
14300 Beach Blyd.
Westminster. CA 92683
(714) 894-9131

COLORADO
Byte Shop
204030 hh St
Boulder. CO 80301
(303) 449-6233

FLORIDA
Sunny Computer Stores
University Shopping
Center
1238A S. Dixie Hwy.
Coral Gables. FL 33146
(305) 661-6042

Delta Electronics
2000 U.S. Hwy. 441 Eas
Leesburg. FL 32748
(904) 357-4244

Byte Shop of Miami
7825 Bird Road
Miami. FL 33155
(303) 264-2983

Microcomputer
Systems Inc.
144 So. Dale Mabry Hwy
Tampa. FL 33609
(813) 879-4301

GEORGIA
Atlanta Computer Mart 5091-B Buford Hwy
Atlanta, GA 30340
(404) 455-0647

ILLINOIS
The Numbers Racket $6231 / 2$ South Wright St. Champaign. IL 61820
(217) 352-5435
itty bitty machine co.
1316 Chicago Ave.
Evanston, IL 60201
(312) 328-6800

Reeves Communications 1550 W. Court St.
Kankakee, IL 60901
(815) 937.4516
itty bitty machine co.
42 West Roosevelt
Lombard. IL 60148
(312) 620-5808

INDIANA
The Data Domain
406 So. College Ave.
Bloomington. IN 47401
(812) 334-3607

The Byte Shop
5947 East 82nd St.
Indianapolis. IN 46250
(317) 842-2983

The Data Domain
7027 N. Michigan Rd.
Indianapolis. IN 46268 (317) 251-3139

The Data Domain
219 West Columbia
West Lafayette. IN 47905
(317) 743-3951

KENTUCKY
The Data Domain
3028 Hunsinger Lane
Louisville. KY 40220
(502) 456-5242

MICHIGAN
The Computer Store of Ann Arbor
310 East Washington
Ann Arbor, Ml 48104
(313) 995-7616

Computer Mart
or Royal Oak
1800 W. 14 Mile Rd.
Royal Oak. MI 48073
(313) 576-0900

Genral Computer Store
2011 Livernois
Troy, Ml 48084
(313) 362-0022

NEW JERSEY
Hoboken Computer Works
No. 20 Hudson Place
Hoboken. NJ 07030
(201) 420-1644

The Computer Mart
of New Jersey
501 Route 27
Iselin. NJ 08830
(201) 283-0600

NEW YORK
The Computer Mart
of Long Island
2072 Front Street
East Meadow, L.I.,
NY 11554
(516) 794-0510

Synchro Sound
Enterprises
193-25 Jamaica Ave.
Hollis, NY 11423
(212) 359-1489

The Computer Shoppe
444 Middle Country Rd.
Middle Island. NY 11953
(516) 732-3086

Audio Design Electronics
487 Broadway. Ste. 512
New York, NY 10013
(212) 226-2038

The Computer Mart of New York
118 Madison Ave.
New York. NY 10001
(212) 686-7923

The Computer Corner
200 Hamilton Ave
White Plains. NY 10601
(914) 949-3282

OHIO

Cybershop
1451 S. Hamilton Rd.
Columbus. OH 43227
(614) 239-8081

OKLAHOMA
High Technology
1020 West Wilshire Blvd
Oklahoma City. OK 73116
(405) 842-2021

OREGON
Byte Shop Computer Store 3482 S.W
Cedar Hills Blvd.
Beaverton. OR 97005
(503) 644-2686

The Real Oregon
Computer Co.
205 West 10th Ave.
Eugene. OR 97401
(503) 484-1040

Byte Shop Computer Store
2033 S. W. 4th Ave
Portland. OR 97201
(503) 223-3496

RHODE ISLAND
Computer Power. Inc.
M24 Airport Mall
1800 Post Rd
Warwick. RI 02886
(401) 738 -4477

SOUTH CAROLINA
Byte Shop
2018 Green Street
Columbia. SC 29205
(803) 771-7824

TENNESSEE
Microproducts \& Systems
2307 E. Center St.
Kingsport. TN 37664
(615) 245-8081

TEXAS
Byte Shop
3211 Fondren
Houston, TX 77063
(713) 977-0664

Computertex
2300 Richmond Ave.
Houston. TX 77098
(713) $526 \cdot 3456$

Interactive Computers
$7646{ }^{1} 2$ Dashwood Rd.
Houston. TX 77036
(713) 772-5257

The Micro Store
634 So. Central
Expressway
Richardson. TX 75080
(214) 231-1096

VIRGINIA

The Computer Systems
Store
1984 Chain Bridge Rd.
McLean. VA 22101
(301) 460-3634

Media Reactions Inc
11303 South Shore Dr.
Reston. VA 22090
(703) 471-9330

WASHINGTON

Byte Shop Computer Store
14701 N.E. 20th Ave
Bellevue, WA 98007
(206) 746-0651

The Retail Computer Store
410 N.E. 72 nd
Seattle. WA 98115
(206) 524-4101

WISCONSIN

The Milwaukee
Computer Store
6916 W. North Ave.
Milwaukee. W1 53213
(414) 259-9140

CANADA
Trintronics
160 Elgin St.
Place Bell Canada
Ottawa. Ontario K2P 2C4
(613) 236-7767

First Canadian Computer
Store. Ltd.
44 Eglinton Ave. West
Toronto. Ontario M4R IAI
(416) 482-8080

The Computer Place
186 Queen St. West
Toronto. Ontario M5V $1 Z 1$
(416) 598-0262

Pacific Computer Store
4509-11 Rupert St
Vancouver. B.C. V5R $21-$
(604) 438-3282

All components sold by PROCESSOR TECHNOLOGY CORPORATION are purchased through normal factory distribution and any part which fails because of defects in workmanship or material will be replaced at no charge for a period of 3 months for kits, and one year for assembled modules, following the date of purchase. The defective part must be returned postpaid to PROCESSOR TECHNOLOGY CORPORATION within the warranty period.

Any malfunctioning module. purchased as a kit and returned to PROCESSOR TECHNOLOGY within the warranty 3 month period, which in the judgement of PTCO has been assembled with care and not subjected to electrical or mechanical abuse, will be restored to proper operating condition and returned. regardless of cause of malfunction, with a minimal charge to cover postage and handling.

Any modules purchased as a kit and returned to PTCO which in the judgement of PTCO are not covered by the above conditions will be repaired and returned at a cost commensurate with the work required. In no case will this charge exceed $\$ 20.00$ without prior notification and approval of the owner.

Any modules, purchased as assembled units are guaranteed to meet specifications in effect at the time of manufacture for a period of at least one year following purchase. These modules are additionally guaranteed against defects in materials or workmanship for the same one year period. All warranted factory assembled units returned to PTCO postpaid will be repaired and returned without charge.

CONDITIONS and EXCLUSIONS

This warranty is made in lieu of all other warranties expressed or implied and is limited in any case to the repair or replacement of the module involved.

The warranty herein extends only to the original purchaser-user and is not assignable or transferrable.

Processor Technology Corporation is under no obligation to extend this warranty to any product for which a Warranty Registration Card has not been completed and mailed to Processor Technology Corporation within fifteen (15) days after date of delivery.
\square

By Lee Felsenstein
"I designed the Sol!"
These words are made to be spoken from a pinnacle of technical authority, preferably by a gimlet-eyed Herr Doktor who pursues exact solutions to the nineteenth decimal place and who reigns over a limitless sea of subordinates slaving away over rows of drafting boards.

Or they could come from a furry little gopherlike creature with a piece of string for a belt who sleeps all day and occasionally surfaces to deposit a few dogeared pages of scrawled diagrams with his custodians.

Since I fit neither of these descriptions, I hesitate to make that claim (except as part of a put-down), for it is only partly true. Besides, as I look over the reasons for making certain design decisions along the way, I am struck by the fact that most of those reasons had little to do with the ultimate advantages of the decisions.

The Sol, therefore, got designedpartly by me, partly by Bob Marsh, and partly by chance and circumstance. My description of that process is intended to instill confidence in those who feel that there are great secrets involved in the design of products and that mastery of most of the universe is a prerequisite to successful design. It is also intended as a warning to
those who think that the design process is deterministic and uncomplicated.

WHAT IS THIS THING CALLED SOL?

For the benefit of future historians, I shall state that the Sol is a singleboard computer built around the 8080 microprocessor and the $\mathrm{S}-100$ bus structure. It incorporates an integral video alphanumeric display circuit, serial and parallel interfaces, and random-access and read-only memory on the board along with an audio cassette tape interface. A keyboard plugs into a connector on the board, and a video signal comes off through a coax. ial cable. Regulated DC power is supplied to the board through another push-on connector, and that's all that is needed to make it compute.

Sol's main feature is a 100 -pin edge connector that provides all the signals of the $\mathrm{S}-100$ bus to any number of memory, I/O, or other peripheral cards available from different sources. An important secondary feature is the "personality module," a tiny (3-by$11 / 2$-inch) printed circuit card on which sits the ROM. The personality module plugs into a small edge connector on the Sol board. By this means the personality of the Sol can easily be
changed without technical skill. Also, all the serial, parallel, and audio connectors are mounted along one edge of the card, requiring no external harness or connector assembly.

The Sol-10 and the Sol- 20 both put this card, along with a power supply, into a metal chassis with walnut sides and a typewriter-style keyboard. The Sol- 20 has a five-slot "daughter board" that plugs into the 100 - pin edge connector and itself provides five more similar connectors, so that cards of the S-100 type can be plugged in within the cabinet. It has additional power supply capacity to feed these extra cards.

BEFORE THE BEGINNING

In 1974 I was helping to run a public-access "computerized bulletin board" system (called Community Memory), which was essentially a labor of love for me and several other people. It had two terminals in public where people could come in off the street and enter information items as well as search for them. Since the terminals were unattended, hardware reliability was an obvious problem, especially when we postulated much larger systems.

My way out of this future problem
was to design an all-purpose "convivial -vbernetic device" as a terminal/con-ntrator/processor-in such a way that amateurs would be encouraged to get their hands on it. In theory, each place where one of these "Tom Swift Terminals" was installed would develop a computer club. Then, when a terminal broke down, relief would be a local matter, and people would not have to place their trust in a remote maintenance structure.

It was by placing a notice about this conceptual design on the system and inviting respondents to form a discussion group that I met Bob Marsh for the second time. (The first had been during our college days when we lived in the same co-op residence hall at Berkeley. We did not share many interests then.)

Now, however, Bob had raised himself to the state of an unemployed electronics engineer (self-taught) who had nearly won an encounter with a glorified version of Don Lancaster's TV Typewriter that he had built, improved, and fixed from scratch. After a while Bob suggested that I go in with him on the rental of a workshop. I greed, and we signed a three-year lease on a garage in industrial Berkeley, commencing from January of 1975. I moved my workshop out of my living room, and Bob took up residence in the upstairs office, trying to find a product to manufacture. A plan to produce a limited edition digital clock with a fancy wood case never materialized, which was a disappointment both for Bob and for Steve, a friend of his who did woodworking (we shall hear more of this later). Bob spent much time investigating the possibilities for a logic analyzer similar to others then available, doing much design before he gave it up as impractical.

In March 1975 I took Bob to the second meeting of the Homebrew Computer Club, where about twentyfive people stood around the first Altair 8800 to reach the area and watched it blink its front panel lights. That was all it could do, since it had no I/O circuitry and only 256 bytes of memory. There was a lot of empty space inside that cabinet.

Processor Technology was founded as a partnership in April of that year (I was not one of the partners) and began designing ROM, RAM, and I/O cards for the Altair. Incorporation
followed in July, and I began to get bits and pieces of work-redrawing schematics, writing preliminary manuals, and other minor chores.

In July Bob finally got to me. He had a proposition : he would pay me to design the video display section of the Tom Swift Terminal. In October the VDM-1 video display module first saw Revision A. The Tom Swift Terminal never did get designed exactly as I dreamed it. But, as the hordes of amateur computer enthusiasts swarmed out of the woodwork, its purpose was being fulfilled.

THE SOL SOLUTION

I like to say that, in the process leading to the birth of the Sol, Leslie Solomon, technical editor of Popular Electronics magazine, performed the act equivalent to that of the male. I still don't know who solicited whom, but Les agreed to carry a construction article on "an intelligent terminal" on the cover if a working model could be supplied in thirty days. This proposal was made in the middle of November 1975. I was summoned to Bob's office.

Bob tactfully asked me if I thought such a project was impossible. I reluctantly admitted that I did not but strongly suggested that an unintelli. gent terminal be designed, mainly because I wanted badly to exercise the features designed into the VDM-1 for such an eventuality. Besides, I had already turned down an offer from Bob to design an 8080 CPU board for Processor Technology.

Alternate designs were roughed out and prices compared. Both were for terminals using the basic circuitry of the VDM-1. His had an 8080 thrown in, mine had decoders and counters. Mine was cheaper, but only by about ten dollars. Gradually 1 came to realize that if the inevitable were to happen, it would be better to be on the inside than on the outside. After a day or two of discussions, I agreed to contract to do the design. I pulled out of a volunteer project on the grounds that "the roof was about to fall in again." And somewhere in the midst of all this I looked up at Bob and said: "Let's advertise it as having 'the wisdom of Solomon.'" From the comment came the name Sol, which is meant to be written in biblical-movic-poster letters chiseled out of stone. Les will never live it down.

Single Board Computer: Electronic devices are built nowadays on "printed circuit cards" of fiberglass with patterns of copper foil instead of wires. In the old days, ten years ago, computers had hundreds of these boards, each containing a tiny portion of their electronics. Now things have shrunk so much that an entire computer can fit on one printed circuit board.

Microprocessor: the "thinking" section of a computer is called the central processing unit (CPU) or just the processor. If it's so small that you need a microscope to examine it, it's called a microprocessor.

S-100 bus structure: a bus is a wire connected to many places. Usually it's used to carry electricity for pouer, but, in a computer, very fast, low-power electrical impulses are sent between sections on buses. Since there are a lot of these signals happening at once, computer buses have a lot of wires in them. The S-100 is a 100-wire bus used by many personal computers. Becai..e they all have the same pattern of four interconnections, the plug-in board from one will work (usually) when plugged into another S-100 machine. The S means standard.

Integral video alphanumeric display circuit: electronic circuitry which produces a signal that can be connected to a TV set and that causes the set to display letters and numbers on the screen. It is integral because it is built into the computer.

Scrial and parallel interfaces: An interface is the dividing line between two electronic devices. A wire or cable usual$l y$ goes across an interface cartying electrically-coded information. If the cable carries several different signals at once, it's a parallel interface. If the information moves in a sequence through a single wire the interface is serial.

Random-access Memory: memory like a set of pigeon-holes, into any of which the computer can put new information or from any of which it can read old information. The computer can choose any pigeon-hole (or address) at any time.

Read Only Memory: memory like a telephone directory which can only be tead by the computer and not written in. It's used to hold instructions for the computer (the program).

Push-on Connector: a set of metal posts wired or soldered to electrical circuitry. A set of spring clips held in a plastic block can be pushed down onto these posts in order to make an electrical connection to a cable.

Edge Connector: a socket built as a long thin slot in a plastic block. A number of spring fingers are held in the block. If a printed circuit-board edge is pushed into the slot the spring fingers will "wipe" against both sides of the board and make contact with the copper foil patterns.

1/O: Input/Output. The electrical channels through which the computer moves information to and from the outside world.

> In the process leading to the birth of the Sol, Leslie Solomon performed the act of the male. I still don't know who solicited whom.

Bob had already developed an architecture for the device. It involved taking the on-card memory and I/O devices, disconnecting the S-100 "DI" data input bus, and creating a separate low-drive "internal bus" that would get data to the CPU through a four-way data selector or multiplexer. One input of this would be the regular S-100 DI bus, another the internal bus, and the other two would be used for keyboard and parallel data inputs. The reasoning behind this was to minimize the need for high power tristate drivers on the card and to allow the low-power tristate output features of the RAMs, ROMs, and UARTs to serve their intended functions.

1 should explain here that designing for Bob Marsh can be somewhat of a trial. At least at that time, when he had little else with which to concern himself, he was continually turning up with new features and economies that he suddenly wanted incorporated in the design. He would explain the problem or opportunity and then
preface his technical solution with an inevitable "All's ya got to do is...." This would be forgivable if he were not so often right and possessed of a truly useful and valuable idea. Were the designer a prima donna, the relationship would terminate after the second such incident, with the designer fuming about "professionalism" and "interference." Of course, since my workshop was in the same room as his, I could not have gotten very far if I had wanted to stamp out in a rage. The situation did, however, call heavily on my sense of futility, absurdity, and ultimate irrelevance.

A few days after I started on Sol, Bob had another idea. He wanted all clocks on the card derived from a single crystal. The VDM-1 had been using a $18.4784-\mathrm{Mhz}$ crystal, and Bob had been doing some division problems with his calculator. It seemed to him that not one but three relevant clock speeds could be extracted from this frequency, allowing operation with $2.5 \cdot \mathrm{Mhz}$ and $3 \cdot \mathrm{Mhz} 8080$ chips if
desired. I protested, but without ounds, and very soon gave in and esigned a simple clock generator which allowed (through a variablemodulo flip-tail ring counter, if you must know) the kind of clocks Bob wanted.
bly MITS's) boards did not use the DBIN signal and were therefore useless with Sol, unless modified, is still a source of defensiveness in discussions of the design. I take the position that Bob made me do it, and he takes the position that history will absolve him.

Bob tactfully asked me if I thought the project was impossible.

After a decent interval Bob informed me that he would like to increase the crystal frequency to 14.31818, which would be necessary if color video peripherals were to operate with it. Please to redesign all relevant circuits accordingly. I fumed and grumbled but found a way out eventually. After all, the clock frequency to the 8080 would be of a 488 . nanosecond period, a whole 1.8 percent shy of the spec sheet minimum! Why worry?
The biggest upset actually had the flimsiest reason. Bob wanted to be able rextend the S-100 bus of the Sol to an .ternal cabinet through a flat ribbonstyle cable, which came in 50 . conductor maximum widths. With my avid agreement, Bob wanted to ensure that there were plenty of ground return lines sprinkled through this cable-a practice that had been neglected on the Altair and that probably caused many of the noise problems associated with it. To do this would require more than 100 wires.

Bob and I did some figuring while driving down to a Homebrew Club meeting, and he reached the conclusion that it would be permissible to take the DI and DO buses and connect them in parallel, making one single DIO bus. We assumed that every manufacturer who was anybody was doing the same as Processor Technol. ogy, using the DBIN signal from the 8080 as an enabling signal for data to the DI bus. DBIN could therefore be used at the Sol as a "direction signal" for the DIO bus and data could be sent both ways on one set of wires. Think of 'I the cable you'd save!
As it turned out, those eight extra traces saved on the Sol board nearly made the difference between a buildable board and an impossible one. The fact that some manufacturers' (nota-

As the design progressed, we realized that we were building a generalpurpose computer rather than just "an intelligent terminal," but the decision was made to soft-pedal the fact until the last possible moment. Once published, all the fuss possible was to be made about its general-purpose na ture; but until it actually saw print, it was to be treated first as a terminal.

To jump ahead a bit, when I finally delivered the working prototype to Les Solomon's desk and pointed out its salient features, his eycbrows began twitching. Why couldn't he, he wanted to know, plug in a ROM board with BASIC burned in (as he could do with a Bytesaver) and run stand alone? I smiled my blandest smile and muttered, "Beats me."

THE BIG PUSH

Originally I had been given to believe that I would be required by the terms of the contract only to provide a schematic diagram and to help interpret it for the benefit of the layout artist. When it came time to start lay-

Lee Felsenstein after the deed.

ROMuThETOMTGUE

Multiplexer: an electronic circuit which can choose one of several inputs and route the signals at that input to its output.

Internal Bus: Eight bus-type wires which are connected to most of the derices on the Sol which feed information to the processor. The information moves in eight-bit units (bytes), one wire for each bit.

Tri-State Drivers: electronic circuits used for feeding signals to a bus. They can either force the bus wire to a high voltage or a low voltage, or they can let the bus "float" at whatever voltage other drivers decree.

Variable-modulo flip-tail ring counter: an electronic worm continually chasing its tail. The worm's back is black and its belly is white. Each time around, it makes a half tuist. A line of ants does closeorder drill using the color of the worm as a cadence (clock signal). Since worms trazel at a steady rate, the cadence can be changed by changing the length of the worm (variable. modulo).

DI Bus: Eight bus-type wites which carry electrical data signals from S-100 boards into the processor. Short for Data Input Bus.

DO Bus: Data Output Bus. Same as DI Bus, except that the electrical signals are carried out of the processor board to all of the S-100 board's.

DBIN: Signal: Data Bus In A timing signal which the mi. croprocessor uses to tell any one who cares that it can accept electrical data (one byte only) going in
ing tape, I discovered that I was expected to pitch in with a will and help stick down the many miles of crepe tape that would be required to produce the printed circuit artwork. Time was of the essence, as I agreed, and the layout artist who had been engaged was somewhat out of his depth with a 110 package layout to be done at four to one enlargement. Besides, he apparently didn't believe in making
with needle point X-acto knives, which we constantly had to hand, were the main hazards of working there.

In addition, there was the chill at night and the heat that accumulated during the day. People downstairs never had the same opinion about a comfortable temperature as we did. We soon settled into an insane schedule of fourteen to seventeen hour days, seven days a week. I kept going

The crowning moment came when Bob changed his mind for the last time.

preliminary pencil sketches to test possible routings.

Steve the woodworker had built a large light table to Bob's specifications, and this was set up in the only available space in the now crowded garage - a loft above some offices that Processor had installed. I personally made sure that an electrical conduit running at forehead level was padded and tried to get someone to put up a fence to prevent one of us from stepping backwards off the edge of the loft. That, the knocking of heads against rafters, and the sticking or scratching of various parts of the head
on orange juice, the younger layout man used Coke. He succumbed at the very end and I had to finish up alone. The task took almost three weeks of standing up looking down into a fluorescent-lit white background on which crawled worm tracks of black tape.

The crowning moment came when Bob changed his mind for the last time about which side he wanted the 100 pin connector to emerge from (this was determined by whether the S-100 boards were to mount above or below the Sol board). Layout had already started, and fortunately that connec.

Bob Marsh with the Sol up and running. All's well that ends well-though in this case it seems to be only the beginning for Processor Technology.
tor lay in the other guy's area of concern. He had to cross over about seventy-five traces in order to flip the connector, and he did not succeed. Some traces were brought out to deadend pads with no hole through them, leaving some of the pins to be connected by tack-soldered jumper wires later during assembly.

I should point out that this printed circuit board was the prototype; no wire-wrap or other version had been made. Only two boards were ultimately produced (by a specialty shop run by a work addict), and one of them sits on my window ledge at home to remind me of how rough things can become. Besides, I like to point out my half of the layout and how obviously superior was my technique compared with the other half.

The other board I loaded with parts, tack-soldered with almost a hundred jumper wires out of sight on the rear side where traces were incomplete due to the hasty layout, checked out, and presented to the software people to see what they could do. I have no recollection whether that was before or after Christmas of that year ; I think it was before.

IN THE BAG

Bob had laid out the basic outlines of the cabinet and had patched together a power supply and a sample keyboard. One of his design criteria from the absolute beginning was that the cabinet have walnut sides of a certain height or less. Steve had told him of a great bargain to be had from center-cut pieces of walnut, which were ordinarily almost thrown away. There is some cause to believe that the primary reason for the existence of the Sol was to provide an outlet for this inexpensive wood. At any rate, Steve is now in the wilds of Wisconsin running a mill to make walnut Sol sides.

As the project proceeded, Bob was undecided as to whether a cassette interface or drive would be included in the production version. As photographic deadlines approached, he decided to put a dummy cassette drive in the cabinet. This was to symbolize the fact that cassette tape would ultimately be available in one way or another - how he did not know. The text of the article, when it appeared, mentioned nothing about it, and the mysterious tape deck has proved to be

Carrying the Sol shrouded in two paper bags, we embarked for the big-time world of New York.

the biggest single source of questions from the readership of that article.

The printed circuit board was ready forty-five days after the start of the project. About sixty days from the goahead, the cabinetry, power supply, and software were coming down the home stretch. Bob scheduled a night flight to New York, to save money, and informed me that I was coming; everybody went into a final homestretch panic lasting the better part of twenty four hours.

We made the helicopter only because my watch was fast. Bob forgot to bring his tickets to the heliport and broke numerous traffic laws going back to get them. Carrying the Sol shrouded in two paper bags, we embarked for the big-time world of New York.

Of course we got no sleep on the plane and arrived an hour too early for our purposes. We went directly to Les Solomon's home and shared breakfast with him, discovered that the Sol wouldn't work (you could see it trying behind a veil of "snow"), then took the train to Les's offices on Park Avenue, where we met the boss and everyone else. Leaving behind a trail of excuses. we emplaned for Boston, where the folks from Byte magazine took us to dinner and drove us up to Peterborough, New Hampshire to see the snow. I conked out on this last trip, after attempting to stay awake by gorging myself at every available opportunity. I fear that I made a poor impression by so doing.

Back at the workbench a day or so later, I traced the trouble to a tiny speck of wire obviously loosed from the shield braid of the coaxial cable as it was stripped. This crumb had been captured underneath a socket, where it had plainly stayed during all the checkout without causing mischief. In transit it had shifted to the worst possible position-shorting two obscure but critical traces together. Murphy's Law confirmed!

After that it was bundle up again, this time myself alone-but carrying my oscilloscope and tool kit as well as
the Sol. An hour or two of demonstiation in the offices of Popular Electronics convinced them that Sol would indeed work. Then it was back home directly, where I passed "Go" and collected the balance of my lump payment.

DEBUT

A great deal of work remained to be done after the prototype Sol was finished. Bob wasn't through with sug. gesting new things and better ways - I suspect he never will be. One major change in the design bears pointing out, though.

The personality module, which owes its name to Don Lancaster, came about as a result of unpredictable EPROM supplies. Some way had to be found to plug in three different EPROMs without taking up extra area. The first suggestion was for a "piggyback" card with upright pins that plugged onto a row of socket connectors on the board. I take credit for extending this idea to one of a miniature printed-circuit plug-in card with a row of edge-connector "fingers" that would mate with a right-angle PC connector and be guided by rails so it could be changed from outside the cabinet. This leads to fantasies of employees swapping in game personality modules during lunch time and returning to the business modules when the whistle blows.

Almost everything except the circuit was redesigned between prototype and production, and even the circuit was the object of much straightening out of wrinkles. The printed-circuit board was totally re-laid out, and the layout was digitized for computerized photo. plotting. More expediting, twenty-four-hour days, and dead runs from plane to plane.
In late August the Sol, in its production form, had its debut at the Atlantic City Personal Computing Show. I understand the cocktail party was splendid. Personally, I spent the time trying to trace down a bug that I was later told was in software.

BASIC: A computer program which allow's anyone to use the computer and get instantaneous feedback as to whether they are doing $O K$ or making a mistake.

Bytesaver. An S-100 plug-in board which can write information supplied by the processor into special read-only memory chips. Once written, the information cannot be erased by the computer but it can be read. A trademark of Cromemco.

EPROM: Erasable Programmable Read-Only Memory. Used on things like the Bytesaver. A chip which will hold information indefinitely after being written, but which will forget the information if exposed to ultraviolet light (the cover of the chip is clear quartz).

Right-angle PC Connector: A printed circuit edge-connector with pins bent 90 degrees so that once it's soldered down to its own board the slot is paral. lel to the board. Now a printed circuit card pushed into the slot will be parallel to the "mother board" rather than perpendicular.

The Scl-20 Computer Terminal

By Rudolf Hirschmann

Abstract

Rudy Hirschmann has written a review of the Sol computer. Rudy is a professor of German at the University of Southern California, where he is using microcomputer based systems for typesetting and for teaching.

The Sol-20 terminal computer from Processor Technology certainly makes a good first impression. It has the general appearance, shape and size of an electric typewriter with a full keyboard, attractive blue metal case and genuine walnut end plates. These would make it seem more at home in a modern office somewhere downtown rather than in my less elegant computer shack at home.

But beneath that sleek exterior lurks a genuine microcomputer that is capable of doing most everything that a state-of-the-art microcomputer ought to do. A fully operational Sol-20 consists of five circuit boards, namely the main circuit board, the plug-in personality board, the keyboard, the bus extender board and the power supply. I will discuss each of these in turn.
The main circuit board is by far the largest and most complex of the subassemblies for this computer. It combines the functions of several conventional S-100 plug-in boards, namely that of an 8080 -based CPU board and a video display generator for sixteen lines of 64 characters each. In addition, it also provides a very useful combination of functions that are normally available only on several additional boards, namely one serial and one parallel I/O port, a reliable cassette $1 / \mathrm{O}$ port that uses the "Kansas City/Byte" standard at
either 30 or 120 characters per second, a modest amount of RAM and address decoding as well as a connector for up to 2 K bytes of ROM. This ROM is actually held on a small board that plugs into the main board. A power-on-jump is also provided to this ROM, and for that reason this board is known as the personality module. More on that below.

The layout of the main board seems to be straightforward, logical and well executed. All features of this board worked as they are supposed to, although three errors in trace routing had to be corrected. This problem should be solved in boards marked Rev. E and beyond. The physical quality of this and the other boards is first rate. All traces and plated-through holes conducted properly, and a solder mask and parts labeling are provided.

Four sets of DIP switches are included on this board to allow easy selection of certain options. One switch allows changing the characteristics of the video display (which is virtually identical to Processor Technology's VDM-1), another selects the baud rate, while the third changes the word format for the serial I/O port. The final DIP switch is a thoughtful concession to those of us who have grown accustomed to a front panel, namely a set of eight sense switches connected as input port 255 . While the location of these switches is a bit awkward (the cover has to be removed to get at them), it is nevertheless possible to run programs that depend upon the use of the front panel sense switches of an Altair or IMSAI system. It should be noted that the single step and the memory protect/unprotect functions are not provided for. This means that your memory boards must always go to the unprotect mode when power is turned on and then stay there. An easy modification circuit for this purpose appeared in SCCS Interface vol. 1, no. 4 (March, 1976). page 43, that will take care of any problems in this regard.

In order for you to assess other potential hardware/software incompatabilities with your present system, let me give you the port and memory locations implemented on the main board. Port F8 functions as a control and status port for serial 1/O, F9 is the serial data channel, FA is the control and status port for parallel, cassette and keyboard I/O, FB is the cassette data port, FC is keyboard data, FD is parallel data, FE is status and control for the video display and FF is sense switch input. So far as memory allocation is concerned, personality ROM is from C 000 to CFFF, system RAM is C800 to CBFF, and video display RAM is CCOO to CFFF.

Turning now to the personality plug-in module, this is available in several different implementations. As a CONSOL module it consists of a small plug-in board with two 5204 PROMs and space remaining for two more. In other words. 1 K of firmware is implemented and space for an equal amount is left empty. As a SOLOS module, this same board is supplied with four 5204s. Presumably the SOLED will be supplied in the same form when it becomes available. Plug-in modules using other PROMs. such as the 2708, are also supposed to be in the works. That way all of us Bytesaver owners can implement our own firmware.
I had a chance to work with one CONSOL and two different SOLOS modules. Each of them has drivers for all I/O ports and the video dis. play system as well as some very useful file handling firmware for the cassette I/O channel. When you record a section of memory onto tape, you must specify a starting address, a length and a name: you also have the option of specifying an execution address. All of this information is automatically stored as a header on the tape before the specified block of memory is stored. The beauty of this system becomes apparent when retrieving stuff from tape, because, although you could specify everything manually, you can
also simply specify the name mentioned above, and the firmware will then ignore all data on the tape until it encounters the same name in a header. It then transfers the block to the address that is also specified in the header. This may not be as convenient as a floppy disk, but it is a big step upward from systems that have no firmware support.
The keyboard is custom designed for the Sol terminal and is made up of high quality parts throughout. The keys feel solid and durable, and a good selection of special-function keys is included. The keys of the numeric pad (not included in all models of the SOL) are not simply connected in parallel with the corresponding keys on the main section of the keyboard. Instead, they are encoded separately, and the output code of the numeric pad has the eighth bit turned on, even though this bit is not used in the ASCII standard. It is easy enough to ignore this bit for most applications, but in special situations, that extra bit can be used to implement special control functions via the numeric pad. An application I am presently working on will have these keys control a set of cursors in a fairly complicated text editor
A little quirk of this keyboard is that the key used for the backspace function does not generate the standard ASCII backspace code. This may not become a problem until you try to interface existing software with this system, but even then the solution will be straightforward. The time I found this anomaly disturbing was when I used the Sol as a remote terminal connected to a large computer over the telephone lines. In this situation it is necessary to transmit a control- H in order to have the large computer understand. This, however, shows up as a displayed character on the screen instead of an actual backspace. Moreover, the character that is used as a backspace in the terminal is blocked in firmware from being transmitted. In short, there is no way of implementing a
satisfactory backspace in this situation. In addition, the firmware allows most (but not all) control characters coming from the large computer to be displayed on the screen. For those who will use the Sol as a remote terminal, these may be regarded as annoying factors; but they can surely be solved in firmware. Processor Technology, are you listening?

So far I have been talking about the basic components that make up many good terminal computers. What makes the Sol particularly noteworthy, however, is the inclusion of a bus extender board that adopts the essential conventions of the S-100 bus. That means that virtually all plug-in modules available for the IMSAI and Altair 8800 computers can be used in the Sol, and this shows the great advantage to the hobbyist (and manufacturer) for adopting some sensible standards. Are the other manufacturers listening?

The bus extender board plugs vertically into the main circuit board, it has plug-in positions with card guides for five horizontally oriented boards and an additional test position on top. This board has good large traces for power distribution and is double sided with plated through holes. Why all that trouble on a simple board like this? It allows for shielding, because little fingers of grounded conductors are placed between all the other bus conductors. I couldn't test them for their actual effect, and one might question their necessity on such a small backplane. But this type of design is also being adopted by others, and it is certainly indicative of fine engineering practice and is a step in the right direction.

I have saved the power supply for the end, because this is where a tendency that was evident throughout the entire machine was evident most clearly, namely the tendency to overdesign. This power supply is gutsy and will never have to be upgraded unless you somehow double or triple the size of that bus extender card.
There are two separate +8 V
supplies, one supplying power only to the main mother board, and the other only to the bus extender board The first of these is filtered by 18,000 ufd., regulated with discrete parts and protected by a crowbar circuit! It is normally called upon to supply about 1.5 A , but I loaded it down to twice this value, and everything looked fine even after an hour. The other +8 V supply is filtered by a capacitor of $54,000 \mathrm{ufd}$., and according to my measurements it can safely supply more than 10 A and still not run very hot. That translates to over 2 A per bus-extender slot, and that is certainly adequate. The + and -16 V lines are hefty enough to handle any reasonable load.

All of these components are put together in an attractive case. The metal is fairly heavy gauge steel throughout, and everything has a very solid feel to it. The only thing I can quibble with is that in order to get at certain components, many others must first be removed. Some additional thought on this score, such as splitting the subassembly that holds the card guides in two, would make disassembly easier.

My overall impression is that the Sol-20 is a well designed machine and that many potential problems have been solved before releasing the product, a practice that should be more widely observed. As it stands, this machine still has a few problems as mentioned above, but they seem to be small ones that can either be solved in firmware or in slight adjustments in packaging.

There are a few other machines that have characteristics similar to those of the Sol-20. but none of the other single-package terminal computers presently on the market uses the 8080 and the S-100 bus. These factors alone should make the Sol- 20 an attractive machine for many. The fact that the cost is relatively modest ($\$ 475$ for the main circuit board only in kit form, $\$ 995$ for the whole machine as a kit and $\$ 1.395$ assembled with the CONSOL module) should serve to add to its popularity

SOL SYSTEM SUGGESTED RETAIL PRICE LIST (September 1, 1977)

I. Sol Systems		Order No.	Price
Complete systems are available from Processor Technology to fulfill the application requirements outlined on the Sol Solution Chart in our catalog. These systems include all necessary connecting cables and manuals.			
A. Sol System lincludes Sol-20/8 with 8192-byte memory and SOLOS module, PT-872 monitor, RQ-413A cassette recorder, and BASIC 5 tape	Assembled/Tested	$\begin{aligned} & 400100-01 \\ & 400100-02 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 2129 \\ & \$ 1649 \\ & \hline \end{aligned}$
B. Sol System Il includes Sol-20/16 with 16,384-byte memory and SOLOS module, PT-872 monitor, RQ-413A cassette recorder, and BASIC 5 tape	Assembled/Tested	$\begin{aligned} & \hline 400200-01 \\ & 400200-02 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \$ 2283 \\ & \mathbf{S 1 8 8 3} \\ & \hline \end{aligned}$
C. Sol System III includes Sol 20/16 with 32,768-byte memory and SOLOS module, Helios II Disk System with DISK BASIC, and PT- 872 monitor	Assembled/Tested Kit	$\begin{aligned} & 400300-01 \\ & 400300-02 \end{aligned}$	$\begin{aligned} & \$ 5450 \\ & \$ 4750 \end{aligned}$
D. Sol-20/8 Terminal Computer with 8KRA 8192-byte Memory Module and SOLOS Personality Module	Assembled/Tested Kit	$\begin{aligned} & 400400-01 \\ & 400400-02 \end{aligned}$	$\begin{aligned} & \$ 1850 \\ & \$ 1350 \end{aligned}$
E. Sol-20/16 Terminal Computer with 16 KRA 16,384-byte Memory Module and SOLOS Personality module	Assembled/Tested Kit	$\begin{aligned} & 400500-01 \\ & 400500-02 \end{aligned}$	$\begin{aligned} & \$ 1975 \\ & \$ 1550 \end{aligned}$
II. Sol Components			
A. Sol-PC Single Board Terminal Computer with SOLOS Personality Module	Assembled/Tested Kit	$\begin{aligned} & \hline 101036-01 \\ & 101036-02 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 745 \\ & \$ 575 \end{aligned}$
B. UGKPC-20 Sol cabinet, 85 key keyboard, fan, power supply and backplane expansion. Upgrades Sol-PC to Sol-20	Kit	101035	\$675
C. Sol-KBD 85 -key solid state Keyboard as used in Sol-20 series units	Assembled/Tested	104000	5230
D. PM 2708 Personality Module for use with 2708 EPROMs (does not include EPROMs)	Assembled/Tested Kit	$\begin{aligned} & 107000-01 \\ & 107000-03 \end{aligned}$	$\begin{aligned} & \mathbf{\$ 4 0} \\ & \mathbf{\$ 3 0} \\ & \hline \end{aligned}$
E. SOLOS Personality Module	Assembled/Tested Kit	$\begin{aligned} & 107000-02 \\ & 107000-04 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 90 \\ & \$ 75 \end{aligned}$
F. 220-Volt Transformer for all Sol-20 series units. Note: All Sol-20 series units and Sol Systems are available for 220 Volt, 50 Hz operation. Contact factory for pricing and delivery information.	Kit	105034	\$50
III. Mass Storage Systems			
Helios II, Model 2 Disk System. Includes dual PerSci 270 floppy disk drive, cabinet, fan, S-100 bus compatible controller, power supply, system diskette with complete PTDOS software	Assembled/Tested Kit	$\begin{aligned} & 300000-01 \\ & 300000-02 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{\$ 2 6 9 5} \\ & \mathbf{\$ 2 3 9 5} \\ & \hline \end{aligned}$
IV. Subsystem B for all S-100 Bus Mainframes other than Sol			
A. Subsystem B70. Includes 4KRA memory, VDM-1 Video Display Module, 3P + S Parallel, Series I/O Module, CUTS Computer Users Tape System cassette interface and GPM General Purpose Memory Module	Assembled/Tested Kit	$\begin{aligned} & 406000-01 \\ & 406000-02 \end{aligned}$	$\begin{aligned} & \mathbf{\$ 8 2 9} \\ & \$ 594 \\ & \hline \end{aligned}$
B. Subsystem B110. Includes 8KRA memory, VDM-1 Video Display Module, 3P + S Parallel, Series I/O Module, CUTS Computer Users Tape System cassette interface and GPM General Purpose Memory Module	Assembled/Tested \qquad	$\begin{array}{r} 406100-01 \\ 406100-02 \\ \hline \end{array}$	$\begin{aligned} & \mathbf{\$ 9 9 8} \\ & \mathbf{\$ 7 3 0} \\ & \hline \end{aligned}$
C. Subsystem B190. Includes 16KRA memory, VDM-1 Video Display Module, 3-P + S Parallel, Series I/O Module, CUTS Computer Users Tape System cassette interface and GPM General Purpose Memory Module	Assembled/Tested	$\begin{aligned} & 406200-01 \\ & 406200-02 \\ & \hline \end{aligned}$	$\begin{array}{r} \$ 1095 \\ \$ 895 \end{array}$

V. S-100 Bus Compatible Modules		Order No.	Price
Memory			
A. GPM General Purpose Memory Module with 1024-byte Read/Write memory and 2048 -byte CUTER program on ROM	Assembled/Tested \qquad	$\begin{aligned} & 210000-01 \\ & 210000-02 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \$ 169 \\ & \$ 129 \\ & \hline \end{aligned}$
B. GPM-Sol. Same as GPM without Read/Write or ROM memory. These memories are included with the Sol.	Assembled/Tested Kit	$\begin{aligned} & 210000-03 \\ & 210000-04 \end{aligned}$	$\begin{array}{r} \$ 119 \\ \$ 89 \end{array}$
C. ALS-8 ROM Resident Assembly Language Operating System with Interpretive Simulator (SIM-1) and Text Editor (TXT-2). For use with GPM or GPM-Sol. If purchased together, price includes assembly and testing. (ALS-8, SIM-1 and TXT-2 programs are copyrighted.)	Assembled/Tested or Kit	900014	\$190
D. 2 KRO Erasable Programmable Read Only Memory Module	Assembled/Tested Kit	$\begin{aligned} & \text { 204000-01 } \\ & 204000-02 \end{aligned}$	$\begin{aligned} & \$ 89 \\ & \$ 65 \end{aligned}$
E. 4KRA 4096-byte Static Read/Write Memory Module	Assembled/Tested Kit	$\begin{aligned} & 201000-01 \\ & 201000-02 \end{aligned}$	$\begin{aligned} & \$ 150 \\ & \$ 125 \end{aligned}$
F. 8KRA 8192-word Static Read/Write Memory Module	Assembled/Tested Kit	$\begin{aligned} & 202000-01 \\ & 202000-02 \end{aligned}$	$\begin{aligned} & \$ 250 \\ & \$ 225 \end{aligned}$
G. 16KRA 16,384-word Dynamic Read/Write Memory Module Semikit-assembled \& inspe	Assembled/Tested ected but not tested	$\begin{aligned} & 203000-01 \\ & 203000-03 \end{aligned}$	$\begin{aligned} & \$ 399 \\ & \$ 369 \end{aligned}$
Interiace Modules			
H. 3P + S Parallel Serial I/O Module	Assembled/Tested Kit	$\begin{aligned} & 209000-01 \\ & 209000-02 \end{aligned}$	$\begin{aligned} & \hline \$ 199 \\ & \$ 149 \end{aligned}$
I. CUTS Computer Users Tape System cassette interface (includes CUTER tape)	Assembled/Tested Kit	$\begin{aligned} & 207000-01 \\ & 207000-02 \end{aligned}$	$\begin{aligned} & \$ 140 \\ & \$ 110 \end{aligned}$
J. VDM-1 Video Display Module	Assembled/Tested Kit	$\begin{aligned} & 208000-01 \\ & 208000-02 \end{aligned}$	$\begin{aligned} & \$ 295 \\ & \$ 199 \end{aligned}$
K. WWB Wirewrap Prototyping Module	Kit	211000-02	\$40
L. EXB Extender Board	Kit	212000-02	\$35
VI. Peripherals			
A. PT-872 TV-Video Monitor by Panasonic		722016	\$199
B. RQ-413A Cassette Recorder by Panasonic		722019	\$85
VII. Software (including manual)	Minimum Memory Required		CUTS cassette
A. BASIC/5	10K	727000	\$14.50
B. 8 K BASIC	12K	727017	\$29.00*
C. New 8080 FOCAL	8K	727024	\$14.50*
D. TREK 80 Video Game	8K	727009	\$14.50
E. GAMEPAC-1 Video Games	4K	727006	\$14.50
F. MATHPACK Video calculator	4K	727020	\$14.50
G. ASSEMBLERS: Software \#1 Resident Assembler Package	8K	727022	\$14.50
H. ALS-8 Resident Assembler, Simulator and Text Editor	12K	727012	\$35.00
I. Software Techriology Music System cassette	8K	727015	\$24.50

Attention

All listed software products require CUTER or SOLOS programs.
All Processor Technology and Software Technology software is distributed on an individual sale basis for personal use. No license to copy, duplicate or sell is granted with this sale. Each software package has been copyrighted by Processor Technology or Software Technology and all rights therein are reserved.
Prices and specifications are subject to change without notice.
*Available soon at your dealer.

Sol-20 Terminal Computers are complete. You don't spend an extra penny for necessary interfaces. Sol computer systems start at $\$ 1350$ in kit form.
We've done the software job. Only Processor Technology offers a fully implemented disk operating system for small computers: PTDOS. Our high level languages include Extended BASIC, FORTRAN* FOCAL, PILOT* and Assembler.
You can expand the Sol to handle business, engineering and research problems. Today's Sol can handle 65.536 bytes of memory and operate with a three megabyte on-line disk memory. S-100 bus compatibility means you can use a big group of standard peripherals.
Sol systems are conservatively rated. They won't quit on you. With over 5,000 in the field. we know the track record for reliable performance is outstanding.
We back Sol with the best documentation in the industry plus a factory support team to give you caring counsel by phone or letter. What's more. on site maintenance and service folks are located in over 50 cities throughout the U.S. and Canada.
So when you are shopping for a small computer. see your Sol dealer last.
Then you can take your Sol with you!
For more information, please address Processor Technology Corporation.
Box G, 7100 Johnson Industrial Drive, Pleasanton, CA 94566. (415) 829-2600.
-available soon
Processor Tichnolys

When you want big system performance from your small computer. turn to Processor Technology's Helios II Disk Memory System. Helios II brings your small computer up to a level fully comparable and frequently superior to many mini-computer systems. Perhaps best of all. you can reach this point for thousands of dollars less than the typical mini-computer installation.

Today. Sol Systems using Helios II and PTDOS Processor Technology Disk Operating System) are on line doing a variety of business. industrial. engineering. educational and scientific jobs.

A school system has replaced their time share terminals with our stand alone computer. A pharmacy system. specially configured for the Sol/Helios II combination, handles the complex and previously error prone task of prescription processing. Business firms use this powerful system for inventory control, invoicing and payroll. A small college stores the student-faculty directory. course requests, accounts receivable and student schedules on their system.

In the West, an advertising agency is using the system for media analysis while an astronomer plans to use the system to program astronomical observations.

A university reports the Sol System with Helios II provides superior performance for computer assisted and computer managed instruction.

Other applications are continuously under development by Sol/Helios II users everywhere.

Powerful software.

PTDOS 1.4 is a proven disk operating system with total file, device and memory management. Since the prototype was developed in 1975, PTDOS has undergone continuous expansion and refinement.

PTDOS increases the all-important throughput of your computer.

With the command interpreter as a convenient interface to the system, the user can type short commands which perform complex tasks. The powerful DO
command provides a facility for editing and executing command procedure files.

Over 40 commands span from simple file management primitives to complex editors. assembler and other data management utilities.

PTDOS 1.4 System Commands

MAJOR SUBSYSTEMS

EDIT Video Display Text Editor
EDT3 Standard Text Editor
ASSM 8080 Assembler
DEBUG 8080 Program Debugging Aid
DO Command Interpreter Macro Facility
DISK MAINTENANCE
DISKCOPY Disk to Disk Copy
RECOVER Reclaim lost space on disk
INFORMATIVE
FILES List Information About Files
FREE". List Remaining Free Space
SYST List Configuration Information
OPEN: List Names of Currently Open Files
FILE MANIPULATION COMMANDS
COPY Move Data Between Files
IMAGE Save Memory Contents
BLDUTIL Build Utility File
EXTRACT Modify or List Image File Structure
KILL Kill a file
RENAME Change the name of a file
RETYPE Change the type of a file REATR Change File Protection Attributes
DATA MANAGEMENT
XREF Assembly Language File Sort and Cross Reference
DUMP \quad Dump a file in Hex or ASCII
PRINT Print ASCII contents of text file
RNUM Renumber an Assembly Language Filo
SAVE Create Archive Copy of Files
GET Load SAVEd files or COPY from a Dh h

FILE PRIMITIVES - LOW LEVEL	
FILE MA.NIPLLATION	
CREATE	Create a new file
OPEN	Open a file
READ	Read a file into memory
WRITE	Write data into a file
CLOSE	Close a file
SPACE	Move File Cursor
RA.VDOM	Make a file randomly accessible
SEEK	Position the cursor of an indexed file
ENDF	End file at current cursor position
CONFIGLRATIONAND CONTROL COMMANDS	
SETIN	Set CI input file
SETOLT	Set CI output file
SET	Set various miscellaneous parameters
EXEC	Begin execution at some address
ZIP	Set Memory
CONFIGR	Change System Configuration
OLT	Change Console Output Drive
LANGLAGES. PROCESSORS AND GAMES	
BASC5	Small BASIC Interpreter
FOCAL	The FOCAL language
TREK 80	A video Star Trek game

Languages.

Several high level languages are available. BASIC/5 and FOCAL come with the system. Low cost options include Extended Disk BASIC. Disk PILOT and a FORTRAN compiler extended to support all PTDOS operations.

PTDOS supports device-independent files.
Device files turn any peripheral. such as a printer or tape drive, into a "file." The device file then performs necessary manipulation of the device, for instance, reading a block of data or rewinding a tape mechanism. In this way the device can be accessed as a PTDOS file.

Easy interface at the assembly language level.
System calls provide an easy interface to PTDOS services from any assembly language program.

FORTRAN available March 1978. PILOT available mid-1978.

Memory management provides complete system management of static or dynamic buffers. Fully protected system memory area helps prevent inadvertent destruction of the system or managed data. For added flexibility, the user can manage his own file buffers as well as instruct the system to protect a specified block of memory.

The system utility call provides a powerful path to virtual memory with simple. fast program and data overlays.

Hardware interrupt speeds system operation and allows fast response to device requests for service.

Check these unique features.

Random indexed files offer direct. rapid positioning to any byte or block in a file, anywhere on the disk(s).

BOOTLOAD. a small bootstrap program. loads PTDOS in one simple command. BOOTLOAD. included with the system on a CUTS cassette. is also available as an optional Sol personality module.

A start-up file lets you run any sequence of commands automatically on a bootstrapped system.

Each individual diskette may be named and dated for easy identification.

A disk password with system lock secures your data.
As requirements change, the user can reconfigure the system.

Two drives...a must for any disk system.

The Helios II dual drive disk system uses inexpensive. widely available floppy disks for high speed data storage and retrieval. Two drives means you can have two floppy disks on line at all times. The Disk Operating System (PTDOS) resides on part of one diskette - the System Disk. A second diskette provides additional user space and also allows fast and easy production of backup copies to protect critical data.

Helios II uses a unique recording technique known as "firm" sectoring. Under optimum conditions each diskette can store 384,000 bytes of information. That's over $3 / 4$ million bytes on line with each Helios dual

new dimension of small

 computer power, the Helios II Floppy Disk Drive and ProcessorTechnology Disk Operating System. Software includes Extended BASIC, Assembler, PILOT, Extended FORTRAN and FOCAL.drive. Firm sectoring also allows faster data access and variable block sizes.

Up to four dual drives (8 diskettes) can be accessed by the system so that over 3.000 .000 bytes of data are on line.

Fast access.

Helios 11 is fast. with a typical access time of 33 thousandths of a second. Large block size allows programs and data to be transferred very quickly. A 4 K block can be read from the disk to RAM computer memory in the proverbial blink of an eye.

Reliable performance.

Helios Il was designed for system reliability using proven technology. No compromises are made nor chances taken with your data. Standard single sided diskettes store data using 77 tracks on each 8 -inch diskette. Such data formatting has been used over the years for consistent. reliable storage. Helios II uses direct memory access (DMA) to asynchronously transfer data to and from memory. Data transfers are made at an effective rate of over 660.000 bytes per second. Data integrity is assured with a standard hardware CRC error test performed on each transfer to or from the diskette. In addition. an optional read-after-write verify mode can be selected to handle crucial data requirements. Three level. triple option error handling and trapping allows up to nine different ways to handle errors on every system call.

Helios II comes complete with dual drive. cabinet. controller. PTDOS System Disk. power supply. case. all necessary cables. and full systems documentation. A 12 K program that tests and reports on every aspect on your disk system is included.

PTDOS Users Group.

HELIUM is an independent organization of HELIOS users. It publishes a newsletter with useful hints. systems support and updated PTDOS information. To join. write to HELIUM. c/o Ian Kettleborough. P.O. Box 9269. College Station. TX 7784 ().

HELIOS II SPECIFICATIONS
 Electrical Power Requirements
 117 Volts. 60 Hz AC
 Controlier 7.25 VDC min
 8 VDC at 1600 ma typical
 Formatter 725 VDC min
 8 VDC at 600 ma typica
 PerSc Model 270 Drive + 5 VDC 1.7 amps nomina - 5 VDC 015 amps nomina +24 VDC 10 amp nominal - seeking
 02 amp nominal - not seeking

Operator Controls and Indicators

Locking power switch with key
Motorized disk eject switches - one for each dr ve
LED indicators Unit Ready Write Seek Power
Physical Dimensions

Height	95 in	24.3 cm
Width	14 in	3556 cm
Depth	21 in	$5.3 . \mathrm{cm}$
Weight	53 lbs	2385 mg
Shipping weight	70 lbs	315 kg

Temperature Requirements

Operational	$5010100^{\circ} \mathrm{F}$	10.103500
Non-operational	$-2010120^{\circ} \mathrm{F}$	-29.049 .0

Head Positioning

Servo-controlled volce coil - 77 tracks

Head Positioning Times

Track to track. including setting time - 10 mser max mum
Track 0 to track 76 . including settling - 100 mse: max mun

Miscellaneous

Cooling - forced air with filter
Direct Coupled DC Spindle Motor - 360 RPN
Head Engage Time - less than 40 milliseconds
Read 'Write Data Transter Rate - 250 kilob ts per seconc
Recording Capacity - Unformatted 31 meqabts perd snette
Actual data storage capacty 384.000 bytes per diskette (maximum)

ProcessorTechnology

Processor Technology Corporation 7100 Johnson Industrial Drive

Pleasanton. CA 94566
(415) 829-2600

See it at your Processor Technology dealer

Your key to

 computer power.If you ever wished to gain the force of a powerful general purpose computer operating with the simplicity and ease of ordinary office equipment. you can.

Now a scant year after the early 1977 introduction of the Sol " computer system. over 7.000 Sol's are on the job.

Their tasks are varied. Users all over the world are analyzing the stock market. tracking prescriptions. keeping the books. doing chemical. mathematical and physical research. controlling industrial processes. handling the payroll and profit and loss statements. correlating market research. analyzing product design and countless other tasks.

In a word. they are a working tool never before available to the average person or small business. They are saving time and earning money for lots of people like yourself. And they are doing all these things for a remarkably low investment!

Sol systems don't go out of date either. They were designed from the ground up to build on as newer memories. more powerful languages and more advanced peripheral equipment come along. As your needs for more computer force grow. no matter what Sol system you start with. you'll own a set-up beyond the dictates of the calendar. You'll know why you bought the best.

Processor Technology customers often tell us their original intent was to use a Sol small computer system at home or as a hobby. Sooner than you might believe. they were using the Sol system in their business. profession or education.

Processor Technology Corporation

So by simply adding a disk memory system. the Helios II, a printer or other peripheral, perhaps putting one of several easy to learn languages to work. our users were solving routine, sometimes very complex. problems with amazing ease and speed. And solving them profitably.

Compare Sol to any other small computer

As the first totally integrated system in the small computer field. Sol has had imitators. None has matched Sol's high quality engineering and all around flexibility. No wonder it's the number one choice.

Notice the keyboard. Letters are positioned for standard touch typing. The key tops are contoured for comfort. When depressed. they respond with a resilient. springy touch. You can use the computer for hours without tiring. For extensive text editing, word processing, order entry. and similar continuous keyboard tasks. the Sol keyboard quality is unmatched.

Inside. the keyboard circuitry is non-contacting (capacitive). There are no contacts to wear out.

A sturdy metal cabinet protects Sol. A 200 pound person can stand on the top of it without damage. The wood sides are solid. hand-finished walnut.

Inside Sol. Processor Technology has taken some special pains. Engineers call the main motherboard "beautiful" - conservatively designed and rugged. No corners were cut.

Processor Technology paid particular attention to the video circuitry. Notice that the cursor block on the video screen (the spot that shows you where you are when entering text) surrounds the character completely leaving it still legible. All the characters on the screen are crisp and legible. They don't wobble or swim as you look at them. As you scroll the text up and down on the screen. the image moves smoothly without strobing or flashing. Theres little eve fatigue from long time viewing.

Few wires are strung around on the main board. Connectors are mounted at the rear to plug in other electronic components. just like a hi-fi amplifier. No modifications are needed to plug in Teletype " machines. cassette recorders. tv monitors. telephone couplers (modems). and ASCII standard terminals (EIA \& current loop). You can hook up a Sol computer system as easily as a home stereo system.

Teletype Corp.

5.100 bus compatibility

Significantly. Sol systems are compatible with other S-f()) bus products. The $\mathrm{S}-100$ bus is a standard connecting configuration used by more than 100 manufacturers of mall computer equipment. Many of these products can be easily plugged inside a Sol system when you need special hardware for voice input. control of electrical appliances elsewhere in the building, analog to diyital conversion. or video graphic capability.

Another important feature unique among microprocessor systems is Sol's flexibility. It can switch in a mument from a stand alone computer to an intelligent turminal. Many people have access to large computers via telephone hookup. You can use the Sol as a computer to develop your program and reduce the data. Then switch to terminal mode to use it as a timeharing terminal with a large computer.

Easy to use. the Sol is ideal for learning. Adults find hours of intellectual challenge and stimulating imolvement. Kids enjoy the Sol. They start with games hut quickly pick up the elements of programming. Sults rugged construction is kidproof so you don't have 1. Worry.

All Sol systems come with excellent. understandable documentation. Schematics and instructions are seared to learning. You don't have to be an electronic ensineer to understand them. Even if you purchase a Sol fully assembled and factory tested. Processor Technology's instruction manuals will help keep your Sol up and running. Sol is easier to service. You'll have less down time and lower maintenance costs.

Factory Guarantee

Sol systems are backed by a factory warranty. Processor Technology guarantees assembled and tested products for one year (parts and labor). Kit products have a three month guarantee on parts. Any authorized Processor Technology dealer can service Sol systems. and many offer maintenance contracts.

Sol's flexible

Change operating software quickly and easily. The operating system is preprogrammed on ROM (Read Only Memory chips located on a small personality module inside. You can change the Sol's "personality" in one minute. The transformation requires no technical skill at all.

There are now two personality modules. solos gears the computer for stand alone operation. It automatically readies the computer for your commands as soon as the Sol is turned on and controls the cassette. keyboard and video operations. SOLOS has terminal mode functions to switch the computer between stand alone and terminal operation.

BOOTLOAD personality module works with our Helios Il Disk Memory System. We've replaced the terminal mode functions with a special loading program for the Disk Operating System. In other respects it is identical to SOLOS.

Additional personality modules are in development.

Sol small computer systems with the add on power of $\$ 40,000$ mini's.

The Sol-20/16 Terminal Computer

The Sol-20 16. our basic computer. features the SOLOS personality module. 16.384 bytes of memory and BASIC $/ 5$ cassette plus a complete 300 page manual. It's available either fully assembled and factory tested or as a kit. A single. low power module carries the 16 K dynamic memory.

BASIC 5 is a small version of the very versatile BASIC language. It is designed for applications requiring primarily mathematical manipulation without extensive processing of text. BASIC 5 is the perfect language for an introduction to computer programming because it's easy to learn and requires only a small amount of memory storage. Hundreds of published programs already written in BASIC work with Processor Technology's BASIC 5.

The 300 page Sol manual carries the most complete set of instructions. theory of operation. software information. drawings and operating information offered by any small computer manufacturer. And after you get it. we send you periodic updates. Many of our users also file their copies of ACCESS. the Sol users journal. in this handsome sturdy 3 ring binder.

You will need to add some device for storage and retrieval of data and programs. A standard cassette recorder will do this. Plug it directly into the back of the Sol. You will also need some means of visually displaying data - a tu monitor. teletype or similar device. These also plug into the back without special adaptors or modifications.

The Sol-20 16 offers the option of using equipment you have or selecting peripherals of your choice. It's an excellent low cost starting system.

Here are a few of the features of the Sol-20/16.

- 8080 A microprocessor. a sophisticated computer-on-a-chip and the "brains" of the Sol.
- 1024 character video circuitry which displays 16 lines of $6+t$ characters on a video monitor or suitably adapted tv.
- a custom designed. comfortable to use 85 -key capacitive (non-contacting) keyboard with cursor keys and arithmetic keypad.
- an audio cassette interface capable of controlling two recorders (one read. one write) at 1200 bits per second. Store and retrieve large amounts of data on low cost. standard cassettes.
- parallel and serial standard interfaces with connectors permit a teletype and many other devices to plug directly into the back of a Sol.
- a complete rugged power supply and quiet cooling fan.
- a handsome case of walnut and metal.
- 16.384 byte dynamic RAM module.
- software on cassette with BASIC 5 language and two sophisticated computer games.
- a back plane capable of accepting five expansion modules.

Sol-20/32 Terminal Computer

Sol-20/32 offers all the features of the Sol-20/16 with twice as much memory. A single low power module carries 32.768 bytes of dynamic random access memory. Four slots remain open in the back plane for hardware additions.

Fully configured Sol Systems.

Presently four fully integrated Sol Systems with all the hardware, peripheral equipment. documentation and software are available. Depending on the complexity of your tasks. one will give you the kind of computer power you need now and still let you add more later.

All offer the best price/performance value on the market today. All integrated systems come with Processor Technology's new Extended BASIC. This new language is one of the fastest and certainly the most complete for the personal small computer on the market today.

Extended BASIC

Extended Cassette BASIC features string and advanced file functions. special screen commands. timed input. complete matrix. logarithmic and trigonometric functions. exponential numbers. 8 digit precision. and advanced mathematical functions including log. natural log. sine. cosine, tangent. arc tangent and square root. Using this BASIC. you can do all of the mathematics needed to solve 5 equations with 5 unknowns in a matter of 4 seconds using just 2 lines of code.

Extended Cassette BASIC handles serial access files. It has provisions for tape rewind. Cursor control gives you some graphic abilities.

Extended Disk BASIC has all the number crunching talents of Extended Cassette BASIC plus almost instant access to data and programs on floppy disks. It has random as well as sequential files and a unique ability to update sequential data in place. It takes advantage of the powerful Processor Technology Disk Operating System and Helios II.

In sum. when you purchase a Sol system. you get real computer versatility. You can do the general ledger. the payroll. or engineering and scientific problems. You can display and print out the results. You can edit text. You can use it for computer aided instruction. You have computer power. not computer-like power.

Sol System I-A

Sol System I-A. offered in assembled form only. includes the Sol-20/16 Terminal Computer with 16.384byte memory and SOLOS module plus PT- 872 video monitor. RQ-413A cassette recorder. Extended Cassette BASIC. cables and the Sol system manual.

The PT-872 is a specially modified 11 " Panasonic black and white TV set. It is switchable from the video display mode to the standard UHF VHF television mode. Fully isolated for safety, this unit provides extremely crisp and stable displays. The cassette recorder is a standard Panasonic unit.

Sol System II-A

Sol System II-A is exactly the same as Sol System I-A except for a larger memory. 32.768 bytes (eight bit words l. The memory is contained on a single dynamic RAM module. using only one slot of the back plane. Sold fully assembled and tested. it includes the Sol-20 32 Terminal Computer with 32 K of memory and SOLOS personality module plus PT-872 video monitor. RQ-413A cassette recorder. Extended Cassette BASIC. cables and Sol System manual.

For serious business, you need a disk.

Cassettes are a convenient low cost way to store programs and data. but it takes time to wind and rewind the tape. For most business uses. the fast retrieval time of a disk is the way to go. With a Helios II Disk Memory System you can bring your Sol System up to a level fully comparable and frequently superior to many mini-computer systems. Helios II is fully supported by the most advanced disk operating system in the small computer field. It is a system under development since 1975 designed to make full use of the up to 1.5 million bytes of memory that are available to the user.

PTDOS offers total file. device and memory management. Add to. delete or edit files. List. copy or combine the files on any disk. Over 40 commands span from simple file management primitives to complex editors. assembler and other data management utilities.

Sol System III

Here's the system that stands up to the minis. It includes the Sol-20 with 49.152 bytes of memory and BOOTLOAD personality module. Helios II Model 2 Disk System with Extended Disk BASIC. PT-872 video monitor. cables and documentation.

Sol System III comes assembled. burned-in and tested. Inclusion of Helios Il brings this system up to a level fully comparable and frequently superior to many mini-computer systems. And, you reach this operational level for thousands of dollars less than typical mini-computer installations. A separate brochure on the Helios II and PTDOS is available on request.

Newest member of the Sol family, Sol System IV
Sol System IV consists of the Sol-20 with 49.152 bytes of memory and BOOTLOAD personality module. Helios II Model 4 Disk System with two dual drives.
Extended Disk BASIC. PT-872 video monitor. cables and Sol System manual.

It comes completely assembled. tested and burned-in. Except for the larger data storage capacity. 1.5 million bytes. it is like Sol System III. Ohrinuly with so much memory available the scope of prohlems and the amount of data that can be manipulated hecome much greater. Suitable for larger business applications.

Software.

FORTRAN

Languages on both cassette and disk include BASIC/5. Extended BASIC. FOCAL. ${ }^{\text {K }}$ FORTRAN* and PILOT*: ALS-8 is an "assembler" for program development which includes text editing and 8080 simulation. it is available either on cassette or on preprogrammed ROM (Read Only Memory) chips which mount on the Sol General Purpose Memory module. A variety of games and other special programs are also available.

Using one of these languages. you can program your Sol to perform a wide variety of tasks. Thousands of special programs have already been written in these languages. You will find many of them in readily available books and periodicals.

Processor Technology has devoted more effort to the development of software than any other small computer manufacturer. We are the first small computer company to offer a fully implemented disk operating system: PTDOS with over 40 major commands. several languages and numerous utilities. New programs are in development.

FOCAL

FOCAL is a math language originally written for the PDP-8 mini-computer. Many thousands of FOCAL programs exist and now can run in Sol. 8080 FOCAL includes "operator precedence" and all other standard FOCAL conventions. FOCAL is available on CUTS SOLOS compatible cassette. It is also included on the PTDOS system disk that comes with Sol Systems III and IV. DEC

FORTRAN is a high level language which includes the following functions:

- Explicit run time error comments during compilation and at run time
- Eight significant digits of precision
- String manipulation
- Cursor plot function
- Hexadecimal constants
- Direct in-line 8080 assembly language mnemonics accepted by the compiler.
Processor Technology FORTRAN is identical to FORTRANIV except for the extensions and lack of COMMON and Double Precision statements. It is available on CUTS cassette or disk. The disk version interfaces well with PTDOS.

PILOT

Processor Technology PILOT, available in mid 1978. is offered on both disk and cassette.

PILOT is a string-oriented interactive language well suited to the applications of educators. educational institutions and psychologists. It is excellent for testing and computer aided instruction.

Custom tailored for Processor Technology by the creator Dr. John Starkweather of the University of California. PILOT runs on the Sol using the sOlOS I O with direct screen cursor positioning. program and data files.

And for fun

8080 CHESS* Here's a wonderful way to improve your chess skills. Operating at a healthy level 5 , the 8080 chess program is the finest available for microprocessor computers. Under development for less than a year. the program has already proved its mettle in competition against the truly big computers.

Offered in cassette form. and accompanied by a complete instruction manual, it gives education and delight to both the novice and the expert player.

TREK 80. Based on the NBC television series STARTREK. this machine language program uses 8 K of memory for real time war with the Klingons. No holds barred. they're out to get you from each of 100 quadrants. You can warp through hyperspace. fire phasers. photon torpedos, or experimental rays. If you just can't go on. self-destruct.

GAMEPAC 1. Show off your Sol system with this line up of video games.

MATH PACK. Processor Technology floating Math Pack is a self contained five function calculator designed to run on any system using the 8080 code. The following functions are offered: addition. subtraction. multiplication. division and square root.

All Processor Technology software is distributed on an individual sale basis for personal use. No license to copy. duplicate or sell is granted with this sale. Each software package has been copyrighted.
*available soon.

See your Sol dealer for a demonstration.

Sol stores are located conveniently throughout the l'.S. and Canada. Your Sol dealer has been carefully uelected on the basis of his computer knowledge and ability to meet your needs. Not every store carries the Sol line. The dealers who do are the best in the world.

Sol Specifications

- Keyboard: 85 key upper lower case with separate numeric keypad. Upper-case shift. shift-loch. cursor control and repeat keys provided. System reset performed by simultaneous depression of control keys. Indicator lights (LED) for local. upper case and shift.
- Character set: 96 printable ASCII upper and lower case characters plus 32 optionally displayable control characters.
- Cursor: Switch-selectable blinking. Block video inversion. Program controlled positioning standard. Cursors may exist at any or all character locations.
- CPU: 8080A. Uses same machine language as other 8080 systems. 2 MHz clock cycle time. 78 instructions.
- Cassette interface: 120 character per second CLTS format or 30 character per second Kansas City format. selected by software. Uses audio cassette function of microphone start-stop switches. AGC for level insensitivity. Phase-locked data recovery tracks with speed variations. Software performs CRC data integrity check each 256 characters.
- Serial interface: RS-232 and 20 mA current loop. 75 to 9600 baud. asynchronous. 25 pin female
"D-type" connector on card.
- Parallel interface: Eight data bits for input and output: output bus is tristate for hidirectional interfaces: levels are standard IT1. 25 pin male "D-type" connector on card.
- External memory: Expandable to 65.53 n bytes total ROM. PROM. and RAM. Uses S-100 standard modules.
- Video signal output: 1.0 to 2.5 volts peah-to-peah. Nominal bandwidth is 7 MHz .
- Power requirements: 117 volts AC (0) Hertz. 250 Watts. 220 Volt 50 Hertz option available.

Sol SMALL COMPUTER SYSTEMS

	Sol-20/16	Sol-20/32	Sol System I-A	Sol System II-A	Sol System III	Sol System IV
Mainframe	Sol-20	Sol-20	Sol-20	Sol-20	Sol-20	Sol-20
Personality Module (Operating System)	SOLOS	SOLOS	SOLOS	SOLOS	BOOTLOAD \& PTDOS	BOOTLOAD \& PTDOS
Random Access Memory (RAM) (8-bit words)	16 K bytes	32 K bytes	16 K bytes	32 K bytes	48 K bytes	48 k bytes
Language Included	BASIC/5	BASIC/5	Extended Cassette BASIC	Extended Cassette BASIC	Extended Disk BASIC FOCAL BASIC 5	Ex:ended Disk BASIC FOCAL BASIC 5
Video Monitor	-	-	PT-872	PT-872	PT-872	PT-872
Cassette Recorder	-	-	RQ-413A	RQ-413A	-	-
Disk Memory System	-	-	-	-	Helios 11 Model 2	$\begin{aligned} & \text { Helios } 11 \\ & \text { Model } 4 \end{aligned}$
Available Disk Memory (8-bit words)	-	-	-	-	750 K bytes	1500 K bytes
Number of Disks On-line	-	-	-	-	2	4

Proces
 Processor Technology Corporation

710)() Johnson Industrial Drive

Pleasanton, CA 94566

Sol Systems: Why they are first choice

Teachers meet Sol in San Diego

Elementary and high school teachers are generally familiar with small computers but do not yet realize their potential as teaching aids.

Our marketing staff had the opportunity to learn more about this virtually untapped market at the National Council of Teachers of Mathematics annual convention in San Diego on April 13, 14 and 15. Processor Technology was the only small computer manufacturer represented.

More than 7000 teachers and administrators were on hand to look over what was new. The teachers were especially enthused by our demonstration of a computer-aided instruction program written in PILOT.

> PILOT USEFUL
> AND EASY TO PRCGRAM

Brett Bullington, dealer sales rep, commented, "PILOT is very useful for teachers because it is text- and string-oriented, yet versatile and easy to program. You don't have to be a programmer to use this language effectively."

Based on teachers' questions and responses, Ralph Palsson, also of our marketing staff,

Sit back, relax...let your phone visit the typesetter for you............story page 4

You want it when?!......page 2
TV ads work for Maryland
dealer.......................page 3
Tips for troubleshooting the l6KRA.................page 5
found that most instructors were interested in using small computers as aids in teaching mathematics and science. There was also interest in teaching programming to junior and senior high school students.

Both Ralph and Brett distributed dealer lists and referred many teachers to local Processor Technology dealers.
"It's usually inexpensive (around $\$ 60$) for a dealer to rent a demonstration booth at a regional educators' conference. The local market exposure is great," says Ralph. "Once you get your name on the mailing lists of local school districts and community colleges, you will receive information about upcoming conventions and trade shows. You can then make your reservations early.

You want it when?!

NEW PRODUCT UPDATES

Item

HARDWARE

ParaSol Debugger week of April 24 shipment has begun
HyType I
HyType II
week of May 26
week of May 8
within the next 30 days
8080 FOCAL

SOFTWARE

Begin Shipping
week

Spare Parts Kit ($\$ 900050$). These kits are in stock and available for immediate shipment.

The kit contains a sampling of the various components, particularly integrated circuits, used in our product line. Dealer price is $\$ 400$.

April FORTUNE, BYTE picture Sol

Both Fortune and Byte magazines picture the Sol's versatile personality in their April issues.
"Putting the Microcomputer to Work"
Whodunnit
Editor..........Dottie Wanat
Graphics........... Lois Esser Ray Oleson
General Input......Rick Meyer Chuck Rosas Elizabeth Fairchild Brett Bullington Loren Willey Ralph Palsson
(Fortune, April 24, 1978, page
54) features the Sol in use by "Big Brother Biasiotto" at the Franciscan Friars Provincial Headquarters in New York City.

On page 126 of the April ' 78 issue of Byte, the Sol is pictured enjoying life in a Victorian parlor. The accompanying article, "User's Report: The Sol-20", records the author's favorable impressions of the Sol.

TV advertising pays off for Maryland dealer

by Elizabeth Fairchild

"Dollar for dollar, television advertising has paid off for our store more than any other media," says Dave Gardner, partner and manager of COMPUTERS, ETC... in Towson, Maryland.

Undaunted by the high cost of video production and TV time, Dave experimented with producing his own ads. He kept costs down by writing the copy himself and selecting an inexpensive though effective format. Total production cost for two 30 -second spots was only $\$ 230$.

In each ad, a written message "crawls" across the screen one letter at a time at an average reader's pace. A voice in the background describes current sale items and special services offered by COMPUTERS, ETC... The description frequently ties in with the store's current newspaper ads. Sometimes business applications are emphasized, sometimes hobby uses. This format appeals to potential computer buyers without appearing obviously "low-budget."

The spots have been running on a Washington D.C. independent station in bursts Thursday through Sunday, one week per month. Dave spends approximately $\$ 1400$ per weekend. He selects programs which appeal to his target audience: men ages 18-45 with medium incomes. To determine which shows are appropriate, he studies the rating guide provided by the station. So far he has used sports specials, a program about the movie GREASE, the Odd Couple, Perry Mason, and late movies.

The response has been so good, Dave is planning to expand to a UHF station which broadcasts to both Washington and Baltimore. (COMPUTERS, ETC... has a second store in the Baltimore area.)

Summing up his experience with media so far, Dave says, "I would rank TV \#1, newspapers \#2, and radio a poor third. Radio has only worked for us at Christmas time to advertise video games."

Low-hassle warranty cards comingsoon

Beginning soon new warranty registration cards will accompany all hardware manuals. These cards are stamped and self-addressed--no envelopes, postage, glue, staples or tape is required. The customer can simply fill it, fold it, seal it, and send it to Processor Technology.

We require a separate card for each product purchased. For example, if a customer purchases a Sol System III, he should send us warranty registration cards for the Sol, the Helios, and each 16KRA board.

Please pass this information along to your customers.

SEE YOU AT NCC

IN JUNE.

How we typeset the new 16KRA and FOCAL manuals with a little help from Sol

by Rick Meyer

A Sol System III, assisted by special electronic word processing and typesetting equipment produced the new 16KRA and FOCAL manuals which you will receive soon.

This small computer application allows a small staff in our publications department to produce more and better quality work. The new manuals are easier to read, more compact, and more professional in appearance. I'm quite excited by the results and believe you will find the procedure of interest.

It begins when one of our technical writers enters his or her original draft into a Sol System III using a special word processing editor. The new Sol-HyType Interface prints the intermediate drafts on a HyType Printer and the manuals are stored on Helios floppy disks which allow
for rapid revisions and additional drafts.

When the text for a manual is complete, we can transmit it out the serial port of the Sol through a 300 baud acoustic-coupled modem via telephone to a computerized photo-typesetting firm in San Francisco forty miles away. By inserting additional commands in the file, we give detailed instructions for type face and point size, pagination and construction of tables.

The typesetter sends the edited file through special software which drives the photo-typesetting machine and produces the cameraready pages. In just a few days the copy is mailed to us ready for printing.

If you have any questions about the system, or would like further details, please feel free to contact me in the Technical Publications Department.

When a l6KRA has a serious headache and you want a systematic treatment to give it fast, fast relief (before you get a headache), try this approach:

Check voltages

1.

- We recommend using a dual trace oscilloscope capable of triggering at . 2 microseconds. Instructions are given below for a single trace scope also.

2. set the scope at an amplitude of 5 volts per division and check the 7 pin J2 connector. (J2 is located on the bottom lefthand corner of the board.) Starting from P2-1, you should read approximately $+16 v$, $-16 v$ (unregulated) and $+8 v$ on $P 2$ pins 1,2 , and 3 respectively.
3. If no voltage is present, there is probably an open connection on J2. You can test this by checking the incoming voltages
on P2-5, 6 and 7, which should read $+8 v,-16 v$ and $+16 v$ respectively. If you get no voltage here, see page 7.3 of the 16 KRA manual for further instructions.
4. Next, check the on-board voltages. Select any RAM chip and measure the voltages at pins 1, 8, 9 and 16. You should read $-5 v,+12 v,+5 v$ and ground respectively. An extra hot heatsink indicates a short.

5 monitor is grossly distorted with large dark areas across the screen, +12 v is shorted to ground. Frequently such a short is caused by (continued on page 6)

Troubleshooting tips...

(continued from page 5) the socket pins of U29, 30 and 31 slicing into the insulation of the Rev J jumper and shorting either $+12 v$ or $+5 v$ to ground. Simply bend this insulation away from the
pin. Please DO NOT use a soldering iron because this voids the warranty. If you still cannot locate the short, send the board back to the factory for repair.

Check delay lines

1. The delay line in socket U71 is vital to the board's operation. A failure (whether hard or intermitent) is often due to the socket itself. Often a simple dump command will clue you into the problem. Type in the command "DU Ø EF <cr>." If a dump does not occur, the delay line is a likely source of trouble.
2. To troubleshoot U7l, temporarily remove the D to $D N$ jumper in area D. The board is now in an undefined state; this condition is sufficient for testing the delay line. Another approach is to put the board into a wait state by grounding U68-11. In the wait state, pin 72 of the S-l00 bus should be at ground potential.
3. The delay line determines the pulse widths of MC and RC. If you are using a single trace
scope, check the signal at U61-8. Whenever it goes high or low, the delay line should follow it. A floating signal (+2 volts) at U57-5, 2, 4 or 1 indicates a bad delay line. The pulse out of the delay line should be a crisp 350 nsec long. Any variation indicates a defective delay line.
4.

- With a dual trace scope, set the sweep to 100 nsec per division. U6l-8 should have a stable pulse of 300 to 350 nsec . Due to the output of NAND gate U57-6, there will be a 100 nsec delay relationship between U61-8 and U57-5.

Trigger on U6l-8 to observe the timing relationships. The result should be:
a. a 50 nsec delay between U57-5 and U57-2.
b. a 100 nsec delay between U57-2 and U57-4.
c. a 100 nsec delay between U57-4 and U57-1 with a pulse width of 300 to 350 nsec .

More tips later

Another set of problems can occur on the address lines. I'll discuss these in a future article. 'Til then, take two aspirin and get plenty of rest.
--Chuck Rosas

Page 6, Vol. 2 No. 3

Build an all-in-one home computer

Arithmetic keypad (far right) on Sol 20 microcomputer simplifies entry of long data lists. For cleer readouts, TV atop computer is modified to accept video signals.

Plug-in module carries the system monitor, a microcircuit with thousands of permanently stored instructions that regulate basic operations of the microcomputer.

Memory board slipped into Sol 20's five-slot backplane stores 16,384 bytes (16 K of computer words). A quiet fan cools the power supply (left) and other circuit boards

By JOHN FREE

Home-computer kits can be a hassle if you discover that several "optional" plug-in boards and accessories are needed to make your computer perform adequately. I built Processor Technology Corp.'s (PTC) Sol 20 Terminal Computer because video, memory, computing, input, and output circuits are all included. PTC (Pleasanton, Calif.) markets its computer separately or in complete systems: computer, 11inch TV modified to accept nonRF video signals, plus a cassette recorder for loading and storing programs.

The Sol 20 is called a terminal computer because it has a built-in keyboard and functions that could enable you to communicate with other computers. PTC's computer uses the popular 8080 microprocessor, which means there are many programs around that you can use. It also accepts S-100 boards [PS, Nov. '77] that can play music, talk, listen, and do other amazing
things. The computer has a trim, low silhouette, however, and room for only five boards.
I spent about 58 hours putting a Sol 20 together, and made only one blunder: A bridge rectifier installed backwards in the power supply shorted several components. Lesson learned: Since the manual has few step-by-step drawings, ex-tra-careful reading is a must.
The computer displays 16 lines of 64 black characters, or white readouts on a black background. Compared to displays I've seen from some microcomputers, the system's Panasonic TV gives an exceptionally clear readout. Data for upper- and lower-case characters are stored in permanent memory.

The Basic 5 computer-language cassette included in the kit can run many programs listed in magazines and other sources. Basic 5 works with the 16 K memory board included with the $\$ 1850$ Sol 20-16 kit. A "brainer" $\$ 45$ extended-Basic cassette requires either 15 K or 12 K of
memory, depending on whether you load matrix capability or not. With extended Basic and more memory you can tackle virtually all Basic programs. PTC's $\$ 2495$ System I-A (Sol 20, cassette recorder, TV extended Basic, 16 K memory) is now sold only in assembled form.

Master circuit board for Sol 20 kit covers over half the chassis. Keyboard section and 100 -pin memory boards are assembled and tested at the factory.

ProcessorTechnology

Sol ${ }^{\circledR}$ SYSTEM SUGGESTED U.S. RETAIL PRICE LIST (July 1,1978)

Sol SYSTEMS		Order No. Price (\$US)	
1. Sol-20/16 Terminal Computer with SOLOS personality module and 17,408 bytes of memory, includes BASIC/5 cassette and Sol System manual	Factory Assembled/Tested Sol Kit/16KRA A \& T	$\begin{aligned} & 400500 \\ & 400502 \end{aligned}$	$\begin{aligned} & \$ 2095 \\ & \$ 1850 \end{aligned}$
2. Sol20/32 Terminal Computer with SOLOS personality module and 33,792 bytes of memory, includes BASIC/5 cassette and Sol System manual	Factory Assembled/Tested Sol Kit/32KRA A \& T	$\begin{aligned} & 400600 \\ & 400601 \end{aligned}$	$\begin{aligned} & \$ 2395 \\ & \$ 2150 \end{aligned}$
3. Sol System I-A includes Sol-20/16 with 17,408 byte memory and SOLOS module, PT- 872 video monitor, RQ-413A cassette recorder, Extended Cassette BASIC, cables and Sol System manual	Factory Assembled/Tested	400700	\$2495
4. Sol System II-A includes Sol-20/32 with 33,792 byte memory and SOLOS module, PT-872 video monitor, RQ-413A cassette recorder, Extended Cassette BASIC, cables and Sol System manual	Factory Assembled/Tested	400800	\$2795
5. Sol System III includes Sol-20 with 50,176 bytes of memory and BOOTLOAD module, Helios II Model 2 Disk System (stores 769,000 bytes) with Extended Disk BASIC, PT- 872 video monitor, cables and Sol System manual	Factory Assembled/Tested	400300	\$5995
6. Sol System IV includes Sol -20 with 50,176 bytes of memory and BOOTLOAD personality module, Helios II Model 4 Disk System (two dual drives store 1.5 million bytes) with Extended Disk BASIC, PT- 872 video monitor, cables and Sol System manual Note: All Sol-20 series units and Sol Systems are available for 220 Volt, 50 Hz opera Contact factory for pricing and delivery information.	Factory Assembled/Tested tion.	400340	\$7995
Sol COMPONENTS			
1. Sol-PC Single Board Computer with SOLOS personality module	Factory Assembled/Tested Kit	$\begin{aligned} & 101036.01 \\ & 101036.02 \end{aligned}$	$\begin{aligned} & \$ 745 \\ & \$ 575 \end{aligned}$
2. BOOTLOAD Personality Module with 2048 byte PROM stored program loads PTDOS directly into Sol main memory. (BOOTLOAD is included with Sol System III or IV.)	Factory Assembled/Tested	107015	\$100
3. Sol-Hytype I* Printer Interface includes assembled and tested interface board, all cables and mounting hardware. Plugs directly from any Diablo* Series 1200 printer into Sol Paraliel Data Interface connector. No modifications to Sol are required. Driving software included.	Installation Package	900023	\$150
4. Sol-HyType II* Printer Interface like Sol-Hy Type I above for any Diablo Series 1300 printer. Driving software included.	Installation Package	900024	\$150
MASS STORAGE SYSTEMS			
1. Helios II, Model 2 Disk System includes dual PerSci 270 floppy disk drive, cabinet, fan, S-100 bus compatible controller, power supply, and system diskette with complete PTDOS software and documentation. (Stores 769,000 bytes.)			
2. Helios II, Model 4 Disk System includes two dual PerSci 270 floppy disk drives, cabinet, fan, S-100 bus compatible controller, power supply, and system diskette w complete PTDOS software and documentation. (Stores over 1.5 million bytes.)	th Factory Assembled/Tested	304000	\$4995
S-100 BUS SUBSYSTEMS			
1. Subsystem B110 incluides 8 KRA memory, VDM-1 Video Display Module, 3P + S Parallel/Serial I/O Module, CUTS Computer Users Tape System cassette interface and GPM General Purpose Memory and Extended Cassette BASIC	Factory Assembled/Tested Kit	$\begin{aligned} & 406100 \\ & 406101 \end{aligned}$	$\begin{array}{r} \$ 1095 \\ \$ 799 \end{array}$
2. Subsystem B190 includes 16KRA memory, VDM-1 Video Display Module, 3P + S Parallel/Serial I/O Module, CUTS Computer Users Tape System cassette interface and GPM General Purpose Memory and Extended Cassette BASIC	Factory Assembled/Tested Kit (16KRA A \& T)	$\begin{aligned} & 406200 \\ & 406201 \end{aligned}$	$\begin{array}{r} \$ 1195 \\ \$ 995 \\ \hline \end{array}$
3. Subsystem B350 includes 32KRA memory, VDM-1 Video Display Module, 3P + S Paraliel/Serial I/O Module, CUTS Computer Users Tape System cassette interface and GPM General Purpose Memory and Extended Cassette BASIC	Factory Assembled/Tested Kit (32KRA A \& T)	$\begin{aligned} & 406300 \\ & 406301 \end{aligned}$	$\begin{aligned} & \$ 1495 \\ & \$ 1295 \end{aligned}$

[^0]
ProcessorTechnology

S-100 BUS COMPATIBLE MODULES (MEMORY)		Order No.	Price (\$US)
1. GPM General Purpose Memory Module with 2048 byte CUTER masked ROM, space for 8192 bytes of 2708 type EPROM or ROM, and 1024 bytes RAM.	Factory Assembled/Tested Kit	$\begin{aligned} & 210000-01 \\ & 210000-02 \end{aligned}$	$\begin{aligned} & \hline \$ 189 \\ & \$ 149 \end{aligned}$
2. GPM-Sol same as GPM without RAM or CUTER ROM. Includes space for 10,240 bytes of 2708 type EPROM.	Factory Assembled/Tested Kit	$\begin{aligned} & 210000 \cdot 03 \\ & 210000-04 \end{aligned}$	$\begin{gathered} \$ 129 \\ \$ 99 \end{gathered}$
3. ALS-8 ROM Resident Assembly Language Operating System with Interpretive Simulator (SIM-1) and Text Editor (TXT-2). For use with GPM or GPM-Sol. If purchased together, price includes assembly and testing. (ALS-8, SIM-1 and TXT-2 programs are copyrighted.)	Factory Assembled/Tested or Kit	900014	\$190
4. 2KRO Erasable PROM S-100 bus Module with capacity for up to 2048 bytes of EPROM-stored programs. (Does not include EPROM's.)	Factory Assembled/Tested Kit	$\begin{aligned} & 204000-01 \\ & 204000-02 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{\$ 8 9} \\ & \$ 65 \\ & \hline \end{aligned}$
5. 4KRA Memory Module with 4096 words of Low Power Static RAM	Factory Assembled/Tested Kit	$\begin{aligned} & 201000 \cdot 01 \\ & 201000-02 \end{aligned}$	$\begin{aligned} & \$ 150 \\ & \$ 125 \end{aligned}$
6. 8KRA Memory Module with 8192 bytes of Low Power Static RAM	Factory Assembled/Tested Kit	$\begin{aligned} & 202000-01 \\ & 202000 \cdot 02 \end{aligned}$	$\begin{aligned} & \$ 250 \\ & \$ 225 \end{aligned}$
7. 16KRA Memory Module with 16,384 bytes of Dynamic RAM	Factory Assembled/Tested	203000.01	\$429
8. 32KRA Memory Module with 32,768 bytes of Dynamic RAM	Factory Assembled/Tested	203100	\$750
S-100 BUS COMPATIBLE MODULES (INTERFACE)			
1. $3 \mathrm{P}+\mathrm{S}$ Parallel/Serial I/O Module features two 8 -bit parallel I/O ports plus a serial port with RS-232C and 20 mA current loop I/O, 75 to 9500 baud.	Factory Assembled/Tested Kit	$\begin{aligned} & 209000-01 \\ & 209000-02 \end{aligned}$	$\begin{aligned} & \mathbf{\$ 1 9 9} \\ & \mathbf{\$ 1 4 9} \end{aligned}$
2. CUTS Computer Users Tape System audio cassette interface (includes CUTER tape) operates at 300 or 1200 baud. Panasonic RQ-413A cassette recorder recommended.	Factory Assembled/Tested Kit	$\begin{aligned} & 207000-01 \\ & 207000-02 \end{aligned}$	$\begin{aligned} & \$ 189 \\ & \$ 149 \end{aligned}$
3. VDM-1 Video Display Module offers EIA video output with either 625 or 525 vertical line resolution. 16 lines X 64 characters generated in upper and lower case font. High speed module has 1024 bytes of RAM, multiple programmable cursor control, selectable blinking and scrolling up to 2000 lines per minute.	Factory Assembled/Tested Kit	$\begin{aligned} & 208000-01 \\ & 208000-02 \end{aligned}$	$\begin{aligned} & \$ 295 \\ & \$ 199 \end{aligned}$
4. WWB Wirewrap Prototyping Module	Kit	211000.02	\$40
5. EXB Extender Board	Kit	212000.02	\$35
SOFTWARE (INCLUDING MANUAL)	Minimum Memory Required		
1. Extended Cassette BASIC	16K	727017	\$45.00
2. BASIC/5 cassette	10K	727000	\$19.50
3. New 8080 FOCAL* cassette	10K	727024	\$19.50
4. TREK 80 Video Game cassette	8K	727009	\$19.50
5. GAMEPAC 1 Video Games cassette	4K	727006	\$19.50
6. MATHPACK Video calculator cassette	4K	727020	\$19.50
7. Software ${ }_{1}$ Resident Assembler Package cassette	6K	727022	\$19.50
8. ALS-8 Resident Assembler, Simulator and Text Editor cassette	12K	727012	\$45.00
9. Extended Disk BASIC	32K	727036	\$50.00
10. PTDOS 1.4 System Disk (replacement)	32K	727030	\$50.00
11. Extended Disk FORTRAN	32K	727100	\$50.00
12. Cassette PILOT	16K	727110	\$24.50
13. EDIT, 8080 Cassette Editor	8K	727140	\$19.50

*Registered trademark of Digital Equipment Corporation.

Attention

A SOLOS or CUTER monitor program is necessary to load and run cassette software products.
All Processor Technology software is distributed through authorized dealers or on an individual sale basis for personal use. Each software package has been copyrighted by Processor Technology and all rights therein are reserved. No license to copy or duplicate is granted with distribution or subsequent resale.
Prices and specifications are subject to change without notice. Prices are in U.S. dollars, apply in U.S.A. only and may be slightly higher elsewhere.

THEERSOHELCOMPUTER Retaller

Vol. 2 No. 6 Published by Processor Technology Corporation July 18, 1978 7100 Johnson Industrial Drive, Pleasanton, CA 94566

New extended BASIC option

A recent letter to all Processor Technology dealers announced the new family of BASIC's. Included is an option which converts any Extended BASIC disk (currently 8-digit precision) to 6, 10,12 , 14 or 16 digits of precision. This option is available to all authorized Processor Technology dealers for an initial flat fee of $\$ 350$.

Dealers can customize the level of precision at the time of sale or retroactively for Sol users who would now like the advantages of greater precision, particularly for accounting applications.

Programs written in the original
New software to expandand protect YOURprograms.............story page 1
In this issue...
You want it when?! 2
Editorial--Avoid
unnecessary charges........page 2
Upcoming tech training seminars emphsize day-to- day maintenance \& standardized repair procedures.......... page 4
Your free copy of revisedSOLOS/CUTER Manual.........page 3
Memory board task forcedevelops field qualityassurance programpage 3

Business BASIC protects YOUR valuable software

Also announced was the new Processor Technology Level I Business BASIC for software developers. For a flat fee of $\$ 2,000$ you get a unique version which includes both development and runtime programs. Your BASIC programs will run but cannot be listed, thereby insuring you of privacy and added security.

Your version of BASIC is unique and another developer cannot unscramble your programs with his version of Business BASIC. With this approach you get the major
advantage of both interpreters and compilers, i.e. easy development and debugging plus runtime security.

Optional precision is included with Level I Business BASIC.

By paying this low, one-time-only fee you will never again have to pay royalities when using the programs.

Both Optional Precision and Level I Business BASIC will be available for delivery soon.

Memory board Task Force

at work

We've had a group of our technical staff from engineering, production, and quality control working since May on the top-priority project of identifying all areas of difficulty in the 16 KRA memory board and to insure that all such difficulties are eliminated.

According to the latest reports they are more than 90% there now. When the work is completed all hard failures and all timing discrepancies will be eliminated as well as most intermittent failures.

The Task Force has also developed a new complete test and verification procedure for use in the factory and field. The new Field

Quality Assurance Program will guarantee 100% performance if followed carefully by your technicians. Included will be specs for test fixtures and equipment, comprehensive test and diagnostic software, and a fixed test procedure. We will also be covering these procedures in depth at our Technical Training seminars in August.

New SOLOS/CUTER Manual benefits all Sol users

A greatly expanded second edition of the SOLOS/CUTER Manual is now being shipped with all Sols. Included with this newsletter, free of charge, is your reference copy.

After looking it over I'm sure you'll agree with us that all Sol users, old and new, will benefit from the useful additional information contained in this new edition. Therefore, we encourage you to notify your customers of the availability of the new manual.

These manuals are available for immediate shipment at the normal dealer discount of 40%. The suggested retail price is $\$ 5.00$.

The new issue of Access will also
carry an article on the new edition. Manuals will be available for enduser purchase directly from the factory for $\$ 5.00$. We will, however, make it clear that these manuals are also available through the local dealers.

KEY CHANGES IN THE MANUAL

1. All command descriptions are expanded and clarified.
2. Procedures for the use of the cassette recorder controls are now integrated with the command procedures.
(Continued on page 4)

Tech training seminars to introduce standardized repair procedures

"By popular demand the upcoming seminars have been designed to cater to practical applications with an emphasis on day-to-day maintenance and troubleshooting," says the coordinator, Aram Attarian II, formerly lead technician in Warranty Repair and Editor of Access.

Our main goal is to introduce to you a list of factory authorized repair procedures. These procedures will be identical to those used in-house. We are planning to share a coveted list of procedures and short-cuts which have been accumulated by our techs over the years. For the first time we will have a common set of terms and definitions from which to communicate.

You will also have hands-on experience by actually doing debugging, as well as a chance to work with the Helios and become more familiar with PTDOS.

You'll have a chance to meet and chat with your counterparts around the country. There is an hour set aside at the end of each day's session for an interchange of ideas and general discussion. Plus a reception is planned for the evening prior to the start of the seminar.

We are limited to around 30 participants at each seminar and registration must be made in advance. So be sure to set aside these days:

PLEASANTON, CA. AUGUST 7, $8 \& 9 \mathrm{th}$ PHILADELPHIA, AUGUST 28, 29 \& PENN. 30th

Just fill out the registration form and return it to us as soon
as possible in order to reserve your place. Then bring your manuals, questions and ideas and join us for this worthwhile experience.

Remember, whether you live on the East Coast, West Coast, or somewhere in between, there is a Tech Training Seminar just waiting for you. Don't miss it!

New SOLOS CUTER Manual

(Continued from page 3)
3. The use of typesetting allows for easier reading. Quicker reference also is possible because of a special "monospace" typeface which is used to denote all dialogue with SOLOS.

KEY ADDITIONS TO THE MANUAL

Several important new sections have been added:

1. Section 1.6. Deals with entering commands. Describes various functions in SOLOS and how they may be edited and used.
2. Section 5, System Interfacing. Instructs the user on how to call SOLOS sub-routines from other programs.
3. Appendix I. Gives general tips on using cassette recorders for data storage.
4. Appendix II. Contains a complete chart of ASCII Codes.

You want it when?!

NEW PRODUCT UPDATES

Item
 SOFTWARE

Software \#l,
Resident 8080 Assembler
Extended Disk FORTRAN
Cassette PILOT
EDIT,
Advanced 8080 Editor
ASS,
Advanced 8080 Assembler
Math Pack Video Calculator
8080 Chess Cassette
Game Pac II
Debug,
Advanced 8080 Debugger

Begin Shipping
shipment has begun shipment has begun shipment has begun shipment has begun week of July 31 week of July 31 week of July 31 week of August 14 week of September 4

Change

on schedule on schedule on schedule on schedule

Avoid unnecessary charges!
by Dottie Wanat
I'm sure you've all received the recent letter regarding the implementation of a 15 \% restocking

Whodunnit

Editor............ Dottie Wanat
Graphics............. Lois Esser Ray Oleson
General Input.....Loren Willey Rick Meyer
Brett Bullington
Aram Attarian II Elizabeth Fairchild

Copyright (C) 1978,
by Processor Technology Corporation.
All rights reserved.
charge for refused merchandise. I'm also pretty sure you're not jumping up and down! So, just a brief word in our defense. (Please don't stop reading).

First of all, rememeber that this charge is only made when a shipment is refused. Also, it only covers the additional costs that we incur by such a practice. As long as you give us reasonable notice that you wish to either reschedule or cancel part of your order, no charge will be made. This policy places the cost burdens on those who create them.

I'm sure that by working together in a cooperative manner we will all realize the benefits from these cost- and time-saving procedures.

Gentlemen, start your oscilloscopes!

Our new Technical Training Seminar will be presented for the first time on August 7, 8 and 9 at the factory in Pleasanton. Be sure to bring your manuals, questions and a PTDOS system diskette. During the seminar we will copy new diagnostic procedures for Sol and Helios onto your diskette.

Software Sentre

by Connie Hawkinson
This is the first in a series of columns about Helios software developed by Processor Technology dealers. My purpose is to serve as an information clearinghouse. I will briefly describe the Helios software package you offer and list your name, store, and phone number so that interested dealers may contact you directly for
further information. Processor Technology will NOT be involved in any of these transactions. We do intend to encourage software exchange among dealers to benefit your Helios system sales as well as to prevent any duplication of efforts.

Below is the current listing. Due to time constraints I cannot contact all of our dealers. Therefore, if you are interested in participating in the "exchange", please contact me at the factory.
CURRENT LISTINGS:
COMPUTER EMPORIUM, Cherry Hill, New Jersey. Contact Joel Schusterman at (609) 667-7555. They have developed a standard system (stored on four diskettes) designed to provide a basic computerized package to meet the small to med-ium-sized company's information needs in the areas of sales order entry, invoicing, inventory control, accounts payable, accounts receivable, and sales analysis.

At the completion of the session your tech will receive certificates which verify that he has completed a factory-sponsored technical seminar for either hardware, software or both.

Also, don't forget the getacquainted reception planned for Sunday evening at 7 p.m. at the Howard Johnson's Motor Inn, 6680 Regional Street, Dublin, CA.

For those of you in the Midwest and on the East Coast, this same Seminar will be conducted again in Philadelphia on August 28, 29 and 30.

We hope you will send a representative to one of these valuable sessions.

Sales tip

Here's an idea from Loren Willey, our Retail Marketing Manager: many dealers sell the Sol and Helios manuals separately. A potential customer who is technically inclined will often appreciate the opportunity to become familiar with the details of the system before he makes a purchase.

How about "loaning" the manual on a short term basis? Even if. your customer is still undecided, he will have to come back to your store to return the manual, and you'll have another chance to present the product.

Both Sol and Helios manuals may be purchased separately. A scheduled order is not necessary. Just send a purchase order to your dealer coordinator. The Sol System manual has part number 730000 and retails for $\$ 25$. The Helios manual, part number 730023, retails for $\$ 50$.
by Ron Carpenter
"If anything can go wrong, it will. If there is a possibility of one of several things going wrong, the one that will happen is the one that will do the most damage."

Murphy's Law is particularly relevant when dealing with electronic systems, and, of course, microcomputers are certainly no exception. So, given this theoretical base, what's the best way to approach the inevitable?
caused the problem. If not, continue on to Step 3.
3. Ifother Nature. Was there some type of storm or electrical disturbance going on at the time of failure? Weather has been the cause in a surprising number of cases.
4. Hardware Error. If, after eliminating the first three possibilities the system is still not performing properly,

We've designed some broad-based guidelines to give you a good overview of a systems approach to troubleshooting.

One of the most important things to remember when troubleshooting is NEVER JUMP TO CONCLUSIONS.

With any computer system, a combination of elements rather than just one may be at the root of a problem. Possible sources of difficulty are: 1) The Operator; 2) The Recording Media; 3) Mother Nature; and finally, 4) The Hardware. Start your analysis by first duplicating the symptoms. Then eliminate each possible cause one-by-one in the following order.

1. Check for Operator Error. If
possible, let the customer operate the system. You may discover the problem lies discover the problem lies
right there. If not, go on to Step 2.
2. Recording Media Error (diskette or cassette). Be sure that you are using the same diskette or cassette used when the failure occurred. It's possible that a crashed diskette

A systematic approach to troubleshooting

 che that a crashed diskettecheck the hardware. Run an individual comprehensive test on each of the four subassemblies in this order: 1) Memory; 2) Helios cabinet: 3) Controller/Formatter: and 4) the Sol. Each test will isolate problems within the subassembly itself. As you discover and repair each problem, rerun the comprehensive test. Continue repeating the test for each subassembly until all problems are found and repaired.

Also, remember that the more information (detailed symptoms, test results, etc.) you have, the easier it is to locate and solve a problem. So be sure to keep records of your findings at each stage of the analysis.

Again, these are very general guidelines. A detailed set of Standardized Repair Procedures will be given to each attendee at our upcoming Tech Seminars. In combination with the detailed procedures, these general tips can improve the efficiency and effectiveness of your troubleshooting.

Page 4, Vol. 2 No. 7

FACTORY TRAINED

This certifies that
has completed a program in Systems Diagnostics ana 'Maintenance

Fount Pouch Vice-President of Marketing

$\underset{\text { Date }}{\text { August } / 978}$

Atlanta Computer Mart 5091-B Buford Hwy.
Atlanta, GA 30340
(404) 455-0647

ILLINOIS
Midwest Microcomputer
708 S. Main Street
Lombard, IL 60148
(312) 495-9889

IOWA
The Computer Store of Davenport
4128 Brady Street
Davenport, IA 52806
(319) 386-3330

KENTUCKY
Martronix Associates
1235 E. Oak Street
Louisville, KY 40204
(502) 459-0500

MARYLAND
Computers Etc.
13A Allegheny
Towson, MD 21204
(301) 296-0520

MINNESOTA
Computer Depot
3515 W. 70th Street
Minneapolis, MN 55435
(612) 927-5601

MISSOURI
Computer Country
235 Dunn Road
Florissant, MO 63031
(314) 921-4434

NEW HAMPSHIRE
Computerland of Nashua 419 Amherst Street
Nashua, NH 03060
(603) 887-5238

NEW JERSEY
Computer Emporium
2438 Route 38
Cherry Hill, NJ 08002
(609) 667-7555

Computer Mart of
New Jersey
501 Route 27
Iselin, NJ 08830
(201) 283-0600

NEW YORK
The Computer Tree 409 Hooper Road
Endwell, NY 13760
(607) 748-1223

The Computer Mart of New York
118 Madison Ave.
New York, NY 10001
(212) 686-7923

The Computer Corner
200 Hamilton Ave.
White Plains, NY 10601
(914) 949-3282

NORTH CAROLINA
ROMs ' N ' RAMs
Crabtree Valley Mall
Raleigh, NC 27604
(919) 781-0003

OHIO
The Basic Computer Shop
Fairlawn Plaza
2671 W. Market Street
Akron, OH 44313
(216) 867-0808

Byte Shop
2432 Chester Lane
Columbus, OH 43321
(614) 486-7761

Computer Mart of Dayton
2665 S. Dixie Ave.
Dayton, OH 45409
(513) 296-1248

OREGON

Byte Shop Computer Store
3482 S.W. Cedar Hills Blvd.
Beaverton, OR 97005
(503) 644-2686

Byte Shop Computer Store
2033 S.W. 4th Ave.
Portland, OR 97201
(503) 223-3496

Computer Pathways
145 Alice Street So.
Salem, OR 97302
(503) 399-0534

PENNSYLVANIA
Computer Mart of
Pennsylvania
550 DeKalb Pike
King of Prussia, PA 19406
(215) 265-2580

RHODE ISLAND
Computer Power, Inc.
M24 Airport Mall
1800 Post Road
Warwick, RI 02886
(401) 738-4477

SOUTH CAROLINA
Byte Shop
1920 Blossom Street
Columbia, SC 29205
(803) 771-7824

TENNESSEE

Microproducts \& Systems
2307 E. Center Street
Kingsport, TN 37664
(615) 245-8081

TEXAS

Computer Port
926 N. Collins
Arlington, TX 76011
(817) 469-1502

Micro Store
312 Randol Mill Road
Arlington, TX 75080
(817) 461-6081

Interactive Computers
7620 Dashwood
Houston, TX 77036
(713) 772-5257

Interactive Computers
16440 El Camino Real
Houston, TX 77058
(713) 486-0291

Neighborhood Computer
Store
4902-34th Street
Lubbock, TX 79410
(806) 797-1468

AUSTRALIA
Automation Statham
Pty. Ltd.
47 Birch Street
Bankstown 2200
Sydney
(02) 709.4144

BELGIUM

S.P.R.L. Finncontact

Square Larousse, 5
1060 Bruxelles
2/345-98-95
COLOMBIA
Video National
Diagonal 34 N. 5-62
Apartado Aeree 27499
Bogota
326650

GREECE

Attikos, Inc.
41 Char. Tricoupi T.T. 145
Athens
3604091
JAPAN
Japan Personal
Computers, Ltd.
Yamamoto Bldg. 11-18
2-Chome
Yoyogi, Shibuyaku
Tokyo 151
(03) $375-5078$

MEXICO

Industrias Digitales
S.A. de C.V.

Plateros 19, D.F. Mexico
(905) 524-5132

PHILIPPINES
Integrated Computer
Systems, Inc.
Suite 118
LIM KET KAl Bldg.
Ortigas Avenue
San Juan,
Metro Manila 3113
SWEDEN
Wernor Elektronix
Torsvagen 61
Box 72
S-13301 Saltsjobaden
Stockholm
(0) 8 717-62-88

UNITED KINGDOM
Comart, Ltd.
24A Market Square
St. Neots, Cambridgeshire
Huntingdon,
PE19 2AF England
(0480) 74356

VENEZUELA

Componentes Y Circuitos
Electronicos Ttica
Ave. Fco.de Miranda
Res. Concordia-Local 4
Los Ruices, Caracas 101
355591

THE R PrSO processing debuts in Philadelphia

Processor Technology's new Word Processing software was greeted with enthusiasm by dealers at the Philadelphia Personal Computer show August 24-27.

Our first business application package uses PTDOS in a Sol System III with a Diablo printer. Basic Computer Group Ltd. of Vancouver, B.C., developed and has already installed the Word Processing system in a number of legal offices in the Vancouver area.

According to Brian Bristow, owner of Basic Computer Group, complete installation and training of operators can be accomplished in two weeks. His customers have found that the system actually improves morale in an office. Secretaries compete for time at the machine. The Sol is particularly popular because it makes less noise than an electric typewriter.

Installation, operator training and maintenance service are an integral part of Basic Computer Group's sales package. In most cases they repair or replace down equipment within four hours. (Continued on page 3)

Rita \& Larry Johnson (Microproducts and Systems, Kingsport, TN) discuss the new Word Processing system with Dottie Wanat (seated) at the Philadelphia Personal Computing show.........see story page I

Inventory flooring announced

Fifty dealers packed into our breakfast seminar held Friday morning August 25 in conjunction with the Philadelphia Personal Computing show. The star presentation came from Paul Cottone of FinanceAmerica who explained the details of our new retail inventory flooring program.

Offering up to 90-day financing on all purchases from Processor Technology Corporation, this program will free qualified dealers to schedule deliveries based on current need rather than cash flow considerations.
(Continued on page 5)

GAMEPAC 2
DEBUG

Shipment Begins
week of September 18
week of September 11
week of September 18

Change

moved back 3 weeks
moved back 2 weeks
moved back 2 weeks

I'm filling in for Dottie on this issue while she has all the fun in Philadelphia. It's sure been quiet in the Advertising Department since she left.

In addition to listening for the phone to ring with news about the show, we've been trying to get some work done here. Bob Marsh and Connie Hawkinson have hammered out the details for next quarter's order packet which includes a number of product changes.

Linda Allen has been organizing all the administrative details for the "Christmas in Hawaii" sales contest. She tells me that only 18 people have signed up so far. I'd say that gives them good odds for getting one of the twelve prizes. So if you want to be a winner, SIGN UP.

Linda Bilbrey tells me that Warranty Repair has borrowed techs from the production department to speed up the process of reducing the backlog. She would also like to remind you that after August 31 we will no longer accept any equipment returned for repair or for credit without an R.A. (return authorization).

Here in the advertising department, I'm working on a new ad, the latest in our series featuring successful Sol dealers for COMPUTER DEALER and COMPUTER RETAILING. In this one, Larry Stein (Computer Mart of New Jersey) talks about his approach to the business customer.

So, that's the latest.

```
--Elizabeth Fairchild
```


Whodunnit

Editor............. Dottie Wanat
Stand-in Editor......Elizabeth Fairchild
Graphics..............Lois Esser
Ray Oleson
Photography...Brett Bullington
General Input. Connie Hawkinson
Edith Reisner
Terry Walters
Drew Rogge
Rick Meyer
Ellwood Douglas
Copyright (C) 1978,
Processor Technology Corporation.
All rights reserved.

Word processing debuts...

(Continued from page 1) The most impressive feature of the Word Processing software, according to dealers who saw it in Philadelphia, is the ability to edit one document on the screen while the printer is putting out another document at 45 characters per second.

Text can be typed in at high speed since carriage returns are

Co-op ads hard at work

Two dealers have submitted co-op ads that are running successfully.

Bob Vipond (Computer Magic) has written and produced a first-rate radio commercial about Sol Systems to run on a local Modesto, California station. He says that store traffic has doubled as a result of the ad.

Hal and Harriet Shair (Computer Corner) ran the "Play a little Sol Music" ad in the business section of nine papers in Westchester County on Sunday, August 27. By Tuesday, Harriet reported that the ad was pulling more responses than any they had run previously in newspapers.

Due to the newspaper strike in New York City, the Westchester papers have tripled their circulation giving the ad extra exposure. Many people were calling and coming in who had not been aware of the Computer Corner before.

She added that the piano image has not created any confusion for her readers who were mostly business people looking for a business system.
added by the software. Automatic justification creates an even right margin, or the text can be left ragged right. Since all formatting is done on the screen, lines of text will be printed exactly as they appear. Several modes of cursor control and scrolling allow rapid access to any position of the document.

Commands which affect format (headings, footings, character and line spacing, top and bottom margins, and widow elimination) can be imbedded in the document for dynamic control of the printed output. Non-printing comments can also be added.

With only a small portion of the document in memory at one time, a given document can be up to 110 pages in length. Disk access is handled automatically as the document is scrolled or edited. In the event of a power failure or crash, the file structure remains intact, and only a small segment of text is lost. Up to 20 different documents totalling 110 pages can be on one diskette.

Another useful feature is that the software permits line length up to 128 characters wide. The 64 -character width on the video monitor is expanded by sideways scrolling commands which allow the operator to see what is on the right side of the copy.

Two letter quality printers and one dot matrix printer will be available from Processor Technology beginning November 15.

Details on price and availability of the Word Processing software will be announced soon.

New software introduced by Processor Technology this quarter includes two new video games called GAMEPAC 2. There's also three development programs on cassette which are modifications of portions of our PTDOS disk operating system. These three programs may be used in combination to create or modify large programs in a minimum amount of memory.

GAMEPAC 2
HANGMAN is an entertaining game that keeps children of all ages amused for hours. The program comes with a word list which you can add to or alter.

In addition to entertainment, HANGMAN is useful for teachers to make learning spelling, foreign language or any specialized terminology fun for students.
QUBIC is very much like a threedimensional tic-tac-toe with a playing grid of 4 by 4 locations on 4 levels with 76 ways to win. You can play either with another player or against the computer. Rumor has it that the program sometimes cheats when the computer is about to lose.

EDIT

EDIT is a cassette based editor similar to EDT 3.0 on the PTDOS system disk. It allows you to create or alter source programs in a form usable by Cassette FORTRAN, ASSM, or Extended Cassette BASIC.
Editing may be done on character, string, line and page levels. At any of these levels additions: insertions, substitutions and deletions of text may be made. Additionally, EDIT offers the
option to retain a command string as a macro and execute it repeatedly.

The EDIT program itself resides in low memory and requires approximately 4 K .
When you use EDIT, you will most likely be using two cassette recorders, reading from one and writing to the other. EDIT saves and loads text as a multipleblock file on cassette.

DEBUG

DEBUG is an aid for debugging a (Continued on page 5)

technicalstuff

For those of you who missed the technical seminars where our new family of dynamic RAM memory modules were introduced, here's some details:
The 16KRA-1, $32 \mathrm{KRA}-1,48 \mathrm{KRA}-1$ and $64 \mathrm{KRA}-1$ utilize either 8 K or 16 K dynamic RAM's. These new boards are designed to maximize reliability and to optimize manufacturing flexibility. Entirely new rigorous QC tests and procedures are being used to guarantee high reliability.
The boards are totally synchronous with the $\mathrm{S}-100$ bus "Phase 2" signal and have access times of 400 nsec worst case. Address is switch-selectable in four blocks.
A variety of options for Extended Memory Address make the board very flexible through use of memory "Bank Select" techniques.
The $32 \mathrm{KRA}-1$ version of the new design has already been shipped in Sol System III's and IV's. The 16,48 and 64 K versions will be on their way in September and October.

(Continued from page 4)
machine language program developed and assembled on a Sol or other 8080 computer system with CUTER. With this program, you can set as many as fifteen "breakpoints" in a program you want to debug or examine. It is capable of dumping memory in hexidecimal, ASCII or instruction modes.

When a program is executed under the control of DEBUG, it will stop at each of these addresses so that CPU registers, flags, and specified memory locations may be examined and modified. You can resume execution at a breakpoint or other specified memory location after making modifications. At the conclusion of debugging, you can save the modified version of your program.

There are five versions of the DEBUG program on the cassette tape. Each resides at a different memory location. Each occupies $4 \frac{1}{2} \mathrm{~K}$. ASSM
The ASSM program on cassette tape translates symbolic 8080 assembly language source code into object code. It is designed for use with the Sol or other 8080 machine using CUTER. The assembler itself occupies almost 8 K of memory. Additional memory is required for the symbol table and user program. Two cassette recorders are used.

Two other programs are recorded on the tape, PACK and UNPAC. These programs convert a cassette file from single-block format to multiple-block format and vice versa.

DELIVERY

ASSM and EDIT have already been shipped to dealers. GAMEPAC 2 is scheduled for shipment during the week of September 11; DEBUG during the week of September 18.

Flooring announced...

(Continued from page 1) FinanceAmerica is a subsidiary of the Bank of America, the world's largest bank.

The flooring program will go into effect on October 1 with Fall Quarter scheduled orders and will be administered from the factory.

At the same time, Processor Technology is now able to extend its regular Net 15 terms to Net 30 for dealers who qualify.

Also on the program for this by-invitation-only seminar was a presentation by Loren Willey, our Retail Marketing Manager, with ideas for successful instore merchandising. Dottie Wanat from our Advertising Department offered guidelines for developing your own ad campaign and utilizing the co-op advertising funds effectively.

Don't miss out. The "Christmas in Hawaii" sales contest is on. Register today. Full details available from Linda Allen in the Dealer Sales department at the factory.

Quality control tightens up

New and more rigorous test procedures will be reflected in the quality of Sol, Helios and memory board products we are now shipping. These higher standards are geared to the requirements of the small business system market.

We are testing all Sol Systems III and IV as complete systems after the individual units pass final tests. This system test procedure, in effect for the past two months, has already resulted in improved reliability in the field.

All incoming parts are now screened before they are put into stock. Critical components such as the 8080A are individually tested.

In addition to regular test procedures during construction, all Sol's must now pass a final 15hour monitored test with no errors before shipment.
Our new family of dynamic RAM memory boards (16KRA-1, 32KRA-1, 48KRA-1, and 64KRA-1) must pass a 48-hour burn-in and rigorous test procedure before shipment. The test software isolates specific RAM chips that malfunction as well as the total number of errors during the entire test period. "Good" boards must have no errors. In-house experience indicates that these new boards are equal in reliabilty to our well known static boards, the 8 KRA and 4 KRA .

The same rigorous tests used for the new memory boards will also apply to the original 16KRA.
This board has been the focus of a recent quality assurance task force which proposed some specific modifications to improve operation in the field.

As a further measure, Warranty Repair is running all l6KRA boards
through the production tests before returning them to the dealers. According to Technical Support Manager Mike Mills, 200 l6KRA's have passed through his department for repair in the past two months. Only three have come back a second time. And those three had mechanical problems rather than component or electronic failures.

Our highest priority is now focused on reducing any backlog of dealer equipment in our Warranty Repair Department and restoring a 5-day turnaround time.

LOOK, MA, NO KNOBS! Beginning October l, our video monitors will have an attractive front panel eliminating the channel select and volume control knobs.

New 64KRA-1 goes to New Jersey

Alice Golembo of the Computer Mart of New Jersey won the doorprize at our open house held Thursday night, August 24, at the Philadelphia Hilton Hotel. Her prize--the new $64 \mathrm{KRA}-1$ memory module. Her husband, Eri Golembo, the store's Administrative Director, says they will probably use the board in a Sol-20 they may buy through the salesperson's purchase plan.

Handle your typing load faster and more accurately.

Electronic typing used to be expensive... \$20.000 and up for a typical word processing machine. Only large corporations and government agencies could afford these advanced systems with all the professional features.

Now. Processor Technology drastically cuts the cost of electronic typing to give big company typing power to even the smallest office. Here's how our WordWizard system works to cut your paperwork costs:

Your typist can type from dictation at top speed without stopping to check for errors. There's no need even to gauge the end of a line for the carriage return because WordWizard automatically moves to the next line.

Proofreading and corrections are done on the screen before anything goes down on paper. Change spelling, add or delete words, and move sentences or whole paragraphs with a few keystrokes. Once you have a good draft. the printer produces a single, double or triple spaced copy in minutes. WordWizard memorizes the original draft and stores it on a WordWizard diskette.

After you've reviewed the document and marked your additions or corrections, your typist can display the draft on the screen and enter your changes electronically. No retyping is necessary. Only the changes. WordWizard automatically makes room to add sentences or paragraphs and closes up space where you've made deletions.

If a word or phrase needs changing anywhere in the document, a simple operation called Global Search \& Replace will locate every occurrence of the word or phrase and correct it in seconds.

When the document is complete, the SolPrinter will produce a copy at 480 wpm with single or double spacing, with even right-hand margins, or with bold headings. In minutes, you'll have a perfect, professional-looking report or letter without a single visible correction. Your secretary will be delighted to see an end to constant retyping.

One more thing. While the printer is running, your typist can work on the next project at the screen. No waiting for the printer to finish.

Your WordWizard electronic typing system pays for itself fast. You'll wonder how you ever did without it.

Attorneys and accountants say WordWizard is particularly cost effective.

Legal offices have been among the first to use WordWizard. Legal documents must be absolutely error-free and frequently contain standard paragraphs used over and over again. Such paragraph are stored on diskettes and later called up by number or name. Your current numbering system for standard paragraphs will, in most cases, adapt to WordWizard without modification. Clerical time to produce wills and contracts can be cut drastically.

Accountants appreciate WordWizard's ability to type copy up to 128 characters wide. You can view half of a wide page at once on the screen. By using the horizontal scroll, you can move the image left or right to view the entire page.

A WordWizard feature especially useful in sales and customer service offices is its ability to type many original versions of a letter for different individuals quickly. Your mailing list is stored on a diskette which can be easily updated. To type a group of letters. call up the list on the screen, or any part of it. For example. you may want to write to customers in a particular zipcode area who own just one of your products. Then. the list or any part of it can be merged with the letter you want to send. A secretary who used to type 25 sales letters in a day now can do 200.

Accountants, medical offices and many other businesses take advantage of WordWizard's speedy form completion. As your secretary fills in a form, the system remembers the next space and jumps there directly with two keystrokes.

So easy to learn you can begin to use it with just a few minutes of instruction.

You don't have to be a technical genius to use WordWizard. Unlike many systems that require memorizing special "codes", WordWizard includes a set of keyboard labels to mark all the editing keys. Use two keystrokes to set a tab, jump to the beginning of the document, delete a line, close up a space, and so forth. WordWizard frequently prompts the operator with easy to understand, ordinary language instructions.

The manual is straightforward with special hands-on exercises to speed learning. It's comprehensive with complete descriptions of all the special functions.

Your typist can start typing electronically right away without worrying about setting margins or making other formatting decisions. WordWizard has useful standard values for an $8^{1}{ }_{2} \times 11$ page which take over automatically if you don't ask for a special format.

Design your own text format on the screen just as it will be printed.

When you do want a special page arrangement. WordWizard will show your instructions right on the screen. You can change the margins in the middle of a document. switch from double to single spacing. or ask for a header or footer of one or more lines to appear at the top or bottom of each page. You can create an even (justified) right-hand margin. develop a new form or reorganize a group of pages. Such changes appear on the screen as they will look on paper. No guesswork. WordWizard makes it all so easy.

Enter or retrieve up to 110 pages on each diskette.

Each diskette has an alphabetized index that appears on the screen when the disk is inserted. From this index you can locate documents. destroy documents and create new ones. As you make changes, the index is updated automatically. An erasure doublecheck prevents accidental deletion.

You can copy a document from one diskette to another quickly and easily. It's easy to make a duplicate or backup of all your most important documents to keep in an accident-proof location.

In addition to the WordWizard System Diskette. you get one Document Diskette which stores up to 20 different documents totalling as much as 110 pages. The diskette can be reused almost indefinitely. Because the system uses inexpensive. standard diskettes. additional supplies are readily available.

Three optional SolPrinters to choose from.

You can choose a letter-quality SolPrinter 2 with metal print wheel. an economy model SolPrinter 2E with plastic print wheel. or a draft-quality SolPrinter 3 with very fast dot matrix printing.

The SolPrinter 2 prints up to 480 wpm . It s rugged. long-lasting metal print element is the "Daisy Wheel" type. Several interchangeable typefaces are available to work with either carbon or cloth ribbons. The quality of the printed copy is equal to the output of the finest electric typewriter. An economy version. the SolPrinter 2E. uses plastic print wheels.

The much faster SolPrinter 3 prints up to 2400 wpm. Each character pattern of dots is called a dot matrix. This output copy is ideally suited to rough drafts. memos. and in-house documents.

The most efficient installation includes two printers - one Daisy Wheel machine for highest quality letters. reports or reproduction copy. and a dot matrix unit for rapid turnaround of drafts. Alternate between the two printers with a few strokes from the keyboard.

Programmability keeps your system up to date.

WordWizard electronic typing programs work with Processor Technologys multi-purpose small computer systems. The Sol Systems III and IV give you all the power of high-priced word processing machines plus the capability of programming for a wide range of business tasks.

As improvements and new features become available for WordWizard you take advantage of them simply by purchasing new System Diskettes. Many different business and accounting applications packages are available from your Sol Systems dealer. More are on the way. Because WordWizard and the Sol System are totally programmable. your system will stay up to date.

At the outset, you get two machines for the price of one - a full capability word processor and a general purpose business computer - for less than you would expect to pay for either one. Your office can take advantage of new, time- and money-saving programs to keep books. send invoices, manage inventory. or provide you with valuable management reports. All without the need for major additional capital investment. As time goes on. you'll be glad you planned for the future.

See your nearby Processor Technology dealer today and ask for a demonstration.

Compare the features. Then compare the price!

Enter up to 110 text pages per diskette.

- Store up to 20 different documents on each diskette
- Identify each document with any name or number
- Unlimited document storage on inexpensive diskettes
- Duplicate or format diskettes rapidly
- Select from menus on screen - no need to learn complex command codes
- Handle common operator mistakes with easy to understand instructions from the screen
- Alphabetized document index is continuously updated and displayed
- 64 character by 16 line video display
- Horizontal scrolling lets you compose and view lines up to 128 characters long
- Adjustable left and right margins
- Automatic margin readjustment by paragraph
- Lnlimited adjustable tab stops
- Automatic carriage return. word wraparound, and justification with manual hyphenation
- Easy merging of frequently used phrases, paragraphs and mailing lists
- All documents may include comments which appear on the screen but not on the printout

Changes and corrections are easy with these editing features.

- Easy insertion. deletion or alteration of text
- Removable keyboard labels define edit keys - no need to memorize "edit codes"
- Instant positioning of cursor to start or end of document
- Automatic scrolling - horizontal or vertical forward or reverse
- Single step or continuous cursor movement in four directions. home cursor. and jump to screen edges
- Automatic search and selective replacement of words. phrases. format statements or comments (Global Search \& Replace)
- Copy. move or delete in blocks of up to 16 lines
- Merge standard paragraphs into any document
- Easy merging of mailing lists with letters
- Merge and assembly text can be organized in special library documents

Design your text format right on the screen.

- Margins. indents and justification appear on the screen as they will be printed
- Embedded format control statements are displayed on the screen
- Store many standard text formats to maintain document consistency
- Optional headers and footers on each page - versatile location and multiple lines
- Automatic pagination divides long documents into separate pages with forced page breaks and widow elimination
- Automatic page numbering from 0 to 99 beginning with any number anywhere in the document

Print one document at up to 2400 wpm while editing another on the screen.

- Three optional SolPrinters with speeds of 480 wpm iletter quality to 2400 wpm (draft quality)
- Bidirectional printing
- Adjustable character and line spacing
- Boldface through multiple overstrike
- Underscore capability
- Copy up to 128 characters wide
- Quick printer selection for multiple-printer installations
- Printing options for skipping pages. page stops. and printing embedded statements or comments

Protecł your confidential reports and documents.

- Lock and key power switch prevents unauthorized system use
- Erasure doublecheck protects documents from accidental deletion
- Continual transfer of the document to the diskette prevents loss of all but a small portion in case of power failure
- ASCII communications capability with special programming

Specifications subject to change without notice

Doclument Activities	Left Right Margin Set Release	Escape tgo from editing to Document
Create istart new document)	Tab Set Clear	Activity menul
Remove (erase a document)	Jump to Start End (of document)	
Edit	Justify On Off	Format Statements
Select Merge (select a merge document)	Search	Pitch thorizontal space per character,
Print	Continue Search	Vertical (spacing per line)
Stop Printing	Replace	Spacing idouble, triple, other multiples
Eject Page (paper feed)	Continue Replace	Define Form Length
Archive 'copy document to System Dish)	Copy Block	Lines Per Page
Retrieve (copy archive document to Document Disk)	Move Block Insert Block	Title (running header) Footer (running footer)
Document Disk)	Delete Line	Header Lines (header - margin)
Edit Key Functions	Insert Split	Bottom Lines (footer - margin
Cursor Control lup. down. right. left. or homel	Close Paragraph	Number (set or reset page number)
Cursor to Edye of Screen (four directions)	Call Merge	Eject (force new page to start)
Repeat (character or cursor)	Reserve Blanks (through justification process)	Widow (keep lines together on pagel
Return (forced end of paragraph)		Under (underline. boldface. overstrike)

Sol ${ }^{\circledR}$ SYSTEM SUGGESTED U.S. RETAIL PRICE LIST

Sol TERMINAL COMPUTER and Sol SYSTEMS

Order No. Price (\$US)

1. Sol-20/16 Terminal Computer with SOLOS personality module and 16,384 bytes of memory, includes Extended Cassette BASIC and Sol System manual

Factory Assembled/Tested
400500
\$2095
2. Sol-20/32 Terminal Computer with SOLOS personality module and 32,768 bytes of memory, includes $\begin{array}{llll}\text { Extended Cassette BASIC and Sol System manual } & \text { Factory Assembled/Tested } & 400600 & \$ 2395\end{array}$
3. Sol System I-A includes Sol-20/16 with 16,384 byte memory and SOLOS module, PT- 872 video monitor, RO-413A cassette recorder, Extended $\begin{array}{lll}\text { Cassette BASIC, cables and Sol System manual } & \text { Factory Assembled/Tested } 400700 & \$ 2495\end{array}$
4. Sol System II-A includes Sol-20/32 with 32,768 byte memory and SOLOS module, PT- 872 video monitor, RQ-413A cassette recorder, Extended $\begin{array}{llll}\text { Cassette BASIC, cables and Sol System manual Factory Assembled/Tested } 400800 & \$ 2795\end{array}$
5. Sol System III-A includes Sol-20 with 65,536
bytes of memory and BOOTLOAD module, Helios II
Model 2 Dual Disk System with Extended Disk
BASIC, PT- 872 video monitor, cables and Sol
System manual
Factory Assembled/Tested $400310 \quad$ S6495

6. Sol System IV-A includes Sol- 20 with 65,536 bytes of memory and BOOTLOAD personality module, Helios II Model 4 Quad Disk System (two dual drives) with Extended Disk BASIC, PT- 872 | video monitor, cables and Sol System manual | Factory Assembled/Tested | 400350 | $\$ 8750$ |
| :--- | :--- | :--- | :--- |

Sol System III-A

1. Helios II, Model 2 Dual Disk System includes
dual PerSci 270 floppy disk drive, cabinet, fan, S-100 bus compatible controller, power supply, and system diskette with complete PTDOS software and Extended Disk BASIC

Factory Assembled/Tested 300000
S3195
2. Helios II, Model 4 Quad Disk System includes two dual PerSci 270 floppy disk drives, cabinet, fan, S-100 bus compatible controller, power supply, and system diskette with complete PTDOS software and Extended Disk BASIC Factory Assembled/Tested 304000

Helios I/ Models 2 and 4

SolPrinter

Sol PRINTERS (available December 1, 1978)
$\left.\begin{array}{lllllll}\hline \text { 1. SolPrinter }{ }^{\circledR} \text { 2, Word Processing Printer includes } & & & & \\ \text { Xerox/Diablo Model 1355WP printer mechanism, } \\ \text { high-quality metal print wheel in Titan } 10 \text { font, carbon }\end{array}\right)$
3. SolPrinter ${ }^{\circledR}$ 3, High speed 200 cps dot matrix printer with RS -232 serial interface (up to 9600 Baud), power supply, RO cover, friction platen, paper out, ribbon out and cover open detect options with connecting cable for Sol-20 serial port. Includes forms tractor
Assembled/Tested $910030 \quad$ S3695
4. Forms Tractor for SolPrinter 2 and 2-E (SolPrinter 3 includes forms tractor) 910100 S250

SYSTEM ACCESSORIES		Order No.	Price (SUS)
1. 16KRA-1 Memory Module with 16,384 bytes of Dynamic RAM	Factory Assembled/Tested	214010	\$429
2. 32KRA-1 Memory Module with 32,768 bytes of Dynamic RAM	Factory Assembled/Tested	214020	\$750
3. 48KRA- 1 Memory Module with 49,152 bytes of Dynamic RAM (available November 1, 1978)	Factory Assembled/Tested	214030	\$1095
4. 64 KRA -1 Memory Module with 65,536 bytes of Dynamic RAM (available November 1, 1978)	Factory Assembled/Tested	214040	\$1350
5. GPM-Sol, General Purpose Memory Module	Factory Assembled/Tested	$\begin{array}{r} 210000-03 \\ 210000-04 \\ \hline \end{array}$	$\begin{array}{r} \$ 129 \\ \$ 99 \\ \hline \end{array}$
6. ALS-8 ROM Resident Assembly Language Operating System with Interpretative Simulator (SIM-1) and Text Editor (TXT-2). For use with GPM-Sol. If purchased together, price includes assembly and testing. (ALS-8, SIM-1, and TXT-2 programs are copyrighted.)	Factory Assembled/Tested or Kit	900014	\$90

Sol System I.A

MISCELLANEOUS

	Sol-PC Single Board Computer with SOLOS personality module	Factory Assembled/Tested	$\begin{aligned} & 101036-01 \\ & 101036-02 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 745 \\ & \$ 575 \end{aligned}$
2.	PM 2708 Personality Module without EPROMs	Factory Assembled/Tested Kit	$\begin{aligned} & 107000-01 \\ & 107000-03 \end{aligned}$	$\begin{aligned} & \$ 40 \\ & \$ 30 \end{aligned}$
3.	SOLOS Personality Module	Factory Assembled/Tested Kit	$\begin{aligned} & 107000 \cdot 02 \\ & 107000.04 \end{aligned}$	$\begin{aligned} & \hline 990 \\ & \$ 75 \end{aligned}$
4.	BOOTLOAD Personality Module	Factory Assembled/Tested	107015	S100
	220/240 Volt Transformer for all Sol-20 series units Note: All Sol- 20 series units and Sol Systems are ava Contact factory for pricing and delivery inform	Kit Volt, 50 Hz operation.	105034	\$50
	WWB Wirewrap Prototyping Module	Kit	211000-02	\$40

7. Helios II Upgrade Option provides all necessary hardware to upgrade Model 2 Helios Disk Systems to Model 4 including additional dual drive, front bezel, fan, cables and power supply. (Must be installed by factory.) Installation 304100 \$2295

8. Sol Systems Technical Manual	730000	$\$ 25$	
9.	Helios II and PTDOS Technical Manual	730009	$\$ 50$

This video game is included with GAMEPAC 1

Extended BASIC is available in both disk and cassette versions.

SOFTWARE (including manual)	Minimum Memory Required**	Order No .	Price (SUS)
1. Extended Cassette BASIC	16 K	727017	\$45.00
2. BASIC/5 cassette	10K	727000	\$19.50
3. New 8080 FOCAL* cassette	10K	727024	S19.50
4. TREK 80 Video Game cassette	8K	727009	\$19.50
5. GAMEPAC 1 Video G ames cassette	4K	727006	\$19.50
6. GAMEPAC 2 Video G ames cassette	4K	727160	\$19.50
7. Software \# 1 Resident 8080 Assembler cassette	6K	727022	\$19.50
8. ALS-8 Resident Assembler, Simulator and Text Editor cassette	12K	727012	\$45.00
9. Extended Disk BASIC	32K	727036	\$95.00
10. PTDOS 1.4 System Disk (replacement)	32K	727030	\$95.00
11. Extended Disk FORTRAN	32K	727100	\$95.00
12. Cassette PILOT	16 K	727110	\$24.50
13. 8080 CHESS cassette (available soon)	16K	727150	S19.50
14. ASSM, Advanced 8080 Assembler cassette	10K	727120	\$19.50
15. DEBUG, 8080 Cassette Debugger	8K	727130	\$19.50
16. EDIT, Advanced 8080 Editor cassette	8K	727140	S19.50

* Registered trademark of Digital Equipment Corporation.
**If cassette CUTER is used, an additional 3 K of memory is necessary.

Note:

A SOLOS or CUTER monitor program is necessary to load and run cassette software products.
All Processor Technology software is distributed through authorized dealers or on an individual basis for personal use. Each software package has been copyrighted by Processor Technology and all rights therein are reserved. No license to copy or duplicate is granted with distribution or subsequent resale.
Prices and specifications are subject to change without notice. Prices are in U.S. dollars, apply in U.S.A. only and may be slightly higher elsewhere.

ProcessorTechnology

Processor Technology	7100 Johnson Industrial Drive	(415) 829.2600
Corporation	Pleasanion. CA 94566	Cable Addess PROCTEC

October 12, 1978

Dear Retailer:
Due to temporary circumstances, I have suspended publication of the Personal Computer Retailer for a short period of time. A regular publication schedule will begin again soon.

In the meantime, here is some information you should know about right away!
I. Changes In The Marketing Department . . .

Our Marketing Department has been reorganized to improve its responsiveness to your needs. The following changes are effective as of October 10 .

SALES DEPARTMENT
Loren Willey has been appointed Sales Manager, National and International Accounts. He will continue to manage all existing dealer accounts as well as established O.E.M. and international accounts.

Ralph Palsson becomes the Sales Manager for all new national and international accounts and will be working to develop new accounts in the retail, O.E.M., and international markets.

Brett Bullington and Debby Oester are our new Sales Representatives and as such will be handling all of your needs at the factory. Contact either one of them regarding the status of your account, orders, shipping information, etc.

SALES ADMINISTRATION DEPARTMENT
Sua... Hawkinson becomes Manager of our newly formed Sales Administration Department. Connie will be in charge of co-ordinating a gamut of internal sales support functions.

ADVERTISING DEPARTMENT

Dottie Wanat is the new Advertising Manager and Sally Turner replaces Dottie as Advertising Assistant.

Elizabeth Fairchild moves from Advertising into a staff position in Marketing.
CUSTOMER SERVICE DEPARTMENT remains unchanged. Continue to contact:
Diane Ascher for Return Authorization requests and
Linda Bilbrey for Warranty Repair and parts requests.
TECHNICAL SUPPORT also remains unchanged, as do technicians' hours.

Processor Technology
 Corporation

Page Two . . .
II. The CORONA...Color Graphics Board Announced . . .

You'll be getting inquiries shortly from your customers about the Processor Technology CORONA-IK color graphics board which is described in the cover story of the Noyember issue of Popular Electronics magazine. I've attached a short article by Sally Turner which summarizes the Popular Electronics story in case you cannot get a copy.
The Popular Electronics story says that the product is still in develop-. ment and will be available through computer stores in kit form for $\$ 395$. The CORONA is indeed still in the design/development stage. It is currently scheduled to begin production in February and begin shipment in April. That projection assumes no obstacles arise to slow up the schedule. We'll keep you informed as the shipping date becomes more firm.

Meanwhile, you can assure your customers that the product will not be available until next year and that no other store has it either. We are not accepting prepayment or preliminary orders.
We'll be sending you sales literature and additional marketing information when we are closer to delivery.
III. Toll Free Dealer Locator Hotline . . .

Beginning in October, prospective customers can find the dealers nearest them by calling our toll-free hotline. The line will be answered between 8 and 5 Pacific Standard Time on weekdays. A friendly voice will take the callers name and address and give the names and phone numbers of nearby dealers. The names and addresses of callers will then be referred to dealers for followup.
The hotline phone is not connected to our regular switchboard. Calls cannot be transferred to other factory telephones.
The hotline numbers, one for California and one for the rest of continental USA, will appear in Processor Technology's smaller ads such as the one in November Popular Electronics. These ads do not include enough space for a dealer list. We will continue listing dealers in BYTE and Creative Computing.
I've included reprints of two new black and white ads with this letter.
IV. YOU WANT IT WHEN!?

Item	Shipment
8080 Chess cassette	week of 10/23
GAMEPAC 2	shipment begun
DEBUG	week of 10/9
Faceplate for video monitors	week of 10/16
$\begin{aligned} & \text { 16KRA-1, } 32 \mathrm{KRA}-1 \\ & 48 \mathrm{KRA}-1,64 \mathrm{KRA}-1 \end{aligned}$	shipment begun shipment begun

Processor Technology

Corporation

Page Three . . .
V. WordWizard SHOWN IN NEW YORK AND DALLAS . . .

Our new word processing software package has been christened the WordWizard. It will retail for $\$ 295$ with a 50% Dealer discount. We should begin shipment in the next 30 days.
Diane Ascher from our Customer Service Department demonstrated the program at the New York Personal Computing show (Sept. 15-17) where she di-. vided her time between three dealers' booths--Computer Mart of New Jersey, Computer Mart of New York, and the Computer Corner. Sales Rep. Debby Oester went to the Dallas show (Sept. 30-Oct. 1) where she presente the same demonstration at two dealer booths- - Computer Port and Interactive Computers. (Debby, by the way, won a bottle of champagne for thinking up the name "WordWizard.")

Overall, supporting dealers at shows in this way seems to be very surcessful both for us and for you. We plan to do more of this in the furtare.
VI. NRA . . .

Within the next week you will be receiving update information on the new NKRAs (16KRA-1, 32KRA-1, $48 \mathrm{KRA}-1$ and $64 \mathrm{KRA}-1$) which will enable you to make them compatible with all S-100 bus computer.
CHRISTMAS IN HAWAII . . .
Don't forget to keep sending in your sales verification forms for the "Christmas in Hawaii" contest. Thirty-nine salespeople have signed up so far.

Best regards,

Dottie Want
ADVERTISING DEPARTMENT

CORONA: Color Graphics is Coming
by Sally Turner

The November Popular Electronics will feature a cover story about Processor Technology!s innovative high resolution full color graphics accessory for microcomputers. The CORONA System is a graphic display memory capable of providing 256 different colors in a 256 -by- 256 display with both graphics and alphanumerics. These are mixed and overlaid to interleave graphic and. text information anywhere desired on the screen.

CORONA is fully bus compatible with the Sol-20 microcomputer and VDM-1 video display module but can be modified to fit other S-100 bus formats. It operates both for color-picture storage or conventional black and white computer memory (256 shades of grey).

The CORONA's circuitry mounts on three printed circuit boards. Two boards plug directly into the S-100 bus of the computer. In Sol, only one slot, the "top slot", is needed. The third board is packaged externally with the analog circuitry and video connectors.

Memory access by the computer is handled in one of two modes: "bit mode", which simplifies interfacing with BASIC and FORTRAN, and allows direct access to individual points on the screen; and "byte mode" used for high speed data transfers from the CPU to the CORONA. Its color-video encoder transforms the red, green, blue and luminance data from the color map into NTSC or RGB color signals.

In addition to opening new visual frontiers for video games, CORONA is a powerful tool for business, artistic, scientific and educational applications. Full animation, vivid graphics, and poster-like displays can transform any presentation into a colorful multi-media event.

Many of your customers will undoubtedly be interested in this dynamic new product.

THERTSOHAL attorneys view WordWizard

Byte Shop of Portland introduced three new systems to an invited group of 130 attorneys and accountants at a special show on November 7. Debby Oester from our Sales Department represented Processor Technology with a demonstration of the WordWizard Electronic Typing System.

WordWizard-Star of the Show

Wordwizard turned out to be the star of the show. According to Debby, some of the guests already owned word processing systems from companies like Vydec, WordStream and Lexitron. They were very impressed with the capabilities of WordWizard compared to these more expensive systems. They also liked the flexibility of the Sol System for many other business applications.

The show was held in a banquet room of the Travel Lodge Inn from 10 in the morning to 7 at night. A hostess/receptionist greeted all prospective customers at the door. She made name tags and invited the guests to sign the register. Three systems were in operation with Debby and two Byte Shop salespeople always on hand to make presentations.

Pat Terrell, co-owner of the store, was more than pleased with the successful event. He expects four to six word processing system sales to result directly from the show. His Seattle store will host a similar show very soon. He also plans variations on the show for insurance people and doctors.

Asked what he will do differently at the Seattle show, Pat said he wants to handle the people more efficiently. "Frequently there (Continued on page 5)

 You want it when?!

Item
8080 CHESS Cassette
DEBUG
Faceplate for video monitors

SolPrinters 2 and 3 Week of December 4
WordWizard

Shipment Begins
 Shipment begun
 Week of November 27

Shipment begun

Week of November 27

Change

Moved back 7 weeks

FinanceAmerica user happy with service

by Sally Turner
To get more information about the FinanceAmerica flooring program, I contacted a local appliance store owner who uses it.

Frank Lozano of Frank's TV \& Appliances in Pleasanton told me, "No other finance company has ever

Whodunnit

Editor.............Dottie Wanat
Stand-in Editor...Sally Turner
Assistant Stand-in
Editor.....Elizabeth Fairchild
Graphics............. Lois Esser Ray Oleson
General Input......Diane Ascher Connie Hawkinson

Rick Meyer
Terry Walters
Copyright (c) 1978,
Processor Technology Corporation. All rights reserved.
served us so well. FinanceAmerica works WITH you. They eagerly pitch-in to help us with displays and special promotions."

Frank especially likes the flexibility of Finance America compared to other flooring companies. "They don't hold you to the bottom line," says Frank. "When we've needed extra merchandise for special occasions like Christmas, they stretch the budget to accomodate us."

When asked if he minded the monthly inventory check, Frank said, "Not at all. In fact, it's helpec me keep my own books better. Besides, the benefits are so good, they far outweigh any disadvantages. All in all, the service offers more than I expected."

Frank generously consented to answer any questions you might have if you'd like to phone him at (415) 846-5505.

Selling Sol Systems to educators
 by Ralph Palsson
 As you are aware, microcomputers are becoming increasingly popular as an educational tool in schools and universities at all levels. Some estimates predict that 25 \% of the dollars that will be spent on small computers in the next

few years will come from the education segment.

How can you insure having a fair edge on this lucrative market? Virtually all public institutions purchase equipment on the basis of competitive bids. I'd like to discuss some aspects of bidding and a few points that will be helpful in winning contracts.

REGISTER YOUR PRODUCTS AND SERVICES

Many dealers shy away from proposing bids and contracts because of the red tape involved. I argue that this effort is worthwhile. Many times one winning bid will lead to the subsequent sale of scores of systems.

For bidding and contract proposals, the purchasing agencies in your locality must be aware of your products and services; so, you need to register with your state's (and neighboring state's) "Division of Purchasing" or the "Department of Education" in the state capitol. You will be sent an Application Form and Commodity Listing to indicate what products and services you're qualified to bid on. Needless to say, you also become eligible to bid on appropriate computer systems for other state agencies.

One form of bid you may receive is a Request for Quotation. Typically, RFQ will ask specific quote, delivery information, terms, etc. on an approved system. You are held to your submitted quote and may be issued a purchase order on the same document.

Another form you may encounter is a Request for Proposal; this is a contract proposal, used mainly for Multiple Systems Purchases and high-dollar volume potential, also for open number of systems over a given time period, e.g. one year.

SECRETS OF SUCCESSFUL BIDS

It is important to comply with the administrative requirements contained in bid specifications. For complicated proposals you might want to hire a professional contract writer. If you have specific questions on a proposal, phone me, I'll be glad to help you.

You can find out who your competition is and what they're offering from the bid-generating agency upon request. This will increase your chance of winning the contract.

I suggest you register with individual school districts and colleges. (Continued on page 4)

Selling Sol to educators

(Continued from page 3)
They frequently have the funds to make direct purchases.

It may take a while to close sales for schools because of limited budgets and fiscal years. But remember, once funds are allocated, they're almost never diverted to other uses, and educational institutions are virtually always "good" for the money.

Sol Systems are useful in educational applications in a variety of rolls from classroom to administrative. They're useful in computer aided instruction from mathematics to bilingual learning.

Because of Processor Technology's comprehensive and high quality product line, we expect to hold a large share of this market.

We're fully committed to supporting the education market and your place in it. So, let's work together for a profitable future.

Ralph Palsson, educational marketing specialist for Processor Technology, has been writing sucessful bids for two years.
©OMING IN JANUARY

Customized sales lit kits

We believe pictures generate excitement which in turn sparks enthusiasm...an effect that snowballs when sales literature is used right. We want you to have the tools that enable you to make well planned sales presentations. So, we designed a colorful 4 page folder and an array of data sheets describing our products, which you'll receive in January. By adding your own store's literature, you can customize to meet individual needs.

In the past sales literature consisted of brochures aimed at technical users. The new data sheets address a broader audience, particularly the business user.

The first 3 data sheets will be sent to you in early December.

They consist of 2 pages on the nKRA memory boards, 4 pages on WordWizard electronic typing, 4 pages on Extended BASIC.

Our colorful 4 page folder will be a brochure explaining Processor Technology as a company; who we are, our history and our marketing intentions.

We'll continue to use the Sol and Helios brochures temporarily. The Helios brochure is being revised to include explanations and pictures of the Helios II model 4.

We developed this colorful set of materials to enable you to compliment and tie together sales promotion efforts.

Attorneys view WordWizard

(Continued from page 1) were almost twenty people in the room at once, all trying to get their questions answered. One solution is to schedule demonstrations at definite times. Another approach is to give a fairly short formal demonstration, then qualify the prospects for a followup appointment with a complete demonstration later."

Store manager Tom Rich was responsible for most of the organization and planning of the show. He reported that total costs for the entire production were under $\$ 600$ including the room rental and all advertising costs.

Primary advertising for the show was 500 formal, printed invitations to attorneys in the Portland area. In addition, he ran a small ad in the local paper for three days before the show.

As Tom pointed out, "A turnout of 130 people was excellent. We could easily have had more systems with more salespeople demonstrating them. I think Pat's idea of scheduled presentations would be helpful. It's also important to have hands-on time so people can

Participants in the August Technical Seminars received this attractive certificate!
see how easy the systems are to use."
"Another thing, I'd have the hostess do some qualification of the visitors. If she knew what their specific interests were, she could cue them to a particular system."
"And one last thing, I liked Debby's suggestion that we should have a quiet room, a closing room, where we could take people to discuss terms and sign papers. If we had had a room like that, we might have sold ten systems right at the show."

Tom Rich will be happy to talk with any dealer planning a similar event.

All new ACCESS coming January 1

Diane Ascher from our Customer Service Department, recently volunteered (Army Style) to take over as editor of ACCESS magazine.

Her first official decision was to establish a regular bi-monthly schedule for the magazine. Her plans also call for some major format changes.
"My goal is to make ACCESS a magazine that appeals to both the technical and non-technical customer," says Diane. "Customer contributed articles will be featured, as well as regular articles about hardware and software updates. We are particularly interested in applications software. And, I encourage letters-to-the-editor," says Diane.

All previous subscribers will get the next three issues as part of their original subscription.

So here's your chance! See your name in print or encourage your customer to submit articles, Diane awaits your contributions.

HeliosIIuser's manual well received by dealers

"The new manual has a good Table of Contents so you can find what you're looking for right away," commented Paul Matzke of the Madison Computer Store. "The style makes it easy to understand, and I like the way it looks, too."

Our new Helios II User's Manual uses simple language to explain how to operate the Helios. All theoretical and service-related information is left out. We developed this manual to meet the

We know you're all anxious to find out who won the Christmas in Hawaii contest. We're going to tell you. But, all the verification forms aren't in yet. So, ...you'll just have to wait for the next issue. Keep Smilin'。
needs of the business user who typically has no technical knowledge and depends entirely on the dealer to test and repair his equipment.

Dealers should be receiving the new PTDOS User's Manual soon, to be used in conjunction with the Helios User's Manual. It describes the operating system for the Helios.

Plans for the future call for both a User's Manual and a Technical Service Manual for each of our hardware products. The Sol is currently undergoing this change.

New pricelist "Best one yet"

This was the frequent reply from dealers and sales staff when asked how they liked our new Price List.
"It sure helps to have such a professional Price List," reported Gerald Wright of the Digital Deli (Mountain View, CA). "Before, I had to circle appropriate items for our customers. Now they can understand it and make selections themselves. The pictures really helped to tie it all together."

He liked the folder idea, too.

Several dealers commented that the new layout and pictures make this price list especially useful as a sales tool, unlike other price lists.

- HefersonalOMPUTER Retaller

The news you've all been waiting for! Processor Technology proudly announces the 1978 Winner of the Christmas in Hawaii Contest: JOEL SHUSTERMAN, COMPUTER EMPORIUM, Cherry Hill, New Jersey. Congratulations, Joel! (Mind if we send along your friendly roving reporter for an on-the-spot interview?)

Second prize, a Sony Trinitron Color TV goes to HARRIET SHAIR, COMPUTER CORNER, White Plains, NY.

Third prize winners of the Polaroid Pronto Camera Outfits are: BILL BLOCK, INTERACTIVE COMPUTERS, Houston, TX; GRAHAM MEAKINS, BASIC COMPUTER GROUP, Vancouver, B.C.; LARRY STEIN, COMPUTER MART OF NEW JERSEY, Iselin, NJ; and ROBERT VIPOND, COMPUTER MAGIC, Modesto, CA.

Congratulations to all these winners, and a special Thank You to everyone who participated in this event.

EaíRChílo nameo new sales manager

"My objective is to enhance the working relationship between dealers and our Sales Department. I intend to clarify certain policies," says Elizabeth Fairchild, our new Sales Manager. "For example, putting our OEM sales program in writing so dealers will be able to work with us in pursuing OEM accounts."

As Processor Technology becomes more involved in the business market, Elizabeth plans to give dealers more sales support similar to the WordWizard Marketing Overview and product training seminars.

Elizabeth has a background in elctronics, and before joining Processor Technology in April 1976, she worked in retail sales.

Prior to promotion to Sales Manager, Elizabeth headed up our Advertising Department and was largely responsible for helping to develop our public image.

We know you'll enjoy working with Elizabeth and her staff. They're a hard working team committed to getting results:

國ou want it when?

Item	Shipment Begins
DEBUG	Shipment begun
Solprinter 2, 2E, and 3	Shipment begun
WordWizard	Shipment begun

Twenty thousand miles and fifteen days later we had managed to visit many of you and give your staff a personal introduction to WordWizard and the advertising program developed to promote it. Your response was more than enthusiastic. It was obvious you shared our excitement for WordWizard and its market potential. As Ben Bennett from Roms 'N Rams in Raleigh, North Carolina put it, "The market is ready for a lowcost system which is as easy to learn and as simple to use as

Mohodunnit

Editor.............Dottie Wanat
Asst. Editor......Sally Turner
Graphics.............Lois Esser Ray Oleson
General Input.....Diane Ascher Elizabeth Fairchild Connie Hawkinson

Copyright (C) 1978,
Processor Technology Corporation.
All rights reserved.

WordWizard. We already have customers ready to buy."

Again, Gary Ingram, Mike Mills, Ralph Palsson and I would like to thank all of you for making us feel so welcome. Although we succeeded in totally exhausting ourselves, we all agree that we were glad for the opportunity to visit your stores and get better acquainted with each of you.

We appreciate the time you took from your hectic schedules to share with us your comments and suggestions on WordWizard as well as your thoughts and ideas about Processor Technology and the industry in general. Your input is extremely valuable. The information exchanged will help us in formulating future policies and programs--policies and programs which will, hopefully, enable all of us to work together in the most effective and profitable manner.

From myself and the staff of the Personal Computer Retailer, HAPPY HOLIDAYS to all of you and your families!

Chat nou've wanted to know about Sobl Drinters

...but didnt know whom to ask

Q. Why can't I put a plastic wheel into a metal wheel machine and vice-versa?
A. The mechanism is completely different in these two machines. Using the wrong print wheel will damage the wheel and void the warranty.
Q. What's the difference between the metal and plastic wheels?
A. Metal print wheels are actually a very hard plastic that has been metal-plated. Metal wheels last 4 times as long as plastic and are available in different fonts.

Qsoftware Qsentre

We're back again with Software Sentre. Here's some new software available for Helios:

CP/M will soon be available for Helios from: Lifeboat Associates, 164 W. 83rd St., New York, NY 10024. (212) 580-0082.

General ledger, Accounts Receivable, Accounts Payable, Payroll with Job Accounting, Inventory Control and Order Entry...a complete package for Sol Systems III and IV available now with extensive dealer training. Contact Dick Babb, MicroSun, 2989 North Main St., Walnut Creek, CA 94649. (415) 933-6252.
Q. How can I tell when the wheel is beginning to wear out?
A. Serifs, periods, commas, hyphens and underscores wear out first. You can spot-check these symbols periodically.
Q. When will I receive delivery?
A. Delivery will be limited this quarter. We will get the major part of your scheduled order to you. In some cases, the SolPrinters are beige rather than black. We expect the delivery situation to improve next quarter.
Q. Where do I get supplies such as ribbons and additional print wheels?
A. These are available from Processor Technology as well as many other sources. We encourage dealers to find a local source.
Q. What about maintenance contracts from Diablo?
A. Diablo Warranty Extension contracts are $\$ 135$ (SolPrinter 2 \& 2 E) and $\$ 110$ (SolPrinter 3) and available to the end-user at time of purchase. Five maintenance depots exist around the U.S. We highly recommend this contract to you since without one, Diablo will charge you $\$ 80 / \mathrm{hr}$. for the first hour and $\$ 40 / \mathrm{hr}$. thereafter for service.
(Continued on page 4)

-about Qod Drinters

(Continued from page 3)

Model	SolPrinter 2	SolPrinter 2E	SolPrinter 3
Type	Word processing (letter \& reproduction quality) Metal daisywheel	Word processing (letter quality) Plastic daisywheel	High-speed dot matrix (drafts \& reports)
Nominal speed	33 cps (480 wpm)	37 cps (540 wpm)	200 cps (2400 wpm)
Interface included	Parallel	Parallel	Serial (RS-232) (110-9600 baud)
Model \# of Diablo Print Mechanism	1355 WP	1345 A	2300
Forms Tractor	Optional (\$250)	Optional (\$250)	Included
Print Wheel included	```Titan 10 - 96 characters (others will be available in future as option)```	Courier 10 (others available as option)	7 x 9 dot matrix (both upper \& lower case with descenders) equivalent to lo-pitch type
Ribbon	Carbon film or cloth	Carbon film or cloth	$\begin{aligned} & \text { self-re-inking } \\ & \text { ribbon } \end{aligned}$
Carbon Copies	Up to 12 plus original	Up to 12 plus original	Up to 5 plus original
Print Wheel life expectancy	```Approximately l6 million characters (30-50 million characters possible)```	$\begin{aligned} & \text { Approximately } \\ & 4 \text { million } \\ & \text { characters } \end{aligned}$	N/A
Forms Width	15 inches max.	15 inches max.	15 inches max.
Carriage Return time	300 ms max .	300 ms max.	350 ms max.
Character Set	96 characters	88-96 characters	96 characters
Bidirec- tional Printing	Yes	Yes	Yes
High Speed	Yes	Yes	Yes

Vertical
and
Horizontal
Tabbing
Automatic
Tabbing for
Multiple
Spaces

 The Return Authorization lets us
 covered by a single Return

know in advance that you are returning a unit. It enables us to schedule technicians, order parts, issue credit, etc., more efficiently. So, to avoid unnecessary delays, remember these procedures:

1. Notify Customer Service by phone or mail what equipment you're sending in for repair. Give the serial number and the symptoms of the problem.
2. Use the Return Authorization number as a packing label on the outside of the box.
3. If more than one item is

Authorization slip, but the items are being shipped separately, please do the following:
A. Indicate on the Return Author-
ization slip which of the items is being shipped under separate cover;
B. Attach the Return Authorization slip to the outside of either of the boxes;
C. On the outside of the other box, clearly indicate the Return Authorization number covering the return. OR, better yet, attach a copy of the original Return Authorization slip.

闃
 emory boaro upgraoe program

If you have customers who would like to upgrade their system but don't have the additional memory or the cost is too high, here's their chance to purchase one of our new state-of-the-art memory modules.

For a limited time only (offer good through January 30, 1979) we are offering a special program which allows a customer to tradein their present memory board(s) for credit toward the purchase of one of our new, more powerful memory modules, $32 \mathrm{KRA}-1,48 \mathrm{KRA}-1$, and $64 \mathrm{KRA}-1$.

The benefits of this program are two-fold:
THE DEALER
This provides you with a good opportunity to contact old customers and fill them in on new products which are currently available:

* New energy and space conserving memory modules
* New software application programs such as WordWizard

THE CUSTOMER

Since the trade-in values are high, the customer gets an upgraded system at minimal cost. New applications programs (such as WordWizard) can be easily run on his upgraded system. And the nKRA family of memory modules offers:

* Up to 64 K on a single board-more usuable backplane slots
* Lower power consumption and less heat
* Extended memory through Bank Select
* Synchronous operation--no wait states required

[^1]\[

$$
\begin{gathered}
\text { The staff at } \\
\text { Processor Cecbnologen } \\
\text { wish all of you }
\end{gathered}
$$
\]

絭
灘

طappy طolíoays

filled with good old-fashiones obeer

THEEERSOHALCOMPTUER RETALIER

Vol. 3 No. 1 Published by Processor Technology Corporation
January 26, 1979
7100 Johnson Drive, Pleasanton, CA 94566

The next in our series of technical seminars is scheduled for February l2-16. It is especially designed for the technician who has not yet attended a Processor Technology tech seminar. Since both hardware and PTDOS software will be discussed, you may want to send two technicians. Enrollment is limited to ten people, so get those reservations in now. Phone your dealer representative, Debby Oester or Brett Bullington.

Technical seminar scheduled

The seminar will be conducted as follows:
HARDWARE
Monday: System III troubleshooting and interfacing
Tuesday: Morning--Helios service and maintenance Afternoon--SolPrinters
Wednesday: SolPrinters (con-tinued)--differences and board swapping.
SOFTWARE
Thursday: Introduction to PTDOS 1.5
Friday: PTDOS System interfacing and device drivers

Be sure to bring a PTDOS manual and two blank diskettes.

Prerequisites for attendance:
Hardware technicians must be familiar with the Sol and Helios manuals and the nKRA theory of

In this issue...

The next in our series of technical seminars..see page 1

An updated PTDOS 1.5 has been released.............page 2

Businessmen will get a chance to see WordWizard through ads placed just for them
.page 2
Enthusiasm for WordWizard
continues................page 3
More sales literature is coming your way..........page 3
DAP has some new business software; see Software
Sentre......................page 4
operation (theory will not be covered during the seminar). Technicians should have an AA or the equivalent in digital electronics or computer maintenance plus at least six months experience with microcomputers.

Software attendees should be familiar with the 8080 assembly language and should be able to read and understand the code. Each should have primary responsibility for writing and/or maintaining applications software and/or drivers.

Technicians attending the seminar will be responsible for their own transportation and motel accomodations. We recommend the California 6 Motel in Pleasanton at (415) 462-2626, or Howard Johnson's in Dublin at (415) 828-7750. Both are close to the plant.

WordWizard enthusiasm running high

by Sally Turner

Here we are embarking on another year and perhaps the most exciting quarter we've yet experienced.
We're well into the most comprehensive sales campaign we've ever undertaken.

It began with the whirlwind crosscountry visits by Gary Ingram, Dottie Wanat, Mike Mills and Ralph Palsson. Various dealers had the chance to preview WordWizard and hear all about the marketing plan to introduce it.

When asked what he thought of the visit, Eri Golembo (Computer Mart of New Jersey) said, "In this day and age it's important to have a close relationship with the vendor in order to do the best job. I was very pleased with the visit. In fact, we sold a WordWizard the day after Dottie and Gary were here. An attorney walked in looking for a word processing system. We were 'hot' from the visit. It was a natural."

Following the cross-country visit, the first of our advertising campaigns began in the WALL STREET JOURNAL. Responses have been good. When a phone call is received, the customer is referred to his local dealer. The caller's name and address is also recorded, and then this information is sent to you along with all the inquiries received from the mail-in coupons. If a customer requests a demonstration, we phone the local dealer immediately. In all cases, we immediately send the prospective customer a WordWizard data sheet.

The Monday Machine co-op ad mats were designed to help you create an awareness of both you and

WordWizard in your local community. When used in conjunction with the WALL STREET JOURNAL ad dates, the impact has been good. Be sure to take full advantage of your co-op advertising allowance and run these ads. Remember, we pay 60% of those costs.

The marketing overview which you received with your first WordWizard shipment provides you with a general overview of the system, its position in the market place, and tips (based on our experiences) on how to do an effective
(Continued on page 4)

More sales literature coming

The WordWizard, nKRA, and Extended BASIC data sheets which you recently received are the first in a series of new product literature planned for publication during this year.

These data sheets are designed to be used in conjunction with, or independently from, the colorful new six-page brochure which is currently in production. You should receive these brochures within the next month (weather conditions permitting the photography work to be completed).

The brochure is directed at a very general audience. This allows you to custom-tailor your sales literature package to the needs of a specific customer. All you have to do is insert the appropriate data sheet or sheets into the flap on the last page. Or, if a single data sheet will suffice, you can simply give that to the customer since each sheet is self-explanatory.

Software Sentre

DAP Systems is releasing the Osborne and Associates accounting package on Helios II diskettes. Representing five man-years of development by Osborne personnel, the Helios version is marketed exclusively through qualified dealers and consultants.

The package consists of three modules: payroll with cost accounting, accounts payable/receivable, and general ledger. Each can operate independently or in conjunction with the others, sharing data files where appropriate.

The dealer price for the diskettes is $\$ 100$ per module. After making the initial purchase, dealers may copy the diskettes for resale for no additional royalty.

The documentation was prepared by Osborne and is available from them under their normal bookseller's terms. It includes file layouts, file maintenance programs, data entry instructions, screen display formats, and report printout formats. In addition, the individual programs are documented with a

WordWizard

(Continued from page 3)
demonstration. Your early responses indicate that this too has proven to be a very useful sales tool.

In fact, from all indications, it appears that all of these marketing efforts are very effective. Your enthusiasm is high. I believe Ed Hammontree (Computer Port, Arlington, TX) put it best when he said, "Y'all started right and followed through; finest promotion we've ever seen in the computer business." And, I might add, we intend to keep it that way.
user's manual, flowcharts, and a narrative description. The package runs under $C P / M$ and $C B A S I C$, available for the Helios II from Lifeboat Associates (164 West 83rd St., New York, NY 10024).

The first module, payroll with cost accounting, is now being delivered. Accounts payable/receivable and general ledger are scheduled for release in February and March respectively. Prepayment is required with orders.

DAP Systems is located at 3901 Victoria Lane, Midlothian, VA 23113. (NOTE: This product has not yet been tested by Processor Technology.)

Sol saga

As told to Phil Dorcas (Computer Port, Arlington, TX): Last June, John Cade (a Computer Port customer), his two sons, and a Sol System III took a 3,000 mile, crosscountry trip in a Winnebago. Weather conditions varied from 110 degrees in the desert to below freezing in the Colorado Mountains.

Hooked to a llo volt auxillary power unit, Sol ran all day, everyday... the kids played games, and John did his work long into the night.

While crossing the hot desert during a sandstorm, the air-conditioner went out. The boys opened the windows in the van...sand went flying everywhere, and John....well, he ran off the road and the Helios disk drive fell to the floor.

John and his sons picked up the unit, shook out the sand, and plugged it in. It worked! "And to this day it still works perfectly." THE MORAL OF THIS STORY: Sol Systems are even better than they're cracked up to be!

Page 4, Vol. 3 No. 1

 Monday Machine ad's aiming at business

Again this quarter we have planned an aggressive advertising campaign for the WordWizard aimed at the business end-user. The "Introduing the Monday Machine" ad will appear in the following publications:

THE WALL STREET JOURNAL (East and West Coast editions)
THE OFFICE (a special issue on word processing systems)
THE AMERICAN WAY
SMALL BUSINESS COMPUTERS (a special issue on word processing systems)
BYTE.
As before, you will receive all sales leads generated from these ads either through our Dealer Locator Hotline or from the mailin coupon request.

When a customer calls or sends in a coupon, he receives a WordWizard data sheet from us and, of course,

Updated PTDOS 1.5 now being shipped

The new release of our disk operating system, PTDOS l.5, is being shipped with all Helios orders. All reported bugs in PTDOS 1.4 have been fixed and a number of useful features added. The changes are summarized in the preface of the second edition of the PTDOS User's Manual.

Customers using PTDOS 1.4 will undoubtedly want to switch to 1.5. We encourage you to offer the new release at no charge to customers. Anyone switching, however, should have the second edition of the User's Manual. which we suggest you sell for $\$ 30$.
the name and address of his local dealer. BUT, don't wait for them to contact you! Remember, these leads are HOT so be sure to follow-up on them as fast as you can.

Hawaiian holiday begins for winners

With great eagerness, Joel and Sheryl Shusterman embarked on their seven day trip to the beautiful island of Maui in Hawaii. (And ready they were since both their children spent the preceeding weeks with chickenpox.)

They're staying at the Kaanapali Beach Hotel on the strip. Since neither one had ever been to Hawaii, their excitement and anticipation were high. But we'll let them tell you all about it in our next issue. (In case you hadn't guessed, your friendly, roving reporter didn't get to go along despite all her protests!)

Whodunnit

Editor............ Dottie Wanat
Asst. Editor......Sally Turner
Graphics.............Lois Esser Ray Oleson

General Input........Mike Mills Diane Ascher Connie Hawkinson

Copyright (c) 1979,
Processor Technology Corporation. All rights reserved.

1 EPT $1-129$

YOUR PROCESSOR TECHNOLOGY 90 DAY LIMITED WARRANTY

1. If you are not satisfied with the service, warranty or otherwise, provided by Processor Technology or its factory authorized warranty centers, write directly to our Customer Service Manager. 7100 Johnson Dr., Pleasanton, California 94566 . We will make sure your problem receives our immediate and personal attention.
2. Processor Technology warrants each of its Products to be free from defects in materials and/or workmanship for a period of ninety (90) days from the date the product was originally purchased. This warranty applies to the original purchaser only and is limited in all cases to repair or replacement of the defective product.
3. Please carefully note that this is a two way agreement. We promise to make repairs or replacements as stated above, but you agree that except for our obligation to make good on this promise we shall not be responsible for any expense or inconvenience which you might incur or experience with respect to the product, and which may relate to any incidential or consequential damages. nor shall we be liable for defects, damage or failures caused by unreasonable use, accident or abuse. including failure to provide reasonable and necessary maintenance after the products have been delivered to you. Any product which has been mechanically, electrically or electronically altered without specific written authorization by Processor Technology is excluded from this warranty.
4. You are responsible for the transportation cost to and from the Processor Technology authorized Warranty Repair Center. If you need to ship the product to the Warranty Repair Center you must use the original carton or a suitable replacement to prevent shipping damage. We recommend you store the original cartons for this possibility. To expedite Warranty service you must return the Warranty Registration Card to the Process rechnology Customer Service Manager, at 7100 Johnson Drive, Pleasanton. CA 94566
5. No other person or entity is authorized to give any other warranties or to assume any other liabilities on Processor Technology's behalf unless made or agreed to in writing by Processor Technology. and no other person or entity is authorized to give any warranties or to assume any liabilities on the seller's behalf unless made or agreed to in writing by the seller.
6. INCIDENTAL OR CONSEQUENTIAL DAMAGES SUCH AS TELEPHONE CALLS LOSS OF TIME, INCONVENIENCE, OR COMMERCIAL LOSS, ARE NOT COVERED UNDER THIS WARRANTY
7. Any Processor Technology product purchased outside of the United States is not covered by this warranty.
8. The foregoing paragraphs constitute Processor Technology's entire warranty with respect to any product purchased or operated for personal use, as opposed to commercial use.
9. ANY IMPLIED WARRANTIES, INCLUDING THOSE OF MERCANTABILITY OF FITNESS, ARE LIMITED TO THE NINETY (90) DAY DURATION OF THIS WRITTEN WARRANTY
10. SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, OR LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY LASTS. SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. INCLUDING WITHOUT LIMITATION WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICLUAR PURPOSE, ALL OTHER REPRESENTATIONS TO THE FIRST USER PURCHASER, AND ALL OTHER OBLIGATIONS OR LIABILITIES, INCLUDING LIABILITY FOR INCIDENTAL AND CONSEQUENTIAL DAMAGES, ON THE PART OF PROCESSOR TECHNOLOGY OR THE SELLER.

The fersohal Compuler Retaller

New hardware and software debut at NCC

An entire line of new Processor Technology hardware and software products will be shown to the public for the first time at the National Computer Conference in New York, June 4-7.

Dealers who attended our April seminar had the opportunity to preview many of these new products.

HARDWARE

In the hardware department we'll be showing the all new SolDisk l, a double-density, dual mini-floppy packaged in a compact enclosure. It has a storage capacity of 350 K bytes. SolDisk 3 is a hard disk packaged in a rackmountable enclosure. It stores up to 28 Megabytes of data.

The controller hardware for each of these systems is divided into two modules. Cne module resides in the processor on the $\mathrm{S}-100$ bus backplane and can commuricate with up to seven device controllers. The device controller resides in the first disk drive enclosure and allows for the connection of up to
Inthis isSue...
An update disk for
Assurance Poiicy is
now in effect....see page 2
is now available.....page 5
NCC...Ncc...and more
NCC......starting on page 1
three additional drives before requiring another controller device.

SCETWARE

PTDOS 2 is a modified and enhanced version of PTDOS that will support the new hardware.

In the area of Business Applications software, there are programs to manage mailing lists, do general ledger, accounts payable and accounts receivable. All packages are completely integrated and compatible with each other as well as with WordWizard. They may be purchased individually or as an entire package.

MailMaster, a list management
system, provides the end-users with
(Continued on pace 3)

NewsWorthy Notes...

Joel Shusterman, Computer Emporium, Cherry Hill, New Jersey, sold 30 Sol Systems to one company as the result of his participation in trade shows. "The sale resulted from the Mini-Micro Show in Philadelphia in May of ' 78 and the Office Products \& Environment/ Sales Expo ' 79 at the Philadelphia Civic Center in December," reported Joel's proud wife, Cheryl.

Terry Batt, Midwest Microcomputers, Lombard, Illinois, recently exhibited at the Biz Services and Equipment Show in Chicago. He got follow-up requests from 83 companies. To handle all the requests, he's holding Open House in his store on weekends.

Roms 'N' Rams, Raleigh, North Carolira, has a new name--
Bennett-Stiles Computers. They also have a new full-time outside salesman, Jerry Thomas, who coordinated their Business Applications Seminar.

Due to popular demand, the Memory Upgrade Program will continue until June 30.

Bristol of Georgetown Computers in Washington, D.C. recently

Whodunnit

Editor............ Dottie Wanat

Asst. Editor......Sally Turner
Graphics............. Lois Esser Ray Oleson
General Input........Mike Mills
Elizabeth Fairchild
Connie Hawkinson Edith Reisner

Copyright (c) 1979,
Processor Technology Corporation. All rights reserved.
bought the Computer Systems Store in McLean, Virginia.

Wernor Electronik in Sweden has developed Swedish and Danish character generators for the Sol and Processor Technology software. They will be distributing throughout Sweden and Denmark. Interested dealers should contact their Sales Representative for further information.

New D.O.A. policy now in effect

Beginning March 26, a new policy went into effect for equipment received "Dead on Arrival.!

If you test an out-of-box product and find it faulty within 15 days of our shipment date, call Customer Service to receive a Return Authorization number. Be prepared to provide the following information:
A. Product name
B. Date received
C. Invoice number
D. Serial number
E. Problem with the product.

Repack the product in our shipping container and return it to us
freight collect. When packing be sure to:
A. Enclose a brief description of the problem;
B. Mark the outside of the container with the R.A. number in two places.

We will repair or replace the unit within 48 hours of our receipt of the product and ship it back to you (postpaid).

If you have any questions, please contact Linda Bilbrey in Customer Service.

New products debut at NCC

(Continued from page l)
the ability to expand their data management capabilities while cutting some routine paperwork. Some of its more powerful features include:

1. Operator can use two to four disks, allowing for 1500 to 5000 names.
2. Entries can be located within three seconds,
can be lip-
dated, added
on, or de-
lated.
3. Groups of entries shar-
ing specific characteristics may be deleted or printed.
4. Prints out
list of all changes
after update.
5. Prints out a selected group of entries or a statistical sample, iithe alphabetically or by zipcodes.
6. Prints mailing labels for each. entry, a selected group, or a sample.
7. When used in conjunction with WordWizard Electronic Typing System:
A. The mailing list data can be merged into form letters or tables;
B. Prints out personalized form letters to all entries or a selected group without reinitiating the processing for each letter.
8. Print speed can be up to 540 words per minute for letter
quality, 2400 for draft type quality.

General Ledger is a comprehensive bookkeeping system for financial reporting, offering flexibility for specifying own criteria (nambering of accounts and defining departmentalization). Some features include:

1. Maintaining data on a monthly basis monthly basis
for 24 months, stores budget figures for 12 months.
2. Data need only be input once for automatic transfer from receivables, payable and payroll into general ledger program.
3. Closes income and expense accounts to retained earninge at year end.
4. Fully autoが, tic audit trail shows printed reports oE Ell transactions facilitating the tracing
-. Maintaining
c

35 Dealers attending Software Seminar

By the time most of you receive this newsletter our Software Seminar will be underway. Scheduled to begin on Sunday, April 22, the seminar is designed to introduce you to Processor Technology's new line of business software.

For those of you who were unable to attend, we plan to hold a condensed version of this seminar in conjunction with the National Computer Convention (NCC) show in New York in June. Also, for those unable to attend, the May issue of Personal Computer Retailer will include a summary of the seminar.
5. Reports produced automatically: include:
A. Chart of accounts
B. Work sheet trial balance
C. Source journals
D. Audit trail control reports.

Accounts Payable records all incoming invoices and due dates by vendor. Other features include: 1. Outgoing checks are printed
(Continued or 4

New products debut at NCC

(Continued from page 3) automatically, making appropriate deductions to payables.
2. Multiple invoices can be paid on one check.
3. Credit memos and adjustments maintained with accurate payables totals.
4. Prepares financial reports valuable for planning cish flow requirements.
5. Outstanding invoices listed according to last possible due date each week.
6. Schedule of payments picture, focusing on discount opportunities with discount date, amount and firal payment date.
7. Aced trial balance sheet reviews monies owing.
8. Aged cash requirements report Lreaks out monies owed according to due date.

Accounts Receivable provides customer master maintenance file

- cording all information regarding balances and sales history.
Other features include:

1. All invoices entered into ccmputer and posted to receivables automatically.
2. Payments and/or adjustments are posted against the invoices as received.
3. Computerized month-end processing initiates balance forward process wherein all invoices with nil balance are removed, leaving only outstanding invoices.
4. Produces upon request:
A. Customer statements
B. Aged trial balance reports
C. Exception reports listing by due date.
D. Offers advice on customer credit limit.

SolSign Astrology System is a complete natal astrology program which includes the calculation
and explanation of the birth chart. Accurate calculations of the planets, sun, moon and house cusps. Other features include:

1. Complete transit (daily) astrology system gives daily interpretations as back-grourd, and specific interpretation of the daily sun and moon positions.
2. Easy data input, stores the longitude and latitude of major U.S. cities and remenibers any new cities that are input.
3. Gives printed output, or can be restricted to the TV screen.
4. Allows chart storage on the disk for research or for personal daily transit information.

Miss our usual?

Frankly, so do we, but in this case, don't feel as though you need to consult your local physician because you're not seeing green. Due to the prolonged strike at the paper mills, we couldn't get our regular green paper for this issue. We hope to be back "on the green" for the next edition of PCR.

New, updated disk versions of WordWizard and FORTRAN available

A new, improved version of WordWizard has recently been released. It includes:

+ Print control statements to center and offset printed text;
+ A center command to center text typed in a document;
+ A screen print activity that lets you preview the printed format of a document without actually printing it;
+ A type-ahead feature that lets you keep typing during a disk access;
+ Various general improvements.
The package is available in two forms:

1. A regular software distribution kit consisting of a

System Disk (Rev. F), a Document Disk (Rev. D), the keyboard and diskette labels, and a User's Manual;
2. An update disk--free to dealers who have already bought WoraWizard. It will put the new version on existing WordWizard disks.

The update disk will update not only WordWizard, but also FORTRAN. An existing WordWizard disk is updated to Release 4.0 (mod l); an existing FORTRAN disk is updated to Release l.l (mod 0). Any dealer who has purchased WordWizard and/or FORTPAN at any time in the past will automatically receive this update disk free of charge.

Seminar teaches customers AND dealer

We asked Eri Golembo, Vice President of retail sales at the Computer Mart of New Jersey, if he thought their recent Business Applications Seminar was sucessful. Here's his reply:
"We sure learned a lot from that seminar. We learned just how important a structured sales approach is. If you just sit and chat with someone about, let's say, WordWizard, you may forget to mention some important features. Then the customer does some competitive shopping, and someone mentions some special feature you forgot to point out. The customer thinks, 'Wow, that other machine didn't have all this,' and you've lost a sale.
"Another thing we've learned," says Eri, "was the average awareness level of our customers.

We've always assumed that the people who came to us inquirying about computers really knew a lot. Our seminar showed us that we were wrong.
> "Most of our potential customers actually know very little about computers--only that they think they need one. Often, they don't even know the questions to ask. Or, amybe they're just too embarrassed to ask. They feel that they're the only ones who don't understand the terminology. So, it's important to use use simple, easy-to-understand, non-technical language when explaining the features. Avoid 'computerese'."

Processor Technology's Elizabeth Fairchild and Debby Oester participated in this seminar.

We're hoping to see all of you at the National Computer Conference (NCC) in New York in June. Our exhibit is located on the 4 th floor, booth numbers 4048, 4050, 4052 and 4054.

In the next few weeks you will be receiving from us five guest passes for the show. If you will need more, please let your sales representative know.

We'll have an entirely new booth with two elevated sections devoted to business applications software plus a special area to demonstrate the new disk systems.

Besides showing the new product line, we're also planning a reception for all of you, as well as a condensed version of the dealer business software seminar.

We'll be publishing a full schedule of events in the May issue.

Page 6, Vol. 3 No. 3

Processor Technology Goes Under

by Tom Williams
Processor Technology Corporation, of Pleasanton, California, has closed its doors and had its telephone disconnected. On June 8th, police cars were observed at the doors of the building. A source close to $I M J$ asked one of the officers what was going on, and was told that they were attempting to serve a summons, but had as yet been unable to do so.

IMJ has been able to verify that at least two computer dealers in the San Francisco area have been contacted by the Bank of America, and told to make payment on invoices due to Processor Technology directly to the Bank of America and not to the company. Checking with the Federal Bankruptcy Court has revealed that the company has not filed for bankruptcy or for Chapter 11. It is also known that Processor Technology has laid off approxi-
mately 75 employees.
A telephone number, (415) 846 9951, has been located which appears to reach the company's offices. Repeated attempts by $I M J$ to reach Bob Marsh, president of the company, for comment, or to get comments from other officers of the company, have proven fruitless.

There has also been talk, albeit unconfirmed, that the company was planning to liquidate assets, such as office furniture and, perhaps, some equipment, by means of a public auction to be held sometime in the near future.

The question that arises for owners and users of Processor Technology equipment is: what sort of future support can they look forward to, and from what source would it come? IMJ has learned that Proteus, the Processor Technology User Society, is attempting to keep things together for users. Plans are to try to preserve as much information as possible by collecting and distributing manuals and technical data.

Processor Technology is not committed to providing manuals or notices of engineering changes. Manufacturers marketing Processor Technology accessories will also try to keep up enough orders for another production run. In addition, Proteus will try to set up a service center, employing factory-trained technicians. More information on Proteus' efforts can be obtained from: Proteus, 1690 Woodside Road, Suite 219, Redwood City, CA 94061.

About the Author
Bob Bumpous is a machine controls design engineer with Adolph Coors Company and has been doing discrete and computerized machine control design for the past four years. He previously worked for Bendix Navigation \& Control Division on documentation of SKYLAB experiments. He is a 1969 graduate of Texas Technological College with a BS in engineering physics, and has an avocational interest in personal computing.

A User's Reaction to the SOL-10 Computer

Robert Bumpous
212 N Ford
Golden CO 80401

Figure 1: Memory allocations of the SOL design. Within the 10 area at DOOO to FFFF, the SOL-10 has a UART dedicated to the tape interface, - UART dedicated to the serial communications interface, a parallel keyboard interface, one 8 bit input port and one 8 bit output port.

When I first saw the Processor Technology SOL it was love at first sight. After acquiring the SOL system, I found that it has everything (almost) a hobbyist needs in one package.

The SOL-10 system which I purchased

consists of a single 10 inch by 16 inch board computer, a keyboard, a power supply and cabinet. Figure 1 shows a memory map of the system which gives an idea of its overall structure. Processor Technology also makes the SOL-20 which has a heavier duty power supply and backplane for five extra S-100 cards.

The SOL single board computer is a complete beginning system. The board contains an 8080A processor with fully buffered data and address buses which are brought to a connector at the center of the board where an S-100 compatible backplane daughter board can be plugged in. It also has a complement of 10 ports. The board and operating system are oriented around the parallel keyboard input port and video display output port. 1 K of the 2 K of programmable memory on the board is used to store the 64 character by 16 line video display contents. The output of the display driver is an EIA composite video signal (1.0 to 2.5 V peak to peak) which will drive any standard monitor or even a modified TV set. The full 128 upper and lower case ASCII character set is available for display. With the addition of a video monitor the system becomes a smart video terminal with either full or half duplex communications modes selectable from the keyboard.

The SOL design has an asychronous serial interface port with switch selectable data rates from 70 to 9600 bps. This serial 10 port has both an RS-232 and 20 mA current loop output. Also included is an 8 bit

Figure 2: One minor printed circuit bug found by the author in testing out the SOL computer was the run from point L to point M from $U 86$ to the data rate selection switch. If 4800 bps operation is desired as an option, the run in question has to be broken and a jumper wire from point K to point M on the board has to be substituted.
parallel 10 port which allows a user to drive any external peripheral.

An option which I think is important to any system is the cassette interface. This option, used with the SOL, allows the user to read or write programs or data to a cassette tape at a software selectable rate of 300 bps or 1200 bps using standard asychronous Manchester coded signal at $1200 / 2400 \mathrm{~Hz}$ or $600 / 1200 \mathrm{~Hz}$.

The SOL-PC board itself is a high quality double sided G-10 type material with plated thru holes. There is an excellent solder mask on the board with all component locations clearly labeled. The unit I received, which was Revision D of the board, had two defects which Processor Technology asked the assembler to change: two lines crossed on the same side of the board and two lines to the S-100 bus were reversed. Both were easy to correct and I'm sure these defects will have been corrected on the next revision of the board.

I also discovered what I think is another error on the board. In the circuit that
selects the serial data rate there is a jumper that enables either 2400 or 4800 bps to be switch selectable. The board had the switch permanently connected to the 2400 b position. This caused the serial 10 to wo improperly when 4800 bps was selected. Because there are lines feeding from this circuit to the cassette interface circuit, the cassette interface would not work properly. The problem is easily corrected by breaking the lines between the L and M jumper contacts (see figure 2).

There is a moderate amount of large scale integration on the board. The 8080A processor, the ASCII 7 by 9 dot matrix encoder, the two UARTs used for the serial and cassette tape interfaces and the 5204 (512 by 8) EROMs in the personality module are the LSI chips used. The programmable memory for the computer and display is made up of 2102 parts. All of the 10 select switches and the 10 connectors are located at the rear of the board for easy access. The personality module is located along the back edge to allow an easy change of the operating system.

The system timing is derived from a 14.31818 MHz crystal controlled oscillator that feeds the video character generator, UARTs, and 8080 clock divider circuits, MSI and SSI TTL along with an AH 0026 dual MOS clock driver supply the 808° clock signals. There is an RC charge-u circuit that provides an automatic reset signal when power is turned on and a controlled "wait" period immediately after the reset signal.

The keyboard supplied as part of the SOL-10 system is a custom unit from Key Tronics which connects to the SOL-PC board through a ribbon cable connector which plugs into a header on the board. The keyboard uses no LSI encoder and no mechanical contacts and can easily be disassembled for cleaning.

The keyboard is easy to assemble and check out. All of the data bits are latched so that they can be examined at leisure. The strobe bit is only on for a very short time, two to ten $\mu \mathrm{s}$. There is only one tricky part of the keyboard assembly procedure. This is the installation of the four SIP resistor networks. Extra care must be used in installing these since they are not as clearly marked as most of the other items, and the two different sets of values will not allow the keyboard to work properly if interchanged.

The power supply for the SOL-10 consists of a power transformer, an externa filter capacitor for the 5 V supply and a regulator card to supply the required vol-

1 EPT 1- 139

Photo 1: Processor Technology SOL, with cabinet cover removed to reveal its inner secrets.

tages (12 VDC at $150 \mathrm{~mA}, 5 \mathrm{VDC}$ at 2.5 A , -12 VDC at 200 mA) to the SOL-PC and keyboard. The SOL-20 system power supply, in addition to these voltages, provides 16 VDC at 1 A unregulated, -16 VDC at 1 A unregulated, and 8 VDC at 6 A unregulated for the backplane Altair (S-100) bus daughter board. The regulated 5 V to the SOL-PC board has an over voltage crowbar on its output which, on my original version, had an overly sensitive turn on characteristic. Processor Technology has since sent a revision which corrected this problem.

The SOL system cabinet is sheet metal with solid walnut sides. It is designed to house the SOL-PC, the keyboard, power supply, backplane and five additional $\mathrm{S}-100$ cards in a fan cooled card cage. The cabinet is constructed so that the power supply is isolated from any radio frequency interference (RFI) switching transients in the memory or processor cards. The whole system looks well shielded, which is an important consideration in this age of CBers. The walnut sides come sanded but unfinished; they look nice but take a lot of time to finish properly.

The assembly manual that came with the system describes the assembly procedure very well. It features the kind of complete, step by step format that kit builders have come to expect. It seems very complete, including pictures and drawings of how to assemble the components and subassemblies
into a useful computer and terminal. However, there were no flowcharts, block diagrams or explanations of how the different sections of the computer are supposed to work, or how they interact with each other. As of this writing (spring 1977) I have still not received two sections of my manual, operating procedures, and theory of operation. Most of the information that I have on the operation of the machine has come from an article in the February Digital Design by Lee Felsenstein of LGC Engineering and Robert Marsh (vice president of Processor Technology), who are the codevelopers of the SOL terminal system. This article gives a fairly complete though not detailed description of the operation and interactions of the SOL system components.

The CONSOL operating system, which is the minimal operating system, is stored in 1024 K bytes of EROM starting at C000. This operating system has seven commands that can be executed from the keyboard, sufficient to allow the operator to enter his or her own programs or prerecorded programs and execute them. The following are the commands available through CONSOL:

1. DUmp ADDR1 ADDR2 dumps the contents of memory between address 1 and address 2 onto the CRT terminal in a hexadecimal format.
2. ENter ADDR1 enters hexadecimal format data into memory starting at address 1.

Photo 2: The SOL's display generator produced this video character graphics pattern on the author's television monitor.
3. EXecute ADDR1 executes a program in memory starting at address 1.
4. TErminal is a program designed to allow the SOL system to be used like a standard CRT terminal with serial 20 mA or RS232 interface. This ability could make the SOL system very attractive to a small business user who needs an inexpensive terminal.
5. TL (tape load) loads a prerecorded cassette tape into memory at an address specified by the tape. The information supplied with the software doesn't give a very good definition of how the TL command looks at the tape header data. Because of this, it is very difficult for the user to configure a tapeheader for any data he or she would like to store on a cassette.
6. BAsic executes a program located at address 0000 , typically BASIC.
7. The final command is the MODE command which calls a program that allows all the other commands to be entered on the keyboard and recognized by the computer system.

The early version of CONSOL which I received does not have a command to dump data from memory into a cassette tape. This
is a great disadvantage when trying to develop a program. Whether the program being developed bombs out or is successful it is nice to have a copy so it doesn't all havi to be typed in again.

The purchaser of a SOL system is also supposed to receive a 5 K BASIC operating system with the purchase of the on board audio cassette interface. This 5 K BASIC includes two computer video games. I had not yet received this when this article was written in the spring of 1977.

I ordered my SOL system on September 41976 and anxiously awaited its arrival. Only a portion, the SOL.PC, arrived on November $18 \quad 1976$ along with part of the manual. When 1 opened the box I was confronted with what appeared to be a rather large, random accumulation of parts. However, all of the parts called out in the parts list were there. The assembly would have gone faster if the components had been sorted, placed in small bags, and marked as to the section of the assembly procedure they were for.

The procedure given in the manual calls for construction and checkout to proceed together. To follow the manual you must have a power supply and keyboard to properly assemble the complete SOL system. Because I didn't have either of these items I was only able to proceed with the assembly until I came to the first step, which required the power supply; there I stalled. I spent all of Christmas 1976 lurking around the mail box, awaiting the delivery of the rest of my system. Finally, on January 4, it arrived and off to my basement "laboratory" I scurried, not to emerge "til the beaste was up and running."

After much soldering, bending and clipping, I reached the point of the first operations test. I plugged in my TV monitor, turned on the SOL system power, hit the MODE key, and typed in the DUMP command. Nothing! All I could get was the CURSOR in the upper left hand corner of the screen. This is when the lack of block diagrams and explanations of the system really hit me. After what seemed an extremely long time, I managed to solve the problem. The display uses the first several words of user memory to store the line and character positions for the video display, and somehow, in my haste to complete the assembly, I had bent a pin under on one of the memory chips. Dumb, but almost impossible to locate. Once this problem was solved the rest of the system went together very smoothly.

The total assembly time, excluding the
time I spent looking for my own error, was about 36 hours. The sanding and coating of the walnut cabinet sides took about five more hours. I used clear atin polyurethane finish of the type found in most hardware stores. This is a very hard, clear, fast drying resin that puts a tough, mar resistant sealer on the side panels.

Overall, I feel that the Processor Technology entry in the microprocessor race is a good buy. I have had what seems to me excessive delays but I believe that now that the production of these units is in full swing, there should be a minimal amount of lead time on the system hardware. Processor Technology says that they have sold almost 1,000 of these systems. The software development, however, seems to be lagging well behind the hardware as might be expected from the history of computer science in general.

If you are planning to develop your own software or plan on buying it somewhere other than Processor Technology, the SOL system will serve you nicely. The CONSOL routine provides a step up from the front panel toggle switch design philosophy of most of the other microcomputer manufacturers and I feel it warrants the purchase of this system.

Editors' Note:
At the time this article was edited (August 15 1977) a SOL- 20 with 16 K memory and CONSOL was resident in our office ot BYTE. 5 K BASIC is now being delivered, according to Terry Holmes of Processor Technology.

> The Following Comments Were Received from Bob Bumpous with His Author's Proofs on October 71977.

> Since completing my SOL-10 I hove written a couple of short programs to test the various hardware options of my system.

> I have also purchosed the SOL upgrade kit which adds she larger power supply fan and backplane and an IMS 8 K memory.

> I have received the two missing sections of my manual and my BASIC tope. I have not yet been able to run BASIC due to a problem I'm having getting my cossette tape interface to operate properly.

> 1 have also received my SOLOS operating system; all of the functions except the tape interfoce seem to work well.

1 EPT 1- 142

This page intentionally left blank.

The SOL-20 in a New England parlor context, obviously enjoying life. The entire system fits on one table with a video monitor on top of the computer and an audio tape recorder for mass storage to the right.

User's Report: The SOL-20

Dennis E Barbour
2 Coliseum Av
Nashua NH 03060

John Kemmeny in his book, Man and the Computer, reveals his thoughts concerning the future of computers. Kemmeny believes that people will have access to large regional computers in the future. This will allow people to do many jobs in the home and provide entertainment and knowledge. A computer terminal in the home will be tied to a large regional supercomputer giving people the ability to do many things at home not now possible, such as reading the latest news stories, studying subjects for degree credit, storing recipes to allow the input of a week's menu and production of a grocery list of needed items, and the recording and computation of family financial matters. The possible uses of this type of computer are unlimited.

Processor Technology has taken this concept of the home computer terminal attached to a supercomputer one step toward reality by providing the home user with a terminal and microprocessor combination, the SOL, capable of functioning
with, or independent from, another computer. The operating systems provided by Processor Technology allow the SOL system to operate as a microprocessor independent of any outside processor with its own peripherals until the terminal command is issued, which causes SOL to operate as a computer terminal. This combination will allow the greater use of your home microcomputer today and in the future. What follows is a brief description of a SOL system based on my personal experiences.

Hardware

My microprocessor, a SOL-20, uses an 8080 processor chip. (The 8080A and the 9080A are also available.) This system has both parallel and serial communication interfaces, a keyboard interface, audio cassette interface, a video display generator, 10248 bit words of volatile system memory, and 10248 bit words of volatile display refresh memory. My system also has 8 K
bytes of volatile main user memory for programming and an operating system in a "personality module" with preprogrammed read only memories.

A feature of the hardware is a parallel interface consisting of eight bits for each input and output plus control handshaking signals. The output bus uses three state TTL levels for bidirectional interfaces. The serial interface circuit includes both asynchronous RS-232 and 20 mA current loop provisions and operates at from 75 to 9600 bits per second, switch selectable. (When I say that something is switch selectable, I mean that there is a series of small switches on the printed circuit board and an explanation in the hardware manual of what the switch does and what your options are.) The keyboard interface handles a 7 level ASCII encoded TTL keyboard which requires a strobe pulse after the data is stable.

The audio cassette interface is program controllable and self-clocking with a phase lock loop. It operates at the dual rate of 300 or 1200 bits per second. Included is an automatic level control in both the record and playback modes. Recording is the CUTS/BYTE standard compatible, an asynchronous Manchester code at $1200 / 2400 \mathrm{~Hz}$ or $600 / 1200 \mathrm{~Hz}$.

The video display circuitry generates 16 lines from data stored in its 1 K refresh memory. Alphanumeric and control characters (the character set includes all upper and lower ASCII plus control characters) are displayed in either black on white or white on black (this feature is switch selectable). The solid video cursor with a switch selectable blink is programmabie. This circuitry can drive any video monitor or monochrome television converted to handle video input.

The assembly of the SOL appears to be relatively easy. I bought my SOL fully assembled, but I read the assembly instructions, looked at the diagrams, and thoroughly examined the hardware. I believe that I could quite easily put a SOL together. The instructions are simple and straightforward. The assembly notes include parts lists, assembly tips and precautions, pictures and drawings, and step-by-step instructions on assembly and testing. Also included are instructions on handling integrated circuits, soldering techniques, and a list of the tools that will be needed. Processor Technology provides schematic and detailed assembly drawings in a separate section of their manual.

Another important feature of the SOL is the system's completeness and modularity. All of the hardware is in one package and looks like a large electric typewriter. The

DUMP	ADDR, ADDR	Dump memory locations to screen ENTER
ADNR	ADDR data to memory	

Table 1: CONSOL operating system command summary.

DUMP	ADDR, ADDR	Dump memory locations to screen
ENTER	ADDR	Enter data to memory
TLOAD		Load data from tape to memory
EXECUTE	ADDR	Execute a program at a given address
BASIC		Execute a program located at address zero
TERMINAL		Return to terminal mode
TSAVE (NAME)	ADDR, ADDR	Save certain memory locations on tape
TXEQ (NAME)	ADDR	Load a certain program from tape and execute it
TCAT		List tape header information
SET	Allows the setting of the following things	
SET DI	Set display speed	
SET IN		Set input driver
SET OUT		Set output driver
SET TAPE		Set tape speed
SET CI		Set custom input driver address output driver address
SET CO		Set types into tape save header
SET TY		
SET XE		

Table 2: SOLOS operating system command summary.
video monitor and cassette recorders are attached at the back panel with cables. The system does not have exposed boards or parts to collect dust or be damaged. The system can be easily transported.

Operating Systems

SOL, at present, has three operating systems. They are CONSOL, SOLED and SOLOS. CONSOL allows simple terminal operations and computer functions. SOLED allows more advanced terminal operations than CONSOL with additional screen, file and cassette tape operations. SOLOS allows use of the full range of the microprocessor plus the full functions of an intelligent terminal. I cannot describe SOLED any further, not having the information available to me. However, CONSOL and SOLOS will be described in detail.

CONSOL, the simplest of these operating systems, allows the SOL to function both as a standard CRT terminal and as a microcomputer. This software system is not as sophisticated as SOLOS which has many more commands and greater abilities.

All the operating systems work in the following fashion. The same switch to power up the hardware serves to initialize the operating system. The operating system initializes system memory, clears the screen and enters the terminal mode. Depressing the mode key causes SOL to operate as a microcomputer. The operating system issues a prompt character and awaits further commands.

```
10 REM THIS PROGRAM IS FOR TEACHING YOUNGSTERS MULTIPLICATION.
20 PRINT "DO YOU UANT TO TRY THE MULTIPLICATION PROGRAMT"
30 PRINT "ANSUER I POR YES. AND & FOR NO."
40 INPUT X
S0 &F X=8
SO PRINT
70 PRINT "INPUT THE FIRST NUMEER.*
8O INPUT A
90 PRINT A: O TIMES**
100 PRINT
I1O PRINT "INPUT THE SECOND NUMBER."
1 8 0 ~ P R I N T ~ E ~
130. PRINT A;" TIMES*"; ; ;'" EQUALS"
1MO PRINT
15O PRINT "INPUT UNAT YOU THINK THE ANSUER SHOULD EE."
160 J=A B
170 INPUT C
180 PRINT A:m TIMES"IB;" EQUALS";C
190 IF C=J THEN 260
200 PRINT
2IO PRINT "YOUR ANSWER HAS INCORRECT."
220 PRINT
830 PRINT A&" TIMES*0 &B&" EQUALS" % J
24O PRINT
250 GOTO 890
860 PRINT
270 PRINT "CONGRATULATIONS, YOUR ANSUER UAS CORRECT."
880 PRINT
290 PRINT "DO YOU VANT TO CONTINUE?*
290 PRINT "DO YOU HANT TO CONTINUET" 
300 PRINT "A
320 IF X=2 THEN 34O
330 GOTO 60
340 PRINT
350 PRINT "HAVE A NICE DAYI\infty
360 END
```

RUN
DO YOU HANT TO TRY THE MULTIPLICATION PROGRAM?
ANSUER 1 POR YES, AND 2 POR NO.
ANS
INPUT THE FIRST NUMEER.
18
2 TIMES
INPUT THE SECOND NUMBER.
12
2 TIMES 2 EQUALS
INPUT HHAT YOU THINK THE ANSUER SHOULD BE.
12
8 TIMES 2 EOUALS 2
YOUR ANSEER UAS INCORNECT.
8 TIMES 8 EOUALS
DO YOU HANT TO CONTINUE?
ANSUER 1 FOR YES. AND 8 POR NO.
11
INPUT TME FIRST MUNEER.
18
- Tines
IWPUT THE SECOND WURERR.
-
- Tines \& EOUALS
JMPUT MAAT YOU THIMK THE AMSUET SMOULD BE.
74
- rimes \& counls a
CONGRATULATIONS, YOUR AHSEER WAS CORRECT.
DO YOU UANT TO CONTIMUET
ANSWER I FOR yES. MMD I FOR WO.
78

Mave a mice days

Listing 1: A tutorial BASIC program of the simplest variety, created one evening to instruct a 6 year old in some of the complexities of arithmetic.

There are five commands for operating SOL as a microcomputer under CONSOL, two for entering data, two for executing programs, and one for displaying the contents of memory on the monitor. (See table 1 for the complete list of CONSOL commands.) A person can enter data either through the keyboard by means of the ENTER command or through a cassette tape recorder by means of the TLOAD command. The ENTER command permits the altering of any byte or series of bytes of storage with either data or a machine language program. Program execution begins with the issuance of either of two commands. EXECUTE allows the execution of a program beginning at any point that you name in memory, whereas the issuance of the BASIC command starts program execution from memory location zero. The fifth command, DUMP, allows the displaying of any byte or series of bytes on the video monitor.

The SOLOS operating system allows for more advanced operation of the SOL. (See table 2 for a complete list of SOLOS commands.) Besides the six basic commands allowed under CONSOL, there are four additional commands, with one of these additional commands, SET, having eight different options. To begin with, the TLOAD command is different under SOLOS than under CONSOL. Under SOLOS, the TLOAD command allows the searching of a tape with multiple files for a certain named file, skipping over all files before it. Under CONSOL, you have to manually move the tape to the beginning of the tape file.

TSAVE allows the saving on tape of the contents of the memory locations indicated. TXEC allows the loading of a named program from tape to memory and the immediate execution of that program. TCAT allows the listing of the tape file header information on the monitor. This information includes the file name, execution address, and the beginning and ending addresses of the program when loaded to memory.

The SET command has eight different options. One can set the display speed, allowing the speeding up and slowing down of characters on the monitor to suit your programming. Using this option of the BASIC language interpreter, I was able to generate a very impressive lightning bolt image for my young son and his friends. The input and output driver speeds can be controlled through the use of the SET command along with the tape speed, and
the input and output driver addresses. The tape save headers can also be altered using SET. The more useful of the two operating systems is obviously SOLOS since it allows greater flexibility.

Software

My system has a BASIC interpreter, the BASIC-5 package. This interpreter has many of the usual BASIC commands and statements. It also allows use of system commands within programs. BASIC-5 allows the usage of single dimension arrays, many BASIC functions, and the ability to read and write tapes. It also has 8 digit precision and the ability to link to machine language subprograms.

I would advise the purchase of the 8 K BASIC for one important reason: the ability to have several commands and features not available in the BASIC-5 interpreter. These would be the RNUM command which allows the renumbering of statements, and also the ability to utilize alphanumerics and matrices (instead of only single dimension arrays) which would be particularly useful.

Uses

I have utilized my SOL for several things. First and foremost, I have introduced my 6 year old son to computers through games and learning programs, such as the multiplication program reproduced and described in listing 1. I have also used it for entertainment especially through the use of the target game provided by Processor Technology, and a few games I have written. Lastly, I have used it to fool around with my first love, history. I have written several statistical analysis programs for the SOL using the BASIC-5 software to continue with my research on colonial New England. Also reproduced here, as listing 2 , is a sample of a simple program to do elementary fertility figures.

I have reproduced and wholly written a few programs to assist in the mathematical education of my son. MULT and two other programs have been written as interactive quizzing programs to test and teach mathematics through praise when he is correct and by showing him the correct way when he is wrong. Thus the computer acts as a teacher and could be utilized in this fashion in every home and classroom for elementary school aged children. More sophisticated programs could be implemented on the SOL for older children. These programs, in the form of games, could serve two purposes, entertainment and education.

Listing 2: A sample of a statistical BASIC application typical of programs used by the author in his avocation of historical studies.

```
10 PRINT*TMIS PROGRAM UILL PRDDUCE FERTILITY FIGURES*
|I PRINT*FOR THE DATA INPUT. THE OUTPUT CONSISTS OF"
12 PRINTNTHE PROPORTION OF BIRTHS TO MARHIAGES OUERN
13 PRINT*A DECADE UITH FIVE YEAR INCREAENTS BETUEEN DATA.\infty
14 PRINTNTHESE FERTILITY FIGURES (THE BIRTH RATE) CONSIST OFN
15 PRINT"THE NUMEER OF BIRTHS FOR A DECADE DIUIDED EY TME*
16 PRINYMMUNBER OF MARRIAGES FOR A DECADE UHICH DERAN FIVEM
17 PRINTNYEARS EARLIER.\infty
65 DI=0
6s i=0
100 PR&WT`INPUT THE STARTING YEAR CBETUEEN 16SO/1795% DESIRED
105 INPUT Y
106 PRINT``NPUT TME NUNEER OF SETS OF YEARS OF DATA
107 I NPUT D
110 PRINTNINPUT THE WUNBER OF FIUE YEAR INCREMENTS DESIRED N
120 1NPUT N
```



```
189 DIM FR(4O),Y3(4O)
130 FOR J=1 TO D
140 READ YI(J),W1(J)&El(J)
160 NEXT J
195 PRINTN MARRIAGE YEARS FERTILITYO
800 POR J=1 TO D
8OS IF I=N THEN 34O
210 &F YI(J)<Y THEN 290
820 72(J)=Y!(J+2)-1
```



```
850 PR&NT Y&(J),Y&(J)OF!(J)
260 S=S&Fl(J)
870 D1=D1+1
880 1= % + 1
885 F2(1)=F!(J)
8B6 Y3(!)=Y!(J)
290 NEXT J
340 MES/DI
350 PRIMTNMEAN OF FERTILITY FIGURES M & M
395 PRINT
396 PRINT
398 PRINT * YEAR FERTILITY'
399 P
400 FOR K=1 TO 1
480 L=IMT(CPE(K)电10)/2)
40 PRINT Y3(K): "+&"zTAB(L):"**
490 MEXT K
```



```
9 0 0 ~ D A T A ~ 1 6 5 0 , 5 , 2 8 , 1 6 5 5 , 8 , 3 2 , 1 6 6 0 , 1 4 , 4 3 , 1 6 6 5 , 9 , 4 4 4
910 DATA 1670,20,78,1675,18,90,1680,86,125,1685,89,168
980 DATA 1690,84.163,1695,10,156,1700,84,179,1705,34,196
930 DATA 1710,54,839,1715,40,847,1780,64,887,1785,66,889
940 DATA 1730,84,333,1735,88,388,1740,B8,371,1745,98,354
950 DATA 1750,87,372,8755,105,365,1760,88,388,1765,80,377
960 DATA 1770,65,342,1775,80,311.1780,108,898.1785,105,344
970 DATA 1790.118.828.1795.99.350
999 END
```

THIS PKOGRAM UILL PRODUCE FERTILITY FIGUPES FOR THE DATA \&NPUT. THE OUTPUT CONSISTS OF
THE PROPORTION OF BIRTHS TO MAKKIAGES OVEK
A DECADE UITH FIVE YEAR INCRDMENTS BETHEEN DATA.
THESE FERTILITY FIGURES (THE BIRTH RATE) CONSIST OF
THE NUMRER OF BIRTHS FOR A DECADE DIUIDED BY THE
MUNEER OF MARRIAGES FOR A DECADE YHICK BEGAN FIUE
YEARS EARLIER.
INPUT THE STARTING YEAR (BETGEEV 1650/1795) DESIRED:
11650
INPUI THE NUMBER OF SETS OF YEARS OF DATA:
730
INPUT TNE WUNBER OF FIVE YEAR INCREMENTS DESIRED: 980

Micro Diversions Continuing Microcomputer Education announces

MICROCOMPUTING HARDWARE AND SOFTWARE

An introduction to the design, construction, and programming of microprocessor-based computers.

These are companion "how-to-do-it" courses on the hardware and software technologies of personal computing taught by Micro Diversions product designers.

Eight Monday and Wednesday Evening Sessions

1 May through 24 May
Each course $\$ 110.00$ or $\$ 190.00$ for both. Micro Diversions. Inc.
7900 Westpark Drive, Suite 308 McLean, Virginia 22101
(703) 827-0888

Listing 2, continued:

In closing, 1 find the SOL system easy to use, fun to program, and important in our home. It provides my family with entertainment in the form of games both from Processor Technology and written by us. It also provides a mathematics tutor at home for my son. It has also given my son an interest in and understanding of computers far beyond his years and education. I definitely recommend the SOL, based on my experiences with it. -

80-103A Serial I/O and FSK modem for professional and hobby communications.

- Completely compatible with your IMSAI, ALTAIR* SOL * ${ }^{\text {o }}$ or other $\mathrm{S}-100$ microcomputers. Trademarks of "MITS, " "Processor Technology
- Designed for use on the dial telephone or TWX networks, or 2 -wire dedicated lines, meets all FCC regulations when used with a CBT coupler.
- All digital modulation and demodulation with on board cyrstal clock and precision filter mean that NO ADJUSTMENTS ARE REQUIRED
- Bell 103 standard frequencies
- Automated dial (pulsed) and answer
- Originate and answer mode
- 110 or 300 BPS speed solect
- Complate solf test capability
- Character length, stop bit, and parity
- 90 day warranty and full documentation
49.95 Ascembled (48 hour burn in)
279.95 mester Cherge or Vise sccepted.
DC Hayes Assoc.
P.O. Box 9884, Atlanta, Ga. 30319, 404/231-0574

1 EPT 1- 148

This page intentionally left blank.

1 EPT 2-1

Chapter 2. Processor Technology ACCESS Newsletter
Vol 1, No l, February 1977...................................... ${ }^{2}$
Vol 1, No 2, April 1977.. 14
Vol l, No 3, June 1977.. 30
Vol 1, No 4, November 1977.. 50
Vol 2, No 1, March 1978... 86

A Letter from the Editor

"The flowers, the gorgeous, mystic multi-colored flowers are not the flowers of life, but people, yes people are the true flowers of life: and it has been a most precious pleasure to have temporarily strolled in your garden."

Lord Buckley

No, this isn't a poetry journal or philosophical tract, but we do feel that Lord Buckley elucidates the concept behind the Processor Technology newsletter: its contents will be the kind of information that allows you to expand the creative applications of your personal computing system.

ACCESS is dedicated to the creation of a personal dialog between us at PTC and you, the pevple willy vur products, because we believe that it's important for you to understand your present system well enough to use it effectively, before you become trapped in the "bigger means better" syndrome.

Hence there will be no advertising of any kind in ACCESS, and no thinly disguised pitches aimed at getting you to part with your hard earned money for the unneccessary duplication of existing hardware.

Each issue will contain articles, engineering/application bulletins, and software (PROGRAM) listings which we think will help you get more fun out of owning your computer.

All we expect from you in return is what's known in technical and psychological circles as feedback. If you have devised a neat hardware modification or written a nifty program, send it to us and you'll get no financial remuneration. You'll just get the glory of seeing your name in print. Very spiritual, eh what?

Aram Attarian II

Subscription Information

ACCESS will be published every six weeks. This first issue is being sent free to all of our customers. If you like what you see, we hope you'll send us $\mathbf{\$ 4 . 0 0}$ for a year's subscription so we can keep the info coming. Write to us at Processor Technology, 6200 Hollis Street, Emeryville, CA 94608.

One to One Communication

Open two-way communication is our goal, and it would be great to have unlimited time to rap with you over the phone. But we can't manage that logistically, so we are instituting procedures that will get your questions answered efficiently, without eliminating the personal touch.

You can get through to our engineers and technical staff any time between 9:30 and noon or $1: 30$ and 4. Monday through Friday. The number is (415) $652-8080$. They'll try to answer your technical questions and provide more detailed product information than you may glean from our literature. It helps a lot if you think out your questions before you call, maybe make a few notes. It helps, too, if you have the manual and/or equipment handy to the phone. The easier it is for you to figure out exactly what we're talking about (and vice versa), the more help we can give in one phone call and the more phone calls we can handle. We ll also be happy to answer your questions if you drop us a letter.

There are two or three situations in which calling us isn't the fastest way to get help. If you have a problem with a Processor

Technology product which you purchased from a local dealer, try your dealer first. They're all authorized to service the products they sell, precisely because they can give you faster and more personalized service than anybody can by mail. Our dealers all have diagnostic tapes available now, so if you need a PTC product tested it can be handled on the spot.

If you need a defective part replaced, just mail it to us with a note of explanation. There's nothing we can do about it over the phone anyway, so you might as well save yourself the time. (Naturally, it helps if yc explanation is as clear and concise as possible, but we can't all be Hemingways.) If you need service that isn't covered by your warranty, please enclose a check for the $\mathbf{\$ 2 0 . 0 0}$ minimum service charge. If the cost exceeds that (heaven forbid!') you will be notified before we proceed with the service.

If you do send in one of our products for repair, please send only the defective board. For obvious reasons. we cannot be responsible for the care and feeding of your monitors, keyboards or other products from other manufacturers.

MATCHMAKING-Software Division

Since most important programs are written for a particular system, modifications are sometimes in order to improve compatibility with your system. We ll be passing on more good ideas as we come across them; here are two dealing with MITS BASIC and the VDM.

MITS 12K Extended Disk and the VDM

If you don't have a $3 \mathrm{P}+\mathrm{S}$ interface, you can still use the BASIC program in your VDM manual to link MITS 12 K Extended Disc to your VDM driver. Simply change these six lines in the listing of VDM-1 to BASIC link appearing on page $\mathrm{AV}-18$ of your VDM manual, and then run the program as explained there. Change the statements to read as follows:

0106 FOR Y $=\mathrm{L}$ TO L +419
0140 POKE G. $195:$ POKE G + 1.0:POKE G + 2.P:POKE G-3.0 0160 DATA 195.151,1001,195,156.1001,245.229.213.197 0162 DATA.205.58.1000.193.209.195.14 , 1001,245.58 0232 DATA0.0.6.225,241,193.201.254.26.195,142 0234 DATA13,254,127,202,142,13,195,46,1000
MITS 8 K or 12 K BASIC and the VDM If you have I/O ports that are assigned 20 and 21 instead of 0 and 1 . you'll need to make five statement changes in the VDM-1 to BASIC link program in your VDM manual. The listing appears on pp . $\mathrm{AV}-17$ to $\mathrm{AV}-19$ of the manual, and should be modified as follows:

0078 IF $\mathrm{A}=219 \mathrm{AND} \mathrm{B}=16$ GOTO 92

0000 IF $\mathrm{A}=219 \mathrm{AND} B=17$ THEN $\mathrm{I}=\mathrm{K}$:GOTO 106 0152 DATA $219.255,31,210,13.1000 .219,16.230 .2000$ 0224 DATA201,219.16,230.6000.201,58.140,1001.254 0228 DATA201,219.17,230.127,254,1.202.46.1000

MATCHMAKING-Hardware Division

Abstract

When you're combining equipment from different manufacturers, optimum performance often depends on specific information about the idiosyncracies of their connections. Owner's manuals can't cover every permutation and combination, so think of this feature as a running supplement that gets down to cases.

3P +S and the OP-80A

We've had a lot of inquiries about using the OP-80A high speed manual punchpaper tape reader with the $3 \mathrm{P}+\mathrm{S}$, so we asked Oliver Audio Engineering for the straight scoop on interconnecting it with the $3 \mathrm{P}+\mathrm{S}$ interface. Note that the OP-80A acknowledge line must be programmed for a negative true (ack) signal. We've also heard from many of our customers that the use of black tape and rolled tape (instead of fanfold) produces more accurate data transfer, using the OP-80.

Announcing the SOL USERS GROUP!

The Sol Users Group was recently organized by members of the Homebrew Computer Club in Palo Alto: SUG is not affiliated in any way with Processor TechTechnology. The purposes of SUG are to exchange software and other applications. and to create standards. If plenty of interest is shown. a Sol Newsletter will be published and sent to members.

If you own or have ordered a Sol. send your name, address. phone number and ideas to:

> Bill Burns
> 4190 Maybell Way
> Palo Alto, CA 94306
> (Please don't call.)

PT 4KRA Memory Boards and the Motorola M6800

The following diagram should help you expand your M6800 system with minimum headaches. Note that the M6800 can drive 2 4KRA cards at reduced clock rates without bus drivers; however, full buffering is recommended.
 The VDM-1 can live quite happily with your 6800 if a small amount of signal processing is performed externally.
Signals which may be directly used by the 6800 system are:
ADR0-ADR15 High-active address
DO0-D07, High-active data lines. They
DIO-DI7 may be connected in parallel to form a bi-directional data bus if necessary.

Signals which require conversion or re-interpretation:

PSYNC Connect to high-active VMA - (Valid Memory Address)
$\Phi 2$ Connect to $\Phi 1$ clock
Pin 4 of IC 18 Break connection to Pin 3
(74LS132) and connect to Pin 2

SINP, SOUT Connect to the highestorder address bits which are " 1 " when registers are addressed. (Bits 14 and 15
are suggested. I Presence of a " 1 " on either line will cause the address decoder to switch its comparison to to the status port address. The status port will therefor respond to any address whose top six bits are set by jumpers (see your VDM1-1 manual), and whose bits 8 and 9 are zero. The loworder 8 bits are not decodec during status port response.
PWR Externally generated signal consisting of VMA $\bullet \Phi 2 \bullet R$ MWRITE Inverted PWR

PDBIN Externally generated signal consisting of VMA $\bullet \Phi 2 \cdot \overline{\mathrm{R}}$ XRDY, PRDY Not used
Note that $+8 \mathrm{~V},+16 \mathrm{~V}$ and -16 V are still required to operate the board. and that 6800 systems designed for all 5 -volt operation may have to be augmented. Simple unregulated supplies will perform well. but care should be taken not to exceed +10 V on the -8 V line to avoid excessive dissipation in the +5 V regulator.

What's the Best Monitor for your Sol or VDM-1?

That's one of the questions we're asked most frequently. We always recommen a black \& white monitor designed for use with closed circuit TV systems or videotape recorders. Check your local Processor Technology dealer for good sources: they re up on that sort of thing.

If you want to use a regular black \& white TV, try for a solid state model with an isolation transformer. In either case. remember that you don't have to spend a lot of money to get a decent picture. so let the rest of the family enjoy that big screen super color set.

Editor: Aram Attarian II
Publisher: Wible/Rampton Advertising.
727 15th Avenue. San Francisco, CA 9.1118 ACCESS is published approximately every six weeks. Subscription rate: S4 per year, from Processor Technology Corp., 6800 Hollis St., Emeryville, CA 94608.
ACCESS Copyright © February 1977 by Processor Technology Corp. All Rights Reserved. Material in this publication may not be reproduced in any form without permission from Processor Technology Corp.

terfacing a Keyboard and VDM with ALS-8, using the 3P+S.

To get your keyboard connection up and running. you'll need to connect 7 data lines, the keyboard strobe, and ground to the J2 connector of your 3P+S. Figure 1 shows the typical keyboard connections.

USING A KEYBOARD AND THE VDM

 WITH THE ALS-8
KEYBOARD INTERFACE

TYPICAL KEYBOARD CONNECTIONS

Fis. 1
The keyboard strobe. This circuit tells the processor when a key has been pressed. You'll need to install an additional IC (preferably in a 16 pin DIP socket) in the unused IC pad in the lower right corner of your $3 \mathrm{P}+\mathrm{S}$. and connect it to pin 7 of J 2 . It's used to condition the strobe. Use a 74^{\top} 「 109 or 74109 . (Figure 2)

STROBE CONDITIONING CIRCUIT

Fig. 2

To wire the 74109:

1) Connect pins 2 and 3 to ground.
2) Pins 16 (VCC) and $8(\mathrm{GND})$ are already connected on board.
3) Connect pin 1 to pin 1 of IC 15 to provide a pull-up connection.
4) Connect pin 5 to pin 11 of IC 15 to reset the flip-flop when data has been accepted.
5) Connect pin 7 to a point on $3 P+S$ leading to J2 pin 12. This point will go low when the strobe occurs.
6) Connect pin 4 to a point on $3 \mathrm{P}+\mathrm{S}$ leading to J 2 pin 7 , the point where the strobe ${ }^{r}$ 'm the keyboard will be connected.

The data lines. Either seven or eight data lines are used to transmit the ASCII code for the key being pressed to the computer. They re connected to the B port inputs of the $3 \mathrm{P}+\mathrm{S}$ in the following manner:

Keyboard Signal	$\mathbf{3 P}+\mathrm{S} \mathbf{~} \mathbf{2}$ Connector	Data Bit
Bit 1	Z	D0
Bit 2	Y	D1
Bit 3	X	D2
Bit 4	W	D3
Bit 5	V	D4
Bit 6	U	D5
Bit 7	T	D6
Bit 8^{*}	S	D7

${ }^{*}$ Pin J2-S is left unconnected if your keyboard doesn't have an eighth bit.

Ground, $+5 \mathrm{~V},-\mathbf{1 2 V}$. These provide power for the circuitry of the keyboard. Ground is simply connected to pin 12 of J2. +5 V and -12 V (regulated) should be provided by a separate power supply. Some KYBDS only require +5 V . Figure 3 shows an example of one, assembled on a small piece of perf board and attached to the keyboard or main frame. Jumper it to the keyboard connector.

ASSEMBLE ON SMALL PIECE OF PERF
BOARD AND ATTACH TO KYBD OR
MAINFRAME AND JUMPER TO KYBD CONNECTOR

Jumper areas. Only two are important for the keyboard interface: Area A must be jumpered for address 0 (i.e., all to ground), and Area B must be jumpered from left to center, to set port A at 0 (status) and port B at 1 (data) to correspond to Processor Technology software.

Testing the interface with ALS-8.

1) Turn on the computer and examine location E 000 H . When you hit Run, the address lights should look like this:

$$
\begin{array}{cccccccc}
\text { A15 } & \text { A14 } & \text { A13 } & \text { A12 } & \text { A11 } & \text { A10 } & \text { A9 } & \text { A8 } \\
\bullet & \bullet & \circ & \bullet & \circ & \circ & \circ & \bullet
\end{array}
$$

$$
\bullet=\text { Light on } \quad \circ=\text { Light out }
$$

2) Be sure the keyboard is sending upper case characters. Type EXEC E024, then hit the carriage return key. Address light A13 should blink instantaneously at this point.
3) Type IODR/SYSIO/0 FE77, then hit the return key. Again, address light A13 should blink.
4) Now hit Space, Space, Return; wait a moment and then hit Control Z. The screen should now be blank.
5) Hit Control S. The word SPEED? should now appear in the lower left corner of the screen. If it doesn't, you may have to adjust the horizontal and vertical controls on the VDM to get this message onto the visible portion of the screen.
6) Type 1; you should get an automatic carriage return, then type DUMP 0 FFFF and hit Return. Memory will now dump on the VDM display. You can hit the Escape key to stop the dump.
7) Now you're ready to start programming with the ALS-8! Try some of the examples from the ALS-8 manual to familiarize yourself with its operation.

Hoare's Law of Large Programs
Inside every large program is a small program struggling to get out.

Good News for our Customers in Europe: VDM-1 and the European 50 Hz Standard

The European television standard maintains the same horizontal rate as the U.S. $(15,750 \mathrm{~Hz})$, but it defines a raster of 625 lines at a field rate of 50 Hz . The effect is to increase the number of scan lines on the screen.

It's quite easy to modify your VDM-1 to work on this standard. Simply disconnect pin 5 of IC 8 from pin 6, and reconnect it to ground (pin 4). This increases the modulus of the counter to 8 in the VDISP time. resulting in 4 extra character lines (52 scan lines) on the display. The total is now 312 scan lines per field, the equivalent of 624 per frame.

The field rate should be close enough to 50 Hz to reduce any swim effects to less than 0.1 Hz . You may have some trouble centering the display in the frame, because the standoff time to VSYNC from the bottom of the display is still on the 60 Hz standard. If the effect is objectionable, increase Resistor R 34 in series with the VPOS control.

Rule of Accuracy

When working toward the solution of a
problem it always helps you to know the answer.
Sattinger's Law
It works better if you plug it in.

Newett Awl＇s Choo Choo Train Or，Idle Fantasies on a VDM Screen

Once upon a time，in a curious little place，there was a Sol system and a program－ mer sitting around with nothing to do．So Newett Awl decided to tell his computer a bedtime story，and VDM－1 helped him out by drawing the pictures．

Try it on your system．Ol＇Uncle Sol makes a great babysitter．

0080			00\％0		mer	ing around	d with nothing to do．So
0000			8010		Newe	Awl decid	ded to tell his computer a
0080			0020		bedti	story，and	d VDM－1 helped him out by
goge			8830			the pictur	res．
9089			9640			Try it on y	our system．Ol Uncle Sol
O¢OD			9068		make	great bab	bysitter．
0000			907\％				
¢бб\％	$\mathrm{AF}^{\text {a }}$		8871	TRAIN	XRA		ONCE UPON A TIME，
00\％1	D3 C8		¢¢72		OUT	$6 \mathrm{C}_{8} \mathrm{H}$ IN	a curious little place
0083	2184	01	¢880		LXI	H，SHED	there was
0006	01 ø0	ø8	0690		XSI	B，2048	．．A TINY TRAIN
9069	3620		0180	EMPTY	MVI	$\mathrm{M}, 2 \varnothing \mathrm{H}$	．．AND IT STAYED IN A
¢¢¢	23		0110		INX		．．TINY SHED
90b	øB		0120		DCX	B	．．THAT WAS ALL EMPTY
90．D	AF		8130		XRA	A	
¢øøE	A8		8140		XRA	B	
200\％	C2 09	010	2150		JNZ	Empty	
0012	21 F7	82	0160		LXI	H，CLOUD	．．EXCEPT FOR A HUGE
0015	11 DD	$\not \square 0$	8178		LXI	D，\varnothing	
0618	D6 0 F		0180		MVI	B，15 B	
801 A	CD $5 \varnothing$	$\square \square$	8198		CALL	SMOI	
0610	11 2B	01	8208		LXI	D，43	L
0020	$\varnothing 6$ øD		0210		MVI	B， 13	L
8022	CD 58	01	0220		CALL	SMO1	\bigcirc
¢\％25	1130	ø	¢230		LXI	D，48	w
0828	0689		8240		MVI	B，9	Y
902A	CD 5¢	00	8250		CALL	SMO1	
902 D	1134	$\square \square$	8268		LXI	D， 52	c
0838	¢6 04		\＄278		MVI	B，4	L
9832	CD 50	80	0280		CALL	SMOI	\bigcirc
9835	11 38	80	8298		LXI	D，59	U
9838	ø6 $\varnothing 2$		8308		MVI	B， 2	D
803A	CD 50	60	8318		CALL	SMOI	
803 D	113 C	00	8328		LXI	D， 00	\bigcirc
D040	¢6 91		8330		MVI	B， 1	F
0842	CD $5 \pm$	00	8340		CALL	SMOI	
0845	11 3E	80	8350		IXI	D， 62	s
0048	0681		¢360		MVI	B，1	M
D04A	CD 50	08	6370		CALL	S：101	\bigcirc
804 D	C3 59	010	0380		JMP	Engin	K
0850			6390				E
2650	19		6400	SMOI	DAD	D	
めめ51	36 6F		0410	SMO2	MVI	M，SMOKE	．．COUGH
8053	23		0420		INX		
0854	85		8436		DCR	B	－．COUGH
0855	C2 51	80	6440		JNZ	SMO2	
8858	C9		8450		RET		coming out of the stack F
8859			646】				
0059	21 A6	64	647ø	Eng ine	LXI	H，SHED +3	322H A TINY LOCOMOTIVE
005	3616		0480		MVI	$\mathrm{M}, 16 \mathrm{H}$ W	NITH A LITTLE SMOKESTAK
805 E	21 A9	84	8490		LXI	H，SHED +3	325 AND A LITTLE BELL
¢061	3687		0500		MVI	M， 87 H	
D063	21 AB	84	0510		LXI	H，SHED＋3	327 ．．．AND A TINY DOME
$0 ¢ 66$	36 6E		6520		MVI	$\mathrm{M}, 6 \mathrm{EH}$	
0068	2A 66	01	\＄530		LHLD	CABl	．AND A CAB
9．6B	22 AE	84	8540		SHLD	SHED＋32A	H WITH WINDOWS
¢0\％ 6	2A 68	81	¢558		LHLD	CAB2 ${ }^{\text {a }}$	．so that you could
0871	22 Bø	84	0560		SHLD	SHED +32 C	Ch SEE INTO WhERE THE
9874	2A 6A	01	8570		LHLD	CAB3－	－Engineer and the
9877	22 B2	84	8580		SHID	SHED +32 E	h fireman Sat．
067A	2A 6C	01	0590		LHLD	BOIl ${ }^{\circ}$	－IT HAD A BEAUTIFUL
907D	$22=5$	64	0600		SHLD	SHED＋361	H POLISHED
0080	2A 6E	01	6610		LHLD	BOI2 ${ }^{\text {a }}$	．BRASS
¢083	22 E 7	¢4	¢620		SHLD	SHED +363	H BOILER
9086	2A 7	ø1	ø63¢		LHLD	BOI3	WITH
0089	22 E9	04	664ø		SHLD	SHED +365	H THE NUMBER
9ø8C	22 EB	84	¢650		SHLD	SHED＋367	7H＂99＂ON THE
008 F	2A 72	81	0668		LHLD	BOI4	－SIDE OF
0.92	22 ED	¢4	8678		SHLD	SHED＋369	H THE CAB
0895	2A 74	81	6680		LHLD	BOI5－	．BuT You coutmin＇T
0998	22 EF	84	8690		S：HD	SHED +36 B	H SEE EITHER THE
øø9B	2A 76	01	¢780		LILL	BOI6－	．Engineer or the

（continued on page 11）

Page 4

Ups and Downs or How to Type in Upper Case Only without Shifting

If you have a keyboard with both upper and lower case operation, the frequent shifts are a pain when you're entering alphanumeric data. Here's a simple cure that sets data bit D5 low when a lower case alphabetic character is output from the keyboard. thus presenting it to the computer as upper case.

You'll need two chips, either a 7404 and a 7408 or a 74 LS 04 and a 74 LS 08. (Either pair works fine.) Install them on a small piece of perf board as shown in the diagram. and tie all unused inputs to +5 V .

The pins you'll be using on the 04 chip are $3,5,9,11$. and 13 ; on the 08 chip use $4,5,9,10,12$, and 13 .

FLASH ~ VDM Access Flicker Eliminated

That blasted flicker you get whenever the VDM memory is being frequently accessed occurs because the screen is blanked for a very short time whenever the processor reads or writes to memory. You can eliminate it by modifying the timing system so that VDM memory is accessed only when the beam of the picture tube is off the visible portion of the screen. The VDM has a timing signal that indicates this condition, and you can use it to synchronize access to display memory.

Connect a jumper wire from pin 13 of IC 39 to pin 5 of IC 39. This hooks up an unused section of IC 39 to DI bit 1. Connect a wire from IC 39 pin 14 to IC 15 pin 9. (This allows programs which access the VDM memory to use the timing signal.) Now when C8 is input, bit 1 will be low whenever the display memory can be accessed.

We'll explore the implications further in the next issue, and provide an example program or two.

[^2]

Applications News Ham Computer Based on So1 Terminal System

SYSTEM 4000 ham computer was developed by Curtis Electro Devices, Inc., Box 4090. Mountain View, Ca. 94040 . The company makes ham keyers and an industrial line of PROM programmers. We asked the president, John G. Curtis, to comment on working with the Sol system; he did all of the hardware and software work himself, developing programs for the Sol Terminal on ALTAIR with ALS-8, VDM-1, 40 K of RAM, 3P +1 , Tarbell cassette system, Bytesaver, ASR-33 TTY, and Motorola video monitor. Jack's report was glowing:
"I had no previous experience or trainin software development. It was all learned on the fly from books and practical experience. (Try, try and try again!!!) . . . Not too much assistance was required. The ALS-8 is easy to use and the Simulator program is absolutely essential. The Editor is also absolutely necessary. (Everything is necessary!!). .
"The Sol went together with a minimum of effort and trouble even though it was one of the first units actually put on the line. There were things which didn't work but with the help of PTC (especially Bob Marsh and Aram) things were put in order in a hurry.
"In my opinion, the Sol terminal is the most ideal small computer system available today (certainly at that price) and every needed feature is there. For our purposes it was absolutely ideal from every standpoint. We are now able to get the computer into the hamshack on a commercial basis. This has been predicted for some time, now it has happened."

System 4000 Ham Computer

The SYSTEM 4000 is a full scale standard desk top minicomputer specially equipped with firmware programs and interfaces for the amateur radio operator. Being a stand-alone computer, it can also run bu ness, educational, scientific or games programs.

The SYSTEM 4000 is derived from the Sol terminal Computer and can take advantage of Processor Technology's programs and accessories. System 4000 uses the standard S-100 bus for plug-in accessory boards. and the owner can add or exchange PROM integrated circuits to update the system. Features:
Morse reader, capable of receiving code at speeds of 6-250 WPM (or higher). CRT or TTY output. selectable for upper and lower case.
Paddle keyer, with dot and dash memory. iambic and full self completion. CRT or TTY printout.
Keyboard keyer, sends Morse from keyboard.
CRT or TTY output.
ASCII terminal, half or full duplex.
Complete details can be obtained by writing to: Curtis Electro Devices. Inc.. P. O. Box 4090, Mountain View, Ca. 94040.

Murphy's Third Law

In any field of scientific endea vor, anything that can go wrong will go wrong.
Sevarenid's Law
The chief cause of problems is solutions. Brooks's Law
Adding manpower to a late soft ware project makes it later.
O'Tooles's Commentary on Murphy's Law's Murphy was an optimist.

A major purpose of this newsletter is helping you stomp out the bugs that inevitably occur even in the best of systems. Bug Squad will be a regular feature. We'll tackle the problems we've encountered most frequently, and you're also invited to send in any problems that have been bugging you. Send solutions, too, if you've found them. Share the wealth.

For starters, here's how to fix a few of the bugs that crept into early Sol systems:
Memory Protect/Unprotect Lines
The bug: Erratic behavior when early Sol-PC, Sol-10, and Sol-20 units are used with S-100 bus compatible memory modules. The squasher: On early Sol circuit boards, the protect (pin 70) and unprotect (pin 20) lines are floating. Simply ground bus line 70 on the Sol PCB itself to disable the memory protect signal.

Current Loop Source

The bug: R23, a 470 ohm $1 / 2 w^{2}$ resistor, is incorrectly tied to +5 on early Sol PC boards, producing less than a full 20 mA current to teletype connections.
The squasher: Reconnect R23 to +12 V , which is only $1 / 4^{\prime \prime}$ away. Check to make sure that R29 remains connected to +5 V . We suggest that the 20 mA current loop connections (such as for ASR33) be made as follows:

Accidental Avalanche
The bug: On some Sol Power Supply REG
Boards, the SCR1 (MCR 106-2) in the +5 volt regulated supply will intermittently go into the avalanche mode. This draws sufficient current to drop the +5 volt to about +1 V . This modification will prevent the accidental triggering, but will retain the
overvoltage protection of the crowbar circuit.
The squasher: Make the modification here by adding the components shown and cutting appropriate traces (as shown).

Law of Selective Gravity (The Buttered Side Down Law)

An object will fall so as to do the most damage.

Consol Source Listing

For those of you who haven't seen it yet. here's the source list for the minimum Sol operating System, CONSOL. It provides all necessary display routines, along with standardized calling points for input/output operations.

coe COMSOL COPYRAGMT 1976

[^3]

Page 7

Page 8

(20ำ

 ： $1 A \rho \rho 680 \rho 2 A 66$ P122AEP42A680122BPD42A6A＠122B2042A6CD122E5042A6ED9 ：1AOP82000122E7042A700122E90422EBP42A720122ED042A740122EF042AOD ：1ADP9CDD76D122F1042A78012224052A7AO1222605222805222AO52A7CD195

 ：1A6104007E2B7723237CB9C20401C9210øCC7E23FE円6C21201237EFE11C2DD
 ：1A6138めø13C32301FE13C24701115F12C32301FE12C21A61112D11C323日10C

 ：$\varnothing 6$

MKMESSORTEIDNMOGO
Vol．1，No． 1
Processor Technology Corp． 6800 Hollis Street
Emeryville，CA 94608

Stanley M Sokolow
1690 Woodside Rd Redwood City，CA

94061

1 EPT 2-14

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

A Letter from the Editor

"Everyone should believe in something. I believe I'll have another drink."Steele's Plagiarism of Somebody's Philosophy

Welcome to issue \#2 of ACCESS. I hope the first one was able to provide you with something useful, after waiting so patiently for delivery. Wasn't entirely our fault this time, honest; we now know from personal experience that mailing services have their gremlins too. Anyway, issue \#2 is now here and filled with goodies we hope you can use on your pet project.

One thing issue \#2 isn't filled with is feedback from you. No way it could be, since it went to press before most of you ever got your hands on \#1. We really do want to facilitate an exchange of ideas, comments, gripes, what have you, so please get those cards and letters into us. Are you more interested in hardware stuff than software stuff? Vice versa? What bugs bug you? What do you do with your Sol anyway? Got any hot tips on interfacing with exotic equipment? Just want to sound off about something? Or maybe even say something nice about us? We definitely want issue \#3 to have more of you in it, instead of just us talking to the walls.

Speaking of us, you'll be reading this just about the time of the 1st West Coast Computer Faire. Come give us some feedback in person; we'll be there along with all the competition, and we'll have some good stuff to show you. You might even get to see me if you look closely; I'm the one wearing the red suspenders. For those of you who can't make it to San Francisco, we'll have a report in ACCESS \#3.

Got to sign off now and fix that Sol PCB that just came in for warranty repair. (Probably sabotage - whoever heard of a SOL not working?)

Aram Attarian II

Subscription Information

[^4]

Inside Emeryville!

One to One Communication

We're going to make this column a regular feature, under the peerless direction of our Customer Service Manager, the world renowned Ralph I. Palsson (applause). He'll keep you informed on what's happening in the world of a vailability, delivery dates, and other such precious tidbits, and do his best to keep the lines of communication open. Good luck, Ralph. (A.A.II, Editor)

A Customer Service Department has only one reason for its existence: to fix the responsibility on someone for keeping the communication lines open, so the company doesn't become just another faceless entity, vaguely malevolent to your attempts to pursue the love and lore of computing. The someone's me, Ralph Palsson; I'm here to welcome your telephone and letter inquiries and provide you with immediate, personal service. Whether it be pre-sales information, placing an order, finding the nearest Processor Technology dealer, checking on the availability of existing or forthcoming products-we'll do our best to help.

Are you interested in more information about a product than you could glean from the catalog description? How about the VDM-1 kit you ordered way back when and still haven't received? Even the best of us make occasional errors, and letting us know about your problems is the first step towards their solution. Letters are now being sent regularly to advise you, our customers, of anticipated production and delivery schedules. PTC dealers are being kept informed too, so you can call them for on-going status reports. We're trying continually to expand and improve the Customer Service Department with the aim of giving even more efficient, reliable service. Some of the ways we're doing it:

Teletroubleshooting. Having a problem with a PTC kit? Is your Sol-20 displaying 0's and 9's and nothing else? Need technical advice on interfacing? One of our applications engineers is available daily for phone consultation and technical assistance. Call (415) $652-8080$ between 9:30 am and noon or 1:30 and 4:00 pm Pacific Time. Technically oriented software questions (continued on page 2)

One to One Communication
(continued from page I)
should go to our new division, Software Technology, at (415) 349-8080. (That's right, 8080!)

When you make a technical call about a malfunctioning kit, it helps if you take time to think out your questions first, maybe make a few notes. It's also a good idea to have your kit manual handy, and if possible, the recalcitrant piece of equipment. All calls are taken on a first come, first serve basis, so if you do have to hold for a few minutes, please be assured that you're not running up your bill for the benefit of someone who called in later. If you do run into a wait, you can also ask us to call you back collect. We will.

Again, let us remind you that if you purchased your PTC product through a dealer, try him/her first. They're all authorized to service the equipment they sell, precisely because they can give you more personalized, faster service than anyone can by mail or phone.

Need a defective part replaced? Again, the best way to handle this is through your dealer. If he's out of stock, or if you purchased directly from us, send us the defective part for replacement. Similarly, if you're missing a part from a kit, call your dealer or write to us, giving as complete a description as you can of what's missing.

Finally. We are always interested in improving our one-to-one communication, and we're open to your comments, criticisms, and suggestions. Please feel free to contact us if we can be of service in any way.

Error, Error, Does Not Compute

Errors do appear from time to time in all high class publications. ACCESS is no exception-our score for the first issue was three unfortunate oversights.

1. The instructions for wiring the $3 \mathrm{P}+\mathrm{S}$ for a keyboard interface (page 3). At Step 5, we told you to connect pin 7 to a point on $3 \mathrm{P}+\mathrm{S}$ leading to J 2 pin 12 . Pin 12 is a ground point, and you don't really want to do that. Pin 7 should be connected to a point on the $3 \mathrm{P}+\mathrm{S}$ leading to IC 14 pin 13.
2. The article on interfacing PT 4KRA memory boards with the Motorola M6800 (page 2). It's all right as far as it goes, but we neglected to give proper credit to the contributor. Oar apologies and thanks to J. W. Schook, P.O. Box 185, Rocky Point, N.Y.
3. Last, but not least, those everpresent gremlins managed to alter our mailing address to 6800 Hollis St. Now, that's really adding insult to injury. Our correct address is $\mathbf{6 2 0 0}$ Hollis St., Emeryville, CA 94608:

Introducing Software Technology Corporation

We've pulled a protozoan trip and split in two: Software Technology Corp. is a separate new company formed to take over software development from Processor Technology. The idea is to give you more and better software support by not scattering our energies about, randomly.

Software Technology is three people with an impressively vast reservoir of experience in operating systems, time sharing, real time systems, compilers, interpreters, simulators, business systems, and software development. Did we leave anything out? During this transitional period, they'll be maintaining, supporting and producing all the current PTC software, plus developing some of their own. Later (not too much later), they'll be coming out with lots of good stuff designed to get the most out of Sol.

You should have your first chance to see the caliber of Software Technology developments at the Computer Faire in

San Francisco. But we're not going you what, because one fundamental y of Software Technology is not to announct anything that isn't ready. Nobody likes a tease.

Meanwhile, Software is in business and even has a phone. If you have any problems with Processor Technology software you're using now, you can call their 24 -hour phone line. When nobody's there, there's an answering machine to take your message, and they will get back to you promptly. The number is (415) 349-8080. You're also welcome to write your questions: P.O. Box 5260, San Mateo, CA 94402

For the time being, orders, questions about delivery and of course hardware questions should still be directed to Proces sor Technology. (See One to One Communication)

Read on for your first example of Software Technology software.

Announcing the SOL USERS GROUP!

The Sol Users Group was recently organized by members of the Homebrew Computer Club in Palo Alto; SUG is not affiliated in any way with Processor TechTechnology. The purposes of SUG are to exchange software and other applications. and to create standards. If plenty of interest is shown, a Sol Newsletter will be published and sent to members.

If you own or have ordered a Sol. send your name, address, phone number and ideas to:

Bill Burns
4190 Maybell Way
Palo Alto, CA 94306
(Please don't call.)

Attention, CONSOL Users

All Processor Technology software has recently been modified in a very important way that encourages standardization. If you've been looking forward to having some Sol software for your CONSOL Proms, you'll have to let us reprogram for you. There's no charge. Just mail your CONSOL Proms, suitably packaged, to Processor Technology; we'll take care of the rest. Turn-around time is about 2 weeks, dependent on the vagaries of the U.S. Postal Service, natch.

If you're planning to upgrade to SOLOS anyway, don't worry about it.

```
Clarkes third law: Any sufficiently
    advanced technology is indistinguish-
    able from magic.
```


CUTE, CUTEST, CUTER

Below is the complete source listing for the control and monitor programs for the CUTS board. This program. CU ${ }^{\top}$? was made available with the CUTS module in the form of a cassette sellin for $\$ 11$.

The CUTER cassette contains object code along with a relocating loader for loading the program in any 256 -byte boundary of available RAM. A new version of BASIC-5 for use with CUTER and SOLOS is also on the cassette, followed by the complete source code of CUTER. Not a bad deal for $\$ 11$.

So why buy the cassette now that we're giving you the listing? It's not that we're mercenary, but consider: if you want to use PTC's software packages on cassettes, then CUTER is going to be a tremendous asset in loading those tapes. right? Right - otherwise you could spend 3 or 4 hours toggling it in from the front panel of your A\#S\%\&R or I(* @ I.

Editor: Aram Attarian II
Publisher: Wible/Rampton Advertising, 727 15th Avenue, San Francisco, CA 94118 ACCESS is published approximately every six weeks. Subscription rate: $\$ 4$ per year, from Processor Technology Corpe, 6200 Hollis St., Emeryville, CA 94608.
ACCESS Copyright © April 1977 by Processe Technoology Corp. All Rights Reserved. Material in this publication may not be reproduced in any form whthout permission from Processor Technology Corp.

Double Your Pleasure, Double Your Fun, n, How to Use Both Parallel Ports on the 3P+S

You can take maximum advantage of the $3 P-S$'s versatility by making a simple modification that gives you simultaneous access to both parallel ports. Then you'll be able to use one port for a keyboard input. the other for paper tape input/output. The serial port is available for an RS232 or TTY, with status and control available at Port 0 for Processor Technology software compatibility.

The change procedure is as follows:

1. Cut the existing trace from IC 22 pin 3 to IC 20 pin 13: at IC 22 pin 3
2. Cut the existing trace from IC 23 pin 12 to IC 21 pins 1 and 2; at IC 23 pin 12
3. Run a jumper from IC 23 pin 12 to IC 20 pin 13
4. Run a jumper from IC 22 pin 3 to IC 21 pins 1 and 2
5. Select area " B " option; jumper from left to right
Assuming that area " A " board address options " 00 " have been selected, the ports will now be set up as follows:
Port $0=$ Channel C. Control and status
Port $1=$ Channel A.* Parallel data (keyboard)
ort $2=$ Channel D. UART (RS232 or TTY)
Port $3=$ Channel B* Parallel data (paper tape reader)
*The strobe latches for the parallel ports remain with their respective channels.
Changing the data available status.
The $3 \mathrm{P}+\mathrm{S}$ interface is laid out to respond to a negative strobe input pulse with low active status (i.e., FA, FB). For compatibility with Processor software, you'll want to select a high active data available status. Run a jumper from the \bar{Q} output of the respective strobe latch (i.e., AKA, AKB) to the correct status bit input in area "G." In the above configuration, this amounts to jumpering keyboard data available IC 15 pin 7 to area "G" point C6.

Osborns Law: Variables won't. Constants aren't.

FLASH ~VDM Access Flicker Eliminated, Part 2

In the last issue, we gave you a hardware modification to take care of the flicker produced whenever the VDM memory is being accessed. We also promised to explore the implications a bit further this time. So here's a subroutine for the VDM driver program that implements the modification via software.

One thing to remember: if reads from the screen memory are needed by the driver, they have to be synchronized by a

And now, the VDM-1/2! Or, Modifying Your VDM-1 for 32-character Display

We're pleased to announce that unceasing technical progress has now made possible a reduction in the number of characters per line of the VDM-1 display from 64 to 32 ! Seriously, the modification is quite handy if you want to work with large type display, or feed RF modulated signals to a TV antenna input.

The hardware modifications are shown in the schematic drawing below. One word of caution: since we're tying the loworder address bit to ground, only character locations with bit 0 equal to 0 (i.e., even-numbered addresses), will be displayed. So if you use the modified VDM with unmodified software, you'll end up with only alternate characters on the screen and a rather cryptic message!

In the next issue of ACCESS, we'll have some spiffy software routines to use with the "VDM-1/2." Meanwhile, you can probably come up with some of your own. (Drop us a line if you run across anything interesting.) Just remember that a left shift of a 64 -character address will give you the 32 -character address, providing that you shift in a 0 to bit 0 . Good luck!
subroutine similar to this. This one only takes care of flickerless access to the memory.

Next issue, we 'll continue the flicker saga by providing a version of the Processor PATTERN program which contains this routine for flickerless display.

1. Cut traces at:

A-pin 10 IC 10
B-pin 12 IC 10
C-pin 13 IC 10

D-pin 14 IC 10
E-pin 7 IX 3
$F=$ pin 14 IC 22

2. Add jumpers between:

A-IC 24 pin 11 and Ground B-IC 10 pin 10 and IC 3 pin 7
C-IC 10 pin 12 and IC 19 pin 4
D-IC 10 pin 13 and Ground
E-IC 10 pin 14 and IC 14 pin 6

Page 4

Page 5

This issue`s Bug Squad focuses on the Sol PC board Revision D, the one you have. All the fixes described are aimed at worst case conditions, so hopefully you've never encountered the problems. But we do recommend making the changes now to forestall future headaches that might crop up if you use demanding peripherals such as discs. All the modifications described will be incorporated in the forthcoming Revision E board, so in the future we'll be designing on the assumption that all boards in the field have these fixes.

Now, you may wonder where we get the gall to blurt out that our product is not the ultimate in all respects. Quite simply, we have too much experience in product design to let ourselves get away with the attitude that goes, "We're perfect. Something must be wrong with you." So things can be better, and here's how.

1. Clock Width Fix

The bug: Currently the width of the phase 1 (Q1) clock pulse is 70 nanoseconds. If you want to bring it into spec with existing 8080 chips, you should increase it to 140 nanoseconds. (8080A or 9080A are OK at 70 nsec.)

The squasher: On the top (component) side of the board, cut the trace between jumpers D and E of (U90 and U91) of the clock generator. On the bottom (solder) side of the board, connect the jumper from pin E to the feedthrough which leads to pin 5 of U91.

2. Phantom Glitch Fix

The bug: Occasionally a Sol will power up with three "phantom" cycles instead of the necessary four, causing a "crash." These are the cycles which use the "four phase wonder" software in the monitor.

The squasher: Connect a jumper on the solder side of the board as shown in Figure B. It goes from pin 4 of U76 to the feedthrough immediately below pin 1 of U76.

3. Ground Noise Fix

The bug: The paths from the bus drivers to the bus ground are too long, producing oceasional ground noise.

The Squasher: Shorten them by connecting jumpers on the solder side of the board as shown in Figure B. They go from pin 8 of IC's U33, U50, U68, and U81 to the ground feedthrough leading to C45.

4. Protect Fix

The bug: The protect line is floating, which allows noise pulses to set a memory board "protected" at the most inconvenient times.

The squasher: Connect a jumper wire on the solder side as shown in Figure B. It goes from the ground terminal of C11 to pin 70 of the 100 -pin bus connector J 11 .

5. DMA/Interrupt Unscramble

This fix has probably been included in your kit or preassembled board, but better check the connections just to make sure.

The bug: PINT (pin 73) PHOLD (pin 74), and PINTE (pin 26) got scrambled at an early stage in development and weren't noticed until too late.

The squasher: On the component side of the board, cut the trace leading to pin 73 on J11; on the solder side, cut the trace leading to pin 1 of U45, and also the second trace to the right of U64. (Refer to Figure B). Now connect three jumpers: From pin 73 of J11 to pin 1 of U45. From pin 28 of J11 to the feedthrough indicated (the one that was isolated by the cut on the component side). From the feedthrough directly below pin 1 of U 45 to the feedthrough to the right of pin 3 of U64.

6 MWRITE Fix

The bug: If you want to operate with DMA devices which write into memory, such as discs, you need to be able to generate the MWRITE pulse externally.

The squasher: You accomplish this by connecting the signals which generate MWRITE directly to the bus. On the solder side of the board, cut the trace which leads to pin 7 of U93. Now connect a jumper from the trace which has been isolated, to the feedthrough leading to pin 9 of U94. Now, still on the solder side, locate the feedthrough immediately below pin 1 of U92 and break the trace leading to it; do NOT break the trace leading to pin 1 of U92. Connect a jumper from that feedthrough to pin 13 of U107.

Further Remarks on D and E

The other major change between the D and E revision Sol boards involves reversing the order of the parallel input data lines as connected to the parallel connector J 2 . The schematic is correct for the D board, and the list of signals in the manual is correct for the E board. The change will simplify future connections to J 2 by placing the POD lines adjacent to the PID lines; that way, you can create a bidirectional input/output bus with a simple jumpering scheme at the connector.

We're planning an adaptor connector to convert Rev. D J2 into Rev. E J2. It will have a 25 -pin plug, a PC board which reverses the connections from pins 6 to 13, and a 25 -pin socket connector. If you're developing a device which plugs into the Sol J2, reverse the order of pins 6 through 13 and use this adapter (PTC pt. 900011)
to ensure that your plug-in device will be compatible with E revision Sol's.

7. Current Loop Fix

The bug: R23 and R24 should I: nected to +12 volts instead of +5 vo The squasher: Break the large trace on the solder side of the board which lead to these two resistors. Still on the solder side, connect a jumper from the isolated end of R23 to the +12 volt feedthrough as shown. Be sure that you do not accidentall connect to the -12 volt feedthrough. which is slightly higher than the +12 volt one.

And a Bug in 5K(pre-Sol)

The bug: Our attention has been called to some problems with the integer function in BASIC-5 - the non. Sol version.

The squasher: Page 32 of the 5 K BASIC manual (Software $\# 2$) should be changed to read as follows:

Ninety-Ninety 'Rule of Project Schedules: The first ninety percent of the task takes ninety percent of the time and the last ten percent takes the other ninety percent.

Your ALS-8 Application: Notes are on the Way!

After a seemingly interminable delay, the first batch of Application notes are really and truly in the mail to all you ALSUsers' Group members. Once the material is in your hot little hands (in a very fancy binder, no less), you'll be better able to appreciate the power and versatility of your ALS-8, and you should have some very happy hours of computing.

If you haven't received your notes by the time you read this, please drop us a note right now, so we can track down what ever clerical or shipping errors crossed you up.

Our sincerest apologies for the r^{-1} 'श.

[^5]

Sol-PC (Rev. D)-Component Side
Figure A
 Figure B

MWRITE Fix

1 EPT 2-24

Page 11

Page 12

$\begin{array}{lll}1 & C 1 \\ \text { F3 } \\ 3 & \text { C3 } \\ \text { B2 }\end{array}$
608
6
609
23
2

63	
0	23
0	23
78	

Ef

on Entry: ha - has fre tape unit mouber (1 or o)
mormal return: all mecistras ane altered
embor return: carry bit is set
entors: block already open
 If WRITING
THIS ROUTIWE "OPEMS" THE CASSETTE UWIT POR ACCESS
on entry: a - Mas tre tape unit momber (1 or 2)
mormal return: all mecistrrs are alyered
ERROR REYURM: CARRY BIT IS SET
entors: block already open

THE FILE OPERATIONS WERE "URITES:
(EUY THE CURRENT block on the tapp
(EVEN IF ONLY ONE BYTE! !)
THEN WRITE AN END OF FILE TO THE TAPE

BY REGISTER MA". ON RETURN HL POINT TO THE COINTRD TO BY REGISTER "A": ON RETURN HL POINT TO THE CONTROL
AND REGISTER "A. HAS THE CONTROL WRD WITH THE WLAGS SET FOR IMMEDIATE CONDITION DECISIONS

| C6A2 | CD | BB | $C 6$ |
| :--- | :--- | :--- | :--- | :--- |
| C655 | C5 | | |
| C6A6 | 21 | 06 | 00 |
| C6A | 09 | | |
| C6AA | 01 | 00 | 01 |
| C6AD | CD | B2 | C6 |
| C6BO | E1 | | |
| C6B1 | C9 | | |
| | | | |
| C6B2 | 23 | | |
| C6B3 | 71 | | |
| C6B4 | 23 | | |

e958 C9

Page 14

1890 :

Waiting for BASIC-5

A lot of people have asked why Sol BASIC -5 took so long to be released. The main reason is Processor's policy conming the release of new products: we wont ship til we have the finalized version, and that means product PLUS documentation. We feel that our reputation is based on selling products that live up to the advertising claims. and we intend to live up to our reputation. (Note: we 've never been forced to recall a product.)

We could have provided you with a version of our original BASIC -5 a long time ago. with a modification of only 12 instructions. But that wasn't what we advertised Sol BASIC -5 to be. And in getting it to be what we wanted, we kept thinking it would be neat to add just a couple more nifty features and then just one more and one more and . . So as with all fanatics. one thing led to another til somebody remembered that this is a business and there are customers out there who could only stand so much "neat stuff" (especially if they had to wait until the year 2000).

Anyway. by now you will have received said BASIC -5, so load it in and run it for a while. We think you'll agree that it "as almost worth the wait.

Computer of the Future

Contributions Welcome!

Processor Technology Corp. 6200 Hollis Street
Emeryville, CA 94608

InThis Issue

 cassette hardware; a useful matching language routine....................page 8.

Reader Feedback page 6 \& 7.

The Newest from Newett Awl: swapping bytes. \qquad page 3.

Bug Squad \qquad

Subscription Information

ACCESS is published every six weeks. If you like what you see, we hope you'll send us $\$ 4.00$ for a year's subscription so we can keep the info coming. Write to us at Processor Technology, 6200 Hollis Street, Emeryville, CA 94608.

Here we are, now in the third issue of ACCESS, and as Aram and I have told you in the past, we openly solicit your thoughts, opinions, input and output on many fronts. Critiques are always welcome - some good ideas have been coming in the mail, and we'll be happy to see others on how we can improve our service.

Notes on availability and delivery. Since the last ACCESS, we've pretty well completed deliveries on BASIC/5 and CUTER software packages. GAMEPAC 1, MATHPACK, and TREK 80 on cassette are next in line; deliveries on them will begin in July, and much of our other software will be forthcoming later this summer.

Deliveries of Helios II, our dual-drive floppy disc system, are targeted to begin in mid-to-late July. We'll ship the earliest orders first, but due to the large number of back orders on file, it will be some time before we're totally caught up on deliveries.

We've already begun deliveries of our 16KRA dynamic memory board although slowly. If you have one on order, you can be assured of receiving it soon.

Specifications sheets for the new GPM (General Purpose Memory) Module will be available in July. You can get them from our Customer Service Department or your local PTC dealer.

Sol Users' Group. If you currently own a Sol computer, you may be interested in the Sol Users' Group. The Group was created to provide a
dialogue among Sol owners, by sharing applications, software, and other information for mutual member benefit. The sol Users' Group (not affiliated officially with Processor Technology) can be contacted through Bill Buras, 4190 Maybell Way, Palo Alto, CA 94:30f (No phone calls, please!)

We need you! In the interest of providing continued informational support, especially in connection with interfacing Processor Technology hardware with other manufacturers' software, we'd like to hear your ideas, see your programs, whatever you've got. We will be happy to publish useful information that you might contribute. Mom will finally see your name in print!

PTC dealers. New ones are continually added to our ever-growing list. They're all authorized to both sell and service Processor Technology products, and to act as distributors for Processor/Software Technology software. To keep you up to date, the current dealer roster is listed in this issue of ACCESS. Of course, your dealer's always interested in hearing from PTC customers, so why not pay him a visit?

ACCESS subscriptions. Let us know if you've subscribed and are having trouble receiving your copy regularly. Is your mailing address correct as printed on the label? Have any suggestions for improvement?

ACCESS Issue No. 1 is now out of print; no back copies are available. (continued on page ${ }^{2)}$

50 Hz Operation of the S01-PC

The demand for Sols is international, and a great many countries have power systems which operate at 50 Hz (cycles per second). Sol transformers are designed to operate at this frequency without derating, and a 220,235 or 250 volt power supply is available from the factory.

In most countries where the line frequency is 50 Hz , the television display standards have been adapted so that the vertical sweep frequency is also 50 Hz (this reduces flicker). The resulting display contains 625 scan lines per frame, or $312^{1 / 2}$ lines per frame.

The frequency of the synchronization pulses produced by the Sol can be changed to this new standard quite easily on the E revision boards, and with a little more difficulty on the D revision boards. In both cases, the change involves disconnecting pin 5 of the U62 from pin 6 and reconnecting it to pin 4 of U62. Jumper pads have been provided for this purpose on the E revision, so that the change is a simple one-cut, one-jumper modification performed on the top side of the boards. The angled trace leading from pad AF is cut and a jumper is installed between pad AF and AG.

The D revision boards requires two trace cuts. One is made on the top side of the board between U 62 and U 61 (the trace leading from pin 5 of U 61
is cut). The remaining trace cut is made on the bottom (solder) side of the board. One is between pins 4 and 5 of U 62 . Two jumpers must now be installed. both on the solder side of the board. One is between pins 4 and 5 of U 62 . The other connects pin 6 of 62 with pin 5 of U 61.

The VDM-1 may also be modified to allow 625 -line operation. On all revisions of the board, cut the trace connecting pins 5 and 6 of IC8. Using a
wire jumper, connect pin 5 of IC 8 pin 4 of IC 8. This is all that is requirea to modify the VDM-1.

These modifications will present a display of 16 visible text lines which appear somewhat more compact vertically than the 60 Hz display. This is because the time from the bottom of the display to the top has been doubled from the equivalent of four text lines to eight text lines.

Lee Felsenstein
(Cont. from Page 1)

Finally, we do appreciate all the support and feedback many ACCESS readers have provided. The comments, positive, negative or otherwise, indicate your interest in PTC and help us to give you what you want. I think those of you who have contacted us on the one-to-one communication basis (by phone or letter) have found responsive follow-through on our end. Further improvement can come from your suggestions, so let us know what you're thinking. Again, the number is (415) 652-8080 for teletroubleshooting (between 9:30 am and noon or 1:30 to 4 pm Pacific Time); for technically oriented software questions, call (415) 349-8080.

See you next issue.
Ralph I. Palsson
ACCESS, JUNE, 1977 •2

Your ALS-8 Applications Notes are on the Way!

After a seemingly interminable delay, the first batch of Application notes are really and truly in the mail to all you ALS-8 Users' Group members. Once the material is in your hot little hands (in a very fancy binder, no less), you'll be better able to appreciate the power and versatility of your ALS-8, and you should have some very happy hours of computing.

If you haven't received your notes by the time you read this, please drop us a note right now, so we can track down whatever clerical or shipping errors crossed you up.

Our sincerest apologies for the delay.

Will Vern ever finish telling us the "real story" behind the VDM-1"? Yes, indeed!' The continuing saga of the Flickerless VDM-1 has been temporarily interrupted. It'll be back with the next issue. Stay tuned.

Basic Theorem of Programming: The program is absolutely right, therefore the computer must be wrong.

Subscription Blank

Name

Address
City

State

Zip
Enclosed is a check for \$ fo ___subscription(s)

Editor: Aram Attarian II

ACCESS is published approximately every six weeks. Subscription rate: \$4 per year, from Processor Technology Corp., 6200 Hollis St., Emeryville. CA 94608.
ACCESS Copyright © April 1977 by Proc Technology Corp. All Rights Reserved. Matern... in this publication may not be reproduced in any form without permission from Processor Technology Corp.

"Give me a cigarette, because I'm so hungry that I got nobody to sleep with tonight."

Old Russian Proverb
Well, who would have thought
it. mo ई, slightly hungover, arriving at th. Sivic Center for the First West Coast Computer Faire - and there were already people lined up clear around the corner. (Unless I was still seeing double from the Processor Technology Dealer Banquet, which featured Peking Duck, a few Tsingtsao beers, Sweet and Sour Chicken, a few more Tsingtsao's, Manchurian Beef, a few etc.)

By the time the last plug was pulled Sunday night, more than 12,000 people had paid $\$ 6$ to $\$ 9$ a head to get a look at the latest marvels from Processor, IMSAI, Polymorphic, Apple, Byte Shops, and well over 100 other exhibitors. There were lots of neat things: programs for kids, color graphics, music (including the premiere of the Software Technology Music System - but you can read about that in our literature. No advertising here). And seminars on everything from tutorials for the complete novice to bus and interface standards. The building was basically hot, and it was rrowded, and everybody was pr high.

11 in all, the impression was that . was a very good event. The people who planned the Faire did a good job, and we'll probably draw even bigger crowds next year, what
with people like Radio Shack and Heathkit getting into the act. The price probably put it out of range for a lot of people who might have come this time, but given the rate of growth in the home computer field ...

Aram Attarian II
P.S. Now that we've got

ACCESS going, and we're starting to get some feedback, we're re-evaluating our procedures. Issue No. 4 will be a little late, because we're going to make some changes to make it a better quality production, in line with some of the suggestions you've made. So long 'til then.

Attention,CONSOL Users

All Processor Technology software has recently been modified in a very important way that encourages standardization. If you've been looking forward to having some Sol software for your CONSOL Proms, you'll have to let us re-program for you. There's no charge. Just mail your CONSOL Proms, suitably packaged, to Processor Technology; we'll take care of the rest. Turn-around time is about 2 weeks, dependent on the vagaries of the U.S. Postal Service, natch.

If you're planning to upgrade to SOLOS anyway, don't worry about it.

Newett Awl's Screen Sort

This little program does what's called a bubble sort: each byte in the sorted area is compared to the next higher byte. If the first byte has a higher value, the two are swapped in the memory. Then the same thing is done for the next two, and so on through the entire sort area. After the first pass, the last byte in the sort area will be the highest value, so when you set up to pass over the sort area again, you can shorten it by one byte at the high end. And if you keep track of what swaps take place during the sort, you can quit as soon as no swapping occurs.

I have located this routine in low memory, so you don't need much to play with it. I used the VDM screen for the sort area, so you can see exactly what's going on - if your eyes can be synched to the screen! Try putting a whole mess of garbage on the screen, then executing the program at location 0000 . Your screen may never be the same!

Those of you who are adventuresome and mischievious mirght try modifying line 0047 to read 0047 SIZE DW, 2047 ARBITRARY LENGTH and line 0048 to read 0048 TOP EQU, 0200H USE TV DAZZLER AREA.
Then if you have Lichen Wang's Kaleidoscope, assemble this program so that it is above 0900 (HEX), get Kaleidoscope running, then stop and run the sort program.

I've purposely coded the program so that it will sort any length field by manipulating the SIZE and TOP. A little practice and imagination should do the rest. I sorted the train program (naturally), but it broke my heart to see the little engine torn apart so badly and so quickly.

A couple of program notes: at line 40, the zero flag is being set or reset by
the ADD B in line 37 . As we all know but often forget, the DCX H at line 39 has no effect on the accumulator flags. At line 25 , I just arbitrarily stuff register B with the last byte looked at. This is an interesting use for the flag. At line 37, all I need to know is whether or not swapping occured. If the test at line 20 tells me that a byte in register A has a higher value than the byte in memory, 1 know for sure that it isn't zero and can safely use it for a simple flag.

Reprint Permission of Newett Awl

Eggleston's Extension Principle: Programming errors which would normally require one day to find will take five days when the programmer is in a hurry.

ACCESS, JUNE, 1977 • 4

Left, Bob Marsh of Processor Technology demonstrates Sol. "You mean you can do that with a computer?"

Below, We make the big time - Glenn Tenney of Software Technology details the STC music system in an interview by NBC at the Faire.

Left, And here I am in my red suspenders, as promised.

ReaderFeedback

We don't have space to print all the letters we're receiving, but we'll try to get as many in as we can. We reserve the right to edit for space and content so we can include as wide a cross-section of opinion as possible. We'll reply to all of you personally if you include a self-addressed stamped envelope.

Aram Attarian II
Sir:
As evidenced by the many excerpts in ACCESS, you obviously enjoy Conrad Schneiker's Abridged Collection of Interdisciplinary Laws. Although the Laws are not copyrighted, don't you think it would only be fair to credit the source?

Gregg Townsend
 Sunnyvale, CA

Dear Gregg:

My source was Logical Laws, Accurate Axioms, Profound Principles, Trusty Truisms, Homey Homilies, Colorful Corollaries, Quotable Quotes, and Rambunctious Ruminations. This mouthful is the title of a pamphlet "compiled by the computer company that's out to make life a little simpler." Happy to credit both sources.

AA II

Dear Aram:

Enclosed check for $\$ 4$ for a year of ACCESS. Now my observations.

1. You are doing it wrong. Should be notebook-size sheets - how does one file for reference?
2. Last year I filled out a card for which I was supposed to receive something over the year, supposedly edited by Gordon French. What happened?
3. In order for ACCESS to be ACCESS, JUNE, 1977 • 6
meaningful, it should be understandable. The biggest fault I find with all publications is that someone just plunks down a program, period. There is a crying need to explain, in detail, at least a few times, the meaning of all the listings as they relate to hardware. Nobody to date has done this. Why do editors assume that we hobbyists know all this?

Joseph P. Chalala Willow Street, PA
crashes, writing "E9" 8 s at 25 , 26. A5. A6, 125, 126. Perhaps it could be a hardware problem, you will have, better idea about that than I.
2) Would it be possible to pand me with a copy of SOLOS and SOLED (a listing would suffice), as I would likt to find out the correct way to function the tape drives among other things. I d appreciate your relative thoroughness is design and implementation of the sol. you did a rather professional job

I am managing the West
Lafayette Data Domain Store and I pu together a Sol-PC. In the mean time, is have lost the envelope and registration etc. Would you please either send another set of reg. cards \& whatever or simply send what I was supposed to ast you to send tother chapters of the manual. personality module exchange. whatever. Ive forgotten even what it was ...)
J. Gregory Madde

Mgr. Data Domain of W. Latavet Pres. JGM Development Lal
Dear Greg:

1. Choo choo was written for

VDM-1, and we'll be publishing Sol patches and updates in the next ACCESS.
2. See this issue for SOLOS
3. Customer Service has $t=$ care of your problem by now.

Dear Aram:
In the "Bug Squad," ACCESS 2 Fix No. 5, you show a cut on trace to pin 26 of J11. The descriptive matter says pin 73. Which is correct and are tl other fixes as accurate?

> Dr. George L. Hall
> Naples, Flori

Dear George:
See "Bug Squad" in this issue. The other fixes are OK.

AA

Mr. Editor:

As of this date your world
renowned (sic) service mgr. is still promising heaven on earth to us (I will admit) suckers! I suggest you change "protecth" to "mana-na." That's Spain for tomorrow, capito. (sic, sic, and sic).

Anyway, in my opinion you guy: are full of crabs, who in his right mind would establish a computer company is a "rundown, skid row, full of yech! Gor forsaken place like Emeryville."
Obviously, this company did, even the newspaper it publishes and perso \quad a affected by the locale - it's full \& Care to publish this letter go ahead.

Your ads are pretty and very convincing, look who it caught with $\$ 1000$ plus to buy your $\mathrm{A}=\$!!?$? Sol-20 board that won't work ME. (and a few
more sics) "Whoever heard of a Sol not working." Look for mine stupid!

If I had to do it all over again will buy a Heathkit color TV set kit t a "goddam" Protech Sol-20. Count \geq out as your ardent supporter of Sol - it's for the birds.

Hal Martino II
Dear Hal:
Have you hugged your kids today? Love,

AA II
Dear Ralph and Aram:
Here are some general and specific comments on ACCESS.

1. The software listings are good and useful, but they take a lot of room. Might it not be better to bind up the long ones separately and sell like No. 1 and No. 2? Actually, I do hope you will provide listings of SOLED, 8 K BASIC \& FOCAL, ALS-8, TREK 80, etc. I am somewhat of a software listing junky that's why I'm a PTC customer (i.e., free software).

1A. Choo Choo Train is a bit immature, games like Life and Target are more suitable even for kids. I have a 9 -year-old playing Trek.
2. I am a little concerned that you are using ACCESS to distribute arrata for Sol. I think you should also mpile and send out loose-leaf sheets for re instruction book - or even charge for an updated instruction set. Sol systems are likely to be around for a long time and the book is likely to remain with the system, but a stack of old ACCESS's is likely to be lost and with them the errata.

2a. Should not Errata No. 3 (Ground Noise Fix) concern itself with IC $\# 107$ and not IC $\# 33$?

2b. Any reason for not revising the 8 leads to J2 on the card (cut and jump) if I want? (i.e., is it more involved?)
3. "Waiting for BASIC-5." I do see both sides of the issue. I do expect a properly designed and debugged product, with good documentation, for my money and I will wait a reasonable time for it. And I have seen how several publications have been very critical of certain minor problems - which can really hurt a manufacturer.

But then again, it's a new product and it is intended for the sophisticated hobbyist who is capable of understanding and making fixes to PC cards and software. Sol and SW $\$ 2$ are good examples. Still I cannot believe hat things take as long as they do, or nave in the past. Perhaps the answer is a system where you have two levels of customers - those who want preliminary releases and are willing to
pay for fixes or updates, and those who want a final, warranted product.

Joseph Gaffney
Lyndhurst, NJ

Dear Joe:

1. See the letter from Joe Chalala.
2. This will be the case in the future, but you have to consider the amount of bookkeeping necessary for that type of project. We'll be using Helios II to handle it, but they're hard to get right now.

2a. No.
2b. No.
Thanks for a very thoughtful letter. Readers like you will help us make ACCESS a lot more responsive.

AA II

A Run/Stop Circuit for User Control of Sol's X-Ready Line

The ability to stop and examine the various state of a system as the program is executing allows the user to detect errors embedded within the system. To this end, I have written a series of articles dealing with the implementation of "Front Panel" features on an S-100 system. These should assist both hobbyist and professional with standard system maintenance.

This first installment deals with stopping or slowing the instruction execution time from tens of microsecond to a user defined time. As most S-100 bus processors follow a set of protocol, the heart of any front panel is the run/stop circuit. By holding down the ready line, the user can cause the processor to idle as long as that line is down. Thus, the toggling of the ready line will allow the slowing or stopping of the processor from machine cycle to maçhine cycle.

With the R/S switch, you can control the X-READY line by setting and resetting the R/S (Run/Stop) flipflop U1A. With the R/S switch in the run position, the R/S flipflop is reset on Q2, forcing X-READY high. In the stop position, the switch NAND's together the stop value (Q2, PSYNC) and the MI/FETCH cycle (DO5). A new fetch will then set one input high to the X-READY NAND gate.

When the R/S flipflop is set in the stop position, the state of the X-READY line is determined by the state of the single step_S/S (single step) flipflop. If it's set, the \bar{Q} output applied to the other input of the X-READY NAND gate U3C will be low. And the X-READY line will be high, thus allowing the processor to run. The S/S flipflop will be reset at the next PSYNC
pulse, stopping the processor.
The inverters U2D and U2E are wired as a R/S flipflop to debounce the single step switch. SSS U6 is a multi-vibrator used to set the S/S flipflop at a variable rate. The vibrator will be inhibited by U2C until the multiple step switch is depressed; its rate is determined by the values of RA, RB , and Cl :

$$
\text { Charge time }-.685(\mathrm{RA}+\mathrm{RB}) \mathrm{Cl}
$$

Discharge time - 685 (RB)C1
Period - . 685 (RA + 2R2) C1
Frequency $-\frac{1.46}{(\mathrm{RA}+2 \mathrm{RB}) \mathrm{Cl}}$
Parts list:
U1 74109 For approximately 10 steps per second
$\mathrm{U} 27406 \mathrm{RA}=3.3 \mathrm{meg}$
U3 $7400 \mathrm{RB}=3.3 \mathrm{meg}$
$\mathrm{U} 47420 \mathrm{Cl}=.01$
U5 $555 \mathrm{C} 2=.001 \mathrm{uf}(\mathrm{C} 2$ is a bypass capacitor of approximately .001 uf)
U6 8T97 The pull-up resistor values are 2.2 K

Stop/Run switch SPDT
Single Step switch SPPT
Multiple Step switch SPST Normal Open
In the next of the series, I will diagram the proper connection of indicator lights to the $\mathrm{S}-100$ bus, showing use of the first two installments.

Steve Wong

OOPS!

Our kit packers made a mistake! A few Sol kits shipped in April or May ' 77 contain form 74LS153 integrated circuits. Do not use these chips. We will gladly replace them with the proper part, i.e., 74 LS 253 's. Let us know, and we'll take care of it immediately.

Audio Cassette Test Routine

This is a machine language routine written to run on a Sol PC, Sol 10 or Sol 20 as a functional test of the audio cassette hardware. It uses only the ENTER, DUMP, and EXECUTE commands, and requires no additional memory.

Enter the routine through the command mode as shown in the first section of the program. At the end of this section, your Sol will return to the command mode. Then use the second section to dump memory C900 through C94F. Check that the data has been entered correctly; ignore bytes C946 through C94F.

Put good quality blank tape in your recorder and connect its aux input to the Sol Audio Out J6, using audio cable. Set the recorder's volume and tone controls per Sol Manual Section 8. Push Record and Play simultaneously to move past the leader. Pure clocks will be recorded until you give the command EXEC C900.

This command will cause a 256 -bit incrementing data pattern to be recorded continuously until you stop it. When you've recorded as much tape as you want, you'll have to do a restart and return to the command mode. Rewind the tape to the beginning, then attach an audio cable from Sol Audio IN J7 to the recorder's Monitor or Earphone output. With some recorders, you'll have to disconnect the Aux/Audio Out cable before you can play back. Then put the recorder in the Play mode and execute either C90E (Normal Read Entry Point) or C91C (Alternate Read Entry Point).

The Normal Read Entry causes data to be read from the tape and displayed on the screen. The display will begin when the beginning of the data is recognized, and it will occupy 6 lines of the screen. The sequence will correspond to one of the data patterns shown in Figure E, depending on the character generator used. Visually inspect the display for correctness: the pattern should begin at the left margin of the screen and continue for two full lines, then repeat with reversed screen polarity for another two lines. The last two lines will repeat the original pattern to fill out the display. Now, data will continue to be read from the tape and written over the previous display: only the character polarity should change, causing the display to alternate from white-on-black to black-on-white. Neither the horizontal nor vertical position should change; a shift in position indicates either the loss or addition of random characters.

To discover where read errors might be expected to occur, experiment with the volume and tone controls, audio cables, or phase-locked loop ACCESS, JUNE, 1977 - 8
adjustments.
You can realign the received data display at any time by doing a restart to command mode and then executing C90E again. Careful examination of the display will reveal any out-of-sequence
characters, which indicate read errors.
If the beginning of the pattorn can't be found, use the Alternat. ad Entry Point to display whatever read.

SoftwareTechniques: The Care and Feeding of Cassette Tape Systems

Dropped bits! Yes, the symptoms of a malnourished cassettte system can be pretty ugly, but they can be avoided by paying proper attention to all three basic elements of your setup - the cassette, the tape machine, and the most important of all, the human element. Follow these tips, and you'll find that the handling and maintenance routine for \quad assette system is fairly simple bu ch out if it isn't observed! be cassette. Blank cassettes range in price from under $50 ¢$ to well over $\$ 2$. The more expensive ones have better audio fidelity, but that may or

1 EPT 2-41

may not be relevant to your needs for recording digital data. Only trial and error will give you the experience for selecting the most suitable tape, so run some tests using inexpensive cassettes; if cost is no object, you may want to try some of the more expensive ones as well. Record a few long files (program or data) and then check for read errors. (Pat Tuell's program is designed for just this.) If you have friends with experience in recording programs, by all means ask them for brand recommendations.

Length is something to consider too. A C40 cassette provides about 20 minutes of recording time per side, and at 1200 baud (120 characters per second), each minute is about 7 K bytes. Think about it. Are you likely to record 140 K bytes of data? If not, a C30 cassette (15 minutes a side) is quite adequate and less expensive.

Finally, a word about care. A cassette appears to be durable and impervious to the elements - quite the contrary. They can be crushed or broken, and they seem to act like a magnet for ashes, dirt and liquids. Always keep them in their protective plastic covers when they're not in use, and never leave them lying around loose.

The tape machine. Again, you may not need the high audio fidelity standards of the most expensive decks, in fact hi fi cassette tanits may not work as well as ordinary portable machines. You should choose a reliable, well-made machine that will keep the tape moving smoothly at a constant speed. We highly recommend the Panasonic RQ-413AS, retail list $\$ 89.95$. Some features that are especially helpful (though not absolutely necessary) for digital data recording:

An AUX recording input to facilitate hookups
A tone control
A digital counter to help you locate files on the tape
A review feature for fast forward or rewind while you're listening to the tape (again, to facilitate finding files).
You. It's not just the equipment and the tape that make a good cassette memory system, but what you do and how you do it. Here are some ideas to help you get the most from your system.

After you've recorded a tape, set the digital counter to zero and issue a CAT command (tape catalog SOLOS/CUTER command). As each file header is displayed, make a note of the reading on the digital counter, the exact file name, load address and file length. Label the cassette with this information. Then later you won't have to wonder where each file begins, where it will normally be loaded, or how much memory is required.

If you're putting more than one
file on a tape side, save a special file (we use the name END for it) at the end of the last one. It will let you know when you've gone past the recorded portion in reading back.

When you're recording data, make sure that the volume control is set at the proper level - about $2 / 3$ of full volume on many portable machines, but you should experiment to find the best setting for yours. If the volume is too high, the signal may be distorted; but believe it or not, one of the most common causes of playback problems is simply not having the volume control turned up. If you have a tone control, it should be adjusted for maximum frequency response.

Take good care of your machine. Clean the tape heads every so often, because dirty heads are a good way to introduce random read errors. Make sure all cables are properly connected - a common source of problems.

And finally, make sure that the machine is set to "Record" when you're saving programs or data onto tape. Sounds elementary, but everybody has had the experience of forgetting and kicking himself for it at least once!

SOLOS Unveiled

Printed below is the entire 2048 byte SOLOS program which is the standard operating system for a Sol computer and its peripherals.

In this listing you will find a useful library of pre-written routines for developing your own programs. Included are input/output routines for all the ports, load and save routines for cassette tape, and string processing routines.

Furthermore, this listing is the best way we know to demystify SOLOS and give you the inside scoop on how it really works. The program is well written (if we don't say so ourselves), highly compact, and provides a standardized software and hardware interface between all of the Sol's internal circuitry and many external peripheral devices. We hope you will find the programming techniques it incorporates valuable.

1 EPT 2-43

ACCESS, JUNE, 1977 •

1 EPT $2-45$

ACCESS, JUNE, $1977 \bullet 17$

1 EPT $2-48$

c800
C800
CBFF

[^6]
 ${ }_{128}^{64}$ senial data meady
serial transmitter buffrt empty kEyboard data meady PARALLEL DATA READY
PAPRLLEL DEVICE READY TAPE FRAMING ERROR
TAPE OVERFLOW ERROR TAPE OVERFLOW ERROR
TAAE DATA RFDY
TAPE TRANSMITTER MUFPER MNPTY seroll or flag

Processor Technology Dealers

ALABAMA	Byte Shop 14.100 Beach Blivd	of New Jersey 501 Route 27 Iselin. NJ 08830 12011 283-0600	RGINIA
ICP. Computerland 1550 Montgomery Hwy Birmingham. AL 35226 (205) 979.0707	14.300 Beach Blvd Westminster CA 42683		The Computer Systems Store 14ka Chain Bradye Rd MoLean VA 22l\|l
	$1714189+9131$		
ARIZONA	Byte Shop	NEW YORK	
Byte Shop Tempe 813 N. Scottsdaie Rd. Tempe. AZ 85281 (602) 894 -1129	204030 h St Boulder. CO 80301 13031 449.6233	The Computer Mart of Long Island 2072 Front Street	Media ReactionsInc 11303 South Shure Dr Restorn 1a 22 (ma) $(7031471.43 .3$)
			WASHINGTOV
Byte Shop Phoenix 12654 N. 28th DT Phoenix. AZ 85029 (602) 942.7300	Sunny Computer Stores University Shopping Center 1238A S. Dixie Hwy Coral Gables. FL 33146 13051661-6042	NY 11554 15161744.0510	
			Bule Shop Computer Store Bellerue Wa gron? 2061-76.() (4)
Byte Shop Tucson 2612 E. Broadway Tucson. AZ 85716 (602) 327.4579		Synchrobound Enierprises 193. 25 Jamaica Ave Holiss NY $11+23$ 1212 , 359.1489	
			The Retall Computer Sture $410 \times E$ Ind Seattie Wa 4xals 2061524-4101
	Delta Eiectronics 2000 L.S. Hwy 441 East Lees burg. FL 32748 (904) 357.4244	The Computer Shoppe 144 Middie Country Rd Middie isjand. NY 11953	
The Byte Shop 1514 University Ave Berkeiey. CA 94703 (415) 845 .6366	Byte Shop of Miami 7825 Bird Road Miami. FL 33155 13031 2642983		Wisconsin
		Audio Design Electronics 487 Broadway. Ste. 512 New York. NY 10013 1212) 226 -2038	The Milwaukee Computer Sture 6916 W North Ale Milwaukee W153213 (414) 259.9140
Byte Shop Computer Store 6041 Greenback Lane Citrus Heights. CA 95610 19161961.2983	Microcomputer Systems Inc. 144 So. Dale Mabry Hwy. Tampa. FL 33609 (813) 879 -4301		
		The Computer Mart of New York	
			CANADA
Computer Center 1913 Harbor Blvd. Costa Mesa. CA 92627 17141646 -0221		New York NY 10001	Trintronics
		(2121686.7923	160 Eigin ${ }^{\text {t }}$
	GEORGIA	The Computer Corner 200 Hamilion Ave White Plains. NY 10601 (914) 949 -3282	Place Bell Canada
	Atlanta Computer Mart $5091 \cdot \mathrm{~B}$ Buford Hwy. Atlanta. GA 30340 (404) 455-0647		Ottawa Ontario K2P 2C4 $16131236-776$?
Data Consultants. Inc. 2350 W. Shaw. Suite 114 Fresno. CA 93711 12091431-6461			First Canadian Computer Store. Lid 44 Eglinton Are West Toronto. Ontare M4R IA\| (416) 482 .80 80
Bits N Bytes 679 S. State College Blvd. Fullerton. CA 92631 17141879.8386	ILLINOIS	Cybershop 14515 Hamilton Rd Columbus. OH 43227 (614) 2.39 -8081	
	The Numbers Racket $623^{\prime}{ }^{2}$ South Wright St Champaign. IL 61820 (217) 352.5435		The Compurer Place 186 Queen St West
The Byte Shop 16508 Hawthorne Blvd Lawndale. CA 90260 121.31 371-2421			Toronto. Ontarw MSV (416) $698-027$?
	itty bitty machine co.	OKLAHOMA High Technology 1020 West W ilshire Biod Ohlahoma City. OK 7311 h 14051842.2021	Pacific Computer Store $45(0)-11$ Rupert 5 t Vancouver B C V.5R 24 (x)4. $43 \times 32 \times 2$
	1316 Chicago Ave		
The Byte Shop 10*3 El Camino Real Mountain View. CA 94040 14151969.5464	13121 328 -0500		
	Reeves Communications 1550) W. Court St. Kankakee. IL (6)OO! (8151937.4516		
		OREGON	
Digital Delf 80 W. El Camino Real Mountain View. CA 94040 (415,961-2828		Byte Shop Computer Store $3482 \mathrm{~S} . \mathrm{W}$ Cedar Hills Blvd Beaverton. OR 97005 $150310+2686$	
	itty bitty machine co.		
	42 West Ruosevelt		
The Computer Mart 624 West Katella $\$ 10$ Orange. CA 92667 17141633-1222	$\begin{aligned} & \text { Lombard. IL 60148 } \\ & 1312,620-5808 \end{aligned}$		
		The Real Oregon Computer Co	
	INDIANA		
	The Data Domain tho Su. College Ave Bloomington. IN 47401 $1812133+3607$	205 West loth Ave Eugene. OR 97401 (503) 4841040	
The Byte Shop 2227 El Camino Real Palo Alto. CA 94306 (415) $327-8080$			
		Byre Shop Computer Store2033 S W 4th Ave	
Byte Shop 4\% South Lake Ave. Pasadena. CA 91101 1213) 684.3311	The Byte Shop 5947 East 82 nd St Indianapulis. IN th250 1.317) 842-2983	Purtand. OR 47201	
		RHODE ISLAND	
The Computer Store of San Francisco 1093 Mission Street San Francisco. CA 94103 (415) 431 -0640	The Data Domain 7027 N Michigan Rd Indianapulis. IN 46268 (317) $251 \cdot 31.39$	Computer Power. Inc M24 Airport Mall 1800 Posi Rd. Warwick. R1 02886 (401) 738.4477	
	The Data Domain		
Byte Shop 321 Pacific Ave. San Francisco. CA 94111 (415) 421 -8686		SOL'THCAROLINA	
	West Lafayette. IN 47905 (317) 743. 3951		
		Byte Shop 2018 Green Street	
	KENTUCKY	Columbia.SC 29205	
The Byte Shop 2626 Union Avenue San Jose. CA 95124 (408) 377 -4685	The Data Domain 3028 Hunsinger Lane Louisville. K Y 40220 (502) 456.5242	(803) 71.7824	
		TENNESSEE	
The Computer Room 124H Blossom Hill Rd. San Jose. CA 95123 14081226.8363	MICHIGAN	Microproducts \& Systems 2307 E Center St.	
	The Computer Store of Ann Arbor	Kingsport. TN 37664 (615) 2045-8081	
The Byte Shop 509 Francisco Blvd. San Rafuel. CA 94901 (415) 457.9311	of Ann Arbor 310 East Washington Ann Arbor. MI 48104 (313) 995 -7616	TEXAS	
		Byte Shop 3211 Fondren	
	Computer Mart or Royal Oak 1800 W. 14 Mile Rd. Royal Oak. MI 48073 13131576.0900		
The Byte Shop 3400 Él Camino Real Santa Clara. CA 95051 14081249.4221		Houstion. TX 70063 (713) 977-0464	
		Computertex 2300) Richmond Ave	
Recreational Computer Centers 1324 South Mary Ave. Sunnyvale. CA 94087 (408) 735 -7480	Genral Computer Store 2011 Livernois Troy. MI 48084 (313) 362-0022	Houstion. TX 77048 17131526-3456	
		Interactive Computers $7646:$ Dashwind Rd Houston TX ${ }^{-7036}$ 1713172 525 7	
	NEW JERSEY		
Byte Shop of Tarzana 18424 Ventura Blivd. Tarzana. CA 91356 12131343 -3919 The Byte Shop 2989 North Main St. Walnut Creek. CA 945\% (415) 933 . 6252	Hoboken Computer Works No. 20 Hudson Place Hoboken NJ 07030 (201) 420-1644	The Microstore h.3. Su. Central Expressway Richardson TX 7 Sown $12141231 \cdot 104 \%$	

ACCESS, JUNE, 1977 •

1 EFT 2 - bu

Vol. I, No. 3
Processor Technology Corp.
6200 Hollis Street
Emeryville, CA 94608

Stanley M. Sokolow, DDS
1577 Canada Lane
Woodside. CA 94062

The feedback is starting to come in at a most gratifying rate, so we'll get on to the news of note after a brief commercial for our technical troubleshooting hotline-call 415-829-2600 weekdays between 9:30 and noon or 1:30 to 4.

Software availability -good news time. Are you ready? A good portion of Processor Technology Software is. Specifically, TREK-80, ALS-8, GAMEPAC, and BASIC/5 (all on the most-wanted list) are now available and in stock at your local dealer. No paper tape versions, though-we're no longer producing any Processor Technology software on paper tape.

As for other software, you can currently look for SW\#1 (Assembler) and MATHPAK in mid to late October; New 8080 FOCAL and 8 K , and extended DISK BASIC on November 15. Incidentally, the two BASICS will have some capabilities we haven't advertised previously. such as complete matrix operations including matrix addition, subtraction, multiplication and inversion. Sure wish I'd had a Sol with 8K BASIC when I took linear algebra!

And look for some new software surprises turning up soon at your local dealer. We do appreciate your patience in waiting for software production and availability, and you won't be disappointed with the final product.

Software cassettes. Just a reminder that all our audio cassettes
are recorded on two sides. Side 1 is in CUTS Standard (SOLOS/CUTER compatible, recorded at 1200 baud); Side 2 is Kansas City Standard at 300 baud, in case you don't have a Sol or CUTS audio cassette interface board.

Hardware: Helios II is coming. After many frustrating engineering and software development delays, deliveries have begun on the Processor Technology Helios II dualdrive floppy disk system. If you have one on order, either through a dealer or directly from us, rest assured that it'son its way Unfortunately we have so many orders we probably won't get through the entire backlog until late November or early December. If you want additional information, or you'd like to see a demonstration, check your local dealer, or give us a call.

We've been emphasizing the importance of our dealers all along. and they are your best first source. They're far more able to provide the service you deserve than we are from our distant factorv, and they're always happy to hear from you. They're all authorized to perform service and repairs on all our products, and we're adding newdealers rapidly. Retail computer stores are multiplying like rabbits, in case you hadn't noticed.

Lloyd's Second Law: Any program can be written in fewer commands.

FNTER THE GREAT SHOW-OFF-YOUR-SOL CONTEEST

and maybe win a GPIM/Sol with AIS-8 SIM-1/TXT-2 ROM set

All you have to do is tell us how you are using your Sol. The grand prize will be awarded for the most interesting and/or unusual application; runner-up gets the Software Technology MUSIC SYSTEM, án interesting way for you and your computer to make music. And all of the more interesting entries have a chance to get published in future issues of ACCESS, with full credit to your resourcefulness and imagination.

Use the form on the back page to enter, using additional paper as needed. We'd like to have as much technical information as possible; i.e., what kind of hardware support was needed to get Sol to do your thing? And please be as specific as possible about when and where you're using it-business, science, industry? At home? What s it doing? Have you interfaced it to your lawn sprinklers, burglar alarm. Chevrolet? (We've heard of Sols used in the most provocative ways!)

We re holding this contest with three motives in mind. 1) To provide us with some feedback on what Sols are doing and how they're doing it. so we can direct our future efforts accordingly. 2) To give you the Sol user. some insight into what other Sols are up to so you can pick up some nifty ideas for yours. 3) To provide a little excitement, fun and games for everyone

The prizes will be awarded by the most impartial judges we can scout up to objectively determine the most original, unusual and imaginative application of a Sol Programs and developmental work you may have done are valid entries. so get those pencils going on the entry form. Mail your entry to:
Sol Applications Contest
Processor Technology
7100 Johnson Industrial Drive
Pleasanton, CA 94566
Closing date is December 1, 1977.

Table of Contents

Reader Feedback

page 4
Sol User's Society gets into action with lots of plans and they're ready for input ..
page 6
Colgate Spinx opinionates re the software flexibility of Helios II page 7

WINZI?!! A collection of short programs, featuring the likes of Hic, Opps, and Chase.
page 8
Save your Sol's bytes with just a few little changes
\qquad
Some uppercase key software to save wear and tear on your patience whenever you restart or power up Sol. \qquad
How to hear your Sol keyboard, and shape up your touchkey typing page 15

Run/Stop, Part II, tells you more about monitoring the operation of your Sol.
. page 15
PLUS: A program for Home Accounting (p. 17), an 8080 Relocatable Assembler (p. 20), an ALS-8 to Sol Patch (p. 22), an Intel Tape Loader for Sol (p. 23), Newett Awl's Choo Choo Updated for Sol (p. 25), and Galaxy (p. 29).

"Any minor of order r in the adjugate determinant of a square matrix A is, on expansion, a certain polynomial in the elements of A, fixed in form whether A is singular or note."

Determinants and Matrices

"There are no Jewish midgets."

 Lenny BruceWell, how do you like our new format? Now you can keep our deathless prose (and occasionally valuable information) neatly in a 3 ring binder instead of stacked up on the floor someplace to hide the cigarette burns. (Oh, you liked having something to hide the cigarette burns?) It should prove a more useful reference format, and we'll keep working on making ACCESS responsive to your needs. May even get classy soon and go to two-color.

Notes from the show circuit: We had one display at NCC (Dallas) and another at WESCON (San Francisco). Seems like computer shows are cropping up everywhere you look, and unfortunately we just don't have time to keep up with them all. It's great to see so much interest developing though-remember back to the dark ages when you were the only computer freak in town, all of a couple of years ago?

Meanwhile, instead of going to shows we're keeping our noses to the grindstone. The first Helios shipment is out and more are on the way ALS-8 on CUTS cassette is now
shipping, and 8 K BASIC is set for mid-November. Ralph has more to say about new products, so take a look at his 1-to-1 column.

By the way, if you send us software contributions, try to give them to us on CUTS cassette. That way we can run out a listing, send it off to the printer, and it turns up in the next ACCESS in a neat standard format just the way you wrote it. If we have to have the listing typeset, there's just that much more chance of an error creeping in and turning your beautiful program into a debugger's nightmare. We are getting somenifty programs fromyou people -take a look at Guy Campbell's home accounting system and Melvin Schehlein's modification to avoid erasing input lines, both in this issue.

We're always interested in all forms of communication with the outside world. If you are a member of a club, or publish a newsletter yourself, I'd really like to hear about it. We might be able to exchange membership or subscription lists. That way we'd all be getting more information, and know more about each other.

Well, bye now - y'all come see us at our new home in Pleasanton, y'heah?

Aram Attarian II

Subscription Information

Access is published every six weeks. If you like what you see, we hope you'll send us $\$ 4.00$ for a year's subscription so we can keep the info coming. Write to us at Processor Technology. 7100 Johnson Industrial Way, Pleasanton, CA 94566.

Have YOU Moved?

Please notify us of your change of address. Here's a handy form:
NAME
NEW ADDRESS

Gentlemen:

Having picked up a copy of \#2 ACCESS at the N.C.C., I've been delighted at your fresh style of presentation.

The Texas A \& M Microcomputer Club is composed of a number (about 50) of micro-computer buffs who are mainly software-development oriented. If you visited the Personal Computing Faire at N.C.C. you may have seen the APL-Core booth which is a club project. Robert Arnstein and Ian Kettleborough are former members of the club.

I was wondering if it would be possible for you to send us a few copies of ACCESS whenever it is published for distribution to interesied club members. MITS does this with Computer Notes. which, of course is putting the advertising into a spot where it may potentially dc the most good. However Computer Notes is rather dry on occasion.

The SOL system has been demonstrated a number of times for the club and it always draws quite a bit of interest. Several members of the faculty in various computerrelated disciplines are considering a purchase.

Congratulations on a very readable publication.

Sincerely,
Robert R. Weir
Summer Caretaker,
TAMUCC
Dear Bob:
Thanks for the strokes. We'll put you on our mailing list right away, and we'll be glad to do the same for any other clubs who care to drop us a line.

Aram

Gentlemen:
As the satisfied user of two Sol systems I have encountered a problem when using the device as a terminal. The problem occurs because of the PCR routine in the VDM section of SOLOS. The attached assembly listing should be self explanatory as a successful solution. (See p. 20, this issue.)

Secondly, how come your company wasn't directly represented at Atlantic City this year? I know by talking to friends in the computer hobby field that you are having great difficulty delivering some of your new product line. Your equipment is of such high quality across the board most of us are willing to wait. Do you have something to hide or did you opt for Boston?

Yours truly, Melvin E. Schehlein, Ass't. Director of CMS

Dear Mel:

Thanks for a good idea: being able to check the last input certainly helps. Your program appears on page 20 of this issue. As for the shows, the cost of hitting all the ones cropping up on the East Coast especially is just prohibitive. We wouldn't have any money left to produce Sol's with. But we will make the New York City show in October. Right about now in fact.

Aram

Dear Aram:

I recently purchased, assembled and am running a SOL-20 under SOLOS. As a first trial exercise (having only 4K), I entered Newett

Awl's Choo Choo Train. After much gnashing of teeth, wringing of hands and tracking of unstructured programming. I got it running. The trick was in the instruction in location 0156H; instead of an "IN O" (DBOO), SOLOS requires an "In FC" (DB FC). This is in addition to the necessary "C3 C9C1" in 0163H to return to SOLOS.

My purpose in writing this letter is not so much to relay the above software changes as to point out where I think ACCESS could play a large part in information dissemination. I received very little information with my SOL-20, regarding how to use the various devices with SOL (tape recorders, etc.). After scanning through the SOL manual and SOLOS listing, I found the skeleton references to the memory map and port addresses.

I could not locate any information of the complete hex-to-VDM character set, including all the obscure characters like $\boldsymbol{\Omega}$ and \equiv. How about some examples of programs using the subroutine calls to SOLOS, particularly for animation on the VDM? In closing, I would like to compliment you on the publication of ACCESS. It is reassuring to have some further "feed-forward" from the vendor once the hardware has been sent. Keep up the good work!

Yours truly, Warren L. Harkness (In SOLOS UNUM)

Warren:
Thanks for the feedback, and we will keep supplementing the manual with helpful tips via ACCESS. Also, this issue has the Choo Choo listing modified to run on Sol.

Aram

To: Processor Technology Co.
ACCESS Editor
Thanks for a fine publication and outstanding products! Thought you might include this modification to the Sol system in ACCESS.

I am presently stationed in Japan with the U.S. Air Force. The

1 EPT 2-55

domestic power here is on the European standard, that is 50 hz at 100 Ilts. Now the SOL-20 power sup-- 'y doesn't seem to mind that at all, bus voltages are right up there, wut the "swim" effect on the display could give you a splitting headache in short order.

The answer to my problem was actually quite simple. I needed four more character rows during the blanked period of the display. To obtain the extra rows I changed the preset count of U62 during the high state of VDISP, the display blanked. This change was implemented by disconnecting pin 5 of U62 from the VDISP line and tying it to ground. This gives me a total of 16 displayed and 8 blanked character rows for a total of 24 rows with 312 scan lines, a close match for the 50 hz operation.

I accomplished the MOD without cutting any P.C. foil or removing the main board from the Sol chassis. Parts needed are: one Molex Pin and a short length of flexible wire.

Remove IC 62 from its socket. Carefully scrape a small bare spot on the large ground bus running near the left of the IC socket; just emove the solder mask, don't cut ie bus. Solder the Molex Pin to a one-inch length of wire and then the wire to the ground bus. Bend pin 5 of the 93L16 IC outward 45 degrees and insert the IC in the socket leaving pin 5 projecting outwards. Now slip the Molex Socket over the protruding IC pin. . . . That's it. And no permanent disfigurement of my precious Sol when I returned to the land of 60 hz .

I hope that others will profit from this modification.

Ray D. Congdon
1956 COMM GP/OLC
APO San Francisco CA 96343

Ray:
Thanks much.

Dear Mr. Attarian
Enclosed you will find a check for $\$ 4.00$ for my 1 -year subscription to ACCESS. Also, I have a few ques. tions and suggestions.

1. I am a firm supporter of your company. If there is any way I can contribute to its continued success, let me know. I am presently unemployed, so most of my time is spent exploring my Sol 20 system. Unfortunately, I paid for my system via a loan. In another month or so, I won't be able to pay off this loan. If I don't find some sort of income soon, I may have to sell my Sol. I don't want to have to do this!! My being located in the center of the eastern megalopolis should open some possibilities. If there is any way possible, HELP!!

So far, I have written some original programs. One demonstrates the use of control characters and the escape sequences used by BASIC5. I have also written machine subroutines which can be used with BASIC5 to produce some special effects.

I also do some hardware design. I have completed design of
a 16 K static memory board using MOS TEC 4104's. I am working on a few other things as well.

If there is any way I can help. even with nothing in return, please let me know. As far as some sort of income, if you can't help, maybe one of the readers can.

Note: I will relocate.
2. It is said that escape sequences can be used to generate characters in inverse video. I have not been able to figure out how to do this. Could you please shed some light on this subject.
3. In regard to a letter from Joseph P. Chalala, Willow Street, Pa., in Vol. 1, \#3, I agree completely with his suggestion for a notebook type publication for ease of filing.

Well, that's all for now. I'm sure there will be more in the future. Remember Murphy's Law of Thermodynamics which states "Things get worse under pressure." So, take the time required to do, whatever,
right (within reason, of course). If not, it will cost you more later.

A dedicated Sol user, David F. Wrobel

P.S. The Bayshore Amateur Computer Group, of which I am president, consists of dedicated microcomputer hobbyists. Of which, only a few are Sol owners. We would like more. We are located in central N.J. Our address is: BACG P.O. Box 132, Holmdel, N.J. 07733.

David:

There's a good reason you haven't figured out how to generate characters in inverse video-it's not true that it can be done. Sorry. Hope the new format meets your filing needs.

And can anybody out there help David find work and save his Sol?

Aram

Dear Editor

I am always reluctant to send one of my little masterpieces in for publication, but it seems like everyone else is a little shy also, and I know that there are a lot of Sol
owners, llke me, anxious to try out some of its unique features.

For whatever it's worth, I'm sending a short program that makes use of the File commands in Basic 5. It's not meant to be a finished product, but it does demonstrate one way to use commands. In fact, I hope someone will pick up the ball and make a better program out of it.

The purpose of the program is to allow the user to slip last month's data tape into one file, pay the bills, update the household accounts and store the updated accounts on the other file.

I have included a sample program for setting up the original data tape, (similar to the one in the Basic 5 manual), the actual program I use for working the accounts, and a sample run.
Sincerely yours
Guy W. Campbell
5815 Buckley Drive
Jacksonville, FL 32210

Guy:
Thanks. This is the kind of creative input we really appreciate. Readers: Guy's program appears on p. 17 of this issue.

Aram

We've Moved Again!

For the same reason as last time-we ran out of space and outgrew the facilities again. We've now forsaken Emeryville for sunny Pleasanton, CA, just over the hill. If you're curious about the history of Pleasanton, or just curious, ! refer you to
a book entitled "Mammy Pleasant," by Helen Holdreage.

The new address is Processor Technology Corp. 7100 Johnson Industrial Way Pleasanton, CA 94566 Phone: 415-829-2600

JointheSol Users'Society

The Sol Users' Society got under way Sunday. July 31, when about $30-40$ Sol users met for the first organizational meeting. The Society is open to everyone who has a Sol or a Sol-type compatible system, so they're hoping to see even more of you at the next meetings.

This first time out a steering committee was elected, and goals were set for the Society. These goals are:

1. To facilitate communication between Sol owners.
2. To provide feedback from Sol owners to PTC.
3. To provide a mechanism for exchanging Sol software.
4. To encourage development of Sol-compatible products by other manufacturers.
Some time was spent just getting to know one another and talking about various projects the club can tackle. Seems that most of the stuff users have to offer is software, but they're also interested in reviewing any hardware submitted to the Society, be it prototype or production. They can't supply certification, though.

One project definitely under way is a Sol Users' Society newsletter. Contributions and comments herewith solicited.

A tidbit that emerged from the first meeting: TDK Auda C-60 cassette tape performs best in a bitchopping test.

Schedule of meetings. The group is set to meet on Sundays Oct. 16. Nov. 20, and Dec. 18, at Varian Physics Lab, 2nd Floor. Stanford CA. Come meet the new steering committee: Bill Burns, Dave Fylstra, Ron Findlay, Ben Milander, Bill Holding, Stan Sokolow. David Fox.

For more information, please write to:

Bill Burns

4190 Maybell Way
Palo Alto, CA 94306
(no phone calls, please . . .)

Review: Software Capabilities of the Helios II Disk System

The Helios II system has several capabilities I haven't seen in other disk systems on the market, and one particularly notable advantage for use with the Processor Technology Disk Operating System: you can write I/O routines for the Helios which permit the use of any I/O controller in conjunction with PTDOS, including the Cromemco D to A board and just about any homebrew board you've already built. (Maybe not some that perform DMA or make use of the I/O ports as control ports by the disk controller.)

The reason for this flexibility is that Helios treats all files as data files, including the device files used for 1/O routines. These differ from regular files in that data read from or to them will come or go directly to the devices controlled by the 1/O routine. With Helios, the only thing you have to worry about is to make sure you follow the guidelines in the PTDOS user's manual when you write your I/O routine.

Software support is another big plus for Helios. It offers a disk assembler, two editors (one ALS-8 type, one Nova-type), library functions, a debugger, language systems, procedures (PROCS), and full interface to PTDOS on command or assembly level

The disk assembler allows you to generate object and listing files from a source file. You have the options of specifying if the input file is ALS-8 type, if it has line numbers.
if it has form control, and a few other things

The ALS-8 type editor is especially useful on systems with a lot of memory because you can work with text, as in the ALS-8. You have the options of scrolling forward and backward through the text, deleting characters, searching character strings, moving blocks of code, replacing string patterns with others as found. The limitation to this editor is that it requires the VDM-1.

The Nova-type editor can be run on almost any terminal, since all I/O is run through the system console routines. It will yank pages into the edit buffer, change data in the page, and write it out. If offers many of the same functions as the ALS-8 type.

Library functions allow you to assemble several source files which make up one logical program. It's done through the use of a copy verb included in the PTDOS assembler. You could expand the use of this verb to build up a library of source files which perform common functions, then concatenate these files into an object file through the assembler.

The debugger serves a function similar to that of the simulator in the ALS-8: you can run object code in a controlled environment. However, the debugger runs real time instead of the simulator's interpretive mode. You can use it to set numerous break points; examine
memory in hex, character, or instruction format, alter memory or output drivers; and do several other useful debugging tasks.

The broad spectrum of language systems available includes a DISK BASIC and DISK FOCAL: FORTRAN is rumored to be among those upcoming. Language support is definitely one of the big advantages of the Helios system

The command interpreter gives access from the console to many of PTDOS's numerous entry points. A partial list of the commands available: SPACE, OPEN, CLOSE KILL, RANDOM, SEEK, RENAME, REATR, RETYPE, CREATE, READ, WRITE

With PTDOS, you can also enter procedures in ALS-8 type file formats as a series of commands which may include optional statements.

The PROCS itself is simply a list of commands which you can enter and allow to execute consecutively. Very useful for setting up, say, a 3 -hour listing to print out while you get some sleep.

All in all, the Helios II disk memory system has proved well worth the time and price from this user's point of view.

Cynic: One who is enough to make anyone a pessimist.

WINZI is a collection of projrams that were originally written last summer for VDM1 and published in D.D.J. They have been rewritten for a Sol with a SOLOS personality
module and addressed to use the 1K of RAM available on the Sol P.C. board.

The programs are:
Hic-a random walk
O pps-draw a picture
without returning
C hase-make the turtle
catch the
bouncing bug
L ife-the 'game' of LIFE
The speed of Hic, Opps, Chase and Life are under control of the SET command (see SOLOS manual). Before EXecuting C900 SET $S=80$. If you fail to set the speed first, the speed is so fast that you won't see it happen.

Type 'H' for Hic, 'O' for Opps, or 'C' for Chase

In Hic the beastie should be moving around leaving asterisks. If it is not moving, the random number generator might not be working. It is important not to zero memory before loading this program. In particular the Data Storage area SH should be nonzero. When you get tired of watching it, hit CR and return to the executive.

In Opps, you control the direction the beastie moves. The directions are as shown, upper right.

Type the number corresponding to the desired direction. The beastie will proceed in that direction until another direction is given. ' 0 ' will stop the beastie. ' 5 ' will cause a wipe out. ' A '. If the beastie ever returns to a focation where it's been a ' $\$$ ' will appear and the program will return to the executive, hence the name: Opps. If you wish to return to the executive at any other time type CR.

Life requires that there is an initial population of asterisks on the screen. Place them there by either Hic or Opps. Then enter Life by typing L from the executive. The CR will return you to the executive. 1 K of RAM 0-3FF Hex is needed by Life as a scratchpad

C900	$C D$	C5	C
C903	$C D$	FE	C
C906	FE	43	
C908	CA	10	C9
C90B	FE	48	
C901	CA	5D	C
C910	FE	4F	
C912	CA	76	C9
C915	FE	4 C	
C917	CA	09	CA
C91A	C3	03	C9
C91D	CD	C5	CA
C920	CD	84	CA
C923	3A	CF	$C A$
C926	77		
C927	EB		
C928	$C D$	84	CA
C92B	3A	CE	CA
C92E	77		
C92F	CD	Fl	C9
C932	CD	$F E$	C9
C935	36	20	
C937	CD	A3	C9

0090	CALL CS	Clear the screen
0100	RET CALL KB	The executive routine
0120	CPI ' ${ }^{\circ}$ '	branches to chase on C,
0130	J CH	
0140	CPI ${ }^{\prime} \mathrm{H}^{\prime}$	Hic on H ,
0150	ЈZ HI	
0160	CPI ${ }^{\prime \prime}$	Opps on 0, and
0170	JZ OP	
0180	CPI 'L'	Life on L.
0190	JZ LI	
0220	JMP RET	
1000	CH CALL CS	Chase...Clear the screen.
1005	CALL INIT	Place the bug
1010	LDA FO+1	at a random location
1020	MOV M, A	on the screen.
1030	XCHG	
1040	CALL INIT	Place the turtle
1050	LDA FO	at a random location
1060	MOV M.A	on the screen.
1070	C! CALL DL	Wait a while.
1075	CALL KB	Get input.
1080	MVI M, 20H	Put a space where you are,
1090	CALL MV	then move.

C93A	3A	CF	CA	1100	LDA FO+1	If the bug is there,
73 D	BE			1110	CMP M	you've got him.
73 E	CA	9E	C9	1120	JZ HLT	
141	3A	CE	CA	1130	LDA FO	Place turtle at new screen
144	77			1140	MOV M, A	location.
C945	EB			1150	XCHG	
C946	CD	A®	CA	1180	CALL RND	The bug moves at random
C949	36	20		1185	MVI M, 20H	Put a space where it was,
C94B	CD	A3	C9	1190	CALL MV	then move.
C94E	3A	CE	CA	1200	LDA FO	If turtle is there,
C95	BE			1210	CMP M	the bugs been had.
C952	CA	9 E	C9	1220	$J 2 \mathrm{HLT}$	
C955	3A	CF	$C A$	1230	LDA FO+1	Place bug at new screen
C958	77			1240	MOV M, A	location.
C959	EB			1250	XCHG	
C95A	C3	2 F	C9	1260	JMP C1	Do it all again
C95D	CD	C5	CA	1300	HI CALL CS	HIC...Clear the screen
C960	21	20	CE	1305	LXI H, ロCE2øH	Place the turtle at the
C963	36	87		1310	H1 MUI M, 7	center of the screen.
C965	CD	FE	C9	1315	CALL KB	Should I return to the executive?
C968	CD	Fl	C9	1320	CALL DL	Wait awhile
C96B	CD	AD	CA	1330	CALL RND	Move the turtle at random
C96E	36	2A		1340	MUI M, 2AH	
C970	CD	A3	C9	1350	CALL MV	leaving asterisk behind
C973	C3	63	C9	1370	JMP H1	Do it again.
C976	CD	C5	$C A$	1600	OP Call cs	Opps...Clear the screen
C979	06	00		1602	MVI B, 0	Place turtle at the center
C97B	21	20	CE	1605	LXI H, ©CE20H	of the screen.
$297 E$	7E			1610	01 MOU A,M	If you have been
97 F	FE	2A		1620	CPI 2 AH	here before,
C981	CA	9E	C9	1630	JZ HLT	halt.
C984	36	07		1640	MUI M, 7	Put the turtle on the screen
C986	CD	Fl	C9	1650	CALL DL	wait awhile.
C989	$C D$	FE	C9	1655	02 CALL KB	Get input.
C98C	CA	90	C9	1658	JZ 04	If none, continue
C98F	47			1660	MOV B, A	
C990	78			1662	$04 \mathrm{MOU} \mathrm{A,B}$	
C991	E6	QF		1664	ANI 日FH	If it is a 'ø', don't move.
C993	CA	89	C9	1666	J2 02	
C 996	36	2A		1670	MVI M, 2 AH Pla	ace asterisk in old location
C 998	CD	A3	C9	1680	CALL MU	then move.
C99B	C3	7 E	C9	1690	JMP O1	Do it again
C99E	36	04		1700	HLT MUI M, 4	Halt--Place ' γ ' on the screen.
C9A0	C3	03	C9	1710	JMP RET	Return to the executive
C9A3	E6	QF		1800	MV ANI 0 FH	Move
C9A5	FE	86		1850	CPI 6	
C9A7	C2	AF	C9	1860	JN2 M1	This routine uses the
C9AA	3E	81		1870	MVI A, 1	curser move routines
C9AC	C3	C®	C9	1880	JMP M3	in SOLOS (PUP, PLEFT, PDOWN,
C9AF	FE	01		1890	M1 CPI 1	and PRIT) to move the
C9B1	C2	B9	C9	1900	JNZ M2	contents of the screen
C9B4	3E	96		1910	MVI A,6	location pointed to
C9B6	C3	C0	C9	1920	JMP M3	by the address contained
C989	FE	67		1930	M2 CPI 7	in the HEL registers.

-9BB	C2	CD	C9
-9BE	3E	DC	
C9C0	$4 F$		
C9C1	CD	ED	C9
C9C4	3E	08	
C9C6	A1		
C9C7	C4	04	C 1
C9CA	3E	B1	
C9CC	A1		
C9CD	C4	15	C 1
C9D0	3E	02	
C9D2	A1		
C9D3	C4	CB	CD
C9D6	3E	04	
C9D8	A1		
C9D9	C4	OB	C 1
C9DC	CD	1 C	C 1
C9DF	C9		
C9E0	7D		
C9E1	E6	$3 F$	
C9E3	32	08	C8
C9E6	29		
C9E7	29		
C9E8	7 C		
C9E9	E6	$0 F$	
C9EB	E6	OF	
C9ED	32	09	C8
'9F0	C9		
C9F1	E5		
C9F2	2A	日A	C8
C9F5	2 C		
C9F6	AF		
C9F7	2B		
C9F8	BC		
C9F9	C2	$F 7$	C9
C9FC	E1		
C9FD	C9		
C9FE	CD	$2 E$	$C D$
CAD1	C8		
CAO2	FE	OD	
CA04	CD		
CAO5	C1		
CA06	C3	03	C9
CA09	11	00	00
CADC	6B		
CAOD	7 A		
CADE	E6	03	
CA10	F6	CC	
CA12	67		
CA13	D5		
CA14	6E	00	
CA16	2B		
CA17	CD	7E	CA
CAIA	11	CO	FF
CAID	19		

1940 JNZ M3
1950 MVI A, OCH
2000 M3 MOV C, A
2010 CALL SVDA
2020 MVI A,8
2030 ANA C
2040 CNZ OC104H
2050 MVI A, 1
2055 ANA C
2060 CNZ OC115H
2070 MVI A,2
2080 ANA C
2090 CNZ 日CDCBH
2100 MUI A,4
2110 ANA C
2120 CNZ OC10BH
2130 CALL OC11CH
2140 RET
2200 SVDA MOV A,L
2210 ANI 3FH
2220 STA DC8D8H
2230 DAD H
2240 DAD H
2250 MOV A,H
2260 ANI DFH
2270 ANI $0 F H$
2280 STA OC809H
2290 RET
3000 DL PUSH H
3005 LHLD $0 C 80 \mathrm{AH}$
3010 INR L
3020 XRA A
3030 D 1 DCX H
3040 CMP H
3050 JNZ D1
3055 POP H Restore address
3060 RET
3100 KB CALL ØCD2EH Get input from keyboard.
$3110 \mathrm{RZ} \quad$ If none return.
3120 CPI ODH If it is a CR restore the
3130 RN2 stack and return to the
3140 POP B
3150 JMP RET
4000 LI LXI D. 0 Life
4010 L1 MOV L, E
4020 MOV A,D
4030 ANI 3
4040 ORI BCCH
4050 MOV H,A
4060 PUSH D
4070 MVI C. 0
4080 DCX H
4090 CALL CT
$\begin{array}{lll}4100 & L X I & D, Q F F C O H\end{array}$ Count the neighbors

CAIE	$C D$	7E	CA	4120	CALL CT	the screen in the
CA2 1	23			4130	INX H	following order:
322	CD	$7 E$	CA	4146	CALL CT	
425	23			4150	INX H	
26	CD	7E	CA	4160	CALL CT	
- A29	11	40	00	4170	LXI D,40H	\rightarrow
CA2C	19			4180	DAD D	\uparrow
CA2D	CD	7 E	CA	4190	CALL CT	\downarrow
CA30	19			4200	DAD D	
CA3 1	CD	7 E	CA	4210	CALL CT	\downarrow
CA34	2B			4220	DCX H	$\leftarrow \leftarrow$
CA35	CD	$7 E$	CA	4230	CALL CT	
CA38	2B			4240	DCX H	
CA39	CD	7E	CA	4250	CALL CT	
CA3C	23			4251	INX H	
CA3D	11	CD	FF	4252	LXI D, ©FFCOH	
CA40	19			4253	DAD D	
CA4 1	D1			4260	POP D R	Restore RAM pointer.
CA42	CD	65	$C A$	4270	CALL RG D	Determine next generation
CA45	13			4280	INX D f	for this location and put
CA46	7A			4290	MOV A,D i	it in the RAM.
CA47	E6	04		4300	ANI 4 D	Do this to every screen
CA49	CA	gC	CA	4310	Jて L1 l	location.
CA4C	21	00	CC	5000	CP LXI H, өCCoor	Copy the next generation
CA4F	11	00	00	5010	LXI D, 0	as stored in the lk of
CA5 2	1 A			5020	CE LDAX D	scratch pad RAM
CA5 3	77			5030	MOV M,A	to the screen.
CA54	23			5040	INX H	
A55	13			5050	INX D	
456	7 C			5060	MOV A, H	
, A57	FE	D0		5070	CPI ODOH	
CA59	C2	52	$C A$	5080	JNz C®	
CA5C	CD	F1	C9	5090	CALL DL	Wait awhile.
CA5F	CD	FE	C9	5100	CALL KB	Should I return to the exec.?
CA6 2	C 3	09	CA	5150	JMP LI	If not do another generation.
CA65	79			7000	RG MOV A,C	Follow the rules of LIFE
CA66	FE	02		7010	CPI 2	to determine the next
CA68	CA	7B	$C A$	7820	$J 2 \mathrm{R} 3$	generation for this
CA6B	D2	72	$C A$	7830	JNC R1	location.
CA6E	3 E	2.		7840	R2 MVI A, 20 H	
CA70	12			7845	STAX D	
CA71	C9			7050	RET	
CA72	FE	®3		7060	R1 CPI 3	
CA74	C2	6 E	$C A$	7070	JN2 R2	
CA77	3E	2 A		7080	MVI A, ${ }^{\prime \prime}$	
CA79	12			7890	STAX D	
CA7A	C9			7100	RET	
CA7B	7E			7110	R3 MOV A,M	
CA7C	12			7120	STAX D	
CA7D	C9			7130	RET	
CA7E	$7 E$			8000	CT MOV A,M	Counter
CA7F	FE	2A		8010	CPI '*'	
CA8 1	C0			8020	RNZ	If the neighbor is
CA82	OC			8030	INR C	
CA83	C9			8040	RET	asterisk count it.

Bytesaver Modification for Sol

If you want to use a Chroimco Bytesaver in the Sol, you'll need to make the following modification of the Bytesaver. Data will then be gated onto the Bus only when PDBIN is high or active, necessary in the Sol because the Data IN and Data OUT busses are connected together.

First cut the trace connecting pin 11 of IC 15 (7432) to pin 15 of IC 16 (74367). Now make these connections with small gauge insulated wire:

1. Connect pins 11 and 10 of IC 15.
2. Connect pin 8 of IC 15 to pin 15 of IC 16.
3. Connect pin 8 of IC 11 to pin 9 of IC 15.
4. Connect S-100 Bus pin 78 (PDBIN) to IC 11 pin 9. Pin 78 is the 23 rd from the left on the solder side of the board.
... AND A BYTESAVER

ROGRAMMING ROUTINE

Thisshort routine will program
z contents of any 1 K block of memory into a 2708 EPROM in-

C9め CD 3A C3
C9Ø3 7D
C9Ø4 B7
C9Ø5 C2 $\varnothing 4$ C \emptyset
C9Ø8 2228 C9
C9øB Ø1 $\varnothing \varnothing \emptyset \varnothing ~$
C9ØE 11 Øø 64
C911 2A 28 C9
C914 7E
C915 12
C916 23
$C 91713$
C918 7A
C919 FE 68
C91B C2 14 C9
stalled in socket 1 of Bytesaver. The Bytesaver should be addressed at 6000 H .

A15-L, A14-H, A13-H
The routine is used as a custom command with the Solos/Cuter operating system. Enter the program at C 900 H , or reassemble it elsewhere if you wish. Then create a custom command by typing:
CU BURN C900 (CR)
NOTE: CR means "strike the return key;" do not type the letters as part of the command. If the program has been reassembled at an arbitrary address of

NNNN, type:
CU BURN NNNN (CR)
Now to use the BURN custom command, type:
BURN AAAA (CR)
AAAA being the starting address of the 1 K block you wish to program into the 2708. The programming operation takes about 5 minutes, which is in accordance with the published programming instructions for the 2708. When the programming is complete, the routine will return control to Solos/Cutter and a prompt will reappear on the screen.

BYTESAVER ROUTINE，cont．

C91E 03
C91F 78
C92ø FE 64
C922 C2 0 C9
C925 C3 \square_{4}^{C} C øøøø＊

600 0	INX	B	BUMP PASS	COUNT
0600	MOV	A，B		
のб0б	CPI	4	IK PASSES	？
øбб口	JNZ	BLOOP	NOT YET	
6000＊				
のббб	JMP	ØCøø4H	ALL DONE	

のøøø＊
øøбб＊＊RAM AREA＊＊ øøøø＊
C928 のøøб SAD のøø＊

A Sol Keyboard Fix：

So You Won＇t Have to Hit the Upper Case Key Each Time You Restart

EDITOR＇S NOTE：Our thanks to Jay Bell for contributing this sug－ gestion．There are a couple of minor differences between the procedure he describes and our PTC standard modification for keyboard upper case initialization，so we＇re printing our version along with his．

So after days of constructing your Sol，you＇re finally ready to input the first command，hit the car－ riage return，and check the screen． WHAAT？！！All you get is some ques－ tion mark nonsense．So you check the software manual again．Sure enough，it wants upper case．So．you put the keyboard into alpha－shift by pressing the upper case key．

Later you notice your program isn＇t doing what you expected，so naturally you restart the old four－ phase wonder by simultaneously pressing the upper case and repeat keys．More question marks－the restart left you in lower case mode．

By now you＇ve realized this is going to happen every time．There are three solutions：1）Change the software to accept both upper and lower case commands．2）Change the keyboard to come up in upper－ case mode．3）Hit the upper case key every time you restart．

Number 3 had already worn me out．I personally prefer to change software，even though I＇m a hard－ ware freak．But I figured the chances of Processor Technology changing software at this late date were sub－ minimal．

Out with the keyboard sche－ matics．The fix looked simple enough：just CLEAR the upper case flipflop rather than PRESETTING it． The keyboard gets preset when power is first applied through an RC circuit that is initially low and slowly comes up to +5 volts．Since the signal coming off the keyboard to restart the 8080 is driven by an open collector inverter，it could also be connected to the power－up RC circuit．Then whenever you reset the processor，you also reset the key－ board to its initial power－up state． To make that power－up state turn the upper case flipflop on，you cut the land leading to pin 4 of U15，and the land leading to pin 1 of U15．Then connect the trace that used to lead to pin 4 to pin 1 instead．Similarly， connect the pull－up resistor that was tied to pin 1 to pin 4 instead．Then connect pin 8 of U 24 to pin 1 of U 15 ． This last connection ties the restart signal to the clear input of U15（as well as to the rest of the chips that are initialized at power－up）．

There is only one remaining problem for the purists．The flipflop that sets the machine in the local mode will come up in an undeter－ mined state，since its preset pin is
tied to pin 4 of U15．Now that you＇ve cut the land to pin 4 and pulled it high，the local flipflop is not being properly reset．Unfortunately，you have to remove U15 in order to cut the land to the local flipflop＇s preset pin，because the land runs under it on the component side of the board．If you want to be sure that the machine will come up with the local mode off，cut the land between pin 4 of U 15 and pin 10 of U 15 ，then connect pin 1 of U15 to pin 10 of U15．

Now you should be able to interact with your Sol the instant you power up or restart，without the bother of hitting the upper case key first．

THE PTC MODIFICATION：

1．Cut trace located between U15 pin 4 and plate through $1 / 8$ inches below pin on the component side．
2．Remove R31， $1.5 \mathrm{~K} 1 / 4$ watt Carbon Film，and save for later use．
3．On the Solder Side of the board： a．Insert one end of R31 in plate through adjacent to U15 pin 14 and solder．
b．Bend the other lead of R31 to pin 4 of U 15 and solder．
c．Add a $6 / 8$ inch jumper，stripped $1 / 8$ inch from each end，to the plate through located just below U15 pin 4.
d．Insert the other end of the jumper through plate through located just above U24 pin 12.

A Keyclick (Audible) Circuit for Sol

Silence may be golden, but there is an advantage to making your Sol keyboard sound like a typewriter. If you're a good fast touch typist entering data from a printed source, it's easier to listen for missed keys than to glance up at the screen all the time. Thanks to Jack Kinney for this audible circuit design; he says that the sound can be altered to suit individual tastes by varying RI burst length and R3 for burst frequency. The circuit operates as follows:

The first section of the dual timer is connected in the monostable mode, and the keyboard strobe triggers a positive-going pulse approximately four milliseconds long. This pulse is connected to the reset of the second section of the timer, which is operating in the astable mode, and is set for an output frequency of approximately 1.5 Khz , ating it "on" for a four-millisecond
st. The output transistor inverts we signal to prevent current draw in the "off" condition. The collector resistor is set for the desired loudness.

Kinney is also checking out a more complex circuit (three more IC's) which will decode the "BEL" code and produce a beep. One of the computers on the network signals for attention by transmitting the "BEL," and this will provide an audible monitor. We'll print this circuit in the next issue of ACCESS.

Katchum's Correction Corollaries: (a) In debugging any type of program, no corrections can be made correctly atter 1600 hours Friday. (b) The corrections will be self-evident at 900 hours Monday, (c) When in doubt divide by (2.0).

[^7]

* R5 SELECTED FOR DESIRED VOLUME

$$
\begin{aligned}
& \text { KEY "CLICK" CIRCUIT (SOI 10/20) } \\
& \text { JACK KINNEY } \\
& \text { UCLA COMPUTER SEIENEE DEPT. } \\
& 343 \text { BOELTER HALL } \\
& \text { LOS ANGELES, GA SOOZ } 4
\end{aligned}
$$

Run/Stop Circuits: Part II

In ACCESS \#3, I described a Run/Stop circuit for user control of Sol's X-Ready line. Now here's the circuit that will let you monitor the operation of your S-100 system by connecting LED's to the buss lines. Each Light Emitting Diode is driven by $1 / 6$ of a hex inverter package (74LSO4), current limited by a 470ohm $1 / 4$-watt resistor for each.

To monitor the operation of your system, compare the addresses and data displayed on the LED's as you single step, with the program listing. Most malfunctions can then be seen and corrected with very little effort. A couple of examples:

Quick test for data and address lines. You can discover major failures in these by toggling the reset line while the Run/Stop circuit is
enabled in the Stop position. All the LED's should light when the reset line is enabled. All except M1. PDBIN, and PWAIT should darken when the line is disabled. Any LED's that don't respond as indicated reveal a malfunction in the corresponding lines and should be checked with a meter or scope.

Testing the Input/Output lines. Single step until an input or output instruction is executing. When the SINP or SOUT LED is lit, you can stop stepping, and start following the logic signals in the I/O section, with your troubleshooting equipment.

Next issue, this series will continue with advice on implementing traps on the front panel.

Steve Wong

Changes in Assembly Instructions for Sol:
he bug: You'll get an incorrect test result at Step 38 in the instructions; instead of the display shown in Figure 3-9, a display of random characters comes up.
The squasher: Install U93-74LS175 and U107-74LS367 at Step 35.

The bug: Your Sol doesn't work at Step 59.
The squasher: After you do Step 28 of the assembly, perform step 73 before proceeding to Step 29.
The bug: The waveforms are incorrectly shown in Figure 3-2 on page 3-15 of your Sol manual.
The squasher: Turn your manual upside down-the waveform shown for Pin 5-U104 is inverted. Same for Pin 7-U104.

A Program for a Home Accounting System

Contributed by Guy Campbell See the Letters to the Editor for Guy's comments on his program.

We're delighted to get this kind of input from our readers and pass it on for all Sol users.

PROGRAM FOR HOME ACCOUNTING SYSTEM .
THIS PROGRAM WILL RECORD PAYMENTS, UPDATE
balance and provide accumulated interest
FOR TAX PURPOSES.
NEW ACCOUNTS CAN BE ADDED ONLY BY CHANGING
THE PROGRAM.
PUT OLD DATA TAPE ON FILE 非2 AND SET FOR PLAY.
PUT NEW TAPE ON FILE 非 1 AND SET FOR RECORD. PRESS ANY NUMBER \& RETURN TO CONTINUE. 0

YOUR FRIENDLY FINANCE CO.
3958 TUFFLUK STREET
CHICAGO, ILL 60683

ACCOUNT NUMBER - 12345A

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

BALANCE $=\$ 51.60 \quad$ ANNUAL INTEREST RATE $=21 \%$
TOTAL PRINC. PAID $=\$ 108.00$ TOTAL INT. PAID $=\$ 6.39$

YOUR LAST PAYMENT WAS MADE ON 82877 FOR $\$ 36.00$

ENTER CHANGES TO ADJUST BALANCE. \$ 25.00 ENTER CHANGES TO ADJUST BALANCE. \$ 0
 YOUR PRESENT BALANCE IS \$ 76.60

ENTER PAYMENT TO THIS ACCT. $\$ 36.00$
ENTER TODAYS DATE 90277
PRINCIPLE PAID=\$34.66
INTEREST PAID=\$ 1.34
YOUR NEW BALANCE IS \$41.94
TOTAL PRINCIPLE PAID TO DATE=\$ 144.00
TOTAL INTEREST PAID TO DATE $=\$ 7.73$
ACCOUNT COMPLETE
PRESS ANY NUMBER TO GET NEXT ACCOUNT. 0

NEXT ACCOUNT COMES UP - WILL CONTINUE IN THIS FORMAT.
LIST
5 SET S=05
10 REM THE HOME ACCOUNTING PROGRAM
20 REM CREATED BY G. W. CAMPBELL - 1977
30 REM ORIGINAL DATA BANK (TAPE) PREPARED WITH
40 REM SEPARATE PROGRAM.
50 PRINT "PROGRAM FOR HOME ACCOUNTING SYSTEM."
60 PRINT
70 PRINT "THIS PROGRAM WILL RECORD PAYMENTS, UPDATE"
$\begin{array}{ll}80 & \text { PRINT "BALANCE AND PROVIDE } \\ 90 & \text { PRINT "FOR TAX PURPOSES." }\end{array}$
100 PRINT
110 PRINT "NEW ACCOUNTS CAN BE ADDED ONLY BY CHANGING"
120 PRINT "THE PROGRAM."
130 PRINT
140 FOR I=1 TO 1200:NEXT
150 PRINT "PUT OLD DATA TAPE ON FILE \#2 AND SET FOR PLAY."
160 PRINT
180 PRINT "PUT NEW TAPE ON FILE \#1 AND SET FOR RECORD."
190 PRINT
200 INPUT "PRESS ANY NUMBER \& RETURN TO CONTINUE. "Z
210 PRINT
220 GOSUB 770
225 FILE 非 1
230 FILE \#2
240 READ \#2,A,B,C,D,E,F,G: PRINT "END OF FILE";: GOTO 700
250 IF $A=1$ THEN GOSUB 1000
260 IF $A=2$ THEN GOSUB 1070
270 IF $A=3$ THEN GOSUB 1140
***** CONTINUE THIS SECTION FOR THE NUMBER OF ACCOUNTS NEEDED*****
400 GOSUB 770
410 PRINT "BALANCE=\$"; \%Z2\%; C,
420 PRINT TAB (30);"ANNUAL INTEREST RATE="; \%\%;B;"\%"; \%22\%

430 PRINT "TOTAL PRINC. PAID= $\$$ "; F,
440 PRINT TAB(30); "TOTAL INT. PAID= $\$$ "; G
450 GOSUB 770
51 PRINT "YOUR LAST PAYMENT WAS MADE ON "; \%\%;D,
452 PRINT "FOR \$"; \%22\%;E
453 GOSUB 770
460 INPUT "ENTER CHANGES TO ADJUST BALANCE. $\$$ "Cl
470 IF Cl=0 THEN 500
480 LET C=C+C 1
490 GOTO 460
500 PRINT "YOUR PRESENT BALANCE IS \$"; C
510 PRINT
520 INPUT "ENTER PAYMENT TO THIS ACCT. \$"F1
521 LET Tl=T1+F1
530 IF Fl=0 THEN 583
531 PRINT
532 INPUT "ENTER TODAYS DATE "D1
533 LET D=D1
550 LET Gl=($(\mathrm{B} / 100) * \mathrm{C}) / 12$
560 LET G=G+G1
570 LET C=C-(F1-G1)
580 LET E=F1
581 PRINT "PRINCIPLE PAID=\$"; (E-G1),
582 PRINT TAB(30);"INTEREST PAID=\$";G1
583 PRINT
590 PRINT "YOUR NEW BALANCE IS \$";C
595 LET F=F+(E-G1)
600 PRINT
i10 PRINT "TOTAL PRINCIPLE PAID TO DATE= $\$$ "; F
s20 PRINT "TOTAL INTEREST PAID TO DATE=\$"; \mathbf{G}
630 PRINT
640 PRINT "ACCOUNT COMPLETE"
650 INPUT "PRESS ANY NUMBER TO GET NEXT ACCOUNT. "Y
670 PRINT \#1, A, B, C, D, E, F, G
680 PRINT
 **********"

690 TOTO 240
700 CLOSE 非2
710 CLOSE 非1
720 PRINT
730 PRINT "TRANSACTIONS COMPLETE"
740 PRINT
741 PRINT "YOUR PAYMENTS TOTALED \$";T1;" THIS MONTH."
750 PRINT
751 PRINT "GOODBYE, SEE YOU NEXT MONTH."
752 SET S=0
760 END
770 PRINT "
780 RETURN
t****THIS IS WHERE YOU PUT THE ACCOUNTS*****

HOME ACCOUNTING SYSTEM，cont．
1000 PRINT＂YOUR FRIENDLY FINANCE CO．＂
1010 PRINT＂3958 TUFFLUK STREET＂
1020 PRINT＂CHICAGO，ILL 60683＂

1030 GOSUB 770

1040 PRINT＂ACCOUNT NUMBER－12345A＂
1050 GOSUB 770
1060 RETURN
1070＊＊＊＊＊CONTINUE TO PUT IN ACCOUNTS IN THE SAME FORMAT．
THIS IS A SAMPLE PROGRAM THAT CAN BE USED TO ESTABLISH THE ORIGINAL DATA BASE TAPE．

LIST

10 FILE 非2
20 INPUT＂ACCOUNT IDENTIFICATION NO．？＂A
30 IF $A=0$ THEN 110
35 PRINT
40 INPUT＂ANNUAL INTEREST RATE（WHOLE NUMBERS）？＂B
45 PRINT
50 INPUT＂BALANCE ？＂C
55 PRINT
60 INPUT＂DATE AND PAYMENT（LAST PMT MADE）？＂D，E
65 PRINT
70 INPUT
75 PRINT
80 INPUT
＂TOTAL PRINCIPLE PAID ？＇F

85 PRINT
90 PRINT 非2，A, B, C, D, E, F, G
100 GOTO 20
110 CEOSE 非2
120 END

8080 Relocatable Assembler

+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0000
+0000

```
(11,19,29)
MODIFIEN SOL.OS ROUTINE
            REUISED BY:
                MELUIN SCHEHLEEIN
                                    COMMUNICATIONS & MEDIA SERUICES
                                    TOWSON STATE UNIUERSITY
                                    TOWSON, MARYLAND 21204
    DATE WRITTEN: AUQUST 3, 1977
THE PURPOSE OF THIS PROGRAM IS TO CONFIGURE THE SOL TERMINAL
    COMFUTER AS A STANDARD UIDEO TERMINAL TO ACCEPT THE HALF-DIUPLEX
    CR, LF RESPONSE FROM COMMUNICATIONS AFTER HAUING SENT A CR
    WITHOUT ERASING THAE LAST INPUT LINE. THIS HAPPENS BECAUSE
    THE SOLOS MONITOR CLEARS THE LINE FROM ITS PRESENT CHARACTER
    POSITION TO THE END OF THAT LINE. DURING COMMUNICATIONS
    THE KEYBOARD SENDS OUT A CR, WHICH IS FEED BACK INTO THE SERIAL
    INPUT PORT. AND THEN SENT TO THE UDM DRIUER TO BE PROCESSEII.
    THEN THE COMPUTER SENIIS OUT A CR LF WHICH GOES TO THE UDM DRIVER
    CLEARING THE LAST INPUT LINE (BECAUSE THE RESPONSE CR WAS IN COLUMN
    1, THUS DENYING THE USER THE ABILITY TO CHECK THE ACCURACY OF
    HIS OR HER LAST INPUT.
```


8080 RELOCATABLE ASSEMBLER, cont.
1 EPT 2 - 72

0 ERRORS DETECTED

3E	SYMBOL TARLE						
COMN1	C1C0	CR	00011	ESC	001 B	ESCFL	C80C
IPORT	c806	KSTAT	C02E	L.F	OOOA	MODE	0080
NCHAR	C808	NOCR	C946	OPORT	C807	PSCAN	C310
SINP	C01F	SOUT	C019	TERMIU	c90C	TERM2U	C95E
TERMIS	C900	TINU	C924	TOUTU	C921	UDMOT	cos4

ALS-8 to Sol Patch

0000 0001	* This program alters the ALS-8 ram to
0002	* allow an ALS -8 that has not been updated
0003	* to interface with a Sol-20 using Solos.
0004	*
0005	*
0006	* Change standard input port to Sol
0007	* keyboard.
0008	*
0009	ORG OD09FH
0010	DB KDATA
0011	*
0012	* Alter STAT routine in ALS-8 to match Sol
0013	* keyboard status port and compliment data
0014	* availible flag.
0015	*
0016	ORG ODOA 4H
0017	STAT IN KSTAT
0018	CMA
0019	ANI KDR
0020	RET
0021	*
0022	* This output driver saves the accumulator
0023	* and register B before calling SOUT in
0024	* Solos. It also checks the keyboard to see
0025	* if an escape has been hit. If so, a jump

			0030	OTP8	PUSH	PSW	
DOAA	F 5		0031		PUSH	B	
DOAB	C5		0032		CALL	STAT	
DOAC	CD A4	DO	0033		J2	NOCHR	
DOAF	CA BB	DO	0034		IN	KDATA	
D0B2	DB FC		0035		ANI	7FH	
D0B4	E6 7F		0036		CPI	ESC	
D0B6	FE 1B		0037		J2	EORMS	
DOB8	CA 60	E0	0038	NOCHR	CALL	SOUT	
DOBB	CD 19	C0	0039		POP	B	
DOBE	C1		0040		POP	PSW	
DOBF	F1		0041		RET		
DOCO	C9		0042	*			
			0043	* Now	make	YSIO and	OUT8 point to this
			0044	* vers	ion of	OUTP8 as	the standard output
			0045	* driv	er.		
			0046	*			
			0047		ORG	ODO96H	SYSIO output driver
D096			0048		DW	OUTP8	
D096	AA DO		0049	*			
			0050		ORG	ODODOH	second byte of OUT8
DODO			0051		DW	OUTP8	
DODO	AA DO		0052	*			
			0053	ESC	EQU	18H	ASCII escape
	001B		0054	KDR	EQU	01H	data available flag
	0001		0055	SOUT	EQU	$0 \mathrm{CO19H}$	Solos output entry
	C019		0056	KDATA	EQU	OFCH	Sol keyboard data port
	00FC		0057	KSTAT	EQU	OFAH	keyboard status port
	00FA		0058	EORMS	EQU	OEO60H	entry point to ALS-8
	E060		0059 .				
			0060	* One	more	hing nee	ds to be mentioned.
			0061	* A no	n-upd	ted vers	ion of the TXT-2
			0062	* edit	or do	s not re	set the hardware
			0063	* scrol	11 ing	port on	a Sol. If this is
			0064	* not	done	efore en	tering the editor
			0065	* the	first	line of	the file may be
			0066	* on a	line	other th	an the first line
			0067	* of	he sc	een. One	remedy for this
			0068	* is t	o alw	ys hit th	he CLEAR key before
			0069	* exec	uting	the TXT-	2 editor.
				*			

CHOO CHOO, cont.

CHOO CHOO, cont.

GALAXY, cont.

```
0030 CALL SCRN
0031 CALL KBD
```

0032 LXI H,PAGE2 POINT TO 2ND PAGE
0033 CALL SCRN
0034 CALL KBD
0035 START LXI D,VDM1
0036 CALL CLER CLEAR THE SCREEN
0037 LXI B,0001H INITIALIZE UNIVERSE
0038 MOV D,B CLEAR SHOT COUNTER
0039 CNTST INR D INCREMENT SHOT COUNTER
0040 DISP LXI H,STRI DISPLAY UNIVERSE
0041 CALL TYPE
0042 LXI H,STR2
0043 CALL TYPE
0044 LXI H,STR3
0045 CALL TYPE
0046 LXI H,STR4
0047 CALL TYPE
0048 LXI H,STR6
0049 CALL TYPE
0050 LXI H,STR7
0051 CALL TYPE
0052 LXI H,STR8
0053 CALL TYPE
0054 LXI H,STR9
0055 CALL TYPE
0056 XRA A
0057 MOV A, C
0058 RRC
0059 LXI H,STR5
0060 CALL TYPEI
0061 WNTST MOV A,B GET UNIVERSE PATTERN
0062 CPI OFFH CHECK FOR FRINGE STARS
0063 JNZ LSTST IF•NOT ALL PRESENT, CHECK FOR LOSS
0064 MOV A,C
0065 ORA A GET CENTER STAR
0066 JNZ GTSTR CONTINUE IF PRESENT
0067 LXI H,MESS 4 IF NOT, GAME IS WON. POINT TO WIN MESS
0068 CALL SCRNB
0069 *
0070 *
0071 *
0072 *
0073 *
0074 *
0075 MVI E,'O' INITIALIZE BINARY TO DECIMAL CONV.
0076 MOV B, E
0077 MOV C,E
0078 DCR D GET RID OF LAST SHOT
0079 MVI A,'9'+1 SET OVERFLOW CHECK
0080 MRDEC INR E INCREMENT I'S
0081 CMP E CHECK FOR OVERFLOW
0082 JNZ TALLY CONTINUE IF NOT
0083 MVI E,'O' OTHERWISE, RESET I'S
0084 INR C INCREMENT 10'S

0085	CMP C	
0086	JNZ TALLY	
0087	MVI C, '0'	
0088	INR B	INCREMENT 100'S
0089	TALLY DCR D	DECREMENT SHOT COUNTER
0090	JNZ MRDEC	
0091	MVI A, '0'	
0092	CMP B	CHECK FOR LEADING 0
0093	JNZ THREE	IF NOT, DISPLAY 3 DIGITS
0094	CMP C	
0095	JNZ TWO	
0096	JMP ONE	
0097	THREE MOV M, B	B DISPLAY SCORE
0098	INX H	
0099	TWO MOV M,C	
0100	INX H	
0101	ONE MOV M, E	
0102	INX H	
0103	XCHG	
0104	LXI H,MESS 5	POINT TO REST OF WIN MESS.
0105	CALL SCRN2	
0106	PRNTI CALL KB	
0107	CPI 'Y'	CHECK FOR RESTART
0108	JZ START IF	F YES, START AGAIN
0109	RET •	IF NOT RETURN TO ALS-8
0110	LSTST ORA A	CHECK FOR NO FRINGE STARS
0111	JNZ GTSTR	IF ANY ARE PRESENT CONTINUE GAME
0112	MOV A,C	
0113	ORA A	IF NOT, CHECK FOR CENTER STAR
3114	JNZ GTSTR	IF PRESENT CONTINUE
0115	LXI H,MESS 3	OTHERWISE POINT TO LOST MESS.
0116	CALL SCRNB	
0117	JMP PRNTl	
0118	GTSTR LXI H,N	MESS 7 ASK FOR SHOT
0119	CALL SCRNB	
0120	NXTST CALL KB	
0121	INX H	
0122	MOV M, A	ECHO SHOT
0123	CALL DELAY	
0124	MVI E, 9	SET MASK COUNTER
0125	LXI H,MASK	POINT TO MASKS
0126	NXGRP CMP M	CHECK FOR SHOT
0127	JZ FOUND	CHECK FOR SHOT
0128	DCR E	
0129	JZ INVAL	INVALID SHOT IF NOT FOUND
0130	INX H	POINT TO NEXT ENTRY
0131	INX H	
0132	INX H	
0133	INX H	
0134	JMP NXGRP	,
0135	FOUND INX H	
0136	MOV A,M	
0137	ORA A	CHECK STAR POSITION
0138	JNZ UNIV2	JMP IF FRINGE STAR
7139	MOV A,C	

GALAXY, cont.
1 EPT 2-82

```
0140 CPI l CHECK FOR CENTER STAR
Ol41 JNZ BDFEL IF NOT PRESENT, BAD SHOT
0142 JMP NXBYT
0143 UNIV2 MOV A,B
O144 ANA M ISOLATE STAR SHOT
0145 JZ BDFEL IF NOT PRESENT, BAD SHOT
0146 *
0147 *
0148 *
0149 *
0150 *
0151 NXBYT INX H
0152 MOV A,B
0153 XRA M ALTER GALAXY
0154 MOV B,A SAVE NEW PATTERN
0155 INX H
0156 MOV A,C
0157 XRA M CHANGE CENTER STAR, IF NECESSARY
0158 MOV C,A
0159 JMP CNTST COUNT SHOT AND DISPLAY NEW UNIVERSE
0 1 6 0 ~ I N V A L ~ C P I ~ E S C ~ C H E C K ~ I F ~ I N V A L I D ~ S H O T ~ W A S ~ A N ~ E S C A P E ~
0161 JNZ NTVAL
0162 LXI H,MESS6 IF SO POINT TO SURRENDER MESSAGE
0163 CALL SCRNB
0164 JMP PRNTI
O165 NTVAL LXI H,MESS2 POINT TO INVALID STAR MESSAGE
0166 CALL SCRNB
0167 JMP NXTST GO TO NEXT SHOT
Ol68 SCRN MOV A,D
0169 STA TEMP SAVE D (SHOT COUNTER)
0170 LXI D,VDM1 SET SCREEN ADDRESS
0171 SCRN1 CALL CLER CLEAR & INITIALIZE SCREEN
0172 SCRN2 MOV A,M
0173 CPI EM CHECK FOR END OF MESSAGE
0174 JZ END
0 1 7 5 \text { STAX D DISPLAY CHARACTER}
0176 INX H
0177 INX D
0178 JMP SCRN2
0179 END LDA TEMP GET SAVED SHOOT COUNTER
0180 XCHG
0181 MOV D,A PUT IT BACK IN D
0 1 8 2 ~ R E T
0183 SCRNB MOV A,D
0184 STA TEMP
0185 LXI D,SCRBT SET LOWER DISPLAY ADDRESS
0186 JMP SCRN1
0 1 8 7 \text { CLER PUSH D SAVE STARTING ADDRESS}
0188 XRA A
0189 OUT VDM INITIALIZE VDM-1
0190 CLERI MVI A,' ' GET A SPACE
0191 STAX D
0192 INX D
0193 MOV A,D
0194 CPI BOTT CHECK FOR END OF SCREEN
```

```
0195 JNZ CLERl
0196 POP D RESTORE STARTING ADDRESS
0 1 9 7 ~ R E T
0198 TYPE XRA A CLEAR A & CARRY
0199 MOV A,B GET UNIVERSE
0200 RRC
0 2 0 1 ~ M O V ~ B , A ~
0202 TYPEl JC STAR
0203 MVI M,'O' DISPLAY HOLE
0204 RET
0205 STAR MVI M,'*' DISPLAY STAR
0206 RET
0207 KBD CALL DAV KEYBOARD INPUT ROUTINE
0208 JZ KBD
0209 IN DATA
02l0 ANI 127
0 2 1 1 ~ R E T
0212 DAV IN STAT
0213 CMA . CAN BE CHANGED TO A NOP
0214 ANI DAVM
0215 RET
0 2 1 6 ~ B D F E L ~ L X I ~ H , M E S S I ~ P O I N T ~ T O ~ E R R O R ~ M E S S A G E ~
0217 CALL SCRNB
0218 JMP NXTST
0 2 1 9 ~ D E L A Y ~ P U S H ~ D ~ 2 ~ S E C O N D ~ D E L A Y ~ R O U T I N E
0220 PUSH PSW
0 2 2 1 ~ M V I ~ D , 2 ~
0222 DLY1 MVI E,100
0223 DLY2 XRA A
724 DLY3 DCR A
J225 JNZ DLY3
0 2 2 6 ~ D C R ~ E ~
0227 JNZ DLY2
0 2 2 8 ~ D C R ~ D ~
0229 JNZ DLYI
0230 POP PSW
0231 POP D
0232 RET
0233 TEMP DS I
0234 *
0235 *
0236 *
0237 *
0238 *
0239 *
0240 *
0241 MESSI ASC "HEY! YOU CAN ONLY SHOOT STARS, NOT BLACK HOLES."
0242 ASC " TRY AGAIN."
0243 DB EM
0244 MESS2 ASC "THAT WASN'T A VALID STAR NUMBER. TRY AGAIN."
0245 DB EM
0246 MESS3 ASC "YOU LOST THE GAME! WANT TO SHOOT SOME MORE"
0247 ASC "STARS?"
0248 DB EM
049 MESS4 ASC "YOU WIN!! GOOD SHOOTING! YOU FIRED "
```

GALAXY, cont.
0250 DB EM
0251 MESS5 ASC " SHOTS. BEST POSSIBLE SCORE IS 11 SHOTS."
0252 ASC "WANT TO SHOOT AGAIN, DEADEYE?"
0253 DB EM
0254 MESS6 ASC "YOU GIVE UP TOO EASILY! WANT TO SHOOT SOME MORE"
0255 ASC " STARS?"
0256 DB EM
0257 MESS7 ASC "YOUR SHOT?"
0258 DB EM
0259 HEADR ASC " * * * * * * * * * S H O O T I N G S T A R"
0260 ASC " S * * * * * * * * "
0261 ASC
0262 ASC
0263 ASC"A BRAIN TEASER GAME ! ! !"

0267 DB EM
0268 PAGEl ASC "THERE ARE STARS: * AND THERE ARE HOLES: 0 IN"
0269 ASC " THE UNIVERSE.
0270 ASC "YOU SHOOT A STAR, (NOT A BLACK HOLE) BY TYPING "
0271 ASC "ITS NUMBER.
0272 ASC " 1 "
0273 ASC " * * * "
0274 ASC " 0 "
0275 ASC " 456
0276 ASC " * 0 * "
0277 ASC "
0279 ASC " * * * "
0280 ASC " 0 " 0
0281 ASC "YOU WIN IF YOU GET THE PATTERN IN THE MIDDLE. "
0282 ASC "YOU LOSE IF YOU GET THE PATTERN ON THE RIGHT."
0283 DB EM
0284 PAGE2 ASC "EACH STAR IS IN A GALAXY. WHEN YOU SHOOT A STAR"
0285 ASC " EVERYTHING IN ITS GALAXY CHANGES. ALL STARS BECO"
0286 ASC "ME BLACK HOLES AND ALL BLACK HOLES BECOME STARS."
0287 ASC "GALAXIES: "
0288 ASC ". . .!. . . . "
0289 ASC " 1 * 0 * 2 * 0 * 3 * 0
0290 ASC "O * 0 "
0291 ASC " * * $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad$ * \quad * $\quad 4 \quad 0 \quad 0 \quad$ "
0292 ASC "* 5 * "
0293 ASC " $0 \quad 0 \quad$ * 0
0295 ASC " . "
0296 ASC
0297 ASC " 0 0 * 0 0 0 0 0
0298 ASC "0 0
0300 ASC
0301 ASC " 0 * 0 * 0 * 8 * "
0302 ASC "O * 9
0303 ASC " READY TO PLAY. "
0304 ASC "TYPE ANY KEY TO START. GOOD LUCK!"

"Alas poor Yorick, for I knew him well." Willie the Shake

For those of you who don't already know, this is to inform you of my departure from PTC and my abdication of the editorship of ACCESS. The reason for this change is fairly simple: I'm going to work for myself as an independent consultant (free-lance technician in plebian terminology). Sorry I can't provide any scandalous gossip about my reasons for leaving. But, if you really must ask, well, let me tell you...

Obviously I couldn't have gotten to the position of being my own boss if it hadn't been for the training, experience and contacts (not to mention confidence)। gained at PTC.

Leaving definitely creates an empty spot in my life, having grown with the company (2 years). I feel like a teenager leaving home for the first time (sob, sob!).

But enough being maudlin and on to the corn. I think old Ralph should be able to take the helm and steer the ship-of-state through the uncharted waters of the future, in a manner and style befitting one of this stature.

My God! Somebody shut this fool up. He sounds like journalistic Muzak!!

Why should I shut up, dammitt. I'm the Editor. I can say anything.

Not any more you can't. You're just the Outgoing Editor. You don't count any more!

Well, as you can see, there are good reasons for me being locked up in this place. And, what the hell, the food's OK.

I guess it's time togo, so I'll close this chapter of history with a sentimental goodbye to y'all. And expecially to Les Solomon who could be a guru. But whoever heard of a Jewish guru?

Volume Two, Number One March 1978

Publisher
Processor Technology Corp.
Editor
Ralph I. Palsson
Staff Writers
Lee Felsenstein
Drew Rogge
Design/Production
Wible/Rampton Advertising

ACCESS is published approximately every six weeks. Subscription rate: \$4 per year, from Processor Technology Corp., 7100 Johnson Industrial Way, Pleasanton, CA 94566.

ACCESS Copyright © March 1978 by Processor Technology Corp. All Rights Reserved. Material in this publication may not be reproduced in any form without permission from Processor Technology Corp.

Table of Contents

Reader Feedback page 3

A review of our Extended Cassette BASIC, now available page 6

The Sol Users' Society grows and wants you! . page 6

Adjusting BASIC/5 for the new Extended Cassette BASIC page 7

Lee Felsenstein elucidates interfacing to Sol's parallel port page 9

Having trouble with your 16KRA? Check this
page 11
Vectored interrupt capability for Sol page 11

Interfacing the OP80A Paper Tape Reader to your Sol-20
page 13
A selection of programs and applications contributed by our illustrious readers . . .
page 14

Have YOU Moved?

Please notify us of your change of address Here's a handy form:
NAME
NEW ADDRESS

A LetterFromThe[New]Editor

That's me, Ralph Palsson. Remember me from One-to-One Communication? I'm changing hats because Aram Attarian II, former ACCESS editor, lead Warranty Reair Applications Engineer, cuscomer interfacer, and all-round good guy, has succumbed to the siren song of "making it" freelance. He's setting up an independent systems consultant and repair technician, and we're going to miss his red suspenders around here. He devoted a lot of creative energy and talent to making ACCESS what it is today, so I'll do my best to keep up the good work. For Aram's last words of wisdom to us, see his outgoing editorial on p. 2.

Now that I have this column to sound off in, we'll probably discontinue One-to-One Communication as separate feature. The original idea behind ACCESS was to make it a vehicle for one-to-one communication in its entirety, and that's beginning to happen, as you'll see from the many excellent reader contributions in this issue. I'll be laying it pretty heavy on you readers to keep up the good work-send us your program listings, letters, hardware modifications, applications, anyhing you think is worthwhile and , would like to share.

The main change I initially hope to make in ACCESS is getting it on a somewhat more regular publication schedule, aiming at every 6 (± 2) weeks. And I promise that everyone who had paid $\$ 4.00$ for a year's subscription will actually receive 8 issues, regardless of how many leaves get torn off the calendar. As for the new format - well, you people seem to be as enthusiastic about it as we are, and we'll keep adding whatever improvements we think of. Again, your suggestions are valuable, like the punched-hole idea several readers have mentioned.

I like to think of ACCESS as one proof of the pride Processor Technology takes in providing customer support. So far, we have a pretty good track record, but we aim to make it even better. We have a very user-oriented Customer Service Dept., plus the more technicallyinclined applications and product support engineers regularly available to help you with debugging and troubleshooting your kits. They're also good with advice on how to interface a Sol or 3P+S to a peripheral device. And we even have a customer service software consultant available for phone discussions. But there's one thing none of these people can do, and that's help you
with support for XYZ company's floppy disk or ABC's 16K board. No matter how expert they are, our engineers can't know the personal design quirks of a product they may never have seen, and really your guess is as good as theirs many times. We'll do as much "hand-holding" as we can by phone or letter, but please understand the distinction between help with interfacing and help with someone else's product.

Our Customer Service technicians are currently available daily from 1:30 to 4:00 p.m. PST for phone consultation. The number again is (415) 829-2600. We'll increase the hours as soon as we can add more trained personnel who can give you straight answers you deserve.

I'll end with my usual plug for Processor Technology dealers. These guys can provide you with a wealth of information and assistance without running up your phone bill. Our intentions are good, and we back them up with action as much as possible, but it's a fact of life that we're way out here in Pleasanton, CA. And if you're in Manhattan, Bloomington, or even Lompoc, you will probably get more personal service from the dealer who's helped you plan your system in the first place than you can get from a voice on the phone. The idea is to give you the best support pos sible, wherever it comes from.

Well, hope you enjoy ACCESS \# 5, and in the words of AA II, y'all have a good time, y'heah?!

Ralph I. Palsson

Dear Editor:
HISTOGRAMS IN BASIC
(Or how to display multiple cursors)
Attempting to use Basic 5 for plotting the results of stock analysis, I wanted to plot a graph of the derived results. An approach has been
developed, using the TABfunction to start a plot, and a calculated value of a variable to end the plot. I also wanted to use reverse video to highlight data or to plot a bar made up of (aO hex) "cursors." Initially this was difficult, since many 7F masks were used in the VDM driver within CUTER to maintain a clean display. Therefore the VDM driver cannot be entered with a CALL to its entry address, since bit 7 is cleanly stripped off. The solution to this problem lies in addressing that portion of the VDM driver starting at location $C \varnothing B B$ after having put the $A \varnothing$ into register B . That can be done as an immediate move in machine code necessitating a call from Basic to your machine code which in turn calls the driver, or by using the ARG command in basic before the call to the driver. This latter approach has an advantage in that the value of the ARG can also be calculated thus giving you control over the character chosen for the plot. (Incidentally, the 7F, delete character makes a nice chart due to the spacing between bars.) These ARG and CALL functions are used within a FORNext loop which is set up as described in the beginning of this description. That looping puts out the desired number of repeated characters and leaves VDM screen management control within the Basic/Cuter/VDM driver software management system.

In closing, let me send my praise and thanks for your product quality and utility. The PTCO additions have really enhanced my IMSAI.

Donald F. Petrie

831 Ponderosa Dr.
So. Daytona, Fla. 32019

Donald also enclosed a carbon of a letter he wrote in response to Dave Wrobel's query in the last ACCESS:

January 10, 1978
Dear Dave:
Don't despair! Inverse video is attainable. I noticed your letter and Mr. Attarian's response in issue
number four of Processor Technology ACCESS.

I too was interested in the use of inverse video with my IMSAI/ VDM/CUTER configuration and was frustrated when using the SOUT entry point of the VDM driver. When I use an ANI 7F in the code, a cleanup, stripping off of the parity bit (in our case the VDM inverse video bit) is performed.

There is a simple solution to the problem, however, if you will use a machine language subroutine (callable from Basic, if desired) which calls the VDM driver after the housekeeping stripping referred to above. This driver routine, identified as "OCHAR," is at CUTER location COBBH and in SOLOS at location C098H. Calling the driver at OCHAR with bit 7 high will result in the desired inverse video display.

You have a number of options in approaching this problem. In machine code, put the character into Register B, with bit 7 high and then call OCHAR. In BASIC 5, establish the character as the value of an ARG function and use the Basic ARG/CALL routines to call OCHAR. And if you want keyboard on-off toggling control of this feature, a simple custom output driver invoked by the SOLOS/CUTER pseudo-port 3 routine can be written to sense your command choice; then either add or strip-off bit 7 as appropriate and put the character in register B before calling OCHAR and returning to your system.

I hope one of these suggestions will be of use to you if you haven't already found a solution to your desire for inverse video display.

D. F. Petrie

cc: Mr. Aram Attarian
Editor, Processor
Technology Access

Dear Donald,

Yes, Virginia, Inverse Video is attainable in Sol BASIC/5, thanks to your information. Reader Tom Digate has also sent us a contribution on this subject, a cassette written in BASIC/5 demonstrating the uses of SOLO's VDM driver escape
sequence. A printout of his program appears in the ACCESS to Software: section of this issue. Many thanks to you, too, Tom.

Aram is passionately hardware oriented and doesn't always realize that anything's possible with software!

Ralph

Dear Editor:

Enclosed you will find a check for $\$ 4.00$ for my 1-year subscription to ACCESS. I was at my local computer store, (Itty Bitty Machine Company, Lombard, ILL), and they gave me a copy of ACCESS to look at. I thoroughly enjoyed reading the articles in the November issue Congratulations on your fine publication. I have a question that you or maybe your readers could help me on. I have a IMSAI 8080 Micro Computer with the following boards: a 16 K Processor Tech. Memory, VDM board by PTC, and my problem, 1 Tarbell Cassette interface board. I am going to purchase your (Sol) Basic Computer and I would like to know if there is a program to convert the CUTS format to Tarbell format for my cassette interface. I would like my IMSAI to run Sol software. If anyone can help, please do.

Thank you.
Robert Bennett
2046 Louis Street
Melrose Park, ILL 60164

Dear Bob,

Thanks for your letter; an ACCESS subscription has been entered for you and hopefully you're now reading this in your first copy.

Note that Sol BASIC/5 is an interpreter, not a compiler. If you're feeling any confusion about it, I'm sure your dealer can help.

About the CUTS/Tarbell matter. PTC doesn't support the Tarbell cassette interface with hardware or software, because we feel that CUTS is a superior system for several reasons. The CUTS (Computer Users Tape Systems) recording method was derived from and is
compatible with the Byte (Kansas City) standard recording method, a system that PTC helped develop at he 1975 Kansas City meeting. We lieve strongly in promoting software standardization and have put a lot of effort into the cause. CUTS was especially designed to permit widespread dissemination and exchange of low cost software. To that end, CUTS tapes are less expensive and easier to produce than Tarbell; PTC has shipped over 30,000 of them to date with less 1\% failure rate - not bad, if we do say so ourselves! And although CUTS is slightly slower than Tarbell, it requires less adjustment to work with a greater variety of tapes and cassette recorders-again facilitating standardization and exchange.

So while we can't be too encouraging about your conversion project, we hope you will continue your interest in CUTS and Sol software. We think you'll end up very happy with it.

Ralph
uentlemen,
I am enclosing a listing of a game written in BASIC called Hammurabi. I found it in one of the hobbyist magazines, Personal Computing, I think. I modified it to run in Basic 5 and I and my two boys have enjoyed playing it. I thought perhaps other Sol owners might also enjoy it. It will run in 8 K and I run it on the CRT. I have enclosed a printout of a typical "year" of the game ending with a deliberate error which ends the game with a loss of kingdom. The entire successful game would have been too long a printout and I think the short example will give anyone looking at it the idea of how it's played.

I enjoyed the first issue of the new format of Access. Keep up the good work.

I visited your booth at the New York Coliseum and was very taken with the Sol set up to record a mailing list on tape which was en to public entry. If a copy of is program is available, I would
very much like to obtain one.
Best wishes for your continuing success.

John Dowd
Lynn's Hair Fashions
New Road, Central Ave.
Linwood, N.J. 08221

Dear John,

Thanks for your comments and contributions. The mailing list program you saw in New York was just a demo version and not availavailable in its present form. However, our software development is now shitting to an emphasis on applications, and you'll find many exciting programs forthcoming in the near future.

To our readers,
Besides the Hammurabi program, John also sent us two others, PAROL and COMM. All three appear in the ACCESS to Software section-try them out!

Ralph

RE: Sol20

Gentlemen:
I purchased my Sol20 mid December 1977. After several hours of building (72) the Sol, to explicit and well defined hardware assembly instructions, I had a letter perfect "turn on." My compliments to all connected with this portion of the manual and hardware parts staff.

I have encountered one problem which I have since corrected. This was a very heavy smearing and unstable effect on my video monitor. Distortion severe enough to force shut down manually and of course interrupting work in process. I could still "SAVE" etc. But it was very difficult to read monitor and inputs, when instability occurred. Being more familiar with R.F., video and communications equipment than logic, I found a quick and normal solution to the problem, one which is a standard practice in the R.F. field.

Solution:
The clock generator at " 14.31818 MHz " is fairly open to external field excitation, by nearby C.B. and other transmitter frequencies. This unprotected portion of your circuit tends to wander if excited by an external signal and does not settle down. The reason is the XTAL can itself, floating above ground. A short jumper between the can and ground corrected the problem immediately.

I hope this assists other Sol users.

Now the bad news. I realize most people purchasing Sol's are probably more software oriented than I am. Therefore, your company did a painstaking task on the hardware. But your software writeup for a beginner (28 years communications) in computer talk and functions is very poor.

I know it is difficult and a lot of self study must be done, which I am now doing, but!

Might I suggest you acquire some unsuspecting person with no software knowledge, sit him/her in front of the machine, hand him "Console Manual" and "Solos Manual" and watch the confusion. If it is me, I apologize. But after showing your book to 3 top software experts, they agreed, it was written by a software expert.

Example:
After 10 hours of reading, re-reading, 1 trip to vendor (80 miles), no luck, re-reading, etc. trying to work out the CRC computation. Nowhere could । see it written.
"When you desire to save a file. Input SAVE (title) 5 words and press "RETURN."
N.B. "Making sure recorder is in record mode.'

But most important, "File. header is then automatic."

I guess I'm saying try to use layman's language, if possible. If you re-read "SOLOS" I am sure you will agree.

I am very satisfied with the unit and want to congratulate those who worked hard on design and appearance. Well done.
B. W. Poste 17 Lonsdale Place, Barrie, Ontario

Dear B.W.,

Thanks for the compliments, and for the hardware fix. Many of our readers will find your contribution from the RF/analog world extremely useful.

Your critical points on documentation and software are very worthwhile. PTC's Technical Documentation Dept. is always looking for input that will help future publications be more clearly presented, on the appropriate level of expertise. Meanwhile, we'll try to provide some concrete followthrough in the next issue of ACCESS.

Ralph

Gentlemen:

Loved the new ACCESS format, but tell me, will my one-year subscription be extended to cover the first 8 issues (since you nominally publish every 6 weeks)? You haven't quite been able to keep up with the announced schedule for either ACCESS or ALS-8 users notes, (though the latter are not officially a product of P.T.). Also, (this may sound like a dumb question), is there any chance of re-publishing the 1st 3 issues in the new format? Even if it costs $\$ 2-\$ 3$ per copy? The new format is so much better, especially for my only good source of a CUTTER (or SOLOS) listing.* Thanks.

Barry Watzman 2330 Millenium Lane
Reston, VA 22091
*Besides, then I could keep a complete collection of ACCESS in a 3 -ring binder!

Dear Barry,

Yes. We'll make sure you (and other ACCESS subscribers) receive 8 issues before you come up for second year billing. Also, we aim to put the journal back onto a more reasonable schedule.

As you might guess, costs of , republishing out-of-print ACCESS
issues are prohibitive. However, I'm thinking of possibly doing a collection of the "Best of ACCESS" as a separate issue or reprinting the most requested articles from past issues. How do you other readers
feel? (NOTE: We still have a lot of our 2nd issue on hand; numbers 1 and 3 are out of print.)

Ralph

Extended Cassette BASIC Is Fere!

Our long-promised Extended Cassette BASIC has been released and is now at your local PTC dealer. It's a powerful language, and we'll be publishing assorted program listings in future ACCESS issues to stimulate your imagination on its applications. Just for starters, note that Extended Cassette BASIC features complete string functions and matrix operations. And the documentation is excellent.

It's rumored there may be some bootleg copies floating around. Assure yourself of getting a quality tape and complete package by buying only if the cassette and manual are identical to those shown in the photograph here.

There's one slight bug we've discovered in using manual FOR/ NEXT loops. The bug occurs when there is a FOR/NEXT loop within a FOR/NEXT loop which will not allow the execution of the inner loop. The squasher allows the execution of the internal loop rather than searching for a loop elsewhere in the program. It's easily fixed by following this 5 -step procedure:

1) GET BASIC from the tape. Note the load address and length.

> 2) Type EN B3E in SOLOS. (CR)
3) Type the following numbers, separated by a space:
C1 CA 2E OB/(CR)
4) SAVE BASIC (refer to Section 3.4 in the BASIC User's Manual). Let the tape run in the RECORD mode for $10-15$ seconds before re-recording. You can use a new tape if you wish, but the original one will work just as well. Use the load address and length infor-

mation you obtained in Step 1 of this procedure, and make the auto start address 0 and ending address 3F84.

If you're using the original cassette, affix scotch tape over the two holes on the back of the cartridge. Remove tape when finished; this will afford you "write protection."

The Sol Users' Society Is Up And Running

Last issue we reported on the formation and first meeting of SOLUS, the Sol Users' Society. It's an organization for owners of Sol computers or of Sol-type computers

1 EPT 2-93

compatible with other PTC products. Specifically, if you have an 8080 or Z-80 microcomputer you're using with SOLOS, CUTER, SOL/ CUTS cassette interface, or any functionally equivalent operating system, you might like to join. The membership is world-wide.

Currently, SOLUS has several good services going, beginning with their own bi-monthly (approximately!) newsletter to keep members informed on hardware, software, new products, bugs, local chapter meetings, and other items of interest. They maintain a Software Library which collects and distributes public domain programs for a nominal charge. Local chapters hold meetings to exchange software and
ideas, and the club headquarters, in convenient proximity to PTC, keeps a close communication link going with us. Finally, qualified SOLUS volunteers are testing products for Sol compatibility and reporting their experiences in the newsletter.

To refresh you on the club's goal and organization: The stated goals are to facilitate communication among SOLUS members, to provide a mechanism of exchange for Sol-compatible software, to give PTC feedback from SOLUS members, and to encourage the development and testing of Solcompatible hardware and software produced by independent sources. Their relationship with PTC and
other manufacturers is co-operative but independent. SOLUS is primarily a personal computer users' group, but special interest groups can be formed within the club on subjects like commercial use, health care, education, scientific applications, etc. The society is supported by dues and volunteer efforts.

To join SOLUS: If you live in the U.S., Canada or Mexico, send $\$ 10.00$ in check or money order to SOLUS, P.O. Box 23471, San Jose, CA 95153. If you live anywhere else, send $\$ 15.00$. Dealers and manufacturers of Sol-compatible equipment or software should contact SOLUS at the above address for details on special memberships.

WhatToDoWithYour BASIC/5 Programs Now That You Have Fxtended Cassette BASIC

Unfortunately, programs written in Sol BASIC/5 won't run with the new Extended Cassette (formerly called 8K) BASIC interpreter. But you can save yourself several thousand tedious keystrokes by using the following assembly language program to save your BASIC/5 programs in text form on CUTS cassette. Then it will be easy
to get and run a text file on the new interpreter whenever you wish.

The program uses the byte access tape routines in the SOLOS/ CUTER monitor. CLIST is written to be used as custom output diver in conjunction with pseudo port 3.

When you use the program. load the machine code at the addresses indicated in the assembly
listing below. Set the custom output port address to the beginning address of this program. Get and execute BASIC/5. Get the program you want to write to the tape. From BASIC/5, set the output port to 3 and type LIST.

After your program has been saved, this routine will set the current output port back to 0 .

∞	CBO3 7	78			MOV	A, B	get character 1 EPT 2-94
	CB04 F	FE OD			CPI	CR	Carriage return?
	CB06 C	C2 26	$C B$		JNZ	CL2	
ACCESS•March,	CBO9 2	2173	$C B$		LXI	H, LCHAR	
	CBOC 7	7 E			MOV	A, M	Get last character
	CBOD F	FE OD			CPI	CR	If not two carriage returns in
	CBOF. C	C2 26	$C B$		JNZ	CL2	...in a row then nothing special
	CB12 2	23			INX	H	Else check if first set
	CB13 7	7 E			MOV	A, M	...of carriage returns
	CB14 B	B7			ORA	A	If not then close file and
	CB15 C	C2 4B	CB		JNZ	CLOOP	...reset program.
	CB18 3	3D			DCR	A	Else say we already
	CB19 7	77			MOV	M, A	...had first time through
	CB1A 3	3A 62	CB		LDA	UNIT	Get unit to write to
	CB1D 2	2163	CB		LXI	H, HEADR	R Point to tape header
	CB20	CD 5E	CB		CALL	OPNOP	Open the fille
	CB23	C3 47	CB		JMP	GBACK	
	CB26 7	78		CL2	MOV	A, B	
	CB27	FE OB			CPI	LF+1	
	CB29 D	DA 2F	CB		JC	CL3	
	CB2C	3273	$C B$		STA	LCHAR	
	CB2F	3E 00		CL3	MVI	A, O	Reflect character to screen
	CB31	CD 1C	CO	*	CALL	AOUT	
	CB34	3A 74	CB		LDA	FIRST	Check if writing yet
	CB37	B7			ORA	A	
	CB38	CA 47	$C B$	*	JZ	GBACK	Return if not
	CB3B 7	78			MOV	A, B	
	CB3C	FE OB			CPI	$L F+1$	
	CB3E	DA 47	CB	*	JC	GBACK	
	CB4 9	3A 62	$C B$		LDA	UNIT	Get unit to write to
	CB44	CD 10	CO	\cdots	CALL	WRBYT	Write the byte
	CB47	E1		GBACK	POP	H	Restore registers
	CB48	D1			POP	D	:
	CB49	C1			POP	B	
	CB4A	C9			RET	-	...to Basic/5
				*			
		CB4B		CLOOP	EQU	\$	
	CB4B 3	3A 62	$C B$		LDA	UNIT	
	CB4E	CD OA	CO		CALL	FCLOS	Close file
	CB51	AF			XRA	A	
	CB52	3273	$C B$		STA	LCHAR	Reset program for next
	CB55	3274	CB		STA	FIRST	...time through
	CB58	3207	C8		STA	OPORT	Change output port to 0
	CB5B	C3 47	CB		JMP	GBACK	
				$\begin{aligned} & \text { * } \\ & \text { * } \end{aligned}$			
		CB5E		OPNOP	EQU	\$	
	$\begin{array}{ll} \text { CB5E } & C \\ \text { CB61 } \end{array}$	$\text { CD } 07$ C9	CO		CALL RET	FOPEN	
				*			
	CB62CB63	01		UNIT	DB	1	Change to 2 to use tape unit 2
		$434 C$	4953	HEADR	ASC	' CLIST	

DB	0	
DB	${ }^{\prime}$ T'	'T' for TEXT
DW	256	Length of block
DW	0	
DW	0	
DW	0	Three spares
DB	0	

InterfacingToTheSol's Parallel Port

by Lee Felsenstein

The parallel input/output port on the Sol, J2, is intended to allow highspeed transfer of data between the CPU and outside devices. The circuitry was designed to be symmetrical, so that two devices having identical interfaces can communicate with each other. In contrast, the $3 P+S$ circuit puts out a positivegoing data strobe pulse but requires either a negative-going data strobe ulse or a steady level in the return direction. As a result, two $3 P+S$ boards cannot communicate without additional circuitry, while two Sols can communicate through their parallel ports with nothing but wires between them.

Data is transferred on eight-bit-wide paths into and out of the Sol. through the pins of J 2 labelled PIDO-7 (data into the CPU) and PODO-7 (data out of the processor). Polarity of the data on these pins is positive-that is, a "high" logical level is equivalent to a binary "1." Data is latched at the output side of the interface and is not latched at the input side. This means that after an output instruction to the parallel port (port FD) is issued, the new data remains present at the output pins of the connector indefinitely, until the next output instruction is issued. Similarly, the external device which provides data to the Sol through J2 must keep its data present on the PID pins long enough for it to be picked up" by the Sol CPU.

FIG 1
HANDSHAKING SEQUENCE

FIG. 2
CIRCUITRY FOR HANDSHAKING

Supervisory signals, known as "handshaking" signals, are provided in both directions to allow the devices on each side ot the interface to know when data has been accepted and when each may present the next eight bits of data. Each side
issues a negative-going "strobe pulse" when its data is ready and latched. In the direction going out from the Sol. this signal is called POL, for Parallel Output Load. The line over the signal name signifies that the signal is "active low." All of
the handshaking signals are active low, so that a disconnected plug automatically results in a "not ready" condition. Resistors connected from the in-coming handshaking signals to +5 volts will "pull up" these pins to a high level automatically when this happens. Due to the pecularities of TTL logic, it is almost impossible to "pull down" a disconnected input.

The external device sees the POL signal and immediately acknowledges it with a high level on the PXDR pin, (Parallel External Device Ready). The Sol CPU will test the level of this signal before issuing a new POL. The external device sets the PXDR low again as soon as it has accepted the data and no longer requires its presence on the POD pins. Fig. 1 shows the sequence relationship between these signals.

In the incoming direction to the Sol CPU, the signals and the sequence are the same, with only the names and pin numbers changed. The data strobe fed to the Sol is PDR, (Parallel Data Ready). The Sol circuitry immediately responds with a high level on its PIAK pin (Parallel Input Acknowledge), which continues until the CPU has accepted the data presented at the PID pins.

Fig. 2 shows a suggested circuit for providing the handshaking signals from an external device. Note the provision for an "Initialize" pulse. This prevents the circuit from starting up in a "not ready" condition and "hanging up" the Sol CPU. Some external devices will not require this signal, but as an interface designer or troubleshooter, you should understand the possible pitfall. 74LS series logic is shown, but any TLL logic may be used. Each input of the parallel interface should present no more than one standard TTL equivalent load (1.6 maximum current source).

Three signals remain unexplained so far. These are PIE (Parallel Input Enable), POE (Parallel Output Enable), and PUS (Parallel Unit Select). These are direction-control signals to allow sharing of data lines among several devices. The latches in the Sol have

"tri-state" output drivers, which can be "turned off" so that another device can take over the same data lines with its own tri-state drivers. The signal which turns off the Sol drivers is POE (Parallel Output Enable). This signal is high-active, so that a low level on this pin will cause the output drivers to release. It will therefore keep the output drivers on when no connection is made to that pin of J 2 .

The Sol provides a signal which is intended to control the output-enable signal of an external device. This is PIE, a latched bit which is initialized to a logical "high" level and which can be set be setting bit 3 of output port FA. (The remaining bits of FA control other things, so care must be taken to keep them in the proper pattern when such an output is performed.) PIE may be used as a "direction control" bit if you want to share the data lines in both directions: for example, if you need to save wire or to use the interleaving wires of a ribbon cable for grounds to provide shielding on long runs. PIE would
then be connected to POE of the Sol and to a similar signal on the external device which recognized a "low" level as its output-enable signal. The PID and the POD lines may now use the same eight wires.

Note that the layout of the pins on E revision Sols and above (F, etc.) is such that the PID 0 and POD 0 lines are physically adjacent. This allows easy cross-connection of these lines in parallel when using a ribbon cable. If a 25 -wire ribbon cable is used, the interleaving wires are free for use as grounds, helping to reduce the problems of "glitches" which often plague high-speed parallel interfaces.

The PUS (Parallel Unit Select) pin is another latched bit, bit 4 of output port FA, which is initialized to a logical "low" level. It may be used to select two different external devices to receive or transmit data. These devices may share the same PID lines if their outputs are tri-state. Together with the PIE bit, the PUS bit allows the CPU to select four external devices, providing that appropriate decoding and response
circuitry is included in the external device.

Like all logic-level signals, the parallel interface signals should be kept away from high voltages such as AC and static electricity. Cables longer than 10 feet should not be used; or if they are, precautions should be taken to accommodate the "ringing" effects which will result during signal transitions. The most typical such precaution is "ter-
minating" the line with a resistor, usually about 120 ohms connected to +5 volts. The output circuits of the Sol parallel port cannot drive a load of less than 330 ohms, so additional drivers may be necessary for such terminated lines. It is also a poor practice to connect edge-sensitive inputs such as the clock or trigger input of a flip-flop to the cable directly. Use an inverter or a Schmitt trigger circuit such as the

74LS14, 8837, or 8836 (8T380). Edge effects can be impossible to see on an oscilloscope, so precautions are usually advisable when attempting to "debug" a cranky interface.

The Sol parallel interface provides many opportunities for imaginatvie and economical interfacing. we would be interested in hearing your results in applications which you consider noteworthy. Good luck!

Important NoticeTol6KRA Owners

We're currently up to Revision Level J on the 16KRA memory board in our tireless quest to improve the reliability of the circuit. Most of the earlier boards work fine, and if yours isn't exhibiting any intermittent failures, you can stop reading now. We don't recommend making the modification unless you are having trouble.

However, here's the modification procedure for those of you who need it. The assembly in question is Number 203000, shown on page $\mathrm{VI}-1$ of the 16KRA manual. The portion of the drawing reproduced here, Detail A, shows the modification to increase reliability. Five jumper wires have been added to the trace side of the board, all at ground potential, in order to improve ground return paths. U3O is shown as a 75365-the alternate part 3207 should not be used at this location. To make the changes:

1) Connect pin 5 of $U 28$ to pin 9 of U29.
2) Connect pin 9 of $\cup 29$ to pin 9 of U30.
3) Connect pin 9 of U30 to pin 9 of U31.
4) Connect pin 9 of U31 to pin 5 of U32.
5) Connect pin 8 of U28 to pin 1 of U32.

These changes don't require any change in the schematic shown on page $\mathrm{VI}-2$, or in the Theory of Operation, Section V.

Vectored Interrupt Capability For Sol

Although the 8080A microprocessor used in the Sol provides vectored interrupt capability, neither Sol nor Processor Technology's other S100 modules require use of this capability. However, Sol does provide a means for implementing vectored interrupt if the interrupt signal is made available by a circuit board inserted in the S100 bus. This board is connected to S100 bus pin 96 , SINTA. If you want this board to
generate interrupts, you'll need to add two jumpers, shown below, to the Sol P.C. These jumpers enable the SINTA signal to reach the memory decoder circuit; they can be added after assembling the Sol P.C., or even after the entire Sol has been assembled and tested.

The jumpers should be made from \#24 solid insulated wire (not provided). Their electrical effects can be seen in Drawing X -16. They
can be left in place even if no S100 board generates interrupts, and S100 bus pin 96 may float with no interference.

The necessary modifications for both Revision D and Revision E level circuit boards are as follows: Modification to Revision E board, Sol-PCB:

1) Strip .1" of insulation from one end of two 8 " lengths of wire. Insert the stripped ends into pads $A C$ and

1 EPT 2-99

AB (near U58), from the component side of the board. Solder and check for solder bridges.
2) Dress the wires as shown in the accompanying diagram, trim to the correct length, and strip . 1 " from the loose ends. Insert the wire from pad $A B$ into pad $A D$, and the wire from pad $A C$ into pad $A E$. Again, solder and inspect for solder bridges.
3) Attach the long runs of wire to the board with silicone compound or tape.

Modification to Revision D Board, Sol-PCB:

1) Strip $.1^{\prime \prime}$ insulation from each end of a $6.25^{\prime \prime}$ length of wire. Connect one end to pin 96 of J 10 (S100 connector); the other end goes to pin 9 of U57.
2) Strip .1" of insulation from each end of a $4^{\prime \prime}$ wire. Connect pin 8 of U57 to pin 6 of U34.
3) Attach the long runs of wire to the board with silicone compound or tape.

SCHEMATIC FOR REVISION D

TheSol-20And The OP-80A PaperTape Reader

by Drew Rogge

Oliver Audio Engineering's excellent and inexpensive OP-80A Paper Tape reader is one of the most popular peripherals in use with the Sol-20, and Sol User's Manual does contain some information about interfacing it. However, there's an error in the manual, and hardware interfacing can be a tricky chore in any case. Especially when it comes to using the Sol's 8 -bit parallel output port. (See Lee Felsenstein's article on the parallel port else-
where in this issue.) So here's what to do about the manual error, and also some other useful tidbits.

Section VII (Operating Procedures) of the Sol Users' Manual discusses the OP-80A. The error is on page 31: pin 5 of J2 (Sol PDI connector) should be labeled IAK, not IAK. Therefore, the "input Acknowledge" jumper on the paper tape reader should be connected to ACK, not ACK.

The intensity of the light source is also an important consideration in bringing the OP-80A up. You can allow just enough brightness to operate the tape reader, yet avoid saturating the tape, if you start by placing the light source far enough above the reader so that the SP LED indicator remains off. Then lower the light source just far enough to activate the LED, and keep it there.

Pat Tuell, of the San Jose Byte Shop, has contributed a driver routine for using the OP-80A, which we've included along with this article.

Enter the routine from keyboard or cassette; hook up the reader as specified. Execute C900, and start pulling the tape through. Intel-formatted paper tapes will
automatically be loaded into the correct memory locations and control will automatically return to SOLOS.

Have fun getting your data loaded!

Note: In case you haven't
already made the correction, please note that in ACCESS \#4 there is a routine to load Intel-formatted tapes from a teletype connected to the serial port. Memory location 1FOA should be "3A" instead of "3B."

We hope this section is going to become a regular feature of ACCESS, and we hope that you're
going to write it! All of the programs in this issue were contributed by
sions to the Applications Contest described last issue. Naturally, they're all very much in the runningwe're just printing them now because they seemed too good to keep to ourselves. Keep your contributions coming-if this selection is a fair sample of the quality we can expect, ACCESS to Software may prove the most popular part of the magazine.

You'll note the miniscule size of the listings. Well, the less space they take, the more we can run, and the more space we can devote to meatier prose in other sections.

We're thinking that most users will only have to read the programs in once, and hoping that you'll become resigned to squinting your eyes as a one-time (per program), characterbuilding experience, worth it for the rewards of acquiring the program.

Also check the reader feedback section of this issue for additional comments by the authors of these programs.

Again, you're encouraged to submit any and all programs you have. For purposes of accuracy and the suppression of typos, we encourage you to send either a cassette or photo-reproducible printout of the listing. If you send a cassette, we'll replace it with a blank one so you don't lose on the deal. Also try to provide as much support information as you can, like your uses for the program, where it originated, etc. It's a nice way to get your name in print!
Contributions to this issue:
Hammurabi
(game, modified
for BASIC/5) . . John Dowd
PAROL (payroll
records) John Dowd
COMM (weekly
sales/payroll
computations) . John Dowd
Inverse Video in
BASIC/5
(just that!). Tom Digate
BASIC VDM
driver fix (to
work with MITS
4.0 BASIC) Warren Saunders Thanks, fellows!

BASIC VDM Driver Fix to Work with MITS 4.0 BASIC

This useful emendation was contributed by ACCESS reader Warren Saunders of Oakton, Virginia. Add the following statements to BASIC and you'll be in the running!

0106 FOR $Y=L$ TO $L+416$
0154 DATA 195,4000,5000,241,245, 230, 127, 254,32.210,154
0156 DATA 1001.254,7.202.6.1000, 254.13.202.47,1000

0158 DATA 254, 1,202,47,1000,254. 26,202,47,1000,241
0160 DATA 201,0,0,245,229,213,197
0233 DATA 254,127,194,47,1000. 241,201

Note: BASIC VDM DRIVER with these changes remains compatible with previous versions of MITS BASIC.

PAROL and COMMM

John Dowd told us he adapted this program to work with Sol BASIC/5 from a version found in Some Common BASIC Programs, a book by Lon Poole and Mary Borcher. No data is stored on cassette -only the programs. John uses them with a printer to keep records of beauty shop income (Lynne's Carrousel of Hair Fashions in Linwood, NJ), sales analysis, employee commission and payroll. Previous balances and sales totals are entered by keyboard from cash register tapes and payroll records. He says that using Sol has cut the time required for these jobs from 4 hours to 45 minutes!

Star Ship, by Brian Marsh, age 6

1 EPT 2-101
± 1
为|
Kep 101818901.101460014880
1 EPT 2-102
\bar{n}

1 EPT 2-103
PRIMI ETRY ROUR dAVJ AI GOVENMING ANCIEMT SUMERIA"

LEI DIEO: LET Pi=0

LE1 9:

LEI PEPOI
IF OSD TMEN 230
EI Palwi(P/Z)
PRIMI A MOHAI BLE PLAGUE STAUCKI WALF THE PEOPLE DIED.
Paimi epgpulalion is mafe,p.
tivi orme arirmor oaysa: aca acaso
Privi -

PaIVT OYOU NJA NAVE
If $Z=19$ TME 968

IWPII $2:$ If $2<\pi$ THEN 65 A
If VO2<3S INEN 33y
30 SUs 710
$601032 d$
IF J=W INEN 380

PaiNi OMOH MANY AEPES DO YOU UISM IT SELI?O:

IF OCA ITEN 35*
605 Un 728
6010308
6010348

PRIV?

INPII 0
IF OCJ INEN ES
IF OCO THEN 53
IF $2<=5$ ItEv 638
IF OCJ THEN 53
IF $2<=5$ TAEV 630
121
1225 SUM 118
122 GOTO 410
$\begin{array}{ll}121 \\ 422 & 6054 \\ 6010\end{array} 110$

INPUT D I IF DEA IMEN bil
if DC: TMEN BjA

445 IF $0<2=14$
$46805 U 4 ? 8$

S010 448

LEI SES-1世I(DI29)
OOSJA BAA
GETVEO:

cosua man

LEI E=INI(S/C)
LFI $\boldsymbol{B}=5-\mathrm{E}$ - H
LFI $\sin 5-E \cdot \mathrm{H}$
GO,

部 $=141(\partial / 201$
LE) J=14ा(100(20RND (3)-039)
if PGFMEN ?
EET $)=N-C: 1 F D>0450 p$ TMEW 500

PRIMI: PRINI WYOL SIARVEDEID: DEOHLE IM OWE YEARIII

RETURY
LE) CEIMI(and (ato5).9
PRIMI: PRIVT GAMURAZI: I EAMNJI DO WMAY VCU MISN.
PKIMT ESET YOUQSELF AYJIMER FIU*イYIIIIO
6010 eg
SRIMI BIV YOUR IS YEAZ IERE OF TFFICE, O:PY: Q PERCEMT. OF INEQ
PRIMI PPOPULATIOM SFAZVEJ DER VEAR OM AVERAGEO IOEO A TOTE: OF
PRIN: JI: DEJPLE JIEJIE: LEI L:AノP
PRTMT OYOU STARYED UITN IB AEAES PER PERSOM ANO ENOED UINC
PRIMI L: ACRES PEH PERSONOC: PRINI
IF P1D33 IWE世 565
IF LET TMEM 565
IF PISTETMEM 940
IF LCS IMEN 946
IF PISJ IMEM O6
IF L<13 TMEM 280
PRIVT A FAVIASTIE PEREORMAMEEIII ZMARLEMAGMED OISRAELID AVO

GEG TO REPONT TO YJUOE LET $2=2$ O

GOSUみ 日sA
11
x
$c=0$
342 SOSUA 728

411 IWPJY ?
412 IF $2<=5$ TAEV 638

452
453
455
855
464
518 LEISJSBAA

522542
553 - 55)

Be b

3

105

- initialize tue message tata taple

$=$

$$
\begin{aligned}
& \text { : PRINT : PRINT } \\
& \text { DF:IONSTRATE. SPF.ET }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SET } S=0 \\
& \text { PRINT : PRINT "Prettv neat, huh!" }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PY SHOWING SPECIAL CHARACTFR SET } \\
& \text { : PRINT : PRINT "The Sol also has a special set of limited" }
\end{aligned}
$$

BASIC 5430 PRINT "This concludes mv demonstration of special disnlav"
440 PRINT "features available in RASIC5. Happv computine!!!" 450 PRINT : PRINT : PRIHT : SET $S=0$
460 END

 REI "TIS OPOGYAH WILL REMONSTRATE,
REM "HOU TO USF. THE FSCAPE SEOUENCES IN
PE: "THE COLOS VDU DRIVEA

$$
\begin{aligned}
& \text { PRINT "The Snl can even chante displav"; } \\
& \text { SET S=10: PRIHT " speens";: SET } S=75: \text { PRIHT , dvnamicallv!" } \\
& \text { ST S-0 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SET } S=15 \\
& \text { REM FINISH UP DEMONSTRATION } \\
& \text { REM PY SHOWING SPECTAI. CHAR }
\end{aligned}
$$ "rraphics charactors. They are shown below in both" "rerular and inverted vireo. This oives a Rasic nroara

"very rood flexibility when desicminc display formats. PRINT SPECIAL CIIARACTER SET FOR VDM
0

$$
\begin{aligned}
& \text { PRINT : PRINT } \\
& \text { REM PRINT SPECIAL CHARACTER SET FOR VDM IN INVERTED VIDF.O } \\
& \text { FOP I }=0 \text { TO } 11
\end{aligned}
$$

$$
\begin{aligned}
& I=0 \text { TO } 31 \\
& C=I+12 H: G O S U R ~ 65010: C=160: ~ G O S U R ~ \\
& T
\end{aligned} 5010
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { FCR } I=0 \text { TO } 31 \\
C=I \\
\text { COSUR } 65010 \\
\text { PRINT " " ; } \\
\text { NEXT I }
\end{array} \\
& S=18
\end{aligned}
$$

1 EPT 2-106

Bulk Rate U. S. Postage PAID Permit No. 54
Pleasanton,CA 94566

7100 Johnson Industrial Drive
Pleasanton, CA 94566
Chapter 3. Sol Users Manual.
Section 1. Exploring the Sol System 8
Section 2. At the Controls 18
Section 3. Introduction to Software 22
Section 4. Loading Programs from Cassette. 28
Section 5. At the Keyboard (Key Functions) 36
Section 6. Unpacking and Installation. 45
Section 7. TLC for Your Sol (Light Maintenance) 54
Appendix l. Products Available from Processor Tech. 59
Appendix 2. Cassette Recorder Supplement 65
Selecting a Cassette Recorder 65
Interconnect Requirements for Two Recorders 66
Appendix 3. Internal Controls (Switch Settings) 68
Appendix 4. Keyboard Tables. 72
Appendix 5. Sol Specifications 76

Sol ${ }^{\circ}$
 TerminalComputer User'sManual

Processor Technology
Corporation
7100 Johnson Drive
Pleasanton, CA 94566
Telephone (415) 829-2600

Copyright (c) 1978, by Processor Technology Corporation
First Edition, First Printing, December 1978
Manual Part No. 730021
All rights reserved.

IMPORTANT NOTICE

Sol and SolPrinter are registered trademarks, and WordWizard and Helios are trademarks of Processor Technology Corporation.

The Sol Terminal Computer

TABLE OF CONTENTS

SECTIONPAGE
1 EXPLORING THE SOl SYSTEM 1-1
1.1 THE SCOPE OF THIS MANUAL 1-1
1.2 WHAT'S A COMPUTER? 1-2
1.2.1 Clockwork 8६80 1-2
1.3 A COMPUTER WITH A BUILT-IN TERMINAL 1-3
1.3.1 "Play a Little Sol Music". 1-4
1.3.2 "Sol-a-vision". 1-5
1.4 "INTER-SOl-ar" SYSTEM CONMUNICATION. 1-5
l.4.1 The Coming of the Sol S-l氏e Backplane. 1-7
5 MEMORIES ARE MADE OF THIS 1-7
1.5.1 Psychoanalyzing the Sol Personality Module. 1-8
SOLOS 1-8
. 2 The Sol's Built-in Read/Write Memory. 1-9
ZORDED SOFTWARE. 1-9
‘ANDING "Sol-ar" SYSTEM 1-10
«ULS 2-1
1NTRODUCTION 2-1
2.2 REQUIREMENTS NEEDED FOR THE EXPEDITION 2-1
2.3 POWER TO THE SOl 2-2
2.4 THE VIDEO DISPLAY 2-3
2.5 KEYBOARD CONTROLS AND KEYBOARD RESTART 2-3

TABLE OF CONTENTS (Continued)

1 EPT 3-5
SECTION PAGE
3 INTRODUCTION TO SOFTWARE 3-1
3.1 WHAT IS SOFTWARE? 3-1
3.2 COMPUTER LANGUAGE AND LANGUAGE TRANSLATORS 3-2
3.3 SOLOS 3-3
3.3.1 Command Mode 3-4
3.3.2 "Try It" 3-4
4 LOADING PROGRAMS FROM CASSETTE 4-1
4.1 INTRODUCTION 4-1
4.2 AUDIO CASSETTE RECORDERS
(Preliminary Information) 4-1
4.2.1 Operating A Cassette Recorder 4-2
4.2.2 Cassette Recorder Operating Tips 4-2
4.2.3 Notes on Writing to Cassette 4-2
4.2.4 Notes on Reading from Cassette. 4-3
4.3 GETTING INTO BASIC
(Procedure for Using A Cassette Recorder)... 4-3
4.4 WRITING PROGRAMS AND SAVING THEM TO CASSETTE 4-5
4.4.1 Writing a Program 4-5
4.4.2 Saving a Program to Cassette 4-7
4.4.3 Recalling a Program from Tape 4-7
4.5 THE Sol ALSO RISES 4-8
5 AT THE KEYBOARD 5-1
5.1 THE KEYBOARD, GENERAL INFORMATION 5-1
5.1.1 Key Functions are Programmable 5-1
5.1.2 Operating Features and Keyboard Indicators 5-2
5.l.3 Using Table A4-1 5-2
5.2 CHARACTER KEYS 5-3
5.3 FUNCTION KEYS 5-3
5.3.1 Cursor Control Keys 5-4
5.3.2 Individual Descriptions of Function Keys 5-5
5.4 THE CONIROL KEYS 5-8
5.4.1 General Information. 5-8
5.4.2 Transmission ana Display of Control Keys 5-8
5.4.3 Familiarization with the Control Symbols 5-9
5.5 ARITHMETIC PAD KEYS 5-8
6 UNPACKING AND INSTALLATICN 6-1
6.1 RECEIVING INSPECTICN. 6-1
6.2 INSTALLATION OF S-1G氏 MODULES 6-2
6.3 BUTTONING UP THE Sol AND INSTALLING THE FUSE 6-4
6.4 CONNECTING THE VIDEO 6-6
6.5 THE CASSETTE CONNECTION 6-6
7 TLC FGR YOUR SOl 7-1
7.1 SERVICE AND ORDERING PARTS 7-1
7.2 CARE AND EXTERIOR CLEANING OF YOUR Sol. 7-1
7.3 TROUBLE-SHOOTING the Sol INSTALLATION 7-2
7.3.1 Checking and Installing the Fuse 7-2
7.3.2 Removing The Covers Prior to Checkout of the Interior 7-3
7.3.3 Checkout of Cables, Connectors, Sol-PC and Personality Module. 7-3
7.3.4 Buttoning the Sol Back Up 7-4
7.4 TROUBLE-SHOOTING THE VIDEO 7-4
7.5 TROUBLE-SHOOTING CASSETTE OPERATIONS 7-4
7.5.1 Problems Encountered when Loading. 7-4
7.5.2 Possible Faulty Tape? 7-5

1 EPT 3-7

APPENDICES

1 PRODUCTS AVAILABLE from Processor Technology
2 CASSETTE RECORDER SUPPLEMENT
3 INTERNAL CONTROLS
4 KEYBOARD TABLES
5 Sol SPECIFICATIONS

TABLES

6-1	Sol System Component Li	6-8
A3-1	Sol Internal Controls in Numerical Order	A3-4
A 4-1	Sol Keyboard Character and Control Keys.	A 4-1
A 4-2	Sol Keyboard Function Keys.	A 4-3
A 4-3	Names of Graphic Characters on Keytops	A 4-4

FIGURES

1-1 Sol-PC Simplified Block Diagram....................... 1-6
2-1 Sol Rear Panel... 2-2
5-1 Sol Keyboard... 5-4
6-1 Installing An S-100 Module................................ 6-3
6-2 Sol System Interconnections............................ 6-5
Al-1 Sol System IV-A... Al-2

1.1 THE SCOPE OF THIS MANUAL

If you have obtained your Sol still in the shipping carton(s) please read Section 6, "Unpacking and Installation" before unpacking any further and before you start using your Sol. If you find yourself so anxious to unpack your Sol that you intend to skip the introduction, you may go directly to Section 6, but please read Section l.l, "The Scope of this Manual".

This manual is a light operating guide and reference handbook for all Sol users. Just as the Sol is a simple yet sophisticated small computer that you can use for elementary applications such as playing video games, learning programmed lessons, as a desk-top computer system to write programs, as the host computer in a somewhat more complex business system, or as a terminal in a network of computer systems, so also, this manual can serve as a novice's learning book or as the more experienced user's introduction to the full capability of the Sol Terminal Computer.

The purpose of the first four sections is to get you quickly "up and running" with your Sol Terminal Computer. The sections and the information in them are presented in a sequence of steps especially designed for the purpose. Please follow the instructions up to the end of Section 4; then we turn you loose.

The rest of this section 1 presents a thumbnail sketch of the typical small computer system, with the spotlight on the Sol Terminal Computer System.

Section 2 is a briefing on the Sol user controls and other preliminary information on the "hardware" in your Sol system. Section 3 is an introduction to software. The object of having a computer, after all, is to run programs; therefore this manual will introduce you to the software manuals you have received with this manual. They are: SOLOS/CUTER User's Manual, Extended Cassette BASIC User's Manual (or Extended Disk BASIC User's Manual if you have a Helios).

Once you have progressed to the end of Section 4 , you will have learned to load Extended Cassette BASIC from cassette and performed a few "basic" operations, including some simple programming.

After that, you can refer to the remainder of this manual for more detailed information that you may need from time to time as you gain more experience using your Sol. For example, Section 5 is all about the Sol keyboard. Section 7 contains maintenance and trouble-shooting tips for the qualified experts who are responsible for your system.

1 EPT 3-9
The appendices contain brief descriptions of hardware and software products to enhance your Sol. The appendices also contain additional technical information about the Sol.

If you have need for more technical information than this manual provides, for example, theory of operation and schematic drawings, you may order a more technical manual through your cealer, who uses such a manual to help keep your Sol in top condition.

You are cordially invited to participate in the future improvement of this book by sending us your comments and suggestions. A postpaid form is provided at the back of the manual.

1.2 WHAT'S A COMPUTER?

A computer is a manmade tool that extends the powers of the human mind. It does its work by manipulating vast numbers of symbols at tremendous speeds. In a digital computer like the Sol, the smallest, most basic symbol with which the computer works is called a "bit." A bit is a unit of information that answers the question, "Yes or No." In other words, a bit is either on or off. These two states are represented in mathematical notation as "l" for on, "申" for off. The two states of a bit are represented in the computer by two different electrical voltage levels. The computer has a myriad of minuscule electronic circuits that can alternate from one of these voltage levels to the other. By arranging these circuits into particular formations, information, also represented in bits, can be made to flow through the computer in a controlled fashion to answer questions and make statements of a mathematical and logical nature.

There are seemingly countless "logic circuits" in even a small computer, but they are always arranged in three basic functional groups, much as the cells of our brain are organized into parts of the brain. The first group functions as the control center, comparable to our thinking center. It is called the Central Processing Unit (CPU). The CPU directs the operations of the other two functional units, the memory an the input/output (I/O), which can be compared to our own memory and to the input/output functions of our senses and organs of communication. This similarity of the computer to the human nervous system is the basis for the study of cybernetics.

l.2.1 Clockwork 8080

It is in the CPU that the user's instructions to the computer are processed. The Sol's CPU is a single large scale integrated circuit named the 8080 , which has become a standard in small computer systems and microprocessor-based systems. (An integrated circuit is single "chip" of semiconductor material upon which thousands of interconnected electronic circuits are fabricated by building up alternating layers of variously conducting materials in microscopic patterns.)

The 8080 microprocessor is ensconced on a large rectangular circuit board at the base of the Sol. This circuit board is called the Sol-PC. Making up the other two functional blocks of a computer,

Memory and the Input/Output (I/O), are about a hundred other integrated circuits on the Sol-PC. Memory and I/O support the control functions of the CPU.

The Sol-PC belongs to a category of computers called "Single Board Computers." The Sol-PC is available as a separate product from Processor Technology.

A crystal-controlled clock synchronizes the 8080^{\prime} s operations based on a rate of 2 MHz (two million cycles per second). The Sol attains an overall speed of between 100,000 and 500,000 instructions per second, depending on the type of instruction. The instruction referred to here is a machine language instruction. The "machine" is the microprocessor, whose prefix "micro" distinguishes the species "micro-computer." The 8080 microprocessor speaks a machine language made up of 8 -bit words. An 8 -bit word is called a "byte."

The second functional grouping of circuits within a computer is the memory. The CPU stores data in the memory prior to and after the data has been processed. Also stored in the memory are programs" which consist of lists of machine language instructions that are executed by the CPU section. In the Sol, the bulk of the memory function is performed by $\mathrm{S}-100$ plug-in modules such as the $32 \mathrm{KRA}-1$. The Sol's memory will be explained further in a succeeding paragraph.

The third and final functional grouping within a computer is the input/output circuits. I/O circuits coordinate the movement of data in and out of the computer. They create a circuit path between the CPU and external devices which perform other data processing or communicating. The circuits in the Sol which form a path between the CPU and a cassette recorder are part of the I/O function. (The Sol I/O interfaces will be discussed further in l.4). With a CPU to direct the movement of data, a memory in which to store the data, and an input/output (I/O) interface to transfer data in and out of the computer, your Sol is ready to communicate with the outside world of other devices, other computers and with you, the user.

1.3 A COMPUTER WITH A BUILT-IN TERMINAL

Perhaps the most distinctive feature of a Sol is that it is a small computer with built-in "terminal." That is why the Sol is called a "Terminal Computer." A terminal is a device that enables the user to communicate with the computer. It usually consists of a keyboard and video display. The keyboard is used to enter data and commands; the video display is used to monitor the computer operations and display the data and commands being entered and received.

Technically speaking, the terminal is not part of a computer as such; rather it an input/output device and more specifically, a control console for human interaction with the computer. Other input/output devices, such as cassette recorders, collectively are called peripherals. Peripherals are equipment which aid the computer by loading, storing or displaying data, usually under the control of a computer.

An "intelligent" terminal is one that can perform some processing of the data in addition to entering and receiving it. Terminals and computers are often connected by telephone or other telecommunications lines to "time-share" or to form a "network." The Sol can be programmed to act as an intelligent terminal or as a free-standing computer. Most computers need a separate terminal for the user to communicate with it. A terminal consisting of the keyboard, video display and a standard communications interface are already built into every Sol. The Sol is its own terminal.

Despite its sophistication, the Sol is one of the easiest computers to operate. At the beginning you will be using the Sol as a "stand alone" computer, and you will use the keyboard to communicate with your Sol system as you enter and control programs and data.

1.3.1 "Play a Little Sol Music"

Like the keyboard on a piano, the keyboard is an important part of a terminal because it is the interface through which the user communicates with the computer. The Sol's more than ample keyboard compares with keyboards supplied with larger minicomputer systems. It has a $70-k e y$ main keyboard with color-coded keys that generate all 128 ASCII code characters. (ASCII is a standard code used by most computer manufacturers.) The ASCII character set includes the standard typewriter upper and lower case characters, plus a set of control characters that are activated when the CTRL (control) key is pressed at the same time as a character key. In addition to the ASCII keys, which are programmable, there are several "hard-wired" (permanent wired) special function keys. These function keys are handy for console operation of the computer, as well as for programming and word processing.

Conveniently located to the right of the main keyboard is a separate l5-key calculator pad provided so that the user does not have to stretch for the numerical keys at the top of the keyboard, when
making lengthy numeric entries. Both keyboards are designed for ease of operation and reliability. There is a built-in memory and scanning circuit that prevents simultaneous key activation and allows you to press any number of keys as fast a you can without losing a character. There are two keyboard status indicator lights to tell you whether the keyboard is set for upper case characters or shifted upper case. A third light indicates whether a Sol being used as a terminal is set for local operation or for transmission of the keyboard entries.
1.3.2 "Sol-a-vision"

The Sol Terminal Computer is self-contained insofar as all it needs to run is to be plugged in and turned on, but we humans need to see what we are entering on its keyboard what it is communicating to us. We need to monitor its operations and its communications with other devices. It needs a "display" for the video output of the Sol. The display is provided for in a separate I / O device, a "video monitor," which is a black and white $T V$ adapted for this use or a similar but specially designed monitor.

The Sol video display generates 16 lines of text, each line 64 characters long. The display can be reversed by the user to show white characters out of black, or black on white.
1.4 "INTER-SOl-ar" SYSTEM COMMUNICATION
(Refer to Fig. l-l, Sol-PC Simplified Block Diagram.)
"Software" is a broad term that refers to programs that are run on a computer. These programs are lists of instructions that tell the computer how the "data" are to be manipulated. Data is the informatior upon which the CPU operates. Data and instructions can be intermixed throughout a program; the program keeps track of whether a given bit, byte, line or block of information is to be treated as data or executed as an instruction. In a broader sense, a program is also "data" that the computer understands as a set of instructions. Programs can be stored in various ways. They can be stored outside the computer on magnetic or other media. A record of a program on a sheet of paper is called a "listing."

Programs can be executed only when they are in the computer's memory. Since memory is limited in storage capacity, programs are often stored outside memory. until the time comes to load one or more of these programs into the Sol; there must be an I/O "interface" to transfer the program from its external storage medium to the memory in the Sol. Since programs and data generated in the Sol may also have to be moved out of the Sol to more permanent media, most interfaces are bidirectional. An interface, in this instance then, is circuitry that adapts one device having a specific function to another device having a different function (or at least a different design) when both the dissimilar devices have a common boundary where they must interconnect to perform an overall system function.

Thus an interface is used when the CPU is instructed to transfer its internally stored programs and data to an external device and/or

1 EPT 3-13
media. The Sol is splendidly equipped with three of these input-output interfaces (in addition to the built-in terminal interfaces for the keyboard and video display). These interfaces are:

The Audio Cassette Interface (ACI)
The Serial Communications Interface (Serial Port)
The Parallel Data Interface (Parallel Port)
If the data (including programs) is to be transferred in a string of bits one at a time, the data goes in or out the Serial Communication Interface. An example of serial data transfer is the Sol
communicating via a modem over telephone wires or using its serial port to send data to a SolPrinter 3. The data can also be transferred eight bits at a time, when the Sol uses the Parallel Data Interface. The Sol can use this parallel I / O port to send data to a Solprinter 2. (The serial and parallel interfaces, together with the internal keyboard interface, are called "ports," as in a "seaport" where items of trade go in and out.) The serial and parallel port connectors Jl and $J 2$ can be readily seen on the rear panel of the Sol.

The third I / O interface is the Audio Cassette Interface, which is a specialized serial interface that can load from and store to cassette tape. Two recorders can be used at the same time, one being read from, the other being written to; or the CPU can read or write alternately to two recorders. But there is still another type of interface employed by the Sol, the "bus interface"!

1.4.1 The Coming of the Sol S-100 Backplane

One of the most significant and effective characteristics of the Sol computer is a "plug-to-plug compatible" method of interfacing. Plug-to-plug compatible refers to devices having identical connectors and performance specifications so that they are direct replacements for each other. Similarly, a bus interface provides for additional memory modules, special purpose I / O modules, peripheral devices and even other small computers, all having the same connector specifications, to be plugged into a "bus." A bus is a number of parallel wires carrying control, address and data signals in common to all devices connected to the bus. The different bus devices, each plugged into a bus connector, share access to the bus, being synchronized by common control signals, much as the bus used in human transportation enables many people to arrive at their individual destinations via the same vehicle. A big advantage of a bus is that the various devices in a bus system do not need dedicated wiring to each of the other devices with which they must communicate, just as a real bus vehicle obviates the need for many individual cars to get the riders to where they are going. Bus design coupled with the large scale integration of the CPU accounts for much of the small computer's low cost.

Sometimes buses become more or less industry standards and different manufacturers can thereby produce a host of compatible devices. The most widely used bus standard in the small computer industry is the "S-100 bus." This is the bus used by the Sol and its associated peripherals. The $S-100$ bus is built around the 8080 , certain wires being assigned to carry certain signals. It consists of 100 parallel wires; hence its name "Standard-100."

The Sol has a built-in $S-100$ bus that extends upward from the main circuit board. It is in the form of a "backplane" that can accept five expansion modules. This arrangement is often called a "cardcage" or "expansion chassis." Probably you ordered your Sol with additional memory modules. These come packaged separately. The memory modules are $\mathrm{S}-100$ devices that you will later plug into the Sol's backplane. If you purchased a Helios II, it has interface modules that also plug into the backplane.

1.5 MEMORIES ARE MADE OF THIS

The plug-in memory modules are easily added to the Sol cardcage as needed. Computers are made with plug-in memories because different users want different amounts of memory, because they may want to increase the amount of their memory, because they might want obtain a later model of memory module; and it is convenient to test and maintain modular memory.

But even before any $S-100$ memory modules are added, the Sol has a limited amount of memory that is built into the Sol-PC. This memory is required for the Sol's basic functions, one of which is to manage the add-on memory. The Sol's 4,096 byte built-in memory, is permanently addressed at reserved memory locations (consecutive
addresses). This memory is divided into 2,048 bytes of Read Only Memory (ROM) and 2,048 bytes of Random Access Memory (RAM). First we shall explore the Read Only Memory.

1.5.1 Psychoanalyzing the Sol Personality Module

The Sol's 2 K Read Only Memory (a "K" is l,024 bytes) is in the form of a plug-in memory module that rides piggy-back on the main circuit board (the Sol-PC). This little module, which should already be installed in your Sol, is the Personality Module. The size of this memory module belies its importance, for without it there would be utter chaos when data begins to stream into the computer from outside devices and is "blitzed" from one circuit to another on the Sol circuit board. For, just as our own personalities program our behavior by selecting, interpreting, and organizing the vast amounts of clamoring data impinging upon our senses from the outside world, so does the Sol Personality Module control the interaction between the user and the Sol system resources: the CPU, the memory and the I / O interfaces.

When humans wake up in the morning, somehow they find themselves with the same personality, more or less, that they had when they went to bed. They don't usually "forget" their personalities. So too, Read Only Memory has a permanent program already manufactured into it. Unlike a magnetic memory and the RAM in $S-100$ memory modules, ROM can only be read and not over-written or erased by the computer. There is no need to change or modify the program stored in this ROM because of the nature of the program as we shall see below.

A even more important correlary quality of $R O M$ is the fact that it is a "non-volatile" storage medium. Non-volatility means that the program stored in the $R O M$ is not lost when the power supply is turned off. This feature is a convenience to the user who does not have to reload the program stored in the $R O M$ each time the Sol is turned on.

SOLOS

Just what is the program that the user would want to load each time he or she turns on the Sol? What is the Sol's personality? The program that is embodied in the Personality Module is a 2,048 byte program named SOLOS. As manager of the system resources on behalf of the user, and being instantly available when the Sol is turned on, SOLOS is like an executive who is always on the job. In fact, it is called an "executive" or "monitor" program. It is the "operating system" supplied with a Sol. The job of an operating system is to make the system resources readily accessible to the user through a set of "console commands," that you can type in from the keyboard, to engineer the transfer of data among the system resources and external devices, and to act as a "master of ceremonies" during the transition of control from one program to another.

The Sol is able to change it personality modules without becoming schizoid! One module is used by a Sol in a cassette system; another by a Sol in a diskette system, and another can be fitted with a ROM programmed for the user's application. SOLOS and the three available personality modules are described in Section 3, "Introduction to Software." The SOLOS/CUTER User's Manual which comes with the Sol will familiarize you with the SOLOS commands.

1.5.2 The Sol's Built-in Read/Write Memory

Besides its ROM memory, the other section of Sol's built-in memory is read/write memory, called Random Access Memory (RAM). (This is the type of memory used in the additional $S-100$ memory modules.) Unlike ROM memory, RAM memory can be altered by the CPU. RAM is more versatile than $R O M$ because many different programs can be loaded successively into the same RAM. ROM on the other hand cannot be altered by the CPU and can contain only the information placed in it when it is manufactured.

As a converse of its alterability, however, RAM is volatile. When the power supply is turned off, poof! This property of RAM is usually no disadvantage because the Sol"s RAM is really a "workspace" for the CPU to manipulate the data and to store it temporarily until it is transferred to more permanent media if necessary. Most of a computer's memory is of the read/write type because the computer is always changing the contents of its memory, either by moving different blocks of data in or out or by operating on the data stored in memory.

Sol has 2 K (2,048 bytes) of built-in RAM, located on the Sol-PC. IK is used by SOLOS as a scratch pad to keep track of the ever-changing notes and records necessary for SOLOS' executive duties. While the CPU is loading data from cassette, the built-in RAM is sometimes used as a storage buffer. The second lk stores the current video image ("frame" or "page") being generated by the video display circuitry.

1.6 PRERECORDED SOFTWARE

Instructions and even whole programs can be entered by hand into the Sol through the keyboard, but it is extremely convenient and efficient to have stored programs prerecorded on audio cassettes or floppy diskettes to be fed quickly into the Sol. In conjunction with a cassette recorder or disk memory system, the Sol can load and store any compatible programs and programs or data that you yourself may write or enter on the Sol. As an example, we will be loading Extended Cassette BASIC which comes with the Sol. Section 3 discusses software in general and the Sol software in particular. Some of the games and other programs that are available from Processor Technology are described in Appendix 1.

1.7
 THE EXPANDING "Sol-ar" SYSTEM

The Sol together with a 16 K memory module, a video monitor and a cassette recorder constitute the most fundamental Sol System (Sol System I-A). This system can be expanded by adding plug-in modules to the Sol backplane and/or replacing the memory module(s) with one of larger capacity, available from Processor Technology. The Sol has "slots" in its backplane for five plug-in $\mathrm{S}-100$ modules which can be memories, I/O modules or interface modules such as the Processor Technology Helios II floppy disk controller.

You can also expand your Sol system by adding peripherals such as a second cassette recorder, a Helios II Disk Memory System or a Solprinter. Other useful S-100 devices are available from some manufacturers: if you require additional s-100 backplane connectors, there are add-on cardcages; if you want to add a little color to your "Sol-ar" spectrum, there are $5-100$ color graphics modules; a modem module can be used to communicate with other Sols and other computers anywhere in the world over telephone lines and satellites.

Refer to Appendix 1 for descriptions of additional equipment for your Sol System.

For further study of small computer systems and software, refer to the bibliography in the appendices of Extended Cassette BASIC User's Manual.

SECTION 2

AT THE CONTROLS

2.1 INTRODUCTION

Information in this section will help you to become familiar with the operation of your Sol Terminal Computer. You will be given brief explanations of the requirements and the operating controls. This section and the following one, Section 3, "Introduction to Software," will acquaint you with the Sol, so that you will feel at ease when, in the Section 4 section, you proceed to load Extended Cassette BASIC and experiment with a simple program.

Certain control switches are inside the Sol; however, these controls are already set for ordinary operation of the Sol. If it becomes necessaary to reset these switches, qualified service persons may refer to Appendix 3, "Internal Controls."

2.2 REQUIREMENTS NEEDED FOR THE EXPEDITION

Available Sol and Sol System configurations are listed in Table 6-1, "Sol System Component Lists." Assemble the items in the following list. You will need these items to load and run Extended Cassette BASIC as presented in Section 4:
) A Sol Terminal Computer connected according to Section 6, "Unpacking and Installation."
2) A SOLOS or BOOTLOAD personality module installed in the Sol. The instructions in this section assume that your Sol is equipped with a SOLOS or BOOTLOAD personality module, one of which is supplied as a standard item with a Sol or a Sol System.
3) A minimum of 16 K of RAM memory addressed continuously from \emptyset. 32 K is recommended. (Refer to the appropriate memory module user's manual for address settings.)
4) Video monitor or black and white $T V$ converted for video input. (For TV conversion instructions, see your dealer. As a substitute, a serial output device such as a teletypewriter may be connected to the Sol's Serial Communication Interface connector on the rear panel.)
5) A cassette recorder with motor and audio cables. (If you have not yet selected a recorder, see the appendix, "Cassette Recorder Supplement.")

OR: A Helios II Disk Memory System, in which case you will be loading Extended Disk BASIC.
6) A cassette prerecorded with Extended Cassette BASIC.

OR: If you have a Helios II, the PTDOS system diskette. (The PTDOS system diskette contains Extended Disk BASIC.)
7) Manuals:
a) Sol Terminal Computer User's Manual (this manual).
b) The appropriate memory module user's manual.
c) SOLOS/CUTER User's Manual.
d) Extended Cassette BASIC User's Manual.
e) (and, if you have a Helios:")

Helios II User's Manual
PTDOS User's Manual
Extended Disk BASIC User's Manual
2.3 POWER TO THE Sol (Refer to Fig. 2-1, Sol Rear Panel.)

On the rear panel of the Sol is a square red button that has two positions. This switch is pushed IN to turn on the Sol. (Do not turn on the Sol yet.) In the ON position, a detent holds the switch in. To turn OFF the Sol, push the button again. The detent releases the switch and it pops out to the OFF position.

When turned on, later models of the Sol will have UPPER CASE set as indicated by the red light-emitting diode (LED) in the key.

It is recommended that you turn off your Sol if you are not using it for an extended period of time. This should help extend the life of the memory modules. The Sol needs no warmup time. When the Sol is turned off, the data contained in RAM will be lost.

Fig. 2-1. Sol Rear Panel
${ }^{7}$) Turn ON the Sol.
2) Turn on POWER to your video monitor by touching its power switch. (The monitor has its own manual if you need to reference it.)
3) The SOLOS prompt character followed by the cursor ($>$) should appear at the upper left corner of the screen. The greater-than sign is the SOLOS prompt character; it means "now you can type a SOLOS command." The cursor is the solid vertical rectangle which occupies the character position in the display where the next character is to be printed or the point at which the next operation is to start. Of itself, the cursor does not affect any characters in the display. A prompt character is a distinctive symbol that reminds you which program the computer is running.
4) Adjust the CONTRAST and BRIGHT controls on your video monitor to optimize the display of the cursor.

The SOLOS monitor program automatically takes control in its Command Mode when the Sol is turned on. This sequence is called the power-on initialization. In the Command Mode, which is the primary mode, the Sol is waiting for a command. The two operating modes of SOLOS will be discussed in Section 3, "Introduction to Software."

If the prompt does not appear, refer to Section 7, "TLC For Your ว1."

Your video display, which is controlled by the Sol, is usually set by the factory to display black characters on a white background. If you prefer, a qualified person can reverse the display by using the polarity switch inside the Sol. For details refer to Appendix 3, "Internal Controls."

The lines of program instruction or text are rolled up off the top of the display to make room for a new line at the bottom. This is action is called "scrolling."

2.5 KEYBOARD CONTROLS AND KEYBOARD RESTART

(A detailed reference to the keyboard is provided in Section 5, "At the Keyboard." This section contains only the information that you will need to perform the steps in Section 4, "Loading Programs from Cassette.")

When UPPER CASE and REPEAT are pressed simultaneously, a keyboard restart is executed with the result that UPPER CASE resets to lower case letters and the sol is reset as if it were powered-up (power-on initialization).

Use the keyboard restart to return to SOLOS from:

1) A program that does not have an exit command or does not recognize its Exit command.
2) A program that is caught in an endless loop as indicated by its inability to respond as it is supposed to. For example, when the program "locks up" the keyboard so that there is no response to pressing any of the keys (except UPPER CASE and REPEAT).
3) A program that has been otherwise rendered defective by an error.

SECTION 3

INTRODUCTION TO SOFTWARE

3.1 WHAT IS SOFTWARE?

A computer serves little purpose by itself. However complex its physical components, however ingenious the design of its circuitry, a computer is useless unless there is a way for a person to tell it what to do.

Control of a computer is achieved by means of "programs" which are lists of instructions written by people in languages that both people and computers can understand. (Actually, the computer does not "understand" anything; rather, it is designed to follow instructions that are expressed in a certain way.) The programs associated with a computer constitute its SOFTWARE. The physical components of the computer constitute its HARDWARE.

Software varies in its complexity. When you type your first BASIC program on the Sol keyboard, you will have created an example of software. The software required to orchestrate and monitor a successful lunar landing is much more complicated than your BASIC program, but it is the same in kind: a person or a group of people write instructions for the computer to follow. Some programs make it possible for other programs to run. For example, your BASIC program will run because a larger program called BASIC is interpreting it for the 8080. BASIC will run because SOLOS (or PTDOS) is regulating the operation of the Sol and its peripherals. (BASIC "makes calls" to SOLOS to perform certain functions so that the functions need not be repeated in BASIC.) When you communicate with the computer, whether by typing on its keyboard or by loading information from a cassette or disk, the computer responds according to instructions that people have given it. The apparent intelligence of the computer is determined by the care that you and other people have taken in instructing it.

A set of instructions that you type on the keyboard is not very permanent: it exists only in the volatile read-write memory of the Sol. If the power fails in your building, or if you turn the computer off, the program disappears. If a program is very short, you might not mind the time it takes to type it on the keyboard every time you want to use it. Most programs, however, are much too long for such a practice to be convenient. Entering a program manually is time-consuming and likely to introduce errors. You might spend hours typing the instructions and then execute them, only to find that you have omitted or mistyped something and accidentally destroyed a part of your program. (Remember that a computer will act only on what you have actually told it, not on what you might have meant to tell it.) Recording software on a medium like cassette tape, disk, or read-only memory is a way of giving permanence to a correct version of the software; it also reduces the amount of time required to load the program into memory. A program that would take hours to type into the computer correctly can be "read" from a cassette in minutes, from
a diskette in a second. A program recorded in read-only memory need not be "read" into memory at all, because it is already there.
-oftware may be classified according to its function:
The most important program associated with a computer is its OPERATING SYSTEM. The function of an operating system is to provide an interface between all other programs and the computer hardware. Processor Technology Corporation offers two operating systems for the Sol: SOLOS for cassette systems and PTDOS for diskette systems.

A program designed to solve a specific kind of problem -- for example, to keep records of inventory, perform statistical analyses, or process text -- is called an APPLICATION PROGRAM. Most of the programs that you will write, at least at first, will fall into this category.

Programs that help a programmer to develop other programs are called PROGRAM DEVELOPMENT SOFTWARE. Programs in this category include editors, assemblers, interpreters, compilers, and debuggers.

Appendix 1 contains a partial list of prerecorded programs that you can buy for your Sol.

3.2 COMPUTER LANGUAGE AND LANGUAGE TRANSLATORS

Computers are good at arithmetic. This fact has led many people to elieve that only mathematicians can "talk" to computers. Anyone who as ever "spoken" to either a computer or a mathematician will realize that, although all computers and most mathematicians are good at arithmetic, language remains the primary vehicle for communication.

Computer languages are simpler than "natural" languages for several important reasons. When people communicate with one another, the meaning of a sentence is conveyed not only by the individual words and their order, but also by the context in which those words occur. (In spoken language, intonation and various physical factors also contribute to context.) A person can guess at the meaning of an unfamiliar word by looking at surrounding words, sentences, and paragraphs. The meaning of an entire sentence can be dependent on context; we have all heard people accused of "taking words out of context" to confuse or mislead others. A computer is not as well equipped to handle context as a human being is. To eliminate ambiguity, a computer language must consist of a limited number of statement types and a carefully defined vocabulary. A computer language, by contrast to a "natural" language, is "context-free," i.e., a statement must have the same meaning, regardless of its context.

In order for statements in a computer language to be understood by a computer, they must be reduced to a pattern of binary codes directly intelligible to the computer hardware. ("Binary" means "in base 2.") This binary "language" is called MACHINE LANGUAGE. Programs that :ranslate statements from other languages into MACHINE LANGUAGE are called LANGUAGE TRANSLATORS.

The language that requires the least translation for a given processor is called its ASSEMBLY LANGUAGE. An assembly language is the symbolic form of the corresponding machine language; it uses symbols to present operations and memory addresses. Because the Sol is based on an 8080 microprocessor, its assembly language is called 8080 Assembly Language. A language translator that translates programs from assembly language to machine language is called an ASSEMBLER.

Writing programs in assembly language is more difficult than writing programs in other computer languages, because the programmer must understand how the central processor is structured and how memory is addressed. It takes longer to write a program in assembly language than in a "higher level" language, but the resulting machine language program can be shorter and more efficient.

The easiest computer languages for people to learn and use are the HIGHER-LEVEL LANGUAGES. These languages, e.g., FORTRAN, BASIC, and PILOT, are closer to natural languages than is assembly language. For example, the way to say

PRINT "HELLO"
in BASIC is

PRINT "HELLO"

The structure of a higher-level language does not reflect (or reflects only dimly) the structure of a particular computer. To write a program in FORTRAN, BASIC, or PILOT, you do not have to know anything out the 8080; you DO have to know exactly what you want to acomplish and how you are going to explain it. A language translator that translates higher-level language programs to machine language is called either an INTERPRETER or a COMPILER. For an entertaining and informative discussion of interpreters and compilers, read the article entitled "Your Personal Genie" in the May/June 1977 issue of Personal Computing Magazine.

3.3 SOLOS

SOLOS was introduced in Section 1.5 as the "personality" of the Sol. This program provides the Sol user with a convenient means of accessing and managing the system resources and controlling execution of all other programs that run on the Sol.

SOLOS is available on either of two Personality Modules. (Recall that a Personality Module is a plug-in circuit board containing a read-only memory chip.) If you have a Sol System I-A or II-A, your system has the SOLOS Personality Module; if you have a Sol System III-A, III-B, IV-A, or IV-B, your system has the BOOTLOAD Personality Module.

The two versions of SOLOS are almost identical. Each has 19 commands that allow you to examine and change the contents of memory, control one or two cassette recorders, determine the source of input and nsstination of output, and execute other programs. Some of the mmands perform "housekeeping" functions such as setting the rate at which data are read from tape, or the rate at which characters are
displayed on the video monitor. The respects in which the versions differ are few but important. The version of SOLOS on the SOLOS Personality Module has two possible operating modes: Command Mode, in which the Sol operates as a stand-alone computer, and Terminal Mode, in which the Sol functions as a video terminal for connection to another computer. On the BOOTLOAD Personality Module SOLOS has only one operating mode, the Command Mode; the command to enter Terminal Mode is replaced by a command that loads PTDOS, the Processor Technology Disk Operating System. (For details on PTDOS, refer to PTDOS User's Manual.)

3.3.1 Command Mode

In the SOLOS Command Mode, Sol operates as a stand-alone computer under control of the program contained in the personality module. SOLOS can "hand over" control to other programs that have been loaded into the Sol, usually from cassette tape or diskette. For detailed information about the SOLOS operating system, including a complete discussion of the commands, refer to the SOLOS/CUTER User's Manual, Second Edition.

With the SOLOS Personality Module installed, the computer is in the Command Mode when power is applied to the Sol. The $>$ that you see on the screen is a "prompt" character; it tells you that SOLOS is waiting for you to type a command.

All of the instructions in this section refer to operations in the SOLOS Command Mode. Terminal Mode is described in the Sol technical manual.
3.3.2 "Try It"

In this section you will try out a few SOLOS commands. Follow all instructions exactly. If you make a typing error while entering a command, use the DELete key to backspace and erase characters.

1) Turn on the Sol and the video monitor. Look at the keyboard; if the UPPER CASE key is not illuminated, press it once. (When you type a SOLOS command, you must always use upper case letters; otherwise the command will not be "understood.")
2) Type the following command:

DUMP C $\varnothing \emptyset \emptyset$ COEO

The DUMP command displays the contents of memory on the video monitor or other output device. The "Cøø申" and the "CDEめ" in the command are hexadecimal numbers: that is, they are numbers in base 16. In this command, the numbers identify addresses in memory. C $\varnothing \varnothing \emptyset$ is the beginning address of SOLOS.
3) Press RETURN to show that you have finished typing the command. Lines of hexadecimal data will scroll (move) rapidly up the screen. The display will stop scrolling after the contents of all locations from $C \emptyset \emptyset \emptyset$ to $C \emptyset E \emptyset$, inclusive, have been displayed. The numbers that you see are part of the SOLOS program, in machine language form.
4) Type the following command:

ENTR C9øø
The ENTR command is used to enter hexadecimal data from the keyboard into the read-write memory of the Sol. The "C9ø申" in the command identifies the address at which the first entry will be stored.
5) Press RETURN to show that you have finished typing the command. A colon (:) prompt character will appear at the start of the next line.
6) Type the following data, including blanks. If you make a typing error, use the DELete key to backspace. (The data represent a little program that prints the word "Hello" on the screen. You will be typing the instructions in machine language form; the original assembly language program is printed at the end of this section.)

When the colon reappears, type
C9 $2 \phi \quad 2 \phi 48454 \mathrm{C} 4 \mathrm{C} 4 \mathrm{~F} \phi \phi /$ and RETURN
(The slash (/) shows that you have finished entering the data.)
The program you have just typed should now occupy addresses C9ø申 to C918, inclusive, in the read-write memory of the Sol.
7) To verify that the program is in memory, give the DUMP command:

DUMP C9фф C918
Then press RETURN key. The output should look just like what you typed in step 6, except that the entries will be arranged 16 per line, and each line will begin with the address of its first entry.
8) Type the following command:

EXEC C9фф
The EXEC command executes (or "runs") the program that starts at address c9фф.
9) Press RETURN to show that you have finished typing the command. The word "HELLO" should appear on the screen. If it does not appear, or if something else happens, you made a typing error in step 6. Press UPPER CASE and REPEAT together, and try again.
10) Using your SOLOS/CUTER User's Manual, experiment with the other console commands until you feel at home with your Sol.

* PROGRAM TO PRINT "HELLO" FOR SOl USER'S MANUAL

ORG \varnothing C9 \varnothing (H
LXI H,HELO
SHOW MOV A,M
CPI \varnothing
JZ $\varnothing C \phi \emptyset 4 \mathrm{H}$
MOV B,A
CALL SOUT
INX H
JMP SHOW
HELO ASC - HELLO ${ }^{\circ}$
DB \varnothing
SOUT EQU ØCØ19H

SECTION 4

LOADING PROGRAMS FROM CASSETTE

4.l INTRODUCTION

In this section you will load from cassette the program Extended Cassette BASIC that is supplied with the Sol. Then, using Extended Cassette BASIC, you will enter a miniature demonstration program, as if you had just programmed it yourself, and write it back out to cassette. Finally, you will load the program back in from cassette and run it again to complete the cycle that applies to all the programs you will compose from here on.

The instructions given in this section are intended to get you started in using your Extended Cassette BASIC User's Manual, which is a handbook for the programming language BASIC when used with a Sol and a cassette recorder. (The edition referred to in this section is the first printing, January, 1978. If you have a Helios II Disk Memory System, use the Extended Disk BASIC User's Manual.

4.2 AUDIO CASSETTE RECORDERS (Preliminary Information)

Refer to your SOLOS/CUTER User's Manual, Appendix l, "About Cassette Recorders and Cassette Files," for important information related to this section.

A complete procedure for reading and writing on cassette is given in Section 4.3, "Getting into BASIC." The following paragraphs in this section are preliminary notes.

4.2.1 Operating A Cassette Recorder

This section assumes that you have the standard cassette recorder supplied with the Sol System I-A, the RQ-413A. If you do not have a recorder or have a different recorder, refer to the Appendix, "Cassette Recorder Supplement."

If you plan to operate two recorders, also refer to the Appendix, "Cassette Recorder Supplement."

If you have problems loading from or storing to cassette, refer to Section 7.5, "Trouble-shooting Cassette Operations."
4.2.2 Cassette Recorder Operating Tips

For best results when using audio cassette recorders with the Sol, observe these tips:

Set the volume control to number 6 (about $2 / 3$ full volume). Set the tone control at number 10 (maximum). The Sol has automatic gain control that compensates for a wide range of levels; but the above settings give the most reliable results. If you have a recorder different from the one supplied in a Sol System, experiment to find the optimum setting for the volume and tone controls.

CAUTION
The MICROPHONE input can be live when you are recording through the AUXILIARY input on some recorders other than the one supplied with a Sol system. De-activate the MICROPHONE input according to the manufacturer's instructions. (In some cases, you can de-activate the MICROPHONE input by plugging a termination plug into the MICROPHONE jack.)

4.2.3 Notes on Writing to Cassette

In the case of two recorders, Unit 1 and 2 must be specified in the SAVE command in order to select the desired recorder. A default selects Unit l. Refer to your SOLOS/CUTER User's Manual for instructions on how to use tape commands.

To make file retrieval much easier, keep a record of where individual files are recorded. After recording the last file on a side, rewind the tape, set the tape counter to zero, and issue a CATalog command (see SOLOS/CUTER User's Manual). As each file header is displayed, make a note of the following and mark the cassette with this information:

1) Tape counter reading.
2) Exact file name.
3) Load address.
4) File length.

4.2.4 Notes on Reading from Cassette

In order to read a specific file from tape, you must start the tape at least two seconds ahead of that file. This delay allows the Sol audio cassette interface circuitry and the recorder playback electronics to stabilize after power is turned on. Because all file searches are in the forward direction, the simplest approach is to rewind the cassette(s) completely before a read operation, unless you know that the file of interest is recorded at least two seconds into the tape from where the head is currently positioned.

4.3
 GETTING INTO BASIC (Procedure for Using A Cassette Recorder)

1) Be sure you have connected your system according to Section 6, "Unpacking And Installation," and have familiarized yourself with the information in Section 2, "At the Controls" and Section 3, "Introduction to Software."
2) Turn on your Sol.
3) Select from your system components the cassette labeled "Extended Cassette BASIC."
4) Insert the cassette, label up, into the recorder.
5) Initially, adjust the following controls on the recorder:
(If you have a recorder other than the one supplied with the Sol System I-A, try different volume settings until you find a reliable setting.)
a) VOLUME: Set to 6 (about $2 / 3$ full volume).
b) TONE: Set to 10 (maximum for sensitivity to the higher frequencies).
c) COUNTER: Reset to Zero.
6) Turn on POWER to your video minitor.
7) The SOLOS prompt character followed by the cursor ($>$) should appear on the left of the screen.
8) When the prompt appears, set UPPER CASE by pressing the UPPER CASE key so that its indicator light comes on. Type on the Sol keyboard the command: CA and press RETURN.

This command allows the recorder motor to operate under local control. (Alternately, you can disconnect the REMOTE plug from the recorder.)
9) Press REVIEW (REWIND) on the recorder, to rewind the cassette to the starting position. All the tape should be on the left reel of the cassette. Press STOP on the recorder.
10) Play the tape for about 15 seconds to advance it past the leader. (This can also be done using your index finger to turn the takeup reel before inserting the tape.)
11) If you have disconnected the REMOTE plug, reconnect it.
12) On the Sol, press MODE SELECT.

This will re-initialize SOLOS and remove local control of the recorder.
13) Press PLAY on the recorder.

The tape should not move. (If it does, continue with the next step, but afterwards refer to Section 7.5, "Trouble-shooting Cassette Operations.")
14) Type in the command: XEQ BASIC
and press RETURN.
(XEQ stands for EXECUTE; "BASIC" is the name of the file on the cassette.)

The cursor should disappear and the tape should move for about 3 minutes. The display should not otherwise change. When the program has been loaded into the Sol, a copyright notice appears followed by an announcement that BASIC is sizing up the amount of memory possessed by the computer in which it has suddenly found itself.
15) Press STOP on the recorder.

Shortly BASIC will display its findings in hexadecimal and ask that you enter the beginning address of the memory you may wish to reserve from the operations of BASIC.

For now, press RETURN. This tells BASIC that it is free to use all of memory for its work space.
16) BASIC presents two more questions whose purpose is to reduce the size of the program to leave the maximum amount of memory for working space. It asks if you wish to delete "matrix operations" and "extended functions." You will be able to learn about these in the Extended Cassette BASIC User's Manual, but for now, answer by typing "Y" to both questions.
17) BASIC should now present the message: READY.

The cursor is already at the beginning of the next line. You are now "in" BASIC.

4.4.1 Writing a Program

Let us write a little program whose purpose is to calculate the miles per gallon you get with your motor vehicle or airplane and the cost per mile. This will be an extremely simple example so, if you already know the programming language BASIC, you can skip along to Section 5, "At the Keyboard."

1) Let us call the program MPG. You could do these calculations on a calculator very easily, so you will be able to follow the steps in writing this program.
2) In EASIC, a "statement" is an instruction and is preceded by a line number. We will number the first statement "lo" and the second "20". We skip nine line numbers in between in case we want to go back and insert other instructions as an afterthought.
3) Because we want the program to ask the user to enter the mileage data to be used in the calculations, we will use the PRINT statement to display a message on the screen. Enter the first statement through the keyboard as follows:
(If you make a typing error, use the DEL key to backup, and retype the entry.)

10 PRINT "ENTER MILES";

This statement will cause the program to ask the user to enter the miles traveled on a tank of fuel. The semicolon tells the computer to print the user's response to statement 20 on the same line.
4) In the next statement we want the user of the program to enter the number of miles, which we shall represent by the variable "M." Variables are described in Section 2.3.2, "Variables," of the Extended Cassette BASIC User's Manual. Enter the second statement:

20 INPUT M

This causes BASIC to accept a value entered from the keyboard and to associate that value with the name "M."
5) We program the entry for the gallons of fuel consumed in the same manner as the miles:

30 P. "ENTER GALLONS";
40 IN. G
Note that we can abbreviate to save time. "P." stands for "PRINT" and "IN." stands for "INPUT." Abbreviations are explained in your Extended Cassette BASIC User's Manual, 2.2, "Definitions of Commands and Statements."

```
I EPT 3 - 33
```

6) The statements for the entry of the cost of the fuel take the same form as those for miles and gallons:

50 P. "ENTER COST IN PENNIES";
60 IN. C
7) Now we program the answer and calculation for the miles per gallon. Enter the statement:

70 P."MILES PER GALLON=", M/G
As described in your Extended Cassette BASIC User"s Manual, 2.3.3, "Expressions," "M/G" means "the value entered for M divided by the value entered for G." The comma that follows the PRINT statement signifies that the answer to the expression is to be printed out on the same line.
8) The final statement takes the same form as statement 70. Enter:

80 P."COST PER MILE IN CENTS", C/M
90 END
As described in the Extended Cassette BASIC User's Manual, 4.3, "Stopping or Delaying Execution," we terminate the program with the END statement.
9) To see the program you have entered and check it over before running, enter the command: LIST and press RETURN.
(Note that commands do not need line numbers since they are not part of the program.) BASIC will list your program on the screen as follows:

```
lO PRINT "ENTER MILES";
20 INPUT M
30 PRINT "ENTER GALLONS";
40 INPUT G
50 PRINT "ENTER COST IN PENNIES";
6 0 ~ I N P U T ~ C ~
70 PRINT "MILES PER GALLON=", M/G
80 PRINT "COST PER MILE IN CENTS=", C/M
90 END
```

10) If you wish to correct an error or change a statement in your program, you may do so by simply retyping it including the line number. To insert an additional statement, number it with one of the intervening line numbers.
ll) To see that your program runs as it should, enter the command RUN and press RETURN. (In the process of debugging a program, you can run the program starting at any instructions by including the line number of the instruction. For example, RUN 40.)

Enter data as called for by the program to make it continue along.
4.4.2 Saving a Program To Cassette

When you are satisfied with the program, try saving it to cassette as follows:

1) Enter the BASIC command: SAVE MPG,T
and press RETURN.
"MPG" is the name of the program (to become a file on cassette). The " T" is "Text Mode" in which the program is to be saved.

The SAVE command is described in detail in your Extended Cassette BASIC User's Manual, 3.4.3, "Read or Writing on Tape."

BASIC displays the message:
Prepare Tape Unit 1 for writing to: MPG.
2) Load the recorder with a blank cassette. Do not use your cassette copy of Extended Cassette BASIC.
3) REWIND the cassette if necessary.
4) Play the tape for about 5 seconds to stabilize the recorder.
6) Depress the RECORD and PLAY buttons on the recorder.
7) Press any key to tell BASIC to start recording.

When the program has been recorded, BASIC returns the cursor with the message: READY.
8) Press STOP on the recorder.
4.4.3 Recalling a Program from Tape
(These instructions assume you are still in BASIC, although programs can be recalled from tape while in SOLOS.)

1) Type in the command: GET MPG,T
and press RETURN.
The GET command is described in your Extended Cassette Basic User's Manual in Section 3.4.3. (GET in BASIC is not the same command as GET in SOLOS.)

BASIC displays the message:
Prepare Tape Unit 1 for Reading: MPG.
2) REWIND the cassette if necessary.
3) Press PLAY on the recorder.
4) Press any key to tell BASIC to start reading.
) Check the tape to see that it is moving. When the program is loaded, BASIC displays the name of the program and its beginning and ending addresses.
6) Press STOP on the recorder.
7) Run the program by entering the command: RUN and press RETURN.

To exit from BASIC, type the command B. and press RETURN.
"B." is short for BYE. This command returns control of the computer to SOLOS.

BASIC is still in memory starting at address \emptyset. To re-enter, type the command: EXEC \varnothing

4.5 THE Sol ALSO RISES

Having read the previous four sections you are now considered a Sol fledgling and are, therefore, presented with the following choices of how to proceed with this manual. If you are anxious to start writing your own programs, you can start reading your SOLOS/CUTER and Extended Cassette BASIC manuals, using this manual as a reference as the need may arise. If you are interested in obtaining pre-recorded software, or additional equipment, you might read Appendix l of this manual. Or if you want more in depth background on the Sol, just read on to section 5, which is all about the Sol keyboard.

SECTION 5

AT THE KEYBOARD

5.1 THE KEYBOARD, GENERAL INFORMATION

This section is a detailed reference for using the keyboard when the SOLOS monitor program is resident in the Sol, for the display of characters and symbols associated with SOLOS, and for programming the Sol's response to the keyboard output.

The keyboard is an input device that produces ASCII encoded data. (ASCII = American Standard Code for Information Interchange.) The keyboard output is hardwired to the Sol keyboard port. Under the direction of SOLOS or another program currently in control, the ASCII code generated by the keyboard is decoded by a 6574 character generator ROM which generates a dot pattern for the video display.

The Sol Terminal Computer has an ASCII 96-character keyboard. Its key arrangement conforms to the standard typewriter format. The ASCII character set, which includes alphanumerics, punctuation marks and control codes is shown in Appendix 4, Table A4-1, "Sol Keyboard Characters Keys." There are 22 function keys (including ASCII functions and five cursor controls); these are given in Table A4-2, "Sol Keyboard Function Keys." A separate 15-key arithmetic pad is also provided.

5.1.1 Key Functions are Programmable

The exact function of most keys on the Sol keyboard is determined by the software used (for example, the program contained in the Personality Module). Except for the keys that are "hardwired," any other program can also control the response of the system to the codes produced by the keyboard. Any key that generates a code can be redefined by a program to perform a specific function. (The codes are given in the tables in Appendix 4.) However, the high order bit of the binary code (the eighth bit) of some of the function keys is set by the Sol keyboard as determined by the Sol rather than by the ASCII standard. For example, the function key RETURN generates the code 8D, whereas the control character CTRL/M generates $\emptyset \mathrm{D}$. (Control keys and the transmission of keyboard codes are explained in 5.4.)

In this section, each key function is described in terms of its role in the SOLOS Terminal Mode unless otherwise specified. SOLOS in the LOCAL Terminal Mode allows most of the symbols generated by the character generator to be seen when their corresponding keys are activated, whereas SOLOS in the Command Mode is programmed to recognize the keyboard codes according to its own purposes. Many keys, especially control keys, do not serve the same functions in Terminal Mode that they serve in SOLOS Command Mode, or in BASIC, PTDOS, ALS-8, etc. Control keys are discussed in Section 5.4.

For purposes of exposition in this section, the Sol keyboard keys are ivided into three categories:

1) Character keys which are similar to typewriter keys which print characters.
2) Function keys which primarily perform functions rather than print characters.
3) Control keys which are the character keys generating a different code when pressed with the key CTRL.

A separate subsection is devoted to each. Regardless of their type, nearly all the keys generate an ASCII code. Keys that are hard-wired (internally connected) do not generate ASCII codes. As will be seen in this section, some of the keys in one category generate the same ASCII code as some keys in another category. This overlap is especially the case with control keys and function keys.

5.1.2 Operating Features and Keyboard Indicators

The Sol keyboard features N-key rollover. That is, several keys can be pressed at the same time without loss of characters or commands; key entries are made in the order of actual key closures. (A scanning circuit prevents simultaneous key operation.)

Three keys (SHIFT LOCK, UPPER CASE and LOCAL) have indicator lights to indicate keyboard/terminal status. When any of these keys is pressed to turn an indicator light on, the light remains on after the key is released to show that the status persists. Pressing UPPER CASE and LOCAL again turns the light out to indicate the alternate status. SHIFT LOCK is turned off by pressing SHIFT. The indicators are further described under the individual key description.

5.1.3 Using Table A4-1

In Table A4-l, there are three major columns, one for the key when UNSHIFTED (lower case), one for the key UPPER CASE or SHIFTED (shifted dual character) and one labeled "CONTROL" for when CTRL is pressed simultaneously with a character key. Each of these three columns is broken down into two sub-headings. The column headed by "KEY/SYMBOL" gives the labels marked on top of the character keys, in the sequence found on the keyboard. (In the case of control keys, only the symbol displayed is given.) "HEX CODE" gives the hexadecimal form of the code generated by the keyboard when the key is pressed while being shifted, unshifted or "control." In response to the code, the Sol character generator can provide for the display circuitry, a symbol given in the columns "KEY/SYMBOL" and "SYMBOL." Except for control characters, the symbol displayed is generally the same as that on the keytop. (Some keys are programmed by SOLOS to move the cursor without displaying a symbol.)

Looking at the "W" entry in Table A4-1, and reading across the table, we see that:

1) Pressing "w" unshifted generates the code 77 producing a lower case "w."
2) Pressing "W" shifted generates the code 57 producing an upper case "W."
3) Pressing CTRL (control) and "W" together, whether shifted or unshifted, generates the code 17 producing the control character graphic symbol for the ASCII "end of transmission block:" (-1)

5.2 CHARACTER KEYS (Refer to Table A4-1.)

The character keys include upper and lower case alphanumerics, punctuation marks, and special graphic symbols. They are arranged for the most part as on a standard typewriter. Pressing one of these keys causes the associated character to be entered into the Sol. They can be activated in either the unshifted, shifted, or control modes. If there are two characters labeled on a key, the upper character is typed when the key is pressed simultaneously with the SHIFT key. When unshifted, the keyboard generates the lower character. (See also Section 5.3.2, "Upper Case.")

If you wish to see the character set displayed at this time, use the procedure at Section 5.4.3, "Familiarization with the Control Symbols," but press each of the alphanumeric, punctuation and symbol keys without pressing the control key. As each is pressed, the corresponding character in Table A4-1 should appear on the screen.

5.3 FUNCTION KEYS

(Refer to Table A4-2, "Sol Keyboard Function Keys.")
The primary purpose of the function keys is to perform special functions rather than print characters; however, many functions keys do generate standard codes which can be transmitted in Terminal Mode and can print or display their associated graphic symbol, if they are so directed by the program that controls them. (Refer to Table A4-2 to see whether a code and symbol are generated.) An example of a function key that is similar to the carriage return on a typewriter is the RETURN key. Except for DEL, the function keys are unaffected by the SHIFT key.

The function keys generally are distinguished from the character keys by their size and color. They are either black or white, whereas the character keys are grey. The function keys are also mostly larger than the character keys. (There are a few exceptions.)

The ASCII codes of some function keys overlap the codes of some control keys. Control keys are discussed in Section 5.4.

Fig. 5-1. Sol Keyboard

5.3.1 Cursor Control Keys

The cursor is the solid vertical rectangle that occupies the character position in the display where the next character is to be printed or :he point at which the next operation is to start. In itself, the :ursor does not affect any characters in the display. (The display of he cursor is controlled by internal switches described in the appendix "Internal Controls.")

Five keys control the movement of the cursor (excluding the space bar). They are: HOME CURSOR and the four small black keys marked with directional arrows. They are located in the lowest row of the keyboard, on either side of the space bar.

To move the cursor up, down, left or right, press the applicable cursor control key. Each time you press a key, the cursor moves one unit in the direction you indicate--one space horizontally or one line vertically. These keys may be used with REPEAT to continuously move the cursor. In the Terminal Mode, when the cursor comes to the end of a 64 -character line, it moves to the extreme edge of the adjoining line, above or below depending on its direction. In the Command Mode, the cursor returns to the beginning of the same line.

Pressing HOME CURSOR moves the cursor to its home position--the first character position in the upper left corner of the screen; it does not otherwise affect the display.

None of the cursor control keys are affected by SHIFT status. None are displayed or transmitted. (Refer to Section 5.4.2, "Transmission and Display of Control Keys.")

1 EPT 3-40

5.3.2 Individual Descriptions of Function Keys

Keys are described here generally in the order found on the keyboard, first in a group on the left side, then in a group on the right side.

SPACE BAR

Pressing the Space Bar moves the cursor one space to the right; a character occupying a position from which the cursor moves is replaced with a space.

ESCAPE

The display of the ESCAPE symbol is masked off (not displayed) in SOLOS. (Refer to SOLOS/CUTER User's Manual.)

BREAK

Pressing BREAK forces the Serial Communication Interface (SCI) output line to a space level for as long as the key is depressed. (Some communications systems use this feature.)

TAB (See Table A4-2.)
CTRL (Control) See the special section on Control Keys, 5.4.

SHIFT LOCK and SHIFT LOCK Key/Indicator

This large grey key on the left of the keyboard works like the LOCK key on a standard typewriter. The SHIFT key is a direct internal operation (hardwired). When pressed it shifts lower case letters to upper case letters and lower dual characters to upper dual characters. The keyboard remains in upper case as long as SHIFT is held down. SHIFT is active independently of the status of UPPER CASE.

Pressing SHIFT LOCK so that the indicator light goes on, locks the SHIFT key electronically in the upper dual character position. Pressing SHIFT again returns the keyboard to lower dual character position and causes the SHIFT LOCK indicator to go out.

UPPER CASE Key/Indicator

This is a large white key on the lower left side of the keyboard. Pressing this key so that the indicator light goes on activates the upper case keyboard function so that all alphabetic characters entered from the keyboard, regardless of SHIFT key status, are produced as upper case characters. Dual character keys are not shifted. (Dual character keys, however, do respond to the SHIFT key.) With the indicator light on, the Sol keyboard essentially simulates a Teletype (TTY ASR 33) keyboard. ("Teletype" is a registered trademark of TeleType Corp. ASR= Automatic Send/Receive.)

Pressing UPPER CASE to turn the indicator light off return the yboard to normal SHIFT key operation.

UPPER CASE and REPEAT (See Section 2.5, "Keyboard Restart".)

LOCAL Key/Indicator

Pressing LOCAL, so that the indicator light goes on, sets the Sol for local operation in which keyboard entries are not transmitted, but they are "looped back" to the Serial Communication Interface (SCI) input for display. When set, the LOCAL key, through internal circuitry, connects the serial output to the serial input and disables serial transmission external to the Sol. That is, the Sol is not "on line." Pressing LOCAL again, so that the light turns off, ends local operation. (This corresponds to the local/line switch on a TTY.)

RETURN

RETURN is a large black key in the upper right corner of the keyboard. The function of the RETURN key is similar to that of the carriage return on a typewriter. (This is the same action as a TTY carriage return.)

In the Command Mode, RETURN is used to enter a command after it is typed; the command is thereupon executed by SOLOS. All characters on he line to the left of the cursor are interpreted as the command. after the command is executed, the cursor is returned to the left margin on the next line. If more than one command line is on the screen, one can execute any one of them as follows: position the cursor to the right of the desired command and press RETURN. (This procedure will work even if the command has already been executed, as long as the command has not scrolled off the screen.)

In Terminal Mode, when RETURN is pressed, an ASCII CR character is sent to the remote computer and the cursor is moved to the beginning of the line on which it resides.

In either mode RETURN also erases all data in the line to the right of the original cursor position.

LINE FEED

Pressing LINE FEED moves the cursor vertically downward one line. (This is the same action as a TTY line feed.) In the Command Mode, LINE FEED function exactly like RETURN, except that it does not erase any data in the line to the right of the original cursor position.

LOAD

The LOAD key character is displayed but causes no other action in Command Mode.

DEL (Delete)
The delete key is a small grey key labeled "DEL," located on the right side of the keyboard. The delete key is active when unshifted. When the cursor is positioned over a character and the delete key is pressed, the character is replaced with a space and the cursor moves one space to the left. Used in conjunction with the REPEAT key, DEL can be useful in deleting a string of characters to the left of the cursor.

The DEL key is also a dual character key; when shifted, it generates an underline. It is also a control key. Because the DEL key has aspects of both a character key and a function key it is included in both Table A4-1 and A4-2.

REPEAT

This is a medium-sized black key on the right of the keyboard. When pressed at the same time as another key, it repeats the function of the other key until either key is released. For example, when REPEAT is pressed together with the space bar, spaces will be cleared of characters as the cursor moves to the right; when used with the cursor directional keys, REPEAT moves the cursor continuously until released. With a character key, it repeats the character. The rate of repetition is approximately 15 times per second.

REPEAT is a hardwired function that does not generate a code.
When UPPER CASE and REPEAT are pressed simultaneously, a keyboard restart is executed (SOLOS is re-initialized) As a secondary result, UPPER CASE resets to lower case letters. (See 2.5, "Keyboard Restart.")

CTRL (See special section on control keys, 5.4.)

MODE SELECT

This is the large white key in the lower right corner of the main keyboard. If the MODE SELECT key is pressed, while SOLOS is in either mode, the Sol will be re-initialized to the SOLOS Command Mode and display the prompt character followed by the cursor.

HOME CURSOR (See 5.3.1, "Cursor Control Keys.")

CLEAR

In both modes, pressing CLEAR erases the entire screen and moves the cursor to its "home" position (upper left corner of the screen).
5.4 THE CONTROL KEYS
!. . General Information
CTRL is used with character keys to initiate functions or generate control characters defined in Table A4-l. A control character is an ASCII standard character whose code specifies an operation to be performed, rather than a symbol to be displayed. Usually the operation is to be performed by a peripheral such as a printer. For example, a Line Feed ($\varnothing \mathrm{A})$, when transmitted to a printer, causes the printer, which recognizes the ASCII code, to move the paper platen up one line. If the resident program calls for it, the control character can cause the Sol to produce a graphic symbol representing the control character.

A control character is generated when CTRL is held down while pressing a character key (regardless of the status of UPPER CASE AND SHIFT LOCK). For example, CTRL plus J produces ASCII $\emptyset A$, Line Feed.

Some control characters overlap some of the function keys. For
example, the LINE FEED function key is the same as CTRL/J and CTRL/*. Certain ASCII codes are output by two different control keys; for example: $\emptyset 8$, Backspace is produced by CTRL/H and CTRL/(.

5.4.2 Transmission and Display of Control Keys

control procedure causes the keyboard to generate a 7-bit code. In e Terminal Mode of SOLOS, with the LOCAL key off, this code is sent to the Serial Communications Interface (SCI) for transmission. Certain function keys which have an eighth bit set by the Sol keyboard are sent directly to the VDM for display and consequently are not transmitted.

When the Sol is in the Terminal Mode and the LOCAL key is activated, the outward bound serial data is connected back to the Serial Interface input and displayed on the video monitor as the corresponding control symbol. In the Command Mode, control characters are not displayed.

The display of control characters can be surpressed by an internal switch setting. (Refer to Appendix 3, "Internal Controls.")

In Table A4-1, the three columns under the heading "CONTROL" give the symbol that can be generated by the corresponding control sequence, the code generated by the keyboard, and the ASCII function.

If you wish to see the control characters displayed at this time, follow Table A4-1 to generate the indicated control characters. Use the following exercise, if helpful.

1 EPT 3-44

5.4.3 Familiarization with the Control Symbols

This optional exercise requires that a SOLOS Personality Module be stalled in the Sol, and that the control character display option be ..abled (a switch setting described in Appendix 3, "Internal Controls").

1) Turn on the Sol and monitor.
2) Enter Terminal Mode as follows:
a) Set UPPER CASE.
b) Type TERM and press RETURN.
"TERM" will appear on the screen as you type, and the cursor will disappear when you press the RETURN key. The Sol is in Terminal Mode.
3) Set for local operation by pressing the LOCAL key so that the indicator light goes on. Local operation enables the keyboard entries to be seen on the display screen. UPPER CASE may be in either state.
4) Test the symbol generation of the Terminal Mode by pressing each character key simultaneously with CTRL. As each is pressed, the control character symbol shown in Table A4-1 should appear on the screen.

5.5 ARITHMETIC PAD KEYS

The keys on the numeric pad and the hex codes generated by them are the same as the arithmetic keys on the main keyboard. They are repeated in the standard calculator pad arrangement for convenience in entering large amounts of numerical data.

Except for the division symbol key (\div), pressing these keys causes the Sol to produce the symbol labeled on the key. The division symbol key enters a forward slash (/) character. UPPER CASE, SHIFT, AND CTRL do not affect these keys.

Refer to this section when you need to install or move and reconnect a Sol system. This section contains instructions and procedures.

If your dealer has installed and checked out your system or if you are going to use an already installed system, you can skip this section.

6.1 RECEIVING INSPECTION

1) Examine the shipping container(s) for signs of possible damage to the contents during transit.
2) Carefully open the container and take out the components. Save the shipping materials for use in returning your Sol unit to your dealer in case he needs to ship it to the factory.
3) Inspect the contents for damage. If anything is damaged, please contact the carrier and your dealer immediately. Describe to them the condition of both the container and its contents so that they can take appropriate action.
4) Check the contents against Table 6-1, "Sol Systems Component Lists," to make sure you have received everything. Select the list for the system you ordered. If you special-ordered your Sol, you may be able to add or subtract items from the most similar list; otherwise, obtain a list from your dealer. If anything is missing, please contact your dealer at once so that he can take appropriate action. Refer to items by part number and name.
5) Fill out the warranty cards and mail them. Be sure to fill out each and every warranty card completely. There should be one card for each product you have received (other than software). When registered with Processor Technology, the warranty cards establish you as the owner of the product, and allow Processor Technology to send you important information.
6) When you have unpacked and checked your Sol system, continue reading this section.
6.2 INSTALLATION OF S-100 MODULES
(kefer to Fig. 6-1, "Installing An S-100 Module.")

WARNING

Before reading further, please the warning at Section 7.2 .

BEFORE PERFORMING ANY SERVICE, DISCONNECT THE AC LINECORD OF THE SOl FROM THE REAR PANEL.

Before installing your $\mathrm{S}-100$ modules, refer to the appropriate user's manual for instructions and precautions. Set the address switches on the memory modules according to the memory manual module before installing the modules.

S-100 modules(s) are installed in the expansion chassis (the cardcage for the backplane located in left rear three quarters of Sol as viewed from the front).

S-100 modules are installed in the Sol as follows:
(You may install any module in any of the five card slots, except for the Helios Controller modules; see the Helios II User's Manual.)
-, Be sure that $A C$ power to the $S o l$ is turned off. The square red button on the rear panel should be out. Disconnect the $A C$ linecord from the rear panel.
2) On the Sol rear panel, unscrew about two turns the two knurled thumbscrews that hold the top cover in place.
3) Remove the top cover of the Sol by lifting it carefully from the rear and unhooking it from the back edge of the keyboard cover. Set it aside.
4) Being careful not to mar the walnut sides, swing the Sol keyboard cover up, unhook it from the front ecige of the main chassis, and set it aside.
5) Touch the Sol chassis to discharge any static electricity from your body.
6) If you are going to use the Sol as a terminal, or connect the serial port to a Solprinter, refer to the Sol Technical Manual and the Solprinter User's Manual or consult your dealer.
7) If you want to change the polarity of the display or make the cursor blink, refer to the appendix "Internal Controls."
8) With the component side up, insert the edge connector side of module in the card guides. (Refer to Fig. 6-l, "Installing An S-100 Module.")
9) Carefully slide the module in until its edge connector is fully seated in the backplane connector. (The backplane is the vertical circuit board on the front side of the expansion chassis.)

Fig. 6-1. Installing An S-100 Module
6.3 BUTTONING UP THE Sol AND INSTALLING THE FUSE
(Refer to Fig. 6-2., "Sol System Interconnections.")

1) Replace the covers on the Sol:

Hook the keyboard cover under the front edge of the main chassis and lower it over the keyboard.

Hook the top cover over the back edge of the keyboard cover and lower the top cover down into place over the rear of the chassis.

Re-install the two knurled thumbscrews fastening the rear panel.

Do not re-install the AC linecord yet.
2) Insert one of the two supplied 3.2A Slo-Blo fuses in the fuse cap, push the assembled cap-and-fuse into the fuse holder in the rear panel of the Sol, and turn the cap onequarter turn clockwise.
3) With the AC linecor \dot{C} still disconnected from the 110 VAC outlet, connect the other end of the linecord to AC connector on Sol rear panel.

Fig. 6-2. Sol system Interconnections

$$
6-5
$$

6.4 CONNECTING THE VIDEO

Refer to Fig. 6-2, "Sol System Interconnections.")

1) Position your video monitor on top of the Sol's built-in video monitor platform or in a location such that the screen will be conveniently visible from your position at the Sol keyboard.
2) From your Sol system components, select the coaxial video cable. This cable is about one meter long with identical male video coaxial connectors on both ends.
3) Insert the hollow male prong of the connector on one end of the cable into the mating video output connector on the Sol rear panel and screw on the connector securely.
4) In the same manner, connect the other end of the cable to the video input connector on the rear panel of the TV monitor.
5) There is a miniature two-position toggle switch on the rear panel of the PT-872 video monitor that is supplied with Sol systems. This toggle switch is just beneath the video cable input connector. It selects the input signal for the monitor from either the TV antenna or from the video input connector. Push the switch's lever in toward the center of the monitor. This position selects the video input.
6.5 THE CASSETTE CONNECTION
(If you have a Helios II floppy disk memory system in place of a cassette recorder, skip this and go to the Helios II User's Manual.)
(Refer to Fig. 6-2, Sol System Interconnections.)

NOTE
Refer to Section 4.2, "Audio Cassette Recorders" and the appendix "Cassette Recorder Supplement" for more detailed information on cassette recorders in a Sol system.

1) Place your cassette recorder on a flat accessible surface 1 to 3 feet from your Sol, and at least a foot from any equipment that contains transformers or devices that may generate magnetic fields. The Helios and the Sol do contain such devices.
2) Select the two audio cables from your Sol system components. (These have miniature phone plugs at both ends.)
3) Let the first audio cable be the "Audio IN" cable. ("IN" is with reference to the computer.) Plug one end of the Audio IN cable into Audio IN jack (J7) on Sol rear panel. Plug the other end into MONITOR or EARPHONE jack on the recorder connector panel.
4) Let the second audio cable be the "Audio OUT" cable. Plug one end of the Audio OUT Cable into the Audio OUT jack (J6) on the Sol's rear panel. Plug the other end into the AUX IN (AUXILIARY IN) jack on the recorder.

NOTE

The use of the MICROPHONE input is not recommended.
5) Select from your Sol system components the motor control cable. (This is thinner than the audio cables, fitted with subminiature phone plugs at both ends.) Let this cable be the "Motor l" cable. (A second "Motor 2" cable is needed if your system uses two recorders. If you are installing two recorders, refer to the appendix, "Cassette Recorder Supplement.")
6) Plug one end of Motor 1 cable into the Motor 1 jack (J8) on Sol rear panel.
7) Plug the other end into the REMOTE jack on recorder.

5.6 CONNECTING THE AC POWER

1) Be sure the Sol covers are in place.
2) Be sure that the $A C$ power switches for the Sol, the video monitor and the recorder are OFF.
3) Connect their AC linecords to their rear panel receptacles.
4) Plug the linecords into convenient AC outlets.

Your system is now installed and ready. Return to Section l of this manual, or if you already read Section l, please go to Section 2, "At the Controls."

Table 6-1. Sol System Component Lists
ORDER NO.
400410
107000
727019
730024
727034
727018
723018
part of 724007
718001

DESCRIPTION
QUANTITY (V)
Sol-20 Terminal Computer

SOLOS Personality Moaule	1	()
Extended Cassette BASIC (cassette)	1	()
Sol Terminal Computer User's Manual	1	$($)
SOLOS/CUTER User SManual	1	$($)
Extended Cassette BASIC User's Manual	1	()
Fuse, 3.2A Slo-Blo	2	()
Cap, Fuse Holder	1	()
Cord, AC Power, 3-Wire	1	()

400500
400410
214010
730026
730034

400600
400410
214020
730026

400700
400500
722016
718005 or
101034
722019
718006 or
101041
718007 or
101042

Sol-20/16
Sol-20 Terminal Computer (See list above)
16KRA-1 Memory Module
32KRA-1 User"s Manual
"l6KRA-1 Product Description"

Sol-20/32
Sol-20 Terminal Computer
(See list above)
$32 \mathrm{KRA}-1$ Memory Module
32KRA-1 User's Manual

Sol System I-A
Sol-20/16 Terminal Computer
(See list above)
PT-872 video monitor (with manual)
Video Cable Assembly
RQ-413A Cassette Recorder
Audio Cable Assembly
Motor Control Cable Assembly l

Table 6-1. Sol System Packing Lists (continued)

7.1 SERVICE AND ORDERING PARTS

A convenient and economical way to arrange for preventative maintenance and to be prepared for eventual adjustments as well as unexpected problems, is to purchase a maintenance contract if your dealer has it available to you.

Do not replace devices thought to be defective in a Sol that is still under warranty. To do so may void the warranty. Refer the problem to your factory-authorized dealer, even if the warranty has expired.

Order replacement parts or additional equipment and manuals from your factory-authorized dealer. Be sure to include the Processor Technology order number or part number, the quantity you want to order and a complete description of the item. For example: one (1) Sol Technical Manual, PT-730038. Your dealer has a list of part numbers. He may have a stock of some replacement parts on hand.

7.2 CARE AND EXTERIOR CLEANING OF YOUR SOI

It is recommended that you turn off your Sol if you are not using it for an extended period of time. This practice should help extend the life of certain components. The Sol needs no warmup time.

When required, clean the keyboard and exterior covers of your Sol with a cloth dampened in a mild detergent solution. Be sure to turn off the power first and disconnect the AC linecord from the rear panel.

Once a year, a thin coating of linseed oil applied with a clean cloth will preserve and beautify those famous walnut side panels.

WARNING

Do not remove the cover (s) from the Sol. For your protection the Sol is designed so that the AC linecord must be disconnected before the top cover can be removed. Never reconnect the linecord when the top cover is off.

If you encounter a problem, first reread those parts of this manual which pertain to the operation you were attempting when the problem occurred. If you are still unable to solve the problem or if you have subsequent hardware or software failures, ask help from qualified technical personnel.

WARNING (Continued)

If you yourself are the qualified person finally responsible for the hardware in the system, you may use the following sections to trouble-shoot the problem. If you are still unable to solve the problem, ask your dealer for help. Service on all Processor Technology products, in or out of warranty, is the reponsiblity of the factory-authorized dealer.

The following sections are to be used only by qualified personnel as basic aid in determining whether a problem warrants calling upon the factory-authorized dealer for service.

BEFORE PERFORMING ANY SERVICE, DISCONNECT THE AC LINECORD OF THE SOl FROM THE REAR PANEL.
7.3.1 Checking and Installing the Fuse
(See Figure 6-2, "Sol System Interconnections.")

1) Is the fan running? Put your hand at the fan output if you cannot hear the fan running. If the fan is not running, is the AC linecord plugged into a power receptacle? If it is plugged in, the fuse should be checked. The Sol is protected by a 3.2 amp Slo-Blo fuse housed on the rear panel. Check the fuse as follows:
a) Turn Sol's AC power switch OFF.
b) Disconnect the AC linecord from the rear panel.
c) Turn the fuse holder cap one quarter turn counterclockwise; pull straight out and remove the fuse from the cap.
d) Inspect the finer fuse element that should be connected to the end of the thicker spiral element; it looks like a small "bobby pin", and it should be in one piece connected all the way to the other end of the fuse. If it is broken in the middle, it is blown. A spare fuse is shipped with each Sol.
e) To install a fuse, insert the fuse into the cap, push the cap containing the fuse into the fuse holder and turn one quarter turn clockwise.

1 EPT 3-56

7.3.2 Removing The Covers Prior to Checkout of the Interior

1) Be sure that $A C$ power to the Sol is turned off. The square red button on the rear panel should be out. The fan should be stopped.

Disconnect the AC linecord from the Sol rear panel.
2) On the Sol rear panel, unscrew the two knurled thumbscrews that hold the top cover in place (about two turns).
3) Remove the top cover of the Sol by lifting it carefully from the rear and unhooking it from the back edge of the keyboard cover. Set it aside.
4) Being careful not to mar the walnut sides, swing the Sol keyboard cover up, unhook it from the front edge of the main chassis, and set it aside.
5) Proceed to the next section.
7.3.3 Checkout of Cables, Connectors, Sol-PC and Personality Module

1) Touch the Sol chassis to discharge any static electricity from your body.
2) Connectors and Cables. The mechanical contacts of connectors must be in proper position. In order to provide versatility and serviceability, a number of connectors are used in the system. Be sure that they are all inserted properly. Secure any loose cable connectors. On the Sol-PC there is a coax connector at the video display circuitry and a ribbon cable connecting the keyboard to the Sol-PC.

Helios Cables. If you are using a Helios Disk System, be sure that when the cover is placed on the Sol, the cables are not pulled from their sockets.
3) S-100 Cards. Pull the cards back from the backplane and reseat them.
4) Personality Module. Grasping its handle, remove and reseat the personality module located on the rear of the main printed circuit board. (Refer to Fig. 2-1, "Sol Rear Panel.")

7.3.4 Buttoning the Sol Back Up

o replace the covers on the Sol:
-) Hook the keyboard cover under the front edge of the main chassis and lower it over the keyboard.
2) Hook the top cover over the back edge of the keyboard cover and lower the top cover down into place over the rear of the chassis.
3) Re-install the two knurled thumbscrews fastening the cover to the chassis.
4) Reconnect the AC linecord to the rear panel.
7.4 TROUBLE-SHOOTING THE VIDEO

1) Turn ON the $A C$ power switches of the Sol and video monitor.
2) If the monitor display raster is out of sync (a black horizontal bar moves slowly down screen, numerous black lines cut across the raster, or both), adjust monitor vertical and horizontal hold controls for a stable raster.
3) You should see the SOLOS Command mode prompt character followed by thu cursor ($\boldsymbol{>}$) in the upper left corner of the screen. If you don't, recheck the video cable connection as in Section 6 , "Unpacking And Installation." If still no cursor, go to 7.3.2, "Removing The Covers" and 7.3.3, the checkout of cables, etc.

If control characters do not appear in the SOLOS Terminal mode, check the setting of the internal switch that controls the display of control characters. (See Appendix 3, "Internal Controls".)

TROUBLE-SHOOTING CASSETTE OPERATIONS
NOTE
The tape head must be clean in order to read or write a tape reliably.

7.5.1 Problems Encountered When Loading

1) If the tape moves while the cassette is under SOLOS control, there is a malfunction in the remote control circuitry or cabling. The recorder is under SOLOS control when MODE SELECT has been pressed to reset any tape commands. With the Sol power OFF, there should be no continuity between the MOTOR l jack on the Sol and the REMOTE plug on the cassette. Check to see that the Motor cable for each recorder is pushed in until you feel the stop in the jack (the detent position for the jack; this is not necessarily all of the way in).
2) With certain cassette recorders or cassettes there may be a misreading of the tape when the splice joining the leader to the tape passes the tape head. In this case an ERROR message will appear and the tape will stop. To resume tape loading, position the tape past the leader and retype the command used to load the program.
3) If you continue to have difficulty in loading, check the recorder controls for proper settings and make sure you have followed all appropriate instructions and operating tips in Section 4.2, "Audio Cassette Recorders" and 4.3, "Getting Into BASIC." Try different cassette recorder volume settings until a reliable setting is found.
4) Usually Processor Technology cassettes have the same program recorded more than once on the same cassette to provide against accidental damage or erasure. If you have difficulty loading a program, try the same procedure with the redundant recording.
5) Check all cassette interconnect cables for intermittent connections and shorts. Try substituting cables to detect defective cables.
7.5.2 Possible Faulty Tape?
6) Note the exact tape counter reading at the time of the read error.
7) Rewind the tape and try to read the same part of the tape in which the error occurred. If there is no read error at the same point, the error was not recorded on the tape. If there is, the error was recorded on the tape.
8) Rewind the tape and record a file on the same part of the tape in which the read error occurred. Then read this file. If there is no read error, the original error was generated during the initial recording process. If a read error occurs at the same point, the cassette is faulty.

APPENDIX 1

PRODUCTS AVAILABLE from Processor Technology

Al. 1 EQUIPMENT

MEMORY MODULES
Dynamic Read/Write Random Access Memory modules are available from Processor Technology in the following models: (The first two digits give the memory capacity in kilobytes.)

$$
\begin{aligned}
& 16 \mathrm{KRA}-1 \\
& 32 \mathrm{KRA}-1 \\
& 48 \mathrm{KRA}-1 \\
& 64 \mathrm{KRA}-1
\end{aligned}
$$

GENERAL PURPOSE MEMORY MODULE (GPM)
The GPM module is used to store any frequently-accessed programs as firmware in its 10,240 bytes of ROM . The programs thus stored can be ready to accept commands as soon as power is applied to the Sol. Included with this subsystem is 1,024 bytes of RAM for use as scratch-pad memory.

DISKETTE MEMORY SYSTEMS

The Helios II dual diskette drive systems include one or two dual drives, complete with power supply and indicator panel in a single attractive cabinet. An S-l \quad (bus compatible controller is provided in the system. Software includes PTDOS operating system and Extended Disk BASIC. PTDOS operates up to four dual drives. PTDOS contains Extended Disk BASIC, ASSM, DEBUG, EDIT, and TREK-8ø, plus many other powerful software tools.

The single dual drive model can be upgraded to a double dual drive model. Both models are available in $22 \emptyset / 24 \emptyset$ VAC $5 \emptyset \mathrm{~Hz}$ versions.

PRINTERS

Solprinter 2 is a word processing printer by a Diablo (a Xerox company.) It has a changeable metal print wheel. The interface to the Sol parallel port and power supply is included.

Solprinter $2-E$ is an impact printer like the SolPrinter 2 but with a plastic print wheel.

Forms tractors are available for the SolPrinter 2 and 2-E.

Solprinter 3 is a 200 characters per second dot matrix printer with an RS-232 serial interface. This Solprinter includes a power supply and orms tractor.

The "engineering geniuses" at Processor Technology are continually developing new products for the Sol system. Ask your dealer for the latest releases.

Fig. Al-1. Sol System IV-A

PROGRAM DEVELOPMENT SOFTWARE ON CASSETTE

?rocessor Technology cassette software is designed to run either on a Sol Terminal Computer, with SOLOS, or on another 8080 computer using CUTER software and CUTS format cassette tape.

EDIT

EDIT is a line-oriented text editor that allows the creation or modification of ASCII files such as source files coded in BASIC or assembly language. EDIT allows editing on character, string, line, and page levels; at any of these levels, additions, insertions, substitutions, and deletions of text may be made. Additionally, EDIT offers the option to retain a command string as a macro and execute it repeatedly.

EDIT requires approximately 4 K bytes of memory.

ASSM
ASSM is an assembler that translates a symbolic 8080 assembly language program ("source code") into the binary instructions required by the computer to execute the program.

The assembler itself occupies almost 8 K bytes of memory; an tdditional 2 K of memory is required for the symbol table. Two cassette recorders are also required.

Also included on the cassette are two other programs, PACK and UNPAC. These programs convert a cassette file from either of the two SOLOS/CUTER file formats (single-block and multiple block) to the other.

DEBUG
DEBUG is an aid for debugging a machine language program. DEBUG permits you to set as many as fifteen "breakpoints" in a program. When that program is executed under control of DEBUG, execution will be interrupted at each breakpoint address so that CPU registers, flags, and specified memory locations may be examined and modified.

DEBUG requires 8 K bytes of memory.

ALS-8
ne ALS-8 assembly language development system is an operating system that facilitates the writing, editing, assembling and debugging of your own programs. It includes a resident assembler, simulator, and text editor.

The ALS-8 program requires 8 K bytes of memory plus 4 K for the symbol tables and system global area. ALS-8 is also available in a ROM on a GPM module (see Al.l). In that form, the system requires a minimum of 2 K of RAM.

Software\#l

Software \#l is a program development system, more limited than ALS-8, but requiring less memory. Included in the package are an executive to handle memory files, an assembler, and a line-oriented editor.

Software \#l requires at least 6 K bytes of memory.

Extended Cassette BASIC

Extended Cassette BASIC is an adaptation of BASIC, a straightforward language combining interactive features and mathematical capabilities. BASIC includes an interactive editor and an interpreter.
xtended Cassette BASIC requires a minimum of 16 K bytes of memory. The recommended amount of memory is 24 K .

PILOT

PILOT is an interpretive language designed for writing interactive programs. It is suitable for writing educational applications programs, other interactive programs and games.

PILOT requires 16 K bytes of memory.

8080 FOCAL

FOCAL is an adaptation of the original FOCAL, a math language written for the PDP-8 mini-computer. "FOCAL" and "PDP-8" are registered trademarks of Digital Equipment Corporation. Many thousands of FOCAL programs exist and can now run in the Sol. A disk version of FOCAL is included on the PTDOS system disk that comes with a Helios II system.

FOCAL requires 10 K bytes of memory.

VIDEO GAMES ON CASSETTE

GAMEPAC 1 and GAMEPAC 2 are two anthologies of games including:
Target - an arcade-type "shooting" game. Hangman - the traditional word game. QUBIC - a three-dimensional version of TIC-TAC-TOE. ("QUBIC" is a registered trademark of Parker Bros.)

Each game requires 4 K bytes of memory.

TREK-80
TREK-80 is a space war game based on the NBC television series Star Trek. This program simulates a real time war with the Klingons. (You can warp through hyperspace and fire phasers, photon torpedos, or experimental rays. If you "just can't make it," you can self-destruct.)

TREK-80 requires 8 K bytes of memory.

8080 CHESS

8080 CHESS is the ancient game of pure skill and fathomless variety, adapted to run on the Sol. 8080 CHESS turns your computer into a worthy opponent. A variable difficulty control matches your skill level.

8080 CHESS requires 16 K bytes of memory.

FLOPPY DISK SOFTWARE

Extended Disk BASIC
Extended Disk BASIC has all the features of Extended Cassette BASIC and also the advantages of the Helios II floppy disk and PTDOS.

Many dealers offer Optional Precision BASIC, allowing the user to request a version of Extended Disk BASIC with $6,8,10,12,14$, or 16 digits of precision. (Standard BASIC has 8-digit precision.)

Extended Disk BASIC requires 32 K bytes of memory, and is supplied on the PTDOS system disk.

Extended Disk FORTRAN
Extended Disk FORTRAN is both a subset and a superset of ANSI standard FORTRAN, a widely used algebraic language. Extended Disk FORTRAN is written to take advantage of the Helios II Disk Memory System and PTDOS.

Extended Disk FORTRAN requires 32 K bytes of memory.

WordWizard
WordWizard is an electronic typing program that turns your Sol, Helios, and Solprinter into a powerful office or home tool for composing, correcting, editing and updating letters and other literature. Wordwizard can print a file while you are editing a second file.

WordWizard requires 48 K bytes of memory.

New software for the Sol is constantly being developed at Processor Technology. Ask your dealer about the latest releases.

APPENDIX 2
CASSETTE RECORDER SUPPLEMENT

A2.l SELECTING A CASSETTE RECORDER

Not all audio cassette recorders are suitable for data storaqe use with the Sol. Two models tested and approved by Processor Technoloqy for such use are the Panasonic RQ-4l3AS and Realistic CTR-2l. (Some users report unsuccessful results with the Panasonic RQ-309 and the J. C. Penney recorder, Catalog \#85l-0018.) Should you wish to use a different recorder than those approved by Processor Technoloqy, it should have the following features:

Auxiliary Input
Though the Sol can be configured for use with the microphone input, such configuration is no longer recommended.

Digital (Tape) Counter
The counter is needed to locate files on the tape.

Tone Control

The existence of a tone control is one indication of hiqh quality electronics.

Monitor Output in Record Mode
Recorders on which the "monitor" jack is labeled MONITOR usually provide a monitor output in the Record Mode. If the jack is labeled EAR or EAR PHONE, the recorder usually does not provide a monitor output in the record mode.

To determine whether the recorder provides a monitor output in the Record mode:

1) Install a blank tape.
2) Plug a headset or earphone into the MONITOR jack.
3) Plug a microphone into the MICROPHONE jack.
4) Set the recorder controls to record.
5) Speak into microphone while listening with the earphone. If you hear yourself through the earphone, the recorder does provide a monitor output in the record mode.

Even if a recorder has the preceding features, there is no guarantee it will work properly with the Sol. Recorders vary greatly in the quality of their electronics. When selecting a "non-approved" recorder, it is recommended that you test it before purchase, if possible, with a long file. Test it in both the record mode (Write) using the SAVE command and in the playback mode (Read) using the GET or $X E Q$ commands. If the recorder is unsatisfactory, you will either:

1) Get an error message in the read mode.
2) Find the differences, upon playback, in what you recorded in the write mode.
3) Both of the above.

A2.2 INTERCONNECT REQUIREMENTS FOR TWO RECORDERS

Your Sol is capable of controlling one or two recorders. (The interconnect requirements for one recorder were previously covered in Section 4.3, "Getting into BASIC.") Since the Sol has only one audio input and one audio output jack, the interconnect requirements for two recorders are somewhat different than for one.
n the case of two recorders, Unit 1 and 2 must be specified in the sAVE command in order to select the desired recorder. A default selects Unit 1 .

Reading from One Recorder and Writing to the Second Recorder

1) Let recorder l be the unit read from; connect the Sol's Audio IN cable to the recorder's MONITOR output. Connect MOTOR 1 cable to the recorder's REMOTE jack.
2) Let recorder 2 be the unit written to; connect the Sol's Audio OUT cable to the recorder's AUX input. Connect MOTOR 2 cable to the recorder's REMOTE JACK.

Reading and Writing to Both Recorders
For this setup, you will need two "Y" adapters, one to feed the single Sol audio output to the AUXILIARY input of two recorders and the other to feed the MONITOR output of two recorders to the single Sol audio input. (If you intend to use the Audio In and Out cables described in Section 6.5, "The Cassette Connection," miniature phone jack-to-two miniature phone plug adapters are required.)

Because the recorder outputs should not be connected together lirectly, it is recommended that you wire a 1000 ohm resistor in series between the MONITOR adapter and the MONITOR output of each recorder.

Sol

(A) Miniature Phone Plug
(B) Subminiature Phone Plug

Rl $=$ R2 $=1000$ ohms, $\frac{1}{4}$ watt
Figure Connecting Sol to two cassette recorders.

APPENDIX 3

INTERNAL CONTROLS

A3.l GENERAL INFORMATION

(First Read the Warning" at 7.2.)
Your Sol will work normally without having to reset the control switches described in this section. They have been set at the factory. If you need to change the functions controlled by these switches, the switches must be accessed when the top cover and keyboard cover of the Sol are removed. They are located on the Sol-PC in DIP switch pack Sl. In this section, the switch controls are described separately by function. They are summarized with their recommended settings in Table A3-1, "Sol Internal Controls in Numerical Order." Internal switch settings for the terminal mode and other internal controls are treated in the Sol Technical Manual.

Refer to Fig. A3-1, "Sol Internal Controls in Numerical Order," for the location of Sl .

WARNING

BEFORE PERFORMING ANY SERVICE, DISCONNECT THE AC LINECORD OF THE Sol FROM THE REAR PANEL.

A3. 2 REMOVING THE Sol COVERS
To access Sl, remove the Sol top cover and keyboard cover as instructed in Section 7.3, "Trouble-shooting the Sol Installation."

A3.3 VIDEO DISPLAY SWITCHES

CAUTION
Since each switch lever is extremely small, it may not be practical to use one's finger to set them. As a convenience, you might use the pointed end of a nonconductive tool shaped like a pencil. Do not use a metal object.

If you want a normal video display (white characters on a black sackground), set Sl-4 switch to ON. If the switch is in the OFF position, black characters will be displayed on a white background (reverse video display).

Cursor Display (Sl-5 and Sl-6)
The cursor that appears in sOLOS as the prompt character is usually a solid, non-blinking cursor.

CAUTION
Never put Sl-5 and Sl-6 ON at the same time. To do so may damage your Sol.

To make it blink on and off at the rate of approximately twice per second:

1) Set the SOLID Switch (Sl-6) to OFF.
2) Set the BLINK Switch (Sl-5) to ON.
3) To reset the cursor to a solid display, reverse the above settings.

With both Sl-5 and Sl-6 in their OFF positions, there will be no cursor display.

Blanking Out the Display of Control Characters (Sl-3)
Blank out the display of control characters by setting the BLANK Switch (Sl-3) to ON. Any control characters generated should not appear on the screen. To display control characters, set Sl-3 to OFF. (Control characters are explained in Section 5, "At the Keyboard.")

A3.4 RESTART (RST) SWITCH, Sl-I
This switch permits you to restart your Sol without turning the power off. You should normally leave it in its OFF, or run, position. Set it to ON and then OFF to reset the 8080 and restart the Personality Module program. (A manual restart with this switch performs the same function as turning the power on or pressing a keyboard generated restart: UPPER CASE key with REPEAT key. See "Keyboard Restart" in Section 2.5.)

A3.5 REPLACING THE Sol COVERS
(Refer to 7.3.4, "Buttoning the Sol Back Up.")

Instructions for setting the Terminal mode switches are in the Sol Technical Manual. Consult your dealer if you intend to use the Terminal mode.

A3.7 PARALLEL DATA INTERFACE (PDI)
Instruction for connecting devices to the Sol's PDI are in the Sol Technical Manual. Consult your dealer for help.

Fig. A3-1. Sol-PC Internal Control Switches (SI)

Table A3-1. Sol Internal Controls in Numerical Order

CONTROL
RST (Restart) Sl-1

S1-2
BLANK CTRL Sl-3

POLARITY
Sl-4

CURSOR BLINK
Sl-5
SOLID CURSOR Sl-6

FUNCTION
Permits manual restart of Sol without turning power off. (Useful for test purposes.)

Spare
Determines whether control characters are displayed or not.

Selects normal (white characters on black background) or reverse video display.

Selects blinking cursor.

Selects solid cursor.

OFF
FACTORY PRESET
OFF

OFF
OFF

OFF
.

ON

1 EPT 3－72
APPENDIX 4

KEYBOARD TABLES

Table A4－1．Sol Keyboard Character and Control Keys （The keys in this table are arranged as found on the keyboard，left to right，top to bottom．）

UNSHIFTED		SHIFTED		CONTROL		ASCIICONTROL FUNCTION
KEY／	HEX．	KEY／	HEX．		HEX．	
SYMBOL	CODE	SYMBOL	CODE	SYMBOL	CODE	
1	31	！	21	Γ^{1}	$\emptyset 1$	Start of Heading（SOH）
2	32	＂	22	\perp	$\varnothing 2$	Start of Text（STX）
3	33	\＃	23	」	$\varnothing 3$	End of Text（ETX）
4	34	\＄	24	く	$\emptyset 4$	End of Transmission（EOT）
5	35	\％	25	8	$\varnothing 5$	Enquiry（ENQ）
6	36	\＆	26	\checkmark	$\varnothing 6$	Acknowledge（ACK）
7	37	，	27	Ω	¢7	Bell（BEL）
3	33	$($	28	\checkmark	D3	Backspace（BS）
9	39	）	20	\rightarrow	$\phi 3$	Horizontal Tab（HT）${ }^{2}$
D	30	$\not \square^{3}$	20^{2}	\square^{4}	ϕD	Null（NUL）
－	2D	＝	3D	＋4	$\emptyset D$	Return（CR）${ }^{2}$
＾	5 E	\sim	7 E	\square	1 E	Record Separator（RS）
［	5B	\｛	7B	θ^{4}	1B	Escape（ESC）${ }^{2}$
	5C		7 C	巴	1 C	File Separator（FS）
］	5D	\}	$7 D^{5}$	\square	1D	Group Separator（GS）
q	71	Q	51	（1）	11	```Device Control l (DCl)(X-ON)```
w	77	W	57	t	17	End of Transmission Block（ETB）
e	65	E	45	区	$\varnothing 5$	Enquiry（ENQ）
r	72	R	52	0	12	$\begin{aligned} & \text { Device Control } 2 \\ & \text { (DC2)(TAPE) } \end{aligned}$
t	74	T	54	0	14	Device Control 4 （DC4）
Y	79	Y	59	中	19	End of İedium（EM）
u	75	U	55	${ }^{x}$	15	Negative Aclinowledge（NAK）

${ }^{1}$ SOLOS cursor left．（Symbols shown are displayed by the 6574 character generator．）
${ }^{2}$ Same as function keys（see Table A4－2）．
${ }^{3}$ Space function（SP）；\varnothing is not displayed．
${ }^{4}$ Not displayed in soLOS．
${ }^{5}$ Alternate mode．

Table A4-1. Sol Keyboard Character and Control Keys (Continued)

UNSHIFTED		SHIFTED		CONTROL		
..EY/	$\begin{aligned} & \text { HEX. } \\ & \text { CODE } \end{aligned}$	KEY/ SYMBOL	$\begin{aligned} & \text { HEX. } \\ & \text { CODE } \end{aligned}$	SYMBOL	$\begin{aligned} & \text { HEX. } \\ & \text { CODE } \end{aligned}$	ASCII CONTROL FUNCTION
i	69	I	49	\rightarrow	$\varnothing 9$	Horizontal Tab (HT) ${ }^{\text {a }}$
\bigcirc	6 F	0	4 F	\bigcirc	øF	, Shift In (SI)
p	70	P	50	日	$1 \varnothing$	Data Link Escape (DLE)
@	40	-	60	\square^{2}	$\varnothing \varnothing$	Null (NUL)
a	61	A	41	Γ^{3}	$\varnothing 1$	Start of Heading (SOH)
5	73	S	53	0	13	```Device Control 3 (DC3)(X-OFF)```
d	64	D	44	$\stackrel{ }{2}$	$\varnothing 4$	End of Transmission (EOT)
f	66	F	46	\checkmark	$\varnothing 6$	Acknowledge (ACK)
g	67	G	47	Ω	$\varnothing 7$	Bell (BEL)
h	68	H	48	4	$\varnothing 8$	Backspace (BS)
j	6 A	J	4A	\equiv^{2}	$\emptyset A$	Line Feed (LF) ${ }^{1}$
k	6B	K	4 B	\downarrow	$\not)^{\text {B }}$	Vertical Tab (VT)
1	6C	L	4 C	\pm	$\not \partial \mathrm{C}$	Form Feed (FF)
;	3B	+	2B	\downarrow	$\emptyset \mathrm{B}$	Vertical Tab (VT)
:	3A	*	2A	\equiv^{2}	\varnothing A	Line Feed (LF) ${ }^{1}$
DEL ${ }^{4}$	7F	2	5F	\square	1 F	Unit Separator (US)
z	7A	Z	5A	¢	1A	Substitute (SUB)
x	78	X	58	8	18	Cancel (CAN)
c	63	C	43	」	$\varnothing 3$	End of Text (ETX)
v	76	V	56	Ω	16	Synchronous Idie (SYN)
b	62	B	42	1	$\varnothing 2$	Start of Text (STX)
n	6E	N	4E	0	$\emptyset E$	Shift Out (SO)
m	6D	M	4D	$*^{2}$	$\varnothing D$	Return (CR) ${ }^{1}$
'	2C	<	3C	\pm	$\varnothing C$	Form Feed (FF)
-	2 E	>	3 E	θ		Shift Out (SO)
1	2 F	?	3 F	0	$\varnothing F$	Shift In (SI)

${ }^{1}$ Same as function keys (see Table A4-2).
${ }^{2}$ Not displayed (masked off) in SOLOS.
${ }^{3}$ solos cursor left.
4 DeL, $7 F$, Delete symbol is not displayed in SOLOS. Delete functions in Terminal Mode when shifted.

Table A4-2. Sol Keyboard Function Keys
(The keys are ordered in this table as found on the keyboard in two groups, left and right.)

SHIFTED, UNSHIFTED
OR CONTROL

KEY
ESCAPE (EXC)
BREAK
TAB (HT)
CTR
SHIFT LOCK
UPPER CASE
SHIFT
LOCAL -
SPACE BAR (SP) 20
RETURN (CR) iD
LINE FEED (LE)
DELETE (DEL)
LOAD
REPEAT
CTR
SHIFT
MODE SELECT

CURSOR
CONTROL $\begin{aligned} & \uparrow \\ & \leftarrow \\ & \rightarrow \\ & \downarrow\end{aligned}$
CLEAR
-
-
-
$-$
-
-
-

BE
BB
97
81
93
9A

HEX.
CODE SYMBOL DISPLAYED
lB $\quad \theta$ PTDOS Only.
-
$\emptyset 9 \Rightarrow$ Both SOLOS and PTDOS.
$\emptyset A \quad \equiv$ Masked Off in SOLOS.
7F \square CTRL Only (IF); 7F displays no symbol. ${ }^{1}$
$8 \mathrm{C} \pm$ Both SOLOS and PTDOS.
$80>$ SOLOS Terminal Mode Prompt is a programmed display of SOLOS.

Not transmitted in SOLOS. PTDOS Only
${ }^{1}$ See DEL in Table A4-1.

Table A4-3. Names of Graphic Characters on Keytops (The names given here are industry-standard terms.)

- Hyphen (Minus)
- Period (Decimal Point)

Space
Exclamation Point
Logical OR (not used in the Sol)
Quotation Marks
Number Sign
Dollar Sign
Percent
Ampersand
Apostrophe
Opening Parenthesis
Closing Parenthesis
Asterisk
Plus
Comma

Slant
Colon
Semicolon
< Less Than
$=$ Equals
> Greater Than
? Question Mark
@ Commercial At
[Opening Bracket
\ Reverse Slant
] Closing Bracket

- Circumflex
\neg Logical NOT
- Underline
- Grave Accent
\{ Opening Brace
Vertical Line (This graphic is stylized to distinguish it from Logical OR)
\} Closing Brace
Tilde

APPENDIX 5
Sol SPECIFICATIONS

Keyboard:
85 key upper/lower case with separate numeric keypad. Upper-case shift, shift-lock, cursor control and repeat keys provided. System reset performed by simultaneous depression of control keys. Indicator lights (LED) for local, upper case and shift.

Character set:

96 printable ASCII upper and lower case characters plus 32 optionally displayable control characters.

Cursor:

Switch-selectable blinking. Block video inversion. Program controlled positioning standard. Cursors may occupy at any or all character locations.

CPU :
8080A - Uses same machine language as other 8080 systems. 2 MHz clock cycle time. 78 instructions.

Cassette Interface:
1200 Baud CUTS format or 300 Baud Kansas City format, selected by software. Recorder remote start-stop connector. AGC for level insensitivity. Phase-locked data recovery tracks with speed variations. Software performs CRC data integrity check each 256 characters.

Serial Interface:
RS-232 and 20 mA current loop, 75 to 9600 baud, asynchronous. 25 pin female "D-type" connector on card.

Parallel Interface:

Eight data bits for input and output; output bus is tristate for bidirectional interfaces; levels are standard TTI. 25 pin male "D-type" connector on card.

External memory:
Expandable to 65,536 bytes total ROM, PROM and RAM. (More than 64 K with the extended addressing capability of Processor Technology Memory Modules.) Uses $\mathrm{S}-100$ standard modules.

Video Signal Output:
1.0 to 2.5 volts peak-to-peak. Nominal bandwidth is 7 MHz .

Power Requirements:
117 volts AC, 50/60 Hertz, 250 Watts. $220 / 240$ Volt, 50/60 Hertz option available.

READER COMMENTS

Use this postpaid mailer to send your comments on this manual. We will carefully consider your suggestions for incorporation in future editions. To ask questions or comment about the product, please attach a separate sheet.
NAME OF MANUAL
PUBLICATION DATE \qquad MANUAL PART \# \qquad
Are there specific points that need clarification or correction? Give details, with page and paragraph references.

Did you find this manual easy to use and understand? Do you think certain aspects should be organized differently? Was any necessary material omitted or was any material unnecessary?
\qquad
\qquad
\qquad
\qquad

Is there sufficient information on associated products required to use the product described in this manual? If not, what material is missing and where should it be placed?

Please check the box next to your occupation:
\square Clerk, Bookkeeper
Office Worker
Secretary
\square Typist, Stenographer
Electronic Typist
Small Business Person
Manager
\square Doctor, Dentist
\square Scientist
\square Home Personal Computer User
\square Student
\square Teacher
\square Writer
\square Other Professional
\square
Other

NAME \qquad DATE \qquad
ORGANIZATION \qquad
STREET
CITY, STATE, ZIP \qquad
If you want a reply, check here

```
1 EPT 3 - 79
```


[^0]: *Hytype I, Hytype II and Diablo are registered trademarks of the Xerox Corporation.

[^1]: Specific details of the program may have already reached you. If not, you will be receiving them
 very shortly. So, get ready to sell those boards!

[^2]: Murphy's Law of Thermodynamics
 Things get worse under pressure. Lowery's Law

 If it jams-force it. If it breaks, it needed
 replacing anyway.

[^3]:

[^4]: ACCESS is published every six weeks. If you like what you see, we hope you'll send us $\$ 4.00$ for a year's subscription so we can keep the info coming. Write to us at Processor Technology, 6200 Hollis Street, Emeryville, CA 94608.

[^5]: Weinberg's Law: If builders built builaugs the way programmers wrote programs then the first woodpecker that came along would destroy civilization.

[^6]:

[^7]: oren's Law of Graphing: First draw curves, then plot the data.

