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Pref ace 

The Open Software Foundation (OSF) was formed in May, 1988 specifically 
to develop software technologies and make them available on fair and 
reasonable terms. The Foundation's charter includes the following: to 
develop an open computing environment that employs a standard set of 
interfaces for programming, communications, networking and system 
management, in order that software applications may become uncoupled 
from specific hardware platforms. 

OSF/l is an advanced UNIX operating system developed to provide both 
application portability and powerful operating system functionality. Its first 
release was in December, 1990 and numerous updates have been developed 
since. 

The Design of the OSF/ I Operating System describes the major features of 
the OSF/1 operating system and discusses the design issues involved in 
implementing these features. 

xv 



Design of the OSF/1 Operating System 

Audience 

The Design of the OSFI I Operating System is addressed primarily to 
operating system developers and others who are interested in operating 
system internals. The discussion assumes that readers are familiar with 
operating system fundamentals and have a strong UNIX background. 
Chapter 2 provides some of this background for readers who require it. 

Applicability 

This is Version 1.0 of this document. It applies to Release 1.2 of the OSF/l 
operating system. 

Document Usage 

xvi 

The book's chapters are organized into three parts: Chapters 1 through 3 
provide overview and introductory material, chapters 4 through 7 describe 
the core kernel portion of the system, and chapters 8 through 15 describe the 
system services: 

• Chapter 1 provides an overview of OSF/l. 

• Chapter 2 provides an overview of UNIX processes and the services the 
kernel provides to processes. 

• Chapter 3 provides an overview of the Mach technology that is the basis 
of OSF/l 's core services. 

• Chapter 4 describes the structure and management of processes m 
OSF/l. 

• Chapter 5 describes OSF/1 's scheduling subsystem. 

• Chapter 6 describes the address space implementation of the OSF/l 
virtual memory subsystem. 

• Chapter 7 describes the memory management portion of the OSF/l 
virtual memory subsystem. 



Preface 

• Chapter 8 describes the OSF/l program loader. 

• Chapter 9 describes how OSF/l supports dynamic loading and 
configuration of kernel subsystems. 

• Chapter 10 describes the OSF/l 's internationalization subsystem and 
includes a discussion of how the kernel's STREAMS-based tty 
subsystem supports internationalized applications. 

• Chapter 11 describes how OSF/l manages files. 

• Chapter 12 describes the implementation of the OSF/l sockets 
framework. 

• Chapter 13 describes the implementaion of the OSF/l STREAMS 
framework. 

• Chapter 14 describes the Logical Volume Manager, OSF/l 's disk storage 
management system. 

• Chapter 15 describes the security features of OSF/1. 

Related Documents 

The following OSF/l documents are currently available from Prentice Hall: 

• Design of the OSF/ 1 Operating System 

• OSF/ 1 User's Guide 

• OSF/ 1 Command Reference 

• OSF/ 1 Programmer's Reference 

• OSF/ 1 System and Network Administrator's Reference 

• OSFI 1 Network Applications Programmer's Guide 

• Application Environment Specification (AES) Operating System 
Programming Interfaces Volume 

xvii 
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In addition, versions of the following documents may be available from your 
system vendor: 

• OSF/ 1 System Programmer's Reference Volume 1 

• OSFI 1 System Administrator's Guide 

• OSF/1 Network and Communications Administrator's Guide 

• OSFI 1 System Porting Guide 

• OSF/ 1 System Extension Guide 

• OSF/1 Security Features User's Guide 

• OSF/ 1 Security Features Programmer's Guide 

• OSF/1 Security Features Administrator's Guide 

• OSF/ 1 Security Detailed Design Specification 

• OSF/ 1 POSIX Conformance Document 

Problem Reporting 

If you have any problems with the software or documentation, please 
contact your software vendor's customer service department. 
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Chapter 1 

The OSF/1 Operating System 

OSF/1 is an advanced UNIX operating system. It provides an applications 
programming environment that furnishes, in a single environment, many of 
the features found in different UNIX programming environments. The 
OSF/1 kernel provides powerful operating system functionality that can be 
used to implement features not generally associated with traditional UNIX 
systems. The OSF/1 programming environment and the powerful facilities 
of the kernel implement an advanced software environment that supports 
applications portability and establishes a basis for the development of future 
operating systems. 

OSF/l is an open system; its specification conforms to public, international 
standards and it is widely compatible with systems from a variety of 
manufacturers. It is easy to port and can be configured to run on machine 
architectures ranging from personal computers to high-performance 
workstations and multiuser timesharing machines. It supports symmetric 
multiprocessing and distributed computing environments, and is designed to 
be easily extensible. 
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1.1 UNIX Functionality 
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From an application programmer's point of view, OSF/1 provides a UNIX 
programming environment. In OSF/l, programs are executed as processes, 
and the system provides all process-related facilities generally associated 
with UNIX systems. OSF/l is compatible with software developed both for 
Berkeley 4.3 and 4.4 as well as System V releases 3 and 4. The operating 
system supports the following standards and specifications: 

• ISO/IEC 9945-1:1990 (POSIX.l). In those instances where this standard 
indicates alternatives in functionality, OSF/1 uses the functionality 
specified by the Federal Information Processing Standard (FIPS) 151-1. 

• ISO/IEC 9945-2:1992 (POSIX.2). 

• X/Open Portability Guide, Issue 4 (XPG 4). 

• System V Interface Definition, Issue 3 (SVID 3). 

• OSF's Application Environment Specification (AES) Operating Systems 
Programming Interfaces. 

• Berkeley 4.3 and 4.4 application interfaces. 

• ISO/IEC 9899:1990 (C Programming Language). 

OSF/1 also provides the BSD UNIX File System (UFS), the System V S5 
File System, and an unencumbered implementation of the Sun Network File 
System (NFS). 

OSF/1 provides well-known UNIX interprocess communication 
mechanisms, including BSD sockets and the X/OPEN Transport Interface 
(XTI). The Internet protocol family is provided under both interfaces, 
providing the familiar IP, TCP, and UDP protocols. The system also 
provides a STREAMS framework, which can be used to implement device 
drivers and network protocols in a modular fashion. In OSF/l, STREAMS is 
used to implemeqt the terminal subsystem. 
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1.2 Advanced Features 

In addition to providing functionality associated with traditional UNIX 
systems, OSF/1 provides many features that augment UNIX functionality. 
These features include the following: 

• Efficient operation in uniprocessor and multiprocessor environments. 

• Support of multithreaded applications; that is, applications that contain 
multiple threads of control. In a multiprocessor environment, the 
threads of a multithreaded application can execute in parallel. (The 
POSIX P1003.4 draft 6 programming interface is provided for threads.) 

• Application access to the powerful virtual memory and messaging 
primitives of the core kernel. 

• Support of shared libraries. Processes can share a single copy of system 
libraries. This greatly reduces the size of a program's executable file. 

• A flexible user space program loader that supports different object file 
formats, shared libraries, and dynamic loading and unloading. 

• Dynamic loading and unloading of many kernel modules. This feature 
allows system administrators to configure the kernel at runtim~. 

• A Logical Volume Manager that allows file systems to span physical 
devices, and allows such volumes to enhance data availability and 
reliability. 

• An object-oriented internationalization subsystem that allows 
applications to operate using the language, codeset, and cultural 
conventions appropriate to the user's environment. 

• A security subsystem that supports both B 1 and C2 security classes, as 
defined by the U.S. government's National Computer Security Center. 
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1.3 What is OSF/1? 

OSF/1 is an integration of operating system and application programming 
interface (API) technologies. This book focuses primarily on the operating 
system, or kernel, portions of OSF/l. 

The OSF/1 kernel consists of two logical elements: the core kernel and the 
system services. 

The core kernel provides the basic hardware support and the kernel's 
memory management and scheduler subsystems. It is derived from the 
Mach operating system, which was developed at Carnegie-Mellon 
University. Currently, the OSF/1 core kernel is based on Mach 2.5. Mach 
provides a small set of operating system objects and operations on those 
objects. These objects and operations can be used to implement different 
operating system personalities. OSF/1 uses them to implement a UNIX 
personality. 

The system services provide the operating system facilities that are used 
directly by applications programs, and provides the services generally 
associated with UNIX environments. 

1.3.1 Tasks and Threads 
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The OSF/1 operating system abstracts a process's components into a task, 
which represents a set of system resources including an address space, and a 
thread, which represents the process's thread of control. 

OSF/1 uses the task and thread objects to implement processes. A standard 
process consists of a task with a single thread; however, OSF/1 also supports 
processes that contain multiple threads. Interfaces are provided that allow 
processes to create and control such threads. 

The thread construct is enhanced by a powerful and flexible scheduler 
provided by the core kernel. The scheduler provides policies and 
extensibility which can be used to support UNIX as well as non-timesharing 
models for other operating system environments. 
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1.3.2 Virtual Memory and Memory Management 

OSF/1 incorporates an innovative memory management system that is 
highly portable. The implementation of virtual memory is cleanly divided 
into machine-independent and machine-dependent pieces; all machine­
dependent operations are implemented in a single module called the pmap 
(physical map) module. This module manages the data structures and the 
hardware's memory management unit (MMU) to perform address 
translation. 

All virtual memory state is managed with machine-independent data 
structures; the system uses the machine-dependent data structures to cache 
address translations only as they are needed. The pmap module performs 
these machine-dependent manipulations. 

The virtual memory system provides functionality not generally associated 
with traditional UNIX systems. For example, the external memory 
management interface supports the development of user space memory 
managers which can be used to allow applications to map application­
specific objects into their address spaces. 

The memory management system makes extensive use of copy-on-write 
techniques to copy memory between processes. These techniques are used 
to optimize virtual memory operations that have traditionally been quite 
expensive, such as the fork() system call. 

The memory management system also supports large sparsely filled virtual 
address spaces, which allows OSF/1 to provide support for shared libraries. 

Virtual memory and memory management are discussed in Chapters 6 
and 7. 

1.3.3 File Management 

OSF/1 file management consists of three distinct subcomponents: 

• The per-process file tables implement traditional UNIX file descriptors, 
with the important addition of support for fully threaded applications. 
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• The VFS provides a single interface to the file systems so that the 
system can perform operations on a file in the same manner. The file 
systems, in tum, are implemented and interface to the VFS in a 
consistent manner. 

• OSF/1 provides three file systems, and can be extended to provide 
others: 

- The UNIX File System (UFS)-a parallelized implementation of the 
Berkeley Fast Filesystem. 

- A version of the System V File System for compatibility. 

- A Network File System compatible with the Sun Microsystem NFS. 

File management and file systems are discussed in Chapter 11. 

1.3.4 Networking 
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OSF/l provides three facilities that serve as frameworks for networking: 

STREAMS A kernel facility that provides a communications path between 
a user process and various classes of device drivers. 

Sockets A Berkeley UNIX kernel facility that provides 
communications for user processes to networks. Sockets also 
provide a specialized application programming interface. 

The X/OPEN Transport Interface (XTI) 
An applications programming interface that provides 
communications between user processes and kernel-provided 
transport layers, which in turn access network devices. 

OSF/1 provides communications through the support of the Internet protocol 
suite, which consists of a number of protocols, including the Transmission 
Control Protocol (TCP) and the User Datagram Protocol (UDP). 
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1.3.5 STREAMS 

The STREAMS framework provides a way to implement communications 
software, such as network protocols or terminal protocols. A 
communications path, called a stream, provides the interface between the 
user process and a driver. 

STREAMS also provides a facility for incorporating character 1/0 device 
drivers into the kernel. It includes a consistent set of user and kernel space 
interfaces that provide a standard interface for devices to communicate with 
the operating system. It provides the implementation framework for 
terminals, communications services and protocols. 

STREAMS is discussed in Chapter 13. 

1.3.6 Sockets 

OSF/1 sockets is an implementation of the Berkeley 4.3 and 4.4 sockets 
technology. Applications that use these sockets versions will also operate 
under OSF/l. 

The sockets framework has a user level and a kernel level. At the user level, 
the sockets framework supports system calls that access sockets, and at the 
kernel level, the sockets framework provides the underlying support for the 
Internet suite of protocols. The OSF/1 kernel-level sockets framework 
allows protocols and families of protocols to be dynamically configured into 
the system. 

The sockets framework is fully parallelized; therefore, it can work in both 
uniprocessor and multiprocessor environments. The OSF/l sockets 
framework can also work with protocols whose code has or has not been 
parallelized. 

Sockets are discussed in Chapter 12. 
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1.3.7 XTI 

OSF/1 XTI is a STREAMS-based implementation of the X/OPEN XTI 
programming interface. XTI is an enhancement of the AT&T TLI 
(Transport Layer Interface). It provides an interface to the transport layer of 
diverse protocols conforming to the seven-layer International Standards 
Organization Open Systems Interconnection (ISO OSI) model. The 
transport layer's job is to provide end-to-end communications between 
processes on different machines across a network. 

The XTI is independent of the transport protocols used by a system and 
independent of the machines. The XTI allows applicati~ to create 
connections to remote peers, to transfer data, and to terminate connections 
through a series of interfaces. The OSF/1 XTI is fully parallelized, and it 
can operate in both uniprocessor and multiprocessor environments. 

1.3.8 Internationalization 
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In the past, UNIX systems have supported only English-speaking 
environments. However, in recent years, UNIX systems have experienced 
more international use. The entire OSF/l system has been internationalized 
according to specifications set down by standards bodies and user groups 
such as POSIX and X/OPEN, and OSF/1 includes an internationalization 
subsystem that supports internationalized applications 

OSF/1 implements internationalization support through a set of locales. 
Each locale specifies a software environment that supports the language and 
customs associated with a particular geographic region. 

An application determines the current locale at runtime, usually by means of 
the user's environment variables. The application then calls the 
internationalization subsystem to load the tables and algorithms that 
implement the locale. When the application performs an operation that is 
locale-dependent, the routine that performs the operation uses the algorithm 
and data specific to the locale. 

7 The internationalization subsystem is discussed in Chapter 10. 
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1.3.9 Terminals 

The OSF/1 terminal subsystem (tty/pty) provides traditional UNIX tty 
functionality, and is compliant with POSIX.1. The important aspect of the 
OSF/l terminal subsystem is internationalization. 

All UNIX terminal subsystems use elements called line disciplines to 
perform terminal input and output processing. A line discipline is one of the 
software components that a tty/pty driver employs to process input 
characters. 

In OSF/l, the terminal subsystem is a STREAMS-based implementation. 
This is key to a more modular approach to internationalizing the terminal 
subsystem. In this approach, the main component of the terminal subsystem 
is a line discipline that provides the traditional capabilities. To 
accommodate the needs of non-English locales, the line discipline is 
augmented by converter modules that provide communication in the 
character set of the locale. 

The terminal subsystem is described in Chapter 10. 

1.3.10 Logical Volume Manager 

The OSF/1 Logical Volume Manager (LVM) extends standard disk 
management capabilities. A UNIX disk driver stores and retrieves data to 
and from a single physical disk unit. The LVM interfaces associate one or 
more disk drivers into a single logical disk, enabling the system 
administrator to enlarge the virtual storage space, span the data storage 
across disks, and replicate data (known as mirroring). 

The LVM subsystem consists of the following components: 

• Logical and physical volumes, where logical volumes represent virtual 
disks and physical volumes represent physical storage, such as a disk or 
disk partition. 

• A logical volume device driver, which interacts with the actual disk 
driver(s) to manipulate data. The application sees the logical volume 
device driver as a single disk driver. 
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• A programming interface, through which a user can manage the 
volumes. 

The LVM is discussed in Chapter 14. 

1.3.11 Program Loader 
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Program loaders load executable object files into memory and prepare them 
for execution. They often work with linkers to resolve external symbol 
references and perform relocation before programs can be executed with the 
exec() function. In traditional UNIX systems, the program loader function 
is closely tied with the linker, and is commonly known as the linker/loader 
(Id). 

In OSF/l, the program loader is separate from the linker. When the program 
is linked, a binary file is created, but not all external or symbol references 
may be resolved. At the time the exec() function is called to actually 
execute the program, the kernel invokes the OSF/1 program loader to 
resolve remaining symbol references and to load the file for execution. 

The OSF/1 program loader extends the functionality generally associated 
with traditional UNIX program loading. In addition to resolving and 
relocating symbols, it supports multiple object file formats, shared libraries, 
and runtime dynamic loading and unloading. Except for the exec( ) 
function, the loader is implemented entirely in the user space. 

The OSF/l program loader supports the implementation of shared libraries. 
In traditional UNIX linker/loaders, when a symbol is resolved and its 
definition is found in a library, the linker/loader copies the module into the 
program's executable image. This method can be inefficient when programs 
are large, or when a large number of references are resolved. Shared 
libraries overcome these problems by providing a single copy of each of 
their routines to be shared by many processes running on the system. 

The OSF/1 program loader provides a package abstraction to help in symbol 
resolution with shared libraries. The program loader uses each package to 
map symbol names to the appropriate library without having to stamp a 
pathname in a binary image. This allows maximum flexibility and mobility. 
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The same program loader also provides a kernel loading capability, which 
enables the kernel to dynamically load and unload modules. This allows the 
kernel to add and remove, at runtime, new system services, file systems, 
device drivers, network protocols, and streams modules. 

The program loader is discussed in Chapter 8. 

1.3.12 Security 

OSF/1 provides a security subsystem that complies with certain elements of 
the U.S. government's U.S. Department of Defense Trusted Computer 
System Evaluation Criteria (TCSEC, or the Orange Book). This is the 
definitive guide to the development and evaluation of trusted computer 
systems. The security subsystem enables OSF/1 to be configured for varying 
levels of security, including both the basic features and supersets of those 
required for C2andB1 level security. 

The security subsystem can be viewed as both code and process. The code 
part of the security subsystem consists of functions and kernel compilation 
conditionals that enable the different levels of security. The process part of 
the security subsystem requires that each application use the security 
functions and run on a secure kernel for the existing security features to take 
effect. 

Security extensions have been added to many elements of the OSF/1 
operating system, including the kernel itself, kernel services such as the file 
systems, the programming interface, and user-level commands. 

Security is discussed in Chapter 15. 

1.3.13 Scalability and Dynamic Configuration 

Traditional UNIX systems are limited in their capabilities to be reconfigured 
or scaled up or down easily during runtime. For example, reconfiguring a 
traditional UNIX system to add or remove a file system from the kernel 
would require making the configuration changes, rebuilding the kernel, and 
restarting the operating system. 
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The OSF/1 kernel can be dynamically tuned and reconfigured while the 
system is running. The following subsystem components allow dynamic 
configuration: 

• The filesystem framework allows filesystems to be dynamically added 
and removed. 

• The STREAMS framework allows STREAMS-based drivers and 
modules to be dynamically added and removed. 

• The sockets framework allows families of protocols to be dynamically 
added and removed. 

• The terminal subsystem, which is STREAMS-based, allows 
STREAMS-based line disciplines and drivers to be dynamically added 
and removed, and also to be configured onto specific terminals and ports. 

• The Logical Volume Manager allows the LVM device driver to be 
dynamically added and removed, and to dynamically configure logical 
volumes. 

• The system call framework allows the dynamic addition of new system 
services. 

• Almost all device drivers can be dynamically added and removed. 

One of the advantages of a scalable OSF/l system is that it can provide a 
version of the OSF/l system with a minimum of its possible subsystems 
actually configured. Because of the dynamic capabilities, such a system can 
be easily expanded as the needs require without causing system downtime. 

Configuration of the kernel is discussed in Chapter 9. 

1.4 The Future of the OSF/1 Design 
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Currently, OSF/l integrates the core kernel services with the system 
services into one monolithic kernel. In future versions, the kernel will 
contain only the primitive objects and operations provided by a 
microkernel; most of what is now contained in the system services will be 
moved into its own, separate address space. 
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The microkernel configuration has many advantages over the traditional 
monolithic kernel. For example, a single machine running a single core 
kernel may simultaneously run multiple system services, such as multiple 
operating systems "personalities," much as multiple user tasks are run today. 
Additionally, the system services could run in a distributed fashion across a, 
network of machines running a common core kernel. Such "massively 
parallel," "cluster," or "multicomputing" machines provide an entirely new 
dimension to computing. 
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Chapter 2 

Overview of UNIX Processes and the 
UNIX Kernel 

A UNIX kernel is responsible for managing, on behalf of user applications, 
the system's resources. These resources include the CPU, resident memory, 
and all peripheral devices that are configured into the system, including any 
disk drives, tape drives, terminals, printers, and network hardware. 

The kernel uses processes to manage the execution of applications. The 
process construct allows the kernel to control the use of system resources so 
that 

• All currently active applications have reasonable access to system 
resources. 

• Applications cannot inadvertently or deliberately interfere with one 
another's access to the resources. 

This chapter provides an overview of the UNIX process construct and the 
services the kernel provides to processes. This chapter also describes the 
major operations performed by the kernel as it manages· the system's 
resources. If you are familiar with UNIX operating system internals, you 
may want to skim this chapter, or skip it altogether. 
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2.1 Process Address Spaces 
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When a progam is compiled, the compiler creates the program's executable 
file, also referred to as the executable image. The kernel uses this file to 
create a logical address space that contains the following sections of data: 

• The program's text section, which contains the executable instructions. 

• The program's initialized data. This data is global data, which will be 
accessible to the program's main routine and all of the subroutines 
defined in the program and in any libraries that the program references. 

• The program's uninitialized data. The compiler allocates storage for this 
data, but the data is not initialized until runtime. This data is also global 
data. 

The executable file also includes a header, which specifies the location and 
size of each of the data sections. When the program is being prepared for 
execution, the system's program loader uses the header information to set up 
the process's virtual address space. 

When the process's address space is set up, it contains a text section, an 
initialized data section, an uninitialized data section, and two additional 
sections: the process's heap, and the process's user stack. The heap contains 
memory that the process explicitly acquires during its execution. Typically, 
a process uses heap memory to store dynamically required data structures. 
When a new data structure is required, the process executes a call to 
malloc( ) to allocate the memory. When the data structure is no longer 
needed, the process can execute a call to free( ) to free the memory. Like the 
initialized and uninitialized data, the heap data is global. 

In contrast to the data contained in the heap, the data contained on the stack 
is local data, which is accessible only to the process's currently active 
routine. A process's user stack grows and shrinks dynamically as needed. 



Overview of UNIX Processes and the UNIX Kernel 

2.2 Process Management System Calls 

The UNIX kernel provides a set of process management system calls that 
allow processes to create other processes, to manage the execution of 
related processes, and to terminate themselves or the processes they control. 
These include fork(), exec(), wait(), and exit(). 

Processes use the fork() and exec() system calls to create processes and 
execute new programs, respectively. The fork() system call creates a new 
process by duplicating the address space of the calling process. The calling 
process is referred to as the parent process and the new process is referred to 
as the child process. Upon successful completion of fork(), the parent and 
child have duplicate address spaces and are executing the same program. 

The exec() system call allows a process to execute a new program by 
loading the program into the process's address space. (Actually, exec() is a 
family of system calls, but it is referred to as a single system call to simplify 
the discussion.) Generally, a child process that is to execute a new program 
issues a call to exec() after the call to fork(). 

A parent process may choose to wait for its child to complete execution 
before resuming execution itself. For example, the shell does this when 
executing commands in the foreground. The user enters a command to the 
shell, the shell uses fork() to create a new process, the new process calls 
exec() to load the command's program, and the shell waits for the program 
to complete execution. 

A process that needs to wait in this fashion does so using the wait() system 
call. This system call suspends the calling process's execution until the 
child process either terminates or suspends itself. It is called with a status 
argument that the system uses to inform the waiting process about the exit 
or suspend status of the child process. When the child exits or suspends 
itself, the system copies its status to the status variable and allows the 
parent process to resume execution. The parent can examine the status 
variable to determine what happened to the child. 

When a process wants to explicitly terminate its execution, it does so using 
the exit() system call. This system call releases all of the process's system 
resources and may send a signal to the process's parent process to indicate 
that the child has exited. The signal subsystem and a process's state with 
respect to signals are discussed in Chapter 4. 
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2.3 Process States 
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Each process has a set of states with respect to the system. These include 
the following: 

Execution State 
A process's execution state specifies whether or not the 
process is executing or executable. With respect to this state a 
process is either: 

• Executing, or executable and waiting to be scheduled. 

• Blocked while waiting for a system resource to become 
available. A process in this state is said to be sleeping. 

• Suspended; that is, not executable, and not waiting for 
access to a system resource. For example, UNIX systems 
that support job control allow users to suspend the 
execution of a process from the terminal by entering the 
SUSPEND character (usually Ctrl-Z). 

Scheduling State 
A process's scheduling state indicates when the process will 
next be scheduled for execution. When a process is created, 
the kernel assigns it a scheduling priority. The kernel 
schedules the CPU by choosing the currently active process 
that has the highest priority. 

Generally, a process that is executing, or has just executed, has 
a lower priority than a process that has not executed as 
recently. The kernel's scheduler subsystem periodically 
adjusts each process's scheduling priority so that all processes 
get equitable access to the CPU. Chapter 5 describes the 
OSF/1 scheduling subsystem. 

File Descriptor State 
The kernel maintains for each process a table of file 
descriptors, each of which represents a file or network 
connection that the process has access to. A process usually 
has at least three descri2tors in its table; standard outRut is 
represented by descriptoi@standard input by descriptor(JJ, and 
standard error by descriptrr 2. l 

~ I 
\ 
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A process may inherit other file descriptors from its parent 
process when it is created. When the process opens a new file 
or network connection, the kernel places a new descriptor in 
the table. Each descriptor is associated with an underlying 
data structure that the kernel uses to manage the file or the 
network channel. 

Process Identification and Relation States 
Each process has a user ID that identifies the user who is 
responsible for the process, and a set of group IDs that identify 
what user groups the process's user belongs to. The kernel 
uses these IDs when determining whether or not to grant a 
process access to specific system resources such as files. 

When the kernel creates a process, it assigns the process a 
unique process ID number (PID). Other processes may 
reference the process by its PID. A process also has access to 
the PIDs of any processes it has created as well as the PID of 
its parent process. 

Traditionally, a process's states are maintained in its proc and user data 
structures. Chapter 4 describes the data structures used in OSF/l to 
maintain process states. 

2.4 Memory Management 

All executing processes require access to resident memory and to the CPU; 
before a program can be executed, its instructions and data, or some portion 
of them, must be copied from the program's executable file in secondary 
storage into the hardware's resident memory. When the kernel schedules the 
process for execution, the kernel initializes the CPU's registers so that the 
CPU can locate the program's instructions and data. The CPU then executes 
the process. 
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2.4.1 Memory Management Techniques 
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In OSF/1, as in most recent UNIX implementations, processes do not need 
to be fully loaded in resident memory to execute. OSF/1 implements a form 
of memory management known as demand paging. The kernel loads a 
process's instructions and data only when the process needs them. 
Instructions and data that are not currently needed may reside in secondary 
storage until they are needed. 

In early UNIX versions, processes had to be entirely resident in order to 
execute, and the operating system implemented a memory management 
policy that involved swapping processes in their entirety between secondary 
storage and resident memory. The computers that ran early UNIX systems 
had, by today's standards, very small resident memories. Because processes 
had to be fully resident to execute, a process could not be larger than the 
available physical memory. UNIX systems that support demand paging do 
not limit a process's size to the size of physical memory because a process 
does not need to be fully resident to execute. 

In OSF/1, resident memory is conceptualized as a linear continuum of 
physical address space that is divided into fixed-length units known as page 
frames. Resident memory can be thought of as an array of physical page 
frames, with each page frame having a page frame number. Any location in 
physical memory can be specified by a page frame number and an offset into 
the page frame. 

When the OSF/1 kernel initializes a process for execution, it does not load 
the entire process into resident memory. Instead, the kernel allows the 
process to begin executing and pages in the process's instructions and data 
on demand. When the CPU needs to access a particular instruction or data 
location that is not in resident memory, the kernel copies the appropriate 
page from secondary storage to one of the page frames in resident memory. 

In a demand paging system, a process's pages of instructions and data are 
usually scattered throughout physical memory; they are rarely, if ever, 
placed contiguously. When many processes are active, resident memory 
contains some number of pages for each process, with the pages scattered 
throughout the array of page frames in an arbitrary fashion. 

Managing the physical locations of a process's pages is the responsibility of 
the kernel, not the process. Like other UNIX systems, the OSF/l kernel uses 
memory mapping techniques to present processes with simple address 
spaces. In memory mapping, a process's address space contains logical 
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addresses, which do not correspond directly to physical locations in resident 
memory. The kernel, with support from the hardware, maps these logical 
addresses to physical locations by means of a memory map. 

In order to support memory mapped address spaces, the hardware must 
include a memory management unit (MMU), which uses a process's memory 
map to translate logical address references to their physical counterparts. In 
a memory mapped system, the CPU references instructions and data by 
presenting the MMU with logical addresses. The MMU translates each 
reference to a physical address, accesses the data, and presents it to the 
CPU. 

The kernel implements separate address spaces by providing each process 
with its own memory map. When the kernel schedules a process for 
execution, it loads the MMU's registers so that the MMU can find the 
process's memory map. This operation is strictly controlled by the kernel so 
that the kernel can prevent user-level processes from accessing memory 
maps that are not their own. The kernel also prevents processes from 
arbitrarily changing their memory maps to map to other processes' data. 

2.4.2 The Transparency of Memory Management 

The kernel performs memory management operations transparently; user 
processes execute without being aware that their data and instructions are 
being paged in from secondary storage. When the CPU references a virtual 
address that is not mapped to an address in resident memory, the reference 
generates a page fault exception, which forces the CPU to stop executing 
the user process and execute the kernel's page fault handler. The page fault 
handler allocates a new page frame, pages in the required data, and updates 
the process's memory map so that when the process references addresses 
corresponding to the page, the MMU will translate the references correctly. 

When the page fault handler has completed its operations, the kernel returns 
control to the user process. The CPU re-executes the instruction that 
generated the page fault and the process resumes execution without 
knowing that the pagein operation took place. 

An executing process may page in a large number of pages during its 
lifetime. As a process continues to execute, it may no longer need some of 
the pages it has paged in. If a process is active for a long time, the kernel 
may need to reclaim some of the process's page frames so that they can be 
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allocated to other processes. The kernel has a pageout daemon that reclaims 
page frames that are allocated to processes but are not being referenced any 
longer. 

The pageout daemon is a kernel process that executes when the number of 
unallocated page frames drops below a certain level. The pageout daemon 
finds page frames that have been allocated to processes but are not being 
actively used. 

If a given page frame has data on it that needs to be saved, the pageout 
daemon arranges for the data to be written to secondary storage; when the 
data has been written, the pageout daemon reclaims the page frame. If a 
page frame contains data that has not been modified since it was paged in, 
the daemon reclaims the page frame immediately. When the pageout 
daemon reclaims a page frame from a process, it updates the process's 
memory map so that it no longer refers to the page frame. 

Like the page fault handler, the pageout daemon performs its operations 
transparently; processes are unaware of its existence. If a process 
references instructions or data that are no longer in resident memory, the 
reference generates a page fault exception and the page fault handler brings 
the page back in. 

2.5 Process Context and Context-Switching 
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A CPU always executes instructions within the context of the current 
process. In general, a process's context is specified by its memory map and 
by its computational state. 

A process's computational state is specified by the contents of the CPU's 
registers as the CPU executes the process. The detailed characteristics of a 
CPU's registers are hardware-specific, but in general, CPUs include the 
following types of registers: 

Program Counter 
This register is the means by which the CPU finds the next 
instruction to execute. A CPU's behavior with respect to this 
register is hardware-dependent, but many CPUs increment this 
register at the time they are loading the current instruction so 
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that when the current instruction has been executed, the CPU 
can find and load the next instruction. 

Stack Management Registers 
The CPU uses these registers to locate and manipulate the 
process's stacks. In UNIX systems, a user process has two 
stacks: a user stack and a kernel stack. When a process 
executes in user mode, variables are stored on the user stack. 
When the process executes a system call, the system call's 
variables are stored on the kernel stack. Stack management is 
highly machine-dependent. The CPU must be able to 
determine which stack is currently active, and it must be able 
to locate variables on the stacks. 

General Registers 
These registers are used to store variables that the CPU needs 
to access quickly. Usually, the general registers hold operands 
that are being manipulated by the process's current state of 
execution. For example, if a process is executing a for loop 
that increments and tests a variable before looping, that 
variable is probably being stored in a general register. 

A process's computational state is highly dynamic. The program counter 
changes with each instruction, and the stack management registers change 
each time the process executes a system call or subroutine. 

Any of a number of events can interrupt a process's execution. When an 
interruption occurs, the kernel must save the process's computational state 
so that when the process resumes execution, it executes from the point of 
interruption. 

When the kernel schedules a new process for execution, it switches the 
CPU's context from the previous process to the new process. The kernel 
saves the first process's register state in memory, purges the CPU's registers 
and MMU, and then loads the new process's register state into the CPU. 
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2.6 The UNIX Kernel and Its Services 

It is common in discussions about UNIX to refer to the kernel as a separate 
entity that performs its operations independent of all user processes. For 
example, in a discussion about the memory management subsystem, it is 
often said that the kernel pages in data from the disk after allocating 
resident memory for the incoming data, and so on, as though the kernel 
performed these operations as a separate process or set of processes. 
Discussing the kernel using this convention is somewhat misleading 
because it implies that the kernel actively performs operations on its own 
initiative. 

In fact, the kernel is essentially passive; the execution of kernel code is 
driven by events that are external to the kernel. These events can be 
classified as follows: 

• A user process requests access to a system resource. 

• A peripheral device is ready to perform an 1/0 operation. 

• The hardware's clock interrupts the CPU's current state of execution, 
thereby causing the causing the kernel's clock interrupt handler to 
perform system management operations. 

2.6.1 System Calls 
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A user process makes requests to the kernel via the system call interface. 
The system call interface is the set of routines that processes can use to 
access and manipulate system resources. For example, a process can access 
a given file by issuing an open() system call, and can read data from and 
write data to the file via the read() and write() system calls. The system 
call interface is a user process's only means for explicitly accessing system 
resources. 

When a process executes a system call, it changes its execution mode from 
user mode to kernel mode. A process in user mode has access only to its 
instructions and data; it cannot access kernel instructions and data. A 
process in kernel mode can access kernel instructions and data. When a 
process enters kernel mode via a system call, it executes the kernel code 
that implements the system call. In other words, it has entered the kernel. 
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The kernel does not execute the system call's code; the process executes the 
code in kernel mode. 

2.6.2 Program Exceptions 

A program exception is an event caused by the currently executing process. 
Two types of program exceptions, page fault exceptions and exceptions 
caused by the issuing of system calls, have already been discussed. 

A process may also generate exceptions that indicate programming errors. 
A process will generate an exception if it does any of the following: 

• Divides by zero 

• References an invalid address 

• Executes a system call that does not exist 

When a process generates a programming error exception, the CPU executes 
the kernel's trap handler. The trap handler diagnoses the problem and posts 
a signal, or software interrupt, to the process. The signal may force the 
process to terminate. 

2.6.3 Peripheral Device Activity 

Many system calls are requests for access to system resources associated 
with peripheral devices. For example, the open(), read(), and write() 
system calls are often requests for access to files on disk. 

Each peripheral device that is configured into the system has a device driver 
that provides an interface between the kernel and the peripheral device. A 
typical UNIX kernel has separate device drivers for the system's disk and 
tape drives, terminals and printers, and network hardware such as Ethernet 
cards. 

When a process executes a system call that requests access to a resource 
managed by a peripheral device, the kernel code executing the request 
accesses the system resource by invoking the appropriate device driver 
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routine. For example, when a process calls open() to get access to a file on 
disk, the kernel invokes code within the disk drive's device driver to enable 
the disk for operation. 

Resources that are managed by peripheral devices are often not 
instantaneously available. For example, before a disk drive's controller can 
read data from the disk, it must wait for the data to spin under the disk 
drive's read head. The kernel cannot reliably predict when the disk drive 
controller will supply the requested data, so typically, when a process 
requests an open( ), read(), or write(), the kernel code puts the process to 
sleep so that other processes can be executed while the first process waits 
for the resource to become available. 

A peripheral device that is ready to furnish a resource must be able to 
inform the system that the resource is available. This is done through the 
device interrupt mechanism. For example, when a disk drive controller is 
ready to provide requested data, it posts an interrupt to the CPU. This 
interrupt forces the CPU to stop executing its current set of instructions and 
execute the disk drive's interrupt handler instead. 

An interrupt handler is that part of a peripheral's device driver that manages 
the transfer of data between the kernel and the peripheral device. In the 
example, the disk drive's interrupt handler transfers the data from the disk 
drive to the kernel and wakes up the process that is waiting for the data. 
When the interrupt handler completes its execution, the CPU resumes 
executing the code it was executing before the interruption. 

When the CPU executes interrupt handler code, it is in a mode of execution 
that is called an interrupt level. 

2.6.4 The Hardware Clock 

The hardware's clock interrupts the CPU's current mode of execution many 
times a second. The frequency of these interruptions is hardware­
dependent; 100 times per second is a typical rate. The kernel handles each 
clock interrupt by invoking the clock interrupt handler. This handler in 
effect drives the system by performing operations crucial to the system's 
scheduler. It is in this handler that the scheduling subsystem determines 
whether or not it is time to schedule a new process for execution. 
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As it manages resident memory so that processes share the resource 
equitably, the kernel manages processes' access to the CPU, using a 
mechanism called time slicing. When the kernel switches context from one 
process to another, it assigns the new process a time-slice, or quantum of 
time, in which to execute. As the process executes, the kernel decrements 
the quantum. The kernel decrements the quantum with each click from the 
hardware's clock. The process may relinquish the CPU at any point within 
its quantum. The process may finish execution and exit, or, if it needs 
access to resources that are not immediately available (for example, data 
from a file), the process may put itself to sleep to wait for the resource. If 
the process continues to execute until its quantum expires, the kernel 
attempts to schedule another process for execution. 

2.6.5 Kernel Daemons 

There are a number of system operations that the kernel must actively 
perform, such as the replacement of pages in resident memory. The kernel's 
pageout, swapout, and swapin daemons perform page replacement 
operations as needed. Typically these daemons, which are independent 
threads of control that execute exclusively in kernel mode, sleep until they 
are needed. For example, if a process needs to fault in a page of data and 
there are few pages available for allocation, the page fault will awaken the 
pageout daemon, which will then pageout data to free pages that can then be 
reallocated. 
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Chapter 3 

Overview of the Mach Technology in 
OSF/1 

This chapter discusses the core services component of the OSF/1 kernel. 
This component is derived from Carnegie-Mellon University's Mach 
technology. The core services component includes the kernel's scheduler 
and memory management subsystems, both of which provide functionality 
not generally associated with earlier UNIX systems. 

The Mach technology implements a small set of primitive operating system 
objects, including tasks, threads, and memory objects. These objects can be 
used to support many different operating system types. In OSF/l, they are 
used to implement UNIX. 

This chapter provides an overview of the Mach technology and the objects 
that technology provides. Chapters 4, 5, 6, and 7 describe how that 
technology is used within the OSF/1 operating system. 
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3.1 Tasks and Threads 
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A traditional UNIX process is a single entity that encapsulates a set of 
system resources (memory resources, open files, and so on) and a single 
thread of control that executes in the context of the set of system resources. 
In Mach, the process abstraction is split into two separate abstractions: the 
task and the thread. A task is a set of system resources that includes a 
protected virtual address space. A task is not an executable entity; it is 
merely an environment in which one or more threads can execute. 
However, this book frequently refers to tasks as though they are executable 
entities. This is merely a convention. 

A thread is a unit of computation that executes within the context of a task. 
It has access to all of the system resources assigned to the task. If the task 
contains multiple threads, all such threads share the task's resources. 

Each thread has an execution state and a computation state. A thread's 
execution state specifies whether or not the thread is executing or can be 
scheduled for execution. 

A thread's computational state specifies its hardware context, including its 
program counter, its stack pointers, and the contents of hardware registers. 
When the thread is executing, its computation state is maintained in the 
CPU's hardware registers. When the thread is not executing, this state 
resides in the thread's process control block. 

A thread's execution and computational state are private. In a 
multithreaded task, a thread's execution state may differ from the execution 
state of the other threads, and its computational state usually differs from 
that of the other threads. A traditional UNIX kernel schedules processes; in 
Mach and in OSF/1, the kernel schedules threads. Chapter 5 describes the 
scheduling subsystem in detail. 

Tasks and threads are low-level objects. Although the Mach kernel (and 
OSF/1) provide a set of system calls that can be used to create and 
manipulate tasks and threads, user-level application developers generally 
do not work directly with these objects. 
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Tasks and threads can be used to support different programming models. 
These models include: 

• Non-UNIX parallel programs 

• Traditional UNIX processes, implemented as single-threaded tasks 

• UNIX processes that contain multiple threads 

In OSF/l, tasks and threads are used to implement both single-threaded and 
multi-threaded UNIX processes. 

3.1.1 The task Data Structure 

The kernel maintains a task data structure for each currently active task. 
This data structure includes the following elements: 

map A pointer to the task's virtual address map. The kernel uses 
this pointer to access the address map during page fault 
handling. Address maps are discussed further in Section 3.4.1. 

thread list A list that contains the threads associated with the task. 

ipc _translations 
Specifies the task's port name space. 

3.1.2 The thread Data Structure 

The kernel maintains a thread data structure for each currently active 
thread. This data structure includes the following elements: 

pcb A pointer to the thread's process control block. 

state Specifies the thread's execution state. 

The data structure also maintains information used by the scheduling 
subsystem to schedule the thread for execution. 
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3.2 The Mach Interprocess Communication Subsystem 

Mach implements a message-passing facility that allows tasks to 
communicate with one another. This facility is referred to as the Mach 
Interprocess Communication Subsystem (Mach /PC). (Actually, the facility 
implements communication between tasks, not processes, but the term 
"IPC" persists for historical reasons.) 

Typically, the IPC subsystem is used to pass data between separate tasks, 
but it may also be used to pass data between threads within the same task. 
All IPC operations are managed and secured by the kernel; a task cannot 
send data to or receive data from another task unless the task has acquired 
the right to do so. 

The IPC facility is based on two abstractions: the port and the message. The 
message contains the data being passed, and the port is the means of 
transferring the message. 

3.2.1 Ports 
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A port is a communications channel that is protected by the kernel. A port 
is implemented as a message queue within the kernel's address space. 
When a task sends a message to a port, the kernel copies the message into 
the kernel's address space and places the message at the end of the port's 
message queue. When a task attempts to receive a message, the kernel 
removes the message from the head of the port's queue and copies it out to 
the task's address space. 

Each port has a receiving task, which receives messages sent to the port. 
Only one task can receive messages from a given port at any time. A port's 
receiving task can be changed, but the kernel never allows any port to have 
multiple receiving tasks. A port can receive messages from one or more 
tasks. 

A task can create a new port by issuing a call to the port_ allocate() system 
call. The kernel creates the port by allocating a new message queue within 
its address space. 
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3.2.1.1 Port Rights 

A task can use a port only if it has port rights to the port. A task can have 
send rights, receive rights, or both rights simultaneously. 

Each task has a private area in which the kernel stores the names of the ports 
the task has rights to. This private area is the task's port name space. Port 
names are integers. When a task acquires a new port right, the kernel inserts 
a name for the right in the task's port name space, giving the right a name 
that is currently unused. 

Port names are local to individual tasks. Other tasks may reference the 
same port using different names. Figure 3-1 shows how port names 
correspond to the actual port data structures that reside in the kernel's 
address space. Tasks A and B communicate with each other through two 
ports. A receives messages from B on the port corresponding to A's local 
name 8; B sends messages to this port using its local name 46. A sends 
messages to B on the port corresponding to A's local name 17; B receives 
the messages from this port using the local name 22. 

Figure 3-1. Tasks Sharing Access to Ports Using Private Port Rights 
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3.2.1.2 Acquiring Port Rights 

A task acquires port rights as follows: 

• It inherits them from its parent task. 

• It receives them in messages sent from other tasks. 

• It receives them from the kernel upon issuing calls to port_ allocate(). 

Ports are used to represent system objects such as tasks, threads, and 
memory objects. When a task creates of one of these objects (by issuing a 
system call), the kernel gives the task access to the object by providing the 
task with rights to the port representing the object. For example, if a task 
issues a call to thread_ create( ) to create a new thread, the kernel creates 
the new thread, creates a port to represent the new thread, and gives the task 
access to the new thread by providing the task with rights to the thread's 
port. 

3.2.2 Messages 
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Data is passed through ports in messages. The amount of data passed in a 
message is arbitrary; a message may transfer a byte of data, or it may pass a 
task's entire address space. Messages can also be used to transfer port rights 
between tasks. 

3.2.2.1 Out-of-Line Data and Lazy Evaluation 

Historically, transferring large amounts of data between processes has been 
an expensive operation because it involves physically copying the data from 
one address space to another. In Mach, however, such operations are 
inexpensive because the data is virtually copied, not physically copied. 
When out-of-line data is passed between tasks, the kernel allows both tasks 
to map the data into their address spaces. The data is mapped copy-on­
write; if either task attempts to write the data, the kernel copies the portion 
of data being written to a new page frame before allowing the write 
operation to proceed. 
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Allowing tasks to share mappings to out-of-line data is one aspect of Mach's 
philosophy of lazy evaluation. This philosophy can be summed up as 
follows: defer performing an operation until it absolutely must be performed 
in the hopes that it may never need to be performed. With respect to passing 
data out-of-line, the kernel defers physically copying the data until one of 
the tasks writes the data. If neither task writes the data, it never needs to be 
copied. 

The IPC subsystem passes large amounts of data efficiently because it is 
tightly integrated with the virtual memory subsystem. Chapter 6 describes 
in more detail how the virtual memory subsystem implements the copy-on­
write mechanism. 

3.2.2.2 The Message-Passing Primitives 

The common IPC operations are as follows: 

• A task sends a message to another task without expecting a reply. 

• A task sends a message to another task expecting a reply, but does not 
wait for the reply. The task receives the reply asynchronously. 

• A task sends a message to a task and waits for a reply before continuing 
with its execution. It receives the reply synchronously. 

• A task receives a message from another task. 

The Mach kernel exports a set of interfaces that allows tasks to initiate these 
operations. A task inititiates either of the first two operations by calling the 
msg_send() primitive. If the task expects a reply, it uses msg_receive() to 
obtain the reply. A task can use this call at any time to receive messages 
that are queued on the port. A task inititiates synchronous communication 
by calling msg_rpc( ). 

3-7 



Design of the OSF/1 Operating System 

3.2.3 Ports as Objects 

A server task can use ports to represent the objects it manages, and a client 
task can invoke an operation on an object by sending a message to the port 
representing the object. Interactions of this type are referred to as remote 
procedure calls (RPCs ). 

The Mach kernel is itself a server that creates and manages objects such as 
tasks and threads. Each of these objects is represented by a port; the system 
calls that manipulate them are actually remote procedure calls. 

Because they are created by the kernel and reside within the kernel's 
address space, ports are a secure mechanism for providing object references. 
When a server task creates an object that is to be represented by a port, it 
must ask the kernel to create the port. When creating the port, the kernel 
gives receive rights only to the server. The server then controls access to 
the port. If a client task wants access to the object, it must send a request to 
the server. If the server chooses to honor the request, it forwards send rights 
by passing a message back to the client. 

3.3 Memory Objects 
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A memory object is an entity that represents a range of virtual pages. A 
task's address space is implemented by an address map that maps ranges of 
the address space to specific memory objects. For example, a task that 
constitutes a UNIX process maps three memory objects into its address 
space: one that represents the pages containing the text and initialized data 
from the executable file, one that represents the zero-fill pages containing 
uninitialized data and heap, and one that represents the zero-fill pages 
containing the user stack. 

Until recently, UNIX systems did not allow processes to map arbitrary 
objects into their address spaces, and those UNIX systems that do allow 
such mapping operations restrict them to kernel-defined objects such as 
files. The memory object abstraction allows developers to implement 
paging managers that manage application-specific memory objects. These 
objects may represent files, shared libraries, and databases. 
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Memory objects are managed by separate tasks called memory managers or 
paging managers. A paging manager is responsible for performing pagein 
and pageout operations on the memory objects it manages. 

Each memory object is represented by a port, and the kernel invokes paging 
operations on the memory object by sending a message to the paging 
manager on the memory object's port. For example, suppose that a task 
attempts to execute an instruction whose page is not in resident memory. 
The kernel's page fault handler requests pagein of the text by sending a 
message to the paging manager responsible for the task's text memory 
object. 

3.4 Mach Virtual Memory Management 

The Mach virtual memory management system provides advanced 
functionality such as copy-on-write operations, mapping of files and 
application-defined objects, and support for large, sparsely filled virtual 
address spaces. It is also easy to port. 

In Mach, each task is provided with a protected virtual address space that is 
limited in size only by the addressing capabilities of the underlying memory 
management unit (MMU). For example, a MIPS R3000 processor supports 
user address spaces two gigabytes in length. In the MIPS R3000 
architecture, a task's address space is that length. 

A task's address space is implemented via a hierarchy of machine­
independent data structures. A task's address space contains regions of 
allocated memory. An address map maps these regions to virtual memory 
objects (VM objects). (Section 3.4.1 describes address maps in detail.) 
Figure 3-2 depicts a sample virtual address space and the address map and 
VM objects that implement the address space. 
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Figure 3-2. Implementation of a Mach Virtual Address Space 
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3.4.1 Task Address Maps 
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A task's address map is made up of a linked list of address map entries, each 
of which maps a range of virtual addresses to a VM object (or in some 
instances, to a portion of a VM object). The address map maintains address 
map entries only for allocated regions of virtual memory; unallocated 
regions do not have address map entries. In this way, the address map 
supports the compact representation of sparsely filled address spaces. 
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A task can map memory objects at arbitrary locations within its address 
space. A task may use its address space compactly; that is, mapping its 
memory objects to contiguous ranges of virtual memory. Traditional UNIX 
processes use compact virtual address spaces. Conversely, a task may use 
its address space sparsely by mapping its memory objects at widely 
separated locations in the address space. 

Large, sparsely filled address spaces are useful in the implementation of 
multithreaded tasks. Each thread requires its own user stack, and the task 
can prevent user stacks from overlapping one another by placing them at 
widely separate locations throughout the virtual address space. 

In OSF/l, the program loader allows processes to map shared libraries into 
their address spaces. This is another application of large, sparsely filled 
address spaces. See Chapter 8 for a discussion of the loader. 

3.4.2 Virtual Memory Objects and Memory Objects 

The kernel keeps track of the physical location of a region's pages with the 
region's VM object; a region's VM object represents the set of pages that are 
mapped to the region. A VM object allows the kernel to determine whether 
or not a given page is resident in memory. When a task generates a page 
fault trying to reference a nonresident page, the kernel uses the underlying 
VM object to locate the missing page in secondary storage. 

A memory object represents a region's pages as they exist in secondary 
storage. For example, if a region's pages contain executable text, the 
associated memory object is the file on disk that contains the text. Memory 
objects are so named because the kernel pages in data from them in response 
to page faults. A VM object references its memory object through an IPC 
port called the pager port. See Figure 3-3. 
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Figure 3-3. A VM Object and Its Memory Object 
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It is important to distinguish between VM objects and memory objects. The 
VM object represents pages that exist in main memory and in secondary 
storage. The memory object represents pages that exist only in secondary 
storage. For example, when a task generates a page fault within a region of 
its address space, the page fault handler identifies the VM object that is 
mapped to the region and initiates a pagein operation by sending a message 
on the VM object's pager port. 

Multiple tasks can map the same VM object into their respective virtual 
address spaces. For example, consider two separate but concurrent tasks 
that execute the same program. They both execute from the same text, and 
the set of pages containing this text is managed by a single VM object. 
Consequently, both tasks map this object into their address spaces. 

3.4.3 VM Object Types 
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VM objects are of two types. External VM objects represent permanent 
data, and internal VM objects represent temporary data. Permanent data 
exists in secondary storage on a persistent basis. Temporary data is data that 
is created by a task in memory and does not persist after the task is 
terminated. 

For example, consider the VM objects that are mapped to a task that 
implements a standard UNIX process. The text VM object represents a set 
of pages that are stored in a program's executable file. The data in this file is 
permanent; it will remain in secondary storage after the process's thread 
completes execution and disappears. VM objects that represent permanent 
data are referred to as external VM objects because they contain data that 
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has its origin externally, in permanent secondary storage. Unlike the text 
VM object, the stack VM object represents data that is temporary and does 
not have a permanent file in secondary storage. When the process 
disappears, the data in its stack will disappear as well. VM objects that 
represent temporary data are referred to as internal VM objects because they 
contain data that is generated internally by the thread or threads executing 
in the process. 

3.4.4 Memory Objects and Memory Managers 

There are two memory object types: user-initiated and system-initiated. 

User-initiated memory objects are created at the request of, or for the benefit 
of, user-level tasks. The text memory object is a typical example of this 
type. A task's executable text is stored in an executable file somewhere in 
the file system. The file system has an associated memory manager to 
handle memory requests to and from the files it maintains. When the system 
sets up the task's virtual address space, it asks this memory manager to find 
the required executable file and create an associated memory object. The 
memory manager does so and returns a port in a reply message that can be 
used to access the new memory object (the memory object port). The kernel 
creates a VM object to represent the text data and inserts the memory object 
port into the VM object's data structure. The system can then use the VM 
object to access the pages of the object file through the saved port. 

System-initiated memory objects are created in response to requests by the 
VM system. They correspond to internal VM objects and are created and 
managed by the system's default pager. The kernel creates these memory 
objects only when the VM system needs to move temporary data out of main 
memory to free up resources. In OSF/1, the kernel's default pager is 
referred to as the vnode pager. (See Chapter 7, Section 7.2 for more 
information on the vnode pager). 

The default pager also serves as the kernel's backup paging mechanism. 
Because external memory managers execute as separate tasks in user space, 
the kernel cannot depend upon a given memory manager to page out data on 
a timely basis. If the kernel must free up a page containing data and the 
memory manager does not respond quickly enough, the kernel sends a 
pageout request to the default pager. The default pager always frees pages in 
a timely manner. 
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3.4.5 Management of Resident Pages 

In Mach, the machine's physical memory is managed as an array of fixed­
sized page frames. The kernel does not directly manipulate page frames. 
Instead, the kernel maps logical pages onto the page frames and manages 
resident memory by manipulating the logical pages. The logical page 
abstraction allows the kernel to manage resident memory in a machine­
independent fashion. 

The size of a logical page is configuration-dependent; it either matches the 
hardware's page frame size or is a power-of-two multiple of that size. In the 
example depicted in Figure 3-4, the hardware's page frame size is 1 K and 
the logical page size is 4 K. When a virtual page is cached in resident 
memory, it requires four page frames. 

Figure 3-4. The Mapping of Logical Page to Page Frames 
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The logical pages are mapped to the page frames when the kernel is 
initialized. At that time, the kernel determines how piany logical pages will 
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be required, and then allocates a vm _page data structure for each logical 
page. The kernel uses these structures to manage the state of logical pages. 

The kernel maintains three paging queues that it uses to manage page 
replacement operations: 

free queue 

active queue 

Contains vm _page structures whose logical pages are 
currently available for allocation; when the system requires a 
new logical page for incoming data, it removes the first 
vm _page on this queue. 

Contains vm _page structures whose logical pages contain 
data that is actively being used by one or more tasks. When 
the kernel allocates a logical page for a pagein operation, it 
places the page's vm _page at the end of this queue. 

inactive queue 
Contains vm _page structures that have recently been active 
but are not currently in use. If a task needs to access the data 
contained in an inactive page, the system transfers the page's 
vm _page back to the active queue. 

There are circumstances in which a logical page is not available for paging 
operations. Usually, such a page contains data or text that the kernel must 
have immediate access to. Pages of this type are referred to as wired pages. 
When the kernel wires a page into memory, it is removed from the paging 
queues and is not subject to the page replacement operations. 

3.4.5.1 The Resident Page Table 

In addition to the paging queues, the kernel maintains a resident page table 
that keeps track of all virtual pages that are currently cached in resident 
memory. When a virtual page is paged in, the kernel places the 
corresponding vm _page structure in this table. 

The table, also referred to as the virtual-to-physical table, is implemented as 
a hash table. The hash function is based on the object/offset value of the 
virtual page, where object specifies the virtual page's VM object and offset 
specifies the virtual page's offset within the object. 
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3.4.6 Physical Maps 
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In traditional UNIX, the implementation of virtual address spaces has been, 
to greater and lesser degrees, tied to the data structures used by the 
hardware's MMU to perform address translation. For example, 4.3BSD was 
originally implemented on the VAX; a process's virtual address space was 
implemented directly by VAX-specific page tables and all of a process's 
virtual-to-physical translations were maintained in its page tables. The 
implementation of virtual memory operations such as those performed by 
the fork(), exec(), and sbrk() interfaces, and the page fault handler was 
machine-dependent because such operations involved the direct 
manipulation of page table data structures. Porting 4.3BSD to non-VAX 
platforms required reimplementing process address spaces and the 
operations performed on them. 

In Mach, the implementation of virtual memory is cleanly separated into 
machine-independent and machine-dependent parts. The separation is based 
on the assumption that all MMUs provide a minimum level of functionality. 
This functionality includes support for separate virtual address spaces 
composed of fixed-length pages, with each address space described by one 
or more memory-mapping data structures (page tables). Each page in an 
address space can be mapped and protected separately. 

In Mach, the hardware-dependent memory mapping data structures are 
represented by the task's physical map (pmap). The pmap data structure 
points to the MMD-specific data structures. 

Because all virtual-to-physical translations are maintained in the machine­
independent data structures, a task's pmap serves as a cache of those 
translations. The kernel caches a given translation in the pmap only when 
the translation is required. The kernel can discard pmap translations at any 
time because they can always be restored from the task's address map and 
memory objects. This gives the kernel great flexibility in managing that 
portion of its address space that it uses to maintain pmaps. Figure 3-5 shows 
the relationship between the task's address map and VM object data 
structures, and the pmap data structure. 
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Figure 3-5. Relationship Between an Address Map and Its Pmap 
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The kernel manipulates pmaps only when it is absolutely necessary. For 
example, when a task maps a new memory object into its address space, the 
kernel does not update the task's pmap until the task actually attempts to 
reference the memory object's data. The deferring of pmap operations until 
such operations are necessary is in keeping with Mach's philosophy of lazy 
evaluation. 

Most VM operations are implemented with machine-independent code. 
When the machine-independent VM performs an operation that must be 
reflected in a task's pmap, it issues a call through the pmap interface to the 
kernel's pmap module. The pmap interface specifies the set of pmap 
management operations that are required by the machine-independent VM. 
The pmap module implements these interfaces. The pmap module contains 
all of the VM's machine-dependent code. Porting the VM system requires 
little more than reimplementing the pmap module for the new hardware 
platform. 

3.4. 7 Mach Virtual Memory Interfaces 

The native Mach kernel interface includes a set of primitives that allow 
tasks to manipulate their virtual address spaces. These interfaces may or 
may not be available on a given OSF/l system; their availablity is 
configuration-dependent. 
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3.4.7.1 Inheritance of Regions 

Like UNIX processes, tasks inherit their virtual address spaces from their 
parent tasks. However, UNIX processes cannot control how their address 
spaces are inherited; a process always inherits all of its parent's address 
space. Mach allows tasks to control the inheritance of address space. A 
task can pass all or some or none of its address space to its children tasks. 

Child tasks can inherit copies of regions, or can actually share regions with 
their parents. If a child task inherits a copied region, the parent task will not 
see any of the child's modifications to the region. If the region is shared 
between the parent and child, both tasks will see modifications made by the 
other. 

3 .4. 7 .2 Protection of Regions 

A task can allow read, write, and execute access to any of its allocated 
regions. The protection attribute has two values: the current value specifies 
the region's current protection level, and the maximum value specifies the 
region's maximum protection level. The current protection value can never 
exceed the level specified by the maximum protection value. 

3.4.7.3 Allocation of Virtual Memory 

Mach provides two interfaces that a task can use to allocate new regions in 
its address space. A task can use the vm _allocate() primitive to allocate 
zero-filled regions of virtual memory, and the vm_map() primitive to map a 
region of supplied data (memory object) into the task's address space. 

The vm_allocate() routine maps internal VM objects into the virtual 
address space, while the vm _map() routine maps external VM objects into 
the address space. Before a task can map a memory object using 
vm_map(), it must have acquired access to the object from the object's 
memory manager. Tasks may remove regions from their address spaces by 
using the vm_deallocate() primitive. 
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3.4.7.4 Region Management Interfaces 

When a task allocates a region of its address space, the VM system sets 
default protection and inheritance values. The task can change these values 
by calling the vm _protect() and vm _inheritance() primitives, 
respectively. 

The vm _region() primitive provides a means by which a task can request 
information about allocated regions in another task's address space. This 
information includes the following: 

• The region's current and maximum protection values 

• The region's inheritance value 

A task must have access to the port representing the other task to use the 
vm _region() primitive. 

The VM interface also provides primitives that allow a task to read, write, 
and copy from another task's address space. Assuming that the target task is 
accessible and the region's protection value is set appropriately, a task can 
use the vm _read() primitive to read from the target region, the vm_ write() 
primitive to write to the target region, and the vm _copy() primitive to copy 
the target region. 

3.4.8 Memory Managers and the External Memory Management 
Interface 

In traditional UNIX systems, the virtual memory management system 
allows tasks to map only system-defined objects, such as files, into their 
address spaces. The code that implements the creation and management of 
such objects is embedded in the kernel. Consequently, extension of memory 
mapping functionality requires developers to modify, rebuild, and retest the 
kernel. 

In OSF/l, the memory mechanism is implemented through memory 
managers that are not embedded in the kernel; any user-level application 
can use the mechanism of the memory object to provide data to client 
programs by allowing those clients to map the data directly into their 
address spaces. The flexibility of OSF/1 's VM system supports the 
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development of complex virtual memory applications such as transaction 
and data management systems. These applications can be developed and 
tested without modifying and rebuilding the kernel. 

Mach defines an external memory management interface (EMMI) that 
allows the kernel and memory managers to interact with one another in the 
management of virtual memory. 

The EMMI is actually two sets of routines: those implemented by memory 
managers to be used by the kernel, and those implemented by the kernel to 
be used by the memory managers. 

Each memory manager implements a memory object interface, a set of 
routines that the kernel uses to issue requests to memory managers. For 
example, the kernel pages in a memory object's data by issuing a call to the 
memory manager's memory_object_data_request() routine; the kernel 
pages out out a memory object's data using the memory manager's 
memory_ object_ data_ write() routine. 

The kernel implements the cache management interface, which is the set of 
routines that memory managers use to handle pagein and pageout requests 
from the kernel and to control access to pages that are cached in resident 
memory. For example, a memory manager that allows separate hosts to 
share read/write access to its objects can serialize modifications to an object 
by making the pages cached in one kernel read-only while a task on another 
machine writes the pages. 

For a more detailed discussion of the external memory management 
interface, see Chapter 7, Section 7.7.2. 



Chapter 4 

Processes: Structure and Management 

OSF/1 provides an execution environment for UNIX processes that 
implements all of the features provided by traditional UNIX systems. These 
features include the well-known process management system calls (such as 
fork(), exec(), exit() and wait()), an implementation of the signal facility, 
and an implementation of the job control facilities. 

Providing support for multithreaded processes and making the traditional 
UNIX facilities function properly in multiprocessor environments has had a 
profound impact on the design and implementation of OSF/1 's execution 
environment. 

4.1 Process States and Data Structures 

Traditional UNIX maintains a process's state using a set of data structures 
that includes the following: 

proc Structure 
Encapsulates state that must remain in resident memory at all 
times. For example, a process's scheduling state is maintained 

4-1 



Design of the OSF/1 Operating System 

4-2 

in the proc structure because the scheduler needs to update 
this state whether or not the process itself is resident. 

user Structure 
Can be swapped out to secondary storage and encapsulates 
state that needs to be resident only when the process is 
executing. For example, a process's file descriptor table, 
which the process uses to access the files it has opened, is 
maintained in the user structure because it is not needed when 
the process is swapped out. 

Memory Map Structure 
Implements the process's virtual address space. 

The proc structure contains a pointer to the process's memory map and the 
user structure contains a pointer to the proc structure. 

The structure of an OSF/l process differs significantly from its traditional 
counterpart. In OSF/l, a process consists of a task and one or more threads; 
consequently, much of a process's state is maintained in its task and thread 
data structures. The user structure has been changed significantly in OSF/l; 
it has been split into three separate structures: the utask structure, the 
uthread structure, and the np_uthread structure. 

Figure 4-1 illustrates a process as implemented in OSF/l. In this example, 
the process has two threads and so has two thread data structures. As shown 
in the figure, the task structure contains pointers to the process's address 
map and the thread data structure. The task structure also contains a pointer 
to the utask data structure, while the thread structure contains pointers to 
the utask, uthread, and np _ uthread structures. The proc structure 
contains pointers to the task and utask structures. 
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Figure 4-1. Structure of a Process in OSF/1 
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4.1.1 The proc Structure 

In OSF/1, much of the state contained in the traditional UNIX proc 
structure is maintained in the process's task and thread structures. For 
example, a traditional UNIX kernel accesses a process's memory map 
through the proc structure, while the OSF/1 kernel accesses a process's 
memory map through the task structure. In traditional UNIX, a process's 
scheduling state is maintained in the proc structure, while this is not the 
case in OSF/1. Because a process may have more than one thread of 
control, it may have more than one schedulable entity. The OSF/1 kernel 
schedules threads, not processes; and so a process does not have scheduling 
state, its threads do. Each thread's scheduling state is maintained in the 
thread's data structure. 
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The OSF/1 proc structure contains the following state information: 

• The process's identifiers, including its process ID number and the parent 
process's ID number, and its effective and real user and group ID 
numbers. 

• The pointers to the proc structures associated with the process's parent 
and sibling processes. 

• Some of the process's signal state. Signals are discussed in Section 4.4. 

4.1.2 The user Structure 
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In OSF/1, a process's executable entity is its thread, and its system resource 
entity is its task. To support the division of the process abstraction into the 
task abstraction and the thread abstraction, OSF/1 divides the user structure 
into three separate structures: the utask structure, the uthread structure, 
and the np _ uthread structure. The utask structure maintains state that is 
task-speci fie, while the uthread and np _ uthread structures maintain state 
that is thread-specific. 

If a process contains multiple threads instead of the standard single thread, 
the traditional user structure contains state that should be shared among the 
threads (for example, the file descriptor table) as well as state that should be 
private to each thread (for example, the state of a thread's kernel stack). In 
OSF/1, however, the utask structure is used to manage the state of shared 
resources, and the uthread structure is used to manage the state of private 
resources. Each process has a single utask structure and as many uthread 
structures as there are threads in the process. If the process is a standard 
one, it contains one thread and, therefore, one uthread structure. 
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4.1.2.1 The utask Structure 

The utask structure maintains those fields of the traditional user structure 
that are related to system resources. This includes the file descriptor table, 
the process's file creation mask, and any environment variables the process 
might have inherited or set. The utask structure also specifies the sizes and 
starting addresses of the process's regions of virtual memory, and includes 
fields used to manage process-specific signals. OSF/1 's implementation of 
signals is discussed in Section 4.4.4. 

4.1.2.2 The uthread and np_uthread Structures 

The uthread and np _ uthread structures maintain states that are thread­
specific. The uthread structure includes the directory search file name 
cache. The np _ uthread structure includes fields used to manage signals 
related to program exceptions (see Section 4.4.6 for a full discussion). The 
difference between the structures is that the state maintained in the uthread 
structure may be paged out, while the state maintained in the np _ uthread 
structure must remain resident. 

4.2 Allocation of proc Structures 

In contrast to traditional UNIX systems, which statically allocate the 
system's supply of proc structures during system initialization, OSF/1 
minimizes the amount of memory that is statically allocated for process 
management by allocating proc structures on demand. The kernel statically 
allocates a table of pointers to proc structures, but the structures themselves 
are allocated dynamically. This scheme allows processes to be found by 
index operations into a static table, while also providing memory 
requirements that scale well as the number of active processes rises. 
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4.3 The Process Management System Calls and 
Multithreaded Behavior 
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Multithreaded processes have notable implications for the standard process 
management system calls fork(), exec(), exit(), and wait(). 

For example, when a thread within a multithreaded process executes a call 
to fork(), it could duplicate all threads in the parent process or just the 
thread that issued the system call. In OSF/l, fork() duplicates only the 
calling thread. 

Another issue that must be addressed with respect to multithreaded 
processes has to do with the synchronization of process management calls. 
For example, it is possible that one thread may call fork() at the same time 

1 that another thread is terminating the process with a call to exit() or 
overwriting the process's address space with a call to exec(). To preserve 
the integrity of the process and ensure consistent behavior with respect to 
the process management calls, OSF/1 provides a mechanism that allows the 
system calls to synchronize with one another. This mechanism is 
implemented through fields in the proc data structure that are used to record 
calls to exit() and calls to fork(). 

When a thread calls fork(), the fork() system call checks to see if another 
thread has already called exit(). If exit() has been called, fork() suspends 
the current thread to wait for the process to be terminated. 

If another thread has not called exit(), fork() can proceed with its 
operation. Before it does so, it increments a field in the proc structure to 
record that a fork() operation is underway. The exit() and exec() system 
calls check this field to synchronize their operations with fork() operations; 
neither exit() or exec() are allowed to proceed until all current fork() 
operations are completed. 

The wait() system call is used by a parent process to wait for a child process 
to exit. OSF/l 's implementation of this system call allows only one thread 
in a parent process to wait for a child to exit. If a thread issues a call to 
wait() on a child that is already being waited on, the call will fail. 
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4.4 The Signal Facility 

The signal facility is one of the most complicated features of the UNIX 
system. Originally a mechanism for terminating misbehaving processes, the 
signal facility, while retaining its original functionality, has evolved into a 
somewhat primitive medium for interprocess communication and process 
execution management. 

For example, the job control facility uses the signal facility to allow users to 
switch which process or group of processes has access to the terminal. A 
user can suspend the execution of the process or process group that is 
executing in the foreground by entering the Suspend character (commonly 
<Ctrl-Z>) from the keyboard, and resume the suspended "job" at some later 
time by entering the fg command at the shell. Entering a Suspend character 
sends a SUSPEND signal to the job; entering the fg command causes the 
shell to send a CONTINUE signal to the job. 

A process may receive a signal by generating a program exception (dividing 
by zero, or referencing an invalid address), or it may receive a signal from 
an external source (from another process, for example, or from the terminal 
when a user enters the Kill character or the Suspend character). Signals 
caused by exceptions are called synchronous signals; signals originating 
externally are called asynchronous signals. 

Included among the traditional set of signals are the following: 

SIGSEGV The process generated a segmentation violation exception. 

SIG ILL The process attempted to execute an illegal instruction. 

SIGBUS The process generated a bus error exception. 

SIGHUP The terminal line associated with the process has been hung 
up. 

SIGALRM A timer that was set by the process has expired. 

SIGSEGV, SIGILL, and SIGBUS are synchronous signals; SIGHUP and 
SIGALRM are asynchronous signals. 

Processes can post signals to one another with the kill() system call. For 
example, the following line of code sends a hangup signal to the process 
specified by pid: 

kill(pid, SIGHUP); 
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Unless the target process (the process specified by pid) has installed a signal 
handler (see Section 4.4.2.2), the process will terminate when it receives the 
SIGHUP signal. 

4.4.1 The Posting of Signals 
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Regardless of a signal's source, the target process must execute in order to 
receive the signal. The target process cannot explicitly check for pending 
signals; the kernel checks for pending signals each time the process 
transitions from kernel mode to user mode. 

This is what happens when a traditional UNIX process generates a program 
exception (note that this is not what happens when an OSF/l process 
generates a program exception; see Section 4.4.5 for more information): 

1. The process generates the exception, thereby invoking the kernel's 
trap handler. The CPU is now executing in kernel mode, but within 
the context of the process. 

2. The trap handler diagnoses the problem and posts a signal to the 
process. 

3. Before the trap handler returns the CPU to user mode, it checks to see 
if the current process (the one that generated the exception) has a 
signal pending delivery, and of course there is such a signal because 
the trap handler just posted it. 

4. The trap handler calls the kernel's signal delivery routine and the 
signal is delivered. 

The posting of signals from external sources is somewhat more complicated, 
but the target process still must transition from kernel mode to user mode in 
order to receive the signal. 



Processes: Structure and Management 

4.4.2 Signal Delivery 

What happens when a signal is delivered to a process depends on the 
signal's type and on the process's disposition with respect to that signal 
type. A process's disposition to a signal type specifies how the process will 
respond upon receiving that signal. A process may respond to a given signal 
in any of the following ways: 

• Perform the default action associated with the signal 

• Ignore the signal 

• Catch the signal with a signal handler 

4.4.2.1 Default Actions 

UNIX systems specify a default action for each supported signal type. A 
signal's default action may be one of the following: 

• Discard the signal and do nothing. For example, when a child process 
terminates execution, the kernel notifies the parent process by sending it 
a SIGCHLD signal, which the parent, by default, ignores. 

• Terminate the process. For example, the kernel sends the SIGKILL 
signal to all active processes when the system is about to be shut down. 
This signal forces each process to exit. 

• Terminate the process and produce a core file that contains the in-core 
image of the process at the time it received the signal. Core files are 
useful for debugging purposes. For example, a process that generates a 
segmentation violation will receive a SIGSEGV signal, which by 
default terminates the process and produces a core file. A programmer 
may then examine the core file to locate the programming error 
responsible for the segmentation violation. 

• Suspend the process's execution. For example, when a user enters the 
Suspend character at the terminal, the terminal driver sends a SIGSTOP 
signal to the foreground process, by default causing the process to 
suspend execution. 
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4.4.2.2 Nondefault Actions 

A process may choose not to perform a signal's default action. Instead, a 
process may choose to ignore the signal or catch the signal with a signal 
handler. 

A signal handler is a routine specified by the application that allows the 
application to customize its response to the signal. For example, an 
application may use a signal handler to clean up state before terminating 
itself. When the process receives a signal for which it has installed a signal 
handler, the kernel turns control over to the signal handler code when 
delivering the signal. 

The sigaction() system call allows a process to manipulate its disposition 
with respect to signals. This system call can be used to install signal 
handlers. The kernel does not allow processes to ignore the SIGKILL and 
SIGSTOP signals, or to install signal handlers for these signals. 

4.4.2.3 Masking Signals 

A process may choose to temporarily mask the delivery of one or more 
signals. If a process masks a specific signal and that signal is posted to the 
process, the kernel places the signal in the process's set of pending signals 
but does not allow the signal to be delivered. If the process subsequently 
unmasks the signal, the signal will then be delivered. In OSF/l, a process 
can manipulate its signal mask with the sigprocmask() system call. 

4.4.3 The Signal System Calls 
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OSF/1 implements the POSIX compliant set of signal system calls, and 
provides compatibility libraries for accessing the BSD and System V signal 
interfaces. The POSIX signal system calls include the following: 

sigaction() Manipulates a process's disposition to one or more signals. 

sigprocmask() 
Changes the process's current signal mask. 



sigsuspend() 
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Changes the current signal mask and suspends the process 
until a signal is delivered that either terminates the process or 
invokes a signal handler. 

sigpending Examines any signals that are waiting to be received but are 
currently blocked. 

4.4.4 Implementation of the Signal Facility 

OSF/l 's implementation of the signal facility differs substantially from the 
implementation found in traditional UNIX systems. Most of these 
differences stem from work done to make signals behave properly in 
multiprocessor environments and with processes that are multithreaded. 

4.4.4.1 Signals and Multithreaded Processes 

Traditional UNIX processes have a single thread of control so there is no 
confusion about which of a process's threads should receive a given signal. 
However, in the case of multithreaded processes, the issue is not so clear. 

When the kernel posts a signal in response to an exception, it sends the 
signal to the thread that generated the exception. The kernel delivers 
signals that are generated asynchronously to a designated thread within the 
process. This is the process's first thread, the oldest currently active thread 
within the process. 

Because it must distinguish between process-specific and thread-specific 
signals, the kernel must provide separate places for the posting of process­
specific and thread-specific signals. The kernel posts process-specific 
signals by adding them to the proc structure's p _sig signal mask. The 
kernel posts thread-speci fie signals to the uu _sig field of a thread's 
np _ uthread data structure. The uu _sig field contains a mask of thread­
specific signals currently pending delivery. 

In OSF/1, asynchronous process-specific signals are still posted through the 
psignal() routine. If the signal is generated by an exception, it is delivered 
directly to the thread through the thread_psignal() routine. 
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4.4.4.2 Multiprocessor Implications of Signal Posting 

When OSF/1 is running on a multiprocessor machine, it is conceivable that 
two simultaneously executing threads may attempt to post a signal to the 
same process at the same time. The kernel protects a process's signal state 
from such occurrences by protecting the signal fields within the proc 
structure with a lock; before these fields can be modified, a modifying 
thread must first acquire the lock. 

Traditional UNIX kernels post signals exclusively with the psignal() 
routine regardless of whether or not the signal is being posted by a process 
running at base level or by a device driver routine that is executing at 
interrupt level. If both base level code and interrupt level code are allowed 
to lock the same data structure, the kernel can be forced into a deadlock, as 
illustrated by the following example: 

1. A process executing at base level posts a signal to another process by 
using the kill() system call. This system call posts the signal by 
calling psignal( ), which posts the signal, first locking the proc 
structure to synchronize with other signal delivery operations. 

2. The CPU receives an interrupt from the tty driver, which wants to post 
a signal to the same process. The interrupt handler attempts to lock 
the signal data, but cannot acquire the lock because the process it has 
interrupted holds the lock. 

3. The interrupt handler waits for the lock to be released, and so never 
returns; the interrupted process cannot release the lock because the 
interrupt handler does not return. The system is deadlocked. 

OSF/1 prevents this type of deadlock from occuring by implementing two 
versions of the psignal() routine. Code that runs at base level calls the 
psignal_internal() routine, which locks the proc structure to post the 
signal. Code that runs at interrupt level posts signals with the 
psignal_indirect() routine. This routine places a signal-posting request on a 
queue that is serviced by a dedicated kernel thread. This kernel thread runs 
exclusively at base level and can safely lock proc structures. 
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4.4.5 The Exception Handling Facility 

In OSF/l, synchronous signals are managed by the kernel's thread exception 
facility. This facility allows processes to customize their responses to 
exceptions by installing exception handlers. The facility is based on an 
RPC mechanism that is implemented using Mach IPC primitives. 

An exception handler is a server task that performs operations in response to 
remote procedure calls. When an OSF/l process generates an exception, the 
trap handler sends an RPC message to the process's exception handler. The 
handler performs the appropriate operation, and then sends a reply back to 
the trap handler. The trap handler then begins the transition back to user 
mode. See Figure 4-2. 

Figure 4-2. The Exception Handling Model 
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4.4.5.1 The UNIX Exception Handler 

OSF maintains a default exception handler, the UNIX exception handler, 
which fields all exceptions that are not being caught by application-specific 
exception handlers. When the UNIX exception handler receives an 
exception, it converts it to the appropriate UNIX signal and posts the signal 
with the thread _psignal() routine. 

The UNIX exception handler is started during the kernel's initialization and 
is set to listen on the init task's task exception port. Since init is the ancestor 
of all tasks, a given task inherits init 's task exception port unless one of its 
other ancestors has installed a different task exception handler. 

4.4.5.2 Design Goals of the Exception Handling Facility 

Exceptions can be categorized by type. Some exceptions, such as those 
associated with invalid memory references, are caused by problems with a 
program's logic and indicate the need for debugging. Other exceptions may 
be caused by error conditions that the program can recover from and must be 
handled by application-specific error handlers. For example, an arithmetic 
application may, in response to a floating-point underflow exception, use an 
error handler to substitute 0 (zero) for the underflow value before continuing 
execution. 

Exceptions also play a role in the implementation and use of debugger 
applications. Interactive debuggers rely on hardware exceptions to 
implement tracing and breakpoint facilities. When, for example, an 
executing program reaches a breakpoint, it generates a breakpoint exception 
that is then intercepted by the debugger. Upon receiving the exception, the 
debugger allows its user to examine the program's current state. 

The design goals of the OSF/l exception facility are as follows: 

1. Provide full support for debuggers and error handlers. 

2. Allow error handlers to execute in a context separate from the thread 
that generates the exception. 

3. Support the implementation of sophisticated debugging facilities such 
as remote debuggers. 
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Exception handlers can be task-specific or thread-specific. Program 
debuggers are generally task-specific, while error handlers are generally 
thread-speci fie. 

Note that exception handlers are distinct from signal handlers. A signal 
handler executes in response to a signal, while an exception handler 
performs operations in response to exceptions. The UNIX exception server 
handles a given exception by sending the corresponding signal to the 
process. If the process has installed a signal handler for that signal, the 
signal handler will be invoked when the process receives the signal. 

4.4.5 .3 Implementation of the Exception Facility 

The implementation of the exception facility is based on the client/server 
paradigm: a thread that produces exceptions becomes a client for one or 
more exception handler servers. OSF/l implements the exception handling 
RPC using three ports: the thread exception port, the task exception port, 
and the thread exception clear port. 

The thread exception port is used for handling thread-specific exceptions; if 
a thread wants to handle exceptions of this type, it arranges for its exception 
handler to listen for RPCs on this port. In a multithreaded task, each thread 
may have its own thread exception port and can install its own exception 
handler. The same exception may get handled in different ways depending 
on which thread generated the exception. 

The task exception port is used for handling task-specific exceptions. If a 
task wants to handle exceptions of this type, it arranges for the exception 
handler to listen for RPCs on this port. This is the port that a debugger 
would use to handle exceptions. 

A thread's exception clear port is the port used by an exception handler to 
post the return message and complete an exception RPC. Both thread­
speci fic and task-specific handlers post their replies to this port. 

Each task inherits its task exception port from its parent task. All threads 
within the task by default have their thread exception ports set to 
PORT_NULL, but a thread is free to initialize a thread exception port and 
associate it with a thread-specific exception handler. If a thread has not set 
up a thread-specific exception handler, any exceptions it generates are sent 
to the task's exception handler on the task exception port. 
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The thread_ doexception() routine is the trap handler's interface to the 
exception facility. It executes the RPC to the exception server by sending 
the server a message on the process's exception port. Since all processes 
share the same exception port by default, the message passes to the UNIX 
exception server. When the server finishes handling the exception 
(converting it to a signal and posting the signal to the process), it sends a 
reply message to thread_doexception() on the victim thread's exception 
clear port. This port must exist before thread_ doexception() can execute 
the RPC; if the thread does not have an exception clear port, 
thread_ doexception() allocates one for the thread. 

4.4.6 Signal Handlers 
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Like traditional implementations of the signal facility, the OSF/1 
implementation allows a program to install signal handlers. However, unlike 
traditional signal facilities, in which all handlers can be considered 
process-specific, OSF/l signal handlers can be either process-specific or 
thread-specific. The distinction here is that process-specific handlers catch 
asynchronous signals, while thread-specific handlers catch synchronous 
signals. 

In 4.3BSD, the kernel references a process's signal handlers through the 
u _signal field maintained in the process's user structure. This field is an 
array with an entry for each of the signals supported by the system. Each 
entry specifies a signal's disposition: the action to be taken if the process 
receives that signal. If the process has installed a signal handler for a given 
signal, the signal's entry in the u _signal array contains a pointer to the 
signal handler function. When the process receives that signal, the kernel 
finds the signal handler by indexing into the u _signal array. 

In OSF/l the user structure is split into the utask, uthread, and np _ uthread 
structures. Both the utask structure and the np _ uthread structure contain a 
signal disposition array. The utask structure's array is in the uu _signal field, 
while the uthread structure's array is in the uu _tsignal field. The utask's 
array has entries for those signals that are specific to the process, including 
those that by default either force the process to suspend or to terminate 
execution. When the process installs a signal handler for any of these 
signals, the kernel references the handler through the uu _signal field. 
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The array maintained in the uthread structure has entries for all signals that 
are specific to the thread, namely those signals that are generated by thread 
exceptions. When a thread installs a signal handler for one of these signals, 
the kernel references the handler through the uu _tsignal field. Note that in a 
multithreaded process, each thread has its own uthread structure, and 
hence, its own uu _tsignal field. Consequently, two threads within such a 
process could install different signal handlers for the same signal. 

The system calls used to install signal handlers automatically place each 
handler in its proper field. For example, if a thread wants to install a handler 
to catch a process-specific signal, the kernel places the handler in the 
utask's uu _signal array. If the thread wants to install a handler for a thread­
specific signal, the kernel places it in the uu _tsignal field contained in the 
thread's uthread structure. 

In a multithreaded process, if two threads try to install different signal 
handlers for the same process-specific signal, the second installation will 
overwrite the first one. However, as mentioned previously, two threads can 
install different signal handlers for the same thread-specific signal. 

4.4.7 Unix System Calls, the U-area, and Interrupted System Calls 

In OSF/1, the UNIX system call mechanism copies system call arguments 
from the process's user stack directly to its kernel stack. In traditional 
UNIX systems, these arguments are copied to the process's u-area, not its 
kernel stack, and the user structure includes a field for storing system call 
arguments. This field does not exist in either the utask or uthread data 
structures. 

In OSF/l, when a signal interrupts a system call, the call returns control to 
syscall() through the regular return mechanism along with an error code 
indicating the occurrence of an interrupt. If the system call is one that 
should be restarted, syscall() adjusts the process's user stack pointer so that 
the system call will be re-invoked when the process next executes in user 
mode. 

In 4.3BSD, the user structure includes a field that specifies which signals 
can interrupt system calls. This field, the u_sigintr field, contains a bitmask 
that can be set or modified when the process calls the sigaction( ) routine to 
specify action for a given signal. If the signal's bit is turned on in this field, 
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the process will reexecute system calls that are interrupted by the signal; if 
the bit is not set, system calls that are interrupted by the signal are aborted 
and return the value EINTR. 

OSF/l retains the u_sigintr field within the utask structure. Consequently, a 
signal's disposition as related to interrupted system calls is set on a per­
process basis, not a per-thread basis. In multithreaded processes, a thread 
cannot change a signal's system call disposition without affecting the 
process's other threads, 



Chapter 5 

The Scheduling Subsystem 

By default, the OSF/1 scheduler allocates the system's CPUs on a 
timesharing basis; concurrently active threads have approximately equal 
access to the system's CPU resources. If OSF/1 is running on a symmetric 
multiprocessor platform, all threads have approximately equal access to all 
of the CPUs. 

Timesharing is based on the programming model of a uniprocessor 
executing serial programs. Programs that are concurrently active compete 
with one another for access to the lone CPU, and the scheduler attempts to 
share the CPU fairly among the programs. In an environment that supports 
parallel programming models, a timesharing scheduling policy is not always 
desirable. 

Therefore, the OSF/1 scheduler provides mechanisms for supporting the 
scheduling requirements of various parallel programming models. These 
include the following: 

• Applications that require access to fixed numbers of CPUs. 

• Applications that are able to optimize their performance by advising the 
scheduler which thread or threads to execute next. 

This chapter begins by describing how the OSF/1 scheduler subsystem 
implements timesharing. The chapter then describes how the scheduler 
supports nontimesharing programming models. The chapter closes with a 
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discussion of OSF/l 's support for CPU-usage timers, which are timestamp­
based timers that allow developers to accurately determine how CPUs are 
being utilized over time. 

5.1 Timesharing 

The OSF/l scheduler implements timesharing for both uniprocessor and 
multiprocessor environments. The design of a timesharing scheduler must 
address several issues related to the goal of allowing all active processes 
approximately equal access to the system's CPU resources. To introduce 
these issues, this section briefly describes the design of the 4.3BSD 
scheduler, which implements timesharing in a uniprocessor environment. 

5.1.1 The BSD Scheduler 
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In BSD UNIX systems, the scheduler allocates the CPU to each process in 
fixed-length units of time. This unit is commonly referred to as the 
quantum, and is usually set to 0.1 second. When the kernel switches context 
to a new process, it resets the CPU's quantum; as a process executes, the 
clock interrupt handler decrements the quantum. 

An executing process may run until its quantum expires (at which time the 
CPU may be context-switched to another process), or the process may 
relinquish the CPU before its quantum expires by blocking to wait for an 
event. If a process has not executed to completion during the quantum, it 
will be rescheduled for execution. 

When it is time to perform a context switch, the scheduler determines which 
of the currently runable processes to execute next by searching the 
scheduler's run queue for the process with the best scheduling priority. A 
process's priority is related to the amount of time it has used the CPU. 
When a new process is created, the kernel assigns the process a base priority 
that is relatively high, so that the process can begin executing as soon as 
possible. As the process executes, the system increments a counter to record 
the amount of time the process uses the CPU. 

In BSD UNIX, a process's CPU utilization is recorded in the proc 
structure's p _cpu field; as a process executes, the clock interrupt handler 
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increments the p _cpu field to record each clock tick. Throughout a process's 
lifetime, the scheduler adjusts its priority to reflect the amount of time the 
process has utilized the CPU. Processes that stay on the CPU for the 
duration of their quanta have lower priorities than processes that block 
frequently. 

Historically, UNIX scheduling policies have favored interactive programs 
over computation-bound programs. Interactive programs, such as editors, 
tend to use the CPU for short intervals of time, blocking frequently to 
perform 1/0. Because they spend a lot of time waiting for I/0 instead of 
utilizing the CPU, interactive programs tend to maintain relatively high 
pnonties. On the other hand, computation-bound programs require 
extended access to the CPU, and therefore often have low priorities relative 
to interactive programs. If there are several interactive programs active at 
the same time as a computation-bound program, the computation-bound 
program will not get extended access to the CPU. 

To prevent computation-bound programs from perpetually remaining at low 
priorities, timesharing schedulers implement mechanisms for elevating the 
priorities of long-running jobs. In BSD UNIX systems, the scheduler 
elevates a process's priority using a usage aging mechanism. This 
mechanism causes the scheduler to gradually forget a process's CPU 
utilization such that the process's priority rises if it has not executed 
recently. 

A process's utilization ages at an exponential rate that is adjusted according 
to the system's load average. An exponential rate means that usage 
accumulated in the last minute costs the process n units, usage from the 
previous minute costs I/2n units, usage from the minute before that costs 
l/4n units, and so on. 

However, an exponential aging rate, by itself, produces an undesirable effect 
when the system is heavily loaded. Under heavy load, the scheduler has 
many processes to allocate the CPU to, and each process must wait longer 
for access to the CPU. Consequently, the scheduler forgets all usage and is 
no longer able to distinguish those processes that are light consumers of the 
CPU from those processes that are computation-bound. Under these 
circumstances, the scheduler needs to slow down the aging rate so that 
priorities do not improve too rapidly. The scheduler must account for 
system load as it maintains process priorities. 

There are two methods that can be used to factor in the load: use the load to 
adjust the rate at which a process's utilization ages, or use the load to adjust 
the rate at which a process accumulates utilization units. The BSD 
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scheduler uses the age-rate adjustment method. Once a second the BSD 
scheduler decrements the utilization values of each runable process using 
the following formula: 

[ 2 ·load I 
p_cpu = 2 ·load+ 1 p_cpu 

(In the formula, load is a sampled average of the number of processes that 
are waiting in the run queue over the last minute.) 

5.1.2 The OSF/1 Scheduler 

5-4 

Unlike the BSD scheduler, the OSF/1 scheduler does not use the load to 
adjust the aging rate. Instead, the load is used to adjust the rate at which 
processes accumulate units of utilization. 

The OSF/l scheduler assigns each new thread a base priority, then adjusts 
the priority throughout the thread's lifetime to account for the thread's 
utilization of the CPU. To expedite the scheduling of kernel threads that 
perform operations critical to the performance of the system (the pageout 
daemon, for example), the scheduler assigns user threads a worse base 
priority than kernel threads. 

5.1.2.1 Accumulating Utilization Units 

As a thread executes, the clock interrupt handler increments the thread's 
utilization counter. By default, this counter, which is maintained in the 
thread structure's sched _usage field, accumulates time using a time­
sampling mechanism that charges the current thread with a full clock tick 
each time the kernel handles a clock interrupt. Charging CPU usage on a 
time-sampling basis introduces a margin of error because the system cannot 
accurately determine exactly what happens in the interval between samples. 
Sampling errors include the following: 

• A process that executes for a fraction of the interval between clock 
interrupts accrues a full tick's worth of utilization if it is executing at the 
interrupt time. 
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• Conversely, a process that executes for a fraction of the interval but is 
not executing when the clock interrupts accrues no utilization. 

• The kernel may have been executing interrupt code (on behalf of another 
process) during the interval, but utilization is still charged to the current 
process. 

Statistical timing discrepancies are generally not large enough to adversely 
affect the scheduler's algorithm, but other timing applications, such as those 
that profile a program's execution, can be severely affected by such 
discrepancies. OSF/l includes a timestamp-based timing facility that 
provides a much more accurate means for determining CPU utilization. This 
facility is discussed in detail in Section 5.4.2. If the underlying hardware 
provides support for this facility, the scheduler can be configured to use this 
timer instead of the statistical timer. 

Using the statistical timing mechanism, a scheduler charges threads with 
CPU utilization in units of microseconds. Although the number of 
microseconds between clock interrupts is fixed, the number of microseconds 
a thread is charged during that interval depends upon the current load 
average of the system. 

5.1.2.2 The Calculation of the Load Average 

The scheduler determines the system's load average using a 2-step 
calculation: first the current load is calculated, and then that value is 
exponentially averaged with the previously derived load average. 
Averaging the current load with the previous load average smooths the 
impact of abrupt load changes. 

The scheduler performs the load average calculation once a second using 
the kernel's scheduler thread. The scheduler thread calculates the load 
average according to the following formulas. In the formulas, load_ now 
represents the current load, nthreads represents the number of runable 
threads, ncpus specifies the number of CPUs, and sched _load represents the 
load average. 

nthreads 
load now = ----

ncpus 
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h d l d sched load +load now 
sc e _ oa = 2 

If the number of threads is less than the number of CPUs, load_now is 
set to 1. 

Both of the load-average calculations include a division operation; the 
OSF/1 scheduler avoids using floating-point division operations by scaling 
the nthreads value by a large factor and by shifting bits to the left to perform 
division by 2. The scaling factor is removed when a thread's CPU 
utilization is converted to its scheduling priority (see Section 5.1.2.4). 
There are no floating-point operations within the scheduler or in the rest of 
the kernel, because floating-point operations are expensive on some 
architectures. 

5.1.2.3 The Calculation and Aging of CPU Utilization 

As mentioned before, the scheduler increments a thread's CPU utilization 
during each clock interrupt. The scheduler increments the utilization 
according to the following formula: 

sched _usage = sched _usage + (Ausage x sched _load) 

Once a second, each thread's utilization is aged according to the following 
formula (At is the number of seconds that have elapsed): 

sched _usage = [ ~ ] "'sched _usage 

The factor of 5/8 was chosen because it can be implemented by shifting and 
adding bits, and it produces good scheduling behavior. 

5.1.2.4 Converting CPU Utilization to Priority 

The conversion of a thread's sched _usage to a scheduling pnonty is 
implemented as a bit-shifting operation. The thread's priority is in the six 
leftmost bits of sched _usage, and the scheduler shifts bits to the right to 
determine the thread's priority. The shift operation removes the scaling 
factor introduced by the load average calculation and converts sched _usage 
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into a pnonty number between 0 (zero) and 31. The lower a thread's 
priority number, the better the thread's priority. 

5.1.2.5 When Priorities Are Updated 

The OSF/1 scheduler distributes the overhead of priority calculation by 
making each thread responsible for updating its own priority. The kernel 
maintains a global variable, sched _tick, which is updated once a second. 
The kernel also maintains a timestamp for each thread (the sched _stamp 
field within the thread data structure). The scheduler updates a thread's 
timestamp each time it updates the thread's priority. When the clock 
interrupts a thread's execution, the clock handler checks the value 
sched _tick against the thread's timestamp. If one or more seconds have 
passed since the thread's timestamp was updated, the clock handler calls the 
kernel's update _priority() routine to update the thread's priority. 

Distributing priority updates in this manner requires that each thread 
execute in order to update its priority. There are, however, instances in 
which threads with low priorities are unable to update their priorities 
because other threads with better priorities are monopolizing the CPU. 
Consequently, once every two seconds, the scheduler scans the run queues 
and updates threads that have been unable to update themselves. 

Threads that are blocked cannot update their priorities and are not on a run 
queue; therefore, they cannot be updated when the scheduler scans the run 
queues. They must defer priority updating until they become runable again. 
When the kernel makes a thread runable, it checks the thread's timestamp 
against sched _tick and updates the thread's priority, if appropriate, before 
placing the thread in the run queue. 

5.1.3 The Run Queue Data Structure 

The kernel implements run queues using the run queue data structure. This 
structure contains the following elements: 

runq[] The array containing the actual queues. This array contains 32 
queues, numbered 0 (zero) through 31. These queues are 
doubly linked lists of threads. The array of queues is called 
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low 

count 

the run queue; each queue within the array is called a sched 
queue. 

A hint that specifies the run queue number that may contain 
the thread with the highest scheduling priority. The kernel 
maintains this hint to optimize the search for the thread with 
the best priority. The kernel cannot guarantee that the thread 
with the best priority is in this queue, but it can guarantee that 
the thread is not in a queue higher than this. 

The number of runable threads currently placed in the run 
queue. This field also optimizes the search for runable 
threads. If the count is 0 (zero), the kernel does not scan the 
run queue for a runable thread. 

A thread's current scheduling priority is maintained in the thread data 
structure's sched_yri field. The value in this field maps directly to a sched 
queue within the thread's assigned run queue. For example, a new user 
thread that is runable and waiting to execute has a priority of 12, by default. 
The kernel schedules it for execution by placing it in the run queue's twelfth 
sched queue. In OSF/1, the lower the value of a thread's sched _yri field, the 
better the thread's priority. A thread with a priority of 6 has a better priority 
than a thread with a priority of 12. 

When the kernel places a thread on a run queue, it places it at the tail of the 
appropriate queue for that priority. When the kernel chooses a thread for 
execution, it removes a thread from the head of the priority's queue. 

5.2 Thread Execution States 
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In addition to maintammg a thread's priority, the scheduler subsystem 
manages a thread's transition between various states of execution. For 
example, a thread may be running, or runable and in a run queue, or it may 
be waiting for an event such as the release of a lock or the paging in of data. 

The thread data structure includes a state field, which specifies a thread's 
current execution state. There are four basic state values, which can be 
combined to form other state values: 

TH RUN The thread is either executing or on a run queue, ready to be 
scheduled. 
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TH WAIT The thread is waitmg for a system resource to become 
available. For example, the thread may be waiting for a lock 
to be released or for data to be paged in. 

TH SUSP The kernel has asked the thread to stop executing. There are 
two major reasons for the kernel to suspend a thread: the 
thread is about to be terminated, or the thread's task is about to 
be swapped out. See Chapter 7 for a discussion of task 
swapping. 

TH SWAPPED 
The thread's kernel stack has been unwired, and so its contents 
may not be in resident memory. Note that this state pertains 
only to the thread's kernel stack. The state does not indicate 
that the thread's task has been swapped out. 

5.2.1 The Suspend Mechanism 

The kernel suspends a thread through the thread_ hold() and 
thread_ block() routines; thread_ hold() changes the thread's state field to 
indicate a suspend is pending, and thread_ block() suspends the thread. The 
kernel uses the thread _release() call to resume a suspended thread's 
execution. The thread_ hold() and thread _release() routines are not 
available to users. Users can suspend and resume threads with the 
thread_suspend() and thread_resume() routines. 

At a given time, there may be multiple reasons for a thread to be suspended. 
Each thread data structure includes a suspend_ count field that the kernel 
increments when it suspends the thread. If a thread's suspend count is non­
zero when thread_ hold() is called, the thread is already in a suspended 
state; thread_ hold() merely increments the count. 

The thread_release() routine decrements a thread's suspend count and 
releases the thread from its state of suspension if it is appropriate to do so. 
If the suspend count is greater than 1 at the time of the call, 
thread _release() merely decrements the thread's suspend count. If the 
thread's suspend count is 1 at the time of the call, thread _release() sets the 
suspend count to 0 (zero) and releases the thread from its suspended state. 
What happens to the thread next depends upon other aspects of the thread's 
execution state. If the thread is runable (it does not have a pending wait and 
its kernel stack is not swapped out), thread _release() dispatches the thread 
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to an idle processor if one is available; otherwise, the thread is placed on the 
run queue. 

In addition to maintaining an internal suspend count, each thread also 
maintains a separate user suspend count so that user suspend operations (via 
thread_ suspend() and thread _resume()) do not interfere with kernel 
suspend operations. When the user suspend count is incremented to 1, the 
kernel increments the internal suspend count. Subsequent increments of the 
user suspend count do not affect the internal suspend count. When the user 
suspend count is decremented from 1 to 0 (zero), the kernel decrements the 
internal suspend count by 1. 

5.2.2 Execution State and the Suspend Mechanism 
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The diagram in Figure 5-1 shows the execution state trans1t10ns a thread 
may pass through with the suspend mechanism. The figure uses 
abbreviations to represent the following states: 

Rq The thread is ready to run and is waiting on the run queue. 

RqS The thread is on the run queue and a suspend state is pending. 

R The thread is running on a processor. 

RS The thread is running on a processor and a suspend state is 
pending. 

S The thread is suspended. 

SO The thread is suspended and its kernel stack is swapped out. 

RO The thread is runable as soon as its kernel stack is swapped in. 

RSO The thread is runable as soon as its kernel stack is swapped in, 
and it is resumed. This happens if a thread is suspended while 
the kernel stack is being swapped in. 

The figure also uses abbreviations to indicate which kernel routines perform 
the state transitions: 

choose Choose a new thread for execution. This is an abbreviation for 
the kernel's choose_thread() routine. 



block 

hold 

release 

dowait 

swapout 

swap in 
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Block the current thread's execution and context switch to a 
new thread if possible. This is an abbreviation for the kernel's 
thread_ block() routine. 

Indicate that a transition to a suspended state is pending. This 
is an abbreviation for the kernel's thread_ hold() routine. 

Release the thread from a suspended state or pending 
suspended state. This is an abbreviation for the kernel's 
thread _release() routine. 

Wait for a pending suspension to take place. This is an 
abbreviation for the kernel's thread_ dowait() routine. This 
routine is usually called by a thread that is waiting for another 
thread to become suspended. 

Swap out the thread's kernel stack. This is an abbreviation for 
the kernel's thread_swapout() routine. 

Swap in a thread's kernel stack. This is an abbreviation for the 
kernel's thread_swapin() routine. 
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Figure 5-1. Suspend Mechanism State Diagram 
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Swapout 

Swapin 

Release 

Swapin 

As shown in the figure, if a thread on the run queue has a suspend state 
pending, it transitions into the suspended state in either of two ways: 

• The kernel chooses it for execution and executes the thread until it calls 
thread_ block(), thus becoming suspended. 

• Another thread forces the thread to suspend by calling the 
thread_ dowait() routine; this routine removes the thread from the run 
queue and leaves it in a suspended state. 

Note that this latter transition (the transition between RqS and S) is 
represented by a dotted line. If a thread is not interruptible, the kernel does 
not allow this transition to occur; a pending suspend cannot take effect until 
after the thread runs on a processor. 
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5.2.3 The Event-Wait Mechanism 

Threads often attempt to access system resources that the kernel cannot 
immediately supply. For example, a thread may need to lock a data 
structure that is currently locked by another thread, or it may need to access 
data that is not in main memory and so must be copied in from secondary 
storage. In circumstances such as these, the thread must wait until the 
resource becomes available before it can continue execution. The kernel's 
event-wait mechanism allows a thread to sleep while the resource remains 
unavailable, and then wakes up the thread when the resource becomes free. 
The event-wait mechanism is always invoked by the thread itself; a thread 
cannot force another thread to wait for an event. A thread can wait for only 
one event at a time. 

Sometimes threads attempt to wait for events that may never take place. To 
prevent such threads from waiting forever, the event-wait mechanism allows 
threads to sleep interruptibly, or to set wakeup timeouts. A thread that 
sleeps interruptibly can be woken up by a UNIX signal. While a thread 
sleeps interruptibly, the kernel can swap out the thread's kernel stack and it 
can suspend the thread. If a thread sets a timeout before going to sleep, the 
kernel will wake the thread when the timeout expires if the event has not 
occurred. 

A thread that is issuing a request to wait must identify to the kernel the 
event it is waiting for. Events are specified by integers. If, for example, a 
thread is waiting for the release of a lock, it may use that lock's address in 
memory to specify the event. 

The kernel places all waiting threads in the scheduler's wait queue. This 
queue is implemented as a hash table to optimize the lookup operation that 
occurs when the kernel wakes a thread. The hash table is an array of queues 
indexed according to the table's hash function. When a thread issues a wait 
request, the kernel derives an index into the array by running the hash 
function on the integer representing the event being waited for. The kernel 
then places the thread in the queue that exists at the derived index. The 
thread is chained to the queue through the thread data structure's runq field 
(a thread cannot be in a run queue and waiting for an event at the same 
time). 
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5.2.3.1 Invoking the Event-Wait Mechanism 

Typically, a thread invokes the event-wait mechanism by calling the 
assert_ wait() routine to indicate that it is about to wait, and then calling the 
thread_ block() routine to yield the processor and begin the wait. The call 
to assert_ wait() places the thread on the wait queue, and the call to 
thread_ block() puts the thread to sleep. 

Because there is an interval between when a thread places itself on the wait 
queue and when it actually goes to sleep, it sometimes happens that the 
event a thread is waiting for occurs before the call to thread_ block(). 
When an event happens before the thread goes to sleep, the kernel removes 
the thread from the wait queue. When the thread calls thread_ block(), that 
routine, instead of putting the thread to sleep, places it in the appropriate run 
queue, and the thread is eligible for execution. 

In the interval between calling assert_ wait() and thread_ block(), the 
thread may clean up its state within the kernel before it goes to sleep. For 
example, the thread may release any locks it is holding. If the thread wants 
to be woken if the event does not happen within a certain timeframe, it sets 
the timeout before calling thread_ block(). 

In some instances a thread needs to clean up state after the event it is 
waiting on has occurred. For example, a device driver thread may need to 
restart its device after a completion event occurs. A thread of this type can 
ensure its ability to properly clean up state by waiting in an uninterruptible 
state. A thread that waits in this manner may wait forever if its event does 
not occur. 

If a thread calls thread_block() without first calling assert_wait(), the 
scheduler initiates a context-switch operation, and the calling thread is 
placed in a run queue. 

5.2.3.2 Waking a Sleeping Thread 

The kernel wakes a sleeping thread either because the event being waited 
for has occurred, or because a condition arises that requires the thread's 
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sleep to be interrupted. The event-wait mechanism implements the wakeup 
operation with the following interfaces: 

thread_ wakeup() 
Wakes up all threads that are waiting for the event. 

thread_ wakeup_ with _result() 
Wakes up all threads waiting for the event and indicates the 
reason for the wakeup. 

thread_ wakeup_ one() 

clear_ wait() 

Wakes up the first thread on the wait queue that is waiting for 
that event. Other threads that may be waiting for the event 
remain asleep. 

Wakes up the specified thread, either because the event has 
occurred or because the thread's sleep should be interrupted. 
Use of this call requires knowing the identity of the sleeping 
thread. 

The thread_ wakeup routines are actually macros that invoke the kernel's 
thread_ wakeup _prim() routine. This routine finds the appropriate wait 
queue by executing the wait hash function on the event. For each thread 
that is to be woken up, thread_ wakeup _prim() removes the thread from 
the wait queue. What happens to the thread depends on the thread's current 
execution state: 

• If the thread's state indicates that it was just waiting, it is dispatched to 
an idle processor if one is available, or it is placed in a run queue. 

• If the thread was sleeping interruptibly and a suspend is pending, the 
routine allows the thread to go into a suspended state. 

• If the thread was sleeping uninterruptibly and a suspend is pending, the 
routine ignores the request for suspension and schedules the thread for 
execution. 

• If the thread's kernel stack has been swapped out while the thread was 
asleep and no suspend is pending, thread_ wakeup _prim() sets the 
thread's state to indicate it is runable, and then inititates the swapin 
operation by calling thread_ doswapin( ). When this routine completes, 
the thread will either have been dispatched to an idle processor or it will 
have been placed in a run queue. 
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5.2.4 Execution State and the Event-Wait Mechanism 
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The diagram in Figure 5-2 shows the execution state trans1t10ns a thread 
may pass through with the event-wait mechanism. The diagram also shows 
the state transitions that occur when the event-wait, the suspend, and the 
thread swap mechanisms interact. In addition to the abbreviations used in 
the previous state diagram (Figure 5-1), this diagram also uses the following 
state abbreviations: 

RW 

RS 

RqS 

RWS 

w 
ws 
WO 

wso 

The thread is executing on a processor and a wait is pending. 

The thread is executing and a suspend is pending. 

The thread is in a run queue and a suspend is pending. 

The thread is executing and a wait and suspend are pending. 

The thread is in a wait queue. 

The thread is in a wait queue and a suspend is pending. 

The thread is in a wait queue and its kernel stack is swapped. 

The thread is in a wait queue, its kernel stack is swapped, and 
a suspend is pending. 

Figure 5-2 also uses abbreviations to indicate which kernel routines perform 
the state transitions. In addition to the abbreviations used in Figure 5-1, this 
diagram includes the following: 

assert Asserts that the thread is about to transition to a wait state. 
This is an abbreviation for the kernel's assert_ wait() routine. 

wake/clear Removes the thread from the wait queue. This abbreviation 
stands for the thread_ wakeup() and clear_ wait() routines, 
respectively. 
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Figure 5-2. Event-Wait Mechanism State Diagram 

Hold 

Wake/Clear 

"Swapout 

Wake/Clear 

Block 

Assert 

Wake/Clear 

Assert 
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In this diagram, dotted lines indicate transitions that are disabled when a 
thread is not interruptible. These include the transitions between the 
following states: 

• WS to S 

• WSto WSO 

• WtoWO 

Figure 5-2 does not show what happens to a thread that is waitmg 
uninterruptibly with a suspend pending (WS) when it is awakened. As 
indicated in the figure, the transition to S is disabled when a thread sleeps 
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uninterruptibly. When the kernel wakes up such a thread, the kernel ignores 
the pending suspension and makes the thread immediately runable. If an 
idle processor is available, the kernel dispatches the thread to it. If a 
processor is not available, the kernel places the thread in the run queue. 
Although the thread is then running or runable, its pending suspend has not 
been cancelled. It will take effect the next time the thread calls 
thread_ block(). Figure 5-3 shows this series of state transitions. 

Figure 5-3. State Transition of a Thread in an Uninterruptible Sleep 

Block 

5.3 Scheduler Support for Parallel Applications 
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In addition to supporting timesharing applications, the OSF/1 scheduler 
supports the scheduling requirements of different parallel programming 
models. The scheduler's support for parallel programming models is 
furnished through two mechanisms: processor sets and scheduling hints. 

The processor set mechanism allows the kernel to furnish an application 
with a dedicated set of CPUs; the application's threads execute on these 
CPUs without having to compete with other threads. The scheduling hints 
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mechanism allows an application to manage the scheduling of its threads by 
providing hints to the scheduler about the order in which to execute the 
threads. 

5.3. l Processors and Processor Sets 

A processor is an object that represents a CPU. The OSF/l kernel maintains 
a processor data structure for each of the system's CPUs and manages each 
CPU through this data structure. A processor set is an object that represents 
a set of processors. The kernel manages each processor set through its 
processor set data structure. 

The system initialization procedure includes the creation of the kernel's 
default processor set. This processor set always exists because the kernel 
assigns its own threads to it. By default, the OSF/l scheduler schedules 
threads on a timesharing basis; in this environment, all threads execute on 
the default processor set, and the kernel never creates additional processor 
sets. A parallel program can execute using processors from the default set, 
but cannot have processors dedicated to its execution. 

The OSF/l kernel interface includes a set of primitives that can be used to 
create and manage new processor sets. These interfaces do not, in 
themselves, provide for any sort of processor allocation policy. A processor 
allocation policy must deal with the following issues: 

• Which applications are allowed to use dedicated processors 

• Prioritization of applications competing for processors 

• Amount of time an application is allowed to use dedicated processors 

• Maximum number of processors an application is allowed to use on a 
dedicated basis 

This type of policy is likely to vary from system to system; if this policy 
were coded into the kernel, the kernel would have to be modified and rebuilt 
each time the policy needed to be changed. In the processor set model, the 
processor allocation policy is handled by a user-level processor server 
program. A processor server program implements a given processor 
allocation policy and uses the kernel interfaces to affect the policy. Because 
it runs at user level, such a program can be reconfigured or replaced by 
another program without modification to the kernel. Processor server 
programs must run with privileges. 

5-19 



Design of the OSF/1 Operating System 

OSF/l does not include a processor server program; however, the kernel 
interface includes a set of primitives that can be used to implement 
processor servers. The availability of the processor allocation primitives is 
configuration-dependent. 

Figures 5-4 to 5-6 illustrate how a parallel application might interact with 
the kernel and a processor server program to acquire a set of processors 
dedicated for its use. The figures are necessarily schematic, and the 
description that accompanies them is a simplified one. In this example, the 
system hardware includes eight CPUs, which the kernel manages through 
eight processor objects. In Figure 5-4, all eight processors belong to the 
system's default processor set object. All of the system's active threads are 
assigned to this processor set. 

Figure 5-4. The Default Processor Set 
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In Figure 5-5, the parallel application asks the kernel to create a new 
processor set object, and the kernel does so. The new processor set does not 
initially have any processors assigned to it. An application does not need to 
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be privileged to create a new processor set, because all new processor 
setsare empty when created. Only the privileged processor server can ask 
the kernel to assign processors to a processor set. 

Figure 5-5. An Application Allocates a Processor Set 

User Space 

Kernel Space 

Default 
Processor Set 

Object 

I 

Requests 
New Processor 

Set Object 

Kernel 

~----L------------1 

Processor 
Server 

New 
Processor Set 

Object 

i D D D D D D D D i Processors 

L----------------~ 

In Figure 5-6, the application asks the processor server to assign processors 
to the new processor set. The server analyzes the request based on its 
policy. If it decides to honor the request, the server calls the appropriate 
kernel interfaces. The kernel responds to the server's request by reassigning 
processors from the default processor set to the new set. Now the 
application can assign its threads to the new processor set, and the 
scheduling system will force them to execute only on the processors of this 
set. Those threads that were already assigned to the default processor set 
will continue to run only on those processors that remain in that set, and any 
newly created threads that do not belong to the application will be assigned 
to the default set. 
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Figure 5-6. The Application Requests Processors; the Kernel Assigns Processors 

5-22 

Application 

User Space 

Kernel Space 

Default 
Processor Set 

Object 
I 
I 

Requests 
Processors 

for New 
Processor Set 

Kernel 

Assigns 
Processors 

r-00-00-01 
L _____________ .J 

Processor 
Server 

Calls 

New 
Processor Set 

Object 

I 
r----1-----, 

!ODD! L ________ J 

Processor sets can be used to support various types of parallel applications. 
A fine- grained application, whose threads synchronize with one another 
very frequently, may require access to a number of CPUs that matches the 
number of threads in the application, while a coarse-grained application 
may be able to execute on a processor set that has fewer CPUs than the 
application has threads. 
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5.3.2 Scheduling Hints 

Certain coarse-grained applications may be able to optimize their 
performance by being able to advise the scheduler how to schedule their 
threads. The OSF/l kernel provides the thread_switch() interface, which 
allows threads to influence the scheduler's activities. When a thread blocks 
to synchronize with another, it can use thread_switch() to provide the 
kernel with a hint about which thread should be executed next. 

Scheduling hints are as follows: 

Mild Discouragement 
Switch contexts to another thread with an equal or higher 
priority to execute. If such a thread does not exist, continue 
executing the current thread. 

Strong Discouragement 
Depress the current thread's pnonty and switch context to 
another thread. Block the current thread's execution and 
depress its priority until it executes again or until a specified 
timeout has expired. 

Absolute Discouragement 

Handoff 

Stop the current thread's execution for a specifed period of 
time. 

Bypass the scheduler entirely and switch contexts to the 
specified thread. (If both the current thread and the specified 
thread are time-sharing threads, the specified thread gets the 
remainder of the current thread's time-slice.) 

The discouragement hints can be used to optimize the synchronization of 
threads that synchronize using test-and-set locks. These kinds of locks do 
not record the identity of the current lock holder; consequently, a thread 
waiting for the lock may not be able to identify the thread it is waiting on, 
and therefore cannot provide a handoff hint to the scheduler. The handoff 
mechanism can be used if a thread can identify the lock holder either 
because of the structure of the application or because the threads 
synchronize using locks based on compare-and-swap instructions. 

Mild hints may not be useful in instances where an application executes in a 
timesharing mode, because multiple threads may simultaneously yield their 
processors to each other instead of to the thread or threads that hold the 
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synchronization locks. Absolute hints may be appropriate under these 
circumstances, but since their granularity is based on the frequency of the 
hardware's clock, they are not appropriate for medium-grained to fine­
grained synchronization. 

5.3.2.1 The thread __ switch() Routine 

The thread _switch() routine encapsulates the scheduler's hint facility. 
When it is called to provide a mild discouragement hint, the routine simply 
calls thread_ block() to yield the processor to the thread with the highest 
priority. 

A thread that calls thread_switch() to provide an absolute discouragement 
hint must specify a timeout value with the call. In this instance, 
thread_switch() places a call to the thread _ _timeout() routine in the 
kernel's callout table. When the timeout expires, thread_ timeout() 
reschedules the thread for execution by calling the clear_ wait() routine. 

A thread that calls thread _switch() to provide a strong discouragement hint 
must also specify a timeout. In this instance, thread_ switch() depresses the 
thread's priority to the lowest possible value. The scheduler will restore the 
thread's previous priority when the thread next executes or when the 
supplied timeout has expired, whichever comes first. 

A thread that wants to hand off the CPU to a specific thread identifies the 
thread with an argument to thread_switch(). The routine finds the specified 
thread in the processor set's run queue, removes it, and switches context to it 
using a call to the thread _run() routine. 

5.3.2.2 The thread_depress_priority() Routine 

The kernel implements strong discouragement hints with the 
thread_ depress _priority() routine, which can be used to temporarily 
depress a thread's priority. This routine manipulates the thread data 
structure's depress _priority field. Under normal circumstances, this field is 
set to -1. thread_depress_priority() depresses a thread's priority by 
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moving the thread's base priority, (maintained in the thread's priority field) 
to the depress _yriority field. The routine then sets the thread's priority and 
sched _yriority to 31, the lowest possible priority value. 

The kernel reverses this operation by restoring the thread's priority field 
from the depress _yriority field. The kernel then resets the depress _yriority 
field to -1 and recomputes the thread's scheduling priority. 

5.4 CPU-Usage Timer Support 

Traditional UNIX systems measure the amount of time a given process 
utilizes the CPU with statistical timers. Statistical timers are based on a 
time-sampling mechanism that is driven by the hardware's clock. When the 
clock interrupts an executing process, the clock interrupt handler charges 
the process with a full tick of CPU utilization. Charging CPU usage on a 
time-sampling basis introduces a margin of error, because the system cannot 
accurately determine exactly what happens in the timeframe between 
samples. Sampling errors include the following: 

• A process that executes for a fraction of the timeframe between clock 
interrupts accrues a full tick's worth of utilization if it is executing at the 
interrupt time. 

• Conversely, a process that executes for a fraction of the timeframe but is 
not executing when the clock interrupts accrues no utilization. 

• The kernel may have been executing interrupt code (on behalf of another 
process) during the timeframe but utilization is still charged to the 
current process. 

The margin of error introduced by a time sampling mechanism varies 
depending upon the length of a process's execution. A long-running process 
is more likely to accrue time sampling errors both for and against it; if a 
process runs for a sufficient amount of time, these discrepancies tend to 
cancel each other out. However, discrepancies associated with short­
running processes may be significant. 

Although timesharing systems measure a process's CPU utilization to 
determine the process's scheduling priority, statistical timing discrepancies 
are generally not large enough, even for short-lived processes, to adversely 
affect the scheduling algorithm. However, other timing applications, such as 
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those that profile a program's execution, can be severely affected by such 
discrepancies. 

Certain hardware platforms provide support for the implementation of 
CPU-usage timers, which measure CPU utilization directly instead of 
statistically. These timers can improve the accuracy of statistical 
measurements by as much as three orders of magnitude. 

CPU-usage timers are based on a timestamp mechanism. The hardware 
maintains a timestamp source that is incremented at a known rate. A timer 
can measure the length of time that has elapsed during a given activity by 
reading the timestamp source at the beginning of the activity, reading it 
again at the end of the activity, and taking the difference between the two 
readings. 

OSF/l provides software-implemented interval timers that can be used on 
hardware platforms that provide a source of timestamps. The scheduler uses 
these timers to measure a thread's CPU utilization. They are also available 
to profilers and other applications that need to measure time accurately. On 
platforms that do not provide interval timer support, the OSF/l scheduler 
uses a statistical time sampling mechanism to determine a thread's 
utilization of CPU resources. 

5.4.1 OSF/1 Timers 
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The kernel measures each thread's consumption of CPU resources through 
the thread's user timer and system timer. The kernel uses the thread's user 
timer to measure the amount of time the thread executes in user mode, and it 
uses the system timer to measure the amount of time the thread executes in 
kernel mode. The scheduler determines a thread's total CPU utilization by 
adding together the measurements taken by both timers. 

The kernel also maintains a separate interval timer, a kernel timer, for each 
of the system's CPUs. The kernel uses these timers to measure the amount of 
time the kernel spends executing interrupt code. Kernel timers ensure that 
the consumption of CPU resources during interrupt handling is not charged 
to the interrupted thread. Currently, a kernel timer accumulates time for 
every interrupt handled by its processor, regardless of the interrupt type. 
The timer facility can be extended with additional kernel timers to measure 
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interrupts based on type. The system can then be monitored to determine 
how much time is being devoted to the various interrupt sources and how 
that time is being distributed across the system's CPUs. 

At any given moment, a CPU's usage is measured by either a thread's user 
timer, a thread's system timer, or the CPU's kernel timer. The kernel 
ensures that utilization is charged accurately by providing routines to switch 
between timers. Timers must be switched as follows: 

• When a thread executing in user mode traps into the kernel through a 
page fault, exception, or system call, the kernel must switch from the 
thread's user timer to its system timer. 

• When a thread returns to user mode from kernel mode, the kernel must 
switch from the thread's system timer to its user timer. 

• When the kernel interrupts a thread's execution to handle an interrupt, 
the kernel must switch from the thread's current timer to the CPU's 
kernel timer. 

• When the kernel returns control from an interrupt, it must reactivate the 
interrupted thread's current timer, either its user or system timer. 

• When the kernel context switches between threads, it must switch from 
the blocking thread's system timer to the new thread's system timer. 

5.4.2 The timer Data Structure 

All OSF/1 timers are implemented by the kernel's timer data structure. 
This structure includes the following fields: 

low bits 

high _bits 

Accumulated time in units corresponding to the units used by 
the hardware's timestamp source. For example, this field may 
accumulate time in microseconds. 

Accumulated time in normalized units. When the low bits 
field is about to overflow, the kernel converts its value to a 
normal time value and adds it to the contents of the high_ bits 
field. If, for example, low_ bits accumulates time in 
microseconds, the high_bits field may accumulate time in 
seconds. 
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ts tamp The value of the timestamp source when the current activity 
began. 

When the kernel activates a timer, it sets the timer's tstamp field to the value 
of the timestamp source. When the kernel is about to switch to another 
timer, it subtracts the tstamp value from the current value of the timestamp 
source and adds the result to the timer's low bits field. The kernel then 
switches to the next timer. 



Chapter 6 

The Virtual Memory Subsystem: 
Address Space Implementation 

Chapter 3 introduced the major features of the Virtual Memory subsystem 
(VM) and briefly described the data structures that implement virtual 
address spaces in Mach. To review, a task's address space is implemented 
through its address map. The address map contains address map entries, 
each of which maps a range of virtual addresses to a Virtual Memory object 
(VM object). See Figure 6-1. 
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Figure 6-1. Implementation of Task Address Space 
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6.1 Address Maps and Address Map Entries 
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A task's address map is represented by a vm_ map structure; the map's 
address map entries are represented by vm _map_ entry structures. As 
shown in Figure 6-2, the vm _map_ entry structures are chained together in 
a doubly linked list, and the head and tail of this list are linked to the 
vm _map structure. 

This arrangement of structures supports the fast lookup of virtual addresses 
during page fault handling. The structures also support the compact 
representation of large sparsely filled address spaces because 

• The address map maintains address map entries only for allocated 
regions of address spaces. 

• Each address map entry may map an arbitrarily large range of addresses. 

• The address map entries are represented by small, fixed-size data 
structures. 
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6.1.1 The vm map Data Structure 

The vm _map structure includes the following fields: 

min_offset Specifies the address map's first allocated virtual address. This 
field corresponds to the first address map entry's starting 
virtual address. 

max_offset Specifies the map's final allocated address. This field 
corresponds to the last address map entry's ending address. 
The page fault handler uses this field and the min_ offset field 
to quickly check the validity of a faulting address. If the 
address does not lie between max_ offset and min_ off set, it is 
invalid. 

first Jree Points to the first unallocated region within the task's address 
map. The kernel uses this hint when mapping data to arbitrary 
locations within the address space. 

hint Used to optimize the page fault handler's lookup of virtual 
addresses. Usually the hint field points to the address map 
entry that maps the address that generated the most recent 
search operation. If the task is generating a series of page 
faults in the same region of memory-a condition that arises 
frequently-the hint optimizes virtual-to-physical translation. 
However, the field does not always point to the last successful 
lookup. When a task allocates a new region of memory, the 
kernel updates the field to point to the new region's address 
map entry. 

The vm_map structure also contains a pointer to the process's physical map 
(pmap ). The kernel uses this pointer to access the task's pmap when 
invoking operations on that object. 

The address space described by the vm _map structure in Figure 6-2 
contains four regions of virtual memory. The first three regions are 
contiguous to one another and span the range between OxO (zero) and 
Ox47ffff. The firstJree field points to the maps third address map entry 
because the first range of unallocated address space lies beyond the range 
mapped by the address map entry (the dashed box indicates that the range of 
addresses between Ox480000 and Ox49fffffff is unallocated). The 
vm_map's hint field points to the first address map entry, indicating that the 
last page fault was generated by a reference within the address range 
mapped by this entry. 
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Figure 6-2. A vm_map Structure and Its vm_map_entry Structures 
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6.1.2 The vm _map_ entry Data Structure 
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Each vm _map_ entry structure maps a range of virtual addresses to a set of 
pages in an object. The length of the range implies the number of pages that 
are mapped. For example, if the system's virtual page size is OxlOOO (4K 
bytes), a virtual range with a length of OxlOOO maps to a single page, a 
range with a length of Ox2000 maps to two pages, and so on. The 
vm map entry structure maps the address range to the object's pages with 
an -;;bjectfojfset reference. The object reference specifies the object that the 
address map entry maps to, and the offset value specifies the location within 
the object where the mapping begins. For example, if the offset value is 



The Virtual Memory Subsystem: Address Space Implementation 

OxO, the mapping begins with the object's first page. If the offset value is 
OxlOOO (and the system's virtual page size is OxlOOO), the mapping begins 
with the object's second page, and so on. 

The vm _map_ entry structure includes the following fields: 

start The beginning of the virtual address range being mapped. 

end The end of the range being mapped. 

protection The protection at which the range is mapped. For example, a 
region can be mapped read-only, or read/write. 

inheritance Specifies whether or not child tasks will inherit the mapped 
region, and if so, whether they will inherit a copy of the region 
or inherit shared access to the region. 

object The object that is mapped to the address range. 

offset The mapping's offset into the object. 

Figure 6-3 shows the relationship between a vm _map_ entry structure and 
the VM object it maps. The VM object is mapped to the address range that 
spans Ox2000 to Ox6fff. The object is mapped read-only and inherit-copy at 
an offset of OxO. The size of the address map entry's virtual range (Ox4fff) 
implies that the address map entry maps the object's first five pages. 
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Figure 6-3. A vm_map __ entry Structure and the VM Object It Maps 
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Usually a region of allocated memory is mapped through one address map 
entry, but this is not always so. A region may be mapped by multiple address 
entries. If all of a region's addresses have the same protection and 
inheritance attributes, the region can be represented by a single address map 
entry. If the region contains subsets of addresses that have different 
attributes, the region requires an address map entry for each subset. 

Consider again the preceding example. The region described contains the 
virtual addresses between Ox2000 and Ox6fff. Suppose the task calls the 
vm _protect() interface to change the protection of the addresses between 
Ox5000 and Ox6fff from read-only to read/write. Figure 6-4 shows the result 
of this operation. 
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Figure 6-4. Changing Protection on a Range of Virtual Memory 
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The system splits the original address map entry into two separate entries. 
The first address map entry maps the virtual addresses between Ox2000 and 
Ox4fff to the VM object's first three pages; the address map entry references 
the VM object at an offset of OxO, and the virtual range implies that the 
mapping has a length of Ox3000. This mapping retains the read-only 
protection. The second address map entry maps the Ox2000 range of 
addresses between Ox5000 and Ox6fff to the VM object's fourth page by 
referencing the VM object at an offset of Ox3000. The address map entry 
maps this data read/write. 

6.1.3 Address Map Entries and the Page Fault Handler 

When it invokes the page fault handler, the kernel analyzes the fault, and 
then passes the handler the virtual address whose reference generated the 
fault and a pointer to the faulting task's address map. If the virtual address 
is valid, the faulting address lies in one of the map's ranges of allocated 
virtual memory. Before the handler can resolve the fault, it has to locate the 
address map entry that represents this range. This address map entry 
references the VM object that manages the faulting address's virtual page. 
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When it has located the address map entry, the handler calculates the 
faulting address's offset into the region, then uses that offset to identify the 
virtual page that contains the faulting address's physical counterpart. The 
handler can then determine the physical location of the virtual page and 
thereby resolve the page fault. 

Consider Figure 6-3. Suppose in this example that a task has generated a 
page fault trying to reference an address between Ox5000 and Ox5fff. The 
page fault handler proceeds as follows (assume a system page size of 
OxlOOO): 

1. The handler locates the faulting address's address map entry. 

2. It calculates the address's offset into the region. In this example, the 
faulting address lies between Ox5000 and Ox5fff, so the address's 
offset is between Ox3000 and Ox3fff into the region. 

3. The handler adds this offset to the VM object's offset to determine the 
virtual page's offset in the object. In this example, the VM object is 
mapped at an offset of OxO, so the virtual page in question has an 
offset of Ox3000 into the object. It is in the object's fourth page. 

4. The handler now determines if the page is resident by using the 
object/offset value to search the resident page table. If the page is not 
resident, it must be paged in from secondary storage. 

6.2 Implementation of UNIX Process Address Spaces 

6-8 

Figure 6-5 shows how OSF/1 implements a typical UNIX process's address 
space. As shown in the figure, the process's address map contains four 
address map entries. However, the process's address map maps three VM 
objects into the address space. VM object A represents the process's text 
and initialized data, which is collectively mapped from the process's 
executable file; VM object B represents the process's uninitialized data and 
heap; VM object C represents the process's user stack. 

Note that two address map entries map to VM object A. The first address 
map entry maps the text portion of the VM object and the second address 
map entry maps the initialized data portion of the object. The sections are 
mapped with different protection attributes; the text is mapped read-only 
with execute, and the initialized data is mapped read/write. 



The Virtual Memory Subsystem: Address Space Implementation 

Figure 6-5. Implementation of a UNIX Process Address Space 
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6.3 The Optimization of Virtual Copy 

Tasks often inherit regions of virtual memory from their parents. Inherited 
regions are of two types: shared regions and copied regions. If a child shares 
an inherited region with its parent, it will see all modifications the parent 
makes to the mapped data, and the parent will see all modifications made by 
the child. If a child process inherits a copied region, it will not see changes 
made by the parent, and the parent will not see changes made by the child. 
Shared regions are discussed in Section 6.5. This section describes the 
implementation and optimization of copied regions of memory. 
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The VM system uses copy-on-write mechanisms to optimize the copying of 
virtual memory. Copy-on-write allows tasks to share mappings to the same 
data read-only, and data is copied only when one of the tasks attempts to 
write the data. 

In OSF/l, copy-on-write operations happen on a page-by-page basis. For 
example, if two tasks share several pages copy-on-write, and one of the 
tasks wants to write data on the first page, the kernel will copy only that 
page. The other pages will remain uncopied until one of the tasks attempts 
to write them. 

There are two types of copy-on-write operations: symmetric copy-on-write 
and asymmetric copy-on-write. 

6.3.1 Symmetric Copy-on-Write 
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Symmetric copy-on-write is the kernel's mechanism for optimizing the 
virtual copy of temporary data. This is data that is created in memory as a 
task executes. For example, a UNIX process's heap contains temporary 
data. 

In Figure 6-6, tasks A and B share a region of data copy-on-write because B 
has inherited from A a virtual copy of the region. As indicated in the figure, 
the system implements the virtual copy by mapping the data's VM object 
into both tasks' address spaces. 
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Figure 6-6. Two Tasks Share Data Copy-on-Write 
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Suppose that task A needs to modify data mapped to its copy of the region, 
and the data to be modified is contained in the VM object's second page. 
The system cannot allow task A to modify the original page's data because 
the page is currently being shared with task B. At this point the system must 
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provide task A with an exclusive copy of the affected page. The system 
proceeds as follows: 

1. It allocates a new physical page to hold the copied data and copies the 
data from the original page to the new page. 

2. It initializes a new VM object, called a shadow object, and places the 
new page there. 

3. It changes the mapping of task A's region from the original VM object 
to the shadow VM object. 

Now task A has an exclusive copy of the original object's second page. 
Figure 6-7 shows the result of this copy-on-write operation. 

Figure 6-7. Task A Writes Data 
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The shadow object is the means by which the system manages task A's 
changes to the shared data. Whenever task A needs to modify a previously 
unmodified page in the original VM object, the system allocates a new page, 
copies the required data from the original page, and inserts the new page in 
task A's shadow object. The task no longer references the original page; it 
references the page that resides in the shadow object. 
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The system moves pages to the shadow only when the task needs to modify 
data; unmodified pages remain in the original VM object. Suppose, for 
example, that task A wants to read (but not modify) data contained in the 
original VM object's third page, which has not been modified. The task first 
looks for the page in its shadow object. The task then moves to the original 
object, finds the page, and reads its data. The original object is referred to 
as the shadow object's hacking object. 

Now suppose that task B wants to modify data mapped to its region that is 
associated with the original object's first page. As shown in Figure 6-8, the 
system responds by creating a shadow object for task B. The system 
allocates a new physical page, copies the data from the original object's first 
page, and inserts the new page in task B's shadow object. The system maps 
the shadow to task B's region. The task then has an exclusive copy of the 
original object's first page. 

6-13 
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Figure 6-8. Task B Writes Data 
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This version of the copy-on-write optimization is known as symmetric 
copy-on-write because the system must create a shadow object for each task 
when that task needs to modify the shared data. For reasons that will be 
explained in Section 6.3.2, symmetric copy-on-write is appropriate only for 
VM objects that manage temporary data. The virtual copy of permanent data 
can also be optimized in a copy-on-write fashion, but the mechanism cannot 
be implemented in a symmetric fashion. 



The Virtual Memory Subsystem: Address Space Implementation 

6.3.1.1 Shadow Object Chains 

Shadow VM objects can themselves be subject to copy-on-write. In such an 
instance, the shadow VM object becomes the original VM object, with its 
pages subject to copy-on-write. 

For example, in Figure 6-9, task A and task B share data copy-on-write, and 
task B has written to the original object's first page, thus generating a 
shadow object. Task B subsequently creates task C. Task C inherits from B 
a virtual copy of the data. This data is managed by two VM objects: B's 
shadow object, which manages the single page B has modified, and the 
original VM object, which manages the two pages B has yet to modify. 
Tasks B and C both map the shadow object copy-on-write. 
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Figure 6-9. Tasks B and C Share Data Copy-on-Write 
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Suppose that task C wants to write the first page of data. The system 
allocates a new physical page to copy the data to, and creates a new shadow 
VM object to manage the new page. (See Figure 6-10.) The system maps 
this object to task C's address space, and now the task is free to write the 
data. Note that the shadow object has as its backing object task B's shadow 
object, which in tum has as its backing object the original VM object. As 
before, if either task B or C wants to access data contained in the other 
pages, it gets the data from the original VM object. This collection of VM 
objects is known as a shadow chain. 
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Figure 6-10. Task C Writes Data 
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Suppose that task B wants to write the second page of data. The system 
proceeds with the copy-on-write operation as follows: 

1. The system allocates a new page to hold the copied data. 

2. The system follows the shadow chain references back to the original 
VM object, finds the data's page there, and copies the data to the 
newly allocated page. 

3. The system creates a new shadow object to manage the new page and 
maps this object to task B's address space. B can then proceed to 
modify the page's data. 

Figure 6-11 illustrates the results of this operation; task B's former shadow 
object becomes the current shadow's backing object. If task B needs to 
access data from the first page, it must follow the shadow chain back to its 
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former shadow object. If the task wants to access data from the third page, 
it must follow the shadow chain to the backing object and then on to the 
original VM object. 

Figure 6-11. Task B Writes Data, Creating a Shadow Tree 
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6.3.1.2 Managing Shadow Trees 

Shadow trees, such as the one depicted in Figure 6-11, can grow to large 
proportions very quickly, and the kernel must prune them whenever 
possible. Pruning is done whenever the kernel realizes that an intermediate 
shadow object is no longer needed. Such an object is not needed in the 
following circumstances: 

• If the system has copied all of a backing object's pages to the shadow 
object, the shadow no longer needs to reference the backing object, and 
instead can directly reference the next object in the chain. 

• If a backing object is referenced only by a single shadow object, the two 
objects can be merged into one object. 

Consider again Figure 6-11. Note that task C's shadow object has already 
copied the sole page that is managed by its backing object. When task C 
accesses any other data, it must get that data from pages managed by the 
original VM object. In this instance, the system can simplify the shadow 
tree by having task C's shadow object reference the original VM object 
directly. Figure 6-12 shows the simplified shadow tree. 
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Figure 6-12. Pruning the Shadow Tree 
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Now that task C's shadow object references the original VM object directly, 
and its previous backing object (task B's former shadow object) has only 
one shadow object referencing it: task B's current shadow object. The 
system can further prune the tree by moving the backing object's first page 
to the shadow object and setting the shadow object to reference the original 
VM object directly. Figure 6-13 shows the result of this operation. 
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Figure 6-13. Pruning the Tree Further 
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The system attempts to prune the shadow tree each time it services a copy­
on-write page fault. After the system allocates the new page for the shadow 
object and copies data to the page, the system checks the shadow object's 
backing object to see if pruning is possible. If the shadow object is the only 
object currently shadowing the backing object, the system merges the two 
objects together. If the shadow object no longer needs to reference the 
backing object because it has copied all of that object's pages, the system 
removes the shadow's reference to the backing object and sets the shadow to 
reference the next object in the chain. 
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6.3.2 Asymmetric Copy-on-Write 
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In symmetric copy-on-write, both tasks share unmodified data and store the 
modifications they have made in their respective shadow objects. The data 
managed by the original VM object is temporary, as is the data managed by 
the shadow objects. The system discards both the original and the modified 
data after the tasks have completed execution. 

This section discusses assymetric copy-on-write, which is the kernel's 
mehchanism for managing the virtual copying of permanent data. Suppose 
that a task, task A, has mapped into its address space a VM object that 
manages permanent data, which continues to be stored on disk after the task 
has completed its execution. The task can modify this data and expects the 
system to write the changes back to the file. In this discussion, assume that 
task A is the only task that can modify the on-disk copy of the data. 

Task A's modifications to the file in secondary storage are made to an in­
memory copy of the data, specifically, to data contained in resident pages. 
The system manages these pages via the VM object's list of resident pages. 
The system updates the file by sending the modified pages back to the VM 
object's associated paging object. Task A is able to modify the permanent 
data because it has that paging object's corresponding VM object mapped 
into its address space. In order for task A to retain its ability to modify this 
data, it must retain this mapping. 

Suppose that task B, a task created by task A, has inherited a copy of the 
mapped file. Although the two tasks can, through a copy-on-write 
mechanism, share a virtual copy of the data, the system must continue to 
allow task A the exclusive right to modify the on-disk copy of the data. 
Task B may also modify data in the virtual copy, but its modifications are 
considered temporary. The kernel does not allow task B's changes to get 
written back to the permanent on-disk file. 

As long as neither task modifies the data, they can share the virtual copy. 
However, suppose that task A wants to modify the data. To make its 
modifications permanent, task A must retain its mapping to the original VM 
object so that the system sends the modifications to the appropriate paging 
object. However, if task B has the original VM object mapped into its 
address space, it will see task A's modifications. If B is to avoid seeing A's 
changes, it must not map to the original VM object. OSF/l uses the 
mechanism of the copy ohject to enable the tasks to share the data read­
only. 
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When the system initializes task B and sets up the virtual region that the 
task has inherited from task A, the system creates a VM copy object and 
maps this object to the region. As shown in Figure 6-14, this object is 
initially empty, but references the original object's pages. For example, if 
task B wants to read data from the virtual copy's first page, it reads the data 
from the original object using the copy object. 

Figure 6-14. Tasks A and B Share Permanent Data Copy-on-Write 
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Suppose that task A wants to modify data contained in the original VM 
object's first page. Before the system allows this modification to take place, 
it allocates a new page, copies the data from the original page to the new 
page, and then inserts the new page into the copy object (Figure 6-15). Task 
B then references the new page, which contains unmodified data, and task A 
is free to modify the original page. Task B still reads any unmodified pages 
from the original VM object. 
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Figure 6-15. Task A Writes Data, Pushing a Page to the Copy Object 
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Suppose that task B wants to modify its virtual copy of the data, and the data 
it wants to modify is contained in the virtual copy's second page. As far as 
the system is concerned, task B has the data mapped copy-on-write. When 
task B attempts to write the data, the system initializes a shadow object, 
allocates a new page, copies the original data into the new page, and inserts 
the new page into the shadow object. The system then maps the shadow 
object to task B's address space. See Figure 6-16. 
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Figure 6-16. Task B Writes Data 

Task A's 
vm_map_entry 

Original 
VM Object 

Copy 
Object 

Task B's 
vm_map_entry 

Task B's 
Shadow 
Object 

As Figure 6-16 shows, the data modified by task B lies in the shadow object. 
If task A has modified the original data, it pushes an unmodified copy of the 
page to the copy object, and task B can read the data from there. If neither 
task modifies a page's data, task B reads the data from the original object 
using the shadow and copy objects. 

This virtual copy mechanism is known as asymmetric copy-on-write 
because the system creates shadow objects only for child tasks. The parent 
task retains the right to have its modifications sent back to permanent 
storage, so it continues to map the original VM object after it has modified 
the data. 
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6.4 The Page Fault Handler and Copy-on-Write 
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When a thread faults on a page that is shared symmetrically, the kernel has 
to copy the page's data to a new page. In this case, the page fault handler 
has passed to vm_fault_page() the shadow object that will hold the copied 
page. The actual page is contained in a backing object somewhere down the 
shadow chain. The routine searches the virtual-to-physical hash table and 
determines that the page is not resident. The routine then allocates a new 
resident page and begins searching for the backing page that contains the 
data. This search proceeds as follows: 

1. The routine accesses the next VM object in the shadow chain using 
the current object's shadow field and determines the offset into this 
object. It then unlocks the current object and locks the next object. 
The newly allocated page is automatically marked busy so that 
another task faulting on the page will wait for it to fill instead of 
racing down the shadow chain. 

2. The routine searches for the page in the new object by calling 
vm _page _lookup() and passing to that routine the new VM object 
and offset. 

This set of steps continues until the routine finds the page containing the 
data. When the routine finds the page, it copies its contents to the page 
allocated in the top object, then returns the page to the vm _fault() routine. 
If the page is not found, the page fault handler initiates a pagein operation. 

In the case of asymmetric copy-on-write, the task wants to write permanent 
data that is marked copy-on-write. The faulting task owns the data in the 
sense that its changes are eventually written back to the data's secondary 
storage entity. The other tasks that are sharing this data consider their copy 
of the data to be temporary, and any changes they make to the data are not 
written back to the secondary storage entity. Before the faulting task writes 
the data, it must "push" an unmodified copy of the data to the copy object. 
The vm _fault_page() routine proceeds as follows: 

1. It allocates a new resident page to hold the copied data. This page is 
associated with the copy object. 

2. It copies the contents of the original page to the copy object's page. 

3. Other tasks that are sharing the data may have referenced the original 
page and so have entered the page into their pmaps. These pmap 
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entries must be invalidated because the faulting task is about to write 
the data. The routine invalidates any other mapping by calling the 
pmap _page _protect() routine. 

6.5 Share Maps 

Two tasks can share access to a region of data. This is different from sharing 
data copy-on-write. When two tasks share access to data, each task sees 
changes made by the other. 

A task that shares access to data with another task may want to share the 
data with a child task on a copy-on-write basis. Tasks cannot share access 
to data through a VM object because that structure cannot support copy-on­
write and sharing at the same time. This sharing arrangement is 
implemented instead by a share map mechanism. A share map is an address 
map that is shared between two or more tasks. 

Usually, true sharing can only take place between related tasks (an external 
pager can be implemented that allows unrelated tasks to share data, as 
discussed in Chapter 7). One task shares data with a child by allowing the 
child to inherit shared access to the data. The child task may then allow its 
children to inherit shared access, or it may allow its children to inherit a 
copy of the data. 

Figure 6-17 outlines how a share map works. 
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Figure 6-17. A Share Map 
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Share maps are rare in OSF/l; they can be generated when a process maps a 
file with mmap( ), changes its protection with vm _inherit(), and then forks 
another process. 
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6.6 Virtual Copy and Mach IPC 

In Mach IPC, tasks can send messages of arbitrary size to one another. In 
traditional UNIX systems, transferring large amounts of data between 
processes is an expensive operation because it involves physically copying 
the data from one address space to another. In Mach, however, such 
operations are inexpensive because the data is passed copy-on-write. 

OSF/l implements copy map objects to support Mach IPC copy-on-write 
operations. A copy map object, which is not the same as the copy objects 
used to implement asymmetric copy-on-write, is an actual copy of a portion 
of a task's address map. Each copy map object contains an address map data 
structure, which is chained in double-linked fashion to address map entries 
that represent the copied address space. 

The vm _map_ copyin() structure, which is used by the Mach IPC subsystem 
when a task sends out-of-line data to another task, duplicates a portion of a 
task's address space by creating a copy map object to represent the data 
being passed in the IPC message. The copy map object is subsequently 
inserted into the receiving task's address space. The copy map object may 
also be used to overwrite the task's address space. 

6. 7 The Kernel's Address Space 

The OSF/l kernel is implemented as a task, called the kernel task. 
Compared to most user process address spaces, the kernel task's address 
space is complicated. Among other things, it contains the kernel's 
executable text, the data structures it uses to represent system entities such 
as tasks, threads, and VM objects, kernel stacks for user-level threads, and 
so on. Like any other task, the kernel has an address map that describes its 
virtual address space. This map is called the kernel map. 

Address maps, both kernel and user, are protected by locks. Address maps 
can be locked for reading, and separately for writing. Multiple threads can 
lock the address map for reading. A thread that has a map locked for writing 
has exclusive access to the map; other threads that may want to read the 
map cannot do so until the writing thread releases the lock. 
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On user process address maps, the lock mechanism does not significantly 
affect the performance of the application because the lock is not generally 
under contention. User address map locks are taken in two circumstances: 

• The kernel is resolving a page fault with respect to the process and is 
examining the map's address map entries. 

• The process is mapping or unmapping a VM object into or from the 
address space and is adding or removing an address map entry from the 
map. 

In most user processes, these are not activities that generally overlap. When 
they do, the application's performance may be affected slightly. 

However, if the kernel address map, with its varied regions of data, were 
locked by a single lock, many entirely unrelated threads would contend for 
it, and system performance would suffer. Therefore, the kernel map is 
divided into submaps, which can be locked separately from one another. 

For example, the kernel's default pager, the vnode pager, executes in the 
context of the vnode pager submap. The vnode pager, with its multiple 
threads, often has occasion to lock its virtual address space. Because this 
address space is built into the kernel's address space, it would be inefficient 
for locks taken by the pager to prevent other threads from accessing other 
unrelated kernel data structures. 

Some of the kernel's submaps manage wired-down memory. The default 
pager submap is in this category. Since the default pager must be able to 
immediately free memory resources, it cannot afford to generate page faults; 
its memory is always resident. 

6.7.1 Submap Implementation 
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Submaps are implemented through address map data structures. The 
submap contains one or more address map entries that specify the address 
space it manages, and the submap is itself referenced by an address map 
entry in the parent map. See Figure 6-18. 
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Figure 6-18. The Kernel's Address Map with Submaps 
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6.8 Pmaps and the Pmap Module 

A task's pmap is an abstraction of the machine-dependent data structures 
that the memory management unit (MMU) uses to perform address 
translation. Because all virtual-to-physical translations are maintained in the 
machine-independent data structures, a task's pmap serves as a cache of 
those translations. 

In keeping with Mach's philosophy of lazy evaluation, the kernel 
manipulates pmaps only when it is absolutely necessary. Most VM 
operations are implemented through machine-independent code. When the 
machine-independent VM performs an operation that must be reflected in a 
task's pmap, it issues a call to the kernel's pmap module. This module, 
which contains all machine-dependent code associated with the VM system, 
implements the set of services required by the machine-independent VM. 

The pmap module must implement the pmap data structures and the 
operations that manipulate these structures. The technique the pmap uses to 
manage its cache is specific to the memory management hardware. The 
data structures differ for single-level page tables (the DEC VAX), multilevel 
page tables (the Encore Multimax and the Motorola 68030), inverted page 
tables (the IBM RT/PC), paged segmented architectures (the Intel i386), 
translation caches (MIPS), and so on. Each of these machines has its own 
unique pmap data structures, but exports the same basic functional services. 

6.8.1 The Pmap Functions 

6-32 

The routines and macros exported by the pmap module can be grouped 
according to their functions: 

• Managing individual pmaps. This includes routines that create and 
destroy pmaps. 

• Managing threads. This includes routines that install and update virtual­
to-physical mappings. 

• Performing global operations on multiple pmaps simultaneously. 

• Manipulating physical memory. There are also optional routines that 
can be used by the pmap module to perform optimization operations. 
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6.8.1.1 Managing Individual Pmaps 

The pmap _create() routine is called when a task (and therefore a new 
address space) is created. It returns a handle for the pmap structure to the 
machine-independent code. This handle is used by all routines to specify 
which pmap to operate on. 

The pmap _kernel() call returns the handle for the pmap describing the 
kernel address space. It is used by routines in the virtual memory system to 
initialize and manage the kernel's address space. 

The pmap_reference() and pmap_destroy() routines increment and 
decrement reference counts on pmaps. If decrementing the count puts it at 0 
(zero), pmap _destroy() deallocates the physical map and frees up its data 
structures. 

6.8.1.2 Managing Threads 

The pmap subsystem provides macros to help manage threads within 
processes. The pmap _activate() routine invokes the 
PMAP _ACTIVATE() macro whenever a CPU is dispatched to run a thread, 
and the new thread is in a different process (and therefore in a different 
pmap). The macro sets up any hardware context in the specified CPU's 
address translation hardware, ensuring that the mappings established in the 
specified pmap will be valid in the thread. 

When PMAP _ACTIVATE() completes, the specified pmap is active. The 
PMAP _DEACTIVATE() macro does any cleanup required by the address­
translation hardware, so that the mappings established in the specified pmap 
are no longer valid addresses. 

The normal sequence during a thread context switch requiring a process 
context switch is to have PMAP _DEACTIVATE() called, supplying the 
old process's pmap and the CPU; then PMAP _ACTIVATE() is called, 
supplying the new process's pmap and the CPU; and then the process 
context is switched. For context switches between threads within a process, 
the PMAP _CONTEXT() macro is called. This macro sets up any per­
thread hardware state in the specified CPU's address-translation hardware, 
so that the mappings established in the specified pmap will be valid in the 
new thread. 

6-33 



Design of the OSF/1 Operating System 

6-34 

6.8.1.3 Managing Address Ranges Within the Pmap 

Changes in virtual address mappings are reflected back to the pmap module 
using address-space-specific calls. The pmap _enter() service inserts a 
virtual-to-physical address mapping in the pmap (with the requested 
protection). It is the basic routine used to validate addresses. The 
pmap _enter() routine is the only routine in the pmap that cannot be lazily 
evaluated. When pmap _enter() returns, the specified mapping must exist 
in the map. 

The pmap _remove() routine removes a range of addresses from a pmap. It 
is the basic routine used to invalidate addresses. The pmap _protect() 
routine limits the maximum allowed access for the specified range of virtual 
addresses in the specified pmap to the specified protection. If the specified 
protection is higher than the current protection for any currently valid page 
in the range, the protection for that page is not changed. Therefore, 
pmap _protect() can never increase page protection. 

Other routines that act on virtual addresses within a pmap are 
pmap _extract(), pmap _access(), and pmap _change_ wiring(). The 
pmap _extract() call translates a virtual address within a specified pmap 
into the physical address to which that virtual address currently maps. 
Essentially, it simulates the operation of the address-translation hardware. 
The pmap _access() call determines whether there is currently a valid 
mapping for the specified virtual address in the specified pmap. If a valid 
mapping exists, it is assumed that a reference to the address will not cause a 
page fault. The pmap _change_ wiring() routine changes the wiring of the 
physical page that contains the specified virtual address in the specified 
pmap. It is used to set the wiring attribute so that a reference to the page 
may or may not page fault. 

6.8.1.4 Tracking Pages Mapped to Multiple Pmaps 

There are kernel functions that affect multiple address spaces 
simultaneously, typically acting on all mappings of a physical page. The 
pmap _page _protect() call limits the maximum allowed access for the 
specified page to the specified protection. This new protection applies to all 
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pmaps that have the page mapped. The pmap _page _protect() routine has 
three important uses: 

• It is used to remove write access from a page during copy-on-write 
operations. 

• It is used to invalidate all accesses to a page when the page is being 
freed as a result of page replacement or object deletion. 

• It is used to lock out all accesses of a specified page, in response to a 
request from an external memory manager that is managing that page. A 
memory manager might make this request when it is attempting to 
maintain cache coherence across a network. 

In order to implement these global operations on multiple mappings, the 
pmap must maintain a list of physical-to-virtual mappings. Entries in this 
list (defined by the structure pv _entry) contain, for each active mapping of 
the page, the address of the pmap structure and the virtual address at which 
it is mapped. An array, whose address is held in pv _head_ table, is 
allocated at initialization time to contain the first list entry for each physical 
page. If a page is mapped by no more than one process, there is no actual 
list, just an array element to indicate where it is mapped. As pages become 
shared by more than one process, the new list entries are allocated and 
linked. 

Other routines that must walk this physical-to-virtual list to return 
information about a page include pmap _is_ modified() and 
pmap _is _referenced(). These calls check the modified and referenced 
bits, respectively, for the specified physical page. The modified bit 
information is used by the pageout code to decide whether the contents of 
the page need to be written to backing storage before the page is freed. The 
referenced bit information is used by the page replacement algorithm to 
decide whether or not an inactive page is a candidate for being freed. Some 
address-translation hardware does not support reference bits. Since it may 
be too expensive to simulate a reference bit in software, these machines may 
simply always return FALSE from pmap_is_referenced() and depend on 
pmap _clear _reference() to remove all mappings for the specified page. 

The pmap _clear_ modify() routine is used to reset the modified bits to a 
known value (for example, when the page has just been read in from 
backing storage). The pmap _clear _reference() routine is used when the 
page is deactivated (that is, moved from the active list to the inactive list). 
If the page has been referenced, it is not freed but, rather, reactivated. 
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6.8.1.5 Services that Promote Optimization 

The pmap _copy _page() and pmap _zero _page() calls actually manipulate 
physical memory. The pmap _copy _page() call is used whenever the 
kernel has to copy a page of data that may not have a virtual address in the 
kernel's address space. It copies a page of data from the source physical 
page frame to the destination physical page frame. This routine is used 
when a page must be copied because of a copy-on-write fault. 

The pmap _zero _page() call clears the specified physical page frame by 
filling it with zeros. It is also used when the kernel has to clear a page that 
may not have a virtual address in the kernel's address space. Its most 
typical use is on the first user's reference to a page of storage allocated 
through vm _allocate(). These two routines can use the following 
optimizations: 

• An implementation might permanently map the entire physical address 
space to a range of kernel virtual addresses. 

• Some hardware types temporarily turn off address-translation during the 
copy or clearing operation. 

• Some implementations dedicate some kernel address space for use in 
mapping physical pages to be copied or cleared. 

Another call that promotes optimizations is pmap_update(), which 
synchronizes pmaps by telling the pmap module to perform any update 
operations that have been deferred. All calls that affect mapping, except 
pmap _enter(), may be delayed until pmap _update() is called. This is an 
example of lazy evaluation. pmap_update() is called only as needed to 
ensure that the state of the address-translation hardware is consistent with 
the virtual memory system data structures, so that a thread about to run will 
find a semantically correct address space. 

A number of pmap calls are advisory, in that they supply information from 
machine-independent code to the pmap, which the pmap module can use as 
its optimization implementation dictates. The pmap _copy() call informs 
the pmap module that the specified range of virtual addresses in the 
destination map is to be mapped from the same physical pages with the 
same protections and wiring as the range specified in the source map. It is 
used to promote optimization in the fork() operation, where the child 
process's pmap is initialized to a copy of the parent's. The pmap module is 
not required to act on this information. The pages in the specified range will 
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eventually be copied as a result of the first fault on that page if the 
optimization is not used. 

The pmap _pageable() call informs the pmap module that the specified 
range of virtual addresses is to be wired (or else pageable). The hardware 
resources required to translate an address in this range (for example, its page 
table entries) must also be wired (or pageable). This call provides an 
efficient method for wiring the hardware resources for a group of pages 
simultaneously. Again, the pmap is not required to use this optimization 
advice. The pages will eventually be wired (or unwired) as a result of 
subsequent calls to pmap _enter(). 

The pmap _collect() call is made by the thread swapout code when free 
memory is very tight. It frees as much memory as possible from the 
specified pmap. For example, memory holding page tables can be freed this 
way. The pmap _collect() routine can invalidate mappings because the 
information necessary for reconstructing the pages is retained in the 
machine-independent code, allowing the page to be restored at page fault. 
The implementation must decide what to do with the optimization 
information. 

6.8.2 The Shootdown of Translation Lookaside Buffers 

A task's page tables reside in resident memory, but address translation 
would be prohibitively slow if the MMU had to reference resident memory 
for each translation operation. Most hardware architectures, therefore, 
optimize address translation by caching translations in the CPU's 
translation lookaside buffer (TLB). When a task references a virtual page 
whose page table entry is not cached in the TLB, the MMU loads the page 
table entry from resident memory into the TLB. As long as the entry 
remains in the TLB, the MMU can continue to translate references to the 
virtual page without having to access the page table entry in resident 
memory. 

An entry that is cached in a TLB may be modified and then written back to 
the page table in resident memory. For example, if an entry is cached in the 
TLB and the thread on the CPU writes to the page represented by the entry, 
the hardware will update the modify bit in the cached entry. Subsequently, 
the entry will be written back to the page table in resident memory. 
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On architectures that provide TLBs, the operating system must make sure to 
keep the contents of the TLB synchronized with the contents of the page 
tables in memory. For example, suppose a particular page's page table entry 
has been cached in the TLB. If the kernel updates the page table entry in 
resident memory to change the page's protection from read/write to read­
only, the cached page table entry becomes invalid and must be removed 
from the TLB so that the valid page table entry can be used. 

The management of TLBs on shared memory multiprocessors is 
complicated by the fact that a thread on one processor may modify a page 
table entry that is loaded not only in its own TLB, but in the TLBs of other 
processors. The system must have a mechanism for maintaining the 
consistency of translations across the TLBs. 

Ideally, the hardware would implement a mechanism that would allow 
processors to manipulate one another's TLBs. Unfortunately, most 
architectures do not provide such a mechanism. On these architectures, 
TLB consistency must be maintained by software. 

The main problem that must be solved with respect to TLB consistency is 
one of timing. When a page table entry must be updated to reflect a change 
in the mapping, the update can be made before or after the TLBs are flushed. 
If the entry is updated after the TLBs are flushed, there is a chance that one 
or more of the TLBs may reload the entry before the entry has been updated. 
If the entry is updated before the TLBs are flushed, one of the processors 
may inadvertently overwrite the resident entry with the previous version of 
the entry. 

These problems can be solved by a means of communication that allows a 
thread that is changing a pmap to stall all other processors that are using the 
pmap. While a processor is stalled, it cannot write TLB entries back to 
resident memory. When the initiating thread is sure that the other 
processors are stalled, it updates the pmap, and then unstalls the processors. 
When the processors become unstalled, they immediately flush their TLBs. 

This algorithm is called a TLB shootdown. It is implemented within the 
pmap module, where it is divided into two portions: 

• The code executed by the initiating thread, which sends interrupts to 
other CPUs if the current pmap operation might introduce an 
inconsistency in the pmap 

• The code executed by responding threads, which receives interrupts and 
performs the operations required to keep the TLB consistent 



The Virtual Memory Subsystem: Address Space Implementation 

The shootdown algorithm performs its operations by managing the 
following data structures: 

• A list of processors that are currently performing address translation 

• A list of processors that are idle 

• For each pmap, a list of the processors that are using the pmap 

• For each processor, an "action needed" flag that indicates the need for a 
TLB consistency operation, and buffers to hold pending consistency 
actions 

A thread invokes the shootdown algorithm when it performs a pmap 
operation that could cause inconsistencies in the TLBs of other processors. 
The algorithm performs its operations in four phases: 

a. The initiating thread places a consistency action request in the buffer 
of each processor currently using the pmap and sets the action needed 
flag of each processor. The initiator then sends an interrupt to each of 
the processors. 

b. The responders receive the interrupts. Each responder removes itself 
from the list of active processors to wait for the initiating thread to 
update the pmap. This prevents the responders from attempting to 
read from or write to the pmap while the initiating thread is updating 
it. 

c. After the responders have entered the waiting phase, the initiator 
updates the pmap. 

d. When the initiator has finished updating the pmap, the responders 
invalidate their TLBs, clear their action needed flags, and place 
themselves on the list of active processors. 

The previous description illustrates the basic structure of the algorithm; 
however, the actual algorithm is more complicated because it must account 
for situations inherent in multiprocessor environments. 
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Chapter 7 

The Virtual Memory Subsystem: 
Memory Management 

An operating system manages its memory resources through a memory 
management subsystem. Memory resources include the system's resident 
memory and secondary storage devices such as disk drives. It is the memory 
management subsystem's responsibility to allocate memory resources 
effectively among concurrently executing processes. 

In the evolution of UNIX memory management, there have been two 
approaches to allocating resident memory resources: swapping and demand 
paging. In a swapping-based memory management subsystem, a process 
must be entirely resident to execute. The operating system moves entire 
processes between resident memory and secondary storage to achieve 
sharing. 

In a demand paging system, a process can execute without having to be 
entirely loaded in resident memory. Those portions of a process that are not 
resident are kept in secondary storage and are paged into resident memory 
as needed. When the memory management system needs to reallocate page 
frames to other processes, it pages out process data to secondary storage to 
free the page frames. 

Paging data in and out of resident memory requires more system overhead 
than swapping in and out entire processes because incremental paging 
operations require incremental disk accesses. 
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Demand paging systems are inherently susceptible to a condition known as 
thrashing. When resident memory resources drop to a certain level and the 
demand for resources is high-frequently the situation when many new 
processes are being created-the memory management system may not be 
able to free single pages quickly enough to satisfy the demands on memory. 
The system may spend a large amount of its time paging out pages at the 
expense of executing processes. 

Thrashing can be alleviated somewhat with a hybrid demand 
paging/swapping memory management system. In systems of this type, 
demand paging memory management takes place when the system is under 
moderate load. Under heavy load, the memory management system can 
swap entire processes out to secondary storage. Most modern UNIX 
systems implement this hybrid memory management policy. OSF/l 's 
memory management system is also a hybrid, although OSF/1 's version of 
swapping differs from that of other UNIX systems. 

7 .1 Overview 
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Memory management in OSF/1 is based on the constructs of Mach memory 
management. In Mach, a task's virtual address space contains regions of 
allocated memory. Each of these regions is mapped to a memory object, and 
each memory object is managed by a memory manager. The memory 
manager implements paging operations on the object and performs these 
operations at the kernel's request. 

The kernel requests paging operations by issuing IPC messages to the 
memory manager. For example, the page fault handler initiates the pagein of 
data by issuing a pagein request to the page's memory manager. The 
memory manager pages in the data by sending it to the kernel in a message. 

Similarly, the kernel initiates the pageout of data by issuing a request to the 
data's memory manager. The memory manager handles the request by 
writing the data to secondary storage and freeing the page frame that 
contained the data. It is important to note that it is the memory manager's 
responsiblity to free the page; the kernel merely requests the pageout 
operation. 
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The Mach memory management model supports the implementation of 
memory managers that can implement paging operations on application­
defined objects. Memory managers of this type execute in user space and 
are often referred to as external memory managers. They interact with the 
kernel through the external memory manager interj ace. 

7 .2 The Vnode Pager 

Because external memory managers are not directly controlled by the 
kernel, the kernel cannot depend upon these managers responding to 
pageout requests on a timely basis. When an external memory manager 
fails to free pages as requested, the system's default pager becomes 
responsible for paging out and freeing the pages. The default pager is a 
trusted pager (it runs with superuser privileges) and is guaranteed to 
perform pageout operations promptly. The default memory manager is also 
responsible for performing paging operations on temporary memory objects. 

The OSF/l default pager is the vnode pager. It is called the vnode pager 
because it manages memory objects that are files or devices, which are 
represented by vnode data structures (see Chapter 3). In addition to 
functioning as the system's default pager, the vnode pager manages the 
pagein and pageout of permanent data (data that has been mapped into a 
process by the file mapping call mmap( )). In its capacity as a manager of 
mapped file data, the vnode pager functions as an entity distinct from the 
system's default pager. 

Although OSF/1 supports the implementation of other memory managers, 
the vnode pager is the only memory manager provided in OSF/l. 
Developers can use the kernel's external memory manager interface to 
implement other memory managers. 

The vnode pager is a separate task whose address space is implemented as a 
submap of the kernel's address map. Since it is built into the kernel's 
address space, the vnode pager can directly access the vnode data structures 
that represent the files it implements paging operations on. 

Another advantage to having the vnode pager reside in the kernel's address 
space involves the way pagein operations are initiated. When the page fault 
handler initiates the pagein of data that is managed by an external memory 
manager, it issues the request through an IPC message. The request cannot 
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be processed until the kernel switches context to the memory manager. 
However, because the vnode pager is embedded in the kernel's address 
space, the page fault handler can execute its pagein routines directly, thus 
saving the expense of the context switch. 

The vnode pager is started during system initialization. At this time, the 
pager sets up its pageout-handling threads and assigns each thread a port set. 
Each thread's port set contains the ports that represent the memory objects 
managed by the thread. When the vnode pager initializes a new memory 
object, it places the object's port into one of the thread's port sets. 

7 .2.1 Paging Files 
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The OSF/1 system maintains one or more paging files that the vnode pager 
uses to back temporary data. Usually the paging files are set up during 
system initialization, but system administrators can add new paging files 
later with the swapon command. 

A paging file may be either a raw disk partition or a file in a file system. The 
advantage of a raw disk paging file is that data can be written to it directly 
without having to proceed through the system's buffer cache. The advantage 
of the file system paging file is that its size can change dynamically; a size 
of a raw disk paging file is static. 

In OSF/1, paging files can be assigned priorities. This feature allows a 
system to configqre and prioritize its paging files based on the performance 
characteristics of its secondary storage devices. The vnode pager invokes 
the paging file selection algorithm when it needs to allocate space to back 
temporary memory. This algorithm cycles through all paging files with the 
highest priority in round robin order to spread allocations across the files. 
When there is no more space available in the files at the highest priority, the 
algorithm begins cycling through the files at the next priority. 

In OSF/l, a paging file can have a priority ranging from 0 through 4, where 0 
is the lowest priority and 4 the highest. A file's priority is set when it is 
initialized during the swapon() system call. 
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7 .2.2 Page Clustering 

The performance of the memory management system is critical to the 
performance of the entire operating system. Paging operations affect the 
system's performance because they require the system to read from or write 
to secondary storage. Such operations are inherently expensive; however, 
the expense of a given access operation does not depend on the amount of 
data transferred. In fact, the more data that is transferred in an operation, 
the more efficient the operation. It is more efficient to transfer two pages of 
data in an operation than it is to transfer one page. 

To make paging operations more efficient, the vnode pager manages a 
memory object's pages in units called page clusters. As shown in 
Figure 7-1, a page cluster is a set of virtual pages that are adjacent to one 
another within their memory object and may also be stored contiguously in 
secondary memory. Pages that are stored contiguously can be read or 
written in a single operation. 

For example, when the page fault handler needs to page in a particular page 
of data, it can read in the rest of the pages in the cluster with the same 
operation. Similarly, when the pageout daemon needs to write a particular 
page's contents to disk, it can simultaneously write other modified pages in 
the cluster. 

Figure 7-1. Page Clusters 
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The number of pages in a cluster depends upon the type of data contained in 
the cluster. By default, data that is backed by paging files has a cluster size 
of four pages, although this can be changed by a system administrator. 
Currently, the default cluster size can be set to 1, 2, 4, or 8. In OSF/1, the 
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system's paging file cluster size is set when the first paging file is 
established; all subsequent paging files will have the same cluster size. 

The cluster size for permanent data is established differently. Because the 
goal of cluster paging is to read or write as much contiguous data as possible 
with a single disk access, the cluster size for permanent data is a function of 
the file system block size. The block size is chosen because the file system 
usually allocates contiguous storage in blocks of this size. 

The cluster size for a given region of permanent data is set when the data is 
mapped into the process's address space. At that time, the mapping 
operation divides the file system block size by the kernel's virtual page size 
to get the cluster size. For example, if the virtual page size is 4K and the 
file system's block size is 8K, each cluster will contain two virtual pages. 

7 .2.3 Allocating Clusters in Paging Files 
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In another example of lazy evaluation, the kernel allocates backing store for 
a given temporary data cluster only when that cluster is first paged out. This 
behavior enhances the system's performance because temporary data is 
often created and destroyed without having to be paged out. 

When the pageout daemon initiates the pageout of temporary data that has 
never been paged out, the vnode pager chooses a paging file based on 
priority and availability and allocates space within the file to back the 
cluster. Because cluster allocation happens only when the cluster is being 
paged out for the first time, and a memory object's clusters are likely to be 
paged out at separate times, the clusters may end up being backed by 
different paging files. 

Each paging file is represented by a pager_ file data structure. The vnode 
pager uses this structure to manage the allocation of clusters in the file. The 
data structure includes the following: 

• A pointer to the file's vnode data structure 

• The number of allocated clusters currently contained in the file 

• A map specifying the location of each allocated cluster within the file 

• The number of free clusters currently contained in the file 
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• A hint that the vnode pager uses to begin searching for the next 
unallocated cluster 

The vnode pager allocates a cluster in a paging file by examining its map of 
allocated clusters, beginning its search based on pager_ file's hint. When it 
finds an unallocated area in the paging fiie, it updates the paging file's map 
and search hint, and then begins paging out the data. 

Although backing store for user-space anonymous memory is allocated only 
when it is required, the lazy evaluation strategy has dangerous implications 
when applied to the backing of thread kernel stacks. Consider what happens 
when the system attempts to page out a kernel stack cluster when there is no 
room left in the paging files. The operation fails, but the kernel does not 
discover the failure until it attempts to page in the cluster at a later time. 
The pagein attempt generates an unrecoverable page fault, which crashes 
the system. 

Consequently, the kernel always allocates backing store for a thread's 
kernel stack when the thread is created. If the paging files are full at this 
time, the call to thread_ create() fails before initializing the thread. If the 
call to thread_ create() is successful, backing store for the thread's kernel 
stack is guaranteed to be in place. 

7 .2.4 Vnode Pager Memory Objects 

The vnode pager implements its memory objects via vstruct data structures. 
There are two types of vstruct structures: those that represent temporary 
memory objects, and those that represent mapped file memory objects. Each 
mapped file vstruct includes a pointer to the vnode data structure that 
represents the file. Since the clusters associated with a temporary memory 
object may be backed on different paging files, temporary memory object 
vstruct structures do not contain pointers to a single vnode. Instead, these 
vstruct structures contain maps that indicate which of the object's clusters 
have been paged out and where those clusters are located. 
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7.3 Cluster Paging Operations on Temporary Data 

Temporary data is created in resident memory; it is placed in secondary 
storage only when it becomes subject to the page replacement algorithm. As 
mentioned previously, the vnode pager allocates secondary storage for a 
given temporary data cluster the first time one of the pages within the 
cluster needs to be reclaimed. At that time, the vnode pager allocates 
backing store for the entire cluster. Then the pager writes to that space the 
page being paged out, which is called the target page, and any other pages 
in the cluster that have been modified and are adjacent to the target page. 

The page cluster shown in Figure 7-2 contains 8 pages. Pages 1, 3, 4, 5, 6, 
and 8 have been modified; pages 2 and 7 have not been modified. Suppose 
that none of the cluster's pages has been paged out, and that the pageout 
daemon has chosen the target page (page 4) for replacement. The vnode 
pager allocates backing store for the cluster, and then writes the target page 
and the adjacent modified pages; that is, pages 3, 4, 5, and 6. Pages 1 and 8 
are not written back because they are not contiguous with the target page. 
When the write operation is complete, the target page is freed. 

Figure 7-2. The Target Page 

7 .4 The Page Replacement Mechanism 
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The kernel manages the allocation of resident memory by maintaining three 
paging queues: the free page queue contains those pages that are available 
for allocation; the active queue contains pages that are allocated to 
processes; and the inactive page queue contains pages that are currently 
allocated but are candidates for being reclaimed. 

The kernel maintains a free page threshold count. When the number of free 
pages drops below this threshold, the pageout daemon begins paging out 
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pages. This is driven by the page fault handler; when the page fault handler 
is invoked to page in data, it checks the number of free pages against the 
free page threshold and wakes up the pageout daemon if pages need to be 
replaced. 

The pageout daemon processes inactive pages until it has produced enough 
free pages to meet the system's demands, or until it has depleted the inactive 
page queue. As it processes inactive pages, the pageout daemon moves 
pages from the active queue to the inactive queue to maintain a minimum 
number of pages in the inactive page queue. When it transfers a page from 
the active queue to the inactive queue, the daemon turns off the page's 
reference bit. If a process references the page before it reaches the head of 
the inactive queue, the reference bit will again be set, and the pageout 
daemon will transfer the page to the active queue instead of freeing it for 
reallocation. In this manner, the pageout daemon generally replaces pages 
on an approximately least recently used (LRU) basis. 

The pageout daemon processes inactive pages a page at a time. If the page 
has not been referenced and has not been modified, the daemon can free it 
immediately by performing the following operations: 

• Invoking the pmap module to remove all physical mappings to the page 

• Removing the page's entry in the object/offset hash table 

• Transferring the page to the tail of the free page queue 

If the page has been modified, the pageout daemon cannot free the page. 
Instead, the daemon prepares the page for pageout. 

7 .4.1 Pageout of Data Managed by External Memory Managers 

By default, all pageout operations in OSF/l are managed by the vnode 
pager, which is capable of performing pageout operations on clusters. The 
original design of the Mach memory management system did not support 
cluster pageout; the pageout daemon assumed that all pageout operations 
involved single pages. OSF/l retains the single-page mechanism because it 
is required to support the pageout of data to externally managed memory 
objects; that is, memory objects not managed by the vnode pager. 
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In all pageout operations, the pageout daemon initiates pageout by sending 
the data to its memory manager in an IPC message. The memory manager 
receives the data, writes the data to secondary storage, and frees the page. 
The operation proceeds as follows: 

1. The pageout daemon creates a new temporary VM object that will be 
used to pass the page in the IPC message, transfers the page from its 
original object to the new object, and then invokes the IPC subsystem 
to pass the object to the memory manager. 

2. The IPC subsystem maps the object into the memory manager's 
virtual address space. The memory manager copies the data from the 
page to the proper location in secondary storage. 

3. The memory manager deallocates the message-passing object, thus 
freeing the page. 

There are two important aspects to this operation. First, when the pageout 
daemon sends the page to the memory manager, it cannot guarantee that the 
memory manager will actually free the page. Note, however, that the page 
is passed to the memory manager in a temporary VM object; this object is 
managed by the vnode pager. If the memory manager does not free the 
page, the vnode pager will. 

Second, while the page is being paged out, the pageout daemon must 
prevent the page from being paged in again until it is sure that the pageout 
operation is complete. This is accomplished by means of a fictitious page. 
Fictitious pages are vm _page data structures that do not point to actual page 
frames; they are used by the VM system to represent pages that are involved 
in paging operations. 

The pageout daemon protects against premature pagein of the original page 
by 

• Invoking the pmap module to remove all physical mappings to the 
original page 

• Allocating a fictitious page to represent the original page during the 
paging operation 

• Removing the original page's entry in the resident page table with the 
fictitious page and marking the fictitious page as busy 

Once the original page's physical mappings have been removed, any process 
that attempts to reference the page generates a page fault. When the page 
fault handler searches the resident page table for the page, it finds the 
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fictitious page is marked busy. The page fault handler must wait for the 
page to become unbusy; it goes to sleep to wait for that event. 

When the pageout operation is complete, the pageout daemon removes the 
fictitious page from the resident page table and awakens all threads that 
were waiting for the page to become unbusy. These threads find that the 
page is no longer resident and initiate a pagein operation. 

7.4.2 Pageout of Data Managed by the Vnode Pager 

The pageout algorithm described in the previous section is not appropriate 
for the pageout of clusters. In that algorithm, the page being written is 
unavailable during the pageout operation. When paging out a cluster of 
pages, it is not appropriate to make an entire cluster of pages unavailable 
while the pageout operation proceeds because some of those pages may be 
in active use. The only page that should be unavailable during pageout is 
the page that will actually be freed; that is, the target page. 

OSF implements cluster pageout using a technique called cleaning-in-place. 
In this technique, pages that are going to be written out are left in their 
original VM object so that they remain available during the pageout 
operation. 

The cleaning-in-place mechanism works as follows: 

1. The pageout daemon determines how much data will be written in the 
pageout request by finding all modified (dirty) pages adjacent to the 
target page. 

2. The pageout daemon allocates a new VM object that it will use to 
pass the data to the vnode pager. 

3. For each page that will be involved in the pageout operation, the 
daemon creates a private page and inserts the private page in the new 
VM object. Each private page points to the page it represents. Figure 
7-3 shows this relationship. 

4. The daemon makes the target page unavailable to other processes by 
removing its physical mappings and marking it as unavailable. 

5. The daemon passes the new VM object to the vnode pager using IPC, 
and the object is mapped into the vnode pager's address space. 
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6. The vnode pager writes the data out to secondary storage and 
deallocates the object mapped in its address space when the operation 
completes. 

Figure 7--3. Private Pages 
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7 .5 The Page Fault Handler and Page in of Clusters 
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Cluster pagein consists of the following interaction between the page fault 
handler and the vnode pager: 

1. The page fault handler invokes the vnode pager's 
vnode _pager_ data_ request_ direct() routine, requesting the page in 
of the target page. The fault handler may also page in other pages in 
the cluster. Normally, the fault handler will page in the target page 
and the next page in the cluster. A process may modify this behavior 
with the madvise() system call. 

2. The vnode _pager_ data _request_ direct() routine allocates memory 
within the vnode pager's address space, and forces the allocation of 
physical pages to back this memory. 

3. The routine reads the data in from secondary storage to the physical 
pages it has just allocated. 

4. The page fault handler steals the pages from the vnode pager's address 
space and completes resolving the page fault. When it steals the 
pages, the page fault handler deallocates the VM object that was 
mapped into the vnode pager's address space. 
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When the page fault handler initiates a pagein operation, it must prevent 
other threads from trying to page in the same data. The page fault handler 
proceeds as follows: the handler allocates fictitious pages to represent the 
pages being paged in. (A fictitious page is a vm _page data structure that 
does not refer to an actual page frame.) The page fault handler places these 
pages in the resident page table to represent the pages being faulted in. The 
fictitious pages allow the handler to reserve locations in the resident page 
table without actually allocating physical page frames. 

Then, if another thread attempts to page in the pages, it finds that the pages 
are "resident." However, the pages are not actually resident, they are being 
paged in. In this way, the page fault handler marks the pages busy so that 
other threads will realize that the pages are involved in a paging operation. 
When a thread sees that a page is busy, it puts itself to sleep to wait for the 
page to become unbusy. 

When the vnode pager makes the data available, the page fault handler 
replaces the fictitious pages with the pages that the vnode pager allocated to 
receive the incoming data. 

7 .6 The Swapping Mechanism 

With respect to traditional UNIX systems, the term swapping refers to the 
operation of copying the contents of a process's memory resources into 
secondary storage so that the resources can be reclaimed by the memory 
management system. For example, in 4.3BSD, the swapping mechanism 
forcibly pages out all resident pages associated with the process's data and 
user stack sections, and copies out the process's page tables, user structure, 
and kernel stack as well. 

In OSF/l, the swapping mechanism reclaims the following resources from a 
process: 

• The thread kernel stacks 

• The process's resident pages 

• The process's physical map 

However, unlike the BSD swapper, which forcibly writes a process's 
resources to disk, the OSF/l swapper relies on the pageout daemon to 
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actually free the resources. The OSF/l swapper increases the number of 
pages available for swapout by moving a large number of pages from the 
kernel's active page queue to the inactive page queue. 

7 .6.1 Swapping Policy 
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The implementation of the swapping policy is cleanly separated from the 
implementation of the swapping mechanism to allow system vendors to 
easily provide their own swapping policies. The OSF/l default swapping 
policy is very simple; it is expected that specific ports of OSF/l will modify 
this policy to reflect the characteristics of the target environment. 

Threads may be swapped voluntarily. The kernel swaps a thread voluntarily 
if it has been idle for at least 10 seconds. The pageout daemon initiates 
voluntary swapping when it begins processing the inactive page queue. 

A process is swapped involuntarily when the kernel needs to quickly free 
memory. Involuntary swapping is performed by a kernel thread called the 
task swapper. 

The kernel invokes the task swapper when paging demand warrants it. 
Under the default policy, the kernel checks the system's pageout rate once a 
second and calculates the average paging demand. The kernel monitors the 
amount of free memory using two thresholds: a target threshold, which 
specifies an amount of memory that the kernel would like to keep free 
(about 1.25%), and a minimum threshold, typically about 1 % of memory. 
When resources fall below the minimum threshold, the kernel invokes the 
pageout daemon. The kernel initiates swapping when the amount of free 
memory remains both below the minimum threshold for 5 seconds and 
below the target threshold for 30 seconds. 

The task swapper determines which process to swap out based on the 
number of pages resident and the amount of time the process has been 
resident. When a process is created, its task is queued on the list of 
swappable tasks. When the task swapper is invoked, it searches the list of 
swappable tasks. (Certain system tasks are not swappable; for example, the 
vnode pager.) By default, candidates for swapout have been resident for at 
least 6 seconds (this value is configurable). Of the tasks that have met this 
criterion, the task swapper will swap out the one that has the largest number 
of pages resident. 
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The swapper chooses a process to swap in based on the amount of time the 
process has been swapped out. By default, the kernel will swap in the 
process that has been out the longest. as long as the process has been 
swapped out for at least 6 seconds. 

7 .6.2 The Thread and Task Swappers 

The OSF/l swapping mechanism consists of a thread swapper and a task 
swapper. The thread swapper is responsible for recovering memory used by 
the thread's kernel stack. The task swapper is responsible for recovering 
memory being used by the task's pmap and its resident pages. The task 
swapper cannot swap a task until it has invoked the thread swapper to swap 
all of the task's threads. 

7.6.2.1 Thread Swapping 

The thread swapper is responsible for freeing a thread's kernel stack, the 
only pageable memory resource that is thread-specific. Normally, a thread's 
kernel stack is wired in memory so that it cannot be paged out. The thread 
swapper swaps a thread by unwiring its kernel stack so that the pages can be 
paged out, and then updating the thread's execution state to indicate that the 
thread is swapped out. The kernel stack pages are not forcibly paged out; 
they are merely made available for pageout. 

The kernel swaps in a thread by rewiring its kernel stack. If any of the 
stack's pages have been paged out, they are paged in. Then the kernel wires 
the pages and updates the thread's state to indicate that it is swapped in. 

There are two types of thread swapping: voluntary swapping and 
involuntary swapping. A thread may be swapped voluntarily if it has been 
idle for more than I 0 seconds. This happens when the thread is waiting on 
an event. The kernel swaps in a voluntarily swapped thread when the event 
it is waiting for occurs. 

The kernel involuntarily swaps threads as part of its task swapping 
operation. The task swapper suspends the task's threads, then invokes the 

7-15 



Design of the OSF/1 Operating System 

7-16 

thread swapper to swap out the threads. The kernel swaps in involuntarily 
swapped threads when it swaps in the task. 

7 .6.2.2 Task Swapping 

The task swapper performs the following operations when swapping out a 
task: 

1. It swaps the task's threads. 

2. It calls the pmap module to reclaim the memory being used by the 
task's pmap. 

3. It determines which of the task's set of resident pages may be paged 
out and arranges for those pages to be paged out. 

The implementation of the task-swapping mechanism is complicated by the 
fact that a task may share a number of its resident pages with other tasks. 
When the task swapper processes a task, it must be careful not to free pages 
that are actively being used by other tasks. 

For each address map and each VM object, the kernel maintains a count of 
the tasks and threads that require the map or object to be resident. When this 
count drops to 0 (zero), the task swapper can swap the map's contents or the 
VM object's contents. 

The task swapper begins trying to swap out a task's resident pages by 
decrementing the address map's residence count. If it decrements to 0 (zero) 
(as it usually does), the swapper goes through the map's entries and 
decrements the residence counts of its VM objects. 

When a VM object's reference count goes to 0 (zero), the task swapper 
deactivates its pages by traversing the VM object's list of resident pages and 
placing those pages in the kernel's inactive page queue. 

It is important to note that the task swapper does not swap out the task's data 
structure or the underlying VM object data structures. 

When the kernel swaps in a task, none of the task's pages are explicitly 
brought in. They are faulted in as the task executes. Clustered pagmg 
improves the efficiency ofrestoring a swapped-in task's resources. 
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7. 7 External Memory Managers 

This section discusses issues related to the implementation of external 
memory managers. An external memory manager is a user-level program 
that implements paging operations on application-defined memory objects. 
For example, memory managers can be developed to provide services such 
as network shared memory and distributed databases that can be mapped 
into the address spaces of client programs that are executing on different 
machines. 

7.7.1 Example of an External Memory Manager: A Simple Shared 
Memory Server 

The following example describes a simple shared memory server. This 
server allows tasks on separate machines to share read/write access to its 
memory objects, serializing write access to the data by allowing only one 
task at a time to write the data, and allowing multiple tasks to read the data 
when a write operation is not underway. 

In Figure 7-4, two tasks running on separate machines have mapped the 
same memory object into their address spaces. When the clients are sharing 
read access to the memory object, the data is protected read-only on both 
machines. The figure shows how the shared memory server interacts with 
the machines' kernels when Client Task 1 attempts to write the data: 

1. Client Task 1 generates a protection page fault because the data's 
page is protected read-only. 

2. Kernel 1 sends a message to the shared memory server to request that 
Client Task 1 be granted write access to the page. 

3. The shared memory server sends a message to Kernel 2 indicating that 
the page cached on that machine is about to become invalid. 

4. Kernel 2 flushes the page and sends a message to the shared memory 
server when that operation is complete. 

5. The shared memory server sends a message to Kernel 1 indicating that 
the protection of the page can now be changed, thus allowing Client 
Task 1 to write the data. 
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Figure 7-4. Shared Memory Server Write Operation 
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Suppose that Client Task 2 subsequently attempts to read the page that is 
being written. As shown in Figure 7-5, Client Task 2 initiates the following 
operations: 

1. Client Task 2 generates a page fault because the page was flushed 
when Client Task 1 attempted to write it. 

2. Kernel 2 sends a message to the shared memory server requesting a 
pagein operation. 

3. The shared memory server sends a message to Kernel 1 indicating that 
the kernel should pageout the page and change the page's protection 
to read-only. 

4. Kernel 1 changes the page's protection and allows the shared memory 
server to pageout the page. 

5. The shared memory server now has a valid version of the page; the 
server provides the page to Kernel 2 to resolve Client 2's page fault. 

6. Client 2 reads the data. 
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Figure 7-5. Shared Memory Server Read Operation 

7. 7 .2 The External Memory Management Interface 

The interactions that occur between the kernel and an external memory 
manager are implemented through the external memory manager interface. 
The routines specified by this interface can be categorized as follows: 

• The mapping routine. Applications use the mapping routine vm _map() 
to map memory objects into their address spaces. An application must 
acquire access to a memory object before mapping the object into its 
address space. 

• The memory object management interface. An external memory 
manager must provide a variety of calls the kernel can use to access 
memory objects. These calls include the following: 

memory_ object_init() 
Notifies the memory manager that the memory object has 
been mapped into a task's address space. This routine 
establishes communication between the kernel and the 
memory manager; the kernel allocates a control port for 
the memory object that the memory manager can use to 
send management requests to the kernel. 

7-19 



Design of the OSF/1 Operating System 

7-20 

memory _object_terminate() 
The kernel calls this routine when the memory object has 
been deallocated from the task's address space. 

memory _object_data_request() 
Reads the contents of a memory object. The kernel calls 
this routine to resolve page faults on the memory object. 

memory _object_data_ write() 
Writes modified pages back to the memory object. The 
kernel calls this routine to page out the memory object's 
contents. 

memory _object_ data_ unlock() 
Requests that the memory manager give the kernel 
permission to change the protection of the memory 
object's contents. For example, the kernel would call this 
routine if a task wanted to write data that was protected 
read-only. Not all memory managers need to implement 
this routine. 

• The cache management interface. The kernel implements the routines in 
this interface to allow memory managers to maintain the contents of 
memory objects that are cached in resident memory. These routines 
include the following: 

memory _object_data_provided() 
Supplies the requested page of data. This routine 
compliments the memory _object_data_request() 
routine; the memory manager uses this routine to provide 
data in response to a page fault. 

memory_object_data_error() 
Indicates to the kernel that the kernel's request for access 
to data cannot be granted. The data may not exist, or the 
kernel may be attempting to access it in a way that violates 
its current level of protection. 

memory _object_lock_request() 
Requests that the kernel change the protection value of the 
pages cached in resident memory. A memory manager can 
use this routine to maintain consistency of data on multiple 
hosts. 
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The operations that constitute the external memory management interface 
are implemented with the IPC subsystem, but are not implemented as 
synchronous remote procedure calls. The operations occur asynchronously. 
For example, the kernel requests the pagein and pageout of data by sending 
a message to the data's memory manager, but the kernel does not wait for 
the memory manager to respond. 
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Chapter 8 

The OSF/1 Program Loader 

In OSF/l, each program executes in a virtual address space. This address 
space contains the text of all the subroutines and library routines the 
program requires. Before a given program can execute, the system must 
create an address space for it and map the program's text and data into the 
address space. Setting up the address space and mapping in the text and 
data is the responsibility of the system's program loader. 

In traditional UNIX systems, programs are loaded with the exec() system 
call. exec() can load a program for execution only if the program's 
executable image is absolute; that is, has no external references and is 
bound to an address space (these terms are discussed in the following 
section). 

Unlike traditional UNIX systems, OSF/l allows programs to be loaded with 
unresolved references. This feature of the OSF/l loader allows the system to 
support shared libraries. 

When exec() loads a program in OSF/l, the kernel determines whether or 
not the program contains unresolved references. If it does not, exec() loads 
the program into a process's virtual address space and turns control over to 
the program's entry point. If the program does contain unresolved 
references, exec() loads the program loader into the process's address space, 
passes the program's name to the loader, and turns control over to the 
loader's entry point. The loader, which runs in user mode, finishes resolving 
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the program's references, loads the program into the process address space, 
and turns control over to the program's entry point. 

In addition to supporting shared libraries, OSF/l 's loader provides other 
features not available in traditional UNIX environments: 

• The loader handles multiple object file formats. 

• The loader provides an application interface that allows programs to 
explicitly load and unload modules to and from their address spaces. 

• The kernel can use the loader to dynamically load modules into its 
address space while the kernel is active. This feature allows system 
managers to add components such as new device drivers and network 
protocols to the kernel without having to shut down, reconfigure, and 
reboot the system. 

This chapter begins with a discussion of concepts associated with program 
loading. This discussion covers the following topics: 

• Object modules and libraries 

• External reference resolution 

• Relocation 

• Shared libraries 

If you are familiar with these concepts, you may want to skip the following 
section and continue with the rest of the chapter. 

8.1 Conceptual Background 
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Translating a source file into machine code involves two steps. First, the 
compiler translates the source code to assembler code and deposits the code 
in an assembler code file. When the compiler completes its translation, the 
assembler translates the assembler code file into object code and deposits 
that code into an object file. 

Although object code is code that the machine can execute, an object file is 
not in itself executable if it contains external references; that is, references 
to variables and subroutines that are defined in other source files. For 
example, references to routines in the Standard C Library (printf( ), for 
example) are external references. Before a program can be executed, the 
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code that defines its external references must be found and merged with the 
program. The merging of a program's object files into one executable file is 
referred to as linking or hinding. 

8.1.1 Linking 

In the UNIX programming environment, program linking is traditionally 
performed by the Id utility. This utility can be used separately to link 
existing object files, but it is also called implicitly by the compiler to link 
the program being compiled. 

The linker links a program using three operations: it resolves external 
references, it relocates the program's code, and it patches subroutine and 
global variable references. The linker resolves a program's external 
references by determining which library modules are required and merging 
those modules with the rest of the program's object code to form a single 
object file. 

The linker relocates the program by binding the code to an address space so 
that the definition of each subroutine and global variable has a fixed address 
in the program's address space. 

Once the relocation operation is complete and all of the program's 
subroutine and global variable definitions have fixed addresses, the linker 
patches each of the program's references to a subroutine or global variable 
by replacing the reference with the address of the corresponding definition. 

A program that has been linked so that it no longer contains any external 
references is called an absolute load module. An absolute load module can 
be loaded into a process's virtual address space at a specific address and 
executed without additional processing. 

In traditional UNIX, only absolute execution images can be loaded for 
execution. This means that each program must have its own copy of the 
library modules that are required to create the absolute executable image. 
For example, any program that uses the Standard C Library routines gets(), 
printf( ), and strlen() must contain its own copy of the C library modules 
required to implement these library routines. 
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8.1.2 Shared Libraries 

In OSF/l, libraries can be simultaneously mapped into multiple address 
spaces; any process that requires one or more routines from a library can 
map the library into its address space when the process is loaded into 
memory. Libraries that can be mapped into multiple address spaces are 
called shared libraries. 

In order to support shared libraries, a system must be able to complete 
linking a given program at load time, when the program is loaded into a 
process's virtual address space to begin execution. Traditional UNIX 
systems cannot support shared libraries because they cannot link programs 
at load time. OSF/l, on the other hand, supports shared libraries because its 
program loader can complete linking a program at load time. 

8.1.3 The OSF/1 Id Command 

In traditonal UNIX, the Id command, in addition to combining a program's 
object files, extracts those modules from the Standard C Library that are 
required to resolve the program's external references and links them into the 
program, creating the program's absolute executable image. 

In OSF/l, the Id command does not produce an absolute load module if the 
program references routines from a shared library. Instead, Id produces a 
module that can be further processed at load time. When the loader loads 
such a module for execution, it finishes linking the program, and then maps 
the program into the process's address space. 

8.1.4 Object Files and Object File Formats 
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As mentioned earlier, object files are typically produced when the assembler 
translates assembler code modules into object code. The typical object file 
has several sections. Some of these sections contain text and data and are 
referred to as "regions." The other sections contain information about the 
object file that the linker uses when linking the object file to other modules 



The OSF/1 Program Loader 

and that the loader uses to map the object file's regions into the address 
space. This information includes the following: 

• A list of the symbols the object file's code exports. This information is 
referred to as the file's exported symbols. 

• A list of the symbols the object file's code needs to import. This 
information is referred to as the file's imported symbols. 

• A relocation dictionary that specifies locations within the regions that 
need to be patched after relocation. 

• For each region, information about the region's size and protection 
attributes. The loader uses this information when mapping the region 
into the address space. 

The organization of an object file's contents is referred to as the file's object 
file format. There are many different object file formats. To successfully 
link and load a set of object files, the linker and loader must understand how 
the files are formatted so that they can extract the information they need to 
perform their operations. 

Traditionally, UNIX systems were restricted to linking and loading a single 
format type because the format-dependent aspects of linking and loading 
were built directly into the Id utility and the exec() system call. 

In OSF/l, all format-dependent operations have been abstracted to facilitate 
the addition of new object file formats. OSF/l supports the loading of 
multiple object file formats and can load the following object file types: 

a.out 

COFF 

The object file format supported by 4.3BSD 

The Common Object File Format used in the System V 
environment 

OSF/ROSE The object file format developed at OSF that provides support 
for shared libraries in OSF/l 
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8.2 Overview of the Program Loading Architecture in 
OSF/1 

The architecture of program loading in OSF/l differs significantly from that 
of traditional UNIX systems for two reasons: the architecture supports the 
loading of programs with unresolved references, and the architecture can 
handle multiple object file formats. 

8.2.1 The Architecture of exec() in OSF/1 

8-6 

When called in OSF/l, the exec() system call must determine the module's 
object file format and must determine whether or not the module is absolute. 

When the exec() call loads an absolute module, the operations it performs to 
map the module's text and data into the address space and initialize the 
program's hardware state are format-dependent operations. In traditional 
UNIX systems, the code that performs these format-dependent operations is 
embedded within the exec() code, and the exec() code handles only one 
object file format. In order to support loading multiple file formats, exec() 
must be able to recognize a program's object format and select the code it 
will use to perform the operations that are specific to the format type. In 
OSF/l, exec() makes this selection with the exec switch. 

8.2.1.1 The exec Switch 

The exec switch is a globally available kernel data structure that 
implements a table of format-dependent routine vectors. Each entry within 
the table specifies a set of routines that are associated with a particular 
object file format. Each routine set (or vector) is referred to as the format­
type's :file format manager. 

Each format manager consists of the following routine types: 

recognizer Recognizes modules that have the manager's format type. The 
exec() call attempts to recognize a program's format by 
cycling through the exec switch, trying each manager's 
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recognizer routine until it finds the manager that recongizes 
the program's format. 

getloader If the recognizer routine indicates that the program needs to be 
processed by the loader, reformats (if necessary) the 
arguments supplied with the call to exec(), and then prepares 
the user space loader for execution. 

getxfile Maps the program into the process's address space. 

setregs Initializes the hardware state to allow the program's execution 
to begin. The setregs routine is machine-specific as well as 
format-speci fie. 

ungetxfile Removes the program's mapping from the current address 
space. The loader calls the ungetx.file routine to deallocate the 
current task's address space before calling the getxfile routine. 
All regions except those marked as keep_ on_ exec are 
deallocated. 

8.2.1.2 The exec() Algorithm 

The following list describes the algorithm used by exec() to perform its 
operations: 

1. Read the object file's header into a buffer. 

2. Through the exec switch, cycle through all known format manager 
recognizer routines until the file's format is recognized. 

3. If the object file's header indicates that the file is absolute: 

a. Unmap all regions in the address space. 

b. Map the object file's regions into the address space. 

c. Set the register state to execute the program. 

4. If the object file's header specifies that the file needs to be processed 
by the user space loader: 

a. Read the loader's object file header into a buffer. 

b. Through the exec switch, cycle through all known format 
manager recognizer routines until the loader's format is 
recognized. 
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c. Unmap all regions in the address space. 

d. Map the loader into the address space. 

e. Set the register state to execute the loader. 

8.2.2 The Loader's Architecture 

8-8 

The loader is a separate object module that resides in the user process's 
address space. It is loaded into the address space at a fixed location when 
the exec( ) system call determines that the program requires the attention of 
the loader. 

After being loaded and receiving control from the kernel, the loader loads 
the program and initializes it for execution by performing the operations 
outlined as follows: 

1. Resolve the program's imported symbols by generating a list of the 
modules that will need to be mapped into the address space. 

2. Use format manager routines to map the modules into the address 
space. 

3. Use format manager routines to relocate those modules that need to be 
relocated. 

4. Call initialization routines for any modules that specify them. 

5. Jump to the program's entry point. 

The mapping, relocation, and module initialization operations performed by 
the loader are format-dependent, and like exec(), the user space loader 
maintains a table of routine vectors, each of which specifies mapping, 
relocation, and initialization routines. This table, which is referred to as the 
loader switch, resides within the loader's context and so resides in the 
process's user space with the loader. See Section 8.5 for more discussion 
about the loader switch. 
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8.3 The Symbol Resolution Policy 

Because the loader's primary function is to resolve a program's symbols at 
load time, it must have a symbol resolution policy for matching each 
unresolved imported symbol in a module to a symbol exported by one of the 
known modules. In OSF/1, loader symbol management is based on the 
notion of packages. 

A package is an object that exports symbols, and as such, packages can be 
thought of as abstractions of libraries. Each imported symbol that is not 
resolved at link time is represented by a <package name, symbol name> 
pair. The package name specifies the object that exports the symbol. 
Usually, a package represents a full library, but the package facility allows 
developers to divide libraries into multiple packages. 

The package facility was designed with the following goals in mind: 

• Imported symbols should not be bound to library pathnames. A program 
should not depend on the location of libraries in the file system (which 
may vary from system to system) in order to load correctly. 

• Symbol name conflicts should be avoided without causing unnecessary 
restrictions on the use of symbol names by libraries. Each imported 
symbol in a program must resolve unambiguously to a symbol exported 
by a library at load time. Because imported symbols are not bound to 
library pathnames, conflicts are possible if more than one library in the 
loader's resolution path exports the same symbol name. Such conflicts 
should be avoided without requiring that exported symbol names be 
umque. 

• Symbol resolution should be flexible but robust. It should be possible to 
control the symbol resolution path at compile, link, installation, and load 
time. The programmer and installer of a program should determine the 
default resolution path. Users should be able to run programs without 
worrying about symbol resolution, but users should also be able to alter 
symbol resolutions at load time when necessary. For example, when 
debugging a new version of a library routine, the programmer should be 
able to force programs to use the new entry point rather than the old one. 
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8.3.1 Using Packages 
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Generally, package names are attached to symbols at link time. In the 
following example, the Id command is used to create a shared library 
containing two routines: subrl() and subr2( ). The source code for these 
routines resides in the subrs.c file. The following command generates the 
shared library: 

% Id -R -o subrs.so subrs.o -export subrs_package:subrl,subr2 

The -export flag causes the linker to create the sub rs _package package, 
which contains the symbols subrl and subr2. The name of the package and 
the identity of its routines is recorded in the exported symbol table of the 
output file subrs.so. (In OSF/l, all shared library files end with .so by 
convention.) 

Suppose that the file test_subrs.c contains code that tests the new shared 
library. When the test_subrs.o module is linked to subrs.so as follows, the 
linker searches for the package or packages within subrs.so that resolve 
external references: 

% Id -o test subrs test subrs.o subrs.so -le - -

Instead of loading the resolving modules into the output file, the linker 
replaces each imported symbol with the tuple <symbol,package _name>. For 
example, suppose that the imported symbol table in the unlinked 
test_subrs.o file contains the symbols subrl and subr2; after the linking 
operation, the imported symbol table for object file test_subrs contains the 
symbols <subrl,subrs_package> and <subr2,subr _package>. 

When the loader links a given module to libraries at load time, the loader 
derives the package name for each imported symbol from the package name 
attached to the corresponding exported symbol in the library. 

The two-dimensional symbol namespace provided by packages avoids 
symbol name conflicts when more than one library exports the same symbol. 
All that is required is that each symbol be unique within a package and that 
package names be unique across the system. Because each imported symbol 
includes a package, each imported symbol can then be resolved 
unambiguously to the correct exported symbol. 
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8.3.2 Package Tables 

When the loader resolves imported symbols, it needs to find the library 
module that contains each package. This information is kept in a set of 
package tables. A package table is a set of mappings, each of which maps a 
package to a library pathname. 

There are various types of shared libraries, and correspondingly there are 
various types of packages. For example, OSF/l provides a shared library 
version of the standard C libraries. The system makes these libraries 
available to all programs with the system's global installed packages table 
(global IPT). 

As described in Section 8.8, a system administrator can use the lib_ admin 
command to install global libraries. The command completes the 
installation operation by writing the system's global installed packages table 
to disk. When the loader bootstraps itself into a process's address space, it 
maps the global installed packages table into the process's address space. 

A program may require access to libraries that are not globally available, or 
may want to override a symbol's mapping in the global table with a 
mapping to an alternative version of the global routine. For example, a 
developer might want to test a new version of printf() and still have access 
to the other C library routines that are globally available. In such instances, 
the loader builds a private installed packages table (private IPT) that maps 
symbol names to private libraries. This table is created and managed with 
the built-in shell command inlib. This command creates the table in the 
current process's address space in a region of memory that is not overwritten 
during calls to exec(). Consequently, a process inherits its private installed 
packages table from its parent process. 

Private packages are installed and used as follows: 

1. The developer uses the inlib command to install one or more 
packages into the shell's private packages table. 

2. The developer starts the program from the shell. 

3. The program inherits the private packages table from the shell and the 
loader uses it during symbol resolution. 
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A program may itself export packages, or it may dynamically load packages 
using the loader's application interface. Under these circumstances, the 
loader creates within its context a loaded packages table (LPT) that maps 
symbol names to packages that have already been loaded. This table can be 
used to resolve symbols used by modules that may be loaded by subsequent 
calls to the loader's load() interface (discussed in Section 8.11). 

During the loader's symbol resolution phase, it searches the packages tables 
in the following order: loaded package table, private package table, global 
package table. 

8.4 The Loader Context 

8-12 

To construct an executable image of a program, the loader must find and 
load all the modules and carry out the symbol manipulation required to link 
all the imported symbols with exported symbols. This requires allocating 
memory for each region of each module, constructing a memory image of 
each region, and building tables of imported and exported symbols. 
Constructing a region's memory image requires writing or mapping in text, 
initializing data values, and filling in the correct addresses for all references. 
Filling in the correct addresses may require both looking up symbol values 
in the symbol tables, and, for relocatable code, adjusting relocatable 
addresses to reflect the actual location of code in memory. 

The format-independent loader manages these operations by maintaining a 
set of per-process, per-module, and per-region data structures that are 
collectively referred to as the loader's context. 

The loader context is a dynamic entity. The context is initialized when the 
kernel loads the loader into the process's address space. For example, the 
package tables of the context are set up when the loader context is 
initialized. The context changes as the loader performs the symbol 
resolution, mapping, and relocation operations. 
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Figure 8-1 shows a simplified version of the data structures that make up a 
loader context. 

Figure 8-1. The Loader Context 
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Most processes have only one loader context, containing information about 
the modules loaded in that process. A special process, such as the kernel 
load server, however, maintains an additional loader context containing 
information about modules loaded into the kernel. There is also a loader 
context for the preloaded libraries and dynamically loaded format­
dependent managers. 

8-13 



Design of the OSF/1 Operating System 

8.4.l Module Records 
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During the symbol resolution phase, the loader creates a record for each 
module that it will map into the process's address space. The records that 
represent modules that are being loaded in the process's address space are 
placed in the context's known modules list. The order in which modules are 
placed on this list is important because it determines the order of symbol 
resolution. This is discussed further in Section 8.4.2. 

When the loader has identified all of the modules that will be mapped into 
the process's address space, it traverses the known modules list three times, 
first to map each module's region into the address space, then to relocate 
each module's code and data, and finally to perform any module-specific 
initialization routines. 

Each module record includes the following information: 

• A pointer to the format-dependent routines that the loader will use to 
map, relocate, and initialize this module. This pointer is set when the 
loader creates the region record. At this time, the loader cycles through 
the loader switch entries and executes each recognizer function until it 
matches a format-dependent manager with the module's object format. 
The loader then initializes the module record's pointer to point to the 
manager's routines in the loader switch. 

• A list of region records, each of which represents a region within the 
module that will be mapped into the address space during the mapping 
phase. The loader fills in these records using the format manager's 
map _region routine during the mapping phase, and the records are used 
by the format ma_Qager's relocation routine during the relocation phase. 

• A list of the packages the module depends on. This is the module's 
imported packages list. The loader uses this list during the symbol 
resolution phase. 

• A list of the module's imported symbols. 

• An exported packages list if the module exports one or more packages. 
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8.4.2 Building the Known Modules List 

As mentioned previously, the order in which module records are placed on 
this list affects the order of symbol resolution. When the loader begins 
loading a program into an empty address space, it creates a module record 
for the program's object module. At this point, this is the only record on the 
known modules list. The loader then begins building the rest of the list. 

The loader constructs the known modules list iteratively, resolving the 
current module's imported symbols by creating module records for the 
modules that export the symbols and putting the module records on the list. 
The loader then moves to the next module record on the list and resolves 
that module's imported symbols, adding additional module records to the list 
as required. The procedure is repeated until the loader has resolved the 
symbols of all the modules that have records in the known modules list. 

Figures 8-2, 8-3, and 8-4 illustrate this procedure. In Figure 8-2, the known 
modules list contains the module record for the loader (always the first 
module record on the list), and a module record for prog.o, an object file 
that contains two unresolved references: subrl,packageA, and 
subr7,packageB. In the example, packageA is exported by sharelibA.so, 
and packageB is exported by sharelibB.so. Figure 8-3 shows the known 
modules list after the loader has resolved prog.o's imported symbols. 

Figure 8-2. Known Modules List Example 1 
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Figure 8-3. Known Modules List Example 2 
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When the loader finishes resolving the imported symbols for prog.o, it 
moves to the next module record on the known modules list and resolves 
any imported symbols specified by that module. As shown in Figure 8-3, the 
module record for sharelibA.so contains the imported symbol rl,packageC, 
which is exported by the module sharelibC.so. Figure 8-4 shows the state 
of the known modules list when the loader has finished resolving 
sharelibA.so's imported symbol. 

Figure 8-4. Known Modules List Example 3 
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8.5 The Loader Switch and Format-Dependent 
Managers 

The loader switch is the primary interface between the format-independent 
and format-dependent portions of the loader. The switch is a set of data 
structures, each of which represents a format-dependent manager. Each 
structure contains a set of pointers to routines that implement the manager. 

8.5.1 Format-Dependent Routines 

Each format-dependent manager implements a set of routines that includes 
the following (this is a partial list): 

recog() Examines an object module to determine whether it is in a 
format supported by this format-dependent manager. The 
loader determines which format-dependent manager to use by 
calling the installed recognizer routines one by one until one 
of them recognizes the object module being loaded. 

get_imports() 
Constructs the import symbol table and import package table 
for a module. 

map _region() 
Maps the regions of an object file into the process's address 
space. 

get_ export _pkgs() 
Returns the list of packages exported by this object module. 

get_ exports( ) 
Returns the list of exported symbols for the specified object 
module. This routine is not called by the format-independent 
manager in normal module loading. It is intended for use only 
when preloading modules, and possibly to allow format­
dependent managers such as ELF to implement their own 
symbol resolution algorithms. 

lookup_ export() 
Used during symbol resolution to locate the specified package 
name/symbol name pair in the specified object module. 
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relocate() Cycles through the relocation records, relocating all 
relocatable addresses in the module. The routine uses the 
region array built in the map _regions() call, and the imported 
symbols and import packages arrays built in the 
get _imports() call. 

get_ entry _pt() 
Returns the address of the module's entry point, if one exists. 

8.6 Address Space Management 

The OSF/1 loader address space management design meets the following 
goals: 

• Address space management is inherently machine-dependent, but does 
not need to be format-dependent. 

• Address space configuration (where the code, data, stack, shared 
libraries, loader, and so on are mapped by default) should be maintained 
in only one place because it is machine-dependent information. 

• The format-dependent loader routines (and the core format-independent 
loader routines) should be independent of the loader context. 

The format managers use allocation and deallocation procedure interfaces to 
decide where to map a given region and to deallocate any allocated space 
during cleanup or unmap. Although the loader maps regions using format­
dependent routines, those routines uses a format-independent interface to 
assign the addresses to a region being mapped. 

8.6.1 Absolute and Relocatable Regions 
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Regions in an object file can be classified as absolute or relocatable. The 
loader must load absolute regions at a fixed address specified by the object 
file. The loader can load relocatable regions at any address. Shared libraries 
and dynamically loaded modules are usually relocatable. 
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8.6.2 Base Addresses and Virtual Addresses for a Region 

There is typically a distinction in the loader's memory allocation interfaces 
between a virtual address for the region, which is where it will be loaded in 
the target process, and a hase address, which is the address it occupies in the 
current process. This distinction is critical for relocatable regions because 
they must be relocated to the virtual address, even if they are mapped 
somewhere else. 

If the base address and the virtual address are the same, the region is 
absolute-it must be loaded at a specific location in memory. If the base 
address and the virtual address are not the same, then the region may be 
mapped anywhere in the current address space because it will eventually be 
mapped and run elsewhere. 

8.6.3 Context-Specific Allocation Procedures 

A special allocator is necessary for the kernel context because the base 
address for mapping regions is almost always different from the virtual 
address at which the region will reside. This difference exists because the 
base address is in the address space of the kernel load server and the virtual 
address is in the address space of the kernel. 

The preload context requires special allocation procedures because the 
space must be allocated from a range of memory that is especially reserved 
for prerelocated libraries, so that all processes can map the prerelocated 
regions at the same addresses. As with the kernel context, preload libraries 
have base addresses different from their virtual addresses. They are simply 
loaded into lib_ ad min, and then copied into the pre load file. 
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8.6.4 Typical Loader Address Space Usage 
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The region allocation procedures for the process context and the preload 
context use an address space configuration record that is machine­
dependent and resides in the kernel. This record is read from the kernel by 
the getaddressconf() system call. It contains, among other things, the base 
address, growth direction, and flags of each of the following areas: 

• Program text area. This is the address of the default text area, where 
absolute code is linked to run. 

• Program data area. This is the address of the default data area, where 
absolute data is linked to run. 

• Program bss area. This is the address of the default bss area, where 
absolute code is linked to run. 

• Stack area. 

• Loader text area. This is the absolute address the loader itself is linked 
to run. 

• Loader data area. 

• Loader bss area. 

• Loader private data file (inherited). 

• Loader global data file (IPT and heap). 

• Loader preloaded library data. 

• mmap ed file text. 

• mmap ed file data. 

• mmap ed file bss. 

The program text, data, and bss areas are the addresses of the default text, 
data, and bss areas where absolute code is linked to run. The loader text 
area is the absolute address where the loader itself is linked to run. 
Libraries that are not preloaded go into the mmap areas, respectively, for 
their text, data, and bss. 
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8. 7 Kernel Space Loading 

OSF/1 allows modules to be loaded into the kernel at runtime, so that adding 
new device drivers and network protocols does not require shutting down 
and rebooting the system. As described in Chapter 9, system administrators 
can use the sysconfig command to dynamically configure the kernel. This 
command invokes the system's configuration manager, which manages the 
loading and configuration of dynamically loaded modules. 

The operation of loading such modules into the kernel is performed by a 
privileged user space process called the kernel load server. The server runs 
in user space because it needs to call the user space loader. It is a separate 
process because it needs to maintain the state information (that is, modules, 
exports lists, and so on) of what has been loaded into the kernel. The kernel 
load server is privileged because it can modify the kernel's address space. 

Loading a module into the kernel requires several steps: 

1. The kernel load server calls the loader and specifies the kernel 
context. The kernel context specifies which region allocation routines 
are to be used. 

2. The module's regions are mapped into the kernel load server's address 
space. 

3. The regions are relocated to the kernel's address space. 

Figure 8-5 illustrates this scheme. 
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Figure 8-5. Kernel Load Relocation 
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8.8 Preloading, Installing Libraries, and the Global 
Data File 

8-22 

To support efficient library sharing, OSF/1 uses the loader to preload or 
prerelocate libraries. A library administration tool, lib_admin, installs and 
preloads libraries into a global data file and maintains a preload cache of 
completely loaded shared libraries, already relocated to runtime addresses 
with all symbols fully resolved. This cache, as well as the global installed 
package table, is maintained in a system file. The loader accesses preloaded 
libraries by mapping them into the target address space at their 
predetermined runtime addresses. 

A program that uses a prerelocated shared library has typically been 
compiled in such a way that its text section is position-independent. This 
means that the loader does not need to apply any relocations to the text 
section when loading the program for execution. If any relocation is 
necessary to the main program to resolve share library addresses, the 
addresses will most likely be in the data section of the program. 

Note that preloading is not a specific loader function. The preload cache is 
managed by the lib_ admin command, which loads the shared libraries into 
a specially created context, and then copies them into the preload cache. 
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The system file that holds the preload cache has the layout shown m 
Figure 8-6. 

Figure 8-6. Layout of the Preload Cache Data File 
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The global IPT records reside in the heap area of this file. The preload 
cache stores a full set of information (module records, region records, export 
lists, and module name hash tables) for the set of preloaded libraries 
currently available. 

Prerelocation of shared libraries is based on the fact that every process can 
map the prerelocated regions at the same addresses. Therefore, a range of 
memory is reserved for prerelocated libraries. If a process allocates 
memory in the reserved area for other purposes, it may not be able to use the 
prerelocated versions of some libraries. 

8.9 Dynamic Format Manager Loading 

The loader supports both built-in format-dependent managers and 
dynamically loadable auxiliary format-dependent managers. When the 
built-in managers fail to recognize a module being loaded, the loader 
attempts to load a dynamic manager. The dynamic managers are simply 
listed in an ASCII text file; they are loaded one by one until the module is 
recognized. 

Dynamic managers are loaded into their own loader context to reduce 
naming conflicts and avoid problems with using the same manager in 
multiple contexts. The dynamic manager context is created when the first 
dynamic manager is loaded. It is bootstrapped to contain all the symbols of 
the format-independent loader, including loader utilities and so forth. 
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There are many restrictions on dynamic managers: 

• They may not have export symbols. 

• They may only use symbols exported by the format-independent 
manager. 

• They must be in a recognized format. 

8.10 Unloading 

The loader supports a simple unload; it unmaps the module's regions and 
discards the loader data structures describing the module. References to a 
module may become invalid once the module is unloaded. The loader does 
not keep track of references or attempt to unsnap such invalid links. These 
housekeeping tasks are the responsibility of the process doing the unload. 

8.11 Application Interface to the Loader 
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The loader provides an application programming interface that allows 
programs to dynamically load and unload modules from their address 
spaces. The load() system call allows a running process to load modules 
into its address space. A dynamically loaded module can have imported 
symbols that resolve either to other modules, to previously loaded shared 
libraries, or to shared libraries that have not yet been loaded. 

The unload system call can be used to unload a module. This call does not 
attempt to deal with references to the unloaded module; it is the 
application's responsibility to prevent references to an unloaded module. 



The OSF/1 Program Loader 

8.12 The Loader and Security 

A privileged program (setuid, setgid, or executing with any privilege bits 
set in its privilege vector) will always be loaded with the default loader. 
This ensures that clever users cannot use their own loaders to load arbitrary 
privileged programs. 

The loader design also protects the user of shared libraries. The loader finds 
its shared libraries by consulting the installed package tables. The global 
installed package table is stored in a portion of the file system that is 
writable only by root. 

A process inherits its private installed package table from its parent through 
a memory segment that is mapped with the keep-on-exec bit turned on. 
When exec() loads a privileged process, it deallocates all regions, even 
those that are marked keep-on-exec. This prevents privileged processes 
from inheriting private libraries that might be used to breach the system's 
security. 

See Chapter 15 for more information on the OSF/l security architecture. 
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Chapter 9 

Loading and Configuring Dynamic 
Subsystems 

Kernel subsystems are components of the operating system whose functions 
are logically separate from functions of the core kernel. File systems, 
network protocols, and device drivers are examples of kernel subsystems. 

In traditional UNIX systems, kernel subsystems are linked directly into the 
kernel at build time. On those systems, adding a new subsystem to the 
kernel requires that the kernel be recompiled and linked, and the operating 
system shut down and rebooted. The OSF/1 kernel supports the dynamic 
loading and configuring of subsystems. Modules for new device drivers, file 
systems, network protocols, and system calls can be added while the 
operating system is running, without having to rebuild the kernel, shut 
down, and reboot. 

OSF/1 supports the dynamic loading and configuration of the following 
types of subsystems: 

• Block and character device drivers, including pseudo-device drivers 

• File systems 

• Socket-based network protocol families 

• STREAMS modules and drivers 

Subsystems can also be dynamically unloaded and unconfigured. 
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9 .1 Overview: Loading and Configuring Dynamic 
Subsystems 

The system administrator maintains a configuration database that describes 
the various subsystems. To add a new subsystem to the kernel, the 
administrator updates the database to include information about the 
subsystem; for example, the pathname of the subsystem's object module. 

The administrator then executes the sysconfig operator command to load 
and configure the subsystem. This command issues a request to the system's 
configuration manager daemon, which uses the information in the 
configuration database to load and configure the subsystem. 

The configuration manager daemon loads the subsystem's module into the 
kernel's address space by invoking the kernel load server. When the module 
is fully loaded, the configuration manager daemon then issues a system call 
that causes control to be turned over to the module's configuration routine. 
This routine performs the operations required to configure the module. 

9.2 Configuration and Kernel Tables 
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The kernel references its subsystems through a set of tables. For example, 
all block device drivers are referenced through the kernel's block device 
table, all character device drivers are referenced through the character 
device table, and so on. These tables can be modified when the system is 
active. 

When a subsystem is dynamically configured, it uses a set of system calls, 
based on the subsystem's type, to register itself in the appropriate kernel 
tables. For example, a device driver registers itself in the interrupt vector 
table and the appropriate device switch tables, a file system registers itself 
in the VFS switch table, a network protocol family registers itself in the 
protocol family table, and so on. 

A dynamic subsystem's configuration routine is responsible for registering 
the subsystem in the appropriate tables. A module never modifies any of the 
configuration tables directly; instead, it calls a service routine in the kernel 
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that performs the operation. For example, the service routine 
domain_ add() registers a network protocol family in the network protocol 
family table. 

The kernel services provide a clean separation between the kernel proper 
and the subsystems. For each subsystem type, the kernel defines a set of 
data structures and interfaces that allow subsystems to "hook" themselves 
into the kernel. These interfaces and structures are called frameworks. 

9.3 The Configuration Manager 

The configuration manager handles all requests for configuration, 
unconfiguration, reconfiguration, and querying of subsystem modules. The 
requests fall into two categories: 

• Configuration command requests through interprocess communication 
(for example, the system administrator's requests through the sysconfig 
command), which occur during system operation 

• Automatic configuration requests made during startup 

Several steps are required for dynamic configuration of a subsystem: 

1. The configuration manager reads the configuration database in the file 
/etc/sysconfigtab to get information about the subsystem to be loaded 
and configured. The database contains information about the 
subsystem, including its description, method and type, and the 
location of its object module. The configuration method is the 
subsystem-specific part of the configuration manager that runs in user 
space. It consists of a set of functions to handle the subsystem­
dependent entries in the configuration database. 

2. The configuration manager then calls the kernel loader, kloadsrv, to 
load each subsystem's object module into the kernel. Upon success, 
kloadsrv returns the subsystem's ID and entry point, which the 
configuration manager stores into a registration table. The entry point 
is the address of the routine the subsystem uses to configure itself. 

3. The configuration manager then calls the kmodcall() system call, 
which looks in the registration table to find the configuration entry 
point for the subsystem. The kmodcall() system call executes the 
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entry point with the configure option. The subsystem's configuration 
routine then configures the subsystem into the kernel. Any specific 
subsystem type information is passed back to the configuration 
manager. If the subsystem configuration fails, then the subsystem 
module is unloaded. 

9.4 Interrupt Handling 

The interrupt handling scheme in OSF/l supports the loading and unloading 
of device drivers while the kernel is running. The interrupt handling 
mechanisms are supported by a consistent, modular strategy in which 
device-dependent code is separated from device-independent code. 

The interrupt handling model is divided into three distinct parts: 

• An assembly language module, locore.s, includes a low-memory data 
structure holding the addresses of entry points to execute when an 
interrupt is received. It also includes the low-level interrupt handlers. 
There is normally a low-level interrupt handler for each hardware 
interrupt supported. 

• The interrupt dispatcher is the code that traverses an array that points to 
an arbitrary number of registered interrupt handlers. 

• The device interrupt handlers are loaded into the kernel when the device 
driver is loaded and are registered with the interrupt dispatcher when the 
device driver configures itself. 

9.4.1 The locore.s Module 
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The locore.s module declares low memory and includes a set of low-level 
interrupt handlers to service the various CPU interrupts (see Figure 9-1). 
When an interrupt is received, the low-level interrupt handlers perform the 
necessary functions to invoke the interrupt dispatcher. The use of an 
interrupt dispatcher contrasts with most traditional schemes, which call the 
device interrupt handlers directly from locore.s, sometimes through "glue" 
code. 



Figure 9-1. Interrupt Handling 
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9.4.2 The Interrupt Dispatcher 

The interrupt dispatcher is the body of code that actually invokes each 
device interrupt handler. The interrupt dispatcher, when called as a result of 
a hardware interrupt, reviews the interrupt handler table, itable, for all 
registered and enabled interrupt handlers at the interrupt level passed to it. 
If the dispatcher finds an interrupt handler for that level, it invokes it. 

The algorithm for performing the lookup into itable is left unspecified and 
may be influenced by the hardware architecture. The interrupt handler 
table, itable, consists of an array of pointers to interrupt handler structures. 
The actual details can vary according to the underlying hardware 
architecture. 

The interrupt dispatcher code does not need to reside in locore.s, nor does it 
require the traditional "glue" code found in locore.s. By introducing the 
interrupt dispatcher and supporting data structures, the system has a great 
deal of flexibility that was not generally available with previous 
mechanisms. 
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9.5 Device Driver Configuration 
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Figure 9-2 shows kernel table entries pomtmg to the several parts of a 
configured device driver. The top half of the driver has both a block device 
and a character device. An entry in the block device table switch points to 
the block device handler in the top half. Likewise, an entry in the character 
device table switch points to the character device handler in the top half. 
The bottom half of the driver has handlers for three separate hardware 
interrupts. (The names int34, int36, and int40 are arbitrary.) Three 
separate entries in the interrupt handler table (itable) point to the three 
interrupt handlers. 

To configure a device driver, the kernel needs to register the interrupt 
handlers of the driver's bottom half into the itable, and to register the 
system call handlers of the top half into the block and character device 
switch tables. Additionally, the interrupt handlers, once registered, must be 
enabled. 

Each dynamically configurable device driver must supply the kernel with 
the entry point of a self-configuration routine. The routine is responsible for 
proper initialization of the device, for calling the kernel services that 
register the handlers of the top and bottom halves, and for calling the kernel 
services that enable the interrupt handlers. 
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Figure 9-2. Device Driver Configured into Kernel Tables 

Device 
Block Driver 

Device 
Switch 

Table b-dev 

Top 
Half 

Character c-dev 
Device 
Switch 

Table 

int-34 

int-36 Bottom 

itable 
Half 

Interrupt int-40 
Handler 

Table 

As new device drivers are added to a running system, their interrupt 
handling entry points are dynamically registered in itable. The registration 
process occurs when the device driver's configuration entry point is called at 
configuration time. The device driver issues the handler_ add() call, 
passing a filled-in interrupt handler structure (ihandler _ t) and receiving 
back an interrupt handle (ihandler _id_ t). The device driver then needs to 
enable its interrupt routine by calling handler_ enable(), passing the handle 
just received from handler_ add(). The OSF/l interrupt handling scheme 
provides the necessary interfaces to enable or disable interrupt handlers that 
have already been loaded. Once an interrupt handler has been enabled, it is 
available to service interrupts and, therefore, is an entry point that the 
dispatcher can execute. 

Pseudodevices, such as the traditional null device (/dev/null) and the 
pseudoterminals, have no physical device, and thus no hardware interrupts 
and no bottom half. Only the top half needs to be configured. The driver's 
self-configuration routine registers the top half. The self-configuration 
routine of the driver for a physical device must register both the top and 
bottom halves. 
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9.6 Configuration of File Systems 
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OSF/l contains a Virtual File System (VFS) framework that supports 
multiple file system types. File system types can be either statically 
configured into the kernel or made dynamically loadable. Dynamically 
loaded file system types can also be unloaded when they are idle, but 
statically loaded file system types cannot. Chapter 11 provides a complete 
description of the VFS framework. 

The VFS framework contains a table of configured file system types called 
the VFS table or the VFS switch (vfssw). This table contains a pointer to the 
file system-specific operations that provide file system-level functions, such 
as mount(), umount( ), statfs( ), and sync(). File systems that have been 
loaded into the kernel statically are already configured into the vfssw, and 
are initialized at boot time through calls to their VFS initialization function, 
vfsinit( ). 

Once a file system type has been loaded into the kernel, a call to its 
configuration entry point causes. it to configure itself into the vfssw, through 
the vfssw _add() kernel service routine, and to perform appropriate 
initialization of global parameters, allocation of memory, and so forth. 

Dynamically unloading a file system type is almost the reverse of loading. 
Once it has been determined that the file system is not in use, its entry in the 
vfssw can be deleted, and its text unloaded from the kernel address space. 

The actions of unloading are similar to those of loading. The file system's 
configuration entry point is called for unconfiguration, which results in the 
configuration routine calling vfssw _ del (). If any instance of the file system 
type is mounted, vfssw _ del() fails. If vfssw _ del() succeeds, the file system 
has been unconfigured, and the configuration routine needs only to clean up 
after itself and to return. (An example of cleanup is deallocation of system 
memory.) The kernel loader process then unloads the file system's text from 
the kernel address space. 
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9.7 Dynamic Loading and Configuring of System Calls 

New system calls can be dynamically added to a running copy of OSF/1. 
The newly configured system calls are immediately available to executing 
user-level programs that have been properly constructed to use them. 

A user-space program can invoke dynamically loaded system calls by name, 
in the same manner that it would invoke other system calls; there is no need 
for the application programmer to know that they are dynamically loaded. 

Each system call in the OSF/l kernel, whether built-in or dynamic, consists 
of a body of executable code that is identified by a unique name and a 
unique number. Dynamic loading places a new system call's body of code 
into kernel space; dynamic configuration associates the name and the 
number with the code through appropriate changes to the kernel's system 
call table. 

9.7.1 Selecting the System Call Number 

The provider of a subsystem may use either a predetermined or dynamic 
approach for determining the system call numbers associated with its 
exported system calls. 

With the predetermined approach, the provider assigns the numbers and 
ensures that nosys entries occupy the appropriate places in the 
syscalls.master file (in kernel/conf) to reserve slots in the system call table 
at build time. Upon configuration, the subsystem provides the number to the 
kernel. There is only one significant difference between this method and the 
original static system calls: it is not necessary for the symbol that is the 
target of the system call to be defined at build time. 

In the dynamic approach, the numbers are provided by the system at load 
time, using unassigned slots in the system call table. This method assumes 
enough free slots remain in syscalls.master, because no mechanism is 
provided to increase the actual size of the system call table. 

The predetermined approach provides slightly better performance and less 
complexity in the user-space code; the dynamic approach allows greater 
flexibility and avoids the necessity of knowing about specific dynamic 
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system calls when the kernel is built. Only the predetermined approach is 
appropriate for a secure system that audits system call usage. 

9.8 Boot-Time Subsystem Configuration 
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There are two separate stages to OSF/l 's subsystem configuration at boot 
time. The kernel handles the first stage, determining the sizes of several 
fundamental parameters, initializing statically bound device drivers, and 
starting the init process. The init process starts several other processes, 
including the kernel loader and the configuration manager. The 
configuration manager then handles the dynamic configuration, which is the 
second stage. 

During the system generation process, the software performing the build 
consults the static system configuration file to determine which device 
drivers to statically bind into the kernel and at which location (or locations) 
the corresponding physical devices may be present. 

Device drivers may thus be statically linked and loaded into the kernel in 
the usual manner. In the course of static configuration at boot time, after the 
kernel has determined the sizes of several fundamental data areas and other 
parameters, it calls the static drivers' entry points so that they may perform 
any necessary initialization. They may, for example, probe devices, add 
switches, or install system calls. Probing may, in the usual manner, result in 
configuration of only those drivers for which the physical devices are 
detected. 



Chapter 10 

Internationalization Subsystem 

Traditionally, application programs developed on UNIX systems were 
written with a bias toward the English language and the customs of the 
United States. Such applications provide error messages that are written in 
English and display numeric data, monetary data, and time and date data 
according to the cultural conventions of the United States. 

When application programs of this type are used outside of the USA, users 
encounter difficulties such as 

• Messages in an unfamiliar language 

• Incorrect alphabetic sorting 

• Unfamiliar date, numeric, and monetary displays 

The internationalization subsystem supports internationalized applications. 
An internationalized application is one that is capable of behaving properly 
regardless of a user's language and cultural conventions. For example, an 
internationalized application can be used successfully by users in the USA, 
Europe, and Japan. 

10-1 



Design of the OSF/1 Operating System 

10.1 Locales 

OSF/1 implements internationalization support through a set of locales. 
Each locale specifies a software environment that supports the language and 
customs associated with a particular geographic region. A locale specifies 
the following: 

• A language and a code set that will be used to represent the language. 
For example, American English is represented by the ASCII code set. 

• Collating conventions. 

• Format conventions for the display of times, dates, numeric data, and 
monetary data. 

• A catalog of messages the application uses to communicate with the 
user. 

An application determines the current locale at runtime, usually by means of 
the user's environment variables. The application then uses the setlocale() 
routine to give itself access to the tables and algorithms that implement the 
locale. When the application performs an operation that is locale­
dependent, the routine that performs the operation uses the algorithm and 
data specific to the locale. 

10.1.1 Languages and Code Sets 
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In an internationalized application, users interact with the system in their 
native language. All program messages are in the local language, and the 
program accepts input in that language. Instead of being hardcoded into the 
program, messages are placed in message catalogs, and hardcoded text is 
replaced with calls to a messaging system. To specify postive or negative 
responses, users can use the words or characters appropriate to their 
language instead of the English string literals y, yes, n, and no. 

Traditionally, character data manipulated by UNIX applications has been 
represented by the ASCII code set, which is capable of representing all the 
characters for only three languages: English, Hawaiian, and Swahili. To 
support other languages, an application must be capable of using code sets 
that represent those languages. 
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The ASCII code set uses seven bits of each byte and cannot encode non­
English characters. To allow additional characters, other code sets either use 
all eight bits in a byte or use multiple bytes to encode a character. Eight-bit 
code sets allow 256 possible characters and can support European, Middle 
Eastern, and other alphabetic languages. 

In languages that use ideographic writing systems, such as Japanese, 
Chinese, and Korean, each word has its own unique ideographic symbol or 
symbols. There are thousands of such symbols in these languages. 
Consequently, these languages cannot be coded within a single byte and 
require multiple bytes for most characters. Multibyte encoding methods 
combine both single-byte and multibyte code sets. 

In addition, universal character sets have been designed that include 
characters from a large group of languages. These universal sets can 
consume from two to four bytes per character. 

One distinguishing characteristic of multibyte code sets is that their 
characters can have different lengths. For example, the SJIS code set, which 
allows the ASCII code set to be combined with the standard 16-bit Japanese 
code set called JIS X0208, includes I-byte and 2-byte length characters. 
Code sets with characters that vary in length can introduce inefficiencies in 
applications that manipulate data a character at a time because such an 
application must check the length of each character before processing it. 

The internationalization subsystem includes a set of interfaces that allows 
applications to convert variable length characters into wide characters of a 
uniform length for the character manipulation. Characters that have been 
converted into wide length characters are in a form called process code. 

The size of wide length characters is system-dependent; a wide length 
character may be 16 bits on one system and 32 bits on another. 
Consequently, characters encoded in process code cannot reliably be 
transmitted between processes on different systems. Therefore, before an 
application performs an I/O operation involving process code, it must 
translate the code back to the original multibyte form. 

The following interfaces can be used to convert characters to and from their 
multibyte forms: 

mbtowc() Converts a multibyte character to a wide character 

mbstowcs() Converts a multibyte character string to a wide character 
string 
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wctomb() Converts a wide character to a multibyte character 

wcstombs() Converts a wide character string to a multibyte character 

mblen() Returns the number of bytes in a multi byte character 

It is possible for a single code set to handle more than one language. For 
example, the same code set can be used for Western European languages 
such as French, German, Italian, and Spanish. It is also possible to have 
more than one encoding method for a single language. OSF/l includes 
support for two different encoding methods for Japanese. See Section 10.5 
for further discussion. 

10.1.2 Collating Conventions 
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English sorting rnles are among the simplest of any language: each letter 
sorts to one place. ASCII makes things even simpler by encoding the 
characters in alphabetic, case-segregated order. Other languages include a 
variety of collation methods. Here are a few examples: 

Multilevel In this system, a group of characters all sort to the same 
primary location. If there is a tie, a secondary sort is applied. 
For example, in French, a, a, a, and a all sort to the same 
primary location. If two strings collate to the same primary 
location, the secondary sort goes into effect. These words are 
in correct French order: 

a 
a 
abord 
a pre 
a pres 
aprete 
azur 

One-to-two character mappings 
This system requires that certain single characters be treated 
as if they were two. For example, in German, 6 (Eszett) is 
collated as if it were ss. 
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N-to-one character mappings 
Some languages treat a string of characters as if it were one 
single collating element. For example, in Spanish, the ch and 
II sequences are treated as their own elements within the 
alphabet. Dictionaries have separate sections for them (that is, 
there are entries for a, b, c, ch, d, and so on). The following 
words are in correct Spanish order: 

canto 
construir 
cunoso 
chapa 
chocolate 
dama 

Don't-·care character mappings 
In some cases, certain characters may be ignored in collation. 
For example, if a - (dash) were defined as a don't-care 
character, the strings re-locate and relocate would sort to the 
same place. 

In addition to these collation rules, some languages use basically the same 
rules as English but still need more than a plain ASCII sort. For example, in 
Danish, there are three characters that appear after z in the alphabet: re, J'), 

and a. This means that an internationalized application cannot assume that 
the range [A-Z, a-z] includes every letter. 

A locale may include tables that specify the operations used by applications 
to collate characters, compare characters, and perform regular expression 
operations within the locale. An application accesses these operations 
through the following function calls: 

strcoll() Collates two multibyte strings based on the locale's collation 
tables 

strxfrm() Converts a multibyte string into a form that collates correctly, 
according to the locale's collation table, when collated by 
strcmp() 

wcscoll() Collates two wide character strings based on the locale's 
collation tables 

wcsxfrm() Converts a wide character string into a form that collates 
correctly, according to the locale's collation table, when 
collated by wcscmp() 
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fnmatch() Matches filename patterns 

regcomp() Compiles regular expressions for later comparisons 

regerror() Returns text associated with an error code from regcomp() or 
regexec() 

regexec( ) Compares a string to a compiled regular expression 

10.1.3 Character Classification 

The new characters that are necessary to support languages besides English 
need classification. For European languages, the existing classes, such as 
alpha and lower, are adequate. The additional characters that are valid for 
a given language and class need to be provided. In addition, some characters 
have qualities that do not exist in the ASCII code set. For example, the 
German 6 is a lowercase letter that has no single uppercase equivalent. 
Therefore, islower() would return TRUE on this letter, while toupper() 
would return the original character (6). 

10.1.4 International Date and Time Formats 
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Users around the world express dates and times using a variety of formatting 
conventions. When specifying day and month names, Americans generally 
use this format: 

Tue, May 22, 1990 

However, the French use this format: 

mardi, 22 mai 1990 

An internationalized system gives users access to their language's 
conventions. 
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Cultural groups also express numeric dates in different ways, even within a 
single country. The following examples illustrate common methods for 
formatting dates: 

3/20/90 

20/3/90 

20.3.90 

20-III-90 

90/3/20 

2/3/20 

American: month/day/year order 

British: day/month/year order 

French: day.month.year order 

Italian: day-month-year order; uses the Roman numeral for the 
month 

Japanese: year/month/day order 

Japanese Emperor: same order, but the year is the number of 
years the current emperor has been reigning, rather than the 
Gregorian calendar year 

As with dates, there are many conventions for expressing the time of day. 
Americans use the 12-hour clock with its a.m. and p.m. designations, while 
most people in Europe and Asia use the 24-hour clock for written times. 

In addition to the 12-hour/24-hour clock differences, punctuation for written 
times can vary. For example: 

3:20 p.m. American 

15h20 French 

15.20 German 

15:20 Japanese 

With different date and time formats come different time zones, which can 
vary in one-hour, 30-minute, or even 15-minute increments. 

A locale may include tables that specify the format of time and date data for 
the locale. An application uses the following interfaces to format time and 
date according to the locale: 

strftime() Converts a date and time value to a string 

strptime() Converts a string to a date and time value 

wcsftime() Converts a date and time value to a wide character string 
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10.1.5 International Numeric and Monetary Formats 

The characters used to format numeric and monetary values vary from place 
to place. For example, Americans use a. (period) as the radix character (that 
is, the character that separates whole and fractional quantities), and a , 
(comma) as a thousands separator. In many European countries, these 
definitions are reversed. In addition, for monetary amounts, there are a 
variety of conventions for the currency symbol and its placement. For 
example: 

Numeric Formats 

1,234.56 

1.234,56 

Monetary Formats 

$1,234.56 
krl.234,56 
SFrs.1,234.56 
1.234$56 

American - comma as thousands separator; period 
as radix character 
French - period as thousands separator; comma as 
radix character 

American dollars 
Norwegian krona 
Swiss francs 
Portuguese escudos 

10.2 Internationalization Subsystem Design 
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The OSF/1 internationalization subsystem allows applications to behave 
differently in different locales by dynamically loading the code and tables 
implementing the user's locale at application runtime. 

The requirements of the internationalization subsystem design and the 
benefits of object-oriented programming coincide. Defining locales and 
related items as objects and providing methods to access these objects 
creates clearly defined interfaces and highly modular components that can 
be substituted for each other when running an application program. 
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The overall subsystem design consists of three parts: 

• Object-oriented framework 

• Object definitions that provide the application programming interface 
(API) 

• Object definitions that specify the algorithms and data structures 

The object-oriented framework consists of the rules used to define the 
subsystem's objects and the mechanisms used to implement them. The 
framework provides a mechanism for implementing the internationalization 
API, but is not tied to it. It is possible to implement an entirely different 
API using the same object-oriented framework. 

The objects defined in the framework provide the internationalization APL 
This part of the design specifies the relationship between the 
internationalization interfaces and the objects in the subsystem. It specifies 
which interfaces are included in each object and how interfaces access the 
objects. 

Within the objects are methods and data structures. This part of the design 
specifies the algorithms used within the methods to manipulate the data. 

10.3 Application Programming Interface 

Although the internationalization subsystem has an object-oriented design, 
the objects are not visible to the applications which use the subsystem. The 
objects and methods are only used internally to provide the APL This 
section describes the connections between the API and the object-oriented 
subsystem. Figure 10-1 illustrates how an application program interfaces 
with the object-oriented internal subsystem. 
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Figure 10-1. Internationalization Subsystem Application Programming Interface 
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This object-oriented design is used for the setlocale() related functions and 
for the iconv() converters. Figure 10-2 provides more details on how the 
object-oriented design works. It illustrates how the setlocale() function 
loads the locale core objects from the repository and how the mbtowc() and 
towupper() functions access the locale core structures to execute their 
functions. The setlocale() function evaluates the internationalization 
environment variables to get the user's locale, then uses __ Ic_load() to load 
the objects from the object repository. 



Figure 10-2. Internationalization Objects 
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The message subsystem implemented in OSF/l does not use the object­
oriented paradigm. The API for the message subsystem consists of the 
following function calls: 

catopen() Opens a version of a named message catalog as determined by 
the current locale 

catgets() Retrieves a specific message string from the message catalog 

catclose() Closes the specified catalog 

The catopen() function evaluates the environment variables and the locale 
specified by setlocale( ), and then stores this information with the catalog 
name in the catdtbl table. It does not attempt to open or even find the 
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catalog. The catalog is actually opened by the first call to catgets( ). 
Deferring the catalog open until a message is needed can improve the 
efficiency of applications. Application startup is faster because the catalog 
does not have to be opened. If the application program does not encounter 
any conditions that cause a message to be displayed, the overhead of the 
catalog open is eliminated entirely. 

The catgets( ) function first tests if the catalog has been opened. If the 
catalog has not been opened, it calls the internal interface _cat_ do_ open(), 
which loads the catalog using the information in the catdtbl table and the 
mmap() system call. 

Using mmap() to access message catalogs has several advantages: 

• Catalogs are shared between users. The OSF/1 VM optimization for 
caching and sharing memory can be used. 

• No input/output descriptor is retained. This simplifies using catalogs in 
programs (such as shells) that attempt to manage their input/output 
descriptors. 

• Message access is fast because file input/output is avoided in favor of 
VM page faults. 

After the file has been opened, catgets() uses a table of offsets stored in the 
message catalog to get a pointer to the message using the set_ number and 
the message number parameters specified in the call to catgets( ). 

The catclose() function cleans up internal storage so that a subsequent 
catopen() can specify a new catalog, but if the same catalog is used again 
in the process, the previously loaded copy is reused. 

10.5 OSF/1 Code Sets 
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OSF/l accepts data encoded in the series of 8-bit code sets defined by ISO 
8859. The first in the series is called ISO 8859-1, the second is ISO 8859-2, 
and so on through ISO 8859-9. Although OSF/1 accepts data encoded in 
any of the ISO 8859 series, it provides locales for some languages in the ISO 
8859-1, ISO 8859-7, and ISO 8859-9 code sets only. 
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ISO 8859-1 is often called Latin-1. It includes the characters necessary for 
Western European languages, such as French, German, Italian, and Spanish. 
Latin-1 and the other ISO 8859 code sets are arranged so that they include 
ASCII characters at their traditional OxO through Ox7f code positions, 
control characters at positions Ox80 through Ox9f, and additional graphic 
characters at positions OxaO through Oxff. 

Table 10-1 lists the ISO 8859 code sets. 

Table 10-1. ISO 8859 Code Sets 

FormalNamelnfOrlnalNa.TieLanguages covered 
ISO 8859-1 
ISO 8859-2 
ISO 8859-3 
ISO 8859-4 
ISO 8859-5 
ISO 8859-6 
ISO 8859-7 
ISO 8859-8 
ISO 8859-9 

Latin-1 
Latin-2 
Latin-3 
Latin-4 

Western European 
Eastern European 
Southeastern European 
Northern European 
English and Cyrillic-Based 
English and Arabic 
English and Greek 
English and Hebrew 
Western European and Turkish 

Latin-1 includes Danish, Dutch, English, Faeroese, Finnish, French, 
German, Icelandic, Italian, Norwegian, Portuguese, Spanish, and Swedish. 

Latin-2 includes Albanian, Czech, English, German, Hungarian, Polish, 
Rumanian, Serbo-Croatian, Slovak, and Slovene. 

Latin-3 includes Afrikaans, Catalan, Dutch, English, Esperanto, German, 
Italian, Maltese, Spanish, and Turkish. 

Latin-4 includes Danish, Estonian, English, Finnish, German, Greenlandic, 
Lappish, Latvian, Lithuanian, Norwegian, and Swedish. 
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10.5.1 EUC Code Sets 

Table 10-2. 

OSF/l supports the EUC (Extended UNIX Codes) encoding methods for 
encoding Japanese and other ideographic languages and the SJIS (Shifted 
Japanese Industrial Standard) code set for encoding Japanese. 

EUC is an encoding standard that allows several code sets to be combined. 
The first byte of an EUC character determines the code set, the number of 
bytes to encode the character, and the display width of the character. Table 
10-2 illustrates the OSF/l Japanese EUC implementation. 

OSF/1 Japanese EUC Code Set Encoding 

-----

Character Character Value of Total Number Display 
Type Set First Byte of Bytes Type 

ASCII 0 Ox00-0x7F 1 1 
Kanji 1 OxA1-0FE 2 2 
Kana 2 SS2 (Ox8E) 2 
Kanji 3 SS3 (Ox8F) 3 2 
------ ----- ~----~-

In the Japanese EUC multibyte code sets, the bytes following the first one 
are always in the range OxAl through OxFE. 

10.5.2 SJIS Code Set 
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SJIS allows ASCII to be combined with a standard 16-bit Japanese code set 
called JIS X0208. The characteristics associated with a particular value 
vary from implementation to implementation. Typically, if the byte has the 
Most-Significant Bit (MSB) set to 1, and its value is between either Ox81 
and Ox9f, or between OxeO and Oxfc, the byte is the first of a 2-byte 
character. Any character sequence that does not begin with one of the 
special "first of two" bytes is treated as a 1-byte character. If the MSB is off, 
that 1-byte character is ASCII; if it is on and in the range of Oxal through 
Oxdf, the character is a single-byte phonetic character. Table 10-3 describes 
the OSF/l SJIS encoding method. 
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Table 10-3. OSF/1 SJIS Encoding Method 

Character Value of Total Number 
Type First Byte of Bytes 

- --·-·---·-

ASCII OxOO-Ox?F 1 
Kana OxA1-0xDF 1 
Kanji Ox81-0x9F or 2 

OxEO-OxFC 

In the OSF/1 implementation, the second byte is always in the range Ox40 
through OxFC. 

10.6 The iconv Conversion Subsystem 

The iconv conversion subsystem converts data encoded in one code set to 
data coded in another. Since the code sets it is converting from and to are 
independent of the current locale, the iconv conversion subsystem is 
independent of the locale objects used in the internationalization subsystem. 

The API for the iconv conversion subsystem consists of the following 
functions: 

iconv _open() Initializes the code set converter 

iconv() Converts the specified data 

iconv _close( ) Closes the code set converter 

In order for iconv to be able to convert from one code set to another, there 
must be present either a method explicitly defined for the conversion or a 
conversion table explicitly defined for the conversion. The iconv _open() 
function uses the code set names specified in its parameters and the value of 
the LOCPATH environment variable to locate an object containing a 
conversion method and tables. It will either use the method defined 
explicitly for the conversion or, if it cannot find one, it will use a default 
method with the tables defined explicitly for the conversion. Any 
conversion between two single-byte code sets can use the default method. 
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The iconv() function calls the conversion method in the object, which uses 
the tables to convert the data. 

The genxlt command is used to create the conversion tables. 

10.7 Terminal Device Support for Internationalization 

One of the distinguishing characteristics of the internationalization 
subsystem is that it allows a user to select an application's code set at 
runtime. The OSF/1 terminal subsystem has been specifically designed to 
support this behavior. 

The implementation of the terminal subsystem is STREAMS-based. 
STREAMS-based terminal devices are built of several software modules. 
When a terminal device file is opened, the STREAMS subsystem creates a 
bidirectional data path, or stream, for communications between the user 
process and the device. Figure 10-3 illustrates the stream for a terminal that 
is configured for operating in the C locale (the default locale provided with 
OSF/1). 

Figure 10-3. Basic Stream for Terminal Devices 
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The stream in Figure 10-3 is composed of the following: 

• The stream head module, which processes system calls made by user 
processes and controls the overall stream activities. 

• The line discipline module, which interprets input and output to the 
terminal. OSF/l provides ldterm, which is the standard line discipline 
for STREAMS-based terminal devices. This module uses the Extended 
UNIX Codes (EUC) encoding method for any data it processes. EUC 
defines a 7-bit ASCII character format and three multibyte character 
formats for applications and terminal devices to use. The ldterm 
module will accept data in any or all of these formats simultaneously. If 
the application or terminal device driver does not use an EUC code set 
and does not translate from this code set into EUC, another module must 
be added to the tty device stream for character conversion. 

Applications can use other line disciplines that are compatible with the 
OSF/l tty subsystem. 

• The hardware-specific device driver, which controls input and output to 
the terminal. 

Other modules and software drivers can be present on the terminal device 
stream for any data processing and device control that is required. 

Some applications use pseudoterminals rather than real terminals. One 
example is X-windows. Another example is a process that remotely logs 
into another computer. Both applications operate in the client and server 
mode, where two processes communicate with each other without an 
intervening hardware device. 

Just as it does for tty devices, the kernel automatically configures the stream 
for a pty when the device is opened. Applications that want to execute. with 
a different device stream configuration must add and remove modules. 

The pty subsystem presents the application with an interface identical to the 
tty subsystem. It defines two devices, called the "master" and "slave" 
devices. The slave device, which provides the interface to the user process, 
is manipulated by another process through the master half of the pty. 

Figure 10-4 illustrates a basic pty device stream. 
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Figure 10-4. Basic Stream for Pseudoterminal Devices 

User 
Space 

Kernel 
Space 

User Process 
-----------.-------------

ply Master l ply Slave 
File Descriptor 1 File Descriptor 

Stream 
Head 

Master 
Device 
Driver 

Stream 
Head 

ldterm 
Module 

Slave 
Device 
Driver 

To construct a pty device stream, the kernel actually creates two streams. 
First, it creates a stream for the master device with the driver ptm* at the 
bottom. Then, it creates a stream for the slave device with the driver pts* at 
the bottom. In addition, it pushes the ldterm module onto the slave device 
stream. 

10.7.1 Initialization of Terminal Lines 
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The OSF/1 autopush facility allows for the automatic initialization of 
terminal lines. This facility consists of a system configuration file (the 
autopush.conf file as supplied by OSF/1) and the autopush command. The 
system administrator enters the names of the master and minor devices of 
the tty and pty devices defined in the system into the configuration file, 
along with lists of STREAMS modules to be pushed onto the device 
streams. Then the system administrator arranges for the autopush 
command to be run at system startup. When run, the autopush command 
loads the terminal configuration information into the kernel. Subsequently, 
any terminal device named in the kernel database will be automatically 
configured on device open. 
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10. 7 .2 Reconfiguring Terminal Lines 

The terminal subsystem provides the strchg command to enable users to 
interactively configure their terminal lines to change which code sets are 
being used. For example, users could configure their terminals so that they 
handle SJIS character codes. 

Code set converter modules are pushed on the stream in the order specified 
on the strgch command line. Converter modules can be placed between the 
terminal device driver and ldterm to convert characters back and forth 
between the keyboard and the line discipline module, and between ldterm 
and the stream head to convert characters back and forth between the line 
discipline module and the application. 

Terminal streams can also be reconfigured within applications. An 
application uses the I_ POP ioctl() call to pop ldterm and the other modules 
from the stream, and the I_ PUSH ioctl() call to push the code set converter 
modules and ldterm on the stream. 
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Chapter 11 

File Management 

From the perspective of a user process, all objects that provide 1/0 are 
represented by files in the file system. Each file that a user process has 
access to is represented by a file descriptor. A file descriptor might 
represent an open file, a stream, a device, or a network socket, but a uniform 
set of file operations hides the distinctions between various files, devices, 
and networks. 

This chapter describes the three components of the OSF/l file management 
architecture: 

Descriptor Management 
The data structures and functions involved in the management 
of open files. 

Virtual File System 
A subsystem that provides a uniform means of access to the 
system's files, thereby allowing OSF/l to support multiple file 
system types. The Virtual File System (VFS) translates 
generic requests on a file to the specific terms required by the 
file's file system. The VFS also supports the capability to 
dynamically add new file system types to the kernel. 
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File Systems 
OSF/l provides three major file system types: 

• UNIX File System (UFS) 

• System V File System (SysV FS) 

• Network File System (NFS) 

Figure 11-1 shows how these components relate to one another. When a 
user process executes a system call to initiate an operation on a file, the 
system call causes the process to trap into the kernel. Here, the illusion of 
uniformity is preserved until the system call's request reaches the file layer, 
which distinguishes network sockets from file system objects. This chapter 
does not discuss sockets; they are discussed in Chapter 12. 

Figure 11-1. Architecture of the File Management System 
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11.1 Descriptor Management 

All user process 1/0 in OSF/l is handled through descriptors. Every active 
socket or open file (including directories, links, special files, and so forth) in 
a user process is represented by a descriptor. The usual method for a 
process to acquire a new descriptor is through either the open() or the 
socket() system call. The process uses the descriptor to identify the socket 
or file when making an 1/0 request to the kernel. The file layer (see Figure 
11-1) distinguishes between file descriptors that represent sockets and those 
that represent vnodes. It calls the appropriate 1/0 routines in each case. 

Each descriptor specifies an entry in the per-process open-file table. That 
entry points to an open file description in the kernel that contains 
information such as the current offset, the descriptor type, the reference 
count, the set of available operations, and a pointer to the associated socket 
or vnode. Figure 11-2 shows that a file descriptor references a vnode (or a 
socket) by selecting an entry in the per-process description table, which in 
turn points to an open file description. The open file description specifies a 
vnode or a socket. 

Figure 11-2. File Descriptor Reference to Open File Description 
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The per-process open file table is shared among all the threads of a process, 
and thus the threads share the same set of file descriptors. As soon as one 
thread obtains a new file descriptor, it is immediately seen by all the other 
threads in the process. When a process forks, its per-process open file table 
is copied to the child, thereby sharing all the open file descriptions. File 
descriptions subsequently obtained by either parent or child are not shared. 
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File descriptors can be marked close-on-exec, in which case they are closed 
if the process calls exec(). Descriptors that are not marked close-on-exec 
remain open after a call to exec(). 

11.1.1 Data Structures 
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Figure 11-3 shows an example of open file descriptions. A process, Pl, 
consists of three threads, Tl, T2, and T3. These threads all share the same 
set of descriptors and the same per-process table. (The synchronization of 
thread access to the per-process data is discussed later in this chapter.) 
Among Pl 's descriptors are two that reference the open file descriptions DI 
and D2. D 1 points to a socket, and D2 points to a vnode. 



Figure 11-3. A Process and Its Open File Descriptions 
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Figure 11-4 shows two additional levels of shared access. Two processes, 
Pl and P2, share access to the single open file description D2, and thus share 
the file object represented by vnode Vl. The situation occurs when a 
process forks, leaving two processes holding the same description. Because 
they share an open file description, they see the same value for the current 
offset. Process P3 also shares access to Vl, but through a separate open file 
description, having used an independent call to open(). 

Processes do not normally share sockets, except by inheritance through 
fork(), because of the nature of sockets, which provide new, unique 
instances when created through the socket() system call. For a discussion 
of sockets, see Chapter 12. 
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Figure 11-4. Processes Sharing a Vnode 
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11.1.2 Synchronization on Descriptors 

All threads of a process share the per-process open file table. Threads using 
any of the following operations must synchronize on the table: 

• Allocation and deallocation of file descriptors 

• Access to the contents of the open file description itself 

• Access to the file or socket 

The second and third operations pertain to synchronization between all 
threads that share a particular open file description, not just those within a 
single process. 

In the first case, allocation and deallocation of the file descriptors, a lock on 
the per-process open file table guarantees consistent information during the 
time the thread is looking for an empty slot in the table, or when it is 
retrieving an open file description through a valid file descriptor. 

A special situation is worthy of note. If one thread were obtaining a file 
descriptor while another called close() to deallocate the open file 
description, the first thread could obtain a descriptor referring to nothing. 
To avoid this circumstance, the thread obtaining the descriptor increments 
the reference count on the open file description before releasing the lock, 
preventing deallocation. The reference is released when the operation is 
completed. 

The second case, accessing the contents of the open file description, uses a 
lock to protect the description contents. 

In the third case, file or socket access, all threads sharing access to an object 
represented by an open file description must be synchronized to preserve 
POSIX semantics. This synchronization protects the offset into the object, 
which is kept in the open file description. Any operation that affects the 
offset (such as read(), write(), and lseek()) takes a lock that is released 
when the operation has completed and the offset has been modified. 
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11.2 Virtual File System Management 
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This section covers the Virtual File System (VFS) layer and VFS operations, 
and is primarily concerned with entities at the file system level, as opposed 
to the individual file manipulation level. 

The OSF/1 VFS provides support for multiple file systems of different types. 
File system types implemented under the OSF/l VFS architecture include 
UFS, NFS, and System V. VFS support can be extended to include 
additional file system types, including file system types that are not based on 
the UNIX file system. 

OSF/l VFS implements the traditional UNIX file system interfaces for all 
file systems, regardless of their types. To a user process, these interfaces 
appear unchanged. A user process can use the traditional UNIX system 
calls to open, create, close, delete, and rename files and directories in any 
file system. To a user process, file systems of different types are 
indistinguishable. 

The following terms are important to this discussion: 

VFS architecture 
The mechanisms that enable using multiple file system types 
in OSF/l. The VFS architecture consists of two parts: file 
system entities and files through vnodes. 

VFS layer The file-system-independent operations on file systems, such 
as mount(), sync(), and so forth. 

VFS operations 

Vnode layer 

Higher level file system operations exported by file systems, 
such as mount(), unmount(), and sync(). 

File-system-independent operations on individual files, 
through vnodes, such as name translation, open(), read(), 
write(), and so forth. 

Vnode operations 
The vnode-level functions exported by file systems 
implemented under the VFS. 
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11.2.1 An External View of the File System Tree 

The file system tree under VFS always starts with a root file system that is 
mounted when the system is booted. (The choice of the root file system is a 
VFS configuration issue.) Additional file systems come under VFS control 
when they are mounted onto the root file system or any other mounted file 
system. 

Under VFS, mount points mark the boundaries between file systems. If a 
file system of one type is mounted on a file system of another type, VFS 
automatically switches its operations (both VFS and vnode) when a user 
program crosses the mount-point boundary. 

Figure 11-5 shows an example of the basic OSF/1 file system tree. 

Figure 11-5. Example of OSF/1 VFS File Tree 

dev etc 

Legend: 

D = Directory. 

Q = Mounted file system. 

Root File 
System 

UFS 

0 =File system mounted on directory. 

NFS 

11-9 



Design of the OSF/1 Operating System 

11.2.2 The VFS Switch 

The virtual file system switch, or vfssw, is a data structure that represents all 
of the file system types currently available in an OSF/l kernel. The vfssw is 
implemented as an array of VFS operation vectors, indexed by file system 
type. When performing a VFS operation, such as mount(), the kernel uses 
the file system type (typically an argument to the system call) to find the 
correct VFS operation vector. Through this vector it calls the file system's 
VFS function. If no file system matching the type argument is present, an 
error is returned. 

Although there are typically several file systems statically loaded into the 
vfssw, OSF/1 allows file systems to be dynamically loaded and unloaded. 
This implies that the vfssw can change at run time. As a result, there are 
synchronization requirements placed upon vfssw access. Modifications to 
the vfssw must not take place during a mount operation; otherwise, it would 
be possible to mount a file system that is being unloaded, or to fail a mount 
of a file system that is being loaded. To prevent such errors, a lock protects 
the vfssw. Operations that change the vfssw, such as adding and deleting 
file system types, hold this lock for writing, while the mount() operation 
holds it for reading, preventing modifications while mounting is in progress. 

11.2.3 Internal Representation of Mounted File Systems 
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In OSF/1 there may be any number of mounted file systems, up to a system­
defined maximum. Each file system type is responsible for setting its own 
limit on the number of mounts allowed. 

Each mo1•nted file system is represented by a mount structure. The mount 
structure is divided into two major sections-file-system-independent and 
file-system-dependent. The mount() operation allocates and initializes the 
file-system-independent portion, and the umount() operation, if successful, 
deallocates it. Individual file systems must allocate, initialize, and 
deallocate their own file-system-dependent information. Mount structures 
are maintained on a list, one per mount instance. 
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In addition to the list, the file-system-independent section contains the 
following significant fields: 

Operations vector 
A pointer to the VFS operations vector for the file system 

Covered vnode 

Node list 

Status 

Data 

Locks 

A pointer to the vnode of the file which serves as the mount 
point for the mount instance 

A list of vnodes associated with the file system 

A statfs structure describing both static and dynamic status 
information related to the file system 

A pointer to file-system-specific mount information; this is not 
accessed by the VFS 

Several locks for synchronizing access to the mount structure 
and to the file system it represents 

The mount structure is not exported to user level, and should never be 
examined by user programs. A user who requires information on mounted 
file systems can use any of several system calls that access the mount 
information, such as statfs( ), fstatfs( ), getfsstat( ). These calls pass the 
information in the exported structure, struct statfs. 

OSF/1 places several semantic restrictions on the mount and unmount 
operations: 

• A single physical file system cannot be mounted in more than one place. 
This restriction does not apply to some remote file systems. For 
example, it is possible to mount the same remote file system using NFS 
in more than one place in the local file system tree. Because this can 
cause problems with respect to buffer cache consistency, it is not a 
recommended practice. 

• Generally, it is not possible to unmount a busy file system. If any 
vnodes on a file system are active (that is, they have a reference count 
greater than 0 (zero)), the unmount operation will fail. Forcible 
unmount of file systems is a feature of the VFS architecture; however, 
part of its implementation is file-system-dependent, and no file system 
supplied with OSF/1 supports forcible unmount. 
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• A block device, that is, a physical file system, that is currently open 
cannot be mounted. Conversely, it is also not possible to open a 
mounted block device. These restrictions exist to maintain buffer cache 
consistency. 

11.2.4 Pathname Translation from Name to Vnode 
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As mentioned earlier, all open file descriptions reference either a socket or a 
vnode. All 1/0 activity in OSF/l, with the exception of sockets, passes 
through the vnode layer. For every regular file, directory, or device file that 
is active, there is exactly one vnode representing it. 

Operations on files can be grouped into two categories: 

• Operations that access files by filename 

• Operations that access files by descriptor 

Named file operations typically result in a translation of the filename to a 
vnode. This name translation is a central function of the VFS 
implementation. Once the name has been translated, the file may remain 
open (as by the open() system call), in which case it remains referenced by 
an open file description, or it may simply be examined for status (as by the 
stat() system call), and its reference released. Examples of operations that 
use file descriptors are read() and write(). These operations take open file 
descriptions that reference previously translated vnodes as arguments, and 
operate on file data. 

The name translation mechanism takes a pathname as input and returns a 
referenced vnode. In OSF/l, this mechanism works at two levels: in the 
namei() function of the the VFS layer, and as a vnode operation supplied by 
individual file systems. The following discussion primarily concerns the 
VFS level operation of namei( ). 
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11.2.4.1 The namei() Function 

The namei() function performs translation of a pathname to a vnode. It is 
the central name translation routine in OSF/l, and can be summarized as 
follows: 

1. Optionally copy the pathname to an internal buffer. (A flag specifies 
whether this has already been done.) 

2. Get a starting directory for the lookup routine; this is typically either / 
(root) or the process's current directory. 

3. Loop doing the following: 

• Copy the next component to a buffer. 

• If the path is .. (dot, dot) and the lookup routine is at the root of a 
mounted file system, find the parent vnode to cross the mount 
point. 

• Call the (file-system-specific) lookup routine for the next 
component. This function returns a referenced vnode. 

• If the vnode represents a symbolic link, copy the name to the 
internal buffer and continue to loop. 

• If the vnode is a mount point for another file system, find the root 
vnode of the mounted file system (using the VFS_ROOT VFS 
operation) and continue to loop. 

• If there are more pathname components, loop. 

4. Return the referenced vnode. 

Of course, an error may occur at any stage, in which case namei() returns 
the error. 

Its activity may be summarized as, "look for pathname component xx.x in the 
directory represented by vnode dvp," iterated through all the components of 
the pathname. For example, the translation of the name /usr/bin/ls would 
proceed as follows: 

1. Set dvp to the vnode for/, which is well-known. 

2. Look up usr in dvp, setting dvp to the vnode for "/usr." 

3. Look up bin in dvp, setting dvp to the vnode for "/usr/bin." 
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4. Look up ls in dvp, setting dvp to the vnode for "/usr/bin/ls." 

5. Return this vnode. 

In the simple case, in which there are no mount points and no symbolic 
links, namei() has little extra work to do. In the other cases, it must 
perform some logic, summarized as follows: 

Mount points 
A vnode that identifies a mount point has a special field that 
points to the covering mount structure. When such a vnode is 
returned by the lookup function (which is file-system-specific), 
it must be translated into the root vnode of the mounted file 
system. This extra translation is the reponsibility of the VFS 
operation, VFS _ROOT, provided by the file system. 

Symbolic links 
A symbolic link is a particular type of file that contains a 
pathname as its data. When namei() encounters a symbolic 
link, this pathname is the one to be translated. It copies the 
new name into the internal buffer and continues translation. 

Parent of mount 
When the current directory in namei() is the root of a 
mounted file system (other than/), and the current component 
is the parent directory, ( .. ), then namei() must traverse the 
mount point in the reverse direction. To do so, it must find the 
vnode of the covered directory for the mount point, and 
perform the translation of .. starting there. 

In OSF/l, the input for both namei() and the file-system-specific lookup 
operations is the entire pathname being translated. The file system 
determines which portion of the pathname it can correctly translate at one 
time. Typically, a file system translates one pathname component at a time; 
however, it may choose to do more. For example, if a local file system does 
the work to correctly recognize and handle symbolic links and mounted file 
systems, then it could translate an entire pathname in one call to its lookup 
routine. 

There are other instances in which a file system may have specific 
knowledge of the contents of a pathname that allow it to efficiently translate 
multiple components in one call. An example of this is a distributed file 
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system that has a well-defined name space and requires expensive name 
server calls to translate the components of pathnames. By sending the entire 
pathname to the name server in a single call to translate multiple 
components, it could gain significantly in performance, especially if the 
local name cache is not used. 

11.2.4.2 Pathname Translation and Mount Synchronization 

Mount and unmount operations change the name space visible during 
pathname translation. As a result, it is important that the view of the name 
space remain consistent while mount, unmount, and pathname translation 
operations are taking place. OSF/l maintains this consistency in several 
ways. 

First, newly created mount points have no effect on pathname translation 
until they are fully initialized. This ensures that a translation in progress 
will either use the old file or the new mount point, and not something in 
between. In addition, the pathname translation does not need to wait for the 
mount operation to complete. 

Also, an unmount operation must first make sure that there is no activity in 
the file system before dismantling the mount point. Once an unmount 
operation has determined that the file system is inactive, the file system 
must remain inactive until the unmount is complete. The types of activity 
that must be synchronized with unmount include normal pathname 
translation, file system synchronization (which traverses the list of mounted 
file systems, writing dirty buffers to stable storage), and the VFS operation, 
VFS_FHTOVP, which translates a file handle to a vnode. The 
VFS_FHTOVP operation is logically equivalent to pathname translation, 
using a file handle instead of a pathname. 

All of the operations that are sensitive to unmount operations must hold a 
lock during critical sections of their code. This lock prevents unmount from 
causing inconsistencies. Once the unmount operation obtains the lock, 
operations such as pathname translation, which attempt to access the 
affected mount point, are blocked until the unmount has completed, either 
successfully or not. 

Note that typically, if a file system has active (referenced,) vnodes, it cannot 
be unmounted. However, certain file system types in OSF/1 can be 
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unmounted, even if they have active vnodes (for example, the file-on-file 
system). The VFS level, as well as the file systems themselves, must 
cooperate and be careful to make sure that no inconsistencies arise from this 
type of unmount. 

11.2.4.3 The Name Cache 

Pathname translation is a frequent activity. Because it involves 
successively reading directories and inodes from disk, it is quite expensive. 
Access through remote file systems, over a network, can be even more 
expensive. OSF/l minimizes the work of pathname translation by caching 
the names found by directory scans for future reference. 

OSF/l 's name cache is available to all file systems. The cache is indexed by 
a hash value on the pair vp, name, where vp is the vnode that refers to the 
directory containing name. The cache management algorithm removes the 
least recently used names to make room for new names, ensuring that 
frequently used names remain available. OSF/1 also makes a cache entry 
when a pathname cannot be translated to a vnode because the pathname 
does not correspond to an existing file. This is called negative caching. 

Name cache references to vnodes do not increment the vnodes' usage 
counters, and do not prevent the vnodes from being recycled to a different, 
underlying file system type. 

When a vnode is recycled, it is not economical to search the name cache for 
obsolete entries in order to invalidate them, because several different name 
cache entries may refer to a single vnode. Instead, the vnode gets a new, 
unique v _id field, so that future searches through the cache to the previous 
incarnation of the vnode will fail. As a result, memory allocated to a vnode 
cannot be deallocated unless a separate action is taken to ensure that all 
cache references to the vnode have been removed. 
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11.3 Vnode Management 

The vnode is the fundamental data structure of the VFS architecture. 

Each active object (directories, devices, regular files, symbolic links, FIFO 
special files, and so on) in an OSF/1 file system is represented by a unique 
vnode structure. The vnode structure is divided into two sections: 

File-system-independent 
Contains fields that are required by all objects, and that are 
used primarily by the VFS and vnode layers of the VFS 
architecture. 

File-system-dependent 
Contains information specific to a file system. This section is 
maintained by file system implementations. 

11.3.l The Contents of a Vnode 

Most vnodes are allocated and activated during pathname translation. 
Before a file system first activates an object, it must allocate a vnode with 
which to associate the file-system-dependent information. OSF/1 maintains 
a list of vnodes that are available to all file system types. Once a vnode is 
initialized to a specific file system type and is referenced, it is no longer 
available to other file systems. In addition, its type may not change, except 
under the specific conditions of forcible unmount and character device 
revocation, which are discussed in other sections of this document. 

When a vnode is no longer referenced, it is placed on a free list, making it 
available to other file systems. However, its contents remain intact, and the 
file system may reactivate it by referencing the same file again, thus 
removing the vnode from the free list. Vnodes that remain on the free list 
are eventually recycled to other uses. This mechanism allows file systems 
to cache information for frequently accessed files. 

The following list describes some of the important file-system-independent 
fields of the vnode structure. 

Flags Contains state information, such as whether the object is a root 
directory, the file locking state, and vnode transition states. 
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Reference counts 
Each vnode contains two reference counts: 

• Active references (for instance, open file references) 

• Buffer cache buffers that reference the vnode 

The first type of reference is considered "hard" and may not be 
released by the vnode architecture. It is up to the user of the 
vnode to release such references, for example, upon closing a 
file. The second type of reference is considered "soft." These 
references are primarily informative and are released when the 
buff er is flushed. 

File locking information 
A count of shared and exclusive file locks for use by flock­
style file locking. POSIX style advisory file locking and 
SVID-compatible mandatory file locking are handled 
separately, and are indicated by vnode flags fields. 

Capability identifier 
An identifier field that is reset when a vnode is recycled. A 
cache hit is not valid unless the cache entry's capability 
identifier matches that of the vnode. 

Type field Vnodes have types. The type is established upon initialization 
and cannot change during the lifetime of the vnode, except in 
the cases of forcible unmount and character device revocation. 
The following types are used by the OSF/1 VFS: 

VNON 

VREG 

VDIR -

VBLK 

VCHR 

An allocated but still untyped vnode 

A vnode representing a regular file 

A directory vnode 

A block device vnode 

A character device vnode 



VLNK 

VFIFO 

VSOCK 

VBAD 
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A symbolic link vnode 

A FIFO special file vnode 

A vnode representing a UNIX domain socket 

An invalid vnode 

Vnodes of any type, including VBAD, may be referenced or 
free. The vnode operations vector of a vnode of type VBAD 
contains functions that return errors. 

Operations vector 
A pointer to a vector of vnode operations. This vector is 
specific to the file system and vnode type of the vnode. 

Mount structure pointer 
A pointer to a mount structure. A valid vnode typically points 
to the mount structure of the file system containing the object 
that it represents. Invalid vnodes (of type VBAD) always 
point to a default mount structure, called the DEADMOUNT. 
The DEADMOUNT structure is used as a placeholder, and 
has VFS operations that return errors. The mount pointer in 
the vnode is set up when the vnode is allocated and initialized 
by a file system type. 

Various lists Lists that contain the vnode as an element. Every vnode is on 
a number of lists at any given time, including the following: 

Vnode free list 
If a vnode's reference count is zero, it is on the 
vnode free list; if its count is non-zero, it is not. 

Mount vnode list 
If a vnode is active on a specific file system, it is 
also on the list of active vnodes for that file 
system. 

Offset of last read 

Buffer cache 

The current byte index into a file being read. 

Lists of buffers that reference the vnode of the object for 
which they contain data. The vnode also references the 
buffers. There are two lists of buffers for each vnode: clean 
and dirty. These lists are traversed by operations such as 
sync(), fsync( ), and umount( ). 
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Reader and writer counts 
Some operations and FIFO special files require reader and 
writer counts for an object. These counts are kept in the 
vnode. They are incremented on opening and decremented on 
closing, as appropriate. 

Virtual memory private information 
A vnode may be mapped, by either mmap() or exec(), or it 
may represent a paging file. If a vnode interacts with the VM 
system, it contains a valid pointer to a VM data structure. 

Union of pointers 
A union of pointers that are conditional upon type and state of 
the vnode. If the vnode is a special file, the union is a pointer 
to a struct specinfo. If the vnode represents a UNIX domain 
socket, the union points to a struct socket. If the vnode has a 
file system mounted over it, then the union is a pointer to the 
mount structure of the covering file system. 

File system private data 

Various locks 

Space available to file systems for their private use. While 
this space is currently allocated in the vnode structure, file 
system implementations should make no assumptions that the 
data is contiguous, and should properly abstract the translation 
between the vnode and the file system node (for example, the 
UFS inode). 

The vnode contains locks to protect its own contents and lists. 

11.3.2 The Free List and Cache 
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The vnode architecture allows inactive vnodes (those having a reference 
count of 0 (zero)) to be valid, that is, initialized. It also allows them to 
contain cached information, in the form of file system private data and 
buffer cache buffers. Because recreating a vnode can be an expensive 
operation, it is preferable not to destroy old vnodes if they might be reused. 
This caching mechanism is implemented as part of vnode management in 
OSF/1. 
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The vnode free list is more than simply a list of available vnodes. It is 
managed as a least recently used (LRU) list of inactive vnodes. When a 
new vnode is required, it is removed from the front of the free list by the 
function getnewvnode(). When a vnode's reference count goes to 0 (zero), 
as detected in the function vrele( ), it is placed on the end of the free list. 
This way, a vnode will remain on the free list for some period of time before 
being recycled. Recycling destroys any cached information present, and 
breaks the vnode's association with a file system. 

11.3.3 The Life Cycle of a Vnode 

The following discussion outlines the life cycle of a typical vnode in OSF/l, 
starting with its allocation, and ending with its recycling to a new type. 
Figure 11-6 illustrates some of the structures involved. 
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Figure 11-6. Example of Data Structures for a Mounted File System 
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Vnodes are typically allocated when a file system calls the function 
getnewvnode() during pathname translation. Upon allocation the vnode is 
removed from the free list and appropriate fields are initialized. The 
reference count is set to 1 (one). The appropriate operations vector is passed 
as a parameter to getnewvnode( ). At this time, the vnode appears on no 
lists; although it may be referenced by the name cache, the cache reference 
is invalid because the capability identifiers no longer match. 

At this point, the file system implementation initializes its private data in 
the vnode, typically by reading an on-disk or remote data structure, such as 
an inode or nfsnode. The file system is also responsible for initializing 
several other fields of the vnode. It must initialize the type of the vnode, 
and add the vnode to the list of vnodes valid on a mounted file system. If the 
file being accessed is a device special file, then the file system must call a 
function to initialize device-speci fie information. If the file is of a type 
other than VREG, VDIR, or VLNK, the operations vector may also need to 
be changed. 

Most file systems cache their nodes (inodes, for instance) for quick access. 
This is also done at vnode initialization time. If the initialization is on 
behalf of pathname translation, then the referenced vnode is returned. At 
this time, the vnode may be on the valid vnode list for the mount point, the 
list of valid nodes for the file system type, or both. 

The vnode is then available for accessing the object it represents. If the file 
is open for reading and/or writing, the vnode is of the appropriate type, and 
the file system implementation takes advantage of the buffer cache, then the 
data read or written may be cached, adding buffers to the lists of clean and 
dirty buffers associated with the vnode. Dirty buffers are flushed and put on 
the clean list during sync() operations. 

When the final reference on a vnode is released, for example, by a close() 
operation, the vnode is placed on the vnode free list. Before the vnode is put 
on the free list, the file system implementation is given an opportunity to 
perform its own inactivation through its vn _inactive() function. A typical 
vn _inactive() function performs functions such as deallocating resources 
associated with the file if it has been removed. 

Once the vnode is on the free list, it is available for recycling, but it may 
still be reactivated from the free list any time before it is recycled. For 
example, if its name is translated again, the file system may get a cache hit 
and call the function vget( ), which simply reactivates the vnode, removing 
it from the free list. When a vnode has been recycled, there are no 
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references to it other than a potential soft reference from the name cache, 
and it may safely be reallocated to another file system or type. 

Any of several operations may cause invalidation of the vnode. Among 
these are forcible unmount, character device revocation, and vnode 
recycling. When a vnode is invalidated, as during recycling, it must first be 
cleaned. Cleaning involves removing it from any lists it may be on and 
flushing any cached information. Because some of the information may be 
file-system-specific, the file system's vn _reclaim() operation is called. A 
typical vn _reclaim() operation removes a vnode from its hash chains, and 
disassociates the file-system-dependent data from the vnode. 

11.3.4 File Locking 

OSF/l supports two different styles of file locking-POSIX file and record 
locking, and the Berkeley flock-style file locking. Because some file 
systems may require some interaction when a file is locked, the POSIX file 
locking is implemented below the vnode layer, adding a vnode operation to 
the vector. The vnode layer provides file-system-independent functions that 
may be called to lock and unlock files. 

11.3.5 Special Files 
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The OSF/l VFS architecture provides file-system-independent operations 
for FIFO and device special files. A file system implementation may choose 
to support or not support special files. A file system supports special files by 
calling vnode operations specific to special files. These operations are 
exported by the vnode layer. If a file system supports special files, some 
intervention on the part of the specific file system may be necessary. An 
example is updating the modification times on inodes. POSIX specifies that 
file modification times must be updated on writes. As a result, the file 
system may need to intercept the vn _write() operation, mark its node for 
update, and then call the file-system-independent operation. A file system 
must attach the appropriate vnode operations vector at the time the vnode 
for a special file type is initialized. 
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11.3.5.1 Device Special Files 

Block and character special files in OSF/l are managed by a set of device­
speci fic operations. In OSF/l, as in most UNIX systems, there may be more 
than one device file referencing the same physical device. Device 
semantics require that all references to a specific device be associated, even 
if they originated with different files, and therefore different vnodes. This is 
true for both block and character special files. 

When a vnode is initialized for a device special file, the file system 
initialization operation must call the function specalloc( ), which allocates 
and initializes a device-speci fie data structure, specinfo, that is attached to 
the vnode. It is at this time that the file system attaches the vnode operation 
vector for dealing with special files. When the vnode is subsequently 
opened by a call to the special file open operation, it is then associated with 
all other vnodes that reference the same physical device. The members of 
such a set of associated vnodes are called aliases. If a file system chooses to 
bypass the special-file open operation provided, it must perform its own 
association. 

Character devices must be associated because it is necessary at times to 
forcibly revoke access to a character device, such as a tty. This is done by 
invalidating all vnodes associated with that device, causing further 
references to return errors. Subsequent translations of the same name result 
in the allocation of new, valid vnodes. 

Vnodes that reference the same block device are associated for buffer cache 
consistency. Read and write operations on block devices use the buffer 
cache, and buffers are cached based on pairs of vnode, offset. If more than 
one vnode (that is, more than one file) were used to access the same block 
device, the same physical block could exist in two different cache entries, 
causing inconsistency. 

Mounted local file systems use a block device for accessing file system 
metadata, such as inodes. For this reason OSF/l does not allow the block 
device of a mounted file system to be opened, or a file system that has an 
open block device to be mounted. Buffer cache consistency between 
multiple instances of a block device is maintained by associating all related 
vnodes with a shadow vnode, which is used for all buffer cache activity. As 
a result, all buffers are associated with this shadow vnode, rather than any of 
the actual vnodes representing the device files. Figure 11-7 shows these 
data structures as used for special files. 
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Figure 11-7. Device Special Files Data Structure 
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Devices are hashed by device number ( dev _ t) into a list of pointers to 
specalias structures. There is exactly one specalias structure allocated per 
open device. The specalias structure contains a list of all vnodes that 
represent its device. Since the same dev _ t may represent both a block and a 
character device, the specalias structure is typed either as block (VBLK) or 
as character (VCHR). 
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11.3 .5 .2 Clone Devices 

OSF/I supports the notion of a cloned character device. A clone is a new 
instance of a character device, which is not necessarily associated with a 
particular file in the file system tree. Any character device driver may be 
selected to be clonable. When clonable devices are opened, they cause the 
allocation of a new, unique device number (dev _t), which is not associated 
with that of the original file. This also results in a new vnode, which is also 
unrelated to the vnode representing the file used for the initial open call. 

The cloning mechanism is useful for drivers that need to create a new 
instance of a device on each open, and to avoid the necessity of creating a 
multitude of unique device special files in a file system. 

Cloned vnodes are not associated with any specific file system. Because 
they represent devices and not files, they have no need for the association. 
However, certain operations are required to take place, such as the updating 
of modification times and the correct operation of system calls such as 
fstat( ). As a result, cloned vnodes have their own vnoqe operations vector, 
which implements the required semantics. 

11.3.6 The Buffer Cache 

The buffer cache increases file system performance by storing copies of file 
system data in memory. The relationship between the vnode and buffer 
cache is illustrated in Figure 11-6 and Figure 11-8. 

The OSF/1 buffer cache implementation differs from older UNIX systems in 
that the OSF/1 buffer cache is accessed by vnode, logical block number 
pairs, rather than by device, physical block number. Buffers are tagged with 
the vnode representing the object whose data they contain. Buffers 
containing data that is not associated with any particular object (for 
instance, file system data structures such as inode data, or an indirect block) 
are tagged with the vnode of the block device of the file system. This is not 
applicable to file systems with no local storage, such as NFS. 
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11.3 .6.1 The Buffer Header 

The buffer cache is organized as a series of hash chains that point to lists of 
buffers. All buffers not currently in use are linked together on a free list. 
Buffers also reside on clean and dirty lists headed by the vnode representing 
the file that contains the data in the buffer. The buffer cache hash chain 
header includes: 

• Flags matching those of the buffer structure 

• Forward and backward chain pointers 

• A lock and timestamp for multiprocessor synchronization 

The contents of each buffer and the data to which it refers are guarded by a 
mutual exclusion lock. The buffer lock preserves the semantics of the 
original uniprocessor buffer cache implementation by permitting only one 
thread at a time to use the buffer. 

The lock and timestamp contained in the buffer cache hash chain header are 
used for synchronizing access to the hash chain, and for dealing with 
simultaneous attempts to allocate a buffer representing the same file data 
block. 

11.3.6.2 The Buffer Free List 

The buffer free list is an array of buffer header structures used as headers for 
the free list chains. There are several elements in the free list array: 

• An LRU chain of useful buffers (as proven by their access patterns) 

• A list of buffers that have not yet proved useful (aged) 

• A list of empty buffers 

• A list of locked buffers 



File Management 

The LRU list is a strict LRU chain of buffers containing valid data. The 
second, or aged, list contains buffers that contain valid data, but have not yet 
been accessed, and therefore have yet to prove their usefulness. This list 
contains buffers, for example, with read-ahead data. The empty list contains 
buffers that have been returned to the pool, but have no associated memory. 
OSF/l does not currently use the locked list. 

11.3.6.3 The Buffer Structure 

The buffer structure itself includes 

• Flags. 

• Hash chain pointers. 

• Free list pointers. 

• Vnode buffer list pointers. 

• The block transfer count. 

• The buffer size. 

• A union containing the address of the pages containing the buffer data. 
This may be strictly file data, or it could be file system data, such as a 
superblock, cylinder group, inode list, or indirect block. 

• The logical block number. 

• The physical block number. 

• The buffer's dirty region. 

• A pointer to the vnode representing the file or file system with which the 
data is associated, along with references to read and write credentials. 
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Figure 11-8. Buffer Cache and Vnode Data Structure Interaction 

Vnode Buffer 
Hash 

Buffer 

Buffer 
Hash 

Buffer 
Freelist 

11.4 The File System Layer 

This section describes each of the several file systems that are provided with 
OSF/l, the derivation of each, and the changes made for operation in the 
OSF/l VFS architecture. 

11.4.1 NFS 
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The NFS implementation in OSF/l is derived from the implementation of 
NFS in the 4.3BSD Reno release, which is derived from code contributed by 
the University of Guelph, Ontario, Canada. The NFS implementation is 
based on NFS protocol version 2. It does not include the extended mount 
protocol. It also does not contain any code to deal with file locking, such as 
a lock daemon. The major changes in the OSF/1 implementation are for 
parallelization of the code to enable it to operate efficiently on 
multiprocessor systems. Additional changes are for conforming to the 
OSF/l VFS architecture. 
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11.4.1.1 Client Parallelization 

NFS is a stateless protocol, making it relatively simple to parallelize. The 
implementation makes few assumptions about state, which can complicate 
parallel operation. The buffer cache synchronization effectively parallelizes 
all file data access. Other information stored by the NFS client, which may 
be shared by multiple threads, includes cached attributes and network 
connection state. The parallelization of the networking framework in OSF/l 
provides most of the synchronization required by the network transport 
portion of NFS. OSF/l provides mechanisms that synchronize access to 
other shared information in the NFS client, such as hash chains of NFS 
nodes and NFS nodes themselves. 

Although the buffer cache synchronization is sufficient to provide the 
semantics guaranteed by the NFS protocol, most UNIX applications are 
accustomed to reading and writing operations that work atomically. This 
means that multiple read and/or write operations initiated on the same 
section of a file should not be interleaved below the level of the system call 
interface. This guarantee cannot be made in NFS, since multiple client 
systems may be accessing the same file, and large read and write operations 
may be fragmented when the NFS is involved. OSF/1 attempts to provide 
some atomicity by guaranteeing read and write synchronization between 
requests initiated from the same client. This is achieved with a lock on the 
NFS node representing a remote file in the client. 

11.4.1.2 Server Parallelization 

Parallelization of the NFS server is limited primarily to synchronizing the 
access to data structures shared between multiple server processes. The 
networking parallelization provides synchronization between requests 
received by the NFS server processes. It also provides the synchronization 
of sending reply messages. Once a request is received by a server process, it 
services the request in a way that interacts scarcely with other servers. 
Servicing a request involves calls to the local file system through the VFS 
and vnode interfaces, which provide their own parallelization guarantees. 
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11.4.1.3 VFS and Vnode Interface Changes 

The absence of a vnode-level lock in OSF/1 has little effect on the NFS 
implementation, and removing the lock operations resulted in little code 
change. The lock on the NFS node suffices as a substitute. 

11.4.1.4 Dynamic Configuration Changes 

In OSF/l, NFS is dynamically configurable. The configuration manager 
daemon calls the nfs _configure( ) routine, which calls vfssw _add() to 
register the NFS VFS operations vector in the virtual file system switch 
(vfssw). NFS also dynamically adds two system calls to OSF/1 by calling 
syscall_add(). The added calls are async_daemon() and nfssvc(). 

Dynamic unconfiguration removes the operations vector from the vfssw by 
calling vfssw _ del( ). 

11.4.2 UFS 
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The UFS implementation in OSF/1 is derived from the 4.3BSD Reno 
release. The physical file system is that of 4.3BSD Tahoe, which is changed 
from the traditional 4.2BSD file system, but is compatible; this means that 
the OSF/1 UFS understands both the 4.2 and 4.3 Tahoe physical file systems. 
The major differences between the Reno implementation of UFS and the 
OSF/1 UFS relate to parallelization and changes to the vnode interface 
itself, for example, elimination of the lock and unlock vnode operations. 

This section describes the implementation of UFS in OSF/l in terms of 
differences from its origin-the Berkeley implementation. It is not intended 
to be a tutorial on UFS. 
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11.4.2.1 Parallelization 

UFS in OSF/1 is fully parallel. This means that multiple threads can 
correctly execute UFS code simultaneously. Parallelization of UFS 
involves synchronizing access to all shared data and data structures in UFS. 
The data structures involved are 

• Superblock 

• Cylinder groups 

• Mount structures 

• !nodes (in-core, and as on-disk structures) 

• Inode hash chains 

• File and directory data 

• Quota data structures 

Synchronization of the superblock is achieved in two ways. First, the 
superblock is read from the block device into a locked buffer cache buffer. 
It is then copied to an in-memory data structure, which is guarded by a lock. 
Virtually all references to the superblock (other than updates) use the in­
memory version. 

In UFS, cylinder group information is file system metadata accessed by 
reading blocks from the block device representing the mounted file system. 
Because access to these blocks is through the buffer cache, the buffer cache 
synchronization is sufficient to provide mutually exclusive access to these 
data structures. 

UPS-specific mount structures are accessed under the control of a lock 
protecting their contents. 

!nodes have two parts, the on-disk data structure, or dinode, and the in­
memory structure, or inode. The inode in memory contains a copy of its 
associated dinode. When din odes are read into memory, they are accessed 
through the buffer cache, and thereby locked. They are then copied into the 
in-memory inode, whose content is guarded by a lock. All future access to 
the inode is protected by this simple lock. Updates to on-disk inodes are 
protected by both this lock and the buffer cache synchronization. UFS 
inodes are kept on hash chains for both caching and fast lookup. The hash 
chain data structures are protected with simple locks, one per hash bucket, 
which are taken when the chains are being examined. 
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Access to file data associated with an inode is synchronized with a lock 
contained in the inode. This lock is taken for reading when the data is being 
read. The lock is taken for writing when the data is being modified, for 
example, by a write or truncate operation. This lock also protects the size 
field of the inode. Although the synchronization on the buffer cache data is 
sufficient for file data, atomicity of reads and writes can be guaranteed only 
if the inode is locked while its data is being modified. 

The UPS quota implementation in OSP/l is also parallelized. There are two 
locks protecting quota data structures. 

11.4.2.2 VFS and Vnode Interface Changes 

Because there is no vnode level lock, UPS must perform its own locking in 
cases where the Reno code assumes the vnode is locked. The inode lock is 
sufficient for this use. The greatest effect of the absence of vnode lock and 
unlock operations is in file creation, deletion, and renaming. In the previous 
model, directory information was locked for extended periods of time, 
allowing the file system implementation to make assumptions about the 
state of the directory across multiple vnode operations, such as lookup() 
and create(). In OSP/l, no such guarantees are possible. Instead, the file 
system must detect changes in state and act accordingly. 

An example is file creation. When performing pathname translation, the 
UPS lookup operation caches information about holes in directories where 
new directory entries may be created. This information is then used by the 
create operation to write the new entry. The caching allows UPS to skip an 
extra, expensive directory scan operation. In 4.3BSD Reno, the directory 
vnode is locked between the lookup and the create, guaranteeing the 
consistency of the cached information. In OSP/1, the directory is not 
locked. In order to avoid the extra lookup operation, UPS must detect 
changes in the directory between the lookup and the create operations, by 
examining a timestamp in the directory's vnode. If it has changed, then the 
expense of the extra lookup must be incurred. If it has not changed, then the 
cached information is valid and may be used. 
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11.4.2.3 Fast Symbolic Links 

A symbolic link in BSD systems is created by writing a pathname into the 
data blocks of a file and marking the file type as VLNK. This type is 
interpreted by the pathname translation mechanism, and the data is read into 
the translation buffer as part of the pathname. Reading a traditional 
symbolic link may require two disk operations, one to read the inode of the 
symbolic link and one to read the file data. 

OSF/l UFS contains an optimization for symbolic links that can reduce this 
1/0 burden. If the data for a symbolic link is less than the amount of space 
used by the disk block addresses in a UFS inode, then the data is written 
directly into the inode (on-disk). A symbolic link of this type is marked by 
modifying the flags field (previously unused) to indicate a fast symbolic 
link. When such a symbolic link is used, there is no need to read any data 
blocks; the data is in the inode. This mechanism is implemented entirely in 
UFS and has no effect on the VFS or other file systems. 

11.4.3 The System V File System 

The System V File System in OSF/1 is derived from System V, Release 2. 
The VFS and vnode operations are derived from the OSF/l UFS 
implementation, based on 4.3BSD Reno UFS. 

This section provides an overview of the implementation of the System V 
File System (SysV FS) in OSF/1. It concentrates on implementation issues 
encountered which are specific to OSF/1, and does not cover SysV FS 
internals. 

The SysV FS can be exported by NFS servers to be mounted over the 
network. OSF/l supports paging to and from a System V File System. The 
System V File System has been enhanced to support BSD-style symbolic 
links. 
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11.4.3.1 SysV FS Funneling 

SysV FS in OSF/1 is not parallelized. This means that it provides no 
multiprocessor synchronization and does not protect its data structures. As 
a result, on a multiprocessor system, all SysV FS operations must take place 
on a single processor, designated as the master processor, or unix_master. 
OSF/l is designed to be highly parallel in a multiprocessor environment. 
However, for compatibility, it includes mechanisms for integrating 
subsystems that cannot operate correctly in a multiprocessing environment. 

OSF/l VFS and vnode architecture provides well-defined entry points into 
file system implementations through the VFS operations and vnode 
operations. The funneling mechanism of the VFS architecture allows a 
subsystem to be automatically funneled onto the unix _master processor 
when one of its entry points is called. The SysV FS in OSF/1 is such a 
subsystem. Because of the automatic funneling, the SysV FS 
implementation can operate as if it were on a uniprocessor system. See 
Chapter 12 for more information about funneling. 

11.4.3.2 VFS and Vnode Implementation of SysV FS 

The implementation of SysV FS in the OSF/1 VFS architecture leverages 
heavily upon the UFS implementation. Many of the vnode and VFS 
operations are quite similar. The differences are in the handling of on-disk 
data structures, and these operations are fairly well isolated inside the SysV 
FS implementation. One major area of integration is the locking of SysV FS 
inodes in the absence of vnode lock and unlock operations. 

Several extensions to the SysV FS are included in the OSF/1 
implementation. Among these are support for symbolic links, support for 
the rename() operation, and partial support for truncate() and ftruncate( ). 
It is also possible to map a SysV FS file using mmap( ), and to page to and 
from a SysV FS file. 
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11.4.3.3 Inode Locking 

SysV FS is not parallelized like UFS, but it is implemented in the OSF/l 
VFS and vnode architecture, which has no vnode locking operations. 
Because SysV FS is guaranteed to run on a single processor, there are no 
synchronization problems unless it sleeps, as it does when performing disk 
1/0. As a result, the only special locking SysV FS requires is inode locking 
when it performs reads, writes, or other operations that affect the file data. 
Access to file system metadata is provided, as it is in UFS, by the buffer 
cache synchronization. 

SysV FS also has the same issue as UFS with regard to directory locking 
between the lookup and create operations. SysV FS in OSF/1 implements 
the same algorithm as UFS for this situation; it detects changes to the 
directory and performs an extra lookup if the directory has been modified 
between the initial lookup and the create operation. 

11.4.3.4 SysV FS Extensions 

The OSF/1 implementation of SysV FS allows creating and reading 
symbolic links. However, it does not implement fast symbolic links, as UFS 
does in OSF/1. 

SysV FS supports the atomic renaming of files, a feature not present in the 
System V, Release 2 source. The implementation is based on that of UFS. 

The truncate( ) and ftruncate( ) operations are not present in System V, 
Release 2. These operations have been added to SysV FS in OSF/1. In 
OSF/1, it is not possible to truncate a SysV FS file to any length smaller than 
its current size, other than zero. It is possible, however, to truncate a file to 
a size larger than its current size. 

In order to support the execution of binaries stored on a SysV FS, the OSF/l 
SysV FS supports file mapping. This allows demand-paged executables to 
operate correctly. It also permits SysV FS files to be used by the mmap() 
operation, and to be used by the VM system as paging files. 

11-37 



Design of the OSF/1 Operating System 

The System V, Release 2 implementation of the SysV FS permits 
configuration of file systems with a logical block size of 512 bytes or 1024 
bytes. The OSF/l SysV FS additionally allows a logical block size of 2048 
bytes. 

The OSF/l SysV FS returns ENAMETOOLONG instead of truncating a 
filename, and uses the POSIX semantics for setting the GID by using the 
creator's GID, not that of the parent directory. 

In OSF/l, it is not possible to use a SysV FS as the root file system. 

11.4.3.5 Dynamic Configuration Changes 

In OSF/l, SysV FS is dynamically configurable. The configuration manager 
daemon calls the sysv _ fs _configure() routine, which calls vfssw _add() to 
register the SysV FS's VFS operations vector in the virtual file system 
switch (vfssw). 

Dynamic unconfiguration removes the operations vector from the vfssw by 
calling vfssw _ del( ). 

11.4.4 File System Security Extensions 
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OSF/l supports a variety of file system security extensions, which are 
selected at compilation. Chapter 15 describes the security conditionals and 
the features they enable in detail. 

11.4.4.1 Tagged and Untagged UFS File Systems 

OSF/1 security configurations support two UFS file system formats: one 
that has been extended to include extra security attributes, and another that 
is intended to provide backward compatibility with existing file systems at 
the expense of some flexibility with respect to security attributes. 
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In order to take advantage of security features such as access control lists, 
file-based privileges, and mandatory access control, additional information 
must be included in the inode of each file. Because the traditional UNIX 
inode structure has only a limited amount of space reserved for expansion, 
the OSF/l inode structure was extended to hold these additional file 
attributes. 

File systems whose inodes include these extra fields are called extended 
format file systems (also known as tagged file systems). All of the 
additional fields are allocated, even though all may not be used in a given 
configuration. In cases where backward compatibility is more important 
than extra security, such as when importing file systems from another 
machine, it may be desirable to mount file systems that are in the more 
traditional OSF/l file system format, known as the unextended format. This 
file system format is sometimes also referred to as an untagged file system. 

Because the added inode fields do not exist on unextended file systems, it is 
impossible to set some security attributes on a per-file basis if the file 
resides on an unextended file system. However, the mount() command 
options can be used to specify some attributes that apply to all files on a 
given file system. When traditional format file systems are mounted, the 
attributes associated with all files in that system are stored in the mount 
table. 

11.4.4.2 Extra Privilege Checking 

Privileges control access to operating system functions by the programs that 
run in processes. The trusted kernel defines discrete privileges to protect 
functions that are reserved for the superuser in a traditional UNIX kernel. 
Trust is assigned to application programs through the contents of the two 
privilege sets associated with executable files. 

Potential set The set of privileges that a program is trusted to raise 

Granted set The set of privileges placed into a process's effective set when 
it executes the file as a program 

Programs can also be designated as trusted by making them SUID to root 
and placing the sucompat privilege in the program's potential and granted 
privilege sets. 
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The privilege mechanism is defined to separate the root power into specific 
rights that can be individually raised and lowered to enable a privilege only 
for the duration of the operation for which the power is required. 

Privilege sets on files appear in the on-disk and in-core inode data 
structures. Because privilege sets are only relevant on files that can be run 
as programs, privilege sets on other objects are not implemented. 

11.4.4.3 Vnode Additions 

The file-system-independent data structure for a file stores a separate 
operations vector that points to a set of operations for setting and retrieving 
attributes on extended format file systems. If the system supports mandatory 
access control, the file-system-independent file data structure also stores a 
flag to indicate whether the file is a multilevel parent directory. 

11.4.4.4 Multilevel Directories 

A multilevel directory has separate child directories for each sens1tlv1ty 
level, and is used to implement directories that must be accessible to 
processes at more than one sensitivity level. When an unprivileged process 
references a multilevel directory, it is automatically diverted into the child 
directory corresponding to the process's sensitivity level. 

11.4.4.5 Superblock Changes 

The on-disk superblock for extended format file systems stores a magic 
number that is different from the one traditionally associated with the 
specified file system type. The nonstandard magic number indicates to 
unmodified software that the underlying file system cannot be manipulated 
by software not prepared to deal with the changed format. 

Each of these file system security extensions is described in detail in 
Chapter 15. 



Chapter 12 

Sockets 

The OSF/1 operating system provides sockets as an interface to local and 
network communications. A socket is a communications endpoint. In user 
space, a socket is represented by a file descriptor, and in kernel space it is 
represented by a socket data structure. The discussion in this chapter is 
from the perspective of the kernel, and concentrates on the implementation 
of the sockets framework. It does not discuss the design of sockets or of 
network protocols in any detail because this material is widely available 
elsewhere. Instead, the text focusses on the way these elements are 
integrated into the OSF/l framework. An extensive discussion of sockets 
can be found in The Design and Implementation of the 4.3BSD UNIX 
Operating System 1. 

1. Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman, The Design 
and Implementation of"the 4.3BSD UNIX Operating System. Reading, Massachusetts: Addison-Wesley 
Publishing Co., 1989. 
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12.1 The Socket Framework 

The socket architecture provides a framework in which different 
communications protocols can be installed and accessed in a consistent 
manner. At the user level, the framework appears as the socket interface. 
Within the kernel, it provides a method of memory management and 
scheduling of protocol processing for network packets. The ability to install 
and initialize pnAocols into the kernel dynamically is an integral part of the 
OSF/l framework's design. 

The OSF/1 framework is fully parallelized for multiprocessor systems and 
can incorporate both parallelized and nonparallelized protocols. The OSF/1 
operating system provides two fully parallelized domain families: Internet 
(TCP/IP) and UNIX IPC. 

12.2 The Socket Programming Interface 
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Some of the system calls for manipulating sockets are 

socket( ) Creates a socket 

bind() Binds a name to a socket 

connect( ) Connects two sockets 

listen() Listens for socket connections 

accept( ) Accepts a new connection on a socket 

read() Reads data and information to a socket 

write() Writes data and status and control information from a socket 

ioctl() Controls a socket 

close() Closes a socket 

Information about these system calls can be found in the OSFI 1 
Programmer's Reference. 
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12.3 Domains and Protocols 

The sockets framework must incorporate protocols from distinct domains in 
a consistent way. To do so, the framework must solve two problems: 

• It must provide a consistent interface for making processing requests of 
protocols. 

• On multiprocessor machines, it must provide a means for serializing 
access to nonparallelized protocols. 

Because the kernel permits dynamic addition of protocol code, the 
framework must also be able to allocate and initialize all of the relevant 
data structures dynamically. 

The domain and protosw data structures are designed to address these 
issues. The domain structure maintains per-domain data and a set of 
pointers to domain specific functions. The protosw structure functions as a 
switch that provides a standard interface for socket-to-protocol and 
protocol-to-protocol service requests. Both structures are similar to the 
equivalent 4.3BSD structures, but the domain structure has added fields for 
parallelization. 

12.3.l Domain Overview 

To manage domains and protocols, the kernel maintains a linked list of 
domain structures. Domains can be added and removed from the list 
dynamically. 

Each domain structure references an array of protosw structures. Each 
protosw structure in the array corresponds to a protocol in the domain's 
protocol family. The dom_protoswNPROTOSW element indicates the 
end of the domain's protosw array and can be used as a reference for 
operations that need to know how long the protosw array is. 
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12.3.2 The domain Structure 

The kernel allocates a domain structure for each domain or protocol family 
available for communication. Figure 12-1 shows the domain structure and 
an example of domain structures linked into a list. 

Figure 12-1. The domain Structure 
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The domain structure contains the following fields: 

dom _family Protocol family identifier. 

~ 

dom name Pointer to the ASCII name of the domain. 

dom init A domain initialization function. 

dom _protosw 

• 

• 

• 

dom_protosw 

dom_next 

• 

• 

• 

protosw 

protosw 

Pointer to an array of protocol switches for the protocols in 
this domain. The dom_protoswNPROTOSW indicates the 
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end of the protocol switch array and is used by operations that 
must know the size of the array. 

dom next Pointer to the next domain structure in the list of domains. 

dom refcnt A count of sockets and interrupt service routines (ISRs) in this 
domain. 

dom re lock 
A simple lock for dom _refcnt. 

dom funnel and dom funfrc 
Functions used to serialize nonparallel protocols on 
multiprocessor systems. 

12.3.3 Adding and Deleting Protocols 

The OSF/l operating system permits protocols to be added and removed 
dynamically. 

The domain_add() function adds protocol families to the kernel's list of 
domains. The function is called with a pointer to the domain structure to be 
added to the list. The domain_ add() function first checks to see whether 
the domain is already on the list. If the domain is found, domain_ add 
returns an error. If not, domain_ add adds the domain structure to the head 
of the domain list. 

Next, domain_ add() initializes the domain and its protocols. It calls the 
domain initialization routine pointed to by the domain's dom _init element, 
and calls the protocol initialization routine pointed to by the pr _init 
element of each protocol switch in the domain's protosw array. It uses the 
dom _protoswNPROTOSW pointer to find the end of the array. 

Each time a socket is created in a domain, or a new connection is accepted 
on an existing socket, the domain's dom_refcnt is incremented. Adding an 
interrupt service routine for the domain also increments the reference count. 
The domain_ delete() function deletes domains. This function checks 
dom _refcnt, returning an error if the domain is still in use by a socket or has 
an ISR installed. 
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12.4 The socket Data Structure 

Within the kernel, sockets are referred to through the socket data structure. 

The socket data structure is shown in Figure 12-2. 

Figure 12-2. The socket Data Structure 
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The socket structure includes the following fields: 

so_type Holds the socket's type; for example, SOCK_STREAM, 
SOCK DGRAM. 

so_ options Holds a flag that indicates options speci tied by the 
setsockopt() system call. 

so state 

so_pcb 

so_proto 

so lock 

Holds a flag that indicates the socket's state. 

Points to a protocol control block for this socket. 

Points to the protocol switch for the protocol used by this 
socket. The protocol switch, in turn, points to the domain. 

Points to the locking structure used to serialize access to the 
socket buffers. 

It also includes several fields used for connection queuing: 

so head Points to the socket that accepted the connection for this 
socket. 

so_qO and so_q 

so_dq 

Anchor queues of partial connections and connections ready to 
be accepted. The socket also includes counts of queue 
members and a so_qlimit, the maximum number of 
connections that may be queued at a socket. 

A queue of connections that need to be freed. This field is 
used for shutting down a socket that is accepting connections 
on a multiprocessor system. The queue enforces orderly 
cleanup of connections in order to avoid violation of the lock 
hierarchy when multiple threads are aborting and freeing 
connections. 

so_ special Holds a set of special state bits. These include a bit to indicate 
whether the socket is in a parallelized domain and thus 
lockable (SP_ LOCKABLE) and a bit to indicate that the 
socket should be freed when unlocked (SP _FREEABLE). 

The two sockbuf structures, so_rcv and so_snd, are used to queue incoming 
and outgoing mbufs at the socket. Section 12.7 discusses mbufs. Each 
sockbuf contains the following fields: 

sb cc A count of bytes in the buffer. 
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sb hiwat and sb lowat 
The high and low water marks for the buffer. sb _ hiwat gives 
the maximum allowable size of the queue. Threads blocked 
waiting for space in the queue are awakened when the size 
drops below sb _lowat. 

sb mb Anchors the chain of mbufs queued at the buffer. 

sb select A queue of threads selecting on this socket. This field is used 
by the OSF/1 select implementation. When an event occurs, 
the select event for the threads on the queue is posted, 
notifying the threads. 

sb _wakeup Points to an alternate wakeup routine. The routine is called 
with an argument that holds new socket state and the 
arguments pointed to by sb _ wakearg. XTI uses this to invoke 
qenable() for queue enabling; for example, when an XTI 
socket wakes up. The NFS socket code also uses this field. 

sb _ wakearg An argument to be passed to an alternate wakeup routine. 

sb lock A lock that is not currently used, but which may be used in the 
future to implement a finer granularity of locking for socket 
buffers on multiprocessor systems. 

12.5 Scheduling Network Activity 
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The sockets framework is usually configured to handle network processing 
requests with a set of interrupt service routine (ISR) threads. Despite their 
name, and even though they act in the service of a hardware interrupt, these 
threads do not run at a hardware interrupt level, or even at a software 
interrupt level. The thread package minimizes the amount of processing 
that is actually done in interrupt context. The network interface schedules 
the processing request from interrupt context, but the actual request 
processing is done in the context of an ISR thread. 

The framework can also be configured to handle packets in software 
interrupt context. However, because the socket lock cannot be taken in 
interrupt context, the uniprocessor configuration must be used. This also 
means that certain memory and mbuf allocations may not be allowed to 
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block, making them less reliable. The performance of the system configured 
with software interrupts is comparable to one with threads. 

12.5.1 Event Management 

Protocols and frameworks register events by calling the netisr_add() 
routine. Examples of events are packets received, regular timers, such as 
the protocol fast and slow timeouts, and events requiring deferred execution, 
such as freeing of memory. 

The routine that calls netisr _add() selects a manifest constant to describe 
the event, which will be used by schednetisr() to schedule processing when 
the event occurs. This constant may be specified for "well-known" events, 
or it may be dynamically selected by netisr _add() for use on a subsystem 
internal basis. The only requirement is that the constant be known to the 
source of the event. 

When the event occurs, the schednetisr() macro is invoked. It may be 
called from timeout(), from a network event, such as a packet being 
received, or from the kernel; for example, when a request is made to free 
memory. 

The call to schednetisr() is implemented as a macro. It increments the 
pending element of the protocol's netisr and then wakes up an ISR thread 
waiting on the netisr _thread event. The woken-up thread eventually runs, 
calls Netintr( ), and then blocks to await further network requests. (In a 
kernel configured to handle events in software interrupt context, 
schednetisr() schedules a software interrupt instead of waking up a thread. 
Netintr() handles the interrupt.) 

Netintr() finds netisr structures with pending requests (pending > 0). 
When it finds one, it increments the active member and sets the pending 
member to 0. Netintr() then calls the interrupt service routine pointed to by 
isr to perform the processing required by the protocol. The active member 
ensures that a registered isr cannot be deleted while it is active, while the 
domain reference count, dom_refcnt, ensures that a domain cannot be 
deleted while an ISR is installed that references it. 
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When entering the domain code (through the call to the domain's interrupt 
service routine), Netintr() uses the domain funnel mechanism to ensure that 
the appropriate synchronization takes place. This mechanism allows 
nonparallelized protocols to operate within the OSF/1 parallelized 
framework. The domain funnel is described in Section 12.6.5. 

12.5.2 The netisr Structure 
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The kernel maintains the information required to schedule protocol activity 
in a registry of netisr data structures. (See Figure 12-3.) This registry 
maintains a set of netisr structures for each protocol family to handle events 
specific to that family. The registry also contains a netisr structure for 
packets not directed to a specific protocol (wildcard packets) and a structure 
that is used by the mbuf allocation mechanism, plus members for timer 
events, STREAMS events, and so forth. 
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The elements of the netisr structure are as follows: 

active 

pending 

isr 

ifq 

domain 

Counts the number of active invocations of the protocol's isr. 

Counts pending requests for the protocol's isr. 

Points to the ISR that the protocol uses to handle events such 
as incoming packets. 

Optionally points to the protocol's input queue. Incoming 
packets are placed on this queue for processing by the 
protocol. 

Optionally points to the domain structure for this protocol 
stack. This is used by the domain funnel mechanism (see 
Section 12.6.5). The domain reference count, dom _refcnt, is 
incremented for each netisr that references it. 

12.5.3 Packet Processing 
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To request protocol processing, a network driver calls the routine 
netisr _input() with 

• A constant that identifies the protocol that should receive the packet 

• A pointer to the mbuf holding the packet 

The routine uses the constant to find the correct netisr in the array of netisr 
structures. It then checks any queue pointed to by the netisr's ifq to see if 
there is room for another packet. If not, the packet is dropped and the 
appropriate error statistic is incremented. If there is room, the packet is 
queued and netisr _input() then calls schednetisr() to schedule protocol 
processing of the packet. It is possible to register a "wildcard" isr to receive 
a copy of all packets. When such an isr is registered, netisr _input() 
enqueues a copy of each packet in the same manner. Additionally, it is 
possible to register an "other" isr to catch packets that would otherwise be 
discarded; that is, packets that are destined for an unregistered isr. 
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12.5.4 The isr Threads 

At initialization time, the networking code starts a number of interrupt 
service threads. These simply loop, calling Netintr() and blocking on the 
event netisr _thread. For efficient processing of network activity, it is 
essential to have a thread available when it is needed. Because threads can 
block waiting for resources, the system generally establishes a few more 
threads than processors. 

Other events, such as fast and slow timeouts for protocols, are also 
registered as netisr structures to be handled by these threads. On each 
cycle, these threads go through the list of domains, calling the fast and slow 
timeout routines for the protocols of each domain. Other timers are 
registered by subsystems such as ARP. 

12.6 Synchronization 

The OSF/1 networking subsystem can be configured for uniprocessor or for 
multiprocessor environments through compilation switches. The 
networking framework is fully parallel on multiprocessor systems. The 
TCP/IP and UNIX IPC protocol stacks have also been fully parallelized. 
However, the framework can also incorporate nonparallelized protocols on 
multiprocessor systems using the domain funnel mechanism. The optional 
XNS protocol stack is an example. 

Multiprocessor networking code presents two essentially orthogonal 
synchronization problems when accessing common data structures. 

• As with uniprocessor code, some data structures (for example, packet 
queues) may be accessed either from the current thread context (from 
above) or from interrupt context (from below). When such a data 
structure is accessed, the interrupt level must be raised to prevent 
corruption of the data by simultaneous access from below. 

• Common data structures may also be accessed simultaneously-either 
from above or below-by different processors. The networking code 
must synchronize access by either forcing execution onto a single 
processor or locking the data structures. The fully parallel network code 
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employs locks for synchronization. When accessing nonparallelized 
protocols the networking code may also force execution onto a single 
processor using the domain funnel mechanism, described in Section 
12.6.5. 

For data structures that may be accessed from below, the networking code 
must both raise the interrupt level and either force execution onto a single 
processor or employ locking. Failure to raise the interrupt level before 
taking a lock could leave an interrupt service routine spinning forever on the 
lock. 

12.6.1 Locking 

The networking code employs a set of locks to serialize access to common 
data structures such as sockets, socket buffers, and queues. In the OSF/1 
networking code, locks occur mainly around the network interface. For 
example, locks protect the interface queues used to pass packets from the 
network interface to the protocols. These locks are always taken with the 
interrupt level raised to block further interrupts from the network. 

In uniprocessor implementations or with software interrupt-based ISRs, 
locking is normally turned off. Spl synchronization-raising the interrupt 
level-is used to serialize access to data structures that may be accessed 
from interrupt context. 

12.6.2 Socket Locks 
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Socket locks are a basic element in the parallelization scheme of the OSF/1 
networking code. The socket framework provides socket locks to serialize 
access to sockets. Parallel protocols use socket locks to synchronize with 
the socket layer. 

Sockets pose two kinds of serialization problems: 

• Access to socket members, such as the sockbuf, must be synchronized. 

• Sockets may need to be linked to and unlinked from other data 
structures, such as pcb (process control block) structures, which may 
also be locked. Locking must be carefully coordinated among structures 
to avoid deadlocks. 
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Socket locking is controlled by the socklocks structure contained in each 
socket, as illustrated in Figure 12-2. Currently the only elements used are 
sock _lock and refcnt. Because operations on the socket buffers are very 
frequent, it would be feasible to provide finer locking granularity by locking 
the buffers individually. In practice, the coarser locking provided by a 
single socket lock works well and greatly simplifies coding and deadlock 
avoidance. The SOCKET_ LOCK macro, which takes a write lock on the 
sock _lock element, is used in code that locks sockets. 

The soreceive() routine illustrates typical socket locking actions that 
networking code should take in order to serialize access to the socket 
receive buffer: 

I. Acquire the socket lock. 

2. Check the receive buffer for data. If there is not enough, call 
sosbwait( ), which may wait for more. If sosbwait() decides to wait, 
it calls sosleep( ), which releases the socket lock before sleeping. 

3. When sosleep() wakes up, it reacquires the socket lock. The lock 
remains held as soreceive() works its way through the mbufs queued 
at the receive buffer, assembling the requested data. 

4. Copy data out to user space or pass the mbuf chain directly up to the 
caller. (The latter method is used by the NFS and the XTI streams­
to-sockets interface.) While copying out, the socket lock is released 
again. This avoids holding the socket lock during a possible page 
fault and allows more data to be queued concurrently. When the copy 
is done, the lock is acquired and the socket and sockbuf are rechecked 
and updated. 

5. Release the socket lock. 

Meanwhile, data may arrive for the socket as a result of network activity. 
For example, the TCP protocol may call tcp _input() to put some mbufs on 
the socket's receive queue. Once the protocol is ready to process the packet 
and has found the socket (by looking through the in _pcb chain), it 
reacquires the socket lock. The protocol then processes the packet, for 
example, by queuing the mbuf chain at the socket receive buffer with a call 
to sbappend( ). When all processing is done, the socket lock is released. 
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12.6.3 Internet Domain Locks 

Sockets are linked to pcb structures, which must also be locked to serialize 
simultaneous access. Figure 12-4 illustrates locks in a socket using TCP/IP. 

Figure 12-4. Internet Domain Locking 
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The socket is linked to an inpcb, which is itself linked to a per-protocol pcb, 
in this case a tcpcb. The inpcb is part of a doubly linked list of all the 
inpcbs for TCP sockets. This list is headed by a header pcb. To establish 
connections and create or tear down sockets, the networking code must be 
carefully constructed to take and release locks in the right order and hold 
them for the correct amount of time. 
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For sockets connected with Internet protocols, the following elements are 
used: 

• A lock on the inpcb associated with each socket 

• A reference count for each inpcb 

• A lock on the pcb that heads the per-domain chain of inpcbs 

• A lock on each socket 

There is also a reference count on each socket lock, but for Internet sockets 
this is always 1. Because sockets may be referenced by file table entries, it 
is also necessary to keep track of the references per socket. However, this 
information is held elsewhere; for example, in the file table. 

The overall locking strategy is as follows: 

• The socket lock is always taken ahead of and released after the inpcb 
lock. Failure to observe this hierarchy can lead to deadlock. 

• The inpcb lock is used to protect each connection. Any per-protocol 
pcb is protected implicitly by locking the inpcb to which it is linked. 

• The lock on the head of a per-protocol chain of inpcbs protects the chain 
for the addition or removal of inpcbs. One thread holding an individual 
inpcb lock does not prevent another thread from manipulating the inpcb 
chain. 

• When a socket and inpcb are created, the inpcb reference count is set at 
1. This reference is dropped when the protocol PRU_ DETACH routine 
is called, either by the protocol or from soclose( ). 

• When an inpcb reference count goes to 0 (zero), the inpcb is 
deallocated and sofree() is called. 

• When an inpcb is looked up; for example, when a packet is received, a 
read lock is taken on the head of the per-protocol chain. A reference is 
taken on the inpcb and the inpcb lock is acquired. The reference is then 
decremented. If the reference count drops to 0 (zero), the lookup fails. 

• The existence of the socket is protected by two references, the file 
structure from above, manifested by a false SS_ NOFDREF bit, and by a 
non-NULL so _pcb from below. The soclose() routine must be called to 
assert SS_ NO FD REF before the socket can be destroyed. soclose() 
calls the protocol's PRU_DETACH entry to attempt to discard the 
procotol control block. The protocol may elect to do this later, however, 
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in which case soclose() returns without destroying the socket. The 
protocol is then responsible for doing so at a later time. 

Sockets are destroyed through a call to sofree( ). The sofree() call itself 
does not unlock and free the socket, however. Instead, it checks that 
so _pcb is NULL and SS_ NO FD REF is set, and then it sets the 
SP _FREEABLE bit in so_special. When the caller of sofree() later 
calls sounlock(), the socket is destroyed. In this way, either the 
protocol or the socket layer can call sofree() whenever each is done 
with the socket, without having to perform any further synchronization. 

12.6.4 UNIX IPC Socket Pairs 

When two sockets are directly connected as a socket pair, they share the 
same lock in order to avoid race conditions and deadlock. In this case, the 
socket lock reference count is incremented to 2. When two sockets are 
connected unpaired, the code follows a careful socket lock and unlock order 
to ensure that no deadlock results. 

12.6.5 The Domain Funnel 
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The socket framework does not assume that all protocol stacks have been 
parallelized with socket and other locks. A nonparallelized protocol may 
assume that it is executing on a single processor and provide only spl 
synchronization. The domain funnel mechanism provides a general means 
of forcing execution onto a single processor or carrying out other 
serialization operations before calling into protocols that are not fully 
parallelized. In effect, the kernel funnels execution across boundaries 
between parallelized and nonparallelized code. The funnel appears in 
essentially the same places in the OSF/1 framework as spinet 
synchronization appears in nonparallelized BSD. 
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The domain funnel mechanism has three important elements: 

• The domain funnel macros, such as DOMAIN_FUNNEL, 
DOMAIN_ UNFUNNEL and others, are defined to declare the 
necessary domain funnel data structures and to call the domain-specific 
funnel and unfunnel functions. Each domain can specify a domain 
funnel function to provide the specific serialization that the domain 
requires. Generally, this function forces execution onto the UNIX 
master processor and raises the interrupt level. It may also provide more 
complex serialization procedures. 

• The dom _funnel element of the domain structure points to the domain's 
funnel function. Fully parallel domains set the dom _funnel pointer to 
NULL since they require no funneling. 

• A domain _funnel structure is used for bookeeping and control of each 
funnel. The structure is shown in Figure 12-5. 
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Figure 12-5. The Domain Funnel 
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The unfunnel element points to a function that undoes the serialization 
initiated by dom _funnel. The object element can be used for bookkeeping 
and control at the funnel, holding, for example, the previous interrupt 
priority to be passed to splx( ) by the unfunnel element. 
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Code that uses the funnel mechanism declares a domain funnel structure at 
each point where a funnel is required. The code then includes the 
DOMAIN_FUNNEL macro, which results in a call to the funnel function 
pointed to by the domain's dom _funnel field. To terminate the funnel, the 
code includes a DOMAIN_ UNFUNNEL macro, which translates to a call 
to an unfunnel function pointed to by the local funnel structure's unfunnel 
element. 

A typical domain funnel function first sets the unfunnel pointer in the local 
domain _funnel structure to a matching unfunnel function. It then calls 
unix _master() to force execution onto the master processor. Finally, it 
calls the spinet() function to enforce the appropriate level of spl 
synchronization. The matching unfunnel function undoes the funnel by 
calling the splx() function and then releasing the UNIX master processor. 
Both functions may use the value of the unfunnel pointer in the local funnel 
structure for sanity checking to make sure the funnel has not been reentered. 

The domain funnel macros are present in the networking code wherever it 
must call across the protocol stack boundary. They are used frequently by 
sockets. For example, when socreate() calls a protocol's usrreq() function 
to attach a protocol to a new socket, it uses the domain funnel macros to 
assure that serialization takes place for protocols that are not fully 
parallelized. The domain funnel macros are also present in Netintr() where 
it calls up into the protocols. 

12.7 Memory Management 

OSF/1 uses mbufs and clusters for memory management within the socket 
framework. 

Network data is generally held for a short (or at least limited) length oftime 
and occurs in widely varying amounts. The allocation scheme for buffers 
should be able to provide 

• Memory in units of widely varying size 

• Storage for the relatively short amount of time that it takes to pass data 
through the networking subsystem 
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• Allocation units linked together in lists and in chains of lists according 
the requirements of the protocol handling the communication 

The mbuf mechanism meets these requirements. 

12. 7 .1 Mbufs and Clusters 
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An mbuf is an allocation unit capable of storing a limited amount of data 
internally or of referencing an area of external storage. The mbuf structure 
contains pointers to allow mbufs to be chained together. In general, the 
system treats an mbuf chain as a single allocation unit. Chains may 
themselves be linked together into lists. For example, a communications 
protocol may link a sequence of network packets (represented as mbuf 
chains) into a list. In general, datagram or record-oriented protocols use 
lists of mbufs while stream-type protocols, such as TCP, use a single chain. 

As data arrives from the network or is generated by user threads, it is passed 
through the layers of the system as chains of mbufs. Sockets move data 
from above (from user space, for instance) into chains of mbufs and pass 
them to the protocols. The protocols process them and pass them down the 
protocol stack until they are sent by the network interface. Similarly, as 
packets arrive from the network, they are assembled into chains of mbufs 
and passed up through the protocol layers to the socket layer. 

There are, effectively, two sizes of mbufs, regular and large. The regular 
mbuf consists of a header and a data area, and can usually hold about 100 
bytes of data. The large size consists of an mbuf that has been expanded by 
adding a cluster, which is a data element that is typically much larger than 
an mbuf. The size of a cluster is configurable at build time as a machine­
dependent parameter. The manifest constant MCLBYTES defines the size 
of a cluster. There is a third kind of mbuf, one with arbitrary external data, 
which is described later. 

Every network protocol adds or deletes prefix information as data traverses 
the layers of the protocol. As a design feature of mbufs, protocol prefixes 
are inserted or removed by inserting or deleting mbufs at the head of the 
chain, or by adjusting the m_ data pointer. 
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12.7.2 The mbuf Data Structure 

Each mbuf begins with a header structure, m _ hdr, which includes the 
following fields: 

m next Points to the next mbuf in a chain. 

m _ nextpkt Points to the next mbuf chain in the list of chains. 

m len 

m data 

m_type 

m_flags 

Gives the amount of data held in the mbuf. 

Points to the location of data in the mbuf. 

Indicates the type of data in the mbuf, such as simple data, a 
packet header, or some other type. The value MT_FREE 
indicates that the mbuf is not in use. 

Indicates the type of the mbuf data. The value M _EXT 
indicates that the mbuf has external storage, and the value 
M_PKTHDR indicates that it has a packet header. 

The rest of the mbuf holds internal data and/or other structures and pointers. 
When the mbuf is the first mbuf in a chain, this area often contains a 
pkthdr structure that gives the length of data in the chain. When the mbuf 
has external data, this area also contains an m _ext structure with the 
following fields: 

ext buf 

ext free 

ext size 

ext_arg 

Points to the external data buffer. This may be a cluster 
allocated through malloc( ), or it may be some other area of 
memory. 

Points to a routine that is used to free the external buffer. This 
is used when the external buffer was not allocated through 
malloc( ). A NULL value indicates a normal cluster. 

Gives the size of the external buffer. 

An additional argument passed to ext_free. 

forw and back 
Two pointers, used to maintain a linked list of mbufs that use 
the same external storage buffer. This allows copying by 
reference and permits the system to keep track of the external 
buffer as it frees the associated mbufs. 
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Figure 12-6 shows the mbuf data structure. 

Figure 12-6. Components of the mbuf Data Structure 
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12. 7 .3 Allocating mbufs 

The basic mbuf allocation strategy is to try to get the entity required for the 
least cost. Allocation for mbufs and for clusters uses the following 
sequence: 

I. Try to allocate the memory with malloc( ). This call is made with 
malloc() 's M _NO WAIT flag set to inhibit blocking. If the allocation 
is successful, return the memory after performing any initialization. 

2. If malloc() was unsuccessful, check the M _WAIT flag passed from 
the caller. If it is false, return failure immediately. This method is 
normally used by drivers allocating memory at interrupt time; for 
example, when receiving a packet. 

3. Try to recover some memory from the protocols by using any 
pf_ drain() routines exported in their domain structures. This method 
will free any "expendable" memory, such as packet fragments that can 
be recovered in retransmissions. 

4. Call malloc() with the M _ W AITOK flag set. The malloc() call will 
block until memory is available. Initialize the returned memory and 
return. 

Several macros are available to allocate mbufs and clusters, including the 
following: 

• MGET allocates an mbuf initialized for internal data. Similarly, 
MGETHDR allocates an mbuf initialized as a packet header. 

• MCLGET adds a cluster to an mbuf. The MCLALLOC macro is used 
to allocate a cluster, and the mbuf m _ext structure is initialized 
appropriately. The M_EXT bit in m_flags is set on success. MFREE 
frees an mbuf and any associated external storage. 

12. 7.4 External Data 

Typically, external data attached to an mbuf is in the form of a cluster. 
However, arbitrary external data may be attached as well. The external 
storage pointed to by m_ext.ext_buf may reside anywhere in the system's 
address space. For example, if addressable memory can be allocated on an 
Ethernet board, an mbuf can access it directly, eliminating the need to copy 
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data from the board. 

This technique is used to pass data back and forth between the XTI/Streams 
module and the socket layer. The routines mbuf to mblk and 
mblk to mbuf convert mbufs to mblks and vice versa. As much as 
possible, these routines avoid copying the data by mapping mblk external 
data into the mbuf using m _ext and vice versa using a similar mechanism. 

Freeing an mbuf with this kind of external data is somewhat more 
complicated than freeing an ordinary mbuf. To maintain a record of 
references, mbufs that reference an external area are linked together with 
pointers in their m ext structures. When the last such reference is 
eliminated, the external data area can be freed. 

Arbitrary external data cannot be freed in the same way as standard clusters. 
When m _ext.ext_ free is NULL, clusters are freed using the macro 
MCLFREE. Otherwise, m_ext.ext_free points to a routine that is to be 
used to free the external data. It is important that the unknown free routine 
be called from a safe context. When mfree finds such an external free 
routine, it places the mbuf on a queue of mbufs that require later freeing 
and schedules an mbuf event. When the mbuf event handler subsequently 
runs, it frees the external storage of any waiting mbufs by calling their 
external free routines. 

12.8 Sockets Security Extensions 
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OSF/l can be configured with sockets security extensions that support 
mandatory access control and allow a trusted server process to receive the 
security attributes of clients with client requests. The socket extensions 
have been implemented only on UNIX domain sockets, not on Internet 
domain sockets. Chapter 15 describes security extensions. 
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The OSF/1 STREAMS Framework 

OSF/l provides a STREAMS framework for the implementation of 
communications services. This framework consists of kernel resources and 
routines that can be used to create device drivers, terminal handlers, 
networking protocol suites, and other networking facilities. Because 
functions can be coded into separate STREAMS modules, developers can 
write kernel and applications programs that are highly portable and easily 
integrated into other STREAMS-based systems. 

The main components of OSF/l STREAMS are 

• Data structures, declared constants, macros, and other kernel resources, 
which developers use for writing STREAMS modules and drivers. 

• The stream head, a set of routines and data structures that provides an 
interface between user processes and the streams constituting 
communications paths. In OSF/1, the stream head also contains a 
special set of data structures and synchronization routines that enable 
streams to operate in a multithreaded environment. 

• Utilities that perform functions such as stream queue scheduling and 
flow control, memory allocation, and callback requests. 

OSF/1 STREAMS is source-code compatible with the AT&T System V 
Release 4 STREAMS specification. For this reason, this chapter describes 
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only the extensions that have been made to AT&T STREAMS. For more 
information, refer to the following documents: 

• UNIX System V Release 4 Programmer's Guide: STREAMS 1 

• UNIX System V Release 3.2 Streams Programmer's Guide2 

• UNIX System V Release 3 Streams Primer3 

13.1 Overview 

STREAMS is a set of system calls, kernel routines, and kernel resources for 
implementing I/0 functions in a modular fashion. Modularly developed I/O 
functions allow applications to easily build and reconfigure communications 
services. An example is a module for a terminal driver that implements a 
terminal emulation protocol. The emulation can be turned on by adding the 
module or turned off by removing it, or a different emulation can substitute 
another module. 

To communicate using STREAMS, an application creates a stream by 
opening a device. A stream is a full-duplex communication path between a 
user process and the device driver. Every stream has at least two parts, the 
stream head at the top and a driver (for example, a hardware driver) at the 
bottom. Optional modules can be inserted to process the data being passed 
along the stream. 

Messages are the vehicle for all information passed between the stream 
head and the modules and driver. The stream head transfers data from a user 
process to the kernel and sends it "downstream" in a series of messages. The 
driver performs the complementary function from the device. When the 
stream head receives messages sent "upstream" from the driver, it makes the 
data available to the user process. 

I. AT&T UNIX System V Release 4 Programmer's Guide: STREAMS. Englewood Cliffs, New Jersey: 
Prentice-Hall, Inc., 1990. 

2. AT&T UNIX System V Release 3.2 Streams Programmer's Guide. Englewood Cliffs, New Jersey: 
Prentice-Hall, Inc., 1989. 

3. AT&T UNIX System V Release 3 Streams Primer, 1986. 
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Modules and drivers contain pairs of data structures called queues that 
reference messages. Each module or driver also contains functions for 
manipulating messages. One queue handles messages in the downstream, or 
"write," direction towards the driver, while the other queue handles the 
upstream, or "read," direction toward the stream head. Each module's read 
or write queue is linked to the next module's read or write queue, defining 
the stream from stream head to driver, and from driver to stream head. 
Figure 13-1 is an illustration of a simple stream. 

The stream head acts as an interface between the stream and the user 
process, providing translation from stream-based device semantics to UNIX 
semantics exported by the kernel. The application sees the stream as a 
character special file, which it manipulates with system calls such as 
open(). The stream head interprets a standard subset of system calls, 
translates them into messages, and sends them along the stream. 

A module or driver receives the messages, interprets them, and performs the 
requested operations. It returns data and control information to the user 
process by packaging it into messages that it sends to the stream head. The 
stream head then transforms the data into the appropriate form of return for 
the system call that was made. 

Modules are pushed onto a stream or popped from it in a stack-like way. 
Pushed modules are inserted just below the stream head and above all other 
modules already on the stream. The module just below the head is always 
the one that is popped. Only modules that have been configured into the 
system can be pushed onto a stream. Different systems may support varying 
collections of modules. 

Figure 13-1 shows the typical flow of control in a stream. 
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Figure 13-1. Flow in a Stream 
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13.2 The STREAMS Programming Interface 
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OSF/1 STREAMS uses the general UNIX calls that allow applications to 
open, manipulate, and close device files: 

open() 

read() 

write() 

ioctl() 

Opens a stream. 

Reads from a stream. 

Writes to a stream. 

Controls a stream. 

poll(), select() 

close() 

Notifies the application when selected events occur on a 
stream. 

Closes a stream. 

It also provides four STREAMS-specific calls: 

getmsg(),getpmsg() 
Receives a message from a stream. 

putmsg( ), putpmsg() 
Sends a message to a stream. 
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For information about each of these calls, see the OSFI 1 Programmer's 
Reference, 

13.3 STREAMS Operations 

Operations on streams proceed from system calls to the stream, and from 
there may complete at the stream head or result in further action and 
messages flowing on the stream. 

13.3.1 STREAMS as a Device Driver 

OSF/l STREAMS is implemented as a device driver, which in turn manages 
many different STREAMS devices according to their major number. This 
implementation makes the STREAMS subsystem highly modular and 
minimizes dependencies throughout the system. User code accesses 
STREAMS through the normal control path from the system call entry 
points mentioned in Section 13.2. 

As a device driver, STREAMS has only six entry points, as defined by the 
standard cdevsw table. These are 

• pse _open(), pse _close() 

• pse _read(), pse _write() 

• pse _select() 

• pse_ioctl() 

The OSF/l kernel uses pse_select() for both select and poll operations. The 
getmsg( ), getpmsg( ), putmsg( ), and putpmsg() calls are implemented as 
special STREAMS ioctl() calls. 

STREAMS exports its own entry points for use by modules and drivers, and 
also registers itself into other kernel subsystems such as the netisr 
framework, the interrupt dispatcher, and so forth. 
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13.3.2 Flow of Control Basics 
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Flow of control at the stream head can be divided into two phases 
corresponding to the two levels of stream head functionality: the system and 
stream levels. 

The system level can be thought of as the "top half" of the stream head; that 
is, the portion that interfaces to the OSF/l kernel (the system). 

The stream level is the "bottom half" of the stream head, which implements 
the STREAMS semantics for modules and drivers, and provides the standard 
STREAMS kernel utilities library. 

Incoming requests from applications to particular streams are routed to the 
system-level routines, through the device's vnode and cdevsw entry. The 
following series of actions then occurs: 

1. The stream head for the stream is located. 

2. The request is interpreted and turned over to a handler routine, which 
places the request on a per-stream read(), write(), or ioctl() request 
queue. 

3. A lock is taken on the stream to obtain synchronization. The level of 
synchronization depends on the type of request. All read() and 
write() requests execute fully in parallel, while ioctl() requests must 
be executed serially in order to satisfy STREAMS semantics. open() 
and close() always execute serially. 

4. The handler routine then either completes the request at the stream 
head and returns, or builds a message and sends this message 
downstream for further action. If an acknowledgement or other kind 
of return message is expected (a situation only true for ioctl() 
requests), the handler routine goes to sleep and waits for it. The 
handler may also sleep when sending data on a stream that is flow 
controlled. 

At the stream level, the stream head receives upstream messages through its 
read put procedure. The stream head acts on each message according to its 
type; for example, it queues data or sends a signal. When appropriate, it 
issues a wakeup to waiting threads. 
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13.3.3 Stream Head Routines 

Every STREAMS device is configured into two tables: the cdevsw, which 
registers UNIX character devices, and the dmodsw, which registers all 
STREAMS devices. The cdevsw entries for all OSF/l STREAMS devices 
are identical; they contain vectors for the system-level STREAMS routines 
mentioned in Section 13.3.1. These routines dispatch into the stream-level 
routines by using information located in the dmodsw. 

The cdevsw table also contains the clone device. The clone device permits 
any character driver to manage its minor number allocations. Many 
STREAMS devices can act as clonable devices. For example, a driver can 
implement XTI endpoints as separate streams, each with its own minor 
device number. The minor devices will be dynamically allocated and 
deallocated as endpoints are opened and closed. The STREAMS clone 
open() operation is described in Section 13.7. 

STREAMS modules are configured into a single, similar table: the fmodsw. 
Modules are not referenced by the cdevsw because they are accessed 
through an ioctl(I _PUSH) call on an open stream. The system-level 
STREAMS routines locate and use fmodsw entries in the same way they use 
dmodsw entries for drivers. 

13.3.4 Operating System Requests 

The stream head encapsulates an application's request (such as read, write, 
and so forth) into an operating system request structure (OSR). This 
structure contains everything needed to reference the stream, the request 
itself, and the application. Each active OSR is placed on the appropriate list 
(an OSRQ) associated with the stream head for the duration of its 
processing. The system-level and stream-level routines together perform 
the actions required to process the request. 

The OSR serves as the link between the system-level and stream-level 
components of the stream head. It is used for synchronizing, serializing, and 
processing requests, and returning completion status to the application. 
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13.4 Scheduling and Flow Control 

13-8 

OSF/l STREAMS schedules its activity through the netisr framework, 
which is described in Chapter 12. Only three events are registered; the first 
is the most frequent. These events are 

NETISR STREAMS 
Scheduled each time a queue's service procedure is to be run. 
This occurs due to flow control or the qenable() call. 

NETISR STRTO 
Scheduled each time a STREAMS timeout has expired. 
Timeouts are requested by a timeout() call by a module or 
driver. 

NETISR STRWELD 
Scheduled in response to a weld or unweld request by a 
module or driver. These requests are discussed in Section 
13.8. 

As with sockets, STREAMS executes by default in kernel thread context 
under the netisr framework. It may also be run in a software interrupt 
configuration. In either case, handling of STREAMS events is entirely 
asynchronous and executes in parallel with and independently from other 
system activity. 

Because the sockets framework also schedules its events through the netisr 
framework, this sharing offers advantages to drivers that bridge the two, 
such as XTI. When a STREAMS event delivers data to a socket, or a 
sockets event delivers data to STREAMS, the netisr framework often 
avoids additional context switching because the two share a common 
scheduler. This can greatly improve the performance of such subsystems. 
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13.5 Synchronization 

OSF/l STREAMS provides an unusual mechanism for implementing 
resource synchronization in a multithreaded environment. The original 
STREAMS specification provides no such mechanism; it only protects 
against interrupts with splstr( ). This method is adequate for a uniprocessor 
implementation, but it does not work on a multiprocessor or in a preemptive 
environment, and requires spending significant execution time at hardware 
interrupt levels. The OSF/l STREAMS implementation rectifies all these 
drawbacks. 

The system could protect queues by locking them during thread access, 
forcing all other threads to wait their turn for access, but it would behave 
poorly under this kind of scheduling constraint. An attempt to access the 
next queue could fail not only because of the familiar flow control 
mechanism, but also because the next queue could be locked by another 
thread. The result would be much more frequent rescheduling of service 
procedures and a corresponding degradation in stream throughput. This 
method would also require recoding of many STREAMS modules and 
drivers, especially those that do not provide service procedures. 

Instead of using conventional locking, OSF/l STREAMS grants accesses to 
resources in a way that maximizes execution throughput. It takes advantage 
of a particular feature of the STREAMS specification: the stipulation that 
the context of processing in a STREAMS module or driver is indeterminate 
except at open and close. In effect, normal STREAMS processing must act 
as if it were void of context during its execution, as if in response to an 
interrupt. The particular problem of context in open and close procedures 
becomes a special case, allowing the normal access of a stream to achieve 
maximum throughput. 

The term "resource" in the remainder of this chapter describes any body or 
system of data that can be accessed as a whole within a stream. The most 
common example of a resource is a STREAMS queue. Resources are 
sometimes shared among queues, modules, drivers or the system. This is 
discussed in detail in Section 13.5.3. 

An OSF/l STREAMS synchronization queue is a linked list of callbacks of 
an access of a resource, plus a small amount of state information, consisting 
of locks and ownership. To acquire a resource, a thread first encapsulates 
the operation it will perform and then attempts to acquire the resource. For 
example, the call putnext(q, mp) attempts to acquire the resource 
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associated with q->q_ next. Before doing so, it places the call, 
(*q->q_next->q_qinfo->qi_putp)(), along with the two arguments, 
q->q_ next and mp, into a callback request. 

If the resource is free, the caller acquires it and performs the operation as 
normal. In the example, the next queue's put procedure would be called. 
This process can be repeated indefinitely until the operation reaches the end 
of the stream, or encounters a locked resource. In operations on a stream 
with appropriate synchronization, control will pass successfully from driver 
to module to stream head without delay. 

If the caller finds the resource already in use, for example, by another 
thread, it enqueues its request on the resource's synchronization queue and 
simply returns. When the holder of the resource is ready to release it, the 
OSF/l STREAMS framework checks for pending requests and executes any 
it finds. The putnext() call in the example would be performed by 
whichever thread holds the target queue's resource. 

Whether the resource is free or in use, the original call returns promptly. 
The check for pending requests ensures they execute as soon as the resource 
becomes available. Because the synchronization queue is FIFO, they 
execute in the order received. 

If the call is to a module's or driver's open or close procedure (that is, in 
response to open(), close(), ioctl(I_PUSH), or ioctl(l_POP)), a special flag 
is set in the callback request. If the holder of a resource encounters this flag 
when processing requests, it takes a special path and hands off the resource 
to the special caller. In most cases, this caller is executing in the stream 
head, and context then switches to the appropriate user thread. 

There are five major advantages to this scheme: 

• The synchronization mechanism is completely invisible to the module or 
driver code. 

• Normal callers of STREAMS routines never block, and the calls are 
never delayed more than the processing time requires. This is the 
primary means of achieving execution throughput. 

• It takes full advantage of multiprocessors; that is, threads that do not 
contend for STREAMS resources execute fully in parallel. Resources 
may be independently configured according to the architecture of the 
STREAMS module or driver. 

• No additional context switching is imposed on STREAMS. It is not 
necessary to provide service procedures to implement the scheme, nor 
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are context switches performed when requests are processed or called 
back, except where necessary (in open and close procedures). 

• The mechanism resolves a problem of recursion and small kernel stacks. 
It is very dangerous to call procedures recursively in kernel context with 
small kernel stacks, and the modularity of the STREAMS specification 
makes recursion possible. OSF/I STREAMS will return promptly when 
it encounters the first recursive acquisition, protecting the stack. 
However, the action is taken as the resource is released, so the effect is 
the same as if it were acted on immediately. 

13.5.1 Synchronization Queue Structures 

As previously mentioned, synchronization queues are implemented as lists 
of callbacks associated with the resource (queue) that the original caller was 
trying to access. These synchronization queues are made up of two data 
structures: 

• The synchronization queue head structure (SQH), which represents the 
resource 

• The synchronization queue element structure (SQ), which contains the 
callback to the procedure with two arguments, usually a queue's address 
and a pointer to the message being passed 

The SQH is identified in the list of SQs by a bit in a common flag word. 
Other bits indicate the type of request, for example, whether the request 
requires execution in context. The lock protecting addition and removal 
from the queue is located uniquely in the SQH, along with any ownership 
information. 

13.5.2 Changes to Standard STREAMS Structures 

OSF/l STREAMS uses the STREAMS data structures queue_ t for queues 
and mblk_t for messages as documented in the AT&T Programmer's Guide: 
STREAMS. However, it extends the "framework-visible" portion of the 
queue structure to support its special synchronization and scheduling 
mechanisms. These extensions are invisible to the module and driver code. 
The next two subsections describe these changes. 
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13 .5 .2.1 The Queue Structure 

The read and write queues for the stream head and driver are allocated when 
the stream is first set up. For a pushed module, they are allocated when the 
module is added to the stream. 

The standard STREAMS queue contains pointers and data fields describing 
the procedures that can run on a queue, the messages to be processed, and 
flow control. The OSF/l STREAMS version of the structure contains 
additional fields for use by its special queue synchronization and scheduling 
functions. The new fields include: 

q_sqh A synchronization queue head for synchronizing accesses to 
the queue. This is the queue's default resource. 

q_runq_ sq A synchronization queue element used when scheduling the 
queue's service procedure. 

q act next A pointer that is used with the q_ act _prev and q_ thread 
fields to form a registry of acquired resources for use when a 
thread sleeps in open or close procedures. 

q_ffcp The forward flow control pointer to the next queue in the 
stream to be enabled when queue flow control is cleared. The 
q_ bfcp field is the backward flow control pointer. 

13.5.2.2 The Message Structure 

OSF/1 STREAMS messages consist of one or more linked message blocks, 
each of which is a triplet. A triplet consists of the mblk _ t and dblk _ t 
control structures and a data buffer. The data buffer, which is of variable 
size, holds the actual contents of the message. 

Currently in OSF/1, mblk _ t and dblk _ t are allocated in contiguous 
memory, with a small data buffer rounding out the memory block. Messages 
with larger data buffers have the data buffers allocated separately. 
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In addition to the standard components of mblk_t, the OSF/l STREAMS 
version of the structure contains an additional field for use by its special 
queue synchronization and scheduling functions. The new field is 

b _sq A synchronization queue element used for passing the 
message to a queue's put procedure. This SQ is linked onto 
the queue's q_ sqh. 

13.5.3 Executing the Synchronization Queue 

There are two ways of accessing a resource that is protected by a 
synchronization queue. (Synchronization queues are described in Section 
13.5.) 

The first way to access a resource is to pass a callback to the 
synchronization queue. The callback will be executed immediately if the 
resource is free, or enqueued if it is not; the caller will not know the 
difference. The routine that passes a callback is csq_Iateral( ). 
csq_lateral() never blocks, and is used by all stream-level operations that 
potentially acquire new resources, such as putnext( ), qreply( ), and so on. 

The second way to access a resource is to reliably acquire it with a call to 
csq_ acquire(). As with csq_Iateral( ), an SQ is prepared, and if the 
resource is not free, the SQ is enqueued on the synchronization queue. The 
difference is that there is no callback function, and if the SQ is enqueued, 
the thread calling csq_ acquire() blocks, waiting for its SQ to be discovered 
on the synchronization queue. Although csq_ acquire() cannot be called by 
service procedures within a stream, it is available to stream head routines, 
which are essentially synchronous in operation. 

Unlike csq_ acquire(), which functions as a blocking lock on STREAMS 
resources, csq_lateral() never blocks but employs a callback mechanism to 
ensure that its callers execute under appropriate protection. In order to 
simplify stream head operation, csq_acquire() is allowed to recursively 
acquire resources. However, csq_lateral() never recursively acquires them. 
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The possible contents of a synchronization queue consist of SQ elements, 
each of which represents one of the following: 

• An anonymous job, that is, a callback enqueued by csq_lateral() that is 
not associated with any thread context. 

• A job placed by calls to csq_ acquire(), with a thread waiting for the 
resource. These SQs set the special flag SQ_ HOLD. 

Figure 13-2 shows an example of how synchronization queues actually get 
executed. For simplicity, the example shows busy and simultaneous activity 
with only a few threads contending heavily for a few resources. An actual 
situation would have more diverse activity and fewer miraculous 
coincidences. 

In the figure, there are four threads contending for the resource associated 
with a read queue. Thread 4 is calling putnext(q, mp) on the queue from 
below, while at the same time Threads 1 and 2 are attempting to access the 
queue through the stream head. Thread 3, the queue's put procedure, has 
placed the message on the queue, resulting in the service procedure being 
scheduled. 

Thread 4, calling putnext(q, mp), is the first to access the resource. It 
enters csq_lateral( ), which is granted access and proceeds to call the 
queue's put procedure. The put procedure (Thread 3) decides to put the 
message on the queue, scheduling the queue's service procedure. The event 
is acted on promptly (the machine is a multiprocessor), but when the netisr 
thread uses csq_lateral() to invoke (*q->q_qinfo->qi_srvp)(q), it 
encounters the lock Thread 4 still owns on the resource. As a result, the 
netisr thread enqueues the service procedure as a callback and returns. The 
user threads, 1 and 2, simultaneously perform operations to fetch data from 
the queue, a read() and a getmsg( ). (Although this situation is highly 
unlikely, it is useful for illustrating the concepts described in this example.) 
They allocate OSRs and proceed in parallel to attempt to acquire the queue 
with csq_ acquire(). Because the resource is in use, each uses an SQ in its 
OSR to enqueue itself with SQ_ HOLD, and both threads block. 

Next, the put procedure completes and returns to csq_lateral( ). 
csq_lateral() finds callbacks on the synchronization queue and proceeds to 
a routine called csq_ turnover( ) to handle them. First on the queue is the 
service procedure callback, which it handles itself, because SQ_ H 0 LD is 
false in that SQ. Note that no additional context switch occurred when the 
service procedure was invoked, only the initial one. The service procedure 
does its job and returns. 
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At this point, csq_ turnover() still sees callbacks pending, but the first one 
has SQ_ HOLD. It knows that this represents a thread that is waiting to 
acquire the resource. Therefore, it hands over ownership of the resource to 
the waiting thread, issues a wakeup() call to it, and returns. Thread 4 is 
finished with the resource, and is no longer of interest. 

The waiting thread, which is performing a read(), begins executing as the 
owner of the resource. It removes some of the data from the queue and 
returns it to the user. When it is done, it releases the resource. There is still 
another callback pending, so csq_turnover() repeats the turnover sequence 
with the thread performing getmsg( ), and when that completes, the 
synchronization queue becomes empty. Note that the minimum amount of 
context switching has occurred to completely process all the requests. 

Figure 13-2. An Example of Synchronization Queue Execution 
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13.5.4 Acquisition of Multiple Resources 

STREAMS modules and drivers normally need to acquire only one resource 
in order to proceed, for example, a queue. Certain stream head operations, 
however, require that more than one queue or stream head be held. An 
example is the I_ PUSH operation, where both the stream head and the 
currently uppermost module in the stream must be acquired, since pointers 
in both have to be altered to point to the new module. 

In order to prevent deadlocks from occurring between threads that need to 
acquire the same resources, a global synchronization queue head called 
mult_sqh is statically allocated in the stream head. It is not associated with 
any particular resource, but it must be acquired first by any thread that 
intends to acquire more than one resource. Once all the resources are 
successfully acquired, molt_ sqh can be released as appropriate. 

This rule ensures that deadlocks will not occur between threads proceeding 
in parallel as they acquire multiple resources. By following the mult_sqh­
first rule, they will synchronize before attempting any acquisitions that 
would deadlock. 

A difficult consequence of this resource acquisition scheme is that service 
and put procedures in drivers and modules cannot directly acquire multiple 
resources. OSF/l STREAMS provides a solution with the welding 
mechanism discussed in Section 13.8. 

13.5.5 Synchronization with Interrupts 
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The csq_ acquire( ) routine handles the acquisition of resources from thread 
context, where it is possible to block, but interrupts require a different 
solution. Although csq_lateral() is capable of handling interrupt 
synchronization, it would require significant overhead to protect each utility 
routine, such as putq( ), getq( ), and other queue-handling functions, for 
interrupt access. Also, it would be impossible to implement can put() and 
qenable() with this restriction. Therefore, two special modifications to the 
framework have been made to provide interrupt safety while retaining 
minimal overhead. 

The first modification is a queue lock. A q_ qlock that protects canput() 
and qenable() is added to each queue. This lock also protects low-level 
queue flow control decisions, such as those performed by putq( ), getq( ), 
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and other queue utility functions. This lock protects only the q_ flag, the 
qb _flag, and counts. The rest of the queue, including the queued messages 
themselves, is protected by holding the queue's resource. 

The second modification is to putq( ). In the normal case, putq( ), getq( ), 
and other queue routines are called when the queue has already been 
acquired through its synchronization queue. However, putq() can also be 
called by a driver routine operating asynchronously and therefore outside of 
the usual stream context. This is the case in a STREAMS driver when an 
interrupt occurs, for example, a terminal driver when a character is received 
or a network driver when a packet arrives. In this case, execution enters the 
driver without first being protected by the synchronization queue 
mechanism. The AT&T Programmer's Guide: STREAMS makes clear that 
putq() must be used in such a case, and that the driver must provide a read 
service procedure to handle the message from STREAMS context. (This 
also minimizes time spent at the hardware interrupt level.) 

The putq() modification checks whether the queue that putq() is targeting 
is at the bottom of a stream. If it is, putq() calls csq_lateral() in order to 
first acquire the proper STREAMS synchronization. If the resource is in use 
(for example, by the service procedure in response to a previous interrupt), 
the situation works as for any other resource contention-the putq() is 
deferred by queuing it as a callback for the current holder of the resource. 

To determine whether it is targeting the bottom of a stream, putq() inspects 
the queue's flow control pointers. At all other points in the stream, putq() 
behaves normally. 

The other class of routine that can inspect and set queue parameters from 
interrupt context includes canput() and qenable( ). These routines perform 
their functions entirely through the q_ flags (or qb _flags in the case of 
bcanput( )), the queue counts, and high and low water marks. Therefore, it 
is important that a module or driver never attempt to change the value of 
q_ flag, except as supported by STREAMS calls such as noenable() and 
enableok( ), nor such things as queue high and low water marks except by 
strqset( ). 
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STREAMS modules and drivers are permitted to sleep in their open and 
close procedures. This presents a problem to the OSF/l STREAMS 
synchronization mechanism because the threads holding resources must not 
sleep without first releasing their resources. 

Before the open or close procedure of a module or driver begins, the identity 
of the resource holder and the resources it holds are placed into a registry 
called active_queues. The resources are the mult_sqh, two or more queues 
associated with the stream head, and either the module being pushed or 
popped, or the driver being opened or closed. 

Calls to sleep() (as well as tsleep() and mpsleep()) are intercepted from 
OSF/1 STREAMS by the routine streams_mpsleep(). Currently, this is 
accomplished at compile time, by redirecting these calls using the C 
preprocessor, in the sys/stream.h header file. 

The streams_ mpsleep() routine determines the identity of its caller by its 
thread, and looks up any resources the caller holds. Before the caller can 
begin sleeping these resources are released, and after the sleeping is 
completed they are reacquired. Note that when the caller reacquires 
resources, if the mult _sqh was held, it must be reacquired first. 

This sequence can cause a timing problem. Because of the rule that the 
synchronization queue must be executed (that is, drained) before it releases 
the resource, it is possible in some cases to cause the very event that is being 
awaited. 

Consider, for example, a thread in which an open procedure is waiting for an 
acknowledgement from a device. If such an acknowledgement is passed in 
a message generated at interrupt time, the message may arrive while the 
thread is still executing the open procedure and has not yet released the 
resource. Therefore, the interrupt will fail to immediately putq() the 
message, and instead place it on the synchronization queue which the thread 
currently owns. Because the thread has not yet seen the message (it is 
unprocessed on the synchronization queue), the thread proceeds to sleep. 

However, before sleeping, the thread releases the resource associated with 
its read queue, and in so doing it calls its own putq( ). This delivers the 
message it intended to wait for. OSF/l STREAMS avoids the subsequent 
race by performing an assert_ wait() before releasing any resources. 
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13.5.7 Synchronization of timeout() and bufcall() 

The timeout() and bufcall() utilities present a particular problem to the 
synchronization mechanism. Good programming practice would have the 
module or driver call only an interrupt-safe routine as the callback. 
However, historically all of STREAMS has been considered interrupt-safe, 
and such routines have performed no more synchronization than possibly 
raising interrupt level with splstr( ). 

Ideally, the only routines passed as callbacks would be fully interrupt-safe, 
such as qenable() or wakeup(). To support code in which they are not, the 
solution is an optional configuration for these callbacks from the OSF/l 
STREAMS framework. 

If the STR _ QSAFETY bit is set when the module or driver is configured, 
the same active_ queues registry is invoked each time a resource is 
acquired. When timeout() or bufcall() is invoked, this registry is checked 
for the currently held resource, and the resource is remembered so it may be 
acquired before the callback is performed. This method imposes an 
overhead on the module, so it is optional in order to improve performance 
for those modules that do not require it. 

As in the case of sleep(), timeout() calls are redirected with the C 
preprocessor in the sys/stream.h header file. There is no such redirection 
required for bufcall() because STREAMS implements it directly. 

13.6 Memory Allocation 

OSF/l STREAMS performs all allocation through the standard kernel 
malloc() function. This means all memory is shared among kernel 
subsystems and leads to the most efficient use of memory. Occasionally, 
however, memory allocation will fail, especially when it must be 
constrained by executing in interrupt context. When allocb() fails, 
STREAMS provides the bufcall() utility to recover. 
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13.6.1 The bufcall() Routine 

In OSF/1 STREAMS, the bufcall event is handled in a pseudomodule. The 
bufcall module has a single queue and is invoked by qenable() when 
memory becomes available, or at regular intervals in order to poll for 
memory released by other subsystems. The module cannot be pushed; its 
implementation is only for modularity with the rest of STREAMS. 
However, this illustrates the concept that STREAMS provides an 
architecture that is useful in areas other than device handling. 

When a module or driver calls bufcall( ), a request structure is removed 
from a freelist and assigned a unique ID. If no structures are available, 
bufcall() returns 0 (zero), and many callers will issue a timeout() call to 
retry later. In the normal case, this request is queued, and a trigger is set for 
enabling the bufcall module when memory becomes available. 

When this wakeup occurs, the bufcall read service procedure makes sure 
that the memory size in the request is available, and then invokes the 
callback, also stored in the request. If the STR _ QSAFETY option was set 
for the active queue that invoked bufcall( ), the presence of the queue in the 
active_queues registry would have also placed it in the request structure. 
The same queue's resource would simply be acquired before the callback. 

13.6.2 Interaction with mbufs 
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STREAMS data blocks (dblk_ts) already support the referencing of external 
data, as do sockets memory buffers (mbufs, described in Chapter 12). For 
subsystems, such as XTI, which transfer data between the two, OSF/l 
provides a mechanism for translating buffers without copying the data. Two 
routines, mbuf_to_mblk() and mblk_to_mbuf(), are provided for this 
operation. Detailed calling information can be found in the OSFI 1 System 
Programmer's Reference Volume 2. 

The STREAMS dblk_t may reference a routine to be called when the 
dblk _t is freed. This is normally specified when the mblk _ t is allocated 
through esballoc(), as described in the AT&T Programmer's Guide: 
STREAMS. However, calling this routine from the context of freeb() may 
be problematical in a multiprocessor environment, since that context may be 
an interrupt. It would be impossible to provide a routine that needed to take 
certain locks. 
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To avoid placing such a restriction on routines to free these buffers, OSF/1 
STREAMS does the same thing as is provided for OSF/l mbufs: calls to 
any free routines of dblk _ts are deferred and invoked in thread context. In 
fact, both mbuf and mblk free events are performed at the same time. 
Chapter 12 has further information. 

13. 7 Cloning 

There is a special type of open() call called cloning, which is often used by 
STREAMS devices. Cloning is a mechanism for obtaining unique 
invocations of a single name. In the case of STREAMS, where all open 
streams are character special files, these invocations are created by dynamic 
allocation and management of minor numbers. 

It is important for certain classes of STREAMS devices to be clonable, in 
order to simplify and protect their creation. These devices are normally 
those that are not associated with hardware, such as pipes, protocol 
endpoints, pseudoterminals, and so on. For such devices, it is never 
desirable to reopen them by name without the current owner being willing 
to allow it. Normally the rights to access such devices are passed to 
children through open file descriptors across fork() or by explicitly 
allowing access through fattach() or mknod( ). 

In order to manage these devices without a complicated (and potentially 
very large) namespace and protection facility, OSF/l uses a simple and 
powerful concept called the clone device. 

The clone device is configured into the cdevsw and consists only of a single 
procedure, open. Since it is configured into the cdevsw, it receives a unique 
major number, but the minor number is used to represent the major number 
of another device, such as a STREAMS device. 

When the open procedure of the clone device is invoked, it simply passes 
the open call, along with a special flag indicating a clone open, to the device 
owning the major number associated with the clone's minor number. All 
further cdevsw operations are vectored to this other device. For example, if 
the clone device resides at major 24 and the STREAMS echo device resides 
at major 30, the clonable device node for the echo device would have (24, 
30) as its device number. Opens of device (30, x) would specifically open 
the minor number x of the echo device, while opens of device (24, 30) would 
have an unused echo minor number dynamically assigned. 
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A significant amount of work occurs in the vnode and special file handling 
layers during a clone open in OSF/l, but only very little work needs to occur 
in the open procedure of a clonable OSF/l STREAMS device. The routine 
streams_ open_ comm() and an associated close routine make the driver's 
job trivial. The streams_ open_ comm() routine manages the minor number 
space for any STREAMS driver, in addition to allocating optional device 
buffers and handling multiprocessor locking. This routine is a STREAMS­
specific wrapper for the underlying cdevsw_open_comrn() routines. See 
the OSF! 1 System Programmer's Reference Volume 2 for more information. 

13.8 Welding 
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In certain circumstances, it is desirable to be able to alter the connections 
between the queues in a stream. An example is a loopback driver whose 
write-side queue would connect directly to its own read-side queue. 
Irregular queue connections of this kind are called welds in OSF/l 
STREAMS. 

Stream connections cannot be directly manipulated by module routines in a 
multiprocessing environment. This is because more than one queue 
resource must be held by the thread that wants to connect or disconnect 
them, and the OSF/l STREAMS synchronization mechanism requires that a 
thread acquire multiple resources before this can occur. Since this is only 
possible in the stream head, STREAMS modules and drivers cannot 
manipulate their queue pointers directly. 

OSF/l STREAMS uses an asynchronous request mechanism to weld and 
unweld queues. Within modules and drivers, the weldq() routine can be 
called to weld, and the unweldq() routine can be called to unweld, up to 
two pairs of module or driver queues. These routines prepare a request that 
is passed as a netisr request to the weld routines, which acquire the 
necessary resources and perform the q_ next and other pointer 
manipulations. 

The arguments consist of two or four queue pointers to be pairwise welded 
to one another, and a routine and argument to be called upon completion. 
Because the actual welding or unwelding is done outside of the context of 
the caller, weldq() and unweldq() must asynchronously notify the 
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requestor. The specified callback function is generally wakeup() or 
qenable( ), and the requesting thread can detect completion by inspecting 
the passed q_ nexts. 

The weldq() and unweldq() routines are documented in the OSF/ I System 
Programmer's Reference Volume 2. 

13.9 Multiplexing 

STREAMS allows multiple streams to be connected beneath the driver of a 
special multiplexing stream. A STREAMS multiplexer can associate 
multiple streams with a single controlling stream; for example, a system's 
network devices can be linked together as lower streams beneath a master 
"network stream," as in Figure 13-3. The multiplexing device shown as netO 
is a logical router implementing an OSI level 3 network protocol. 

It is up to this driver to handle the routing of data into and out of the correct 
lower streams. The driver indicates its ability to be a multiplexer by setting 
st_ muxrinit and st_ muxwinit in its q_info structure. 
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Figure 13-3. Lower Streams Multiplexed to a Master Stream 
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An application manages this new stream configuration by ioctl() I_ LINK 
and I_ UNLINK (or I_ PLINK and I_ PUNLINK) calls. Almost all the work 
is done in the stream head. 

13.9.1 Multiplexing Lower Streams 
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When a stream is to be connected under a multiplexing driver, special put 
and service procedures are substituted into the lower stream head by 
replacing its q_info fields with the contents of the driver's multiplexer 
qinits. Data is also copied from the modnle_info pointed to by the 
multiplexer qinits. 

However, the multiplexing driver at the bottom of the stream must perform 
other operations. It will probably have to initialize some internal structures, 
and will likely reset the lower stream head's q_ptr to point to them. At the 
least, it will have to be notified that another lower stream now exists and 
must accept or reject the I_LINK or I_PLINK request. Finally, the 
synchronization levels for the newly linked stream head must be adjusted as 
necessary to match the needs of the multiplexer driver. The lower stream 
head is in effect taken over by the driver. 
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The system-level stream head first performs some basic checking on the 
ability of the driver to serve as a multiplexer and on the status of the two 
streams. If these are acceptable, it proceeds by building the M_IOCTL 
message that will later be passed to the multiplexing driver. The linkblk in 
this message contains the information needed to make the link, as specified 
in the AT&T Programmer's Guide: STREAMS. 

The system-level stream head then acquires (by using csq_acquire()) the 
lower stream head and also the read queue below it to prevent messages 
coming up while the linking is active. Various values are stored in the lower 
stream head, such as flags indicating the stream is linked, and a unique 
multiplex ID is selected. The lower stream head put and service procedures 
are reset to the multiplexing driver's. Finally, the lower stream head's 
synchronization level and synchronization queue are reset to those of the 
driver. 

At this point, the upper stream head's work is done. All that remains is to 
let the driver know what has happened. The M _IOCTL message is passed 
to the driver's write put procedure. 

Here, synchronization again takes effect. The upper stream head must 
effectively call sleep() to wait for the reply from the multiplexing driver 
indicating its willingness to accept the newly linked stream. Before this 
reply (a message passed to sth _rput()) can be received, six resources must 
be released-the upper stream head's two queues, the driver's two queues, 
and the lower stream head's two queues. 

If the acknowledgement message is received and indicates success, the 
operation is done; all resources will be released and properly set. If the 
message times out or indicates an error, the entire process is reversed and 
the multiplexer reverts to two separate streams. 

13.9.2 Unlinking Multiplexed Lower Streams 

Unlinking lower streams from a multiplexer is the reverse of linking them, 
except for one special circumstance: multiplexed lower streams are not 
unlinked when they are closed; they remain active. When they are unlinked 
from their upper streams, the unlink processing must be able to recognize 
them and complete their close. 

In the case that the lower stream head is still open, the unlink operation 
must be careful to restore the various fields it reset in the link operation to 
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their former values. Unlinking the lower stream head does not require 
saving its linked values. The unlink operation merely restores the nominal 
stream head values. 

13.10 Initialization and Configuration 

The OSF/l STREAMS framework is initialized and configured at system 
startup time. The initialization process: 

• Initializes internal STREAMS data structures 

• Initializes the memory allocation and bufcall() mechanisms 

• Initializes the weld() function 

• Registers the netisrs for the scheduling, timeout, and weld mechanisms 

• Configures all the statically-bound STREAMS modules and drivers 

The STREAMS-based tty and pty subsystems, XTI interface, and other 
modules and drivers can also be dynamically configured into a running 
system. To add them, the OSF/l system administrator issues the sysconfig 
command to have the cfgmgr daemon install them. 

13.10.1 Driver and Module Configuration Options 
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OSF/1 STREAMS provides compatibility options for source code that is 
written to older versions of the STREAMS specification, or that requires 
additional synchronization from the framework. Refer to the description of 
strmod _add() in the OSFI 1 System Programmer's Reference Volume 2 for 
more information. 

The configuration options are 

STR_QSAFETY 
Supplies STREAMS synchronization for timeout() and 
bufcall() callbacks, as described in Section 13.5.7. 
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STR SYSV4 OPEN - -
Calls the module's or device's open and close procedures using 
the System Version 4 calling sequence. If this bit is not 
specified, the System Version 3.2 calling sequence is used. 
See the AT&T Programmer's Guide: STREAMS for the 
appropriate specifications. 

13.10.2 Synchronization Levels 

The OSF/l STREAMS synchronization mechanism offers flexible selection 
of synchronization levels. The choice of a synchronization level is made for 
each STREAMS driver and module based upon the structure of its code and 
data. In general, it is chosen to minimize the scope of the resource and to 
maximize STREAMS execution throughput by avoiding contention. 

At configuration, each module or driver exports its STREAMS data 
structures and constants to the framework in the streamadm passed to 
strmod _add( ) . 

Valid synchronization levels are 

SQLVL_GLOBAL 
The resource will be a global synchronization queue. All 
modules under this lock are thus single-threaded. Note there 
may be modules using other levels not under the same 
protection. This option is available primarily for debugging. 

SQLVL_MODULE 
Module-level synchronization. All code within this module or 
driver will be single-threaded. An example is a module that 
maintains shared state, such as a TCP module's port binding 
registry. 

SQLVL_ELSEWHERE 
The module is synchronized with some other module. This 
level is used for synchronizing a group of modules that access 
each other's data. A name passed along with this option is 
used to associate with other modules; the name is decided by 
convention among cooperating modules. For example, a 
networking stack, such as a TCP module and an IP module, 
both of which share data, may agree to pass the string tcp/ip. 
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SQLVL_QUEUEPAIR 
Queue-pair synchronization. Code executing on the read or 
write side of this queue will be single-threaded. Other queues 
in this module or driver may execute in parallel. This is a 
common synchronization level for most modules that process 
data and have only per-stream state, such as a TTY line 
discipline. 

SQLVL_QUEUE 
Single-queue synchronization. The read and write sides of this 
queue may execute in parallel. This is the lowest level of 
synchronization available from the OSF/1 STREAMS 
framework. It is used by modules with no need for 
synchronization, because either they share no state, or provide 
their own synchronization or locking. 

Because the stream head acts as a loopback for M_FLUSH messages, and 
in order to simplify the coding of the stream head, all stream head queues 
are synchronized at the queue-pair level. 

The mechanism for implementing these synchronization levels is quite 
simple. Each queue contains, in addition to a synchronization queue header, 
a pointer to a synchronization queue header. This pointer indicates the 
actual SQH to use to synchronize each queue's resource: 

• For SQLVL _QUEUE, it points to the queue's own SQH. 

• For SQLVL_ QUEUEPAIR, both queues point to the read queue's SQH. 

• For SQLVL_MODULE, both sides of all queues belonging to the 
module or driver point to a per-module or per-driver SQH. 

• For SQLVL_ELSEWHERE, both sides of all queues belonging to the 
module or driver point to a per-module or per-driver SQH, except that 
the SQH is dynamically allocated when the identifier string is first 
encountered. 

• For SQLVL_GLOBAL, both sides of all such queues point to a single 
global SQH. 

SQHs can be recursively acquired, so the stream head and other routines 
that acquire multiple resources can simply proceed successfully after 
initially acquiring each shared resource. 
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13.11 Streams Security Extensions 

OSF/l STREAMS can be configured with the following security extensions: 

• The architecture and internal interfaces have extensions that associate 
security attributes with each message that traverses a stream, and that 
define the attribute format used at the interface between the stream head 
and its downstream neighbor. 

• The OSF/l STREAMS programming interface has extensions that allow 
programs to obtain the security attributes associated with received 
messages, that allow trusted applications to specify the attributes to be 
attached to the messages they send, and that define the attribute format 
used at the programming interface. 

• Hooks can be configured for auditing data transfers that result from 
ioctl() calls, such as getmsg( ), which is an implemented ioctl() call, 
and special STREAMS ioctl() calls, such as I_PEEK and 
I FDINSERT. 

Compatibility has been maintained with existing programs, modules, and 
drivers that use the STREAMS programming interface. Chapter 15 
describes the security extensions. 

The only change to STREAMS data structures in a secure configuration is to 
the mblk _ t structure, which receives a single new field: 

b attr A pointer to another mblk _t containing the security attributes 
of the originator of the message. The attributes are shared 
with any b _cont mblk _ts linked to this message. 

Handling of attributes of each message is normally performed only at the 
stream head, and in OSF/l Release 1.1 the attributes are not visible to the 
module or driver writer. 
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Chapter 14 

OSF/1 Logical Volume Manager 

In traditional UNIX systems, each file system must completely reside on a 
single physical volume (a disk drive or portion of a disk drive). The Logical 
Volume Manager (LVM) subsystem provides a level of abstraction between 
physical volumes and the file management subsystem that allows a file 
system, or even a single file, to span multiple physical volumes. 

14.1 Overview 

The LVM implements and manages logical volumes, each of which can 
represent one or more physical volumes. From the kernel's perspective, a 
logical volume looks like a physical volume, and the LVM looks like the 
device driver that manages the logical volumes. 
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The LYM provides the following features for managing disk storage in 
OSF/1: 

Disk spanning 
The LYM enables file systems and raw part1t10ns to span 
multiple physical disks, without requiring modifications to 
existing system and application software. The amount of data 
stored in a single file system can exceed the amount of disk 
space actually available on any one disk in the system. 

Dynamically resizable volumes 
Unlike a physical disk system, whose volume sizes cannot be 
changed, the logical volume storage area can be resized 
dynamically. This allows an administrator to expand the 
amount of disk space allocated to a file system or partition 
without the time-consuming process of backing up the data, 
reinitializing the file systems, and restoring the data. 

Replication Replicated, or mirrored, data provides data reliability in the 
event of hardware failure, such as when a disk sector becomes 
defective. It can also enhance the performance of some 
applications by maintaining multiple copies of a block for 
faster access. 

In addition, the LYM also provides the following: 

Bad sector relocation 
The LYM can detect and revector bad sectors that develop on 
a disk drive. If the disk driver supports hardware bad block 
replacement, the LYM will automatically use it; otherwise, the 
LYM remaps the defective sector in software. 

Dynamic configuration capability 
The LYM subsystem can be dynamically configured into the 
OSF/1 kernel at runtime, rather than statically configured at 
system build. 

The main component of the LYM subsystem, the LYM device driver, creates 
and exports logical volumes. The LYM device driver maps the storage 
space for the logical volumes onto the physical volumes. Figure 14-1 
illustrates the relationship between the LYM driver and the rest of the 
operating system. 
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Figure 14-1. Relationship of the LVM to Other System Components 

Application 
Programs 

Kernel Interface 

1/0 System 
Calls Virtual 

Raw I File 
Memory 

Devices Systems 

Device Driver Interface 

L VM Device Driver 

Device Driver Interface 

Disk Drivers 

This chapter assumes that the reader is familiar with the UNIX I/O system, 
traditional UNIX disk subsystems, and UNIX device drivers. 

14.2 LVM Terms and Concepts 

This section describes some terms and concepts that will help in 
understanding the LVM. It includes: 

• A list ofLVM component terms 

• A description of LVM mirroring 

• A description ofLVM quorums 

• A description of logical-to-physical mapping 
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14.2.1 LVM Component Terms 
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The following list describes general LYM component terms. These terms 
refer to disk drives and their logical and physical components as the LYM 
sees them. 

volume 

physical volume 

logical volume 

volume group 

physical extent 

logical extent 

A block storage device. It corresponds to a disk 
drive, or a disk partition in a traditional UNIX 
system. It is also used to refer to a logical volume 
implemented by the LYM. 

A contiguous area of a physical disk drive. This 
can mean either an entire disk or a portion of the 
disk (for example, a UNIX partition). Physical 
volumes are specified to the LYM through device 
pathnames, such as /dev/dkOc. Usually the LYM 
uses an entire physical disk as a physical volume, 
but it allows for using individual UNIX partitions 
as physical volumes. 

A volume implemented by the LYM. To users and 
file systems, logical volumes appear as devices. 
There are block and character device nodes to 
perform I/O and system commands on the logical 
volume. A logical volume can be thought of as a 
virtual disk drive, although it may map to multiple 
physical volumes. 

A set of physical and logical volumes, and the 
mappings between them. Logical volumes can 
only map to physical volumes that are in the same 
volume group. All of the administrative and error 
recovery features of the LYM center around the 
volume group. 

The unit of allocation of physical volume space. 
All of the physical extents within a given volume 
group are the same size. The LYM restricts the 
extent size to be a power of 2 between 1 MB and 
256MB. 

Each logical volume consists of a number of 
logical extents. These logical extents may, but do 
not need to, map to physical extents. Logical 
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extent and physical extent sizes are equal within a 
volume group. Because the logical and physical 
extent sizes are equal, this chapter often uses the 
generic term extent size to indicate both sizes. 

Each logical extent can map to 0, 1, 2, or 3 physical 
extents. When a logical extent maps to 2 or more 
physical extents, the extent is mirrored. A logical 
extent that is mapped to no physical extent cannot 
be used to store data. 

The smallest unit of 1/0 to a physical disk, and 
hence to a physical volume. This is typically 512 
bytes. The sector size is significant to the LVM in 
that it is the unit of defect relocation. The extent 
size must be a multiple of the sector size. The term 
block is often used as a synonym for sector. 

The smallest unit that is typically read or written 
by the OSF/l system. This size is significant to the 
LVM because multiple I/0 operations within the 
same page are serialized. Serialization is 
necessary for the LVM's fault recovery 
mechanisms to work. It is possible to perform 1/0 
on less than a page size area. The operation is 
suspended until any other l/0 to the same page 
finishes. 

The page size is typically either 4KB or 8KB. It is 
chosen by the system vendor to be the smaller of 
the VM page size (see Chapter 6) and the file 
system block size. 

Each logical track group (LTG) consists of 32 
consecutive pages. The LVM uses the LTG to 
ensure mirror consistency, and to perform mirror 
resynchronization. The size of the LTG cannot be 
larger than the maximum physical disk I/0 length. 
The LTG is not visible outside of the LVM driver. 
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14.2.2 Mirroring 

The LYM can improve data reliability by replicating the data that is stored 
in a logical volume. Data can be singly mirrored (one additional copy) or 
doubly mirrored (two additional copies). If the data is singly mirrored, two 
identical physical extents (containing the replicated data) are assigned for 
each logical extent. If the data is doubly mirrored, three identical physical 
extents are assigned for each logical extent. 

The LYM can transparently recover from the loss of one copy of the data by 
retrieving another (mirrored) copy of that lost data. Depending on how 
many mirrored copies of a block of data there are, the LYM can redirect I/O 
intended for the missing data to a secondary or tertiary copy of the data. 

The consistency of the mirrored copies is maintained by the LYM, so that 
the application will always be guaranteed to read the same data, regardless 
of which mirror copy the data is from. 

14.2.3 Quorums 

The LYM uses the concept of a quorum to keep track of volume group state. 
A quorum is the majority of a group of physical volumes (more than half) 
that must contain identical descriptor information. This guarantees that the 
LYM is operating with accurate physical volume state information (such as 
the volume group ID, the number of currently installed physical volumes 
that are in the volume group, and so on). Without a physical volume 
quorum, any operations that update the volume group state or configuration 
information are disallowed. 

14.2.4 Logical-to-Physical Mapping 
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Applications see the logical volume as a normal block device. The LYM 
driver maps the logical volume requests to physical volume accesses to 
store and retrieve the user's data. This translation is completely transparent 
to the application. Each physical and logical volume is sectioned into 
physical and logical extents, respectively. Figure 14-2 illustrates the 
relationship between logical and physical volumes. As the figure shows, 
separate device drivers interface to the logical and physical volumes. In the 
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example, one of the logical volumes has been mirrored, or replicated, onto 
two physical volumes. 

Figure 14-2. A Mapping of Logical to Physical Volumes 
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14.3 LVM Disk Layout 

Because logical volumes are mapped to physical volumes for the storage of 
data, this section describes how data is arranged on the physical volumes. 
The LVM driver stores configuration and information data on reserved 
portions of the physical volumes. The physical volume is separated into 
four regions to store the information. These areas include: 

• The physical volume reserved area 

• The volume group reserved area 

• The user data area 

• The bad sector relocation pool 

Figure 14-3 shows the general layout of a physical volume. 

Figure 14-3. Physical Volume Layout 

Physical Volume Reserved Area '----­

Volume Group Reserved Area '-----

User Data Area '-----

Bad Sector Relocation Pool '-----

J 4.3.1 Physical Volume Reserved Area 
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The physical volume reserved area (PVRA) contains the structures 
describing the configuration of the disk drive. This information consists of 
the LVM record and the bad sector directory. Every physical volume 
managed by the LVM contains a PVRA. 
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The LVM record contains the following information: 

• The physical volume unique identifier 

• The unique identifier of the volume group the physical volume is a 
member of (if it belongs to a volume group) 

• The amount of space available on the physical volume 

• The current size of physical extents on the physical volume 

• The space allocated for each physical extent, in sectors 

The physical extent space must be at least as large as the physical extent 
size. The physical extent space can be made greater than the physical 
extent size to provide additional storage for bad sector relocation. 

The bad sector directory records all of the sectors that have been software 
relocated (where a new sector from the bad sector relocation pool is 
assigned for the bad sector), as well as all of the sectors that have been 
diagnosed as bad and are waiting for relocation. 

Duplicate copies of both the LVM record and the bad sector directory are 
also maintained in the PVRA for reliability. 

14.3.2 Volume Group Reserved Area 

The volume group reserved area (VGRA) describes the volume group that 
contains this physical volume. It consists of three data areas: 

• The volume group descriptor area (VGDA) 

• The volume group status area (VGSA) 

• The mirror consistency record 

The VGDA and VGSA are maintained on physical volumes. Their presence 
on a physical volume is optional, and is specified when the physical volume 
is installed into the specified volume group. The physical volumes 
containing these areas participate in the quorum calculation (see Section 
14.2.3). If a physical volume has a VGDA and VGSA, the LVM maintains 
two copies of both of these areas. Two copies of the mirror consistency 
record are also maintained on all physical volumes in the volume group. 
The following subsections describe these data areas. 
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14.3.2.1 Volume Group Descriptor Area 

The YGDA is used at the activation of the volume group. It contains 
configuration information such as the volume group ID number, the 
maximum number of logical volumes allowed in the volume group, the 
number of currently installed physical volumes in the group, and lists and 
descriptions of logical and physical volumes in the volume group. This 
region is maintained under control of the administrative commands. 

For the LYM to decide that it has a valid YGDA, it must locate a quorum of 
physjcal volumes in the group. This guarantees that the LYM always 
operates with the most recent configuration information. 

14.3.2.2 Volume Group Status Area 

The YGSA describes and maintains the current state of physical volumes in 
the volume group. It contains one bit of state for each physical volume in a 
group, plus one bit of state for each physical extent in each physical volume. 
Other fields in this area contain the maximum number of physical volumes 
allowed in the volume group and the maximum number of physical extents 
on any physical volume. The information in the YGSA area needs to be 
constantly updated to ensure data integrity. For example, if an operation 
affects the state of a physical extent, the associated bit in the YGSA must be 
updated to reflect this changed state. The LYM driver updates the VGSA 
automatically to reflect the volume group state. 

14.3.2.3 Mirror Consistency Record 

The mirror consistency record contains entries for all regions in the volume 
group that may be inconsistent due to write operations in progress. The 
mirror consistency record is always written to one of the physical volumes 
containing the physical extents that are the mirrors of the logical extent 
being modified. Following a system crash, only the regions in the volume 
group marked in the most recent mirror consistency record need to be 
resynchronized. 

If a physical volume is offiine when the volume group is activated, the LYM 
driver can reduce the number of extents it must resynchronize in the 
following way. Since only the most recent mirror consistency record is used 
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for recovery, the driver assumes that any physical volume that is offtine 
when the group is activated, but was online when the group was last active, 
might contain the newest mirror consistency record. Only those logical 
volumes that are mirrored onto the missing physical volume are assumed to 
be out of synchronization, and are forced to be resynchronized. The number 
of required resynchronizations needs to be reduced only if a physical 
volume goes offtine at the same time the system crashes. If the YGSA can 
be updated to note that the physical volume is offtine, then the driver can 
tell that it could not contain the most recent mirror consistency record. 

14.3.3 User Data Area 

The user data area stores user data, which may be a file system, virtual 
memory paging space, or application data. The user data area is divided 
into fixed-size extents (physical extents), and all allocation of physical disk 
space to logical volumes is performed in units of these extents. 

14.3.4 Bad Sector Relocation Pool 

The bad sector relocation pool region consists of disk sectors to which the 
LYM device driver redirects the l/O intended for defective disk sectors. The 
LYM device driver handles both soft and hard disk errors. 

If an uncorrectable error occurs on a read operation, the LYM will first 
redirect the I/O to a mirror copy (if one exists) to obtain the data, then 
allocate a sector from the bad sector pool and write data into the new sector. 
This restores full replication of the mirrored data. 
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14.4 Programming Interfaces 

The LVM has two programming interfaces. The User Application 
Programming Interface is used by applications that use an LVM logical 
volume to store data. The Administrative Application Programming 
Interface is used by system administration applications that manage the 
configuration and operation of the volume group and the volumes it 
contains. 

14.4.1 User Application Programming Interface 

The LVM uses the general UNIX system calls that allow applications to 
open, manipulate, and close files: 

open() 

close() 

read() 

write() 

ioctl() 

Opens a logical volume 

Closes a logical volume 

Reads from a logical volume 

Writes to a logical volume 

Performs control operations on a logical volume 

The LVM OPTIONGET and LVM OPTIONSET 
operations allow the application to exercise control over raw 
(character) device operations. 

For information about these system calls, see the OSF/ 1 Programmer's 
Reference. 

14.4.2 Administrative Application Programming Interface 
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The LVM uses the ioctl() function to control the configuration and 
operation of the volume group and the logical and physical volumes that it 
contains. This interface is used by the administrative commands to carry 
out the operations requested by the system administrator. 

For information about the ioctl() interfaces used by the administrative 
commands, refer to the lvm reference page in the OSF/l Programmer's 
Reference. 
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14.5 LVM Device Driver Architecture 

This section describes the data structures and external entry points into the 
LYM device driver, and provides a high-level description of the driver 
operations. 

All parts of the LYM device driver are parallelized for multiprocessor 
operation. Locks are used around critical data structure accesses to ensure 
that information is not corrupted. 

14.5.1 Data Structures 

The LYM device driver uses both internal and on-disk data structures (those 
on the YGRA) to describe the volume groups, logical volumes, and physical 
volumes that it is managing. The LYM device driver uses internal data 
structures to process 1/0 requests and keep track of the state of physical and 
logical volumes. The main structures are described in this section. 

The LYM device driver uses the UNIX block buffer structure, buf, to keep 
track of logical requests, and uses an LYM-specific structure, pbuf, to keep 
track of physical requests. The pbuf is a buf structure with additional fields 
to keep track of the correspondence between physical requests and logical 
requests. It includes information for bad sector defects and the physical 
volume that the request is intended for, and also maintains a list of requests. 
There is at least one pbuf structure associated with each buf structure being 
processed by the LYM. 

The volume group structure, volgrp, is allocated when the volume group is 
configured into the system. This structure contains general information 
about the group, such as the extent size, number of logical and physical 
volumes, number of open logical volumes, and pointers to an array of 
logical volume and physical volume structures. 

The logical volume structure, lvol, is allocated when the volume group is 
activated. It contains information about a specific logical volume, including 
a work-in-progress hash table, the logical and physical extent arrays, 
scheduling policy functions, and logical volume option flags. 

The extent map structure is allocated when the volume group is activated. 
This map contains one entry for each logical extent in the logical volume. If 
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the logical extent is mapped to a physical extent, then each entry contains 
the physical extent number and the physical volume number that the extent 
resides on. 

The physical volume structure, pvol, is allocated when the associated 
physical volume is attached to the volume group. It contains information 
about a specific physical volume, including pointers to structures for the bad 
sector directory on the physical volume and the volume group structure that 
the physical volume belongs to. 

Figure 14-4 illustrates the relationships between the volume group data 
structures. The primary, secondary, and tertiary blocks refer to the mirrored 
copies of the extent maps. 



OSF/1 Logical Volume Manager 

Figure 14-4. Data Structures Describing a Volume Group 
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The LYM device driver is a normal device driver with character driver entry 
points for open, close, read, write, and ioctl, and block device entry points 
for open, close, and strategy. The LYM device driver calls into the 
strategy entry point in the physical disk driver to perform actual 1/0 
operations. 

Iv_ open() Called when a logical volume is mounted as a file system, or 
the device is opened for block or character access. 
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Iv_ close() Called when a logical volume is unmounted or when the last 
close() occurs on the open file corresponding to the device. 

Iv _read() Called by the read() routine to translate the character I/0 
requests to block I/O requests. 

Iv_ write() Called by the write() routine to translate the character I/0 
requests to block I/0 requests. 

Iv _ioctl() Called by the ioctl() routine to manage the volume group. 
The Iv _ioctl() routine performs the specified request. (Refer 
to the lvm reference page in the OSFI 1 Programmer's 
Reference for a description of the possible requests.) 

Iv _strategy() 
Provided for block device requests. It processes logical block 
requests, and takes care of overlapping requests for these 
requests. 

To the OSF/1 kernel, the LVM device driver behaves like an ordinary disk 
driver. 

14.5.3 Flow of Control 
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For a raw I/O request to a character logical volume device, the device driver 
works as follows: 

1. An application issues a read() or write() on a file descriptor 
corresponding to the character special file for the logical volume. 

2. The LVM device driver Iv _read() or Iv_ write() entry point is called 
through the character device switch to process the read or write 
request. 

3. The LVM device driver I/0 routine calls the kernel physio() routine, 
which performs much of the raw I/0 work and issues one or more 
requests to the Iv _strategy() entry point, as necessary. 

4. The Iv _strategy() entry point receives the I/0 request. The LVM 
driver performs all of the mapping, mirroring, bad sector relocation, 
and any resulting status updates required by the request. For each 
physical I/0 operation required, the LVM driver issues a request to the 
physical volume driver. 
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5. The physical volume driver strategy routine arranges to transfer the 
data. On completion, the physical volume driver calls the kernel 
biodone() routine, using the physical request buffer header. The 
biodone() routine then invokes a callback in the LYM driver. 

6. Once the driver determines that the logical request is complete, it 
invokes the biodone() routine with the logical request buffer header 
to notify the original requestor that the 1/0 is complete. 

File system and block device 1/0 requests to the LYM device driver are 
passed directly to Iv_ strategy() through the block device switch, where 
they are processed in the same manner as raw J/0 requests (starting from 
step 4). 

14.6 Driver Theory of Operation 

A high-level description of the LYM device driver flow of control for a raw 
I/0 request was provided earlier in the chapter. This section provides a 
more detailed description of the operations the LYM device driver performs. 

The LYM device driver is divided into the following layers: 

• Configuration and raw I/0 layer 

• Strategy layer 

• Mirror consistency manager layer 

• Scheduler layer 

• Status area manager layer 

• Physical layer 

An LYM request is processed by each layer before being passed to the next 
layer. Once the I/0 request is complete, it returns through each layer to the 
requestor. Some of the layers initiate their own 1/0 requests that must be 
completed before a request from a higher layer can proceed. For example, a 
mirrored write must be blocked at the mirror consistency layer until the 
mirror consistency record has been written to the disk. 
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14.7 LVM Configuration and 1/0 Layer 

The LYM configuration and raw I/O portion of the driver implements the 
programming interface to the LYM driver. This includes both configuration 
operations and raw device I/0. This portion of the driver maintains the 
operational information required by the remainder of the driver, and initiates 
I/O operations necessary to change the configuration. 

14.7.1 Driver Dynamic Configuration 

The LYM device driver can be dynamically configured into the OSF/l 
kernel at runtime, rather than statically configured at system build. When 
the OSF/l system receives a configuration command for the LYM, it invokes 
the LYM configuration routine to allocate and set up volume group 
structures. It also registers the LYM device driver entry points in the device 
switch table. When the LYM receives a valid unconfiguration request, it 
deallocates all of the allocated resources. The sysconfig command controls 
the performance of these operations. 

14.7.2 Volume Group Configuration 
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The administrative application programming interfaces can be divided into 
two classes: those that modify the volume group configuration, and those 
that return information about the current state of the volume group. The 
interfaces that return information do not cause any disk I/0 transfers to 
occur because the LYM device driver maintains in-memory copies of all 
configuration and status data structures. The requested information is 
looked up, formatted according to the interface definition, and returned to 
the caller. The interfaces that change configuration information are more 
complex because they need to write any changes to the physical volumes, 
and also need to ensure that operations in progress are not disrupted. 

To simplify the driver operations, the LYM driver maintains two versions of 
the configuration and status information. One version is an exact image of 
the information as it appears on the physical volume, in the PYRA, YGDA, 
or YGSA. The second version uses the internal data structures described in 
Section 14.5 .1. The internal version controls the actual operation of the 
volume group, while the on-disk image represents the state after any 
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configuration change that is in progress completes. The order of 
modification of the two sets of structures depends on the type of operation to 
be performed; sometimes the internal version is updated before the on-disk 
version, sometimes afterwards. These two versions are described in the 
following subsections. 

14.7 .2.1 Modifying the On-Disk Data Structures 

The LYM driver creates a special logical volume, called the control device, 
to maintain the YGRA. The YGRAs from all physical volumes in the 
volume group are mapped into this control device. This way, the data 
structures can be read or updated through an appropriate 1/0 request to the 
Iv _strategy() routine. 

Interfaces that update the YGRA must write multiple copies of the area so 
that if the system crashes, the change will be visible after reboot. A change 
is only considered permanent if it is propagated to a quorum of physical 
volumes. 

The operation of updating these multiple locations can be time consuming 
(and may fail), so the LYM driver does not suspend other operations to wait 
for the YGRA updates to complete. 

14.7.2.2 Modifying the Internal Data Structures 

The internal data structures used by the LYM to describe the configuration 
of a logical volume are not allowed to change while a logical volume 1/0 
operation is in progress. This simplifies the bad block and mirror 
consistency management code, as they need not be concerned with changes 
in extent allocation between operation initiation and completion. 

The configuration layer is able to change the configuration information 
while a logical volume is in use by pausing the logical volume. This causes 
the strategy layer (described in Section 14.8) to block any future 1/0 
requests. Once any in-progress 1/0 requests complete, the configuration 
layer makes the necessary modifications to the data structures, and then 
continues the logical volume. The configuration layer does not perform any 
1/0 operations between the pause and continue, so the logical volume 
operation is not disrupted significantly. 
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14.7.2.3 Example: Deallocating A Mirror from a Logical Volume 

As an example of a configuration operation that could result in loss of data if 
not implemented correctly, the deallocation of a mirror from a mirrored 
logical volume is described in this section. 

In this example, the configuration layer must stage the modifications to the 
internal and on-disk structures to guarantee that user data will never be lost 
as the result of a system crash in the middle of a configuration operation. 
The order in which modifications are performed is important. 

The deallocation (LVM _ REDUCELV) of physical extents from a mirrored 
logical volume proceeds as follows: 

1. The input parameters are checked for validity, to minimize the errors 
that can occur during the operation. 

2. The logical volume is paused. This guarantees that there are no 
mirror writes in progress. 

3. The in-memory image of the on-disk VGDA is modified so that it does 
not include the deallocated extents. 

4. The internal extent maps are marked so that the mirror consistency 
manager will not use the to-be-deallocated mirror as a location for the 
mirror consistency record. (See Section 14.3.2.3 for more information 
about the mirror consistency record). The mirror is still present in the 
extent map, so it will continue to be accessed normally. 

5. The logical volume is continued. 

At this point, none of the on-disk data structures have been changed. 

6. The in-memory image of the VGDA is propagated to the physical 
volumes. Once the first VGDA is modified, the change will be 
permanent if that VGDA is present on reactivation. Once a quorum of 
physical volumes has been updated, the change is guaranteed to be 
permanent. 

While this operation is in progress, the internal extent maps still show 
the old allocation. This ensures that if a crash occurs before the 
configuration change is committed, any user data will be correctly 
written to all mirrors. 

Once the new VGDA is committed to disk, the LVM driver will 
recognize that the mirror was deallocated when the volume group is 
reactivated, even if the system crashes. 
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7. The logical volume is paused again. 

8. The internal extent maps are updated to reflect the new configuration, 
without the deallocated mirror. 

9. The logical volume is continued, and the configuration change is 
complete. 

This procedure ensures that data is updated correctly. If the structures were 
updated in a different order than described here, there would be a risk that 
the mirror would not be deleted from the VGDA description, and that data 
would not be up-to-date. If the system crashed while this state existed, user 
data would be corrupted. 

14.7.3 Raw 1/0 Layer 

The raw I/0 layer is entered whenever the LYM device driver receives a 
character 1/0 request. The read or write entry point transforms the request 
into a block request by first generating a raw buffer for the request, then 
calling physio( ). 

The Iv _strategy() routine, which processes the block request. 

14.8 Strategy Layer 

The strategy layer processes logical block requests from the configuration 
and 1/0 layer, the VM subsystem, and the block buffer cache. It validates 
and serializes logical block requests before passing them to the next layer 
(mirror consistency management). 

When the strategy layer receives an I/O request, it first ensures that the 
request is in whole disk blocks, and that it does not cross logical track group 
boundaries. The strategy layer rejects requests that it judges invalid, and 
notifies the requestor through a call to the biodone() routine. 

If logical requests overlap block ranges, the strategy layer serializes these 
requests in First-In-First-Out (FIFO) order. Serializing requests at this layer 
ensures that bad block relocation and mirror synchronization are performed 
correctly in the lower layers. The strategy layer uses a work-in-progress 
queue to keep track of all outstanding requests. If an overlapping request 
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arrives, the strategy layer blocks that request until all earlier requests to the 
overlapping pages complete. When each request finishes, requests that are 
blocked waiting for it are then processed. Logical requests to overlapping 
block ranges complete in FIFO order. 

The strategy layer also controls access to the logical volume configuration 
data structures. By controlling these accesses, the strategy layer ensures 
that the data structures remain static for the lower layers of the driver while 
an I/O request is in progress. When the configuration layer needs to modify 
the configuration of a logical volume, it first pauses the logical volume 
(blocking new I/O operations), and waits for all in-progress operations to 
complete. The configuration data structures are updated, and then the 
logical volume is released. Section 14.7.2.2 describes this process. 

The strategy layer also initializes the logical volume options for the request. 
These options include bad block relocation, write verification, and mirror 
write consistency. 

Once it has verified that the request is valid and does not conflict with 
earlier requests, the strategy layer sends it to the mirror write consistency 
management layer for further processing. 

14.9 Mirror Consistency Management Layer 
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The mirror consistency management layer manages the operations required 
to maintain mirror consistency. The mirrors must be consistently maintained 
so that an application always receives the same data regardless of which 
mirror copy this data was obtained from. The LVM mirror consistency 
manager guarantees that two consecutive reads of the same logical block 
with no intervening write always have the same result, even across a system 
crash. This condition must be maintained to ensure that applications do not 
see unexpected results. 

The data on a mirror can become stale if the LVM driver cannot update all 
copies of the data when the mirrored logical volume is written. This can 
occur if the system crashes before all mirrors have been updated, or if one or 
more mirrors are not available when the write occurs. The LYM monitors 
these conditions, and prevents reads of stale data from the out-of-date 
mirrors. When the data becomes inconsistent, mirrored copies of data need 
to be resynchronized to restore the replication. The mirror consistency 
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management layer recovers data from an accessible copy of the data and 
writes this data to the remaining mirrors to reestablish mirror consistency. 

The mirror consistency management layer passes all requests that do not 
need mirror consistency checking directly to the scheduler layer. This 
includes all reads, any nonmirrored writes, and any write for which the 
mirror write consistency is not required. 

If mirror write consistency is required, the affected area must be marked as 
"in transition" in the mirror consistency record before the write is allowed to 
begin. If the mirror consistency manager needs to update the mirror 
consistency record to guarantee the described condition, it blocks the 
request, and initiates an 1/0 request to write the record to a physical volume. 
When the consistency record update is complete, the original write request 
is then passed to the scheduler layer. 

The mirror consistency record entry persists until no writes are outstanding 
to the area, and the entry is needed for a different region of a logical volume. 
The entry will also be removed if the logical volume is closed. This 
algorithm attempts to minimize the additional disk writes needed to 
maintain mirror synchronization across crashes, while placing an upper 
bound on the amount of mirrored data that may need to be synchronized 
following a crash. 

14.10 Scheduler Layer 

The layers preceding the scheduler layer deal with logical 1/0 requests that 
refer to a block within a logical volume. The scheduler layer converts these 
logical 1/0 requests into physical 1/0 requests, and then initiates the actual 
1/0 operations. 

14.10.1 Scheduling Policies 

How the LVM handles a logical request depends on whether the data that it 
is accessing is mirrored or not, and what type of mirroring is applied. This 
can be controlled by the scheduling policy selected for the logical volume. 
There are currently three LVM scheduling policies: the reserved policy, the 
sequential policy, and the parallel policy. 
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The reserved policy, which has no mirroring, schedules operations for the 
volume group control device. This is the simplest of all of the policy 
scheduler routines because logical volume 0 only contains the volume group 
descriptor area and volume group status area, and cannot have mirrors. 
Only one physical buffer needs to be allocated for each logical operation. 
This policy is not available for use by logical volumes other than the control 
device. 

The sequential policy accesses the primary mirror first, then the secondary 
mirror, and finally the tertiary mirror. In the case of the read operation, each 
subsequent mirror is read only if the previous read fails. This requires only 
one physical buffer to be allocated for the logical operation, regardless of 
the number of mirrors. 

The parallel policy performs writes for all of the mirrors of a logical volume 
simultaneously. This policy requires one physical buffer for each mirror of 
the logical volume, up to three buffers. For read operations, it selects the 
physical volume judged to be the best available. This is the physical 
volume with the fewest outstanding I/O operations. 

The LVM driver is structured so that other scheduling policies may be easily 
added to the source code. 

14.10.2 Scheduler Operations 
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All logical requests require physical buffers before they can be scheduled. 
When the scheduler layer receives a request from the mirror consistency 
layer, it places the request on the scheduler's physical buffer pending queue. 
Each request is removed from this queue when enough physical buffers 
become available to initiate the I/0, according to the selected policy. 

Once the physical buffers are allocated, the scheduler uses the logical 
volume configuration information to determine the physical volume and the 
physical block number that corresponds to the requested logical block. The 
physical buffers are initialized with this information, and then passed on to 
the status area manager. 

When the status area manager completes a physical request, the scheduler 
determines if the logical request is complete. For a mirrored read operation, 
the scheduler will attempt alternate mirrors if the physical request fails. For 
a mirrored write operation, the scheduler must initiate and wait for all the 
writes to complete before declaring that the logical operation is complete. 
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When the scheduler layer is finished with a request, it notifies the mirror 
write consistency layer. 

14.11 Status Area Manager 

The status area manager maintains the state information in the VGSA. 
(Refer to Section 14.3.2.2 for a description of the volume group status area.). 
When a volume group is activated, this information is read. This 
information is later updated to account for volume group configuration 
changes or 1/0 errors. This area tracks which physical volumes are online, 
and whether the physical extents contain valid (nonstale) data. 

The status area manager inspects each request from the scheduler, 
determines whether the request should be allowed, and whether the request 
should result in a status area update. The status area manager disallows 
reads from stale mirrored data, and causes such requests to be returned to 
the scheduler without performing any 1/0. A write request can cause the 
status area to need to be updated in several ways: 

• The physical layer indicates a write failure. 

• The write is not initiated because the physical volume is offtine. 

• A resynchronization operation completes. 

If any of these events occur, the status area manager marks the change in the 
VGSA, and initiates a write to all copies of the VGSA in the volume group. 
The request that caused the status update is released once the VGSA has 
been propagated to all locations. 

If write errors make it impossible to update the volume group status area, 
then the mirror consistency record entry for the failed request cannot be 
released. This occurs when the volume group has lost quorum, which means 
that an insufficient number of physical volumes are present to guarantee that 
the operation is permanent. 
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14.12 LVM Physical Layer 

The physical layer is responsible for initiating and terminating physical 1/0 
requests, and it detects, corrects, and relocates any bad sectors found on the 
physical volume during operations. The physical layer maintains the bad 
sector directory on each physical volume. 

When the physical layer receives a request, it checks for any known bad 
blocks. If there are one or more bad blocks, the physical request is split up 
into multiple requests as follows: each region of the request that contains 
no bad blocks is processed, and then a separate request is issued to handle 
the known defect. This is repeated for all defects found in the request. The 
physical layer processes these separate requests sequentially. When the 
entire physical operation is completed, the physical layer notifies the status 
area manager. 

14.12.1 Revectoring Known Defects 

If a physical request contains a known, relocated defect, the physical layer 
simply substitutes the physical block location indicated in the defect 
directory. The physical driver reads or writes the alternate location, and the 
operation continues. 

14.12.2 Detecting New Defects 
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If the physical driver encounters a bad sector during the 1/0, it sets the error 
fields in the pbuf structure to indicate that there is a media error on the disk, 
and calls biodone() to notify the LYM driver physical layer. The physical 
layer then performs the required bad sector processing. 

If a read operation encounters a bad sector, the physical layer cannot 
immediately relocate the sector because it does not have the data that the 
sector should contain. In this case, the physical layer puts an entry in the 
physical volume defect directory. This entry labels the sector as bad, with 
no relocated sector address, and with a status indicating that sector 
relocation is desired. 
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At this point, the physical request is terminated and returned to the 
scheduler. If the scheduler cannot locate another mirror copy to read the 
data from, an 1/0 error will eventually be returned to the original requestor. 

14.12.3 Relocating and Repairing Defects 

If a physical request is a write and it contains a sector that is waiting for 
relocation, the request is sent to the physical device driver with hardware 
relocation requested. This allows the physical volume driver to relocate and 
repair the defect if it is able. 

If the physical volume device driver indicates that it has successfully 
relocated and rewritten the defective sector, the physical layer can delete 
the defect directory entry for this sector. From the standpoint of the L VM 
driver, the defect no longer exists. If the physical volume driver cannot 
relocate the defect with hardware, then the physical layer of the LVM driver 
performs software relocation. It assigns a new sector from the bad sector 
relocation pool (see Section 14.3.4) and substitutes the new location for the 
bad sector. It then updates the defect directory on the physical volume to 
indicate that the sector has been successfully relocated. 

14.12.4 Dynamic Detection, Relocation, and Repair 

The scheduler layer can use the operations described in the preceding 
sections to dynamically detect, relocate, and repair defects on a mirrored 
logical volume. 

If a mirrored read operation encounters a bad sector, the scheduler layer first 
performs the operations necessary to read a good copy. The scheduler layer 
then converts that successful mirror read into a write request, and the 
physical layer is reinvoked. The physical layer detects a write operation to 
a known defect that needs to be relocated, and proceeds with the normal 
relocation operation. 

This technique maintains full mirror replication of all blocks in a logical 
volume, even when defects develop on any of the mirrors. 
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Chapter 15 

Security 

The primary goal of the OSF/1 security architecture is to consistently 
enforce a security policy. A security policy, as defined by the National 
Computer Security Center (NCSC) in its statement of trusted computer 
system evaluation criteria (commonly called the Orange Book because of its 
color), is "a set of rules that are used by the system to determine whether a 
given subject can be permitted to gain access to a specific object." 1 

This chapter provides an overview of the OSF/1 security features, followed 
by details of their implementation. Because the security system is 
motivated by government requirements, this chapter includes an explanation 
of the NCSC security model and often includes references to the Orange 
Book. 

1. Trusted Computer System Evaluation Criteria (TCSEC) (CSC-STD-001-83), U.S. Department of 
Defense, National Computer Security Center, August 15, 1983. Requirement 1. 
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15.1 Security Overview 
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There are two main reasons for making a system secure. One is that system 
purchasers often demand specific levels of security, certified through formal 
evaluation. Many government contracts now require stricter levels of 
security than C2. (See Section 15.2 for information about security levels.) 
OSF/l is B 1 secure, with some features beyond B 1. The other reason is safe 
performance in the commercial arena. Secure systems offer protection 
against industrial espionage, crackers, and human errors, which have the 
potential to misuse or destroy data. 

OSF/1 uses a combination of command authorizations, privileges, login user 
IDs (LUIDs), and auditing to trace operations back to a particular user. In 
contrast, in traditional UNIX systems, many users can be running as root 
and sharing the root password, and there is no easy way to record which user 
performs which actions. OSF/l does not use the /etc/passwd file, which in 
traditional UNIX systems is visible to all users, to store passwords. In 
OSF/1 they are stored in a protected database, and a variety of 
authentication mechanisms have been added. 

OSF/l security features revolve around the interaction between subjects and 
objects. Subjects take active roles in operations, and include users and 
processes. Objects have a passive role, and include files, directories, 
character and block special devices, pipes, symbolic links, message queues, 
pseudo-ttys, shared memory segments, semaphores, UNIX domain sockets, 
and processes in certain cases. For example, when processes are targets for 
signal delivery, they are objects. When a user is running a debugger process 
to debug another process, the process being debugged is an object. 

The OSF/l security features include the following: 

Access control mechanisms 
OSF/l uses the following mechanisms to control access to 
objects: 

• Access control lists (ACLs) for objects allow owners to 
specify who can have what access to their data. This 
extends the normal UNIX discretionary access control 
(DAC) policy by increasing its flexibility. DAC attributes 
can be changed at the discretion of the owner of the object. 

• Mandatory access control (MAC) involves enforced 
restrictions on objects, which cannot be changed at the 
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discretion of the creator or owner or user. Subjects are 
assigned levels of trust (clearances), and objects are 
assigned degrees of sensitivity. Both notions are 
represented with sensitivity labels and combine a 
hierarchical classification with a nonhierarchical set of 
categories (or compartments). 

Authorizations and privileges 
To reduce the need for users (and thereby processes) to run as 
root, OSF/l uses authorizations and privileges. Command 
authorizations restrict certain operations to designated users. 
Kernel authorizations grant certain security policy overrides to 
trusted applications. Privileges give processes rights to access 
operating system functions. Each process has a kernel 
authorization set, which is the set of privileges for which the 
process's user is authorized. 

A process also has a base privilege set and an effective 
privilege set. The base privilege set is the set of privileges 
that is always granted to a process when it executes a file. The 
effective privilege set is the set of privileges that the process is 
actually using when the kernel checks for privileges. 

Two privilege sets are associated with each executable file. 
The potential privilege set is the set of privileges allowed for 
anyone who runs a program, but which are not enabled until 
the program makes a specific request. The granted privilege 
set is the set of privileges allowed and enabled for any process 
that runs a given program. Granted and potential privileges are 
assigned to the binary copy of a program. The granted 
privilege set is a subset of the potential privilege set, and 
allows privilege manipulations in cases where the source for a 
program is not available (and the program was written with no 
privilege consideration, typically programs that would be 
setuid to root on traditional UNIX systems). 

Used in combination, privileges and command authorizations 
allow suitably authorized ordinary users to do routine 
privileged tasks without having to run as root. For example, 
with the sysadmin command authorization, a user could 
routinely reboot the system, run fsck on file systems, 
repartition disks, and do most other system administration 
tasks without having to be logged in as root. This is both 
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more secure (since commands like rm do not generally run 
with privilege when the user is not logged in as root) and more 
convenient. 

Least privilege and privilege bracketing 
OSF/l employs the principles of using the fewest privileges 
(least privilege) for the shortest time (privilege bracketing). 
Trusted applications and library routines run with as few rights 
as necessary to accomplish their tasks. Routines are supplied 
for enabling and disabling privileges, so that these privileges 
can be enabled for only the time during which they are used. 

15.2 The Orange Book Model 
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The Orange Book defines criteria for classifying computer systems 
according to their degree of protection. These classifications are as follows: 

Division D Contains those systems whose security features have been 
evaluated and have failed to meet the requirements of any 
higher division. 

Division C A very minimal level of security containing two classes. To 
be in class Cl, a system must provide controls so that users 
can protect private information and keep others from 
accidentally reading or destroying data. The model is of 
cooperating users processing data at the same levels of 
security. 

To be in class C2, a system must meet all of the requirements 
for class Cl, and, in addition, users of the system must be 
individually accountable for their actions through login 
procedures, auditing, and resource isolation. The 
recommended method for resource isolation is ACLs. 

Division B To be in class B 1, a system must meet all the requirements for 
class C2 and must, in addition, have an informal statement of 
the security model, and must provide data labeling and 
mandatory access control over named subjects and objects. 
The capability must exist for accurately labeling exported 
information (for instance, in a defense environment, Top 
Secret printouts must be clearly labeled as such). 
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To be in class B2, a system must meet all the requirements for 
class B 1 but, instead of an informal statement of the security 
policy model, there must be a clearly defined and documented 
formal security policy model. The discretionary and 
mandatory access controls of BI must extend to all subjects 
and objects, much more thorough testing and review is 
required, and stringent configuration management controls are 
necessary. 

To be in class B3, a system must meet all requirements for 
class 82; in addition, its trusted computing base (TCB); that is, 
that portion of the system that runs in privileged mode, must 
be small enough to be subjected to rigorous analysis and test. 
All accesses of subjects to objects must be mediated, the 
system must be tamper-proof, a security administrator must be 
supported, audit mechanisms must be expanded to signal 
security-relevant events, and detailed system recovery 
procedures must be in place. 

Division A The primary difference between class A I and class B3 is that 
the formally specified design must be formally verified. 

Certification requires a formal evaluation process. It is not merely the 
operating system that is being evaluated, but also the implementation of the 
operating system on a particular architecture with a given set of options. 
Most of the voluminous documentation required for certification at Bl is 
supplied with OSF/1. These criteria, currently, are strictly for standalone 
systems. A system that is networked cannot be secure under these criteria. 
For example, a Bl-certified system cannot contain NFS. 

15.3 Security Extensions 

OSF/l can be configured with a variety of security features, the sum of 
which enables the system to achieve a security level consistent with the B 1 
level, as defined by the NCSC. The system can also be configured to be 
consistent with the C2 level, or with other combinations, regardless of 
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NCSC criteria. These features, and the conditionals allowing them to be 
configured, are as follows: 

SEC_ BASE Auditing, process privileges, 
identification and authentication 
miscellaneous enhancements 2 

SEC PRIV File-based privilege sets 

SEC ACL POSIX - -

kernel authorizations, 
enhancements, other 

Access control lists (ACLs) (based on the POSIX Pl003.6 
draft 11) 

SEC MAC Mandatory access control (MAC) (access depends on a 
comparison of the subject's clearance with the object's 
sensitivity level) 

These conditionals are called base conditionals. Source that is common to 
more than one base conditional is placed under a derived conditional. For 
example, source common to both ACLs and MAC is placed under 
SEC_ ARCH. Source common to both these and file-based privileges is 
placed under SEC FSCHANGE. These derived conditionals are defined in 
sys/secdefines.h, ~d can be extended to include additional security 
policies. 

The security modifications to the OSF/1 base can be summarized as follows: 

• New system calls extend the security capabilities of the kernel. 

• New library routines provide services to application programmers to 
make use of the added security features of the kernel and other trusted 
application support features. 

• Added user-level commands provide users with a set of tools for 
querying the system about security attributes, and for manipulating the 
security attributes of subjects and objects. 

• Security-specific data structures added to the kernel support new 
security routines. 

2. For example, if configured with SEC_ BASE, OSF/l does not create a core file when a privileged 
program is abnormally terminated because that might allow unwanted access to privileged data. 

15-6 



Security 

• Modified data structures store the additional security information needed 
by the new security routines. 

• Hooks placed in existing system calls and user-level commands at 
security-relevant points call the new routines in the security library or 
the security-specific system calls, and use the data structures that 
support security operations. 

For a complete description of the OSF/l security design, source licensees 
can read the OSF/l Security Detailed Design Specification. 

15.4 The Trusted Computing Base 

The trusted computing base (TCB) is defined by the Orange Book as "The 
totality of protection mechanisms within a computer system-including 
hardware, firmware, and software-the combination of which is responsible 
for enforcing a security policy. A TCB consists of one or more components 
that together enforce a unified security policy over a product or system. The 
ability of a TCB to correctly enforce a security policy depends solely on the 
mechanisms within the TCB and on the correct input by system 
administrative personnel of parameters (for example, a user's clearance) 
related to the security policy."3 

The TCB mediates all accesses between TCB-implemented subjects and 
objects. The act of associating a subject with its attributes is the task of the 
identification and authentication (l&A) component of the TCB. All subjects 
make accesses to objects, each of which is labeled with identity-based 
protection attributes and, for B 1 level systems, a sensitivity level. The 
access mediation components of the TCB enforce access control in the 
following ways: 

• Between the subject identity and the object discretionary protection 
attributes (DAC) 

• Between the subject and object sensitivity levels (MAC) 

3. Trusted Computer System Evaluation Criteria (TCSEC) (CSC-STD-001-83), U.S. Department of 
Defense, National Computer Security Center, August 15, 1983, p. 116. 
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• Between a subject's sensitivity level (as defined by the security policy 
model) and the clearance of the user with which that subject is 
associated, which must dominate the subject's sensitivity level4 

The TCB also provides a mechanism for analyzing all security-relevant 
actions in the system by implementing an audit subsystem, which records 
event records to an audit trail. 

The security policy model is enforced on all software objects and 
mechanisms implemented by the system's TCB. The TCB must maintain 
proper relationships between subjects and objects for all of the operations 
defined for the various software objects, as well as provide the necessary 
mechanisms to implement functional requirements stated by documents 
such as the Orange Book. 

The TCB is organized into two major functional units separated by a well­
defined interface: 

• The body of code that executes in the hardware's privileged mode-the 
operating system or kernel 

• The body of code that executes in execution domains (processes) 
running without the hardware's privileged mode-the nonkemel TCB 

The system call interface separates these two components. 

Processes that implement some aspect of the system's security policy make 
up the nonkernel TCB. The trusted programs that are included in the 
nonkernel TCB are organized into subsystems, each of which provides some 
service (for example, authentication or printed output) to other (nontrusted) 
processes. 

Each subsystem may include programs that are invoked automatically by 
the system, typically at system startup (daemon programs) and programs 
that users invoke to perform services (helper programs). Trusted programs 
are normally distinguished by nonempty privilege sets, indicating that the 
process executed from that program has access to kernel services reserved 
for trusted applications. For a list of trusted files, see the OSF/ I Security 
Features Administrator's Guide. 

4. Sensitivity levels are compared based on a dominance relationship. Level A is said to dominate level 
B if A's classification is greater than or equal to B's (according to numeric value of the classification) 
and if A's compartments are a superset of B's. Dominance is discussed in Section 15.9. 
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The unsecured OSF/1 system that the system is based on provides some 
basic services that must be considered trusted. The secured OSF/1 system 
modifies these services, and adds many of its own to implement the full set 
of nonkernel TCB programs. 

The nonkernel TCB components include: 

System initialization and shutdown 
The kernel hand-crafts the init() process during system 
initialization, and transfers control to the entry point of that 
program. The init() process is the first code to run without 
hardware privilege on the system and is the process ancestor 
of every process subsequently created. System shutdown 
occurs through cooperation of the init() process with a set of 
system termination programs that gracefully transition the 
system to a quiescent state. The file system buffer cache is 
flushed (through sync operations), and some processes (such as 
database managers) are given time to do their own cleanup 
before the rest of the system shuts down. 

Security databases 
A major function of the nonkernel TCB is to authenticate users 
to the system so that an accountable identity can be 
established for that user's processes. The security databases 
are accessed and manipulated by the system's TCB to set and 
enforce parameters associated with users, import/export 
devices, and system files. 

File system maintenance 
The on-disk format of file systems, when OSF/l is configured 
with SEC_FSCHANGE, is that of an extended format file 
system. An extended format file system includes additional 
fields for each file describing the file's ACL, sensitivity label, 
privilege characteristics, and other security-relevant 
parameters, depending on the system configuration. All fields 
are allocated, even though all may not be used in a given 
configuration. The set of commands (for instance, newfs and 
fsck) that manipulate file systems is considered trusted 
because the commands initialize and maintain file system 
partitions that contain the attributes of files enforced by the 
operating system when the file system is mounted. Most of the 
file system maintenance commands are versions of unsecured 
OSF/l commands that are modified to support both extended 
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and unsecured format file systems. Several new commands 
have been introduced to manipulate the additional security 
attributes in the extended format file system. 

Protected subsystems 
A protected subsystem consists of a set of programs, data files, 
and devices that are protected under a specific group identifier, 
which is not available to normal user processes. These 
subsystems implement a set of services that are available 
through the program interfaces to the subsystem programs. In 
the trusted system, the mechanisms used to protect data and 
the mechanisms used to define user authorization within a 
subsystem (for example, to assume the role of subsystem 
administrator) have been unified under a common approach 
and a common set of library interfaces. 

Data import/export 
A specific requirement of the Orange Book B 1 class is the 
need to appropriately label the data imported to and exported 
from the system. In the trusted system, this includes printed 
output and magnetic media. The data import/export subsystem 
provides line printer and magnetic media software that enforce 
these requirements. The line printer subsystem labels banner 
pages of all output with the sensitivity label of the process 
producing the output and internal pages with the sensitivity 
label of the file printed. The magnetic media software 
enforces strict rules for single-level and multilevel tape 
formats, allowing data to be exchanged between systems with 
different security policy configurations and different bit 
representations of labels. 

Audit subsystem 
The audit subsystem implements the accountability 
requirements for after-the-fact analysis of security-relevant 
events that occur on the system. Part of the audit subsystem 
resides in the operating system itself, while the administrative 
and reporting parts of the system reside outside the kernel in 
trusted processes. 

Policy support programs/daemons 
The system can be configured with a set of security policies 
that implement access decisions and security attribute 
maintenance using a combination of kernel and process 
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components. The kernel component consists of a security 
policy module, which interacts with the rest of the kernel 
through a set of routines defined in the security policy switch. 
The security policy module also interacts with a security 
policy daemon, which provides mapping services to a database 
maintained by the daemon. The database layer, implemented 
through a set of library interfaces, is common across all 
security policy implementations. 

The issue of whether something is part of the TCB is more controversial for 
libraries. The code in libc is not privileged, and cannot directly do anything 
in violation of the security policy. However, every privileged program 
shipped with OSF/l (except for the kernel) depends on libc, and could be 
harmed by changes to libc. Therefore, libc is indirectly part of the TCB. 
The same applies to the shells, the .cshrc and .profile files, and so on. 

Although the compiler is not privileged and does not have any code directly 
related to security policy in it, any defects in it can affect the operation of 
the privileged parts of the system. Therefore, it, too, is indirectly part of the 
TCB. 

Some data files are part of the TCB. For example, protected password 
entries are part of the TCB because they can influence the behavior of login. 
If someone was able to alter the root password stored there, for example, 
that person would have free reign over the system. 

15.S Security Policy Architecture 

The security policy architecture is the interface between code that wants an 
access decision made and the code that makes the access decision. Security 
policies are optional features that may or may not be configured into the 
system at compile time. Each security policy is implemented through a 
separate security policy module, which makes access decisions and 
maintains security attributes relative to that specific policy. The system can 
be configured with different combinations of security policies, just as it can 
be configured with different configurations of device drivers. The OSF/l 
system, as shipped, knows only two policies, DAC and MAC. 

Figure 15-1 illustrates the security policy architecture. 
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Figure 15-1. The OSF/1 Security Policy Architecture. 
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The OSF/l security policy architecture consists of the following major 
components: 

Security policy switch 
A table containing information (tag allocation parameters and 
security policy module entry points) for each security policy 
configured into the system. (See Section 15.5.1 for a 
description of tags.) 

Security policy modules 
(One for each configured policy), modules that contain entry 
points for each security-relevant operation defined by the 
architecture. Each module maintains a decision cache of 
most-recently-made access decisions for performance reasons. 

Security policy driver 
A software device that passes messages between policy 
modules and trusted processes (clients) and the policy 
daemons (servers). The driver does not interpret or operate on 
the contents of the messages it passes. 

Security policy daemons 
(One for each configured security policy), daemons that 
maintain and query the security policy database and are 
responsible for all access decisions between security attributes 
relevant to the policy. 

Security policy database management routines 
Routines that do the following for the security policy 
database: 

• Initialize it 

• Close it 

• Manage statistics 

• Retrieve tags and internal representations5 

5. Attributes have internal and external representations. The internal representation is binary, and the 
external representation is human-readable. 
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• Insert tags and internal representations 

• Delete tags and internal representations 

Security policy databases 
(One for each configured security policy), databases that 
contain entries mapping tags to and from internal 
representations. 

15.5.1 Security Policy ~.fodules 
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A security policy module contains entry points for routines that appear in a 
security policy switch data structure. The security policy configuration of 
the system is defined by the security policy entries in the security policy 
switch. The fields in the security policy switch define security-related 
operations such as object creation, access checking, and security attribute 
assignment. These security attributes can be complicated; for example, an 
access control list can be arbitrarily long. A direct representation of such 
attributes would be too complex for the kernel to manipulate easily. 
Instead, each attribute is represented by a tag. 

Tags are kernel encodings of policy-specific information representing 
security attributes for a subject or object. A tag pool is associated with each 
UNIX data structure that describes a subject or object. The tag pool 
contains the tags that represent the security attributes for that subject or 
object. 

Each security policy module maintains the attributes assigned to it in the 
subject and object tag pools. The allocation of tags to security policies is 
also contained in the security policy switch. The entry for each policy in the 
switch also contains a set of function entry points that call functions 
contained in the policy module. 

The hooks that are implanted in the kernel call the functions defined in the 
switch for one policy or for all policies when a security-related decision 
needs to be made or a security attribute-related action needs to be taken. 
For example, the access functions for all policies are called when a process 
opens a file for reading, and the change attribute function for the 
discretionary policy is called when a process tries to change a file's ACL. 
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15.5.2 Security Policy Daemons 

Tags identify a unique security attribute; the meaning of the attribute can be 
derived only from the data structure that describes the attribute at the 
system programming interface. The data structure associated with an 
attribute is called the internal representation, and the format of the internal 
representation is specific to the policy that maintains the attribute. When a 
policy module is called upon to make an access decision between two tags, 
it must arrange for the internal representations associated with those tags to 
be compared. Associated with each policy configured into the system is a 
database that contains mappings from tags to internal representations and 
from internal representations to tags. The database for each policy is 
maintained by a security policy daemon, which is responsible for the 
following: 

• Allocating new tags when a process specifies an internal representation 
that is not in the database. 

• Making access decisions, when requested by a policy module, by 
retrieving the internal representations for tags and comparing them. The 
policy module stores the decision in a cache so that future comparisons 
between the same two tag values do not require a daemon access. The 
format of an access decision returned by the daemon and stored in the 
cache is specific to each policy. 

• Looking up the internal representation for a tag when a process queries a 
security attribute. 

• Returning an existing tag when a process requests that a security 
attribute be set. 

The security policy daemon uses a common set of database routines to 
implement the mappings between tags and internal representations. 

The security policy daemon communicates with the kernel through request 
and response messages. All security policy daemons answer a set of 
stylized messages that implement the security functions described. 

15-15 



Design of the OSF/1 Operating System 

15.5.3 Security Policy Driver 

A security policy driver is the mechanism the security policy module and 
the security policy daemon use to communicate. The driver passes messages 
between the policy daemons and both the security policy modules and 
trusted applications. Although there may be many active security policies 
on a system, there is only a single security policy driver that supports 
separate software devices for each policy. 

The driver is implemented as a pseudodevice, and has the following 
functions: 

• Upcalls (that is, requests sent to the daemon). These requests are 
implemented by having the daemon make a read() system call. The call 
blocks until the pseudodevice driver has an upcall to make. When the 
read() call returns in the daemon, the result contains the upcall request. 

• Buffer management (for holding message requests). 

• Process synchronization between the policy daemons and the modules or 
trusted processes requesting the policy daemon's services. 

15.5.4 Security Policy Database Manager 
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When the system is mediating access requests between subjects and objects, 
the policy daemon must retrieve the internal representations of the security 
attributes for the subject and object from its database, unless the decision for 
the tags comparison between subject and object resides in a cache. It uses 
the tags of the subject and object as keys into the database for the retrieval. 

A security policy database manager manages this database, which maps 
between the allocated security tags and the internal representation of the 
security attributes. The database subsystem consists of library subroutines 
that interface with the database to retrieve, insert, and delete tags and 
internal representations, and perform other related support functions. 
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15.5.5 Interactions Example 

When the kernel must make an access decision between the process security 
attributes and the file security attributes (for example, during an open() 
system call), it retrieves the subject and object tag pools associated with the 
process and inode, and calls a helper routine through a kernel hook to cycle 
through the entry points defined in each policy's security policy switch 
entry. Each policy module checks its decision cache for the decision 
between the tags. 

If the decision is in the cache, the module retrieves the access decision from 
the cache. 

If the decision is not in the cache, the module formats and sends a message 
with the two tags to be compared to its associated security policy daemon 
through the security policy message driver. The message driver delivers the 
message to the policy daemon through the server minor device. The 
daemon receives the message into its process address space as a result of a 
read() system call to the server minor device associated with the security 
policy. 

The daemon queries its database, retrieving the internal representations 
associated with the tags and comparing them. The daemon makes all access 
decisions between the internal representations at this time, because the 
overhead of an access decision is typically far less costly than the message 
exchange with the kernel. The daemon formats a decision message and uses 
a write() call to the policy server device to return the decision to the kernel. 

Meanwhile, the process thread that initiated the access decision waits for a 
response (the security policy message driver synchronizes requests and 
responses). When the response arrives, the policy module loads the decision 
into the cache and checks the decision for the requested access. 
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15.6 Privileges and Authorizations 
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The trusted system does not normally provide any special treatment to 
processes with effective user ID 0 (zero) or any other process discretionary 
identity. Rather, the system grants trust based on the authorization 
attributes of users, and on the privilege attributes of processes and programs. 
For compatibility, the system offers a mechanism to allow accounts and 
applications that run with traditional user ID 0 behavior, but this mechanism 
is implemented by granting the appropriate privilege when the process is 
operating in a specified mode and its effective user ID is 0. 

A process obtains privileges both by inheriting them from its ancestors and 
through the execution of trusted programs. The mechanism for designating a 
program as trusted depends on whether the system is configured with file­
based privileges (that is, whether or not SEC_ PRIV is defined). In a system 
configured with SEC_ PRIV, specific privileges can be associated with 
individual executable files, as described later in this section. In a system 
without SEC_ PRIV, trusted programs are identified by the presence of set­
user-ID (SUID) or set-group-ID (SGID) bits, as in unsecured OSF/1. 

Privileges are grouped according to the following categories: 

• Those defined to divide the power associated with user ID 0 (zero) in a 
traditional UNIX system into finer-grained rights that may be 
individually granted. An example is the sysattr privilege, which allows 
a process to invoke system calls that change system attributes such as 
the time of day. 

• Those defined to restrict the ability to perform a UNIX function that is 
unrestricted by traditional UNIX systems. An example is the execsuid 
privilege, which allows a process to execute SUID programs. 

• Those defined to operate the process in a mode that causes the kernel to 
treat the process differently than other processes with respect to one of 
the trusted system features. An example is the suspendaudit privilege, 
which stops the kernel from collecting most system call audit records on 
behalf of the process. 

• Those defined to control access to new privileged functions provided by 
the trusted system. An example is the writeaudit privilege, which 
allows a process to append records to the audit trail. 
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• In a system configured with SEC_ PRIV, two privileges are defined 
(sucompat and supropagate) that allow a program to operate in a mode 
that appears like traditional UNIX treatment of user ID 0 (zero). 

Command authorizations control user access to programs or program 
subfunctions. The system restricts certain act;vities to certain users by 
allowing the user to perform the action if he or she possesses the required 
authorization. Authorizations are enforced by trusted applications and 
protected subsystems. 

Command authorizations are defined and enforced without any kernel 
support. Some command authorizations are directly related to privileges the 
kernel enforces, while others control access to services implemented by 
trusted applications. They control a user's ability to invoke trusted 
applications or protected subsystems, or to use certain functions of such 
programs. Most operational rights in the system are allocated to users by 
the information systems security officer (ISSO), who assigns appropriate 
command authorizations to accounts on the system (see Section 15.7 for 
more information on the role of the ISSO). 

Command authorizations enforced by commands on a user basis are divided 
into 

• Authorizations that enable the use of a trusted command to perform a 
specific function. An example is the mknod authorization, which allows 
the invoker of the mknod commanr:l to create special device files. 

• Authorizations that allow a user power to perform tasks associated with 
one of the system administration roles. An example is the powerful isso 
authorization, which grants the user the ability to administer the security 
aspects of the system. 

• Authorizations that allow additional rights in the programs of one of the 
system's protected subsystems. An example is the Ip command 
authorization, which allows a user the ability to use the administrative 
commands and command options of the Ip (line printer) protected 
subsystem. 

A full list of OSF/l privileges and command authorizations (and their use) is 
included in the OSF/I Security Features Administrator's Guide. 

In contrast to command authorizations, the system defines a set of kernel 
authorizations, or override authorizations, associated with specific kernel 
actions that are allowed to privileged users. These authorizations control 
the ability of trusted commands to override basic system constraints, affect 
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the way that a user can enable privileges for all commands he or she 
executes, and limit the privileges that a user can associate with a program. 

Kernel authorizations are distinct from command authorizations in that 
kernel authorizations are used to enable specific security policy overrides in 
certain trusted applications, while command authorizations signal trusted 
commands to grant the user the requisite operational rights. Kernel 
authorizations are directly related to the kernel-recognized privileges; 
command authorizations are defined as needed to identify categories of 
operations that an administrator may want to grant to some subset of the 
user community on a system. 

From an implementation standpoint, kernel authorizations are associated 
one-to-one with the defined privileges. In fact, they are stored in the same 
data structure used to store privilege sets. The kernel participates in storing 
and manipulating privilege sets. The command authorizations are defined 
and maintained in databases outside the kernel. Differences between types 
of command authorizations are purely conceptual; the authorizations are 
stored in a bit vector data structure and tested individually. 

The ISSO designates a program as trusted at installation time by assigning 
privileges to it or designating it to run with superuser compatibility. When 
the ISSO assigns privileges, the program can make use of only those 
privileges assigned to it combined with those inherited from the process in 
which it runs. When the ISSO designates superuser compatibility, all but a 
few privileges are available to the program. 

A user is considered trusted to the extent that the ISSO has assigned one of 
the following to his or her authentication profile: 

• Command authorizations that are honored by trusted applications 

• Kernel authorizations that allow the user to transmit privileges to every 
program he or she runs 

The following privilege sets are defined for each process: 

Base privilege set (BPS) 
Contains the set of privileges that are automatically enabled 
when the process executes a new program. This set normally 
holds mode privileges that control functions that are 
unrestricted on a traditional UNIX system, for example, the 
ability to create and execute SUID programs. 
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Kernel authorization set (KAS) 
Contains the set of privileges the user responsible for the 
process is authorized for. They control the ability of a process 
to add privileges to its base privilege set. They also control 
the ability of a process to assign privileges to a file. In 
addition, several administrative commands consult this set to 
determine whether or not to enable privileges that cause the 
kernel's access control policies to be bypassed. 

Effective privilege set (EPS) 
Contains the privileges the kernel makes privilege 
comparisons against. A trusted program implements the 
principle of privilege bracketing by adding and removing 
privileges from the effective privilege set before and after the 
operations that require them. (Trusted programs also enable 
only required privileges, in keeping with the least privilege 
principle that subjects should be given no more privilege than 
is necessary to enable them to do their job.) 

Note that the elements of each of these sets correspond to the privileges that 
the kernel enforces. 

In a system configured with SEC_ PRIV, trust is assigned to application 
programs by virtue of the contents of the two privilege sets associated with 
executable files: 

Potential privilege set (PPS) 
The set of privileges a program is trusted to enable 

Granted privilege set (GPS) 
The set of privileges automatically placed into a process's 
effective set when it executes the file as a program 

The potential set determines which privileges a process can acquire by 
executing the file. A file starts out with an empty PPS, and the PPS is 
cleared upon every write to the file. A process with the chpriv privilege and 
owner rights to a file can change the file's PPS to include any of the 
privileges the process is authorized for (that is, any in its KAS). 

When a user executes a program provided by another user, each user brings 
a set of privileges to the action. The owner of the process and the owner of 
the executable file each provide an initial set of privileges that form the 
effective set of the joint venture. This effective set can be enlarged, subject 
to constraints provided by both parties. Privileges can be added to the 
effective set that are in either the potential set or the base set. The base set 
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can itself be enlarged, but only by the addition of privileges that are in both 
the kernel authorization set and the potential set. This protects both parties 
in the event that another file is executed. The base set used with this new 
file would contain only those privileges allowed by both parties. This 
technique prevents privileges from being combined in unforeseen ways. 

A file's granted privilege set determines which of the privileges from the 
PPS should be automatically activated (put into the EPS) when a process 
begins executing the file. The GPS is generally used with old programs 
(often programs for which the source is no longer available) that require 
privileges to perform their functions, but have not been modified to enable 
and disable privileges as necessary. The GPS of a newly created file is 
empty, and is cleared on each write to the file. In order to change the GPS, a 
process must own the file (or have the owner privilege) and have the chpriv 
privilege as well. Only privileges in the file's PPS can be added to its GPS. 
Removing a privilege from the PPS implicitly removes it from the GPS. 

The following example demonstrates a design decision of OSF/l 
authorizations and privileges. Often it is desirable that a user be able to do 
some things that require a certain privilege, but not others. For example, the 
operator should be able to read everyone's mail file as part of the backup 
process, but not be able to read it for general snooping purposes. Rather than 
give the user the allowdacaccess kernel authorization or base privilege, 
which would allow unlimited use of the privilege, it is better to give the 
backup program the allowdacaccess potential privilege, and have the 
backup program enable that privilege only if the user has the operator 
command authorization. In effect, command authorizations are a 
decoupling of what is done at a high level and what privileges are required 
to do that task. 

For compatibility, programs can also be designated as trusted by making 
them SUID to root and placing the sucompat privilege in the program's 
potential and granted privilege sets. (The supropagate privilege will cause 
sucompat to be added to the potential and granted privilege sets of any file 
that the program makes SUID to root.) A system without file-based 
privileges treats all programs that are SUID to root as trusted in this 
fashion. 

The kernel's decision on whether to grant a process a privilege is based on 
the following criteria: 

• The effective privilege set of the process 
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• The privilege that was requested 

• If the program is running with sucompat in its effective set. 

The privilege decision is based on whether the process is operating in 
superuser compatibility mode (sucompat is in the process's effective 
privilege set, or SEC_ PRIV is not defined). If it is not, the privilege 
computation merely checks the process's EPS. Otherwise, the privilege is 
categorized into one of the following categories: 

• Privileges that are granted according to the effective set only 

• Privileges that are always granted if the process EUID is 0 (zero), and 
are not granted otherwise 

• Privileges that are granted if the process has EUID 0 (zero) or if the 
privilege appears in the process's effective privilege set 

The discretionary logic is encapsulated in the privileged() kernel routine. 
The privileged() routine also stores the fact that a privilege was used in the 
per-process privilege use vector that is stored in the audit record for the 
system call at audit production time. 

Library routines are modified or designed to support the least privilege 
principle in trusted applications. Each routine runs with as few rights as 
necessary to accomplish its task. These library routines are used to 
implement a protection philosophy based on a program's enforcement of 
who is allowed to use it and the privileges it needs to accomplish its task. 

15. 7 Security Administration 

Security administration is split into three roles: 

• The ISSO sets system defaults for users, maintains security-related 
authentication profile parameters, modifies non-ISSO user accounts, 
administers the audit subsystem, assigns devices, and ensures system 
integrity. 

• The system administrator creates user accounts, modifies ISSO accounts, 
creates and maintains file systems, and recovers from system failures. 

• The operator administers line printers, mounts and unmounts file 
systems, and starts up and shuts down the system. 
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15.8 The Discretionary Access Control Policy 

Discretionary access control (DAC) allows users to specify who has access 
to their files. Traditional UNIX has a simple form of DAC that allows users 
to specify access to a file based on whether the user requesting access is the 
file owner, a member of a group associated with the file, or any other person. 
Under this system, file owners selectively grant read, write, and execute 
permission to users in the three categories. The drawback is that a user can 
only broadly specify who has access to his or her files. Users cannot easily 
allow or disallow file access to individual users. 

If configured with an access control list (ACL) mechanism, the system 
improves upon traditional UNIX DAC. In addition to traditional 
owner/group/others access control, each object may also have an ACL. The 
ACL specifies the permissions given to individual users or groups of users. 
Section 15.8.2 describes ACLs in detail. 

15.8.1 Discretionary Access Contol Components 
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The DAC policy has the following components: 

• The DAC policy module 

• The DAC policy daemon 

• System calls 

• Library routines 

• Commands 

The DAC policy module implements the entry points for the DAC entry in 
the security policy switch. The DAC policy allocates one tag for subjects 
and two tags for objects (the second object tag holds the default ACL for 
directories). The system maps between the subject tag and a user ID, group 
ID, and supplementary group list. The DAC policy daemon stores (in the 
security policy database) the mapping between the subject tag stored in the 
tag pool and the subject internal representation. 

The object tag maps to a data structure containing the owning and creating 
user and group of the object, the object's permission bits, and the object's 
ACL. For System V IPC objects, the owning user, creating user, owning 
group, and creating group are the same as those stored in the IPC data 
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structures. For other objects, the owning user is equal to the creating user 
and the owning group is equal to the creating group. The users, groups, and 
modes must be contained in the object internal representation because 

• The DAC module caches discretionary access decisions between 
subjects and objects that depend on the UNIX discretionary attributes 
and the ACL. 

• ACL entries may contain owner and owning group specifications. The 
daemon process must know the owner and group of the object to 
properly match against ACLs containing such specifications. 

The ACL is a variable-length list of ACL entries. The DAC module 
supplies the owning and creating user, owning and creating group, and 
permission bits when requesting that the daemon map an internal 
representation to a tag. 

The DAC policy module interacts with the DAC policy daemon through the 
security policy device to 

• Make ACL decisions between subjects and objects 

• Retrieve the ACL for an object 

• Set the ACL on an object 

• Interact with the daemon when the owner, group, mode, or ACL on the 
object changes 

• Map subject identities to subject tags 

The DAC policy daemon maintains the database of mappings between 
object and subject tags and internal representations. The daemon also 
makes the discretionary access decisions between a subject and the UNIX 
DAC attributes and ACL on an object. The daemon interacts with the 
security policy module through messages exchanged through the security 
policy device. 

Each system call that has a permission bit check in the unsecured OSF/1 
operating system includes an ACL check in systems incorporating the ACL 
policy. The system defines new system calls to manipulate object ACLs. 
These system calls are actually library routines layered on the getlabel() 
and setlabel() policy-independent system calls. 
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The system provides library routines which map between internal and 
external representations of ACLs. A set of routines which communicate 
with the daemon to map between tags and internal representations is also 
available. 

At the command interface, the system provides a set of utilities that set and 
retrieve ACLs on objects. In addition, there is a screen-oriented interface 
tool that allows users to associate ACLs with files and to test access to an 
ACL given a particular user and group ID. 

15.8.2 Access Control Lists 
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An ACL for a file identifies the individual user or group(s) of users who may 
access the file. The file owner maintains the file's ACL using additional 
commands provided with the system. The POSIX ACL mechanism defines 
an upward-compatible additional protection mechanism for system objects. 
The mechanism enables objects protected with traditional UNIX DAC to 
work as before, while also enabling traditional UNIX DAC to be viewed as 
a simple three-entry ACL. In addition, a mask entry definition allows the 
POSIX ACL mechanism to satisfy the POSIX requirement that an additional 
protection mechanism only makes access more restrictive than that implied 
by the UNIX DAC attributes on an object. 

An ACL is an ordered list containing three or more ACL entries. The three 
base entries, the owner entry, the owning group entry, and the other entry, 
correspond to the UNIX DAC attributes. An extended ACL entry 
additionally contains a mask entry (required if the ACL contains more than 
three entries), and zero or more additional user and additional group entries. 
Each entry specifies a matching condition and a set of permissions. The 
entry consists of an ordered pair containing 

Identity part 
Specifies process identity criteria: 

• Type (owner, owning group, or other) 

• Qualifier (user ID, group ID, or NULL) 

Permission part 
Specifies the access perm1ss10ns the process matching the 
criteria has to the object 
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To determine whether a particular user can access a particular object, the 
system scans the object's ACL. The ACL is searched in a specific order, 
and matching entries are used to construct the permissions that are allowed 
to the process. A process matches the owner entry if the effective user ID of 
the process matches the owner of the object (or creator if the object is a 
System V IPC object). A process matches the group entry if the effective 
group ID of the process or any of the process's supplementary groups 
matches the owning group of the object (or creating group if the object is a 
System V IPC object). A process matches an additional user entry if the 
effective user ID of the process matches the qualifier in the entry. A process 
matches an additional group entry if the effective group ID of the process or 
any of the process's supplementary groups matches the qualifier in the entry. 

The access decision against an ACL is as follows: 

I. If the user ID of the process matches the user ID of the owner entry, 
access is granted if the permissions are sufficient in the matching 
entry; otherwise, access is denied. 

2. If the process matches any of the additional user entries, access is 
granted if it is allowed by the permissions in the matching entry and 
in the maximum permissions specified by the mask entry (if one 
exists), and is denied if it is not. 

3. The system forms a permission set that is the union of all matching 
group and additional group entries. If the permissions requested are in 
this union and in the mask entry (if one exists), access is allowed; 
access is denied if they are not. 

4. Otherwise, access is granted if it is allowed by the permissions in the 
other entry, and denied if it is not. 

If an object does not have extended entries in its ACL, it has a WILDCARD 
ACL. The notion of a WILDCARD ACL is not visible at the user or 
programming interface, but is specified in the design to indicate that the 
object has a WILDCARD tag for its access ACL in the tag pool associated 
with the kernel data structure that describes the object. When there is a 
WILDCARD ACL, the kernel does not need to consult the daemon for 
access checks. Access decisions for an object with a WILDCARD ACL are 
based totally on traditional UNIX DAC criteria, behavior that is backward­
compatible with traditional UNIX behavior. If the object has a non­
WILDCARD ACL, access decisions for the object are based on the entries 
that appear in the ACL (base and extended entries). 
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15.8.3 Discretionary Access Control Privileges 

The extended OSF/1 system divides override privilege with respect to UNIX 
DAC into the following defined privileges: 

owner Overrides ownership checks. A process with the owner 
privilege may act as the owner of any object. 

allowdacaccess 

lock 

ch own 

Overrides checks against the object's permission bits and 
ACL, and guarantees that a discretionary access check (both 
against the UNIX discretionary attributes and the ACL) 
always succeeds. 

Allows a process to set the sticky bit on nondirectory files. In 
addition to the lock privilege, a process must have ownership 
rights to a regular file to set its sticky bit. To set the sticky bit 
on a directory, the process must merely have ownership rights. 

Allows a process to change the file owner or to change the file 
group to one not equal to the process's effective group ID or 
one of the process's supplementary groups. 

chmodsugid Allows a process to set the SUID and/or SGID bits on files (not 
required if indicating mandatory locking). 

setprocident Allows a process to set the SUID bit on files whose owning 
user is different from the process's effective user ID, or to set 
the SGID bit on files whose owning group is different from the 
process's effective group ID or any of the process's 
supplementary groups. 

15.8.4 ACL Representations 
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The DAC policy allocates two tag pool slots. The first tag pool slot is used 
for the object's access ACL, and the second slot is used for the object's 
default ACL. The default ACL tag pool slot is only used if the object is a 
directory. If an object is protected only by traditional UNIX DAC 
(corresponding to the three base ACL entries), the object has an access ACL 
tag value of SEC_ WILDCARD _TAG_ VALUE. Otherwise, the tag value 
for the access ACL maps to a creating user and group and a list of ACL 
entries through the security policy database maintained by the DAC security 
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policy daemon. If a directory has a default ACL, its tag maps to the default 
ACL binary representation through the security policy database. If not, or if 
the object is not a directory, the default ACL tag slot contains a 
SEC_ WILDCARD _TAG_ VALUE tag. 

ACLs have internal and external representations outside of the kernel. The 
internal representation of an ACL is used by user programs. It contains the 
identity and permission parts of an ACL entry. The external representation 
of an ACL is the representation specified by the user when defining the 
ACL, and is the representation printed by commands when listing the ACL 
associated with objects. Library routines convert between internal and 
external representations. 

15.8.5 Example: Changing an ACL 

Assume that a process wants to change the ACL associated with a file. The 
process calls the chacl() system call (which is actually a library routine, a 
veneer to setlabel( ), the actual system call entry point), specifying the 
filename, a pointer to the array containing the ACL structures, and the size 
of the array. The chacl() call specifies the security policy switch index for 
the discretionary policy and an offset of 0 (zero) in the tag pool relative to 
that policy's tags. The chacl() call calls the setlabel() system call, 
specifying the switch index, the filename, and the internal representation of 
the new ACL (specified as a buffer and a length). The setlabel() call calls 
through the security policy switch entry for the discretionary policy to check 
that object-specific constraints have been satisfied (the sw_setattr_check() 
switch function). 

The security policy module copies the attribute's internal representation 
from user space into a message and sends it to the security policy daemon 
through the security policy message driver. The daemon looks up the 
internal representation in its database, allocating a new tag and creating a 
new mapping if no existing entry is found. 

The daemon puts the tag into a response message, and sends it back to the 
waiting module through the security policy driver. The module returns the 
new tag and a success code back to the setlabel() system call, which then 
calls the discretionary module through the sw _setattr() switch function to 
apply the new tag to the object. The module sets the appropriate tag pool 
slot to the new tag and returns success to the setlabel() routine. The 
setlabel() call, in turn, returns success to the user process. 
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Note that the policy module and the message driver merely act as conduits 
for the internal representation. The daemon actually validates the format of 
the internal representation and allocates a tag for it. Note also that all 
attribute changes must pass through the policy daemon. Only the daemon 
knows how to convert an internal representation into a tag. 

15.9 Mandatory Access Control 

15-30 

Under MAC, all information is classified according to how sensitive that 
information is. This classification is called a sensitivity level. Users are 
rated according to the maximum sensitivity of information they are cleared 
to handle. This rating is known as a clearance. The system decides who 
can access what information based on the information's sensitivity level and 
the user's clearance. Only users with sufficiently high clearances can access 
information of certain sensitivity levels. A user who wants to open a file for 
reading must have a clearance that is at least as high as the file's sensitivity 
level; that is, the subject must dominate the object (no "read up"). 

Similarly, the system must prevent a process from reading information and 
writing it to an object that can be seen by users at a lower sensitivity level 
than the information (no "write down"). This comparison of sensitivity level 
and clearance is called a multilevel security model. (Access must also be 
granted by the system's discretionary access controls.) User access to 
objects is mediated by the system and cannot (normally) be overridden by 
ordinary users. 

Each subject and each object is assigned a sensitivity label when it is 
created by the system. Subjects and objects generally inherit their 
sensitivity labels from the processes that create them. The system 
administrator can permit users to choose their sensitivity levels when they 
log in (as long as the level chosen is equal to or less than that user's 
clearance). The user might choose a level below his or her clearance to 
ensure that programs inheriting this sensitivity label have limited access to 
privileged information. 

The system compares subject and object sensitivity labels in making an 
access decision. In keeping with the Orange Book, a sensitivity label is 
composed of a hierarchical classification and a nonhierarchical set of 
categories (or compartments). 



Security 

An object's sensitivity label denotes the sensitivity of the object's contents 
and attributes. A subject actually has two labels, a sensitivity label and a 
clearance label. One denotes the sensitivity level the process is currently 
executing at, and the other denotes the clearance level of the user on whose 
behalf the process is running. (Note that users can only choose to execute 
processes at a sensitivity level dominated by their clearances.) 

Sensitivity labels and clearances have an external representation, which 
includes a classification name followed by a comma-separated list of 
categories enclosed in slashes. This form of label is called the expanded 
form of the label. On input, a user can specify synonyms to simplify entry of 
long names or long lists of categories. The ISSO defines synonyms at a 
given site using the mandsyn utility. The internal representation is used by 
the programming interface and by the mandatory policy daemon. 

15.9.1 Mandatory Access Control Components 

The MAC policy has the following components: 

• The MAC policy module 

• The MAC policy daemon 

• System calls 

• Library routines 

• Commands 

The MAC policy module is a collection of routines called through the MAC 
policy entry in the security policy switch. A policy module for each policy 
implemented on the system is linked into the kernel. Functions in the MAC 
policy module exist to perform operations such as 

• Computing access decisions between subject and object sensitivity label 
tags. The module may have to consult the MAC policy daemon to 
compare the internal representations associated with the tags and return 
an access decision. 

• Setting and retrieving the process sensitivity label or clearance. 

• Setting and retrieving the object sensitivity label. 

• Enforcing privileges. 
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15.9.2 MAC Privileges 
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Privileges allow a process to bypass some or most of the limitations 
imposed on normal users by the MAC policy. The MAC policy module 
access routine checks whether the process requesting an operation on an 
object has a privilege (in its effective privilege set) relevant to the 
operation. If so, the MAC policy module grants the access request without 
checking the sensitivity labels of the process and the object. For example, a 
process with the allowmacaccess privilege returns success to most MAC 
checks. 

Processes need writeupsyshi, writeupclearance, or allowmacaccess 
privileges to upgrade an object, and downgrade or allowmacaccess 
privileges to downgrade an object. If a file is downgraded, its new level 
must continue to dominate the parent directory's level. Otherwise, the 
downgrade is not allowed. 

In an unsecured OSF/l system, certain directories (such as /tmp) are 
writable by all users. On a secure system, the ability of processes at 
different sensitivity levels to write into a common directory would be a 
violation of MAC. Therefore, such a directory is implemented as a 
multilevel directory, which contains child directories for each sensitivity 
level. A process needs the multileveldir privilege to see the child 
directories within the multilevel directory. When a process without the 
multileveldir privilege references the multilevel directory, it is 
automatically diverted to the child directory with the same sensitivity level 
as the process. If no child directory exists at that level, one is created by the 
system. 

For example, various programs such as the C compiler use the /tmp 
directory to hold their temporary files. Even though the contents of these 
files may be securely protected, the existence of a temporary file as well as 
its name could be easily discovered by anyone who performed an ls on the 
/tmp directory. Such information about Top Secret temporaries, for 
example, should not be known to those operating in the Secret domain. 

One approach to dealing with this problem might be to change all 
applications so that they do not use public directories, but instead find 
directories at appropriate security levels. A better approach is to deal with 
the problem transparently. A directory such as /tmp may be set up as a 
multilevel directory. It is then transparently split into a number of 
subdirectories, one for each security classification. Thus, a reference to the 
file /tmp/foo by a process executing as Top Secret would be translated into a 



Security 

reference to the file /tmp/mac.xxxxxxxxxxx/foo. The name of the multilevel 
child directory is always mac followed by an ASCII representation of the 
decimal value of the tag that corresponds to the sensitivity level of the 
process. Leading zeroes are prepended to the decimal value to pad it to 11 
characters (long enough to store any 32-bit number in decimal, yet short 
enough to not exceed the 14-character filename limit of some file system 
types). 

The diversion to the child directory is as transparent as possible, while still 
maintaining the desired separation of files at different sensitivity levels. For 
example, if /tmp is a multilevel directory, a cd /tmp by a process with a 
System Low sensitivity level and without the multileveldir privilege 
enabled will divert the process to /tmp/mac00000000002, but a pwd will 
show the user's current directory to be /tmp. A cd .. will return the user to I 
(automatically diverting through the multilevel parent directory that was 
skipped by the original cd command). 

The diversion works the same way for processes at other sensitivity levels, 
except that they are diverted to a different multilevel child directory 
(mac00000000003 for System High processes, for example). 

Explicit creation and regrading of subdirectories are not allowed because 
there is a unique mapping from subdirectory name to sensitivity level. 
Subdirectory diversion and automatic multilevel child directory creation is 
implemented by hooks implanted in the filename lookup routines. 
Conversion to multilevel directories is handled through new system calls 
that call routines specific to each file system type that set and clear the 
multilevel directory security attribute. 

A common use of the multileveldir privilege is to allow all of the 
subdirectories of a multilevel directory to be accessed easily for purposes of 
making backups of a file system. Because processes are automatically 
diverted to a subdirectory if they do not have this privilege enabled, it would 
be difficult to try to do full backups without this privilege enabled. 

If the process has sucompat in its effective set, and has effective UID 0 
(zero), it is granted all of these privileges, except multileveldir. That 
privilege is granted only if it appears in the effective privilege set. 
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15.9.3 MAC Access Decisions 

When making MAC checks on behalf of system calls, the system grants the 
process MAC read access to the object if the sensitivity level of the process 
dominates the sensitivity level of the file or if the process has the 
allowmacaccess effective privilege. 

The process has MAC write access to the object if any of the following is 
true: 

• The sensitivity level of the process is equal to the sensitivity level of the 
object. 

• The sensitivity level of the object dominates the sensitivity level of the 
process and is dominated by the process clearance, and the process has 
the writeupclearance effective privilege. 

• The sensitivity level of the object dominates the sensitivity level of the 
process, and the process has the writeupsyshi effective privilege. 

• The process has the allowmacaccess effective privilege. 

The system administrator defines two system-wide and frequently used 
sensitivity labels: System High and System Low. These are defined in the 
configuration file /etc/policy/mac/config. System High dominates System 
Low, and the two form a range that absolutely bounds activity on the 
system. The TCB code that enforces the MAC policy contains a number of 
optimizations that take advantage of this fact. For example, when making a 
MAC access decision, the kernel tests the tags in question against 
the well-known tag values SEC_ MAC _SYSLO _TAG and 
SEC MAC SYSHI TAG. These extra tests often allow the kernel to - - -
avoid the overhead of consulting the MAC policy daemon for an access 
decision. 

15.9.4 MAC System Calls, Library Routines, and Commands 
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The getlabel() and setlabel() system calls that address the MAC attributes 
on subjects and objects call through the security policy switch to perform 
MAC-specific label setting and retrieval functions. Except for the 
multilevel directory calls, all MAC function calls retrieve or set a sensitivity 
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label or clearance on one of the system's subject or object types. These 
function calls pass either getlabel() or setlabel() to the appropriate tag 
offset. 

Library routines for MAC convert between internal and external 
representations of sensitivity labels, communicate with the policy daemon 
to map tags and make decisions, and access the subdirectories of a 
multilevel directory. In performing these activities, they must at times 
make calls to the kernel (through system calls) to operate on subjects or 
objects, or make calls to the daemon to retrieve sensitivity label internal 
representations. 

In addition to existing UNIX command changes to implement MAC, there 
are a few new, specific MAC commands. Existing commands that are 
affected are the utilities that 

• Adjust the sensitivity level at login time 

• Access the raw UNIX file system structure 

• Deal with multilevel directories 

• Deal with users who modify a system database but may be logged in at a 
different sensitivity level than the database (for example, passwd) 

• Print information about subjects and objects in the system that may be at 
different sensitivity levels. 

New MAC commands have been created to 

• Print the current process's sensitivity label and/or clearance to standard 
output (getlevel ). 

• Change a file's sensitivity level. The resulting file sens1tlv1ty level 
depends on the user's authorizations and the file's sensitivity level. If 
the operation is a downgrade, the file must continue to dominate the 
sensitivity level of the file's parent directory. This command produces 
an audit record for all outcomes (chlevel). 

• List the sensitivity level of files and directories (lslevel ). 

• List and replace sensitivity labels on message queues, semaphores, and 
shared memory segments, depending on the arguments supplied 
(ipclevel ). 
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15.9.5 MAC Database Protection Principles 
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This subsection describes database protection in terms of MAC attributes. 
Section 15.10 expands the protection discussion to include all attributes. 

All protected databases are labeled with the System Low sensitivity level. 
The following principles are used to protect the system files critical to the 
operation and security of the system. 

Protected password database 
Contains user clearances in authentication profiles. Each 
profile is kept in a separate file, and each is protected at 
System Low. When a user changes his or her password, the 
passwd() program creates a new file to store the modified 
database. This new file inherits the sensitivity label of the 
creating process. If left at that level, the database might be 
improperly protected or inaccessible to user processes that 
should have access to it. To remedy this situation, many 
commands enable the allowmacaccess privilege. After 
updating the appropriate database, the programs change the 
sensitivity label of the database back to the appropriate level. 
This protection mechanism is used for all the databases 
described in this section. 

System defaults database 
Stores default sensitivity level ranges, the default user 
clearance, and the single-user-mode sensitivity level. This 
database is protected at System Low. 

Device assignment database 
Stores the default device sensitivity level range and the 
default single-level sensitivity level. This database is 
protected at System Low. 

File control database 
Describes the attributes of security-relevant files, stored at 
System Low. The only sensitivity levels stored in this file are 
the strings syshi, syslo, and WILDCARD. These do not 
convey the classified compartment names. 

Audit control files 
Binary files that are read by the audit subsystem. These are 
stored at System Low because they do not contain literal 
compartment names. 
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Audit output files 
Contain audit records corresponding to all processes running 
on the system. These files, and the directories in which they 
are stored, have System High sensitivity labels. 

Audit daemon 
Must be run at System High. 

System accounting file 
Has information about all processes in the system. It has a 
System High sensitivity label. 

15.10 Authentication Subsystem and the Security 
Databases 

The process of verifying the identity of the user is called authentication. 
The system authenticates each user at login time and when a user attempts 
to change identity through the su( ) program. The authentication subsystem 
uses and maintains the security databases related to authentication that 
contain user parameters and statistics for the system, terminal, and user. 

OSF/1 offers the following enhancements to traditional UNIX password 
mechanisms: 

• In traditional UNIX systems, any user can choose his or her own 
password. In secured OSF/1, the ISSO must determine site and per-user 
password selection methods. Default settings are provided with the 
system, but the ISSO at a site can relax or tighten these restrictions. 

• Many UNIX implementations do not impose restrictions on the chosen 
password, checking only for length, resemblance to the login name, and 
that they are purely alphabetical. Secured OSF/1 additionally supplies 
checks for palindromes, resemblance to user names on the system, and 
English words. 

• In traditional UNIX systems, encrypted passwords (stored in a central 
file) are visible to all users. The encryption algorithm (crypt() is also 
commonly available. Thus, a penetrator can apply heuristics to guess 
passwords. Secured OSF/1 stores encrypted passwords in protected (not 
public-readable) files. Secured OSF/l also provides assurance that the 
cleartext of the password will not be compromised, by clearing buffers 
that store the cleartext immediately after use. 
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• Traditional UNIX systems allow accounts without passwords. Secured 
OSF/l allows the ISSO to require passwords of all accounts. 

• Password aging is not a requirement. Accounts with this feature 
disabled are never forced to change passwords. Secured OSF/l enforces 
a password lifetime, after which the account is disabled. 

• The UNIX implementation of aging does not satisfy Green Book 
requirements. Secured OSF/1 requires that when a password is created 
or changed, a time period exists when the password cannot be changed 
again. This prevents a user from changing a password multiple times, 
ultimately back to the original password, as a way to avoid a true 
password change. 

• Passwords are significant only to eight characters. Thus, pass phrases 
are impractical in traditional UNIX systems. A pass phrase is like a 
password, but it consists of several words instead of just one. Thus, it is 
harder to guess. Secured OSF/1 includes a routine (passlen()) that 
computes a minimum password length based on parameters stored in the 
security databases. It also allows the ISSO to choose a maximum 
password length. The maximum length of a generated password is 40 
characters, but this can be extended or reduced by changing the 
definition (AUTH_MAX_PASSWD_LENGTH) and recompiling. 

For each process, the system maintains a login user ID (LUID). The LUID 
identifies the user associated with a process. Once the LUID is initialized 
(by the authentication program, or the su() or epa() program, or by the 
daemon itself for system daemons), it is never changed, regardless of 
authorization or identity. It is thus immutable. The LUID is necessary 
because users can acquire setprocident effective privilege and can change 
their process's real user ID and effective user ID. In such cases, auditing is 
based on the LUID, not on the effective user ID. Authorization checking is 
always done against the process's LUID. 
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15.10.1 Authentication Database 

The heart of the authentication subsystem is the set of security databases 
that store security parameters enforced by the system. These are the 
following: 

• Protected password database 

• System defaults database 

• Terminal control database 

• File control database 

• Command authorizations database 

• Device assignment database 

All of the databases have similar formats, although each has a different 
purpose. The low-level routines to read the entries and the fields in each 
entry are shared among the databases. 

15.10.1.1 Protected Password Database 

The protected password database stores the encrypted password for the 
user's account, as well as all account-specific parameters (referred to as the 
user's authentication profile). Any parameters not specifically set in the user 
account protected password entry are set by default to the corresponding 
value in the system default database, described in Section 15.10.1.5. 

Each user's protected password database entry is stored in a separate file. 
This makes looking up each user's entry faster, because scanning a large file 
is avoided, and updating a user's entry does not require that all accounts be 
locked for the duration of the update. A directory hierarchy exists under 
/tcb/files/auth that is structured like terminal descriptors in the 
/usr/shared/Iib/terminfo database. Each user's entry is contained in a 
separate file whose name is the user's account name. The file resides in a 
directory in /tcb/files/auth whose name is the first letter of the account 
name. 

Both the /tcb/files/auth directory and its subdirectories are protected with 
owner and group auth. Directories have mode 0770, while files have mode 
0660. Programs that access the database are SGID to auth or enable the 
allowdacaccess effective privilege. The protected password database files 
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have a sensitivity label of System Low. Programs that access or update the 
database need to enable appropriate privilege to be able to read or update 
the database depending on the sensitivity label of the program accessing it. 

Each entry in the protected password database corresponds to a single user. 
The login name is the primary key. The secondary key, the UID, is a cross­
check to the corresponding entry in /etc/passwd. All programs dealing with 
allocation of users ensure that 

• Each account is assigned to one real user. 

• Each account has one login name. 

• Each account has one reference UID. 

• For each login name, there is a single UID and a single database entry. 

A lock on an account prevents anyone from logging into the system under 
that account. With the account locked, the next time the user gives his or 
her user ID and password, the system responds with a message stating that 
the account is locked. Only the ISSO can unlock the account. 

There are three types of locks: 

• Unconditional (administrative lock) 

• Maximum number of login retries exceeded 

• Password lifetime has expired 

A field in the protected password database entry for the account stores the 
status of the administrative lock. Another field contains the maximum 
number of login retries allowed, and another the password lifetime. 

The system authentication program and su() enforce the lock conditions. In 
addition, they do not allow access to accounts that have been retired. The 
lock condition is reversible; once retired, an account cannot be reinstated 
(unless the protected password database entry is edited manually). The su() 
program checks if the destination account is locked and prevents the 
transition to that account if it is. All locks are audited. 

All daemons that create processes that run on behalf of users enforce this 
behavior. A library routine is supplied that enforces the lock conditions. 

The successful and unsuccessful login counts are kept with the protected 
password data. Thus, the system remembers breakin attempts across 
sessions and system reboot. 
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A user can lock another user's account by simply making repeated failed 
attempts on that account. However, audit information can help track down 
the terminal where the attempts are made. (One safeguard against locking 
the whole system is that the root account on the system console cannot stay 
locked. It can be locked by repeated failed attempts; however, the next login 
attempt from the console will print out a warning of the lock, log an audit 
record, clear the lock, and let the login succeed.) 

15.10.1.2 Terminal Control Database 

The terminal control database stores a threshold of the number of 
unsuccessful login attempts allowed at a terminal before that terminal is 
considered locked. 

There is a delay field that controls how quickly the system allows a new 
login attempt after a failed attempt. The database also stores the user ID 
and time of the last successful and unsuccessful login attempts at that 
terminal, and of the last session terminated. These fields can be used to 
detect penetration attempts. 

The system associates an administrative lock and a count of unsuccessful 
attempts with each terminal. 

The terminal control database stores a terminal-specific delay factor that 
spreads out login attempts. (The system-wide delay factor is stored in the 
system defaults database.) This feature impedes automated attempts to 
guess authentication information. The default delay for the system is used 
as input to determine the minimum size of a password. The delay may be 
set to 0 (zero). 

Each terminal entry has the times and user ID (if the name has an associated 
/etc/passwd entry) of the last attempts (successful and unsuccessful) to log 
in, and the last logout. The terminal control database stores the user and 
time of the last successful and unsuccessful login attempts and last logout 
from a given terminal. 

The terminal control database has shorter entries than the protected 
password database and is updated infrequently. It is stored in a single file, 
/etc/auth/system/ttys. The terminal entry is updated on each successful and 
unsuccessful login attempt, and on each session termination. The 
authentication program does not allow a user to log into a terminal unless 
there is a valid (and unlocked) terminal control database entry. The 
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exception is the root account, which is always allowed access on the system 
console, even if the databases are corrupt. 

15.10.1.3 File Control Database 

The file control database contains information about security-relevant files, 
each of which has an entry in this database. With the information in these 
entries, the system administrator can possibly detect tampering on security­
relevant files. This helps thwart a penetrator who has managed to overwrite 
a system file with a Trojan Horse file. 

The file control database is accessed by the integrity program, which 
checks each entry in the database against the corresponding file in the file 
system. The setfiles program not only checks the entries, but fixes them. A 
setfiles with no command line arguments fixes all files in the file control 
database. A list of files can also be specified. The file control database is 
also accessed by the create_ file_ securely() library routine, which sets the 
security attributes (mode, owner, sensitivity level, privileges, ACL, and 
group) of each newly created security-relevant file. Like the terminal 
control database, the file control database is contained in one file, 
/etc/auth/system/files. 

The file control database may have a filename whose last component is * 
(asterisk). This entry matches all files in the corresponding directory and 
may be used as a wildcard entry when all files in a directory have the same 
attributes. The entries in the database that precede the wildcard entry and 
refer to files in the directory named by the wildcard entry override the 
wildcard entry. Programs that process the database remember the files they 
have accessed and process each file only once. 

Only static file attributes should be present in the file control database entry. 
For example, some programs may require that some system files have a 
specific group identification, but the user owning the file may vary (for 
example, mailboxes in the public mail directory). Absent file control 
database entry fields (for example, user ID) successfully compare with all 
values of the corresponding file attribute. 



Security 

15.10.1.4 Command Authorizations Database 

A user's command authorizations are stored in the user's authentication 
profile, which is not generally readable. Programs that must check user 
command authorizations query the publicly readable command 
authorizations database to determine the authorizations a user possesses. 
The programs that update a user's authentication profile update the 
command authorizations database whenever they change a user's command 
authorizations. 

The system is designed to accommodate additions to the command 
authorizations the system recognizes. The list of authorizations supported at 
a site is determined by the contents of the command authorization definition 
file. This file contains a list of authorizations and the relationships between 
them. Command authorizations are hierarchical; possession of certain 
authorizations implies possession of others. 

The authorized_ user() routine checks whether a user has a speci tied 
command authorization. It understands the hierarchy of authorizations as 
defined in the command authorizations definition file 
(/etc/auth/system/authorize). All command authorizations are checked 
against the login user ID. Thus, a user does not gain a new set of command 
authorizations across su() transitions or by running SUID/SGID programs. 

The hascmdauth() routine checks the presence of an authorization in a 
speci fie authorization vector. This routine is useful for checking a specific 
user's authorizations against the user's protected password entry or for 
checking authorizations within a program that has not yet set its LUID. 
authorized_ user() returns TRUE for all authorizations when called from a 
program without an LUID. 

15.10.1.5 System Defaults Database 

The protected password, device assignment, and terminal control databases 
allow for system defaults. The system defaults database stores default 
values for database fields. The default fields are consulted if the 
corresponding field in the user-specific, device-speci fie, or terminal-specific 
database is not set. 

In its external form, the database stores fields with the same names as the 
terminal control, device assignment, and protected password databases. 
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Database access routines return the system default values for each database 
with each record returned. Thus, there are field and flag structures for the 
user or terminal-specific entry and the system default values. In the internal 
form, each database structure holds specific and default field structures, and 
specific and default flag structures. The default database structure has field 
and flag structures for the protected password, terminal control, and device 
assignment databases. The system defaults database consists of only one 
entry, keyed by the name default. The database is stored in the file 
/etc/auth/system/default. 

The system defaults database is fairly static. It is updated only by the ISSO. 
This database is not written as a side effect of user operations. 

15.10.1.6 Device Assignment Database 

The device assignment database stores device name synonyms and 
import/export restrictions. In OSF/1, it is possible for several special device 
pathnames to reference the same physical device. When such a device is 
reassigned to another user session, all references to the physical device must 
be invalidated. The device assignment database entry stores a list of 
pathnames for the physical device. It also stores a device type and the 
external name of the device. The database is stored in the file 
/etc/auth/system/devassign. 

15.11 Audit Subsystem 
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The audit subsystem collects information on all security-related system 
activity. The subsystem writes this data to an audit trail. The time from the 
enabling of audit (automatic or administrator-initiated) to the corresponding 
disable (which may occur as a by-product of system shutdown) is called an 
audit session. Each audit session is identified by a unique session ID. The 
audit subsystem increments the session ID each time it enables auditing. 
The data that the audit subsystem collects during a single audit session is 
called the session audit trail. The session audit trail for the current session 
is often simply referred to as the audit trail. 

Each session audit trail is composed of a sequence of audit records. An 
audit record stores the information required to identify one security event. 
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Together with the records that precede the record in the audit trail, a 
program can identify the user accountable for an action, the object or 
objects affected, and the specific action performed. 

Audit records are categorized by event type. The ISSO can select the 
defined event types when specifying which audit records the audit 
subsystem should pass to the audit trail and which records the audit 
subsystem should print during analysis. The selection criteria can include 
upper and lower bounds on the sensitivity level of a process, as well as lists 
of user IDs and group IDs to audit. By default, all sensitivity levels and 
user/group IDs are audited. 

The TCB generates audit records. Both the kernel and trusted processes 
generate audit records; the kernel records the actions of system calls made 
by processes to request changes to subjects and objects that the kernel 
maintains, while trusted processes record the actions of the users that invoke 
them. A kernel audit record stores the parameters and success or failure of a 
specific system call (such as opening a file for reading and writing), while a 
trusted process audit record stores the higher-level actions of a trusted 
program (such as the use of a command authorization). 

The following design decisions were made for the OSF/1 audit 
implementation: 

• The system stores a binary audit record format. Binary structures are 
simpler and faster to generate and manipulate and consume less disk 
space. When an audit transfer capability is required (to print reports on 
a different machine than the system on which the data is generated), or a 
standards organization decrees a new format, simple tools can be 
developed to convert the current audit record format to the desired 
format. 

• The audit subsystem records relative pathnames in audit records, 
recreating full pathnames at reporting time. This saves the time 
overhead associated with preserving pathnames in the kernel for current 
and root directories and open files, and the space overhead of the 
additional data structures in the kernel and the extra space for absolute 
pathnames in the audit trail. 

• Not all of a process's attributes are stored with each audit record. 
Specifically, the process identity (effective and real user and group IDs, 
login user ID, and supplementary groups) is not recorded in each audit 
record, but rather is stored when the process is first created and when 
each of these parameters changes. 
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• Some events must be audited to maintain the process state. The cost of 
generating the additional audit records to maintain process state is far 
less than that of increasing the size of audit records to store full 
pathnames, and the space and time overhead of maintaining process 
state within the running operating system. 

15.11.1 Audit Subsystem Components 
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The audit subsystem is composed of a set of modules that are added to the 
kernel and a set of trusted utilities that control and maintain the kernel audit 
components and the audit trails. 

15.11.1.1 Audit Device Driver 

The system implements the kernel audit mechanism as a character special 
device driver with the normal device interfaces and additional internal (to 
the kernel) entry points. There are two minor devices (the audit read and 
audit write device) associated with the audit major device, each of which 
allows trusted processes access to the kernel audit mechanism. 

The kernel audit mechanism defines a control interface, a read interface, and 
two write interfaces. The control interface (ioctl() calls through the audit 
write device, which requires the configaudit effective privilege) sets the 
parameters of the audit subsystem. The write interfaces allow the kernel 
(through an internal interface) and trusted processes (write() to the audit 
write device, which requires writeaudit effective privilege) to append 
records to the buffered audit trail maintained by the kernel. The kernel 
buffers these records until a trusted process called the audit daemon (see 
Section 15.11.1.2) reads them through the read interface and appends them, 
in compacted form (optionally), to the compacted audit trail. 
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15.11.1.2 Audit Daemon 

The audit daemon receives audit data through the read interface provided by 
the kernel audit mechanism (through read() from the audit read device). It 
is responsible for compacting the data received and appending it to the 
compacted audit trail. The compacted audit trail is the ultimate destination 
of audit data. The reduction program reads audit data for the session to be 
reduced from the compacted audit trail. The audit daemon is involved in the 
system's shutdown logic to ensure that all audit data generated by the 
system until system shutdown is appended to the compacted audit trail. 

15.11.1.3 Reduction Program 

The audit reduction program (/tcb/bin/reduce) transforms the binary 
compressed form of the audit trail to a human-readable format. It uses a 
selection file to filter the audit records that are to be reported, and converts 
those records to their printed format. The reduction program re-creates the 
state of the process that produced the audit record, identifying the user 
accountable for the audit event and resolving any relative pathnames that 
identify the objects accessed. 

15.11.1.4 ISSO Interface 

The ISSO maintains the audit subsystem through the audit-related functions 
of the ISSO interface program (/tcb/bin/issoif for ASCII, or /tcb/bin/Xlsso 
for the X interface). This program uses the control interface of the audit 
subsystem to make dynamic changes to the audit subsystem and manipulates 
the control files that control the actions of the audit daemon, reduction 
program, and audit subsystem for subsequent sessions. This program also 
provides interfaces to back up, restore, and remove audit data associated 
with named sessions. 
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15 .11.1.5 Trusted Application Support 

A library of routines is provided that allows trusted processes to append 
records to the audit trail. This library uses the write interface to the kernel 
audit subsystem to append records to the audit trail. 

15.11.1.6 Data Structures 

The primary kernel audit subsystem data structures are described in the 
following list: 

audit info structure 
A data structure that stores audit information for the current 
system call associated with each thread. This structure is re­
initialized at the beginning of each call. State information that 
applies to the process as a whole (for example, selection 
masks) is stored in the per-process security _info structure, 
and data relevant to the thread context is stored in the 
audit info structure. 

audit control structure 
The audit control structure contains the global state 
maintenance variables the kernel audit subsystem uses to 
control the audit subsystem. The resources the audit 
subsystem controls are 

• The kernel audit buffer 

• Selectivity criteria for audit record production 

• Buffers for the production of audit records, including 
pathname buffers 

The audit control structure is initialized at the time audit is 
enabled. It is statically allocated from kernel data space, 
referenced by the and_ cont structure name. 

Audit subsystem call table 
The audit subsystem call table stores audit-relevant 
information about each system call in the underlying system. 
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The table includes 

• Audit event disposition flags 

• The default event type 

• The default record type 

The audit event disposition flags include flags for 

• Mandatory audit events 

• Audits on error only 

• Audits if an event is selected 

The table has as many entries as the underlying sysent table in 
the kernel. 

15.11.2 Audit Data Flow 

This section gives a broad overview of the flow of audit records from their 
source (trusted processes and the kernel) to their destination (the compacted 
audit trail). It describes the buffering mechanisms used to make sure that 
the producers of audit data do not overrun the consumers, and introduces 
terms that identify the data structures and control mechanisms described in 
further detail in later parts of this chapter. 

Audit records are produced internally in the kernel to record the actions of 
system calls, and by trusted processes through the audit write device. The 
kernel audit subsystem must decide whether the record generated should be 
appended to the audit trail, basing its decision on the selectivity criteria set 
up by the administrator. If the audit record meets the criteria, it is buffered 
by the kernel until it can be delivered to the audit daemon. 

15.11.2.1 Internal Kernel Buffering 

The kernel audit subsystem allocates an audit buffer at the time auditing is 
enabled. The size of the buffer is an audit subsystem configuration 
parameter. There is a tradeoff between having a large audit buffer (which 
increases performance, especially on mainframe configurations) and a small 
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audit buffer (which reduces the risk of lost data in the event of a system 
crash). 

The subsystem uses this buffer as a staging area for audit record delivery to 
the audit daemon. The audit device write routine and the audit record 
generation routine allocate space for the next record in the buffer, causing 
the calling process to wait if the buffer is full. 

The audit daemon requests the next buffer of audit records through the audit 
read device. If the amount of data accumulated in the buffer exceeds the 
read_ count field in the audit_ control structure, the daemon context is 
awakened to gather the next buffer of audit data. The audit daemon reads 
the device interface and receives the next read_ count bytes of audit data 
starting at the read_ offset offset in the kernel buffer. If enough data has 
been collected, read_ count bytes are returned to the user context, and 
pointers into the buffer are adjusted. If not enough data has been collected, 
the daemon is put to sleep waiting for read_ count to be exceeded. 

Appropriate locks surround manipulation of the audit buffer to maintain the 
consistency of the data and the control structures describing the buffers. 

The source of the data for audit records is the buffer argument to the write() 
system call (trusted process records) and process state information, 
including system call arguments (kernel audit records). The system call 
arguments that reside in user space (pathnames and so on) are collected into 
kernel buffers during the course of the call before being moved into the 
audit buffer. This avoids having the audit buffer locked while the kernel 
pages in a pathname from the user process context. Audit records that are 
written by trusted processes are copied directly into the kernel buff er to 
avoid multiple copy operations. 

15 .11.2.2 Compaction Files 

The audit daemon appends audit buffers to the compacted 6 audit trail. The 
compacted audit trail is composed of a sequence of compacted audit output 

6. There is an option to produce uncompacted audit output files, but that option is rarely used. The output 
files will therefore be referred to as compacted, even though it might not be true of all subsystem 
configurations. 
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files, each of which is allowed to grow to an administrator-specified size. 
The daemon switches to a new compacted output file when the current file 
reaches the specified size. 

One configuration parameter specifies a directory that the audit subsystem 
uses while the system is in single-user mode. Since no other file systems are 
mounted, audit output files must be placed in a directory on the root file 
system until the remaining file systems are mounted. 

When the system transitions to multi-user mode, the audit daemon is 
notified to begin creating files in a list of directories that the ISSO specifies 
as part of subsystem configuration. The daemon closes the output file it had 
been using on the root file system and opens a new compacted output file in 
the first directory in the list. 

When the daemon encounters a write error to the compacted output file, or 
free space in the file system that contains that directory falls below a certain 
percentage of the total file system space, the daemon closes the current 
output file and opens a new compacted output file in the next directory 
named in the list. 

When the daemon can no longer write in the last directory on the list, it 
either terminates auditing or shuts down the system (according to ISSO 
configuration parameters). 

The reduction program processes the audit trail by reading sequentially 
through all compacted audit output files associated with the session being 
examined. The audit daemon maintains the list of files associated with the 
audit trail in a session log file, which stores parameters associated with the 
session and the sequence of compacted audit output files storing session 
audit records. 

15.11.3 Audit Record Formats 

Each system call is categorized by an event type, which the administrator 
can use to reduce the amount of data collected (by the audit subsystem) or 
displayed (by the reduction program reduce()). The kernel determines the 
event type based on the results of the system call. Trusted processes specify 
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the event type in the audit records they generate. The event types defined by 
the system are as follows: 

• Startup/shutdown 

• Login events 

• Process create/delete 

• Make available 

• Map to subject 

• Modify object 

• Object unavailable 

• Create object 

• Delete object 

• Change modes 

• Access denied 

• System administrator actions 

• Insufficient privilege 

• Resource denial 

• Interprocess communication 

• Change process control fields 

• Audit subsystem events 

• Special subsystem events 

• Use of privilege event 

• Use of authorization event 

• Set security level events 

The structure of each audit record is defined by one of several record types. 
The record type used for a specific audit record depends on the system call 
or application event that is being audited. 

All records are preceded by a common audit header, which stores the total 
record length, a timestamp (applied by the source of the audit record), a 
sequence identifier (applied by the kernel audit subsystem), event and 
record types, an object type, and a process ID. The process ID is assigned 
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by the kernel for all events except the special subsystem events type, which 
may have been produced by server programs or the audit delivery helper 
program on behalf of another process. The object type identifies the object 
modified by the operation audited by this record. 

15.11.4 Audit Control Flow 

This section describes the flow of control through the tasks that the kernel 
audit subsystem accomplishes in its audit record processing operations. 

15.11.4.1 Kernel Audit Record Generation 

The collection of system call audit records centers around two hooks in the 
system call trap handler routine in the kernel. Before the system calls 
through the sysent table to invoke a system call, it calls the audit_setup() 
routine with the call 's sysent table offset. This routine initializes the 
audit _info fields in preparation for the audit activity of the call. The basic 
logic for audit_setup() is 

if (auditing is not enabled) 

remember not to audit this system call 

else { 
initialize a structure of info about the system call to zeroes. 

Look at a table entry for the system call to figure out what 

type of audit record (if any) it should generate, and remember 

this for later. 

When it returns to syscall( ), the kernel gets the arguments for the system 
call, then uses the system call number passed in by the user to get the 
address of the kernel routine that handles the code for that system call. 

The second hook is the audit stub routine responsible for collecting system 
call-speci fie information necessary for generating the audit record. After 
the system call has executed, the audit() routine is called to decide whether 
an audit record needs to be produced for that call. The audit() routine 
considers all of the selection criteria that the ISSO has specified and places 
the information stored during the course of the call into the audit record. 

15-53 



Design of the OSF/1 Operating System 

15-54 

The flow is as follows. The kernel calls the routine for the system call in 
question. That call is responsible for collecting any information needed to 
generate the audit record. The information is collected in an audit_info 
structure. Typically, the code for a system call will call appropriate audit 
stub routines to collect this information. 

Eventually, the system call either succeeds or fails, and returns to syscall(), 
where there is a call to the AUDIT_ GENERATE_ RECORD() macro. If 
auditing is not enabled, this does nothing. If auditing is enabled, it calls 
audit(). This routine collects all the information generated by the previous 
calls to the stub routines, and decides whether an audit record actually needs 
to be generated for this system call. If not, it just ignores the information 
previously collected (if any). The system might decide not to audit because 
one or more of the following is true: 

• Auditing is not enabled. 

• Auditing is enabled, but this process is not eligible for auditing 
according to the audit configuration parameters. 

• This process is exempt from auditing because it has the suspendaudit 
privilege or equivalent exemption. 

• Auditing is enabled, but this system call does not need to be audited. 

• Auditing is enabled, this system call is normally audited, but the 
arguments the user passed to it were invalid. 

If audit() decides that the event must be audited, it goes through a set of 
routines that format the raw data into a well-defined format and append the 
formatted data to a buffer in kernel memory. If there is enough data there 
from the combination of previously written audit data and newly added data, 
the kernel wakes up /tcb/bin/auditd. 

The kernel returns back to AUDIT_ GENERATE_ RECORD() in syscall() 
from audit(), and eventually back to the user program. 

At some point, the kernel decides that auditd should run (assuming that the 
kernel previously decided that there was enough audit data collected to 
make it worthwhile to wake it up). The auditd routine reads from the 
device /dev/auditr, which causes the audit data in the kernel buffer to be 
copied into auditd's memory. The auditd routine manipulates the data some 
more (for example, to compress it) and writes the resulting data into 
/tcb/files/audit/CA * files. 
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(At some later point, the system manager can look at the generated audit 
files, using /tcb/bin/reduce to read, filter, and format the 
/tcb/files/audit/CA * files.) 

15 .11.4.2 Pathname Processing 

There are at most two pathnames specified as arguments to system calls. 
Each pathname traversal may cause the traversal of one or more symbolic 
links. For auditing purposes, both the pathname specified and the directories 
actually traversed may be useful to the ISSO at reduction time. Therefore, 
the audit subsystem modifies the pathname processing logic to allow 
collection of this information during pathname traversal. 

The AUDFLAG_PATHl and AUDFLAG_PATH2 flags tell whether the 
first or second pathname is being traversed. Initially, either 
AUDFLAG_PATHl is set, AUDFLAG_PATH2 is set instead, or both are 
cleared, depending on whether the impending traversal is for another 
pathname or a pathname that is not of interest (for example, if it is the 
second traversal of the same pathname). After the pathname is successfully 
copied into the kernel, it is saved into a dynamically allocated buffer, a 
pointer to which is placed in the thread's audit_info structure in the 
appropriate si_path slot; the length is in si_pathlen. 

When a symbolic link is encountered, a hook in the pathname traversal logic 
passes the first character in the pathname being translated, the first character 
following the symbolic link component name, the number of unprocessed 
characters, and the number of characters remaining in the pathname to a 
routine that collects the actual path traversed. A new symbolic link 
pathname buffer is allocated. 

If the symbolic link contents start with I (slash), the existing contents of the 
symbolic link pathname buffer are discarded because the pathname traversal 
begins again at the root directory. Otherwise, the symbolic link pathname 
is relative, and the pathname traversed so far, the link contents, and the 
remainder of the pathname are placed in the pathname buffer. The intent of 
the algorithm is to insert the expanded symbolic link name into the point in 
the traversal where the symbolic link occurred. This can occur multiple 
times if more than one symbolic link is encountered during a pathname 
translation. 
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Special processing is required in the pathname translation routine if the 
symbolic link pathname overwrites the pathname buffer before it can be 
saved in the symbolic link audit routine. 

15.12 File System Security Extensions 

Security-related file system modifications include 

• Changes to the mount table 

• Changes to the vnode 

• Changes to the file system superblock 

• Changes to the in-core and on-disk inodes 

• Creation of a security attribute data structure that communicates 
attributes between the file-system-independent and file-system­
dependent layers 

15.12.1 Mount Table Security Extensions 
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A security tag pool must be associated with any file system that is mounted 
on a system configured for security. Usually, the file system is in extended 
format, and therefore has tags already associated with it. For backward 
compatibility, it is also possible to mount unextended format file systems. 
Since unextended file systems have no space for tag pools, options to the 
mount command must be used in order to specify a set of global tags that 
apply to all inodes on that file system. These global tags are copied into the 
mount structure for that file system. A flag in the mount structure indicates 
whether or not the file system is in extended format. It is invalid to use 
mount command options to override the tags of an extended format file 
system, or to attempt a mount of an unextended file system without 
specifying global tags. 
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15.12.2 Vnode Security Extensions 

The file system architecture provides a clean interface between file-system­
independent (vnode) and file-system-dependent (inode) layers. The vnode, 
as a file-system-independent file header, is extended with an operations 
vector containing pointers to file-system-dependent security operation 
routines that implement security functions on the object represented by the 
vnode. Each file system implementation defines a set of routines that 
implement these functions. The security attributes are communicated 
between the file-system-independent (vnode) layer and the file-system­
dependent (UNIX file system, System V file system) layer through a virtual 
security attributes structure that is independent of file system format. 

The file-system-dependent routines translate the file-system-independent 
attribute descriptions into their specific implementation for that file system 
type. 

An additional flag has been defined for the vnode structure to indicate that 
the file is a multilevel parent directory. In addition, a member has been 
added to the vnode structure that references a vector of generic security 
operations applicable to the file system. Particular file system 
implementations fill in the vector with the appropriate file-system­
dependent routines. 

15.12.3 Vnode Security Attributes 

A file's security attributes are not stored in the vnode structure. Instead, 
these attributes are stored in the new vsecattr structure: 

struct vsecattr 

u_short vsa_valid; 

u_char vsa_policy; 

u_char vsa_tagnurn; 

struct vnode *vsa_parent; 

/* which fields are valid (see below) */ 

/* policy index for vsa_tag */ 

/* policy-relative tag index */ 

/* parent vnode for tag changes */ 

tag_t 

privvec_t 

privvec_t 

u_long 

vsa_tags[SEC_TAG_COUNT]; /*tag pool*/ 

vsa_gpriv; 

vsa_ppriv; 

vsa_type_flags; 

/* granted privileges */ 

/* potential privileges */ 

/* type flags (MLD, and so on) */ 
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} ; 

uid_t 

gid_t 

mode_t 

vsa_uid; 

vsa_gid; 

vsa_mode; 

/* POSIX ACL uid(result of tag change)*/ 

/* POSIX ACL group ID (ditto) */ 

/* POSIX ACL mode (ditto) */ 

*define vsa_tag vsa_tags[O] 

The vsecattr structure is a file-system-independent structure passed 
between the file-system-independent and file-system-dependent layers 
through the getsecattr() and setsecattr() functions, similar to the way the 
vattr structure is passed through the vnodeops functions. The vsa _valid 
field is a mask of flags that specify which structure members are to be 
retrieved from or associated with the file. The flags increase performance 
by only specifying changed attributes or retrieving desired attributes. File­
system-independent routines can retrieve the potential or granted privileges 
without information about an object's policy tags. 

The vsa _valid flag can be one of the following values: 

VSA _TAG A specific tag pool slot specified by the tag pool offset 
vsa_tagnum 

VSA _ GPRIV The file's granted privilege set 

VSA_PPRIV The file's potential privilege set 

VSA TYPE FLAGS - -
The file's type flags, such as whether it is a multilevel parent 
or child directory 

VSA ALLTAGS 
The entire tag pool 

The remainder of the fields are storage places for the policy index for the 
specified policy's tag (if one tag is requested or specified, the first slot in the 
vsa_tags array is used), the policy-relative tag number, the parent vnode, the 
tag pool, the granted and potential privileges, the type flag, and some 
information for POSIX ACLs. 
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15.12.4 Vnode Security Routines 

The function pointers in the vnsecops structure direct the calling routine to 
the appropriate file-system-dependent routine. For example, for the UNIX 
File System (UFS), the vnsecops fields contain the addresses of 
ufs _getsecattr( ), ufs _setsecattr( ), and ufs _ dirempty( ). The following 
macros call through the corresponding vnsecops function pointer: 

VOP _ GETSECATTR() 
Retrieves selected security attributes from the file specified. 
No access checking is performed; that is assumed to have been 
done by the caller. 

VOP _SETSECATTR() 
Changes the specified attributes to the corresponding 
arguments in the vsecattr structure. 

VOP _DIREMPTY() 
Tests whether a directory contains any entries. 

A vsecattr structure is used as a communication point between these file­
system-independent operations and the file-system-dependent routines that 
manipulate an inode's security attributes directly. VOP _ GETSECATTR() 
and VOP _SETSECATTR() are called with arguments specifying the 
vnode, a pointer to the vsecattr structure associated with the vnode, and the 
calling process's UNIX credentials. VOP _DIREMPTY() takes a pointer to 
the directory to be tested, to the parent of the tested directory, and to the the 
caller's credentials. All three also take a pointer to a place to return an error 
code. 

15.12.5 Superblock Modifications (UFS File System Type) 

Extended format file systems have a different magic number than the one 
used by unextended format file systems. The new magic number is 
necessary for keeping old programs (written for traditional UNIX systems) 
from mistakenly believing they know the format of an extended format file 
system. Without this change, such programs could corrupt extended format 
file systems. All OSF/l programs that look at file system magic numbers 
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have been modified to deal appropriately with both extended and 
unextended file system formats. The FsSEC() macro determines if the 
superblock's magic number is this new number. 

15.12.6 On-Disk Inode Extensions (UFS File System Type) 

The on-disk inode for the UFS is described by the dinode structure. The 
security modifications to the on-disk inode consist of a set of security 
extensions added to the normal dinode structure, so that the on-disk inode is 
now defined by the sec_ dinode structure. 

struct sec_dinode { 

struct dinode 

struct dinode_sec 

} ; 

di_node; 

di_sec; 

The di_sec structure contains granted and potential privilege vectors, the tag 
pool for the inode, the parent inode number for multilevel directories, and a 
file type flag. The size of the privilege vectors is implementation-dependent. 

struct dinode_sec { 

priv_t di_gpriv[2]; /* granted privilege vector */ 

priv_t di__ppriv[2]; /*potential privilege vector*/ 

tag_t di_tag[SEC_TAG_COUNT]; /*security policy tags*/ 

ino_t di__parent; 

u_short di_type_flags; 

/* inode number of parent of MLD child */ 

/* type flags (MLD, and so on) */ 

The dinode _sec structure also contains the tag pool for the on-disk inode, 
the parent inode number for multilevel directories, and a file type flag. 

15.12.7 In-Core Inode Extensions (UFS File System Type) 
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The in-core inode for the UNIX File System is described by the inode 
structure (in ufs/inode.h). The in-core inode contains all the information of 
the on-disk inode, plus additional information needed while the file is being 
referenced by processes. The inode structure includes an added i_disec 
member, of the same type as the structure added to the on-disk inode. 
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struct dinode_sec i_disec; /* security extension */ 

Since the in-core inode security extensions are only accessed by the kernel, 
changes to the security extensions do not require recompilation for user­
level programs. 

15.13 STREAMS Security Extensions 

The STREAMS mechanism provides a generalized architecture for 
implementing communications protocols. The cornerstone of this 
architecture is the notion of a stream as a sequence of self-contained 
modules connecting a program at one end (the stream head) to a device 
driver at the other. The stream provides a full duplex communication path 
in which each module accepts a message from one of its two neighbors, 
performs some kind of processing on the message, and then passes it on to 
its other neighbor. The architecture defines both the internal interfaces and 
procedures that modules use to communicate with their neighbors in a 
stream, and the external interfaces that allow programs to create and 
manage streams and to transfer data. 

This section describes the OSF/l design for trust enhancements to the 
STREAMS architecture and programming interface. The primary 
extensions in the OSF/l STREAMS trust enhancement design are 

• The architecture and internal interfaces were extended to associate 
security attributes with each message that traverses a stream, and to 
define the attribute format used at the interface between the stream head 
and its downstream neighbor. 

• The STREAMS programming interface was extended to allow programs 
to obtain the security attributes associated with received messages, to 
allow trusted applications to specify the attributes to be attached to the 
messages they send, and to define the attribute format used at the 
programming interface. 

• Hooks were added for auditing data transfers that result from STREAMS 
ioctl commands. 

• Binary compatibility was maintained with existing programs that use the 
STREAMS programming interface. 
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STREAMS provides a framework for the implementation of a variety of 
interprocess communication services; however, there are security-relevant 
issues that cannot be fully addressed by changes to the framework itself, but 
which must be handled by the specific modules and drivers that work within 
it. For example, different network protocol suites may encode security 
attributes in dissimilar ways, making the enforcement of security policies at 
the time of a process rendezvous a protocol-dependent function. The 
security extensions ensure that all the necessary information is available to 
modules and drivers that must perform the security checks. 

15.13.1 Local Access Control 
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One of the ways that a process gains access to a stream is by using the 
open( ) system call on a character special file associated with a STREAMS 
device driver. If the minor device is not already open, a new stream is 
created and is initially private to the calling process. Otherwise, the 
returned file descriptor refers to the existing stream, which is shared by all 
other processes that have opened the same minor device. As with any 
open() system call, access control is performed based on the attributes 
(owner, group, mode, and security policy tags) of the device's inode. 

On systems configured with MAC, this means that if the device is opened 
for read/write (as would be typical for a device that implements a 
communications protocol), the inode and the process must have the same 
sensitivity level. Even if the open is not for read/write, the ioctl system call 
performs another access check to ensure that the process and inode have the 
same level. 

Together, these facts mean that, for all practical purposes, a STREAMS 
device cannot be used concurrently by untrusted processes at different 
sensitivity levels unless its inode has a WILDCARD label. For devices that 
implement network protocols, it is usually essential that they be equally 
accessible to processes at all levels. If such a driver allows multiple 
concurrent opens of the same minor device, then processes at different 
levels could effectively bypass the system's MAC policy and communicate 
with each other by pushing and popping modules and making other changes 
to the configuration of the stream. To guard against this, drivers that want to 
provide multilevel service must either prohibit concurrent opens of the same 
minor device, or perform their own MAC enforcement. Drivers that can 
only be opened indirectly through the clone device automatically avoid the 
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problem, since every open() call results in the creation of a new stream that 
is private to the opening process. 

A driver that wants to perform its own access control should associate a tag 
pool with each minor device. Then, upon the first open() call on a minor 
device, it should initialize the tag pool by calling 
SP_ OBJECT_ CREATE(), and on each subsequent open() call, it should 
perform an access check by calling SP_ ACCESS(). The result is that when 
a new stream is created, it inherits a sensitivity label from the creating 
process and, for the remainder of its existence, is only accessible to trusted 
processes or processes at the same level as the creator. This is the same 
general approach used by the OSF/l trust-enhanced pseudo-tty driver. 

15.13.2 Internal Interfaces 

Internally, each message that passes through the stream is augmented with a 
complete set of security attributes, which consists of values specified by the 
caller combined with default values taken from the current state of the 
calling process. This set of attributes is attached to the first message block 
in each message. Several functions that perform processing at the stream 
head are modified to copy attributes from user space and translate them into 
their internal format, and vice versa. Because the attributes are incorporated 
into the basic message structure, the standard interfaces between modules 
remain unchanged. 

15.14 Socket Security Extensions 

OSF/l security extensions to sockets support MAC and allow a trusted 
server process to receive the security attributes of clients with client 
requests. The socket extensions have been implemented only on UNIX 
domain sockets, not on Internet domain sockets. 
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15.14.1 Socket Data Structures 

Each socket data structure has a new so_ tag member that includes a tag pool 
in the socket data structure. The allocation of tags in the pool is the same as 
the layout for other objects in the system. 

The socket mechanism includes the concept of rights, which is a list of file 
descriptors that can be passed in a message across a socket connection. The 
system uses a data structure, called the rights buffer, to contain those file 
descriptors in transit and to contain the privileges of the sending process. 
The buffer is structured as a set of descriptors, each of which contains a file 
descriptor and privileges. Each descriptor is formatted as a rights type 
followed by a length. The contents of the descriptors are as follows: 

SEC RIGHTS FDS - -
The file pointers of the file descriptors passed 

SEC RIGHTS PRIVS - -
The effective privileges of the process 

There is an additional socket option, SO_EXPANDED_RIGHTS, which a 
process can set if it is interested in receiving the privilege mask on each 
recvmsg() call. The user process rights buffer received has the same format 
as described for the kernel. 

15.14.2 Socket Control Flow 
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A process creates a socket (or two sockets) using the socket() (or 
socketpair( ) ) system call. At socket creation time, the system initializes 
the socket's tags through a call to SP_ OBJECT_ CREATE(). When the 
server process calls listen() to create a queue for incoming connections, the 
socket becomes the prototype socket for new connections to the server. 

When a client process calls connect(), specifying a UNIX domain socket 
(the connecting socket) and a pathname, the system checks write access to 
the socket file named by the pathname and creates a new socket, which is 
added to the prototype socket's pending connections queue. The tag pool 
for the new socket is copied from the connecting socket's tag pool. 

When a server process calls accept() to complete the connection protocol, 
the system calls SP_ ACCESS() to check SP_ IOCTLACC access between 
the connecting socket and the prototype socket (which is implemented as an 
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equality check for MAC and no check for DAC). If the check succeeds, the 
new socket is removed from the pending connections queue, and a new file 
descriptor is allocated and returned to the server. Appropriate data structure 
references are made between the connecting socket and the new socket to 
establish the connection. 

If the client sends a message without specifying a rights buffer, the system 
creates one SEC_ RIG HTS_ PRIVS descriptor containing the effective 
privilege vector of the sending process. The process may specify an 
alternate privilege descriptor if the privilege vector specified is a subset of 
the union of the process's base privilege set and the current program's 
potential privilege set. The process may pass file descriptors if it has both 
the allowmacaccess and allowdacaccess effective privileges. 

15.15 Loader Security 

In either unextended or secure OSF/l, a privileged program (setuid, setgid, 
or executing with any privilege bits set in its privilege vector) will always 
be loaded through the default loader. This ensures that users cannot use their 
own loaders to load arbitrary privileged programs. 

The loader design also protects the user of shared libraries. The way the 
loader finds its shared libraries is by consulting the installed package tables 
(see Chapter 8). The global installed package table is secured by virtue of its 
being stored in a file in a known-secure part of the file system, which is 
writable only by root. This ensures that any libraries found through the 
global installed package table are secure. 

The private installed package table is inherited across exec() by the fact 
that it is stored in a memory segment allocated with the keep-on-exec bit 
turned on; this causes it to be retained in the process's address space across 
the exec() call. The loader finds it during loader initialization (as part of the 
inheritance operation) by making the getaddressconf() call to find the 
address to look at, and the mvalid() call to verify that there is something 
there. 

The exec() call will not retain any segments, even segments marked keep­
on-exec, in the address space when the program it is executing is privileged. 
This check is implemented in the vm _map() call, which is passed an 
is _yriv flag from exec(). Therefore, when a privileged program is run, its 
loader will never find a private installed package table in its address space, 
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and will always use the global installed package table. Thus, it is not 
possible for a user to inlib a library and have that library used in a 
privileged application. 

15.16 Mach Subsystem Security 
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The basic security issue for the Mach subsystem involves port rights. Task 
ports can be used to replace the entire contents of a task's address space; in 
the absence of security checks, users could exec a privileged task and dump 
their own code into it. Mach exceptions transfer rights on the task port to 
the recipient of the exception message, and therefore, exception ports must 
be checked as well. 

The port_secure() routine determines whether the given task has the only 
access rights to the port in question. The exc _port _secure() routine 
determines if an exception port is secure. This is the case if either the 
ux_exception task is the receiver, or a privileged task is the receiver. (A 
privileged task in this context is one whose effective user ID is 0 (zero) in 
unextended OSF/1, or a task with the debug effective privilege in secure 
OSF/l.) The task_secure() routine determines whether the given task can 
be manipulated by tasks other than itself, using the IPC interface. The 
routines ensure that an exec of a setuid or otherwise privileged program will 
fail if someone else is holding a port right they should not have. The 
task_secure() check is implemented in terms of port_secure() and 
exc_port_secure() (that is, it calls them on all relevant ports). 

The task_ by_ unix _pid() routine gets the task port for a task on the same 
host as another task whose port the calling task already has rights to (called 
the target task). This can only be done if the specified task has the same user 
ID as the target task, or if the calling task is privileged (as defined 
previously). 

The trap_ name() routine, which provides the currently executing 
task/thread with one of its ports, has been extended to protect the privileged 
host port. Without this check, a user might gain complete control of 
resources on the host, including the ability to get the task ports. 

Of these, only the last two routines are externally callable. The others 
mentioned are all internal kernel routines. 
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The Mach interfaces have not been explicitly secured for the OSF/l security 
configurations. 

15.17 Modified Data Structures 

The secured OSF/1 system modifies a number of OSF/1 kernel data 
structures to implement its security extensions. A number of file system 
data structures are modified, specifically the following: 

Mount table 

File structure 

The mount table is extended to include a flag bit indicating 
whether the mounted file system supports additional attributes 
(is an extended format file system), and a tag pool that stores 
attributes (sensitivity level, ACL) that apply to the entire file 
system for traditional format systems. 

The file-system-independent data structure for a file stores a 
separate operations vector that points to a set of operations for 
setting and retrieving attributes on extended format file 
systems. If the system is configured with MAC, the file­
system-independent file data structure also stores a flag to 
indicate whether the file is a multilevel parent directory. 

File system superblock 
The on-disk superblock for extended format file systems stores 
a magic number that is different from the one traditionally 
associated with the specified file system type. The 
nonstandard magic number indicates to unmodified software 
that the underlying file system cannot be manipulated by 
software not prepared to deal with the changed format. 

On-disk inode 

In-core inode 

The on-disk file header stores a tag pool, two privilege vectors, 
and a flag word. The strategy for incorporating the fields in 
the on-disk data structures is file-system-dependent. 

The in-core file header stores the same fields as the on-disk 
in ode. 
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Some other objects have tag pools. Those that are dynamically allocated 
and not visible to user programs are in the data structure (for example, 
sockets). Those that are allocated in tables and not visible outside the 
kernel have tag pools allocated in parallel tables. 

15.18 New Data Structures 

15-68 

A number of new data structures have been added to store the additional 
security data associated with each subject and object in the system. These 
include the following: 

security _info 
Stores per-process, security-relevant state information that 
spans system calls. The security _info structure for the 
currently executing process is typically accessed with the SIP 
macro. 

audit info Stores information gathered during system call execution to 
support the audit subsystem. The information in this structure 
is transient, and does not need to be maintained between 
system calls. In OSF/1, the audit_info structures are per­
thread. The audit_ info structure for the currently executing 
thread is typically accessed with the AIP macro. 

audit control 

udac t 

obj_t 

attr t 

Stores the internal state of the audit subsystem. 

Contains an object's unsecured OSF/l security attributes. The 
security policies configured into the system use this structure 
to coordinate the unsecured OSF/1 DAC decision with other 
security attributes of the object. 

A union of a number of object identifiers, including the file 
pathname and open file descriptor number, and the process, 
semaphore, shared memory, and message queue IDs. It is used 
at the system call interface when security attribute changes to 
the various unsecured OSF/1 software abstractions are 
specified. 

Used to pass internal representations of security attributes 
between user and kernel space. 
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attrtype_t Used to indicate whether an attribute is associated with a 
subject or an object. 

dac t Contains the user and group IDs, and unsecured OSF/l 
permission bits. 
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access control list (ACL) 

address map 

A variable-length list that is associated with an object 
(typically a file). The entries in the list identify users or 
groups of users who may access the object, and what kind of 
access they have. See also discretionary access control 
(DAC). 

A data structure that the kernel uses to manage a task's virtual 
address space. It is a doubly linked list of address map entries. 

address map entry 

A data structure that maps a virtual memory object into a 
task's address space. 

GL-1 
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GL-2 

address translation 

A mechanism that translates a program's logical or virtual 
addresses to physical memory addresses. Typically address 
translation is implemented by the hardware's memory 
management unit. 

Advanced Japanese EUC (AJEC) 

A Japanese implementation of the Extended UNIX Code 
(EUC) encoding method. AJEC allows for combining ASCII, 
phonetic Kana, and ideographic Kanji characters. See also 
Extended UNIX Code (EUC). 

anonymous memory 

AST 

A region of virtual address space that contains data generated 
by the process as it executes. For example, a process's heap 
and user stack are regions of anonymous memory. 

See asynchronous system trap (AST). 

asymmetric copy-on-write 

A copy-on-write mechanism that allows one task to retain 
exclusive write access to permanent data that is shared copy­
on-write with other tasks. See also permanent data, copy­
on-write. 

asynchronous system trap (AST) 

A software-initiated event that interrupts a thread's execution 
as it transitions from kernel mode to user mode. The OSF/1 
kernel uses ASTs to implement context switching. 
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Glossary 

To audit means to record security-relevant events. "Audit 
information must be selectively kept and protected so that 
actions affecting security can be traced to the responsible 
party." 1 

authentication 

authorizations 

1. The verification of a principal' s network identity. 

2. A mechanism that is used by the system to verify that 
the user is in fact who she or he claims to be. See also 
identification and authentication (l&A). 

There are 
authorizations 

two kinds of 
and kernel 

authorizations: 
authorizations. 

command 
Command 

authorizations control user access to programs or program 
subfunctions. The system restricts certain activities to certain 
users by allowing a user to perform an action only if he or she 
possesses the required authorization. Authorizations are 
enforced by trusted applications and protected subsystems. 

Kernel authorizations, or override authorizations, are 
associated with specific kernel actions that are allowed to 
privileged users. These authorizations control the ability of 
trusted commands to override basic system constraints. They 
also affect the way that a user can enable privileges for all 
commands he or she executes and they limit the privileges that 
a user can associate with a program. 

Kernel authorizations are different from command 
authorizations in that kernel authorizations are used to enable 
specific security policy overrides in certain trusted 
applications, while command authorizations signal trusted 
commands to grant the user the required operational rights. 
Kernel authorizations are directly related to kernel-recognized 

1. Trusted Computer System Evaluation Criteria (TCSEC) (CSC-STD-001-83), U.S. Department of 
Defense, National Computer Security Center, August 15, 1983. Requirement 4. Preface. 

GL-3 



Design of the OSF/1 Operating System 

GL-4 

privileges; command authorizations grant the right to perform 
some class of operations, without regard to how those 
operations are actually implemented, or what privileges are 
normaily required to perform them. Command authorizations 
allow that right to be granted to any subset of users on the 
system. See also privileges. 

background process 

1. A process that does not require operator intervention but 
can be run by the computer while the workstation is 
used to do other work. 

2. A mode of program execution in which the shell does 
not wait for program completion before prompting the 
user for another command. 

3. Contrast with foregrc>und process. 

4. A process that is allowed to execute as long as it does 
not attempt to access the terminal. When it attempts to 
access the terminal, the kernel suspends the process. 
See also foreground process. 

backing object 

The VM object that contains the original data when a task 
shares data copy-on-write symmetrically. When the task 
attempts to write the data, the page being written is physically 
copied and the new page is inserted in a shadow VM object. 
See also shadow object. 

backing store 

1. The collection of off-screen, saved pixels that are 
maintained by the server. 

2. Secondary storage (ususally on a disk drive) that is used 
to store data from resident memory when the data is 
paged out or swapped. 

bad sector relocation 

The sector relocation that is performed by the Logical Volume 
Manager when it encounters a hard (uncorrectable) bad sector. 
See also Logical Volume Manager (LVM). 



block 

block device 

bss 

busy page 

Glossary 

1. A group of contiguous records or data that is recorded or 
processed as a unit. 

2. In data communications, a group of records that is 
recorded, processed, or sent as a unit. 

3. In programming languages, a compound statement that 
coincides with the scope of at least one of the 
declarations that is contained within it. A block may 
also specify storage allocation or segment programs for 
other purposes. 

4. A group of contiguous records, or data, that is recorded 
or processed as a unit. 

5. When a thread attempts to access a system resource that 
may not be immediately available, the kernel blocks the 
thread until the resource becomes available. A thread 
that is blocked is sleeping. 

1. A device that is accessed as a set of sequential blocks of 
data through a block interface. See also character 
device. 

2. One of the types of files in the file system, which is 
described by an inode. 

In a program that is to be loaded into memory, bss is the 
portion that is to be initialized to some constant, usually 0 
(zero). The term is from an old assembler directive, "block 
started by symbol." See also object file format, data section, 
text. 

When a virtual page is about to become involved in a paging 
operation, the kernel marks the page's vm_page data structure 
as busy to prevent other threads from initiating additional 
paging operations on the page. 
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canonical mode 

A tty input processing mode where input is collected and 
processed one line at a time. See also noncanonical mode. 

catch a signal 

A process may choose to catch a signal by installing a signal 
handler routine. When the signal is delivered, the kernel 
arranges to execute the signal handler routine, and so the 
signal is caught. 

character device 

A device that provides either a character-stream-oriented I/0 
interface or, alternatively, an unstructured (raw) interface. 
Devices that are not character devices are usually block 
devices. 

child process 

clearance 

client 

1. A process, which is spawned by a parent process, that 
shares the resources of the parent process. 

2. A new process that is created when another process 
executes. 

The highest sens1tlv1ty level available to a user. See also 
sensitivity label, mandatory access control (MAC). 

1. CDS: Any application that interacts with a CDS server 
through the CDS clerk. 

2. DTS: Any application that interacts with a DTS server 
through the DTS clerk. 

3. RPC: The party that initiates a remote procedure call. 
Some applications act as both an RPC client and an RPC 
server. See also server. 

4. DFS: A consumer of resources or services. See also 
server. 



client/server 

cluster 

code set 

COFF 

Glossary 

5. GDS: The client consists of an application that links the 
DUA library, the C-stub that handles the connection 
over the communications network for accessing a 
remote server, and the DUA cache. 

6. A program that is written specifically for use with the X 
Window System. Clients create their own windows and 
know how to resize themselves. 

7. The portion of a distributed program that issues requests 
for service to a server. The client's address space is 
separate from the server's address space; the two 
programs may reside on separate machines. See also 
server. 

A model of computer interaction in which a server provides 
resources for other systems on a network, and a client accesses 
those resources. 

1. Any configuration of interconnected workstations for the 
purpose of sharing resources (for example, local area 
networks, host attached workstations, and so on). 

2. A group of storage locations allocated at one time. 

3. A station that consists of a control unit (cluster 
controller) and the terminals that are attached to it. 

4. See also page cluster. 

1. A collection of characters with assigned code values. 
For example, ASCII contains a specified group of 
characters; each character has an assigned value in the 
set. 

2. The set of binary values that is needed to represent all 
the characters in a language. 

See Common Object File Format (COFF). 
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Common Object File Format (COFF) 

The object file format that is used in System V, Release 3 
UNIX environments. 

configuration manager 

The daemon process that performs configuration at boot time 
and that handles requests for dynamic changes to the 
configuration. 

configuration method 

context 

User-supplied code that provides the configuration manager 
with a description of how to configure dyanamic subsystems 
into the system. See also configuration manager. 

An environment for computation; for example, virtual memory 
and CPU state. 

context switching 

copy map 

copy object 

Occurs when a CPU switches from executing one thread to 
executing another. 

A copy of one or more address map entries that is used to pass 
data between tasks. 

A virtual memory object that is created during an asymmetric 
copy-on-write operation when the task that has read/write 
access to permanent data first attempts to write data that is 
shared copy-on-write. Before the task can write a page of 
data, it must push a copy of the page to the copy object so that 
the other task that is sharing the data retains access to the data 
as it existed when the two tasks began sharing the data copy­
on-write. See also asymmetric copy-on-write. 



Glossary 

copy-on-write 

core file 

daemon 

data section 

deadlock 

1. An option that creates a mapped file with changes that 
are saved in the system paging space, instead of saving 
the changes to the copy of the file on the disk. 

2. A mechanism where data can be shared between two or 
more tasks and copied only when one of the tasks writes 
the data. In OSF/l, there are two copy-on-write 
mechanisms: symmetric copy-on-write and asymmetric 
copy-on-write. See also asymmetric copy-on-write, 
symmetric copy-on-write. 

A file that records the state of a process at the time it was 
terminated. The file includes the contents of the process's 
virtual address space. The kernel produces a core file of a 
process when it delivers certain signals to the process that 
force the process to terminate. 

1. A program that runs unattended to perform a standard 
service. Some daemons are triggered automatically to 
perform their task; others operate periodically. An 
example is the cron daemon, which periodically 
performs the tasks that are listed in the crontab file. 
Many standard dictionaries accept the spelling demon. 

2. A process or thread that performs system-related 
operations. Generally, daemons are started during 
system initialization. Daemons usually sleep when their 
services are not needed. The pageout daemon is an 
example of a daemon in OSF/l. 

The portion of an object file or process address space that 
contains initialized and uninitialized data. 

1. An error condition in which processing cannot continue 
because each of two elements of the process is waiting 
for an action by or a response from the other. 
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2. An unresolved contention for the use of a resource. 

3. An impasse that occurs when multiple processes are 
waiting for the availability of a resource that does not 
become available because it is being held by another 
process that is in a similar wait state. 

4. In multithreaded programming, the condition that is 
caused when one or more threads block indefinitely, 
each waiting for the other to give up the specified lock. 

demand paging 

dirty 

A memory management policy where text and data is brought 
into resident memory only when it is referenced. 

A page that has been modified while in resident memory. The 
memory management system must save all dirty pages in 
secondary storage before reusing their resources in resident 
memory. 

discretionary access control (DAC) 

The "Orange Book" defines discretionary access control as "A 
means of restricting access to objects based on the identity of 
subjects and/or groups to which they belong. The controls are 
discretionary in the sense that a subject with a certain access 
perm1ss1on is capable of passing that permission (perhaps 
indirectly) on to any other subject (unless restrained by 
mandatory access control)." 2 See also access control list 
(ACL), mandatory access control (MAC), security policy. 

distributed file system 

A file system that is composed of files or directories that 
physically reside on more than one computer in a 
communications network. 

2. Trusted Computer System Evaluation Criteria (TCSEC) (CSC-STD-001-83), U.S. Department of 
Defense, National Computer Security Center, August 15, 1983. Glossary. 
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distributed program 

domain 

dominance 

A program that is distributed among multiple tasks. The tasks 
may run on different machines. A client/server application is 
an example of a distributed program. 

A type of addressing that is used by a network layer. For 
example, the Internet protocol family (IP, TCP, UDP) 
comprises the Internet domain. 

The method that is used to compare sensitivity levels. Level 
A is said to dominate level B if A's classification is greater 
than or equal to B's (according to numeric value of the 
classification) and if A's compartments are a superset of B's. 
Two sensitivity labels are equal if their classifications and 
compartment sets are the same. If A dominates B, and if they 
are not equal, A is said to strictly dominate B. See also 
sensitivity label, mandatory access control (MAC). 

dynamic configuration 

A means of configuring a subsystem that involves loading it 
into an executing kernel. There is also dynamic 
unconfiguration. 

Extended UNIX Code (EUC) 

A character encoding scheme that allows a combination of 
several code sets to be used simultaneously. It can be used as 
an encoding method for code sets that are composed of single 
or multiple bytes. 

fictitious page 

A vm _page data structure that does not point to an actual page 
frame. Fictitious pages are used by the memory management 
system to represent pages that are involved in paging 
operations. 

GL-11 



Oesign of the OSF/1 Operating System 

GL-12 

file descriptor 

1. A small positive integer that the system uses instead of 
the filename to identify the file. 

2. A small unsigned integer that a UNIX system uses to 
identify an open file. A process creates a file descriptor 
by issuing an exist when it is no longer held by any 
process. 

file-based privileges 

Privileges in which effective user identity normally does not 
determine privilege. Rather, trusted programs use the privilege 
library to enable and disable privileges around all operations 
that require them. See also privileges, privilege bracketing. 

foreground process 

framework 

Green Book 

1. A process that must run to completion before another 
command is issued to the shell. 

2. A process that has access to the controlling terminal. 
The command interpreter waits for the current 
foreground process to finish executing before prompting 
the user to enter another command. 

A set of interfaces and associated code that provides 
subsystems access to the system's resources. Example 
frameworks include STREAMS, sockets, and the virtual file 
system. 

Officially entitled U.S. Department of Defense Password 
Management Guideline, this book offers criteria for 
identification and authentication management. It is called the 
"Green Book" because of the color of its cover as part of the 
Rainbow Series. See also Orange Book. 

group ID (GID) 

See group number (GID). 



Glossary 

group number (GID) 

hashing 

heap 

hook 

A unique number that is assigned to a group of related users. 
The group number can often be substituted in commands that 
take a group name as an argument. 

1. A method of transforming a search key into an address 
for the purpose of storing and retrieving items of data. 

2. Encoding a character string as a fixed-length bit string 
for comparison. The encoding may not necessarily be 
unique. 

1. A collection of dynamically allocated variables. 

2. The region of a process's virtual address space that 
provides storage for global data. See also bss. 

The act of configuring a dynamic subsystem into the kernel. 

identification and authentication (l&A) 

Identification is how a user tells the system who she or he is. 
Authentication is how the system verifies that the user is in 
fact who she or he claims to be. In OSF/1, the authentication 
subsystem does more than provide password management. It 
is a framework where processes, trusted applications, and the 
kernel work together to ensure the identity of users and their 
processes. 

information systems security officer (ISSO) 

The ISSO is an administrative role that sets system defaults 
for users, maintains security-related authentication profile 
parameters, modifies non-ISSO user accounts, administers the 
audit subsystem, assigns devices, and ensures system integrity. 

interrupt service routine (ISR) 

A routine that executes as a direct result of an event, such as a 
device or timer interrupt. It is an interrupt handler. 
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job control 

kernel map 

kernel mode 

kernel stack 

kernel task 

The facilities for monitoring and accessing background 
processes. 

In OSF/1, the address map data structure that describes the 
kernel's address space. 

1. The state in which a process executes kernel code. 
Contrast with user mode. 

2. A privileged mode of execution in which the CPU can 
execute kernel code and access kernel data structures. 
A user process executes in kernel mode when it traps 
into the kernel by executing a system call. See also 
system call. 

The stack that is used by the CPU when a process executes in 
kernel mode. See also user stack. 

In OSF/l, the task that is associated with the kernel's virtual 
address space. 

kernel thread 

A thread that executes within the kernel task to perform 
system-related operations. For example, the pageout daemon 
executes as a kernel thread. 

large sparsely filled address space 

An address space whose regions of allocated memory are 
separated by large regions of unallocated memory. 

lazy evaluation 

A programming opt1m1zation that defers performing an 
operation until it absolutely must be performed. Copy-on­
write is an example of an operation that is lazily evaluated. 



Glossary 

least privilege 

The "Orange Book" requirement that stipulates that users and 
programs possess the least number of privileges possible to 
perform operations. See also privilege bracketing, Orange 
Book. 

line discipline 

load average 

1. The asynchronous communications user interface for a 
tty, which includes the POSIX and the Berkeley line 
disciplines. 

2. A software module that provides an asynchronous 
communications user interface for a tty. The line 
discipline performs the input and output processing for 
ttys and ptys, as specified by the termios structure. 

The measure of the load on the system's CPUs. In OSF/l, it is 
calculated as the number of runnable threads divided by the 
number of CPUs averaged exponentially over time. 

loader switch 

locale 

A data structure of the OSF/l loader that provides, for each of 
several object formats, a set of entry points defining a format­
dependent manager that is appropriate to that format. 

1. The language. geographic location, and software 
environment that is required to support the local 
language and customs. For example, the environment 
required to support the French language in Canada is a 
locale. A locale can include information about the 
language, the code set that is used to represent the 
language, the collating sequence, and cultural 
requirements for printing numeric and date values. 

2. The international environment of an application 
program that defines the language-dependent behavior 
of the program at run time. An application derives the 
locale based on internal procedures and a set of 
implementation-defined values. 
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logical extent 

The unit of allocation of logical volume space. Each logical 
volume consists of a number of logical extents. All extents 
within a given volume group are of the same size. See also 
Logical Volume Manager (L VM), physical extent. 

logical track group (LTG) 

Each logical track group consists of 32 consecutive pages. 
The Logical Volume Manager uses the logical track group 
internally to ensure mirror consistency, and to perform mirror 
resynchronization. See also Logical Volume Manager 
(L VM), mirrored. 

logical volume 

1. A direct access storage device (DASD) that is composed 
of a collection of physical partitions that are organized 
into logical partitions, all contained in a single volume 
group. Logical volumes are expandable and can span 
several physical volumes in a volume group. 

2. Logically contiguous areas of disk. 

3. A volume that is implemented by the L VM. To users 
and file systems, logical volumes appear as devices. A 
logical volume can be thought of as a virtual disk drive, 
although it may map to multiple physical volumes. See 
also Logical Volume Manager (LVM), physical 
volume, volume. 

Logical Volume Manager (L VM) 

LVM 

An OSF/1 subsystem that provides a level of abstraction 
between physical volumes and the file management subsystem 
that allows a file system, or even a single file, to span multiple 
physical volumes. 

See Logical Volume Manager (L VM). 



Glossary 

Mach Interprocess Communication Subsystem (Mach IPC) 

A Mach kernel subsystem that provides primitives and 
operations that allow tasks to send messages to one another. 

main memory 

See resident memory. 

mandatory access control (MAC) 

mbuf 

Defined in the "Orange Book" as "A means of restricting 
access to objects based on the sensitivity (as represented by a 
label) of the information contained in the objects and the 
formal authorization (that is, clearance) of subjects to access 
information of such sensitivity."3 See also discretionary 
access control (DAC), security policy. 

A data structure that describes a block of data. Mbufs are used 
by some communication subsystems. 

memory management unit (MMU) 

A hardware component that performs address translation and 
implements the hardware's memory protection scheme. See 
also address translation. 

memory manager 

A task that manages paging operations on memory objects by 
using the external memory manger interface. A memory 
manager may run in user space and implement application­
specific memory objects. 

3. Trusted Computer System Evaluation Criteria (TCSEC) (CSC-STD-001-83), U.S. Department of 
Defense, National Computer Security Center, August 15, 1983. Glossary. 
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memory mapped address space 

An address space that contains logical addresses. An 
executing process references its instructions and data with 
logical (or virtual) addresses, which the memory management 
unit translates to physical addresses. See also virtual address 
space. 

memory object 

method 

mirrored 

MMU 

An object that represents a set of virtual pages that reside in 
secondary storage. Each memory object is managed by a 
memory manager. 

1. The subsystem-specific part of the configuration 
manager that runs in user space. 

2. In object-oriented programming, a function that is used 
to perform operations on an object. The method is part 
of the object. 

1. The state of physically replicated data that is stored in a 
logical block. Mirrored data refers to the copies of data 
that are stored in physical extents (blocks) that map to a 
unique logical extent. Data can be singly mirrored (one 
additional copy) or doubly mirrored (two additional 
copies). 

2. The state of physically replicated data that is stored in a 
logical block. Mirrored data refers to the copies of data 
that are stored in physical extents (blocks) that map to a 
unique logical extent. Data can be singly mirrored (one 
additional copy) or doubly mirrored (two additional 
copies). 

See memory management unit (MMU). 



mount point 

Glossary 

1. DFS: An access point to a fileset in the DFS file tree. If 
a fileset has been mounted, the resulting mount point 
looks and acts like a directory in the file tree. 

2. The local directory of an NFS client where the remote 
directory is mounted. 

3. A file on which a file system has been attached. 

multilevel directory 

A directory that has separate child directories for each 
sensitivity level, and is used to implement directories that 
must be accessible to processes at more than one sensitivity 
level. When an unprivileged process references a multilevel 
directory, it is automatically diverted into the child directory 
corresponding to the process's sensitivity level. See also 
sensitivity label, mandatory access control (MAC). 

multilevel secure 

Defined m the "Orange Book" as "A class of system 
contammg information with different sensitivities that 
simultaneously permits access by users with different security 
clearances and needs-to-know, but prevents users from 
obtaining access to information for which they lack 
authorization."4 See also sensitivity label, mandatory access 
control (MAC). 

multiprocessor 

A computer having more than one central processing unit 
(CPU). The CPUs generally share a resource such as memory 
or a bus, allowing some degree of cooperation. 

noncanonical mode 

A tty input processing mode where input character erase and 
killing are eliminated, making input characters available to the 
user program as they are typed. See also canonical mode. 

4. Trusted Computer System Evaluation Criteria (TCSEC) (CSC-STD-001-83), U.S. Department of 
Defense, National Computer Security Center, August 15, 1983. Glossary. 
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object file format 

A specification for the output of an assembler, compiler, or 
linker; covers the representation of bss, text, and data sections, 
and their mappings, as well as imported and exported symbols. 
See also bss, text, data section. 

Orange Book 

OSF/ROSE 

Officially named the U.S. Department of Defense Trusted 
Computer System Evaluation Criteria (TCSEC). This book is 
the U.S. Government's definitive guide to the development 
and evaluation of trusted computer systems. It is referred to as 
the "Orange Book" because of the color of its cover. It is part 
of a series of government security books that are called the 
Rainbow Series. See also Green Book. 

The object file format that is supported by OSF/l for user 
programs and for kernel extensions. 

out-of-line data 

package 

With respect to the Mach IPC subsystem, data is said to be 
passed out-of-line when the message that is sending the data 
contains pointers to the data instead of the data. See also 
Mach Interprocess Communication Subsystem (Mach 
IPC). 

1. A specified group of related OM classes, denoted by an 
Object Identifier. 

2. In the OSF/1 loader, a collection of object entities that 
share a common name space. Symbol names are unique 
within a package. Symbols from different packages may 
bear identical symbol names because they are 
distinguished by their package names. 



page 

page cluster 

page fault 

Glossary 

1. A block of instructions, data, or both. 

2. The number of lines that can fit into a window. 

3. In a virtual storage system, a fixed-length block that has 
a virtual address and is transferred as a unit between real 
storage and auxiliary storage. 

A group of adjacent virtual pages. 

1. A program interruption that occurs when a program 
refers to a page that is not in real memory. 

2. A program interruption that occurs when a program 
attempts to access a page that is either not in resident 
memory or is resident but is protected against the type 
of access. For example, if a page is protected against 
write access and a program attempts to write the page, 
the attempt generates a page fault. 

page fault handler 

page frame 

The part of the kernel that executes when a thread generates a 
page fault. The page fault handler handles validity faults and 
protection faults. If it is unable to resolve a page fault, the 
page fault handler sends a signal to the process that causes the 
process to be terminated. See also page fault, protection 
fault, validity fault. 

1. In real storage, a storage location having the size of a 
page. 

2. An area of main storage that contains a page. 

3. A fixed-length unit within the system's resident address 
space. 

GL-21 



Design of the OSF/1 Operating System 

GL-22 

page table 

paging 

A machine-dependent data structure that is used by the 
hardware's memory management unit to perform address 
translation. A page table contains page table entries, each of 
which maps a virtual page to a physical location in the 
system's memory heirarchy. 

1. The action of transferring instructions, data, or both 
between real storage and external storage. 

2. Moving data between memory and a mass storage 
device as the data is needed. 

parallel processing 

The condition in which multiple processors are executing a 
single image, such as the OSF/l kernel. 

parallel program 

A program that performs its operation by using more than one 
thread of control. 

permanent data 

A process's data that exists before the process executes and 
after the process exits. For example, a process's text is 
permanent data: it resides in a file in secondary storage. See 
also temporary data. 

physical extent 

1. A physical extent is a specific, contiguous region of the 
disk where the data resides. 

2. The unit of allocation of physical volume space. All of 
the physical extents within a given volume group are the 
same size. See also Logical Volume Manager (L VM), 
logical extent. 

physical map (pmap) 

A data structure that provides a handle to the machine­
dependent representation of a task's virtual-to-physical 
translations. 



Glossary 

physical volume 

PID 

pmap 

1. A read/write fixed disk that is physically connected to a 
computer. 

2. A contiguous area of a physical disk. See also volume 
group, logical volume, logical volume manager 
(LVM). 

3. A contiguous area of a physical disk drive. This can 
mean either an entire disk or a portion of the disk (for 
example, a UNIX partition). Usually the LVM uses an 
entire physical disk as a physical volume, but it allows 
for using individual UNIX partitions as physical 
volumes. See also volume, logical volume, logical 
volume manager (L VM). 

See process ID (PID). 

See physical map (pmap). 

pmap module 

port 

The kernel module that is responsible for managing physical 
maps. The pmap module contains all machine-dependent code 
that is associated with the memory management system. 

1. A part of the system unit or remote controller to which 
cables for external devices (display stations, terminals, 
or printers) are attached. The port is an access point for 
the entry or exit of data. 

2. An entrance to or exit from a network. 

3. Allows the programming changes that are necessary to 
permit a program that runs on one type of computer to 
run on another type of computer. 

4. An access point for data input to or data output from a 
computer system. 
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preload cache 

An operating system resource that contains all globally 
available shared libraries. These libraries are fully resolved 
and relocated and are mapped directly into a process's address 
space when the process is loaded. 

privilege bracketing 

privileges 

process 

The "Orange Book" requirement that stipulates that users and 
programs possess privileges for the shortest time necessary to 
perform operations. See also least privilege, Orange Book. 

Access rights that are granted to a process. When making 
operational decisions, the security-extended kernel checks 
which of approximately 30 defined privileges (depending on 
the configuration) a process possesses. A privilege set consists 
of individual privileges from the privileges that the operating 
system recognizes. Before allowing a privileged operation, 
the kernel verifies that the privilege is in the process's 
effective privilege set. The effective privilege set is dynamic. 
It can change when the process executes a new program and 
when trusted programs enable and disable privileges. See also 
file-based privileges. 

1. A sequence of actions that is required to produce a 
desired result. 

2. An entity receiving a portion of the processor's time for 
executing a program. 

3. An activity within the system that is started by a 
command, a shell program, or another process. When a 
program is running, it is called a process. 

4. In a computer system, a unique, finite course of events 
that is defined by its purpose or by its effect, achieved 
under given conditions. 

5. Any operation or combination of operations on data. 



process code 

Glossary 

6. In the operating system, the current state of a program 
that is running. This includes a memory image, the 
program data, the variables that are used, general 
register values, the status of opened files that are used, 
and the current directory. Programs that are running in a 
process must be either operating system programs or 
user programs. 

7. An address space and the threads of control that execute 
within it, as well as the associated system resources. 

8. An address space, the threads of control that execute 
within it, and the associated system resources. 

An encoding scheme that is used when a program is 
manipulating or processing characters. Process codes are 
designed for efficiently manipulating character data, but 
should not be used to communicate character data. Process 
codes should only be used in a single program execution and 
should not be written to a file. 

process context 

See context. 

process control block (PCB) 

A data structure that is associated with a thread that is used to 
store the thread's hardware state when the thread is not 
executing. The process control block is a machine-dependent 
data structure. 

process ID (PID) 

processor 

A unique number that is assigned to a UNIX process. 

In OSF/1, a data structure that is used to manage the state of a 
CPU. Each of the system's CPUs has a processor data 
structure. 
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processor aging 

A mechanism that is used by the scheduler to gradually 
decrement a process's CPU utilization so that the process's 
priority rises if it has not executed recently. 

processor server 

A privileged program that applications can use to create new 
processor sets and allocate processors to those sets. 

processor set 

A data structure that is used to manage the state of a group of 
CPUs. By default, a thread is scheduled to run on the system's 
default processor set. The kernel ensures that at least one CPU 
is assigned to the default processor set so that kernel threads 
always have access to a CPU. 

program exception 

An interruption in the sequence of a program's instructions 
that is caused by the current instruction. For example, if the 
instruction references a page that is not resident, it generates a 
page fault exception. Program exceptions include system 
calls, which trap the process into the kernel, illegal 
instructions, and attempts to divide by zero. 

protection fault 

A page fault that is generated when a thread attempts to 
reference a page in a way that violates the page's protection. 
See also page fault, page fault handler, validity fault. 

pseudoterminal (pty) 

1. A special file in the /dev directory that effectively 
functions as a keyboard and display device. 

2. A special file in the /dev directory that effectively 
functions as a keyboard and display device. It acts like 
the tty, except that it connects two user processes 
(instead of a process and a hardware terminal). See also 
tty. 
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pthreads library 

raw mode 

region 

A subroutine libarary that application programmers can use to 
implement multithreaded programs. 

See noncanonical mode. 

l. In the OSF/l loader, a contiguous portion of loadable 
space, as specified in the object file. It has a starting 
virtual address, a size, a mapped address, a protection, 
and (optionally) a name and flags. 

2. An area within a bitmap, a pixmap, a screen, or a 
window. 

remote procedure call (RPC) 

A procedure call that is executed by an application procedure 
that is located in a separate address space from the calling 
code. 

resident memory 

run queue 

The memory that is directly accessible by the CPU; the 
system's primary memory resource. 

In OSF/1, a queue that contains threads that are ready to 
execute. 

run-time registration 

scheduler 

The configuration of devices into the kernel while the kernel is 
still up and running. See also dynamic configuration. 

1. The kernel subsystem that is responsible for scheduling 
threads for execution. 

2. The layer of the L VM that schedules physical requests 
for logical operations and handles mirrors. See also 
Logical Volume Manager (L VM). 
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scheduling priority 

sector 

A per-thread attribute that is used to determine when the 
thread will next be scheduled for execution. In timesharing 
mode, the scheduler subsystem frequently adjusts each 
thread's priority so that all threads have approximately equal 
access to the system's CPU resources. 

1. An area on a disk track or a ·diskette track that is 
reserved to record information. 

2. The smallest amount of information that can be written 
to or read from a disk or diskette during a single read or 
write operation. 

3. On disk or diskette storage, an addressable subdivision 
of a track that .is used to record one block of a program 
or data. 

4. The smallest unit of I/0 to a physical disk, and hence to 
a physical volume. This is typically 512 bytes. Sector 
is often a synonym for block. See also physical volume, 
block. 

security classes 

A means of classifying levels of security. The National 
Computer Security Center (NCSC) defines a set of security 
classes, ranging from A to D (with gradations within each 
class). The criteria for the general classes are as follows: 

A 

B 

c 
D 

Verified protection 

Mandatory protection 

Discretionary protection 

Minimal security 

Within each class are subclasses that are indicated by a 
number, with higher numbers indicating higher security. That 
is, C2 offers more security than Cl, and Bl offers more than 
C2. The classification is hierarchical, meaning that each class 
includes all of the features of the previous classes. The 



Glossary 

significant levels for OSF/1 configurations are C2 and B 1. The 
C2 level contains the following features: 

• Individual password controls and auditing of security­
related events. 

• Access controls "capable of including or excluding to the 
granularity of a single user. "5 OSF/l fulfills this 
requirement by using ACLs. 

• Object reuse protection, ensuring that data left in memory, 
on disk, or elsewhere is not accessible to inappropriate 
users. 

The B 1 level contains the following features: 

• Mandatory access control. 

• Rigorous separation of security-related portions of the 
system from those portions that are not related to security. 

• Additional testing and documentation, including a model 
of the security policy that is supported. 

The next level, B2, requires additional assurance that the 
system cannot be penetrated. Some of the features that are 
required at B2 are already in place in OSF/1. For example, 
OSF/l supports the requirement of least privilege, which 
stipulates that users and programs possess the least number of 
privileges possible, and for the least time necessary to perform 
operations. See also Orange Book. 

security policy 

Defined by the "Orange Book" as "A set of rules that are used 
by the system to determine whether a given subject can be 
permitted to gain access to a specific object." 6 The two 
security policies that can be configured into OSF/1 are 

5. Trusted Computer System Evaluation Criteria (TCSEC) (CSC-STD-001-83), U.S. Department of 
Defense, National Computer Security Center, August 15, 1983. Section 2.2.1.1. 

6. Trusted Computer System Evaluation Criteria (TCSEC) (CSC-STD-001-83), U.S. Department of 
Defense, National Computer Security Center, August 15, 1983. Requirement 1. Preface. 
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send rights 

discretionary access control and mandatory access control. 
See also discretionary access control (DAC), mandatory 
access control (MAC). 

A port right that allows a task to send messages on the port. 

sensitivity label 

A "combination of hierarchical classification levels and non­
hierarchical categories" 7 (or compartments) that are assigned 
to subjects and objects, and are used as the basis for 
mandatory access control decisions. See also mandatory 
access control (MAC). 

sensitivity level 

Under mandatory access control, a classification of all 
information according to how sensitive that information is. 
This classification is called a sensitivity level. See also 
sensitivity label, mandatory access control (MAC). · 

Serial Line Internet Protocol (SLIP) 

A transmission line protocol that encapsulates and transfers IP 
datagrams over asynchronous serial lines. 

serial program 

server 

A program that performs its operations using a single thread of 
control. See also parallel program. 

1. RPC: The party that receives remote procedure calls. A 
given application can act as both an RPC server and an 
RPC client. See also client. 

7. Trusted Computer System Evaluation Criteria (TCSEC) (CSC-STD-001-83), U.S. Department of 
Defense, National Computer Security Center, August 15, 1983. Section 3.1.1.4. 
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2. CDS: A node that is running the CDS server software. A 
CDS server handles name-lookup requests and 
maintains the contents of the clearinghouse or 
clearinghouses at its node. 

3. DTS: A system or process that synchronizes with its 
peers and provides its clock value to clerks and their 
client applications. 

4. DFS: A provider of resources or services. See also 
client. 

5. GDS: The server consists of a DSA, which accesses the 
database, and an S-stub, which handles the connection 
over the communications network for responding to 
remote clients and accessing remote servers. 

6. An application program that usually runs in the 
background (daemon) and is controlled by the system 
program controller. 

7. On a network, the computer that contains the data or 
provides the facilities that are to be accessed by other 
computers on the network. 

8. A program that handles protocol, queuing, routing, and 
other tasks that are necessary for data transfer between 
devices in a computer system. 

9. The component of the X Window System that manages 
input and the visual display. 

10. The portion of a distributed program that handles 
requests for service from one or more client programs. 
The server's address space is separate from the client 
address spaces. See also client. 

A chain of shadow objects that is the result of multiple 
symmetric copy-on-write operations. See also shadow object. 

shadow object 

A virtual memory object that is created when a task first 
attempts to write data that is shared with another task copy­
on-write. Before the kernel allows the task to write the page, 
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share map 

it allocates a new page and physical resources, and creates a 
shadow object to manage the new page. If the task writes 
other pages in the original VM object, they are copied and 
inserted into the shadow object. 

A data structure that allows two or more tasks to share 
read/write access to data. The tasks must be related to one 
another. 

shared library 

A library that contains at least one subroutine that can be used 
by multiple processes. Programs and subroutines are linked as 
before, but the code that is common to different subroutines is 
combined in one library file that can be loaded at run time and 
shared by many programs. 

Shift-Japanese Industrial Standard (SJIS) 

signal 

An encoding scheme consisting of single bytes and double 
bytes that are used for character encoding. Because of the 
large number of characters in the Japanese and other Asian 
languages, the 8-bit byte is not sufficient for character 
encoding. 

1. Threads: To wake only one thread that is waiting on a 
condition variable. 

2. A simple method of communications between two 
processes. One process can inform the other process 
when an event occurs. 

3. In operating system operations, a method of inter­
process communication that simulates software 
interrupts. 

4. An interrupt that is generated by software that interrupts 
a process. See also catch a signal, signal handler. 
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signal handler 

socket 

1. A process-specific routine that is invoked when the 
process receives a particular signal. 

2. A subroutine that is called when a signal occurs. 

1. A port identifier. 

2. A 16-bit port number. 

3. A unique host identifier that is created by the 
concatenation of a port identifier with an IP address. 

4. In interprocess communication, an endpoint of 
communication. 

spl synchronization 

A software exclusion method that is used to mask interrupts 
from hardware. On uniprocessor network code, this is often 
sufficient to implement protection of critical sections. 

statically bound 

stream head 

STREAMS 

The state of being semipermanently bound to the kernel. A 
statically bound device can only be configured into and 
unconfigured from the kernel when the kernel is not running. 

The stream component that is closest to the user process, 
providing the interface to the user process. 

1. A kernel mechanism from AT&T that supports the 
implementation of device drivers and networking 
protocol stacks. 

2. A kernel mechanism from AT&T that supports the 
implementation of device drivers and networking 
protocol stacks. 
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STREAMS module 

subject 

submap 

swapping 

A set of routines that may be pushed into a stream to process 
control of data. It has a read queue and a write queue, and 
communicates with other elements of the stream by means of 
messages. 

Defined by the "Orange Book" as something (for example, a 
process) that "causes information to flow among objects or 
changes the system state." 8 See also security policy. 

An address map that manages a subrange of a larger address 
map. For example, the kernel map includes several submaps 
that are used by various kernel subsystems. A subsystem can 
lock its submap without having to lock the entire kernel map. 

1. Temporarily removing an active job from main storage, 
saving it on disk, and processing another job in the area 
of main storage that was formerly occupied by the first 
job. 

2. A process that interchanges the contents of an area of 
real storage with the contents of an area in auxiliary 
storage. 

3. In a system with virtual storage, a paging technique that 
writes the active pages of a job to auxiliary storage and 
reads pages of another job from auxiliary storage into 
real storage. 

4. In traditional UNIX, a memory management mechanism 
that forces the entire contents of a process's address 
space to secondary storage. In OSF/1, the swapping 
mechanism makes pages available for pageout but does 
not force them out of resident memory. 

8. Trusted Computer System Evaluation Criteria (TCSEC) (CSC-STD-001-83), U.S. Department of 
Defense, National Computer Security Center, August 15, 1983. Glossary. 
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symmetric copy-on-write 

A copy-on-write mechanism that allows tasks to share a copy 
of temporary data. When a task attempts to write data that is 
shared in this manner, the kernel allocates new physical 
memory, copies the data to the new memory, and places the 
corresponding virtual page in a shadow object. See also 
temporary data, virtual page. 

synchronization 

system call 

tag 

1. DTS: The process by which a DTS entity requests clock 
values from other systems, computes a new time from 
the values, and adjusts its system clock to the new time. 

2. The fundamental mechanism of locking between 
different threads of execution in the kernel and between 
the kernel and the interrupt handlers. 

1. A request by an active process for a service by the 
system kernel. 

2. A request by an active process for a service by the 
system kernel. A process executing a system call 
generates an exception that traps the process into the 
kernel so that it may run in kernel mode. 

Kernel encodings of policy-specific security information. A 
tag pool is associated with each UNIX data structure that 
describes a subject or object. The tag pool contains the tags 
that represent the security attributes for that subject or object. 
Note that tags and privilege sets in the file system are 
independent. Privileges reside in privilege vectors, not in tags. 

Tags are maintained in a security policy database that is 
managed by policy daemons. Each policy module maintains a 
decision cache. If the requisite information is not in the cache, 
the system must get its decision (and possibly a new tag) from 
a policy daemon. 
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task 

1. A basic unit of work that is to be performed. Some 
examples include a user task, a server task, and a 
processor task. 

2. A process and the procedures that run the process. 

3. In a multiprogramming or multiprocessing environment, 
one or more sequences of instructions that are treated by 
a control program as an element of work to be 
accomplished by a computer. 

4. A data structure that represents a set of system resources 
that provides a context for the execution of one or more 
threads. These resources include a virtual address space 
and Mach IPC ports. See also thread. 

task exception 
A program exception that is task-specific, not thread-specific. 
See also program exception, thread exception. 

temporary data 

terminal 

text 

Data that is generated in resident memory as a process 
executes. For example, the data contained in a process's heap 
is temporary; when the process exits, the heap data is lost. See 
also permanent data. 

1. A device, which is usually equipped with a keyboard 
and a display device, that is capable of sending and 
receiving information over a communications line. See 
also tty. 

2. In a system or communications network, a point at 
which data can either enter or leave. 

3. In curses, a special screen that represents what the work 
station's display screen currently looks like. 

1. A type of data consisting of a set of linguistic characters 
(letters, numbers, and symbols) and formatting controls. 



thrashing 

thread 

Glossary 

2. The executable portion of a program, as contained 
within an object file, or as loaded into memory. 
Operating systems generally make the text read-only, 
and generally arrange for multiple processes to share a 
single text image. See also object file format, bss, data 
section. 

3. In kernel mode, contains kernel program code that 
executes. It is read-only by a user process. 

4. In ASCII and data communications, a sequence of 
characters that is treated as an entity when preceded by 
one start-of-text and terminated by one end-of-text 
communication control character. 

5. In word processing, information that is intended for 
human viewing and that is presented in a two­
dimensional form, such as data printed on paper or 
displayed on a screen. 

6. The part of a message that is not the header or control 
information. 

In a virtual storage system, a condition in which the system is 
doing so much paging that little useful work can be done. 

1. A single, sequential flow of control within a process. 

2. A single, sequential flow of control. 

3. An independent computation that operates within the 
same context as other independent computations. 

4. A data structure that represents an independent 
computation. 

thread exception 

A program exception that is thread-specific, not task-specific. 
For example, a divide-by-zero exception is a thread exception. 
See also program exception, task exception. 

GL-37 



Design of the OSF/1 Operating System 

TLB 

See translation lookaside buffer (TLB). 

TLB shootdown 

An operation that invalidates the contents of a CPU's 
translation lookaside buffer. See also translation lookaside 
buffer (TLB). 

translation lookaside buffer (TLB) 

A cache on the CPU that contains recently used address 
translations. When performing address translation, the 
memory management unit searches the TLB before searching 
page tables in memory. The TLB significantly optimized 
address translation operations. See also memory 
management unit (MMU). 

trusted computing base (TCB) 

tty 

Defined by the "Orange Book" as "The totality of protection 
mechanisms within a computer system-including hardware, 
firmware, and software-the combination of which is 
responsible for enforcing a security policy. A TCB consists of 
one or more components that together enforce a unified 
security policy over a product or system. The ability of a TCB 
to correctly enforce a security policy depends solely on the 
mechanisms within the TCB and on the correct input by 
system administrative personnel of parameters (for example, a 
user's clearance) related to the security policy."9 See also 
Orange Book. 

Any device that uses the termios standard terminal device 
interface. The tty devices typically perform input and output 
on a character-by-character basis. 

9. Trusted Computer System Evaluation Criteria (TCSEC) (CSC-STD-001-83), U.S. Department of 
Defense, National Computer Security Center, August 15, 1983. p. 116. 
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UID 

See user ID. 

uniprocessor 

A hardware platform that contains one CPU. 

user data area 

user ID 

user mode 

user stack 

validity fault 

VFS 

The system, virtual memory paging space, or application data. 
See also Logical Volume Manager (LVM), physical volume. 

An integer that uniquely identifies a system user. 

1. A mode in which a process is carried out in the user's 
program rather than in the kernel. Contrast with kernel 
mode. 

2. A mode of execution in which the CPU executes user 
instructions, but does not have access to kernel 
instructions and data. See also kernel mode. 

A region in a process's virtual address space that contains 
local variables that are being used by a currently active 
subroutine. When a subroutine calls another subroutine, the 
kernel allocates a new stack frame to hold the new routine's 
variables and pushes the stack frame on the user stack. 

A page fault that is generated when a thread attempts to 
reference a page that is not in resident memory. See also page 
fault, page fault handler, protection fault. 

See virtual file system (VFS). 
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virtual address space 

A contiguous range of virtual memory. In UNIX systems, 
each process has a single virtual address space that contains 
the process's executable text and data. See also address 
translation. 

virtual file system (VFS) 

1. DPS: A level of abstraction that is above the specific 
interfaces to various types of file systems. It is used to 
avoid having to change kernel code to handle low-level, 
system-speci fie differences. 

2. In OSF/l, a kernel subsystem that implements a level of 
abstraction that is above the specific interfaces to 
various types of file systems. 

virtual memory 

Addressable space that appears to be real memory. From 
virtual memory, virtual addresses are mapped into real 
memory locations. The size of virtual memory is limited by 
the addressing scheme of the computer system and by the 
amount of auxiliary storage that is available, not by the actual 
number of main storage locations. 

virtual memory object (VM object) 

virtual page 

VM object 

A kernel data structure that represents a set of virtual pages 
that are mapped into one or more virtual address spaces. See 
also memory object. 

A software abstraction that the kernel uses to manage the 
system's memory resources. Each system has a system­
specific virtual page size that either matches the hardware's 
page frame size or is a multiple of two of that size. See also 
page frame. 

See virtual memory object (VM object). 



vnode 

vnode pager 

volume 

Glossary 

1. DFS: The structure that is used to access the inode or 
anode structure that is associated with a specific file 
through a virtual file system interface. The term vnode 
stands for virtual node. 

2. A data structure that is used by the kernel to manage a 
file or directory. There is a unique vnode that is 
allocated for each of the system's active files and 
directories. Each vnode represents an underlying, file­
system-specific data structure. The vnode construct 
allows the kernel's virtual file system to manage 
different file systems through a uniform interface. See 
also memory object. 

The kernel's default pager, and the pager that manages paging 
operations on mapped files. The vnode pager is so named 
because the memory objects it manages are represented by 
vnodes. See also memory object, vnode. 

1. A certain portion of data, together with its data carrier, 
that can be handled conveniently as a unit. 

2. The level of sound of the system. 

3. The physical storage location of a file system. 

4. A block storage device that corresponds to a disk driver, 
or a disk partition in a traditional UNIX system. See 
also Logical Volume Manager (L VM). 
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volume group 

1. A collection of physical volumes (read/write hard 
drives) of varying sizes and types. 

2. A set of physical and logical volumes, and the mappings 
between them. Logical volumes can only map physical 
volumes that are in the same volume group. See also 
physical volume, logical volume, Logical Volume 
Manager (L VM). 

wide character 

The C type definition wchar _ t that is used to store process 
codes in a program. 
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5-23 
and quantum, 5-2 
and the thread_ block() 

routine, 5-11, 5-14 
and the thread _switch() 

routine, 5-24 
and timers, 5-27 
introduction, 2-8 

control device, 14-19, 14-24 
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conventions for date and time, 
10-6 

conversion table, 10-16 
converting between code sets, 

10-15 
copied region, 6-9 
copy map object, 6-29 
copy object, 6-22, 6-24, 6-26, 

6-29 
copy-on-write, 3-6, 3-9, 6-10 

asymmetric, 6-10, 6-25, 
6-26,6-29 

symmetric, 6-10, 6-14, 
6-22,6-26 

covered vnode, 11-11 

CPU-usage timers, 5-2, 5-25, 
5-26 

csq_ acquire() routine, 13-13, 
13-25 

csq_lateral() routine, 13-13, 
13-17 

D 
data 
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mirroring, 14-6 
permanent, 6-22, 6-23, 

6-26, 7-3 
recovery, 14-6 
replication, 14-2, 14-6 
restoring, 14-11 
stale, 14-22 
temporary, 6-10, 6-14, 

6-22, 7-4 

date and time conventions, 10-6 
date display, international, 10-1 
deadlocks, 12-14, 13-16 
deallocation of file descriptors, 

11-7 
default 

pager, 3-13, 7-3 
pager, submap, 6-30 
processor set, 5-19, 5-20, 

5-21 
deferred catalog opens, 10-11 
deleting protocols dynamically, 

12-5 
demand paging, 2-6, 7-1 
descriptor management, 11-3 
device 

assignment database, 15-36, 
15-39, 15-43, 15-44 

driver, 2-11 
driver, bottom half, 9-6, 9-7 
driver, dynamically 

configurable, 9-6 
driver, top half, 9-6, 9-7 
hashing, 11-26 
interrupt, 2-12 
special files, 11-25 

devices, logical volumes, 14-4 
dirty buffer list, 11-19 
discretionary access control 

(DAC), 15-7, 15-11, 15-24 
to 15-30, 15-68 

disk drivers, 14-2 
disks, 14-1, 14-2, 14-4, 14-8 
distributed file system, 11-15 
domain, 12-3 

families, 12-2 
funnel mechanism, 12-10, 

12-13, 12-18 



list, 12-5 
reference count, 12-5 

domain data structure, 12-3, 12-4 
DOMAIN_ FUNNEL macro, 

12-19, 12-21 
domain_funnel structure, 12-19, 

12-21 
DOMAIN_ UNFUNNEL macro, 

12-19, 12-21 
dynamic 

E 

configuration, 11-38, 14-2, 
14-18 

configuration changes, 
11-32 

device driver, 9-6 
loading, 8-2, 8-12, 8-13, 

8-18,8-23 
system call numbers, 9-9 
system calls, 9-9 
unconfiguration, 14-18 

effective privilege set, 15-3, 
15-21, 15-22, 15-32, 
15-64, 15-65 

eight-bit code sets, 10-3 
esballoc() routine, 13-20 
event management, 12-9 
event-wait mechanism, 5-13, 

5-14,5-16,5-17 
events, 13-8 
exception handler, 4-13, 4-15 

default, 4-14 
exception handling facility, 4-13 

to 4-16 

exec, 4-6 
exec switch, 8-6, 8-7 
exec() system call 

algorithm, 8-7 

Index 

and absolute images, 8-1 
and Id in UNIX, 8-5 
and privileged processes, 

8-25 
and UNIX processes, 4-1 
architecture, 8-6 
introduction, 2-3 

executable image, absolute, 8-1 
execution 

mode, 2-10 
state, 2-4, 3-2, 5-8 to 5-18 

exit() system call, 2-3, 4-1, 4-6 
exported 

packages list, 8-14 
symbol, 8-5, 8-9, 8-10, 

8-12, 8-17 
extent size, 14-4 
external 

data, 12-25 
memory manager, 3-13, 

7-3,7-17, 7-19 
memory manager and 

paging, 7-9 
memory manager interface, 

7-3,7-19 
pager, 6-27 
reference, 8-1, 8-2, 8-3, 

8-4,8-10 
VM objects, 3-12 

extra privilege checking, 11-39 
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F 
fast symbolic links, 11-35 
fattach() routine, 13-21 
fictitious pages, 7-10 
file 

format manager, 8-6, 8-7, 
8-8, 8-17, 8-18, 
8-23 

layer, 11-3 
locking, 11-24 

file descriptor, 11-7, 12-1 
state, 2-4 
table, 4-2, 4-4 

file system 
layer, 11-30 
metadata, 11-25 
private data, 11-20 
security extensions, 11-38, 

15-56 to 15-61 
tree, 11-9 
type, loading, 9-8 

fine-grained application 
scheduling, 5-23 

flow control, 13-1 
fmodsw table, 13-7 
forcible unmount, 11-11, 11-24 
fork() system call, 2-3, 4-1, 4-6, 

13-21 
format-dependent loader routines, 

8-17 
framework, 13-1 
free list chains, 11-28 
free page queue, 7-8 
free() routine, 2-2 
freeb() routine, 13-20 
funneling, 11-36 

lndex-6 

G 
general registers, 2-9 
getaddressconf() system call, 

8-20 
getmsg() routine, 13-5 
getnewvnode() routine, 11-23 
getpmsg() routine, 13-5 
global 

data file, 8-20, 8-22 
installed packages table 

(global IPT), 8-11, 
8-20, 8-22, 8-23, 
8-25 

granted privilege set, 11-39, 15-3, 
15-21, 15-22, 15-60 

group ID, 2-5 

H 
hardware clock, 2-12 

I 
iconv conversion subsystem, 

10-15 
iconv() converters, 10-10 
iconv() function, 10-15 
iconv _close() function, 10-15 
iconv _open() function, 10-15 
identification, 2-5, 15-7, 15-42 



imported 
packages list, 8-14 
symbol, 8-5, 8-8, 8-9, 

8-10, 8-12, 8-14, 
8-15,8-24 

inactive page queue, 7-8 
information systems security 

officer (ISSO), 15-19, 
15-20, 15-23, 15-44, 15-47 

inlib build-in shell command, 8-11 
inode locking, 11-37 
installing libraries, 8-11, 8-22 
interactive program and CPU, 5-3 
internal VM objects, 3-12 
internationalization subsystem, 

10-1 to 10-12 
Internet 

domain, 12-2 
domain locks, 12-16 
protocols, 12-17 

interrupt 
handler, 2-12 
handler, clock, 2-10, 5-3, 

5-4 
handler, registering, 9-6 
level, 2-12 
service routine, 12-5 
service threads, 12-8, 12-13 

interrupts, 13-16 
invalidation of vnodes, 11-24 
ioctl() routine, 13-5 
IPC and paging requests, 7-2, 7-3, 

7-10, 7-11 
ISR threads, 12-8, 12-13 

J 
job control facility, 4-1, 4-7 

K 
keep-on-exec, 8-25 
kernel 

Index 

authorizations, 15-3, 15-20, 
15-21 

daemons, 2-13 
load server, 8-21 
map, 6-29 
mode, 2-10 
space loading, 8-21 
task, 6-29 
timer, 5-26, 5-27 
UNIX, 2-1, 2-3, 2-10 

kmodcall() system call, 9-3 
known module, 8-9 
known modules list, 8-14, 8-15, 

8-16 

L 
Latin-1, 10-13 
lazy evaluation, 3-6, 3-17, 6-32, 

6-36, 7-6 
Id command, 8-3, 8-4, 8-5, 8-10 
least privilege principle, 15-4 
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least recently used (LRU) 
name cache policy, 11-16 
paging policy, 7-9 

libraries, installing, 8-11, 8-22 
lib_ admin command, 8-11, 8-19, 

8-22 
linker, 8-3, 8-5, 8-10 
load average calculation, 5-3, 5-5 
load() 

interface, 8-12 
system call, 8-24 

load-time linking, 8-4 
loaded packages table (LPT), 8-12 
loader 

address space management, 
8-18 

context, 8-8, 8-12, 8-13, 
8-18 

format-dependent routines, 
8-17 

memory allocation 
interfaces, 8-19 

security, 15-65 
switch, 8-8, 8-14, 8-17 

loading 
a file system type, 9-8 
kernel space, 8-21 

locale, 10-1 
locking, 12-14, 13-9 
locks 

compare-and-swap, 5-23 
test-and-set, 5-23 
user address map, 6-29 

logical 
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address space, 2-2 
addresses, 2-7 
block requests, 14-21, 

14-23 
extents, 14-4, 14-6 

page, 3-14 
track group, 14-5, 14-21 

Logical Volume Manager. See 
LVM 

logical volumes, 14-2, 14-4 
allocation unit, 14-4 
and physical volumes, 14-2, 

14-6,14-8 
defect mirroring, 14-27 
logical extents, 14-4 

LTG. See logical track group 
LVM, 14-1to14-27 

M 
Mach 

Interprocess 
Communication 
(Mach IPC), 3-4, 
4-13,6-29 

security, 15-66 
machine-dependent, virtual 

memory management, 3-16, 
3-17 

machine-independent, 6-36, 6-37 
data structures, 6-32 
resident memory 

management, 3-14 
virtual memory 

management, 3-16, 
3-17 

malloc() routine, 2-2, 12-25 
managing disk storage, 14-1 
mandatory access control (MAC), 

15-2 to 15-7, 15-11, 15-30 
to 15-37, 15-62, 15-63, 
15-67 



mapping, logical-to-physical, 14-6 
masking signals, 4-10 
mbuf 

chain, 12-15, 12-22 
data structure, 12-21, 

12-22, 12-23, 13-20 
MCLALLOC macro, 12-25 
MCLGET macro, 12-25 
memory 

allocation, 13-1, 13-19 
allocation interfaces, loader, 

8-19 
external manager, 3-13, 

7-3, 7-17, 7-19 
external manager and 

paging, 7-9 
management hybrid policy, 

7-2 
management unit (MMU), 

2-7,6-32,6-37 
manager, 7-2 
map, 4-2, 4-3 
mapping, 2-6 
object, 3-1, 3-6, 3-8 to 

3-13, 3-16, 3-18, 
3-19 

object, cache management 
interface, 7-20 

physical, 3-14 
region, 3-9, 3-11, 3-18, 

3-19, 6-2 to 6-9, 
6-13, 6-27 

region, and memory object, 
7-2 

resident, 2-6, 7-1 
memory_ object_ data _provided() 

routine, 7-20 
message, 3-6, 3-7 

and paging, 3-12 

definition, 3-4 
subsystem, 10-11 

Index 

used to invoke an operation, 
3-8 

MFREE macro, 12-25 
MGET macro, 12-25 
MGETHDR macro, 12-25 
minor number space, 13-22 
mirror consistency record, 14-9, 

14-10, 14-25 
mirroring, 14-6 

consistency, 14-22 
data in transition, 14-23 
doubly, 14-6 
logical volume defects, 

14-27 
physical extents, 14-6 
recovery, 14-6 
replication, 14-22 
restoring, 14-11 
resynchronization, 14-22 
sequential policy, 14-24 
singly, 14-6 
stale data, 14-22 
synchronization, 14-21 

mknod() routine, 13-21 
mmap() routine, 6-28, 7-3 

and loader, 8-20 
MMU, 2-7, 6-32, 6-37 
module record, 8-14, 8-15, 8-23 
monetary display, international, 

10-1 
monetary formatting, 10-8 
mount point, 11-13 
mount structure, 11-11 
mounted 

block device, 11-12 
file system, 11-10, 11-14 
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mpsleep() routine, 13-18 
multi byte 

code sets, 10-3 
encoding methods, 10-3 

multilevel directories, 11-40 
multiplexing streams, 13-23, 

13-24 
multiprocessor environment, 12-13 
multiprocessor networking code, 

12-13 

N 
name 

cache, 11-16 
translation, 11-12 

namei() function, 11-13 
National Computer Security Center 

(NCSC), 15-1, 15-4 
negative caching, 11-16 
Netintr() routine, 12-9, 12-13 
netisr data structure, 12-10, 12-12 
netisr framework, 13-5, 13-8 
netisr _add() routine, 12-9 
netisr _ del() routine, 12-9 
netisr _input() routine, 12-12 
NETISR _STREAMS event, 13-8 
NETISR_STRTO event, 13-8 
NETISR_STRWELD event, 13-8 
netisr _thread event, 12-13 
nonresident page, 3-11 
nonparallelized protocol, 12-2, 

12-13, 12-18 
np_uthread structure, 4-2, 4-4, 

4-5 
numeric display, international, 

10-1 
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0 
object 

backing, 6-13, 6-16, 6-17 
copy,6-22,6-24,6-26, 

6-29 
copy map, 6-29 

object file, 8-2, 8-3, 8-4, 8-5, 
8-15,8-18 
format, 8-2, 8-4, 8-5, 8-6 

object-oriented subsystem, 
internationalization, 10-9 

operations vector, 11-11 
operator, 15-22, 15-23 
Orange Book, 15-1, 15-4, 15-7, 

15-10 
OSF/ROSE, 8-5 
OSR, 13-7 
OSRQ, 13-7 
out-of-line data, 3-6 

p 
packages, 8-9, 8-10, 8-11, 8-14, 

8-17 
packet processing, 12-12 
page 

caching, 3-15, 3-20, 6-35, 
7-17,7-20 

cluster size, 7-5 
clustering, 7-5 to 7-8 
fault, 3-11, 6-3, 6-8, 6-26, 

6-30,6-34,6-37 
fault exception, 2-7 
fault handler, 2-7, 6-7, 

6-26, 7-2, 7-3, 7-9 



page in 

fault handler and page 
clustering, 7-5, 7-12 

fictitious, 7-10 
frames, 2-6, 3-14 
logical, 3-14 
nonresident, 3-11 
private, 7-11 
queue, 7-8 
replacement algorithm, 7-8 
resident, 3-11, 3-14, 3-15 
size, 14-5 
target, 7-8, 7-11, 7-12 
wired, 3-15 

and caching, 3-20 
and memory objects, 3-9 
of clusters, 7-7, 7-12 
requests, 7-2 
thread protection, 7-13 
vnode pager, 7-3 

pageout, 3-9, 3-13, 3-20 
pageout daemon, 2-8, 2-13, 7-5, 

7-6 to 7-9, 7-10, 7-11, 
7-14 

pager 
and scheduler, 5-4 

default, 6-30, 7-3 
external, 6-27 
trusted, 7-3 

pager port, 3-11 
pager_ file data structure, 7-6 
paging 

demand, 2-6, 7-1 
files, 7-4 to 7-7 
manager, 3-8 

parallel programming models and 
the scheduler, 5-1, 5-18 

parallel protocol, 12-14 
parallelization, 11-30 

Index 

of NFS server, 11-31 
parallelized protocol, 12-2 
patching (subroutine and global 

variable references), 8-3, 
8-5 

pathname translation, 11-12 
pcb structure, 12-14, 12-16 
per-process open-file table, 11-3 
permanent data, 6-22, 6-23, 6-26, 

7-3 
pf_ drain() routine, 12-25 
physical 

disks, spanning, 14-2 
extents, 14-4, 14-6 
file system, 11-12 
map (pmap), 3-16 to 3-17, 

6-32 to 6-39, 7-9, 
7-10, 7-15, 7-16 

memory, 3-14 
volumes, 14-2 to 14-10, 

14-19, 14-26 
physical volume reserved area, 

14-8 
PID,2-5 
pipes, 13-21 
pmap, 3-16 to 3-17, 6-32 to 6-39, 

7-9, 7-10,7-15,7-16 
functions, 6-32 to 6-37 

port 
and memory object, 3-9 
as object, 3-8 
definition, 3-4 
name space, 3-5 
rights, 3-5 to 3-6 

potential privilege set, 11-39, 
15-3, 15-21, 15-60 
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predetermined system call 
numbers, 9-9 

preload, 8-13, 8-17, 8-19, 8-22 
preload cache, 8-22 
prerelocate, 8-22 
private installed packages table 

(private IPT), 8-11, 8-25 
private page, 7-11 
privilege bracketing, 15-4 
privileges, 15-3, 15-18 to 15-23, 

15-28, 15-32 
probing devices, 9-10 
proc structure, 2-5, 4-1, 4-3 
proc structure (UNIX), 4-5, 5-3 
process 

context, 2-8 
ID (PID), 2-5 
relation state, 2-5 
UNIX,2-1 

processor 
as object, 5-19, 5-20 
data structure, 5-19 
server program, 5-19, 5-21 

processor set, 5-18, 5-19 to 5-23 
as object, 5-19, 5-20 
data structure, 5-19 
default, 5-19, 5-20, 5-21 

program counter, 2-8 
program exceptions, 2-11 
protected password database, 

15-36, 15-39 to 15-41, 
15-43 

protocol, 12-3 
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control block, 12-7, 12-16 
deleting dynamically, 12-5 
endpoints, 13-21 
Internet, 12-17 

nonparallelized, 12-2, 
12-13, 12-18 

parallelized, 12-2, 12-14 
protocol-to-protocol service 

requests, 12-3 
protosw data structure, 12-3 
pseudodevices, 9-7 
pseudoterminals, 13-21 
pse_select() routine, 13-5 
psignal() (UNIX), 4-12 
psignal_indirect() routine, 4-12 
psignal_internal() routine, 4-12 
putmsg() routine, 13-5 
putnext()routine, 13-13 
putpmsg() routine, 13-5 
PVRA. See physical volume 

reserved area 

Q 
qenable() routine, 13-16, 13-19, 

13-20, 13-23 
qreply( ) routine, 13-13 
quantum (time-slice), 2-13, 5-2, 

5-3 
queue 

active page, 7-8 
free page, 7-8 
inactive page, 7-8 
wait, 5-13, 5-14, 5-15, 

5-16 
queue-pair synchronization, 13-28 
queued messages, 13-17 
quorums, 14-6, 14-9, 14-10, 

14-19, 14-25 



q next routine, 13-22 
q_qlock routine, 13-16 

R 
raw disk paging file, 7-4 
receive rights, 3-5 
recursion, 13-11 
recycling vnodes, 11-23 
region 

copied, 6-9 
in object file, 8-4, 8-8, 

8-17, 8-18, 8-21, 
8-23,8-25 

memory, 6-2 to 6-9, 6-13, 
6-27 

memory, inheritance, 3-18 
memory, interfaces, 3-19 
memory, introduction, 3-9 
memory, tracking, 3-11 
record, 8-14, 8-23 
shared, 6-9 

registering interrupt handlers, 9-6 
registers, general, 2-9 
relocatable object file region, 8-18 
relocation 

by the loader, 8-3, 8-5, 8-8, 
8-12, 8-14, 8-18, 
8-22 

sectors, 14-9 
software, 14-9 

remote procedure call. See RPC 
request 

unweld, 13-8 
weld, 13-8, 13-16, 13-22 

Index 

resident 
memory, 2-6, 7-1, 7-2, 

7-8,7-20 
page,3-11,3-14,3-15 
page table, 3-15, 7-10, 

7-13 
resynchronization, 14-10 
root, 15-2, 15-3, 15-11, 15-22, 

15-41, 15-42, 15-65 
RPC, 3-8, 4-13 
run queue 

s 

and context-switching, 5-2 
and event-wait, 5-13 
andload,5-4 
and priority updates, 5-7 
and suspend state, 5-10, 

5-12 
and thread state, 5-8 
data structure, 5-7 

sbappend() routine, 12-15 
schednetisr() macro, 12-9 
schednetisr( ) routine, 12-12 
scheduler 

BSD, 5-2 to 5-4 
OSF/l, 5-4 to 5-7 
timestamp, 5-2, 5-5, 5-7, 

5-26, 5-28 
usage-aging mechanism, 

5-3, 5-6 
scheduling 

hints, 5-18, 5-23 to 5-25 
network activity, 12-8 
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priority, 5-2, 5-8, 5-25 
state, 2-4 

secondary storage, 7-1 
sectors, relocating, LVM, 14-9 
secure systems, 9-10 
security, 15-1 to 15-69 

conditionals, 15-6, 15-9, 
15-18, 15-19, 15-21, 
15-23 

security policy, 15-1, 15-7 to 
15-17 
daemon, 15-11, 15-13, 

15-15 
database, 15-11, 15-14, 

15-16 
driver, 15-13, 15-16 
module, 15-11, 15-13, 

15-14, 15-24 
switch, 15-11, 15-13, 

15-24 
selective configuration, 9-10 
send rights, 3-5 
sensitivity 

label, 15-3, 15-4, 15-10, 
15-30, 15-31 

level, 15-3, 15-6, 15-7, 
15-30, 15-34 

server parallelization, 11-31 
setlocale() function, 10-10 
shadow 

object, 6-12, 6-13, 6-15, 
6-16,6-22 

object, chains, 6-15 to 6-18 
trees, 6-19 to 6-21 

share map, 6-27, 6-28 
shared 
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file description access, 11-5 
library, 8-1 to 8-5, 8-10, 

8-11, 8-25 

library, prerelocated, 8-22, 
8-23 

memory server, 7-17 
region, 6-9 

sharing sockets, 11-5 
Shift Japanese Industrial Standard, 

10-14 
sigaction( ) system call, 4-10, 

4-17 
signal 

and trap handler, 2-11 
asynchronous, 4-7, 4-11, 

4-16 
delivery, 4-9 
facility, 4-1, 4-7 to 4-12, 

4-16 
masking, 4-10 
synchronous, 4-7, 4-13, 

4-16 
sigprocmask( ) system call, 4-10 
sigsuspend() system call, 4-11 
single-byte code sets, 10-3 
single-queue synchronization, 

13-28 
singly mirrored, 14-6 
sleep interruptibly, 5-13, 5-15 
sleep() routine, 13-18, 13-19, 

13-25 
sockbuf structure, 12-7 
socket, 11-3 

framework, 12-2, 13-8 
in kernel space, 12-1 
in user space, 12-1 
locks, 12-14 
programming interface, 

12-2 
security extensions, 12-26, 

15-63 to 15-65 



socket data structure, 12-1, 12-6 
socket() system call, 11-5 
socket-to-protocol service requests, 

12-3 
SOCKET_LOCK macro, 12-15 
socklocks structure, 12-15 
soreceive() routine, 12-15 
sorting, alphabetic, 10-1 
sosbwait() routine, 12-15 
sosleep() routine, 12-15 
specalloc() routine, 11-25 
special files, 11-24 
spl synchronization, 12-14, 12-18 
spinet() function, 12-21 
splx() function, 12-21 
stack management registers, 2-9 
static configuration, 9-10 
static linking, 9-10 
sth_rput() routine, 13-25 
storage, block-oriented, 14-2 
stream 

head, 13-1, 13-3 
head routines, 13-7 
queue scheduling, 13-1 

STREAMS, 13-1to13-29 
security extensions, 15-61 

to 15-63 
streams_ mpsleep() routine, 13-18 
streams_ open_ comm() routine, 

13-22 
strmod _add() routine, 13-27 
strqset() routine, 13-17 
submap 

of kernel address map, 6-30 
vnode pager as, 7-3 

superblock changes, 11-40 
superuser, 15-20, 15-23 

Index 

suspend mechanism, 5-9, 5-10, 
5-12 

swapin daemon, 2-13 
swapon command, 7-4 
swapon() system call, 7-4 
swapout daemon, 2-13 
swapping, 2-6, 7-1, 7-13 to 7-16 

in OSF/1, 7-14 
tasks, 7-16 
threads, 7-15 

symbol resolution, 8-9, 8-11, 
8-14,8-17 

symbolic link, 11-13, 11-14 
symmetric copy-on-write, 6-10, 

6-14,6-22,6-26 
synchronization, 12-10, 12-13, 

13-9, 13-27 
on descriptors, 11-7 
queue, 13-9 
queue element, 13-11 
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