wR)sAg Sunerad 1/3S0 Y3 jo usrsa(g

OSF/1"
Operating
System

Design of the
OSE/1 Operating System

OFEN SOFTWARE FOUNDATION

Design of the
OSF/1 Operating System

Release 1.2

Open Software Foundation

P T R Prentice Hall, Englewood Cliffs, New Jersey 07632

Cover design
and cover illustration: BETH FAGAN

This book was formatted with troff.

Published by P T R Prentice-Hall, Inc.
= A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

The information contained within this document is subject to change without notice.

OSFMAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. ‘

OSF shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential
damages in connection with the furnishing, performance, or use of this material.

Copyright ©1993 Open Software Foundation, Inc.

This documentation and the software to which it relates are derived in part from materials supplied by the following:

e © Copyright 1987, 1988, 1989 Carnegie-Mellon University

e © Copyright 1985, 1988, 1989, 1990 Encore Computer Corporation

e © Copyright 1985, 1987, 1988, 1989 International Business Machines Corporation
e © Copyright 1988, 1989, 1990 Mentat Inc.

e © Copyright 1987, 1988, 1989, 1990 SecureWare, Inc.

e This software and documentation are based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California. We acknowledge the following individuals and institutions for
their role in its development: Kenneth C.R.C. Arnold, Gregory S. Couch, Conrad C. Huang, Ed James,
Symmetric Computer Systems, Robert Elz © Copyright 1980, 1981, 1982, 1983, 1985, 1986, 1987. Regents of the
University of California.

All rights reserved.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-202813-1

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE,
AND MAY BE USED AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND
WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OF THE
DOCUMENT AND SOFTWARE REMAIN WITH OSF OR ITS LICENSORS.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software
Foundation, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the U.S. and other countries.

X/Open is a trademark of the X/Open Company Limited in the U.K. and other countries.

AT&T is a registered trademark of American Telephone & Telegraph Company in the U.S. and other countries.
BSD is a trademark of University of California, Berkeley.

DEC and DIGITAL are registered trademarks of Digital Equipment Corporation.

Ethernet is a registered trademark of Xerox Corporation.

X Window System is a trademark of the Massachusetts Institute of Technology.

Sun, Network File System, and NFS are trademarks of Sun Microsystems, Inc.

SMP, SMP+, and CMW + are trademarks of SecureWare, Inc.

PostScript is a trademark of Adobe Systems Incorporated.

Apple, the Apple Logo, Macintosh, AppleTalk, ImageWriter, and LaserWriter are registered trademarks of Apple
Computer, Inc. A/UX is a trademark of Apple Computer.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED
SOFTWARE.

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this
computer software, the rights of the Government regarding its use, reproduction and disclosure are as set forth
in Section 52.227-19 of the FARS Computer Software-Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions
as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the Government is subject to restrictions
as set forth in paragraph (b)(3)(B) of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a).
This computer software is submitted with “restricted rights.” Use, duplication, or disclosure is subject to the
restrictions as set forth in NASA FAR SUP 18-52.227-79 (April 1985) “Commercial Computer Software-Restricted
Rights (April 1985).” If the contract contains the Clause at 18-52.227-74 “Rights in Data General” then the
“Alternate I1I” clause applies.

US Government Users Restricted Rights - Use, duplication, or disclosure restricted by GSA ADP Schedule Contract.
Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

Contents

Preface

Audience

Applicability

Document Usage

Related Documents

Problem Reporting

Acknowledgements
Chapter 1. The OSF/1 Operating System
1.1 UNIX Functionality
1.2 Advanced Features
1.3 What is OSF/1?

1.3.1
1.3.

—mimimo AL o

ok ko ek ke ok
L0 L LY LY LY LY LY LY L LW
W= O

Tasks and Threads

Virtual Memory and Memory
Management .
File Management
Networking

STREAMS

Sockets

XTI

Internatlonahzatlon
Terminals .
Logical Volume Manager .
Program Loader

Security

Scalability and Dynamlc
Configuration

14 The Future of the OSF/1 Design
Chapter 2. Overview of UNIX Processes and the UNIX Kernel
2.1 Process Address Spaces

XV
XVi
XVi
Xvi

Xvii

XViii

XViii

1-10
1-11

1-11
1-12

Design of the OSF/1 Operating System

2.2
2.3
24

2.5
2.6

Process Management System Calls

Process States .

Memory Management

24.1
24.2

Memory Managemerit Techmques
The Transparency of Memory
Management ..

Process Context and Context-Switching
The UNIX Kernel and Its Services

2.6.1
2.6.2
2.6.3
2,64
2.6.5

System Calls

Program Exceptions
Peripheral Device Activity
The Hardware Clock
Kernel Daemons

Chapter 3. Overview of the Mach Technology in OSF/ 1.
Tasks and Threads

3.1

3.2

33
34

3.1.1
312

The task Data Strocture
The thread Data Structure

The Mach Interprocess Communication
Subsystem .

3.2.1 Ports

3.2.2 Messages .

3.2.3 Ports as Objects

Memory Objects

Mach Virtual Memory Management

34.1 Task Address Maps .

34.2 Virtual Memory Objects and Memory
Objects . .

343 VM Object Types .

34.4 Memory Objects and Memory
Managers

345 Management of Re81dent Pages

34.6 Physical Maps

3.4.7 Mach Virtual Memory Interfaces

34.8

Memory Managers and the External Memory .

Management Interface

Chapter 4. Processes: Structure and Management

4.1

4.2

Process States and Data Structures

4.1.1
4.1.2

The proc Structure
The user Structure

Allocation of proc Structures

2-3
2-4
2-5
2-6

2-7

2-10
2-10

Contents

Chapter 5.

Chapter 6.

4.3

44

The Process Management System Calls and Multithreaded
Behavior . e e e e e

The Signal Facility . .

4.4.1 The Posting of Srgnals .

4.4.2 Signal Delivery . .

4.4.3 The Signal System Calls e

444 Implementation of the Signal Facrllty

4.4.5 The Exception Handling Facﬂrty

4.4.6 Signal Handlers .o

4.4.77 Unix System Calls, the U- area and Interrupted
System Calls e e e e e e

The Scheduling Subsystem

5.1

5.2

53

54

Timesharing .
5.1.1 The BSD Scheduler
The OSF/1 Scheduler
The Run Queue Data Structure

5.1.2

5.1.3

Thread Execution States . .

5.2.1 The Suspend Mechamsm .

5.2.2 Execution State and the Suspend
Mechanism

5.2.3 The Event-Wait Mechanrsm ..

5.2.4 Execution State and the Event-Wait

Mechanism

Scheduler Support for Parallel Applrcatrons
5.3.1 Processors and Processor Sets
5.3.2 Scheduling Hints

CPU-Usage Timer Support
5.4.1 OSF/1 Timers
5.4.2 The timer Data Structure

The Virtual Memory Subsystem Address Space
Implementation .
6.1 Address Maps and Address Map Entries
6.1.1 The vm_map Data Structure
6.1.2 The vm_map_entry Data Structure
6.1.3 Address Map Entries and the Page Fault
Handler . .o
6.2 Implementation of UNIX Process Address
Spaces . e
6.3 The Opt1mrzatron of Virtual Copy .
6.3.1 Symmetric Copy-on-Write
6.3.2 Asymmetric Copy-on-Write
6.4 The Page Fault Handler and Copy-on-Write

4-6

4-7
4-8
4-9
4-10
4-11
4-13
4-16

4-17

7
L

W LIIIUI(JIUI
w o OO0 Qb

|
——

L
o

|
NN N ==
NN WO

(S RV, R UIL!I\LII ()} [V, 0]

|

—

739 7
-LL»)[\)

T
~

6-8

69
6-10
6-22

626

Design of the OSF/1 Operating System

Chapter 7.

Chapter 8.

6.5
6.6
6.7

6.8

Buffers
The Virtual Memory Subsystem Memory
Management
7.1 Overview
7.2 The Vnode Pager .
7.2.1 Paging Files .
7.2.2 Page Clustering . .
7.2.3 Allocating Clusters in Pagmg Flles
7.2.4 Vnode Pager Memory Objects
7.3 Cluster Paging Operations on Temporary Data
7.4 The Page Replacement Mechanism .
7.4.1 Pageout of Data Managed by External Memory
Managers .
7.4.2 Pageout of Data Managed by the Vnode
Pager . .
7.5 The Page Fault Handler and Pagein of Clusters
7.6 The Swapping Mechanism
7.6.1 Swapping Policy .
7.6.2 The Thread and Task Swappers
7.7 External Memory Managers

Share Maps . .
Virtual Copy and Mach IPC

The Kernel’s Address Space
6.7.1 Submap Implementation

Pmaps and the Pmap Module
6.8.1 The Pmap Functions .
6.8.2 The Shootdown of Translatlon Looka51de

7.7.1 Example of an External .Memory Manager A Slmple

Shared Memory Server
7.7.2 The External Memory Management
Interface . e e e e

The OSF/1 Program Loader .

8.1

8.2

Conceptual Background .

8.1.1 Linking . .

8.1.2 Shared L1brar1es .

8.1.3 The OSF/11d Command .

8.1.4 Object Files and Object File Formats

Overview of the Program Loading Architecture in

OSF/1 « « « « « . .
8.2.1 The Architecture of exec() in OSF/1

6-27
6-29

6-29
6-30
6-32
6-32

6-37

7-1
7-2

7-3
-4
7-5
7-6
-7

7-8

7-8

7-9
7-11
7-12
7-13
7-14
7-15
7-17
7-17

7-19

Contents

Chapter 9.

8.3

8.4

8.5

8.6

8.7
8.8

8.9

8.2.2 The Loader’s Architecture

The Symbol Resolution Policy .
8.3.1 Using Packages .
8.3.2 Package Tables .

The Loader Context .
8.4.1 Module Records .
8.4.2 Building the Known Modules Llst

The Loader Switch and Format-Dependent
Managers . .o
8.5.1 Format- Dependent Routmes

Address Space Management .
8.6.1 Absolute and Relocatable Reglons

8.6.2 Base Addresses and Virtual Addresses fdr a.

Region .

8.6.3 Context- Spec1ﬁc Allocatlon
Procedures .

8.6.4 Typical Loader Address Space Usage

Kernel Space Loading

File

Dynamic Format Manager Loadlng

8.10 Unloading

8.11

Application Interface to the Loader

8.12 The Loader and Security
Loading and Configuring Dynamic Subsystems .

9.1

9.2
9.3
94

9.5
9.6
9.7

9.8

Overview: Loading and Configuring Dynamic
Subsystems e e e

Configuration and Kernel Tables
The Configuration Manager .

Interrupt Handling .
9.4.1 The locore.s Module
9.4.2 The Interrupt Dispatcher

Device Driver Configuration
Configuration of File Systems

Dynamic Loading and Configuring of System
Calls« .« . . 0 0 .
9.7.1 Selecting the System Call Number
Boot-Time Subsystem Configuration

Preloading, Instalhng Libraries, and the Global Data

8-22
8-23
8-24
824
8-25

9-1

9-2

9-3

9-4
9-4
9-5

9-6
9-8

9-9
9-9

9-10

Design of the OSF/1 Operating System

Chapter 10. Internationalization Subsystem 10-1

10.1 Locales+ « « « v « « e « . 102
10.1.1 Languages and Code Sets 102
10.1.2 Collating Conventions 104
10.1.3 Character Classification . . e e e e 10-6
10.1.4 International Date and Time Formats e e e 10-6

10.1.5 International Numeric and Monetary
Formats 10-8
10.2 Internationalization Subsystem Design 10-8
10.3 Application Programming Interface 10-9

104 Message Subsystem 10-11

10.5 OSF/1CodeSets « « « « v « « . 10-12
10.5.1 EUCCodeSets« « « « « « .« . 10-14
1052 SIHSCodeSet + « « « « . . 10-14

10.6 The iconv Conversion Subsystem 10-15
10.7 Terminal Device Support for

Internationalization . . Coe e e e 10-16
10.7.1 Initialization of Termmal Lmes e e e e 10-18
10.7.2 Reconfiguring Terminal Lines 10-19
Chapter 11. File Management « . . 11-1
11.1 Descriptor Management 11-3
11.1.1 Data Structures . . e e e e 11-4
11.1.2 Synchronization on Descnptors e e e e 11-7
11.2 Virtual File System Management . . e e e e 11-8
11.2.1 An External View of the File System

Tree . e e e e e e e e e 11-9
1122 The VFS Switch . . e 11-10

11.2.3 Internal Representation of Mounted Flle
Systems . e e 11-10

11.2.4 Pathname Translatlon from Name to
Vnode+ .« « < < « « < 11-12

11.3 Vnode Management . . e e e e e e 11-17
11.3.1 The Contents of a Vnode e e e e e e 11-17
11.3.2 The Free Listand Cache 11-20
11.3.3 The Life CycleofaVnode 11-21
11.34 File Locking e e e e e e e e e 11-24
11.3.5 Special Files C e e e e e e e e e 11-24
11.3.6 TheBufferCache 11-27

11.4 The File System Layer e e e e e e e e e 11-30
114.1 NFS . . e e e e e e e e e 11-30
1142 UFS+ « « « 11-32

Vi

Contents

11.4.3 The System V File System

11.4.4 File System Security Extensions .

Chapter 12. Sockets .

12.1
12.2
12.3

12.4
12.5

12.6

12.7

12.8

The Socket Framework
The Socket Programming Interface

Domains and Protocols

12.3.1 Domain Overview

12.3.2 The domain Structure . .
12.3.3 Adding and Deleting Protocols

The socket Data Structure

Scheduling Network Activity
12.5.1 Event Management
12.5.2 The netisr Structure
12.5.3 Packet Processing
12.5.4 The isr Threads .

Synchronization

12.6.1 Locking . .

12.6.2 Socket Locks ..
12.6.3 Internet Domain Locks
12.6.4 UNIX IPC Socket Pairs
12.6.5 The Domain Funnel

Memory Management . .
12.7.1 Mbufs and Clusters .
12.7.2 The mbuf Data Structure
12.7.3 Allocating mbufs

12.7.4 External Data

Sockets Security Extensions

Chapter 13. The OSF/1 STREAMS Framework

13.1
13.2
133

13.4
13.5

Overview Ce e e .
The STREAMS Programming Interface

STREAMS Operations . .

13.3.1 STREAMS as a Device Drrver
13.3.2 Flow of Control Basics

13.3.3 Stream Head Routines .
13.3.4 Operating System Requests

Scheduling and Flow Control
Synchronization

13.5.1 Synchronization Queue Structures

13.5.2 Changes to Standard STREAMS
Structures .

Design of the OSF/1 Operating System

13.6

13.7
13.8
13.9

13.10

13.11

Executing the Synchronization Queue
Acquisition of Multiple Resources
Synchronization with Interrupts
Synchronization of sleep() Calls
Synchronization of timeout() and
bufcall() .

Memory Allocation . . .
13.6.1 The bufcall() Routme .
13.6.2 Interaction with mbufs

ok ok
W L) L B L
Lintninin
NN bW

Cloning .
Welding

Multiplexing . .
13.9.1 Multiplexing Lower Streams .
13.9.2 Unlinking Multlplexed Lower

Streams . .

Initialization and Conﬁguratlon

13.10.1 Driver and Module Conﬁguratlon
Options .

13.10.2 Synchromzauon Levels

Streams Security Extensions

Chapter 14. OSF/1 Logical Volume Manager

viii

14.1
14.2

14.3

14.4

14.5

Overview

LVM Terms and Concepts .
14.2.1 LVM Component Terms
14.2.2 Mirroring .

14.2.3 Quorums . .

14.2.4 Logical-to- Physwal Mappmg

LVM Disk Layout . . .
14.3.1 Physical Volume Reserved Area .
14.3.2 Volume Group Reserved Area
14.3.3 User Data Area . . .
14.3.4 Bad Sector Relocation Pool

Programming Interfaces .
14.4.1 User Application Programmlng
Interface .

14.4.2 Admrnlstratlve Apphcatlon Programmmg .

Interface .

LVM Device Driver Architecture
14.5.1 Data Structures .
14.5.2 Driver Entry Points
14.5.3 Flow of Control .

13-13
13-16
13-16
13-18

13-19

13-19
13-20
13-20

13-21
1322
13-23
1324
13-25
13-26
13-26
13-27
13-29

14-1

14-1

14-3
14-4
14-6
14-6
14-6
14-8
14-8
14-9

14-11

14-11

14-12
14-12

14-12

14-13
14-13
14-15
14-16

Contents

14.6
14.7

14.8
14.9

Driver Theory of Operation .

LVM Configuration and I/O Layer .
14.7.1 Driver Dynamic Configuration
14.7.2 Volume Group Conﬁguratlon .
14.7.3 Raw I/O Layer

Strategy Layer

Mirror Consistency Management Layer

14.10 Scheduler Layer

14.10.1 Scheduling Policies
14.10.2 Scheduler Operations

14.11 Status Area Manager .
14.12 LVM Physical Layer .

14.12.1 Revectoring Known Defects
14.12.2 Detecting New Defects
14.12.3 Relocating and Repairing Defects

14.12.4 Dynamic Detection, Relocation, and

Repair

Chapter 15. Security

15.1
15.2
15.3
15.4
15.5

15.6
15.7
15.8

15.9

Security Overview

The Orange Book Model
Security Extensions

The Trusted Computing Base

Security Policy Architecture .

15.5.1 Security Policy Modules

15.5.2 Security Policy Daemons .

15.5.3 Security Policy Driver .

15.5.4 Security Policy Database Manager
15.5.5 [Interactions Example

Privileges and Authorizations
Security Administration .

The Discretionary Access Control Policy

15.8.1 Discretionary Access Contol
Components . . .

15.8.2 Access Control Lists .

15.8.3 Discretionary Access Control
Privileges .

15.84 ACL Representat1ons .o

15.8.5 Example: Changing an ACL

Mandatory Access Control

14-17

14-18
14-18
14-18
14-21

14-21
14-22

14-23
14-23
14-24

14-25
14-26
14-26
14-26
14-27
14-27
15-1
152
15-4
15-5
15-7

15-11
15-14
15-15
15-16
15-16
15-17

15-18
15-23
15-24
15-24
15-26

15-28
15-28
15-29

15-30

Design of the OSF/1 Operating System

Glossary
Index

15.10

15.11

15.12

15.13

15.14

15.15
15.16
15.17
15.18

15.9.1 Mandatory Access Control
Components

15.9.2 MAC Privileges

15.9.3 MAC Access Decisions .

15.9.4 MAC System Calls, Library Routmes and
Commands .

15.9.5 MAC Database Protectlon Pr1n01ples

Authentication Subsystem and the Security
Databases .
15.10.1 Authentlcatlon Database

Audit Subsystem .

15.11.1 Audit Subsystem Components
15.11.2 Audit Data Flow . . .
15.11.3 Audit Record Formats .
15.11.4 Audit Control Flow

File System Security Extensions .

15.12.1 Mount Table Security Extensmns

15.12.2 Vnode Security Extensions

15.12.3 Vnode Security Attributes

15.12.4 Vnode Security Routines .

15.12.5 Superblock Modifications (UFS F11e System
Type) . .

15.12.6 On-Disk Inode Extens1ons (UFS F11e System
Type) .

15.12.7 In-Core Inode Extensmns (UFS Flle System
Type) .

STREAMS Security Extensions

15.13.1 Local Access Control

15.13.2 Internal Interfaces

Socket Security Extensions .
15.14.1 Socket Data Structures
15.14.2 Socket Control Flow

Loader Security

Mach Subsystem Security
Modified Data Structures
New Data Structures .

Contents

List of Figures

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3—4.
Figure 3-5.
Figure 4-1.
Figure 4-2.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5—4.
Figure 5-5.
Figure 5-6.

Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6—4.
Figure 6-5.
Figure 6—6.
Figure 6-7.
8. Task B Writes Data

Figure 6-8

Figure 6-9.
Figure 6-10.

Tasks Sharing Access to Ports Using Private Port Rights
Implementation of a Mach Virtual Address Space

A VM Object and Its Memory Object

The Mapping of Logical Page to Page Frames
Relationship Between an Address Map and Its Pmap
Structure of a Process in OSF/1

The Exception Handling Model .

Suspend Mechanism State Diagram

Event-Wait Mechanism State Diagram

State Transition of a Thread in an Uninterruptible Sleep
The Default Processor Set

An Application Allocates a Processor Set .

The Application Requests Processors; the Kernel Assigns
Processors e e .

Implementation of Task Address Space

A vm_map Structure and Its vim_map_entry Structures
A vm_map_entry Structure and the VM Object It Maps
Changing Protection on a Range of Virtual Memory
Implementation of a UNIX Process Address Space
Two Tasks Share Data Copy-on-Write

Task A Writes Data

Tasks B and C Share Data Copy-on -Write .
Task C Writes Data

3-5
3-10
3-12
3-14
3-17

4-13
5-12
5-17
5-18
5-20
5-21

5-22
62
6—4
6-6
67
6-9

6-11

6-12

6-14

6-16

6-17

xi

Design of the OSF/1 Operating System

Figure 6-11.
Figure 6-12.
Figure 6—13.
Figure 6-14.
Figure 6-15.
Figure 6-16.
Figure 6-17.
Figure 6-18.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8—4.
Figure 8-5.
Figure 8-6.
Figure 9-1.
Figure 9-2.
Figure 10-1.

Figure 10-2.
Figure 10-3.
Figure 10—4.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.

Xii

Task B Writes Data, Creating a Shadow Tree .
Pruning the Shadow Tree .

Pruning the Tree Further C e e e
Tasks A and B Share Permanent Data Copy-on-Write
Task A Writes Data, Pushing a Page to the Copy Object
Task B Writes Data .

AShareMap
The Kernel’s Address Map with Submaps .

Page Clusters

The Target Page

Private Pages coe e

Shared Memory Server Write Operation

Shared Memory Server Read Operation

The Loader Context

Known Modules List Example 1

Known Modules List Example 2

Known Modules List Example 3

Kernel Load Relocation e

Layout of the Preload Cache Data File .

Interrupt Handling .

Device Driver Configured into Kernel Tables .

Internationalization Subsystem Application Programming
Interface . e e e e e e

Internationalization Objects

Basic Stream for Terminal Devices .

Basic Stream for Pseudoterminal Devices .
Architecture of the File Management System .

File Descriptor Reference to Open File Description .

A Process and Its Open File Descriptions

Processes Sharing a Vnode

Example of OSF/1 VFS File Tree

Example of Data Structures for a Mounted File System .

6-18
6-20
6-21
6-23
6-24
6-25
6-28
6-31

7-5

7-8
7-12
7-18
7-19
8-13
8-15
8-16
8-16
8-22
8-23

9-5

9-7

10-10
10-11
10-16
10-18
11-2
11-3
11-5
11-6
11-9
11-22

Contents

Figure 11-7.
Figure 11-8.
Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 12-6.
Figure 13—1.
Figure 13-2.
Figure 13-3.
Figure 14-1.
Figure 14-2.
Figure 14-3.
Figure 14—4.
Figure 15-1.

Device Special Files Data Structure

Buffer Cache and Vnode Data Structure Interaction
The domain Structure .

The socket Data Structure

Managing Network Interrupts

Internet Domain Locking .

The Domain Funnel

Components of the mbuf Data Structure

Flow in a Stream

An Example of Synchronization Queue Execution

Lower Streams Multiplexed to a Master Stream

Relationship of the LVM to Other System Components .

A Mapping of Logical to Physical Volumes
Physical Volume Layout

Data Structures Describing a Volume Group
The OSF/1 Security Policy Architecture.

11-26
11-30
12-4
12-6
12-11
12-16
12-20
12-24
13-4
13-15
13-24
14-3
14-7
14-8
14-15
15-12

Xiii

Design of the OSF/1 Operating System

List of Tables

Table 10—-1. ISO 8859 Code Sets e (R K
Table 10-2. OSF/1 Japanese EUC Code Set Encoding 10-14
Table 10-3. OSF/1 SJIS Encoding Method 10-15

Xiv

Preface

The Open Software Foundation (OSF) was formed in May, 1988 specifically
to develop software technologies and make them available on fair and
reasonable terms. The Foundation’s charter includes the following: to
develop an open computing environment that employs a standard set of
interfaces for programming, communications, networking and system
management, in order that software applications may become uncoupled
from specific hardware platforms.

OSF/1 is an advanced UNIX operating system developed to provide both
application portability and powerful operating system functionality. Its first
release was in December, 1990 and numerous updates have been developed
since.

The Design of the OSF/1 Operating System describes the major features of
the OSF/1 operating system and discusses the design issues involved in
implementing these features.

XV

Design of the OSF/1 Operating System

Audience

The Design of the OSF/1 Operating System is addressed primarily to
operating system developers and others who are interested in operating
system internals. The discussion assumes that readers are familiar with
operating system fundamentals and have a strong UNIX background.
Chapter 2 provides some of this background for readers who require it.

Applicability

This is Version 1.0 of this document. It applies to Release 1.2 of the OSF/1
operating system.

Document Usage

The book’s chapters are organized into three parts: Chapters 1 through 3
provide overview and introductory material, chapters 4 through 7 describe
the core kernel portion of the system, and chapters 8 through 15 describe the
system services:

XVi

Chapter 1 provides an overview of OSF/1.

Chapter 2 provides an overview of UNIX processes and the services the
kernel provides to processes.

Chapter 3 provides an overview of the Mach technology that is the basis
of OSF/1’s core services.

Chapter 4 describes the structure and management of processes in
OSF/1.

Chapter 5 describes OSF/1’s scheduling subsystem.

Chapter 6 describes the address space implementation of the OSF/1
virtual memory subsystem.

Chapter 7 describes the memory management portion of the OSF/1
virtual memory subsystem.

Preface

Chapter 8 describes the OSF/1 program loader.

Chapter 9 describes how OSF/1 supports dynamic loading and
configuration of kernel subsystems.

Chapter 10 describes the OSF/1’s internationalization subsystem and
includes a discussion of how the kernel’s STREAMS-based tty
subsystem supports internationalized applications.

Chapter 11 describes how OSF/1 manages files.

Chapter 12 describes the implementation of the OSF/1 sockets
framework.

Chapter 13 describes the implementaion of the OSF/1 STREAMS
framework.

Chapter 14 describes the Logical Volume Manager, OSF/1’s disk storage
management system.

Chapter 15 describes the security features of OSF/1.

Related Documents

The following OSF/1 documents are currently available from Prentice Hall:

Design of the OSF/1 Operating System

OSF/1 User’s Guide

OSF/1 Command Reference

OSF/1 Programmer’s Reference

OSF/1 System and Network Administrator’s Reference
OSF/1 Network Applications Programmer’s Guide

Application Environment Specification (AES) Operating System
Programming Interfaces Volume

Xvii

Design of the OSF/1 Operating System

In addition, versions of the following documents may be available from your
system vendor:

OSF/1 System Programmer’s Reference Volume 1

OSF/1 System Administrator’s Guide

OSF/1 Network and Communications Administrator’s Guide
OSF/1 System Porting Guide

OSF/1 System Extension Guide

OSF/1 Security Features User’'s Guide

OSF/1 Security Features Programmer’s Guide

OSF/1 Security Features Administrator’s Guide

OSF/1 Security Detailed Design Specification

OSF/1 POSIX Conformance Document

Problem Reporting

If you have any problems with the software or documentation, please
contact your software vendor’s customer service department.

Acknowledgements

XViii

This book is the result of the work of a dedicated group of participants on
the OSF/1 technology team. The following writers, editors, engineers, and
managers were directly involved in the creation of this work:

Bill Bryant, Noreen Casey, Josh Goldman, Bernice Moy, Peter Neilson, Tom
Talpey, Willie Williams, Jeff Carter, Maureen Ellenberger, Susan Kegel,
George Feinberg, Tom Doeppner, David Black, Al Lehotsky, and Jeff
Collins.

This book also reflects the work of many people who all made important
contributions to the OSF/1 technology. This book would not be possible

Preface

without the coordinated efforts of the following people from the entire
OSF/1 team:

Francesco Aliverti-Piuri, Larry Allen, David Anastasio, Matthias Autrata,
Randy Barbano, Bruce Bauman, Bob Binstock, Peter Bishop, Don Bolinger,
John Bowe, Cathleen Brecht, John Brezak, Mark Brown, Julie Buckler, Tim
Burchell, Lorraine Burrage, Yakov Burtov, Bob Canavello, Frank Casper,
David Chinn, Dan Christians, Mike Collison, Elizabeth Connolly, Robert
Coren, Darrrell Crow, Beth Cyr, Fred Dalrymple, Greg Depp, Marcia
Desmond, Robert DiCamillo, Chris Doherty, Nick Dokos, Michelle
Dominijanni, Ed Doyle, John Dugas, Eric Dumas, Kathy Duthie, Jack
Dwyer, Gary Fernandez, Tony Fiore, Ed Frankenberry, David Gillespie,
Frank Ginac, Martin Gosejacob, Roger Gourd, Marilyn Grady, Steve
Grainger, Courtney Grey, Kathy Grimaldi, Paul Groff, Michael Gross,
William Hankard, Scott Hankin, Peter Harbo, Bob Hathaway, Martha
Hester, Jeanette Horan, Doug Hosking, Jean Hsiao, Thomas Jordahl,
Stephen Kafka, Larry Kaplan, Paul Karger, Jerry Kazin, Dave Kirschen,
Ned Kittlitz, Roy Klein, Steve Knight, Natalia Kogan, Cheryl Korizis,
Sharon Krause, Andreas Kroneberg, Salvatore LaPietra, Alan Langerman,
Chain Lee, Lenny Lefort, Steve Lewontin, Hal Lichtin, Chi Hwei Lin, Sally
Long, Sue LoVerso, Marty Lynch, Rod MacDonald, Joe Maloney, Steve
Marcie, Glenn Marcy, Andy Maretz, Mark Marino, Norbert Marrek, Sandra
Martin, Ray Mazzaferro, Andy McKeen, Cindy McKeen, Michael Meissner,
Jody Menton, Franco Miralles, Dave Mitchell, Mariko Mori, John S. Morris,
Richard Morris, Linda Mui, Betty Newman, Ralf Nolting, Rose O’Donnell,
Jay Orsini, Charles Pacheco, Noemi Paciorek, Maryanne Paratore, Simon
Patience, Ellen Patton, Per Pedersen, Grace Perez, Staffan Persson,
Jacqueline Philbin, James Pitcairn-Hill, Damon Poole, Dan Powers, Paul
Rabin, Vella Raman, Ron Rebeiro, Renee Rice, Uwe Richter, Jack Rieden,
Philip Rockwood, David Rodal, John Rousseau, Ken Sallale, Arno Schmidt,
Ken Seiden, Peter Shaw, Eric Shienbrood, Harminder Singh, Bruce Smith,
Jennifer Steiner, Kevin Sullivan, Susan Teto, Peter Thomas, Kevin Till,
James Van Sciver, Kevin Wallace, Susanna Wallace, Ping Wang, Peter
Watkins, Melanie Weaver, Doug Weir, Jeff Whalen, Jie Yao, and Glenn
Zazulia.

Chapter 1
The OSF/1 Operating System

OSF/1 is an advanced UNIX operating system. It provides an applications
programming environment that furnishes, in a single environment, many of
the features found in different UNIX programming environments. The
OSF/1 kernel provides powerful operating system functionality that can be
used to implement features not generally associated with traditional UNIX
systems. The OSF/1 programming environment and the powerful facilities
of the kernel implement an advanced software environment that supports
applications portability and establishes a basis for the development of future
operating systems.

OSF/1 is an open system; its specification conforms to public, international
standards and it is widely compatible with systems from a variety of
manufacturers. It is easy to port and can be configured to run on machine
architectures ranging from personal computers to high-performance
workstations and multiuser timesharing machines. It supports symmetric
multiprocessing and distributed computing environments, and is designed to
be easily extensible.

1-1

Design of the OSF/1 Operating System

1.1 UNIX Functionality

From an application programmer’s point of view, OSF/1 provides a UNIX
programming environment. In OSF/1, programs are executed as processes,
and the system provides all process-related facilities generally associated
with UNIX systems. OSF/1 is compatible with software developed both for
Berkeley 4.3 and 4.4 as well as System V releases 3 and 4. The operating
system supports the following standards and specifications:

o ISO/IEC 9945-1:1990 (POSIX.1). In those instances where this standard
indicates alternatives in functionality, OSF/1 uses the functionality
specified by the Federal Information Processing Standard (FIPS) 151-1.

o ISO/IEC 9945-2:1992 (POSIX.2).
o X/Open Portability Guide, Issue 4 (XPG 4).
o System V Interface Definition, Issue 3 (SVID 3).

o OSF’s Application Environment Specification (AES) Operating Systems
Programming Interfaces.

¢ Berkeley 4.3 and 4.4 application interfaces.
¢ ISO/IEC 9899:1990 (C Programming Language).

OSF/1 also provides the BSD UNIX File System (UFS), the System V S5
File System, and an unencumbered implementation of the Sun Network File
System (NFS).

OSF/1 provides well-known UNIX interprocess communication
mechanisms, including BSD sockets and the X/OPEN Transport Interface
(XTI). The Internet protocol family is provided under both interfaces,
providing the familiar IP, TCP, and UDP protocols. The system also
provides a STREAMS framework, which can be used to implement device
drivers and network protocols in a modular fashion. In OSF/1, STREAMS is
used to implement the terminal subsystem.

The OSF/1 Operating System

1.2 Advanced Features

In addition to providing functionality associated with traditional UNIX
systems, OSF/1 provides many features that augment UNIX functionality.
These features include the following:

Efficient operation in uniprocessor and multiprocessor environments.

Support of multithreaded applications; that is, applications that contain
multiple threads of control. In a multiprocessor environment, the
threads of a multithreaded application can execute in parallel. (The
POSIX P1003.4 draft 6 programming interface is provided for threads.)

Application access to the powerful virtual memory and messaging
primitives of the core kernel.

Support of shared libraries. Processes can share a single copy of system
libraries. This greatly reduces the size of a program’s executable file.

A flexible user space program loader that supports different object file
formats, shared libraries, and dynamic loading and unloading.

Dynamic loading and unloading of many kernel modules. This feature
allows system administrators to configure the kernel at runtim-.

A Logical Volume Manager that allows file systems to span physical
devices, and allows such volumes to enhance data availability and
reliability.

An object-oriented internationalization subsystem that allows
applications to operate using the language, codeset, and cultural
conventions appropriate to the user’s environment.

A security subsystem that supports both B1 and C2 security classes, as
defined by the U.S. government’s National Computer Security Center.

1-3

Design of the OSF/1 Operating System

1.3 What is OSF/1?

OSF/1 is an integration of operating system and application programming
interface (API) technologies. This book focuses primarily on the operating
system, or kernel, portions of OSF/I1.

The OSF/1 kernel consists of two logical elements: the core kernel and the
system services.

The core kernel provides the basic hardware support and the kernel’s
memory management and scheduler subsystems. It is derived from the
Mach operating system, which was developed at Carnegie-Mellon
University. Currently, the OSF/1 core kernel is based on Mach 2.5. Mach
provides a small set of operating system objects and operations on those
objects. These objects and operations can be used to implement different
operating system personalities. OSF/1 uses them to implement a UNIX
personality.

The system services provide the operating system facilities that are used
directly by applications programs, and provides the services generally
associated with UNIX environments.

1.3.1 Tasks and Threads

The OSF/1 operating system abstracts a process’s components into a task,
which represents a set of system resources including an address space, and a
thread, which represents the process’s thread of control.

OSF/1 uses the task and thread objects to implement processes. A standard
process consists of a task with a single thread; however, OSF/1 also supports
processes that contain multiple threads. Interfaces are provided that allow
processes to create and control such threads.

The thread construct is enhanced by a powerful and flexible scheduler
provided by the core kernel. The scheduler provides policies and
extensibility which can be used to support UNIX as well as non-timesharing
models for other operating system environments.

The OSF/1 Operating System

1.3.2 Virtual Memory and Memory Management

OSF/1 incorporates an innovative memory management system that is
highly portable. The implementation of virtual memory is cleanly divided
into machine-independent and machine-dependent pieces; all machine-
dependent operations are implemented in a single module called the pmap
(physical map) module. This module manages the data structures and the
hardware’s memory management unit (MMU) to perform address
translation.

All virtual memory state is managed with machine-independent data
structures; the system uses the machine-dependent data structures to cache
address translations only as they are needed. The pmap module performs
these machine-dependent manipulations.

The virtual memory system provides functionality not generally associated
with traditional UNIX systems. For example, the external memory
management interface supports the development of user space memory
managers which can be used to allow applications to map application-
specific objects into their address spaces.

The memory management system makes extensive use of copy-on-write
techniques to copy memory between processes. These techniques are used
to optimize virtual memory operations that have traditionally been quite
expensive, such as the fork() system call.

The memory management system also supports large sparsely filled virtual
address spaces, which allows OSF/1 to provide support for shared libraries.

Virtual memory and memory management are discussed in Chapters 6
and 7.

1.3.3 File Management

OSF/1 file management consists of three distinct subcomponents:

¢ The per-process file tables implement traditional UNIX file descriptors,
with the important addition of support for fully threaded applications.

Design of the OSF/1 Operating System

e The VES provides a single interface to the file systems so that the
system can perform operations on a file in the same manner. The file
systems, in turn, are implemented and interface to the VFS in a
consistent manner.

e OSF/1 provides three file systems, and can be extended to provide
others:

— The UNIX File System (UFS)—a parallelized implementation of the
Berkeley Fast Filesystem.

— A version of the System V File System for compatibility.
— A Network File System compatible with the Sun Microsystem NFS.

File management and file systems are discussed in Chapter 11.

1.3.4 Networking

OSF/1 provides three facilities that serve as frameworks for networking:

STREAMS A kernel facility that provides a communications path between
a user process and various classes of device drivers.

Sockets A Berkeley UNIX kernel facility that provides
communications for user processes to networks. Sockets also
provide a specialized application programming interface.

The X/OPEN Transport Interface (XTI)
An applications programming interface that provides
communications between user processes and kernel-provided
transport layers, which in turn access network devices.

OSF/1 provides communications through the support of the Internet protocol
suite, which consists of a number of protocols, including the Transmission
Control Protocol (TCP) and the User Datagram Protocol (UDP).

The OSF/1 Operating System

1.3.5 STREAMS

The STREAMS framework provides a way to implement communications
software, such as network protocols or terminal protocols. A
communications path, called a stream, provides the interface between the
user process and a driver.

STREAMS also provides a facility for incorporating character I/O device
drivers into the kernel. It includes a consistent set of user and kernel space
interfaces that provide a standard interface for devices to communicate with
the operating system. It provides the implementation framework for
terminals, communications services and protocols.

STREAMS is discussed in Chapter 13.

1.3.6 Sockets

OSF/1 sockets is an implementation of the Berkeley 4.3 and 4.4 sockets
technology. Applications that use these sockets versions will also operate
under OSF/1.

The sockets framework has a user level and a kernel level. At the user level,
the sockets framework supports system calls that access sockets, and at the
kernel level, the sockets framework provides the underlying support for the
Internet suite of protocols. The OSF/1 kernel-level sockets framework
allows protocols and families of protocols to be dynamically configured into
the system.

The sockets framework is fully parallelized; therefore, it can work in both
uniprocessor and multiprocessor environments. The OSF/1 sockets
framework can also work with protocols whose code has or has not been
parallelized.

Sockets are discussed in Chapter 12.

1-7

Design of the OSF/1 Operating System

1.3.7 XTI

OSF/1 XTI is a STREAMS-based implementation of the X/OPEN XTI
programming interface. XTI is an enhancement of the AT&T TLI
(Transport Layer Interface). It provides an interface to the transport layer of
diverse protocols conforming to the seven-layer International Standards
Organization Open Systems Interconnection (ISO OSI) model. The
transport layer’s job is to provide end-to-end communications between
processes on different machines across a network.

The XTI is independent of the transport protocols used by a system and
independent of the machines. The XTI allows applicatigns to create
connections to remote peers, to transfer data, and to terminate connections
through a series of interfaces. The OSF/1 XTI is fully parallelized, and it
can operate in both uniprocessor and multiprocessor environments.

1.3.8 Internationalization

In the past, UNIX systems have supported only English-speaking
environments. However, in recent years, UNIX systems have experienced
more international use. The entire OSF/1 system has been internationalized
according to specifications set down by standards bodies and user groups
such as POSIX and X/OPEN, and OSF/1 includes an internationalization
subsystem that supports internationalized applications

OSF/1 implements internationalization support through a set of locales.
Each locale specifies a software environment that supports the language and
customs associated with a particular geographic region.

An application determines the current locale at runtime, usually by means of
the user’s environment variables. The application then «calls the
internationalization subsystem to load the tables and algorithms that
implement the locale. When the application performs an operation that is
locale-dependent, the routine that performs the operation uses the algorithm
and data specific to the locale.

The internationalization subsystem is discussed in Chapter 10.

The OSF/1 Operating System

1.3.9 Terminals

The OSF/1 terminal subsystem (tty/pty) provides traditional UNIX tty
functionality, and is compliant with POSIX.1. The important aspect of the
OSF/1 terminal subsystem is internationalization.

All UNIX terminal subsystems use elements called line disciplines to
perform terminal input and output processing. A line discipline is one of the
software components that a tty/pty driver employs to process input
characters.

In OSF/1, the terminal subsystem is a STREAMS-based implementation.
This is key to a more modular approach to internationalizing the terminal
subsystem. In this approach, the main component of the terminal subsystem
is a line discipline that provides the traditional capabilities. To
accommodate the needs of non-English locales, the line discipline is
augmented by converter modules that provide communication in the
character set of the locale.

The terminal subsystem is described in Chapter 10.

1.3.10 Logical Volume Manager

The OSF/1 Logical Volume Manager (LVM) extends standard disk
management capabilities. A UNIX disk driver stores and retrieves data to
and from a single physical disk unit. The LVM interfaces associate one or
more disk drivers into a single logical disk, enabling the system
administrator to enlarge the virtual storage space, span the data storage
across disks, and replicate data (known as mirroring).

The LVM subsystem consists of the following components:

o Logical and physical volumes, where logical volumes represent virtual
disks and physical volumes represent physical storage, such as a disk or
disk partition.

o A logical volume device driver, which interacts with the actual disk
driver(s) to manipulate data. The application sees the logical volume
device driver as a single disk driver.

Design of the OSF/1 Operating System

e A programming interface, through which a user can manage the
volumes.

The LVM is discussed in Chapter 14.

- -1.3.11 Program Loader

Program loaders load executable object files into memory and prepare them
for execution. They often work with linkers to resolve external symbol
references and perform relocation before programs can be executed with the
exec() function. In traditional UNIX systems, the program loader function
is closely tied with the linker, and is commonly known as the linker/loader
(ad).

In OSF/1, the program loader is separate from the linker. When the program
is linked, a binary file is created, but not all external or symbol references
may be resolved. At the time the exec() function is called to actually
execute the program, the kernel invokes the OSF/1 program loader to
resolve remaining symbol references and to load the file for execution.

The OSF/1 program loader extends the functionality generally associated
with traditional UNIX program loading. In addition to resolving and
relocating symbols, it supports multiple object file formats, shared libraries,
and runtime dynamic loading and unloading. Except for the exec()
function, the loader is implemented entirely in the user space.

The OSF/1 program loader supports the implementation of shared libraries.
In traditional UNIX linker/loaders, when a symbol is resolved and its
definition is found in a library, the linker/loader copies the module into the
program’s executable image. This method can be inefficient when programs
are large, or when a large number of references are resolved. Shared
libraries overcome these problems by providing a single copy of each of
their routines to be shared by many processes running on the system.

The OSF/1 program loader provides a package abstraction to help in symbol
resolution with shared libraries. The program loader uses each package to
map symbol names to the appropriate library without having to stamp a
pathname in a binary image. This allows maximum flexibility and mobility.

The OSF/1 Operating System

The same program loader also provides a kernel loading capability, which
enables the kernel to dynamically load and unload modules. This allows the
kernel to add and remove, at runtime, new system services, file systems,
device drivers, network protocols, and streams modules.

The program loader is discussed in Chapter 8.

1.3.12 Security

OSF/1 provides a security subsystem that complies with certain elements of
the U.S. government’s U.S. Department of Defense Trusted Computer
System Evaluation Criteria (TCSEC, or the Orange Book). This is the
definitive guide to the development and evaluation of trusted computer
systems. The security subsystem enables OSF/1 to be configured for varying
levels of security, including both the basic features and supersets of those
required for C2 and B1 level security.

The security subsystem can be viewed as both code and process. The code
part of the security subsystem consists of functions and kernel compilation
conditionals that enable the different levels of security. The process part of
the security subsystem requires that each application use the security
functions and run on a secure kernel for the existing security features to take
effect.

Security extensions have been added to many elements of the OSF/1
operating system, including the kernel itself, kernel services such as the file
systems, the programming interface, and user-level commands.

Security is discussed in Chapter 15.

1.3.13 Scalability and Dynamic Configuration

Traditional UNIX systems are limited in their capabilities to be reconfigured
or scaled up or down easily during runtime. For example, reconfiguring a
traditional UNIX system to add or remove a file system from the kernel
would require making the configuration changes, rebuilding the kernel, and
restarting the operating system.

1-11

Design of the OSF/1 Operating System

The OSF/1 kernel can be dynamically tuned and reconfigured while the
system is running. The following subsystem components allow dynamic
configuration:

e The filesystem framework allows filesystems to be dynamically added
_and removed.

e The STREAMS framework allows STREAMS-based drivers and
modules to be dynamically added and removed.

e The sockets framework allows families of protocols to be dynamically
added and removed.

e The terminal subsystem, which is STREAMS-based, allows
STREAMS-based line disciplines and drivers to be dynamically added
and removed, and also to be configured onto specific terminals and ports.

e The Logical Volume Manager allows the LVM device driver to be
dynamically added and removed, and to dynamically configure logical
volumes.

e The system call framework allows the dynamic addition of new system
services.

o Almost all device drivers can be dynamically added and removed.

One of the advantages of a scalable OSF/1 system is that it can provide a
version of the OSF/1 system with a minimum of its possible subsystems
actually configured. Because of the dynamic capabilities, such a system can
be easily expanded as the needs require without causing system downtime.

Configuration of the kernel is discussed in Chapter 9.

1.4 The Future of the OSF/1 Design

Currently, OSF/1 integrates the core kernel services with the system
services into one monolithic kernel. In future versions, the kernel will
contain only the primitive objects and operations provided by a
microkernel; most of what is now contained in the system services will be
moved into its own, separate address space.

The OSF/1 Operating System

The microkernel configuration has many advantages over the traditional
monolithic kernel. For example, a single machine running a single core
kernel may simultaneously run multiple system services, such as multiple
operating systems "personalities,” much as multiple user tasks are run today.
Additionally, the system services could run in a distributed fashion across a.
network of machines running a common core kernel. Such "massively
parallel,” "cluster,” or "multicomputing" machines provide an entirely new
dimension to computing.

Chapter 2

Overview of UNIX Processes and the
UNIX Kernel

A UNIX kernel is responsible for managing, on behalf of user applications,
the system’s resources. These resources include the CPU, resident memory,
and all peripheral devices that are configured into the system, including any
disk drives, tape drives, terminals, printers, and network hardware.

The kernel uses processes to manage the execution of applications. The
process construct allows the kernel to control the use of system resources so
that

o All currently active applications have reasonable access to system
Iesources.

o Applications cannot inadvertently or deliberately interfere with one
another’s access to the resources.

This chapter provides an overview of the UNIX process construct and the
services the kernel provides to processes. This chapter also describes the
major operations performed by the kernel as it manages the system’s
resources. If you are familiar with UNIX operating system internals, you
may want to skim this chapter, or skip it altogether.

Design of the OSF/1 Operating System

2.1 Process Address Spaces

When a progam is compiled, the compiler creates the program’s executable
file, also referred to as the executable image. The kernel uses this file to
create a logical address space that contains the following sections of data:

o The program’s text section, which contains the executable instructions.

o The program’s initialized data. This data is global data, which will be
accessible to the program’s main routine and all of the subroutines
defined in the program and in any libraries that the program references.

o The program’s uninitialized data. The compiler allocates storage for this
data, but the data is not initialized until runtime. This data is also global
data.

The executable file also includes a header, which specifies the location and
size of each of the data sections. When the program is being prepared for
execution, the system’s program loader uses the header information to set up
the process’s virtual address space.

When the process’s address space is set up, it contains a text section, an
initialized data section, an uninitialized data section, and two additional
sections: the process’s heap, and the process’s user stack. The heap contains
memory that the process explicitly acquires during its execution. Typically,
a process uses heap memory to store dynamically required data structures.
When a new data structure is required, the process executes a call to
malloc() to allocate the memory. When the data structure is no longer
needed, the process can execute a call to free() to free the memory. Like the
initialized and uninitialized data, the heap data is global.

In contrast to the data contained in the heap, the data contained on the stack
is local data, which is accessible only to the process’s currently active
routine. A process’s user stack grows and shrinks dynamically as needed.

Overview of UNIX Processes and the UNIX Kernel

2.2 Process Management System Calls

The UNIX kernel provides a set of process management system calls that
allow processes to create other processes, to manage the execution of
related processes, and to terminate themselves or the processes they control.
These include fork(), exec(), wait(), and exit().

Processes use the fork() and exec() system calls to create processes and
execute new programs, respectively. The fork() system call creates a new
process by duplicating the address space of the calling process. The calling
process is referred to as the parent process and the new process is referred to
as the child process. Upon successful completion of fork(), the parent and
child have duplicate address spaces and are executing the same program.

The exec() system call allows a process to execute a new program by
loading the program into the process’s address space. (Actually, exec() is a
family of system calls, but it is referred to as a single system call to simplify
the discussion.) Generally, a child process that is to execute a new program
issues a call to exec() after the call to fork().

A parent process may choose to wait for its child to complete execution
before resuming execution itself. For example, the shell does this when
executing commands in the foreground. The user enters a command to the
shell, the shell uses fork() to create a new process, the new process calls
exec() to load the command’s program, and the shell waits for the program
to complete execution.

A process that needs to wait in this fashion does so using the wait() system
call. This system call suspends the calling process’s execution until the
child process either terminates or suspends itself. It is called with a status
argument that the system uses to inform the waiting process about the exit
or suspend status of the child process. When the child exits or suspends
itself, the system copies its status to the status variable and allows the
parent process to resume execution. The parent can examine the status
variable to determine what happened to the child.

When a process wants to explicitly terminate its execution, it does so using
the exit() system call. This system call releases all of the process’s system
resources and may send a signal to the process’s parent process to indicate
that the child has exited. The signal subsystem and a process’s state with
respect to signals are discussed in Chapter 4.

Design of the OSF/1 Operating System

2.3 Process States

Each process has a set of states with respect to the system. These include
the following:

Execution State

A process’s execution state specifies whether or not the
process is executing or executable. With respect to this state a
process is either:

« Executing, or executable and waiting to be scheduled.

e Blocked while waiting for a system resource to become
available. A process in this state is said to be sleeping.

o Suspended; that is, not executable, and not waiting for
access to a system resource. For example, UNIX systems
that support job control allow users to suspend the
execution of a process from the terminal by entering the
SUSPEND character (usually Ctrl-Z).

Scheduling State

A process’s scheduling state indicates when the process will
next be scheduled for execution. When a process is created,
the kernel assigns it a scheduling priority. The kernel
schedules the CPU by choosing the currently active process
that has the highest priority.

Generally, a process that is executing, or has just executed, has
a lower priority than a process that has not executed as
recently. The kernel’s scheduler subsystem periodically
adjusts each process’s scheduling priority so that all processes
get equitable access to the CPU. Chapter 5 describes the
OSF/1 scheduling subsystem.

File Descriptor State

The kernel maintains for each process a table of file
descriptors, each of which represents a file or network
connection that the process has access to. A process usually
has at least three descriptors in its table; standard output is
represented by descripto@ standard input by descn'ptor,{ I, and
standard error by descriptor 2. /

H

\
kY

\ 7.

Overview of UNIX Processes and the UNIX Kernel

A process may inherit other file descriptors from its parent
process when it is created. When the process opens a new file
or network connection, the kernel places a new descriptor in
the table. Each descriptor is associated with an underlying
data structure that the kernel uses to manage the file or the
network channel.

Process Identification and Relation States
Each process has a user ID that identifies the user who is
responsible for the process, and a set of group IDs that identify
what user groups the process’s user belongs to. The kernel
uses these IDs when determining whether or not to grant a
process access to specific system resources such as files.

When the kernel creates a process, it assigns the process a
unique process ID number (PID). Other processes may
reference the process by its PID. A process also has access to
the PIDs of any processes it has created as well as the PID of
its parent process.

Traditionally, a process’s states are maintained in its proc and user data
structures. Chapter 4 describes the data structures used in OSF/1 to
maintain process states.

2.4 Memory Management

All executing processes require access to resident memory and to the CPU;
before a program can be executed, its instructions and data, or some portion
of them, must be copied from the program’s executable file in secondary
storage into the hardware’s resident memory. When the kernel schedules the
process for execution, the kernel initializes the CPU’s registers so that the
CPU can locate the program’s instructions and data. The CPU then executes
the process.

Design of the OSF/1 Operating System

2.4.1 Memory Management Techniques

In OSF/1, as in most recent UNIX implementations, processes do not need
to be fully loaded in resident memory to execute. OSF/1 implements a form
of memory management known as demand paging. The kernel loads a
process’s instructions and data only when the process needs them.
Instructions and data that are not currently needed may reside in secondary
storage until they are needed.

In early UNIX versions, processes had to be entirely resident in order to
execute, and the operating system implemented a memory management
policy that involved swapping processes in their entirety between secondary
storage and resident memory. The computers that ran early UNIX systems
had, by today’s standards, very small resident memories. Because processes
had to be fully resident to execute, a process could not be larger than the
available physical memory. UNIX systems that support demand paging do
not limit a process’s size to the size of physical memory because a process
does not need to be fully resident to execute.

In OSF/1, resident memory is conceptualized as a linear continuum of
physical address space that is divided into fixed-length units known as page
frames. Resident memory can be thought of as an array of physical page
frames, with each page frame having a page frame number. Any location in
physical memory can be specified by a page frame number and an offset into
the page frame.

When the OSF/1 kernel initializes a process for execution, it does not load
the entire process into resident memory. Instead, the kernel allows the
process to begin executing and pages in the process’s instructions and data
on demand. When the CPU needs to access a particular instruction or data
location that is not in resident memory, the kernel copies the appropriate
page from secondary storage to one of the page frames in resident memory.

In a demand paging system, a process’s pages of instructions and data are
usually scattered throughout physical memory; they are rarely, if ever,
placed contiguously. When many processes are active, resident memory
contains some number of pages for each process, with the pages scattered
throughout the array of page frames in an arbitrary fashion.

Managing the physical locations of a process’s pages is the responsibility of
the kernel, not the process. Like other UNIX systems, the OSF/1 kernel uses
memory mapping techniques to present processes with simple address
spaces. In memory mapping, a process’s address space contains logical

Overview of UNIX Processes and the UNIX Kernel

addresses, which do not correspond directly to physical locations in resident
memory. The kernel, with support from the hardware, maps these logical
addresses to physical locations by means of a memory map.

In order to support memory mapped address spaces, the hardware must
include a memory management unit (MMU), which uses a process’s memory
map to translate logical address references to their physical counterparts. In
a memory mapped system, the CPU references instructions and data by
presenting the MMU with logical addresses. The MMU translates each
reference to a physical address, accesses the data, and presents it to the
CPU.

The kernel implements separate address spaces by providing each process
with its own memory map. When the kernel schedules a process for
execution, it loads the MMU'’s registers so that the MMU can find the
process’s memory map. This operation is strictly controlled by the kernel so
that the kernel can prevent user-level processes from accessing memory
maps that are not their own. The kernel also prevents processes from
arbitrarily changing their memory maps to map to other processes’ data.

2.4.2 The Transparency of Memory Management

The kernel performs memory management operations transparently; user
processes execute without being aware that their data and instructions are
being paged in from secondary storage. When the CPU references a virtual
address that is not mapped to an address in resident memory, the reference
generates a page fault exception, which forces the CPU to stop executing
the user process and execute the kernel’s page fault handler. The page fault
handler allocates a new page frame, pages in the required data, and updates
the process’s memory map so that when the process references addresses
corresponding to the page, the MMU will translate the references correctly.

When the page fault handler has completed its operations, the kernel returns
control to the user process. The CPU re-executes the instruction that
generated the page fault and the process resumes execution without
knowing that the pagein operation took place.

An executing process may page in a large number of pages during its
lifetime. As a process continues to execute, it may no longer need some of
the pages it has paged in. If a process is active for a long time, the kernel
may need to reclaim some of the process’s page frames so that they can be

2-7

Design of the OSF/1 Operating System

allocated to other processes. The kernel has a pageout daemon that reclaims
page frames that are allocated to processes but are not being referenced any
longer.

The pageout daemon is a kernel process that executes when the number of
unallocated page frames drops below a certain level. The pageout daemon
finds page frames that have been allocated to processes but are not being
actively used.

If a given page frame has data on it that needs to be saved, the pageout
daemon arranges for the data to be written to secondary storage; when the
data has been written, the pageout daemon reclaims the page frame. If a
page frame contains data that has not been modified since it was paged in,
the daemon reclaims the page frame immediately. When the pageout
daemon reclaims a page frame from a process, it updates the process’s
memory map so that it no longer refers to the page frame.

Like the page fault handler, the pageout daemon performs its operations
transparently; processes are unaware of its existence. If a process
references instructions or data that are no longer in resident memory, the
reference generates a page fault exception and the page fault handler brings
the page back in.

2.5 Process Context and Context-Switching

2-8

A CPU always executes instructions within the context of the current
process. In general, a process’s context is specified by its memory map and
by its computational state.

A process’s computational state is specified by the contents of the CPU’s
registers as the CPU executes the process. The detailed characteristics of a
CPU’s registers are hardware-specific, but in general, CPUs include the
following types of registers:

Program Counter
This register is the means by which the CPU finds the next
instruction to execute. A CPU’s behavior with respect to this
register is hardware-dependent, but many CPUs increment this
register at the time they are loading the current instruction so

Overview of UNIX Processes and the UNIX Kernel

that when the current instruction has been executed, the CPU
can find and load the next instruction.

Stack Management Registers

The CPU uses these registers to locate and manipulate the
process’s stacks. In UNIX systems, a user process has two
stacks: a user stack and a kernel stack. When a process
executes in user mode, variables are stored on the user stack.
When the process executes a system call, the system call’s
variables are stored on the kernel stack. Stack management is
highly machine-dependent. The CPU must be able to
determine which stack is currently active, and it must be able
to locate variables on the stacks.

General Registers
These registers are used to store variables that the CPU needs
to access quickly. Usually, the general registers hold operands
that are being manipulated by the process’s current state of
execution. For example, if a process is executing a for loop
that increments and tests a variable before looping, that
variable is probably being stored in a general register.

A process’s computational state is highly dynamic. The program counter
changes with each instruction, and the stack management registers change
each time the process executes a system call or subroutine.

Any of a number of events can interrupt a process’s execution. When an
interruption occurs, the kernel must save the process’s computational state
so that when the process resumes execution, it executes from the point of
interruption.

When the kernel schedules a new process for execution, it switches the
CPU’s context from the previous process to the new process. The kernel
saves the first process’s register state in memory, purges the CPU’s registers
and MMU, and then loads the new process’s register state into the CPU.

2-9

Design of the OSF/1 Operating System

2.6 The UNIX Kernel and Its Services

It is common in discussions about UNIX to refer to the kernel as a separate
entity that performs its operations independent of all user processes. For
example, in a discussion about the memory management subsystem, it is
often said that the kernel pages in data from the disk after allocating
resident memory for the incoming data, and so on, as though the kernel
performed these operations as a separate process or set of processes.
Discussing the kernel using this convention is somewhat misleading
because it implies that the kernel actively performs operations on its own
initiative.

In fact, the kernel is essentially passive; the execution of kernel code is
driven by events that are external to the kernel. These events can be
classified as follows:

¢ A user process requests access to a system resource.
o A peripheral device is ready to perform an I/O operation.

o The hardware’s clock interrupts the CPU’s current state of execution,
thereby causing the causing the kernel’s clock interrupt handler to
perform system management operations.

2.6.1 System Calls

A user process makes requests to the kernel via the system call interface.
The system call interface is the set of routines that processes can use to
access and manipulate system resources. For example, a process can access
a given file by issuing an open() system call, and can read data from and
write data to the file via the read() and write() system calls. The system
call interface is a user process’s only means for explicitly accessing system
resources.

When a process executes a system call, it changes its execution mode from
user mode to kernel mode. A process in user mode has access only to its
instructions and data; it cannot access kernel instructions and data. A
process in kernel mode can access kernel instructions and data. When a
process enters kernel mode via a system call, it executes the kernel code
that implements the system call. In other words, it has entered the kernel.

Overview of UNIX Processes and the UNIX Kernel

The kernel does not execute the system call’s code; the process executes the
code in kernel mode.

2.6.2 Program Exceptions

A program exception is an event caused by the currently executing process.
Two types of program exceptions, page fault exceptions and exceptions
caused by the issuing of system calls, have already been discussed.

A process may also generate exceptions that indicate programming errors.
A process will generate an exception if it does any of the following:

» Divides by zero
o References an invalid address
o Executes a system call that does not exist

When a process generates a programming error exception, the CPU executes
the kernel’s trap handler. The trap handler diagnoses the problem and posts
a signal, or software interrupt, to the process. The signal may force the
process to terminate.

2.6.3 Peripheral Device Activity

Many system calls are requests for access to system resources associated
with peripheral devices. For example, the open(), read(), and write()
system calls are often requests for access to files on disk.

Each peripheral device that is configured into the system has a device driver
that provides an interface between the kernel and the peripheral device. A
typical UNIX kernel has separate device drivers for the system’s disk and
tape drives, terminals and printers, and network hardware such as Ethernet
cards.

When a process executes a system call that requests access to a resource
managed by a peripheral device, the kernel code executing the request
accesses the system resource by invoking the appropriate device driver

2-11

Design of the OSF/1 Operating System

routine. For example, when a process calls open() to get access to a file on
disk, the kernel invokes code within the disk drive’s device driver to enable
the disk for operation.

Resources that are managed by peripheral devices are often not
instantaneously available. For example, before a disk drive’s controller can
read data from the disk, it must wait for the data to spin under the disk
drive’s read head. The kernel cannot reliably predict when the disk drive
controller will supply the requested data, so typically, when a process
requests an open(), read(), or write(), the kernel code puts the process to
sleep so that other processes can be executed while the first process waits
for the resource to become available.

A peripheral device that is ready to furnish a resource must be able to
inform the system that the resource is available. This is done through the
device interrupt mechanism. For example, when a disk drive controller is
ready to provide requested data, it posts an interrupt to the CPU. This
interrupt forces the CPU to stop executing its current set of instructions and
execute the disk drive’s interrupt handler instead.

An interrupt handler is that part of a peripheral’s device driver that manages
the transfer of data between the kernel and the peripheral device. In the
example, the disk drive’s interrupt handler transfers the data from the disk
drive to the kernel and wakes up the process that is waiting for the data.
When the interrupt handler completes its execution, the CPU resumes
executing the code it was executing before the interruption.

When the CPU executes interrupt handler code, it is in a mode of execution
that is called an interrupt level.

2.6.4 The Hardware Clock

2-12

The hardware’s clock interrupts the CPU’s current mode of execution many
times a second. The frequency of these interruptions is hardware-
dependent; 100 times per second is a typical rate. The kernel handles each
clock interrupt by invoking the clock interrupt handler. This handler in
effect drives the system by performing operations crucial to the system’s
scheduler. It is in this handler that the scheduling subsystem determines
whether or not it is time to schedule a new process for execution.

Overview of UNIX Processes and the UNIX Kernel

As it manages resident memory so that processes share the resource
equitably, the kernel manages processes’ access to the CPU, using a
mechanism called time slicing. When the kernel switches context from one
process to another, it assigns the new process a time-slice, or quantum of
time, in which to execute. As the process executes, the kernel decrements
the quantum. The kernel decrements the quantum with each click from the
hardware’s clock. The process may relinquish the CPU at any point within
its quantum. The process may finish execution and exit, or, if it needs
access to resources that are not immediately available (for example, data
from a file), the process may put itself to sleep to wait for the resource. If
the process continues to execute until its quantum expires, the kernel
attempts to schedule another process for execution.

2.6.5 Kernel Daemons

There are a number of system operations that the kernel must actively
perform, such as the replacement of pages in resident memory. The kernel’s
pageout, swapout, and swapin daemons perform page replacement
operations as needed. Typically these daemons, which are independent
threads of control that execute exclusively in kernel mode, sleep until they
are needed. For example, if a process needs to fault in a page of data and
there are few pages available for allocation, the page fault will awaken the
pageout daemon, which will then pageout data to free pages that can then be
reallocated.

2-13

Chapter 3

Overview of the Mach Technology in
OSF/1

This chapter discusses the core services component of the OSF/1 kernel.
This component is derived from Carnegie-Mellon University’s Mach
technology. The core services component includes the kernel’s scheduler
and memory management subsystems, both of which provide functionality
not generally associated with earlier UNIX systems.

The Mach technology implements a small set of primitive operating system
objects, including tasks, threads, and memory objects. These objects can be
used to support many different operating system types. In OSF/1, they are
used to implement UNIX.

This chapter provides an overview of the Mach technology and the objects
that technology provides. Chapters 4, 5, 6, and 7 describe how that
technology is used within the OSF/1 operating system.

3-1

Design of the OSF/1 Operating System

3.1 Tasks and Threads

3-2

A traditional UNIX process is a single entity that encapsulates a set of
system resources (memory resources, open files, and so on) and a single
thread of control that executes in the context of the set of system resources.
In Mach, the process abstraction is split into two separate abstractions: the
task and the thread. A task is a set of system resources that includes a
protected virtual address space. A task is not an executable entity; it is
merely an environment in which one or more threads can execute.
However, this book frequently refers to tasks as though they are executable
entities. This is merely a convention.

A thread is a unit of computation that executes within the context of a task.
It has access to all of the system resources assigned to the task. If the task
contains multiple threads, all such threads share the task’s resources.

Each thread has an execution state and a computation state. A thread’s
execution state specifies whether or not the thread is executing or can be
scheduled for execution.

A thread’s computational state specifies its hardware context, including its
program counter, its stack pointers, and the contents of hardware registers.
When the thread is executing, its computation state is maintained in the
CPU’s hardware registers. When the thread is not executing, this state
resides in the thread’s process control block.

A thread’s execution and computational state are private. In a
multithreaded task, a thread’s execution state may differ from the execution
state of the other threads, and its computational state usually differs from
that of the other threads. A traditional UNIX kernel schedules processes; in
Mach and in OSF/1, the kernel schedules threads. Chapter 5 describes the
scheduling subsystem in detail.

Tasks and threads are low-level objects. Although the Mach kernel (and
OSF/1) provide a set of system calls that can be used to create and
manipulate tasks and threads, user-level application developers generally
do not work directly with these objects.

Overview of the Mach Technology in OSF/1

Tasks and threads can be used to support different programming models.
These models include:

¢ Non-UNIX parallel programs
o Traditional UNIX processes, implemented as single-threaded tasks
o UNIX processes that contain multiple threads

In OSF/1, tasks and threads are used to implement both single-threaded and
multi-threaded UNIX processes.

3.1.1 The task Data Structure

The kernel maintains a task data structure for each currently active task.
This data structure includes the following elements:

map A pointer to the task’s virtual address map. The kernel uses
this pointer to access the address map during page fault
handling. Address maps are discussed further in Section 3.4.1.

thread list A list that contains the threads associated with the task.

ipc_translations
Specifies the task’s port name space.

3.1.2 The thread Data Structure

The kernel maintains a thread data structure for each currently active
thread. This data structure includes the following elements:

pch A pointer to the thread’s process control block.
state Specifies the thread’s execution state.

The data structure also maintains information used by the scheduling
subsystem to schedule the thread for execution.

3-3

Design of the OSF/1 Operating System

3.2 The Mach Interprocess Communication Subsystem

Mach implements a message-passing facility that allows tasks to
communicate with one another. This facility is referred to as the Mach
Interprocess Communication Subsystem (Mach IPC). (Actually, the facility
implements communication between tasks, not processes, but the term
"IPC" persists for historical reasons.)

Typically, the IPC subsystem is used to pass data between separate tasks,
but it may also be used to pass data between threads within the same task.
All IPC operations are managed and secured by the kernel; a task cannot
send data to or receive data from another task unless the task has acquired
the right to do so.

The IPC facility is based on two abstractions: the port and the message. The
message contains the data being passed, and the port is the means of
transferring the message.

3.2.1 Ports

3-4

A port is a communications channel that is protected by the kernel. A port
is implemented as a message queue within the kernel’s address space.
When a task sends a message to a port, the kernel copies the message into
the kernel’s address space and places the message at the end of the port’s
message queue. When a task attempts to receive a message, the kernel
removes the message from the head of the port’s queue and copies it out to
the task’s address space.

Each port has a receiving task, which receives messages sent to the port.
Only one task can receive messages from a given port at any time. A port’s
receiving task can be changed, but the kernel never allows any port to have
multiple receiving tasks. A port can receive messages from one or more
tasks.

A task can create a new port by issuing a call to the port_allocate() system
call. The kernel creates the port by allocating a new message queue within
its address space.

Overview of the Mach Technology in OSF/1

3.2.1.1 Port Rights

A task can use a port only if it has port rights to the port. A task can have
send rights, receive rights, or both rights simultaneously.

Each task has a private area in which the kernel stores the names of the ports
the task has rights to. This private area is the task’s port name space. Port
names are integers. When a task acquires a new port right, the kernel inserts
a name for the right in the task’s port name space, giving the right a name
that is currently unused.

Port names are local to individual tasks. Other tasks may reference the
same port using different names. Figure 3-1 shows how port names
correspond to the actual port data structures that reside in the kernel’s
address space. Tasks A and B communicate with each other through two
ports. A receives messages from B on the port corresponding to A’s local
name 8; B sends messages to this port using its local name 46. A sends
messages to B on the port corresponding to A’s local name 17; B receives
the messages from this port using the local name 22.

Figure 3—1. Tasks Sharing Access to Ports Using Private Port Rights

Task A's Task B's
IPC IPC
Name Space Name Space

o
L]
L]
| 8, receive
(]
L[]
L]

L[] (]
L] (]
L] []
User
Space
Kernel
Space Y Y
Ports

Design of the OSF/1 Operating System

3.2.1.2 Acquiring Port Rights

A task acquires port rights as follows:
e It inherits them from its parent task.
It receives them in messages sent from other tasks.
o It receives them from the kernel upon issuing calls to port_allocate().

Ports are used to represent system objects such as tasks, threads, and
memory objects. When a task creates of one of these objects (by issuing a
system call), the kernel gives the task access to the object by providing the
task with rights to the port representing the object. For example, if a task
issues a call to thread_create() to create a new thread, the kernel creates
the new thread, creates a port to represent the new thread, and gives the task
access to the new thread by providing the task with rights to the thread’s
port.

3.2.2 Messages

Data is passed through ports in messages. The amount of data passed in a
message is arbitrary; a message may transfer a byte of data, or it may pass a
task’s entire address space. Messages can also be used to transfer port rights
between tasks.

3.2.2.1 Out-of-Line Data and Lazy Evaluation

Historically, transferring large amounts of data between processes has been
an expensive operation because it involves physically copying the data from
one address space to another. In Mach, however, such operations are
inexpensive because the data is virtually copied, not physically copied.
When out-of-line data is passed between tasks, the kernel allows both tasks
to map the data into their address spaces. The data is mapped copy-on-
write; if either task attempts to write the data, the kernel copies the portion
of data being written to a new page frame before allowing the write
operation to proceed.

Overview of the Mach Technology in OSF/1

Allowing tasks to share mappings to out-of-line data is one aspect of Mach’s
philosophy of lazy evaluation. This philosophy can be summed up as
follows: defer performing an operation until it absolutely must be performed
in the hopes that it may never need to be performed. With respect to passing
data out-of-line, the kernel defers physically copying the data until one of
the tasks writes the data. If neither task writes the data, it never needs to be
copied.

The IPC subsystem passes large amounts of data efficiently because it is
tightly integrated with the virtual memory subsystem. Chapter 6 describes
in more detail how the virtual memory subsystem implements the copy-on-
write mechanism.

3.2.2.2 The Message-Passing Primitives

The common IPC operations are as follows:
o A task sends a message to another task without expecting a reply.

o A task sends a message to another task expecting a reply, but does not
wait for the reply. The task receives the reply asynchronously.

» A task sends a message to a task and waits for a reply before continuing
with its execution. It receives the reply synchronously.

o A task receives a message from another task.

The Mach kernel exports a set of interfaces that allows tasks to initiate these
operations. A task inititiates either of the first two operations by calling the
msg_send() primitive. If the task expects a reply, it uses msg_receive() to
obtain the reply. A task can use this call at any time to receive messages
that are queued on the port. A task inititiates synchronous communication
by calling msg_rpc().

Design of the OSF/1 Operating System

3.2.3 Ports as Objects

A server task can use ports to represent the objects it manages, and a client
task can invoke an operation on an object by sending a message to the port
representing the object. Interactions of this type are referred to as remote
procedure calls (RPCs).

The Mach kernel is itself a server that creates and manages objects such as
tasks and threads. Each of these objects is represented by a port; the system
calls that manipulate them are actually remote procedure calls.

Because they are created by the kernel and reside within the kernel’s
address space, ports are a secure mechanism for providing object references.
When a server task creates an object that is to be represented by a port, it
must ask the kernel to create the port. When creating the port, the kernel
gives receive rights only to the server. The server then controls access to
the port. If a client task wants access to the object, it must send a request to
the server. If the server chooses to honor the request, it forwards send rights
by passing a message back to the client.

3.3 Memory Objects

A memory object is an entity that represents a range of virtual pages. A
task’s address space is implemented by an address map that maps ranges of
the address space to specific memory objects. For example, a task that
constitutes a UNIX process maps three memory objects into its address
space: one that represents the pages containing the text and initialized data
from the executable file, one that represents the zero-fill pages containing
uninitialized data and heap, and one that represents the zero-fill pages
containing the user stack.

Until recently, UNIX systems did not allow processes to map arbitrary
objects into their address spaces, and those UNIX systems that do allow
such mapping operations restrict them to kernel-defined objects such as
files. The memory object abstraction allows developers to implement
paging managers that manage application-specific memory objects. These
objects may represent files, shared libraries, and databases.

Overview of the Mach Technology in OSF/1

Memory objects are managed by separate tasks called memory managers or
paging managers. A paging manager is responsible for performing pagein
and pageout operations on the memory objects it manages.

Each memory object is represented by a port, and the kernel invokes paging
operations on the memory object by sending a message to the paging
manager on the memory object’s port. For example, suppose that a task
attempts to execute an instruction whose page is not in resident memory.
The kernel’s page fault handler requests pagein of the text by sending a
message to the paging manager responsible for the task’s text memory
object.

3.4 Mach Virtual Memory Management

The Mach virtual memory management system provides advanced
functionality such as copy-on-write operations, mapping of files and
application-defined objects, and support for large, sparsely filled virtual
address spaces. It is also easy to port.

In Mach, each task is provided with a protected virtual address space that is
limited in size only by the addressing capabilities of the underlying memory
management unit (MMU). For example, a MIPS R3000 processor supports
user address spaces two gigabytes in length. In the MIPS R3000
architecture, a task’s address space is that length.

A task’s address space is implemented via a hierarchy of machine-
independent data structures. A task’s address space contains regions of
allocated memory. An address map maps these regions to virtual memory
objects (VM objects). (Section 3.4.1 describes address maps in detail.)
Figure 3-2 depicts a sample virtual address space and the address map and
VM objects that implement the address space.

Design of the OSF/1 Operating System

Figure 3-2. Implementation of a Mach Virtual Address Space

Virtual Address Space

Text Data | BSS e o o User Stack

0 1ffff 24ftf AT7fff 7e000000 TEffftfe

Implementation of the Virtual Address Space

Address
Map
Addresg " " -
Map
Entries
VM
Objects
Text and Data BSS User Stack

3.4.1 Task Address Maps

A task’s address map is made up of a linked list of address map entries, each
of which maps a range of virtual addresses to a VM object (or in some
instances, to a portion of a VM object). The address map maintains address
map entries only for allocated regions of virtual memory; unallocated
regions do not have address map entries. In this way, the address map
supports the compact representation of sparsely filled address spaces.

3-10

Overview of the Mach Technology in OSF/1

A task can map memory objects at arbitrary locations within its address
space. A task may use its address space compactly; that is, mapping its
memory objects to contiguous ranges of virtual memory. Traditional UNIX
processes use compact virtual address spaces. Conversely, a task may use
its address space sparsely by mapping its memory objects at widely
separated locations in the address space.

Large, sparsely filled address spaces are useful in the implementation of
multithreaded tasks. Each thread requires its own user stack, and the task
can prevent user stacks from overlapping one another by placing them at
widely separate locations throughout the virtual address space.

In OSF/1, the program loader allows processes to map shared libraries into
their address spaces. This is another application of large, sparsely filled
address spaces. See Chapter 8 for a discussion of the loader.

3.4.2 Virtual Memory Objects and Memory Objects

The kernel keeps track of the physical location of a region’s pages with the
region’s VM object; a region’s VM object represents the set of pages that are
mapped to the region. A VM object allows the kernel to determine whether
or not a given page is resident in memory. When a task generates a page
fault trying to reference a nonresident page, the kernel uses the underlying
VM object to locate the missing page in secondary storage.

A memory object represents a region’s pages as they exist in secondary
storage. For example, if a region’s pages contain executable text, the
associated memory object is the file on disk that contains the text. Memory
objects are so named because the kernel pages in data from them in response
to page faults. A VM object references its memory object through an IPC
port called the pager port. See Figure 3-3.

3-11

Design of the OSF/1 Operating System

Figure 3-3. A VM Object and Its Memory Object

Pager Port

VM Memory
Object Object

It is important to distinguish between VM objects and memory objects. The
VM object represents pages that exist in main memory and in secondary
storage. The memory object represents pages that exist only in secondary
storage. For example, when a task generates a page fault within a region of
its address space, the page fault handler identifies the VM object that is
mapped to the region and initiates a pagein operation by sending a message
on the VM object’s pager port.

Multiple tasks can map the same VM object into their respective virtual
address spaces. For example, consider two separate but concurrent tasks
that execute the same program. They both execute from the same text, and
the set of pages containing this text is managed by a single VM object.
Consequently, both tasks map this object into their address spaces.

3.4.3 VM Object Types

3-12

VM objects are of two types. External VM objects represent permanent
data, and internal VM objects represent temporary data. Permanent data
exists in secondary storage on a persistent basis. Temporary data is data that
is created by a task in memory and does not persist after the task is
terminated.

For example, consider the VM objects that are mapped to a task that
implements a standard UNIX process. The text VM object represents a set
of pages that are stored in a program’s executable file. The data in this file is
permanent; it will remain in secondary storage after the process’s thread
completes execution and disappears. VM objects that represent permanent
data are referred to as external VM objects because they contain data that

Overview of the Mach Technology in OSF/1

has its origin externally, in permanent secondary storage. Unlike the text
VM object, the stack VM object represents data that is temporary and does
not have a permanent file in secondary storage. When the process
disappears, the data in its stack will disappear as well. VM objects that
represent temporary data are referred to as internal VM objects because they
contain data that is generated internally by the thread or threads executing
in the process.

3.4.4 Memory Objects and Memory Managers

There are two memory object types: user-initiated and system-initiated.

User-initiated memory objects are created at the request of, or for the benefit
of, user-level tasks. The text memory object is a typical example of this
type. A task’s executable text is stored in an executable file somewhere in
the file system. The file system has an associated memory manager to
handle memory requests to and from the files it maintains. When the system
sets up the task’s virtual address space, it asks this memory manager to find
the required executable file and create an associated memory object. The
memory manager does so and returns a port in a reply message that can be
used to access the new memory object (the memory object port). The kernel
creates a VM object to represent the text data and inserts the memory object
port into the VM object’s data structure. The system can then use the VM
object to access the pages of the object file through the saved port.

System-initiated memory objects are created in response to requests by the
VM system. They correspond to internal VM objects and are created and
managed by the system’s default pager. The kernel creates these memory
objects only when the VM system needs to move temporary data out of main
memory to free up resources. In OSF/1, the kernel’s default pager is
referred to as the vnode pager. (See Chapter 7, Section 7.2 for more
information on the vnode pager).

The default pager also serves as the kernel’s backup paging mechanism.
Because external memory managers execute as separate tasks in user space,
the kernel cannot depend upon a given memory manager to page out data on
a timely basis. If the kernel must free up a page containing data and the
memory manager does not respond quickly enough, the kernel sends a
pageout request to the default pager. The default pager always frees pages in
a timely manner.

3-13

Design of the OSF/1 Operating System

3.4.5 Management of Resident Pages

In Mach, the machine’s physical memory is managed as an array of fixed-
sized page frames. The kernel does not directly manipulate page frames.
Instead, the kernel maps logical pages onto the page frames and manages
resident memory by manipulating the logical pages. The logical page
abstraction allows the kernel to manage resident memory in a machine-
independent fashion.

The size of a logical page is configuration-dependent; it either matches the
hardware’s page frame size or is a power-of-two multiple of that size. In the
example depicted in Figure 3-4, the hardware’s page frame size is 1 K and
the logical page size is 4 K. When a virtual page is cached in resident
memory, it requires four page frames.

Figure 3—-4. The Mapping of Logical Page to Page Frames

Address
Map pmap
Y
- > Page
” g " Tables

VM
Objects

The logical pages are mapped to the page frames when the kernel is
initialized. At that time, the kernel determines how many logical pages will

3-14

Overview of the Mach Technology in OSF/1

be required, and then allocates a vin_page data structure for each logical
page. The kernel uses these structures to manage the state of logical pages.

The kernel maintains three paging queues that it uses to manage page
replacement operations:

free queue
Contains vm_page structures whose logical pages are
currently available for allocation; when the system requires a
new logical page for incoming data, it removes the first
vim_page on this queue.

active queue
Contains vm_page structures whose logical pages contain
data that is actively being used by one or more tasks. When
the kernel allocates a logical page for a pagein operation, it
places the page’s vin_page at the end of this queue.

inactive queue
Contains vm_page structures that have recently been active
but are not currently in use. If a task needs to access the data
contained in an inactive page, the system transfers the page’s
vin_page back to the active queue.

There are circumstances in which a logical page is not available for paging
operations. Usually, such a page contains data or text that the kernel must
have immediate access to. Pages of this type are referred to as wired pages.
When the kernel wires a page into memory, it is removed from the paging
queues and is not subject to the page replacement operations.

3.4.5.1 The Resident Page Table

In addition to the paging queues, the kernel maintains a resident page table
that keeps track of all virtual pages that are currently cached in resident
memory. When a virtual page is paged in, the kernel places the
corresponding vm_page structure in this table.

The table, also referred to as the virtual-to-physical table, is implemented as
a hash table. The hash function is based on the object/offset value of the
virtual page, where object specifies the virtual page’s VM object and offset
specifies the virtual page’s offset within the object.

Design of the OSF/1 Operating System

3.4.6 Physical Maps

3-16

In traditional UNIX, the implementation of virtual address spaces has been,
to greater and lesser degrees, tied to the data structures used by the
hardware’s MMU to perform address translation. For example, 4.3BSD was
originally implemented on the VAX; a process’s virtual address space was
implemented directly by VAX-specific page tables and all of a process’s
virtual-to-physical translations were maintained in its page tables. The
implementation of virtual memory operations such as those performed by
the fork(), exec(), and sbrk() interfaces, and the page fault handler was
machine-dependent because such operations involved the direct
manipulation of page table data structures. Porting 4.3BSD to non-VAX
platforms required reimplementing process address spaces and the
operations performed on them.

In Mach, the implementation of virtual memory is cleanly separated into
machine-independent and machine-dependent parts. The separation is based
on the assumption that all MMUs provide a minimum level of functionality.
This functionality includes support for separate virtual address spaces
composed of fixed-length pages, with each address space described by one
or more memory-mapping data structures. (page tables). Each page in an
address space can be mapped and protected separately.

In Mach, the hardware-dependent memory mapping data structures are
represented by the task’s physical map (pmap). The pmap data structure
points to the MMU-specific data structures.

Because all virtual-to-physical translations are maintained in the machine-
independent data structures, a task’s pmap serves as a cache of those
translations. The kernel caches a given translation in the pmap only when
the translation is required. The kernel can discard pmap translations at any
time because they can always be restored from the task’s address map and
memory objects. This gives the kernel great flexibility in managing that
portion of its address space that it uses to maintain pmaps. Figure 3-5 shows
the relationship between the task’s address map and VM object data
structures, and the pmap data structure.

Overview of the Mach Technology in OSF/1

Figure 3-5. Relationship Between an Address Map and Its Pmap

vm_page Logical Page
Structure Page Frames
> 1K
1K
4K >
1K
1K

The kernel manipulates pmaps only when it is absolutely necessary. For
example, when a task maps a new memory object into its address space, the
kernel does not update the task’s pmap until the task actually attempts to
reference the memory object’s data. The deferring of pmap operations until
such operations are necessary is in keeping with Mach’s philosophy of lazy
evaluation.

Most VM operations are implemented with machine-independent code.
When the machine-independent VM performs an operation that must be
reflected in a task’s pmap, it issues a call through the pmap interface to the
kernel’s pmap module. The pmap interface specifies the set of pmap
management operations that are required by the machine-independent VM.
The pmap module implements these interfaces. The pmap module contains
all of the VM’s machine-dependent code. Porting the VM system requires
little more than reimplementing the pmap module for the new hardware
platform.

3.4.7 Mach Virtual Memory Interfaces

The native Mach kernel interface includes a set of primitives that allow
tasks to manipulate their virtual address spaces. These interfaces may or
may not be available on a given OSF/1 system; their availablity is
configuration-dependent.

3-17

Design of the OSF/1 Operating System

3-18

3.4.7.1 Inheritance of Regions

Like UNIX processes, tasks inherit their virtual address spaces from their
parent tasks. However, UNIX processes cannot control how their address
spaces are inherited; a process always inherits all of its parent’s address
space. Mach allows tasks to control the inheritance of address space. A
task can pass all or some or none of its address space to its children tasks.

Child tasks can inherit copies of regions, or can actually share regions with
their parents. If a child task inherits a copied region, the parent task will not
see any of the child’s modifications to the region. If the region is shared
between the parent and child, both tasks will see modifications made by the
other.

3.4.7.2 Protection of Regions

A task can allow read, write, and execute access to any of its allocated
regions. The protection attribute has two values: the current value specifies
the region’s current protection level, and the maximum value specifies the
region’s maximum protection level. The current protection value can never
exceed the level specified by the maximum protection value.

3.4.7.3 Allocation of Virtual Memory

Mach provides two interfaces that a task can use to allocate new regions in
its address space. A task can use the vim_allocate() primitive to allocate
zero-filled regions of virtual memory, and the vin_map() primitive to map a
region of supplied data (memory object) into the task’s address space.

The vm_allocate() routine maps internal VM objects into the virtual
address space, while the vm_map() routine maps external VM objects into
the address space. Before a task can map a memory object using
vm_map(), it must have acquired access to the object from the object’s
memory manager. Tasks may remove regions from their address spaces by
using the vin_deallocate() primitive.

Overview of the Mach Technology in OSF/1

3.4.7.4 Region Management Interfaces

When a task allocates a region of its address space, the VM system sets
default protection and inheritance values. The task can change these values
by calling the vm_protect() and vm_inheritance() primitives,
respectively.

The vm_region() primitive provides a means by which a task can request
information about allocated regions in another task’s address space. This
information includes the following:

o The region’s current and maximum protection values
o The region’s inheritance value

A task must have access to the port representing the other task to use the
vm_region() primitive.

The VM interface also provides primitives that allow a task to read, write,
and copy from another task’s address space. Assuming that the target task is
accessible and the region’s protection value is set appropriately, a task can
use the vm_read() primitive to read from the target region, the vin_write()
primitive to write to the target region, and the vim_copy() primitive to copy
the target region.

3.4.8 Memory Managers and the External Memory Management
Interface

In traditional UNIX systems, the virtual memory management system
allows tasks to map only system-defined objects, such as files, into their
address spaces. The code that implements the creation and management of
such objects is embedded in the kernel. Consequently, extension of memory
mapping functionality requires developers to modify, rebuild, and retest the
kernel.

In OSF/1, the memory mechanism is implemented through memory
managers that are not embedded in the kernel; any user-level application
can use the mechanism of the memory object to provide data to client
programs by allowing those clients to map the data directly into their
address spaces. The flexibility of OSF/1’s VM system supports the

Design of the OSF/1 Operating System

3-20

development of complex virtual memory applications such as transaction
and data management systems. These applications can be developed and
tested without modifying and rebuilding the kernel.

Mach defines an external memory management interface (EMMI) that
allows the kernel and memory managers to interact with one another in the
management of virtual memory.

The EMMI is actually two sets of routines: those implemented by memory
managers to be used by the kernel, and those implemented by the kernel to
be used by the memory managers.

Each memory manager implements a memory object interface, a set of
routines that the kernel uses to issue requests to memory managers. For
example, the kernel pages in a memory object’s data by issuing a call to the
memory manager’s memory_object_data_request() routine; the kernel
pages out out a memory object’s data using the memory manager’s
memory_object_data_write() routine.

The kernel implements the cache management interface, which is the set of
routines that memory managers use to handle pagein and pageout requests
from the kernel and to control access to pages that are cached in resident
memory. For example, a memory manager that allows separate hosts to
share read/write access to its objects can serialize modifications to an object
by making the pages cached in one kernel read-only while a task on another
machine writes the pages.

For a more detailed discussion of the external memory management
interface, see Chapter 7, Section 7.7.2.

Chapter 4

Processes: Structure and Management

OSF/1 provides an execution environment for UNIX processes that
implements all of the features provided by traditional UNIX systems. These
features include the well-known process management system calls (such as
fork(), exec(), exit() and wait()), an implementation of the signal facility,
and an implementation of the job control facilities.

Providing support for multithreaded processes and making the traditional
UNIX facilities function properly in multiprocessor environments has had a
profound impact on the design and implementation of OSF/1’s execution
environment.

4.1 Process States and Data Structures

Traditional UNIX maintains a process’s state using a set of data structures
that includes the following:

proc Structure
Encapsulates state that must remain in resident memory at all
times. For example, a process’s scheduling state is maintained

Design of the OSF/1 Operating System

4-2

in the proc structure because the scheduler needs to update
this state whether or not the process itself is resident.

user Structure
Can be swapped out to secondary storage and encapsulates
state that needs to be resident only when the process is
executing. For example, a process’s file descriptor table,
which the process uses to access the files it has opened, is
maintained in the user structure because it is not needed when
the process is swapped out.

Memory Map Structure
Implements the process’s virtual address space.

The proc structure contains a pointer to the process’s memory map and the
user structure contains a pointer to the proc structure.

The structure of an OSF/1 process differs significantly from its traditional
counterpart. In OSF/1, a process consists of a task and one or more threads;
consequently, much of a process’s state is maintained in its task and thread
data structures. The user structure has been changed significantly in OSF/1;
it has been split into three separate structures: the utask structure, the
uthread structure, and the np_uthread structure.

Figure 4-1 illustrates a process as implemented in OSF/1. In this example,
the process has two threads and so has two thread data structures. As shown
in the figure, the task structure contains pointers to the process’s address
map and the thread data structure. The task structure also contains a pointer
to the utask data structure, while the thread structure contains pointers to
the utask, uthread, and np_uthread structures. The proc structure
contains pointers to the task and utask structures.

Processes: Structure and Management

Figure 4-1.

Thread
Structures

Structure of a Process in OSF/1

Task
proc Structure
Address
Map pmap
utask (
A
\ Page

Tables

uthread np_uthread uthread np_uthread

4.1.1 The proc Structure

In OSF/1, much of the state contained in the traditional UNIX proc
structure is maintained in the process’s task and thread structures. For
example, a traditional UNIX kernel accesses a process’s memory map
through the proc structure, while the OSF/1 kernel accesses a process’s
memory map through the task structure. In traditional UNIX, a process’s
scheduling state is maintained in the proc structure, while this is not the
case in OSF/1. Because a process may have more than one thread of
control, it may have more than one schedulable entity. The OSF/1 kernel
schedules threads, not processes; and so a process does not have scheduling
state, its threads do. Each thread’s scheduling state is maintained in the
thread’s data structure.

4-3

Design of the OSF/1 Operating System

The OSF/1 proc structure contains the following state information:

¢ The process’s identifiers, including its process ID number and the parent
process’s ID number, and its effective and real user and group ID
numbers.

o The pointers to the proc structures associated with the process’s parent
and sibling processes.

» Some of the process’s signal state. Signals are discussed in Section 4.4.

4.1.2 The user Structure

4-4

In OSF/1, a process’s executable entity is its thread, and its system resource
entity is its task. To support the division of the process abstraction into the
task abstraction and the thread abstraction, OSF/1 divides the user structure
into three separate structures: the utask structure, the uthread structure,
and the np_uthread structure. The utask structure maintains state that is
task-specific, while the uthread and np_uthread structures maintain state
that is thread-specific.

If a process contains multiple threads instead of the standard single thread,
the traditional user structure contains state that should be shared among the
threads (for example, the file descriptor table) as well as state that should be
private to each thread (for example, the state of a thread’s kernel stack). In
OSF/1, however, the utask structure is used to manage the state of shared
resources, and the uthread structure is used to manage the state of private
resources. Each process has a single utask structure and as many uthread
structures as there are threads in the process. If the process is a standard
one, it contains one thread and, therefore, one uthread structure.

Processes: Structure and Management

4.1.2.1 The utask Structure

The utask structure maintains those fields of the traditional user structure
that are related to system resources. This includes the file descriptor table,
the process’s file creation mask, and any environment variables the process
might have inherited or set. The utask structure also specifies the sizes and
starting addresses of the process’s regions of virtual memory, and includes
fields used to manage process-specific signals. OSF/1’s implementation of
signals is discussed in Section 4.4.4.

4.1.2.2 The uthread and np_uthread Structures

The uthread and np_uthread structures maintain states that are thread-
specific. The uthread structure includes the directory search file name
cache. The np_uthread structure includes fields used to manage signals
related to program exceptions (see Section 4.4.6 for a full discussion). The
difference between the structures is that the state maintained in the uthread
structure may be paged out, while the state maintained in the np_uthread
structure must remain resident.

4.2 Allocation of proc Structures

In contrast to traditional UNIX systems, which statically allocate the
system’s supply of proc structures during system initialization, OSF/1
minimizes the amount of memory that is statically allocated for process
management by allocating proc structures on demand. The kernel statically
allocates a table of pointers to proc structures, but the structures themselves
are allocated dynamically. This scheme allows processes to be found by
index operations into a static table, while also providing memory
requirements that scale well as the number of active processes rises.

Design of the OSF/1 Operating System

4.3 The Process Management System Calls and
Multithreaded Behavior

Multithreaded processes have notable implications for the standard process
management system calls fork(), exec(), exit(), and wait().

For example, when a thread within a multithreaded process executes a call
to fork(), it could duplicate all threads in the parent process or just the
thread that issued the system call. In OSF/1, fork() duplicates only the
calling thread.

Another issue that must be addressed with respect to multithreaded
processes has to do with the synchronization of process management calls.
For example, it is possible that one thread may call fork() at the same time
‘that ahother thread is terminating the process with a call to exit() or
overwriting the process’s address space with a call to exec(). To preserve
the integrity of the process and ensure consistent behavior with respect to
the process management calls, OSF/1 provides a mechanism that allows the
system calls to synchronize with one another. This mechanism is
implemented through fields in the proc data structure that are used to record
calls to exit() and calls to fork().

When a thread calls fork(), the fork() system call checks to see if another
thread has already called exit(). If exit() has been called, fork() suspends
the current thread to wait for the process to be terminated.

If another thread has not called exit(), fork() can proceed with its
operation. Before it does so, it increments a field in the proc structure to
record that a fork() operation is underway. The exit() and exec() system
calls check this field to synchronize their operations with fork() operations;
neither exit() or exec() are allowed to proceed until all current fork()
operations are completed.

The wait() system call is used by a parent process to wait for a child process
to exit. OSF/1’s implementation of this system call allows only one thread
in a parent process to wait for a child to exit. If a thread issues a call to
wait() on a child that is already being waited on, the call will fail.

Processes: Structure and Management

4.4 The Signal Facility

The signal facility is one of the most complicated features of the UNIX
system. Originally a mechanism for terminating misbehaving processes, the
signal facility, while retaining its original functionality, has evolved into a
somewhat primitive medium for interprocess communication and process
execution management.

For example, the job control facility uses the signal facility to allow users to
switch which process or group of processes has access to the terminal. A
user can suspend the execution of the process or process group that is
executing in the foreground by entering the Suspend character (commonly
<Ctrl-Z>) from the keyboard, and resume the suspended "job" at some later
time by entering the fg command at the shell. Entering a Suspend character
sends a SUSPEND signal to the job; entering the fg command causes the
shell to send a CONTINUE signal to the job. '

A process may receive a signal by generating a program exception (dividing
by zero, or referencing an invalid address), or it may receive a signal from
an external source (from another process, for example, or from the terminal
when a user enters the Kill character or the Suspend character). Signals
caused by exceptions are called synchronous signals; signals originating
externally are called asynchronous signals.

Included among the traditional set of signals are the following:
SIGSEGV The process generated a segmentation violation exception.
SIGILL The process attempted to execute an illegal instruction.
SIGBUS The process generated a bus error exception.

SIGHUP The terminal line associated with the process has been hung
up.
SIGALRM A timer that was set by the process has expired.

SIGSEGYV, SIGILL, and SIGBUS are synchronous signals; SIGHUP and
SIGALRM are asynchronous signals.

Processes can post signals to one another with the Kkill() system call. For
example, the following line of code sends a hangup signal to the process
specified by pid:

kill(pid, SIGHUP);

4-7

Design of the OSF/1 Operating System

Unless the target process (the process specified by pid) has installed a signal
handler (see Section 4.4.2.2), the process will terminate when it receives the
SIGHUP signal.

4.4.1 The Posting of Signals

Regardless of a signal’s source, the target process must execute in order to
receive the signal. The target process cannot explicitly check for pending
signals; the kernel checks for pending signals each time the process
transitions from kernel mode to user mode.

This is what happens when a traditional UNIX process generates a program
exception (note that this is not what happens when an OSF/1 process
generates a program exception; see Section 4.4.5 for more information):

1.

The process generates the exception, thereby invoking the kernel’s
trap handler. The CPU is now executing in kernel mode, but within
the context of the process.

The trap handler diagnoses the problem and posts a signal to the
process.

Before the trap handler returns the CPU to user mode, it checks to see
if the current process (the one that generated the exception) has a
signal pending delivery, and of course there is such a signal because
the trap handler just posted it.

The trap handler calls the kernel’s signal delivery routine and the
signal is delivered.

The posting of signals from external sources is somewhat more complicated,
but the target process still must transition from kernel mode to user mode in
order to receive the signal.

Processes: Structure and Management

4.4.2 Signal Delivery

What happens when a signal is delivered to a process depends on the
signal’s type and on the process’s disposition with respect to that signal
type. A process’s disposition to a signal type specifies how the process will
respond upon receiving that signal. A process may respond to a given signal
in any of the following ways:

Perform the default action associated with the signal
Ignore the signal

Catch the signal with a signal handler

4.4.2.1 Default Actions

UNIX systems specify a default action for each supported signal type. A
signal’s default action may be one of the following:

Discard the signal and do nothing. For example, when a child process
terminates execution, the kernel notifies the parent process by sending it
a SIGCHLD signal, which the parent, by default, ignores.

Terminate the process. For example, the kernel sends the SIGKILL
signal to all active processes when the system is about to be shut down.
This signal forces each process to exit.

Terminate the process and produce a core file that contains the in-core
image of the process at the time it received the signal. Core files are
useful for debugging purposes. For example, a process that generates a
segmentation violation will receive a SIGSEGV signal, which by
default terminates the process and produces a core file. A programmer
may then examine the core file to locate the programming error
responsible for the segmentation violation.

Suspend the process’s execution. For example, when a user enters the
Suspend character at the terminal, the terminal driver sends a SIGSTOP
signal to the foreground process, by default causing the process to
suspend execution.

Design of the OSF/1 Operating System

4.4.2.2 Nondefault Actions

A process may choose not to perform a signal’s default action. Instead, a
process may choose to ignore the signal or catch the signal with a signal
handler.

A signal handler is a routine specified by the application that allows the
application to customize its response to the signal. For example, an
application may use a signal handler to clean up state before terminating
itself. When the process receives a signal for which it has installed a signal
handler, the kernel turns control over to the signal handler code when
delivering the signal.

The sigaction() system call allows a process to manipulate its disposition
with respect to signals. This system call can be used to install signal
handlers. The kernel does not allow processes to ignore the SIGKILL and
SIGSTOP signals, or to install signal handlers for these signals.

4.4.2.3 Masking Signals

A process may choose to temporarily mask the delivery of one or more
signals. If a process masks a specific signal and that signal is posted to the
process, the kernel places the signal in the process’s set of pending signals
but does not allow the signal to be delivered. If the process subsequently
unmasks the signal, the signal will then be delivered. In OSF/1, a process
can manipulate its signal mask with the sigprocmask() system call.

4.4.3 The Signal System Calls

4-10

OSF/1 implements the POSIX compliant set of signal system calls, and
provides compatibility libraries for accessing the BSD and System V signal
interfaces. The POSIX signal system calls include the following:

sigaction() Manipulates a process’s disposition to one or more signals.

sigprocmask()
Changes the process’s current signal mask.

Processes: Structure and Management

sigsuspend()
Changes the current signal mask and suspends the process
until a signal is delivered that either terminates the process or
invokes a signal handler.

sigpending Examines any signals that are waiting to be received but are
currently blocked.

4.4.4 Implementation of the Signal Facility

OSF/1’s implementation of the signal facility differs substantially from the
implementation found in traditional UNIX systems. Most of these
differences stem from work done to make signals behave properly in
multiprocessor environments and with processes that are multithreaded.

4.44.1 Signals and Multithreaded Processes

Traditional UNIX processes have a single thread of control so there is no
confusion about which of a process’s threads should receive a given signal.
However, in the case of multithreaded processes, the issue is not so clear.

When the kernel posts a signal in response to an exception, it sends the
signal to the thread that generated the exception. The kernel delivers
signals that are generated asynchronously to a designated thread within the
process. This is the process’s first thread, the oldest currently active thread
within the process.

Because it must distinguish between process-specific and thread-specific
signals, the kernel must provide separate places for the posting of process-
specific and thread-specific signals. The kernel posts process-specific
signals by adding them to the proc structure’s p_sig signal mask. The
kernel posts thread-specific signals to the uu_sig field of a thread’s
np_uthread data structure. The uu_sig field contains a mask of thread-
specific signals currently pending delivery.

In OSF/1, asynchronous process-specific signals are still posted through the
psignal() routine. If the signal is generated by an exception, it is delivered
directly to the thread through the thread psignal() routine.

4-11

Design of the OSF/1 Operating System

4-12

4.4.4.2 Multiprocessor Implications of Signal Posting

When OSF/1 is running on a multiprocessor machine, it is conceivable that
two simultaneously executing threads may attempt to post a signal to the
same process at the same time. The kernel protects a process’s signal state
from such occurrences by protecting the signal fields within the proc
structure with a lock; before these fields can be modified, a modifying
thread must first acquire the lock.

Traditional UNIX kernels post signals exclusively with the psignal()
routine regardless of whether or not the signal is being posted by a process
running at base level or by a device driver routine that is executing at
interrupt level. If both base level code and interrupt level code are allowed
to lock the same data structure, the kernel can be forced into a deadlock, as
illustrated by the following example:

1. A process executing at base level posts a signal to another process by
using the Kill() system call. This system call posts the signal by
calling psignal(), which posts the signal, first locking the proc
structure to synchronize with other signal delivery operations.

2. The CPU receives an interrupt from the tty driver, which wants to post
a signal to the same process. The interrupt handler attempts to lock
the signal data, but cannot acquire the lock because the process it has
interrupted holds the lock.

3. The interrupt handler waits for the lock to be released, and so never
returns; the interrupted process cannot release the lock because the
interrupt handler does not return. The system is deadlocked.

OSF/1 prevents this type of deadlock from occuring by implementing two
versions of the psignal() routine. Code that runs at base level calls the
psignal_internal() routine, which locks the proc structure to post the
signal. Code that runs at interrupt level posts signals with the
psignal_indirect() routine. This routine places a signal-posting request on a
queue that is serviced by a dedicated kernel thread. This kernel thread runs
exclusively at base level and can safely lock proc structures.

Processes: Structure and Management

4.4.5 The Exception Handling Facility

In OSF/1, synchronous signals are managed by the kernel’s thread exception
facility. This facility allows processes to customize their responses to
exceptions by installing exception handlers. The facility is based on an
RPC mechanism that is implemented using Mach IPC primitives.

An exception handler is a server task that performs operations in response to
remote procedure calls. When an OSF/1 process generates an exception, the
trap handler sends an RPC message to the process’s exception handler. The
handler performs the appropriate operation, and then sends a reply back to
the trap handler. The trap handler then begins the transition back to user
mode. See Figure 4-2.

Figure 4-2. The Exception Handling Model

Exception
Trap

Y

Trap RPC Exception
Handler ‘ Handler

\

Thread's
L Execution
Resumed

4-13

Design of the OSF/1 Operating System

4-14

4.4.5.1 The UNIX Exception Handler

OSF maintains a default exception handler, the UNIX exception handler,
which fields all exceptions that are not being caught by application-specific
exception handlers. When the UNIX exception handler receives an
exception, it converts it to the appropriate UNIX signal and posts the signal
with the thread_psignal() routine.

The UNIX exception handler is started during the kernel’s initialization and
is set to listen on the init task’s task exception port. Since init is the ancestor
of all tasks, a given task inherits init’s task exception port unless one of its
other ancestors has installed a different task exception handler.

4.4.5.2 Design Goals of the Exception Handling Facility

Exceptions can be categorized by type. Some exceptions, such as those
associated with invalid memory references, are caused by problems with a
program’s logic and indicate the need for debugging. Other exceptions may
be caused by error conditions that the program can recover from and must be
handled by application-specific error handlers. For example, an arithmetic
application may, in response to a floating-point underflow exception, use an
error handler to substitute O (zero) for the underflow value before continuing
execution.

Exceptions also play a role in the implementation and use of debugger
applications. Interactive debuggers rely on hardware exceptions to
implement tracing and breakpoint facilities. When, for example, an
executing program reaches a breakpoint, it generates a breakpoint exception
that is then intercepted by the debugger. Upon receiving the exception, the
debugger allows its user to examine the program’s current state.

The design goals of the OSF/1 exception facility are as follows:
1. Provide full support for debuggers and error handlers.

2. Allow error handlers to execute in a context separate from the thread
that generates the exception.

3. Support the implementation of sophisticated debugging facilities such
as remote debuggers.

Processes: Structure and Management

Exception handlers can be task-specific or thread-specific. Program
debuggers are generally task-specific, while error handlers are generally
thread-specific.

Note that exception handlers are distinct from signal handlers. A signal
handler executes in response to a signal, while an exception handler
performs operations in response to exceptions. The UNIX exception server
handles a given exception by sending the corresponding signal to the
process. If the process has installed a signal handler for that signal, the
signal handler will be invoked when the process receives the signal.

4.4.5.3 Implementation of the Exception Facility

The implementation of the exception facility is based on the client/server
paradigm: a thread that produces exceptions becomes a client for one or
more exception handler servers. OSF/1 implements the exception handling
RPC using three ports: the thread exception port, the task exception port,
and the thread exception clear port.

The thread exception port is used for handling thread-specific exceptions; if
a thread wants to handle exceptions of this type, it arranges for its exception
handler to listen for RPCs on this port. In a multithreaded task, each thread
may have its own thread exception port and can install its own exception
handler. The same exception may get handled in different ways depending
on which thread generated the exception.

The task exception port is used for handling task-specific exceptions. If a
task wants to handle exceptions of this type, it arranges for the exception
handler to listen for RPCs on this port. This is the port that a debugger
would use to handle exceptions.

A thread’s exception clear port is the port used by an exception handler to
post the return message and complete an exception RPC. Both thread-
specific and task-specific handlers post their replies to this port.

Each task inherits its task exception port from its parent task. All threads
within the task by default have their thread exception ports set to
PORT _NULL, but a thread is free to initialize a thread exception port and
associate it with a thread-specific exception handler. If a thread has not set
up a thread-specific exception handler, any exceptions it generates are sent
to the task’s exception handler on the task exception port.

4-15

Design of the OSF/1 Operating System

The thread_doexception() routine is the trap handler’s interface to the
exception facility. It executes the RPC to the exception server by sending
the server a message on the process’s exception port. Since all processes
share the same exception port by default, the message passes to the UNIX
exception server. When the server finishes handling the exception
(converting it to a signal and posting the signal to the process), it sends a
reply message to thread_ doexception() on the victim thread’s exception
clear port. This port must exist before thread_doexception() can execute
the RPC; if the thread does not have an exception clear port,
thread_doexception() allocates one for the thread.

4.4.6 Signal Handlers

4-16

Like traditional implementations of the signal facility, the OSF/1
implementation allows a program to install signal handlers. However, unlike
traditional signal facilities, in which all handlers can be considered
process-specific, OSF/1 signal handlers can be either process-specific or
thread-specific. The distinction here is that process-specific handlers catch
asynchronous signals, while thread-specific handlers catch synchronous
signals.

In 4.3BSD, the kernel references a process’s signal handlers through the
u_signal field maintained in the process’s user structure. This field is an
array with an entry for each of the signals supported by the system. Each
entry specifies a signal’s disposition: the action to be taken if the process
receives that signal. If the process has installed a signal handler for a given
signal, the signal’s entry in the u signal array contains a pointer to the
signal handler function. When the process receives that signal, the kernel
finds the signal handler by indexing into the u_signal array.

In OSF/1 the user structure is split into the utask, uthread, and np_uthread
structures. Both the utask structure and the np_uthread structure contain a
signal disposition array. The utask structure’s array is in the uu_signal field,
while the uthread structure’s array is in the uu_tsignal field. The utask’s
array has entries for those signals that are specific to the process, including
those that by default either force the process to suspend or to terminate
execution. When the process installs a signal handler for any of these
signals, the kernel references the handler through the uu_signal field.

Processes: Structure and Management

The array maintained in the uthread structure has entries for all signals that
are specific to the thread, namely those signals that are generated by thread
exceptions. When a thread installs a signal handler for one of these signals,
the kernel references the handler through the uu_tsignal field. Note that in a
multithreaded process, each thread has its own uthread structure, and
hence, its own uu_tsignal field. Consequently, two threads within such a
process could install different signal handlers for the same signal.

The system calls used to install signal handlers automatically place each
handler in its proper field. For example, if a thread wants to install a handler
to catch a process-specific signal, the kernel places the handler in the
utask’s uu_signal array. If the thread wants to install a handler for a thread-
specific signal, the kernel places it in the uu tsignal field contained in the
thread’s uthread structure.

In a multithreaded process, if two threads try to install different signal
handlers for the same process-specific signal, the second installation will
overwrite the first one. However, as mentioned previously, two threads can
install different signal handlers for the same thread-specific signal.

4.4.7 Unix System Calls, the U-area, and Interrupted System Calls

In OSF/1, the UNIX system call mechanism copies system call arguments
from the process’s user stack directly to its kernel stack. In traditional
UNIX systems, these arguments are copied to the process’s u-area, not its
kernel stack, and the user structure includes a field for storing system call
arguments. This field does not exist in either the utask or uthread data
structures.

In OSF/1, when a signal interrupts a system call, the call returns control to
syscall() through the regular return mechanism along with an error code
indicating the occurrence of an interrupt. If the system call is one that
should be restarted, syscall() adjusts the process’s user stack pointer so that
the system call will be re-invoked when the process next executes in user
mode.

In 4.3BSD, the user structure includes a field that specifies which signals
can interrupt system calls. This field, the u_sigintr field, contains a bitmask
that can be set or modified when the process calls the sigaction() routine to
specify action for a given signal. If the signal’s bit is turned on in this field,

4-17

Design of the OSF/1 Operating System

4-18

the process will reexecute system calls that are interrupted by the signal; if
the bit is not set, system calls that are interrupted by the signal are aborted
and return the value EINTR.

OSF/1 retains the u_sigintr field within the utask structure. Consequently, a
signal’s disposition as related to interrupted system calls is set on a per-
process basis, not a per-thread basis. In multithreaded processes, a thread
cannot change a signal’s system call disposition without affecting the
process’s other threads.

Chapter 5

The Scheduling Subsystem

By default, the OSF/1 scheduler allocates the system’s CPUs on a
timesharing basis; concurrently active threads have approximately equal
access to the system’s CPU resources. If OSF/1 is running on a symmetric
multiprocessor platform, all threads have approximately equal access to all
of the CPUs.

Timesharing is based on the programming model of a uniprocessor
executing serial programs. Programs that are concurrently active compete
with one another for access to the lone CPU, and the scheduler attempts to
share the CPU fairly among the programs. In an environment that supports
parallel programming models, a timesharing scheduling policy is not always
desirable.

Therefore, the OSF/1 scheduler provides mechanisms for supporting the
scheduling requirements of various parallel programming models. These
include the following:

« Applications that require access to fixed numbers of CPUs.

» Applications that are able to optimize their performance by advising the
scheduler which thread or threads to execute next.

This chapter begins by describing how the OSF/1 scheduler subsystem
implements timesharing. The chapter then describes how the scheduler
supports nontimesharing programming models. The chapter closes with a

5-1

Design of the OSF/1 Operating System

discussion of OSF/1’s support for CPU-usage timers, which are timestamp-
based timers that allow developers to accurately determine how CPUs are
being utilized over time.

5.1 Timesharing

The OSF/1 scheduler implements timesharing for both uniprocessor and
multiprocessor environments. The design of a timesharing scheduler must
address several issues related to the goal of allowing all active processes
approximately equal access to the system’s CPU resources. To introduce
these issues, this section briefly describes the design of the 4.3BSD
scheduler, which implements timesharing in a uniprocessor environment.

5.1.1 The BSD Scheduler

In BSD UNIX systems, the scheduler allocates the CPU to each process in
fixed-length units of time. This unit is commonly referred to as the
quantum, and is usually set to 0.1 second. When the kernel switches context
to a new process, it resets the CPU’s quantum; as a process executes, the
clock interrupt handler decrements the quantum.

An executing process may run until its quantum expires (at which time the
CPU may be context-switched to another process), or the process may
relinquish the CPU before its quantum expires by blocking to wait for an
event. If a process has not executed to completion during the quantum, it
will be rescheduled for execution.

When it is time to perform a context switch, the scheduler determines which
of the currently runable processes to execute next by searching the
scheduler’s run queue for the process with the best scheduling priority. A
process’s priority is related to the amount of time it has used the CPU.
When a new process is created, the kernel assigns the process a base priority
that is relatively high, so that the process can begin executing as soon as
possible. As the process executes, the system increments a counter to record
the amount of time the process uses the CPU.

In BSD UNIX, a process’s CPU utilization is recorded in the proc
structure’s p_cpu field; as a process executes, the clock interrupt handler

The Scheduling Subsystem

increments the p_cpu field to record each clock tick. Throughout a process’s
lifetime, the scheduler adjusts its priority to reflect the amount of time the
process has utilized the CPU. Processes that stay on the CPU for the
duration of their quanta have lower priorities than processes that block
frequently.

Historically, UNIX scheduling policies have favored interactive programs
over computation-bound programs. Interactive programs, such as editors,
tend to use the CPU for short intervals of time, blocking frequently to
perform I/O. Because they spend a lot of time waiting for I/O instead of
utilizing the CPU, interactive programs tend to maintain relatively high
priorities. On the other hand, computation-bound programs require
extended access to the CPU, and therefore often have low priorities relative
to interactive programs. If there are several interactive programs active at
the same time as a computation-bound program, the computation-bound
program will not get extended access to the CPU.

To prevent computation-bound programs from perpetually remaining at low
priorities, timesharing schedulers implement mechanisms for elevating the
priorities of long-running jobs. In BSD UNIX systems, the scheduler
elevates a process’s priority using a wusage aging mechanism. This
mechanism causes the scheduler to gradually forget a process’s CPU
utilization such that the process’s priority rises if it has not executed
recently.

A process’s utilization ages at an exponential rate that is adjusted according
to the system’s load average. An exponential rate means that usage
accumulated in the last minute costs the process n units, usage from the
previous minute costs 1/2x units, usage from the minute before that costs
1/4n units, and so on.

However, an exponential aging rate, by itself, produces an undesirable effect
when the system is heavily loaded. Under heavy load, the scheduler has
many processes to allocate the CPU to, and each process must wait longer
for access to the CPU. Consequently, the scheduler forgets all usage and is
no longer able to distinguish those processes that are light consumers of the
CPU from those processes that are computation-bound. Under these
circumstances, the scheduler needs to slow down the aging rate so that
priorities do not improve too rapidly. The scheduler must account for
system load as it maintains process priorities.

There are two methods that can be used to factor in the load: use the load to
adjust the rate at which a process’s utilization ages, or use the load to adjust
the rate at which a process accumulates utilization units. The BSD

5-3

Design of the OSF/1 Operating System

5.1.2 The

scheduler uses the age-rate adjustment method. Once a second the BSD
scheduler decrements the utilization values of each runable process using
the following formula:

2 - load

p_cpu = 2-load + 1

p_cpu

(In the formula, load is a sampled average of the number of processes that
are waiting in the run queue over the last minute.)

OSF/1 Scheduler

Unlike the BSD scheduler, the OSF/1 scheduler does not use the load to
adjust the aging rate. Instead, the load is used to adjust the rate at which
processes accumulate units of utilization.

The OSF/1 scheduler assigns each new thread a base priority, then adjusts
the priority throughout the thread’s lifetime to account for the thread’s
utilization of the CPU. To expedite the scheduling of kernel threads that
perform operations critical to the performance of the system (the pageout
daemon, for example), the scheduler assigns user threads a worse base
priority than kernel threads.

5.1.2.1 Accumulating Utilization Units

As a thread executes, the clock interrupt handler increments the thread’s
utilization counter. By default, this counter, which is maintained in the
thread structure’s sched usage field, accumulates time using a time-
sampling mechanism that charges the current thread with a full clock tick
each time the kernel handles a clock interrupt. Charging CPU usage on a
time-sampling basis introduces a margin of error because the system cannot
accurately determine exactly what happens in the interval between samples.
Sampling errors include the following:

o A process that executes for a fraction of the interval between clock
interrupts accrues a full tick’s worth of utilization if it is executing at the
interrupt time.

The Scheduling Subsystem

o Conversely, a process that executes for a fraction of the interval but is
not executing when the clock interrupts accrues no utilization.

o The kernel may have been executing interrupt code (on behalf of another
process) during the interval, but utilization is still charged to the current
process.

Statistical timing discrepancies are generally not large enough to adversely
affect the scheduler’s algorithm, but other timing applications, such as those
that profile a program’s execution, can be severely affected by such
discrepancies. OSF/1 includes a timestamp-based timing facility that
provides a much more accurate means for determining CPU utilization. This
facility is discussed in detail in Section 5.4.2. If the underlying hardware
provides support for this facility, the scheduler can be configured to use this
timer instead of the statistical timer.

Using the statistical timing mechanism, a scheduler charges threads with
CPU utilization in units of microseconds. Although the number of
microseconds between clock interrupts is fixed, the number of microseconds
a thread is charged during that interval depends upon the current load
average of the system.

5.1.2.2 The Calculation of the L.oad Average

The scheduler determines the system’s load average using a 2-step
calculation: first the current load is calculated, and then that value is
exponentially averaged with the previously derived load average.
Averaging the current load with the previous load average smooths the
impact of abrupt load changes.

The scheduler performs the load average calculation once a second using
the kernel’s scheduler thread. The scheduler thread calculates the load
average according to the following formulas. In the formulas, load now
represents the current load, nthreads represents the number of runable
threads, ncpus specifies the number of CPUs, and sched_load represents the
load average.

nthreads

load now =
- ncpus

Design of the OSF/1 Operating System

5-6

sched load+load now
2

If the number of threads is less than the number of CPUs, load now is
set to 1.

sched load =

Both of the load-average calculations include a division operation; the
OSF/1 scheduler avoids using floating-point division operations by scaling
the nthreads value by a large factor and by shifting bits to the left to perform
division by 2. The scaling factor is removed when a thread’s CPU
utilization is converted to its scheduling priority (see Section 5.1.2.4).
There are no floating-point operations within the scheduler or in the rest of
the kernel, because floating-point operations are expensive on some
architectures.

5.1.2.3 The Calculation and Aging of CPU Utilization

As mentioned before, the scheduler increments a thread’s CPU utilization
during each clock interrupt. The scheduler increments the utilization
according to the following formula:

sched_usage = sched_usage + (Ausage X sched_load)

Once a second, each thread’s utilization is aged according to the following
formula (Ar is the number of seconds that have elapsed):
At

sched_usage

sched _usage =

The factor of 5/8 was chosen because it can be implemented by shifting and
adding bits, and it produces good scheduling behavior.

5.1.2.4 Converting CPU Ultilization to Priority

The conversion of a thread’s sched usage to a scheduling priority is
implemented as a bit-shifting operation. The thread’s priority is in the six
leftmost bits of sched usage, and the scheduler shifts bits to the right to
determine the thread’s priority. The shift operation removes the scaling
factor introduced by the load average calculation and converts sched _usage

The Scheduling Subsystem

into a priority number between O (zero) and 31. The lower a thread’s
priority number, the better the thread’s priority.

5.1.2.5 When Priorities Are Updated

The OSF/1 scheduler distributes the overhead of priority calculation by
making each thread responsible for updating its own priority. The kernel
maintains a global variable, sched_tick, which is updated once a second.
The kernel also maintains a timestamp for each thread (the sched stamp
field within the thread data structure). The scheduler updates a thread’s
timestamp each time it updates the thread’s priority. When the clock
interrupts a thread’s execution, the clock handler checks the value
sched_tick against the thread’s timestamp. If one or more seconds have
passed since the thread’s timestamp was updated, the clock handler calls the
kernel’s update_priority() routine to update the thread’s priority.

Distributing priority updates in this manner requires that each thread
execute in order to update its priority. There are, however, instances in
which threads with low priorities are unable to update their priorities
because other threads with better priorities are monopolizing the CPU.
Consequently, once every two seconds, the scheduler scans the run queues
and updates threads that have been unable to update themselves.

Threads that are blocked cannot update their priorities and are not on a run
queue; therefore, they cannot be updated when the scheduler scans the run
queues. They must defer priority updating until they become runable again.
When the kernel makes a thread runable, it checks the thread’s timestamp
against sched_tick and updates the thread’s priority, if appropriate, before
placing the thread in the run queue.

5.1.3 The Run Queue Data Structure

The kernel implements run queues using the run queue data structure. This
structure contains the following elements:

runq(| The array containing the actual queues. This array contains 32
queues, numbered O (zero) through 31. These queues are
doubly linked lists of threads. The array of queues is called

5-7

Design of the OSF/1 Operating System

the run queue; each queue within the array is called a sched
queue.

low A hint that specifies the run queue number that may contain
the thread with the highest scheduling priority. The kernel
maintains this hint to optimize the search for the thread with
the best priority. The kernel cannot guarantee that the thread
with the best priority is in this queue, but it can guarantee that
the thread is not in a queue higher than this.

count The number of runable threads currently placed in the run
queue. This field also optimizes the search for runable
threads. If the count is O (zero), the kernel does not scan the
run queue for a runable thread.

A thread’s current scheduling priority is maintained in the thread data
structure’s sched pri field. The value in this field maps directly to a sched
queue within the thread’s assigned run queue. For example, a new user
thread that is runable and waiting to execute has a priority of 12, by default.
The kernel schedules it for execution by placing it in the run queue’s twelfth
sched queue. In OSF/1, the lower the value of a thread’s sched_pri field, the
better the thread’s priority. A thread with a priority of 6 has a better priority
than a thread with a priority of 12.

When the kernel places a thread on a run queue, it places it at the tail of the
appropriate queue for that priority. When the kernel chooses a thread for
execution, it removes a thread from the head of the priority’s queue.

5.2 Thread Execution States

5-8

In addition to maintaining a thread’s priority, the scheduler subsystem
manages a thread’s transition between various states of execution. For
example, a thread may be running, or runable and in a run queue, or it may
be waiting for an event such as the release of a lock or the paging in of data.

The thread data structure includes a state field, which specifies a thread’s
current execution state. There are four basic state values, which can be
combined to form other state values:

TH_RUN The thread is either executing or on a run queue, ready to be
scheduled.

The Scheduling Subsystem

TH_WAIT The thread is waiting for a system resource to become
available. For example, the thread may be waiting for a lock
to be released or for data to be paged in.

TH_SUSP The kernel has asked the thread to stop executing. There are
two major reasons for the kernel to suspend a thread: the
thread is about to be terminated, or the thread’s task is about to
be swapped out. See Chapter 7 for a discussion of task
swapping.

TH_SWAPPED
The thread’s kernel stack has been unwired, and so its contents
may not be in resident memory. Note that this state pertains
only to the thread’s kernel stack. The state does not indicate
that the thread’s task has been swapped out.

5.2.1 The Suspend Mechanism

The kernel suspends a thread through the thread hold() and
thread_block() routines; thread_hold() changes the thread’s state field to
indicate a suspend is pending, and thread_block() suspends the thread. The
kernel uses the thread_release() call to resume a suspended thread’s
execution. The thread_hold() and thread release() routines are not
available to users. Users can suspend and resume threads with the
thread_suspend() and thread_resume() routines.

At a given time, there may be multiple reasons for a thread to be suspended.
Each thread data structure includes a suspend count field that the kernel
increments when it suspends the thread. If a thread’s suspend count is non-
zero when thread_hold() is called, the thread is already in a suspended
state; thread_hold() merely increments the count.

The thread_release() routine decrements a thread’s suspend count and
releases the thread from its state of suspension if it is appropriate to do so.
If the suspend count is greater than 1 at the time of the call,
thread_release() merely decrements the thread’s suspend count. If the
thread’s suspend count is 1 at the time of the call, thread_release() sets the
suspend count to 0 (zero) and releases the thread from its suspended state.
What happens to the thread next depends upon other aspects of the thread’s
execution state. If the thread is runable (it does not have a pending wait and
its kernel stack is not swapped out), thread_release() dispatches the thread

5-9

Design of the OSF/1 Operating System

to an idle processor if one is available; otherwise, the thread is placed on the
run queue.

In addition to maintaining an internal suspend count, each thread also
maintains a separate user suspend count so that user suspend operations (via
thread_suspend() and thread resume()) do not interfere with kernel
suspend operations. When the user suspend count is incremented to 1, the
kernel increments the internal suspend count. Subsequent increments of the
user suspend count do not affect the internal suspend count. When the user
suspend count is decremented from 1 to O (zero), the kernel decrements the
internal suspend count by 1.

5.2.2 Execution State and the Suspend Mechanism

5-10

The diagram in Figure 5-1 shows the execution state transitions a thread
may pass through with the suspend mechanism. The figure uses
abbreviations to represent the following states:

Rq The thread is ready to run and is waiting on the run queue.

RqS The thread is on the run queue and a suspend state is pending.

R The thread is running on a processor.

RS The thread is running on a processor and a suspend state is
pending.

S The thread is suspended.

SO The thread is suspended and its kernel stack is swapped out.

RO The thread is runable as soon as its kernel stack is swapped in.

RSO The thread is runable as soon as its kernel stack is swapped in,

and it is resumed. This happens if a thread is suspended while
the kernel stack is being swapped in.

The figure also uses abbreviations to indicate which kernel routines perform
the state transitions:

choose Choose a new thread for execution. This is an abbreviation for
the kernel’s choose_thread() routine.

The Scheduling Subsystem

block

hold

release

dowait

swapout

swapin

Block the current thread’s execution and context switch to a
new thread if possible. This is an abbreviation for the kernel’s
thread_block() routine.

Indicate that a transition to a suspended state is pending. This
is an abbreviation for the kernel’s thread _hold() routine.

Release the thread from a suspended state or pending
suspended state. This is an abbreviation for the kernel’s
thread_release() routine.

Wait for a pending suspension to take place. This is an
abbreviation for the kernel’s thread_dowait() routine. This
routine is usually called by a thread that is waiting for another
thread to become suspended.

Swap out the thread’s kernel stack. This is an abbreviation for
the kernel’s thread_swapout() routine.

Swap in a thread’s kernel stack. This is an abbreviation for the
kernel’s thread_swapin() routine.

5-11

Design of the OSF/1 Operating System

Figure 5-1. Suspend Mechanism State Diagram

5-12

Swapout

Dowait ' Dowait

Choose

Release

As shown in the figure, if a thread on the run queue has a suspend state
pending, it transitions into the suspended state in either of two ways:

o The kernel chooses it for execution and executes the thread until it calls
thread_block(), thus becoming suspended.

e Another thread forces the thread to suspend by calling the
thread_dowait() routine; this routine removes the thread from the run
queue and leaves it in a suspended state.

Note that this latter transition (the transition between RqS and S) is
represented by a dotted line. If a thread is not interruptible, the kernel does
not allow this transition to occur; a pending suspend cannot take effect until
after the thread runs on a processor.

The Scheduling Subsystem

5.2.3 The Event-Wait Mechanism

Threads often attempt to access system resources that the kernel cannot
immediately supply. For example, a thread may need to lock a data
structure that is currently locked by another thread, or it may need to access
data that is not in main memory and so must be copied in from secondary
storage. In circumstances such as these, the thread must wait until the
resource becomes available before it can continue execution. The kernel’s
event-wait mechanism allows a thread to sleep while the resource remains
unavailable, and then wakes up the thread when the resource becomes free.
The event-wait mechanism is always invoked by the thread itself; a thread
cannot force another thread to wait for an event. A thread can wait for only
one event at a time.

Sometimes threads attempt to wait for events that may never take place. To
prevent such threads from waiting forever, the event-wait mechanism allows
threads to sleep interruptibly, or to set wakeup timeouts. A thread that
sleeps interruptibly can be woken up by a UNIX signal. While a thread
sleeps interruptibly, the kernel can swap out the thread’s kernel stack and it
can suspend the thread. If a thread sets a timeout before going to sleep, the
kernel will wake the thread when the timeout expires if the event has not
occurred.

A thread that is issuing a request to wait must identify to the kernel the
event it is waiting for. Events are specified by integers. If, for example, a
thread is waiting for the release of a lock, it may use that lock’s address in
memory to specify the event.

The kernel places all waiting threads in the scheduler’s wait queue. This
queue is implemented as a hash table to optimize the lookup operation that
occurs when the kernel wakes a thread. The hash table is an array of queues
indexed according to the table’s hash function. When a thread issues a wait
request, the kernel derives an index into the array by running the hash
function on the integer representing the event being waited for. The kernel
then places the thread in the queue that exists at the derived index. The
thread is chained to the queue through the thread data structure’s rung field
(a thread cannot be in a run queue and waiting for an event at the same
time).

5-13

Design of the OSF/1 Operating System

5-14

5.2.3.1 Invoking the Event-Wait Mechanism

Typically, a thread invokes the event-wait mechanism by calling the
assert_wait() routine to indicate that it is about to wait, and then calling the
thread_block() routine to yield the processor and begin the wait. The call
to assert_wait() places the thread on the wait queue, and the call to
thread_block() puts the thread to sleep.

Because there is an interval between when a thread places itself on the wait
queue and when it actually goes to sleep, it sometimes happens that the
event a thread is waiting for occurs before the call to thread_block().
When an event happens before the thread goes to sleep, the kernel removes
the thread from the wait queue. When the thread calls thread_block(), that
routine, instead of putting the thread to sleep, places it in the appropriate run
queue, and the thread is eligible for execution.

In the interval between calling assert_wait() and thread_block(), the
thread may clean up its state within the kernel before it goes to sleep. For
example, the thread may release any locks it is holding. If the thread wants
to be woken if the event does not happen within a certain timeframe, it sets
the timeout before calling thread_block().

In some instances a thread needs to clean up state after the event it is
waiting on has occurred. For example, a device driver thread may need to
restart its device after a completion event occurs. A thread of this type can
ensure its ability to properly clean up state by waiting in an uninterruptible
state. A thread that waits in this manner may wait forever if its event does
not occur.

If a thread calls thread_block() without first calling assert wait(), the
scheduler initiates a context-switch operation, and the calling thread is
placed in a run queue.

5.2.3.2 Waking a Sleeping Thread

The kernel wakes a sleeping thread either because the event being waited
for has occurred, or because a condition arises that requires the thread’s

The Scheduling Subsystem

sleep to be interrupted. The event-wait mechanism implements the wakeup
operation with the following interfaces:

thread_wakeup()
Wakes up all threads that are waiting for the event.

thread_wakeup_with_result()
Wakes up all threads waiting for the event and indicates the
reason for the wakeup.

thread_wakeup_one()
Wakes up the first thread on the wait queue that is waiting for
that event. Other threads that may be waiting for the event
remain asleep.

clear_wait()
Wakes up the specified thread, either because the event has
occurred or because the thread’s sleep should be interrupted.
Use of this call requires knowing the identity of the sleeping
thread.

The thread wakeup routines are actually macros that invoke the kernel’s
thread_wakeup_prim() routine. This routine finds the appropriate wait
queue by executing the wait hash function on the event. For each thread
that is to be woken up, thread_wakeup prim() removes the thread from
the wait queue. What happens to the thread depends on the thread’s current
execution state:

« If the thread’s state indicates that it was just waiting, it is dispatched to
an idle processor if one is available, or it is placed in a run queue.

o If the thread was sleeping interruptibly and a suspend is pending, the
routine allows the thread to go into a suspended state.

o If the thread was sleeping uninterruptibly and a suspend is pending, the
routine ignores the request for suspension and schedules the thread for
execution.

o If the thread’s kernel stack has been swapped out while the thread was
asleep and no suspend is pending, thread_wakeup_prim() sets the
thread’s state to indicate it is runable, and then inititates the swapin
operation by calling thread_doswapin(). When this routine completes,
the thread will either have been dispatched to an idle processor or it will
have been placed in a run queue.

5-15

Design of the OSF/1 Operating System

5.2.4 Execution State and the Event-Wait Mechanism

5-16

The diagram in Figure 5-2 shows the execution state transitions a thread
may pass through with the event-wait mechanism. The diagram also shows
the state transitions that occur when the event-wait, the suspend, and the
thread swap mechanisms interact. In addition to the abbreviations used in
the previous state diagram (Figure 5-1), this diagram also uses the following
state abbreviations:

RW
RS

WO
WSO

The thread is executing on a processor and a wait is pending.
The thread is executing and a suspend is pending.

The thread is in a run queue and a suspend is pending.

The thread is executing and a wait and suspend are pending.
The thread is in a wait queue.

The thread is in a wait queue and a suspend is pending.

The thread is in a wait queue and its kernel stack is swapped.

The thread is in a wait queue, its kernel stack is swapped, and
a suspend is pending.

Figure 5-2 also uses abbreviations to indicate which kernel routines perform
the state transitions. In addition to the abbreviations used in Figure 5-1, this
diagram includes the following: :

assert

wake/clear

Asserts that the thread is about to transition to a wait state.
This is an abbreviation for the kernel’s assert_wait() routine.

Removes the thread from the wait queue. This abbreviation
stands for the thread_wakeup() and clear_wait() routines,
respectively.

The Scheduling Subsystem

Figure 5-2. Event-Wait Mechanism State Diagram

Wake/Clear
WSO

K__/é ‘iijapout

Wake/Clear

Dowait

* Dowait

. Release
Choose

Hold Release Release

Release

Wake/Clear

—-—‘\i Swapout
WO Wake/Clear

In this diagram, dotted lines indicate transitions that are disabled when a
thread is not interruptible. These include the transitions between the
following states:

e WStoS
e WS to WSO
* Wto WO

Figure 5-2 does not show what happens to a thread that is waiting
uninterruptibly with a suspend pending (WS) when it is awakened. As
indicated in the figure, the transition to S is disabled when a thread sleeps

5-17

Design of the OSF/1 Operating System

uninterruptibly. When the kernel wakes up such a thread, the kernel ignores
the pending suspension and makes the thread immediately runable. If an
idle processor is available, the kernel dispatches the thread to it. If a
processor is not available, the kernel places the thread in the run queue.
Although the thread is then running or runable, its pending suspend has not
been cancelled. It will take effect the next time the thread calls
thread_block(). Figure 5-3 shows this series of state transitions.

Figure 5-3. State Transition of a Thread in an Uninterruptible Sleep

Wake/Clear

5.3 Scheduler Support for Parallel Applications

In addition to supporting timesharing applications, the OSF/1 scheduler
supports the scheduling requirements of different parallel programming
models. The scheduler’s support for parallel programming models is
furnished through two mechanisms: processor sets and scheduling hints.

The processor set mechanism allows the kernel to furnish an application
with a dedicated set of CPUs; the application’s threads execute on these
CPUs without having to compete with other threads. The scheduling hints

The Scheduling Subsystem

mechanism allows an application to manage the scheduling ot its threads by
providing hints to the scheduler about the order in which to execute the
threads.

5.3.1 Processors and Processor Sets

A processor is an object that represents a CPU. The OSF/1 kernel maintains
a processor data structure for each of the system’s CPUs and manages each
CPU through this data structure. A processor set is an object that represents
a set of processors. The kernel manages each processor set through its
processor set data structure.

The system initialization procedure includes the creation of the kernel’s
default processor set. This processor set always exists because the kernel
assigns its own threads to it. By default, the OSF/1 scheduler schedules
threads on a timesharing basis; in this environment, all threads execute on
the default processor set, and the kernel never creates additional processor
sets. A parallel program can execute using processors from the default set,
but cannot have processors dedicated to its execution.

The OSF/1 kernel interface includes a set of primitives that can be used to
create and manage new processor sets. These interfaces do not, in
themselves, provide for any sort of processor allocation policy. A processor
allocation policy must deal with the following issues:

« Which applications are allowed to use dedicated processors
o Prioritization of applications competing for processors
+ Amount of time an application is allowed to use dedicated processors

» Maximum number of processors an application is allowed to use on a
dedicated basis

This type of policy is likely to vary from system to system; if this policy
were coded into the kernel, the kernel would have to be modified and rebuilt
each time the policy needed to be changed. In the processor set model, the
processor allocation policy is handled by a user-level processor server
program. A processor server program implements a given processor
allocation policy and uses the kernel interfaces to affect the policy. Because
it runs at user level, such a program can be reconfigured or replaced by
another program without modification to the kernel. Processor server
programs must run with privileges.

5-19

Design of the OSF/1 Operating System

OSF/1 does not include a processor server program; however, the kernel
interface includes a set of primitives that can be used to implement
processor servers. The availability of the processor allocation primitives is
configuration-dependent.

Figures 5-4 to 5-6 illustrate how a parallel application might interact with
the kernel and a processor server program to acquire a set of processors
dedicated for its use. The figures are necessarily schematic, and the
description that accompanies them is a simplified one. In this example, the
system hardware includes eight CPUs, which the kernel manages through
eight processor objects. In Figure 5-4, all eight processors belong to the
system’s default processor set object. All of the system’s active threads are
assigned to this processor set.

Figure 5-4. The Default Processor Set

5-20

- Processor
Applicat
ppiication Server
User Space

Kernel Space

Default
Processor Set
Object
I

= =
| 1
00000000 e
I |
NP |

In Figure 5-5, the parallel application asks the kernel to create a new
processor set object, and the kernel does so. The new processor set does not
initially have any processors assigned to it. An application does not need to

The Scheduling Subsystem

be privileged to create a new processor set, because all new processor
setsare empty when created. Only the privileged processor server can ask
the kernel to assign processors to a processor set.

Figure 5-5. An Application Allocates a Processor Set

icati Processor
Application
PP Server
Requests
New Processor
User Space Set Object
Kernel Space
Kernel
Default New
Processor Set Processor Set
Object Object

In Figure 5-6, the application asks the processor server to assign processors
to the new processor set. The server analyzes the request based on its
policy. If it decides to honor the request, the server calls the appropriate
kernel interfaces. The kernel responds to the server’s request by reassigning
processors from the default processor set to the new set. Now the
application can assign its threads to the new processor set, and the
scheduling system will force them to execute only on the processors of this
set. Those threads that were already assigned to the default processor set
will continue to run only on those processors that remain in that set, and any
newly created threads that do not belong to the application will be assigned
to the default set.

5-21

Design of the OSF/1 Operating System

Figure 5-6. The Application Requests Processors; the Kernel Assigns Processors

Requests
Processors
for New

_ Processor Set
Application >

Processor
Server

Calls
Appropriate
User Space Kernel Interfaces

Kernel Space

Default Assigns New
Processor Set Processors Processor Set
Object Object
I |
| |
—— il —
Uy Anining
! I | |
| | | I
I o I d

Processor sets can be used to support various types of parallel applications.
A fine-grained application, whose threads synchronize with one another
very frequently, may require access to a number of CPUs that matches the
number of threads in the application, while a coarse-grained application
may be able to execute on a processor set that has fewer CPUs than the
application has threads.

5-22

The Scheduling Subsystem

5.3.2 Scheduling Hints

Certain coarse-grained applications may be able to optimize their
performance by being able to advise the scheduler how to schedule their
threads. The OSF/1 kernel provides the thread switch() interface, which
allows threads to influence the scheduler’s activities. When a thread blocks
to synchronize with another, it can use thread_switch() to provide the
kernel with a hint about which thread should be executed next.

Scheduling hints are as follows:

Mild Discouragement
Switch contexts to another thread with an equal or higher
priority to execute. If such a thread does not exist, continue
executing the current thread.

Strong Discouragement
Depress the current thread’s priority and switch context to
another thread. Block the current thread’s execution and
depress its priority until it executes again or until a specified
timeout has expired.

Absolute Discouragement
Stop the current thread’s execution for a specifed period of
time.

Handoff
Bypass the scheduler entirely and switch contexts to the
specified thread. (If both the current thread and the specified
thread are time-sharing threads, the specified thread gets the
remainder of the current thread’s time-slice.)

The discouragement hints can be used to optimize the synchronization of
threads that synchronize using test-and-set locks. These kinds of locks do
not record the identity of the current lock holder; consequently, a thread
waiting for the lock may not be able to identify the thread it is waiting on,
and therefore cannot provide a handoff hint to the scheduler. The handoff
mechanism can be used if a thread can identify the lock holder either
because of the structure of the application or because the threads
synchronize using locks based on compare-and-swap instructions.

Mild hints may not be useful in instances where an application executes in a
timesharing mode, because multiple threads may simultaneously yield their
processors to each other instead of to the thread or threads that hold the

5-23

Design of the OSF/1 Operating System

5-24

synchronization locks. Absolute hints may be appropriate under these
circumstances, but since their granularity is based on the frequency of the
hardware’s clock, they are not appropriate for medium-grained to fine-
grained synchronization.

5.3.2.1 The thread_switch() Routine

The thread_switch() routine encapsulates the scheduler’s hint facility.
When it is called to provide a mild discouragement hint, the routine simply
calls thread_block() to yield the processor to the thread with the highest
priority.

A thread that calls thread_switch() to provide an absolute discouragement
hint must specify a timeout value with the call. In this instance,
thread_switch() places a call to the thread timeout() routine in the
kernel’s callout table. When the timeout expires, thread_timeout()
reschedules the thread for execution by calling the clear_wait() routine.

A thread that calls thread_switch() to provide a strong discouragement hint
must also specify a timeout. In this instance, thread_switch() depresses the
thread’s priority to the lowest possible value. The scheduler will restore the
thread’s previous priority when the thread next executes or when the
supplied timeout has expired, whichever comes first.

A thread that wants to hand off the CPU to a specific thread identifies the
thread with an argument to thread_switch(). The routine finds the specified
thread in the processor set’s run queue, removes it, and switches context to it
using a call to the thread_run() routine.

5.3.2.2 The thread_depress_priority() Routine

The kernel implements strong discouragement hints with the
thread_depress_priority() routine, which can be used to temporarily
depress a thread’s priority. This routine manipulates the thread data
structure’s depress_priority field. Under normal circumstances, this field is
set to -1. thread_depress_priority() depresses a thread’s priority by

The Scheduling Subsystem

moving the thread’s base priority, (maintained in the thread’s priority field)
to the depress_priority field. The routine then sets the thread’s priority and
sched_priority to 31, the lowest possible priority value.

The kernel reverses this operation by restoring the thread’s priority field
from the depress_priority field. The kernel then resets the depress_priority
field to -1 and recomputes the thread’s scheduling priority.

5.4 CPU-Usage Timer Support

Traditional UNIX systems measure the amount of time a given process
utilizes the CPU with statistical timers. Statistical timers are based on a
time-sampling mechanism that is driven by the hardware’s clock. When the
clock interrupts an executing process, the clock interrupt handler charges
the process with a full tick of CPU utilization. Charging CPU usage on a
time-sampling basis introduces a margin of error, because the system cannot
accurately determine exactly what happens in the timeframe between
samples. Sampling errors include the following:

e A process that executes for a fraction of the timeframe between clock
interrupts accrues a full tick’s worth of utilization if it is executing at the
interrupt time.

o Conversely, a process that executes for a fraction of the timeframe but is
not executing when the clock interrupts accrues no utilization.

o The kernel may have been executing interrupt code (on behalf of another
process) during the timeframe but utilization is still charged to the
current process.

The margin of error introduced by a time sampling mechanism varies
depending upon the length of a process’s execution. A long-running process
is more likely to accrue time sampling errors both for and against it; if a
process runs for a sufficient amount of time, these discrepancies tend to
cancel each other out. However, discrepancies associated with short-
running processes may be significant.

Although timesharing systems measure a process’s CPU utilization to
determine the process’s scheduling priority, statistical timing discrepancies
are generally not large enough, even for short-lived processes, to adversely
affect the scheduling algorithm. However, other timing applications, such as

5-25

Design of the OSF/1 Operating System

those that profile a program’s execution, can be severely atfected by such
discrepancies.

Certain hardware platforms provide support for the implementation of
CPU-usage timers, which measure CPU utilization directly instead of
statistically. These timers can improve the accuracy of statistical
measurements by as much as three orders of magnitude.

CPU-usage timers are based on a timestamp mechanism. The hardware
maintains a timestamp source that is incremented at a known rate. A timer
can measure the length of time that has elapsed during a given activity by
reading the timestamp source at the beginning of the activity, reading it
again at the end of the activity, and taking the difference between the two
readings.

OSF/1 provides software-implemented interval timers that can be used on
hardware platforms that provide a source of timestamps. The scheduler uses
these timers to measure a thread’s CPU utilization. They are also available
to profilers and other applications that need to measure time accurately. On
platforms that do not provide interval timer support, the OSF/1 scheduler
uses a statistical time sampling mechanism to determine a thread’s
utilization of CPU resources.

5.4.1 OSF/1 Timers

5-26

The kernel measures each thread’s consumption of CPU resources through
the thread’s user timer and system timer. The kernel uses the thread’s user
timer to measure the amount of time the thread executes in user mode, and it
uses the system timer to measure the amount of time the thread executes in
kernel mode. The scheduler determines a thread’s total CPU utilization by
adding together the measurements taken by both timers.

The kernel also maintains a separate interval timer, a kernel timer, for each
of the system’s CPUs. The kernel uses these timers to measure the amount of
time the kernel spends executing interrupt code. Kernel timers ensure that

_ the consumption of CPU resources during interrupt handling is not charged

to the interrupted thread. Currently, a kernel timer accumulates time for
every interrupt handled by its processor, regardless of the interrupt type.
The timer facility can be extended with additional kernel timers to measure

The Scheduling Subsystem

interrupts based on type. The system can then be monitored to determine
how much time is being devoted to the various interrupt sources and how
that time is being distributed across the system’s CPUs.

At any given moment, a CPU’s usage is measured by either a thread’s user
timer, a thread’s system timer, or the CPU’s kernel timer. The kernel
ensures that utilization is charged accurately by providing routines to switch
between timers. Timers must be switched as follows:

¢ When a thread executing in user mode traps into the kernel through a
page fault, exception, or system call, the kernel must switch from the
thread’s user timer to its system timer.

e When a thread returns to user mode from kernel mode, the kernel must
switch from the thread’s system timer to its user timer.

o When the kernel interrupts a thread’s execution to handle an interrupt,
the kernel must switch from the thread’s current timer to the CPU’s
kernel timer.

o When the kernel returns control from an interrupt, it must reactivate the
interrupted thread’s current timer, either its user or system timer.

o When the kernel context switches between threads, it must switch from
the blocking thread’s system timer to the new thread’s system timer.

5.4.2 The timer Data Structure

All OSF/1 timers are implemented by the kernel’s timer data structure.
This structure includes the following fields:

low_bits Accumulated time in units corresponding to the units used by
the hardware’s timestamp source. For example, this field may
accumulate time in microseconds.

high_bits ~ Accumulated time in normalized units. When the low_bits
field is about to overflow, the kernel converts its value to a
normal time value and adds it to the contents of the high bits
field. If, for example, low bits accumulates time in
microseconds, the high bits field may accumulate time in
seconds.

5-27

Design of the OSF/1 Operating System

5-28

tstamp The value of the timestamp source when the current activity
began.

When the kernel activates a timer, it sets the timer’s tstamp field to the value
of the timestamp source. When the kernel is about to switch to another
timer, it subtracts the tstamp value from the current value of the timestamp
source and adds the result to the timer’s low bits field. The kernel then
switches to the next timer.

Chapter 6

The Virtual Memory Subsystem:
Address Space Implementation

Chapter 3 introduced the major features of the Virtual Memory subsystem
(VM) and briefly described the data structures that implement virtual
address spaces in Mach. To review, a task’s address space is implemented
through its address map. The address map contains address map entries,
each of which maps a range of virtual addresses to a Virtual Memory object
(VM object). See Figure 6-1.

Design of the OSF/1 Operating System

Figure 6—1. Implementation of Task Address Space

Address
Map
Address
Map
Entries
VM
Objects
Text and Data BSS User Stack

6.1 Address Maps and Address Map Entries

A task’s address map is represented by a vm_map structure; the map’s
address map entries are represented by vm_map_entry structures. As
shown in Figure 6-2, the vin_map_entry structures are chained together in
a doubly linked list, and the head and tail of this list are linked to the
vm_map structure.

This arrangement of structures supports the fast lookup of virtual addresses
during page fault handling. The structures also support the compact
representation of large sparsely filled address spaces because

e The address map maintains address map entries only for allocated
regions of address spaces.

¢ Each address map entry may map an arbitrarily large range of addresses.

e The address map entries are represented by small, fixed-size data
structures.

6-2

The Virtual Memory Subsystem: Address Space Implementation

6.1.1 The vin_map Data Structure

The vm_map structure includes the following fields:

min_offset Specifies the address map’s first allocated virtual address. This
field corresponds to the first address map entry’s starting
virtual address.

max_offset Specifies the map’s final allocated address. This field
corresponds to the last address map entry’s ending address.
The page fault handler uses this field and the min_offset field
to quickly check the validity of a faulting address. If the
address does not lie between max_offset and min_offset, it is
invalid.

first_free Points to the first unallocated region within the task’s address
map. The kernel uses this hint when mapping data to arbitrary
locations within the address space.

hint Used to optimize the page fault handler’s lookup of virtual
addresses. Usually the hint field points to the address map
entry that maps the address that generated the most recent
search operation. If the task is generating a series of page
faults in the same region of memory—a condition that arises
frequently—the hint optimizes virtual-to-physical translation.
However, the field does not always point to the last successful
lookup. When a task allocates a new region of memory, the
kernel updates the field to point to the new region’s address
map entry.

The vim_map structure also contains a pointer to the process’s physical map
(pmap). The kernel uses this pointer to access the task’s pmap when
invoking operations on that object.

The address space described by the vm_map structure in Figure 6-2
contains four regions of virtual memory. The first three regions are
contiguous to one another and span the range between 0x0 (zero) and
Ox471tff. The first free field points to the maps third address map entry
because the first range of unallocated address space lies beyond the range
mapped by the address map entry (the dashed box indicates that the range of
addresses between 0x480000 and Ox49fffffff is wunallocated). The
vm_map’s hint field points to the first address map entry, indicating that the
last page fault was generated by a reference within the address range
mapped by this entry.

6-3

Design of the OSF/1 Operating System

Figure 6-2.

//

A vm_map Structure and Its vm_map_entry Structures
vm_map
~| next | prev < \
0 I
Wainiind
first_free
hint
AN prev | next | i prev | next | > prev | next | > prevl next /
0 2000 250000 7e000000
11fff 24ffff 47ffff Haiiiniid
E_480000 - 49ffff]
Unallocated
Range

6.1.2 The vin_map_entry Data Structure

Each vin_map_entry structure maps a range of virtual addresses to a set of
pages in an object. The length of the range implies the number of pages that
are mapped. For example, if the system’s virtual page size is 0x1000 (4K
bytes), a virtual range with a length of 0x1000 maps to a single page, a
range with a length of 0x2000 maps to two pages, and so on. The
vin_map_entry structure maps the address range to the object’s pages with
an object/offset reference. The object reference specifies the object that the
address map entry maps to, and the offset value specifies the location within
the object where the mapping begins. For example, if the offset value is

The Virtual Memory Subsystem: Address Space Implementation

0x0, the mapping begins with the object’s first page. If the offset value is
0x1000 (and the system’s virtual page size is 0x1000), the mapping begins
with the object’s second page, and so on.

The vmm_map_entry structure includes the following fields:
start The beginning of the virtual address range being mapped.
end The end of the range being mapped.

protection The protection at which the range is mapped. For example, a
region can be mapped read-only, or read/write.

inheritance Specifies whether or not child tasks will inherit the mapped
region, and if so, whether they will inherit a copy of the region
or inherit shared access to the region.

object The object that is mapped to the address range.
offset The mapping’s offset into the object.

Figure 6-3 shows the relationship between a vin_map_entry structure and
the VM object it maps. The VM object is mapped to the address range that
spans 0x2000 to 0x6fff. The object is mapped read-only and inherit-copy at
an offset of 0x0. The size of the address map entry’s virtual range (0x4fff)
implies that the address map entry maps the object’s first five pages.

Design of the OSF/1 Operating System

Figure 6-3. A vm_map_entry Structure and the VM Object It Maps

vm_map_entry

prev | next

2000
6fff
Read Only

Inherit Copy

object

offset

o0

VM Object

Usually a region of allocated memory is mapped through one address map
entry, but this is not always so. A region may be mapped by multiple address
entries. If all of a region’s addresses have the same protection and
inheritance attributes, the region can be represented by a single address map
entry. If the region contains subsets of addresses that have different
attributes, the region requires an address map entry for each subset.

Consider again the preceding example. The region described contains the
virtual addresses between 0x2000 and Ox6fff. Suppose the task calls the
vim_protect() interface to change the protection of the addresses between
0x5000 and Ox6fff from read-only to read/write. Figure 6-4 shows the result
of this operation.

The Virtual Memory Subsystem: Address Space Implementation

Figure 6-4. Changing Protection on a Range of Virtual Memory

vm_map_entry vm_map_entry
prev | next < > prev | next
2000 5000
4fff offf
Read Only Read/Write
Inherit Copy Inherit Copy
object object
offset offset

1

VM Object

The system splits the original address map entry into two separate entries.
The first address map entry maps the virtual addresses between 0x2000 and
Ox4fff to the VM object’s first three pages; the address map entry references
the VM object at an offset of 0x0, and the virtual range implies that the
mapping has a length of 0x3000. This mapping retains the read-only
protection. The second address map entry maps the 0x2000 range of
addresses between 0x5000 and Ox6fff to the VM object’s fourth page by
referencing the VM object at an offset of 0x3000. The address map entry
maps this data read/write.

6.1.3 Address Map Entries and the Page Fault Handler

When it invokes the page fault handler, the kernel analyzes the fault, and
then passes the handler the virtual address whose reference generated the
fault and a pointer to the faulting task’s address map. If the virtual address
is valid, the faulting address lies in one of the map’s ranges of allocated
virtual memory. Before the handler can resolve the fault, it has to locate the
address map entry that represents this range. This address map entry
references the VM object that manages the faulting address’s virtual page.

6-7

Design of the OSF/1 Operating System

When it has located the address map entry, the handler calculates the
faulting address’s offset into the region, then uses that offset to identify the
virtual page that contains the faulting address’s physical counterpart. The
handler can then determine the physical location of the virtual page and
thereby resolve the page fault.

Consider Figure 6-3. Suppose in this example that a task has generated a
page fault trying to reference an address between 0x5000 and Ox5fff. The
page fault handler proceeds as follows (assume a system page size of
0x1000):

1. The handler locates the faulting address’s address map entry.

2. It calculates the address’s offset into the region. In this example, the
faulting address lies between 0x5000 and Ox5fff, so the address’s
offset is between 0x3000 and Ox3fff into the region.

3. The handler adds this offset to the VM object’s offset to determine the
virtual page’s offset in the object. In this example, the VM object is
mapped at an offset of 0x0, so the virtual page in question has an
offset of 0x3000 into the object. It is in the object’s fourth page.

4. The handler now determines if the page is resident by using the
object/offset value to search the resident page table. If the page is not
resident, it must be paged in from secondary storage.

6.2 Implementation of UNIX Process Address Spaces

Figure 6-5 shows how OSF/1 implements a typical UNIX process’s address
space. As shown in the figure, the process’s address map contains four
address map entries. However, the process’s address map maps three VM
objects into the address space. VM object A represents the process’s text
and initialized data, which is collectively mapped from the process’s
executable file; VM object B represents the process’s uninitialized data and
heap; VM object C represents the process’s user stack.

Note that two address map entries map to VM object A. The first address
map entry maps the text portion of the VM object and the second address
map entry maps the initialized data portion of the object. The sections are
mapped with different protection attributes; the text is mapped read-only
with execute, and the initialized data is mapped read/write.

The Virtual Memory Subsystem: Address Space Implementation

Figure 6-5. Implementation of a UNIX Process Address Space

vm_map

next | prev =
/ - \

Hiitiii

Y

\» Text Data BSS Stack 4_/
prevl next “| prev | next || prev | next " | prev | next

0 2000 250000 7e000000
1 ffff 24ffﬁ 47fﬁf 7fffffff Vm_map_entry
Read Only Read/Write Read/Write Read/Write Structures
B C

6.3 The Optimization of Virtual Copy

Tasks often inherit regions of virtual memory from their parents. Inherited
regions are of two types: shared regions and copied regions. If a child shares
an inherited region with its parent, it will see all modifications the parent
makes to the mapped data, and the parent will see all modifications made by
the child. If a child process inherits a copied region, it will not see changes
made by the parent, and the parent will not see changes made by the child.
Shared regions are discussed in Section 6.5. This section describes the
implementation and optimization of copied regions of memory.

6-9

Design of the OSF/1 Operating System

The VM system uses copy-on-write mechanisms to optimize the copying of
virtual memory. Copy-on-write allows tasks to share mappings to the same
data read-only, and data is copied only when one of the tasks attempts to
write the data.

In OSF/1, copy-on-write operations happen on a page-by-page basis. For
example, if two tasks share several pages copy-on-write, and one of the
tasks wants to write data on the first page, the kernel will copy only that
page. The other pages will remain uncopied until one of the tasks attempts
to write them.

There are two types of copy-on-write operations: symmetric copy-on-write
and asymmetric copy-on-write.

6.3.1 Symmetric Copy-on-Write

6-10

Symmetric copy-on-write is the kernel’s mechanism for optimizing the
virtual copy of temporary data. This is data that is created in memory as a
task executes. For example, a UNIX process’s heap contains temporary
data.

In Figure 6-6, tasks A and B share a region of data copy-on-write because B
has inherited from A a virtual copy of the region. As indicated in the figure,
the system implements the virtual copy by mapping the data’s VM object
into both tasks’ address spaces.

The Virtual Memory Subsystem: Address Space Implementation

Figure 6-6. Two Tasks Share Data Copy-on-Write

Task A's
vm_map_entry
Structures

Y
A

Y

Task B's]
vm_map_entry
Structures

Y
A
\

Y

A
3
A
A

Suppose that task A needs to modify data mapped to its copy of the region,
and the data to be modified is contained in the VM object’s second page.
The system cannot allow task A to modify the original page’s data because
the page is currently being shared with task B. At this point the system must

6-11

Design of the OSF/1 Operating System

provide task A with an exclusive copy of the affected page. The system
proceeds as follows:

1. Itallocates a new physical page to hold the copied data and copies the
data from the original page to the new page.

2. It initializes a new VM object, called a shadow object, and places the
new page there.

3. It changes the mapping of task A’s region from the original VM object
to the shadow VM object.

Now task A has an exclusive copy of the original object’s second page.
Figure 6-7 shows the result of this copy-on-write operation.

Figure 6-7. Task A Writes Data

Task A's Task B's
vm_map_entry vm_map_entry

1

Shadow Original
VM Object VM Object

The shadow object is the means by which the system manages task A’s
changes to the shared data. Whenever task A needs to modify a previously
unmodified page in the original VM object, the system allocates a new page,
copies the required data from the original page, and inserts the new page in
task A’s shadow object. The task no longer references the original page; it
references the page that resides in the shadow object.

6-12

The Virtual Memory Subsystem: Address Space Implementation

The system moves pages to the shadow only when the task needs to modify
data; unmodified pages remain in the original VM object. Suppose, for
example, that task A wants to read (but not modify) data contained in the
original VM object’s third page, which has not been modified. The task first
looks for the page in its shadow object. The task then moves to the original
object, finds the page, and reads its data. The original object is referred to
as the shadow object’s backing object.

Now suppose that task B wants to modify data mapped to its region that is
associated with the original object’s first page. As shown in Figure 6-8, the
system responds by creating a shadow object for task B. The system
allocates a new physical page, copies the data from the original object’s first
page, and inserts the new page in task B’s shadow object. The system maps
the shadow to task B’s region. The task then has an exclusive copy of the
original object’s first page.

Design of the OSF/1 Operating System

Figure 6-8. Task B Writes Data

Task A's Task B's
vm_map_entry vm_map_entry

Task A's
Shadow
Object

Task B's
Shadow
Object

0

Backing
Object

This version of the copy-on-write optimization is known as symmetric
copy-on-write because the system must create a shadow object for each task
when that task needs to modify the shared data. For reasons that will be
explained in Section 6.3.2, symmetric copy-on-write is appropriate only for
VM objects that manage temporary data. The virtual copy of permanent data
can also be optimized in a copy-on-write fashion, but the mechanism cannot

be implemented in a symmetric fashion.

6-14

The Virtual Memory Subsystem: Address Space Implementation

6.3.1.1 Shadow Object Chains

Shadow VM objects can themselves be subject to copy-on-write. In such an
instance, the shadow VM object becomes the original VM object, with its
pages subject to copy-on-write.

For example, in Figure 6-9, task A and task B share data copy-on-write, and
task B has written to the original object’s first page, thus generating a
shadow object. Task B subsequently creates task C. Task C inherits from B
a virtual copy of the data. This data is managed by two VM objects: B’s
shadow object, which manages the single page B has modified, and the
original VM object, which manages the two pages B has yet to modify.
Tasks B and C both map the shadow object copy-on-write.

6-15

Design of the OSF/1 Operating System

Figure 6-9. Tasks B and C Share Data Copy-on-Write

6-16

Task B's Task C's
vm_map_entry vm_map_entry

Task B's
Shadow
Object

i

Original
VM Object

Suppose that task C wants to write the first page of data. The system
allocates a new physical page to copy the data to, and creates a new shadow
VM object to manage the new page. (See Figure 6-10.) The system maps
this object to task C’s address space, and now the task is free to write the
data. Note that the shadow object has as its backing object task B’s shadow
object, which in turn has as its backing object the original VM object. As
before, if either task B or C wants to access data contained in the other
pages, it gets the data from the original VM object. This collection of VM
objects is known as a shadow chain.

The Virtual Memory Subsystem: Address Space Implementation

Figure 6-10. Task C Writes Data

Task B's Task C's
vm_map_entry vm_map_entry

Task C's Task C's

Backing Shadow
Object Object
(B's Shadow)

i

Original
VM Object

Suppose that task B wants to write the second page of data. The system
proceeds with the copy-on-write operation as follows:

1. The system allocates a new page to hold the copied data.

2. The system follows the shadow chain references back to the original
VM object, finds the data’s page there, and copies the data to the
newly allocated page.

3. The system creates a new shadow object to manage the new page and
maps this object to task B’s address space. B can then proceed to
modify the page’s data.

Figure 6-11 illustrates the results of this operation; task B’s former shadow
object becomes the current shadow’s backing object. If task B needs to
access data from the first page, it must follow the shadow chain back to its

6-17

Design of the OSF/1 Operating System

former shadow object. If the task wants to access data from the third page,
it must follow the shadow chain to the backing object and then on to the
original VM object.

Figure 6-11. Task B Writes Data, Creating a Shadow Tree

Task B's Task C's
vm_map_entry vm_map_entry

Task B's Task C's
Shadow Shadow
Object /... —..... .\ Object

Task C's
Backing
Object

Il

Original
VM Object

The Virtual Memory Subsystem: Address Space Implementation

6.3.1.2 Managing Shadow Trees

Shadow trees, such as the one depicted in Figure 6-11, can grow to large
proportions very quickly, and the kernel must prune them whenever
possible. Pruning is done whenever the kernel realizes that an intermediate
shadow object is no longer needed. Such an object is not needed in the
following circumstances:

o If the system has copied all of a backing object’s pages to the shadow
object, the shadow no longer needs to reference the backing object, and
instead can directly reference the next object in the chain.

 If a backing object is referenced only by a single shadow object, the two
objects can be merged into one object.

Consider again Figure 6-11. Note that task C’s shadow object has already
copied the sole page that is managed by its backing object. When task C
accesses any other data, it must get that data from pages managed by the
original VM object. In this instance, the system can simplify the shadow
tree by having task C’s shadow object reference the original VM object
directly. Figure 6-12 shows the simplified shadow tree.

6-19

Design of the OSF/1 Operating System

Figure 6-12. Pruning the Shadow Tree

Task B's Task C's
vm_map_entry vm_map_entry

Task B's
Shadow
Object

Task C's
Shadow
- Object

Task B's
Original I:":":I

Shadow
Object Original
VM Object

Now that task C’s shadow object references the original VM object directly,
and its previous backing object (task B’s former shadow object) has only
one shadow object referencing it: task B’s current shadow object. The
system can further prune the tree by moving the backing object’s first page
to the shadow object and setting the shadow object to reference the original

VM object directly. Figure 6-13 shows the result of this operation.

6-20

The Virtual Memory Subsystem: Address Space Implementation

Figure 6-13. Pruning the Tree Further

Task B's Task C's
vm_map_entry vm_map_entry

Task B's
Shadow
Object

Task C's
Shadow
seser\ ObJECE

1l

Original
VM Object

The system attempts to prune the shadow tree each time it services a copy-
on-write page fault. After the system allocates the new page for the shadow
object and copies data to the page, the system checks the shadow object’s
backing object to see if pruning is possible. If the shadow object is the only
object currently shadowing the backing object, the system merges the two
objects together. If the shadow object no longer needs to reference the
backing object because it has copied all of that object’s pages, the system
removes the shadow’s reference to the backing object and sets the shadow to
reference the next object in the chain.

6-21

Design of the OSF/1 Operating System

6.3.2 Asymmetric Copy-on-Write

6-22

In symmetric copy-on-write, both tasks share unmodified data and store the
modifications they have made in their respective shadow objects. The data
managed by the original VM object is temporary, as is the data managed by
the shadow objects. The system discards both the original and the modified
data after the tasks have completed execution.

This section discusses assymetric copy-on-write, which is the kernel’s
mehchanism for managing the virtual copying of permanent data. Suppose
that a task, task A, has mapped into its address space a VM object that
manages permanent data, which continues to be stored on disk after the task
has completed its execution. The task can modify this data and expects the
system to write the changes back to the file. In this discussion, assume that
task A is the only task that can modify the on-disk copy of the data.

Task A’s modifications to the file in secondary storage are made to an in-
memory copy of the data, specifically, to data contained in resident pages.
The system manages these pages via the VM object’s list of resident pages.
The system updates the file by sending the modified pages back to the VM
object’s associated paging object. Task A is able to modify the permanent
data because it has that paging object’s corresponding VM object mapped
into its address space. In order for task A to retain its ability to modify this
data, it must retain this mapping.

Suppose that task B, a task created by task A, has inherited a copy of the
mapped file. Although the two tasks can, through a copy-on-write
mechanism, share a virtual copy of the data, the system must continue to
allow task A the exclusive right to modify the on-disk copy of the data.
Task B may also modify data in the virtual copy, but its modifications are
considered temporary. The kernel does not allow task B’s changes to get
written back to the permanent on-disk file.

As long as neither task modifies the data, they can share the virtual copy.
However, suppose that task A wants to modify the data. To make its
modifications permanent, task A must retain its mapping to the original VM
object so that the system sends the modifications to the appropriate paging
object. However, if task B has the original VM object mapped into its
address space, it will see task A’s modifications. If B is to avoid seeing A’s
changes, it must not map to the original VM object. OSF/1 uses the
mechanism of the copy object to enable the tasks to share the data read-
only.

The Virtual Memory Subsystem: Address Space Implementation

When the system initializes task B and sets up the virtual region that the
task has inherited from task A, the system creates a VM copy object and
maps this object to the region. As shown in Figure 6-14, this object is
initially empty, but references the original object’s pages. For example, if
task B wants to read data from the virtual copy’s first page, it reads the data
from the original object using the copy object.

Figure 6-14. Tasks A and B Share Permanent Data Copy-on-Write

Task A's Task B's
vm_map_entry vm_map_entry

00

Original Copy
VM Object Object

Suppose that task A wants to modify data contained in the original VM
object’s first page. Before the system allows this modification to take place,
it allocates a new page, copies the data from the original page to the new
page, and then inserts the new page into the copy object (Figure 6-15). Task
B then references the new page, which contains unmodified data, and task A
is free to modify the original page. Task B still reads any unmodified pages
from the original VM object.

6-23

Design of the OSF/1 Operating System

Figure 6-15. Task A Writes Data, Pushing a Page to the Copy Object

6-24

Task A's Task B's
vm_map_entry vm_map_entry

Copy
Object

Original
VM Obiject

0 o

A
I I
Pushing the Page
into the Copy Object

Suppose that task B wants to modify its virtual copy of the data, and the data
it wants to modify is contained in the virtual copy’s second page. As far as
the system is concerned, task B has the data mapped copy-on-write. When
task B attempts to write the data, the system initializes a shadow object,
allocates a new page, copies the original data into the new page, and inserts
the new page into the shadow object. The system then maps the shadow
object to task B’s address space. See Figure 6-16.

The Virtual Memory Subsystem: Address Space Implementation

Figure 6-16. Task B Writes Data

Task A's Task B's
vm_map_entry vm_map_entry

i 11 i

Original Copy Task B's
VM Object Object Shadow
Object

As Figure 6-16 shows, the data modified by task B lies in the shadow object.
If task A has modified the original data, it pushes an unmodified copy of the
page to the copy object, and task B can read the data from there. If neither
task modifies a page’s data, task B reads the data from the original object
using the shadow and copy objects.

This virtual copy mechanism is known as asymmetric copy-on-write
because the system creates shadow objects only for child tasks. The parent
task retains the right to have its modifications sent back to permanent
storage, so it continues to map the original VM object after it has modified
the data.

6-25

Design of the OSF/1 Operating System

6.4 The Page Fault Handler and Copy-on-Write

626

When a thread faults on a page that is shared symmetrically, the kernel has
to copy the page’s data to a new page. In this case, the page fault handler
has passed to vin_fault_page() the shadow object that will hold the copied
page. The actual page is contained in a backing object somewhere down the
shadow chain. The routine searches the virtual-to-physical hash table and
determines that the page is not resident. The routine then allocates a new
resident page and begins searching for the backing page that contains the
data. This search proceeds as follows:

1. The routine accesses the next VM object in the shadow chain using
the current object’s shadow field and determines the offset into this
object. It then unlocks the current object and locks the next object.
The newly allocated page is automatically marked busy so that
another task faulting on the page will wait for it to fill instead of
racing down the shadow chain.

2. The routine searches for the page in the new object by calling
vm_page_lookup() and passing to that routine the new VM object
and offset.

This set of steps continues until the routine finds the page containing the
data. When the routine finds the page, it copies its contents to the page
allocated in the top object, then returns the page to the vim_fault() routine.
If the page is not found, the page fault handler initiates a pagein operation.

In the case of asymmetric copy-on-write, the task wants to write permanent
data that is marked copy-on-write. The faulting task owns the data in the
sense that its changes are eventually written back to the data’s secondary
storage entity. The other tasks that are sharing this data consider their copy
of the data to be temporary, and any changes they make to the data are not
written back to the secondary storage entity. Before the faulting task writes
the data, it must "push" an unmodified copy of the data to the copy object.
The vm_fault_page() routine proceeds as follows:

1. It allocates a new resident page to hold the copied data. This page is
associated with the copy object.

2. It copies the contents of the original page to the copy object’s page.

3. Other tasks that are sharing the data may have referenced the original
page and so have entered the page into their pmaps. These pmap

The Virtual Memory Subsystem: Address Space Implementation

entries must be invalidated because the faulting task is about to write
the data. The routine invalidates any other mapping by calling the
pmap_page protect() routine.

6.5 Share Maps

Two tasks can share access to a region of data. This is different from sharing
data copy-on-write. When two tasks share access to data, each task sees
changes made by the other.

A task that shares access to data with another task may want to share the
data with a child task on a copy-on-write basis. Tasks cannot share access
to data through a VM object because that structure cannot support copy-on-
write and sharing at the same time. This sharing arrangement is
implemented instead by a share map mechanism. A share map is an address
map that is shared between two or more tasks.

Usually, true sharing can only take place between related tasks (an external
pager can be implemented that allows unrelated tasks to share data, as
discussed in Chapter 7). One task shares data with a child by allowing the
child to inherit shared access to the data. The child task may then allow its
children to inherit shared access, or it may allow its children to inherit a
copy of the data.

Figure 6-17 outlines how a share map works.

6-27

Design of the OSF/1 Operating System

Figure 6-17. A Share Map

Task A's
vm_map_entry
Structures

Y

Y
Y
Y

A

A
A
A

/

VM Objects Y

Share Map

Task B's
vm_map_entry A
Structures

A

A
A

/

VM Obijects

Share maps are rare in OSF/1; they can be generated when a process maps a
file with mmap(), changes its protection with vm_inherit(), and then forks
another process.

6-28

The Virtual Memory Subsystem: Address Space Implementation

6.6 Virtual Copy and Mach IPC

In Mach IPC, tasks can send messages of arbitrary size to one another. In
traditional UNIX systems, transferring large amounts of data between
processes is an expensive operation because it involves physically copying
the data from one address space to another. In Mach, however, such
operations are inexpensive because the data is passed copy-on-write.

OSF/1 implements copy map objects to support Mach IPC copy-on-write
operations. A copy map object, which is not the same as the copy objects
used to implement asymmetric copy-on-write, is an actual copy of a portion
of a task’s address map. Each copy map object contains an address map data
structure, which is chained in double-linked fashion to address map entries
that represent the copied address space.

The vim_map_copyin() structure, which is used by the Mach IPC subsystem
when a task sends out-of-line data to another task, duplicates a portion of a
task’s address space by creating a copy map object to represent the data
being passed in the IPC message. The copy map object is subsequently
inserted into the receiving task’s address space. The copy map object may
also be used to overwrite the task’s address space.

6.7 The Kernel’s Address Space

The OSF/1 kernel is implemented as a task, called the kernel task.
Compared to most user process address spaces, the kernel task’s address
space is complicated. Among other things, it contains the kernel’s
executable text, the data structures it uses to represent system entities such
as tasks, threads, and VM objects, kernel stacks for user-level threads, and
so on. Like any other task, the kernel has an address map that describes its
virtual address space. This map is called the kernel map.

Address maps, both kernel and user, are protected by locks. Address maps
can be locked for reading, and separately for writing. Multiple threads can
lock the address map for reading. A thread that has a map locked for writing
has exclusive access to the map; other threads that may want to read the
map cannot do so until the writing thread releases the lock.

6-29

Design of the OSF/1 Operating System

On user process address maps, the lock mechanism does not significantly
affect the performance of the application because the lock is not generally
under contention. User address map locks are taken in two circumstances:

o The kernel is resolving a page fault with respect to the process and is
examining the map’s address map entries.

e The process is mapping or unmapping a VM object into or from the
address space and is adding or removing an address map entry from the
map.

In most user processes, these are not activities that generally overlap. When
they do, the application’s performance may be affected slightly.

However, if the kernel address map, with its varied regions of data, were
locked by a single lock, many entirely unrelated threads would contend for
it, and system performance would suffer. Therefore, the kernel map is
divided into submaps, which can be locked separately from one another.

For example, the kernel’s default pager, the vnode pager, executes in the
context of the vnode pager submap. The vnode pager, with its multiple
threads, often has occasion to lock its virtual address space. Because this
address space is built into the kernel’s address space, it would be inefficient
for locks taken by the pager to prevent other threads from accessing other
unrelated kernel data structures.

Some of the kernel’s submaps manage wired-down memory. The default
pager submap is in this category. Since the default pager must be able to
immediately free memory resources, it cannot afford to generate page faults;
its memory is always resident.

6.7.1 Submap Implementation

6-30

Submaps are implemented through address map data structures. The
submap contains one or more address map entries that specify the address
space it manages, and the submap is itself referenced by an address map
entry in the parent map. See Figure 6-18.

The Virtual Memory Subsystem: Address Space Implementation

Figure 6-18. The Kernel's Address Map with Submaps

Y
A

Kernel's vm_map_entry Structures

Eat 1 e
]] e |-
Submap
Y
Submap's
vm_map_entry
Structures
VM Objects

6-31

Design of the OSF/1 Operating System

6.8 Pmaps and the Pmap Module

A task’s pmap is an abstraction of the machine-dependent data structures
that the memory management unit (MMU) uses to perform address
translation. Because all virtual-to-physical translations are maintained in the
machine-independent data structures, a task’s pmap serves as a cache of
those translations.

In keeping with Mach’s philosophy of lazy evaluation, the kernel
manipulates pmaps only when it is absolutely necessary. Most VM
operations are implemented through machine-independent code. When the
machine-independent VM performs an operation that must be reflected in a
task’s pmap, it issues a call to the kernel’s pmap module. This module,
which contains all machine-dependent code associated with the VM system,
implements the set of services required by the machine-independent VM.

The pmap module must implement the pmap data structures and the
operations that manipulate these structures. The technique the pmap uses to
manage its cache is specific to the memory management hardware. The
data structures differ for single-level page tables (the DEC VAX), multilevel
page tables (the Encore Multimax and the Motorola 68030), inverted page
tables (the IBM RT/PC), paged segmented architectures (the Intel i386),
translation caches (MIPS), and so on. Each of these machines has its own
unique pmap data structures, but exports the same basic functional services.

6.8.1 The Pmap Functions

6-32

The routines and macros exported by the pmap module can be grouped
according to their functions:

e Managing individual pmaps. This includes routines that create and
destroy pmaps.

e Managing threads. This includes routines that install and update virtual-
to-physical mappings.

o Performing global operations on multiple pmaps simultaneously.

e Manipulating physical memory. There are also optional routines that
can be used by the pmap module to perform optimization operations.

The Virtual Memory Subsystem: Address Space Implementation

6.8.1.1 Managing Individual Pmaps

The pmap_create() routine is called when a task (and therefore a new
address space) is created. It returns a handle for the pmap structure to the
machine-independent code. This handle is used by all routines to specify
which pmap to operate on.

The pmap kernel() call returns the handle for the pmap describing the
kernel address space. It is used by routines in the virtual memory system to
initialize and manage the kernel’s address space.

The pmap_reference() and pmap_destroy() routines increment and
decrement reference counts on pmaps. If decrementing the count puts it at O
(zero), pmap_destroy() deallocates the physical map and frees up its data
structures.

6.8.1.2 Managing Threads

The pmap subsystem provides macros to help manage threads within
processes. The pmap_activate() routine invokes the
PMAP_ACTIVATE() macro whenever a CPU is dispatched to run a thread,
and the new thread is in a different process (and therefore in a different
pmap). The macro sets up any hardware context in the specified CPU’s
address translation hardware, ensuring that the mappings established in the
specified pmap will be valid in the thread.

When PMAP_ACTIVATE() completes, the specified pmap is active. The
PMAP_DEACTIVATE() macro does any cleanup required by the address-
translation hardware, so that the mappings established in the specified pmap
are no longer valid addresses.

The normal sequence during a thread context switch requiring a process
context switch is to have PMAP_DEACTIVATE() called, supplying the
old process’s pmap and the CPU; then PMAP_ACTIVATE() is called,
supplying the new process’s pmap and the CPU; and then the process
context is switched. For context switches between threads within a process,
the PMAP_CONTEXT() macro is called. This macro sets up any per-
thread hardware state in the specified CPU’s address-translation hardware,
so that the mappings established in the specified pmap will be valid in the
new thread.

6-33

Design of the OSF/1 Operating System

6-34

6.8.1.3 Managing Address Ranges Within the Pmap

Changes in virtual address mappings are reflected back to the pmap module
using address-space-specific calls. The pmap_enter() service inserts a
virtual-to-physical address mapping in the pmap (with the requested
protection). It is the basic routine used to validate addresses. The
pmap_enter() routine is the only routine in the pmap that cannot be lazily
evaluated. When pmap_enter() returns, the specified mapping must exist
in the map.

The pmap_remove() routine removes a range of addresses from a pmap. It
is the basic routine used to invalidate addresses. The pmap_protect()
routine limits the maximum allowed access for the specified range of virtual
addresses in the specified pmap to the specified protection. If the specified
protection is higher than the current protection for any currently valid page
in the range, the protection for that page is not changed. Therefore,
pmap_protect() can never increase page protection.

Other routines that act on virtual addresses within a pmap are
pmap_extract(), pmap_access(), and pmap_change wiring(). The
pmap_extract() call translates a virtual address within a specified pmap
into the physical address to which that virtual address currently maps.
Essentially, it simulates the operation of the address-translation hardware.
The pmap_access() call determines whether there is currently a valid
mapping for the specified virtual address in the specified pmap. If a valid
mapping exists, it is assumed that a reference to the address will not cause a
page fault. The pmap_change_wiring() routine changes the wiring of the
physical page that contains the specified virtual address in the specified
pmap. It is used to set the wiring attribute so that a reference to the page
may or may not page fault.

6.8.1.4 Tracking Pages Mapped to Multiple Pmaps

There are kernel functions that affect multiple address spaces
simultaneously, typically acting on all mappings of a physical page. The
pmap_page protect() call limits the maximum allowed access for the
specified page to the specified protection. This new protection applies to all

The Virtual Memory Subsystem: Address Space Implementation

pmaps that have the page mapped. The pmap_page_protect() routine has
three important uses:

o It is used to remove write access from a page during copy-on-write
operations.

o It is used to invalidate all accesses to a page when the page is being
freed as a result of page replacement or object deletion.

o It is used to lock out all accesses of a specified page, in response to a
request from an external memory manager that is managing that page. A
memory manager might make this request when it is attempting to
maintain cache coherence across a network.

In order to implement these global operations on multiple mappings, the
pmap must maintain a list of physical-to-virtual mappings. Entries in this
list (defined by the structure pv_entry) contain, for each active mapping of
the page, the address of the pmap structure and the virtual address at which
it is mapped. An array, whose address is held in pv_head table, is
allocated at initialization time to contain the first list entry for each physical
page. If a page is mapped by no more than one process, there is no actual
list, just an array element to indicate where it is mapped. As pages become
shared by more than one process, the new list entries are allocated and
linked.

Other routines that must walk this physical-to-virtual list to return
information about a page include pmap_is_modified() and
pmap_is_referenced(). These calls check the modified and referenced
bits, respectively, for the specified physical page. The modified bit
information is used by the pageout code to decide whether the contents of
the page need to be written to backing storage before the page is freed. The
referenced bit information is used by the page replacement algorithm to
decide whether or not an inactive page is a candidate for being freed. Some
address-translation hardware does not support reference bits. Since it may
be too expensive to simulate a reference bit in software, these machines may
simply always return FALSE from pmap_is_referenced() and depend on
pmap_clear_reference() to remove all mappings for the specified page.

The pmap_clear_modify() routine is used to reset the modified bits to a
known value (for example, when the page has just been read in from
backing storage). The pmap_clear reference() routine is used when the
page is deactivated (that is, moved from the active list to the inactive list).
If the page has been referenced, it is not freed but, rather, reactivated.

6-35

Design of the OSF/1 Operating System

6-36

6.8.1.5 Services that Promote Optimization

The pmap_copy_page() and pmap_zero_page() calls actually manipulate
physical memory. The pmap copy_page() call is used whenever the
kernel has to copy a page of data that may not have a virtual address in the
kernel’s address space. It copies a page of data from the source physical
page frame to the destination physical page frame. This routine is used
when a page must be copied because of a copy-on-write fault.

The pmap_zero_page() call clears the specified physical page frame by
filling it with zeros. It is also used when the kernel has to clear a page that
may not have a virtual address in the kernel’s address space. Its most
typical use is on the first user’s reference to a page of storage allocated
through vm_allocate(). These two routines can use the following
optimizations:

¢ An implementation might permanently map the entire physical address
space to a range of kernel virtual addresses.

» Some hardware types temporarily turn off address-translation during the
copy or clearing operation.

o Some implementations dedicate some kernel address space for use in
mapping physical pages to be copied or cleared.

Another call that promotes optimizations is pmap_update(), which
synchronizes pmaps by telling the pmap module to perform any update
operations that have been deferred. All calls that affect mapping, except
pmap_enter(), may be delayed until pmap_update() is called. This is an
example of lazy evaluation. pmap_update() is called only as needed to
ensure that the state of the address-translation hardware is consistent with
the virtual memory system data structures, so that a thread about to run will
find a semantically correct address space.

A number of pmap calls are advisory, in that they supply information from
machine-independent code to the pmap, which the pmap module can use as
its optimization implementation dictates. The pmap_copy() call informs
the pmap module that the specified range of virtual addresses in the
destination map is to be mapped from the same physical pages with the
same protections and wiring as the range specified in the source map. It is
used to promote optimization in the fork() operation, where the child
process’s pmap is initialized to a copy of the parent’s. The pmap module is
not required to act on this information. The pages in the specified range will

The Virtual Memory Subsystem: Address Space Implementation

eventually be copied as a result of the first fault on that page if the
optimization is not used.

The pmap_pageable() call informs the pmap module that the specified
range of virtual addresses is to be wired (or else pageable). The hardware
resources required to translate an address in this range (for example, its page
table entries) must also be wired (or pageable). This call provides an
efficient method for wiring the hardware resources for a group of pages
simultaneously. Again, the pmap is not required to use this optimization
advice. The pages will eventually be wired (or unwired) as a result of
subsequent calls to pmap_enter().

The pmap_collect() call is made by the thread swapout code when free
memory is very tight. It frees as much memory as possible from the
specified pmap. For example, memory holding page tables can be freed this
way. The pmap_collect() routine can invalidate mappings because the
information necessary for reconstructing the pages is retained in the
machine-independent code, allowing the page to be restored at page fault.
The implementation must decide what to do with the optimization
information.

6.8.2 The Shootdown of Translation Lookaside Buffers

A task’s page tables reside in resident memory, but address translation
would be prohibitively slow if the MMU had to reference resident memory
for each translation operation. Most hardware architectures, therefore,
optimize address translation by caching translations in the CPU’s
translation lookaside buffer (TLB). When a task references a virtual page
whose page table entry is not cached in the TLB, the MMU loads the page
table entry from resident memory into the TLB. As long as the entry
remains in the TLB, the MMU can continue to translate references to the
virtual page without having to access the page table entry in resident
memory.

An entry that is cached in a TLB may be modified and then written back to
the page table in resident memory. For example, if an entry is cached in the
TLB and the thread on the CPU writes to the page represented by the entry,
the hardware will update the modify bit in the cached entry. Subsequently,
the entry will be written back to the page table in resident memory.

6-37

Design of the OSF/1 Operating System

6-38

On architectures that provide TLBs, the operating system must make sure to
keep the contents of the TLB synchronized with the contents of the page
tables in memory. For example, suppose a particular page’s page table entry
has been cached in the TLB. If the kernel updates the page table entry in
resident memory to change the page’s protection from read/write to read-
only, the cached page table entry becomes invalid and must be removed
from the TLB so that the valid page table entry can be used.

The management of TLBs on shared memory multiprocessors is
complicated by the fact that a thread on one processor may modify a page
table entry that is loaded not only in its own TLB, but in the TLBs of other
processors. The system must have a mechanism for maintaining the
consistency of translations across the TLBs.

Ideally, the hardware would implement a mechanism that would allow
processors to manipulate one another’s TLBs. Unfortunately, most
architectures do not provide such a mechanism. On these architectures,
TLB consistency must be maintained by software.

The main problem that must be solved with respect to TLB consistency is
one of timing. When a page table entry must be updated to reflect a change
in the mapping, the update can be made before or after the TLBs are flushed.
If the entry is updated after the TLBs are flushed, there is a chance that one
or more of the TLBs may reload the entry before the entry has been updated.
If the entry is updated before the TLBs are flushed, one of the processors
may inadvertently overwrite the resident entry with the previous version of
the entry.

These problems can be solved by a means of communication that allows a
thread that is changing a pmap to stall all other processors that are using the
pmap. While a processor is stalled, it cannot write TLB entries back to
resident memory. When the initiating thread is sure that the other
processors are stalled, it updates the pmap, and then unstalls the processors.
When the processors become unstalled, they immediately flush their TLBs.

This algorithm is called a TLB shootdown. It is implemented within the
pmap module, where it is divided into two portions:

e The code executed by the initiating thread, which sends interrupts to
other CPUs if the current pmap operation might introduce an -
inconsistency in the pmap

» The code executed by responding threads, which receives interrupts and
performs the operations required to keep the TLB consistent

The Virtual Memory Subsystem: Address Space Implementation

The shootdown algorithm performs its operations by managing the
following data structures:

o A list of processors that are currently performing address translation
o A list of processors that are idle
o For each pmap, a list of the processors that are using the pmap

o For each processor, an "action needed" flag that indicates the need for a
TLB consistency operation, and buffers to hold pending consistency
actions

A thread invokes the shootdown algorithm when it performs a pmap
operation that could cause inconsistencies in the TLBs of other processors.
The algorithm performs its operations in four phases:

a. The initiating thread places a consistency action request in the buffer
of each processor currently using the pmap and sets the action needed
flag of each processor. The initiator then sends an interrupt to each of
the processors.

b. The responders receive the interrupts. Each responder removes itself
from the list of active processors to wait for the initiating thread to
update the pmap. This prevents the responders from attempting to
read from or write to the pmap while the initiating thread is updating
1t.

c. After the responders have entered the waiting phase, the initiator
updates the pmap.

d. When the initiator has finished updating the pmap, the responders
invalidate their TLBs, clear their action needed flags, and place
themselves on the list of active processors.

The previous description illustrates the basic structure of the algorithm;
however, the actual algorithm is more complicated because it must account
for situations inherent in multiprocessor environments.

6-39

Chapter 7

The Virtual Memory Subsystem:
Memory Management

An operating system manages its memory resources through a memory
management subsystem. Memory resources include the system’s resident
memory and secondary storage devices such as disk drives. It is the memory
management subsystem’s responsibility to allocate memory resources
effectively among concurrently executing processes.

In the evolution of UNIX memory management, there have been two
approaches to allocating resident memory resources: swapping and demand
paging. In a swapping-based memory management subsystem, a process
must be entirely resident to execute. The operating system moves entire
processes between resident memory and secondary storage to achieve
sharing.

In a demand paging system, a process can execute without having to be
entirely loaded in resident memory. Those portions of a process that are not
resident are kept in secondary storage and are paged into resident memory
as needed. When the memory management system needs to reallocate page
frames to other processes, it pages out process data to secondary storage to
free the page frames.

Paging data in and out of resident memory requires more system overhead
than swapping in and out entire processes because incremental paging
operations require incremental disk accesses.

Design of the OSF/1 Operating System

Demand paging systems are inherently susceptible to a condition known as
thrashing. When resident memory resources drop to a certain level and the
demand for resources is high—frequently the situation when many new
processes are being created—the memory management system may not be
able to free single pages quickly enough to satisfy the demands on memory.
The system may spend a large amount of its time paging out pages at the
expense of executing processes.

Thrashing can be alleviated somewhat with a hybrid demand
paging/swapping memory management system. In systems of this type,
demand paging memory management takes place when the system is under
moderate load. Under heavy load, the memory management system can
swap entire processes out to secondary storage. Most modern UNIX
systems implement this hybrid memory management policy. OSF/1’s
memory management system is also a hybrid, although OSF/1’s version of
swapping differs from that of other UNIX systems.

7.1 Overview

7-2

Memory management in OSF/1 is based on the constructs of Mach memory
management. In Mach, a task’s virtual address space contains regions of
allocated memory. Each of these regions is mapped to a memory object, and
each memory object is managed by a memory manager. The memory
manager implements paging operations on the object and performs these
operations at the kernel’s request.

The kernel requests paging operations by issuing IPC messages to the
memory manager. For example, the page fault handler initiates the pagein of
data by issuing a pagein request to the page’s memory manager. The
memory manager pages in the data by sending it to the kernel in a message.

Similarly, the kernel initiates the pageout of data by issuing a request to the
data’s memory manager. The memory manager handles the request by
writing the data to secondary storage and freeing the page frame that
contained the data. It is important to note that it is the memory manager’s
responsiblity to free the page; the kernel merely requests the pageout
operation.

The Virtual Memory Subsystem: Memory Management

The Mach memory management model supports the implementation of
memory managers that can implement paging operations on application-
defined objects. Memory managers of this type execute in user space and
are often referred to as external memory managers. They interact with the
kernel through the external memory manager interface.

7.2 The Vnode Pager

Because external memory managers are not directly controlled by the
kernel, the kernel cannot depend upon these managers responding to
pageout requests on a timely basis. When an external memory manager
fails to free pages as requested, the system’s default pager becomes
responsible for paging out and freeing the pages. The default pager is a
trusted pager (it runs with superuser privileges) and is guaranteed to
perform pageout operations promptly. The default memory manager is also
responsible for performing paging operations on temporary memory objects.

The OSF/1 default pager is the vnode pager. It is called the vnode pager
because it manages memory objects that are files or devices, which are
represented by vnode data structures (see Chapter 3). In addition to
functioning as the system’s default pager, the vnode pager manages the
pagein and pageout of permanent data (data that has been mapped into a
process by the file mapping call mmap()). In its capacity as a manager of
mapped file data, the vnode pager functions as an entity distinct from the
system’s default pager.

Although OSF/1 supports the implementation of other memory managers,
the vnode pager is the only memory manager provided in OSF/1.
Developers can use the kernel’s external memory manager interface to
implement other memory managers.

The vnode pager is a separate task whose address space is implemented as a
submap of the kernel’s address map. Since it is built into the kernel’s
address space, the vnode pager can directly access the vnode data structures
that represent the files it implements paging operations on.

Another advantage to having the vnode pager reside in the kernel’s address
space involves the way pagein operations are initiated. When the page fault
handler initiates the pagein of data that is managed by an external memory
manager, it issues the request through an IPC message. The request cannot

7-3

Design of the OSF/1 Operating System

be processed until the kernel switches context to the memory manager.
However, because the vnode pager is embedded in the kernel’s address
space, the page fault handler can execute its pagein routines directly, thus
saving the expense of the context switch.

The vnode pager is started during system initialization. At this time, the
pager sets up its pageout-handling threads and assigns each thread a port set.
Each thread’s port set contains the ports that represent the memory objects
managed by the thread. When the vnode pager initializes a new memory
object, it places the object’s port into one of the thread’s port sets.

7.2.1 Paging Files

The OSF/1 system maintains one or more paging files that the vnode pager
uses to back temporary data. Usually the paging files are set up during
system initialization, but system administrators can add new paging files
later with the swapon command.

A paging file may be either a raw disk partition or a file in a file system. The
advantage of a raw disk paging file is that data can be written to it directly
without having to proceed through the system’s buffer cache. The advantage
of the file system paging file is that its size can change dynamically; a size
of a raw disk paging file is static.

In OSF/1, paging files can be assigned priorities. This feature allows a
system to configure and prioritize its paging files based on the performance
characteristics of its secondary storage devices. The vnode pager invokes
the paging file selection algorithm when it needs to allocate space to back
temporary memory. This algorithm cycles through all paging files with the
highest priority in round robin order to spread allocations across the files.
When there is no more space available in the files at the highest priority, the
algorithm begins cycling through the files at the next priority.

In OSF/1, a paging file can have a priority ranging from 0 through 4, where 0
is the lowest priority and 4 the highest. A file’s priority is set when it is
initialized during the swapon() system call.

The Virtual Memory Subsystem: Memory Management

7.2.2 Page Clustering

Figure 7-1.

The performance of the memory management system is critical to the
performance of the entire operating system. Paging operations affect the
system’s performance because they require the system to read from or write
to secondary storage. Such operations are inherently expensive; however,
the expense of a given access operation does not depend on the amount of
data transferred. In fact, the more data that is transferred in an operation,
the more efficient the operation. It is more efficient to transfer two pages of
data in an operation than it is to transfer one page.

To make paging operations more efficient, the vnode pager manages a
memory object’s pages in units called page clusters. As shown in
Figure 7-1, a page cluster is a set of virtual pages that are adjacent to one
another within their memory object and may also be stored contiguously in
secondary memory. Pages that are stored contiguously can be read or
written in a single operation.

For example, when the page fault handler needs to page in a particular page
of data, it can read in the rest of the pages in the cluster with the same
operation. Similarly, when the pageout daemon needs to write a particular
page’s contents to disk, it can simultaneously write other modified pages in
the cluster.

Page Clusters

Memory
Object

| 00000000 0000000d !

Cluster Cluster

The number of pages in a cluster depends upon the type of data contained in
the cluster. By default, data that is backed by paging files has a cluster size
of four pages, although this can be changed by a system administrator.
Currently, the default cluster size can be set to 1, 2, 4, or §. In OSF/1, the

7-5

Design of the OSF/1 Operating System

system’s paging file cluster size is set when the first paging file is
established; all subsequent paging files will have the same cluster size.

The cluster size for permanent data is established differently. Because the
goal of cluster paging is to read or write as much contiguous data as possible
with a single disk access, the cluster size for permanent data is a function of
the file system block size. The block size is chosen because the file system
usually allocates contiguous storage in blocks of this size.

The cluster size for a given region of permanent data is set when the data is
mapped into the process’s address space. At that time, the mapping
operation divides the file system block size by the kernel’s virtual page size
to get the cluster size. For example, if the virtual page size is 4K and the
file system’s block size is 8K, each cluster will contain two virtual pages.

7.2.3 Allocating Clusters in Paging Files

In another example of lazy evaluation, the kernel allocates backing store for
a given temporary data cluster only when that cluster is first paged out. This
behavior enhances the system’s performance because temporary data is
often created and destroyed without having to be paged out.

When the pageout daemon initiates the pageout of temporary data that has
never been paged out, the vnode pager chooses a paging file based on
priority and availability and allocates space within the file to back the
cluster. Because cluster allocation happens only when the cluster is being
paged out for the first time, and a memory object’s clusters are likely to be
paged out at separate times, the clusters may end up being backed by
different paging files.

Each paging file is represented by a pager_file data structure. The vnode
pager uses this structure to manage the allocation of clusters in the file. The
data structure includes the following:

o A pointer to the file’s vnode data structure
¢ The number of allocated clusters currently contained in the file
o A map specifying the location of each allocated cluster within the file

o The number of free clusters currently contained in the file

The Virtual Memory Subsystem: Memory Management

e A hint that the vnode pager uses to begin searching for the next
unallocated cluster

The vnode pager allocates a cluster in a paging file by examining its map of
allocated clusters, beginning its search based on pager_file’s hint. When it
finds an unallocated area in the paging file, it updates the paging file’s map
and search hint, and then begins paging out the data.

Although backing store for user-space anonymous memory is allocated only
when it is required, the lazy evaluation strategy has dangerous implications
when applied to the backing of thread kernel stacks. Consider what happens
when the system attempts to page out a kernel stack cluster when there is no
room left in the paging files. The operation fails, but the kernel does not
discover the failure until it attempts to page in the cluster at a later time.
The pagein attempt generates an unrecoverable page fault, which crashes
the system.

Consequently, the kernel always allocates backing store for a thread’s
kernel stack when the thread is created. If the paging files are full at this
time, the call to thread_create() fails before initializing the thread. If the
call to thread_create() is successful, backing store for the thread’s kernel
stack is guaranteed to be in place.

7.2.4 Vnode Pager Memory Objects

The vnode pager implements its memory objects via vstruct data structures.
There are two types of vstruct structures: those that represent temporary
memory objects, and those that represent mapped file memory objects. Each
mapped file vstruct includes a pointer to the vnode data structure that
represents the file. Since the clusters associated with a temporary memory
object may be backed on different paging files, temporary memory object
vstruct structures do not contain pointers to a single vnode. Instead, these
vstruct structures contain maps that indicate which of the object’s clusters
have been paged out and where those clusters are located.

7-7

Design of the OSF/1 Operating System

7.3 Cluster Paging Operations on Temporary Data

Temporary data is created in resident memory; it is placed in secondary
storage only when it becomes subject to the page replacement algorithm. As
mentioned previously, the vnode pager allocates secondary storage for a
given temporary data cluster the first time one of the pages within the
cluster needs to be reclaimed. At that time, the vnode pager allocates
backing store for the entire cluster. Then the pager writes to that space the
page being paged out, which is called the target page, and any other pages
in the cluster that have been modified and are adjacent to the target page.

The page cluster shown in Figure 7-2 contains 8 pages. Pages 1, 3,4, 5, 6,
and 8 have been modified; pages 2 and 7 have not been modified. Suppose
that none of the cluster’s pages has been paged out, and that the pageout
daemon has chosen the target page (page 4) for replacement. The vnode
pager allocates backing store for the cluster, and then writes the target page
and the adjacent modified pages; that is, pages 3,4, 5, and 6. Pages 1 and 8
are not written back because they are not contiguous with the target page.
When the write operation is complete, the target page is freed.

Figure 7-2. The Target Page

Target
Page

|2

7.4 The Page Replacement Mechanism

The kernel manages the allocation of resident memory by maintaining three
paging queues: the free page queue contains those pages that are available
for allocation; the active queue contains pages that are allocated to
processes; and the inactive page queue contains pages that are currently
allocated but are candidates for being reclaimed.

The kernel maintains a free page threshold count. When the number of free
pages drops below this threshold, the pageout daemon begins paging out

The Virtual Memory Subsystem: Memory Management

pages. This is driven by the page fault handler; when the page fault handler
is invoked to page in data, it checks the number of free pages against the
free page threshold and wakes up the pageout daemon if pages need to be
replaced.

The pageout daemon processes inactive pages until it has produced enough
free pages to meet the system’s demands, or until it has depleted the inactive
page queue. As it processes inactive pages, the pageout daemon moves
pages from the active queue to the inactive queue to maintain a minimum
number of pages in the inactive page queue. When it transfers a page from
the active queue to the inactive queue, the daemon turns off the page’s
reference bit. If a process references the page before it reaches the head of
the inactive queue, the reference bit will again be set, and the pageout
daemon will transfer the page to the active queue instead of freeing it for
reallocation. In this manner, the pageout daemon generally replaces pages
on an approximately least recently used (LRU) basis.

The pageout daemon processes inactive pages a page at a time. If the page
has not been referenced and has not been modified, the daemon can free it
immediately by performing the following operations:

o Invoking the pmap module to remove all physical mappings to the page
o Removing the page’s entry in the object/offset hash table
o Transferring the page to the tail of the free page queue

If the page has been modified, the pageout daemon cannot free the page.
Instead, the daemon prepares the page for pageout.

7.4.1 Pageout of Data Managed by External Memory Managers

By default, all pageout operations in OSF/1 are managed by the vnode
pager, which is capable of performing pageout operations on clusters. The
original design of the Mach memory management system did not support
cluster pageout; the pageout daemon assumed that all pageout operations
involved single pages. OSF/1 retains the single-page mechanism because it
is required to support the pageout of data to externally managed memory
objects; that is, memory objects not managed by the vnode pager.

Design of the OSF/1 Operating System

7-10

In all pageout operations, the pageout daemon initiates pageout by sending
the data to its memory manager in an IPC message. The memory manager
receives the data, writes the data to secondary storage, and frees the page.
The operation proceeds as follows:

1. The pageout daemon creates a new temporary VM object that will be
used to pass the page in the IPC message, transfers the page from its
original object to the new object, and then invokes the IPC subsystem
to pass the object to the memory manager.

2. The IPC subsystem maps the object into the memory manager’s
virtual address space. The memory manager copies the data from the
page to the proper location in secondary storage.

3. The memory manager deallocates the message-passing object, thus
freeing the page.

There are two important aspects to this operation. First, when the pageout
daemon sends the page to the memory manager, it cannot guarantee that the
memory manager will actually free the page. Note, however, that the page
is passed to the memory manager in a temporary VM object; this object is
managed by the vnode pager. If the memory manager does not free the
page, the vnode pager will.

Second, while the page is being paged out, the pageout daemon must
prevent the page from being paged in again until it is sure that the pageout
operation is complete. This is accomplished by means of a fictitious page.
Fictitious pages are vin_page data structures that do not point to actual page
frames; they are used by the VM system to represent pages that are involved
in paging operations.
The pageout daemon protects against premature pagein of the original page
by
» Invoking the pmap module to remove ali physical mappings to the
original page
» Allocating a fictitious page to represent the original page during the
paging operation
* Removing the original page’s entry in the resident page table with the
fictitious page and marking the fictitious page as busy

Once the original page’s physical mappings have been removed, any process
that attempts to reference the page generates a page fault. When the page
fault handler searches the resident page table for the page, it finds the

The Virtual Memory Subsystem: Memory Management

fictitious page is marked busy. The page fault handler must wait for the
page to become unbusy; it goes to sleep to wait for that event.

When the pageout operation is complete, the pageout daemon removes the
fictitious page from the resident page table and awakens all threads that
were waiting for the page to become unbusy. These threads find that the
page is no longer resident and initiate a pagein operation.

7.4.2 Pageout of Data Managed by the Vnode Pager

The pageout algorithm described in the previous section is not appropriate
for the pageout of clusters. In that algorithm, the page being written is
unavailable during the pageout operation. When paging out a cluster of
pages, it is not appropriate to make an entire cluster of pages unavailable
while the pageout operation proceeds because some of those pages may be
in active use. The only page that should be unavailable during pageout is
the page that will actually be freed; that is, the target page.

OSF implements cluster pageout using a technique called cleaning-in-place.
In this technique, pages that are going to be written out are left in their
original VM object so that they remain available during the pageout
operation.

The cleaning-in-place mechanism works as follows:

1. The pageout daemon determines how much data will be written in the
pageout request by finding all modified (dirty) pages adjacent to the
target page.

2. The pageout daemon allocates a new VM object that it will use to
pass the data to the vnode pager.

3. For each page that will be involved in the pageout operation, the
daemon creates a private page and inserts the private page in the new
VM object. Each private page points to the page it represents. Figure
7-3 shows this relationship.

4. The daemon makes the target page unavailable to other processes by
removing its physical mappings and marking it as unavailable.

5. The daemon passes the new VM object to the vnode pager using IPC,
and the object is mapped into the vnode pager’s address space.

7-11

Design of the OSF/1 Operating System

6. The vnode pager writes the data out to secondary storage and
deallocates the object mapped in its address space when the operation
completes.

Figure 7-3. Private Pages

Private

Pages
Message

s R

/N 0010

Original
Pages

7.5 The Page Fault Handler and Pagein of Clusters

Cluster pagein consists of the following interaction between the page fault
handler and the vnode pager:

1. The page fault handler invokes the vnode pager’s
vnode_pager_data_request_direct() routine, requesting the pagein
of the target page. The fault handler may also page in other pages in
the cluster. Normally, the fault handler will page in the target page
and the next page in the cluster. A process may modify this behavior
with the madvise() system call.

2. The vnode_pager_data_request_direct() routine allocates memory
within the vnode pager’s address space, and forces the allocation of
physical pages to back this memory.

3. The routine reads the data in from secondary storage to the physical
pages it has just allocated.

4. The page fault handler steals the pages from the vnode pager’s address
space and completes resolving the page fault. When it steals the
pages, the page fault handler deallocates the VM object that was
mapped into the vnode pager’s address space.

7-12

The Virtual Memory Subsystem: Memory Management

When the page fault handler initiates a pagein operation, it must prevent
other threads from trying to page in the same data. The page fault handler
proceeds as follows: the handler allocates fictitious pages to represent the
pages being paged in. (A fictitious page is a vmm_page data structure that
does not refer to an actual page frame.) The page fault handler places these
pages in the resident page table to represent the pages being faulted in. The
fictitious pages allow the handler to reserve locations in the resident page
table without actually allocating physical page frames.

Then, if another thread attempts to page in the pages, it finds that the pages
are "resident." However, the pages are not actually resident, they are being
paged in. In this way, the page fault handler marks the pages busy so that
other threads will realize that the pages are involved in a paging operation.
When a thread sees that a page is busy, it puts itself to sleep to wait for the
page to become unbusy.

When the vnode pager makes the data available, the page fault handler
replaces the fictitious pages with the pages that the vnode pager allocated to
receive the incoming data.

7.6 The Swapping Mechanism

With respect to traditional UNIX systems, the term swapping refers to the
operation of copying the contents of a process’s memory resources into
secondary storage so that the resources can be reclaimed by the memory
management system. For example, in 4.3BSD, the swapping mechanism
forcibly pages out all resident pages associated with the process’s data and
user stack sections, and copies out the process’s page tables, user structure,
and kernel stack as well.

In OSF/1, the swapping mechanism reclaims the following resources from a
process:

o The thread kernel stacks
o The process’s resident pages
¢ The process’s physical map

However, unlike the BSD swapper, which forcibly writes a process’s
resources to disk, the OSF/1 swapper relies on the pageout daemon to

7-13

Design of the OSF/1 Operating System

actually free the resources. The OSF/1 swapper increases the number of
pages available for swapout by moving a large number of pages from the
kernel’s active page queue to the inactive page queue.

7.6.1 Swapping Policy

7-14

The implementation of the swapping policy is cleanly separated from the
implementation of the swapping mechanism to allow system vendors to
easily provide their own swapping policies. The OSF/1 default swapping
policy is very simple; it is expected that specific ports of OSF/1 will modify
this policy to reflect the characteristics of the target environment.

Threads may be swapped voluntarily. The kernel swaps a thread voluntarily
if it has been idle for at least 10 seconds. The pageout daemon initiates
voluntary swapping when it begins processing the inactive page queue.

A process is swapped involuntarily when the kernel needs to quickly free
memory. Involuntary swapping is performed by a kernel thread called the
task swapper.

The kernel invokes the task swapper when paging demand warrants it.
Under the default policy, the kernel checks the system’s pageout rate once a
second and calculates the average paging demand. The kernel monitors the
amount of free memory using two thresholds: a farget threshold, which
specifies an amount of memory that the kernel would like to keep free
(about 1.25%), and a minimum threshold, typically about 1% of memory.
When resources fall below the minimum threshold, the kernel invokes the
pageout daemon. The kernel initiates swapping when the amount of free
memory remains both below the minimum threshold for 5 seconds and
below the target threshold for 30 seconds.

The task swapper determines which process to swap out based on the
number of pages resident and the amount of time the process has been
resident. When a process is created, its task is queued on the list of
swappable tasks. When the task swapper is invoked, it searches the list of
swappable tasks. (Certain system tasks are not swappable; for example, the
vnode pager.) By default, candidates for swapout have been resident for at
least 6 seconds (this value is configurable). Of the tasks that have met this
criterion, the task swapper will swap out the one that has the largest number
of pages resident.

The Virtual Memory Subsystem: Memory Management

The swapper chooses a process to swap in based on the amount of time the
process has been swapped out. By default, the kernel will swap in the
process that has been out the longest, as long as the process has been
swapped out for at least 6 seconds.

7.6.2 The Thread and Task Swappers

The OSF/1 swapping mechanism consists of a thread swapper and a task
swapper. The thread swapper is responsible for recovering memory used by
the thread’s kernel stack. The task swapper is responsible for recovering
memory being used by the task’s pmap and its resident pages. The task
swapper cannot swap a task until it has invoked the thread swapper to swap
all of the task’s threads.

7.6.2.1 Thread Swapping

The thread swapper is responsible for freeing a thread’s kernel stack, the
only pageable memory resource that is thread-specific. Normally, a thread’s
kernel stack is wired in memory so that it cannot be paged out. The thread
swapper swaps a thread by unwiring its kernel stack so that the pages can be
paged out, and then updating the thread’s execution state to indicate that the
thread is swapped out. The kernel stack pages are not forcibly paged out;
they are merely made available for pageout.

The kernel swaps in a thread by rewiring its kernel stack. If any of the
stack’s pages have been paged out, they are paged in. Then the kernel wires
the pages and updates the thread’s state to indicate that it is swapped in.

There are two types of thread swapping: voluntary swapping and
involuntary swapping. A thread may be swapped voluntarily if it has been
idle for more than 10 seconds. This happens when the thread is waiting on
an event. The kernel swaps in a voluntarily swapped thread when the event
it is waiting for occurs.

The kernel involuntarily swaps threads as part of its task swapping
operation. The task swapper suspends the task’s threads, then invokes the

7-15

Design of the OSF/1 Operating System

7-16

thread swapper to swap out the threads. The kernel swaps in involuntarily
swapped threads when it swaps in the task.

7.6.2.2 Task Swapping

The task swapper performs the following operations when swapping out a
task:

1. It swaps the task’s threads.

2. It calls the pmap module to reclaim the memory being used by the
task’s pmap.

3. It determines which of the task’s set of resident pages may be paged
out and arranges for those pages to be paged out.

The implementation of the task-swapping mechanism is complicated by the
fact that a task may share a number of its resident pages with other tasks.
When the task swapper processes a task, it must be careful not to free pages
that are actively being used by other tasks.

For each address map and each VM object, the kernel maintains a count of
the tasks and threads that require the map or object to be resident. When this
count drops to 0 (zero), the task swapper can swap the map’s contents or the
VM object’s contents.

The task swapper begins trying to swap out a task’s resident pages by
decrementing the address map’s residence count. If it decrements to O (zero)
(as it usually does), the swapper goes through the map’s entries and
decrements the residence counts of its VM objects.

When a VM object’s reference count goes to O (zero), the task swapper
deactivates its pages by traversing the VM object’s list of resident pages and
placing those pages in the kernel’s inactive page queue.

It is important to note that the task swapper does not swap out the task’s data
structure or the underlying VM object data structures.

When the kernel swaps in a task, none of the task’s pages are explicitly
brought in. They are faulted in as the task executes. Clustered paging
improves the efficiency of restoring a swapped-in task’s resources.

The Virtual Memory Subsystem: Memory Management

7.7 External Memory Managers

This section discusses issues related to the implementation of external
memory managers. An external memory manager is a user-level program
that implements paging operations on application-defined memory objects.
For example, memory managers can be developed to provide services such
as network shared memory and distributed databases that can be mapped
into the address spaces of client programs that are executing on different
machines.

7.7.1 Example of an External Memory Manager: A Simple Shared
Memory Server

The following example describes a simple shared memory server. This
server allows tasks on separate machines to share read/write access to its
memory objects, serializing write access to the data by allowing only one
task at a time to write the data, and allowing multiple tasks to read the data
when a write operation is not underway.

In Figure 7-4, two tasks running on separate machines have mapped the
same memory object into their address spaces. When the clients are sharing
read access to the memory object, the data is protected read-only on both
machines. The figure shows how the shared memory server interacts with
the machines’ kernels when Client Task 1 attempts to write the data:

1. Client Task 1 generates a protection page fault because the data’s
page is protected read-only.

2. Kernel 1 sends a message to the shared memory server to request that
Client Task 1 be granted write access to the page.

3. The shared memory server sends a message to Kernel 2 indicating that
the page cached on that machine is about to become invalid.

4. Kernel 2 flushes the page and sends a message to the shared memory
server when that operation is complete.

5. The shared memory server sends a message to Kernel 1 indicating that
the protection of the page can now be changed, thus allowing Client
Task 1 to write the data.

7-17

Design of the OSF/1 Operating System

Figure 7—4. Shared Memory Server Write Operation

7-18

Suppose that Client Task 2 subsequently attempts to read the page that is
being written. As shown in Figure 7-5, Client Task 2 initiates the following

operations:

1. Client Task 2 generates a page fault because the page was flushed
when Client Task 1 attempted to write it.

2. Kernel 2 sends a message to the shared memory server requesting a
pagein operation.

3. The shared memory server sends a message to Kernel 1 indicating that
the kernel should pageout the page and change the page’s protection
to read-only.

4. Kernel 1 changes the page’s protection and allows the shared memory
server to pageout the page.

5. The shared memory server now has a valid version of the page; the
server provides the page to Kernel 2 to resolve Client 2’s page fault.

6. Client 2 reads the data.

The Virtual Memory Subsystem: Memory Management

Figure 7-5. Shared Memory Server Read Operation

Shared
Memory
Server

7.7.2 The External Memory Management Interface

The interactions that occur between the kernel and an external memory
manager are implemented through the external memory manager interface.
The routines specified by this interface can be categorized as follows:

e The mapping routine. Applications use the mapping routine vim_map()
to map memory objects into their address spaces. An application must
acquire access to a memory object before mapping the object into its
address space.

o The memory object management interface. An external memory
manager must provide a variety of calls the kernel can use to access
memory objects. These calls include the following:

memory_object_init()
Notifies the memory manager that the memory object has
been mapped into a task’s address space. This routine
establishes communication between the kernel and the
memory manager; the kernel allocates a control port for
the memory object that the memory manager can use to
send management requests to the kernel.

7-19

Design of the OSF/1 Operating System

7-20

memory_object_terminate()
The kernel calls this routine when the memory object has
been deallocated from the task’s address space.

memory_object_data_request()
Reads the contents of a memory object. The kernel calls
this routine to resolve page faults on the memory object.

memory_object_data_write()
Writes modified pages back to the memory object. The
kernel calls this routine to page out the memory object’s
contents.

memory_object_data_unlock()
Requests that the memory manager give the kernel
permission to change the protection of the memory
object’s contents. For example, the kernel would call this
routine if a task wanted to write data that was protected
read-only. Not all memory managers need to implement
this routine.

The cache management interface. The kernel implements the routines in
this interface to allow memory managers to maintain the contents of
memory objects that are cached in resident memory. These routines
include the following:

memory_object_data_provided()
Supplies the requested page of data. This routine
compliments the memory_object_data_request()
routine; the memory manager uses this routine to provide
data in response to a page fault.

memory_object_data_error()
Indicates to the kernel that the kernel’s request for access
to data cannot be granted. The data may not exist, or the
kernel may be attempting to access it in a way that violates
its current level of protection.

memory_object_lock_request()
Requests that the kernel change the protection value of the
pages cached in resident memory. A memory manager can
use this routine to maintain consistency of data on multiple
hosts.

The Virtual Memory Subsystem: Memory Management

The operations that constitute the external memory management interface
are implemented with the IPC subsystem, but are not implemented as
synchronous remote procedure calls. The operations occur asynchronously.
For example, the kernel requests the pagein and pageout of data by sending
a message to the data’s memory manager, but the kernel does not wait for
the memory manager to respond.

7-21

Chapter 8

The OSF/1 Program Loader

In OSF/1, each program executes in a virtual address space. This address
space contains the text of all the subroutines and library routines the
program requires. Before a given program can execute, the system must
create an address space for it and map the program’s text and data into the
address space. Setting up the address space and mapping in the text and
data is the responsibility of the system’s program loader.

In traditional UNIX systems, programs are loaded with the exec() system
call. exec() can load a program for execution only if the program’s
executable image is absolute; that is, has no external references and is
bound to an address space (these terms are discussed in the following
section).

Unlike traditional UNIX systems, OSF/1 allows programs to be loaded with
unresolved references. This feature of the OSF/1 loader allows the system to
support shared libraries.

When exec() loads a program in OSF/1, the kernel determines whether or
not the program contains unresolved references. If it does not, exec() loads
the program into a process’s virtual address space and turns control over to
the program’s entry point. If the program does contain unresolved
references, exec() loads the program loader into the process’s address space,
passes the program’s name to the loader, and turns control over to the
loader’s entry point. The loader, which runs in user mode, finishes resolving

8-1

Design of the OSF/1 Operating System

the program’s references, loads the program into the process address space,
and turns control over to the program’s entry point.

In addition to supporting shared libraries, OSF/1’s loader provides other
features not available in traditional UNIX environments:

o The loader handles multiple object file formats.

o The loader provides an application interface that allows programs to
explicitly load and unload modules to and from their address spaces.

e The kernel can use the loader to dynamically load modules into its
address space while the kernel is active. This feature allows system
managers to add components such as new device drivers and network
protocols to the kernel without having to shut down, reconfigure, and
reboot the system.

This chapter begins with a discussion of concepts associated with program
loading. This discussion covers the following topics:

¢ Object modules and libraries
o External reference resolution
¢ Relocation

e Shared libraries

If you are familiar with these concepts, you may want to skip the following
section and continue with the rest of the chapter.

8.1 Conceptual Background

8-2

Translating a source file into machine code involves two steps. First, the
compiler translates the source code to assembler code and deposits the code
in an assembler code file. When the compiler completes its translation, the
assembler translates the assembler code file into object code and deposits
that code into an object file. '

Although object code is code that the machine can execute, an object file is
not in itself executable if it contains external references; that is, references
to variables and subroutines that are defined in other source files. For
example, references to routines in the Standard C Library (printf(), for
example) are external references. Before a program can be executed, the

The OSF/1 Program Loader

code that defines its external references must be found and merged with the
program. The merging of a program’s object files into one executable file is
referred to as linking or binding.

8.1.1 Linking

In the UNIX programming environment, program linking is traditionally
performed by the ld utility. This utility can be used separately to link
existing object files, but it is also called implicitly by the compiler to link
the program being compiled.

The linker links a program using three operations: it resolves external
references, it relocates the program’s code, and it patches subroutine and
global variable references. The linker resolves a program’s external
references by determining which library modules are required and merging
those modules with the rest of the program’s object code to form a single
object file.

The linker relocates the program by binding the code to an address space so
that the definition of each subroutine and global variable has a fixed address
in the program’s address space.

Once the relocation operation is complete and all of the program’s
subroutine and global variable definitions have fixed addresses, the linker
patches each of the program’s references to a subroutine or global variable
by replacing the reference with the address of the corresponding definition.

A program that has been linked so that it no longer contains any external
references is called an absolute load module. An absolute load module can
be loaded into a process’s virtual address space at a specific address and
executed without additional processing.

In traditional UNIX, only absolute execution images can be loaded for
execution. This means that each program must have its own copy of the
library modules that are required to create the absolute executable image.
For example, any program that uses the Standard C Library routines gets(),
printf(), and strlen() must contain its own copy of the C library modules
required to implement these library routines.

Design of the OSF/1 Operating System

8.1.2 Shared Libraries

In OSF/1, libraries can be simultaneously mapped into multiple address
spaces; any process that requires one or more routines from a library can
map the library into its address space when the process is loaded into
memory. Libraries that can be mapped into multiple address spaces are
called shared libraries.

In order to support shared libraries, a system must be able to complete
linking a given program at load time, when the program is loaded into a
process’s virtual address space to begin execution. Traditional UNIX
systems cannot support shared libraries because they cannot link programs
at load time. OSF/1, on the other hand, supports shared libraries because its
program loader can complete linking a program at load time.

8.1.3 The OSF/1 1d Command

In traditonal UNIX, the ld command, in addition to combining a program’s
object files, extracts those modules from the Standard C Library that are
required to resolve the program’s external references and links them into the
program, creating the program’s absolute executable image.

In OSF/1, the Id command does not produce an absolute load module if the
program references routines from a shared library. Instead, 1d produces a
module that can be further processed at load time. When the loader loads
such a module for execution, it finishes linking the program, and then maps
the program into the process’s address space.

8.1.4 Object Files and Object File Formats

8-4

As mentioned earlier, object files are typically produced when the assembler
translates assembler code modules into object code. The typical object file
has several sections. Some of these sections contain text and data and are
referred to as "regions.” The other sections contain information about the
object file that the linker uses when linking the object file to other modules

The OSF/1 Program Loader

and that the loader uses to map the object file’s regions into the address
space. This information includes the following:

» A list of the symbols the object file’s code exports. This information is
referred to as the file’s exported symbols.

o A list of the symbols the object file’s code needs to import. This
information is referred to as the file’s imported symbols.

o A relocation dictionary that specifies locations within the regions that
need to be patched after relocation.

¢ For each region, information about the region’s size and protection
attributes. The loader uses this information when mapping the region
into the address space.

The organization of an object file’s contents is referred to as the file’s object
file format. There are many different object file formats. To successfully
link and load a set of object files, the linker and loader must understand how
the files are formatted so that they can extract the information they need to
perform their operations.

Traditionally, UNIX systems were restricted to linking and loading a single
format type because the format-dependent aspects of linking and loading
were built directly into the 1d utility and the exec() system call.

In OSF/1, all format-dependent operations have been abstracted to facilitate
the addition of new object file formats. OSF/1 supports the loading of
multiple object file formats and can load the following object file types:

a.out The object file format supported by 4.3BSD
COFF The Common Object File Format used in the System V
environment

OSF/ROSE The object file format developed at OSF that provides support
for shared libraries in OSF/1

Design of the OSF/1 Operating System

8.2 Overview of the Program Loading Architecture in

OSF/1

The architecture of program loading in OSF/1 differs significantly from that
of traditional UNIX systems for two reasons: the architecture supports the
loading of programs with unresolved references, and the architecture can
handle multiple object file formats.

8.2.1 The Architecture of exec() in OSF/1

When called in OSF/1, the exec() system call must determine the module’s
object file format and must determine whether or not the module is absolute.

When the exec() call loads an absolute module, the operations it performs to
map the module’s text and data into the address space and initialize the
program’s hardware state are format-dependent operations. In traditional
UNIX systems, the code that performs these format-dependent operations is
embedded within the exec() code, and the exec() code handles only one
object file format. In order to support loading multiple file formats, exec()
must be able to recognize a program’s object format and select the code it
will use to perform the operations that are specific to the format type. In
OSF/1, exec() makes this selection with the exec switch.

8.2.1.1 The exec Switch

The exec switch is a globally available kernel data structure that
implements a table of format-dependent routine vectors. Each entry within
the table specifies a set of routines that are associated with a particular
object file format. Each routine set (or vector) is referred to as the format-
type’s file format manager.

Each format manager consists of the following routine types:

recognizer Recognizes modules that have the manager’s format type. The
exec() call attempts to recognize a program’s format by
cycling through the exec switch, trying each manager’s

The OSF/1 Program Loader

recognizer routine until it finds the manager that recongizes
the program’s format.

getloader 1f the recognizer routine indicates that the program needs to be

processed by the loader, reformats (if necessary) the
arguments supplied with the call to exec(), and then prepares
the user space loader for execution.

getxfile Maps the program into the process’s address space.

setregs Initializes the hardware state to allow the program’s execution

to begin. The setregs routine is machine-specific as well as
format-specific.

ungetxfile Removes the program’s mapping from the current address

space. The loader calls the ungetxfile routine to deallocate the
current task’s address space before calling the getxfile routine.
All regions except those marked as keep_on_exec are
deallocated.

8.2.1.2 The exec() Algorithm

The following list describes the algorithm used by exec() to perform its
operations:

L.
2.

Read the object file’s header into a buffer.

Through the exec switch, cycle through all known format manager
recognizer routines until the file’s format is recognized.

If the object file’s header indicates that the file is absolute:
a. Unmap all regions in the address space.
b. Map the object file’s regions into the address space.
c. Set the register state to execute the program.

If the object file’s header specifies that the file needs to be processed
by the user space loader:

a. Read the loader’s object file header into a buffer.

b. Through the exec switch, cycle through all known format
manager recognizer routines until the loader’s format is
recognized.

8-7

Design of the OSF/1 Operating System

c. Unmap all regions in the address space.
d. Map the loader into the address space.

e. Set the register state to execute the loader.

8.2.2 The Loader’s Architecture

The loader is a separate object module that resides in the user process’s
address space. It is loaded into the address space at a fixed location when
the exec() system call determines that the program requires the attention of
the loader.

After being loaded and receiving control from the kernel, the loader loads
the program and initializes it for execution by performing the operations
outlined as follows:

1. Resolve the program’s imported symbols by generating a list of the
modules that will need to be mapped into the address space.

2. Use format manager routines to map the modules into the address
space.

3. Use format manager routines to relocate those modules that need to be
relocated.

4. Call initialization routines for any modules that specify them.
5. Jump to the program’s entry point.

The mapping, relocation, and module initialization operations performed by
the loader are format-dependent, and like exec(), the user space loader
maintains a table of routine vectors, each of which specifies mapping,
relocation, and initialization routines. This table, which is referred to as the
loader switch, resides within the loader’s context and so resides in the
process’s user space with the loader. See Section 8.5 for more discussion
about the loader switch.

The OSF/1 Program Loader

8.3 The Symbol Resolution Policy

Because the loader’s primary function is to resolve a program’s symbols at
load time, it must have a symbol resolution policy for matching each
unresolved imported symbol in a module to a symbol exported by one of the
known modules. In OSF/1, loader symbol management is based on the
notion of packages.

A package is an object that exports symbols, and as such, packages can be
thought of as abstractions of libraries. Each imported symbol that is not
resolved at link time is represented by a <package name, symbol name>
pair. The package name specifies the object that exports the symbol.
Usually, a package represents a full library, but the package facility allows
developers to divide libraries into multiple packages.

The package facility was designed with the following goals in mind:

o Imported symbols should not be bound to library pathnames. A program
should not depend on the location of libraries in the file system (which
may vary from system to system) in order to load correctly.

e Symbol name conflicts should be avoided without causing unnecessary
restrictions on the use of symbol names by libraries. Each imported
symbol in a program must resolve unambiguously to a symbol exported
by a library at load time. Because imported symbols are not bound to
library pathnames, conflicts are possible if more than one library in the
loader’s resolution path exports the same symbol name. Such conflicts
should be avoided without requiring that exported symbol names be
unique. :

« Symbol resolution should be flexible but robust. It should be possible to
control the symbol resolution path at compile, link, installation, and load
time. The programmer and installer of a program should determine the
default resolution path. Users should be able to run programs without
worrying about symbol resolution, but users should also be able to alter
symbol resolutions at load time when necessary. For example, when
debugging a new version of a library routine, the programmer should be
able to force programs to use the new entry point rather than the old one.

8-9

Design of the OSF/1 Operating System

8.3.1 Using Packages

8-10

Generally, package names are attached to symbols at link time. In the
following example, the ld command is used to create a shared library
containing two routines: subrl() and subr2(). The source code for these
routines resides in the subrs.c file. The following command generates the
shared library:

% 1d -R -0 subrs.so subrs.o -export subrs_package:subrl,subr2

The -export flag causes the linker to create the subrs_package package,
which contains the symbols subrl and subr2. The name of the package and
the identity of its routines is recorded in the exported symbol table of the
output file subrs.so. (In OSF/1, all shared library files end with .so by
convention.)

Suppose that the file test_subrs.c contains code that tests the new shared
library. When the test_subrs.o module is linked to subrs.so as follows, the
linker searches for the package or packages within subrs.so that resolve
external references:

% 1d -o test_subrs test_subrs.o subrs.so -Ic

Instead of loading the resolving modules into the output file, the linker
replaces each imported symbol with the tuple <symbol,package name>. For
example, suppose that the imported symbol table in the unlinked
test_subrs.o file contains the symbols subrl and subr2; after the linking
operation, the imported symbol table for object file test_subrs contains the
symbols <subrl,subrs_package> and <subr2,subr_package>.

When the loader links a given module to libraries at load time, the loader
derives the package name for each imported symbol from the package name
attached to the corresponding exported symbol in the library.

The two-dimensional symbol namespace provided by packages avoids
symbol name conflicts when more than one library exports the same symbol.
All that is required is that each symbol be unique within a package and that
package names be unique across the system. Because each imported symbol
includes a package, each imported symbol can then be resolved
unambiguously to the correct exported symbol.

The OSF/1 Program Loader

8.3.2 Package Tables

When the loader resolves imported symbols, it needs to find the library
module that contains each package. This information is kept in a set of
package tables. A package table is a set of mappings, each of which maps a
package to a library pathname.

There are various types of shared libraries, and correspondingly there are
various types of packages. For example, OSF/1 provides a shared library
version of the standard C libraries. The system makes these libraries
available to all programs with the system’s global installed packages table
(global IPT).

As described in Section 8.8, a system administrator can use the lib_admin
command to install global libraries. The command completes the
installation operation by writing the system’s global installed packages table
to disk. When the loader bootstraps itself into a process’s address space, it
maps the global installed packages table into the process’s address space.

A program may require access to libraries that are not globally available, or
may want to override a symbol’s mapping in the global table with a
mapping to an alternative version of the global routine. For example, a
developer might want to test a new version of printf() and still have access
to the other C library routines that are globally available. In such instances,
the loader builds a private installed packages table (private IPT) that maps
symbol names to private libraries. This table is created and managed with
the built-in shell command inlib. This command creates the table in the
current process’s address space in a region of memory that is not overwritten
during calls to exec(). Consequently, a process inherits its private installed
packages table from its parent process.

Private packages are installed and used as follows:

1. The developer uses the inlib command to install one or more
packages into the shell’s private packages table.

2. 'The developer starts the program from the shell.

3. The program inherits the private packages table from the shell and the
loader uses it during symbol resolution.

8-11

Design of the OSF/1 Operating System

A program may itself export packages, or it may dynamically load packages
using the loader’s application interface. Under these circumstances, the
loader creates within its context a loaded packages table (LPT) that maps
symbol names to packages that have already been loaded. This table can be
used to resolve symbols used by modules that may be loaded by subsequent
calls to the loader’s load() interface (discussed in Section 8.11).

During the loader’s symbol resolution phase, it searches the packages tables
in the following order: loaded package table, private package table, global
package table.

8.4 The Loader Context

8-12

To construct an executable image of a program, the loader must find and
load all the modules and carry out the symbol manipulation required to link
all the imported symbols with exported symbols. This requires allocating
memory for each region of each module, constructing a memory image of
each region, and building tables of imported and exported symbols.
Constructing a region’s memory image requires writing or mapping in text,
initializing data values, and filling in the correct addresses for all references.
Filling in the correct addresses may require both looking up symbol values
in the symbol tables, and, for relocatable code, adjusting relocatable
addresses to reflect the actual location of code in memory.

The format-independent loader manages these operations by maintaining a
set of per-process, per-module, and per-region data structures that are
collectively referred to as the loader’s context.

The loader context is a dynamic entity. The context is initialized when the
kernel loads the loader into the process’s address space. For example, the
package tables of the context are set up when the loader context is
initialized. The context changes as the loader performs the symbol
resolution, mapping, and relocation operations.

The OSF/1 Program Loader

Figure 8-1 shows a simplified version of the data structures that make up a
loader context.

Figure 8-1. The Loader Context

Known Modules List

Module ‘ Module _ Module
Record "1 Record o Record

Context

Loaded
> Packages
Table

Private

L 5| Installation
Package
Table

Global
[, Installed
Packages
Table

Most processes have only one loader context, containing information about
the modules loaded in that process. A special process, such as the kernel
load server, however, maintains an additional loader context containing
information about modules loaded into the kernel. There is also a loader
context for the preloaded libraries and dynamically loaded format-
dependent managers.

Design of the OSF/1 Operating System

8.4.1 Module Records

8-14

During the symbol resolution phase, the loader creates a record for each
module that it will map into the process’s address space. The records that
represent modules that are being loaded in the process’s address space are
placed in the context’s known modules list. The order in which modules are
placed on this list is important because it determines the order of symbol
resolution. This is discussed further in Section 8.4.2.

When the loader has identified all of the modules that will be mapped into
the process’s address space, it traverses the known modules list three times,
first to map each module’s region into the address space, then to relocate
each module’s code and data, and finally to perform any module-specific
initialization routines.

Each module record includes the following information:

¢ A pointer to the format-dependent routines that the loader will use to
map, relocate, and initialize this module. This pointer is set when the
loader creates the region record. At this time, the loader cycles through
the loader switch entries and executes each recognizer function until it
matches a format-dependent manager with the module’s object format.
The loader then initializes the module record’s pointer to point to the
manager’s routines in the loader switch.

o A list of region records, each of which represents a region within the
module that will be mapped into the address space during the mapping
phase. The loader fills in these records using the format manager’s
map_region routine during the mapping phase, and the records are used
by the format manager’s relocation routine during the relocation phase.

o A list of the packages the module depends on. This is the module’s
imported packages list. The loader uses this list during the symbol
resolution phase.

e A list of the module’s imported symbols.

o An exported packages list if the module exports one or more packages.

The OSF/1 Program Loader

8.4.2 Building the Known Modules List

As mentioned previously, the order in which module records are placed on
this list affects the order of symbol resolution. When the loader begins
loading a program into an empty address space, it creates a module record
for the program’s object module. At this point, this is the only record on the
known modules list. The loader then begins building the rest of the list.

The loader constructs the known modules list iteratively, resolving the
current module’s imported symbols by creating module records for the
modules that export the symbols and putting the module records on the list.
The loader then moves to the next module record on the list and resolves
that module’s imported symbols, adding additional module records to the list
as required. The procedure is repeated until the loader has resolved the
symbols of all the modules that have records in the known modules list.

Figures 8-2, 8-3, and 8-4 illustrate this procedure. In Figure 8-2, the known
modules list contains the module record for the loader (always the first
module record on the list), and a module record for prog.o, an object file
that contains two unresolved references: subrl,packageA, and
subr7,packageB. In the example, packageA is exported by sharelibA.so,
and packageB is exported by sharelibB.so. Figure 8-3 shows the known
modules list after the loader has resolved prog.o’s imported symbols.

Figure 8-2. Known Modules List Example 1

Known Modules List

Loader
Record

> prog.o
Record

Imports:

subri
Package A

subr 2
Package B

8-15

Design of the OSF/1 Operating System

Figure 8-3. Known Modules List Example 2

Known Modules List

Loader
Record
> prog.o > sharlibA.so sharlibB.so
Record Record Record
Imports:
Exports: Exports:

subr1 Package A Package B
Package A
subr 2 Imports: Imports:
Package B r1,Package C r2,Package C

When the loader finishes resolving the imported symbols for prog.o, it
moves to the next module record on the known modules list and resolves
any imported symbols specified by that module. As shown in Figure 8-3, the
module record for sharelibA.so contains the imported symbol r1,packageC,
which is exported by the module sharelibC.so. Figure 8-4 shows the state
of the known modules list when the loader has finished resolving

sharelibA.so’s imported symbol.

Figure 8—4. Known Modules List Example 3

Loader
Record

Known Modules List

Y

prog.o
Record

Y

Imports:

subr1
Package A

subr 2
Package B

sharlibA.so ™| sharlibB.so [sharlibC.so
Record Record Record
Exports: Exports: Exports:
Package A Package B Package C
Imports: N ¢

r1,Package C

8-16

The OSF/1 Program Loader

8.5 The Loader Switch and Format-Dependent
Managers

The loader switch is the primary interface between the format-independent
and format-dependent portions of the loader. The switch is a set of data
structures, each of which represents a format-dependent manager. Each
structure contains a set of pointers to routines that implement the manager.

8.5.1 Format-Dependent Routines

Each format-dependent manager implements a set of routines that includes
the following (this is a partial list):

recog() Examines an object module to determine whether it is in a
format supported by this format-dependent manager. The
loader determines which format-dependent manager to use by
calling the installed recognizer routines one by one until one
of them recognizes the object module being loaded.

get_imports()
Constructs the import symbol table and import package table
for a module.

map_region()
Maps the regions of an object file into the process’s address
space.

get_export_pkgs()
Returns the list of packages exported by this object module.

get_exports()
Returns the list of exported symbols for the specified object
module. This routine is not called by the format-independent
manager in normal module loading. It is intended for use only
when preloading modules, and possibly to allow format-
dependent managers such as ELF to implement their own
symbol resolution algorithms.

lookup_export()
Used during symbol resolution to locate the specified package
name/symbol name pair in the specified object module.

8-17

Design of the OSF/1 Operating System

relocate()

Cycles through the relocation records, relocating all
relocatable addresses in the module. The routine uses the
region array built in the map_regions() call, and the imported
symbols and import packages arrays built in the
get_imports() call.

get_entry_pt()

Returns the address of the module’s entry point, if one exists.

8.6 Address Space Management

goals:

The OSF/1 loader address space management design meets the following

¢ Address space management is inherently machine-dependent, but does
not need to be format-dependent.

e Address space configuration (where the code, data, stack, shared
libraries, loader, and so on are mapped by default) should be maintained
in only one place because it is machine-dependent information.

o The format-dependent loader routines (and the core format-independent
loader routines) should be independent of the loader context.

The format managers use allocation and deallocation procedure interfaces to

decide where to map a given region and to deallocate any allocated space
during cleanup or unmap. Although the loader maps regions using format-
dependent routines, those routines uses a format-independent interface to
assign the addresses to a region being mapped.

8.6.1 Absolute and Relocatable Regions

8-18

Regions in an object file can be classified as absolute or relocatable. The
loader must load absolute regions at a fixed address specified by the object
file. The loader can load relocatable regions at any address. Shared libraries
and dynamically loaded modules are usually relocatable.

The OSF/1 Program Loader

8.6.2 Base Addresses and Virtual Addresses for a Region

There is typically a distinction in the loader’s memory allocation interfaces
between a virtual address for the region, which is where it will be loaded in
the target process, and a base address, which is the address it occupies in the
current process. This distinction is critical for relocatable regions because
they must be relocated to the virtual address, even if they are mapped
somewhere else.

If the base address and the virtual address are the same, the region is
absolute—it must be loaded at a specific location in memory. If the base
address and the virtual address are not the same, then the region may be
mapped anywhere in the current address space because it will eventually be
mapped and run elsewhere.

8.6.3 Context-Specific Allocation Procedures

A special allocator is necessary for the kernel context because the base
address for mapping regions is almost always different from the virtual
address at which the region will reside. This difference exists because the
base address is in the address space of the kernel load server and the virtual
address is in the address space of the kernel.

The preload context requires special allocation procedures because the
space must be allocated from a range of memory that is especially reserved
for prerelocated libraries, so that all processes can map the prerelocated
regions at the same addresses. As with the kernel context, preload libraries
have base addresses different from their virtual addresses. They are simply
loaded into lib_admin, and then copied into the preload file.

8-19

Design of the OSF/1 Operating System

8.6.4 Typical Loader Address Space Usage

The region allocation procedures for the process context and the preload
context use an address space configuration record that is machine-
dependent and resides in the kernel. This record is read from the kernel by
the getaddressconf() system call. It contains, among other things, the base
address, growth direction, and flags of each of the following areas:

o Program text area. This is the address of the default text area, where
absolute code is linked to run.

e Program data area. This is the address of the default data area, where
absolute data is linked to run.

e Program bss area. This is the address of the default bss area, where
absolute code is linked to run.

e Stack area.

e Loader text area. This is the absolute address the loader itself is linked
to run.

o Loader data area.

o Loader bss area.

o Loader private data file (inherited).

o Loader global data file (IPT and heap).
 Loader preloaded library data.

o mmap ed file text.

 mmap ed file data.

 mmap ed file bss.

The program text, data, and bss areas are the addresses of the default text,
data, and bss areas where absolute code is linked to run. The loader text
area is the absolute address where the loader itself is linked to run.
Libraries that are not preloaded go into the mmap areas, respectively, for
their text, data, and bss.

8-20 |

The OSF/1 Program Loader

8.7 Kernel Space Loading

OSF/1 allows modules to be loaded into the kernel at runtime, so that adding
new device drivers and network protocols does not require shutting down
and rebooting the system. As described in Chapter 9, system administrators
can use the sysconfig command to dynamically configure the kernel. This
command invokes the system’s configuration manager, which manages the
loading and configuration of dynamically loaded modules.

The operation of loading such modules into the kernel is performed by a
privileged user space process called the kernel load server. The server runs
in user space because it needs to call the user space loader. It is a separate
process because it needs to maintain the state information (that is, modules,
exports lists, and so on) of what has been loaded into the kernel. The kernel
load server is privileged because it can modify the kernel’s address space.

Loading a module into the kernel requires several steps:

1. The kernel load server calls the loader and specifies the kernel
context. The kernel context specifies which region allocation routines
are to be used.

2. The module’s regions are mapped into the kernel load server’s address
space.

3. The regions are relocated to the kernel’s address space.

Figure 8-5 illustrates this scheme.

8-21

Design of the OSF/1 Operating System

Figure 8-5. Kernel Load Relocation

Kernel Load Server Kernel Address
Address Space Space

1

1 1

Text | 1

I . I

I | : . |

i

i : [| * i

] | | 1

1 ° 1 1 |

driver.o > driver.o >

! I

| o 1

I .]

! . 1

I |

8.8 Preloading, Installing Libraries, and the Global

8-22

Data File

To support efficient library sharing, OSF/1 uses the loader to preload or
prerelocate libraries. A library administration tool, lib_admin, installs and
preloads libraries into a global data file and maintains a preload cache of
completely loaded shared libraries, already relocated to runtime addresses
with all symbols fully resolved. This cache, as well as the global installed
package table, is maintained in a system file. The loader accesses preloaded
libraries by mapping them into the target address space at their
predetermined runtime addresses.

A program that uses a prerelocated shared library has typically been
compiled in such a way that its text section is position-independent. This
means that the loader does not need to apply any relocations to the text
section when loading the program for execution. If any relocation is
necessary to the main program to resolve share library addresses, the
addresses will most likely be in the data section of the program.

Note that preloading is not a specific loader function. The preload cache is
managed by the lib_admin command, which loads the shared libraries into
a specially created context, and then copies them into the preload cache.

The OSF/1 Program Loader

The system file that holds the preload cache has the layout shown in
Figure 8-6.

Figure 8-6. Layout of the Preload Cache Data File

Global Preload
IPT Cache
Header Header Header Heap

The global IPT records reside in the heap area of this file. The preload
cache stores a full set of information (module records, region records, export
lists, and module name hash tables) for the set of preloaded libraries
currently available.

Prerelocation of shared libraries is based on the fact that every process can
map the prerelocated regions at the same addresses. Therefore, a range of
memory is reserved for prerelocated libraries. If a process allocates
memory in the reserved area for other purposes, it may not be able to use the
prerelocated versions of some libraries.

8.9 Dynamic Format Manager Loading

The loader supports both built-in format-dependent managers and
dynamically loadable auxiliary format-dependent managers. When the
built-in managers fail to recognize a module being loaded, the loader
attempts to load a dynamic manager. The dynamic managers are simply
listed in an ASCII text file; they are loaded one by one until the module is
recognized.

Dynamic managers are loaded into their own loader context to reduce
naming conflicts and avoid problems with using the same manager in
multiple contexts. The dynamic manager context is created when the first
dynamic manager is loaded. It is bootstrapped to contain all the symbols of
the format-independent loader, including loader utilities and so forth.

8-23

Design of the OSF/1 Operating System

There are many restrictions on dynamic managers:
o They may not have export symbols.

e They may only use symbols exported by the format-independent
manager.

e They must be in a recognized format.

8.10 Unloading

The loader supports a simple unload; it unmaps the module’s regions and
discards the loader data structures describing the module. References to a
module may become invalid once the module is unloaded. The loader does
not keep track of references or attempt to unsnap such invalid links. These
housekeeping tasks are the responsibility of the process doing the unload.

8.11 Application Interface to the Loader

8-24

The loader provides an application programming interface that allows
programs to dynamically load and unload modules from their address
spaces. The load() system call allows a running process to load modules
into its address space. A dynamically loaded module can have imported
symbols that resolve either to other modules, to previously loaded shared
libraries, or to shared libraries that have not yet been loaded.

The unload system call can be used to unload a module. This call does not
attempt to deal with references to the unloaded module; it is the
application’s responsibility to prevent references to an unloaded module.

The OSF/1 Program Loader

8.12 The Loader and Security

A privileged program (setuid, setgid, or executing with any privilege bits
set in its privilege vector) will always be loaded with the default loader.
This ensures that clever users cannot use their own loaders to load arbitrary
privileged programs.

The loader design also protects the user of shared libraries. The loader finds
its shared libraries by consulting the installed package tables. The global
installed package table is stored in a portion of the file system that is
writable only by root.

A process inherits its private installed package table from its parent through
a memory segment that is mapped with the keep-on-exec bit turned on.
When exec() loads a privileged process, it deallocates all regions, even
those that are marked keep-on-exec. This prevents privileged processes
from inheriting private libraries that might be used to breach the system’s
security.

See Chapter 15 for more information on the OSF/1 security architecture.

8-25

Chapter 9

Loading and Configuring Dynamic
Subsystems

Kernel subsystems are components of the operating system whose functions
are logically separate from functions of the core kernel. File systems,
network protocols, and device drivers are examples of kernel subsystems.

In traditional UNIX systems, kernel subsystems are linked directly into the
kernel at build time. On those systems, adding a new subsystem to the
kernel requires that the kernel be recompiled and linked, and the operating
system shut down and rebooted. The OSF/1 kernel supports the dynamic
loading and configuring of subsystems. Modules for new device drivers, file
systems, network protocols, and system calls can be added while the
operating system is running, without having to rebuild the kernel, shut
down, and reboot.

OSF/1 supports the dynamic loading and configuration of the following
types of subsystems:

» Block and character device drivers, including pseudo-device drivers
o File systems

o Socket-based network protocol families

o STREAMS modules and drivers

Subsystems can also be dynamically unloaded and unconfigured.

Design of the OSF/1 Operating System

9.1 Overview: Loading and Configuring Dynamic

Subsystems

The system administrator maintains a configuration database that describes
the various subsystems. To add a new subsystem to the kernel, the
administrator updates the database to include information about the
subsystem; for example, the pathname of the subsystem’s object module.

The administrator then executes the sysconfig operator command to load
and configure the subsystem. This command issues a request to the system’s
configuration manager daemon, which uses the information in the
configuration database to load and configure the subsystem.

The configuration manager daemon loads the subsystem’s module into the
kernel’s address space by invoking the kernel load server. When the module
is fully loaded, the configuration manager daemon then issues a system call
that causes control to be turned over to the module’s configuration routine.
This routine performs the operations required to configure the module.

9.2 Configuration and Kernel Tables

9-2

The kernel references its subsystems through a set of tables. For example,
all block device drivers are referenced through the kernel’s block device
table, all character device drivers are referenced through the character
device table, and so on. These tables can be modified when the system is
active.

When a subsystem is dynamically configured, it uses a set of system calls,
based on the subsystem’s type, to register itself in the appropriate kernel
tables. For example, a device driver registers itself in the interrupt vector
table and the appropriate device switch tables, a file system registers itself
in the VFS switch table, a network protocol family registers itself in the
protocol family table, and so on.

A dynamic subsystem’s configuration routine is responsible for registering
the subsystem in the appropriate tables. A module never modifies any of the
configuration tables directly; instead, it calls a service routine in the kernel

Loading and Configuring Dynamic Subsystems

that performs the operation. For example, the service routine
domain_add() registers a network protocol family in the network protocol
family table.

The kernel services provide a clean separation between the kernel proper
and the subsystems. For each subsystem type, the kernel defines a set of
data structures and interfaces that allow subsystems to "hook" themselves
into the kernel. These interfaces and structures are called frameworks.

9.3 The Configuration Manager

The configuration manager handles all requests for configuration,
unconfiguration, reconfiguration, and querying of subsystem modules. The
requests fall into two categories:

o Configuration command requests through interprocess communication
(for example, the system administrator’s requests through the sysconfig
command), which occur during system operation

o Automatic configuration requests made during startup
Several steps are required for dynamic configuration of a subsystem:

1. The configuration manager reads the configuration database in the file
letc/sysconfigtab to get information about the subsystem to be loaded
and configured. The database contains information about the
subsystem, including its description, method and type, and the
location of its object module. The configuration method is the
subsystem-specific part of the configuration manager that runs in user
space. It consists of a set of functions to handle the subsystem-
dependent entries in the configuration database.

2. The configuration manager then calls the kernel loader, kloadsrv, to
load each subsystem’s object module into the kernel. Upon success,
kloadsrv returns the subsystem’s ID and entry point, which the
configuration manager stores into a registration table. The entry point
is the address of the routine the subsystem uses to configure itself.

3. The configuration manager then calls the kmodcall() system call,
which looks in the registration table to find the configuration entry
point for the subsystem. The kmodcall() system call executes the

9-3

Design of the OSF/1 Operating System

entry point with the configure option. The subsystem’s configuration
routine then configures the subsystem into the kernel. Any specific
subsystem type information is passed back to the configuration
manager. If the subsystem configuration fails, then the subsystem
module is unloaded.

9.4 Interrupt Handling

The interrupt handling scheme in OSF/1 supports the loading and unloading
of device drivers while the kernel is running. The interrupt handling
mechanisms are supported by a consistent, modular strategy in which
device-dependent code is separated from device-independent code.

The interrupt vhandling model is divided into three distinct parts:

o An assembly language module, locore.s, includes a low-memory data
structure holding the addresses of entry points to execute when an
interrupt is received. It also includes the low-level interrupt handlers.
There is normally a low-level interrupt handler for each hardware
interrupt supported.

o The interrupt dispatcher is the code that traverses an array that points to
an arbitrary number of registered interrupt handlers.

o The device interrupt handlers are loaded into the kernel when the device
driver is loaded and are registered with the interrupt dispatcher when the
device driver configures itself.

9.4.1 The locore.s Module

The locore.s module declares low memory and includes a set of low-level
interrupt handlers to service the various CPU interrupts (see Figure 9-1).
When an interrupt is received, the low-level interrupt handlers perform the
necessary functions to invoke the interrupt dispatcher. The use of an
interrupt dispatcher contrasts with most traditional schemes, which call the
device interrupt handlers directly from locore.s, sometimes through "glue"
code.

Loading and Configuring Dynamic Subsystems

Figure 9-1. Interrupt Handling

itable Handlers

:

Interrupt _»{]-_—>|]
Y
L&Y;FS;? ! I'nterrupt ﬂ
Handler Dispatcher

hhé

9.4.2 The Interrupt Dispatcher

The interrupt dispatcher is the body of code that actually invokes each
device interrupt handler. The interrupt dispatcher, when called as a result of
a hardware interrupt, reviews the interrupt handler table, itable, for all
registered and enabled interrupt handlers at the interrupt level passed to it.
If the dispatcher finds an interrupt handler for that level, it invokes it.

The algorithm for performing the lookup into itable is left unspecified and
may be influenced by the hardware architecture. The interrupt handler
table, itable, consists of an array of pointers to interrupt handler structures.
The actual details can vary according to the underlying hardware
architecture.

The interrupt dispatcher code does not need to reside in locore.s, nor does it
require the traditional "glue" code found in locore.s. By introducing the
interrupt dispatcher and supporting data structures, the system has a great
deal of flexibility that was not generally available with previous
mechanisms.

Design of the OSF/1 Operating System

9.5 Device Driver Configuration

Figure 9-2 shows kernel table entries pointing to the several parts of a
configured device driver. The top half of the driver has both a block device
and a character device. An entry in the block device table switch points to
the block device handler in the top half. Likewise, an entry in the character
device table switch points to the character device handler in the top half.
The bottom half of the driver has handlers for three separate hardware
interrupts. (The names int34, int36, and int40 are arbitrary.) Three
separate entries in the interrupt handler table (itable) point to the three
interrupt handlers.

To configure a device driver, the kernel needs to register the interrupt
handlers of the driver’s bottom half into the itable, and to register the
system call handlers of the top half into the block and character device
switch tables. Additionally, the interrupt handlers, once registered, must be
enabled.

Each dynamically configurable device driver must supply the kernel with
the entry point of a self-configuration routine. The routine is responsible for
proper initialization of the device, for calling the kernel services that
register the handlers of the top and bottom halves, and for calling the kernel
services that enable the interrupt handlers.

Loading and Configuring Dynamic Subsystems

Figure 9-2. Device Driver Configured into Kernel Tables

Device
Block Driver
Device

Switch \

Table A b-dev

Top
Half

Character
Device
Switch

Table

c—dev

N

N

Bottom
Half

itable
Interrupt
Handler
Table

AN
e

As new device drivers are added to a running system, their interrupt
handling entry points are dynamically registered in itable. The registration
process occurs when the device driver’s configuration entry point is called at
configuration time. The device driver issues the handler_add() call,
passing a filled-in interrupt handler structure (ihandler_t) and receiving
back an interrupt handle (ihandler_id_t). The device driver then needs to
enable its interrupt routine by calling handler_enable(), passing the handle
just received from handler_add(). The OSF/1 interrupt handling scheme
provides the necessary interfaces to enable or disable interrupt handlers that
have already been loaded. Once an interrupt handler has been enabled, it is
available to service interrupts and, therefore, is an entry point that the
dispatcher can execute.

Pseudodevices, such as the traditional null device (/dev/null) and the
pseudoterminals, have no physical device, and thus no hardware interrupts
and no bottom half. Only the top half needs to be configured. The driver’s
self-configuration routine registers the top half. The self-configuration
routine of the driver for a physical device must register both the top and
bottom halves.

9-7

Design of the OSF/1 Operating System

9.6 Configuration of File Systems

9-8

OSF/1 contains a Virtual File System (VES) framework that supports
multiple file system types. File system types can be either statically
configured into the kernel or made dynamically loadable. Dynamically
loaded file system types can also be unloaded when they are idle, but
statically loaded file system types cannot. Chapter 11 provides a complete
description of the VFS framework.

The VFS framework contains a table of configured file system types called
the VFS table or the VFS switch (vfssw). This table contains a pointer to the
file system-specific operations that provide file system-level functions, such
as mount(), umount(), statfs(), and sync(). File systems that have been
loaded into the kernel statically are already configured into the vfssw, and
are initialized at boot time through calls to their VFS initialization function,
vfsinit().

Once a file system type has been loaded into the kernel, a call to its
configuration entry point causes it to configure itself into the vfssw, through
the vfssw_add() kernel service routine, and to perform appropriate
initialization of global parameters, allocation of memory, and so forth.

Dynamically unloading a file system type is almost the reverse of loading.
Once it has been determined that the file system is not in use, its entry in the
vfssw can be deleted, and its text unloaded from the kernel address space.

The actions of unloading are similar to those of loading. The file system’s
configuration entry point is called for unconfiguration, which results in the
configuration routine calling vfssw_del(). If any instance of the file system
type is mounted, vfssw_del() fails. If vfssw_del() succeeds, the file system
has been unconfigured, and the configuration routine needs only to clean up
after itself and to return. (An example of cleanup is deallocation of system
memory.) The kernel loader process then unloads the file system’s text from
the kernel address space.

Loading and Configuring Dynamic Subsystems

9.7 Dynamic Loading and Configuring of System Calls

New system calls can be dynamically added to a running copy of OSF/1.
The newly configured system calls are immediately available to executing
user-level programs that have been properly constructed to use them.

A user-space program can invoke dynamically loaded system calls by name,
in the same manner that it would invoke other system calls; there is no need
for the application programmer to know that they are dynamically loaded.

Each system call in the OSF/1 kernel, whether built-in or dynamic, consists
of a body of executable code that is identified by a unique name and a
unique number. Dynamic loading places a new system call’s body of code
into kernel space; dynamic configuration associates the name and the
number with the code through appropriate changes to the kernel’s system
call table.

9.7.1 Selecting the System Call Number

The provider of a subsystem may use either a predetermined or dynamic
approach for determining the system call numbers associated with its
exported system calls.

With the predetermined approach, the provider assigns the numbers and
ensures that nosys entries occupy the appropriate places in the
syscalls.master file (in kernel/conf) to reserve slots in the system call table
at build time. Upon configuration, the subsystem provides the number to the
kernel. There is only one significant difference between this method and the
original static system calls: it is not necessary for the symbol that is the
target of the system call to be defined at build time.

In the dynamic approach, the numbers are provided by the system at load
time, using unassigned slots in the system call table. This method assumes
enough free slots remain in syscalls.master, because no mechanism is
provided to increase the actual size of the system call table.

The predetermined approach provides slightly better performance and less
complexity in the user-space code; the dynamic approach allows greater
flexibility and avoids the necessity of knowing about specific dynamic

9-9

Design of the OSF/1 Operating System

system calls when the kernel is built. Only the predetermined approach is
appropriate for a secure system that audits system call usage.

9.8 Boot-Time Subsystem Configuration

There are two separate stages to OSF/1’s subsystem configuration at boot
time. The kernel handles the first stage, determining the sizes of several
fundamental parameters, initializing statically bound device drivers, and
starting the init process. The init process starts several other processes,
including the kernel loader and the configuration manager. The
configuration manager then handles the dynamic configuration, which is the
second stage.

During the system generation process, the software performing the build
consults the static system configuration file to determine which device
drivers to statically bind into the kernel and at which location (or locations)
the corresponding physical devices may be present.

Device drivers may thus be statically linked and loaded into the kernel in
the usual manner. In the course of static configuration at boot time, after the
kernel has determined the sizes of several fundamental data areas and other
parameters, it calls the static drivers’ entry points so that they may perform
any necessary initialization. They may, for example, probe devices, add
switches, or install system calls. Probing may, in the usual manner, result in
configuration of only those drivers for which the physical devices are
detected.

Chapter 10

Internationalization Subsystem

Traditionally, application programs developed on UNIX systems were
written with a bias toward the English language and the customs of the
United States. Such applications provide error messages that are written in
English and display numeric data, monetary data, and time and date data
according to the cultural conventions of the United States.

When application programs of this type are used outside of the USA, users
encounter difficulties such as

e Messages in an unfamiliar language
« Incorrect alphabetic sorting
o Unfamiliar date, numeric, and monetary displays

The internationalization subsystem supports internationalized applications.
An internationalized application is one that is capable of behaving properly
regardless of a user’s language and cultural conventions. For example, an
internationalized application can be used successfully by users in the USA,
Europe, and Japan.

10-1

Design of the OSF/1 Operating System

10.1 Locales

OSF/1 implements internationalization support through a set of locales.
Each locale specifies a software environment that supports the language and
customs associated with a particular geographic region. A locale specifies
the following:

¢ A language and a code set that will be used to represent the language.
For example, American English is represented by the ASCII code set.

¢ Collating conventions.

¢ Format conventions for the display of times, dates, numeric data, and
monetary data.

o A catalog of messages the application uses to communicate with the
user.

An application determines the current locale at runtime, usually by means of
the user’s environment variables. The application then uses the setlocale()
routine to give itself access to the tables and algorithms that implement the
locale. When the application performs an operation that is locale-
dependent, the routine that performs the operation uses the algorithm and
data specific to the locale.

10.1.1 Languages and Code Sets

10-2

In an internationalized application, users interact with the system in their
native language. All program messages are in the local language, and the
program accepts input in that language. Instead of being hardcoded into the
program, messages are placed in message catalogs, and hardcoded text is
replaced with calls to a messaging system. To specify postive or negative
responses, users can use the words or characters appropriate to their
language instead of the English string literals y, yes, n, and no.

Traditionally, character data manipulated by UNIX applications has been
represented by the ASCII code set, which is capable of representing all the
characters for only three languages: English, Hawaiian, and Swahili. To
support other languages, an application must be capable of using code sets
that represent those languages.

Internationalization Subsystem

The ASCII code set uses seven bits of each byte and cannot encode non-
English characters. To allow additional characters, other code sets either use
all eight bits in a byte or use multiple bytes to encode a character. Eight-bit
code sets allow 256 possible characters and can support European, Middle
Eastern, and other alphabetic languages.

In languages that use ideographic writing systems, such as Japanese,
Chinese, and Korean, each word has its own unique ideographic symbol or
symbols. There are thousands of such symbols in these languages.
Consequently, these languages cannot be coded within a single byte and
require multiple bytes for most characters. Multibyte encoding methods
combine both single-byte and multibyte code sets.

In addition, universal character sets have been designed that include
characters from a large group of languages. These universal sets can
consume from two to four bytes per character.

One distinguishing characteristic of multibyte code sets is that their
characters can have different lengths. For example, the SJIS code set, which
allows the ASCII code set to be combined with the standard 16-bit Japanese
code set called JIS X0208, includes 1-byte and 2-byte length characters.
Code sets with characters that vary in length can introduce inefficiencies in
applications that manipulate data a character at a time because such an
application must check the length of each character before processing it.

The internationalization subsystem includes a set of interfaces that allows
applications to convert variable length characters into wide characters of a
uniform length for the character manipulation. Characters that have been
converted into wide length characters are in a form called process code.

The size of wide length characters is system-dependent; a wide length
character may be 16 bits on one system and 32 bits on another.
Consequently, characters encoded in process code cannot reliably be
transmitted between processes on different systems. Therefore, before an
application performs an I/O operation involving process code, it must
translate the code back to the original multibyte form.

The following interfaces can be used to convert characters to and from their
multibyte forms:

mbtowe() Converts a multibyte character to a wide character

mbstowces() Converts a multibyte character string to a wide character
string

10-3

Design of the OSF/1 Operating System

wctomb() Converts a wide character to a multibyte character
westombs() Converts a wide character string to a multibyte character
mblen() Returns the number of bytes in a multibyte character

It is possible for a single code set to handle more than one language. For
example, the same code set can be used for Western European languages
such as French, German, Italian, and Spanish. It is also possible to have
more than one encoding method for a single language. OSF/1 includes
support for two different encoding methods for Japanese. See Section 10.5
for further discussion.

10.1.2 Collating Conventions

10-4

English sortiné rules are among the simplest of any language: each letter
sorts to one place. ASCII makes things even simpler by encoding the
characters in alphabetic, case-segregated order. Other languages include a
variety of collation methods. Here are a few examples:

Multilevel In this system, a group of characters all sort to the same
primary location. If there is a tie, a secondary sort is applied.
For example, in French, a, 4, a, and a all sort to the same
primary location. If two strings collate to the same primary
location, the secondary sort goes into effect. These words are
in correct French order:

a
a
abord
apre
apres
apreté
azur

One-to-two character mappings
This system requires that certain single characters be treated
as if they were two. For example, in German, B (Eszett) is
collated as if it were ss.

Internationalization Subsystem

N-to-one character mappings
Some languages treat a string of characters as if it were one
single collating element. For example, in Spanish, the ch and
Il sequences are treated as their own elements within the
alphabet. Dictionaries have separate sections for them (that is,
there are entries for a, b, ¢, ch, d, and so on). The following
words are in correct Spanish order:

canto
construir
curioso
chapa
chocolate
dama

Don’t-care character mappings
In some cases, certain characters may be ignored in collation.
For example, if a - (dash) were defined as a don’t-care
character, the strings re-locate and relocate would sort to the
same place.

In addition to these collation rules, some languages use basically the same
rules as English but still need more than a plain ASCII sort. For example, in
Danish, there are three characters that appear after z in the alphabet: 2, @,
and a. This means that an internationalized application cannot assume that
the range [A-Z, a-z] includes every letter.

A locale may include tables that specify the operations used by applications
to collate characters, compare characters, and perform regular expression
operations within the locale. An application accesses these operations
through the following function calls:

streoll() Collates two multibyte strings based on the locale’s collation
tables

strxfrm() Converts a multibyte string into a form that collates correctly,
according to the locale’s collation table, when collated by
stremp()

weseoll() Collates two wide character strings based on the locale’s
collation tables

wesxfrm() Converts a wide character string into a form that collates
correctly, according to the locale’s collation table, when
collated by wesemp()

10-5

Design of the OSF/1 Operating System

fomatch() Matches filename patterns
regcomp() Compiles regular expressions for later comparisons

regerror() Returns text associated with an error code from regcomp() or
regexec()

regexec() Compares a string to a compiled regular expression

10.1.3 Character Classification

The new characters that are necessary to support languages besides English
need classification. For European languages, the existing classes, such as
alpha and lower, are adequate. The additional characters that are valid for
a given language and class need to be provided. In addition, some characters
have qualities that do not exist in the ASCII code set. For example, the
German B is a lowercase letter that has no single uppercase equivalent.
Therefore, islower() would return TRUE on this letter, while toupper()
would return the original character (B).

10.1.4 International Date and Time Formats

10-6

Users around the world express dates and times using a variety of formatting
conventions. When specifying day and month names, Americans generally
use this format:

Tue, May 22, 1990
However, the French use this format:
mardi, 22 mai 1990

An internationalized system gives users access to their language’s
conventions.

Internationalization Subsystem

Cultural groups also express numeric dates in different ways, even within a
single country. The following examples illustrate common methods for
formatting dates:

3/20/90 American: month/day/year order
20/3/90 . British: day/month/year order
20.3.90 French: day.month.year order

20-111-90 Italian: day-month-year order; uses the Roman numeral for the
month

90/3/20 Japanese: year/month/day order

2/3/20 Japanese Emperor: same order, but the year is the number of
years the current emperor has been reigning, rather than the
Gregorian calendar year

As with dates, there are many conventions for expressing the time of day.
Americans use the 12-hour clock with its a.m. and p.m. designations, while
most people in Europe and Asia use the 24-hour clock for written times.

In addition to the 12-hour/24-hour clock differences, punctuation for written
times can vary. For example:

3:20 pm. American

15h20 French
15.20 German
15:20 Japanese

With different date and time formats come different time zones, which can
vary in one-hour, 30-minute, or even 15-minute increments.

A locale may include tables that specify the format of time and date data for
the locale. An application uses the following interfaces to format time and
date according to the locale:

strftime() Converts a date and time value to a string
strptime() Converts a string to a date and time value

wesftime() Converts a date and time value to a wide character string

10-7

Design of the OSF/1 Operating System

10.1.5 International Numeric and Monetary Formats

The characters used to format numeric and monetary values vary from place
to place. For example, Americans use a . (period) as the radix character (that
is, the character that separates whole and fractional quantities), and a ,
(comma) as a thousands separator. In many European countries, these
definitions are reversed. In addition, for monetary amounts, there are a
variety of conventions for the currency symbol and its placement. For
example:

Numeric Formats

1,234.56 American - comma as thousands separator; period
as radix character
1.234,56 French - period as thousands separator; comma as

radix character

Monetary Formats

$1,234.56 American dollars
kr1.234,56 Norwegian krona
SFrs.1,234.56 Swiss francs
1.234$56 Portuguese escudos

10.2 Internationalization Subsystem Design

10-8

The OSF/1 internationalization subsystem allows applications to behave
differently in different locales by dynamically loading the code and tables
implementing the user’s locale at application runtime.

The requirements of the internationalization subsystem design and the
benefits of object-oriented programming coincide. Defining locales and
related items as objects and providing methods to access these objects
creates clearly defined interfaces and highly modular components that can
be substituted for each other when running an application program.

Internationalization Subsystem

The overall subsystem design consists of three parts:
o Object-oriented framework

+ Object definitions that provide the application programming interface
(APT)

e Object definitions that specify the algorithms and data structures

The object-oriented framework consists of the rules used to define the
subsystem’s objects and the mechanisms used to implement them. The
framework provides a mechanism for implementing the internationalization
API, but is not tied to it. It is possible to implement an entirely different
API using the same object-oriented framework.

The objects defined in the framework provide the internationalization APIL.
This part of the design specifies the relationship between the
internationalization interfaces and the objects in the subsystem. It specifies
which interfaces are included in each object and how interfaces access the
objects.

Within the objects are methods and data structures. This part of the design
specifies the algorithms used within the methods to manipulate the data.

10.3 Application Programming Interface

Although the internationalization subsystem has an object-oriented design,
the objects are not visible to the applications which use the subsystem. The
objects and methods are only used internally to provide the APIL. This
section describes the connections between the API and the object-oriented
subsystem. Figure 10-1 illustrates how an application program interfaces
with the object-oriented internal subsystem.

10-9

Design of the OSF/1 Operating System

Figure 10-1. Internationalization Subsystem Application Programming Interface

Application |

Program : API Objects
I

setiocale() |<«+> - » Object P Object
: Loaders D Repositories
I
i
r ' [
| l |

1

mbtowc() | : > <—>= Methods [
| ! |
| | |
: | Collation :
| : Tables]
I

towupper() |e«t>- <—->} :
| i
[} Character I
! I Attributes !
| ! I
| ! I
: ! iconv :
I : Converters :

|

! L]

This object-oriented design is used for the setlocale() related functions and
for the iconv() converters. Figure 10-2 provides more details on how the
object-oriented design works. It illustrates how the setlocale() function
loads the locale core objects from the repository and how the mbtowc() and
towupper() functions access the locale core structures to execute their
functions. The setlocale() function evaluates the internationalization
environment variables to get the user’s locale, then uses __lc_load() to load
the objects from the object repository.

10-10

Internationalization Subsystem

Figure 10-2. Internationalization Objects

Application I .
Program | API Objects
| | GetsUser's o _ Object
setlocale() e Locale > leload = Repositories
I
: Locale Libraries
: Core Structures Containing Methods
[~ =
| .
btowc Pointer to | [
mbtowc <> m -«
0 : Stub Method - : > mbtowc() :
! Method 1
: ! I
| ! 1
[! 1
| o : I
<! towupper - ointer to - 1
towupper() | : Stub —— Method - ! . tovaur;‘pzr() :
] etho |
|
| I
|
| |
|
I
| towupper <
: Conversion
I Tables

10.4 Message Subsystem

The message subsystem implemented in OSF/1 does not use the object-
oriented paradigm. The API for the message subsystem consists of the
following function calls:

catopen() Opens a version of a named message catalog as determined by
the current locale

catgets() Retrieves a specific message string from the message catalog
catclose() Closes the specified catalog

The catopen() function evaluates the environment variables and the locale
specified by setlocale(), and then stores this information with the catalog
name in the catdtbl table. It does not attempt to open or even find the

10-11

Design of the OSF/1 Operating System

catalog. The catalog is actually opened by the first call to catgets().
Deferring the catalog open until a message is needed can improve the
efficiency of applications. Application startup is faster because the catalog
does not have to be opened. If the application program does not encounter
any conditions that cause a message to be displayed, the overhead of the
catalog open is eliminated entirely.

The catgets() function first tests if the catalog has been opened. If the
catalog has not been opened, it calls the internal interface _cat_do_open(),
which loads the catalog using the information in the catdtbl table and the
mmap() system call.

Using mmap() to access message catalogs has several advantages:

o Catalogs are shared between users. The OSF/1 VM optimization for
caching and sharing memory can be used.

» No input/output descriptor is retained. This simplifies using catalogs in
programs (such as shells) that attempt to manage their input/output
descriptors.

* Message access is fast because file input/output is avoided in favor of
VM page faults.

After the file has been opened, catgets() uses a table of offsets stored in the
message catalog to get a pointer to the message using the set number and
the message _number parameters specified in the call to catgets().

The catclose() function cleans up internal storage so that a subsequent
catopen() can specify a new catalog, but if the same catalog is used again
in the process, the previously loaded copy is reused.

10.5 OSF/1 Code Sets

10-12

OSF/1 accepts data encoded in the series of 8-bit code sets defined by ISO
8859. The first in the series is called ISO 8859-1, the second is ISO 8859-2,
and so on through ISO 8859-9. Although OSF/1 accepts data encoded in
any of the ISO 8859 series, it provides locales for some languages in the ISO
8859-1, ISO 8859-7, and ISO 8859-9 code sets only.

Internationalization Subsystem

ISO 8859-1 is often called Latin-1. It includes the characters necessary for
Western European languages, such as French, German, Italian, and Spanish.
Latin-1 and the other ISO 8859 code sets are arranged so that they include
ASCII characters at their traditional O0x0 through Ox7f code positions,
control characters at positions 0x80 through 0x9f, and additional graphic
characters at positions 0xa0 through Oxff.

Table 10-1 lists the ISO 8859 code sets.

Table 10-1. ISO 8859 Code Sets

Formal Name | Informal Name | Languages Covered

1ISO 8859-1 Latin-1 Western European

1ISO 8859-2 Latin-2 Eastern European

1ISO 8859-3 Latin-3 Southeastern European

ISO 8859-4 Latin-4 Northern European

ISO 8859-5 English and Cyrillic-Based

ISO 8859-6 English and Arabic

1SO 8859-7 English and Greek

ISO 8859-8 English and Hebrew

ISO 8859-9 Western European and Turkish |

Latin-1 includes Danish, Dutch, English, Faeroese, Finnish, French,
German, Icelandic, Italian, Norwegian, Portuguese, Spanish, and Swedish.

Latin-2 includes Albanian, Czech, English, German, Hungarian, Polish,
Rumanian, Serbo-Croatian, Slovak, and Slovene.

Latin-3 includes Afrikaans, Catalan, Dutch, English, Esperanto, German,
Italian, Maltese, Spanish, and Turkish.

Latin-4 includes Danish, Estonian, English, Finnish, German, Greenlandic,
Lappish, Latvian, Lithuanian, Norwegian, and Swedish.

10-13

Design of the OSF/1 Operating System

10.5.1 EUC Code Sets

OSF/1 supports the EUC (Extended UNIX Codes) encoding methods for
encoding Japanese and other ideographic languages and the SJIS (Shifted
Japanese Industrial Standard) code set for encoding Japanese.

EUC is an encoding standard that allows several code sets to be combined.
The first byte of an EUC character determines the code set, the number of
bytes to encode the character, and the display width of the character. Table
10-2 illustrates the OSF/1 Japanese EUC implementation.

Table 10-2. OSF/1 Japanese EUC Code Set Encoding

Character | Character | Value of Total Number | Display
Type Set First Byte of Bytes Type
ASCII 0 0x00—O0x7F 1 1
Kaniji 1 0xA1—OFE 2 2
Kana 2 SS2 (0x8E) 2 1
Kaniji 3 SS3 (0x8F) 3 2

In the Japanese EUC multibyte code sets, the bytes following the first one
are always in the range OxA1 through OxFE.

10.5.2 SJIS Code Set

10-14

SJIS allows ASCII to be combined with a standard 16-bit Japanese code set
called JIS X0208. The characteristics associated with a particular value
vary from implementation to implementation. Typically, if the byte has the
Most-Significant Bit (MSB) set to 1, and its value is between either 0x81
and O0x9f, or between Oxe0 and Oxfc, the byte is the first of a 2-byte
character. Any character sequence that does not begin with one of the
special "first of two" bytes is treated as a 1-byte character. If the MSB is off,
that 1-byte character is ASCIL if it is on and in the range of Oxal through
Oxdf, the character is a single-byte phonetic character. Table 10-3 describes
the OSF/1 SJIS encoding method.

Internationalization Subsystem

Table 10-3. OSF/1 SJIS Encoding Method

Character | Value of Total Number

Type First Byte of Bytes

ASCII 0x00-0x7F 1

Kana OxA1-0xDF 1

Kaniji 0x81-0x9F or 2
OxEO0-0xFC

In the OSF/1 implementation, the second byte is always in the range 0x40
through OxFC.

10.6 The iconv Conversion Subsystem

The iconv conversion subsystem converts data encoded in one code set to
data coded in another. Since the code sets it is converting from and to are
independent of the current locale, the iconv conversion subsystem is
independent of the locale objects used in the internationalization subsystem.

The API for the iconv conversion subsystem consists of the following
functions:

iconv_open() Initializes the code set converter

iconv() Converts the specified data

iconv_close() Closes the code set converter

In order for iconv to be able to convert from one code set to another, there
must be present either a method explicitly defined for the conversion or a
conversion table explicitly defined for the conversion. The iconv_open()
function uses the code set names specified in its parameters and the value of
the LOCPATH environment variable to locate an object containing a
conversion method and tables. It will either use the method defined
explicitly for the conversion or, if it cannot find one, it will use a default
method with the tables defined explicitly for the conversion. Any
conversion between two single-byte code sets can use the default method.

10-15

Design of the OSF/1 Operating System

The iconv() function calls the conversion method in the object, which uses
the tables to convert the data.

The genxIt command is used to create the conversion tables.

10.7 Terminal Device Support for Internationalization

One of the distinguishing characteristics of the internationalization
subsystem 1is that it allows a user to select an application’s code set at
runtime. The OSF/1 terminal subsystem has been specifically designed to
support this behavior.

The implementation of the terminal subsystem is STREAMS-based.
STREAMS-based terminal devices are built of several software modules.
When a terminal device file is opened, the STREAMS subsystem creates a
bidirectional data path, or stream, for communications between the user
process and the device. Figure 10-3 illustrates the stream for a terminal that
is configured for operating in the C locale (the default locale provided with
OSF/1).

Figure 10-3. Basic Stream for Terminal Devices

10-16

User
User Process
Space yy

Space Stream
Head

y 1

Idterm
Module

y 1

tty
Device
Driver

Internationalization Subsystem

The stream in Figure 10-3 is composed of the following:

¢ The stream head module, which processes system calls made by user
processes and controls the overall stream activities.

e The line discipline module, which interprets input and output to the
terminal. OSF/I provides ldterm, which is the standard line discipline
for STREAMS-based terminal devices. This module uses the Extended
UNIX Codes (EUC) encoding method for any data it processes. EUC
defines a 7-bit ASCII character format and three multibyte character
formats for applications and terminal devices to use. The ldterm
module will accept data in any or all of these formats simultaneously. If
the application or terminal device driver does not use an EUC code set
and does not translate from this code set into EUC, another module must
be added to the tty device stream for character conversion.

Applications can use other line disciplines that are compatible with the
OSF/1 tty subsystem.

o The hardware-specific device driver, which controls input and output to
the terminal.

Other modules and software drivers can be present on the terminal device
stream for any data processing and device control that is required.

Some applications use pseudoterminals rather than real terminals. One
example is X-windows. Another example is a process that remotely logs
into another computer. Both applications operate in the client and server
mode, where two processes communicate with each other without an
intervening hardware device.

Just as it does for tty devices, the kernel automatically configures the stream
for a pty when the device is opened. Applications that want to execute with
a different device stream configuration must add and remove modules.

The pty subsystem presents the application with an interface identical to the
tty subsystem. It defines two devices, called the "master" and "slave"
devices. The slave device, which provides the interface to the user process,
is manipulated by another process through the master half of the pty.

Figure 10-4 illustrates a basic pty device stream.

10-17

Design of the OSF/1 Operating System

Figure 10-4. Basic Stream for Pseudoterminal Devices

User Process
____________ S ———
pty Master ! pty Slave
User File Descriptor : File Descriptor
Space \ J
Kernel \ \
Space Stream Stream
Head Head
A ¢ T
Idterm
Module
\ y 1
Master h— Slave
Device Device
Driver > Driver

To construct a pty device stream, the kernel actually creates two streams.
First, it creates a stream for the master device with the driver ptm* at the
bottom. Then, it creates a stream for the slave device with the driver pts* at
the bottom. In addition, it pushes the ldterm module onto the slave device
stream.

10.7.1 Initialization of Terminal Lines

10-18

The OSF/1 autopush facility allows for the automatic initialization of
terminal lines. This facility consists of a system configuration file (the
autopush.conf file as supplied by OSF/1) and the autopush command. The
system administrator enters the names of the master and minor devices of
the tty and pty devices defined in the system into the configuration file,
along with lists of STREAMS modules to be pushed onto the device
streams. Then the system administrator arranges for the autopush
command to be run at system startup. When run, the autopush command
loads the terminal configuration information into the kernel. Subsequently,
any terminal device named in the kernel database will be automatically
configured on device open.

Internationalization Subsystem

10.7.2 Reconfiguring Terminal Lines

The terminal subsystem provides the strchg command to enable users to
interactively configure their terminal lines to change which code sets are
being used. For example, users could configure their terminals so that they
handle SJIS character codes.

Code set converter modules are pushed on the stream in the order specified
on the strgch command line. Converter modules can be placed between the
terminal device driver and ldterm to convert characters back and forth
between the keyboard and the line discipline module, and between ldterm
and the stream head to convert characters back and forth between the line
discipline module and the application.

Terminal streams can also be reconfigured within applications. An
application uses the I POP ioctl() call to pop ldterm and the other modules
from the stream, and the I PUSH ioctl() call to push the code set converter
modules and ldterm on the stream.

10-19

Chapter 11

File Management

From the perspective of a user process, all objects that provide I/O are
represented by files in the file system. Each file that a user process has
access to is represented by a file descriptor. A file descriptor might
represent an open file, a stream, a device, or a network socket, but a uniform
set of file operations hides the distinctions between various files, devices,
and networks.

This chapter describes the three components of the OSF/1 file management
architecture:

Descriptor Management
The data structures and functions involved in the management
of open files.

Virtual File System
A subsystem that provides a uniform means of access to the
system’s files, thereby allowing OSF/1 to support multiple file
system types. The Virtual File System (VES) translates
generic requests on a file to the specific terms required by the
file’s file system. The VFS also supports the capability to
dynamically add new file system types to the kernel.

11-1

Design of the OSF/1 Operating System

File Systems
OSF/1 provides three major file system types:

o UNIX File System (UFS)
e System V File System (SysV FS)
o Network File System (NFS)

Figure 11-1 shows how these components relate to one another. When a
user process executes a system call to initiate an operation on a file, the
system call causes the process to trap into the kernel. Here, the illusion of
uniformity is preserved until the system call’s request reaches the file layer,
which distinguishes network sockets from file system objects. This chapter
does not discuss sockets; they are discussed in Chapter 12.

Figure 11-1. Architecture of the File Management System

User
User Space
Kernel \
System Calls
et
Descriptor Management (File Layer)
! v presss s yroeee
VFS/Vnode Management : Socket
Y Y Y : Y
UFS NFS SysV : Network Protocols

...

11-2

File Management

11.1 Descriptor Management

All user process I/O in OSF/1 is handled through descriptors. Every active
socket or open file (including directories, links, special files, and so forth) in
a user process is represented by a descriptor. The usual method for a
process to acquire a new descriptor is through either the open() or the
socket() system call. The process uses the descriptor to identify the socket
or file when making an I/O request to the kernel. The file layer (see Figure
11-1) distinguishes between file descriptors that represent sockets and those
that represent vnodes. It calls the appropriate I/O routines in each case.

Each descriptor specifies an entry in the per-process open-file table. That
entry points to an open file description in the kernel that contains
information such as the current offset, the descriptor type, the reference
count, the set of available operations, and a pointer to the associated socket
or vnode. Figure 11-2 shows that a file descriptor references a vnode (or a
socket) by selecting an entry in the per-process description table, which in
turn points to an open file description. The open file description specifies a
vnode or a socket.

Figure 11-2. File Descriptor Reference to Open File Description
User |Kernel
Space | Vnodes
|
|
File | Per—process Open
; +—> Descriptor > File
Descriptor : Table Description
User |
Process ‘ Sockets

The per-process open file table is shared among all the threads of a process,
and thus the threads share the same set of file descriptors. As soon as one
thread obtains a new file descriptor, it is immediately seen by all the other
threads in the process. When a process forks, its per-process open file table
is copied to the child, thereby sharing all the open file descriptions. File
descriptions subsequently obtained by either parent or child are not shared.

11-3

Design of the OSF/1 Operating System

File descriptors can be marked close-on-exec, in which case they are closed
if the process calls exec(). Descriptors that are not marked close-on-exec
remain open after a call to exec().

11.1.1 Data Structures

Figure 11-3 shows an example of open file descriptions. A process, P1,
consists of three threads, T1, T2, and T3. These threads all share the same
set of descriptors and the same per-process table. (The synchronization of
thread access to the per-process data is discussed later in this chapter.)
Among P1’s descriptors are two that reference the open file descriptions D1
and D2. D1 points to a socket, and D2 points to a vnode.

11-4

File Management

Figure 11-3. A Process and Its Open File Descriptions

Open File
Descriptions Socket
P1 D1 //////;r S1

Vnode
P1
D2 VA
Per—Process
Open File - /
Table

Figure 11-4 shows two additional levels of shared access. Two processes,
P1 and P2, share access to the single open file description D2, and thus share
the file object represented by vnode V1. The situation occurs when a
process forks, leaving two processes holding the same description. Because
they share an open file description, they see the same value for the current
offset. Process P3 also shares access to V1, but through a separate open file
description, having used an independent call to open().

Processes do not normally share sockets, except by inheritance through
fork(), because of the nature of sockets, which provide new, unique
instances when created through the socket() system call. For a discussion
of sockets, see Chapter 12.

11-5

Design of the OSF/1 Operating System

Figure 11-4. Processes Sharing a Vnode

P1
Per-Process
Open File
Table

P2
Per—Prc

Open File
Table

P3
Per—Process
Open File
Table

11-6

RNVARN

/

Open File
Descriptions
D1
Socket
S1
D2
Vnode
Vi
D3
Vnode
V2
D4

File Management

11.1.2 Synchronization on Descriptors

All threads of a process share the per-process open file table. Threads using
any of the following operations must synchronize on the table:

¢ Allocation and deallocation of file descriptors
» Access to the contents of the open file description itself
» Access to the file or socket

The second and third operations pertain to synchronization between all
threads that share a particular open file description, not just those within a
single process.

In the first case, allocation and deallocation of the file descriptors, a lock on
the per-process open file table guarantees consistent information during the
time the thread is looking for an empty slot in the table, or when it is
retrieving an open file description through a valid file descriptor.

A special situation is worthy of note. If one thread were obtaining a file
descriptor while another called close() to deallocate the open file
description, the first thread could obtain a descriptor referring to nothing.
To avoid this circumstance, the thread obtaining the descriptor increments
the reference count on the open file description before releasing the lock,
preventing deallocation. The reference is released when the operation is
completed.

The second case, accessing the contents of the open file description, uses a
lock to protect the description contents.

In the third case, file or socket access, all threads sharing access to an object
represented by an open file description must be synchronized to preserve
POSIX semantics. This synchronization protects the offset into the object,
which is kept in the open file description. Any operation that affects the
offset (such as read(), write(), and Iseek()) takes a lock that is released
when the operation has completed and the offset has been modified.

Design of the OSF/1 Operating System

11.2 Virtual File System Management

11-8

This section covers the Virtual File System (VFES) layer and VES operations,
and is primarily concerned with entities at the file system level, as opposed
to the individual file manipulation level.

The OSF/1 VES provides support for multiple file systems of different types.
File system types implemented under the OSF/1 VFS architecture include
UFS, NFS, and System V. VFS support can be extended to include
additional file system types, including file system types that are not based on
the UNIX file system.

OSF/1 VFS implements the traditional UNIX file system interfaces for all
file systems, regardless of their types. To a user process, these interfaces
appear unchanged. A user process can use the traditional UNIX system
calls to open, create, close, delete, and rename files and directories in any
file system. To a user process, file systems of different types are
indistinguishable.

The following terms are important to this discussion:

VES architecture
The mechanisms that enable using multiple file system types
in OSF/1. The VFS architecture consists of two parts: file
system entities and files through vnodes.

VFS layer The file-system-independent operations on file systems, such
as mount(), sync(), and so forth.

VFS operations
Higher level file system operations exported by file systems,
such as mount(), unmount(), and sync().

Vnode layer
File-system-independent operations on individual files,
through vnodes, such as name translation, open(), read(),
write(), and so forth.

Vnode operations
The vnode-level functions exported by file systems
implemented under the VFS.

File Management

11.2.1 An External View of the File System Tree

The file system tree under VFS always starts with a root file system that is
mounted when the system is booted. (The choice of the root file system is a
VFS configuration issue.) Additional file systems come under VFS control
when they are mounted onto the root file system or any other mounted file
system.

Under VES, mount points mark the boundaries between file systems. If a
file system of one type is mounted on a file system of another type, VES
automatically switches its operations (both VFS and vnode) when a user
program crosses the mount-point boundary.

Figure 11-5 shows an example of the basic OSF/1 file system tree.

Figure 11-5. Example of OSF/1 VFS File Tree

Root File
System
UFS
1 —1 P — T~
[dev] |etc| (home) llibl Isbin| (tmp)(usr)(var)
UFS UFS NFS UFS
—T
[bin | [soin| (| x11|) | 1ocal |
Legend : NFS

[] = Directory.

Design of the OSF/1 Operating System

11.2.2 The VFS Switch

The virtual file system switch, or vfssw, is a data structure that represents all
of the file system types currently available in an OSF/1 kernel. The vfssw is
implemented as an array of VFS operation vectors, indexed by file system
type. When performing a VES operation, such as mount(), the kernel uses
the file system type (typically an argument to the system call) to find the
correct VFS operation vector. Through this vector it calls the file system’s
VES function. If no file system matching the type argument is present, an
error is returned.

Although there are typically several file systems statically loaded into the
vfssw, OSF/1 allows file systems to be dynamically loaded and unloaded.
This implies that the vfssw can change at run time. As a result, there are
synchronization requirements placed upon vfssw access. Modifications to
the vfssw must not take place during a mount operation; otherwise, it would
be possible to mount a file system that is being unloaded, or to fail a mount
of a file system that is being loaded. To prevent such errors, a lock protects
the vfssw. Operations that change the vfssw, such as adding and deleting
file system types, hold this lock for writing, while the mount() operation
holds it for reading, preventing modifications while mounting is in progress.

11.2.3 Internal Representation of Mounted File Systems

11-10

In OSF/1 there may be any number of mounted file systems, up to a system-
defined maximum. Each file system type is responsible for setting its own
limit on the number of mounts allowed.

Each mornted file system is represented by a mount structure. The mount
structure is divided into two major sections—file-system-independent and
file-system-dependent. The mount() operation allocates and initializes the
file-system-independent portion, and the umount() operation, if successful,
deallocates it. Individual file systems must allocate, initialize, and
deallocate their own file-system-dependent information. Mount structures
are maintained on a list, one per mount instance.

File Management

In addition to the list, the file-system-independent section contains the
following significant fields:

Operations vector
A pointer to the VFS operations vector for the file system

Covered vnode
A pointer to the vnode of the file which serves as the mount
point for the mount instance

Node list A list of vnodes associated with the file system

Status A statfs structure describing both static and dynamic status
information related to the file system

Data A pointer to file-system-specific mount information; this is not
accessed by the VFS

Locks Several locks for synchronizing access to the mount structure
and to the file system it represents

The mount structure is not exported to user level, and should never be
examined by user programs. A user who requires information on mounted
file systems can use any of several system calls that access the mount
information, such as statfs(), fstatfs(), getfsstat(). These calls pass the
information in the exported structure, struct statfs.

OSF/1 places several semantic restrictions on the mount and unmount
operations:

A single physical file system cannot be mounted in more than one place.
This restriction does not apply to some remote file systems. For
example, it is possible to mount the same remote file system using NFS
in more than one place in the local file system tree. Because this can
cause problems with respect to buffer cache consistency, it is not a
recommended practice.

o Generally, it is not possible to unmount a busy file system. If any
vnodes on a file system are active (that is, they have a reference count
greater than 0 (zero)), the unmount operation will fail. Forcible
unmount of file systems is a feature of the VFS architecture; however,
part of its implementation is file-system-dependent, and no file system
supplied with OSF/1 supports forcible unmount.

11-11

Design of the OSF/1 Operating System

o A block device, that is, a physical file system, that is currently open
cannot be mounted. Conversely, it is also not possible to open a
mounted block device. These restrictions exist to maintain buffer cache
consistency.

11.2.4 Pathname Translation from Name to Vnode

11-12

As mentioned earlier, all open file descriptions reference either a socket or a
vnode. All I/O activity in OSF/1, with the exception of sockets, passes
through the vnode layer. For every regular file, directory, or device file that
is active, there is exactly one vnode representing it.

Operations on files can be grouped into two categories:
o Operations that access files by filename
» Operations that access files by descriptor

Named file operations typically result in a translation of the filename to a
vnode. This name translation is a central function of the VFS
implementation. Once the name has been translated, the file may remain
open (as by the open() system call), in which case it remains referenced by
an open file description, or it may simply be examined for status (as by the
stat() system call), and its reference released. Examples of operations that
use file descriptors are read() and write(). These operations take open file
descriptions that reference previously translated vnodes as arguments, and
operate on file data.

The name translation mechanism takes a pathname as input and returns a
referenced vnode. In OSF/1, this mechanism works at two levels: in the
namei() function of the the VFES layer, and as a vnode operation supplied by
individual file systems. The following discussion primarily concerns the
VES level operation of namei().

File Management

11.2.4.1 The namei() Function

The namei() function performs translation of a pathname to a vnode. It is
the central name translation routine in OSF/1, and can be summarized as

follows:

1. Optionally copy the pathname to an internal buffer. (A flag specifies
whether this has already been done.)

2. Get a starting directory for the lookup routine; this is typically either /
(root) or the process’s current directory.

3. Loop doing the following:

Copy the next component to a buffer.

If the path is .. (dot, dot) and the lookup routine is at the root of a
mounted file system, find the parent vnode to cross the mount
point.

Call the (file-system-specific) lookup routine for the next
component. This function returns a referenced vnode.

If the vnode represents a symbolic link, copy the name to the
internal buffer and continue to loop.

If the vnode is a mount point for another file system, find the root
vnode of the mounted file system (using the VFS_ROOT VFS
operation) and continue to loop.

If there are more pathname components, loop.

4. Return the referenced vnode.

Of course, an error may occur at any stage, in which case namei() returns

the error.

Its activity may be summarized as, "look for pathname component xxx in the
directory represented by vnode dvp," iterated through all the components of
the pathname. For example, the translation of the name /usr/bin/ls would
proceed as follows:

1. Set dvp to the vnode for /, which is well-known.

2. Look up usr in dvp, setting dvp to the vnode for "/usr."

3. Look up bin in dvp, setting dvp to the vnode for "/usr/bin."

11-13

Design of the OSF/1 Operating System

11-14

4. Look up Is in dvp, setting dvp to the vnode for "/usr/bin/ls."
5. Return this vnode.

In the simple case, in which there are no mount points and no symbolic
links, namei() has little extra work to do. In the other cases, it must
perform some logic, summarized as follows:

Mount points
A vnode that identifies a mount point has a special field that
points to the covering mount structure. When such a vnode is
returned by the lookup function (which is file-system-specific),
it must be translated into the root vnode of the mounted file
system. This extra translation is the reponsibility of the VFS
operation, VFS_ROOT, provided by the file system.

Symbolic links
A symbolic link is a particular type of file that contains a
pathname as its data. When namei() encounters a symbolic
link, this pathname is the one to be translated. It copies the
new name into the internal buffer and continues translation.

Parent of mount
When the current directory in namei() is the root of a
mounted file system (other than /), and the current component
is the parent directory, (..), then namei() must traverse the
mount point in the reverse direction. To do so, it must find the
vnode of the covered directory for the mount point, and
perform the translation of .. starting there.

In OSF/1, the input for both namei() and the file-system-specific lookup
operations is the entire pathname being translated. The file system
determines which portion of the pathname it can correctly translate at one
time. Typically, a file system translates one pathname component at a time;
however, it may choose to do more. For example, if a local file system does
the work to correctly recognize and handle symbolic links and mounted file
systems, then it could translate an entire pathname in one call to its lookup
routine.

There are other instances in which a file system may have specific
knowledge of the contents of a pathname that allow it to efficiently translate
multiple components in one call. An example of this is a distributed file

File Management

system that has a well-defined name space and requires expensive name
server calls to translate the components of pathnames. By sending the entire
pathname to the name server in a single call to translate multiple
components, it could gain significantly in performance, especially if the
local name cache is not used.

11.2.4.2 Pathname Translation and Mount Synchronization

Mount and unmount operations change the name space visible during
pathname translation. As a result, it is important that the view of the name
space remain consistent while mount, unmount, and pathname translation
operations are taking place. OSF/1 maintains this consistency in several
ways.

First, newly created mount points have no effect on pathname translation
until they are fully initialized. This ensures that a translation in progress
will either use the old file or the new mount point, and not something in
between. In addition, the pathname translation does not need to wait for the
mount operation to complete.

Also, an unmount operation must first make sure that there is no activity in
the file system before dismantling the mount point. Once an unmount
operation has determined that the file system is inactive, the file system
must remain inactive until the unmount is complete. The types of activity
that must be synchronized with unmount include normal pathname
translation, file system synchronization (which traverses the list of mounted
file systems, writing dirty buffers to stable storage), and the VFS operation,
VFS_FHTOVP, which translates a file handle to a vnode. The
VFS_FHTOVP operation is logically equivalent to pathname translation,
using a file handle instead of a pathname.

All of the operations that are sensitive to unmount operations must hold a
lock during critical sections of their code. This lock prevents unmount from
causing inconsistencies. Once the unmount operation obtains the lock,
operations such as pathname translation, which attempt to access the
affected mount point, are blocked until the unmount has completed, either
successfully or not.

Note that typically, if a file system has active (referenced,) vnodes, it cannot
be unmounted. However, certain file system types in OSF/l1 can be

11-15

Design of the OSF/1 Operating System

11-16

unmounted, even if they have active vnodes (for example, the file-on-file
system). The VFS level, as well as the file systems themselves, must
cooperate and be careful to make sure that no inconsistencies arise from this
type of unmount.

11.2.4.3 The Name Cache

Pathname translation is a frequent activity. Because it involves
successively reading directories and inodes from disk, it is quite expensive.
Access through remote file systems, over a network, can be even more
expensive. OSF/1 minimizes the work of pathname translation by caching
the names found by directory scans for future reference.

OSF/1’s name cache is available to all file systems. The cache is indexed by
a hash value on the pair vp, name, where vp is the vnode that refers to the
directory containing name. The cache management algorithm removes the
least recently used names to make room for new names, ensuring that
frequently used names remain available. OSF/1 also makes a cache entry
when a pathname cannot be translated to a vnode because the pathname
does not correspond to an existing file. This is called negative caching.

Name cache references to vnodes do not increment the vnodes’ usage
counters, and do not prevent the vnodes from being recycled to a different,
underlying file system type.

When a vnode is recycled, it is not economical to search the name cache for
obsolete entries in order to invalidate them, because several different name
cache entries may refer to a single vnode. Instead, the vnode gets a new,
unique v_id field, so that future searches through the cache to the previous
incarnation of the vnode will fail. As a result, memory allocated to a vnode
cannot be deallocated unless a separate action is taken to ensure that all
cache references to the vnode have been removed.

File Management

11.3 Vnode Management

The vnode is the fundamental data structure of the VFS architecture.

Each active object (directories, devices, regular files, symbolic links, FIFO
special files, and so on) in an OSF/1 file system is represented by a unique
vnode structure. The vnode structure is divided into two sections:

File-system-independent
Contains fields that are required by all objects, and that are
used primarily by the VES and vnode layers of the VEFS
architecture.

File-system-dependent
Contains information specific to a file system. This section is
maintained by file system implementations.

11.3.1 The Contents of a Vnode

Most vnodes are allocated and activated during pathname translation.
Before a file system first activates an object, it must allocate a vnode with
which to associate the file-system-dependent information. OSF/1 maintains
a list of vnodes that are available to all file system types. Once a vnode is
initialized to a specific file system type and is referenced, it is no longer
available to other file systems. In addition, its type may not change, except
under the specific conditions of forcible unmount and character device
revocation, which are discussed in other sections of this document.

When a vnode is no longer referenced, it is placed on a free list, making it
available to other file systems. However, its contents remain intact, and the
file system may reactivate it by referencing the same file again, thus
removing the vnode from the free list. Vnodes that remain on the free list
are eventually recycled to other uses. This mechanism allows file systems
to cache information for frequently accessed files.

The following list describes some of the important file-system-independent
fields of the vnode structure.

Flags Contains state information, such as whether the object is a root
directory, the file locking state, and vnode transition states.

11-17

Design of the OSF/1 Operating System

11-18

Reference counts

Each vnode contains two reference counts:
» Active references (for instance, open file references)
o Buffer cache buffers that reference the vnode

The first type of reference is considered "hard" and may not be
released by the vnode architecture. It is up to the user of the
vnode to release such references, for example, upon closing a
file. The second type of reference is considered "soft." These
references are primarily informative and are released when the
buffer is flushed.

File locking information

A count of shared and exclusive file locks for use by flock-
style file locking. POSIX style advisory file locking and
SVID-compatible mandatory file locking are handled
separately, and are indicated by vnode flags fields.

Capability identifier

Type field

An identifier field that is reset when a vnode is recycled. A
cache hit is not valid unless the cache entry’s capability
identifier matches that of the vnode.

Vnodes have types. The type is established upon initialization
and cannot change during the lifetime of the vnode, except in
the cases of forcible unmount and character device revocation.
The following types are used by the OSF/1 VFS:

VNON An allocated but still untyped vnode
VREG A vnode represénting a regular file
VDIR - A directory vnode

VBLK A block device vnode

VCHR A character device vnode

File Management

VLNK A symbolic link vnode

VFIFO A FIFO special file vnode

VSOCK A vnode representing a UNIX domain socket
VBAD An invalid vnode

Vnodes of any type, including VBAD, may be referenced or
free. The vnode operations vector of a vnode of type VBAD
contains functions that return errors.

Operations vector

A pointer to a vector of vnode operations. This vector is
specific to the file system and vnode type of the vnode.

Mount structure pointer

Various lists

A pointer to a mount structure. A valid vnode typically points
to the mount structure of the file system containing the object
that it represents. Invalid vnodes (of type VBAD) always
point to a default mount structure, called the DEADMOUNT.
The DEADMOUNT structure is used as a placeholder, and
has VFS operations that return errors. The mount pointer in
the vnode is set up when the vnode is allocated and initialized
by a file system type.

Lists that contain the vnode as an element. Every vnode is on
a number of lists at any given time, including the following:

Vnode free list
If a vnode’s reference count is zero, it is on the
vnode free list; if its count is non-zero, it is not.

Mount vnode list
If a vnode is active on a specific file system, it is
also on the list of active vnodes for that file
system.

Offset of last read

Buffer cache

The current byte index into a file being read.

Lists of buffers that reference the vnode of the object for
which they contain data. The vnode also references the
buffers. There are two lists of buffers for each vnode: clean
and dirty. These lists are traversed by operations such as
sync(), fsync(), and umount().

11-19

Design of the OSF/1 Operating System

Reader and writer counts
Some operations and FIFO special files require reader and
writer counts for an object. These counts are kept in the
vnode. They are incremented on opening and decremented on
closing, as appropriate.

Virtual memory private information
A vnode may be mapped, by either mmap() or exec(), or it
may represent a paging file. If a vnode interacts with the VM
system, it con<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>