
Reference

N33
Publi -

4? cations _

A1110M 33850b

NBS Handbook

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards1 was established by an act of Congress March 3, 1901.

The Bureau’s overall goal is to strengthen and advance the Nation’s science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation’s physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in trade,

and (4) technical services to promote public safety. The Bureau consists of the Institute for

Basic Standards, the Institute for Materials Research, the Institute for Applied Technology,

the Institute for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United

States of a complete and consistent system of physical measurement; coordinates that system

with measurement systems of other nations; and furnishes essential services leading to accurate

and uniform physical measurements throughout the Nation’s scientific community, industry,

and commerce. The Institute consists of the Office of Measurement Services, the Office of

Radiation Measurement and the following Center and divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center

for Radiation Research: Nuclear Sciences; Applied Radiation — Laboratory Astrophysics"

— Cryogenics " — Electromagnetics 2 — Time and Frequency ".

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to

improved methods of measurement, standards, and data on the properties of well-characterized

materials needed by industry, commerce, educational institutions, and Government; provides

advisory and research services to other Government agencies; and develops, produces, and

distributes standard reference materials. The Institute consists of the Office of Standard

Reference Materials, the Office of Air and Water Measurement, and the following divisions:

Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor

Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote

the use of available technology and to facilitate technological innovation in industry and

Government; cooperates with public and private organizations leading to the development of

technological standards (including mandatory safety standards), codes and methods of test;

and provides technical advice and services to Government agencies upon request. The Insti¬

tute consists of the following divisions and Centers:

Standards Application and Analysis — Electronic Technology — Center for Consumer

Product Technology: Product Systems Analysis: Product Engineering — Center for Building

Technology: Structures, Materials, and Life Safety; Building Environment; Technical Evalua¬

tion and Application — Center for Fire Research: Fire Science; Fire Safety Engineering.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research

and provides technical services designed to aid Government agencies in improving cost effec¬

tiveness in the conduct of their programs through the selection, acquisition, and effective

utilization of automatic data processing equipment; and serves as the principal focus within

the executive branch for the development of Federal standards for automatic data processing

equipment, techniques, and computer languages. The Institute consists of the following

divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Informa¬

tion Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and

accessibility of scientific information generated within NBS and other agencies of the Federal

Government; promotes the development of the National Standard Reference Data System and

a system of information analysis centers dealing with the broader aspects of the National

Measurement System; provides appropriate services to ensure that the NBS staff has optimum

accessibility to the scientific information of the world. The Office consists of the following

organizational units:

Office of Standard Reference Data — Office of Information Activities — Office of Technical

Publications — Library — Office of International Relations — Office of International

Standards.

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address

Washington, D.C. 20234.

- Located at Boulder. Colorado 80302.

0F BTANDAJU>*

LIBAAXT

MUMPS Language Standard

Edited by

Joseph T. O'Neill

JUN i 4 137 h

ace;

GLCI

. U 5!

00,11%
I 9 7<b

Systems and Software Division

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D.C. 20234

Sponsored by

National Center for Health Services Research

Health Resources Administration

Department of Health, Education, and Welfare
Rockville, Maryland 20852

U.S. DEPARTMENT OF COMMERCE, Rogers C. B. Morton, Secretary

James A. Baker, III, Under Secretary

Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

Issued January 1976

Library of Congress Cataloging in Publication Data

MUMPS Development Committee.

MUMPS Language Standard.

(National Bureau of Standards Handbook; 118)

Supt. of Docs. No.: C13.ll.118.

1. MUMPS (Computer program Language) I. Institute for

Computer Sciences and Technology. Systems and Software Divi¬

sion. II. National Center for Health Services Research. III. Title.

IV. Series: United States. National Bureau of Standards. Hand¬

book; 118.

QA76.73.M85M85 1975 001.6'424 75-619261

National Bureau of Standards Handbook 118

Nat. Bur. Stand. (U.S.), Handb. 118,144 pages (Jan. 1976)

CODEN: NBSHAP

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1976

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402

(Order by SD Catalog No. C13.ll :118). Price $2.70 (Add 25 percent additional for other than U.S. mailing).

FOREWORD

MUMPS, an acronym for Massachusetts General Hospital Utility Multi¬

programming System, is a high-level, interactive computer program¬

ming language developed for use in complex data handling operations.

Part I of this Standard, the MUMPS Language Specification, MDC/28,

contains the narrative description of the MUMPS language which was

adopted and approved for publication as a Type A release of the

MUMPS Development Committee on March 12, 1975; it supersedes the

Partial MUMPS Language Standard, MDC/25, of October 14, 1974 and the

more recent marked proposal, titled Interim MUMPS Language Specifi¬

cation, MDC 1/8, of February 10, 1975.

Part II, the MUMPS Transition Diagrams, MDC/33, consists of a formal

definition of the language described in Part I. It was adopted and

approved for publication as a Type A release of the MUMPS Develop¬

ment Committee on September 17, 1975; it supersedes the earlier pub¬

lications with the same title, numbered MDC 1/9 and dated March 12,

1975 and August 8, 1975.

Part III, the MUMPS Portability Requirements, MDC/34, identifies

constraints on MUMPS programs and implementations required for port¬

ability of MUMPS application code. It was adopted and approved for

publication as a Type A release of the MUMPS Development Committee

on September 17, 1975; it supersedes the earlier draft proposal with

the same title, numbered MDC 1/10 and dated May 23, 1975.

As a MUMPS user and charter member of the MUMPS Development Commit¬

tee, the National Bureau of Standards is pleased to have the oppor¬

tunity to make this information available through publication of

this NBS Handbook.

Ruth M. Davis, Director

Institute for Computer

Sciences and Technology

National Bureau of Standards

Washington, D.C. 20234

October 14, 19 75

ABSTRACT

This NBS Handbook contains a three-part description of various aspects

of the MUMPS computer programming language. Part I, the MUMPS Language
Specification, consists of a stylized English narrative definition of
the MUMPS language which was adopted and approved for publication as a
Type A release of the MUMPS Development Committee on March 12, 1975.
Part II, the MUMPS Transition Diagrams, represents a formal definition

of the language described in Part I, employing a form of line drawings
to illustrate syntactic and semantic rules governing each of the lang¬
uage elements; it was adopted and approved for publication as a Type A
release of the MUMPS Development Committee on September 17, 1975. Part
III, the MUMPS Portability Requirements, identifies constraints on the
implementation and use of the language for the benefit of parties in¬

terested in achieving MUMPS application code portability; it was adop¬
ted and approved for publication as a Type A release of the MUMPS Dev¬

elopment Committee on September 17, 1975.

A bibliography of other MUMPS Development Committee documents is in¬

cluded.

Key words: Data handling language; interactive computing; interpretive
computer programming language and operating system; medical automation;
minicomputer-based systems; MUMPS Development Committee; MUMPS Language
Standard.

PREFACE

The reader is hereby notified that the language specifications contained

in this Standard have been appro.ved by the MUMPS Development Committee

but that they may be partial specifications which rely on information
appearing in many parts of the MUMPS specifications. The specifications
are dynamic in nature, and the changes reflected by these approved re¬

leases may not correspond with the latest specifications available.

Because of the evolutionary nature of MUMPS specifications, the reader

is further reminded that changes are likely to occur in the specifica¬
tions released herein prior to a complete republication of MUMPS speci¬

fications .

This document may be reproduced in any form so long as acknowledgment of
the source is made. Anyone reproducing it is requested to include this

preface.

R. Peter Eiricson, Chairman

MUMPS Development Committee
The Institute of Living
Hartford, Connecticut 06106

September 17, 1975

ACKNOWLEDGMENTS

vi

This document is the result of a cooperative effort on the part of the

MUMPS Development Committee, chaired by R. Peter Ericson of the Insti¬
tute of Living, its Subcommittee on Standard Specifications and Lang¬
uage Development, chaired by David A. Bridger of Artronix, Inc., and
that Subcommittee’s Task Group on MUMPS Standardization, chaired by

Jack Bowie of the Massachusetts General Hospital. Part I was prepared

by Melvin E. Conway under Contract No. 5-35770 with the National Bureau

of Standards. Part II was prepared by David D. Sherertz and Anthony I.
Wasserman under Contract No. 4-35840 with the National Bureau of Stand¬
ards. Part III \<ras prepared by Edward A. Gardner and Carl B. Lazarus
under Purchase Orders No. 409767 and 512576, respectively, from the
National Bureau of Standards. The work was authorized under the terms

of an interagency agreement between the National Center for Health Ser¬
vices Research, Health Resources Administration, U.S. Department of
Health, Education, and Welfare and the Institute for Computer Sciences

and Technology, National Bureau of Standards, U.S. Department of Com¬
merce. >irr, _ _ . . .

MDC Participants
Institution Participant(s)

Advanced Medical Systems Corporation.Stanley M. Rose
Artronix, Inc.David A. Bridger

B-D Spear.Charles M. Smith
Baylor College of Medicine.David B. Brown, Rudolph F. Trost
Beth Israel Hospital..Robert F. Beckley III
Community EKG Interpretive Service.James Cruce
Dartmouth College.William Campbell
Department of Health, Education, and Welfare (HRA)....Donald R. Barnes,
..William V. Glenn, Jr.

Department of Health, Education, and Welfare (NIH).David B. Swedlow
Department of Health, Education, and Welfare (NLM)....David C. Hartmann

Digital Equipment Corporation.Roger S. Gourd, Robert D. Shear,
..Elisabeth Sopka

Georgetown University.David L. Williams

Georgia Institute of Technology.Fred R. Sias
Health Care Management Systems, Inc.Leonard L. Hurst
Institute of Living.R. Peter Ericson
Interpretive Data Systems, Inc.Paul L. Egerman, Carl B. Lazarus,
.Phillip T. Ragon

Jefferson Medical College.Robert F. Curley
Massachusetts General Hospital.G. Octo Barnett, Jack Bowie,
.Robert L. Rees, Craig J. Richardson
Meditech, Inc.A. Neil Pappalardo, Richard J. Pietravalle
MITRE Corporation..Richard E. Zapolin
National Bureau of Standards.......Melvin E. Conway, Edward A. Gardner,
..Martin E. Johnson^ Joseph T. O'Neill

Northeastern University.Wendy D. Mela
Regional Health Resource Center.Thomas T. Chen, Henry A. Warner
Stanford University Medical Center....Russell Briggs, Robert A. Greenes
University of California, Davis....Richard F. Walters, Jerome C. Wilcox
University of California, San Francisco.David D. Sherertz,
.Anthony I. Wasserman

University of Massachusetts.Jeffrey Rothmeier
University of Missouri.James L. Lehr
University of Pennsylvania.Martin Tring
University of Tennessee.Larry J. Peck
University of Washington (Seattle).Arden W. Forrey

University of Wisconsin.Ellis A. Bauman, Gary S. Holmes

Washington University (St. Louis).W. Edward Long, Joan Zimmerman

TABLE OF CONTENTS*

Foreword iii

Abstract iv

Preface v

Acknowledgments vi

Table of Contents vii

Part I: MUMPS Language Specification I-i

1. Overview of MUMPS Language Specification 1-1
2. Static Syntax Metalanguage 1-8

3. Static Syntax 1-8

3.1 Basic Alphabet 1-8

3.2 Expression Atoms 1-9
3.3 Expressions 1-21

3.4 Routines 1-26

3.5 General Command Rules 1-27
3.6 Command Definitions 1-32

Part II: MUMPS Transition Diagrams Il-i

1. Introduction to MUMPS Transition Diagrams II-l
2. MUMPS Transition Diagrams II-9

2.1 Routine Execution Diagrams 11-10

2.2 Command Diagrams 11-13
2.3 Command Primitive Diagrams 11-32
2.4 Expression Diagrams 11-48

2.5 Expression Atom Diagrams 11-57

2.6 Function Diagrams 11-66

Part Ill: MUMPS Portability Requirements Ill-i

1. Introduction III-l

2. Expression Elements III-l
3. Expressions III-4

4. Routines and Command Lines III-4

5. Indirection III-5
6. Storage Space Restrictions III-5
7. Nesting III-6

Bibliography

*Note: Each of the three parts is preceded by a more detailed table
of contents.

.

MDC/28

3/12/75

MUMPS LANGUAGE STANDARD

Part I: MUMPS Language
Specification

I-i

Table of Contents

1. Overview of MUMPS Language Specification 1-1

1.1 .Organization of this Document I”1

1.2 Summary of the Language I“1
2. Static Syntax Metalanguage I-7
3. Static Syntax

3.1 Basic Alphabet 1-8

3.2 Expression Atoms 1-9

3.2.1 Names 1-9

3.2.2 Local Variables 1-9

3.2.3 Global Variables I-10

3.2.4 Numeric Literals I-11

3.2.5 Numeric Interpretation of Data 1-13

3.2.6 String Literals 1-14

3.2.7 Special Variables 1-14

3.2.8 Functions 1-16

3.2.9 Unary Operators 1-20

3.3 Expressions 1-21

3.3.1 Arithmetic Binary Operators 1-22

3.3.2 Relational Operators 1-22

3.3.3 Pattern Match 1-23

3.3.4 Logical Operators 1-25

3.3.5 Concatenation Operator 1-25

3.4 Routines 1-26

3.5 General Command Rules 1-27

3.6 Command Definitions 1-32

3.6.1 BREAK 1-32

3.6.2 CLOSE 1-32

3.6.3 DO 1-33

3.6.4 ELSE 1-33

3.6.5 ?0R 1-34

3.6.6 GOTO 1-36

3.6.7 HALT 1-36

3.6.8 HANG 1-36

3.6.9 IF 1-36
3.6.10 KILL 1-37
3.6.11 LOCK 1-38
3.6.12 OPEN 1-39
3.6.13 QUIT 1-40
3.6.14 READ 1-41
3.6.15 SET 1-42
3.6.16 USE 1-43
3.6.17 VIEW 1-44
3.6.18 WRITE 1-44
3.6.19 XECUTE 1-45
3.6.20 Z 1-45

I-iii

1. Overview of MUMPS Language Specification

1.1 Organization of This Document

This document describes the MUMPS language at two levels of detail.

Subsection 1.2 gives an overview of the prominent features of the language,
intended for the reader who is already familiar with at least one existing
dialect. Section 3 describes the static syntax of the language. The
distinction between "static11 and "dynamic" syntax is as follows. The
static syntax describes the sequence of characters in a program as it
appears on a tape in program interchange or on a listing. The dynamic
syntax describes the sequence of characters actually encountered by an

interpreter during execution of the program. The dynamic syntax takes
into account transfers of control and values produced by indirection.
Section 2 describes the metalanguage used for the static syntax.

1.2 Summary of the Language

1.2.1 Character Set

The character set which is used for the interchange of MUMPS
programs and data is the seven-bit USA Standard Code for Information

Interchange (ASCII) defined by ANSI X3.4-1968. Programs may be
written entirely with the common 64-character subset of ASCII. The
character collating sequence is the same as the numeric sequence
of the ASCII character codes.

1.2.2 Routine Structure

A MUMPS routine consists of a sequence of lines. For purposes

of transfer of control, lines may be optionally labeled. A label
is either a conventional MUMPS name (an initial letter or % followed
by alphanumerics), or it is an integer literal.

March 12 1975 1-1

1.2.3 Program Punctuation

The following special characters may occur i

Unary Arithmetic Operators

+ plus
- negate

Unary Logical Operator

? not

Binary Arithmetic Operators

+ addition
- subtraction

* multiplication
/ division

\ division with integer quotient
modulo

Binary Relational Operators

< numeric less than
'< numeric greater than or equal

> numeric greater than
’> numeric less than or equal
= string identity

'= string nonidentity
[string contains

' [string not-contains
] string follows

1] string not-follows
? string pattern match

'? string pattern nonmatch

Binary Logical Operators

& and
’& nand

! or
’ ! nor

Binary String Operator

concatenation

programs.

1-2 March 12, 1975

Delimiters

, argument separation, subscript separation

= value assignment
: post-conditional expression,

subargument separation
() grouping

@ indirection
" string literals
. decimal point in numeric literals
^ preceding routine name in DO, GOTO

E preceding exponent in numeric literals

; comment
space separating command words

Prefixes

global variable names

$ functions, special variable names
% available in names of the programmer's choice

1.2.4 Data Types

Arithmetic operations are performed on strings and produce

numeric values, which are special cases of strings. This approach
to the standard specification does not preclude the use of multiple
data representations within an implementation of the standard.

Any string value may enter into an arithmetic operation; there
is a uniform rule for interpreting a string as a number. Certain

operations deal with integer values, which are special cases of

numeric values; the latter may contain decimal fractions. There
is a uniform rule for interpreting any number (and, by inference,
any string) as an integer.

Certain other operations deal with truth values, which are special
cases of numeric values. There are two truth values: 0 and 1.

The integer value 0 is the truth value 0. The integer value 1 is
the truth value 1. All other numeric values are interpreted as the
truth value 1. The truth value 0 denotes False; the truth value
1 denotes True.

1.2.5 Precedence of Operators

All binary operators are at the same level of precedence.
Application of unary operators precedes application of binary operators.

March 12, 1975 1-3

1.2.6 Commands

At present, the standard contains only program-mode ("indirect")
commands, of which the following are defined.

BREAK provides an access point within the standard for non¬
standard programming and debugging aids.

CLOSE releases one or more devices from ownership.

DO provides a generalized subroutine call.

ELSE permits conditional execution.

FOR controls repetitive execution over a set of values
of a variable.

GOTO provides a generalized transfer of control.

HALT terminates execution.

HANG suspends execution for a specified period of time.

IF permits conditional execution.

KILL controls the elimination of specified variables and
their values.

LOCK provides a generalized interlock facility for coordi¬

nating concurrent processes.

OPEN obtains ownership of one or more devices.

QUIT defines an exit point of FOR or DO.

READ specifies data input.

SET assigns vailues to variables.

USE designates a specific device for input and output.

VIEW provides an access point within the standard for the
examination of machine-dependent information.

WRITE specifies data output.

XECUTE permits execution of strings arising from the expression
evaluation process.

Z reserved for implementation-specific extensions.

All other command words, except those beginning with Z, are
reserved.

1-4 March 12, 1975

1.2.7 Functions

The following functions are currently specified

$ASCII selects a character of a string and returns its code
as an integer.

$CHAR translates a set of integers into a string of characters
whose codes are those integers.

$DATA returns an integer specifying whether a defined value
and/or pointer of a named variable exists.

$EXTRACT returns a character or substring of a string expression,
selected by position number.

$FIND returns an integer specifying the end position of
a specified substring within a string.

$JUSTIFY returns the value of an expression, right-justified
within a field of specified size.

$LENGTH returns the length of a string.

$NEXT returns the lowest numeric subscript value on the
same level, but numerically higher than the last sub¬
script of the named global or local variable.

$PIECE returns a string between two specified occurrences
of a specified substring within a specified string.

$RANDOM returns a pseudo-random number in a specified interval.

$SELECT returns the value of one of several expressions in
a list, selected by the truth values in a second

list of expressions.

$TEXT returns the text content of a specified line of the

routine in which the function appears.

$VIEW reserved for implementation-specific methods of obtaining
machine-dependent data.

$z reserved for definition of implementation-specific

functions.

All other initial letters of function names are reserved

March 12, 1975 1-5

1.2.8 Special Variables

The following special variables are specified,,

$HOROLOG provides the date and time;in a single, two-part value.

$10 identifies the currently assigned I/O device.

$J0B has an integer value which uniquely identifies the
process which evaluates it.

$STORAGE provides the number of unused characters which remain
in a.routine’s partition.

$TEST makes available the truth value determined by the
IF command and by the OPEN, LOCK, and READ with timeouts

$x gives the horizontal cursor position on the current
device.

$Y gives the line number on the current device.

$z reserved for implementation-specific definitions.

All other initial letters of special variable names are reserved.

1-6 March 12, 1975

2. Static Syntax Metalanguage

The primitives of the metalanguage are the ASCII characters and the
metalanguage operators :(definition), [] (option), || (grouping),
... (optional indefinite repetition), L (list), and V (value).

In general, defined syntactic objects will have designations which

are underlined names spelled with lower-case letters, e.g., name, expr,
etc. Concatenation of syntactic objects is expressed in the static syntax
by horizontal juxtaposition. Choice is expressed by vertical juxtaposition.

The ::= symbol denotes a syntactic definition. An optional element is
enclosed in square brackets [], and three dots ... denote that the previous
element is optionally repeated any number of times. The definition of
name, for example, is written:

name ::= % digit
alpha alpha

The vertical bars are used only to group elements for repetition
or to make a group of elements more readable. When there is any danger
of confusing the square brackets in the metalanguage with the ASCII graphics

[and], special care is taken to avoid this. Normally, the square brackets
will stand for the metalanguage symbols.

The unary metalanguage operator _L denotes a list of one or more occur¬

rences of the syntactic object immediately to its right, with one comma
between each pair of occurrences. Thus,

L name is equivalent to name [, name] ...

The binary metalanguage operator V, used in the specification of
indirection, places the constraint on the expratom to its left that it

must have a value which satisfies the syntax of the syntactic object to
its right. For example, one might define the syntax of a hypothetical
EXAMPLE command with its argument list by

examplecommand ::= EXAMPLE ^ L examp1eargument

where

exampleargument
expr

@ expratom V I, exampleargument

This says that, after evaluation of indirection, the command argument
list consists of any number of exprs separated by commas. In the static

syntax (i.e., prior to evaluation of indirection), occurrences of @ expratom
may stand in place of nonoverlapping sublists of command arguments.

Usually, the text accompanying a syntax description incorporating indirection
will describe the syntax after all occurrences of indirection have been
evaluated.

March 9, 1976 1-7

3. Static Syntax

3.1 Basic Alphabet

The routine, which is the object whose static syntax is being described
in Section 3, is a string made up of the following 98 symbols.

The 95 ASCII graphics, including SP (space)
The line-start symbol Is
The end-of-line symbol eol
The end-of-routine symbol eor

In program interchange, the following ASCII characters are used in
place of ls^, eol, and eor.

Is: SP
eol: CR LF
eor: CR FF

When a program is stored internally, the standard does not specify
what forms ls^, eol, and eor take. They may, in fact, be expressed by
means other than characters in the program. When a program is entered
from a keyboard, the standard does not specify what operator procedures

correspond to la, eol, or eor.

The syntactic types graphic, alpha, and digit are defined here in¬
formally in order to save space.

graphic ::= any of the class of 95 ASCII graphics, including
SP (space), represented by u or SP.

alpha ::= any of the class of 52 upper and lower case

letters: A-Z, a-z.

digit ::= any of the class of 10 digits: 0-9.

1-8 March 12, 1975

3.2 Expression Atom expratom

The expression, expr, is the syntactic element which denotes the
execution of a value-producing calculation; it is defined in 3.3. The
expression atom, expratom, is the basic value-denoting object of which

expressions are built; it is defined here.

expratom

lvn

gvn
svn

function
numlit

strlit
(expr)

unaryop expratom

3.2.1

3.2.2

unaryop ::=

Name name

name ::= % digit
alpha alpha

Local Variable Name lvn

name
lvn

)]

@ expratom _V lvn

(Note: apostrophe)

(Note: hyphen)

A local variable name is either unsubscripted or subscripted;
if it is subscripted, any number of subscripts separated by commas
is permitted. An unsubscripted occurrence of lvn may carry a different

value from any subscripted occurrence of lvn.

March 12, 1975 1-9

3.2.3 Global Variable Name gvn

gvn

^ (L_ expr)

Aname [(expr)]

@ expratom V gvn

The prefix A uniquely denotes a global variable name. A global

variable name is either unsubscripted or subscripted; if it is sub¬
scripted, any number of subscripts separated by commas is permitted.
There is permitted an abbreviated form of subscripted gvn, called
the "naked reference", in which the name and an initial (possibly

empty) sequence of subscripts is absent but implied by the value
of the "naked indicator". An unsubscripted occurrence of gvn may

carry a different value from any subscripted occurrence of gvn.

Every executed occurrence of gvn affects the naked indicator
as follows. If, for any positive integer m, the gvn has the nonnaked

form N(yL, v2^, ..., vm), then the m-tuple N, vl, v2^ ...» vm-1, is
placed into the naked indicator when the gvn reference is made.

A subsequent naked reference of the form

^(s_l, s2^, ..., sij (i positive)

results in a global reference of the form

N (vl, v2^ ... , vm-1, s_l, s2^, . .., sij

after which the m+i-l-tuple N, vl, v^?, ..., si-1 is placed into
the naked indicator. Prior to the first executed occurrence of a
nonnaked form of gvn, the value of the naked indicator is undefined.
It is erroneous for the first executed occurrence of gvn to be a
naked reference.

Two types of global references leave the naked indicator undefined.

a. A nonnaked reference without subscripts.
b. A nonnaked reference of the form, or a naked reference

resulting in the form

N(v_l, v2^ ..., vn) (n positive)

for which $D(N(vJL, v2^, ..., vn-1)) < 10.

(If n=l, read: $D(N) < 10.)

1-10 March 12 1975

The effect on the naked indicator described above occurs regard¬

less of the context in which gvn is found; in particular, an assignment

of a value to a global variable with the command SET gvn = expr does

not affect the value of the naked indicator until after the right-

side expr has been evaluated. The effect on the naked indicator

of any gvn within the right-side expr will precede the effect on

the naked indicator of the left-side gvn.

For convenience, glvn is defined so as to be satisfied by the

syntax of either gvn or lvn.

3.2.4 Numeric Literal numlit

The integer literal syntax, intlit, which is a nonempty string

of digits, is defined here.

intlit ::= digit [digit] ...

The numeric literal numlit is defined as follows.

numlit ::= mant [exp]

::= | intlit [. intlit]j
j . intlit
■ i

; n
::= E ; + j intlit

L“ j

mant

exp

The value of the string denoted by an occurrence of numlit is defined

in the following two subsections.

3.2.4.1 Numeric Data Values

All variables, local, global, and special, have values

which are either defined or undefined. If defined, the values

may always be thought of and operated upon as strings. The

set of numeric values is a subset of the set of all data values.

March 12, 1975 1-11

Only numbers which may be represented with a finite number

of decimal digits are representable as numeric values. » A data

value has the form of a number if it satisfies tl|e following

restrictions.

a. It may contain’only digits and the characters

and

b. At least one digit must be present.

c. occurs at most once.

d. The number zero is represented by the one-character

string M0".

e. The representation of each positive number contains

no

f. The representation of each negative number contains

the character followed by the representation of

the positive number which is the absolute value of

the negative number. (Thus, the following restrictions

describe positive numbers only.)

g. The representation of each positive integer contains

only digits and no leading zero.

h. The representation of each positive number less than

1 consists of a followed by a nonempty digit string

with no trailing zero. (This is called a "fraction".)

i. The representation of each positive noninteger greater

than 1 consists of the representation of a positive

integer (called the "integer part" of the number)

followed by a fraction (called the "fraction part"

of the number).

Note that the mapping between representable numbers and

representations is one-to-one. An important result of this

is that string equality of numeric values is a necessary and

sufficient condition of numeric equality.

3.2.4.2 Meaning of numlit

Note that numlit denotes only nonnegative values. The

process of converting the spelling of an occurrence of numlit

into its numeric data value consists of the following steps.

a. If the mant has no place one at its right end.

b. If the exp is absent, skip step c.

c. If the exp has a plus or has no sign, move the "."

a number of decimal digit positions to the right in

the mant equal to the value of the intlit of exp,

appending zeros to the right of the mant as necessary.

If the exp has a minus sign, move the "." a number

of decimal digit positions to the left in the mant

equal to the value of the intlit of exp, appending

zeros to the left of the mant as necessary.

d. Delete the exp and any leading or trailing zeros of

the mant.

e. If the rightmost character is ".", remove it.

f. If the result is empty, make it "0".

1-12 March 12, 1975

3.2.5 Numeric Interpretation of Data

Certain operations, such as arithmetic, deal with the numeric

interpretations of their operands. The numeric interpretation is

a mapping from the set of all data values onto the set of all numeric

values, described by the following algorithm. Note that the numeric

interpretation maps numeric values onto themselves.

(Note: The "head" of a string is defined to be a substring

which contains all of the characters of the string to the left

of a given point and none of the characters of the string to

the right of that point. A head may be empty or it may be the

entire string.)

Consider the argument to be the string S.

First, apply the following sign reduction rules to S as many

times as possible, in any order.

a. If S is of the form + T, then remove the +.

(Shorthand: + T -*■ T)

b. - + T -> - T

c. -T -* T

Second, apply one of the following, as appropriate.

a. If the leftmost character of S is not form the longest

head of S which satisfies the syntax description of numlit.

Then apply the algorithm of 3.2.4.2 to the result.

b. If S is of the form - T, apply step a. above to T and append

a to the left of the result. If the result is M-0",

change it to "0".

The "numeric expression" numexpr is defined to have the same

syntax as expr. Its presence in a syntax description serves to indicate

that the numeric interpretation of its value is to be taken when

it is executed.

numexpr ::= expr

March 12, 1975 1-13

3.2.5.1 Integer Interpretation

Certain functions deal with the integer interpretations

of their arguments. The integer interpretation is a mapping

from the set of all data values onto the set of all integer

values, described by the following algorithm.

First, take the numeric interpretation of the argument.

Then remove the fraction, if present. If the result is empty

or change it to "0".

The "integer expression" intexpr is defined to have the

same syntax as expr. Its presence in a syntax definition serves

to indicate that the integer interpretation of its value is

to be taken when it is executed.

intexpr ::= expr

3.2.5.2 Truth-Value Interpretation

The truth-value interpretation is a mapping from the set

of all data values onto the two integer values 0 and 1, described

by the following algorithm. Take the numeric interpretation.

If the result is not "0", make it "1".

The "truth-value expression" tvexpr is defined to have

the same syntax as expr. Its presence in a syntax definition

serves to indicate that the truth-value interpretation of its

value is to be taken when it is executed.

tvexpr ::= expr

3.2.6 String Literal strlit

Let nonquote temporarily be defined as any of the class of 94

graphics, excluding the quote symbol.

strlit
VV II II

nonquote

ii

In words, a string literal is bounded by quotes and contains

any string of graphics, except that when quotes occur inside, they

occur in adjacent pairs. Each such adjacent quote pair denotes a

single quote in the value denoted by strlit, whereas any other graphic

between the bounding quotes denotes itself. An empty string is denoted

by exactly two quotes.

3.2.7 Special Variable Name svn

Special variables are denoted by the prefix $ followed by one

of a designated list of names. Any of the following defined special

variables satisfies the definition of svn.

1-14 March 9, 1976

Syntax Definition

$H[OROLOG] $H gives date and time with one access. Its

value is D,S where D is an integer value counting

days since an origin specified below, and S is

an integer value modulo 86,400 counting seconds.

The value of $H for the first second of December

31, 1840 after midnight is defined to be 0,0.

S increases by 1 each second and S clears to

0 with a carry into D on the tick of midnight.

$I[0] $1 identifies the current I/O device. See 3.6.2

and 3.6.16.

$J[OB] Each executing MUMPS process has its own job

number, a positive integer which is the value

of $J. The job number of each process is unique

to that process within a domain of concurrent

processes defined by the implementor. $J is

constant throughout the active life of a process.

$S[TORAGE] Each implementation must return for the value

of $S an integer which is the number of characters

of free space available for use. The method

of arriving at the value of $S is not part of

the standard.

$T[EST] $T contains the truth value computed from the

execution of the most recent IF command containing

an argument, or an OPEN, LOCK, or READ with a

timeout.

X
J

</> $X has a nonnegative integer value which approximates

the value of a carriage or horizontal cursor

position on the current line as if the current

I/O device were an ASCII terminal. It is initialized

to zero by input or output of control functions

corresponding to CR or FF; input or output of

each graphic adds 1 to $X. See 3.5.5 and 3.6.16.

-co- $Y has a nonnegative integer value which approximates

the line number on the current I/O device as

if it were an ASCII terminal. It is initialized

to zero by input or output of control functions

corresponding to FF; input or output of control

functions corresponding to LF adds 1 to $Y.

See 3.5.5 and 3.6.16.

$Z[unspecified] Z is the initial letter reserved for defining

nonstandard special variables. The requirement

that $Z be used permits the unused initial letters

to.be reserved for -future enhancement of the

standard without altering the execution of existing

programs which observe the rules of the standard.

March 12, 1975 1-15

3.2.8 Functions function

Functions are denoted by the prefix $ followed by one of a

designated list of names, followed by a parenthesized argument list.

Any of the following specifications satisfies the definition of

function.

$A[SCII](expr)

produces an integer value as follows:

a. -1 if the value of expr is the empty string.

b. Otherwise, the decimal equivalent'of the ASCII code of

the leftmost character of the value of expr.

$A[SCII](exprl , intexpr2)

is similar to $A(exprl) except that it works with the intexpr2th

character of exprl instead of the first. Formally, $A(exprl,intexpr2)

is defined to be $A($E(exprl,intexpr2)).

$C[HAR](L intexpr)

returns a string whose length is the number of argument expressions

which have Integer values in the closed interval [0,127]. Each intexpr

in that interval maps into the ASCII character whose code is the

value of intexpr; this mapping is order-preserving. Each negative¬

valued intexpr maps into no character in the value of $C. Any intexpr

whose value is greater than 127 is erroneous.

$D[ATA](glvn)

returns a nonnegative integer which is a characterization of the

variable named. The value of the integer is p+d, where:

d = 1 if the named variable has a defined value;

d = 0/otherwise;

p = 10 if either:

a. The named variable exists and contains no subscripts,

and there exists (or did exist and was killed) a subscripted

variable with the same name, or

b. The named variable exists and contains n subscripts, and

there exists (or did exist and was killed) a subscripted

variable with m > n subscripts whose first n subscript

values are the same as the values of those in the named

variable;

p = 0 otherwise.

1-16 March 12, 1975

$E[XTRACT](exprl , intexpr2)

returns the intexpr2th character of the value of exprl. That Is,

let m be the value of intexpr2. If m is less than 1 or greater than

$L(exprl), the value of $E is the empty string. Otherwise, the value

of $E is the mth character of the value of exprl. (1 corresponds

to the leftmost character; $L(exprl) corresponds to the rightmost

character.)

$E[XTRACT](exprl , intexpr2 , intexpr3)

returns the string between positions intexpr2 and intexpr3 of the

value of exprl. Let m be the value of intexpr2 and let n be the

value of intexpr3. The following cases are defined:

a. m > n. Then the value of $E is the empty string.

b. m = n. $E(exprl,m,n) = $E(exprl,m).

c. m < n _< $L(exprl). $E(exprl,m,n) = $E(exprl,m) concatenated

with $E(exprl,m+l,n).

d. m < n and $L(exprl) < n. $E(exprl,m,n) = $E(exprl,m,$L(exprl)).

$F[IND](exprl , expr2)

searches for the leftmost occurrence of the value of expr2 in the

value of exprl. If none is found, $F returns zero. If one is found,

the value returned is the integer representing the number of the

character position immediately to the right of the rightmost character

of the found occurrence of expr2 in exprl. In particular, if the

value of expr2 is empty, $F returns 1.

$F[IND](exprl , expr2 , intexpr3)

Let m be the value of intexpr3. $F begins the search at the mth

position of exprl. If no instance of expr2 is found, $F returns

zero; otherwise, $F(A,B,m) = $F($E(A,m,$L(A)),B) + m - 1.

$J[USTIFY] (exprl , intexpr2)

returns the value of exprl right-justified in a field of intexpr2

spaces. Let m be $L(exprl) and n be the value of intexpr2. The

following cases are defined:

a. m n. Then the value returned is exprl.

b. Otherwise, the value returned is

S(n-m) concatenated with exprl, where S(x) is a string

of x spaces.

$J[USTIFY] (numexprl , intexpr2 , intexpr3)

returns an edited form of the number numexprl. Let R be the value

of numexprl after rounding to intexpr3 fraction digits, including

possible trailing zeros. (If intexpr3 is zero, R contains no decimal

point.) The value returned is $J(R,intexpr2). Negative values of

intexpr3 are reserved for future extensions of the $JUSTIFY function.

March 9, 1976 1-17

$L[ENGTH](expr)

returns an integer which is the number of characters in the value

of expr. $L of the empty string is zero.

$N[EXT](glvn)

returns an integer which is a subscript value. Only subscripted

forms of lvn and gvn are permitted. Let lvn or gvn be of the form

Name(s_l, s2^ ..., sn) where sn. has an integer value > -1. If it

exists, the integer value t is returned, where:

a. t is greater than sn., and

b. t is the lowest number such that

$D(Name(s_l, s_2, ..., sn-1, t) is not zero.

If such a t does not exist, -1 is returned. It is an error if sn_

has a noninteger value or an integer value less than -1.

$P[IECE](exprl , expr2 , intexpr3 [, intexpr4])

is defined here with the aid of a function, NF, which is used only

for definitional purposes called "find the position number following

the mth occurrence".

NF(S, D, m) is defined, for strings S, D, and integer m, as follows:

When m _< 0, the result is zero.

When D is not a substring of S, i.e., when $F(S, D) = 0, then the

result is $L(S) + $L(D) + 1.

Otherwise, NF(S, D, 1) = $F(S, D).

For m > 1,

NF(S, D, m) = NF($E(S, $F(S, D), $L(S)), D, m-1) + $F(S, D) - 1.

That is, NF generalizes $F to give the position number of the character

to the right of the mth occurrence of the string D in S.

$P[IECE](exprl , expr2 , intexpr3)

Let exprl, expr2 be the strings S, D. Let intexpr3 be the integer m.

$P(S, D, m) returns the substring of S bounded by but not including

the m - 1th and the mth occurrences of D.

$P(S, D, m) = $E(S, NF(S, D, m-1), NF(S, D, m) - $L(D) - 1).

1-18 March 12, 1975

$P[IECE](exprl , expr2 , intexpr3 , intexpr4)

Let intexpr4 be the integer n. $P(S, D, m, n) returns the substring

of S bounded on the left but not including the m - l'th occurrence

of D in S, and bounded on the right but not;including the nth occurrence

of D in S.

$P(S, D, m, n) = $E(S, NF(S, D, m-1), NF(S, D, n) - $L(D) - 1).

Note that $P(S, D, m, m) = $P(S, D, m).

$R[ANDOM](intexpr)

returns a random or pseudo-random integer uniformly distributed in

the closed interval [0, intexpr -1]. If the value of intexpr is

less than 1, an error will occur.

$S[ELECT](L |tvexpr:expr[)

returns the value of the leftmost expr whose corresponding tvexpr

is true. The process of evaluation consists of evaluating the tvexprs,

one at a time in left-to-right order, until the first one is found,

whose value is true. The expr corresponding to this tvexpr (and

no other) is evaluated and this value is made the value of $S.

An error will occur if all tvexprs are false. Since only one expr

is evaluated at any invocation of $S, that is the only expr which

must have a defined value.

$T[EXT](

+ intexpr

lineref

returns a string whose value is the content of the line of this routine

specified by the argument. Specifically, the entire line, with l£

replaced by one SP and eol deleted, is returned.

If the argument of $T is a lineref, the line denoted by the

lineref is specified. If the argument is + intexpr, the intexprth

line of the routine is specified. The first line is numbered 1;

an error will occur if the value of intexpr is less than 1.

If no such line as that specified by the argument exists, an

empty string is returned. If the line specification is ambiguous,

the results are not defined.

March 12, 1975 1-19

$V[IEW](unspecified)

makes available to the implementor a call for examining machine-dependent

information. It is to be understood that programs containing occurrences

of $V may not be portable.

$Zunspecified

is the name reserved for defining escapes to nonstandard functions.

This requirement permits the unused function names to be reserved

for future use.

3.2.9 Unary Operator unaryop

There are three unary operators: ' (not), + (plus), and - (minus).

Not inverts the truth value of the expratom immediately to its

right. The value of * expratom is 1 if the truth-value interpretation

of expratom is 0; otherwise its value is 0. Note that ’1 performs

the truth-value interpretation.

Plus is merely an explicit means of taking a numeric interpretation.

The value of + expratom is the numeric interpretation of the value

of expratom.

Minus negates the numeric interpretation of expratom. The value

of - expratom is the numeric interpretation of -N, where N is the

value of expratom.

Note that the order of application of unary operators is right-

to-left.

1-20 March 12, 1975

3.3 Expressions expr

Expressions are made up of expression atoms separated by binary string,

arithmetic, or truth-valued operators.

exprtail

binaryop

truthop

expratom [exprtail]

binaryop expratom

[’] truthop

/
\

[?] ? pattern

(Note: underscore)

(Note: hyphen)

relation

logicalop

relation

logicalop

<

>

[
]

&

The order of evaluation is as follows:

a. Evaluate the left-hand expratom.

b. If an exprtail is present immediately to the right, evaluate

its expratom or pattern and apply its operator.

c. Repeat step b. as necessary, moving to the right.

In the language of operator precedence, this sequence implies that

all binary string, arithmetic, and truth-valued operators are at the same

precedence level and are applied in left-to-right order.

Any attempt to evaluate an expratom containing an lvn, gvn, or svn

with an undefined value is erroneous.

March 12, 1975 1-21

3.3.1 Arithmetic Binary Operators

The binary operators + - * / \ // are called the arithmetic

binary operators. They operate on the numeric interpretations of

their operands, and they produce numeric (in one case, integer)

results.

+ produces the algebraic sum.

- produces the algebraic difference.

* produces the algebraic product.

/ produces the algebraic quotient. Note that the sign of

the quotient is negative if and only if one argument is

positive and one argument is negative. Division by zero

is erroneous.

\ produces the integer interpretation of the result of the

above division.

produces the value of the left argument modulo the right

argument. It is defined only for nonzero values of its

right argument, as follows.

A // B = A - (B * floor(A/B))

where floor(x) = the largest integer < x.

3.3.2 Relational Operators

The operators =<■>][produce the truth value 1 if the relation

between their arguments which they express is true, and, 0 otherwise.

The dual operators ’relation are defined by:

A 1 relation B has the same value as '(A relation B)

3.3.2.1 Numeric Relations

The inequalities > and < operate on the numeric interpretations

of their operands; they denote the conventional algebraic "greater

than" and "less than".

3.3.2.2 String Relations

The relations =] [do not imply any numeric interpretation

of either of their operands.

The relation = tests string identity. If the operands

are not known to be numeric and numeric equality is to be tested,

the programmer may apply an appropriate unary operator to the

nonnumeric operands. If both arguments are known to be in numeric

form (as would be the case, for example, if they resulted from

the application of any operator except _), application of a

unary operator is not necessary. The uniqueness of the numeric

representation guarantees the equivalence of string and numeric

equality when both operands are numeric. Note, however, that

the division operator / may produce inexact results, with the

usual problems attendant to inexact arithmetic.
1-22 March 12, 1975

The relation [is called "contains". A, [B is "'true if

and only if B is a substring of A; that is, A [B has the same

value as ''$F(A,B). Note that the empty string is a substring

of every string.

The relation] is called "follows". A] B is true if and

only if A follows B in the conventional ASCII collating sequence,

defined here. A follows B if and only if any of the following

is true.

a. B is. empty and A is not.

b. Neither A nor B is 'empty, and the leftmost character

of A follows (i.e., has a numerically greater ASCII

code than) the leftmost character of B.

c. There exists a positive integer n such that A and

B have identical heads of length n, (i.e., $E(A,l,n) =

$E(B,l,n)) and the remainder of A follows the remainder

of B (i.e., $E(A,n+1,$L(A)) follows $E(B,n+1,$L(B))).

3.3.3 Pattern Match

The pattern match operato'r ? tests the form of the string which

is its left-hand operand. S ? P is true if and only if S is a member

of the class of strings specified by the pattern P.

A pattern is a concatenated list of pattern atoms.

pattern

patatom [patatom] ...

@ expratom V pattern

Assume that pattern has n patatoms. S ? pattern is true if and only

if there exists a partition of S into n substrings

S = SI S2 ... Sn

such that there is a one-to-one order-preserving correspondence

between the Si^ and the pattern atoms, and each Si^ "satisfies" its

respective pattern atom. Note that some of the Si^ may be empty.

Each pattern atom consists of a pattern code patcode or a string

literal strlit, preceded either by an integer literal intlit multiplier

or by the indefinite multiplier ".".

March 12, 1975 1-23

patatom ::= intlit strlit

patcode

C

N

P

patcode ::= A ...

L

U

E

Each patcode is satisfied by any single character in the union

of the classes of characters represented, each class denoted by its

own patcode letter, as follows.

C 33 Control characters, including DEL

N 10 Numeric characters

P 33 Punctuation characters, including SP

A 52 Alphabetic characters

L 26 Lower-case alphabetic characters

U 26 Upper-case alphabetic characters

E Everything (the Entire set of characters)

The strlit is satisfied by, and only by, the value of strlit.

If the indefinite multiplier is present, patatom is satisfied

by a concatenation of any number of strings (including none), each

of which satisfies the patcode or strlit following the multiplier.

If the intlit multiplier is present, patatom is satisfied by

a concatenation of exactly intlit strings, each of which satisfies

the patcode or strlit following the multiplier. In particular, if

the value of intlit is zero, the corresponding Sji is empty.

The dual operator ’? is defined by:

A ’ ? B = ' (A ? B)

1-24 March 12, 1975

3.3.4 Logical Operators

The operators ! and & are called logical operators. (They are

given the names "or" and "and", respectively.) They operate on the

truth-value interpretations of their arguments, and they produce

truth-value results.

A ! B = f 0 if both A and B have the value 0

: 1 otherwise

A & B = / 1 if both A and B have the value 1

0 otherwise

The dual operators T& and ’! are defined by:

A ’ & B = ' (A & B)

A '! B = ’ (A ! B)

3.3.5 Concatenation Operator

The underscore symbol _ is the concatenation operator. It does

not imply any numeric interpretation. The value of A _ B is the

string obtained by concatenating the values of A and B, with A on

the left.

March 12 1975 1-25

3.4 Routines

The routine is the unit of program interchange. In program interchange,

each routine begins with its routinehead, which contains the identifying

routinename, and the routinehead is followed by the routinebody, which

contains the executed code. The routinehead is not part of the executed

code.

routine ::= routinehead routinebody

routinehead ::= routinename eol

routinename ::= name

The routinebody is a sequence of lines terminated by the eor. Each

line ends with eol, starts with ls^ optionally preceded by a label, and

may contain zero or more commands (separated by single spaces) between

Is and eol. Any line may end with a comment immediately preceding the

eol.

routinebody ::= line [line] ... eor

line ::= [label] Is

command [, , command] ... [, , comment

comment

label ::= name

intlit

Is : : = SP (one space)

eol ::= CR LF (two control characters)

eor : : = CR FF (two control characters)

eol

Each occurrence of a label to the left of _ls in a line is called

a "defining occurrence" of label. No two defining occurrences of label

may have the same spelling in one routinebody.

1-26 March 12, 1975

3.5 General command Rules

Every command starts with a "command word" which dictates the syntax

and interpretation of that command instance. The standard contains the

following command words.

B[REAK]

C[LOSE]

D [0]

E[LSE]

F [OR]

G[0T0]

H[ALT]

H[ANG]

I[F]

K[ILL]

L[0CK]

0[PEN]

Q [UIT]

R[EAD]

S [ET]

U[SE]

V[IEW]

W[RITE]

X[ECUTE]

Z[unspecified]

Unused initial letters of command words are reserved for future

enhancement of the standard.

The formal definition of the syntax of command is a choice from among

all of the individual command syntax definitions of 3.6.

syntax of BREAK command

syntax of CLOSE command

command

syntax of XECUTE command

Any implementation of the language must be able to recognize both

the initial letter abbreviation and the full spelling of each command

word. When two command words have a common initial letter, their argument

syntaxes uniquely distinguish them.

For all commands allowing multiple arguments, the form

command word argl, arg2 ...

is equivalent in execution to

command word argl command word arg2

March 12, 1975 1-27

3.5.1 Post Conditionals

All commands except ELSE, FOR, and IF may be made conditional

as a whole by following the command word immediately by the post-conditional

postcond.

postcond ::= [: tvexpr]

If the tvexpr is either absent or present and true, the command is

executed. If the tvexpr is present and false, the command word and

its arguments are passed over without execution.

The postcond may also be used to conditionalize the arguments

of DO, GOTO, and XECUTE.

3.5.2 Spaces in Commands

Spaces are significant characters. The following rules apply

to their use in lines.

a. There may be a SP immediately preceding eol only if the

line ends with a comment. (Since l£ may immediately precede

eol, this rule does not apply to the SP which may stand

for Is.)

b. If a command instance contains at least one argument, the

command word or postcond is followed by exactly one space;

if the command is not the last of the line, or if a comment

follows, the command is followed by exactly one space.

c. If a command instance contains no argument and it is not

the last command of the line, or if a comment follows,

the command word or postcond is followed by exactly two

spaces; if it is the last command of the line and no comment

follows, the command word or postcond is immediately followed

by eol.

3.5.3 Comments

If a semicolon appears in the command word initial-letter position,

it is the start of a comment. The remainder of the line to eol must

consist of graphics only, but is otherwise ignored and nonfunctional.

comment ::= ; [graphic] ...

1-28 March 12, 1975

3.5.4 format in READ and WRITE

The format, which can appear in READ and WRITE commands, specifies

output format control. The parameters of format are processed one

at a time, in left-to-right order.

format #

j

... [? intexpr]

? intexpr

The parameters, which need not be separated by commas when occurring

in a single instance of format, may take the following forms.

! causes a "new line" operation on the current device. Its effect

is the equivalent of writing CR LF on a pure ASCII device.

In addition, $X is set to 0 and 1 is added to $Y.

causes a "top of form" operation on the current device. Its

effect is the equivalent of writing CR FF on a pure ASCII device.

In addition, $X and $Y are set to 0. When the current device

is a display, the screen is blanked and the cursor is positioned

at the upper left-hand corner.

? intexpr produces an effect similar to "tab to column intexpr".

If $X is greater than or equal to intexpr, there is no effect.

Otherwise, the effect is the same as writing (intexpr - $X)

spaces. (Note that the leftmost column of a line is column 0.)

3.5.5 Side Effects on $X and $Y

As READ and WRITE transfer characters one at a time, certain

characters or character combinations represent device control functions,

depending on the identity of the current device. To the extent that

the supervisory function can detect these control characters or character

sequences, they will alter $X and $Y as follows.

graphic: add 1 to $x
backspace: set $X = max($X-l,0)

line feed: add 1 to $Y

carriage return: set $x = 0

form feed: set $Y = 0, $X = 0

March 9, 1976 1-29

3.5.6 Timeout

The OPEN, LOCK, and READ commands employ an optional timeout

specification, associated with the testing of an external condition.

timeout ::= : numexpr

If the optional timeout is absent, the command will proceed

if the condition, associated with the definition of the command,

is satisfied; otherwise, it will wait until the condition is satisfied

and then proceed. $T will not be altered if the timeout is absent.

If the optional timeout is present, the value of numexpr must

be nonnegative. If it is negative, the value 0 is used, numexpr

denotes a t-second timeout, where t is the value of numexpr.

If t = 0, the condition is tested. If it is true, $T is set

to 1; otherwise, $T is set to 0. Execution proceeds without

delay.

If t is positive, execution is suspended until the condition

is true, but in any case no longer than t seconds. If at the

time of resumption of execution the condition is true, $T is

set to 1; otherwise, $T is set to 0.

3'.5.7 Line References

The DO and GOTO commands, as well as the $TEXT function, contain

in their arguments means for referring to particular lines within

any routine (in the case of DO and GOTO) or within the routine executing

the line reference (in the case of $TEXT). This section describes

the means for making line references.

Any line in a given routine may be denoted by mention of a label

which Occurs in a defining occurrence on or prior to the line in

question.

lineref ::= dlabel [+ intexpr]

J label

dlabel j

j @ expratom V dlabel j

If + intexpr is absent, the line denoted by lineref is the one

containing label in a defining occurrence. If + intexpr is present

and has the value n > 0, the line denoted is the nth line after the

one containing label in a defining occurrence. A negative value

of intexpr is erroneous. When label is an instance of intlit, leading

zeros are significant to its spelling.

In the context of DO or GOTO, either of the following conditions

is erroneous.

1-30 March 12, 1975

a. A value of intexpr so large as not to denote a line within

the bounds of the given routine.

b. A spelling of label which does not occur in a defining

occurrence in the given routine.

In any context, reference to a particular spelling of label

which occurs more than once in a defining occurrence in the given

routine will have undefined results.

DO and GOTO can refer to a line in a routine other than that

in which they occur; this requires a means of specifying a routine

name.

routinename

routineref ::=

@ expratom V_ routineref

The total line specification in DO and GOTO is in the form of

an entryref.

entryref

lineref [~ routineref]

~ routineref

If the delimiter A is absent, the routine being executed is

implied. If the lineref is absent, the first line is implied.

3.5.8 Command Argument Indirection

Indirection is available for evaluation of either individual

command arguments or contiguous sublists of command arguments. The

opportunities for indirection are shown in the syntax definitions

accompanying the command descriptions.

Typically, where a command word carries an argument list, as

in

COMMANDWORD ^ _L argument ,

the argument syntax will be expressed as

individual argument syntax

argument

@ expratom V L argument

This formulation expresses the following properties of argument indirection.

a. Argument indirection may be used recursively.

b. A single instance of argument indirection may evaluate

to one complete argument or to a sublist of complete arguments.

Unless the opposite is.explicitly stated, the text of each

command specification describes the arguments after all indirection

has been evaluated.

March 12, 1975 1-31

3.6 Command Definitions

The specifications of all commands follow.

3.6.1 BREAK

B[REAK] postcond [^]
argument syntax unspecified

BREAK provides an access point within the standard for nonstandard

programming aids. BREAK without arguments suspends execution until

receipt of a signal, not specified here, from a device.

3.6.2 CLOSE

C[LOSE] postcond Ij closeargument

expr [: deviceparameters]

@ expratom _V _L closeargument

closeargument

deviceparameters

(expr [: [expr]] ...)

The value of the first expr of each closeargument identifies

a device (or "file" or "data set"). The interpretation of the value

of this expr is left to the implementor. The deviceparameters may

be used to specify termination procedures or other information as¬

sociated with relinquishing ownership, in accordance with implementor

interpretation.

Each designated device is released from ownership. If a device

is not owned at the time that it is named in an argument of an executed

CLOSE, the command has no effect upon the ownership and the values

of the associated parameters of that device. Device parameters in

effect at the time of the execution of CLOSE are retained for possible

future use in connection with the device to which they apply. If

the current device is named in an argument of an executed CLOSE,

the implementor may choose to execute implicitly OPEN P USE P, where

P designates a predetermined default device. If the implementor

chooses otherwise, $10 is given the empty value.

1-32 March 12, 1975

3.6.3 DO

D[0] postcond , , L doargument

doargument

entryref postcond

@ expratom L^ doargument

DO is a generalized subroutine call. Each doargument is executed,

one at a time in left-to-right order. Execution of a doargument

is described below.

a. If postcond is present and false, execution of the doargument

is complete at this point. If postcond is absent, or present

and true, proceed to the following step.

b. Before proceeding to the next argument of this DO or to

the command following this DO, execution continues at the

left end of the line specified by the entryref. Execution

returns to the argument or command following this argument

upon encountering an executed QUIT or eor not within the

scope of a subsequently executed doargument or FOR. The

scope of this doargument extends to the execution of that

QUIT or eor.

3.6.4 ELSE

E[LSE] [^]

If the value of $T is 1, the remainder of the line to the right

of the ELSE is not executed. If the value of $T is 0, execution

continues normally at the next command.

March 12 1975 1-33

3.6.5 FOR

F[OR] lvn = forparameter

forparameter

exprl

numexprl : numexpr2 : numexpr3

numexprl : numexpr2

The "scope" of this FOR command begins at the next command fol¬

lowing this FOR on the same line and ends just prior to the eol on

this line.

FOR specifies repeated execution of its scope for different

values of the local variable lvn, under successive control of the

forparameters, from left to right. Any expressions occurring in

lvn, such as might occur in subscripts or indirection, are evaluated

once per execution of the FOR, prior to the first execution of any

forparameter.

For each forparameter, control of the execution of the scope

is specified as follows. (Note that A, B, and C are hidden temporaries.)

a. If the forparameter is of the form exprl.

1. Set lvn = exprl.

2. Execute the scope once.

3. Processing of this forparameter is complete.

If the forparameter is of the form

numexprl : numexpr2 : numexpr3

and numexpr2 is nonnegative.

1. Set A = numexprl.

2. Set B = numexpr2.

3. Set C = numexpr3.

4. Set lvn = A.

5. If lvn > C, processing of this forparameter is complete.

6. Execute the scope once.

7. If lvn > C-B, processing of this forparameter is complete.

8. Otherwise, set lvn = lvn + B.

9. Go to 6.

c. If the forparameter is of the form

numexprl : numexpr2 : numexpr3

and numexpr2 is negative.

1-34 March 12, 1975

1. Set A = numexprl.

2. Set B = numexpr2.

3. Set C = numexpr3.

4. Set lvn = A.

5. If lvn < C, processing of this forparameter is complete.

6. Execute the scope once.

7. If lvn < C-B, processing of this forparameter is complete

8. Otherwise, set lvn = lvn + B.

9. Go to 6.

d. If the forparameter is of the form

numexprl : numexpr2.

1. Set A = numexprl.

2. Set B = numexpr2.

3. Set lvn = A.

4. Execute the scope once.

5. Set lvn = lvn + B.

6. Go to 4.

Note that form d. specifies an endless loop. Termination of

this loop must occur by execution of a QUIT or GOTO within the scope

of the, FOR. These two termination methods are available within the

scope of a FOR independent of the form of forparameter currently

in control of the execution of the scope; they are described below.

Note also that no forparameter to the right of one of form d. can

be executed.

Note that if the scope of a FOR (the "outer" FOR) contains an

"inner" FOR, one execution of the scope of the outer FOR encompasses

all executions of the scope of the inner FOR corresponding to one

complete pass through the inner FOR's forparameter list.

Execution of a QUIT within the scope of a FOR has two effects.

a. It terminates that particular execution of the scope at

the QUIT; commands to the right of the QUIT are not executed.

b. It causes any remaining values of the forparameter in control

at the time of execution of the QUIT, and the remainder

of the forparameters in the same forparameter list, not

to be calculated and the scope not to be executed under

their control.

In other words, execution of QUIT effects the immediate termination

of the innermost FOR whose scope contains the QUIT.

Execution of GOTO effects the immediate termination of all FORs

in the line containing the GOTO, and it transfers execution control

to the point specified.

March 12, 1975 1-35

3.6.6 GOTO

G[OTO] postcond _ L gotoargument

gotoargument ::= doargument

GOTO is a generalized transfer of control. If provision for
a return of control is desired, DO may be used.

Each gotoargument is examined, one at a time in left-to-right

order, until the first one is found whose postcond is either absent,
or present and true. .If no such gotoargument is found, control is
not transferred and execution continues normally. If such a gotoargument
is found, execution continues at the start of the line it specifies.

See 3.6.5 for a discussion of additional effects of GOTO when

executed within the scope of FOR.

3.6.7 HALT

H[ALT] postcond []

First, LOCK with no arguments is executed. Then, execution
of this process is terminated.

3.6.8 HANG

H[ANG] postcond ^ L, hangargument

J intexpr

hangargument ::=
@ expratom V L^ hangargument ;

Let t be the value of intexpr. If t _< 0, HANG has no effect.
Otherwise, execution is suspended for t seconds.

3.6.9 IF

tvexpr

@ expratom V. L^ if argument

In its argumentless form, IF is the inverse of ELSE. That is,
if the value of $T is 0, the remainder of the line to the right of
the IF is not executed. If the value of $T is 1, execution continues

normally at the next command.

If exactly one argument is present, the value of tvexpr is placed
into $T; then the function described above is performed.

I[F] [^]
L if argument

ifargument ::=

1-36 March 12, 1975

IF with n arguments is equivalent in execution to n IFs, each

with one argument, with the respective arguments in the same order.

This may be thought of as an implied "and" of the conditions expressed

by the arguments.

3.6.10 KILL

K[ILL] postcond

killargument

[_]

L killargument

(L^ lvn)

@ expratom V_ _L killargument

The three argument forms of KILL are given the following names.

a. Empty argument list: Kill Xll.
b. glvn: Selective Kill.

c. (L lvn): Exclusive Kill.

Killing the variable M sets $D(M) = 0 and causes the value of

M to be undefined. Any attempt to obtain the value of M while it

is undefined is erroneous. The value of M remains undefined until

M appears to the left of the delimiter = in an executed SET command.

$D(M) remains 0 until M or a descendant of M appears to the left

of the delimiter = in an executed SET command. Killing a variable

whose $D = 0 has no effect.

To kill a variable with the unsubscripted name N also kills

all subscripted variables with the same name N.

To kill an m-tuply subsctipted variable N(vl, v2^ ..., vm) with

name N and subscript values vl, v_2, ..., vm also kills all n-tuply

subscripted variables N(vl, v2^ ..., vm, virt+l, ..., vn), for all

n > m, with the same N and identical values for the first m subscripts.

(These derived n-tuply subscripted variables are called the "descendants"

of the m-tuply subscripted variable.)

The Kill All form kills all local variables.

The Selective Kill form kills the variables named.

In the Exclusive Kill form lvn must not contain subscripts,

although lvn may have descendants. Exclusive Kill kills all local

variables except those named and their descendants.

If M is not killed but N, a descendant of M, is killed, the

killing does not effect a change to the value of $D(M).

March 12, 1975 1-37

3.6.11 LOCK

LOCK postcond
L lockargument

nref
[timeout]

lockargument (L nref)

nref

@ expratom V L lockargument

[A] name [(L. expr)]

@ expratom V nref

LOCK provides a generalized interlock facility available to

concurrently executing MUMPS processes to be used as appropriate
to the applications being programmed. Execution of LOCK is not affected
by, nor does it directly affect, the state or value of any global
or local variable, or the value of the naked indicator.

Each lockargument specifies a subspace of the total MUMPS name
space for which the executing'process seeks to make an exclusive
claim; the details of this subspace specification are given below.
Prior to evaluating and executing each lockargument, LOCK first un¬
conditionally removes any prior claim on any portion of the name
space made by the process as the result of a prior execution of LOCK.

Then, if a lockargument is present, an attempt is made to claim the
entire subspace defined by the lockargument. If this subspace does

not intersect the union of all other subspaces claimed at this instant
by all other processes defined by the implementor as sharing the
interlock facility, the claim is successfully established and execution

proceeds to the next lockargument or command. If the subspace defined
by the lockargument intersects any other claimed subspace, execution
of this process is suspended until all interfering claims are removed
by one or more other processes, or, when a timeout is present, until
the timeout expires, if that occurs first.

The subspace defined by one lockargument is claimed effectively
all at once or not at all; thus, the observance of appropriate con¬
ventions on the use of the name space by all concurrently executing
processes can eliminate the possibility of races and deadlocks.

If a timeout is present, the condition reported by $T upon re¬
sumption of execution is the successful establishment of the- claim.
If no timeout is present, execution of the lockargument does not
change $T.

1-38 March 12, 1975

The subspace of the total name space defined by each lockargument

is the union of the subspaces defined by each of the name references
nref in the lockargument. Each nref specifies its subspace as follows.

a. If the occurrence of nref is unsubscripted, then the subspace
is the set of the following points: one point for the
unsubscripted variable name nref and one point for each
subscripted variable name N(s.l, ...» s^) for which N has
the same spelling as nref.

b. If the occurrence of nref is subscripted, then the subspace

is the set of the following points: one point for the
spelling of nref after all subscripts have been evaluated
and one point for each descendant of nref. (See KILL for
a definition of descendant.)

3.6.12 OPEN

0[PEN] postcond

openargument

openparameters

L openargument

expr [: openparameters]

@ expratom V L openargument

deviceparameters [timeout]

timeout

The value of the first expr of each openargument identifies

a device (or "file1’ or "data set"). The interpretation of the value
of this expr or of any exprs in deviceparameters is left to the
implementor. (See 3.6.2 for the syntax specification of deviceparameters.)

The OPEN command is used to obtain ownership of a device, and
does not affect which device is the current device or the value of
$10. (See the discussion of USE in 3.6.16.)

For each openargument, the OPEN command attempts to seize exclusive
ownership of the specified device. OPEN performs this function ef¬

fectively instantaneously as far as other processes are concerned;
otherwise, it has no effect regarding the ownership of devices and

the values of the device parameters. If a timeout is present, the
condition reported by $T is the success of obtaining ownership.
If no timeout is present, the value of $T is not changed and process
execution is suspended until seizure of ownership has been successfully
accomplished.

Ownership is relinquished by execution of the CLOSE command.
When ownership is relinquished, all device parameters are retained.
Upon establishing ownership of a device, any parameter for which

no specification is present in the openparameters is given the value
most recently used for'that device; if none-exists, an implementor-

defined default value is used.

March 12, 1975 1-39

3.6.13 QUIT

Q[UIT] postcond [^]

The end-of-routine mark eor is equivalent to an unconditional

QUIT. If the last command of the routine is executed in such a manner
as not to transfer control, or if the last command of the routine
is an executed DO and control is returned, then the effect of executing
off the end of the routine is to execute the QUIT which is implied
by the eor.

The effect of executing QUIT in the scope of FOR is fully discussed
in 3.6.5. Note that eor never occurs in the scope of FOR.

If an executed QUIT is not in the scope of FOR, then it is in

the scope of some doargument or xargument, if not explicitly then
implicitly, because the initial activation of a process may be thought
of as arising from execution of a DO naming the first executed routine
of that process. The effect of executing a QUIT in the scope of
a doargument or xargument is to return control to the most recently

executed doargument or xargument to which control has not yet been
returned by a QUIT. What is executed immediately following the QUIT

is the command, doargument, or xargument immediately following the
doargument or xargument which most recently transferred control and
to which control has not yet been returned. Thus, executed doarguments

and xarguments are added to a list of pending returns from which
execution of a QUIT (not in the scope of FOR) removes entries in
last-in, first-out order.

1-40 March 12, 1975

3.6.14 READ

R[EAD] postcond ^ _L readargument

strlit
format

readargument ::= Ivn [timeout]
* lvn [timeout]

@ expratom V _L readargument

The readarguments are executed, one at a time. In left-to-right
order.

The top two argument forms cause output operations to the current
device; the next two cause input from the current device to the named
local variable. If no timeout is present, execution will be suspended
until the input message is explicitly terminated. (See 3.6.16 for
a definition of "current device".)

If a timeout is present, it is interpreted as a t-second timeout,
and execution will be suspended until the input message is explicitly
terminated, but in any case no longer than t seconds. If t < 0,

t = 0 is used.

When a timeout is present, $T is affected as follows. If the
input message has been explicitly terminated at or before the time

at which execution resumes, $T is set to 1; otherwise, $T is set
to 0.

When the form of the argument is *lvn [timeout], the input message

is by definition one character long, and it is explicitly terminated

by the entry of one character, which is not necessarily from the
ASCII set. The value given to lvn is an integer; the mapping between
the set of input characters and the set of integer values given to
lvn may be defined by the implementor in a device-dependent manner.

If timeout is present and the timeout expires, lvn is given the value -1.

When the form of the argument is lvn [timeout], the input message
is a string of arbitrary length which is terminated by an implementor-
defined procedure, which may be device-dependent. If timeout is
present and the timeout expires, the value given to lvn is the string
entered prior to expiration of the timeout; otherwise, the value
given to lvn is the entire string.

When the form of the argument is strlit, that literal is output

to the current device, provided that it accepts output.

When the form of the argument is format, the output actions
defined in 3.5.4 are executed.

$X and $Y are affected by READ the same as if the command were
WRITE with the same argument list (except for timeouts) and with
each expr value in each writeargument equal, in turn, to the final
value of the respective lvn resulting from the READ.

March 12, 1975 1-41

3.6,15 SET

S [ET] postcond ^ setargument

setargument

glvn
= expr

@ expratom V setargument

SET is the general means for explicitly assigning values to
variables. Each setargument assigns one value, defined by its expr,
to each of one or more variables, each named by one glvn.

Each setargument is executed one at a time in left-to-right
order. The execution of one setargument occurs in the following
order.

a. The glvns to the left of the = are scanned in left-to-right
order and all subscripts are evaluated, in left-to-right

order within each glvn.

b. The expr to the right of the = is evaluated.

c. The value of expr is given to each glvn, in left-to-right
order. For each subscripted glvn of the form N(vl, v2_, ..., vn),

each variable M whose name is of the form N(vl_, v2^ ..., vm)
for all m < n, as well as the unsubscripted variable N,

will be affected as follows.

1. If M already has a "pointer", that is, if $D(M) has

a value of 10 or 11, no change is made to the value

of $D(M).

2. If M has no pointer, that is, if $D(M) has a value

of 0 or 1, then it is given a pointer. If $B(M) was
0 it becomes 10, and if $D(M) was 1 it becomes 11.

The $D value of the glvn itself is changed as follows:

0 becomes 1
1 remains 1

10 becomes 11
11 remains 11.

That is, the pointer i status is not altered, but the variable's

value becomes defined . If the glvn is a global variable,

the naked indicator is set at the time that the glvn is
given its value. If the glvn is a naked reference, the
reference to the naked indicator to determine the name
and initial subscript sequence occurs just prior to the
time that the glvn is given its value.

1-42 March 12, 1975

3.6.16 USE

U[SE] postcond _ L useargument

useargument
expr [: deviceparameters] |

@ expratom V _L useargument

The value of the first expr of each useargument identifies a
device (or "file" or "data set"). The interpretation of the value
of this expr or of any exprs in deviceparameters is left to the
implementor. (See 3.6.2 for the syntax specification of deviceparameters.)

Before a device can be employed in conjunction with an input
or output data transfer it must be designated, through execution
of a USE command, as the "current device". Before a device can be
named in an executed useargument, its ownership must have been established
through execution of an OPEN command.

The specified device remains current until such time as a new

USE command is executed. As a side effect of employing expr to designate
a current device, $10 is given, the value of expr.

Specification of device parameters, by means of the exprs in

deviceparameters, is normally associated with the process of obtaining
ownership; however, it is possible, by execution of a USE command,

to change the parameters of a device previously obtained.

Distinct values for $X and $Y are retained for each device.

The special variables $X and $Y reflect those values for the current
device. When the identity of the current device is changed as a
result of the execution of a USE command, the values of $X and $Y
are saved, and the values associated with the new current device

are then the values of $X and $Y.

March 12, 1975 1-43

3.6.17 VIEW

V[IEW] arguments unspecified

VIEW makes available to the implementor a mechanism for examining
machine-dependent information. It is to be understood that routines
containing the VIEW command may not be portable.

3.6.18 WRITE

W[RITE] postcond ^ L writeargument

writeargument
format

* intexpr

@ expratom _L writeargument

The writearguments are executed, one at a time, in left-to-right

order. Each form of argument defines an output operation to the
current device.

When the form of argument is format, the output actions defined

in 3.5.4 are executed. Each character of output, in turn, affects
$X and $Y as described in 3.5.4 and 3.5.5.

When the form of argument is expr, the value of expr is sent
to the device. The effect of this string at the device is defined

by the ASCII standard and conventions. Each character of output,
in turn, affects $X and $Y as described in 3.5.5.

When the form of the argument is *intexpr, one character, not
necessarily from the ASCII set and whose code is the number represented

in decimal by the value of intexpr, is sent to the device. The effect
of this character at the device may be defined by the implementor

in a device-dependent manner.

1-44 March 12, 1975

3.6.19 XECUTE

XfECUTE] postcond

xargument

xargument

expr postcond

@ expratom V _L xargument

XECUTE provides a means of executing MUMPS code which arises
from the process of expression evaluation.

Each xargument is executed one at a time in left-to-right order.
If the postcond in the xargument is false, the xargument has no

effect. Otherwise, if the value of expr is x, execution of the
xargument is equivalent to execution of DO y, where y is the spelling
of an otherwise unused label attached to the following two-line
subroutine considered to be a part of the currently executing routine.

y ls_ x eol

Is QUIT eol

3.6.20 Z

Z[unspecified] arguments unspecified

All command words in a given implementation which are not defined
in the standard are to begin with the letter Z. This convention

protects the standard for future enhancement.

March 12 1975 1-45

MDC/33
9/17/75

MUMPS LANGUAGE STANDARD

Part II: MUMPS Transition
Diagrams

II-i

Table of Contents

Section Diagram

Introduction to MUMPS Transition Diagrams II-l

1.1 Scanning Algorithm II-l

Transition Diagram Scanning Algorithm II-4

1.2 Example II-5

1.3 Common Data Used by the MUMPS Diagrams II-7

MUMPS Transition Diagrams II-9

2.1 Routine Execution Diagrams
routine 11-10

line 11-11
command 11-12

2.2 Command Diagrams

BREAK 11-13
CLOSE 11-14
DO 11-15
ELSE 11-16
FOR 11-17
GOTO 11-18
H commands 11-19
HALT 11-20
HANG 11-21
IF 11-22
KILL 11-23
LOCK 11-24
OPEN 11-25
QUIT 11-26
READ 11-27
SET 11-28
USE 11-29
WRITE 11-30
XECUTE 11-31

II-iii

Section Diagram

2.3 Command Primitives Diagrams

2.4

2.5

postcond 11-32
argcond 11-33
argument 11-34
comend 11-35
indarg 11-36
indnam 11-37
format 11-38
timeout 11-39
entryref 11-40
lineref 11-41
label 11-42
name 11-43
intlit 11-44
dummylist 11-45
deviceparameters 11-46
nref 11-47

ission Diagrams
numexpr 11-48
intexpr 11-49
tvexpr 11-50
expr 11-51
binaryop 11-52
truthop 11-53
pattern 11-54
patatom 11-55
patcode 11-56

ission Atom Diagrams
expratom 11-57
unaryop 11-58

glvn 11-59
lvn 11-60

gvn 11-61
numlit 11-62

strlit 11-63
function 11-64
Actions for function 11-65

:ion Diagrams
$ASCII 11-66
$CHAR 11-67

$DATA 11-68

$EXTRACT 11-69
$FIND 11-70
$JUSTIFY 11-71

$LENGTH 11-72

$NEXT 11-73

$PIECE 11-74

$RANDOM 11-75

$SELECT 11-76

$TEXT 11-77

Il-iv

1. Introduction to MUMPS Transition Diagrams

This document presents the MUMPS dynamic syntax in transition diagram form.
This type of representation was introduced for computer programming language
definition by Melvin E. Conway and was applied to MUMPS in an early specifi¬
cation. * 2

The diagrams serve as a comprehensive implementation outline for the
MUMPS language. It is possible to implement the MUMPS language directly
from these diagrams,3 although specific implementation techniques are not
stipulated in semantic actions of the diagrams. The necessary operations
are given here, but their detailed implementation is left to individual
implementors.

One departure from the MUMPS Language Specification is made in the
transition diagrams. Syntax checking is performed after false post¬
conditionals and after the IF and ELSE commands. This was done in order

to simplify the presentation of the diagrams.

1.1 Scanning Algorithm

A transition diagram is a network of nocjes and directed paths with at least
one entrance node (indicated by the symbol (EM or the symbol \n/ , where n is an

integer such as 1, 2, 3, etc*), and at lgast one exit node (indicated by one of
the following four symbols UM , MU , , f?) ; MU is the "normal" exit).

Each transition diagram defines a syntactic type, whose name is written
in underscored lower-case letters, e.g., expr. A string being scanned through
a "window" which looks at one character at a time is declared to be an instance
of the syntactic type defined by a diagram if and only if the algorithm given
below exactly scans the string while traversing the transition diagram from

an entrance node to an exit node.

Each directed path from one node to another node is either associated with
a symbol "on" that path, or the path is "blank". If a path has a symbol on it,
the symbol can be either the name of a syntactic type defined by a transition
diagram, implying a "call" (possibly recursive) to that diagram, or a symbol
from the primitive alphabet. The primitive alphabet consists of the 95 ASCII
graphics, including SP (space), plus Is, eol, eor, and eoi (the eoi character
is used to indicate the end of argument or sub'-argument level indirection;
its actual form is pot defined).

Conway, M. E., "Design of a Separable Transition-Diagram Compiler,"
Communications of the Association for Computing Machinery, 6:7

(July 1963), pp. 396-408.

2Conway, M. E., "Preliminary MUMPS Language Specification," MDC 1/3,

Draft Proposal, Revised 7/12/74, MUMPS Development Committee.

3Wasserman, A. I. and Sherertz, D. D., "Implementation of the MUMPS Language

Standard," MDC 2/3, 6/15/75, MUMPS Development Committee.

September 17, 1975 II-l

The scanning algorithm works as follows. In the next paragraph, the rule
for following a path from one node to the next node is given. Once that can be
done, the rule is applied iteratively starting at an entrance node until an
exit node is encountered. At this point, a call to the diagram just traversed
has been completed, and the path which made the call may be traversed. If a
dead end is reached, and the window has not moved since entering the diagram, it
only means that the call to this diagram has not succeeded and another path must

be attempted. If a dead end is reached after moving the window over at least
one input symbol since the entrance node, this is the indication of a syntax error.

The ruie for leaving a node is as follows. All nonblank paths are tried,

with primitive symbols tried first, then calls to other diagrams. The blank
path, if it is present, provides the default case and is taken only after all
other paths fail. A path with a primitive symbol on it may be traversed if
and only if the symbol in the window equals the symbol on the path. In this
case, the path is traversed and the window is moved one position to the right.
A path with a call to a transition diagram may be traversed if and only if a

call to that diagram results in successfully reaching an exit node of that
diagram. Any window movement arising from a call to a diagram will be done
within the called diagram.

Any path can direct the performance of an action, indicated by a number in

a square box on the path. The action may be performed after the path is

traversed. Certain actions, called "privileged actions", are always executed
after traversing the path on which they appear; all other actions are executed
only if both the semantic action flags Linact and Comact are True (see the

scanning algorithm). Note that the actions within a called diagram precede the

action specified on the path of the call.

If a diagram contains only one exit type, the X type is used. If it

contains W, X, Y and/or Z, the exit actually used as a result of a given call
may be tested by the caller. The notation used is as follows.

single-exit diagram multiple-exit diagram

symbol

Z

Actions generally make reference to temporary variables, such as
A, B, C, D (see the diagram for the $PIECE function). These variables
are strictly local to each invocation of a diagram. A communication
variable "Result" is used to pass values among diagrams.

II-2 September 17, 19 75

Two branching notations are used in the diagrams,

below.

1 2

These are illustrated

o
\ry diagram

Notation 1 indicates that this syntactic construct continues at the
entrance of the named diagram. In other words, whenever the (jB/ (branch)
symbol is encountered, the logical flow is transferred to the beginning of
the diagram whose name appears to the right of the (b) . This construct is
merely a convenient notation for presentation of the diagrams. Notation 2

indicates a transfer of control to a specific entry point (other than the (e)
entrance) in the named diagram. The n in the symbol \n/ is an integer which
indicates the number of the entry point in the diagram whose name appears to
the right of the \u/ . This construct is used primarily to show clearly the
control flow in the MUMPS language from DO, FOR, and XECUTE commands.

One other construct used in the diagrams is shown below.

1

2

The logical value of "condition" is tested. If it is True, path 1 is taken.
If it is False, path 2 is taken.

The scanning algorithm on the next page is used to move from one "syntax
node" to the next (a syntax node is denoted by a circle). Any of the intervening
branching or testing nodes discussed above are taken automatically. The variable

"case" in the algorithm is used for determining the actual exit from a diagram
call with multiple exit. Underlined parts of the algorithm represent operations

which have not undergone detailed stepwise refinement.

To execute a MUMPS routine, the window is initially positioned to the first
character of the text of the routine, and the routine diagram in Section 2 is
invoked. The algorithm below then scans through the routine text using this
diagram and all subsequently called diagrams.

September 17, 1975 II-3

TRANSITION DIAGRAM SCANNING ALGORITHM
(PASCAL-like)

TYPE alpha = ARRAY[l..l6] OF char;

VARlinact, comact : Boolean; case : char;

FUNCTION traversediagram(diagramname : alpha) : integer;

TYPE exitnode = (X,Y,Z,W);

VAR onepriraitivetraversed, continuescanning, pathtaken, pathexists : Boolean;

exittype : integer;

BEGIN oneprimitivetraversed := FALSE; continuescanning := TRUE;

WHILE continuescanning DO

BEGIN pathtaken := FALSE; pathexists := TRUE;

WHILE pathexists DO

BEGIN

find next path from this syntax node with a primitive symbol on it;

IF such a path found THEN

BEGIN

IF character on the path = character in the window THEN

BEGIN exittype := 1; oneprimitivetraversed := TRUE;

mark this path as the chosen path to be taken;

move window one position to the right;

IF input string is exhausted THEN syntax error

ELSE BEGIN pathtaken := TRUE; pathexists := FALSE; END

END

END

II-4
END;

ELSE pathexists := FALSE;

END;

IF —i pathtaken THEN

BEGIN pathexists := TRUE;

WHILE pathexists DO

BEGIN

find next path from this syntax node with a call to "diagramname";

IF such a path found THEN

BEGIN

exittype := traversediagram("diagramname");

IF exittype/0 THEN

BEGIN pathtaken := TRUE; pathexists := FALSE;

mark this path as the chosen path to be taken;

END

END

ELSE pathexists := FALSE;

END

END;

IF —i (pathtaken) A there is a blank path from this syntax node THEN

BEGIN exittype := 1; pathtaken := TRUE;

mark this path as the chosen path to be taken;

END;

IF pathtaken THEN

BEGIN

CASE exittype OF

1: case := 'X';

2: case : = ' 'Y' ;

3: case := 'Z';

4: case := 'W';

END;

find marked path from this syntax node and move to next syntax node along it;

IF path traversed specified an action THEN

BEGIN
IF (linact A comact) v action is a privileged action THEN DO action;

end;

IF next syntax node is an exitnode THEN

BEGIN

continuescanning := FALSE;

CASE exitnode OF

X: traversediagram := 1;

Y: traversediagram := 2;

Z: traversediagram := 3;

W: traversediagram := 4;

END

END

END

ELSE

BEGIN

IF oneprimitivetraversed THEN syntax error

ELSE

BEGIN traversediagram := 0; continuescanning := FALSE; END ,

END

end / September 17,
♦

1975

1.2 Example

A simple arithmetic expression, sum, can be defined as follows.

sum ::= P[+ sum]

The primitive symbols are P and + .

This example can be used to illustrate recursion and the technique for
scanning text with a transition diagram. The definition above forces a right-
to-left order of evaluation. Because this definition is recursive, a "Stack"

is needed to save intermediate results whenever sum reinvokes itself, items
are saved onto this Stack by a PUT operation, and are retrieved by a GET oper¬
ation, in a last-in-first-out order. The transition diagram for the definition

of sum above is shown below.

3

©
1. Place value of P into A, that is, P —A

2. A + Result —Result

3. A —-s- Result

In order to illustrate the effect of a diagram's structure on the order
of evaluation, this example can be tested on the input string P+Q+R eol , »
where Q and R are separate occurrences of the symbol P, and eol is the string
termination character. The steps below interpret this string using the above
diagram, in the same fashion as the algorithm on the previous page uses the

MUMPS diagrams in Section 2.

1. The window is initially positioned at the first character of the string, P.

2. Path Ea contains the same symbol as in the window (P); consequently, the
path to node a is traversed and the window is moved to the next character
of the input string.

3. Action 1 is executed. The value of P is placed in Ao. (Ao is the zero-
level occurrence of temporary variable A.)

4. Path ab contains the same symbol as in the window (+), causing transversal
of the path to node b, and moving the window to the next character of the
input string.

September 17, 1975 II-5

5. Path bX is a call to sum. PUT AQ on the Stack and start at node E, now
at level 1.

6. Path Ea contains the same symbol as in the window (Q=P), so traverse the
path to node a, moving the window to the next input character.

7. Action 1 is executed, placing the value of Q in Aj.

8. Path ab contains the same symbol as in the window (+), so traverse the path
to node b, and move the window to the next character.

9. Path bX is again a call to sum. PUT A1 on the Stack and start at node E,
now at level 2.

10. As before, path Ea is traversed and the value of R is placed in A2.

11. The default blank path aX is now traversed because there is an end-of-line
symbol in the window, which is not the same as a +.

12. Action 3 is executed, which places the value in A2 (i.e., R) into Result.

13. The,second call to sum is now complete, so effectively path bX can now be
traversed at level 1.

14. Action 2 is executed, by first performing a GET A1 from the Stack, then

forming Aj + Result (which is Q + R), and finally placing the sum into Result.

15. The first call to sum is now successful, so path bX can now be traversed
at level 0.

16. As above, action 2 is executed, doing a GET Aq from the Stack, forming the
sum Aq + Result (which is P + Q 4- R) , and placing this, value into Result.

17. The variable Result now contains the value obtained from scanning the input
string P+Q+R eol. This value can in turn be used in another diagram which
invoked the sum diagram, much as Result was used in the recursive calls of

sum above.

II-6 September 17 1975

1.3 Common Data Used by the MUMPS Diagrams

The following variables are common to the actions used by all of the MUMPS
diagrams of Section 2.

1. Naked indicator. This is the n-tuple described in Section 3.2.3
of MDC/28. It is initially undefined and becomes undefined under

certain circumstances discussed in Section 3.2.3.

2. Devicelist. This is an n-tuple of device names with associated device
parameters. It is added to whenever a new device is successfully se¬
cured with the OPEN command. It is updated when the device parameters
of a previously owned device are changed with the OPEN, CLOSE, or USE
commands.

3. Openlist. This is an n-tuple of device names which are created by the
OPEN command and can be removed with the CLOSE command.

4. Devnam. This is the device name from an argument of the OPEN, CLOSE,
or USE command. It is used by deviceparameters to get default values
for omitted parameters.

5. Argind. This is the argument-level indirection flag. It is initially

False, and is set True if argument-level indirection is encountered.

It is saved each time argument-level indirection is detected.

6. Nameind. This is the name-atom (sub-argument) level indirection flag.

It is initially False, and is set True if name-atom indirection is
encountered. It is saved each time name-atom indirection is detected.

7. Indsw. This is the command-level indirection counter. It is initally zero,
is incremented each time command-level indirection is detected, and is dec¬
remented when an eor is encountered or a QUIT is executed under command-

level indirection.

8. Forsw. This is the FOR command counter. It is initially zero, is in¬

cremented each time a FOR command - is encountered, and decremented when
a FOR has exhausted its FOR list. It is also decremented appropriately
by the QUIT and GOTO commands.

9. Dosw. This is the DO command counter. It is initially zero, is in¬
cremented each time a DO command is encountered, and decremented when
a DO is completed, either from a QUIT or an eor.

10. Ifswitch. This is the name used in the diagrams for the special variable
$TEST. It is initially 0 (False).

11. Linact. This has the value True or False. If False, all semantic actions
are inhibited for all commands until an eol is detected (see the diagrams
for the IF and ELSE commands). Linact is set True prior to executing a
new line of a routine.

September 17, 1975 II-7

12. Comact. This has the value True or False. If Fafse, all semantic
actions are inhibited for the duration of the command (see the diagram
for postcond). Comact is set True prior to executing a new command.

13. Present routine name. This defines the scope of label values. It is
saved when a DO or XECUTE command is executed for the return.

14. Window position. This is a pointer which gives the current character

position being scanned. It is saved whenever a DO or FOR command is
executed, and when any indirection is encountered.

15. Result. This is used to pass values among various diagrams.

16. Timeout. This is used to set up a time limit for the following:
(1) timed-length reads in the READ command, (2) securing device own¬
ership in the OPEN command, and (3) interlocking software resources
in the LOCK command. It is initially 0.

17. Setsw. This is a flag which is always False unless a SET command is
being executed. It is used in the glvn diagram to determine whether
or not the Naked indicator is immediately affected by a global reference.

18. Indcom. This is a communications flag used only by indarg and indnam.

It is always False unless name level indirection is detected in indarg.

Additionally, a Stack is used in the diagrams to explicitly show the mechanism by
which indirection is handled and the transfer of control commands are executed. It
is a simple push-down stack operating on a last-pushed, first-pulled basis. Items

pushed onto the Stack are listed in the semantic actions following a PUT directive.
Items pulled off the Stack are listed in the semantic actions following a GET
directive. A RESET directive is used in a few semantic actions to indicate items
whose values are recovered from the Stack without actually removing them from
the Stack.

II-8 September 17, 1975

2. MUMPS Transition Diagrams

The transition diagrams on the following pages are organized in a
"top-down" manner. The first diagram invoked is always the routine diagram;
it is therefore the highest level diagram. The routine diagram then invokes
the line diagram, which may in turn invoke the command diagram, and so on.

Thus, the logical flow is reflected in the order of presentation of the
diagrams. For ease of reference, the individual command and function diagrams
are organized alphabetically. A number of command primitive diagrams appear
after the command diagrams. These are also organized in a top-down logical
manner, as much as possible. The expression diagrams and expression atom
diagrams are similarly arranged.

September 17, 19 75 II-9

2.1 Routine Execution Diagrams

routine

XECUTE

command

DO

command

1. GET Argind, Forsw, Window position, and Present routine name from Stack.
GET the indirect string off the Stack. Load routine if necessary. Link
window to retrieved Window position

2. GET Argind, Indsw, Forsw, Window position, and Present routine name from

Stack. Load routine if necessary. Link window to retrieved Window position

3. Terminate execution

11-10 September 17, 1975

2. 1 ine

1. Set Linact = True

2. Set Forsw = = 0, Comact = True, Argind = False

(8 Set Comaet = True

©*
Set Linact = True

5. RESET FOR lvn name, FOR body position, loop counters (if any), and FOR
window position from Stack. The value of entry i going to the FOR command
is the number of loop counters + 1. Link window to FOR window position

Privileged action, always executed

September 17, 1975 11-11

command

commands

USE
command

VIEW
command (unspecified)

WRITE
command

XECUTE
command

/— implementation specific
unspecified -Ar-<!> COInmands (unSp3cifled)

11-12 September 17, 1975

2.2 Command Diagrams

1. Suspend operation until receipt of the proceed-from-break signal

BREAK
command

September 17 1975 11-13

CLOSE
command

1. Result —Devnam

2. Null string ("") —► Result

3. Search the Openlist for the device named in Devnam. If not found, take no

further action. Otherwise, perform the following operations:
a. Remove the device specified in Devnam from the Openlist
b. If Result contains any device parameters, find the device named in

Devnam in the Devicelist, and change those parameters which appear in
Result to their new values from Result

c. Perform any termination procedures for the device named in Devnam
according to its -device -parameters in Devicelist

d. If the named device is the current device ($10), execute an OPEN P USE P

where P designates a predetermined default device

11-14 September 17, 1975

DO
command

1. Result —»«- A

2. Dosw + 1 —Dosw. PUT Present routine name. Window position, Forsw, Indsw,

and Argind on Stack. Load routine named in A if necessary. Set Indsw = 0.

Position window to the first character of the entry reference named in A

3. Dosw - 1—Dosw

September 17, 1975 11-15

ELSE
command

1. Set semantic action flag Linact False

Note: If Ifswitch ($TEST) is True (1), then Linact will be set False,
which will inhibit execution of all semantic actions for all

commands until a new line is encountered. However, all syntactic
paths for all commands are traversed (that is, syntax checking is
performed).

11-16 September 17, 1975

A
^
C

-B
W

—
(

B
<

0

FOR
command

©^o1”0

Window position (FOR body position)—=
GET Window position from Stack. PUT B on Stack

Place Result in variable named in A. Result —*■

Result —*-B. PUT B on Stack. Take the numeric
interpretation of the value in A. That is, apply

the rules given in Section 3.2.5 of MDC/28 to A

Result C. PUT C on Stack

Current Window position —► D. RESET FOR body position from Stack
and link window to it. PUT D on Stack

7. Place value of retrieved FOR lvn name into A, value of 1st retrieved
loop counter into B. A + B —->-A. Place the result in A in the FOR
variable. Link window to FOR body position

8. A + B —A. Place the result in A in the FOR variable. Link window
to FOR body position

9. Place value of retrieved FOR lvn name into A, value of 1st retrieved
loop counter into B, value of 2nd retrieved loop counter into C

10. GET FOR window position and loop counters (if any) from Stack

11. Do action 10. GET FOR body position and FOR lvn name from Stack.
Forsw - 1 —► Forsw

September 17, 1975 11-17

GOTO
command

1. Result —A

2. Perforin the following operations in order:
a. Examine Argind. If Argind = True, GET previous level's Argind and

Window position from the Stack. GET the indirect argument off the
Stack. Repeat until Argind = False

b. Examine Forsw. If Forsw > 0, GET that FOR information off the Stack.
Forsw - 1 —»Forsw. Repeat until Forsw = 0

Load routine named in A if necessary. Then position window to the first
character of the entry reference named in A

11-18 September 17, 197$

HALT
command

©
postcond

6

H
commands

September 17, 1975 11-19

HALT
command

1. Perform a LOCK with no arguments (action 1 of the LOCK command),

terminate execution

Then

11-20 September 17, 1975

HANG
command

©
postcond

o

1. If Result > 0, suspend execution for the number of seconds specified
by the value in Result

September 17, 1975 11-21

IF
command

2. Set semantic action flag Linact False

Note: If Ifswitch ($TEST) is False (0), then Linact will be set False,
which will inhibit execution of all semantic actions for all commands
until a new line is encountered. However, all syntactic paths for
all commands are traversed (that is, syntax checking is performed).

11-22 September 17, 1975

KILL
command

1. Kill all local variables

2. Kill the variables whose names contain the name in Result

3. Check to see that Result is at most a 1-tuple (that is, that the local
variable is not subscripted). If it is not, trap execution. Otherwise,

mark the local variables whose names contain the name in Result

4. Kill all local variables except those marked by action 3. Remove the marks

Note: The n-tuple name (a-^, a2» ..., an) contains the m-tuple name
(b]_, b2» •••> bm) if and only if m < n, and for each i where
i = 1, 2, ..., m , a1 = b±.

March 9 1976
II-

LOCK
command

4. Result —*- A

5. Do action 1. Then attempt to claim the subspace of all names in A. This

action suspends execution until it succeeds

6. Set up a timer of Timeout seconds. Do action 1. Then attempt to claim

the subspace of all names in A at least once, and then repeatedly until
the claim succeeds or the timer expires, whichever occurs first

7. False If switch ($TEST)

8. True If switch ($TEST)

11-24 September 17, 1975

1.

OPEN
command

2. Result —*\B

3. Search the Openlist for the device named in Devnam. If found, perform

only operation c. below and take no further action. Otherwise, perform
all the following operations:
a. Attempt to seize exclusive ownership of the device named in Devnam.

This operation suspends execution until it succeeds

b. Add the specified device to the Openlist
c. If B contains any device parameters, find the device named in Devnam

in the Devicelist, and change those parameters which appear in Result
d. Perform any initiation procedures for the device named in Devnam

according to its device parameters in Devicelist

4. Set up a timer of Timeout seconds. Search the Openlist for the device
named in A. If found, perform operation 3c and indicate that the timer has
not expired. Otherwise, attempt to seize exclusive ownership of the device
named in Devnam at least once, and then repeatedly until it succeeds, or

the timer expires, whichever occurs first. If ownership is established
prior to expiration of the timer, perform actions 3b, 3c, and 3d

5. False —If switch $TEST)

6. True —*■ If switch ($TEST)

September 17, 1975 11-25

1. GET current FOR information off the Stack. Forsw - 1 —»■ Forsw

2. RESET FOR lvn name, FOR body position, loop counters (if any), and FOR
window position from Stack. The value of entry i going to the FOR command
is the number of loop counters + 1. Link window to FOR window position

3. GET Argind, Forsw, Window position, and Present routine name from Stack.

GET the indirect string off the Stack. Load routine if necessary. Link
window to retrieved Window position

4. GET Argind, Indsw, Forsw, Window position, and Present routine name from
Stack. Load routine if necessary. Link window to retrieved Window position

5. Terminate execution

11-26 March 9, 1976

READ

3. Wait for input from the current device. Proceed after receipt of one char¬
acter and place the integer character code into variable in A. $X + 1 —^$X

4. Set up a timer of Timeout seconds. Check for receipt of EOM and proceed if

received. Otherwise, proceed after receipt of EOM or expiration of timer,
whichever occurs first

5. Set up a timer of Timeout seconds. Check for receipt of one character and

proceed if received. Otherwise, proceed after receipt of one character or
expiration of timer, whichever occurs first

6. Place input string into variable named in A. True—>• Ifswitch ($TEST).
$X + $L (A) —► $X

7. Place the integer character code of input into variable named in A.
True —*■ If switch ($TEST) . $X + 1 —$X

8. Place the input string so far received into variable named in A.

False —► Ifswitch ($-TEST) . $X + $L(A) —$X

9. Place -1 into variable named in A. False —^Ifswitch ($TEST)

10. Output Result to the current device. $X + $L(Result) —=*- $X

September 17, 1975 11-27

SET
command

2. Null string ("") —»■ B

3. Replace the n-tuple in B with the n + 1-tuple (B:Result)

4. Result —*» B

5. For each of the variables named in B, proceeding from left-to-right,

perform the following operations:
a. Place the next variable in B into A
b. If the variable In A is a global variable, do action 3 of gTvn

c. Place the value in Result in the variable named in A

11-28 September 17, 1975

USE
command

1. Result —*- Devnam

2. Null string ("") —*■ Result

3. Search the Openlist for the device named in Devnam. If not found,

trap execution. Otherwise, perform the following operations:
a. Set $10 to the device named in Devnam, and make this device the

current device for all input and output

b. If Result contains any device parameters, find the device named in

Devnam in the Devicelist, and change those parameters which appear in
Result to their new value from Result

c. Perform any initialization procedures for the device named in Devnam

according to its device parameters in Devicelist

September 17, 1975
11-29

WRITE
command

1. Output to the current device the value of Result as a string. The effect
of this string at the device is defined by the ASCII Standard and conven¬
tions. Update $X and $Y as described in Section 3.5.5 of MDC/28

2. Output the character whose character code is in Result. This output

may be performed in a device-dependent manner

11-30 September 17, 1975

XECUTE
command

1. Result —A

2. Indsw + 1 -►Indsw. Append the string eol Is Q eol to the string in A

and PUT A on Stack. PUT Present routine name, Window position, Forsw, and

Argind on Stack. Position window to the first character of the indirect string

3. Indsw - 1 —Indsw

September 17, 1975 11-31

2.3 Command Primitives Diagrams

postcond

1. Set semantic action flag Comact False

Note: If argcond returns a Y condition (tvexpr is False), postcond

inhibits execution of all semantic actions for the command until
the arguments terminate. However, all syntactic paths are
traversed as normal (that is, syntax checking is performed).

11-32 March 9, 1976

argcond

1. Result A

Note: The argcond diagram scans off the optional post-conditional

wherever it may appear, both after command names and within
command arguments. The meanings of the exits from argcond
are:

X condition is true; execute argument
Y condition is false; skip argument.

September 17, 1975 11-33

argument

Note: The argument diagram is used to scan off the delimiter between the
command word and its arguments (if any). It also handles
indirection on the first argument of a command.

11-34 September 17 1975

comend

©<*c

GET previous level's Argind and Window position from the Stack. GET the

indirect argument from the Stack. Link window to retrieved Window position

Note: The comend diagram is used to scan off the delimiter after each
argument of a command. It also handles termination of argument
level indirection, and tests for argument-level indirection in
the next argument (if one is present).

*Privileged action, always executed

September 17 1975 11-35

indarg

(l^f False—►A. If character iq window is , (comma), SP (space), eol,

or eoi, then True —*• A

2. If Result contains an SP (space) not within quotes, or an eol or eoi,
trap execution. Otherwise, append an eoi to Result, then PUT Result
and current Window position on the Stack. Position window to the

first character of the indirect argument

3. PUT Argind on Stack. True —Argind

4. If character in window is not an alpha, digit, % (percent), @ (com¬
mercial at), or a (circumflex), trap execution. Otherwise, PUT Nameind

on Stack. True —► Nameind

^5^* True —»■ Indcom (used to indicate that name level indirection has been

detected and scanned while syntax checking; see the indnam diagram)

*Privileged action, always executed

11-36 September 17, 1975

indnam

1. Append an eoi to Result, then PUT Result and current Window position
on the Stack. Position window to the first character of the indirect
name. PUT Nameind on Stack. True —Nameind

(2^* False —► Indcom

*Privileged action, always executed

September 17 1975 11-37

format

1. Output top-of-form operation on current device. Place 0 —»”$X, 0 —$Y

2. Output new line operation on current device. Place 0 —>• $X, $Y + 1 —► $Y

3. Result —A. Tab to column A on current device; that is, output
max(0, A - $X) spaces. Place max($X, A) —► $X

11-38 September 17, 1975

timeout

1. If Result > 0, Result —Timeout. Otherwise, 0 —Timeout

September .17 1975 11-39

entryref

1. Null string ("") —►A

2. Result —A

3. Place the 2-tuple (A,"")

4. GET previous level’s Nameind and Window position from the Stack. GET the
indirect name off the Stack. Link window to retrieved Window position

5. Place the 2-tuple (A,Result) —► Result

Note: An entryref is an ordered pair of the form (a,b), where a is a
label + offset and b is a routine name. If a is null, the
interpretation of (a,b) is the first line of routine b. If b is

null, the interpretation is label a in the present routine. If
neither is null, the interpretation is label a of routine b.

11-40 September 17, 1975

1ineref

1. GET previous level's Nameind and Window position from the Stack. GET the
indirect name off the Stack. Link window to retrieved Window position

2. Result —► A

3. Place the 2-tuple (A + 0) —Result

4. If Result < 0, trap execution. Otherwise, place the 2-tuple
(A 4- Result) —► Result

Note: A lineref is of the form label + offset, where offset is a positive
integer n denoting the nth line after the one containing label.

September 17, 1975 11-41

label

11-42 September 17, 1975

name

1. Percent ("%") A

2. Char A

3. Concatenate (A, Char) —** A

4. A —► Result

September 17, 1975
11-43

inti it

digit

0

1. Char —f- A

2. Concatenate (A, Char) —*- A

3. A —Result

11-44
September 17, 1975

dummy!ist

1. Move Window position one to the left

Note: The dummylist diagram is used by the FOR command to scan through

the argument list of the FOR to the body of the FOR.

September 17, 1975 11-45

deviceparameters

1. Null string ("") —►A

2. Replace the n-tuple in A by the n + 1-tuple (A:Result)

3. If there exists a default value for this parameter of the device named
in Devnam, replace the n-tuple in A by the n + 1-tuple (A:d), where d is
the default value. Otherwise append a colon to A to hold this

parameter's position

4. A —► Result

11-46 September 17, 1975

nref

1. Null string ("") —>• A

2. Circumflex ("*")—»• A

3. Concatenate (A, Result) —A

4. PUT Nameind on the Stack. False Nameind

5. Replace the n-tuple in A with the n + 1-tuple (A, Result)

6. GET Nameind from the Stack

7. GET previous level's Nameind and Window position from the Stack. GET the
indirect name off the Stack. Link window to retrieved Window position

8. A —► Result

Note: The result of calling nref is an n-tuple of values, where the first
value is the name, possibly preceded by a and subsequent values
(if any) are subscripts.

March 9 1976 11-47

2.4 Expression Diagrams

numexpr

©
expr

1. Result —► A. Take the numeric interpretation of the value in A. That is,

apply the rules given in Section 3.2.5 of MDC/28 to A. A Result

11-48 September 17, 1975

intexpr

1. Result A. Take the numeric interpretation of the value in A. That is,
apply the rules given in Section 3.2.5 of MDC/28 to A. Remove any fraction.

If the result is the null string (""), or 0—*-A. A—*■ Result

September 17, 19 75 11-49

tvexpr

©
expr

1. Result —*■ A. Take the numeric interpretation of the value in A. That is,
apply the rules given in Section 3.2.5 of MDC/28 to A. If A 4 0, then
1 —A. A —► Result

11-50
September 17, 19 75

expr

1. Result —*- A

2. Operator (Result) —B

3. Operator (not Result) —B

4. Operator (not ?) —► B

5. Operator (?) —*■ B

6. Apply the binary operator in B to A as left operand and Result as right

operand, placing the resulting value in A

7. Apply the pattern in Result to A, placing the resulting truth value in
A. If the operator in B is not ?, logically complement A

8. A —Result

September 17, 1975 11-51

binaryop

1. Char —► Result

11-52 September 17, 1975

truthop

1. Char —*■ Result

September 17, 1975 11-53

pattern

1. Result —*• A

2. If Result is not the null string replace the n-tuple A by the
n + 1-tuple (A, Result)

3. GET previous level’s Nameind and Window,position from the Stack. GET the
indirect name off the Stack. Link window to retrieved Window position

4. A —*• Result

Note: The value of pattern is an n-tuple of patatoms. It may be an
0-tuple.

11-54 September 17, 19 75

patatom

patcode

a

1. Result —*■ A

2. Zero ("0") —A

3. Result —► B

4. Result as "literal" —► B

5. Concatenate (B, Result) —*- B

6. Place the 2-tuple (A,B) —Result

7. If A > 0, do action 6. Otherwise, null string ("") —*- Result

Note: The Result returned by patatom is a 2-tuple, where the value of the
first element is either zero or the value of intlit, and the value
of the second element is either the Result from strlit as "literal",
or a string of patcodes. If intlit returns zero, patatom returns
the null string.

September 17, 1975 ii-:

patcode

1. Char —Result

11-56
September 17, 19 75

2.5 Expression Atom Diagrams

0
m

expratom

1. Null string ("") —*• A

2. Concatenate (A,Result) —>■ A

3. Search the set of local or global variables for the one with the name
contained in Result. If the search is successful, place the value of
the variable into Result. Then do action 5. If the search is not

successful, trap execution

4. If Nameind is True, trap execution. Otherwise, do action 5

5. Apply the unary operators in A (if any) to the value in Result, in a

right-to-left order. Place the result of this application into Result

September 17 1975 11-57

unaryop

1. Char —► Result

11-58 September 17, 1975

1. Set Setsw = False

2. Result —A

3. Perform the following operations in order:
a. If the first value of the n-tuple in A is the naked symbol alone ("""),

substitute the value of the Naked indicator for it. For example, if

A is the n-tuple (", s-^, S2» . .., sn-l) and the Naked indicator is
the m-tuple ('“name, v^, V£, ...» vm_i), then A becomes the

m - 1 +n-tuple ("name, v1} V£, ..., vm_l5 S]_, S£, sn_i)
b. The value in A is now an n-tuple ("name, X]_, X£, . .., xn-l)• If

A is a 1-tuple (no subscripts), or $D(A) < 10, make the Naked indicator

undefined. Otherwise, replace the Naked indicator with the

n - 1-tuple ("name, X]_, X2, ...» xn_2)

September 17, 1975 11-59

1. Result —► A

2. PUT Nameind on the Stack. False—► Nameind

3. Replace the n-tuple in A with the n + 1-tuple (A,Result)

4. GET Nameind from the Stack

5. GET previous level's Nameind and Window position from the Stack. GET the indirect
name off the Stack. Link window to retrieved Window position

6. A —►Result

Note: The result of calling lvn is an n-tuple of values, where the first value is
the name and subsequent values (if any) are subscripts.

11-60 March 9, 1976

2. Concatenate (A, Result) —*■ A

3. PUT Nameind on the Stack. False —^Nameind

4. Replace the n-tuple in A with the n + 1-tuple (A, Result)

5. GET Nameind from the Stack

6. GET previous level's Nameind and Window position from the Stack. GET the
indirect name off the Stack. Link window to retrieved Window position

7 . A —*• Result

Note: The result of calling gvn is an n-tuple of values, where the first

value is either the global name preceded by a , or the "AM alone,
and subsequent values (if any) are subscripts.

March 9, 1976 11-61

numlit

0

1. Period —* - A

2. Remove leading
Otherwise, zero

zeros from Result.
("0”) —A

If Result > 0 , Result —► A.

3. Concatenate (A, A

4. Remove trailing zeros from Result. Concatenate (A, Result) —A.

5. Concatenate (A, "E") —A

6. Concatenate (A, A

7. Remove leading zeros from Result. Concatenate (A, Result) —»• A

8. Convert A to a numeric data value. using the algorithm defined in
Section 3.2.4.2 of MDC/28. Place A —Result

11-62 September 17, 19 75

strlit

1. Null string

2. Concatenate

3. Concatenate

4. A —► Result

("") —► A

(A, Char) —A

(A,,,MM) ► A

September 17, 1975 11-63

function

II-64 September 17, 19 75

Actions for function

1. Place present value of $HOROLOG (date and time) into Result

2. Place present value of $10 (current I/O device) into Result

3. Place present value of $J0B (number of this process) into Result

4. Place present value of $ST0RAGE (remaining available storage) into Result

5. Place present value of $TEST (Ifswitch) into Result

6. Place present value of $X (horizontal cursor position of $10 device) into Result

7. Place present value of $Y (vertical cursor position of $10 device) into Result

September 17 19 75 11-65

2.6 Function Diagrams
$ASCII
function

1. Result —► A

2. One ("1") B

3. Result —B

4. If A is the null string, place -1 into Result. Otherwise, place the

decimal equivalent of the ASCII code of the Bth character of A into Result

11-66 September 17, 1975

$CHAR
function

1. Null string ("") *• A

2. Result —B

3. If B > 127, trap execution. Otherwise, if B > -1, convert B to its

ASCII character, place it into C, and concatenate (A,C) —A

4. A —Result

September 17, 1975
11-67

$DATA
function

1. Result —»-A. Place characterization of the named variable in A into
Result

Note: The meaning of the value returned by the $DATA function is
discussed in Section 3.2.8 of MDC/28.

11-68 September 17, 1975

©
expr

B

9

$EXTRACT
function

1. Result —*■ A

2. Result —B

3. B —*■ C

4. Result —*• C

5. Extract from A the Bth through Cth characters and place into Result

September 17, 19 75
11-69

$ FIN D
function

1. Result —*■ A

2. Result —► B

3. One ("1") —► C

4. Result —*■ C

5. Find the first occurrence of B in A, beginning at the Cth character of
A. If B is contained in A, place n + 1 into Result, where n is the
position in A of the last character in B. Otherwise, 0 —Result

11-70 September 17, 19 75

$J USTIFY
function

1. Result —*■ A

2. Result —B

3. Right justify A in a field of B spaces and place into C

4. If Result < 0, trap execution. Otherwise, perform the following

operations in order:
a. Take the numeric interpretation of A. That is, apply the rules given

in Section 3.2.5 of MDC/28 to A
b. If Result = 0, round the numeric value in A to an integer and remove

the decimal point. Otherwise, round A to Result fraction digits (pad
with trailing zeros if necessary)

c. Do action 3

5. C —Result

September 17, 1975 11-71

1. Result —*-

$LENGTH
function

A. Place length of A in characters into Result

11-72 September 17 19 75

$NEXT
function

1. Result —►A. Check to see that A is at least a 2-tuple (that is, that the
variable is subscripted). If not, generate an execution trap

2. Find the next higher subscript of the variable named in A and place into Result.
If no higher subscript exists, place -1 into Result

Note: The details of action 2 are discussed in Section 3.2.8 of MDC/28.

September 17, 1975 11-73

$PIECE
function

1. Result —3" A

2. Result —=► B

3. Result —*• C

4. C —D

*

5. Result —D

6. Place the C through D fields in A, delimited by B, into ResuJt

Note: The details of action 6 are described in Section 3.2.8 of MDC/28.

'1 2 3 4 5 6 September 17, 19 75

$RANDOM
function

0
intexpr

6
0

0
©

1. If Result < 1, trap execution. Otherwise, Result —►A

2. Compute a 11 random" integer between zero and A - 1 inclusive, and place
into Result

March 9, 1976 11-75

$SELECT
function

c

expr

Comaet = True

"Linact, D —► Comact

7. If B is undefined, trap execution. Otherwise, Result

Note: Linact and Comact are used only locally here to inhibit evaluation
of the second expression in a False Boolean pair. However, syntax
checking is performed.

Privileged action; always executed

11-76 September 17, 1975

$TEXT
function

\

0-^-

lineref

)

o
intexpr

„s

O

1. Find the line in the present routine referenced by the lineref in Result.

If no such line exists, place the null string ("") into C. Otherwise, line —*-C

2. If Result < 1, trap execution. Otherwise, Result —

3. Find the Bth line of the present routine. If no such line exists, place the
null string ("") into C. Otherwise, line —C

4. If C is not the null string replace the _ls in C with one SP (space)
and remove the eol. C —Result

September 17, 1975 11-77

\

MDC/34
9/17/75

MUMPS LANGUAGE STANDARD

Part III: MUMPS Portability
Requirements

Ill-i

Table of Contents

1. Introduction III-l
2. Expression Elements III-l

2.1 Names III-l
2.2 Local Variables III-l

2.2.1 Number of Local Variables III-l
2.2.2 Number of Subscripts III-l

2.2.3 Values of Subscripts III-2
2.2.4 Number of Nodes III-2
2.2.5 Scope of Local Variables III-2

2.3 Global Variables III-2
2.3.1 Number of Global Variables III-2
2.3.2 Number of Subscripts III-2

2.3.3 Values of Subsctipts III-3
2.3.4 Number of Nodes III-3

2.4 Data Types III-3
2.5 Number Range III-3
2.6 Integers III-3
2.7 Character Strings III-4
2.8 Special Variables III-4

3. Expressions III-4

3.1 Nesting of Expressions III-4
3.2 Results III-4

4. Routines and Command Lines III-4

4.1 Command Lines III-4
4.2 Number of Command Lines III-4

4.3 Number of Commands III-5
4.4 Labels III-5
4.5 Number of Labels III-5
4.6 Number of Routines III-5

5. Indirection III-5
6. Storage Space Restrictions III-5

7. Nesting III-6

III-iii

■

'

■

1. Introduction

This document highlights, for the benefit of implementors and

application programmers, aspects of the language that must be accorded
special attention if MUMPS program transferability (i.e., portability
of source code between various MUMPS implementations) is to be achieved.
It provides a specification of limits that must be observed by both
implementors and programmers if portability is not to be ruled out.
To this end, implementors must meet or exceed these limits, treating
them as a minimum requirement; application programmers, on the other

hand, may meet but must not exceed the limits guaranteed by this
document. Any implementor who provides definitions in currently
undefined areas must take into account that this action risks jeopar¬
dizing the upward compatibility of the implementation, upon subsequent

revision of the MUMPS Language Specification. Application programmers
striving to develop portable programs must take into account the danger

of employing "unilateral extensions" to the language made available by
the implementor.

The following definitions apply to the use of the terms "explicit

limit" and "implicit limit" within this document. An explicit limit is
one which applies directly to a referenced language construct. Implicit
limits on language constructs are second-order effects resulting from
explicit limits on other language constructs. For example, the explicit

command line length restriction places an implicit limit on the length
of any construct which must be expressed entirely within a single command
line.

2. Expression Elements

2.1 Names

The use of alpha in names is restricted to upper case alphabetic

characters. While there is no explicit limit on name length, only the
first eight characters are uniquely distinguished. This length restric¬
tion places an implicit limit on the number of unique names.

2.2 Local Variables

2.2.1 Number of Local Variables

The number of local variable names in existence at any time is
not explicitly limited. However, there are implicit limitations due

to the storage space restrictions (Section 6).

2.2.2 Number of Subscripts

There is no explicit restriction on the number of subscripts in
any local variable name. The command line length restriction
(Section 4.1) places an implicit limit on the number of subscripts
in any local variable name.

March 9, 1976 III-l

2.2.3 Values of Subscripts

Local variable subscript values are nonnegative integer values,

as defined in Section 3.2.4.1 of the MUMPS Language Specification (also
see Section 2.6 below). This restriction is equivalent to the following.

Any local variable subscript value meets the
following criteria:

a. It may contain only digits;
b. At least one digit must be present;
c. The number zero is represented by "0";
d. Except for the respresentation of zero, the

string of digits must have no leading zeros;
e. Its numeric value must be within the integer

range stated in Section 2.6.

The use of subscript values which do not meet these criteria is undefined,
with the exception of the use of the value "-l" as the last subscript of
a reference within the context of the $NEXT function. Note that an
implicit integer interpretation of a subscript value is not performed;
where desired, this may be accomplished by using the unary plus operator.

2.2.4 Number of Nodes

There is no explicit limit on the number of distinct nodes which
are defined within local variable arrays. However, the limit on the

number of local variables (Section 2.2.1) and the limit on the number
of subscripts (Section 2.2.2) place an implicit limit on the number of

distinct nodes which may be defined.

2.2.5 Scope of Local Variables

Local variables are unique to a process. All routines executed by a process

share the same name space.

2.3 Global Variables

2.3.1 Number of Global Variables

There is no explicit limit on the number of distinct global

variable names in existence at any time.

2.3.2 Number of Subscripts

There in no explicit restriction on the number of subscripts in
any global variable name. There is an implicit limit on the number of
subscripts within a global name due to the command line length restric¬
tion (Section 4.1). This does not restrict the depth of subscripting
within a global array, since repeated naked references may be used to

access nodes at any depth.

III-2 September 17, 1975

2.3.3 Values of Subscripts

The restrictions imposed on the values of global variable

subscripts are identical to those imposed on local variable subscripts
(Section 2.2.3).

2.3.4 Number of Nodes

There is no limit on the number of distinct global variable nodes
which are defined, since successive naked references may be used to
access and/or create nodes at any depth within a global array.

2.4 Data Types

The MUMPS Language Specification defines a single data type, namely,
variable length character strings. Contexts which demand a numeric, integer,
or truth value interpretation are satisfied by unambiguous rules for mapping
a string datum into a number, integer, or truth value.

The implementor is not limited to any particular internal
representation. Any internal representation(s) may be employed as
long as all necessary mode conversions are performed automatically
and all external behavior agrees with the MUMPS Language Specification.
For example, integers might be stored as binary integers and converted
to decimal character strings whenever an operation requires a string

value.

2.5 Number Range

All values used in arithmetic operations or in any context

requiring a_numeric interpretation are within the inclusive intervals
[—1025, -10 25] or [10 25, 1025], or are zero.

The accuracy of any value used in arithmetic operations or in

any context requiring a numeric interpretation is nine significant
digits.

Programmers should exercise caution in the use of noninteger
arithmetic. In general, arithmetic operations on noninteger operands
or arithmetic operations which produce noninteger results cannot be
expected to be exact. In particular, noninteger arithmetic can yield
unexpected results when used in loop control or arithmetic tests.

2.6 Integers

The magnitude of the value resulting from an integer interpre¬
tation is limited by the accuracy of numeric values (Section 2.5).
The values produced by integer valued operators and functions also
fall within this range (see Section 3.2.5.1 of the MUMPS Language
Specification for a precise definition of integer interpretation).

September 17, 1975 III-3

2.7 Character Strings

Character string length is limited to 255 characters. The

characters permitted within character strings are those defined in

the ASCII Standard (ANSI X3.4-1968).

2.8 Special Variables

The special variables $X and $Y are nonnegative integers

(Section'2.6). The effect of incrementing $X and/or $Y past the

maximum allowable integer value is undefined (for a description of

the cases in which $X and $Y are incremented see the MUMPS Language

Specification, Section 3.5.5).

3. Expressions

3.1 Nesting of Expressions

The number of levels of nesting in expressions is not explicitly

limited. The maximum string length does impose an implicit limit on

this number (Section 2.7).

3.2 Results

Any result, whether intermediate or final, which does not satisfy

the constraints on character strings (Section 2.7) is erroneous.

Furthermore, integer results are erroneous if they do not also satisfy

the constraints on integers (Section 2.6).

4. Routines and Command Lines

4.1 Command Lines

A command line (line) must satisfy the constraints on character

strings (Section 2.7). The length of a command line is determined as

follows. Each character in the label (if present) counts as one char¬

acter. The ls^ character counts as one character (note that command

lines will therefore always be at least one character long). Each

character following the 1^ up to but not including the following eol

counts as one character. The sum of the lengths of these three components

(label, Is, and the command line proper) determines the length of the

command line.

The characters within a command line are restricted to the 95

ASCII graphics. The character set restriction places a corresponding

implicit restriction upon the value of the argument of the indirection

delimiter (Section 5).

4.2 Number of Command Lines

There is no explicit limit on the number of command lines in a

routine, subject to storage space restrictions (Section 6).

III-4 September 17, 1975

4.3 Number of Commands

The number of commands per line,is limited only by the restriction

on the maximum command line length (Section 4.1).

4.4 Labels

A label of the form name is subject to the constraints on names;

labels of the form intlit are subject to the length constraint on names

(Section 2.1).

4.5 Number of Labels

There is no explicit limit on the number of labels in a routine.

However, the following restrictions apply.

a. A command line may have only one label.

b. No two lines may be labeled with equivalent (not uniquely

distinguishable) labels.

4.6 Number of Routines

There is no explicit limit on the number of routines. The number of

routines is< implicitly limited by the name length restriction (Section 2.1).

5. Indirection

The value of the argument of indirection and the argument of the XECUTE

command are subject to the constraints on character string length (Section

2.7). They are additionally restricted to the character set limitations of

command lines (Section 4.1).

6, Storage Space Restrictions

MUMPS has traditionally been implemented on small to medium size

computers using a scheme of fixed main memory allocation, one fixed

partition per user. It is recognized that more flexible storage

allocation techniques can be applied and there is no intent to restrict

implementations to use of the traditional techniques. Nevertheless,

because partitioned memory implementations will continue to be impor¬

tant for some time, certain storage restrictions are required to permit

program portability. These restrictions have been defined in terms of

parameters which are implementation-independent and observable to the

application programmer.

The storage restrictions on portable programs are expressed in

the following rule. At any time during the execution of a process,

routine size plus local variable storage size plus temporary result

storage size must not exceed 4000 characters. Storage space for control

purposes, device buffers, disc buffers, line buffers, etc. is not included

in this count.

September 17, 1975 III-5

The size of a routine is the sum of the sizes of all the lines in

the routine. The size of each line is its length (as defined in

Section 4.1) plus two.

The size of local variable storage is the sum of the sizes ofHall

the simultaneously defined local variables. The size of ari unsubscripted

local variable is the length of its name in characters plus the length

of its value in characters, plus two. The size of a local array is the

sum of the following.

a. The length of the name of the array.

b. Two characters plus the length of each value.

c. The size of each subscript in each subscript list.

d. Two additional characters for each node N, whenever

$DATA(N)>10.

All subscripts and values are considered to be character strings for this

purpose.

All intermediate results generated during the processes of expression

evaluation, indirection, multiple SET command scanning, etc. require the

use of temporary storage. At any given time, the amount of temporary

storage required is the sum of the lengths of all simultaneously existing

temporary results. All temporary results are maintained as strings of

contiguous characters.

7. Nesting

Each active DO, FOR, XECUTE, and indirection occurrence is counted

as a level of nesting. Control storage provides for fifteen levels of

nesting. The actual use of all these levels may be limited by storage

restrictions (Section 6).

Nesting within an expression is not counted in this limit. Expression

nesting is not explicitly limited; however, it is implicitly limited by

the storage restriction (Section 6.).

III-6 September 17, 1975

BIBLIOGRAPHY

MUMPS Development Committee Manuals

MDC Doc. No. Identification

NBS Handbook 118 November, 1975, MUMPS Language Standard

Part I: MDC/28, 3/12/75, MUMPS Language Specification
M. E. Conway

Part II: MDC/33, 9/17/75, MUMPS Transition Diagrams
D. D. Sherertz and A. I. Wasserman

Part III: MDC/34, 9/17/75, MUMPS Portability Requirements
E. A. Gardner and C. B. Lazarus

29 5/28/75, MUMPS Interpreter Validation Program User Guide

J. Rothmeier and P. L. Egerman

30 6/25/75, MUMPS Translation Methodology
P. L. Egerman, C. B. Lazarus and P. T. Ragon

35 10/14/75, MUMPS Documentation Manual
L. J. Peck and R. A. Greenes

1/11 6/13/75, MUMPS Primer

M. E. Johnson and R. E. Dayhoff

2/1 5/15/75, MUMPS Globals and Their Implementation
A. I. Wasserman, D. D. Sherertz and C. L. Rogerson

2/2 5/30/75, Design of a Multiprogramming System for the MUMPS Language
A. I. Wasserman, D. D. Sherertz and R. W. Zears

2/3 6/15/75, Implementation of the MUMPS Language Standard

A. I. Wasserman and D. D. Sherertz

3/5 6/20/75, MUMPS Programmers’ Reference Manual
M. E. Conway and P. L. Egerman

NBS-1 14A (REV. 7-73)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET

1. PUBLICATION OR REPORT NO.

NBS HB-118

2. Gov’t Accession
No.

3. Recipient’s Accession No.

4. TITLE AND SUBTITLE

MUMPS Language Standard

5. Publication Date

January 1976

6. Performing Organization Code

7. author's) Joseph T. O'Neill, Editor 8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

6401416

11. Contract/Grant No.

5-7750007

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

National Center for Health Services Research
Health Resources Administration
Department of Health, Education, and Welfare
Rockville, Maryland 20852

13. Type of Report & Period
Covered Final

Feb 74 - June 75

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 75-619261

16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant

bibliography or literature survey, mention it here.)

This NBS Handbook contains a three-part description of various aspects of the MUMPS

computer programming language. Part I, the MUMPS Language Specification, consists of

a stylized English narrative definition of the MUMPS language which was adopted and
approved for publication as a Type A release of the MUMPS Development Committee on
March 12, 1975. Part II, the MUMPS Transition Diagrams, represents a formal defini¬
tion of the language described in Part I, employing a form of line drawings to illus¬
trate syntactic and semantic rules governing each of the language elements; it was

adopted and approved for publication as a Type A release of the MUMPS Development

Committee on September 17, 1975. Part III, the MUMPS Portability Requirements, iden¬
tifies constraints on the implementation and use of the language for the benefit of

parties interested in achieving MUMPS application code portability; it was adopted
and approved for publication as a Type A release of the MUMPS Development Committee

on September 17, 1975.

A bibliography of other MUMPS Development Committee documents is included.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name, separated by semicolons)Qata handling language; interactive computing; interpretive

computer programming language and operating system; medical automation; minicomputer-
based systems; MUMPS; MUMPS Development Committee; MUMPS Language Standard.

18. AVAILABILITY [^J Unlimited

I * 1 For Official Distribut ion. Do Not Release to NTIS

jjQC' Order From Sup. of Doc., O'.S'. Government Printing Office
Washington, D.C. 20402, SD Cat. No, CU aiiilj_

! Order From National Technical Information Service (NTIS)
Springfield, Virginia 22151

19. SECURITY CLASS 21. NO. OF PAGES
(THIS REPORT)

144
UNCLASSIFIED

20. SECURITY CLASS 22. Price
(THIS PAGE)

$2.70
UNCLASSIFIED

SCO! 1-DC 2904;

Time Was When
Energy Was
Cheaper

...but that’s all changed now.
Today, increased energy costs—caused by in¬

creasing demand—boost the price of consumer

goods, fuel inflation, and hurt our balance of
payments.

That's why conserving energy is a must today,
especially for you in the business and industry

community which uses two thirds of our nation's
energy.

Now . . . there’s a book to tell you how to do

it. It's called EPIC—the Energy Conservation

Program Guide for Industry and Commerce. Pre¬

pared for you by the Commerce Department's

National Bureau of Standards in cooperation
with the Federal Energy Administration.

energy in a dozen different areas.

EPIC’s actual case histories of energy saving

actions help you estimate your potential for

saving energy—and reducing costs.

And EPIC contains much more—financial analy¬

sis procedures to evaluate projects, sources of
information on energy conservation, engineering

data and factors, an energy conservation bib¬

liography.

Make EPIC part of your plan to control energy
use and costs. Make EPIC part of your contri¬

bution to using energy resources wisely ... so

we can keep America working and growing.

EPIC is a comprehensive handbook that can
help you establish or improve an energy con¬
servation program in your organization.

Not only industry and commerce but also hos¬

pitals, universities, research institutes, ANY or¬

ganization that uses energy—and has to pay
the bills—will want a copy of EPIC.

EPIC outlines in detail the steps in setting up
an energy conservation program.

It contains a checklist of more than 200 Energy

Conservation Opportunities—suggestions to save

To order your copy of EPIC, send $2.90 per
copy (check, money order or Superintendent of

Documents Coupons) to Super-
intendent of Documents, U.S.

Government Printing Office,
Washington, D.C. 20402.
Ask for NBS Handbook

115, EPIC, C13.11:115.

Discount of 25% on
orders of 100 copies or more.

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards
FEDERAL ENERGY ADMINISTRATION / Conservation and Environment

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau

of Standards research and development in physics,

mathematics, and chemistry. It is published in two sec¬

tions, available separately:

• Physics and Chemistry (Section A)

Papers of interest primarily to scientists working in

these fields. This section covers a broad range of physi¬

cal and chemical research, with major emphasis on

standards of physical measurement, fundamental con¬

stants, and properties of matter. Issued six times a

year. Annual subscription: Domestic, $17.00; Foreign,

$21.25.

• Mathematical Sciences (Section B)

Studies and compilations designed mainly for the math¬

ematician and theoretical physicist. Topics in mathe¬

matical statistics, theory of experiment design, numeri¬

cal analysis, theoretical physics and chemistry, logical

design and programming of computers and computer

systems. Short numerical tables. Issued quarterly. An¬

nual subscription: Domestic, $9.00; Foreign, $11.25.

DIMENSIONS/NBS (formerly Technical News Bul¬

letin)—This monthly magazine is published to inform

scientists, engineers, businessmen, industry, teachers,

students, and consumers of the latest advances in

science and technology, with primary emphasis on the

work at NBS. The magazine highlights and reviews such

issues as energy research, fire protection, building tech¬

nology, metric conversion, pollution abatement, health

and safety, and consumer product performance. In addi¬

tion, it reports the results of Bureau programs in

measurement standards and techniques, properties of

matter and materials, engineering standards and serv¬

ices, instrumentation, and automatic data processing.

Annual subscription: Domestic, $9.45; Foreign, $11.85.

NONPERIODICALS

Monographs—Major contributions to the technical liter¬

ature on various subjects related to the Bureau's scien¬

tific and technical activities.

Handbooks—Recommended codes of engineering and

industrial practice (including safety codes) developed

in cooperation with interested industries, professional

organizations, and regulatory bodies.

Special Publications—Include proceedings of confer¬

ences sponsored by NBS, NBS annual reports, and other

special publications appropriate to this grouping such

as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables,

manuals, and studies of special interest to physicists,

engineers, chemists, biologists, mathematicians, com¬

puter programmers, and others engaged in scientific

and technical work.

National Standard Reference Data Series—Provides

quantitative data on the physical and chemical proper¬

ties of materials, compiled from the world’s literature

and critically evaluated. Developed under a world-wide

program coordinated by NBS. Program under authority

of National Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for

these data is the Journal of Physical and Chemical

Reference Data (JPCRD) published quarterly for NBS

by the American Chemical Society (ACS) and the Amer¬

ican Institute of Physics (AIP). Subscriptions, reprints,

and supplements available from ACS, 1155 Sixteenth

St. N. W„ Wash. D. C. 20056.

Building Science Series—Disseminates technical infor¬

mation developed at the Bureau on building materials,

components, systems, and whole structures. The series

presents research results, test methods, and perform¬

ance criteria related to the structural and environmen¬

tal functions and the durability and safety character¬

istics of building elements and systems.

Technical Notes—Studies or reports which are complete

in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so compre¬

hensive in scope or definitive in treatment of the sub¬

ject area. Often serve as a vehicle for final reports of

work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under pro¬

cedures published by the Department of Commerce in

Part 10, Title 15, of the Code of Federal Regulations.

The purpose of the standards is to establish nationally

recognized requirements for products, and to provide

all concerned interests with a basis for common under¬

standing of the characteristics of the products. NBS

administers this program as a supplement to the activi¬

ties of the private sector standardizing organizations.

Federal Information Processing Standards Publications

(FIPS PUBS)—Publications in this series collectively

constitute the Federal Information Processing Stand¬

ards Register. Register serves as the official source of

information in the Federal Government regarding stand¬

ards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended,

Public Law 89-306 (79 Stat. 1127), and as implemented

by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

Consumer Information Series—Practical information,

based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable

language and illustrations provide useful background

knowledge for shopping in today’s technological

marketplace.

NBS Interagency Reports (NBSIR)—A special series of

interim or final reports on work performed by NBS for

outside sponsors (both government and non-govern¬

ment). In general, initial distribution is handled by the

sponsor; public distribution is by the National Technical

Information Service (Springfield, Va. 22161) in paper

copy or microfiche form.

Order NBS publications (except NBSIR’s and Biblio¬

graphic Subscription Services) from: Superintendent of

Documents, Government Printing Office, Washington,

D.C. 20402.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey

bibliographies are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service

A literature survey issued biweekly. Annual sub¬

scription: Domestic, $20.00; foreign, $25.00.

Liquefied Natural Gas. A literature survey issued quar¬

terly. Annual subscription: $20.00.

Superconducting Devices and Materials. A literature

survey issued quarterly. Annual subscription: $20.00.

Send subscription orders and remittances for the

preceding bibliographic services to National Bu¬

reau of Standards, Cryogenic Data Center (275.02)
Boulder. Colorado 80302.

Electromagnetic Metrology Current Awareness Service

Issued monthly. Annual subscription: $24.00. Send

subscription order and remittance to Electromagnetics

Division, National Bureau of Standards, Boulder,

Colo. 80302.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington. D C. 20234

OFFICIAL BUSINESS

Penalty for Private Use, $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-215

SPECIAL FOURTH-CLASS RATE

BOOK

[51 U.S.MAIL

6-

