TIBLE
32-Bir Application

()
()

PART TWO

The Six-Volume Documentation Collection

for Microsoft Visual C(++ Version 4 for Win32.

Volume Four — The second of two volumes containing a
complete description of all the functions and parameters
in Microsoft Foundation Class Library version 4,
including helpful source code examples

Microsoft Press

Microsoft Foundation
Class Library Reference
Part 2 of 2

Microsoft Visual C++

Development System for Windows® 95 and Windows NT"
Version 4 .

Microsoft Corporation

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1995 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual C++ programmer’s references / Microsoft Corporation.
-- 2nd ed.
. cm.

Includes index.

v. 1. Microsoft Visual C++ user’s guide -- v. 2. Programming with
MEC -- v. 3. Microsoft foundation class library reference, part 1 --

v. 4. Microsoft foundation class library reference, part 2 -- v.
5. Microsoft Visual C++ run-time library reference -- v.
6. Microsoft Visual C/C++ language reference.

ISBN 1-55615-915-3 (v. 1). -- ISBN 1-55615-921-8 (v. 2). -- ISBN
1-55615-922-6 (v. 3). -- ISBN 1-55615-923-4 (v. 4). - ISBN
1-55615-924-2 (v. 5). -- ISBN 1-55615-925-0 (v. 6)

1. C++ (Computer program language) 2. Microsoft Visual C++.

1. Microsoft Corporation.

QA76.73.C153M53 1995

005.13'3--dc20 95-35604
CIpP

Printed and bound in the United States of America.
123456789 QMQM 098765

Distributed to the book trade in Canada by Macmillan of Canada, a division of
Canada Publishing Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (206) 936-7329.

PostScript is a trademark of Adobe Systems, Inc. Macintosh and TrueType are registered trademarks of
Apple Computer, Inc. Borland, dBASE, dBASE II, dBASE III, dBASE IV, and Paradox are registered
trademarks of Borland International, Inc. Btrieve is a registered trademark of Btrieve Technologies, Inc.
Hewlett-Packard is a registered trademark of Hewlett-Packard Company. Intel is a registered trademark of
Intel Corporation. IBM is a registered trademark of International Business Machines Corporation. FoxPro,
Microsoft, Microsoft Press, MS, MS-DOS, Visual Basic, Win32, Win32s, and Windows are registered
trademarks and Visual C++ and Windows NT are trademarks of Microsoft Corporation in the U.S.A. and
other countries. ORACLE is a registered trademark of Oracle Corporation. Unicode is a trademark of
Unicode, Inc.

Acquisitions Editor: Eric Stroo
Project Editor: Brenda L. Matteson

Introduction xi

Class Library Overview 1
About the Microsoft Foundation Classes 1

Root Class: CObject 4

MEFC Application Architecture Classes 4
Window, Dialog, and Control Classes 10
Drawing and Printing Classes 17
Simple Data Type Classes 18

Array, List, and Map Classes 19

File, Database, and Socket Classes 21

OLE Classes 24

Debugging and Exception Classes 29

Contents

Alphabetical Reference to the Microsoft Foundation Class Library 33

CAnimateCtrl 33
CArchive 38
CArchiveException 56
CArray 58
CAsyncSocket 68
CBitmap 102
CBitmapButton 112
CBrush 117

CButton 126
CByteArray 136
CCheckListBox 138
CClientDC 143
CCmdTarget 145
CCmdUI 155
CColorDialog 158
CComboBox 163
CCommandLinelnfo 189
CCommonDialog 195

Contents

CConnectionPoint 197
CControlBar 201
CCreateContext 209
CCriticalSection 211
CCtrlView 214
CDaoDatabase 216
CDaoException 239
CDaoFieldExchange 245
CDaoQueryDef 250
CDaoRecordset 271
CDaoRecordView 339
CDaoTableDef 345
CDaoWorkspace 370
CDatabase 394
CDataExchange 408
CDBException 412
CDC 416

CDialog 549
CDialogBar 561
CDocltem 564
CDocTemplate 566
CDocument 579
CDragListBox 600
CDumpContext 604
CDWordArray 609
CEdit 611
CEditView 633
CEvent 643
CException 647
CFieldExchange 652
CFile 655
CFileDialog 673
CFileException 682
CFindReplaceDialog 687
CFont 694
CFontDialog 703
CFontHolder 709
CFormView 713
CFrameWnd 717

CGdiObject 736
CHeaderCtrl 744
CHotKeyCtrl 751
CImageList 755

CList 769

CListBox 780

CListCtrl 806
CListView 838
CLongBinary 840

CMap 842
CMapPtuToPtr 849
CMapPtrToWord 851
CMapStringToOb 853
CMapStringToPtr 861
CMapStringToString 863
CMapWordToOb 865
CMapWordToPtr 867
CMDIChildWnd 869
CMDIFrameWnd 874
CMemFile 882
CMemoryException 888
CMemoryState 889
CMenu 893
CMetaFileDC 917
CMiniFrameWnd 922
CMultiDocTemplate 924
CMultiLock 927
CMutex 931
CNotSupportedException 933
CObArray 934

CObject 944

CObList 952
COleBusyDialog 969
COleChangelconDialog 973
COleChangeSourceDialog - 977
COleClientItem 982
COleControl 1026
COleControlModule 1079
COleConvertDialog 1080

Contents

Contents

COleCurrency 1086
COleDataObject 1098
COleDataSource 1105
COleDateTime 1116
COleDateTimeSpan 1140
COleDialog 1154
COleDispatchDriver 1156

Index

Part 2

vi

COleDispatchException 1163
COleDocument 1166
COleDropSource 1175
COleDropTarget 1179
COleException 1186
COlelnsertDialog 1188
COlelPFrameWnd 1194
COleLinkingDoc 1197
COleLinksDialog 1201
COleMessageFilter 1204
COleObjectFactory 1211
COlePasteSpecialDialog 1218
COlePropertiesDialog 1225
COlePropertyPage 1230
COleResizeBar 1237
COleServerDoc 1239
COleServerltem 1256
COleStreamFile 1277
COleTemplateServer 1281
COleUpdateDialog 1284
COleVariant 1286
CPageSetupDialog 1292
CPaintDC 1301

CPalette 1303

CPen 1310
CPictureHolder 1318
CPoint 1324
CPrintDialog 1330

CPrintInfo 1339
CProgressCtrl 1346
CPropertyPage 1350
CPropertySheet 1358
CPropExchange 1369
CPtrArray 1374
CPtrList 1376
CRecordset 1378
CRecordView 1412
CRect 1418
CRectTracker 1435
CResourceException 1444
CRgn 1445
CRichEditCntrltem 1459
CRichEditCtrl 1461
CRichEditDoc 1490
CRichEditView 1493
CRuntimeClass 1514
CScrollBar 1515
CScrollView 1522
CSemaphore 1530
CSingleDocTemplate 1532
CSingleLock 1535
CSize 1538
CSliderCtrl 1542
CSocket 1554
CSocketFile 1560
CSpinButtonCtrl 1562
CSplitterWnd 1569
CStatic 1587
CStatusBar 1594
CStatusBarCtrl 1602
CStdioFile 1610
CString 1614
CStringArray 1641
CStringList 1643
CSyncObject 1645
CTabCtrl 1647
CTime 1660

Contents

vii

Contents

CTimeSpan 1671
CToolBar 1679
CToolBarCtrl 1691
CToolTipCtrl 1719
CTreeCtrl 1727
CTreeView 1752
CTypedPtrArray 1754
CTypedPtrList 1757
CTypedPtrMap 1763
CUlIntArray 1766
CUserException 1768
CView 1770
CWaitCursor 1790
CWinApp 1794
CWindowDC 1837
CWinThread 1839
CWnd 1850
CWordArray 2044

Macros and Globals 2046

Data ’I‘ypes 2047

Run-Time Object Model Services 2048

Diagnostic Services 2050

Exception Processing 2052

CString Formatting and Message-Box Display 2053
Message Map Macros 2054

Application Information and Management 2056
Standard Command and Window Ids 2057
Collection Class Helpers 2058

Record Field Exchange Functions 2058

Dialog Data Exchange Functions for CRecordView and CDaoRecordView 2060
Database Macros 2061

OLE Initialization 2061

Application Control 2062

Dispatch Maps 2062

Variant Parameter Type Constants 2063

Type Library Access 2064

Property Pages 2064

Event Maps 2066

viii

Event Sink Maps 2067

Connection Maps 2067

Registering OLE Controls 2068

Class Factories and Licensing 2069

Persistence of OLE Controls 2070

Macros, Global Functions, and Global Variables 2070
ClassWizard Comment Delimiters 2202

Callback Functions, Structures, and Styles 2208
Callback Functions Used by MFC 2208

Structures Used by MFC 2210

Styles Used by MFC 2270

Index

Contents

COleDispatchException

COleDispatchException

The COleDispatchException class handles exceptions specific to the OLE
IDispatch interface, which is a key part of OLE automation.

Like the other exception classes derived from the CException base class,
COleDispatchException can be used with the THROW, THROW_LAST, TRY,
CATCH, AND_CATCH, and END_CATCH macros.

In general, you should call AfxThrowOleDispatchException to create and throw a
COleDispatchException object.

For more information on exceptions, see the articles “Exceptions” and “Exceptions:
OLE Exceptions” in Programming with MFC.

#include <afxdisp.h>

See Also COleDispatchDriver, COleException, AfxThrowOleDispatchException
Data Members

m_wCode IDispatch-specific error code.

m_strDescription Verbal error description.

m_dwHelpContext Help context for error.

m_strHelpFile Help file to use with m_dwHelpContext.

m_strSource Application that generated the exception.

1163

COleDispatchException::m_dwHelpContext

Data Members
COleDispatchException::m_dwHelpContext

DWORD m_dwHelpContext;

Remarks
Identifies a help context in your application’s help (.HLP) file. This member is set by
the function AfxThrowOleDispatchException when an exception is thrown.

See Also COleDispatchException::m_strDescription,
COleDispatchException::m_wCode, AfxThrowOleDispatchException

COleDispatchException::m_strDescription

CString m_strDescription;

Remarks
Contains a verbal error description, such as “Disk full.” This member is set by the
function AfxThrowOleDispatchException when an exception is thrown.

See Also COleDispatchException::m_dwHelpContext,
COleDispatchException::m_wCode, AfxThrowOleDispatchException

COleDispatchException::m_strHelpFile

CString m_strHelpFile;

Remarks
The framework fills in this string with the name of the application’s help file.

See Also AfxThrowOleDispatchException

COleDispatchException::m_strSource

CString m_strSource;

Remarks
The framework fills in this string with the name of the application that generated the
exception.

See Also AfxThrowOleDispatchException

1164

COleDispatchException::m_wCode

COleDispatchException::m_wCode

Remarks

WORD m_wCode;

Contains an error code specific to your application. This member is set by the
function AfxThrowOleDispatchException when an exception is thrown.

See Also COleDispatchException::m_strDescription,
COleDispatchException::m_dwHelpContext, AfxThrowOleDispatchException

1165

COleDocument

COleDocument

1166

COleDocument is the base class for OLE documents that support visual editing.
COleDocument is derived from CDocument, which allows your OLE applications to
use the document/view architecture provided by the Microsoft Foundation Class
Library.

COleDocument treats a document as a collection of CDoclItem objects to handle
OLE items. Both container and server applications require such an architecture
because their documents must be able to contain OLE items. The COleServerItem
and COleClientItem classes, both derived from CDocltem, manage the interactions
between applications and OLE items.

If you are writing a simple container application, derive your document class from
COleDocument. If you are writing a container application that supports linking to
the embedded items contained by its documents, derive your document class from
COleLinkingDoc. If you are writing a server application or combination
container/server, derive your document class from COleServerDoc.
COleLinkingDoc and COleServerDoc are derived from COleDocument, so these
classes inherit all the services available in COleDocument and CDocument.

To use COleDocument, derive a class from it and add functionality to manage the
application’s non-OLE data as well as embedded or linked items. If you define
CDocltem-derived classes to store the application’s native data, you can use the
default implementation defined by COleDocument to store both your OLE and non-
OLE data. You can also design your own data structures for storing your non-OLE
data separately from the OLE items. For more information, see the article
“Containers: Compound Files” in Programming with MFC.

CDocument supports sending your document via mail if mail support (MAPI) is
present. COleDocument has updated OnFileSendMail to handle compound
documents correctly. For more information, see the articles “MAPI” and “MAPI
Support in MFC” in Programming with MFC.

#include <afxole.h>

See Also COleLinkingDoc, COleServerDoc, COleClientItem, COleServerItem,
CDocltem

COleDocument:: AddItem

Construction

COleDocument Constructs a COleDocument object.
Operations

HasBlankItems Checks for blank items in the document.
EnableCompoundFile Causes documents to be stored using the OLE

GetInPlaceActiveltem
GetStartPosition
GetNextltem
GetNextClientitem
GetNextServerItem
UpdateModifiedFlag

ApplyPrintDevice
AddItem

Removeltem

Overridables

Structured Storage file format.

Returns the OLE item that is currently in-place active.
Gets the initial position to begin iteration.

Gets the next document item for iterating.

Gets the next client item for iterating.

Gets the next server item for iterating.

Marks the document as modified if any of the contained
OLE items have been modified.

Sets the print-target device for all client items in the
document.

Adds an item to the list of items maintained by the
document.

Removes an item from the list of items maintained by
the document.

GetPrimarySelectedItem

OnShowViews

Mail Functions

Returns the primary selected OLE item in the document.

Called when the document becomes visible or invisible.

OnFileSendMail

Sends a mail message with the document attached.

Member Functions
COleDocument::AddItem

virtual void AddItem(CDocltem* pltem);

Parameters

pltem Pointer to the document item being added.

1167

COleDocument:: ApplyPrintDevice

Remarks
Call this function to add an item to the document. You do not need to call this
function explicitly when it is called by the COleClientItem or COleServerItem
constructor that accepts a pointer to a document.

See Also CDocltem, COleDocument::Removeltem,
COleServerItem::COleServerltem, COleClientItem::COleClientItem

COleDocument:: ApplyPrintDevice

BOOL ApplyPrintDevice(const DVTARGETDEVICE FAR* ptd);
BOOL ApplyPrintDevice(const PRINTDLG* ppd);

Return Value
Nonzero if the function was successful; otherwise O.

Parameters
ptd Pointer to a DVTARGETDEVICE data structure, which contains information
about the new print-target device. Can be NULL.

ppd Pointer to a PRINTDLG data structure, which contains information about the
new print-target device. Can be NULL. ‘

Remarks
Call this function to change the print-target device for all embedded COleClientItem
items in your application’s container document. This function updates the print-target
device for all items but does not refresh the presentation cache for those items. To
update the presentation cache for an item, call COleClientItem::UpdateLink.

The arguments to this function contain information that OLE uses to identify the
target device. The PRINTDLG structure contains information that Windows uses to
initialize the common Print dialog box. After the user closes the dialog box, Windows
returns information about the user’s selections in this structure. The m_pd member
of a CPrintDialog object is a PRINTDLG structure.

For more information, see the PRINTDLG structure in the Win32 SDK
documentation.

For more information, see the DVTARGETDEVICE structure in the OLE 2
Programmer’s Reference, Volume 1.

See Also CPrintDialog

1168

COleDocument::GetInPlace Activeltem

COleDocument::COleDocument

COleDocument();

Remarks
Constructs a COleDocument object.

COleDocument::EnableCompoundFile

void EnableCompoundFile(BOOL bEnable = TRUE);

Parameters
bEnable Specifies whether compound file support is enabled or disabled.

Remarks
Call this function if you want to store the document using the compound-file format.
This is also called structured storage. You typically call this function from the
constructor of your COleDocument-derived class. For more information about
compound documents, see the article “Containers: Compound Files” in Programming
with MFC.

If you do not call this member function, documents will be stored in a nonstructured
(“flat”) file format.

After compound file support is enabled or disabled for a document, the setting should
not be changed during the document’s lifetime.

See Also COleClientItem

COleDocument::GetInPlaceActiveltem

COleClientItem* GetInPlaceActiveltem(CWnd* pWnd);

Return Value
A pointer to the single, in-place active OLE item; NULL if there is no OLE item
currently in the “in-place active” state.

Parameters
pWnd Pointer to the window that displays the container document.

Remarks
Call this function to get the OLE item that is currently activated in place in the frame
window containing the view identified by pWnd.

See Also COleClientItem

1169

COleDocument::GetNextClientItem

COleDocument::GetNextClientItem

COleClientItem* GetNextClientItem(POSITION& pos) const;

Return Value
A pointer to the next client item in the document, or NULL if there are no more
client items.

Parameters ‘
pos A reference to a POSITION value set by a previous call to GetNextClientItem;
the initial value is returned by the GetStartPosition member function.

Remarks
Call this function repeatedly to access each of the client items in your document.

After each call, the value of pos is set for the next item in the document, which might
or might not be a client item.

Example
// Example for COleDocument::GetNextClientItem
// pDoc points to a COleDocument object
POSITION pos = pDoc->GetStartPosition();
COleClientItem *pItem;
while ((pItem = pDoc->GetNextClientItem(pos)) != NULL)
{
// Use pItem
}

See Also COleClientItem, COleDocument::GetStartPosition,
COleDocument::GetNextServerItem, COleDocument::GetNextItem

COleDocument::GetNextltem

virtual CDocItem* GetNextItem(POSITION& pos) const;

Return Value
A pointer to the document item at the specified position.

Parameters
pos A reference to a POSITION value set by a previous call to GetNextItem; the
initial value is returned by the GetStartPosition member function.

Remarks
Call this function repeatedly to access each of the items in your document. After each
call, the value of pos is set to the POSITION value of the next item in the document.

If the retrieved element is the last element in the document, the new value of pos
is NULL.

1170

COleDocument::GetNextServerltem

Example
// Example for COleDocument::GetNextItem
// pDoc points to a COleDocument object
POSITION pos = pDoc->GetStartPosition();
CDocItem *pltem;
while(pos != NULL)
{
pItem = pDoc->GetNextItem(pos);
// Use pltem
}

See Also COleDocument::GetStartPosition,
COleDocument::GetNextClientItem, COleDocument::GetNextServerItem

COleDocument::GetNextServerltem

COleServerItem* GetNextServerItem(POSITION& pos) const;

Return Value
A pointer to the next server item in the document, or NULL if there are no more
server items.

Parameters
pos A reference to a POSITION value set by a previous call to
GetNextServerItem; the initial value is returned by the GetStartPosition
member function.

Remarks
Call this function repeatedly to access each of the server items in your document.
After each call, the value of pos is set for the next item in the document, which might
or might not be a server item.

Example
// Example for COleDocument::GetNextServerItem
// pDoc points to a COleDocument object
POSITION pos = pDoc->GetStartPosition();
COTeServerltem *pltem;
while ((pItem = pDoc->GetNextServerItem(pos)) != NULL)
{
// Use pltem
}

See Also COleServerItem, COleDocument::GetStartPosition,
COleDocument::GetNextClientItem, COleDocument::GetNextItem

171

COleDocument::GetPrimarySelectedItem

COleDocument::GetPrimarySelectedItem

virtual COleClientItem* GetPrimarySelectedItem(CView* pView);

Return Value
A pointer to the single, selected OLE item; NULL if no OLE items are selected or if
more than one is selected.

Parameters
pView Pointer to the active view object displaying the document.

Remarks
Called by the framework to retrieve the currently selected OLE item in the specified
view. The default implementation searches the list of contained OLE items for a
single selected item and returns a pointer to it. If there is no item selected, or if there
is more than one item selected, the function returns NULL. You must override the
CView::IsSelected member function in your view class for this function to work.
Override this function if you have your own method of storing contained OLE items.

See Also CView::IsSelected

COleDocument::GetStartPosition

virtual POSITION GetStartPosition() const;

Return Value
A POSITION value that can be used to begin iterating through the document’s
items; NULL if the document has no items.

Remarks
Call this function to get the position of the first item in the document. Pass the value
returned to GetNextItem, GetNextClientItem, or GetNextServerIltem.

See Also COleDocument::GetNextItem, COleDocument::GetNextClientItem,
COleDocument::GetNextServerltem

COleDocument::HasBlankltems

BOOL HasBlankItems() const;

Return Value
Nonzero if the document contains any blank items; otherwise 0.

Remarks
Call this function to determine whether the document contains any blank items. A
blank item is one whose rectangle is empty.

See Also CDocltem::IsBlank

1172

COleDocument::Removeltem

COleDocument::OnFileSendMail

void OnFileSendMail();

Remarks
Sends a message via the resident mail host (if any) with the document as an
attachment. OnFileSendMail calls OnSaveDocument to serialize (save) untitled and
modified documents to a temporary file, which is then sent via electronic mail. If the
document has not been modified, a temporary file is not needed; the original is sent.
OnFileSendMail loads MAPI32.DLL if it has not already been loaded.

Unlike the implementation of OnFileSendMail for CDocument, this function
handles compound files correctly.

For more information, see the “MAPI” and “MAPI Support in MFC” articles in
Programming with MFC.

See Also CDocument::OnFileSendMail, CDocument::OnUpdateFileSendMail,
CDocument::OnSaveDocument

COleDocument::OnShow Views

virtual void OnShowViews(BOOL bVisible);

Parameters
bVisible Indicates whether the document has become visible or invisible.

Remarks
The framework calls this function after the document’s visibility state changes.

The default version of this function does nothing. Override it if your application must
perform any special processing when the document’s visibility changes.

COleDocument::Removeltem

virtual void Removeltem(CDocltem* pltem);

Parameters
pltem Pointer to the document item to be removed.

Remarks
Call this function to remove an item from the document. You typically do not need to
call this function explicitly; it is called by the destructors for COleClientItem and
COleServerltem.

See Also COleServerItem, COleClientItem, COleDocument::AddItem,
CDocltem

1173

COleDocument::UpdateModifiedFlag

COleDocument::UpdateModifiedFlag

Remarks

1174

void UpdateModifiedFlag();

Call this function to mark the document as modified if any of the contained OLE
items have been modified. This allows the framework to prompt the user to save the
document before closing, even if the native data in the document has not been
modified.

See Also CDocument::SetModifiedFlag, COleClientItem::IsModified

COleDropSource

COleDropSource

A COleDropSource object allows data to be dragged to a drop target. The
COleDropTarget class handles the receiving portion of the drag-and-drop operation.
The COleDropSource object is responsible for determining when a drag operation
begins, providing feedback during the drag operation, and determining when the drag
operation ends.

To use a COleDropSource object, just call the constructor. This simplifies the
process of determining what events, such as a mouse click, begin a drag operation
using COleDataSource::DoDragDrop, COleClientItem::DoDragDrop, or
COleServerItem::DoDragDrop function. These functions will create a
COleDropSource object for you. You might want to modify the default behavior of
the COleDropSource overridable functions. These member functions will be called
at the appropriate times by the framework.

For more information on drag-and-drop operations using OLE, see the article “Drag
and Drop (OLE)” in Programming with MFC.

For more information, see IDropSource in the OLE 2 Programmer's Reference,
Volume 1.

#include <afxole.h>

See Also COleDropTarget, COleDataSource::DoDragDrop,
COleClientItem::DoDragDrop, COleServerltem::DoDragDrop

Construction

COleDropSource Constructs a COleDropSource object.

Overridables

GiveFeedback Changes the cursor during a drag-and-drop operation.
OnBeginDrag Handles mouse capture during a drag-and-drop operation.
QueryContinueDrag Checks to see whether dragging should continue.

1175

COleDropSource::COleDropSource

Member Functions
COleDropSource::COleDropSource

COleDropSource();

Remarks
Constructs a COleDropSource object.

See Also COleDropTarget

COleDropSource::GiveFeedback

virtual SCODE GiveFeedback(DROPEFFECT dropEffect);

Return Value
Returns DRAGDROP_S_USEDEFAULTCURSORS if dragging is in progress,
NOERROR if it is not.

Parameters
dropEffect The effect you would like to display to the user, usually indicating what
would happen if a drop occurred at this point with the selected data. Typically, this
is the value returned by the most recent call to CView::OnDragEnter or
CView::OnDragOver. It can be one or more of the following:

¢ DROPEFFECT_NONE A drop would not be allowed.
e DROPEFFECT_COPY A copy operation would be performed.
e DROPEFFECT_MOVE A move operation would be performed.

e DROPEFFECT_LINK A link from the dropped data to the original data
would be established.

e DROPEFFECT SCROLL A drag scroll operation is about to occur or is
occurring in the target.

Remarks
Called by the framework after calling COleDropTarget::OnDragOver or
COleDropTarget::DragEnter. Override this function to provide feedback to the user
about what would happen if a drop occurred at this point. The default implementation
* uses the OLE default cursors. For more information on drag-and-drop operations
using OLE, see the article “Drag and Drop (OLE)” in Programming with MFC.

1176

COleDropSource::QueryContinueDrag

For more information, see IDropSource::GiveFeedback, IDropTarget::DragOver,
and IDropTarget::DragEnter in the OLE 2 Programmer's Reference, Volume 1.

See Also CView::OnDragEnter, CView::OnDragOver

COleDropSource::OnBeginDrag

virtual BOOL OnBeginDrag(CWnd* pWnd);

Return Value
Nonzero if dragging is allowed, otherwise 0.

Parameters
pWnd Points to the window that contains the selected data.

Remarks
Called by the framework when an event occurs that could begin a drag operation,
such as pressing the left mouse button. Override this function if you want to modify
the way the dragging process is started. The default implementation captures the
mouse and stays in drag mode until the user clicks the left or right mouse button or
hits ESC, at which time it releases the mouse.

See Also COleDropSource::GiveFeedback

COleDropSource::QueryContinueDrag

virtual SCODE QueryContinueDrag(BOOL bEscapePressed, DWORD dwKeyState);

Return Value
DRAGDROP_S_CANCEL if the Esc key or right button is pressed, or left button is
raised before dragging starts. DRAGDROP_S_DROP if a drop operation should
occur. Otherwise S_OK.

Parameters
bEscapePressed States whether the ESC key has been pressed since the last call to
COleDropSource::QueryContinueDrag.

dwKeyState Contains the state of the modifier keys on the keyboard. This is a
combination of any number of the following: MK_CONTROL, MK_SHIFT,
MK_ALT, MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

Remarks
After dragging has begun, this function is called repeatedly by the framework until
the drag operation is either canceled or completed. Override this function if you want
to change the point at which dragging is canceled or a drop occurs.

177

COleDropSource::QueryContinueDrag

1178

The default implementation initiates the drop or cancels the drag as follows. It
cancels a drag operation when the ESC key or the right mouse button is pressed. It
initiates a drop operation when the left mouse button is raised after dragging has
started. Otherwise, it returns S_OK and performs no further operations.

Because this function is called frequently, it should be optimized as much as possible.

See Also COleDropSource::OnBeginDrag, COleDropTarget::OnDrop

COleDropTarget

COleDropTarget

A COleDropTarget object provides the communication mechanism between a
window and the OLE libraries. Creating an object of this class allows a window to
accept data through the OLE drag-and-drop mechanism.

To get a window to accept drop commands, you should first create an object of the
COleDropTarget class, and then call the Register function with a pointer to the
desired CWnd object as the only parameter.

For more information on drag-and-drop operations using OLE, see the article “Drag
and Drop (OLE)” in Programming with MFC.

#include <afxole.h>

See Also COleDropSource

Construction

COleDropTarget Constructs a COleDropTarget object.

Operations

Register Registers the window as a valid drop target.

Revoke Causes the window to cease being a valid drop target.

Overridables

OnDragEnter Called when the cursor first enters the window.

OnDragLeave Called when the cursor is dragged out of the window.

OnDragOver Called repeatedly when the cursor is dragged over the window.

OnDragScroll Called to determine whether the cursor is dragged into the scroll
region of the window.

OnDrop Called when data is dropped into the window, default handler.

OnDropEx Called when data is dropped into the window, initial handler.

See Also COleDropTarget Overview Base Class Members Hierarchy Chart

1179

COleDropTarget::COleDropTarget

Member Functions
COleDropTarget::COleDropTarget

COleDropTarget();

Remarks

Constructs an object of class COleDropTarget. Call Register to associate this object
with a window.

See Also COleDropSource, COleDropTarget::Register,
COleDropTarget::Revoke

COleDropTarget::OnDragEnter
virtual DROPEFFECT OnDragEnter(CWnd* pWnd, COleDataObject* pDataObject,
DWORD dwKeyState, CPoint point);

Return Value

The effect that would result if a drop were attempted at the location specified by
point. It can be one or more of the following:

e DROPEFFECT_NONE A drop would not be allowed.
¢ DROPEFFECT_COPY A copy operation would be performed.
¢ DROPEFFECT MOVE A move operation would be performed.

e DROPEFFECT_LINK A link from the dropped data to the original data would
be established.

e DROPEFFECT_SCROLL A drag scroll operation is about to occur or is
occurring in the target.

Parameters ‘
pWnd Points to the window the cursor is entering.

pDataObject Points to the data object containing the data that can be dropped.

dwKeyState Contains the state of the modifier keys. This is a combination of any
number of the following: MK_CONTROL, MK_SHIFT, MK_ALT,
MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

point Contains the current location of the cursor in client coordinates.

Remarks
Called by the framework when the cursor is first dragged into the window. Override
this function to allow drop operations to occur in the window. The default
implementation calls CView::OnDragEnter, which simply returns
DROPEFFECT_NONE by default.

1180

COleDropTarget::OnDragOver
For more information, see IDropTarget::DragEnter in the OLE 2 Programmer’s
Reference, Volume 1.

See Also COleDropTarget::OnDragOver, COleDropTarget::OnDragLeave,
COleDropTarget::OnDrop, COleDropTarget::OnDropEx, CView::OnDragEnter

COleDropTarget::OnDragl_eave

virtual void OnDragLeave(CWnd* pWnd);

Parameters
pWnd Points to the window the cursor is leaving.

Remarks
Called by the framework when the cursor leaves the window while a dragging
operation is in effect. Override this function if you want special behavior when the
drag operation leaves the specified window. The default implementation of this
function calls CView::OnDragleave.

For more information, see IDropTarget::DragLeave in the OLE 2 Programmer’s
Reference, Volume 1.

See Also COleDropTarget::OnDragEnter, COleDropTarget::OnDragOver,
COleDropTarget::OnDrop, COleDropTarget::OnDropEx, CView::OnDragLeave

COleDropTarget::OnDragOver
virtual DROPEFFECT OnDragOver(CWnd* pWnd, COleDataObject* pDataObject,
DWORD dwKeyState, CPoint point);

Return Value
The effect that would result if a drop were attempted at the location specified by
point. It can be one or more of the following:

e DROPEFFECT_NONE A drop would not be allowed.
¢ DROPEFFECT_COPY A copy operation would be performed.
e DROPEFFECT_MOVE A move operation would be performed.

¢ DROPEFFECT_LINK A link from the dropped data to the original data would
be established.

e DROPEFFECT_SCROLL Indicates that a drag scroll operation is about to
occur or is occurring in the target.
Parameters
pWnd Points to the window that the cursor is over.

pDataObject Points to the data object that contains the data to be dropped.

1181

COleDropTarget::OnDragScroll

dwKeyState Contains the state of the modifier keys. This is a combination of any
number of the following: MK_CONTROL, MK_SHIFT, MK_ALT,
MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

point Contains the current location of the cursor in client coordinates.

Remarks .
Called by the framework when the cursor is dragged over the window. This function
should be overridden to allow drop operations to occur in the window. The default
implementation of this function calls CView::OnDragOver, which returns
DROPEFFECT_NONE by default. Because this function is called frequently during
a drag-and-drop operation, it should be optimized as much as possible.

For more information, see IDropTarget::DragOver in the OLE 2 Programmer’s
Reference, Volume 1.

See Also COleDropTarget::OnDragEnter, COleDropTarget::OnDragleave,
COleDropTarget::OnDrop, COleDropTarget::OnDropEx, CView::OnDragOver

COleDropTarget::OnDragScroll

virtual DROPEFFECT OnDragScroll(CWnd* pWnd, DWORD dwKeyState, CPoint point);

Return Value
The effect that would result if a drop were attempted at the location specified by
point. It can be one or more of the following:

e DROPEFFECT_NONE A drop would not be allowed.
e DROPEFFECT_COPY A copy operation would be performed.
e DROPEFFECT_MOVE A move operation would be performed.

e DROPEFFECT LINK A link from the dropped data to the original data would
be established.

e DROPEFFECT_SCROLL Indicates that a drag scroll operation is about to
occur or is occurring in the target.

Parameters
pWnd Points to the window the cursor is currently over.
dwKeyState Contains the state of the modifier keys. This is a combination of any

number of the following: MK_CONTROL, MK_SHIFT, MK_ALT,
MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

point Contains the location of the cursor, in pixels, relative to the screen.
Remarks
Called by the framework before calling OnDragEnter or OnDragQOver to determine

whether point is in the scrolling region. Override this function when you want to
provide special behavior for this event. The default implementation of this function

1182

COleDropTarget::OnDrop

calls CView::OnDragScroll, which returns DROPEFFECT_NONE and scrolls the
window when the cursor is dragged into the default scroll region inside the border of
the window.

See Also COleDropTarget::OnDragEnter, COleDropTarget::OnDragOver,
CView::OnDragScroll

COleDropTarget::OnDrop

virtual BOOL OnDrop(CWnd* pWnd, COleDataObject* pDataObject, DROPEFFECT
dropEffect, CPoint point);

Return Value
Nonzero if the drop is successful; otherwise 0.
Parameters
pWnd Points to the window the cursor is currently over.
pDataObject Points to the data object that contains the data to be dropped.

dropEffect The effect that the user chose for the drop operation. It can be one or
more of the following:

¢ DROPEFFECT_COPY A copy operation would be performed.
e DROPEFFECT_MOVE A move operation would be performed.

¢ DROPEFFECT_LINK A link from the dropped data to the original data
would be established.

point Contains the location of the cursor, in pixels, relative to the screen.

Remarks
Called by the framework when a drop operation is to occur. The framework first calls
OnDropEx. If the OnDropEx function does not handle the drop, the framework then
calls this member function, OnDrop. Typically, the application overrides OnDropEx
in the view class to handle right mouse-button drag and drop. Typically, the view
class OnDrop is used to handle simple drag and drop.

The default implementation of COleDropTarget::OnDrop calls CView::OnDrop,
which simply returns FALSE by default.

For more information, see IDropTarget::Drop in the OLE 2 Programmer'’s
Reference, Volume 1.

See Also COleDropTarget::OnDragOver, COleDropTarget::OnDragEnter,
COleDropTarget::OnDropEx, CView::OnDrop

1183

COleDropTarget::OnDropEx

COleDropTarget::OnDropEx

virtual DROPEFFECT OnDropEx(CWnd* pWnd, COleDataObject* pDataObject,
DROPEFFECT dropDefault, DROPEFFECT dropList, CPoint point);

Return Value

The drop effect that resulted from the drop attempt at the location specified by point.
Drop effects are discussed in the “Remarks” section.

Parameters

Remarks

1184

pWnd Points to the window the cursor is currently over.
pDataObject Points to the data object that contains the data to be dropped.

dropDefault The effect that the user chose for the default drop operation based on
the current key state. It can be DROPEFFECT_NONE. Drop effects are
discussed in the “Remarks” section.

dropList A list of the drop effects that the drop source supports. Drop effect values
can be combined using the bitwise OR (I) operation. Drop effects are discussed in
the “Remarks” section.

point Contains the location of the cursor, in pixels, relative to the screen.

Called by the framework when a drop operation is to occur. The framework first calls
this function. If it does not handle the drop, the framework then calls OnDrop.
Typically, you will override OnDropEx in the view class to support right mouse-
button drag and drop. Typically, the view class OnDrop is used to handle the case of
support for simple drag and drop.

The default implementation of COleDropTarget::OnDropEx calls
CView::OnDropEx. By default, CView::OnDropEx simply returns a dummy value
to indicate the OnDrop member function should be called.

Drop effects describe the action associated with a drop operation. See the following
list of drop effects:

¢ DROPEFFECT_NONE A drop would not be allowed.
e DROPEFFECT_COPY A copy operation would be performed.
e DROPEFFECT_MOVE A move operation would be performed.

e DROPEFFECT_LINK A link from the dropped data to the original data would
be established.

o DROPEFFECT_SCROLL Indicates that a drag scroll operation is about to
occur or is occurring in the target.

COleDropTarget: ;Revoke

For more information, see IDropTarget::Drop in the OLE 2 Programmer’s
Reference, Volume 1.

See Also COleDropTarget::OnDragOver, COleDropTarget::OnDragEnter,
COleDropTarget::OnDrop, CView::OnDropEx

COleDropTarget::Register

BOOL Register(CWnd* pWnd);

Return Value
Nonzero if registration is successful; otherwise 0.

Parameters
pWnd Points to the window that is to be registered as a drop target.

Remarks
Call this function to register your window with the OLE DLLs as a valid drop target.
This function must be called for drop operations to be accepted.

For more information, see RegisterDragDrop in the OLE 2 Programmer’s
Reference, Volume 1.

See Also COleDropTarget::Revoke, COleDropTarget::COleDropTarget

COleDropTarget::Revoke

virtual void Revoke();

Remarks :
Call this function before destroying any window that has been registered as a drop
target through a call to Register to remove it from the list of drop targets. This
function is called automatically from the OnDestroy handler for the window that was
registered, so it is usually not necessary to call this function explicitly.

For more information, see RevokeDragDrop in the OLE 2 Programmer’s Reference,
Volume 1.

See Also COleDropTarget::Register, CWnd::OnDestroy

1185

COleException

COleException

A COleException object represents an exception condition related to an OLE
operation. The COleException class includes a public data member that holds the

status code indicating the reason for the exception.

In general, you should not create a COleException object directly; instead, you

should call AfxThrowOleException.

For more information on exceptions, see the articles “Exceptions” and “Exceptions:

OLE Exceptions” in Programming with MFC.

#include <afxole.h>

See Also AfxThrowOleException

Data Members

m_sc Contains the status code that indicates the reason for the exception.
Operations

Process Translates a caught exception into an OLE return code.

Member Functions

COleException::Process

static SCODE PASCAL Process(const CException* pAnyException);

Return Value
An OLE status code.

Parameters
PpAnyException Pointer to a caught exception.

1186

Remarks
Call the Process member function to translate a caught exception into an OLE status
code.

Note This function is static.

For more information on SCODE, see “Structure of OLE Error Codes” in the OLE 2
Programmer’s Reference, Volume 1.

See Also CException

COleException::m_sc

Data Members

COleException::m_sc

SCODE m_sc;

Remarks
This data member holds the OLE status code that indicates the reason for the
exception. This variable’s value is set by AfxThrowOleException.

For more information on SCODE, see “Structure of OLE Error Codes” in the OLE 2
Programmer’s Reference, Volume 1.

See Also AfxThrowOleException

1187

COlelnsertDialog

COlelnsertDialog

1188

The COlelInsertDialog class is used for the OLE Insert Object dialog box. Create an
object of class COleInsertDialog when you want to call this dialog box. After a
COlelnsertDialog object has been constructed, you can use the m_io structure to
initialize the values or states of controls in the dialog box. The m_io structure is of
type OLEUIINSERTOBJECT. For more information about using this dialog class,
see the DoModal member function.

Note AppWizard-generated container code uses this class.

For more information, see the OLEUIINSERTOBJECT structure in the OLE 2.01
User Interface Library.

For more information regarding OLE-specific dialog boxes, see the article “Dialog
Boxes in OLE” in Programming with MFC.

#include <afxodlgs.h>

See Also COleDialog

Data Members

m_io A structure of type OLEUIINSERTOBJECT that controls the
behavior of the dialog box.

Construction

COlelnsertDialog Constructs a COleInsertDialog object.

Operations and Attributes

DoModal Displays the OLE Insert Object dialog box.

Createltem Creates the item selected in the dialog box.

GetSelectionType Gets the type of object selected.

COlelnsertDialog::COlelnsertDialog

Operations and Attributes

GetClassID Gets the CLSID associated with the chosen item.

GetDrawAspect Tells whether to draw the item as an icon.

GetlconicMetafile Gets a handle to the metafile associated with the iconic form of
this item.

GetPathName Gets the full path to the file chosen in the dialog box.

Member Functions
COlelnsertDialog::COlelnsertDialog

COlelnsertDialog (DWORD dwFlags = IOF_SELECTCREATENEW,
CWnd* pParentWnd = NULL);

Parameters

dwFlags Creation flag that contains any number of the following values to be
combined using the bitwise-OR operator:

IOF_SHOWHELP Specifies that the Help button will be displayed when the
dialog box is called.

IOF_SELECTCREATENEW Specifies that the Create New radio button
will be selected initially when the dialog box is called. This is the default and
cannot be used with IOF_SELECTCREATEFROMFILE.

IOF_SELECTCREATEFROMFILE Specifies that the Create From File
radio button will be selected initially when the dialog box is called. Cannot be
used with IOF_SELECTCREATENEW.

IOF_CHECKLINK Specifies that the Link check box will be checked
initially when the dialog box is called.

IOF_DISABLELINK Specifies that the Link check box will be disabled
when the dialog box is called.

IOF_CHECKDISPLAYASICON Specifies that the Display As Icon check
box will be checked initially, the current icon will be displayed, and the Change
Icon button will be enabled when the dialog box is called.

IOF_VERIFYSERVERSEXIST Specifies that the dialog box should validate
the classes it adds to the list box by ensuring that the servers specified in the
registration database exist before the dialog box is displayed. Setting this flag
can significantly impair performance.

pParentWnd Points to the parent or owner window object (of type CWnd) to which
the dialog object belongs. If it is NULL, the parent window of the dialog object is
set to the main application window.

1189

COlelnsertDialog::Createltem

Remarks
This function constructs only a COleInsertDialog object. To display the dialog box,
call the DoModal function.

See Also COlelInsertDialog::DoModal

COlelnsertDialog::Createltem

BOOL Createltem(COleClientItem* pltem);

Return Value
Nonzero if item was created; otherwise 0.

Parameters
pltem Points to the item to be created.

Remarks
Call this function to create an object of type COleClientItem only if DoMeodal
returns IDOK. You must allocate the COleClientItem object before you can call this
function.

See Also COleClientItem::CreateLinkFromFile,
COleClientItem::CreateFromFile, COleClientItem::CreateNewItem,
COleClientItem::SetDrawAspect, COleInsertDialog::GetSelectionType,
COlelnsertDialog: :DoModal

COlelnsertDialog::DoModal

virtual int DoModal();

Return Value
Completion status for the dialog box. One of the following values:

e IDOK if the dialog box was successfully displayed.
¢ IDCANCEL if the user canceled the dialog box.

o IDABORT if an error occurred. If IDABORT is returned, call the
COleDialog:: GetLastError member function to get more information about the
type of error that occurred. For a listing of possible errors, see the
OleUlIlnsertObject function in the OLE 2.01 User Interface Library.

Remarks
Call this function to display the OLE Insert Object dialog box.

If you want to initialize the various dialog box controls by setting members of the
~m_io structure, you should do this before calling DoModal, but after the dialog object
is constructed.

1190

COlelnsertDialog::GetDraw Aspect

If DoModal returns IDOK, you can call other member functions to retrieve the
settings or information input into the dialog box by the user.

See Also COleDialog::GetLastError, CDialog::DoModal,
COlelnsertDialog::GetSelectionType, COleInsertDialog::GetClassID,
COlelnsertDialog::GetDrawAspect, COleInsertDialog::GetIconicMetafile,
COlelnsertDialog::GetPathName, COleInsertDialog::m_io

COlelnsertDialog::GetClassID

const CLSID& GetClassID() const;

Return Value
Returns the CLSID associated with the selected item.

Remarks
Call this function to get the CLSID associated with the selected item only if
DoModal returns IDOK and the selection type is
COlelnsertDialog::createNewltem.

For more information, see CLSID in the OLE 2 Programmer’s Reference, Volume 1.

See Also COlelnsertDialog::DoModal, COleInsertDialog::GetSelectionType

COlelnsertDialog::GetDraw Aspect

DVASPECT GetDrawAspect() const;

Return Value
The method needed to render the object.

e DVASPECT_CONTENT Returned if the Display As Icon check box was not
checked.

e DVASPECT_ICON Returned if the Display As Icon check box was checked.

Remarks
Call this function to determine if the user chose to display the selected item as an
icon. Call this function only if DoMeodal returns IDOK.

For more information on drawing aspect, see FORMATETC data structure in the
OLE 2 Programmer’s Reference, Volume 1.

See Also COlelnsertDialog::DoModal, COleInsertDialog::COleInsertDialog

1191

COlelnsertDialog::GetlconicMetafile

COleInsertDialog::GetIconicMetafile

HGLOBAL GetIconicMetafile() const;

Return Value
The handle to the metafile containing the iconic aspect of the selected item, if the

Display As Icon check box was checked when the dialog was dismissed by choosing
OK; otherwise NULL.

Remarks
Call this function to get a handle to the metafile that contains the iconic aspect of the
selected item.

See Also COleInsertDialog::DoModal, COleInsertDialog::GetDrawAspect

COlelnsertDialog::GetPathName

CString GetPathName() const;

Return Value
The full path to the file selected in the dialog box. If the selection type is
createNewltem, this function returns NULL in release mode or causes an assertion
in debug mode.

Remarks
Call this function to get the full path of the selected file only if DoMedal returns
IDOK and the selection type is not COleInsertDialog::createNewlItem.

See Also COlelnsertDialog::GetSelectionType, COleInsertDialog::DoModal

COlelnsertDialog::GetSelectionType

UINT GetSelectionType() const;

Return Value
Type of selection made.

Remarks
Call this function to get the selection type chosen when the Insert Object dialog box
was dismissed by choosing OK.

1192

COlelnsertDialog::m_io

The return type values are specified by the Selection enumeration type declared in
the COlelnsertDialog class.

enum Selection

{
createNewItem,
insertFromFile,
TinkToFile

}s

Brief descriptions of these values follow:

e COlelInsertDialog::createNewItem The Create New radio button was selected.

¢ COlelnsertDialog::insertFromFile The Create From File radio button was
selected and the Link check box was not checked.

¢ COlelInsertDialog::linkToFile The Create From File radio button was selected
and the Link check box was checked.

See Also COlelnsertDialog: :DoModal, COleInsertDialog::COlelnsertDialog

Data Members
COlelnsertDialog::m_io

Remarks

Structure of type OLEUIINSERTOBJECT used to control the behavior of the Insert
Object dialog box. Members of this structure can be modified either directly or
through member functions.

For more information, see the OLEUIINSERTOBJECT structure in the OLE 2.01
User Interface Library.

See Also COleInsertDialog::COleInsertDialog, COleInsertDialog::DoModal

1193

COleIPFrameWnd

COlelPFrameWnd

Use the COleIPFrameWnd class as the base for your application’s in-place editing
window. This class creates and positions control bars within the container
application’s document window. It also handles notifications generated by an
embedded COleResizeBar object when the user resizes the in-place editing window.

For more information on using COleIPFrameWnd, see the article “Activation” in
Programming with MFC.

#include <afxole.h>

See Also COleResizeBar, CFrameWnd

Construction

COleIPFrameWnd Constructs a COleIPFrameWnd object.

Overridables

OnCreateControlBars Called by the framework when an item is activated for in-
place editing.

RepositionFrame Called by the framework to reposition the in-place editing

window.

Member Functions
COlelPFrameWnd::COlelPFrameWnd

COleIPFrameWnd();

Remarks
Constructs a COleIPFrameWnd object and initializes its in-place state information,
which is stored in a structure of type OLEINPLACEFRAMEINFO.

1194

COlelPFrameWnd::RepositionFrame
For more information, see OLEINPLACEFRAMEINFO in the OLE 2
Programmer’s Reference, Volume 1.

See Also COleServerDoc::ActivateInPlace

COleIPFrameWnd::OnCreateControlBars

virtual BOOL OnCreateControlBars(CWnd* pWndFrame, CWnd* pWndDoc);
Return Value
Nonzero on success; otherwise, 0.

Parameters
pWndFrame Pointer to the container application’s frame window.

pWndDoc Pointer to the container’s document-level window. Can be NULL if the
container is an SDI application.

Remarks
The framework calls the OnCreateControlBars function when an item is activated
for in-place editing.

The defaunlt implementation does nothing. Override this function to perform any
special processing required when control bars are created.

See Also COleServerDoc::ActivateInPlace

COlelPFrameWnd::RepositionFrame

virtual void RepositionFrame(LPCRECT I/pPosRect, LPCRECT IpClipRect);

Parameters
IpPosRect Pointer to a RECT structure or a CRect object containing the in-place
frame window’s current position coordinates, in pixels, relative to the client area.

IpClipRect Pointer to a RECT structure or a CRect object containing the in-place
frame window’s current clipping-rectangle coordinates, in pixels, relative to the
client area.

Remarks
The framework calls the RepositionFrame member function to lay out control bars
and reposition the in-place editing window so all of it is visible.

1195

COlelPFrameWnd::RepositionFrame

1196

Layout of control bars in the container window differs from that performed by a non-
OLE frame window. The non-OLE frame window calculates the positions of control
bars and other objects from a given frame-window size, as in a call to
CFrameWnd::RecalcLayout. The client area is what remains after space for control
bars and other objects is subtracted. A COleIPFrameWnd window, on the other
hand, positions toolbars in accordance with a given client area. In other words,
CFrameWnd::RecalcLayout works “from the outside in,” whereas
COleIPFrameWnd::RepositionFrame works “from the inside out.”

See Also CFrameWnd::RecalcLayout

COleLinkingDoc

COleLinkingDoc

The COleLinkingDoc class is the base class for OLE container documents that
support linking to the embedded items they contain. A container application that
supports linking to embedded items is called a “link container.” The OCLIENT
sample application is an example of a link container.

When a linked item’s source is an embedded item in another document, that
containing document must be loaded in order for the embedded item to be edited. For
this reason, a link container must be able to be launched by another container
application when the user wants to edit the source of a linked item. Your application
must also use the COleTemplateServer class so that it can create documents when
launched programmatically.

To make your container a link container, derive your document class from
COleLinkingDoc instead of COleDocument. As with any other OLE container, you
must design your class for storing the application’s native data as well as embedded
or linked items. Also, you must design data structures for storing your native data. If
you define a CDocltem-derived class for your application’s native data, you can use
the interface defined by COleDocument to store your native data as well as your
OLE data.

To allow your application to be launched programmatically by another container,
declare a COleTemplateServer object as a member of your application’s CWinApp-
derived class:

class COleClientApp : public CWinApp

{
/...
protected:
COleTemplateServer m_server;
/...
1

1197

COleLinkingDoc::COleLinkingDoc

In the InitInstance member function of your CWinApp-derived class, create a
document template and specify your COleLinkingDoc-derived class as the document
class:

// CMainDoc is derived from COlelLinkingDoc
CMultiDocTemplate* pDocTemplate = new CMultiDocTemplate(IDR_OCLIENTTYPE,
RUNTIME_CLASS(CMainDoc),
RUNTIME_CLASS(CSplitFrame),
RUNTIME_CLASS(CMainView));
pDocTemplate->SetContainerInfo(
IDR_OCLIENTTYPE_CNTR_IP);
AddDocTemplate(pDocTemplate);

Connect your COleTemplateServer object to your document templates by calling the
object’s ConnectTemplate member function, and register all class objects with the
OLE system by calling COleTemplateServer::RegisterAll:

m_server.ConnectTemplate(clsid, pDocTemplate, FALSE);
COleTemplateServer::RegisterAl1();

For a sample CWinApp-derived class definition and InitInstance function, see
OCLIENT.H and OCLIENT.CPP in the MFC Advanced sample OCLIENT.

For more information on using COleLinkingDoe, see the articles “Containers:
Implementing a Container” and “Containers: Advanced Issues” in Programming
with MFC.

#include <afxole.h>

See Also COleDocument, COleTemplateServer, CDocTemplate

Construction

COleLinkingDoc Constructs a COleLinkingDoc object.

Operations

Register Registers the document with the OLE system DLLs.
Revoke Revokes the document’s registration.

Overridables

OnFindEmbeddedItem Finds the specified embedded item.
OnGetLinkedItem Finds the specified linked item.

Member Functions
COleLinkingDoc::COleLinkingDoc

COleLinkingDoc();

1198

COleLinkingDoc::OnGetLinkedItem

Remarks
Constructs a COleLinkingDoc object without beginning communications with the
OLE system DLLs. You must call the Register member function to inform OLE that
the document is open.

See Also COleLinkingDoc::Register

COleLinkingDoc::OnFindEmbeddedItem

virtual COleClientItem* OnFindEmbeddedItem(LPCTSTR IpszltemName);

Return Value
A pointer to the specified item; NULL if the item is not found.

Parameters
IpszitemName Pointer to the name of the embedded OLE item requested.

Remarks
Called by the framework to determine whether the document contains an embedded
OLE item with the specified name. The default implementation searches the list of
embedded items for an item with the specified name (the name comparison is case
sensitive). Override this function if you have your own method of storing or naming
embedded OLE items.

See Also COleClientItem, COleLinkingDoc::OnGetLinkedItem

COleLinkingDoc::OnGetLinkedItem

virtual COleServerItem* OnGetLinkedItem(LPCTSTR IpszitemName);

Return Value
A pointer to the specified item; NULL if the item is not found.

Parameters
IpszltemName Pointer to the name of the linked OLE item requested.

Remarks
Called by the framework to check whether the document contains a linked server
item with the specified name. The default COleLinkingDoc implementation always
returns NULL. This function is overriden in the derived class COleServerDoc to
search the list of OLE server items for a linked item with the specified name (the
name comparison is case sensitive). Override this function if you have implemented
your own method of storing or retrieving linked server items.

See Also COleServerItem::GetItemName, COleServerItem::SetltemName,
COleLinkingDoc::OnFindEmbeddedItem

1199

COleLinkingDoc::Register

COleLinkingDoc::Register

BOOL Register(COleObjectFactory* pFactory, LPCTSTR IpszPathName);

Return Value
Nongzero if the document is successfully registered; otherwise 0.

Parameters
pFactory Pointer to an OLE factory object (can be NULL).

IpszPathName Pointer to the fully qualified path of the container document.

Remarks
Informs the OLE system DLLs that the document is open. Call this function when
creating or opening a named file to register the document with the OLE system
DLLs. There is no need to call this function if the document represents an embedded
item.

If you are using COleTemplateServer in your application, Register is called for you
by COleLinkingDoc’s implementation of OnNewDocument, OnOpenDocument,
and OnSaveDocument.

See Also COleTemplateServer, COleObjectFactory,
CDocument::OnNewDocument, CDocument::OnOpenDocument

COleLinkingDoc::Revoke

void Revoke();

Remarks
Informs the OLE system DLLs that the document is no longer open. Call this
function to revoke the document’s registration with the OLE system DLLs.

You should call this function when closing a named file, but you usually do not need
to call it directly. Revoke is called for you by COleLinkingDoc’s implementation of
OnCloseDocument, OnNewDocument, OnOpenDocument, and
OnSaveDocument.

See Also COleTemplateServer, CDocument::OnCloseDocument,
CDocument::OnNewDocument, CDocument::OnOpenDocument,
CDocument::OnSaveDocument

1200

COleLinksDialog

COleLinksDialog

The COleLinksDialog object is used for the OLE Edit Links dialog box. Create an
object of class COleLinksDialog when you want to call this dialog box. After a
COleLinksDialog object has been constructed, you can use the m_el structure to
initialize the values or states of controls in the dialog box. The m_el structure is of
type OLEUIEDITLINKS. For more information about using this dialog class, see
the DoModal member function.

Note AppWizard-generated container code uses this class.

For more information, see the OLEUIEDITLINKS structure in the OLE 2.01 User
Interface Library.

For more information regarding OLE-specific dialog boxes, see the article “Dialog
Boxes in OLE” in Programming with MFC.

#include <afxodlgs.h>

See Also COleDialog

Data Members

m_el A structure of type OLEUIEDITLINKS that controls the behavior
of the dialog box.

Construction

COleLinksDialog Constructs a COleLinksDialog object.

Operations

DoModal Displays the OLE Edit Links dialog box.

1201

COleLinksDialog::COleLinksDialog

Member Functions
COleLinksDialog::COleLinksDialog

COleLinksDialog (COleDocument* pDoc, CView* pView, DWORD dwFlags = 0,
CWnd* pParentWnd = NULL);

Parameters
pDoc Points to the OLE document that contains the links to be edited.
pView Points to the current view on pDoc.

dwFlags Creation flag, which contains either 0 or ELF_SHOWHELP to specify
whether the Help button will be displayed when the dialog box is displayed.

pParentWnd Points to the parent or owner window object (of type CWnd) to which
the dialog object belongs. If it is NULL, the parent window of the dialog box is set
to the main application window.

Remarks
This function constructs only a COleLinksDialog object. To display the dialog box,
call the DoModal function.

See Also COleDocument, COleLinksDialog::DoModal, CView, CWnd

COleLinksDialog::DoModal

virtual int DoModal();

Return Value
Completion status for the dialog box. One of the following values:

e IDOK if the dialog box was successfully displayed.
e IDCANCEL if the user canceled the dialog box.

o IDABORT if an error occurred. If IDABORT is returned, call the
COleDialog::GetLastError member function to get more information about the
type of error that occurred. For a listing of possible errors, see the
OleUIEditLinks function in the OLE 2.01 User Interface Library.

Remarks
Call this function to display the OLE Edit Links dialog box.

If you want to initialize the various dialog box controls by setting members of the
m_el structure, you should do it before calling DoModal, but after the dialog object is
constructed.

See Also COleDialog::GetLastError, CDialog::DoModal,
COleLinksDialog::m_el

1202

COleLinksDialog::m_el

Data Members
COleLinksDialog::m_el

Remarks

Structure of type OLEUIEDITLINKS used to control the behavior of the Edit Links
dialog box. Members of this structure can be modified either directly or through
member functions.

For more information, see the OLEUIEDITLINKS structure in the OLE 2.01 User
Interface Library.

See Also COleLinksDialog::COleLinksDialog, COleLinksDialog::DoModal

1203

COleMessageFilter

COleMessageFilter

1204

The COleMessageFilter class manages the concurrency required by the interaction
of OLE applications.

The COleMessageFilter class is useful in visual editing server and container
applications, as well as OLE automation applications. For server applications that are
being called, this class can be used to make the application “busy” so that incoming
calls from other container applications are either canceled or retried later. This class
can also be used to determine the action to be taken by a calling application when the
called application is busy.

Common usage is for a server application to call BeginBusyState and EndBusyState
when it would be dangerous for a document or other OLE accessible object to be
destroyed. These calls are made in CWinApp::Onldle during user-interface updates.

By default, a COleMessageFilter object is allocated when the application is
initialized. It can be retrieved with AfxOleGetMessageFilter.

This is an advanced class; you seldom need to work with it directly.

For more information, see the article “Servers: Implementing a Server” in
Programming with MFC.

#include <afxole.h>
See Also AfxOleGetMessageFilter, CCmdTarget, CWinApp::Onldle

Construction

COleMessageFilter Constructs a COleMessageFilter object.

Operations

Register Registers the message filter with the OLE system DLLs.

Revoke Revokes the message filter’s registration with the OLE
system DLLs.

BeginBusyState Puts the application in the busy state.

EndBusyState Terminates the application’s busy state.

SetBusyReply Determines the busy application’s reply to an OLE call.

SetRetryReply Determines the calling application’s reply to a busy
application.

COleMessageFilter::BeginBusyState

Operations

SetMessagePendingDelay Determines how long the application waits for a response
to an OLE call.

EnableBusyDialog Enables and disables the dialog box that appears when a

called application is busy.

EnableNotRespondingDialog Enables and disables the dialog box that appears when a
called application is not responding.

Overridables

OnMessagePending Called by the framework to process messages while an
OLE call is in progress.

Member Functions

COleMessageFilter::BeginBusyState

Remarks

virtual void BeginBusyState();

Call this function to begin a busy state. It works in conjunction with EndBusyState
to control the application’s busy state. The function SetBusyReply determines the
application’s reply to calling applications when it is busy.

The BeginBusyState and EndBusyState calls increment and decrement,
respectively, a counter that determines whether the application is busy. For example,

two calls to BeginBusyState and one call to EndBusyState still result in a busy state.

To cancel a busy state it is necessary to call EndBusyState the same number of times
BeginBusyState has been called.

By default, the framework enters the busy state during idle processing, which is
performed by CWinApp::Onldle. While the application is handling
ON_COMMANDUPDATEUI notifications, incoming calls are handled later, after
idle processing is complete.

See Also COleMessageFilter::EndBusyState,
COleMessageFilter::SetBusyReply, CWinApp::Onldle

1205

COleMessageFilter::COleMessageFilter

COleMessageFilter::COleMessageFilter

COleMessageFilter();

Remarks
Creates a COleMessageFilter object.

See Also COleMessageFilter::Register, COleMessageFilter::Revoke

COleMessageFilter::EnableBusyDialog

void EnableBusyDialog(BOOL bEnableBusy = TRUE);

Parameters
bEnableBusy Specifies whether the “busy” dialog box is enabled or disabled.

Remarks
Enables and disables the busy dialog box, which is displayed when the message-
pending delay expires (see SetRetryReply) during an OLE call.

See Also COleMessageFilter::EnableNotRespondingDialog,
COleMessageFilter::BeginBusyState, COleMessageFilter::SetBusyReply,
COleMessageFilter::SetRetryReply, COleBusyDialog

COleMessageFilter::EnableNotRespondingDialog

void EnableNotRespondingDialog(BOOL bEnableNotResponding = TRUE);

Parameters

bEnableNotResponding Specifies whether the “not responding” dialog box is
enabled or disabled.

Remarks
Enables and disables the “not responding” dialog box, which is displayed if a
keyboard or mouse message is pending during an OLE call and the call has
timed out.

See Also COleMessageFilter::EnableBusyDialog,
COleMessageFilter::BeginBusyState, COleMessageFilter::SetBusyReply,
COleBusyDialog

1206

COleMessageFilter::OnMessagePending

COleMessageFilter::EndBusyState

Remarks

virtual void EndBusyState();

Call this function to end a busy state. It works in conjunction with BeginBusyState
to control the application’s busy state. The function SetBusyReply determines the
application’s reply to calling applications when it is busy.

The BeginBusyState and EndBusyState calls increment and decrement,
respectively, a counter that determines whether the application is busy. For example,

two calls to BeginBusyState and one call to EndBusyState still result in a busy state.

To cancel a busy state it is necessary to call EndBusyState the same number of times
BeginBusyState has been called.

By default, the framework enters the busy state during idle processing, which is
performed by CWinApp::Onldle. While the application is handling
ON_UPDATE_COMMAND_UI notifications, incoming calls are handled after idle
processing is complete.

See Also COleMessageFilter::BeginBusyState,
COleMessageFilter::SetBusyReply, CWinApp::Onldle

COleMessageFilter::OnMessagePending

virtual BOOL OnMessagePending(const MSG* pMsg);

Return Value

Nonzero on success; otherwise 0.

Parameters

Remarks

pMsg Pointer to the pending message.

Called by the framework to process messages while an OLE call is in progress.

When a calling application is waiting for a call to be completed, the framework calls
OnMessagePending with a pointer to the pending message. By default, the
framework dispatches WM_PAINT messages, so that window updates can occur
during a call that is taking a long time.

You must register your message filter by means of a call to Register before it can
become active.

See Also COleMessageFilter::Register, AfxOleInit, CWinA pp::InitInstance

1207

COleMessageFilter::Register

COleMessageFilter::Register
BOOL Register();

Return Value
Nonzero on success; otherwise 0.

Remarks
Registers the message filter with the OLE system DLLs. A message filter has no
effect unless it is registered with the system DLLs. Usually your application's
initialization code registers the application’s message filter. Any other message filter
registered by your application should be revoked before the program terminates by a
call to Revoke. '

The framework’s default message filter is automatically registered during
initialization and revoked at termination.

See Also COleMessageFilter::Revoke

COleMessageFilter::Revoke

void Revoke();

Remarks
Revokes a previous registration performed by a call to Register. A message filter
should be revoked before the program terminates.

The default message filter, which is created and registered automatically by the
framework, is also automatically revoked.

See Also COleMessageFilter::Register

COleMessageFilter::SetBusyReply

Void SetBusyReply(SERVERCALL nBusyReply);

Parameters
nBusyReply A value from the SERVERCALL enumeration, which is defined in
~ COMPOBIJ.H. It can have any one of the following values:

. SERVERCALL_ISHANDLED The application can accept calls but may fail
in processing a particular call.

e SERVERCALL_REJECTED The application probably will never be able to
process a call.

e SERVERCALL_RETRYLATER The application is temporarily in a state in
which it cannot process a call.

1208

Remarks

COleMessageFilter::SetRetryReply

This function sets the application’s “busy reply.” The BeginBusyState and
EndBusyState functions control the application’s busy state.

When an application has been made busy with a call to BeginBusyState, it responds
to calls from the OLE system DLLs with a value determined by the last setting of
SetBusyReply. The calling application uses this busy reply to determine what action
to take.

By default, the busy reply is SERVERCALL_RETRYLATER. This reply causes the
calling application to retry the call as soon as possible.

See Also COleMessageFilter::BeginBusyState,
COleMessageFilter::EndBusyState

COleMessageFilter::SetMessagePendingDelay

void SetMessagePendingDelay(DWORD nTimeout = 5000);

Parameters

Remarks

nTimeout Number of milliseconds for the message-pending delay.

Determines how long the calling application waits for a response from the called
application before taking further action.

This function works in concert with SetRetryReply.
See Also COleMessageFilter: :SetRetryReply

COleMessageFilter::SetRetryReply

void SetRetryReply(DWORD #nRetryReply = 0);

Parameters

Remarks

nRetryReply Number of milliseconds between retries.

Determines the calling application’s action when it receives a busy response from a
called application.

When a called application indicates that it is busy, the callihg application may decide
to wait until the server is no longer busy, to retry right away, or to retry after a
specified interval. It may also decide to cancel the call altogether.

The caller’s response is controlled by the functions SetRetryReply and
SetMessagePendingDelay. SetRetryReply determines how long the calling
application should wait between retries for a given call. SetMessagePendingDelay

1209

COleMessageFilter::SetRetryReply

1210

determines how long the calling application waits for a response from the server
before taking further action.

Usually the defaults are acceptable and do not need to be changed. The framework
retries the call every nRetryReply milliseconds until the call goes through or the
message-pending delay has expired. A value of 0 for nRetryReply specifies an
immediate retry, and —1 specifies cancellation of the call.

When the message-pending delay has expired, the OLE “busy dialog box” (see
COleBusyDialog) is displayed so that the user can choose to cancel or retry the call.
Call EnableBusyDialog to enable or disable this dialog box.

When a keyboard or mouse message is pending during a call and the call has timed
out (exceeded the message-pending delay), the “not responding” dialog box is
displayed. Call EnableNotRespondingDialog to enable or disable this dialog box.
Usually this state of affairs indicates that something has gone wrong and the user is
getting impatient.

When the dialogs are disabled, the current “retry reply” is always used for calls to
busy applications.

See Also COleBusyDialog, COleMessageFilter::EnableNotRespondingDialog,
COleMessageFilter::EnableBusyDialog,
COleMessageFilter::SetMessagePendingDelay

COleObjectFactory

COleObjectFactory

The COleObjectFactory class implements the OLE class factory, which creates OLE
objects such as servers, automation objects, and documents.

The COleObjectFactory class has member functions for performing the following
functions:

e Managing the registration of objects.

e Updating the OLE system register, as well as the run-time registration that
informs OLE that objects are running and ready to receive messages.

¢ Enforcing licensing by limiting use of the control to licensed developers at design
time and to licensed applications at run time.

e Registering control object factories with the OLE system registry.
For more information about object creation, see the articles “Data Objects and Data

Sources” and “Data Objects and Data Sources: Creation and Destruction.” For more
about registration, see the article “Registration.” These articles are in Programming

with MFC.

#include <afxdisp.h>

See Also COleTemplateServer

Construction

COleObjectFactory Constructs a COleObjectFactory object.

Operations

Register Registers this object factory with the OLE system DLLs.

RegisterAll Registers all of the application’s object factories with OLE system
DLLs.

Revoke Revokes this object factory’s registration with the OLE system
DLLs.

RevokeAll Revokes an application’s object factories’ registrations with the
OLE system DLLs.

UpdateRegistryAll Registers all of the application’s object factories with the OLE
system registry.

1211

COleObjectFactory::COleObjectFactory

Attributes

IsRegistered Indicates whether the object factory is registered with the OLE
system DLLs.

GetClassID Returns the OLE class ID of the objects this factory creates.

Overridables

OnCreateObject Called by the framework to create a new object of this factory’s
type.

UpdateRegistry Registers this object factory with the OLE system registry.

VerifyUserLicense Verifies that the control is licensed for design-time use.

GetLicenseKey Requests a unique key from the control’s DLL.

VerifyLicenseKey Verifies that the key embedded in the control matches the key

embedded in the container.

Member Functions
COleObjectFactory::COleObjectFactory

COleObjectFactory(REFCLSID clisid, CRuntimeClass* pRuntimeClass,
BOOL bMultilnstance, LPCTSTR IpszProgID);

Parameters
clsid Reference to the OLE class ID this object factory represents.
pRuntimeClass Pointer to the run-time class of the C++ objects this factory can
create.

bMultilnstance Indicates whether a single instance of the application can support
multiple instantiations. If TRUE, multiple instances of the application are
launched for each request to create an object.

IpszProgID Pointer to a string containing a verbal program identifier, such as
“Microsoft Excel.”

Remarks
Constructs a COleObjectFactory object, initializes it as an unregistered object
factory, and adds it to the list of factories. To use the object, however, you must
register it.

For more information, see CLSID in the OLE 2 Programmer’s Reference, Volume 1.

See Also CRuntimeClass

1212

COleObjectFactory::IsRegistered

COleObjectFactory::GetClassID

REFCLSID GetClassID() const;

Return Value
Reference to the OLE class ID this factory represents.

Remarks
Returns a reference to the OLE class ID this factory represents.

For more information, see CLSID in the OLE 2 Programmer’s Reference, Volume 1.

See Also COleObjectFactory::COleObjectFactory

COleObjectFactory::GetLicenseKey

virtual BOOL GetLicenseKey(DWORD dwReserved, BSTR *pbstrKey);

Return Value
Nonzero if the license-key string is not NULL; otherwise 0.

Parameters
dwReserved Reserved for future use.

pbstrKey Pointer to a BSTR that will store the license key.

Remarks :
Requests a unique license key from the control’s DLL and stores it in the BSTR
pointed to by pbstrKey.

The default implementation of this function returns 0 and stores nothing in the
BSTR. If you use OLE ControlWizard to create your project, ControlWizard supplies
an override that retrieves the control’s license key.

See Also COleObjectFactory::VerifyUserLicense,
COleObjectFactory:: VerifyLicenseKey

COleObjectFactory::IsRegistered

BOOL IsRegistered() const;

Return Value
Nonzero if the factory is registered; otherwise 0.

Remarks
Returns a nonzero value if the factory is registered with the OLE system DLLs.

See Also COleObjectFactory::Register, COleObjectFactory::Revoke

1213

COleObjectFactory::OnCreateObject

COleObjectFactory::OnCreateObject

virtual CCmdTarget* OnCreateObject();

Return Value
A pointer to the created object. It can throw a memory exception if it fails.

Remarks
Called by the framework to create a new object. Override this function to create the
object from something other than the CRuntimeClass passed to the constructor.

See Also COleObjectFactory::COleObjectFactory, CRuntimeClass

COleObjectFactory::Register

BOOL Register();

Return Value
Nongzero if the factory is successfully registered; otherwise 0.

Remarks
Registers this object factory with the OLE system DLLs. This function is usually
called by CWinApp::InitInstance when the application is launched.

See Also COleObjectFactory::Revoke, COleObjectFactory::RegisterAll,
CWinApp::InitInstance

COleObjectFactory::RegisterAll

static BOOL PASCAL RegisterAll();

Return Value
Nonzero if the factories are successfully registered; otherwise 0.

Remarks
Registers all of the application’s object factories with the OLE system DLLs. This
function is usually called by CWinApp::InitInstance when the application is
launched.

See Also COleObjectFactory::Revoke, COleObjectFactory::Register,
CWinApp::InitInstance

1214

COleObjectFactory::UpdateRegistry

COleObjectFactory::Revoke

void Revoke();

Remarks
Revokes this object factory’s registration with the OLE system DLLs. The framework
calls this function automatically before the application terminates. If necessary, call it
from an override of CWinApp::ExitInstance.

See Also COleObjectFactory::RevokeAll, COleObjectFactory::Register,
CWinApp::ExitInstance

COleObjectFactory::RevokeAll

static void PASCAL RevokeAll();

Remarks
Revokes all of the application’s object factories’ registrations with the OLE system
DLLs. The framework calls this function automatically before the application
terminates. If necessary, call it from an override of CWinApp::ExitInstance.

See Also COleObjectFactory::Revoke, COleObjectFactory::RegisterAll,
CWinApp::ExitInstance

COleObjectFactory::UpdateRegistry
void UpdateRegistry(LPCTSTR IpszProgID = NULL);
virtual void UpdateRegistry(BOOL bRegister) = 0;

Parameters
IpszProgID Pointer to a string containing the human-readable program identifier,
such as “Excel.Document.5.”

bRegister Determines whether the control class’s object factory is to be registered.

Remarks
Brief discussions of the two forms for this function follow:

o UpdateRegistry(IpszProgID) Registers this object factory with the OLE system
registry. This function is usually called by CWinApp::InitInstance when the
application is launched.

1215

COleObjectFactory::UpdateRegistryAll

o UpdateRegistry(bRegister) This form of the function is overridable. If
bRegister is TRUE, this function registers the control class with the system
registry. Otherwise, it unregisters the class.

If you use OLE ControlWizard to create your project, ControlWizard supplies an
override to this pure virtual function.

See Also COleObjectFactory::Revoke, COleObjectFactory::Register,
COleObjectFactory::UpdateRegistryAll, CWinApp::Initinstance

COleObjectFactory::UpdateRegistry All

static void PASCAL UpdateRegistry();

Remarks
Registers all of the application’s object factories with the OLE system registry. This
function is usually called by CWinApp::InitInstance when the application is
launched.

See Also COleObjectFactory::Revoke, COleObjectFactory::Register,
COleObjectFactory::UpdateRegistry, CWinApp::InitInstance

COleObjectFactory:: VerifyLicenseKey

virtual BOOL VerifyLicenseKey(BSTR bstrKey);

Return Value
Norzero if the run-time license is valid; otherwise 0.

Parameters
bstrKey A BSTR storing the container’s version of the license string.

Remarks
This function verifies that the container is licensed to use the OLE control. The
default version calls GetLicenseKey to get a copy of the control’s license string and
compares it with the string in bstrKey. If the two strings match, the function returns a
nonzero value; otherwise it returns 0.

You can override this function to provide customized verification of the license.
The function VerifyUserLicense verifies the design-time license.

See Also COleObjectFactory:: VerifyUserLicense,
COleObjectFactory::GetLicenseKey

1216

COleObjectFactory:: VerifyUserLicense

virtual BOOL VerifyUserLicense();

Return Value
Nonzero if the design-time license is valid; otherwise 0.

Remarks
Verifies the design-time license for the OLE control.

See Also COleObjectFactory:: VerifyLicenseKey,
COleObjectFactory::GetLicenseKey

COleObjectFactory:: VerifyUserLicense

1217

COlePasteSpecialDialog

COlePasteSpecialDialog

1218

The COlePasteSpecialDialog class is used for the OLE Paste Special dialog box.
Create an object of class COlePasteSpecialDialog when you want to call this dialog
box. After a COlePasteSpecialDialog object has been constructed, you can use the
AddFormat and AddStandardFormats member functions to add Clipboard formats
to the dialog box. You can also use the m_ps structure to initialize the values or states
of controls in the dialog box. The m_ps structure is of type
OLEUIPASTESPECIAL.

For more information, see the OLEUIPASTESPECIAL structure in the OLE 2.01
User Interface Library.

For more information regarding OLE-specific dialog boxes, see the article “Dialog
Boxes in OLE” in Programming with MFC.

#include <afxodlgs.h>

See Also COleDialog

Data Members

m_ps A structure of type OLEUIPASTESPECIAL that controls the
function of the dialog box.

Construction

COlePasteSpecialDialog Constructs a COlePasteSpecialDialog object.

Operations and Attributes
DoModal Displays the OLE Paste Special dialog box.
AddFormat Adds custom formats to the list of formats your application can

paste.

COlePasteSpecialDialog:: AddFormat

Operations and Attributes

AddStandardFormats Adds CF_BITMAP, CF_DIB, CF_METAFILEPICT, and
optionally CF_LINKSOURCE to the list of formats your
application can paste.

Createltem Creates the item in the container document using the specified
format.

GetSelectionType Gets the type of selection chosen.

GetDrawAspect Tells whether to draw item as an icon or not.

GetlconicMetafile Gets a handle to the metafile associated with the iconic form of
this item.

GetPasteIndex Gets the index of available paste options that was chosen by the

user.

Member Functions
COlePasteSpecialDialog:: AddFormat

void AddFormat(const FORMATETC& fint, LPTSTR IpstrFormat, LPTSTR IpstrResult,
DWORD flags);

void AddFormat(UINT c¢f, DWORD tymed, UINT nFormatID, BOOL bEnablelcon,
BOOL bLink);

Parameters
fmmt Reference to the data type to add.

IpstrFormat String that describes the format to the user.
IpstrResult String that describes the result if this format is chosen in the dialog box.

flags The different linking and embedding options available for this format. This
flag is a bitwise combination of one or more of the different values in the
OLEUIPASTEFLAG enumerated type.

¢f The clipboard format to add.

tymed The types of media available in this format. This is a bitwise combination of
one or more of the values in the TYMED enumerated type.

nFormatID The ID of the string that identifies this format. The format of this string
is two separate strings separated by a ‘\n’ character. The first string is the same
that would be passed in the l[pstrFormat parameter, and the second is the same as
the IpstrResult parameter.

bEnablelcon Flag that determines whether the Display As Icon check box is enabled
when this format is chosen in the list box.

bLink Flag that determines whether the Paste Link radio button is enabled when this
format is chosen in the list box.

1219

COlePasteSpecialDialog:: AddStandardFormats

Remarks
Call this function to add new formats to the list of formats your application can
support in a Paste Special operation. This function can be called to add either
standard formats such as CF_TEXT or CF_TIFF or custom formats that your
application has registered with the system. For more information about pasting data
objects into your application, see the article “Data Objects and Data Sources:
Manipulation” in Programming with MFC.

For more information, see the TYMED enumeration type and the FORMATETC
structure in the OLE 2 Programmer’s Reference, Volume 1.

For more information, see the OLEUIPASTEFLAG enumerated type in the OLE
2.01 User Interface Library.

See Also COlePasteSpecialDialog::AddStandardFormats

COlePasteSpecialDialog:: AddStandardFormats

void AddStandardFormats(BOOL bEnableLink = TRUE);

Parameters
bEnableLink Flag that determines whether to add CF_LINKSOURCE to the list of
formats your application can paste.

Remarks
Call this function to add the following Clipboard formats to the list of formats your
application can support in a Paste Special operation:

o CF_BITMAP

e CF_DIB

¢ CF_METAFILEPICT

¢ “Embedded Object”

¢ (optionally) “Link Source”

These formats are used to support embedding and linking.
See Also COlePasteSpecialDialog::AddFormat

COlePasteSpecialDialog::COlePasteSpecialDialog

COlePasteSpecialDialog(DWORD dwFlags = PSF_SELECTPASTE,
COleDataObject* pDataObject = NULL, CWnd* pParentWnd = NULL);

Parameters
dwFlags Creation flag, contains any number of the following flags combined using
the bitwise-OR operator:

1220

COlePasteSpecialDialog::Createltem

o PSF_SELECTPASTE Specifies that the Paste radio button will be checked
initially when the dialog box is called. Cannot be used in combination with
PSF_SELECTPASTELINK. This is the default.

o PSF_SELECTPASTELINK Specifies that the Paste Link radio button will
be checked initially when the dialog box is called. Cannot be used in
combination with PSF_SELECTPASTE.

o PSF_CHECKDISPLAYASICON Specifies that the Display As Icon check
box will be checked initially when the dialog box is called.

o PSF_SHOWHELP Specifies that the Help button will be displayed when the
dialog box is called.

pDataObject Points to the COleDataObject for pasting. If this value is NULL, it
gets the COleDataObject from the Clipboard.

pParentWnd Points to the parent or owner window object (of type CWnd) to which
the dialog object belongs. If it is NULL, the parent window of the dialog box is set
to the main application window.

Remarks
This function only constructs a COlePasteSpecialDialog object. To display the
dialog box, call the DoModal function.

For more information, see the OLEUIPASTEFLAG enumerated type in the
OLE 2.01 User Interface Library.

See Also COleDataObject, COlePasteSpecialDialog::DoModal

COlePasteSpecialDialog::Createltem

BOOL Createltem(COleClientItem* pNewltem);

Return Value
Nonzero if the item was created successfully; otherwise 0.

Parameters
pNewltem Points to a COleClientItem instance. Cannot be NULL.

Remarks
Call this function to create the new item that was chosen in the Paste Special dialog
box. This function should only be called after DoModal returns IDOK.

See Also COleClientItem, COlePasteSpecialDialog::DoModal,
COlePasteSpecialDialog::GetSelectionType,
COlePasteSpecialDialog::COlePasteSpecialDialog

1221

COlePasteSpecialDialog::DoModal

COlePasteSpecialDialog::DoModal

virtual int DoModal();

Return Value
Completion status for the dialog box. One of the following values:

¢ IDOK if the dialog box was successfully displayed.
¢ IDCANCEL if the user canceled the dialog box.

e IDABORT if an error occurred. If IDABORT is returned, call the
COleDialog::GetLastError member function to get more information about the
type of error that occurred. For a listing of possible errors, see the
OleUlPasteSpecial function in the OLE 2.01 User Interface Library.

Remarks
Call this function to display the OLE Paste Special dialog box.

If you want to initialize the various dialog box controls by setting members of the
m_ps structure, you should do this before calling DoModal, but after the dialog
object is constructed.

If DoModal returns IDOK, you can call other member functions to retrieve the
settings or information input by the user into the dialog box.

See Also COleDataObject, COleDialog::GetLastError, CDialog::DoModal,
COlePasteSpecialDialog::COlePasteSpecialDialog,
COlePasteSpecialDialog::GetDrawAspect,
COlePasteSpecialDialog::GetIconicMetafile,
COlePasteSpecialDialog::GetPasteIndex,
COlePasteSpecialDialog::GetSelectionType

COlePasteSpecialDialog::GetDrawAspect

DVASPECT GetDrawAspect() const;

Return Value
The method needed to render the object.

¢ DVASPECT_CONTENT Returned if the Display As Icon check box was not
checked when the dialog box was dismissed.

e DVASPECT_ICON Returned if the Display As Icon check box was checked
when the dialog box was dismissed.

Remarks
Call this function to determine if the user chose to display the selected item as an
icon. Only call this function after DoModal returns IDOK.

1222

COlePasteSpecialDialog::GetSelectionType

For more information on drawing aspect, see the FORMATETC structure in the
OLE 2 Programmer’s Reference, Volume 1.

See Also COlePasteSpecialDialog::DoModal

COlePasteSpecialDialog::GetlconicMetafile

HGLOBAL GetlIconicMetafile() const;

Return Value
The handle to the metafile containing the iconic aspect of the selected item, if the
Display As Icon check box was selected when the dialog box was dismissed by
choosing OK; otherwise NULL.

Remarks
Gets the metafile associated with the item selected by the user.

See Also COlePasteSpecialDialog: :GetDrawAspect,
COlePasteSpecialDialog: :DoModal

COlePasteSpecialDialog::GetPasteIndex

- int GetPasteIndex() const;

Return Value
The index into the array of OLEUIPASTEENTRY structures that was selected by
the user. The format that corresponds to the selected index should be used when
performing the paste operation.

Remarks
Gets the index value associated with the entry the user selected.

For more information, see the OLEUIPASTEENTRY structure in the OLE 2.01
User Interface Library.

See Also COlePasteSpecialDialog::DoModal

COlePasteSpecialDialog::GetSelectionType

UINT GetSelectionType() const;

Return Value
Returns type of selection made.

Remarks
Call this function to determine the type of selection the user made.

1223

COlePasteSpecialDialog::m_ps

The return type values are specified by the Selection enumeration type declared in
the COlePasteSpecialDialog class.

enum Selection

{
pastelink,
pasteNormal,
pasteOther,
pasteStatic
};

Brief desccriptions of these values follow:

¢ COlePasteSpecialDialog::pasteLink The Paste Link radio button was checked
and the chosen format was a standard OLE format.

e COlePasteSpecialDialog::pasteNormal The Paste radio button was checked and
the chosen format was a standard OLE format.

e (COlePasteSpecialDialog::pasteOther The selected format is not a standard
OLE format.

e (COlePasteSpecialDialog::pasteStatic The chosen format was a metafile.

See Also COlePasteSpecialDialog::DoModal

Data Members
COlePasteSpecialDialog::m_ps

Remarks

1224

Structure of type OLEUIPASTESPECIAL used to control the behavior of the Paste
Special dialog box. Members of this structure can be modified directly or through
member functions.

For more information, see the OLEUIPASTESPECIAL structure in the OLE 2.01
User Interface Library.

See Also COlePasteSpecialDialog::COlePasteSpecialDialog,
COlePasteSpecialDialog::DoModal

COlePropertiesDialog

COlePropertiesDialog

The COlePropertiesDialog class encapsulates the Windows common OLE Object
Properties dialog box. Common OLE Object Properties dialog boxes provide an easy
way to display and modify the properties of an OLE document item in a manner
consistent with Windows standards. These properties include, among others,
information on the file represented by the document item, options for displaying the
icon and image scaling, and information on the item’s link (if the item is linked).

To use a COlePropertiesDialog object, first create the object using the
COlePropertiesDialog constructor. After the dialog box has been constructed, call
the DoModal member function to display the dialog box and allow the user to modify
any properties of the item. DoMaedal returns whether the user selected the OK
(IDOK) or the Cancel (IDCANCEL) button. In addition to the OK and Cancel
buttons, there is an Apply button. When the user selects Apply, any changes made to
the properties of the document item are applied to the item and its image is
automatically updated, but remains active.

The m_psh data member is a pointer to a PROPSHEETHEADER structure, and in
most cases you will not need to access it explicitly. One exception is when you need
additional property pages beyond the default General, View, and Link pages. In this
case, you can modify the m_psh data member to include your custom pages before
calling the DoModal member function.

For more information on OLE dialog boxes, see the article “Dialog Boxes in OLE” in
Programming with MFC.

#include <afxodlgs.h>
See Also COleDialog, CPropertyPage

1225

COlePropertiesDialog::COlePropertiesDialog

Construction

COlePropertiesDialog Constructs a COlePropertiesDialog object.

Data Members

m_gp A structure used to initialize the “General” page of a
COlePropertiesDialog object.

m_Ip A structure used to initialize the “Link” page of a
COlePropertiesDialog object.

m_op A structure used to initialize the COlePropertiesDialog
object. :

m_psh A structure used to add additional custom property pages.

m_vp A structure used to customize the “View” page of a
COlePropertiesDialog object.

Operations

DoModal Displays the dialog box and allows the user to make a
selection.

Overridables

OnApplyScale Called by the framework when the scaling of the document

item has changed.

Member Functions
COlePropertiesDialog::COlePropertiesDialog

COlePropertiesDialog(COleClientItem* pltem, UINT nScaleMin = 10, UINT nScaleMax = 500,
CWnd* pParentWnd = NULL);

Parameters
pltem Pointer to the document item whose properties are being accessed.

nScaleMin Minimum scaling percentage for the document item image.
nScaleMax Maximum scaling percentage for the document item image.
pParentWnd Pointer to the dialog box’s parent or owner.

Remarks
Creates a COlePropertiesDialog object. Derive your common OLE Object Properties
dialog class from COlePropertiesDialog in order to implement scaling for your

document items. Any dialog boxes implemented by an instance of this class will not
support scaling of the document item.

1226

COlePropertiesDialog::OnApplyScale

By default, the common OLE Object Properties dialog box has three default pages:

e General

This page contains system information for the file represented by the selected
document item. From this page, the user can convert the selected item to another
type.

e View
This page contains options for displaying the item, changing the icon, and
changing the scaling of the image.

e Link

This page contains options for changing the location of the linked item and
updating the linked item. From this page, the user can break the link of the
selected item.

To add pages beyond those provided by default, modify the m_psh member variable
before exiting the constructor of your COlePropertiesDialog-derived class. This is
an advanced implementation of the COlePropertiesDialog constructor.

See Also COlePropertiesDialog::OnApplyScale

COlePropertiesDialog::DoModal

virtual int DoModal();

Return Value
IDOK or IDCANCEL if successful; otherwise 0. IDOK and IDCANCEL are
constants that indicate whether the user selected the OK or Cancel button.

If IDCANCEL is returned, you can call the Windows CommDIgExtendedError
function to determine whether an error occurred.

Remarks
Call this member function to display the Windows common OLE Object Properties
dialog box and allow the user to view and/or change the various properties of the
document item. :

See Also COlePropertiesDialog::OnApplyScale, COlePropertiesDialog::m_psh

COlePropertiesDialog::OnApplyScale

virtual BOOL OnApplyScale(COleClientItem* pltem, int nCurrentScale,
BOOL bRelativeToOrig);

Return Value
Nonzero if handled; otherwise 0.

1227

COlePropertiesDialog::m_gp

Parameters
pltem Pointer to the document item whose properties are being accessed.

nCurrentScale Numerical value of the dialog scale.

bRelativeToOrig Indicates whether scaling applies to the original size of the
document item.

Remarks
Called by the framework when the scaling value has changed and either OK or Apply
was selected. The default implementation does nothing. You must override this
function to enable the scaling controls.

Note Before the common OLE Object Properties dialog box is displayed, the framework calls
this function with a NULL for pitem and a -1 for nCurrentScale. This is done to determine if
the scaling controls should be enabled.

See Also COlePropertiesDialog::DoModal

Data Members
COlePropertiesDialog::m_gp

Remarks
A structure of type OLEUIGNRLPROPS, used to initialize the General page of the
OLE Object Properties dialog box. This page shows the type and size of an
embedding and allows the user access to the Convert dialog box. This page also
shows the link destination if the object is a link.

For more information on the OLEUIGNRLPROPS structure, see the OLE
documentation.

COlePropertiesDialog::m_lp

Remarks
A structure of type OLEUILINKPROPS, used to initialize the Link page of the OLE
Object Properties dialog box. This page shows the location of the linked item and
allows the user to update, or break, the link to the item.

For more information on the OLEUILINKPROPS structure, see the OLE
documentation.

1228

COlePropertiesDialog::m_vp

COlePropertiesDialog::m_op

Remarks

A structure of type OLEUIOBJECTPROPS, used to initialize the common OLE
Object Properties dialog box. This structure contains members used to initialize the
General, Link, and View pages. ‘

For more information, see the OLEUIOBJECTPROPS and OLEUILINKPROPS
structures in the OLE documentation.

COlePropertiesDialog::m_psh

Remarks

A structure of type PROPSHEETHEADER, whose members store the
characteristics of the dialog object. After constructing a COlePropertiesDialog
object, you can use m_psh to set various aspects of the dialog box before calling the
DoModal member function.

If you modify the m_psh data member directly, you will override any default
behavior.

For more information on the PROPSHEETHEADER structure, see the Win32 SDK
documentation.

See Also COlePropertiesDialog::DoModal

COlePropertiesDialog::m_vp

Remarks

A structure of type OLEUIVIEWPROPS, used to initialize the View page of the
OLE Object Properties dialog box. This page allows the user to toggle between
“content” and “iconic” views of the object, and change its scaling within the
container. It also allows the user access to the Change Icon dialog box when the
object is being displayed as an icon.

For more information on the OLEUIVIEWPROPS structure, see the OLE
documentation.

1229

COlePropertyPage

COlePropertyPage

1230

The COlePropertyPage class is used to display the properties of a custom control in
a graphical interface, similar to a dialog box. For instance, a property page may
include an edit control that allows the user to view and modify the control’s caption
property.

Each custom or stock control property can have a dialog control that allows the
control’s user to view the current property value and modify that value if needed.

For more information on using COlePropertyPage, see the article “OLE Controls:
Property Pages” in Programming with MFC and Chapter 27, “Modifying the Default
Property Page,” in Tutorials.

#include <afxctl.h>
See Also CDialog

Construction

COlePropertyPage Constructs a COlePropertyPage object.

Operations

GetObjectArray Returns the array of objects being edited by the property page.

SetModifiedFlag Sets a flag indicating whether the user has modified the property
page.

IsModified Indicates whether the user has modified the property page.

GetPageSite Returns a pointer to the property page’s IPropertyPageSite
interface.

SetDialogResource Sets the property page’s dialog resource.

SetPageName Sets the property page’s name (caption).

SetHelpInfo Sets the property page’s brief help text, the name of its help file,

and its help context.

COlePropertyPage::GetControlStatus

Operations

GetControlStatus Indicates whether the user has modified the value in the control.

SetControlStatus Sets a flag indicating whether the user has modified the value in
the control.

IgnoreApply Determines which controls do not enable the Apply button.

Overridables

OnEditProperty Called by the framework when the user edits a property.

OnHelp Called by the framework when the user invokes help.

OnlInitDialog Called by the framework when the property page is initialized.

OnObjectsChanged Called by the framework when another OLE control, with new
properties, is chosen.

OnSetPageSite Called by the framework when the property frame provides the
page’s site.

Member Functions
COlePropertyPage::COlePropertyPage

COlePropertyPage(UINT idDig, UINT idCaption);

Parameters
idDlg Resource ID of the dialog template.

idCaption Resource ID of the property page’s caption.

Remarks
When you implement a subclass of COlePropertyPage, your subclass’s constructor
should use the COlePropertyPage constructor to identify the dialog-template
resource on which the property page is based and the string resource containing its
caption.

COlePropertyPage::GetControlStatus

BOOL GetControlStatus(UINT #ID);

Return Value
TRUE if the control value has been modified; otherwise FALSE.

Parameters
nID Resource ID of a property page control.

1231

COlePropertyPage::GetObjectArray

Remarks
Call this function to determine whether the user has modified the value of the
property page control with the specified resource ID.

See Also COlePropertyPage::SetControlStatus

COlePropertyPage::GetObjectArray

LPDISPATCH FAR¥* GetObjectArray(ULONG FAR¥* pnObjects);

Return Value
Pointer to an array of IDispatch pointers, which are used to access the properties of
each control on the property page. The caller must not release these interface
pointers.

Parameters
pnObjects Pointer to an unsigned long integer that will receive the number of
objects being edited by the page.

Remarks
Each property page object maintains an array of pointers to the IDispatch interfaces
of the objects being edited by the page. This function sets its prObjects argument to
the number of elements in that array and returns a pointer to the first element of the
array.

COlePropertyPage::GetPageSite

LPPROPERTYPAGESITE GetPageSite();

Return Value
A pointer to the property page’s IPropertyPageSite interface.

Remarks
Call this function to get a pointer to the property page’s IPropertyPageSite interface.

Controls and containers cooperate so that users can browse and edit control
properties. The control provides property pages, each of which is an OLE object that
allows the user to edit a related set of properties. The container provides a property
frame that displays the property pages. For each page, the property frame provides a
page site, which supports the IPropertyPageSite interface.

See Also COlePropertyPage::OnSetPageSite

1232

COlePropertyPage::OnEditProperty

COlePropertyPage::Ignore Apply
void IgnoreApply(UINT nID);

Parameters
nID ID of the control to be ignored.

Remarks
The property page’s Apply button is enabled only when values of property page
controls have been changed. Use this function to specify controls that do not cause
the Apply button to be enabled when their values change.

See Also COlePropertyPage::GetControlStatus

COlePropertyPage::IsModified

BOOL IsModified();

Return Value
TRUE if the property page has been modified.

Remarks
Call this function to determine whether the user has changed any values on the
property page.
See Also COlePropertyPage::SetModifiedFlag

COlePropertyPage::OnEditProperty

virtual BOOL OnEditProperty(DISPID dispid);

Return Value
The default implementation returns FALSE. Overrides of this function should return
TRUE.

Parameters
dispid Dispatch ID of the property being edited.

Remarks
The framework calls this function when a specific property is to be edited. You can
override it to set the focus to the appropriate control on the page. The default
implementation does nothing and returns FALSE.

1233

COlePropertyPage::OnHelp

COlePropertyPage::OnHelp

virtual BOOL OnHelp(LPCTSTR IpszHelpDir);

Return Value
The default implementation returns FALSE.

Parameters
IpszHelpDir Directory containing the property page’s help file.

Remarks
The framework calls this function when the user requests online help. Override it if
your property page must perform any special action when the user accesses help. The
default implementation does nothing and returns FALSE, which instructs the
framework to call WinHelp.

COlePropertyPage::OnlnitDialog

virtual BOOL OnlInitDialog();

Return Value
The default implementation returns FALSE.

Remarks
The framework calls this function when the property page’s dialog is initialized.
Override it if any special action is required when the dialog is initialized. The default
implementation calls CDialog::OnlInitDialog and returns FALSE.

See Also CDialog::OnlInitDialog

COlePropertyPage::OnObjectsChanged

virtual void OnObjectsChanged();

Remarks
When viewing the properties of an OLE control in the developer environment, a
modeless dialog box is used to display its property pages. If another control is
selected, a different set of property pages must be displayed for the new set of
properties. The framework calls this function to notify the property page of the
change.

Override this function to receive notification of this action and perform any special
actions.

1234

COlePropertyPage::SetDialogResource

COlePropertyPage::OnSetPageSite

virtual void OnSetPageSite();

Remarks
The framework calls this function when the property frame provides the property
page’s page site. The default implementation loads the page’s caption and attempts to
determine the page’s size from the dialog resource. Override this function if your
property page requires any further action; your override should call the base-class
implementation.

See Also COlePropertyPage::GetPageSite

COlePropertyPage::SetControlStatus

BOOL SetControlStatus(UINT nID, BOOL IsDirty);

Return Value
TRUE, if the specified control was set; otherwise FALSE.

Parameters
nID Contains the ID of a property page control.

IsDirty Specifies if a field of the property page has been modified. Set to TRUE if
the field has been modified, FALSE if it has not been modified.

Remarks
Call this function to change the status of a property page control.

If the status of a property page control is dirty when the property page is closed or the
Apply button is chosen, the control’s property will be updated with the appropriate
value.

See Also COlePropertyPage::GetControlStatus

COlePropertyPage::SetDialogResource

void SetDialogResource(HGLOBAL hDialog);

Parameters
hDialog Handle to the property page’s dialog resource.

Remarks
Call this function to set the property page’s dialog resource.

1235

COlePropertyPage::SetHelpInfo

COlePropertyPage::SetHelpInfo

void SetHelpInfo(LPCTSTR IpszDocString, LPCTSTR IpszHelpFile = NULL,
DWORD dwHelpContext =0);

Parameters
IpszDocString A string containing brief help information for display in a status bar
or other location.

IpszHelpFile Name of the property page’s help file.
dwHelpContext Help context for the property page.
Remarks

Use this function to specify “tool tip” information, the help filename, and the help
context for your property page.

See Also COlePropertyPage::OnHelp

COlePropertyPage::SetModifiedFlag

void SetModifiedFlag(BOOL bModified = TRUE);

Parameters
bModified Specifies the new value for the property page’s modified flag.

Remarks
Use this function to indicate whether the user has modified the property page.

See Also COlePropertyPage::IsModified

COlePropertyPage::SetPageName

void SetPageName(LPCTSTR IpszPageName);

Parameters
IpszPageName Pointer to a string containing the property page’s name.

Remarks
Use this function to set the property page’s name, which the property frame will
typically display on the page’s tab.

1236

COleResizeBar

COleResizeBar

An object of the class COleResizeBar is a type of control bar that supports resizing
of in-place OLE items. COleResizeBar objects appear as a CRectTracker with a
hatched border and outer resize handles.

COleResizeBar objects are usually embedded members of frame-window objects
derived from the COleIPFrameWnd class.

For more information, see the article “Activation” in Programming with MFC.
#include <afxole.h>
See Also CRectTracker, COleIPFrameWnd, COleServerDoc

Construction

COleResizeBar Constructs a COleResizeBar object.

Create Creates and initializes a Windows child window and associates it to
the COleResizeBar object.

Member Functions
COleResizeBar::Create

BOOL Create(CWnd* pParentWnd, DWORD dwStyle = WS_CHILD | WS_VISIBLE,
UINT nID = AFX_IDW_RESIZE BAR);

Return Value
Nonzero if the resize bar was created; otherwise 0.

1237

COleResizeBar::COleResizeBar

Parameters
pParentWnd Pointer to the parent window of the resize bar.

dwStyle Specifies the window style attributes. For a list of window styles, see
“Window.Styles” in the “Styles Used by MFC” section.

nID The resize bar’s child window ID.

Remarks
Creates a child window and associates it with the COleResizeBar object.

See Also CWnd::Create, CControlBar

COleResizeBar::COleResizeBar

COleResizeBar();

Remarks
Constructs a COleResizeBar object. Call Create to create the resize bar object.

See Also COleResizeBar::Create

1238

COleServerDoc

COleServerDoc

COleServerDoc is the base class for OLE server documents. A server document can
contain COleServerltem objects, which represent the server interface to embedded
or linked items. When a server application is launched by a container to edit an
embedded item, the item is loaded as its own server document; the COleServerDoc
object contains just one COleServerItem object, consisting of the entire document.
‘When a server application is launched by a container to edit a linked item, an
existing document is loaded from disk; a portion of the document’s contents is
highlighted to indicate the linked item.

COleServerDoc objects can also contain items of the COleClientItem class. This
allows you to create container-server applications. The framework provides functions
to properly store the COleClientItem items while servicing the COleServerItem
objects.

If your server application does not support links, a server document will always
contain only one server item, which represents the entire embedded object as a
document. If your server application does support links, it must create a server item
each time a selection is copied to the Clipboard.

To use COleServerDoc, derive a class from it and implement the
OnGetEmbeddedItem member function, which allows your server to support
embedded items. Derive a class from COleServerItem to implement the items in
your documents, and return objects of that class from OnGetEmbeddedItem.

To support linked items, COleServerDoc provides the OnGetLinkedItem member
function. You can use the default implementation or override it if you have your own
way of managing document items. '

You need one COleServerDoc-derived class for each type of server document your
application supports. For example, if your server application supports worksheets and
charts, you need two COleServerDoc-derived classes.

1239

COleServerDoc

1240

For more information on servers, see the article “Servers: Implementing a Server” in

Programming with MFC.

#include <afxole.h>

See Also COleDocument, COleLinkingDoc, COleTemplateServer,

COleServerItem

Construction

COleServerDoc Consh‘ucts a COleServerDoc object.

Attributes

IsEmbedded Indicates whether the document is embedded in a
container document or running stand-alone.

IsInPlaceActive Returns TRUE if the item is currently activated in place.

GetEmbeddedItem Returns a pointer to an item representing the entire
document.

GetlItemPosition Returns the current position rectangle, relative to the
container application’s client area, for in-place editing.

GetItemClipRect Returns the current clipping rectangle for in-place
editing.

GetZoomFactor Returns the zoom factor in pixels.

Operations

NotifyChanged Notifies containers that the user has changed the
document.

NotifyRename Notifies containers that the user has renamed the
document.

NotifySaved Notifies containers that the user has saved the
document.

NotifyClosed Notifies containers that the user has closed the
document.

SaveEmbedding Tells the container application to save the document.

ActivateInPlace Activates the document for in-place editing.

DeactivateAndUndo Deactivates the server’s user interface.

DiscardUndoState Discards undo-state information.

RequestPositionChange Changes the position of the in-place editing frame.

ScrollContainerBy Scrolls the container document.

UpdateAllltems Notifies containers that the user has changed the

document.

COleServerDoc

Overridables

OnUpdateDocument Called by the framework when a server document that is
an embedded item is saved, updating the container’s
copy of the item.

OnGetEmbeddedItem Called to get a COleServerItem that represents the
entire document; used to get an embedded item.
Implementation required.

OnClose Called by the framework when a container requests to
close the document.

OnSetHostNames Called by the framework when a container sets the
window title for an embedded object.

OnShowDocument Called by the framework to show or hide the document.

OnDeactivate Called by the framework when the user deactivates an .
item that was activated in place.

OnDeactivateUI Called by the framework to destroy controls and other
user-interface elements created for in-place activation.

OnSetItemRects Called by the framework to position the in-place editing
frame window within the container application’s
window.

OnReactivateAndUndo Called by the framework to undo changes made during

OnFrameWindowA ctivate

OnDocWindowActivate

OnShowControlBars

OnResizeBorder

CreateInPlaceFrame

DestroyInPlaceFrame

in-place editing.

Called by the framework wheén the container’s frame
window is activated or deactivated.

Called by the framework when the container’s document
frame window is activated or deactivated.

Called by the framework to show or hide control bars for
in-place editing.

Called by the framework when the container
application’s frame window or document window is
resized.

Called by the framework to create a frame window for
in-place editing.

Called by the framework to destroy a frame window for
in-place editing.

1241

COleServerDoc:: ActivateInPlace

Member Functions
COleServerDoc::ActivateInPlace

BOOL ActivateInPlace();

Return Value

Remarks

Nonzero if successful; otherwise 0, which indicates that the item is fully open.

Activates the item for in-place editing.

This function performs all operations necessary for in-place activation. It creates an
in-place frame window, activates it and sizes it to the item, sets up shared menus and
other controls, scrolls the item into view, and sets the focus to the in-place frame
window.

This function is called by the default implementation of COleServerItem::OnShow.
Call this function if your application supports another verb for in-place activation
(such as Play).

See Also COleServerItem::OnShow

COleServerDoc::COleServerDoc

Remarks

COleServerDoc();

Constructs a COleServerDoc object without connecting with the OLE system DLLs.
You must call COleLinkingDoc::Register to open communications with OLE. If you
are using COleTemplateServer in your application, COleLinkingDoc::Register is
called for you by COleLinkingDoc’s implementation of OnNewDocument,
OnOpenDocument, and OnSaveDocument.

See Also COleLinkingDoc::Register

COleServerDoc::Deactivate AndUndo

BOOL DeactivateAndUndo();

Return Value

1242

Nonzero on success; otherwise 0.

COleServerDoc::DestroyInPlaceFrame

Remarks
Call this function if your application supports Undo and the user chooses Undo after
activating an item but before editing it. If the container application is written using
the Microsoft Foundation Class Library, calling this function causes
COleClientItem::OnDeactivateAndUndo to be called, which deactivates the
server’s user interface.

See Also COleClientItem::OnDeactivateAndUndo

COleServerDoc::CreateInPlaceFrame

virtual COleIPFrameWnd* CreateInPlaceFrame(CWnd* pParentWnd);

Return Value
A pointer to the in-place frame window, or NULL if unsuccessful.

Parameters
pParentWnd Pointer to the container application’s parent window.

Remarks
The framework calls this function to create a frame window for in-place editing. The
default implementation uses information specified in the document template to create
the frame. The view used is the first view created for the document. This view is
temporarily detached from the original frame and attached to the newly created
frame.

This is an advanced overridable.

See Also COleServerDoc::DestroyInPlaceFrame

COleServerDoc::DestroyInPlaceFrame

virtual void DestroyInPlaceFrame(COleIPFrameWnad* pFrame);

Parameters
pFrame Pointer to the in-place frame window to be destroyed.

Remarks
The framework calls this function to destroy an in-place frame window and return the
server application’s document window to its state before in-place activation.

This is an advanced overridable.

See Also COleServerDoc::CreateInPlaceFrame

1243

COleServerDoc::DiscardUndoState

COleServerDoc::DiscardUndoState

BOOL DiscardUndoState();

Return Value
Nonzero on success; otherwise 0.

Remarks
If the user performs an editing operation that cannot be undone, call this function to
force the container application to discard its undo-state information.

This function is provided so that servers that support Undo can free resources that
would otherwise be consumed by undo-state information that cannot be used.

See Also COleServerDoc::OnReactivateAndUndo

COleServerDoc::GetEmbeddedItem

COleServerltem* GetEmbeddedItem();

Return Value
A pointer to an item representing the entire document; NULL if the operation failed.

Remarks
Call this function to get a pointer to an item representing the entire document. It calls
COleServerDoc::OnGetEmbeddedItem, a virtual function with no default
implementation.

See Also COleServerDoc::OnGetEmbeddedItem

COleServerDoc::GetltemClipRect

void GetItemClipRect(LPRECT IpClipRect) const;

Parameters
IpClipRect Pointer to a RECT structure or a CRect object to receive the clipping-
rectangle coordinates of the item.

Remarks
Call the GetItemClipRect member function to get the clipping-rectangle coordinates
of the item that is being edited in place. Coordinates are in pixels relative to the
container application window’s client area.

1244

COleServerDoc::GetZoomFactor

Drawing should not occur outside the clipping rectangle. Usually, drawing is
automatically restricted. Use this function to determine whether the user has scrolled
outside the visible portion of the document; if so, scroll the container document as
needed by means of a call to ScrollContainerBy.

See Also COleServerDoc::GetItemPosition, COleServerDoc::ScrollContainerBy

COleServerDoc::GetltemPosition
void GetItemPosition(LPRECT IpPosRect) const;

Parameters
IpPosRect Pointer to a RECT structure or a CRect object to receive the coordinates
of the item.

Remarks
Call the GetItemPosition member function to get the coordinates of the item being
edited in place. Coordinates are in pixels relative to the container application
window’s client area.

The item’s position can be compared with the current clipping rectangle to determine
the extent to which the item is visible (or not visible) on the screen.

See Also COleServerDoc::GetItemClipRect

COleServerDoc::GetZoomFactor

BOOL GetZoomFactor(LPSIZE IpSizeNum = NULL, LPSIZE IpSizeDenom = NULL,
LPCRECT IpPosRect = NULL) const;

Return Value
Nonzero if the item is activated for in-place editing and its zoom factor is other than
100% (1:1); otherwise 0.

Parameters
IpSizeNum Pointer to an object of class CSize that will hold the zoom factor’s
numerator. Can be NULL.

IpSizeDenom Pointer to an object of class CSize that will hold the zoom factor’s
denominator. Can be NULL.

IpPosRect Pointer to an object of class CRect that describes the item’s new position.
If this argument is NULL, the function uses the item’s current position.

1245

COleServerDoc::IsEmbedded

Remarks
The GetZoomFactor member function determines the “zoom factor” of an item that
has been activated for in-place editing. The zoom factor, in pixels, is the proportion
of the item’s size to its current extent. If the container application has not set the
item’s extent, its natural extent (as determined by COleServerItem::OnGetExtent)
is used.

The function sets its first two arguments to the numerator and denominator of the
item’s “zoom factor.” If the item is not being edited in place, the function sets these
arguments to a default value of 100% (or 1:1) and returns zero. For further
information, see Technical Note 40, “MFC/OLE In-Place Resizing and Zooming,”

available under MFC in Books Online.

See Also COleServerDoc::GetItemPosition, COleServerDoc::GetItemClipRect,
COleServerDoc::OnSetItemRects

COleServerDoc::IsEmbedded

BOOL IsEmbedded() const;

Return Value
Nonzero if the COleServerDoc object is a document that represents an object
embedded in a container; otherwise 0.

Remarks
Call the IsEmbedded member function to determine whether the document
represents an object embedded in a container. A document loaded from a file is not
embedded although it may be manipulated by a container application as a link. A
document which is an embedding in a container document is considered to be
embedded.

COleServerDoc::IsInPlaceActive

BOOL IsInPlaceActive() const;

Return Value
Nonzero if the COleServerDoc object is active in place; otherwise 0.

Remarks
Call the IsInPlaceActive member function to determine whether the item is currently
in the in-place active state.

See Also COleClientItem::OnActivate,
COleServerDoc::OnReactivateAndUndo, COleServerDoc::ActivateInPlace

1246

COleServerDoc::NotifyRename

COleServerDoc::NotifyChanged

Remarks

void NotifyChanged();

Call this function to notify all linked items connected to the document that the
document has changed. Typically, you call this function after the user changes some
global attribute such as the dimensions of the server document. If an OLE item is
linked to the document with an automatic link, the item is updated to reflect the
changes. In container applications written with the Microsoft Foundation Class
Library, the OnChange member function of COleClientItem is called.

Note This function is included for compatibility with OLE 1. New applications should use
UpdateAllitems.

See Also OleServerDoc::NotifyClosed, COleServerDoc::NotifySaved,
COleClientItem::OnChange

COleServerDoc::NotifyClosed

Remarks

void NotifyClosed();

Call this function to notify the container(s) that the document has been closed. When
the user chooses the Close command from the File menu, NotifyClosed is called by
COleServerDoc’s implementation of the OnCloseDocument member function. In
container applications written with the Microsoft Foundation Class Library, the
OnChange member function of COleClientItem is called.

See Also COleServerDoc::NotifyChanged, COleServerDoc::NotifySaved,
COleClientItem::OnChange, CDocument::OnCloseDocument

COleServerDoc::NotifyRename

void NotifyRename(LPCTSTR IpszNewName);

Parameters

IpszNewName Pointer to a string specifying the new name of the server document;
this is typically a fully qualified path.

1247

COleServerDoc::NotifySaved

Remarks
Call this function after the user renames the server document. When the user
chooses the Save As command from the File menu, NotifyRename is called by
COleServerDoc’s implementation of the OnSaveDocument member function. This
function notifies the OLE system DLLs, which in turn notify the containers. In
_container applications written with the Microsoft Foundation Class Library, the
OnChange member function of COleClientItem is called.

See Also COleServerDoc::NotifySaved, CDocument::OnSaveDocument

COleServerDoc::NotifySaved

void NotifySaved();

Remarks
Call this function after the user saves the server document. When the user
chooses the Save command from the File menu, NotifySaved is called for you by
COleServerDoc’s implementation of OnSaveDocument. This function notifies the
OLE system DLLs, which in turn notify the containers. In container applications
written with the Microsoft Foundation Class Library, the OnChange member
function of COleClientItem is called.

See Also COleServerDoc::NotifyChanged, COleServerDoc::NotifyClosed,
COleClientItem::OnChange, CDocument::OnSaveDocument

COleServerDoc::OnClose

virtual void OnClose(OLECLOSE dwCloseOption);

Parameters
dwCloseOption A value from the enumeration OLECLOSE. This parameter can
have one of the following values:

¢

e OLECLOSE_SAVEIFDIRTY The file is saved if it has been modified.
e OLECLOSE_NOSAVE The file is closed without being saved.

o OLECLOSE_PROMPTSAVE If the file has been modified, the user is
prompted about saving it.

Remarks
Called by the framework when a container requests that the server document be
closed. The default implementation calls CDocument::OnCloseDocument.

For more information and additional values, see OLECLOSE in the OLE
documentation.

See Also COleException, CDocument::OnCloseDocument

1248

COleServerDoc::OnDocWindowActivate

COleServerDoc::OnDeactivate

virtual void OnDeactivate();

Remarks
Called by the framework when the user deactivates an embedded or linked item that
is currently in-place active. This function restores the container application’s user
interface to its original state and destroys any menus and other controls that were
created for in-place activation.

The undo state information should be unconditionally released at this point.
For more information, see the article “Activation” in Programming with MFC.

See Also COleServerDoc::ActivateInPlace, COleServerDoc::OnDeactivateUI,
COleServerDoc::DestroyInPlaceFrame

COleServerDoc::OnDeactivateUI

virtual void OnDeactivateUI(BOOL bUndoable);

Parameters
bUndoable Specifies whether the editing changes can be undone.

Remarks
Called when the user deactivates an item that was activated in place. This function
restores the container application’s user interface to its original state, hiding any
menus and other controls that were created for in-place activation.

The framework always sets bUndoable to FALSE. If the server supports undo and
there is an operation that can be undone, call the base-class implementation with
bUndoable set to TRUE.

See Also COleServerDoc::OnDeactivate

COleServerDoc::OnDocWindowActivate

virtual void OnDocWindowA ctivate(BOOL bActivate);

Parameters
bActivate Specifies whether the document window is to be activated or deactivated.

Remarks
The framework calls this function to activate or deactivate a document window for in-
place editing. The default implementation removes or adds the frame-level user
interface elements as appropriate. Override this function if you want to perform
additional actions when the document containing your item is activated or
deactivated.

1249

COleServerDoc::OnFrameWindowActivate

For more information, see the article “Activation” in Programming with MFC.

See Also COleServerDoc::ActivateInPlace,
COleServerDoc::OnReactivateAndUndo, COleServerDoc::OnShowControlBars,
COleServerDoc::OnDeactivateUI, COleServerDoc::OnFrameWindowActivate,
COlelPFrameWnd

COleServerDoc::OnFrameWindowActivate

virtual void OnFrameWindowA ctivate(BOOL bActivate);

Parameters
bActivate Specifies whether the frame window is to be activated or deactivated.

Remarks
The framework calls this function when the container application’s frame window is
activated or deactivated.

The default implementation cancels any help modes the frame window might be in.
Override this function if you want to perform special processing when the frame
window is activated or deactivated.

For more information, see the article “Activation” in Programming with MFC.

See Also COleServerDoc::OnDocWindowActivate

COleServerDoc::OnGetEmbeddedItem

virtual COleServerIltem* OnGetEmbeddedItem() = 0;

Return Value
A pointer to an item representing the entire document; NULL if the operation failed.

Remarks
Called by the framework when a container application calls the server application to
create or edit an embedded item. There is no default implementation. You must
override this function to return an item that represents the entire document. This
return value should be an object of a COleServerItem-derived class.

See Also COleLinkingDoc::OnGetLinkedItem, COleServerItem

COleServerDoc::OnReactivateAndUndo

virtual BOOL OnReactivateAndUndo();

Return Value
Nonzero if successful; otherwise 0.

1250

COleServerDoc::OnSetHostNames

Remarks
The framework calls this function when the user chooses to undo changes made to an
item that has been activated in place, changed, and subsequently deactivated. The
default implementation does nothing except return FALSE to indicate failure.

Override this function if your application supports undo. Usually you would perform
the undo operation, then activate the item by calling ActivateInPlace. If the
container application is written with the Microsoft Foundation Class Library, calling
COleClientItem::ReactivateAndUndo causes this function to be called.

See Also COleServerDoc::ActivateInPlace, COleServerDoc::IsInPlaceActive,
COleClientItem::ReactivateAndUndo

COleServerDoc::OnResizeBorder

virtual void OnResizeBorder(LPCRECT IpRectBorder,
LPOLEINPLACEUIWINDOW [pUIWindow, BOOL bFrame);

Parameters
IpRectBorder Pointer to a RECT structure or a CRect object that specifies the
coordinates of the border.

IpUIWindow Pointer to an object of class IOleInPlaceUIWindow that owns the
current in-place editing session.

bFrame TRUE if IpUIWindow points to the container application’s top-level frame
window, or FALSE if IpUIWindow points to the container application’s document-
level frame window.

Remarks
The framework calls this function when the container application’s frame windows
change size. This function resizes and adjusts toolbars and other user-interface
elements in accordance with the new window size.

For more information, see IOQleInPlaceUIWindow in the OLE documentation.
This is an advanced overridable.

See Also COleServerDoc::OnShowControlBars

COleServerDoc::OnSetHostNames

virtual void OnSetHostNames(LPCTSTR IpszHost, LPCTSTR IpszHostObj);

Parameters
IpszHost Pointer to a string that specifies the name of the container application.

IpszHostObj Pointer to a string that specifies the container’s name for the document.

1251

COleServerDoc::OnSetltemRects

Remarks

Called by the framework when the container sets or changes the host names for this
document. The default implementation changes the document title for all views
referring to this document.

Override this function if your application sets the titles through a different
mechanism.

See Also COleClientItem::SetHostNames

COleServerDoc::OnSetltemRects

virtual void OnSetItemRects(LPCRECT IpPosRect, LPCRECT IpClipRect);

Parameters

Remarks

IpPosRect Pointer to a RECT structure or a CRect object that specifies the in-place
frame window’s position relative to the container application’s client area.

IpClipRect Pointer to a RECT structure or a CRect object that specifies the in-place
frame window’s clipping rectangle relative to the container application’s client
area.

The framework calls this function to position the in-place editing frame window
within the container application’s frame window. Override this function to update the
view’s zoom factor, if necessary.

This function is usually called in response to a RequestPositionChange call,
although it can be called at any time by the container to request a position change for
the in-place item.

See Also COleServerDoc::RequestPositionChange,
COleIPFrameWnd::RepositionFrame, COleClientItem::SetItemRects,
COleServerDoc::GetZoomFactor

COleServerDoc::OnShowControlBars

virtual void OnShowControlBars(CFrameWnd *pFrameWnd, BOOL bShow);

Parameters

1252

pFrameWnd Pointer to the frame window whose control bars should be hidden or
shown.

bShow Determines whether control bars are shown or hidden.

COleServerDoc::OnUpdateDocument

Remarks
The framework calls this function to show or hide the server application’s control
bars associated with the frame window identified by pFrameWnd. The default
implementation enumerates all control bars owned by that frame window and hides
or shows them.

See Also COleServerDoc::ActivateInPlace,
COleServerDoc::OnReactivateAndUndo,
COleServerDoc::OnFrameWindowA ctivate, COleServerDoc::IsInPlaceActive

COleServerDoc::OnShowDocument

virtual void OnShowDocument(BOOL bShow);

Parameters

bShow Specifies whether the user interface to the document is to be shown or
hidden.

Remarks
The framework calls the OnShowDocument function when the server document
must be hidden or shown. If bShow is TRUE, the default implementation activates
the server application, if necessary, and causes the container application to scroll its
window so that the item is visible. If bShow is FALSE, the default implementation
deactivates the item through a call to OnDeactivate, then destroys or hides all frame
windows that have been created for the document, except the first one. If no visible
documents remain, the default implementation hides the server application.

See Also COleServerDoc::ActivateInPlace, COleServerItem::OnDoVerb,
COleServerDoc::IsInPlaceActive, COleServerDoc::OnDeactivateUI

COleServerDoc::OnUpdateDocument

virtual BOOL OnUpdateDocument();

Return Value
Nonzero if the document was successfully updated; otherwise 0.

Remarks
Called by the framework when saving a document that is an embedded
item in a compound document. The default implementation calls the
COleServerDoc::NotifySaved and COleServerDoc::SaveEmbedding member
functions and then marks the document as clean. Override this function if you want
to perform special processing when updating an embedded item.

See Also COleServerDoc::NotifySaved, COleServerDoc::SaveEmbedding,
CDocument::OnSaveDocument

1253

COleServerDoc::RequestPositionChange

COleServerDoc::RequestPositionChange

void RequestPositionChange(LPCRECT IpPosRect);

Parameters
IpPosRect Pointer to a RECT structure or a CRect object containing the item’s new
position.

Remarks
Call this member function to have the container application change the item’s
position. This function is usually called (in conjunction with UpdateAllItems) when
the data in an in-place active item has changed. Following this call, the container
might or might not perform the change by calling OnSetItemRects. The resulting
position might be different from the one requested.

See Also COleServerDoc::ScrollContainerBy

COleServerDoc::SaveEmbedding

void SaveEmbedding();

Remarks
Call this function to tell the container application to save the embedded object. This
function is called automatically from OnUpdateDocument. Note that this function
causes the item to be updated on disk, so it is usually called only as a result of a
specific user action.

See Also COleServerDoc::NotifyClosed

COleServerDoc::ScrollContainerBy

BOOL ScrollContainerBy(CSize sizeScroll);

Return Value
Nonzero if successful; otherwise O.

Parameters
sizeScroll Indicates how far the container document is to scroll.

Remarks
Call the ScrollContainerBy member function to scroll the container document by the
amount, in pixels, indicated by sizeScroll. Positive values indicate scrolling down and
to the right; negative values indicate scrolling up and to the left.

See Also COleClientItem::OnScrollBy

1254

COleServerDoc::Update Allltems

COleServerDoc::UpdateAllltems

void UpdateAllltems(COleServerltem* pSender, LPARAM [Hint = OL, CObject* pHint = NULL,
DVASPECT nDrawAspect = DVASPECT_CONTENT);

Parameters

Remarks

pSender Pointer to the item that modified the document, or NULL if all items are to
be updated.

[Hint Contains information about the modification.
pHint Pointer to an object storing information about the modification.

nDrawAspect Determines how the item is to be drawn. This is a value from the
DVASPECT enumeration. This parameter can have one of the following values:

e DVASPECT_CONTENT Item is represented in such a way that it can be
displayed as an embedded object inside its container.

o DVASPECT_THUMBNAIL Item is rendered in a “thumbnail”
representation so that it can be displayed in a browsing tool.

e DVASPECT_ICON Item is represented by an icon.

o DVASPECT DOCPRINT Item is represented as if it were printed using the
Print command from the File menu.

Call this function to notify all linked items connected to the document that the
document has changed. You typically call this function after the user changes the
server document. If an OLE item is linked to the document with an automatic link,
the item is updated to reflect the changes. In container applications written with the
Microsoft Foundation Class Library, the OnChange member function of
COleClientItem is called.

This function calls the OnUpdate member function for each of the document’s items
except the sending item, passing pHint, [Hint, and nDrawAspect. Use these
parameters to pass information to the items about the modifications made to the
document. You can encode information using [Hint or you can define a CObject-
derived class to store information about the modifications and pass an object

of that class using pHint. Override the OnUpdate member function in your
COleServerItem-derived class to optimize the updating of each item depending on
whether its presentation has changed.

See Also COleServerDoc::NotifyChanged, COleServerItem::OnUpdate,
COleServerDoc::NotifySaved, COleClientItem::OnChange

1255

COleServerltem

COleServerltem

1256

The COleServerItem class provides the server interface to OLE items. A linked item
can represent some or all of a server document. An embedded item always represents
an entire server document.

The COleServerltem class defines several overridable member functions that are
called by the OLE system dynamic-link libraries (DLLs), usually in response to
requests from the container application. These member functions allow the container
application to manipulate the item indirectly in various ways, such as by displaying
it, executing its verbs, or retrieving its data in various formats.

To use COleServerItem, derive a class from it and implement the OnDraw and
Serialize member functions. The OnDraw function provides the metafile
representation of an item, allowing it to be displayed when a container application
opens a compound document. The Serialize function of CObject provides the native
representation of an item, allowing an embedded item to be transferred between the
server and container applications. OnGetExtent provides the natural size of the item
to the container, enabling the container to size the item.

For more information about servers and related topics, see the article “Servers:
Implementing a Server” and “Creating a Container/Server Application” in the article
“Containers: Advanced Features.” Both articles are in Programming with MFC.

#include <afxole.h>

See Also COleClientItem, COleServerItem, COleServerDoc,
COleTemplateServer, CObject::Serialize

Status

GetDocument Returns the server document that contains the item.

GetItemName Returns the name of the item. Used for linked items only.

SetItemName Sets the name of the item. Used for linked items only.

IsConnected Indicates whether the item is currently attached to an active
container.

IsLinkedItem Indicates whether the item represents a linked OLE item.

COleServerltem

Operations

CopyToClipboard Copies the item to the Clipboard.

NotifyChanged Updates all containers with automatic link update.

DoDragDrop Performs a drag-and-drop operation.

GetClipboardData Gets the data source for use in data transfer (drag and drop or
Clipboard).

GetEmbedSourceData Gets the CF_EMBEDSOURCE data for an OLE item.

AddOtherClipboardData

Places presentation and conversion formats in a
COleDataSource object.

GetLinkSourceData Gets the CF_LINKSOURCE data for an OLE item.

GetObjectDescriptorData Gets the CF_OBJECTDESCRIPTOR data for an
OLE item.

Construction

COleServerItem Constructs a COleServerItem object.

GetDataSource Gets the object used to store conversion formats.

Overridables

OnDraw Called when the container requests to draw the item;
implementation required.

OnDrawEx Called for specialized item drawing.

OnUpdate Called when some portion of the document the item belongs
in is changed.

OnlnitFromData Called by the framework to initialize an OLE item using the
contents of the data transfer object specified.

OnGetExtent Called by the framework to retrieve the size of the OLE item.

OnSetExtent Called by the framework to set the size of the OLE item.

OnGetClipboardData Called by the framework to get the data that would be copied
to the Clipboard.

OnSetColorScheme Called to set the item’s color scheme.

OnSetData Called to set the item’s data.

OnDoVerb Called to execute a verb.

OnQueryUpdateltems Called to determine whether any linked items require
updating.

OnRenderData Retrieves data as part of delayed rendering.

OnRenderFileData Retrieves data into a CFile object as part of delayed
rendering.

OnRenderGlobalData Retrieves data into an HGLOBAL as part of delayed
rendering.

OnUpdateltems Called to update the presentation cache of all items in the

server document.

1257

COleServerltem::AddOtherClipboardData

OnOpen Called by the framework to display the OLE item in its own
top-level window.

OnShow Called when the container requests to show the item.

OnHide Called by the framework to hide the OLE item.

Data Members

m_sizeExtent Informs the server about how much of the OLE item is
visible.

Member Functions
COleServerltem::AddOtherClipboardData

void AddOtherClipboardData(COleDataSource* pDataSource);

Parameters
pDataSource Pointer to the COleDataSource object in which the data should be
placed.

Remarks
Call this function to place the presentation and conversion formats for the OLE item
in the specified COleDataSource object. You must have implemented the OnDraw
member function to provide the presentation format (a metafile picture) for the item.
To support other conversion formats, register them using the COleDataSource object
returned by GetDataSource and override the OnRenderData member function to
provide data in the formats you want to support.

See Also COleDataSource, COleServerItem::GetDataSource,
COleServerltem::GetEmbedSourceData, COleServerItem::OnDraw

COleServerltem::COleServerltem

COleServerItem(COleServerDoc* pServerDoc, BOOL bAutoDelete);

Parameters
pServerDoc Pointer to the document that will contain the new item.

bAutoDelete Flag indicating whether the object can be deleted when a link to it is
released. Set this to FALSE if the COleServerItem object is an integral part of
your document’s data which you must delete. Set this to TRUE if the object is a
secondary structure used to identify a range in your document’s data that can be
deleted by the framework.

1258

COleServerltem::DoDragDrop

Remarks
Constructs a COleServerItem object and adds it to the server document’s collection
of document items.

See Also COleDocument::AddItem

COleServerltem::CopyToClipboard

void CopyToClipboard(BOOL bIncludeLink = FALSE);

Parameters
blncludeLink Set this to TRUE if link data should be copied to the Clipboard. Set
this to FALSE if your server application does not support links.

Remarks
Call this function to copy the OLE item to the Clipboard. The function uses the
OnGetClipboardData member function to create a COleDataSource object
containing the OLE item’s data in the formats supported. The function then
places the COleDataSource object on the Clipboard by using the
COleDataSource::SetClipboard function. The COleDataSource object includes the
item’s native data and its representation in CF_METAFILEPICT format, as well as
data in any conversion formats you choose to support. You must have implemented
Serialize and OnDraw for this member function to work.

See Also COleDataSource::SetClipboard, COleDataSource,
COleServerltem::AddOtherClipboardData,
COleServerItem::GetClipboardData, COleServerItem::OnDraw,
CObject::Serialize

COleServerltem::DoDragDrop

DROPEFFECT DoDragDrop(LPCRECT IpltemRect, CPoint ptOffset,
BOOL bIncludeLink = FALSE,
DWORD dwEffects = DROPEFFECT_COPY | DROPEFFECT_MOVE,
LPCRECT IpRectStartDrag = NULL);

Return Value
A value from the DROPEFFECT enumeration. If it is DROPEFFECT_MOVE, the
original data should be removed.

Parameters
IpItemRect The item’s rectangle on screen, in pixels, relative to the client area.

ptOffset The offset from IpltemRect where the mouse position was at the time of the
drag.

bincludeLink Set this to TRUE if link data should be copied to the Clipboard. Set it
to FALSE if your application does not support links.

1259

COleServerltem::GetClipboardData

dwEffects Determines the effects that the drag source will allow in the drag
operation (a combination of Copy, Move, and Link).

IpRectStartDrag Pointer to the rectangle that defines where the drag actually starts.
For more information, see the following Remarks section.

Remarks
Call the DoDragDrop member function to perform a drag-and-drop operation. The
drag-and-drop operation does not start immediately. It waits until the mouse cursor
leaves the rectangle specified by IpRectStartDrag or until a specified number of
milliseconds have passed. If IpRectStartDrag is NULL, the size of the rectangle is
one pixel. The delay time is specified by the DragDelay value in the [Windows]
section of WIN.INL. If this value is not in WIN.INI, the default value of 200
milliseconds is used.

See Also COleDataSource::DoDragDrop, COleServerItem::CopyToClipboard

COleServerltem::GetClipboardData

void GetClipboardData(COleDataSource* pDataSource, BOOL bincludeLink = FALSE,
LPPOINT IpOffset = NULL, LPSIZE IpSize = NULL);

Parameters
pDataSource Pointer to the COleDataSource object that will receive the OLE
item’s data in all supported formats.

bIncludeLink TRUE if link data should be copied to the Clipboard. FALSE if your
server application does not support links.

IpOffset The offset, in pixels, of the mouse cursor from the origin of the object.
IpSize The size of the object in pixels.

Remarks
Call this function to fill the specified COleDataSource object with all the data that
would be copied to the Clipboard if you called CopyToClipboard (the same data
would also be transferred if you called DoDragDrop). This function calls the
GetEmbedSourceData member function to get the native data for the OLE item and
calls the AddOtherClipboardData member function to get the presentation format
and any supported conversion formats. If bincludeLink is TRUE, the function also
calls GetLinkSourceData to get the link data for the item.

Override this function if you want to put formats in a COleDataSource object before
or after those formats supplied by CopyToClipboard.

See Also COleDataSource, COleServerItem::AddOtherClipboardData,
COleServerltem::CopyToClipboard, COleServerIltem::DoDragDrop,
COleServerItem::GetEmbedSourceData, COleServerItem::GetLinkSourceData

1260

COleServerltem::GetEmbedSourceData

COleServerltem::GetDataSource

COleDataSource* GetDataSource();

Return Value
A pointer to the COleDataSource object used to store the conversion formats.

Remarks
Call this function to get the COleDataSource object used to store the conversion
formats that the server application supports. If you want your server application to
offer data in a variety of formats during data transfer operations, register those
formats with the COleDataSource object returned by this function. For example, if
you want to supply a CF_TEXT representation of the OLE item for Clipboard or
drag-and-drop operations, you would register the format with the COleDataSource
object this function returns, and then override the OnRenderXxxData member
function to provide the data.

See Also COleDataSource, COleDataSource::DelayRenderData,
COleServerItem::CopyToClipboard, COleServerItem::DoDragDrop,
COleServerItem::OnRenderData, COleServerItem::OnRenderFileData,
COleServerIltem::OnRenderGlobalData

COleServerltem::GetDocument

COleServerDoc* GetDocument() const;

Return Value
A pointer to the document that contains the item; NULL if the item is not part of a
document.

Remarks
Call this function to get a pointer to the document that contains the item. This allows
access to the server document that you passed as an argument to the
COleServerItem constructor.

See Also COleServerItem::COleServerItem, COleServerDoc

COleServerltem::GetEmbedSourceData

void GetEmbedSourceData(LPSTGMEDIUM IpStgMedium);

Parameters
IpStgMedium Pointer to the STGMEDIUM structure that will receive the
CF_EMBEDSOURCE data for the OLE item.

1261

COleServerltem::GetltemName

Remarks
Call this function to get the CF_EMBEDSOURCE data for an OLE item. This
format includes the item’s native data. You must have implemented the Serialize
member function for this function to work properly.

The result can then be added to a data source by using
COleDataSource::CacheData. This function is called automatically by
COleServerItem::OnGetClipboardData.

For more information, see STGMEDIUM in the OLE 2 Programmer’s Reference,
Volume 1.

See Also COleServerItem::GetLinkSourceData,
COleServerItem::GetObjectDescriptorData, COleDataSource::CacheData,
CObject::Serialize

COleServerltem::GetltemName

const CString& GetItemName() const;

Return Value
The name of the item.

Remarks
Call this function to get the name of the item. You typically call this function only for
linked items.

See Also COleServerItem::SetItemName, COleLinkingDoc::OnGetLinkedItem

COleServerltem::GetLinkSourceData

BOOL GetLinkSourceData(LPSTGMEDIUM IpStgMedium);

Return Value
Nonzero if successful; otherwise 0.

Parameters
IpStgMedium Pointer to the STGMEDIUM structure that will receive the
CF_LINKSOURCE data for the OLE item.

Remarks
Call this function to get the CF_LINKSOURCE data for an OLE item. This format
includes the CLSID describing the type of the OLE item and the information needed
to locate the document containing the OLE item.

The result can then be added to a data source with COleDataSource::CacheData.
This function is called automatically by OnGetClipboardData.

1262

COleServerltem::IsConnected

For more information, see STGMEDIUM in the OLE 2 Programmer’s Reference,
Volume 1.

See Also COleServerItem::GetEmbedSourceData,
COleServerItem::GetObjectDescriptorData

COleServerltem::GetObjectDescriptorData

void GetObjectDescriptorData(LPPOINT* IpOffset, LPSIZE* [pSize,
LPSTGMEDIUM IpStgMedium);

Parameters
IpOffset Offset of the mouse click from the upper-left corner of the OLE item.
Can be NULL.

IpSize Size of the OLE item. Can be NULL.

IpStgMedium Pointer to the STGMEDIUM structure that will receive the
CF_OBJECTDESCRIPTOR data for the OLE item.

Remarks
Call this function to get the CF_OBJECTDESCRIPTOR data for an OLE item. The
information is copied into the STGMEDIUM structure pointed to by IpStgMedium.
This format includes the information needed for the Paste Special dialog.

For more information, see STGMEDIUM in the OLE 2 Programmer’s Reference,
Volume 1.

See Also COleServerItem::AddOtherClipboardData,
COleServerItem::GetEmbedSourceData, COleServerItem::GetLinkSourceData,
COlePasteSpecialDialog

COleServerltem::IsConnected

BOOL IsConnected() const;

Return Value
Nonzero if the item is connected; otherwise 0.

Remarks
Call this function to see if the OLE item is connected. An OLE item is considered
connected if one or more containers have references to the item. An item is connected
if its reference count is greater than 0 or if it is an embedded item.

See Also COleServerItem::IsLinkedItem, COleLinkingDoc::OnGetLinkedItem

1263

COleServerltem::IsLinkedItem

COleServerltem::IsLinkedItem

BOOL IsLinkedItem() const;

Return Value
Nonzero if the item is a linked item; otherwise 0.

Remarks
Call this function to see if the OLE item is a linked item. An item is linked if the
item is valid and is not returned in the document’s list of embedded items. A linked
item might or might not be connected to a container.

It is common to use the same class for both linked and embedded items.
IsLinkedItem allows you to make linked items behave differently than embedded
items, although many times the code is common.

See Also COleServerltem::IsConnected, COleLinkingDoc::OnGetLinkedItem

COleServerltem::NotifyChanged

void NotifyChanged(DVASPECT nDrawAspect = DVASPECT_CONTENT);

Parameters
nDrawAspect A value from the DVASPECT enumeration that indicates which
aspect of the OLE item has changed. This parameter can have any of the following
values:

¢ DVASPECT_CONTENT Item is represented in such a way that it can be
displayed as an embedded object inside its container.

e DVASPECT_THUMBNAIL Item is rendered in a “thumbnail”
representation so that it can be displayed in a browsing tool.

e DVASPECT_ICON Item is represented by an icon.

e DVASPECT_DOCPRINT Item is represented as if it were printed using the
Print command from the File menu.

Remarks
Call this function after the linked item has been changed. If a container item is linked
to the document with an automatic link, the item is updated to reflect the changes. In
container applications written using the Microsoft Foundation Class Library,
COleClientItem::OnChange is called in response.

See Also COleClientItem::OnChange, COleServerItem::OnUpdate,
COleServerDoc::NotifyChanged

1264

COleServerltem::OnDraw

COleServerltem::OnDoVerb

virtual void OnDoVerb(LONG iVerb);

Parameters
iVerb Specifies the verb to execute. It can be any one of the following:

Value Meaning Symbol

0 Primary verb ‘ OLEIVERB_PRIMARY
1 Secondary verb (None)

-1 Display item for editing OLEIVERB_SHOW

-2 Edit item in separate window OLEIVERB_OPEN

-3 Hide item OLEIVERB_HIDE

The -1 value is typically an alias for another verb. If open editing is not supported,
-2 has the same effect as —1. For additional values, see I0leObject::DoVerb in
the OLE 2 Programmer’s Reference, Volume 1.

Remarks
Called by the framework to execute the specified verb. If the container application
was written with the Microsoft Foundation Class Library, this function is called when
the COleClientItem::Activate member function of the corresponding
COleClientItem object is called. The default implementation calls the OnShow
member function if the primary verb or OLEIVERB_SHOW is specified, OnOpen
if the secondary verb or OLEIVERB_OPEN is specified, and OnHide if
OLEIVERB_HIDE is specified. The default implementation calls OnShow if iVerb
is not one of the verbs listed above.

Override this function if your primary verb does not show the item. For example, if
the item is a sound recording and its primary verb is Play, you would not have to
display the server application to play the item.

For more information, see IQleObject::DoVerb in the OLE 2 Programmer’s
Reference, Volume 1.

See Also COleClientItem::Activate, COleServerItem::OnShow,
COleServerltem::OnOpen, CQleServerItem::OnHide

'COleServerltem::OnDraw

virtual BOOL OnDraw(CDC* pDC, CSize& rSize) = 0;

Return Value
Nonzero if the item was successfully drawn; otherwise 0.

1265

COleServerltem::OnDrawEx

Parameters

Remarks

pDC A pointer to the CDC object on which to draw the item. The display context is
automatically connected to the attribute display context so you can call attribute
functions, although doing so would make the metafile device-specific.

rSize Size, in HIMETRIC units, in which to draw the metafile.

Called by the framework to render the OLE item into a metafile. The metafile
representation of the OLE item is used to display the item in the container
application. If the container application was written with the Microsoft Foundation
Class Library, the metafile is used by the Draw member function of the
corresponding COleClientItem object. There is no default implementation. You must
override this function to draw the item into the device context specified.

See Also COleClientItem::Draw

COleServerltem::OnDrawEx

virtual BOOL OnDrawEx(CDC* pDC, DVASPECT nDrawAspect, CSize& rSize);

Return Value

Nonzero if the item was successfully drawn; otherwise 0.

Parameters

Remarks

1266

pDC A pointer to the CDC object on which to draw the item. The DCis
automatically connected to the attribute DC so you can call attribute functions,
although doing so would make the metafile device-specific.

nDrawAspect A value from the DVASPECT enumeration. This parameter can have
any of the following values:

o DVASPECT_CONTENT Item is represented in such a way that it can be
displayed as an embedded object inside its container.

o DVASPECT_THUMBNAIL Item is rendered in a “thumbnail”
representation so that it can be displayed in a browsing tool.

e DVASPECT_ICON Item is represented by an icon.

e DVASPECT_DOCPRINT Item is represented as if it were printed using the
Print command from the File menu.

rSize Size of the item in HIMETRIC units.

Called by the framework for all drawing. The default implementation calls OnDraw
when DVASPECT is equal to DVASPECT_CONTENT; otherwise it fails.

COleServerItem::OnGetExtent

Override this function to provide presentation data for aspects other than
DVASPECT_CONTENT, such as DVASPECT_ICON or
DVASPECT_THUMBNAIL.

See Also COleServerItem::OnDraw

COleServerltem::OnGetClipboardData

virtual COleDataSource* OnGetClipboardData(BOOL biIncludeLink, LPPOINT IpOffset,
LPSIZE IpSize);

Return Value
A pointer to a COleDataSource object containing the Clipboard data.

Parameters
bincludeLink Set this to TRUE if link data should be copied to the Clipboard. Set
this to FALSE if your server application does not support links.

IpOffset The offset of the mouse cursor from the origin of the object in pixels.
IpSize The size of the object in pixels.
Remarks
Called by the framework to get a COleDataSource object containing all the data that

would be placed on the Clipboard by a call to the CopyToClipboard member
function. The default implementation of this function calls GetClipboardData.

See Also COleDataSource, COleDataSource::SetClipboard,
COleServerItem::CopyToClipboard, COleServerItem::GetClipboardData

COleServerltem::OnGetExtent

virtual BOOL OnGetExtent(DVASPECT nDrawAspect, CSize& rSize);

Return Value
Nonzero if successful; otherwise 0.

Parameters
nDrawAspect Specifies the aspect of the OLE item whose bounds are to be retrieved.
This parameter can have any of the following values:

e DVASPECT_CONTENT Item is represented in such a way that it can be
displayed as an embedded object inside its container.

e DVASPECT_THUMBNAIL Item is rendered in a “thumbnail”
representation so that it can be displayed in a browsing tool.

e DVASPECT_ICON Item is represented by an icon.

1267

COleServerltem::OnHide

e DVASPECT_DOCPRINT Item is represented as if it were printed using the
Print command from the File menu.

rSize Reference to a CSize object that will receive the size of the OLE item.

Remarks
Called by the framework to retrieve the size, in HIMETRIC units, of the OLE item.

If the container application was written with the Microsoft Foundation Class Library,
this function is called when the GetExtent member function of the corresponding
COleClientItem object is called. The default implementation does nothing. You must
implement it yourself. Override this function if you want to perform special
processing when handling a request for the size of the OLE item.

See Also COleClientItem::Draw, COleClientItem::GetExtent

COleServerltem::OnHide

virtual veid OnHide();

Remarks
Called by the framework to hide the OLE item. The default calls
COleServerDoc::OnShowDocument(FALSE). The function also notifies the
container that the OLE item has been hidden. Override this function if you want to
perform special processing when hiding an OLE item.

See Also COleServerItem::OnOpen, COleServerItem::OnShow,
COleServerDoc::OnShowDocument

COleServerltem::OnlnitFromData

virtual BOOL OnlnitFromData(COleDataObject* pDataObject, BOOL bCreation);

Return Value
Nonzero if successful; otherwise 0.

Parameters
pDataObject Pointer to an OLE data object containing data in various formats for
initializing the OLE item.
bCreation TRUE if the function is called to initialize an OLE item being newly
created by a container application. FALSE if the function is called to replace the
contents of an already existing OLE item.

1268

Remarks

COleServerltem::OnQueryUpdateltems

Called by the framework to initialize an OLE item using the contents of
pDataObject. If bCreation is TRUE, this function is called if a container implements
Insert New Object based on the current selection. The data selected is used when
creating the new OLE item. For example, when selecting a range of cells in a
spreadsheet program and then using the Insert New Object to create a chart based on
the values in the selected range. The default implementation does nothing. Override
this function to choose an acceptable format from those offered by pDataObject and
initialize the OLE item based on the data provided. This is an advanced overridable.

For more information, see I0leObject::InitFromData in the OLE 2 Programmer’s
Reference, Volume 1.

COleServerltem::OnOpen

Remarks

virtual void OnOpen();

Called by the framework to display the OLE item in a separate instance of the server
application, rather than in place.

The default implementation activates the first frame window displaying the document
that contains the OLE item; if the application is a mini-server, the default
implementation shows the main window. The function also notifies the container that
the OLE item has been opened.

Override this function if you want to perform special processing when opening an
OLE item. This is especially common with linked items where you want to set the
selection to the link when it is opened.

For more information, see I0leClientSite::OnShowWindow in the OLE 2
Programmer’s Reference, Volume 1.

See Also COleServerIltem::OnShow

COleServerltem::OnQueryUpdateltems

virtual BOOL OnQueryUpdateltems();

Return Value

Nonzero if the document has items needing updates; O if all items are up to date.

1269

COleServerltem::OnRenderData

Remarks
Called by the framework to determine whether any linked items in the current server
document are out of date. An item is out of date if its source document has been
changed but the linked item has not been updated to reflect the changes in the
document.

See Also COleServerItem::OnUpdate, COleServerItem::OnUpdateltems

COleServerltem::OnRenderData

virtual BOOL OnRenderData(LPFORMATETC lpFormatEtc, LPSTGMEDIUM IpStgMedium);

Return Value
Nonzero if successful; otherwise 0.

Parameters
IpFormatEtc Points to the FORMATETC structure specifying the format in which
information is requested.

IpStgMedium Points to a STGMEDIUM structure in which the data is to be
returned.

Remarks
Called by the framework to retrieve data in the specified format. The specified format
is one previously placed in the COleDataSource object using the DelayRenderData
or DelayRenderFileData member function for delayed rendering. The default
implementation of this function calls OnRenderFileData or OnRenderGlobalData,
respectively, if the supplied storage medium is either a file or memory. If neither of
these formats is supplied, the default implementation returns O and does nothing.

If IpStgMedium->tymed is TYMED_NULL, the STGMEDIUM should allocated
and filled as specified by IpFormatEtc->tymed. If not TYMED_NULL, the
STGMEDIUM should be filled in place with the data.

This is an advanced overridable. Override this function to provide your data in the
requested format and medium. Depending on your data, you may want to override
one of the other versions of this function instead. If your data is small and fixed in
size, override OnRenderGlobalData. If your data is in a file, or is of variable size,
override OnRenderFileData.

For more information, see IDataObject::GetData, STGMEDIUM, FORMATETC,
and TYMED in the OLE 2 Programmer’s Reference, Volume 1.

See Also COleServerItem::OnRenderFileData

1270

COleServerltem::OnRenderGlobalData

COleServerltem::OnRenderFileData

virtual BOOL OnRenderFileData(LPFORMATETC IpFormatEtc, CFile* pFile);

Return Value

Nonzero if successful; otherwise 0.

Parameters

Remarks

IpFormatEtc Points to the FORMATETC structure specifying the format in which
information is requested.

pFile Points to a CFile object in which the data is to be rendered.

Called by the framework to retrieve data in the specified format when the storage
medium is a file. The specified format is one previously placed in the
COleDataSource object using the DelayRenderData member function for delayed
rendering. The default implementation of this function simply returns FALSE.

This is an advanced overridable. Override this function to provide your data in the
requested format and medium. Depending on your data, you might want to override
one of the other versions of this function instead. If you want to handle multiple
storage mediums, override OnRenderData. If your data is in a file, or is of variable
size, override OnRenderFileData.

For more information, see IDataObject::GetData and FORMATETC in the OLE 2
Programmer’s Reference, Volume 1.

See Also COleServerltem::OnRenderData

COleServerltem::OnRenderGlobalData

virtual BOOL OnRenderGlobalData(LPFORMATETC IpFormatEtc, HGLOBAL¥* phGlobal);

Return Value

Nonzero if successful; otherwise 0.

Parameters

IpFormatEtc Points to the FORMATETC structure specifying the format in which
information is requested.

phGlobal Points to a handle to global memory in which the data is to be returned. If
no memory has been allocated, this parameter can be NULL.

1271

COleServerltem::OnSetColorScheme

Remarks

Called by the framework to retrieve data in the specified format when the specified
storage medium is global memory. The specified format is one previously placed in
the COleDataSource object using the DelayRenderData member function for
delayed rendering. The default implementation of this function simply returns
FALSE.

If phGlobal is NULL, then a new HGLOBAL should be allocated and returned in
phGlobal. Otherwise, the HGLOBAL specified by phGlobal should be filled with
the data. The amount of data placed in the HGLOBAL must not exceed the current
size of the memory block. Also, the block cannot be reallocated to a larger size.

This is an advanced overridable. Override this function to provide your data in the
requested format and medium. Depending on your data, you may want to override
one of the other versions of this function instead. If you want to handle multiple
storage mediums, override OnRenderData. If your data is in a file, or is of variable
size, override OnRenderFileData. ‘

For more information, see IDataObject::GetData and FORMATETC in the OLE 2
Programmer’s Reference, Volume 1.

See Also COleServerltem::OnRenderData

COleServerltem::OnSetColorScheme

virtual BOOL OnSetColorScheme(const LOGPALETTE FAR* IpLogPalette);

Return Value

Nonzero if the color palette is used; otherwise 0.

Parameters

Remarks

1272

IpLogPalette Pointer to a Windows LOGPALETTE structure.

Called by the framework to specify a color palette to be used when editing the OLE
item. If the container application was written using the Microsoft Foundation Class
Library, this function is called when the IOleObject::SetColorScheme function of
the corresponding COleClientItem object is called. The default implementation
returns FALSE. Override this function if you want to use the recommended palette.
The server application is not required to use the suggested palette.

For more information, see IOleObject::SetColorScheme in the OLE 2
Programmer’s Reference, Volume 1.

COleServerltem::OnSetExtent

COleServerltem::OnSetData

virtual BOOL OnSetData(LPFORMATETC pFormatEtc, LPSTGMEDIUM pStgMedium,
BOOL bRelease);

Return Value
Nonzero if successful; otherwise 0.

Parameters
pFormatEtc Pointer to a FORMATETC structure specifying the format of the data.

pStgMedium Pointer to a STGMEDIUM structure in which the data resides.

bRelease Indicates who has ownership of the storage medium after completing the
function call. The caller decides who is responsible for releasing the resources
allocated on behalf of the storage medium. The caller does this by setting
bRelease. If bRelease is nonzero, the server item takes ownership, freeing the
medium when it has finished using it. When bRelease is 0, the caller retains
ownership and the server iterfi can use the storage medium only for the duration of
the call.

Remarks
Called by the framework to replace the OLE item’s data with the specified data. The
server item does not take ownership of the data until it has successfully obtained it.
That is, it does not take ownership if it returns 0. If the data source takes ownership,
it frees the storage medium by calling the ReleaseStgMedium function.

The default implementation does nothing. Override this function to replace the OLE
item’s data with the specified data. This is an advanced overridable.

For more information, see STGMEDIUM, FORMATETC, and ReleaseStgMedium
in the OLE 2 Programmer’s Reference, Volume 1.

See Also COleDataSource::OnSetData

COleServerltem::OnSetExtent

virtual BOOL OnSetExtent(DVASPECT nDrawAspect, const CSize& size)3

Return Value
Nonzero if successful; otherwise 0.

Parameters
nDrawAspect Specifies the aspect of the OLE item whose bounds are being
specified. This parameter can have any of the following values:

o DVASPECT_CONTENT Item is represented in such a way that it can be
displayed as an embedded object inside its container.

1273

COleServerltem::OnShow

¢ DVASPECT_THUMBNAIL Item is rendered in a “thumbnail”
representation so that it can be displayed in a browsing tool.

e DVASPECT_ICON Item is represented by an icon.

e DVASPECT_DOCPRINT Item is represented as if it were printed using the
Print command from the File menu.

size A CSize structure specifying the new size of the OLE item.

Remarks
Called by the framework to tell the OLE item how much space is available to it in the
container document. If the container application was written with the Microsoft
Foundation Class Library, this function is called when the SetExtent member
function of the corresponding COleClientItem object is called. The default
implementation sets the m_sizeExtent member to the specified size if nDrawAspect
is DVASPECT_CONTENT; otherwise it returns 0. Override this function to
perform special processing when you change the size of the item.

See Also COleClientItem::SetExtent, COleServerItem::OnGetExtent,
COleServerItem::m_sizeExtent

COleServerltem::OnShow

virtual void OnShow();

Remarks
Called by the framework to instruct the server application to display the OLE item in
place. This function is typically called when the user of the container application
creates an item or executes a verb, such as Edit, that requires the item to be shown.
The default implementation attempts in-place activation. If this fails, the function
calls the OnOpen member function to display the OLE item in a separate window.

Override this function if you want to perform special processing when an OLE item
is shown.

See Aiso COleServerItem::OnOpen, COleClientItem::Activate

COleServerltem::OnUpdate

virtual void OnUpdate(COleServerIltem* pSender, LPARAM [Hint, CObject* pHint,
DVASPECT nDrawAspect);

Parameters
pSender Pointer to the item that modified the document. Can be NULL.

[Hint Contains information about the modification.

pHint Pointer to an object storing information about the modification.

1274

COleServerltem::SetltemName

nDrawAspect A value from the DVASPECT enumeration. This parameter can have
any one of the following values:

o DVASPECT_CONTENT Item is represented in such a way that it can be
displayed as an embedded object inside its container.

e DVASPECT_THUMBNAIL Item is rendered in a “thumbnail”
representation so that it can be displayed in a browsing tool.

e DVASPECT_ICON Item is represented by an icon.
e DVASPECT_DOCPRINT Item is represented as if it were printed using the

Print command from the File menu.

Remarks
Called by the framework when an item has been modified. The default
implementation calls NotifyChanged, regardless of the hint or sender.

See Also COleServerItem::NotifyChanged

COleServerltem::OnUpdateltems

virtual void OnUpdateltems();

Remarks
Called by the framework to update all items in the server document. The default
implementation calls UpdateLink for all COleClientItem objects in the document.

See Also COleServerItem::OnUpdate, COleServerItem::OnQueryUpdateltems

COleServerltem::SetltemName

void SetltemName(LPCTSTR IpszltemName);

Parameters
IpszltemName Pointer to the new name of the item.

Remarks
Call this function when you create a linked item to set its name. The name must be
unique within the document. When a server application is called to edit a linked item,
the application uses this name to find the item. You do not need to call this function
for embedded items.

See Also COleServerItem:;GetltemName, COleLinkingDoc::OnGetLinkedItem

1275

COleServerltem::m_sizeExtent

Data Members

COleServerltem::m_sizeExtent

CSize m_sizeExtent;

Remarks
This member tells the server how much of the object is visible in the container
document. The default implementation of OnSetExtent sets this member.

See Also COleServerItem::OnSetExtent

1276

COleStreamFile

COleStreamFile

A COleStreamFile object represents a stream of data (IStream) in a compound file
as part of OLE Structured Storage. An IStorage object must exist before the stream
can be opened or created unless it is a memory stream.

COleStreamFile objects are manipulated exactly like CFile objects.

For more information about manipulating streams and storages, see the article
“Containers: Compound Files” in Programming with MFC.

For more information, see IStream and IStorage in the OLE 2 Programmer’s
Reference, Volume 1.

#include <afxole.h>

See Also CFile

Construction

COleStreamFile Constructs a COleStreamFile object.

Attributes and Operations

Attach Associates a stream with the object.

CreateMemoryStream Creates a stream from global memory and associates it with the
object.

CreateStream Creates a stream and associates it with the object.

Detach Disassociates the stream from the object.

OpenStream Safely opens a stream and associates it with the object.

1277

COleStreamFile:: Attach

Member Functions
COleStreamFile::Attach

void Attach(LPSTREAM IpStream);

Parameters

IpStream Points to the OLE stream (IStream) to be associated with the object.
Cannot be NULL.

Remarks
Associates the supplied OLE stream with the COleStreamFile object. The object
must not already be associated with an OLE stream.

For more information, see IStream in the OLE 2 Programmer’s Reference, Volume 1.

See Also COleStreamFile::Detach

COleStreamFile::COleStreamFile

COleStreamFile(LPSTREAM IpStream = NULL);

Parameters
IpStream Pointer to the OLE stream to be associated with the object.

Remarks
Creates a COleStreamFile object. If [pStream is NULL, the object is not associated
with an OLE stream, otherwise, the object is associated with the supplied OLE
stream.

For more information, see IStream in the OLE 2 Programmer’s Reference, Volume 1.

See Also COleStreamFile::Attach, CFile

COleStreamFile::CreateMemoryStream

BOOL CreateMemoryStream(CFileException* pError = NULL);

Return Value
Nonzero if the stream is created successfully; otherwise 0.

Parameters
pError Points to a CFileException object or NULL that indicates the completion
status of the create operation. Supply this parameter if you want to monitor
possible exceptions generated by attempting to create the stream.

1278

COleStreamFile::Detach

Remarks
Safely creates a new stream out of global, shared memory where a failure is a normal,
expected condition. The memory is allocated by the OLE subsystem.

For more information, see CreateStreamOnHGlobal in the OLE 2 Programmer’s
Reference, Volume 1.

See Also COleStreamFile::OpenStream, COleStreamFile::CreateStream,
CFileException

COleStreamPFile::CreateStream

BOOL CreateStream(LPSTORAGE IpStorage, LPCTSTR IpszName,
DWORD rOpenFlags = modeReadWritelshareExclusivelmodeCreate,
CFileException* pError = NULL);

Return Value
Nonzero if the stream is created successfully; otherwise 0.

Parameters
IpStorage Points to the OLE storage object that contains the stream to be created.
Cannot be NULL.

IpszStreamName Name of the stream to be created. Cannot be NULL.

nOpenFlags Access mode to use when opening the stream. Exclusive, read/write,
and create modes are used by default. For a complete list of the available modes,
see CFile::CFile.

pError Points to a CFileException object or NULL. Supply this parameter if you
want to monitor possible exceptions generated by attempting to create the stream.

Remarks
Safely creates a new stream in the supplied storage object where a failure is a normal,
expected condition. A file exception will be thrown if the open fails and pError
is not NULL.

For more information, see IStorage::CreateStream in the OLE 2 Programmer’s
Reference, Volume 1.

See Also COleStreamFile::OpenStream,
COleStreamFile::CreateMemoryStream, CFileException

COleStreamFile::Detach

LPSTREAM Detach();

Return Value
A pointer to the stream (IStream) that was associated with the object.

1279

COleStreamFile::OpenStream

Remarks
Disassociates the stream from the object without closing the stream. The stream must
be closed in some other fashion before the program terminates.

For more information, see IStream in the OLE 2 Programmer’s Reference, Volume 1.

See Also COleStreamFile::Attach

COleStreamFile::OpenStream

BOOL OpenStream(LPSTORAGE IpStorage, LPCTSTR IpszName,
DWORD rOpenFlags = modeReadWritelshareExclusive, CFileException* pError = NULL);

Return Value
Nonzero if the stream is opened successfully; otherwise 0.

Parameters

IpStorage Points to the OLE storage object that contains the stream to be opened.
Cannot be NULL.

IpszName Name of the stream to be opened. Cannot be NULL.

nOpenFlags Access mode to use when opening the stream. Exclusive and read/write
modes are used by default. For the complete list of the available modes, see
CFile::CFile.

pError Points to a CFileException object or NULL. Supply this parameter if you
want to monitor possible exceptions generated by attempting to open the stream.

Remarks

Opens an existing stream. A file exception will be thrown if the open fails and pError
is not NULL.

For more information, see IStorage::OpenStream in the OLE 2 Programmer’s
Reference, Volume 1.

See Also COleStreamPFile::CreateStream,
COleStreamFile::CreateMemoryStream, CFileException

1280

COleTemplateServer

COleTemplateServer

The COleTemplateServer class is used for OLE visual editing servers, automation
servers, and link containers (applications that support links to embeddings). This
class is derived from the class COleObjectFactory; usually, you can use
COleTemplateServer directly rather than deriving your own class.
COleTemplateServer uses a CDocTemplate object to manage the server documents.
Use COleTemplateServer when implementing a full server, that is, a server that can
be run as a standalone application. Full servers are typically multiple document
interface (MDI) applications, although single document interface (SDI) applications
are supported. One COleTemplateServer object is needed for each type of server
document an application supports; that is, if your server application supports both
worksheets and charts, you must have two COleTemplateServer objects.

COleTemplateServer overrides the OnCreateInstance member function defined by
COleObjectFactory. This member function is called by the framework to create a
C++ object of the proper type.

For more information about servers, see the article “Servers: Implementing a Server”

in Programming with MFC.

#include <afxdisp.h>

See Also COleObjectFactory, COleServerDoc, COleServerltem, CDocTemplate

Construction

COleTemplateServer Constructs a COleTemplateServer object.

Operations

ConnectTemplate Connects a document template to the underlying
COleObjectFactory object.

UpdateRegistry Registers the document type with the OLE system registry.

1281

COleTemplateServer::COleTemplateServer

Member Functions
COleTemplateServer::COleTemplateServer

COleTemplateServer();

Remarks
Constructs a COleTemplateServer object.

For a brief description of the use of the COleTemplateServer class, see the
COleLinkingDoc class overview.

COleTemplateServer::ConnectTemplate

void ConnectTemplate(REFCLSID clsid, CDocTemplate* pDocTemplate, BOOL bMultilnstance);

Parameters
clsid Reference to the OLE class ID that the template requests.

pDocTemplate Pointer to the document template.

bMultilnstance Indicates whether a single instance of the application can support
multiple instantiations. If TRUE, multiple instances of the application are
launched for each request to create an object.

Remarks

Connects the document template pointed to by pDocTemplate to the underlying
COleObjectFactory object.

For more information, see CLSID in the OLE 2 Programmer’s Reference, Volume 1.

See Also CDocTemplate

COleTemplateServer::UpdateRegistry

void UpdateRegistry(OLE_APPTYPE nAppType = OAT_INPLACE_SERVER,
LPCSTR* rgipszRegister = NULL, LPCSTR FAR* rgipszOverwrite = NULL);

—Parameters
nAppType A value from the OLE_APPTYPE enumeration, which is defined in
AFXDISP.H. It can have any one of the following values:

o OAT_INPLACE_SERVER Server has full server user-interface.
e OAT_SERVER Server supports only embedding.

e OAT_CONTAINER Container supports links to embeddings.

e OAT_DISPATCH_OBJECT IDispatch-capable object.

1282

Remarks

COleTemplateServer::UpdateRegistry

rglpszRegister A list of entries that is written into the registry only if no entries
exist.

rglpszOverwrite A list of entries that is written into the registry regardless of
whether any preceding entries exist.

Loads file-type information from the document-template string and places that
information in the OLE system registry.

The registration information is loaded by means of a call to
CDocTemplate::GetDocString. The substrings retrieved are those identified by the
indexes regFileTypeld, regFileTypeName, and fileNewName, as described in the
GetDocString reference pages.

This function fails, and the file information is not entered in the registry, if the
regFileTypeld substring is empty or if the call to GetDocString fails for any
other reason.

The information in the arguments rglpszRegister and rglpszOverwrite is written to
the registry through a call to AfxOleRegisterServerClass. The default information,
which is registered when the two arguments are NULL, is suitable for most
applications. For information on the structure of the information in these arguments,
see AfxOleRegisterServerClass.

For more information, see IDispatch in the OLE 2 Programmer’s Reference,
Volume 2.

See Also CDocTemplate::GetDocString, AfxOleRegisterServerClass

1283

COleUpdateDialog

COleUpdateDialog

The COleUpdateDialog class is used for a special case of the OLE Edit Links dialog
box, which should be used when you need to update only existing linked or embedded
objects in a document.

For more information regarding OLE-specific dialog boxes, see the article “Dialog
Boxes in OLE” in Programming with MFC.

#include <afxodlgs.h>

See Also COleLinksDialog

Construction

COleUpdateDialog Constructs a COleUpdateDialog object.

Operations

DoModal Displays the Edit Links dialog box in an update mode.

Member Functions

COleUpdateDialog(COleDocument* pDoc, BOOL bUpdateLinks = TRUE,
BOOL bUpdateEmbeddings = FALSE, CWnd* pParentWnd = NULL);

Parameters
pDoc Points to the document containing the links that may need updating.

bUpdateLinks Flag that determines whether linked objects are to be updated.

1284

COleUpdateDialog::DoModal

bUpdateEmbeddings Flag that determines whether embedded objects are to be
updated.
pParentWnd Points to the parent or owner window object (of type CWnd) to which

the dialog object belongs. If it is NULL, the parent window of the dialog box will
be set to the main application window.

Remarks
This function constructs only a COleUpdateDialog object. To display the dialog box,
call DoModal. This class should be used instead of COleLinksDialog when you
want to update only existing linked or embedded items.

See Also COleDialog, COleLinksDialog, COleDocument, CWnd, CDialog,
COleUpdateDialog::DoModal

COleUpdateDialog::DoModal

virtual int DoModal();

Return Value
Completion status for the dialog box. One of the following values:

e IDOK if the dialog box returned succeésfully.

o IDCANCEL if none of the linked or embedded items in the current document
need updating.

o IDABORT if an error occurred. If IDABORT is returned, call the
COleDialog::GetLastError member function to get more information about the
type of error that occurred. For a listing of possible errors, see the
OleUIEditLinks function in the OLE 2.01 User Interface Library.

Remarks
Call this function to display the Edit Links dialog box in update mode. All links
and/or embeddings are updated unless the user selects the Cancel button.

See Also COleDialog::GetLastError, COleLinksDialog::DoModal

1285

COleVariant

COleVariant

A COleVariant object encapsulates the VARIANT data type. This data type is used
in OLE automation. Specifically, the DISPPARAMS structure contains a pointer to
an array of VARIANT structures. A DISPPARAMS structure is used to pass
parameters to IDispatch::Invoke.

Note This class is derived from the VARIANT structure. This means you can pass a
COleVariant in a parameter that calls for a VARIANT and that the data members of the
VARIANT structure are accessible data members of COleVariant.

The two related MFC classes COleCurrency and COleDateTime encapsulate the
variant data types CURRENCY (VT_CY) and DATE (VT_DATE). The
COleVariant class is used extensively in the DAO classes; see these classes for
typical usage of this class, for example CDaoQueryDef and CDaoRecordset.

For more information, see the VARIANT, CURRENCY, DISPPARAMS, and
IDispatch::Invoke entries in the OLE 2 Programmer’s Reference.

For more information on the COleVariant class and its use in OLE automation, see
“Passing Parameters in OLE Automation” in the article “Automation” in

Programming with MFC.

#include <afxdisp.h>

See Also COleCurrency, COleDateTime, CDaoQueryDef, CDaoRecordset

Construction

COleVariant Constructs a COleVariant object.

Operations

ChangeType Changes the variant type of this COleVariant object.

Clear Clears this COleVariant object.

Detach Detaches a VARIANT from a COleVariant and returns
the VARTANT.

Operators

operator LPCVARIANT Converts a COleVariant value into an LPCVARIANT.

operator LPVARIANT Converts a COleVariant object into an LPVARIANT.

operator = Copies a COleVariant value.

operator == Compares two COleVariant values.

1286

COleVariant::COleVariant

Archive/Dump

operator << Outputs a COleVariant value to CArchive or
CDumpContext.

operator >> Inputs a COleVariant object from CArchive.

Member Functions
COleVariant::COleVariant

COleVariant();

COleVariant(const VARIANT& varSrc);
COleVariant(const COleVariant& varSrc);
COleVariant(LPCVARIANT pSrc);

COleVariant(LPCTSTR IpszSrc);

COleVariant(CString& strSrc);

COleVariant(BYTE nSrc);

COleVariant(short nSrc, VARTYPE vtSrc = VT_12);
COleVariant(long [Src, VARTYPE viSrc = VT_I4);
COleVariant(const COleCurrency& curSrc);
COleVariant(float fltSrc);

COleVariant(double dbiSrc);

COleVariant(const COleDateTime& dateSrc);

Parameters
varSrc An existing COleVariant or VARIANT object to be copied into the new
COleVariant object.

pSrc A pointer to a VARIANT object that will be copied into the new COleVariant
object.

IpszSrc A null-terminated string to be copied into the new COleVariant object.

strSrc - A CString object to be copied into the new COleVariant object.

nSre, ISrc A numerical value to be copied into the new COleVariant object.

vtSrc The VARTYPE for the new COleVariant object.

curSrc A COleCurrency object to be copied into the new COleVariant object.

SfltSrc, dblSrc A numerical value to be copied into the new COleVariant object.

dateSrc A COleDateTime object to be copied into the new COleVariant object.
Remarks

All of these constructors create new COleVariant objects initialized to the specified
value. A brief description of each of these constructors follows.

e COleVariant() Creates an empty COleVariant object, VT_EMPTY.

1287

COleVariant::ChangeType

COleVariant(varSrc) Copies an existing VARIANT or COleVariant object.
The variant type is retained.

COleVariant(pSrc) Copies an existing VARIANT or COleVariant object. The
variant type is retained.

COleVariant(IpszSrc) Copies a string into the new object, VI_BSTR.
COleVariant(strSrc) Copies a string into the new object, VT_BSTR.
COleVariant(nSrc) Copies an 8-bit integer into the new object, VT_UIL.

COleVariant(nSrc, vtSrc) Copies a 16-bit integer (or Boolean value) into the
new object. The parameter vtSrc must be VIT_I2 or VI_BOOL.

COleVariant([Src, vtSrc) Copies a 32-bit integer (or SCODE value) into the
new object. The parameter vzSrc must be VT_I4, VI_ERROR, or VT_BOOL.

COleVariant(curSrc) Copies a COleCurrency value into the new object,
VT_CY.

COleVariant(fltSrc) Copies a 32-bit floating-point value into the new object,
VT_R4.

COleVariant(dbiSrc) Copies a 64-bit floating-point value into the new object,
VT_RS.

COleVariant(dateSrc) Copies a COleDateTime value into the new object,
VT_DATE.

For more information, see the VARIANT and VARTYPE entries in Chapter 5 of the
OLE 2 Programmer’s Reference, Volume 2.

For more information on SCODE, see “Structure of OLE Error Codes” in the OLE 2
Programmer’s Reference, Volume 1.

See Also COleVariant::operator =, CString, COleCurrency, COleDateTime

COleVariant::ChangeType

Remarks

1288

void ChangeType(VARTYPE vartype, LPVARIANT pSrc = NULL);

Parameters
vartype The VARTYPE for this COleVariant object.

pSrc A pointer to the VARIANT object to be converted. If this value is NULL, this

COleVariant object is used as the source for the conversion.

Call this function to convert the type of variant value in this CQOleVariant object.

For more information, see the VARIANT, VARTYPE, and VariantChangeType
entries in the OLE 2 Programmer’s Reference, Volume 2.

See Also COleVariant::operator =

COleVariant::operator =

COleVariant::Clear

Remarks

void Clear();

Call this function to clear the VARIANT. This sets the VARTYPE for this object to
VT_EMPTY. The COleVariant destructor calls this function.

For more information, see the VARIANT, VARTYPE, and VariantClear entries in
the OLE 2 Programmer’s Reference, Volume 2.

COleVariant::Detach

VARIANT Detach();

Return Type

Remarks

The underlying VARIANT value of this COleVariant object.

Call this function to detach the underlying VARIANT object from this COleVariant
object. This function sets the VARTYPE for this object to VI_EMPTY.

Note Aiter calling Detach, it is the caller’s responsibility to call VariantClear on the resutting
VARIANT structure.

For more information, see the VARIANT, VARTYPE, and VariantClear entries in
the OLE 2 Programmer’s Reference, Volume 2.

See Also COleVariant::operator LPCVARIANT, COleVariant::operator
LPVARIANT

Operators

COleVariant::operator =

const COleVariant& operator =(const VARIANT& varSrc);
const COleVariant& operator =(LPCVARIANT pSrc);

const COleVariant& operator =(const COleVariant& varSic);
const COleVariant& operator =(const LPCTSTR IpszSrc);
const COleVariant& operator =(const CString& s¢rSrc);

const COleVariant& operator =(const BYTE nSrc);

const COleVariant& operator =(const short nSrc);

const COleVariant& operator =(const long [Src);

const COleVariant& operator =(const COleCurrency& curSrc);

1289

COleVariant::operator ==

Remarks

const COleVariant& operator =(const float fI£Src);
const COleVariant& operator =(const double dbiSrc);
const COleVariant& operator =(const COleDateTime& dateSrc);

These overloaded assignment operators copy the source value into this COleVariant
object. A brief description of each operator follows:

o operator =(varSrc) Copies an existing VARIANT or COleVariant object into
this object.

e operator =(pSrc) Copies the VARIANT object accessed by pSrc into this object.
¢ operator =(IpszSrc) Copies a null-terminated string into this object.

o operator =(strSrc) Copies a CString object into this object and sets the
VARTYPE to VT_BSTR.

o operator =(nSrc) Copies an 8- or 16-bit integer value into this object. If nSrc is
an 8-bit value, the VARTYPE of this is set to VIT_UIL. If nSrc is a 16-bit value
and the VARTYPE of this is VT_BOOL, it is kept; otherwise, it is set to VT_I2.

e operator =([Src) Copies a 32-bit integer value into this object. If the
VARTYPE of this is VI_ERROR, it is kept; otherwise, it is set to VT_I4.

e operator =(curSrc) Copies a COleCurrency object into this object and sets the
VARTYPE to VT_CY.

e operator =(fIzSrc) Copies a 32-bit floating-point value into this object and sets
the VARTYPE to VT_R4.

o operator =(dbiSrc) Copies a 64-bit floating-point value into this object and sets
the VARTYPE to VT_RS.

o operator =(dateSrc) Copies a COleDateTime object into this object and sets
the VARTYPE to VT_DATE.

For more information, sece the VARIANT and VARTYPE entries in Chapter 5 of the
OLE 2 Programmer’s Reference, Volume 2.

See Also COleVariant::COleVariant, COleCurrency, COleDateTime

COleVariant::operator ==

Remarks

1290

BOOL operator ==(const VARIANT& varSrc) const;
BOOL operator ==(LPCVARIANT pSrc) const;

This operator compares two variant values and returns nonzero if they are equal;
otherwise 0.

See Also COleVariant::operator =

COleVariant::operator <<, >>

COleVariant::operator LPCVARIANT

operator LPCVARIANT() const;

Remarks
This casting operator returns a VARIANT structure whose value is copied from this
COleVariant object.

For more information, see the VARIANT entry in Chapter 5 of the OLE 2
Programmer’s Reference, Volume 2.

See Also COleVariant::operator LPVARIANT

COleVariant::operator LPVARIANT

operator LPVARIANT();

Remarks
Call this casting operator to access the underlying VARIANT structure for this
COleVariant object.

Caution Changing the value in the VARIANT structure accessed by the pointer returned by
this function will change the value of this COleVariant object.

For more information, see the VARIANT entry in Chapter 5 of the OLE 2
Programmer’s Reference, Volume 2.

See Also COleVariant::operator LPCVARIANT

COleVariant::operator <<, >>

friend CDumpContext& AFXAPI operator <<(CDumpContext& dc, OleVariant varSrc);
friend CArchive& AFXAPI operator <<(CArchive& ar, COleVariant varSrc);
friend CArchive& AFXAPI operator >>(CArchive& ar, COleVariant& varSrc);

Remarks
The COleVariant insertion (<<) operator supports diagnostic dumping and storing to
an archive. The extraction (>>) operator supports loading from an archive.

See Also CDumpContext, CArchive

1291

CPageSetupDialog

CPageSetupDialog

1292

The CPageSetupDialog class encapsulates the services provided by the Windows
common OLE Page Setup dialog box with additional support for setting and
modifying print margins. This class is designed to take the place of the Print Setup
dialog box.

To use a CPageSetupDialog object, first create the object using the
CPageSetupDialog constructor. Once the dialog box has been constructed, you can
set or modify any values in the m_psd data member to initialize the values of the
dialog box’s controls. The m_psd structure is of type PAGESETUPDLG.

After initializing the dialog box controls, call the DoModal member function to
display the dialog box and allow the user to select print options. DoModal returns
whether the user selected the OK (IDOK) or Cancel (IDCANCEL) button.

If DoModal returns IDOK, you can use several of CPageSetupDialog’s member
functions, or access the m_psd data member, to retrieve information input by
the user.

Note After the common OLE Page Setup dialog box is dismissed, any changes made by the
user will not be saved by the framework. It is up to the application itself to save any values
from this dialog box to a permanent location, such as member of the application’s document or
application class. '

#include <afxdlgs.h>

CPageSetupDialog::CPageSetupDialog

Attributes

CreatePrinterDC Creates a device context for printing.

GetDeviceName Returns the device name of the printer.

GetDevMode Returns the current DEVMODE of the printer.

GetDriverName Returns the driver used by the printer.

GetMargins Returns the current margin settings of the printer.

GetPortName Returns the output port name.

GetPaperSize Returns the paper size of the printer.

Construction

CPageSetupDialog Constructs a CPageSetupDialog object.

Data Members

m_psd A structure used to customize a CPageSetupDialog object.

Operations

DoModal Displays the dialog box and allows the user make a selection.

Overridables

OnDrawPage Called by the framework to render a screen image of a printed
page.

PreDrawPage Called by the framework before rendering a screen image of a

printed page.

Member Functions

CPageSetupDialog::CPageSetupDialog

CPageSetupDialog(DWORD dwFlags = PSD_MARGINS | PSD_INWININIINTLMEASURE,

CWnd* pParentWnd = NULL);

Parameters

dwFlags One or more flags you can use to customize the settings of the dialog box.
The values can be combined using the bitwise-OR operator. These values have the
following meanings:

¢ PSD_DEFAULTMINMARGINS Sets the minimum allowable widths for the
page margins to be the same as the printer’s minimums. This flag is ignored if

the PSD_MARGINS and PSD_MINMARGINS flags are also specified.
e PSD_INWININIINTLMEASURE Not implemented.

1293

CPageSetupDialog::CPageSetupDialog

1294

PSD_MINMARGINS Causes the system to use the values specified in the
rtMinMargin member as the minimum allowable widths for the left, top,
right, and bottom margins. The system prevents the user from entering a width
that is less than the specified minimum. If PSD_MINMARGINS is not
specified, the system sets the minimum allowable widths to those allowed by
the printer.

PSD_MARGINS Activates the margin control area.

PSD_INTHOUSANDTHSOFINCHES Causes the units of the dialog box to
be measured in 1/1000 of an inch.

PSD_INHUNDREDTHSOFMILLIMETERS Causes the units of the dialog
box to be measured in 1/100 of a millimeter.

PSD_DISABLEMARGINS Disables the margin dialog box controls.
PSD_DISABLEPRINTER Disables the Printer button.

PSD_NOWARNING Prevents the warning message from being displayed
when there is no default printer.

PSD_DISABLEORIENTATION Disables the page orientation dialog
control.

PSD_RETURNDEFAULT Causes CPageSetupDialog to return DEVMODE
and DEVNAMIES structures that are initialized for the system default printer
without displaying a dialog box. It is assumed that both hDevNames and
hDevMode are NULL; otherwise, the function returns an error. If the system
default printer is supported by an old printer driver (earlier than Windows
version 3.0), only hDevNames is returned; hDevMode is NULL.

PSD_DISABLEPAPER Disables the paper selection control.

PSD_SHOWHELP Causes the dialog box to show the Help button. The
hwndOwner member must not be NULL if this flag is specified.

PSD_ENABLEPAGESETUPHOOK Enables the hook function specified in
IpfnSetupHook.

PSD_ENABLEPAGESETUPTEMPLATE Causes the operating system to
create the dialog box by using the dialog template box identified by hInstance
and IpSetupTemplateName.

PSD_ENABLEPAGESETUPTEMPLATEHANDLE Indicates that
hInstance identifies a data block that contains a preloaded dialog box template.
The system ignores IpSetupTemplateName if this flag is specified.

CPageSetupDialog::DoModal

o PSD_ENABLEPAGEPAINTHOOK Enables the hook function specified in
IpfnPagePaintHook.

o PSD_DISABLEPAGEPAINTING Disables the draw area of the dialog box.

pParentWnd Pointer to the dialog box’s parent or owner.

Remarks
Call this function to construct a CPageSetupDialog object. Use the DoModal
function to display the dialog box.

See Also CPrintDialog, CPageSetupDialog

CPageSetupDialog::CreatePrinterDC

HDC CreatePrinterDC();

Return Value
Handle to the newly created printer device context (DC).

Remarks
Creates a printer device context from the DEVMODE and DEVNAMES structures.

See Also CPageSetupDialog::GetDevMode,
CPageSetupDialog::GetDeviceName, CPageSetupDialog::GetDriverName

CPageSetupDialog::DoModal

virtual int DoModal();

Return Value
IDOK or IDCANCEL if successful; otherwise 0. IDOK and IDCANCEL are
constants that indicate whether the user selected the OK or Cancel button.

If IDCANCEL is returned, you can call the Windows CommDIgExtendedError
function to determine whether an error occurred.

Remarks
Call this function to display the Windows common OLE Page Setup dialog box and
allow the user to select various print setup options such as the printing margins, size
and orientation of the paper, and destination printer. In addition, the user can access
the printer setup options such as network location and properties specific to the
selected printer.

If you want to initialize the various Page Setup dialog options by setting members of
the m_psd structure, you should do so before calling DoModal, and after the dialog
object is constructed. After calling DoModal, call other member functions to retrieve
the settings or information input by the user into the dialog box.

1285

CPageSetupDialog::GetDeviceName

If you want to propagate the current settings entered by the user, make a call to
CWinApp::SelectPrinter. This function takes the information from the
CPageSetupDialog object and initializes and selects a new printer DC with the
proper attributes.

AfxGetApp()->SelectPrinter(dlig.m_psd.hDevNames, dlg.m_psd.hDevMode);
See Also CPageSetupDialog::m_psd

CPageSetupDialog::GetDeviceName

CString GetDeviceName() const;

Return Value
The device name used by the CPageSetupDialog object.

Remarks
Call this function after DoMaodal to retrieve the name of the currently selected
printer.

CPageSetupDialog::GetDevMode

LPDEVMODE GetDevMode() const;

Return Value
The DEVMODE data structure, which contains information about the device
initialization and environment of a print driver.

Remarks
Call this function after calling DoModal to retrieve information about the printer
device context of the CPageSetupDialog object.

CPageSetupDialog::GetDriverName

CString GetDriverName() const;

Return Value
The name of the currently selected printer device driver.

Remarks
Call this function after calling DoMeodal to retrieve the name of the currently selected
printer device driver.

See Also CPageSetupDialog::GetDeviceName,
CPageSetupDialog::GetDevMode, CPageSetupDialog::GetPortName

1296

CPageSetupDialog::GetPortName

CPageSetupDialog::GetMargins

void GetMargins(LPRECT [pRectMargins, LPRECT IpRectMinMargins) const;

Parameters
IpRectMargins Pointer to a RECT structure or CRect object that describes (in
1/1000 inches or 1/100 mm) the print margins for the currently selected printer.
Pass NULL for this parameter, if you are not interested in this rectangle.

IpRectMinMargins Pointer to a RECT structure or CRect object that describes (in
1/1000 inches or 1/100 mm) the minimum print margins for the currently selected
printer. Pass NULL for this parameter, if you are not interested in this rectangle.

Remarks
Call this function after a call to DoModal to retrieve the margins of the printer device
driver.

CPageSetupDialog::GetPaperSize

CSize GetPaperSize() const;

Return Value
A CSize object containing the size of the paper (in 1/1000 inches or 1/100 mm)
selected for printing.

Remarks
Call this function to retrieve the size of the paper selected for printing.

CPageSetupDialog::GetPortName

CString GetPortName() const;

Return Value
The name of the currently selected printer port.

Remarks
Call this function after calling DoModal to retrieve the name of the currently selected
printer port.

See Also CPageSetupDialog::GetDeviceName,
CPageSetupDialog::GetDriverName

1297

CPageSetupDialog::OnDrawPage

CPageSetupDialog::OnDrawPage

virtual UINT OnDrawPage(CDC* pDC, UINT nMessage, LPRECT IpRect);

Return Value

Nonzero value if handled; otherwise O.

Parameters

Remarks

1298

pDC Pointer to the printer device context.

nMessage Specifies a message, indicating the area of the page currently being
drawn. Can be one of the following:

e WM_PSD_FULLPAGERECT The entire page area.

o WM_PSD_MINMARGINRECT Current minimum margins.
o WM_PSD_MARGINRECT Current margins.

o WM_PSD_GREEKTEXTRECT Contents of the page.

e WM_PSD_ENVSTAMPRECT Area reserved for a postage stamp
representation.

o WM_PSD_YAFULLPAGERECT Area for a return address representation.
This area extends to the edges of the sample page area.

IpRect Pointer to a CRect or RECT object containing the coordinates of the
drawing area.

Called by the framework to draw a screen image of a printed page. This image is then
displayed as part of the common OLE Page Setup dialog box. The default
implementation draws an image of a page of text.

Opverride this function to customize the drawing of a specific area of the image, or the
entire image. You can do this by using a switch statement with case statements
checking the value of nMessage. For example, to customize the rendering of the
contents of the page image, you could use the following example code:

switch(nType)

{
case WM_PSD_GREEKTEXTRECT:
DrawMyImage(pDC, 1pRect);: //draws my special graphic
return 1;
default:

return ::Draw(CDC* pDC, UINT nDrawType, LPRECT TpRect);

CPageSetupDialog::PreDrawPage

Note that you do not need to handle every case of nMessage. You can choose to
handle one component of the image, several components of the image, or the whole

arca.

See Also CPageSetupDialog::PreDrawPage

CPageSetupDialog::PreDrawPage

virtual UINT PreDrawPage(WORD wPaper, WORD wFlags, LPPAGESETUPDLG pPSD);

Return Value

Nonzero value if handled; otherwise O.

Parameters

wPaper Specifies a value that indicates the paper size. This value can be one of the
DMPAPER _ values listed in the description of the DEVMODE structure.

wFlags Indicates the orientation of the paper or envelope, and whether the printer is
a dot-matrix or HPPCL (Hewlett Packard Printer Control Language) device. This
parameter can have one of the following values:

0x001
0x003
0x005
0x007
0x00b
0x00d
0x019
0x01f

Paper in landscape mode (dot matrix)
Paper in landscape mode (HPPCL)
Paper in portrait mode (dot matrix)
Paper in portrait mode (HPPCL)
Envelope in landscape mode (HPPCL)
Envelope in portrait mode (dot matrix)
Envelope in landscape mode (dot matrix)

Envelope in portrait mode (dot matrix)

pPSD Pointer to a PAGESETUPDLG structure. For more information on this
structure, see the Win32 documentation.

Remarks

Called by the framework before drawing the screen image of a printed page. Override
this function to customize the drawing of the image. If you override this function and
return TRUE, you must draw the entire image. If you override this function and
return FALSE, the entire default image is drawn by the framework.

See Also CPageSetupDialog::OnDrawPage

1299

CPageSetupDialog::m_psd

Data Members
CPageSetupDialog::m_psd

Remarks
A structure of type PAGESETUPDLG, whose members store the characteristics of
the dialog object. After constructing a CPageSetupDialog object, you can use m_psd
to set various aspects of the dialog box before calling the DoModal member function.

If you modify the m_psd data member directly, you will override any default
behavior.

For more information on the PAGESETUPDLG structure, see the Win32
documentation.

1300

CPaintDC

CPaintDC

The CPaintDC class is a device-context class derived from CDC. It performs a
CWnd::BeginPaint at construction time and CWnd::EndPaint at destruction time.

A CPaintDC object can only be used when responding to a WM_PAINT message,
usually in your OnPaint message-handler member function.

For more information on using CPaintDC, see “Device Contexts” in Chapter 1 of

Programming with MFC.

#include <afxwin.h>

See Also CDC

Data Members

m_ps Contains the PAINTSTRUCT used to paint the client area.
m_hWnd The HWND to which this CPaintDC object is attached.
Construction

CPaintDC Constructs a CPaintDC connected to the specified CWnd.

Member Functions
CPaintDC::CPaintDC

CPaintDC(CWnd* pWnd);
throw(CResourceException);

Parameters
pWnd Points to the CWnd object to which the CPaintDC object belongs.

Remarks
Constructs a CPaintDC object, prepares the application window for painting, and
stores the PAINTSTRUCT structure in the m_ps member variable.

1301

CPaintDC::m_hWnd

An exception (of type CResourceException) is thrown if the Windows GetDC call
fails. A device context may not be available if Windows has already allocated all of
its available device contexts. Your application competes for the five common display
contexts available at any given time under Windows.

Data Members
CPaintDC::m_hWnd

Remarks
The HWND to which this CPaintDC object is attached. m_hWnd is a protected
variable of type HWND.

CPaintDC::m_ps

Remarks
m_ps is a public member variable of type PAINTSTRUCT. It is the
PAINTSTRUCT that is passed to and filled out by CWnd::BeginPaint.

The PAINTSTRUCT contains information that the application uses to paint the
client area of the window associated with a CPaintDC object.

Note that you can access the device-context handle through the PAINTSTRUCT.
However, you can access the handle more directly through the m_hDC member
variable that CPaintDC inherits from CDC.

1302

CPalette

CPalette

The CPalette class encapsulates a Windows color palette. A palette provides an
interface between an application and a color output device (such as a display device).
The interface allows the application to take full advantage of the color capabilities of
the output device without severely interfering with the colors displayed by other
applications. Windows uses the application’s logical palette (a list of needed colors)
and the system palette (which defines available colors) to determine the colors used.

A CPalette object provides member functions for manipulating the palette referred to
by the object. Construct a CPalette object and use its member functions to create the
actual palette, a graphics device interface (GDI) object, and to manipulate its entries
and other properties.

For more information on using CPalette, see “Graphic Objects” in Chapter 1 of
Programming with MFC.

#include <afxwin.h>

See Also CPalette::GetPaletteEntries, CPalette::SetPaletteEntries

Construction

CPalette Constructs a CPalette object with no attached Windows
palette. You must initialize the CPalette object with one
of the initialization member functions before it can be
used.

Initialization

CreatePalette Creates a Windows color palette and attaches it to the
CPalette object.

CreateHalftonePalette Creates a halftone palette for the device context and
attaches it to the CPalette object.

Operations

FromHandle Returns a pointer to a CPalette object when given a

handle to a Windows palette object.

1303

CPalette:: AnimatePalette

AnimatePalette Replaces entries in the logical palette identified by the
CPalette object. The application does not have to update
its client area, because Windows maps the new entries
into the system palette immediately.

GetNearestPaletteIndex Returns the index of the entry in the logical palette that
most closely matches a color value.

ResizePalette Changes the size of the logical palette specified by the
CPalette object to the specified number of entries.

Attributes

GetEntryCount Retrieves the number of palette entries in a logical
palette.

GetPaletteEntries Retrieves a range of palette entries in a logical palette.

SetPaletteEntries Sets RGB color values and flags in a range of entries in a
logical palette.

operator HPALETTE Returns the HPALETTE attached to the CPalette.

Member Functions
CPalette:: AnimatePalette

void AnimatePalette(UINT nStartIndex, UINT nNumkEntries,
LPPALETTEENTRY IpPaletteColors);

Parameters
nStartlndex Specifies the first entry in the palette to be animated.

nNumEntries Specifies the number of entries in the palette to be animated.

IpPaletteColors Points to the first member of an array of PALETTEENTRY
structures to replace the palette entries identified by nStartIndex and nNumEntries.

Remarks
Replaces entries in the logical palette attached to the CPalette object. When an
application calls AnimatePalette, it does not have to update its client area, because
Windows maps the new entries into the system palette immediately.

The AnimatePalette function will only change entries with the PC_RESERVED
flag set in the corresponding palPaletteEntry member of the LOGPALETTE
structure that is attached to the CPalette object. See LOGPALETTE in the Win32
SDK Programmer’s Reference for more information about this structure.

See Also CPalette::CreatgPalette, ::AnimatePalette

1304

CPalette::CreatePalette

CPalette::CPalette

CPalette();

Remarks
Constructs a CPalette object. The object has no attached palette until you call
CreatePalette to attach one.

See Also CPalette::CreatePalette

CPalette::CreateHalftonePalette

BOOL CreateHalftonePalette(CDC* pDC);

Return Value
Nonzero if the function is successful; otherwise 0.

Parameters
pDC Identifies the device context.

Remarks
Creates a halftone palette for the device context. An application should create a
halftone palette when the stretching mode of a device context is set to HALFTONE.
The logical halftone palette returned by the CreateHalftonePalette member function
should then be selected and realized into the device context before the
CDC::StretchBlt or ::StretchDIBits function is called.

See the Win32 SDK Programmer’s Reference for more information about
CreateHalftonePalette and StretchDIBits.

See Also CDC::RealizePalette, CDC::SelectPalette, CDC::SetStretchBltMode,
::CreateHalftonePalette, ::StretchDIBits

CPalette::CreatePalette

BOOL CreatePalette(LPLOGPALETTE IpLogPalette);

Return Value
Nonzero if successful; otherwise 0.

Parameters
IpLogPalette Points to a LOGPALETTE structure that contains information about
the colors in the logical palette.

1305

CPalette::FromHandle

The LOGPALETTE structure has the following form:

typedef struct tagLOGPALETTE {
WORD palVersion;
WORD palNumEntries;
PALETTEENTRY palPalEntry[1];
} LOGPALETTE;

Remarks
Initializes a CPalette object by creating a Windows logical color palette and
attaching it to the CPalette object.

See the Win32 SDK Programmer’s Reference for more information about the
LOGPALETTE structure.

See Also ::CreatePalette, LOGPALETTE

CPalette::FromHandle

static CPalette* PASCAL FromHandle(HPALETTE /hPalette);

Return Value
A pointer to a CPalette object if successful; otherwise NULL.

Parameters
hPalette A handle to a Windows GDI color palette.

Remarks
Returns a pointer to a CPalette object when given a handle to a Windows palette
object. If a CPalette object is not already attached to the Windows palette, a
temporary CPalette object is created and attached. This temporary CPalette object is
valid only until the next time the application has idle time in its event loop, at which
time all temporary graphic objects are deleted. In other words, the temporary object is
valid only during the processing of one window message.

CPalette::GetEntryCount

int GetEntryCount();

Return Value
Number of entries in a logical palette.

Remarks
Call this member function to retrieve the number of entries in a given logical palette.

See Also CPalette::GetPaletteEntries, CPalette::SetPaletteEntries

1306

CPalette::operator HPALETTE

CPalette::GetNearestPaletteIndex

UINT GetNearestPaletteIndex(COLORREF crColor) const;

Return Value
The index of an entry in a logical palette. The entry contains the color that most
nearly matches the specified color.

Parameters
crColor Specifies the color to be matched.

Remarks
Returns the index of the entry in the logical palette that most closely matches the
specified color value.

See Also ::GetNearestPaletteIndex

CPalette::GetPaletteEntries

UINT GetPaletteEntries(UINT nStartindex, UINT nNumEntries,
LPPALETTEENTRY IpPaletteColors) const;

Return Value
The number of entries retrieved from the logical palette; O if the function failed.

Parameters
nStartindex Specifies the first entry in the logical palette to be retrieved.
nNumkEntries Specifies the number of entries in the logical palette to be retrieved.

IpPaletteColors Points to an array of PALETTEENTRY data structures to receive
the palette entries. The array must contain at least as many data structures as
specified by nNumEntries.

Remarks
Retrieves a range of palette entries in a logical palette.

See Also ::GetPaletteEntries

CPalette::operator HPALETTE

operator HPALETTE() const;

Return Value
If successful, a handle to the Windows GDI object represented by the CPalette object;
otherwise NULL.

1307

CPalette::ResizePalette

Remarks
Use this operator to get the attached Windows GDI handle of the CPalette object.
This operator is a casting operator, which supports direct use of an HPALETTE
object.

For more information about using graphic objects, see the article “Graphic Objects”
in the Win32 SDK Programmer’s Reference.

CPalette::ResizePalette

BOOL ResizePalette(UINT nNumEntries);

Return Value
Nonzero if the palette was successfully resized; otherwise 0.

Parameters
nNumEntries Specifies the number of entries in the palette after it has been resized.

Remarks
Changes the size of the logical palette attached to the CPalette object to the number
of entries specified by nlNumEntries. If an application calls ResizePalette to reduce
the size of the palette, the entries remaining in the resized palette are unchanged. If
the application calls ResizePalette to enlarge the palette, the additional palette
entries are set to black (the red, green, and blue values are all 0), and the flags for all
additional entries are set to 0.

For more information on the Windows API ResizePalette, see ::ResizePalette in the
Win32 SDK Programmer’s Reference.

See Also ::ResizePalette

CPalette::SetPaletteEntries

UINT SetPaletteEntries(UINT nStartIndex, UINT nNumEntries,
LPPALETTEENTRY IpPaletteColors);

Return Value
The number of entries set in the logical palette; 0 if the function failed.

Parameters
nStartIndex Specifies the first entry in the logical palette to be set.
nNumEntries Specifies the number of entries in the logical palette to be set.

IpPaletteColors Points to an array of PALETTEENTRY data structures to receive
the palette entries. The array must contain at least as many data structures as
specified by nNumEntries.

1308

CPalette::SetPaletteEntries

Remarks
Sets RGB color values and flags in a range of entries in a logical palette.

If the logical palette is selected into a device context when the application calls
SetPaletteEntries, the changes will not take effect until the application calls
CDC::RealizePalette.

For more information on the Windows structure PALETTEENTRY, see
PALETTEENTRY in the Win32 SDK Programmer’s Reference.

See Also CDC::RealizePalette, ::SetPaletteEntries, PALETTEENTRY

1309

CPen

CPen

The CPen class encapsulates a Windows graphics device interface (GDI) pen.

#include <afxwin.h>

Construction

CPen Constructs a CPen object.

Initialization

CreatePen Creates a logical cosmetic or geometric pen with the specified
style, width, and brush attributes, and attaches it to the CPen
object.

CreatePenIndirect Creates a pen with the style, width, and color given in a
LOGEPEN structure, and attaches it to the CPen object.

Operations

FromHandle Returns a pointer to a CPen object when given a Windows
HPEN.

Attributes

operator HPEN Returns the Windows handle attached to the CPen object.

GetLogPen Gets a LOGPEN underlying structure.

GetExtLogPen Gets an EXTLOGPEN underlying structure.

Member Functions
CPen::CPen

1310

CPen();

CPen(int nPenStyle, int nWidth, COLORREF crColor);
throw(CResourceException);

CPen(int nPenStyle, int nWidth, const LOGBRUSH?* pLogBrush, int nStyleCount = 0,

const DWORD* pStyle = NULL);
-throw(CResourceException);

CPen::CPen

Parameters
nPenStyle Specifies the pen style. This parameter in the first version of the
constructor can be one of the following values:

e PS_SOLID Creates a solid pen.
e PS_DASH Creates a dashed pen. Valid only when the pen width is 1.
e PS_DOT Creates a dotted pen. Valid only when the pen width is 1.

e PS_DASHDOT Creates a pen with alternating dashes and dots. Valid only
when the pen width is 1.

o PS_DASHDOTDOT Creates a pen with alternating dashes and double dots.
Valid only when the pen width is 1.

e PS_NULL Creates a null pen.

e PS_INSIDEFRAME Creates a pen that draws a line inside the frame of
closed shapes produced by the Windows GDI output functions that specify a
bounding rectangle (for example, the Ellipse, Rectangle, RoundRect, Pie, and
Chord member functions). When this style is used with Windows GDI output
functions that do not specify a bounding rectangle (for example, the LineTo
member function), the drawing area of the pen is not limited by a frame.

The second version of the CPen constructor specifies a combination of type, style,
end cap, and join attributes. The values from each category should be combined by
using the bitwise OR operator (I). The pen type can be one of the following values:

e PS_GEOMETRIC Creates a geometric pen.
e PS_COSMETIC Creates a cosmetic pen.

The second version of the CPen constructor adds the following pen styles for
nPenStyle:

o PS_ALTERNATE Creates a pen that sets every other pixel. (This style is
applicable only for cosmetic pens.)

e PS_USERSTYLE Creates a pen that uses a styling array supplied by the user.

The end cap can be one of the following values:
e PS_ENDCAP_ROUND End caps are round.

e PS_ENDCAP_SQUARE End caps are square.
e PS_ENDCAP_FLAT End caps are flat.

1311

CPen::CPen

Remarks

1312

The join can be one of the following values:
e PS_JOIN_BEVEL Joins are beveled.

e PS_JOIN_MITER Joins are mitered when they are within the current limit
set by the ::SetMiterLimit function. If the join exceeds this limit, it is beveled.

e PS_JOIN_ROUND Joins are round.
nWidth Specifies the width of the pen.

e For the first version of the constructor, if this value is 0, the width in device
units is always 1 pixel, regardiess of the mapping mode.

¢ For the second version of the constructor, if nPenStyle is PS_GEOMETRIC,
the width is given in logical units. If nPenStyle is PS_COSMETIC, the width
must be set to 1.

crColor Contains an RGB color for the pen.

pLogBrush Points to a LOGBRUSH structure. If nPenStyle is PS_COSMETIC,
the [bColor member of the LOGBRUSH structure specifies the color of the pen
and the IbStyle member of the LOGBRUSH structure must be set to BS_SOLID.
If nPenStyle is PS_GEOMETRIC, all members must be used to specify the brush
attributes of the pen.

nStyleCount Specifies the length, in doubleword units, of the I[pStyle array. This
value must be zero if nPenStyle is not PS_USERSTYLE. :

IpStyle Points to an array of doubleword values. The first value specifies the length
of the first dash in a user-defined style, the second value specifies the length of the
first space, and so on. This pointer must be NULL if nPenStyle is not
PS_USERSTYLE.

If you use the constructor with no arguments, you must initialize the resulting CPen
object with the CreatePen, CreatePenIndirect, or CreateStockObject member
functions. If you use the constructor that takes arguments, then no further
initialization is necessary. The constructor with arguments can throw an exception if
errors are encountered, while the constructor with no arguments will always succeed.

See Also CPen::CreatePen, CPen::CreatePenIndirect,
CGdiObject::CreateStockObject

CPen::CreatePen

CPen::CreatePen

BOOL CreatePen(int nPenStyle, int nWidth, COLORREF crColor);
BOOL CreatePen(int nPenStyle, int nWidth, const LOGBRUSH?* pLogBrush, int nStyleCount = 0,
const DWORD#* [pStyle = NULL);

Return Value

Nonzero, or the handle of a logical pen, if successful; otherwise 0.

Parameters

Remarks

nPenStyle Specifies the style for the pen. For a list of possible values, see the
nPenStyle parameter in the CPen constructor.

nWidth Specifies the width of the pen.

e For the first version of CreatePen, if this value is 0, the width in device units is
always 1 pixel, regardless of the mapping mode.

o For the second version of CreatePen, if nPenStyle is PS_GEOMETRIC, the
width is given in logical units. If nPenStyle is PS_COSMETIC, the width
must be set to 1.

crColor Contains an RGB color for the pen.

pLogBrush Points to a LOGBRUSH structure. If nPenStyle is PS_COSMETIC,
the IbColor member of the LOGBRUSH structure specifies the color of the pen
and the IbStyle member of the LOGBRUSH structure must be set to BS_SOLID.
If nPenStyle is PS_GEOMETRIC, all members must be used to specify the brush
attributes of the pen.

nStyleCount Specifies the length, in doubleword units, of the IpStyle array. This
value must be zero if nPenStyle is not PS_USERSTYLE.

IpStyle Points to an array of doubleword values. The first value specifies the length
of the first dash in a user-defined style, the second value specifies the length of the
first space, and so on. This pointer must be NULL if nPenStyle is not
PS_USERSTYLE.

The first version of CreatePen initializes a pen with the specified style, width, and
color. The pen can be subsequently selected as the current pen for any device context.

Pens that have a width greater than 1 pixel should always have either the PS_NULL,
PS_SOLID, or PS_INSIDEFRAME style.

If a pen has the PS_INSIDEFRAME style and a color that does not match a color in
the logical color table, the pen is drawn with a dithered color. The PS_SOLID pen
style cannot be used to create a pen with a dithered color. The style
PS_INSIDEFRAME is identical to PS_SOLID if the pen width is less than or
equal to 1.

1313

CPen::CreatePenlIndirect

The second version of CreatePen initializes a logical cosmetic or geometric pen that
has the specified style, width, and brush attributes. The width of a cosmetic pen is
always 1; the width of a geometric pen is always specified in world units. After an
application creates a logical pen, it can select that pen into a device context by calling
the CDC::SelectObject function. After a pen is selected into a device context, it can
be used to draw lines and curves.

o If nPenStyle is PS_COSMETIC and PS_USERSTYLE, the entries in the IpStyle
array specify lengths of dashes and spaces in style units. A style unit is defined by
the device in which the pen is used to draw a line.

o If nPenStyle is PS_GEOMETRIC and PS_USERSTYLE, the entries in the
IpStyle array specify lengths of dashes and spaces in logical units.

o If nPenStyle is PS_ALTERNATE, the style unit is ignored and every other pixel
is set.

‘When an application no longer requires a given pen, it should call the
CGdiObject::DeleteObject member function to delete the pen from the device
context.

See Also CPen::CreatePenIndirect, CPen::CPen, CGdiObject::DeleteObject,
LOGBRUSH

CPen::CreatePenlndirect

BOOL CreatePenIndirect(LPLOGPEN IpLogPen);

Return Value

Nonzero if the function is successful; otherwise 0.

Parameters

Remarks

1314

IpLogPen Points to the Windows LOGPEN structure that contains information
about the pen.

Initializes a pen that has the style, width, and color given in the structure pointed to
by IpLogPen.

Pens that have a width greater than 1 pixel should always have either the PS_NULL,
PS_SOLID, or PS_INSIDEFRAME style.

If a pen has the PS_INSIDEFRAME style and a color that does not match a color in
the logical color table, the pen is drawn with a dithered color. The
PS_INSIDEFRAME style is identical to PS_SOLID if the pen width is less than or
equal to 1.

See Also CPen::CreatePen, CPen::CPen

CPen::GetExtLogPen

CPen::FromHandle

static CPen* PASCAL FromHandle(HPEN #hPen);

Return Value
A pointer to a CPen object if successful; otherwise NULL.

Parameters
hPen HPEN handle to Windows GDI pen.

Remarks
Returns a pointer to a CPen object given a handle to a Windows GDI pen object. If a
CPen object is not attached to the handle, a temporary CPen object is created and
attached. This temporary CPen object is valid only until the next time the application
has idle time in its event loop, at which time all temporary graphic objects are
deleted. In other words, the temporary object is only valid during the processing of
one window message.

CPen::GetExtL.ogPen

int GetExtLogPen(EXTLOGPEN* pLogPen);

Return Value
Nonzero if successful; otherwise 0.

Parameters
pLogPen Points to an EXTLOGPEN structure that contains information about
the pen.

Remarks
Call this member function to get an EXTLOGPEN underlying structure. The
EXTLOGPEN structure defines the style, width, and brush attributes of a pen. For
example, call GetExtLogPen to match the particular style of a pen.

See the following topics in the Win 32 SDK Programmer’s Reference for information
about pen attributes:

GetObject
EXTLOGPEN
LOGPEN
ExtCreatePen

1315

CPen::GetLogPen

Example
The following code example demonstrates calling GetExtLogPen to retrieve a pen’s
attributes, and then create a new, cosmetic pen with the same color.

EXTLOGPEN extlogpen;

penExisting.GetExtLogPen(&extlogpen);

CPen penQOther;

LOGBRUSH plogbrush={ extlogpen.elpBrushStyle, extlogpen.elpColor, extlogpen.elpHatch };
penOther.CreatePen(PS_COSMETIC, 1, pLogBrush);

See Also CPen::GetLogPen, CPen::CreatePen

CPen::GetLogPen

int GetLogPen(LOGPEN* pLogPen);

Return Value
Nonzero if successful; otherwise 0.

Parameters
pLogPen Points to a LOGPEN structure to contain information about the pen.

Remarks
Call this member function to get a LOGPEN underlying structure. The LOGPEN
structure defines the style, color, and pattern of a pen.

For example, call GetLogPen to match the particular style of pen.

See the following topics in the Win 32 SDK Programmer’s Reference for information
about pen attributes:

o GetObject
e LOGPEN
Example

The following code example demonstrates calling GetLogPen to retrieve a pen
character, and then create a new, solid pen with the same color.

LOGPEN Togpen;
penExisting.GetLogPen(&logpen);
CPen penOther(logpen.lopnColor);

See Also Open::GetExtLogPen

1316

CPen::operator HPEN

CPen::operator HPEN

operator HPEN() const;

Return Value
If successful, a handle to the Windows GDI object represented by the CPen object;
otherwise NULL.

Remarks
Use this operator to get the attached Windows GDI handle of the CPen object. This
operator is a casting operator, which supports direct use of an HPEN object.

For more information about using graphic objects, see the article “Graphic Objects”
in the Win 32 SDK Programmer’s Reference.

1317

CPictureHolder

CPictureHolder

The purpose of the CPictureHolder class is implementation of a Picture property,
which allows the user to display a picture in your control. With the stock Picture
property, the developer can specify a bitmap, icon, or metafile for display.

For information on creating custom picture properties, see the article “OLE Controls:
Using Pictures in an OLE Control” in Programming with MFC.

#include <afxctl.h>

See Also CFontHolder

Data Members

m_pPict A pointer to a picture object.

Construction

CPictureHolder Constructs a CPictureHolder object.

Operations

GetDisplayString Retrieves the string displayed in a control container’s property
browser.

CreateEmpty Creates an empty CPictureHolder object.

CreateFromBitmap Creates a CPictureHolder object from a bitmap.

CreateFromMetafile = Creates a CPictureHolder object from a metafile.

CreateFromlIcon Creates a CPictureHolder object from an icon.

GetPictureDispatch Returns the CPictureHolder object’s IDispatch interface.

SetPictureDispatch Sets the CPictureHolder object’s IDispatch interface.

GetType Tells whether the CPictureHolder object is a bitmap, a
metafile, or an icon.

Render Renders the picture.

Member Functions
CPictureHolder::CPictureHolder

CPictureHolder();

Remarks
Constructs a CPictureHolder object.

1318

CPictureHolder::CreateFromBitmap

CPictureHolder::CreateEmpty

BOOL CreateEmpty();

Return Value
Nonzero if the object is successfully created; otherwise 0.

Remarks
Creates an empty CPictureHolder object and connects it to an IPicture interface.

See Also CPictureHolder::CreateFromBitmap,
CPictureHolder::CreateFromIcon, CPictureHolder::CreateFromMetafile

CPictureHolder::CreateFromBitmap

BOOL CreateFromBitmap(UINT idResource);

BOOL CreateFromBitmap(CBitmap* pBitmap, CPalette* pPal = NULL,
BOOL bTransferOwnership = TRUE);

BOOL CreateFromBitmap(HBITMAP hbm, HPALETTE hpal = NULL);

Return Value
Nonzero if the object is successfully created; otherwise 0.

Parameters
idResource Resource ID of a bitmap resource.

pBitmap Pointer to a CBitmap object.
pPal Pointer to a CPalette object.

bTransferOwnership Indicates whether the picture object will take ownership of the
bitmap and palette objects.

hbm Handle to the bitmap from which the CPictureHolder object is created.
hpal Handle to the palette used for rendering the bitmap.

Remarks
Uses a bitmap to initialize the picture object in a CPictureHolder. If
bTransferOwnership is TRUE, the caller should not use the bitmap or palette object
in any way after this call returns. If bTransferOwnership is FALSE, the caller is
responsible for ensuring that the bitmap and palette objects remain valid for the
lifetime of the picture object.

See Also CPictureHolder::CreateEmpty, CPictureHolder::CreateFromlIcon,
CPictureHolder::CreateFromMetafile

1319

CPictureHolder::CreateFromIcon

CPictureHolder::CreateFromIcon

BOOL CreateFromIcon(UINT idResource);
BOOL CreateFromlcon(HICON hlcon, BOOL bTransferOwnership = FALSE);

Return Value
Nongzero if the object is successfully created; otherwise 0.

Parameters
idResource Resource ID of a bitmap resource.

hlcon Handle to the icon from which the CPictureHolder object is created.

bTransferOwnership Indicates whether the picture object will take ownership of the
icon object.

Remarks
Uses an icon to initialize the picture object in a CPictureHolder. If
bTransferOwnership is TRUE, the caller should not use the icon object in any way
after this call returns. If bTransferOwnership is FALSE, the caller is responsible for
ensuring that the icon object remains valid for the lifetime of the picture object.

See Also CPictureHolder::CreateEmpty, CPictureHolder::CreateFromBitmap,
CPictureHolder::CreateFromMetafile

CPictureHolder::CreateFromMetafile
BOOL CreateFromMetafile(HMETAFILE /Zmf, int xExt, int yExt,
BOOL bTransferOwnership = FALSE);

Return Value
Nonzero if the object is successfully created; otherwise 0.

Parameters
hmf Handle to the metafile used to create the CPictureHolder object.

xExt X extent of the picture.
yExt 'Y extent of the picture.

bTransferOwnership Indicates whether the picture object will take ownership of the
metafile object.

1320

CPictureHolder::GetPictureDispatch

Remarks
Uses a metafile to initialize the picture object in a CPictureHolder. If
bTransferOwnership is TRUE, the caller should not use the metafile object in any
way after this call returns. If bTransferOwnership is FALSE, the caller is responsible
for ensuring that the metafile object remains valid for the lifetime of the picture
object.

See Also CPictureHolder::CreateEmpty, CPictureHolder::CreateFromBitmap,
CPictureHolder::CreateFromIcon

CPictureHolder::GetDisplayString

BOOL GetDisplayString(CString& strVaiue);

Return Value
Nonzero if the string is successfully retrieved; otherwise 0.

Parameters
strValue Reference to the CString that is to hold the display string.

Remarks
Retrieves the string that is displayed in a container’s property browser.

CPictureHolder::GetPictureDispatch

LPPICTUREDISP GetPictureDispatch();

Return Value
A pointer to the CPictureHolder object’s IPictureDisp interface.

Remarks
This function returns a pointer to the CPictureHolder object’s IPictureDisp
interface. The caller must call Release on this pointer when finished with it.

See Also CPictureHolder::SetPictureDispatch

1321

CPictureHolder::GetType

CPictureHolder::GetType

short GetType();

Return Value
A value indicating the type of the picture. Possible values and their meanings are as
follows:
Value Meaning
PICTYPE_UNINITIALIZED CPictureHolder object is unititialized.
PICTYPE_NONE CPictureHolder object is empty.
PICTYPE_BITMAP Picture is a bitmap.
PICTYPE_METAFILE Picture is a metafile.
PICTYPE_ICON Picture is an icon.

Remarks

Indicates whether the picture is a bitmap, metafile, or icon.

CPictureHolder::Render

void Render(CDC* pDC, const CRect& rcRender, const CRect& rcWBounds);

Parameters
pDC Pointer to the display context in which the picture is to be rendered.

rcRender Rectangle in which the picture is to be rendered.

rcWBounds A rectangle representing the bounding rectangle of the object rendering
the picture. For a control, this rectangle is the rcBounds parameter passed to an
override of COleControl::OnDraw.

Remarks
Renders the picture in the rectangle referenced by rcRender.

CPictureHolder::SetPictureDispatch

void SetPictureDispatch(LPPICTUREDISP pDisp);

Parameters
pDisp Pointer to the new IPictureDisp interface.

Remarks
Connects the CPictureHolder object to a IPictureDisp interface.

1322

CPictureHolder::m_pPict

Data Members
CPictureHolder::m_pPict

Remarks
A pointer to the CPictureHolder object’s IPicture interface.

1323

CPoint

CPoint

1324

The CPoint class is similar to the Windows POINT structure. It also includes
member functions to manipulate CPoint and POINT structures.

A CPoint object can be used wherever a POINT structure is used. The operators of
this class that interact with a “size” accept either CSize objects or SIZE structures,
since the two are interchangeable.

Note This class is derived from the tagPOINT structure. (The name tagPOINT is a less-
commonly-used name for the POINT structure.) This means that the data members of the
POINT structure, x and y, are accessible data members of CPoint.

#include <afxwin.h>

See Also CRect, CSize

Construction

CPoint Constructs a CPoint.

Operations

Offset Adds values to the x and y members of the CPoint.
operator == Checks for equality between two points.

operator != Checks for inequality between two points.

Operators Returning CPoint Values

operator += Offsets CPoint by adding a size or point.

operator —= Offsets CPoint by subtracting a size or point.

operator + Returns the sum of a CPoint and a size or point.

operator — Returns the difference of a CPoint and a size, or the negation of a point.

Operators Returning CSize Values

operator — Returns the size difference between two points.

Operators Returning CRect Values

operator + Returns a CRect offset by a size.
operator — Returns a CRect offset by a negative size.

Member Functions
CPoint::CPoint

CPoint();

CPoint(int initX, int initY);
CPoint(POINT initPt);
CPoint(SIZE initSize);
CPoint(DWORD dwPoint);

Parameters
initX Specifies the value of the x member of CPoint.

initY Specifies the value of the y member of CPoint.

initPt POINT structure or CPoint that specifies the values used to initialize CPoint.

initSize SIZE structure or CSize that specifies the values used to initialize CPoint.

dwPoint Sets the x member to the low-order word of dwPoint and the y member to
the high-order word of dwPoint.

Remarks
Constructs a CPoint object. If no arguments are given, X and y members are not
initialized.

CPoint::Offset

CPoint::Offset

void Offset(int xOffset, int yOffset);
void Offset(POINT point);
void Offset(SIZE size);

Parameters
xOffset Specifies the amount to offset the x member of the CPoint.

yOffset Specifies the amount to offset the y member of the CPoint.
point Specifies the amount (POINT or CPoint) to offset the CPoint.
size Specifies the amount (SIZE or CSize) to offset the CPoint.

Remarks
Adds values to the x and y members of the CPoint.

See Also CPoint::operator +=, CPoint::operator —=

1325

CPoint::operator ==

Operators

CPoint::operator ==
BOOL operator ==(POINT point) const;

Return Value
Nonzero if the points are equal; otherwise 0.

Parameters «
point Contains a POINT structure or CPoint object.

Remarks
Checks for equality between two points.

See Also CPoint::Operator !=

CPoint::operator !=

BOOL operator !=(POINT point) const;

Return Value
Nonzero if the points are not equal; otherwise 0.

Parameters
point Contains a POINT structure or CPoint object.

Remarks
Checks for inequality between two points.

See Also CPoint::Operator ==

CPoint::operator +=

void operator +=(SIZE size);
void operator +=(POINT point);

Parameters
size Contains a SIZE structure or CSize object.

point Contains a POINT structure or CPoint object.

Remarks
The first overload adds a size to the CPoint.

The second overload adds a point to the CPoint.

1326

In both cases, addition is done by adding the x (or ¢x) member of the right-hand
operand to the x member of the CPoint and adding the y (or cy) member of the right-
hand operand to the y member of the CPoint.

For example, adding CPoint(5, -7) to a variable which contains CPoint(30, 40)
changes the variable to CPoint(35, 33).

See Also CPoint::operator —=, CPoint::operator +, CPoint::Offset

CPoint::operator +

CPoint::operator —=

void operator —=(SIZE size);
void operator—=(POINT point);

Parameters
size Contains a SIZE structure or CSize object.

point Contains a POINT structure or CPoint object.

Remarks
The first overload subtracts a size from the CPoint.

The second overload subtracts a point from the CPoint.

In both cases, subtraction is done by subtracting the x (or ¢x) member of the right-
hand operand from the x member of the CPoint and subtracting the y (or cy) member
of the right-hand operand from the y member of the CPoint.

For example, subtracting CPoint(5, -7) from a variable which contains CPoint (30,
40) changes the variable to CPoint(25, 47).

See Also CPoint::operator —, CPoint::operator +=, CPoint::Offset

CPoint::operator +

CPoint operator +(SIZE size) const;
CPoint operator +(POINT point) const;
CRect operator +(const RECT* [pRect) const;

Return Value
A CPoint that is offset by a size, a CPoint that is offset by a point, or a CRect offset
by a point.

Parameters
size Contains a SIZE structure or CSize object.
point Contains a POINT structure or CPoint object.
IpRect Contains a pointer to a RECT structure or CRect object.

1327

CPoint: :operator ~

Remarks
Use this operator to offset CPoint by a CPoint or CSize object, or to offset a CRect
by a CPoint.

For example, using one of the first two overloads to offset the point
CPoint(25, -19) by a point CPoint(15, 5) orsize CSize(15, 5) returns the value
CPoint(40, -14).

Adding a rectangle to a point returns the rectangle after being offset by the the x and
y values specified in the point. For example, using the last overload to offset a
rectangle CRect (125, 219, 325, 419)by a point

CPoint(25, -19) returns CRect(150, 200, 350, 400).

See Also CPoint::operator —=, CPoint::operator —, CPoint: :operator +=,
CSize::operator +, CRect::operator +, CPoint::Offset, CRect::OffsetRect

CPoint::operator —

CSize operator —(POINT point) const;

CPoint operator —(SIZE size) const;

CRect operator —(const RECT* IpRect) const;
CPoint operator —() const;

Return Value
A CSize that is the difference between two points, a CPoint that is offset by the
negation of a size, a CRect that is offset by the negation of a point, or a CPoint that
is the negation of a point.

Parameters
point A POINT structure or CPoint object.

size A SIZE structure or CSize object.
IpRect A pointer to a RECT structure or a CRect object.

Remarks
Use one of the first two overloads to subtract a CPoint or CSize object from CPoint.
The third overload offsets a CRect by the negation of CPoint. Finally, use the unary
operator to negate CPoint.

For example, using the first overload to find the difference between two points
CPoint(25, -19) and CPoint (15, 5) returns CSize(10, -24).

Subtracting a CSize from CPoint does the same calculation as above but returns a
CPoint object, not a CSize object. For example, using the second overload to find the
difference between the point CPoint (25, -19) and the size CSize(15, 5) returns
CPoint(1@, -24).

1328

Subtracting a rectangle from a point returns the rectangle offset by the negatives of
the x and y values specified in the point. For example, using the last overload to
offset the rectangle CRect (125, 200, 325, 40@) by the point CPoint(25, -19)
returns

CRect(100, 219, 300, 419).

Use the unary operator to negate a point. For example, using the unary operator with
the point CPoint (25, -19) returns CPoint(-25, 19).

See Also CPoint::operator —=, CPoint::operator +=, CPoint::operator +,
CSize::operator -, CRect::operator -, CPoint::Offset, CRect::OffsetRect

CPoint::operator —

1329

CPrintDialog

CPrintDialog

1330

The CPrintDialog class encapsulates the services provided by the Windows common
dialog box for printing. Common print dialog boxes provide an easy way to
implement Print and Print Setup dialog boxes in a manner consistent with Windows
standards.

If you wish, you can rely on the framework to handle many aspects of the printing
process for your application. In this case, the framework automatically displays the
Windows common dialog box for printing. You can also have the framework handle
printing for your application but override the common Print dialog box with your
own print dialog box. For more information on using the framework to handle
printing tasks, see the article “Printing” in Programming with MFC.

If you want your application to handle printing without the framework’s involvement,
you can use the CPrintDialog class “as is” with the constructor provided, or you can
derive your own dialog class from CPrintDialog and write a constructor to suit your
needs. In either case, these dialog boxes will behave like standard MFC dialog boxes
because they are derived from class CCommeonDialog.

To use a CPrintDialog object, first create the object using the CPrintDialog
constructor. Once the dialog box has been constructed, you can set or modify any
values in the m_pd structure to initialize the values of the dialog box’s controls. The
m_pd structure is of type PRINTDLG. For more information on this structure, see
the Win32 SDK documentation.

If you do not supply your own handles in m_pd for the hDevMode and hDevNames
members, be sure to call the Windows function GlobalFree for these handles

when you are done with the dialog box. When using the framework’s Print Setup
implementation provided by CWinApp::OnFilePrintSetup, you do not have to
free these handles. The handles are maintained by CWinApp and are freed in
CWinApp’s destructor. It is only necessary to free these handles when using
CPrintDialog stand-alone.

CPrintDialog

After initializing the dialog box controls, call the DoModal member function to
display the dialog box and allow the user to select print options. DoModal returns
whether the user selected the OK (IDOK) or Cancel (IDCANCEL) button.

If DoModal returns IDOK, you can use one of CPrintDialog’s member functions to
retrieve the information input by the user.

The CPrintDialog::GetDefaults member function is useful for retrieving the current
printer defaults without displaying a dialog box. This member function requires no
user interaction.

You can use the Windows CommDIgExtendedError function to determine whether
an error occurred during initialization of the dialog box and to learn more about the
error. For more information on this function, see the Win32 SDK documentation.

CPrintDialog relies on the COMMDLG.DLL file that ships with Windows versions
3.1 and later.

To customize the dialog box, derive a class from CPrintDialog, provide a custom
dialog template, and add a message map to process the notification messages from
the extended controls. Any unprocessed messages should be passed on to the base
class. Customizing the hook function is not required.

To process the same message differently depending on whether the dialog box is Print
or Print Setup, you must derive a class for each dialog box. You must also override
the Windows AttachOnSetup function, which handles the creation of a new dialog
box when the Print Setup button is selected within a Print dialog box.

For more information on using CPrintDialog, see “Common Dialog Classes” in
Chapter 4 of Programming with MFC.

#include <afxdlgs.h>
See Also CPrintInfo

Data Members

m_pd A structure used to customize a CPrintDialog object.

Construction

CPrintDialog Constructs a CPrintDialog object.

Operations

CreatePrinterDC Creates a printer device context without displaying the Print
dialog box.

DoModal Displays the dialog box and allows the user to make a selection.

GetCopies Retrieves the number of copies requested.

GetDefaults Retrieves device defaults without displaying a dialog box.

GetDeviceName Retrieves the name of the currently selected printer device.

1331

CPrintDialog::CPrintDialog

GetDevMode Retrieves the DEVMODE structure.

GetDriverName Retrieves the name of the currently selected printer driver.
GetFromPage Retrieves the starting page of the print range.

GetToPage Retrieves the ending page of the print range.

GetPortName Retrieves the name of the currently selected printer port.
GetPrinterDC Retrieves a handle to the printer device context.

PrintAll Determines whether to print all pages of the document.
PrintCollate Determines whether collated copies are requested.
PrintRange Determines whether to print only a specified range of pages.
PrintSelection Determines whether to print only the currently selected items.

Member Functions
CPrintDialog::CPrintDialog

CPrintDialog(BOOL bPrintSetupOnly, DWORD dwFlags = PD_ALLPAGES |
PD_USEDEVMODECOPIES | PD_NOPAGENUMS | PD_HIDEPRINTTOFILE |
PD_NOSELECTION, CWnd* pParentWnd = NULL);

Parameters
bPrintSetupOnly Specifies whether the standard Windows Print dialog box or Print
Setup dialog box is displayed. Set this parameter to TRUE to display the standard
Windows Print Setup dialog box. Set it to FALSE to display the Windows Print
dialog box. If bPrintSetupOnly is FALSE, a Print Setup option button is still
displayed in the Print dialog box.

dwFlags One or more flags you can use to customize the settings of the dialog box,
combined using the bitwise OR operator. For example, the PD_ALLPAGES flag
sets the default print range to all pages of the document. See the PRINTDLG
structure in the Win32 SDK documentation for more information on these flags.

pParentWnd A pointer to the dialog box’s parent or owner window.

Remarks
Constructs either a Windows Print or Print Setup dialog object. This member
function only constructs the object. Use the DoModal member function to display the
dialog box.

Note that when you call the constructor with bPrintSetupOnly set to FALSE, the
PD_RETURNDC flag is automatically used. After calling DoModal, GetDefaults,
or GetPrinterDC, a printer DC will be returned in m_pd. hDC. This DC must be freed
by the caller of CPrintDialog.

See Also CPrintDialog::DoModal, ::PrintDlg

1332

CPrintDialog::DoModal

CPrintDialog::CreatePrinterDC

HDC CreatePrinterDC();

Return Value

Remarks

Handle to the newly created printer device context.

Creates a printer device context (DC) from the DEVMODE and DEVNAMES
structures. This DC is assumed to be the current printer DC, and any other previously
obtained printer DCs must be deleted by the user. This function can be called, and the
resulting DC used, without ever displaying the Print dialog box.

See Also CPrintDialog::GetDevMode

CPrintDialog::DoModal

virtual int DoModal();

Return Value

Remarks

IDOK or IDCANCEL if the function is successful; otherwise 0. IDOK and
IDCANCEL are constants that indicate whether the user selected the OK or Cancel
button.

If IDCANCEL is returned, you can call the Windows CommbDIgExtendedError
function to determine whether an error occurred.

Call this function to display the Windows common print dialog box and allow the
user to select various printing options such as the number of copies, page range, and
whether copies should be collated.

If you want to initialize the various print dialog options by setting members of the
m_pd structure, you should do this before calling DoMeodal, but after the dialog
object is constructed.

After calling DoModal, you can call other member functions to retrieve the settings
or information input by the user into the dialog box.

See Also CPrintDialog::CPrintDialog, CDialog::DoModal

1333

CPrintDialog::GetCopies

CPrintDialog::GetCopies

int GetCopies() const;

Return Value

Remarks

The number of copies requested.

Call this function after calling DoModal to retrieve the number of copies requested.
See Also CPrintDialog::PrintCollate

CPrintDialog::GetDefaults

BOOL GetDefaults();

Return Value

Remarks

Nonzero if the function was successful; otherwise 0.

Call this function to retrieve the device defaults of the default printer without
displaying a dialog box. The retrieved values are placed in the m_pd structure.

In some cases, a call to this function will call the constructor for CPrintDialog with
bPrintSetupOnly set to FALSE. In these cases, a printer DC and hDevNames and
hDevMode (two handles located in the m_pd data member) are automatically
allocated.

If the constructor for CPrintDialog was called with bPrintSetupOnly set to

FALSE, this function will not only return hDevNames and hDevMode (located in
m_pd.hDevNames and m_pd.hDevMode) to the caller, but will also return a printer
DC in m_pd.hDC. It is the responsibility of the caller to delete the printer DC and
call the Windows GlobalFree function on the handles when you are finished with the
CPrintDialog object.

See Also CPrintDialog::m_pd

CPrintDialog::GetDeviceName

CString GetDeviceName() const;

Return Value

1334

The name of the currently selected printer.

CPrintDialog::GetFromPage

Remarks
Call this function after calling DoModal to retrieve the name of the currently selected
printer.

See Also CPrintDialog::GetDriverName, CPrintDialog::GetDevMode,
CPrintDialog::GetPortName

CPrintDialog::GetDevMode

LPDEVMODE GetDevMode() const;

Return Value
The DEVMODE data structure, which contains information about the device
initialization and environment of a print driver. You must free the memory taken by
this structure with the Windows GlobalFree function. See PRINTDLG in the Win32
SDK documentation for more information about using GlobalFree.

Remarks
Call this function after calling DoModal to retrieve information about the printing
device.

See Also CDC::GetDeviceCaps

CPrintDialog::GetDriverName

CString GetDriverName() const;

Return Value
The name of the currently selected printer device driver.

Remarks
Call this function after calling DoModal to retrieve the name of the currently selected
printer device driver.

See Also CPrintDialog::GetDeviceName, CPrintDialog::GetDevMode,
CPrintDialog::GetPortName

CPrintDialog::GetFromPage

int GetFromPage() const;

Return Value
The starting page number in the range of pages to be printed.

1335

CPrintDialog::GetPortName

Remarks
Call this function after calling DoModal to retrieve the starting page number in the
range of pages to be printed.

See Also CPrintDialog::GetToPage, CPrintDialog::PrintRange

CPrintDialog::GetPortName

CString GetPortName() const;

Return Value
The name of the currently selected printer port.

Remarks
Call this function after calling DoModal to retrieve the name of the currently selected
printer port.

See Also CPrintDialog::GetDriverName, CPrintDialog::GetDeviceName

CPrintDialog::GetPrinterDC

HDC GetPrinterDC() const;

Return Value
A handle to the printer device context if successful; otherwise NULL.

Remarks
If the bPrintSetupOnly parameter of the CPrintDialog constructor was FALSE
(indicating that the Print dialog box is displayed), then GetPrinterDC returns a
handle to the printer device context. You must call the Windows DeleteDC function
to delete the device context when you are done using it.

CPrintDialog::GetToPage
int GetToPage() const;

Return Value
The ending page number in the range of pages to be printed.

Remarks
Call this function after calling DoModal to retrieve the ending page number in the
range of pages to be printed.

See Also CPrintDialog::GetFromPage, CPrintDialog::PrintRange

1336

CPrintDialog::PrintSelection

CPrintDialog::PrintAll

BOOL PrintAll() const;

Return Value
Nonzero if all pages in the document are to be printed; otherwise 0.

Remarks
Call this function after calling DoModal to determine whether to print all pages in
the document.

See Also CPrintDialog::PrintRange, CPrintDialog::PrintSelection

CPrintDialog::PrintCollate

BOOL PrintCollate() const;

Return Value
Nonzero if the user selects the collate check box in the dialog box; otherwise O.

Remarks
Call this function after calling DoModal to determine whether the printer should
collate all printed copies of the document.

See Also CPrintDialog::GetCopies

CPrintDialog::PrintRange
BOOL PrintRange() const;

Return Value
Nonzero if only a range of pages in the document are to be printed; otherwise 0.

Remarks
Call this function after calling DoModal to determine whether to print only a range
of pages in the document.

See Also CPrintDialog::PrintAll, CPrintDialog::PrintSelection,
CPrintDialog::GetFromPage, CPrintDialog::GetToPage

CPrintDialog::PrintSelection

BOOL PrintSelection() const;

Return Value
Nonzero if only the selected items are to be printed; otherwise 0.

1337

CPrintDialog::m_pd

Remarks
Call this function after calling DoModal to determine whether to print only the
currently selected items.

See Also CPrintDialog::PrintRange, CPrintDialog::PrintAll

Data Members
CPrintDialog::m_pd

PRINTDLG& m_pd;

Remarks
A structure whose members store the characteristics of the dialog object. After
constructing a CPrintDialog object, you can use m_pd to set various aspects of the
dialog box before calling the DoModal member function. For more information on
the m_pd structure, see PRINTDLG in the Win32 SDK documentation.

If you modify the m_pd data member directly, you will override any default behavior.

1338

CPrintInfo

CPrintInfo

CPrintInfo stores information about a print or print-preview job. The framework
creates an object of CPrintInfo each time the Print or Print Preview command is
chosen and destroys it when the command is completed.

CPrintInfo contains information about both the print job as a whole, such as the
range of pages to be printed, and the current status of the print job, such as the page
currently being printed. Some information is stored in an associated CPrintDialog
object; this object contains the values entered by the user in the Print dialog box.

A CPrintInfo object is passed between the framework and your view class during
the printing process and is used to exchange information between the two. For
example, the framework informs the view class which page of the document to print
by assigning a value to the m_nCurPage member of CPrintInfo; the view class
retrieves the value and performs the actual printing of the specified page.

Another example is the case in which the length of the document is not known
until it is printed. In this situation, the view class tests for the end of the document
each time a page is printed. When the end is reached, the view class sets the
m_bContinuePrinting member of CPrintInfo to FALSE; this informs the
framework to stop the print loop.

CPrintInfo is used by the member functions of CView listed under “See Also.”
For more information about the printing architecture provided by the Microsoft
Foundation Class Library, see Chapter 3, “Working with Frame Windows,
Documents, and Views,” and the articles “Printing” and “Printing: Multipage
Documents” in Programming with MFC.

#include <afxext.h>

See Also CView::OnBeginPrinting, CView::OnEndPrinting,
CView::OnEndPrintPreview, CView::OnPrepareDC,
CView::OnPreparePrinting, CView::OnPrint

Data Members

m_pPD Contains a pointer to the CPrintDialog object used for
the Print dialog box.

m_bDirect Contains a flag indicating whether the document is being
printed directly (without displaying the Print dialog box).

m_bPreview Contains a flag indicating whether the document is being
previewed.

m_bContinuePrinting Contains a flag indicating whether the framework should
continue the print loop.

m_nCurPage Identifies the number of the page currently being printed.

1339

CPrintInfo::GetFromPage

m_nNumPreviewPages Identifies the number of pages displayed in the preview
window; either 1 or 2.

m_]pUserData Contains a pointer to a user-created structure.

m_rectDraw Specifies a rectangle defining the current usable page
area.

m_strPageDesc Contains a format string for page-number display.

Attributes

SetMinPage Sets the number of the first page of the document.

SetMaxPage Sets the number of the last page of the document.

GetMinPage Returns the number of the first page of the document.

GetMaxPage Returns the number of the last page of the document.

GetFromPage Returns the number of the first page being printed.

GetToPage Returns the number of the last page being printed.

Member Functions
CPrintInfo::GetFromPage

UINT GetFromPage() const;

Return Value
The number of the first page to be printed.

Remarks
Call this function to retrieve the number of the first page to be printed. This is the
value specified by the user in the Print dialog box, and it is stored in the
CPrintDialog object referenced by the m_pPD member. If the user has not specified
a value, the default is the first page of the document.

See Also CPrintInfo::m_nCurPage, CPrintInfo::m_pPD,
CPrintInfo::GetToPage

CPrintInfo::GetMaxPage

UINT GetMaxPage() const;

Return Value
The number of the last page of the document.

1340

CPrintInfo::SetMaxPage

Remarks
Call this function to retrieve the number of the last page of the document. This value
is stored in the CPrintDialog object referenced by the m_pPD member.

See Also CPrintInfo::m_nCurPage, CPrintInfo::m_pPD,
CPrintInfo::GetMinPage, CPrintInfo::SetMaxPage, CPrintInfo::SetMinPage

CPrintInfo::GetMinPage

UINT GetMinPage() const;

Return Value
The number of the first page of the document.

Remarks
Call this function to retrieve the number of the first page of the document. This value
is stored in the CPrintDialog object referenced by the m_pPD member.

See Also CPrintInfo::m_nCurPage, CPrintInfo::m_pPD,
CPrintInfo::GetMaxPage, CPrintInfo::SetMaxPage, CPrintInfo::SetMinPage

CPrintInfo::GetToPage

UINT GetToPage() const;

Return Value
The number of the last page to be printed.

Remarks
Call this function to retrieve the number of the last page to be printed. This is the
value specified by the user in the Print dialog box, and it is stored in the
CPrintDialog object referenced by the m_pPD member. If the user has not specified
a value, the default is the last page of the document.

See Also CPrintInfo::m_nCurPage, CPrintInfo::m_pPD,
CPrintInfo::GetFromPage

CPrintInfo::SetMaxPage

void SetMaxPage(UINT nMaxPage);

Parameters
nMaxPage Number of the last page of the document.

1341

CPrintInfo::SetMinPage

Remarks

Call this function to specify the number of the last page of the document. This value
is stored in the CPrintDialog object referenced by the m_pPD member. If the length
of the document is known before it is printed, call this function from your override of
CView::OnPreparePrinting. If the length of the document depends on a setting
specified by the user in the Print dialog box, call this function from your override

of CView::OnBeginPrinting. If the length of the document is not known until it

is printed, use the m_bContinuePrinting member to control the print loop.

See Also CPrintInfo::m_bContinuePrinting, CPrintInfo::m_nCurPage,
CPrintInfo::m_pPD, CPrintInfo::GetMinPage, CPrintInfo::GetToPage,
CPrintInfo::SetMinPage, CView::OnBeginPrinting, CView::OnPreparePrinting

CPrintInfo::SetMinPage

void SetMinPage(UINT nMinPage);

Parameters

Remarks

nMinPage Number of the first page of the document.

Call this function to specify the number of the first page of the document. Page
numbers normally start at 1. This value is stored in the CPrintDialog object
referenced by the m_pPD member.

See Also CPrintInfo::m_nCurPage, CPrintInfo::m_pPD,
CPrintInfo::GetMaxPage, CPrintInfo::GetMinPage, CPrintInfo::SetMaxPage

Data Members

CPrintInfo::m_bContinuePrinting

Remarks

1342

Contains a flag indicating whether the framework should continue the print loop.

If you are doing print-time pagination, you can set this member to FALSE in your
override of CView::OnPrepareDC once the end of the document has been reached.
You do not have to modify this variable if you have specified the length of the
document at the beginning of the print job using the SetMaxPage member function.
The m_bContinuePrinting member is a public variable of type BOOL.

See Also CPrintInfo::SetMaxPage, CView::OnPrepareDC

CPrintInfo::m_nCurPage

CPrintInfo::m_bDirect

Remarks

The framework sets this member to TRUE if the Print dialog box will be bypassed
for direct printing; FALSE otherwise. The Print dialog is normally bypassed when
you print from the shell or when printing is done using the command ID
ID_FILE_PRINT_DIRECT.

You normally don’t change this member, but if you do change it, change it before you
call CView::DoPreparePrinting in your override of CView::OnPreparePrinting.

See Also CView::DoPreparePrinting, CView::OnPreparePrinting

CPrintInfo::m_bPreview

Remarks

Contains a flag indicating whether the document is being previewed. This is set by
the framework depending on which command the user executed. The Print dialog box
is not displayed for a print-preview job. The m_bPreview member is a public

variable of type BOOL.

See Also CView::DoPreparePrinting, CView::OnPreparePrinting

CPrintInfo::m_lpUserData

Remarks

Contains a pointer to a user-created structure. You can use this to store printing-
specific data that you do not want to store in your view class. The m_lpUserData
member is a public variable of type LPVOID.

CPrintInfo::m_nCurPage

Remarks

Contains the number of the current page. The framework calls
CView::OnPrepareDC and CView::OnPrint once for each page of the document,
specifying a different value for this member each time; its values range from the
value returned by GetFromPage to that returned by GetToPage. Use this member in
your overrides of CView::OnPrepareDC and CView::OnPrint to print the specified
page of the document.

1343

CPrintInfo::m_nNumPreviewPages

When preview mode is first invoked, the framework reads the value of this member
to determine which page of the document should be previewed initially. You can set
the value of this member in your override of CView::OnPreparePrinting to
maintain the user’s current position in the document when entering preview mode.
The m_nCurPage member is a public variable of type UINT.

See Also CPrintInfo::GetFromPage, CPrintInfo::GetToPage,
CView::OnPrepareDC, CView::OnPreparePrinting, CView::OnPrint

CPrintInfo::m_nNumPreviewPages

Remarks
Contains the number of pages displayed in preview mode; it can be either 1 or 2.
The m_nNumPreviewPages member is a public variable of type UINT.

See Also CPrintInfo::m_strPageDesc

CPrintInfo::m_pPD

Remarks ‘
Contains a pointer to the CPrintDialog object used to display the Print dialog box for
the print job. The m_pPD member is a public variable declared as a pointer to
CPrintDialog.

See Also CPrintDialog

CPrintInfo::m_rectDraw

Remarks
Specifies the usable drawing area of the page in logical coordinates. You may want to
refer to this in your override of CView::OnPrint. You can use this member to keep
track of what area remains usable after you print headers, footers, and so on. The
m_rectDraw member is a public variable of type CRect.

See Also CView::OnPrint

1344

CPrintInfo::m_strPageDesc

CPrintInfo::m_strPageDesc

Remarks

Contains a format string used to display the page numbers during print preview; this
string consists of two substrings, one for single-page display and one for double-page
display, each terminated by a “\n’ character. The framework uses ‘“Page %u\nPages
%u-%u\n” as the default value. If you want a different format for the page numbers,
specify a format string in your override of CView::OnPreparePrinting. The
m_strPageDesc member is a public variable of type CString.

See Also CView::OnPreparePrinting

1345

CProgressCtrl

CProgressCitrl

A “progress bar control” is a window that an application can use to indicate the
progress of a lengthy operation. It consists of a rectangle that is gradually filled,
from left to right, with the system highlight color as an operation progresses.

The CProgressCtrl class provides the functionality of the Windows common
progress bar control. This control (and therefore the CProgressCtrl class) is
available only to programs running under Windows 95 and Windows NT version
3.51 and later.

A progress bar control has a range and a current position. The range represents the
entire duration of the operation, and the current position represents the progress the
application has made toward completing the operation. The window procedure uses
the range and the current position to determine the percentage of the progress bar to
fill with the highlight color and to determine the text, if any, to display within the
progress bar. Because the range and current position values are expressed as unsigned
integers, the highest possible range or current position value is 65,535.

#include <afxcmn.h>

Construction

CProgressCtrl Constructs a CProgressCtrl object.

Create Creates a progress bar control and attaches it to a CProgressCtrl
object.

Attributes

SetRange Sets the minimum and maximum ranges for a progress bar control
and redraws the bar to reflect the new ranges.

SetPos Sets the current position for a progress bar control and redraws the
bar to reflect the new position. ’

OffsetPos Advances the current position of a progress bar control by a
specified increment and redraws the bar to reflect the new position.

SetStep Specifies the step increment for a progress bar control.

1346

CProgressCirl::Create

Operations

Steplt Advances the current position for a progress bar control by the step
increment (see SetStep) and redraws the bar to reflect the new
position.

Member Functions
CProgressCitrl::CProgressCitrl

CProgressCtrl();

Remarks
Constructs a CProgressCtrl object.

After constructing the CProgressCtrl object, call CProgressCtrl::Create to create
the progress bar control.

See Also CProgressCtrl::Create

CProgressCtrl::Create

BOOL Create(DWORD dwStyle, const RECT& rect, CWnd* pParentWnd, UINT niID);

Return Value
TRUE if the CProgressCtrl object is successfully created; otherwise FALSE.

Parameters
dwStyle Specifies the progress bar control’s style. Apply any combination of window
styles to the control.

rect Specifies the progress bar control’s size and position. It can be either a CRect
object or a RECT structure

pParentWnd Specifies the progress bar control’s parent window, usually a CDialog.
It must not be NULL.

nID Specifies the progress bar control’s ID.

Remarks
You construct a CProgressCtrl object in two steps. First call the constructor, which
creates the CProgressCtrl object; then call Create, which creates the progress bar
control.

See Also CProgressCtrl:: CProgressCtrl

1347

CProgressCitrl::OffsetPos

CProgressCitrl::OffsetPos

int OffsetPos(int nPos);

Return Value
The previous position of the progress bar control.

Parameters
nPos Amount to advance the position.

Remarks
Advances the progress bar control’s current position by the increment specified by
nPos and redraws the bar to reflect the new position.

See Also CProgressCtrl::SetPos, CProgressCtrl::SetRange,
CProgressCtrl::Steplt

CProgressCitrl::SetPos

int SetPos(int nPos);

Return Value
The previous position of the progress bar control.

Parameters
nPos New position of the progress bar control.

Remarks
Sets the progress bar control’s current position as specified by nPos and redraws the
bar to reflect the new position.

See Also CProgressCtrl::OffsetPos, CProgressCtrl::SetRange,
CProgressCtrl::StepIt

CProgressCtrl::SetRange

void SetRange(int nLower, int nUpper);

Parameters
nLower Specifies the lower limit of the range (default is zero).

nUpper Specifies the upper limit of the range (default is 100).
Remarks

Sets the upper and lower limits of the progress bar control’s range and redraws the
bar to reflect the new ranges.

See Also CProgressCtrl::OffsetPos, CProgressCtrl::SetPos,
CProgressCtrl::Steplt

1348

CProgressCitrl::Steplt

CProgressCitrl::SetStep

int SetStep(int nStep);

Return Value
The previous step increment.

Parameters
nStep New step increment.

Remarks
Specifies the step increment for a progress bar control. The step increment is the
amount by which a call to CProgressCtrl::Steplt increases the progress bar’s current
position.

The default step increment is 10.

See Also CProgressCtrl::OffsetPos, CProgressCtrl::SetPos,
CProgressCtrl::Steplt

CProgressCtrl::Steplt

int SteplIt();

Return Value
The previous position of the progress bar control.

Remarks
Advances the current position for a progress bar control by the step increment and
redraws the bar to reflect the new position. The step increment is set by the
CProgressCtrl::SetStep member function.

See Also CProgressCtrl::SetPos, CProgressCtrl::SetRange,
CProgressCtrl::SetStep

1349

CPropertyPage

CPropertyPage

1350

Objects of class CPropertyPage represent individual pages of a property sheet,
otherwise known as a tab dialog box. As with standard dialog boxes, you derive a
class from CPropertyPage for each page in your property sheet. To use
CPropertyPage-derived objects, first create a CPropertySheet object, and then
create an object for each page that goes in the property sheet. Call
CPropertySheet::AddPage for each page in the sheet, and then display the property
sheet by calling CPropertySheet::DoModal for a modal property sheet, or
CPropertySheet::Create for a modeless property sheet.

You can create a type of tab dialog box called a wizard, which consists of a property
sheet with a sequence of property pages that guide the user through the steps of an
operation, such as setting up a device or creating a newsletter. In a wizard-type tab
dialog box, the property pages do not have tabs, and only one property page is visible
at a time. Also, instead of having OK and Apply Now buttons, a wizard-type tab
dialog box has a Back button, a Next or Finish button, and a Cancel button.

For more information on establishing a property sheet as a wizard, see
CPropertySheet::SetWizardMode. For more information on using CPropertyPage
objects, see the article “Property Sheets” in Programming with MFC.

#include <afxdlgs.h>
See Also CPropertySheet, CDialog, CPropertySheet::SetWizardMode
Data Members

m_psp The Windows PROPSHEETPAGE structure. Provides access to
basic property page parameters.

Construction
CPropertyPage Constructs a CPropertyPage object.
Construct Constructs a CPropertyPage object. Use Construct if you want to

specify your parameters at run time, or if you are using arrays.

CPropertyPage::CancelToClose

Operations

CancelToClose Changes the OK button to read Close, and disables the Cancel
button, after an unrecoverable change in the page of a modal
property sheet.

SetModified Call to activate or deactivate the Apply Now button.

QuerySiblings Forwards the message to each page of the property sheet.

Overridables

OnCancel Called by the framework when the Cancel button is clicked.

OnKillActive Called by the framework when the current page is no longer the
active page. Perform data validation here.

OnOK Called by the framework when the OK, Apply Now, or Close
button is clicked.

OnSetActive Called by the framework when the page is made the active page.

OnApply Called by the framework when the Apply Now button is clicked.

OnReset Called by the framework when the Cancel button is clicked.

OnQueryCancel Called by the framework when the Cancel button is clicked, and
before the cancel has taken place.

OnWizardBack Called by the framework when the Back button is clicked while
using a wizard-type property sheet.

OnWizardNext Called by the framework when the Next button is clicked while
using a wizard-type property sheet.

OnWizardFinish Called by the framework when the Finish button is clicked while

using a wizard-type property sheet.

Member Functions
CPropertyPage::CancelToClose

void CancelToClose();

Remarks

Call this function after an unrecoverable change has been made to the data in a page
of a modal property sheet. This function will change the OK button to Close and
disable the Cancel button. This change alerts the user that a change is permanent and
the modifications cannot be cancelled.

The CancelToClose member function does nothing in a modeless property sheet,
because a modeless property sheet does not have a Cancel button by default.

See Also CPropertyPage::OnKillActive, CPropertyPage::SetModified

1351

CPropertyPage::Construct

CPropertyPage::Construct

void Construct(UINT nIDTemplate, UINT nIDCaption = 0);
void Construct(LPCTSTR IpszTlemplateName, UINT nIDCaption = 0);

Parameters

Remarks

nIDTemplate 1D of the template used for this page.

nIDCaption 1D of the name to be placed in the tab for this page. If 0, the name will
be taken from the dialog template for this page.

IpszTemplateName Contains a null-terminated string that is the name of a template
resource.

Call this member function to construct a CPropertyPage object. The object is
displayed after all of the following conditions are met:

o The page has been added to a property sheet using CPropertySheet::AddPage.

¢ The property sheet’s DoModal or Create function has been called.

o The user has selected (tabbed to) this page.

Call Construct if one of the other class constructors has not been called. The
Construct member function is flexible because you can leave the parameter statement

blank and then specify multiple parameters and construction at any point in your
code.

You must use Construct when you work with arrays, and you must call Construct for
each member of the array so that the data members are assigned proper values.

See Also CPropertyPage::CPropertyPage, CPropertySheet::DoModal,
CPropertySheet::AddPage

CPropertyPage::CPropertyPage

CPropertyPage();
CPropertyPage(UINT nIDTemplate, UINT nIDCaption = 0);
CPropertyPage(LPCTSTR IlpszTemplateName, UINT nIDCaption = 0);

Parameters

1352

niDTemplate 1D of the template used for this page.

nIDCaption 1D of the name to be placed in the tab for this page. If 0, the name will
be taken from the dialog template for this page.

IpszTemplateName Points to a string containing the name of the template for this
page. Cannot be NULL.

Remarks

CPropertyPage::OnCancel

Constructs a CPropertyPage object. The object is displayed after all of the following
conditions are met:

e The page has been added to a property sheet using CPropertySheet::AddPage.
e The property sheet’s DoModal or Create function has been called.
e The user has selected (tabbed to) this page.

If you have multiple parameters (for example, if you are using an array), use
Construct instead of CPropertyPage

See Also CPropertySheet::Create, CPropertySheet::DoModal,
CPropertySheet::AddPage, CPropertyPage::Construct

CPropertyPage::OnApply

Remarks

virtual void OnApply();

This member function is called by the framework when the user chooses the OK or
the Apply Now button. When the framework calls this function, changes made on all
property pages in the property sheet are accepted, and the property sheet retains
focus. Before OnApply can be called by the framework, you must have called
SetModified and set its parameter to TRUE. This will activate the Apply Now
button as soon as the user makes a change on the property page.

Override this member function to specify what action your program takes when the
user clicks the Apply Now button.

The default implementation of OnApply calls OnOK.
See Also CPropertyPage::SetModified, CPropertyPage::OnOK

CPropertyPage::OnCancel

Remarks

virtual void OnCancel();

This member function is called by the framework when the Cancel button is selected.
Override this member function to perform Cancel button actions. The default negates
any changes that have been made.

See Also CPropertyPage::OnApply, CDialog::OnCancel,
CPropertyPage::OnOK

1353

CPropertyPage::OnKillActive

CPropertyPage::OnKillActive

virtual BOOL OnKillActive();

Return Value
Nonzero if data was updated successfully, otherwise 0.

Remarks
This member function is called by the framework when the page is no longer the
active page. Override this member function to perform special data validation tasks.

The default implementation of this member function copies settings from the controls
in the property page to the member variables of the property page. If the data was not
updated successfully due to a dialog data validation (DDV) error, the page retains
focus.

After this member function returns successfully, the framework will call the page’s
OnOK function.

See Also CWnd::UpdateData, CPropertyPage::OnOK,
CPropertyPage::OnSetActive

CPropertyPage::OnOK
virtual void OnOK();

Remarks
This member function is called by the framework when the user chooses either the
OK or Apply Now button, immediately after the framework calls OnKillActive.
Override this member function to implement additional behavior specific to the
currently active page when user dismisses the entire property sheet.

The default implementation of this member function marks the page as “clean” to
reflect that the data was updated in the OnKillActive function.

See Also CDialog::OnOK, CPropertyPage::OnKillActive

CPropertyPage::OnQueryCancel

virtual BOOL OnQueryCancel();

Return Value
Returns FALSE to prevent the cancel operation or TRUE to allow it.

Remarks
This member function is called by the framework when the user clicks the Cancel
button and before the cancel action has taken place.

1354

CPropertyPage::OnWizardBack

Override this member function to specify an action the program takes when the user
clicks the Cancel button.

The default implementation of OnQueryCancel returns TRUE.

CPropertyPage::OnReset

virtual void OnReset();

Remarks
This member function is called by the framework when the user chooses the Cancel
button. When the framework calls this function, changes to all property pages that
were made by the user previously choosing the Apply Now button are discarded, and
the property sheet retains focus.

Override this member function to specify what action the program takes when the
user clicks the Cancel button.

The default implementation of OnReset does nothing.

See Also CPropertyPage::OnCancel, CPropertyPage::OnApply

CPropertyPage::OnSetActive

virtual BOOL OnSetActive();

Return Value
Nonzero if the page was successfully set active; otherwise 0.

Remarks
This member function is called by the framework when the page is chosen by the user
and becomes the active page. Override this member function to perform tasks when a
page is activated. Your override of this member function should call the default
version before any other processing is done.

The default implementation creates the window for the page, if not previously
created, and makes it the active page.

See Also CPropertyPage::OnKillActive

CPropertyPage::OnWizardBack

virtual void OnWizardBack();

Remarks
This member function is called by the framework when the user clicks on the Back
button in a wizard.

1355

CPropertyPage::OnWizardFinish

Override this member function to specify some action the user must take when the
Back button is pressed.

For more information on how to make a wizard-type property sheet, see
CPropertySheet::SetWizardMode.

See Also CPropertySheet::SetWizardMode

CPropertyPage::OnWizardFinish

Remarks

virtual void OnWizardFinish();

This member function is called by the framework when the user clicks on the Finish
button in a wizard.

Override this member function to specify some action the user must take when the
Finish button is pressed.

For more information on how to make a wizard-type property sheet, see
CPropertySheet::SetWizardMode.

See Also CPropertySheet::SetWizardMode

CPropertyPage::OnWizardNext

Remarks

virtual void OnWizardNext();

This member function is called by the framework when the user clicks on the Next
button in a wizard.

Override this member function to specify some action the user must take when the
Next button is pressed.

For more information on how to make a wizard-type property sheet, see
CPropertySheet::SetWizardMode.

See Also CPropertySheet::SetWizardMode

CPropertyPage::QuerySiblings

LRESULT QuerySiblings(WPARAM wParam, LPARAM [Param);

Return Value

1356

The nonzero value from a page in the property sheet, or 0 if all pages return a value
of 0.

CPropertyPage::m_psp

Parameters
wParam Specifies additional message-dependent information.

[Param Specifies additional message-dependent information

Remarks
Call this member function to forward a message to each page in the property sheet. If
a page returns a nonzero value, the property sheet does not send the message to
subsequent pages.

CPropertyPage::SetModified

void SetModified(BOOL bChanged = TRUE);

Parameters
bChanged TRUE to indicate that the property page settings have been modified
since the last time they were applied; FALSE to indicate that the property page
settings have been applied, or should be ignored.

Remarks
Call this member function to enable or disable the Apply Now button, based on
whether the settings in the property page should be applied to the appropriate
external object.

The framework keeps track of which pages are “dirty,” that is, property pages for
which you have called SetModified(TRUE). The Apply Now button will always be
enabled if you call SetModified(TRUE) for one of the pages. The Apply Now
button will be disabled when you call SetModified(FALSE) for one of the pages,
but only if none of the other pages is “dirty.”

See Also CPropertyPage::CancelToClose

Data Members
CPropertyPage::m_psp

Remarks
m_psp is a structure whose members store the characteristics of
PROPSHEETPAGE. Use this structure to initialize the appearance of a property
page after it is constructed.

For more information on this structure, including a listing of its members, see
PROPSHEETPAGE in the Windows SDK Programmer’s Reference.

See Also CPropertySheet, PROPSHEETPAGE

1357

CPropertySheet

CPropertySheet

1358

Objects of class CPropertySheet represent property sheets, otherwise known as tab
dialog boxes. A property sheet consists of a CPropertySheet object and one or more
CPropertyPage objects. A property sheet is displayed by the framework as a window
with a set of tab indices, with which the user selects the current page, and an area for
the currently selected page.

Even though CPropertySheet is not derived from CDialog, managing a
CPropertySheet object is similar to managing a CDialog object. For example,
creation of a property sheet requires two-part construction: call the constructor, and
then call DoModal for a modal property sheet or Create for a modeless property
sheet. CPropertySheet has two types of constructors: CPropertySheet::Construct
and CPropertySheet::CPropertySheet.

Exchanging data between a CPropertySheet object and some external object is
similar to exchanging data with a CDialog object. The important difference is that
the settings of a property sheet are normally member variables of the CPropertyPage
objects rather than of the CPropertySheet object itself.

You can create a type of tab dialog box called a wizard, which consists of a property
sheet with a sequence of property pages that guide the user through the steps of an
operation, such as setting up a device or creating a newsletter. In a wizard-type tab
dialog box, the property pages do not have tabs, and only one property page is visible
at a time. Also, instead of having OK and Apply Now buttons, a wizard-type tab
dialog box has a Back button, a Next or Finish button, a Cancel button, and a Help
button.

To create a wizard-type dialog box, follow the same steps you would follow to create a
standard property sheet, but call SetWizardMode before you call DoModal. To
enable the wizard buttons, call SetWizardButtons, using flags to customize their
function and appearance. To enable the Finish button, call SetFinishText after the
user has taken action on the last page of the wizard.

For more information on how to use CPropertySheet objects, see the article
“Property Sheets” in Programming with MFC.

#include <afxdlgs.h>

CPropertySheet:: AddPage

Data Members

m_psh The Windows PROPSHEETHEADER structure. Provides
access to basic property sheet parameters.

Construction

CPropertySheet Constructs a CPropertySheet object.

Construct Constructs a CPropertySheet object.

Attributes

GetActiveIndex Retrieves the index of the active page of the property sheet.

GetPagelndex Retrieves the index of the specified page of the property sheet.

GetPageCount Retrieves the number of pages in the property sheet.

GetPage Retrieves a pointer to the specified page.

GetActivePage Returns the active page object.

SetActivePage Programmatically sets the active page object.

SetTitle Sets the caption of the property sheet.

GetTabControl Retrieves a pointer to a tab control.

SetFinishText Sets the text for the Finish button.

SetWizardButtons Enables the wizard buttons.

SetWizardMode Enables the wizard mode.

Operations

DoModal Displays a modal property sheet.

Create Displays a modeless property sheet.

AddPage Adds a page to the property sheet.

RemovePage Removes a page from the property sheet.

PressButton Simulates the choice of the specified button in a property sheet.

EndDialog Terminates the property sheet.

Member Functions
CPropertySheet:: AddPage

void AddPage(CPropertyPage *pPage);

1359

CPropertySheet::Construct

Parameters
pPage Points to the page to be added to the property sheet. Cannot be NULL.

Remarks
This member function adds the supplied page with the rightmost tab in the property
sheet. Add pages to the property sheet in the left-to-right order you want them to
appear.

AddPage adds the CPropertyPage object to the CPropertySheet object’s list of
pages but does not actually create the window for the page. The framework postpones
creation of the window for the page until the user selects that page.

It is not necessary to wait until creation of the property sheet window to call
AddPage. Typically, you will call AddPage before calling DoModal or Create.

If you call AddPage after displaying the property page, the tab row will reflect the
newly added page.

See Also CPropertySheet::RemovePage

CPropertySheet::Construct

void Construct(UINT nIDCaption, CWnd* pParentWnd = NULL, UINT iSelectPage = 0);
void Construct(LPCTSTR pszCaption, CWnd* pParentWnd = NULL, UINT iSelectPage = 0);

Parameters
nIDCaption 1D of the caption to be used for the property sheet.

pParentWnd Pointer to the parent window of the property sheet. If NULL, the
parent window will be the main window of the application.

iSelectPage The index of the page that will initially be on top. Default is the first
page added to the sheet.

pszCaption Pointer to a string containing the caption to be used for the property
sheet. Cannot be NULL.

Remarks
Call this member function to construct a CPropertySheet object. Call this member
function if one of the class constructors has not already been called. For example, call
Construct when you declare or allocate arrays of CPropertySheet objects. In the
case of arrays, you must call Construct for each member in the array.

To display the property sheet, call DoModal or Create. The string contained in the
first parameter will be placed in the caption bar for the property sheet.

1360

CPropertySheet::Create

Example
The following example demonstrates under what circumstances you would call
Construct.
int i;
CPropertySheet rgpropsheet[4];
CPropertySheet someSheet; // no need to call Construct for this one

UINT rgID[4] = {IDD_SHEET1, IDD_SHEET2, IDD_SHEET3, IDD_SHEET4};
for (i = 0; 1 < 4; i+H)
grpropsheet[i].Construct(rgID[i]);

See Aiso CPropertySheet::CPropertySheet, CPropertySheet::DoModal,
CPropertySheet::Create

CPropertySheet::CPropertySheet

CPropertySheet()
CPropertySheet(UINT n/DCaption, CWnd *pParentWnd = NULL, UINT iSelectPage = 0);
CPropertySheet(LPCTSTR pszCaption, CWnd *pParentWnd = NULL, UINT iSelectPage = 0);

Parameters
nIDCaption 1D of the caption to be used for the property sheet.

pParentWnd Points to the parent window of the property sheet. If NULL, the parent
window will be the main window of the application.

iSelectPage The index of the page that will initially be on top. Default is the first
page added to the sheet.

pszCaption Points to a string containing the caption to be used for the property
sheet. Cannot be NULL.

Remarks
Use this member function to construct a CPropertySheet object. To display the
property sheet, call DoModal or Create. The string contained in the first parameter
will be placed in the caption bar for the property sheet.

If you have multiple parameters (for example, if you are using an array), use
Construct instead of CPropertySheet.

See Also CPropertySheet::Construct, CPropertySheet::DoModal,
CPropertySheet::Create, CPropertyPage

CPropertySheet::Create

BOOL Create(CWnd* pParentWnd = NULL, DWORD dwStyle = WS_SYSMENU | WS_POPUP |
WS_CAPTION | DS_MODALFRAME | WS_VISIBLE, DWORD dwExStyle =
WS_EX_DLGMODALFRAME);

1361

CPropertySheet::DoModal

Return Value

Nonzero if the property sheet is created successfully; otherwise 0.

Parameters

Remarks

pParentWnd Points to parent window. If NULL, parent is the desktop.

dwStyle 'Window styles for property sheet. For a complete list of available styles, see
“Window Styles” in the “Styles Used by MFC” section.

dwExStyle Extended window styles for property sheet. For a complete list of
available styles, see “Extended Window Styles” in the “Styles Used by MFC”
section.

Call this member function to display a modeless property sheet. The call to Create
can be inside the constructor, or you can call it after the constructor is invoked.

The Create member function returns immediately after creating the property sheet.
To destroy the property sheet, call CWnd::DestroyWindow.

Modeless property sheets displayed with a call to Create do not have OK, Cancel,
Apply Now, and Help buttons as modal property sheets do. Desired buttons must be
created by the user.

To display a modal property sheet, call DoModal instead.
See Also CDialog::Create, CPropertySheet::DoModal

CPropertySheet::DoModal

virtual int DoModal();

Return Value

Remarks

1362

IDOK or IDCANCEL if the function was successful; otherwise O.

Call this member function to display a modal property sheet. The return value
corresponds to the ID of the control that closed the property sheet. After this function
returns, the windows corresponding to the property sheet and all the pages will have
been destroyed. The objects themselves will still exist. Typically, you will retrieve
data from the CPropertyPage objects after DoModal returns IDOK.

To display a modeless property sheet, call Create instead.

See Also CDialog::DoModal, CPropertySheet::Create

CPropertySheet:: GetActivePage

CPropertySheet::EndDialog

void EndDialog(int nEndID);

Parameters
nEndID Identifier to be used as return value of the property sheet.

Remarks
Use this member function to terminate the property sheet. This member function is
called by the framework when the OK, Cancel, or Close button is pressed. Call this
member function if an event occurs that should close the property sheet.

This member function is only used with a modeless dialog box.

See Also CPropertyPage::OnOK, CPropertyPage::OnCancel,
CWnd::DestroyWindow

CPropertySheet::GetActivelndex

int GetActivelndex() const;

Return Value
The index number of the active page.

Remarks
Call this member function to get the index number of the property sheet window’s
active page, then use the returned index number as the parameter for GetPage.

See Also CPropertySheet::GetPage, CPropertySheet::GetActivePage

CPropertySheet::GetActivePage

CPropertyPage* GetActivePage() const;

Return Value
The pointer to the active page.

Remarks
Call this member function to retrieve the property sheet window’s active page. Use
this member function to perform some action on the active page.

See Also CPropertySheet::GetPage

1363

CPropertySheet::GetPage

CPropertySheet::GetPage

CPropertyPage* GetPage(int nPage) const;

Return Value
The pointer to the page corresponding to the nPage parameter.

Parameters
nPage Index of the desired page, starting at 0. Must be between 0 and one less than
the number of pages in the property sheet, inclusive.

Remarks
This member function returns a pointer to the specified page in this property sheet.

See Also CPropertySheet::AddPage, CPropertySheet::GetActivePage,
CPropertySheet::GetPageCount, CPropertySheet::RemovePage,
CPropertySheet::SetTitle

CPropertySheet::GetPagelndex

int GetPageIndex(CPropertyPage* pPage) const;

Return Value
The index number of a page.

Parameters
pPage Points to the page with the index to be found. Cannot be NULL.

Remarks
Use this member function to retreive the index number of the specified page in the
property sheet. For example, you would use GetPagelndex to get the page index in
order to use SetActivePage or GetPage.

See Also CPropertySheet::SetActivePage, CPropertySheet::GetPage

CPropertySheet::GetPageCount

int GetPageCount();

Return Value
The number of pages in the property sheet.

Remarks
Call this member function to determine the number of pages currently in the property
sheet.

See Also CPropertySheet::GetPage, CPropertySheet::AddPage,
CPropertySheet::RemovePage

1364

CPropertySheet::PressButton

CPropertySheet::GetTabControl

CTabCtrl* GetTabControl();

Return Value

A pointer to a tab control.

Remarks

Use this member function to retrieve a pointer to a tab control to do something
specific to the tab control (that is, to use any of the APIs in CTabCtrl). For example,
call this member function if you want to add bitmaps to each of the tabs during
initialization.

See Also CTabCtrl::CTabCtrl

CPropertySheet::PressButton

BOOL PressButton(int nButton);

Return Value

Nonzero if successful; otherwise zero.

Parameters

nButton nButton : Identifies the button to be pressed. This parameter can be one of
the following values:

Remarks

PSBTN_BACK Chooses the Back button.
PSBTN_NEXT Chooses the Next button.
PSBTN_FINISH Chooses the Finish button.
PSBTN_OK Chooses the OK button.
PSBTN_APPLYNOW Chooses the Apply Now button.
PSBTN_CANCEL Chooses the Cancel button.
PSBTN_HELP Chooses the Help button.

Call this member function to simulate the choice of the specified button in a property
sheet. See PSM_PRESSBUTTON for more information about the Windows SDK
Pressbutton message.

1365

CPropertySheet::RemovePage

CPropertySheet::RemovePage

void RemovePage(CPropertyPage *pPage);
void RemovePage(int nPage);

Parameters
pPage Points to the page to be removed from the property sheet. Cannot be NULL.

nPage Index of the page to be removed. Must be between 0 and one less than the
number of pages in the property sheet, inclusive.

Remarks
This member function removes a page from the property sheet and destroys the
associated window. The CPropertyPage object itself is not destroyed until the owner
of the CPropertySheet window is closed.

See Also CPropertySheet::AddPage

CPropertySheet::SetActivePage

BOOL SetActivePage(int nPage);
BOOL SetActivePage(CPropertyPage* pPage);

Return Value
Nonzero if the property sheet is activated successfully; otherwise 0.

Parameters
nPage Index of the page to set. It must be between 0 and one less than the number
of pages in the property sheet, inclusive.

pPage Points to the page to set in the property sheet. It cannot be NULL.
Remarks

Use this member function to change the active page. For example, use SetActivePage
if a user’s action on one page should cause another page to become the active page.

CPropertySheet::SetFinishText

void SetFinishText(LPCTSTR IpszText);

Parameters
IpszText Points to the text to be displayed on the Finish command button.

Remarks
Call this member function to set the text in the Finish command button. Call
SetFinishText to display the text on the Finish command button and hide the Next
and Back buttons after the user completes action on the last page of the wizard.

1366

CPropertySheet::SetWizardButtons

CPropertySheet::SetTitle

void SetTitle(UINT nStyle, LPCTSTR IpszText);

Parameters
nStyle Specifies the style of the property sheet title. The style must be specified at 0
or as PSH_PROPTITLE. If the style is set as PSH_PROPTITLE, the words
“Properties for” appear before the text specified as the caption.

IpszText Points to the text to be used as the caption in the title bar of the property
sheet.

Remarks
Call this member function to specify the property sheet's caption (the text displayed
in the title bar of a frame window).

By default, a property sheet uses the caption parameter in the property sheet
constructor.

See Also CPropertySheet::GetPage, CPropertySheet::GetActivePage

CPropertySheet::SetWizardButtons

void SetWizardButtons(DWORD dwFlags);

Parameters
dwFlags A set of flags that customize the function and appearance of the wizard
buttons. This parameter can be a combination of the following values:

e PSWIZB_BACK Back button

o PSWIZB_NEXT Next button

e PSWIZB_FINISH Finish button

o PSWIZB_DISABLEDFINISH Disabled Finish button

Remarks
Call this member function to enable or disable the Back, Next, or Finish button in a
wizard property sheet. Call SetWizardButtons only after the dialog is open; you
can’t call SetWizardButtons before you call DeModal.

If you want to change the text on the Finish button and hide the Next and Back
buttons once the user has completed the wizard, call SetFinishText.

1367

CPropertySheet::SetWizardMode

CPropertySheet::SetWizardMode

Remarks

Example

void SetWizardMode();

Call this member function to establish a property page as a wizard. A key
characteristic of a wizard property page is that the user navigates using Back or
Finish, Next, and Cancel buttons instead of tabs.

Call SetWizardMode before calling DoModal.
SetWizardMode sets the PSF_WIZARD flag.

CPropertySheet dlg;
dlg.AddPage(&pagel);
d1g.AddPage(&pag2);
dlg.SetWizardMode();
d1g.DoModal();

See Also CPropertySheet::DoModal

Data Members
CPropertySheet::m_psh

Remarks

1368

m_psh is a structure whose members store the characteristics of
PROPSHEETHEADER. Use this structure to initialize the appearance of the
property sheet after it is constructed but before it is displayed with the DoModal

member function. For example, set the dwSize member of m_psh to the size you want

the property sheet to have.

For more information on this structure, including a listing of its members, see
PROPSHEETHEADER in the Windows SDK Programmer s Reference.

See Also CPropertySheet::DoModal

CPropExchange

CPropExchange
Establishes the context and direction of a property exchange.

The CPropExchange class supports the implementation of persistence for your OLE
controls. Persistence is the exchange of the control’s state information, usually
represented by its properties, between the control itself and a medium.

The framework constructs an object derived from CPropExchange when it is notified
that an OLE control’s properties are to be loaded from or stored to persistent storage.

The framework passes a pointer to this CPropExchange object to your

control’s DoPropExchange function. If you used ClassWizard to create the starter
files for your control, your control’s DoPropExchange function calls
COleControl::DoPropExchange. The base-class version exchanges the control’s
stock properties; you modify your derived class’s version to exchange properties you
have added to your control.

CPropExchange can be used to serialize a coritrol’s properties or initialize a
control’s properties upon the load or creation of a control. The ExchangeProp
and ExchangeFontProp member functions of CPropExchange are able to store
properties to and load them from different media.

For more information on using CPropExchange, see the article “OLE Controls:
Property Pages” in Programming with MFC.

#include <afxctl.h>

See Also COleControl::DoPropExchange

Operations

ExchangeFontProp Exchanges a font property.

ExchangeProp Exchanges properties of any built-in type.

ExchangeBlobProp Exchanges a binary large object (BLOB) property.

ExchangePel"sistentProp Exchanges a property between a control and a file.

ExchangeVersion Exchanges the version number of an OLE control.

IsLoading Indicates whether properties are being loaded into the
contro} or saved from it.

GetVersion Retrieves the version number of an OLE control.

1369

CPropExchange::ExchangeBlobProp

Member Functions
CPropExchange::ExchangeBlobProp

virtual BOOL ExchangeBlobProp(LPCTSTR pszPropName, void** ppvBlob,
const void* pvBlobDefault = NULL) = 0;

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters
pszPropName The name of the property being exchanged.

ppvBlob Pointer to a variable pointing to where the property is stored
(variable is typically a member of your class).

pvBlobDefault Default value for the property.

Remarks ,
Serializes a property that stores binary large object (BLOB) data.

The property’s value is read from or written to, as appropriate, the variable referenced
by ppvBlob. If pvBlobDefault is specified, it will be used as the property’s default
value. This value is used if, for any reason, the control’s serialization fails.

The functions CArchivePropExchange::ExchangeBlobProp,
CResetPropExchange::ExchangeBlobProp, and
CPropsetPropExchange::ExchangeBlobProp override this pure virtual function.

See Also COleControl::DoPropExchange, CPropExchange::ExchangeFontProp,
CPropExchange::ExchangePersistentProp, CPropExchange::ExchangeProp

CPropExchange::ExchangeFontProp
virtual BOOL ExchangeFontProp(LPCTSTR pszPropName, CFontHolder& font,
const FONTDESC FAR* pFontDesc, LPFONTDISP pFontDispAmbient) = 0;

Return Value
Nonzero if the exchange was successful; O if unsuccessful.

Parameters
pszPropName The name of the property being exchanged.

font A reference to a CFontHolder object that contains the font property.

pFontDesc A pointer to a FONTDESC structure containing values for initializing
the default state of the font property when pFontDispAmbient is NULL. For more
information on this structure, see “Standard Font Type” in Appendix A of
Programming with MFC.

1370

CPropExchange::ExchangePersistentProp

pFontDispAmbient A pointer to the IFontDisp interface of a font to be used for
initializing the default state of the font property.

Remarks
Exchanges a font property between a storage medium and the control.

If the font property is being loaded from the medium to the control, the font’s
characteristics are retrieved from the medium and the CFontHolder object
referenced by font is initialized with them. If the font property is being stored, the
characteristics in the font object are written to the medium.

The functions CArchivePropExchange::ExchangeFontProp,
CResetPropExchange::ExchangeFontProp, and
CPropsetPropExchange::ExchangeFontProp override this pure virtual function.

See Also COleControl::DoPropExchange, CPropExchange::ExchangeBlobProp,
CPropExchange::ExchangePersistentProp, CPropExchange::ExchangeProp

CPropExchange::ExchangePersistentProp

virtual BOOL ExchangePersistentProp(LPCTSTR pszPropName, LPUNKNOWN FAR* ppUnk,
REFIID iid, LPUNKNOWN pUnkDefault) = 0;

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters
pszPropName The name of the property being exchanged.

ppUnk A pointer to a variable containing a pointer to the property’s IUnknown
interface (this variable is typically a member of your class).

iid Interface ID of the interface on the property that the control will use.
pUnkDefault Default value for the property.

Remarks
Exchanges a property between the control and a file.

If the property is being loaded from the file to the control, the property is created and
initialized from the file. If the property is being stored, its value is written to the file.

The functions CArchivePropExchange::ExchangePersistentProp,
CResetPropExchange::ExchangePersistentProp, and
CPropsetPropExchange::ExchangePersistentProp override this pure virtual
function.

See Also COleControl::DoPropExchange, CPropExchange::ExchangeBlobProp,
CPropExchange::ExchangeFontProp, CPropExchange::ExchangeProp

131

CPropExchange::ExchangeProp

CPropExchange::ExchangeProp
virtual BOOL ExchangeProp(LPCTSTR pszPropName, VARTYPE vtProp, void* pvProp,
const void* pvDefault = NULL) = 0;

Return Value
Nonzero if the exchange was successful; 0 if unsuccessful.

Parameters
pszPropName The name of the property being exchanged.

vtProp A symbol specifying the type of the property being exchanged. Possible

values are:

Symbol Property Type
VT_I12 short

VT_14 long
VT_BOOL BOOL

VT _BSTR CString
VT_CY CY

VT_R4 float

VT_RS double

pvProp A pointer to the property’s value.
pvDefault Pointer to a default value for the property.

Remarks
Exchanges a property between a storage medium and the control.

If the property is being loaded from the medium to the control, the property’s value
is retrieved from the medium and stored in the object pointed to by pvProp. If the
property is being stored to the medium, the value of the object pointed to by pvProp
is written to the medium.

The functions CArchivePropExchange::ExchangeProp,
CResetPropExchange::ExchangeProp, and
CPropsetPropExchange::ExchangeProp override this pure virtual function.

See Also COleControl::DoPropExchange, CPropExchange::ExchangeBlobProp,
CPropExchange::ExchangeFontProp, CPropExchange::ExchangePersistentProp

1372

CPropExchange::IsLoading

CPropExchange::ExchangeVersion

BOOL ExchangeVersion(DWORD& dwVersionLoaded, DWORD dwVersionDefault,
BOOL bConvert);

Return Value
Nonzero if the function succeeded; 0 otherwise.

Parameters
dwVersionLoaded Reference to a variable where the version number of the persistent
data being loaded will be stored.

dwVersionDefault The current version number of the control.
bConvert Indicates whether to convert persistent data to the current version or keep
it at the same version that was loaded.

Remarks
Called by the framework to handle persistence of a version number.

See Also COleControl::ExchangeVersion

CPropExchange::GetVersion

DWORD GetVersion();

Return Value
The version number of the control.

Remarks
Call this function to retrieve the version number of the control.

CPropExchange::IsL.oading

BOOL IsLoading();

Return Value
Nonzero if properties are being loaded; otherwise 0.

Remarks
Call this function to determine whether properties are being loaded to the control or
saved from it.

See Also COleControl::DoPropExchange

1373

CPtrArray

CPtrArray

1374

The CPtrArray class supports arrays of void pointers.

The member functions of CPtrArray are similar to the member functions of class
CODbArray. Because of this similarity, you can use the CObArray reference
documentation for member function specifics. Wherever you see a CObject pointer
as a function parameter or return value, substitute a pointer to void.

CObject* CObArray::GetAt(int <nIndex>) const;
for example, translates to
void* CPtrArray::GetAt(int <nIndex>) const;

CPtrArray incorporates the IMPLEMENT_DYNAMIC macro to support run-time
type access and dumping to a CDumpContext object. If you need a dump of
individual pointer array elements, you must set the depth of the dump context to 1 or
greater.

Note Before using an array, use SetSize to establish its size and allocate memory for it. If
you do not use SetSize, adding elements to your array causes it to be frequently reallocated
and copied. Frequent reallocation and copying are inefficient and can fragment memory.

Pointer arrays cannot be serialized.

‘When a pointer array is deleted, or when its elements are removed, only the pointers
are removed, not the entities they reference.

For more information on using CPtrArray, see the article “Collections” in
Programming with MFC.

#include <afxcoll.h>

See Also CObArray

Construction

CPtrArray Constructs an empty array for void pointers.

Bounds

GetSize Gets number of elements in this array.

GetUpperBound Returns the largest valid index.

SetSize Sets the number of elements to be contained in this array.

CPtrArray

Operations

FreeExtra Frees all unused memory above the current upper bound.

RemoveAll Removes all the elements from this array.

Element Access

GetAt Returns the value at a given index.

SetAt Sets the value for a given index; array is not allowed to grow.

ElementAt Returns a temporary reference to the element pointer within the
array.

Growing the Array

SetAtGrow Sets the value for a given index; grows the array if necessary.

Add Adds an element to the end of the array; grows the array if
necessary.

Insertion/Removal

InsertAt Inserts an element (or all the elements in another array) at a
specified index.

RemoveAt Removes an element at a specific index.

Operators

operator []

Sets or gets the element at the specified index.

1375

CPtrList

CPtrList

1376

The CPtrList class supports lists of void pointers.

The member functions of CPtrList are similar to the member functions of class
CObList. Because of this similarity, you can use the CObList reference
documentation for member function specifics. Wherever you see a CObject pointer
as a function parameter or return value, substitute a pointer to void.

CObject*& CObList::GetHead() const;
for example, translates to
void*& CPtrList::GetHead() const;

CPtrList incorporates the IMPLEMENT_DYNAMIC macro to support run-time
type access and dumping to a CDumpContext object. If you need a dump of
individual pointer list elements, you must set the depth of the dump context to 1 or
greater.

Pointer lists cannot be serialized.

When a CPtrList object is deleted, or when its elements are removed, only the
pointers are removed, not the entities they reference.

For more information on using CPtrList, see the article “Collections” in
Programming with MFC.

#include <afxcoll.h>
See Also CObList

Construction

CPtrList Constructs an empty list for void pointers.

Head/Tail Access

GetHead Returns the head element of the list (cannot be empty).
GetTail Returns the tail element of the list (cannot be empty).

CPtrList

Operations

RemoveHead Removes the element from the head of the list.

RemoveTail Removes the element from the tail of the list.

AddHead Adds an element (or all the elements in another list) to the head
of the list (makes a new head).

AddTail Adds an element (or all the elements in another list) to the tail of
the list (makes a new tail).

RemoveAll Removes all the elements from this list.

lteration

GetHeadPosition Returns the position of the head element of the list.

GetTailPosition Returns the position of the tail element of the list.

GetNext Gets the next element for iterating.

GetPrev Gets the previous element for iterating.

Retrieval/Modification

GetAt Gets the element at a given position.

SetAt Sets the element at a given position.

RemoveAt Removes an element from this list, specified by position.

Insertion

InsertBefore Inserts a new element before a given position.

InsertAfter Inserts a new element after a given position.

Searching

Find Gets the position of an element specified by pointer value.

FindIndex Gets the position of an element specified by a zero-based index.

Status

GetCount Returns the number of elements in this list.

IsEmpty Tests for the empty list condition (no elements).

1377

CRecordset

CRecordset

1378

A CRecordset object represents a set of records selected from a data source. Known
as “recordsets,” CRecordset objects are available in two forms: dynasets and
snapshots. A dynaset is a dynamic recordset that stays synchronized with updates by
other users. A snapshot is a static recordset that reflects the state of the database at
the time of the snapshot. Each form represents a set of records fixed at the time the
recordset is opened, but when you scroll to a record in a dynaset, it reflects changes
subsequently made to the record, either by other users or by other recordsets in your
application.

Note If you are working with the Data Access Objects (DAO) classes rather than the Open
Database Connectivity (ODBC) classes, use class CDaoRecordset instead. For more
information, see the article “Database Overview” and the article “DAO and MFC.” Both articles
are in Programming with MFC.

To work with either kind of recordset, you must derive an application-specific
recordset class from CRecordset. Recordsets select records from a data source, and
you can then:

e Scroll through the records.
¢ Update the records and specify a locking mode.

o Filter the recordset to constrain which records it selects from those available on
the data source.

e Sort the recordset.

e Parameterize the recordset to customize its selection with information not known
until run time.

To use your class, open a database and construct a recordset object, passing the
constructor a pointer to your CDatabase object. Then call the recordset’s Open
member function, specifying whether the object is a dynaset or a snapshot. Calling
Open selects data from the data source and retrieves the first record. Use the object’s
member functions and data members to scroll through the records and operate on
them. The operations available depend on whether the object is a dynaset or a
snapshot, and whether it is updatable or read-only—this depends on the capability of
the Open Database Connectivity (ODBC) data source. To refresh records that may
have been changed or added since the Open call, call the object’s Requery member
function. Call the object’s Close member function and destroy the object when you
finish with it.

CRecordset

CRecordset uses record field exchange (RFX) to support reading and updating of
record fields through type-safe C++ members of your CRecordset-derived class.

For more information about recordsets in general and record field exchange, see the
articles “Database Overview,” “Recordset (ODBC),” and “Record Field Exchange.”
For a focus on dynasets and snapshots, see the articles “Dynaset” and “Snapshot.” All
articles are in Programming with MFC.

#include <afxdb.h>

See Also CDatabase, CRecordView

Data Members

m_hstmt Contains the ODBC statement handle for the recordset.
Type HSTMT.

m_nFields Contains the number of field data members in the
recordset. Type UINT.

m_nParams Contains the number of parameter data members in the
recordset. Type UINT.

m_pDatabase Contains a pointer to the CDatabase object through which

m_strFilter

the recordset is connected to a data source.

Contains a CString that specifies a Structured Query
Language (SQL) WHERE clause. Used as a filter to select
only those records that meet certain criteria.

m_strSort Contains a CString that specifies an SQL ORDER BY
clause. Used to control how the records are sorted.

Construction

CRecordset Constructs a CRecordset object. Your derived class must
provide a constructor that calls this one.

Open Opens the recordset by retrieving the table or performing
the query that the recordset represents.

Close Closes the recordset and the ODBC HSTMT associated
with it

Recordset Attributes

CanAppend Returns nonzero if new records can be added to the
recordset via the AddNew member function.

CanRestart Returns nonzero if Requery can be called to run the
recordset’s query again.

CanScroll Returns nonzero if you can scroll through the records.

CanTransact Returns nonzero if the data source supports transactions.

CanUpdate Returns nonzero if the recordset can be updated (you can

add, update, or delete records).

1379

CRecordset

1380

GetRecordCount
GetStatus

GetTableName
GetSQL

IsOpen
IsBOF

IsEOF

IsDeleted

Recordset Update Operations

Returns the number of records in the recordset.

Gets the status of the recordset: the index of the current
record and whether a final count of the records has been
obtained.

Gets the name of the table on which the recordset is based.

Gets the SQL string used to select records for the
recordset.

Returns nonzero if Open has been called previously.

Returns nonzero if the recordset has been positioned
before the first record. There is no current record.

Returns nonzero if the recordset has been positioned after
the last record. There is no current record.

Returns nonzero if the recordset is positioned on a deleted
record.

AddNew

Delete

Edit

Update

Recordset Navigation Operations

Prepares for adding a new record. Call Update to complete
the addition.

Deletes the current record from the recordset. You must
explicitly scroll to another record after the deletion.
Prepares for changes to the current record. Call Update to
complete the edit.

Completes an AddNew or Edit operation by saving the
new or edited data on the data source.

Move

MoveFirst
MoveLast
MoveNext

MovePrev

Other Recordset Operations

Positions the recordset to a specified number of records
from the current record in either direction.

Positions the current record on the first record in the
recordset. Test for ISBOF first.

Positions the current record on the last record in the
recordset. Test for ISEOF first.

Positions the current record on the next record in the
recordset. Test for ISEOF first.

Positions the current record on the previous record in the
recordset. Test for ISBOF first.

Cancel
IsFieldDirty

IsFieldNull

Cancels an asynchronous operation.

Returns nonzero if the specified field in the current record
has been changed.

Returns nonzero if the specified field in the current record
is Null (has no value).

CRecordset:: AddNew

IsFieldNullable Returns nonzero if the specified field in the current record
can be set to Null (having no value).

Requery Runs the recordset’s query again to refresh the selected
records.

SetFieldDirty Marks the specified field in the current record as changed.

SetFieldNull Sets the value of the specified field in the current record to
Null (having no value).

SetLockingMode Sets the locking mode to “optimistic” locking (the default)
or “pessimistic” locking. Determines how records are
locked for updates.

Recordset Overridables

DoFieldExchange Called to exchange data (in both directions) between the

field data members of the recordset and the corresponding
record on the data source. Implements record field

exchange (RFX).
GetDefaultConnect Called to get the default connect string.
GetDefaultSQL Called to get the default SQL string to execute.
OnSetOptions Called to set options for the specified ODBC statement.
OnWaitForDataSource Called to yield processing time to other applications for

asynchronous operations.

Member Functions
CRecordset::AddNew

Remarks

virtual void AddNew();
throw(CDBException);
throw(CFileException);

Call this member function to prepare for adding a new record to the table. You must
call the Requery member function to see the newly added record. The record’s fields
are initially Null. (In database terminology, Null means “having no value” and is not
the same as NULL in C++.) To complete the operation, you must call the Update
member function. Update saves your changes to the data source.

AddNew prepares a new, empty record using the recordset’s field data members.
After you call AddNew, set the values you want in the recordset’s field data
members. (You do not have to call the Edit member function for this purpose; use
Edit only for existing records.) When you subsequently call Update, changed values
in the field data members are saved on the data source.

1381

CRecordset::CanAppend

Example

Caution If you scroll to a new record before you call Update, the new record is lost, and no
warning is given.

If the data source supports transactions, you can make your AddNew call part of a
transaction. For more information about transactions, see class CDatabase. Note that
you should call CDatabase::BeginTrans before calling AddNew.

Important For dynasets, new records are added to the recordset as the last record. Added
records are not added to snapshots—you must call Requery to refresh the recordset.

It is illegal to call AddNew for a recordset whose Open member function has not
been called. A CDBException is thrown if you call AddNew for a recordset that
cannot be appended to. You can determine whether the recordset is updatable by
calling CanAppend.

See the article “Transaction: Performing a Transaction in a Recordset (ODBC)” in
Programming with MFC.

See Also CRecordset::Update, CRecordset::Requery, CDatabase::BeginTrans,
CRecordset::SetFieldDirty, CRecordset::SetFieldNull, CRecordset::IsFieldNull,
CRecordset::IsFieldNullable, CDBException

In Programming with MFC: “Recordset: How Recordsets Update Records (ODBC),”
“Recordset: Adding, Updating, and Deleting Records (ODBC),” “Transaction
(ODBC)”

CRecordset::CanAppend

BOOL CanAppend() const;

Return Value

Remarks

1382

Nonzero if the recordset allows adding new records; otherwise 0. CanAppend will
return 0 if you opened the recordset as read-only.

Call this member function to determine whether the previously opened recordset
allows you to add new records by calling the AddNew member function.

See Also CRecordset::AddNew, CRecordset::Requery

CRecordset::CanTransact

CRecordset::Cancel

void Cancel();

Remarks
Call this member function to request that the data source cancel an asynchronous
operation in progress. The OnWaitForDataSource member function will continue to
call the ODBC function until it no longer returns SQL_STILL_EXECUTING.

See Also CDatabase::SetSynchronousMode, CDatabase: :InWaitForDataSource,
CRecordset::OnWaitForDataSource

CRecordset::CanRestart

BOOL CanRestart() const;

Return Value
Nonzero if requery is allowed; otherwise 0.

Remarks
Call this member function to determine whether the recordset allows restarting its
query (to refresh its records) by calling the Requery member function.

See Also CRecordset::Requery

CRecordset::CanScroll

BOOL CanScroll() const;

Return Value
Nonzero if the recordset allows scrolling; otherwise 0.

Remarks
Call this member function to determine whether the recordset allows scrolling.

See Also In Programming with MFC: “Recordset: Scrolling (ODBC)”

CRecordset::CanTransact
BOOL CanTransact() const;

Return Value
Nonzero if the recordset allows transactions; otherwise 0.

1383

CRecordset::CanUpdate

Remarks

Call this member function to determine whether the recordset allows transactions.
For more information, see the article “Transaction (ODBC)” in Programming with
MFC.

See Also CDatabase::BeginTrans, CDatabase::CommitTrans,
CDatabase::Rollback

CRecordset::CanUpdate

BOOL CanUpdate() const;

Return Value

Remarks

Nonzero if the recordset can be updated; otherwise O.

Call this member function to determine whether the recordset can be updated. A
recordset might be read-only if the underlying data source is read-only or if you
specified CRecordset::readOnly for dwOptions when you opened the recordset.

See Also CRecordset::Open, CRecordset::Edit

CRecordset::Close

Remarks

Example

1384

virtual void Close();

Call this member function to close the recordset. The ODBC HSTMT and all
memory the framework allocated for the recordset are deallocated. Usually after
calling Close, you delete the C++ recordset object if it was allocated with new.

You can call Open again after calling Close. This lets you reuse the recordset object.
The alternative is to call Requery.

//example for CRecordset::Close
CCustSet rsCustSet(NULL); // Construct a snapshot object
if(lrsCustSet.Open())
return FALSE;
// Use the snapshot ...
// Close the snapshot
rsCustSet.Close();
// Destructor is called when the function exits

See Also CRecordset::CRecordset, CRecordset::Open, CRecordset::Requery

CRecordset::CRecordset

CRecordset(CDatabase* pDatabase = NULL);

Parameters

Remarks

Example

pDatabase Contains a pointer to a CDatabase object or the value NULL. If not

NULL and the CDatabase object’s Open member function has not been called to
connect it to the data source, the recordset attempts to open it for you during its
own Open call. If you pass NULL, a CDatabase object is constructed and
connected for you using the data source information you specified when you
derived your recordset class with ClassWizard.

Constructs a CRecordset object. Your recordset objects must be objects of an
application-specific class derived from CRecordset. Use ClassWizard to derive your
recordset classes.

Note Your derived class must supply its own constructor. In the constructor of your derived
class, call the constructor CRecordset::CRecordset, passing the appropriate parameters
along to it.

Pass NULL to your recordset constructor to have a CDatabase object constructed and
connected for you automatically. This is a useful shorthand that does not require you
to construct and connect a CDatabase object prior to constructing your recordset.

See the article “Recordset: Declaring a Class for a Table (ODBC)” in Programming
with MFC.

See Also CRecordset::Open, CRecordset::Close

CRecordset::Delete

CRecordset::Delete

Remarks

virtual void Delete();
throw(CDBException);

Call this member function to delete the current record. After a successful deletion, the
recordset’s field data members are set to a Null value, and you must explicitly call
one of the Move functions in order to move off the deleted record. Once you move off
the deleted record, it is not possible to return to it. If the data source supports
transactions, you can make the Delete call part of a transaction. For more
information, see the article “Transaction (ODBC)” in Programming with MFC.

1385

CRecordset::DoFieldExchange

Caution The recordset must be updatable and there must be a valid record current in the
recordset when you call Delete; otherwise, an error occurs. For example, if you delete a record
but do not scroll to a new record before you call Delete again, Delete throws a
CDBException.

Unlike AddNew and Edit, a call to Delete is not followed by a call to Update. If a
Delete call fails, the field data members are left unchanged.

Example
This example shows a recordset created on the frame of a function. The example
assumes the existence of m_dbCust, a member variable of type CDatabase already
connected to the data source.

// Create a derived CRecordset object
CCustSet rsCustSet(&m_dbCust);
rsCustSet.Open();

if(rsCustSet.ISEOF() || !rsCustSet.CanUpdate() ||
IrsCustSet.CanTransact())
return;
if(!m_dbCust.BeginTrans())
{
// Do something to handle a failure
}
else
{
// Perhaps scroll to a new record...
// Delete the current record
rsCustSet.Delete();
// .
// Finished commands for this transaction
if(<the user confirms the transaction>)
m_dbCust.CommitTrans();
else // User changed mind
m_dbCust.Rol1back();
}
/] ...

See Also Database::BeginTrans, CDatabase::CommitTrans,
CDatabase::Rollback, CDBException

CRecordset::DoFieldExchange

virtual void DoFieldExchange(CFieldExchange* pFX) = 03
throw(CDBException);

1386

CRecordset::Edit

Parameters
pFX Contains a pointer to a CFieldExchange object. The framework will already
have set up this object to specify a context for the field exchange operation.

Remarks
The framework calls this member function to automatically exchange data between
the field data members of your recordset object and the corresponding columns of the
current record on the data source. It also binds your parameter data members, if any,
to parameter placeholders in the SQL statement string for the recordset’s selection.
The exchange of field data, called record field exchange (RFX), works in both
directions: from the recordset object’s field data members to the fields of the record
on the data source, and from the record on the data source to the recordset object.

The only action you must normally take to implement DoFieldExchange for your
derived recordset class is to create the class with ClassWizard and specify the names
and data types of the field data members. You might also add code to what
ClassWizard writes to specify parameter data members or to deal with any columns
you bind dynamically. For more information, see the article “Recordset: Dynamically
Binding Data Columns (ODBC)” in Programming with MFC.

When you declare your derived recordset class with ClassWizard, the wizard writes
an override of DoFieldExchange for you, which resembles the following example:

void CCustSet::DoFieldExchange(CFieldExchange* pFX)

{
//{{AFX_FIELD_MAP(CCustSet)
pFX->SetFieldType(CFieldExchange::outputColumn);
RFX_Text(pFX, "Name", m_strName);
RFX_Int(pFX, "Age", m_wAge);
//}YAFX_FIELD_MAP

}

For further examples and details about DoFieldExchange, see the article “Record
Field Exchange: How RFX Works.” For general information about RFX, see the
article “Record Field Exchange.” Both articles are in Programming with MFC.

See Also CFieldExchange, CRecordset::m_nFields, CRecordset::m_nParams

CRecordset::Edit

virtual void Edit();
throw(CDBException);
throw(CMemoryException);
throw(CFileException);

Remarks
Call this member function to allow changes to the current record. After you call Edit,
you can change the field data members by directly resetting their values. The

1387

CRecordset::Edit

Example

1388

operation is completed when you subsequently call the Update member function to
save your changes on the data source.

Edit saves the values of the recordset’s data members. If you call Edit, make
changes, then call Edit again, the record’s values are restored to what they were
before the first Edit call.

In some cases, you may want to update a column by making it Null (containing no
data). To do so, call SetFieldNull with a parameter of TRUE to mark the field Null;
this also causes the column to be updated. If you want a field to be written to the data
source even though its value has not changed, call SetFieldDirty with a parameter of
TRUE. This works even if the field had the value Null.

If the data source supports transactions, you can make the Edit call part

of a transaction. Note that you should call CDatabase::BeginTrans before

calling Edit and after the recordset has been opened. Also note that calling
CDatabase:: CommitTrans is not a substitute for calling Update to complete

the Edit operation. For more information about transactions, see class CDatabase.

Depending on the current locking mode, the record being updated may be locked by
Edit until you call Update or scroll to another record, or it may be locked only
during the Edit call. You can change the locking mode with SetLockingMode.

The previous value of the current record is restored if you scroll to a new record
before calling Update. A CDBException is thrown if you call Edit for a recordset
that cannot be updated or if there is no current record.

For more information, see the articles “Transaction (ODBC)” and “Recordset:
Locking Records (ODBC)” in Programming with MFC.

//Example for CRecordset::Edit
// To edit a record,
// First set up the edit buffer
rsCustSet.Edit();
// Then edit field data members for the record
rsCustSet.m_dwCustID = 2795;
rsCustSet.m_strCustomer = "Jones Mfg";
// Finally, complete the operation
if(!rsCustSet.Update())

// Handle the failure to update

See Also CRecordset::Update, CRecordset::AddNew, CRecordset::Delete,
CRecordset::SetFieldDirty, CRecordset::SetFieldNull, CRecordset::CanUpdate,
CRecordset::CanTransact, CRecordset::SetLockingMode

CRecordset::GetDefaultSQL

CRecordset::GetDefaultConnect

virtual CString GetDefaultConnect();

Return Value

Remarks

A pointer to a string that contains the default connect string.

The framework calls this member function to get the default connect string for the
data source on which the recordset is based. ClassWizard implements this function
for you by identifying the same data source you use in ClassWizard to get information
about tables and columns. You will probably find it convenient to rely on this default
connection while developing your application. But the default connection may not be
appropriate for users of your application. If that is the case, you should reimplement
this function, discarding ClassWizard’s version. For more information about connect
strings, see the article “Data Source (ODBC)” in Programming with MFC.

CRecordset::GetDefaultSQL

virtual CString GetDefaultSQL() = 0;

Return Value

Remarks

A pointer to a string that contains the default SQL statement.

The framework calls this member function to get the default SQL statement on which
the recordset is based. This might be a table name or an SQL SELECT statement.

You indirectly define the default SQL statement by declaring your recordset class
with ClassWizard. Your derived CRecordset class must override GetDefaultSQL,
but ClassWizard performs this task for you.

If you need the SQL statement string for your own use, call GetSQL, which returns
the SQL statement used to select the recordset’s records when it was opened. You can
edit the default SQL string in your class’s override of GetDefaultSQL. For example,
you could specify a call to a predefined query using a CALL statement. For more
information, see the article “Recordset: Declaring a Class for a Table (ODBC)” in
Programming with MFC.

Caution The table name will be empty if the framework could not identify a table name, if
multiple table names were supplied, or if a CALL statement could not be interpreted.

See Also CRecordset::GetSQL

1389

CRecordset::GetRecordCount

CRecordset::GetRecordCount

long GetRecordCount() const;

Return Value
The number of records in the recordset; 0 if the recordset contains no records; or —1
if the record count cannot be determined.

Remarks
Call this member function to determine the size of the recordset.

Caution The record count is maintained as a “high water mark”—the highest-numbered
record yet seen as the user moves through the records. The total number of records is only
known after the user has moved beyond the last record. For performance reasons, the count is
not updated when you call MoveLast. To count the records yourself, call MoveNext repeatedly
until ISEOF returns nonzero. Adding a record via CRecordset:AddNew and Update increases
the count; deleting a record via CRecordset::Delete decreases the count.

See Also CRecordset::MoveLast, CRecordset::MoveNext, CRecordset::ISEOF,
CRecordset::GetStatus

CRecordset::GetStatus

void GetStatus(CRecordsetStatus& rStatus) const;

Parameters

rStatus A reference to a CRecordsetStatus object. See the “Remarks” section for
more information.

Remarks
Call this member function to determine the index of the current record in the
recordset and/or whether the last record has been seen. CRecordset attempts to track
the index, but under some circumstances this may not be possible. See
GetRecordCount for an explanation.

The CRecordsetStatus structure has the following form:

struct CRecordsetStatus
{
Tong m_1CurrentRecord;
BOOL m_bRecordCountFinal;
};

1390

The two members of CRecordsetStatus have the following meanings:

¢ m_lCurrentRecord Contains the zero-based index of the current record in the
recordset, if known. If the index cannot be determined, this member contains
AFX_CURRENT_RECORD_UNDEFINED (-2). If IsBOF is TRUE (empty
recordset or attempt to scroll before first record), then m_lCurrentRecord is set to
AFX_CURRENT_RECORD_BOF (—1). If on the first record, then it is set to 0,
second record 1, and so on.

e m_bRecordCountFinal Nonzero if the total number of records in the recordset
has been determined. Generally this must be accomplished by starting at the
beginning of the recordset and calling MoveNext until ISEOF returns nonzero. If
this member is zero, the record count as returned by GetRecordCount, if not —1,
is only a “high water mark” count of the records.

See Also CRecordset::GetRecordCount

CRecordset::GetSQL

CRecordset::GetSQL

const CString& GetSQL() const;

Return Value

Remarks

A const reference to a CString that contains the SQL statement.

Call this member function to get the SQL statement that was used to select the
recordset’s records when it was opened. This will generally be an SQL SELECT
statement. The string returned by GetSQL is read-only.

The string returned by GetSQL is typically different from any string you may have
passed to the recordset in the IpszSQL parameter to the Open member function. This
is because the recordset constructs a full SQL statement based on what you passed to
Open, what you specified with ClassWizard, what you may have specified in the
m_strFilter and m_strSort data members, and any parameters you may have
specified. For details about how the recordset constructs this SQL statement, see

the article “Recordset: How Recordsets Select Records (ODBC)” in Programming
with MFC.

Important Call this member function only after calling Open.

See Also CRecordset::GetDefaultSQL, CRecordset::Open,
CRecordset::m_strFilter, CRecordset::m_strSort

1391

CRecordset::GetTableName

CRecordset::GetTableName

const CString& GetTableName() const;

Return Value
A const reference to a CString that contains the table name, if the recordset is based
on a table; otherwise, an empty string.

Remarks
Call this member function to get the name of the SQL table on which the recordset’s
query is based. GetTableName is only valid if the recordset is based on a table, not
a join of multiple tables or a predefined query (stored procedure). The name is
read-only.

Important Call this member function only after calling Open.

CRecordset::IsBOF

BOOL IsBOF() const;

Return Value

Nonzero if the recordset contains no records or if you have scrolled backward before
the first record; otherwise 0.

Remarks
Call this member function before you scroll from record to record to learn whether
you have gone before the first record of the recordset. You can also use IsSBOF along
with ISEOQF to determine whether the recordset contains any records or is empty.
Immediately after you call Open, if the recordset contains no records, ISBOF returns
nonzero.When you open a recordset that has at least one record, the first record is the
current record and IsSBOF returns O.

If the first record is the current record and you call MovePrev, IsSBOF will
subsequently return nonzero. If ISBOF returns nonzero and you call MovePrev,
an error occurs. If IsSBOF returns nonzero, the current record is undefined, and
any action that requires a current record will result in an error.

Example

This example uses IsBOF and ISEOF to detect the limits of a recordset as the code
scrolls through the recordset in both directions.

// Open a recordset; first record is current

CCustSet rsCustSet(NULL);

rsCustSet.0Open();

if(rsCustSet.IsBOF())
return; // The recordset is empty

while (IrsCustSet.ISEOF()) // Scroll to the end of the recordset
rsCustSet.MoveNext();

// Past last record, so no record is current

1392

rsCustSet.Movelast(); // Move to the Tast record

while(!rsCustSet.IsBOF()) // Scroll to beginning of the recordset
rsCustSet.MovePrev();

// Past first record, so no record is current

rsCustSet.MoveFirst(); // First record is current again

See Also CRecordset::ISEOF, CRecordset::MoveFirst, CRecordset::MovePrev

CRecordset::IsEOF

CRecordset::IsDeleted

BOOL IsDeleted() const;

Return Value
Nonzero if the recordset is positioned on a deleted record; otherwise 0.

Remarks
Call this member function to determine whether the current record has been deleted.
If it has, you must scroll to another record before you can perform any other recordset
operations. IsDeleted returns nonzero only if you deleted a record and did not scroll
off that record.

See Also CRecordset::IsSBOF, CRecordset::ISEOF, CRecordset::Delete

CRecordset:: IsEOF

BOOL IsEOF() const;

Return Value
Nonzero if the recordset contains no records or if you have scrolled beyond the last
record; otherwise 0.

Remarks
Call this member function as you scroll from record to record to learn whether you
have gone beyond the last record of the recordset. You can also use ISEOF to
determine whether the recordset contains any records or is empty. Immediately after
you call Open, if the recordset contains no records, ISEOF returns nonzero. When
you open a recordset that has at least one record, the first record is the current record
and ISEOF returns 0.

If the last record is the current record when you call MoveNext, ISEOF will
subsequently return nonzero. If ISEQF returns nonzero and you call MoveNext, an
error occurs. If ISEOF returns nonzero, the current record is undefined, and any
action that requires a current record will result in an error.

Example
See the example for ISBOF.

See Also CRecordset::IsBOF, CRecordset::MoveLast, CRecordset::MoveNext

1393

CRecordset::IsFieldDirty

CRecordset::IsFieldDirty

BOOL IsFieldDirty(void* pv);
throw(CMemoryException);

Return Value

Nonzero if the specified field data member is flagged as dirty; otherwise 0.

Parameters

Remarks

pv A pointer to the field data member whose status you want to check, or NULL to
determine if any of the fields are dirty.

Call this member function to determine whether the specified field data member of a
dynaset has been flagged as “dirty” (changed). The data in all dirty field data
members will be transferred to the record on the data source when the current record
is updated by a call to the Update member function of CRecordset (following a call
to Edit or AddNew). With this knowledge, you can take further steps, such as
unflagging the field data member to mark the column so it will not be written to the
data source. For more information on the dirty flag, see the article “Recordset: How
Recordsets Select Records (ODBC)” in Programming with MFC.

Using NULL for the first argument of the function will apply the function only to
outputColumns, not params. For instance, the call

SetFieldNul1(NULL);
will set only outputColumns to NULL. Params will be unaffected.

To work on params, you must supply the actual address of the individual param you
want to work on, such as:

SetFieldNul1(&m_strParam);

This means you cannot set all params NULL, as you can with outputColumns.
IsFieldDirty is implemented through DoFieldExchange.

See Also CRecordset::SetFieldDirty, CRecordset::IsFieldNull

CRecordset::IsFieldNull

BOOL IsFieldNull(void* pv);
throw(CMemoryException);

Return Value

1394

Nonzero if the specified field data member is flagged as Null; otherwise 0.

CRecordset::IsFieldNullable

Parameters

Remarks

pv A pointer to the field data member whose status you want to check, or NULL to
determine if any of the fields are Null.

Call this member function to determine whether the specified field data member of a
dynaset has been flagged as Null. (In database terminology, Null means “having no
value” and is not the same as NULL in C++.) If a field data member is flagged as
Null, it is interpreted as a column of the current record for which there is no value.

Using NULL for the first argument of the function will apply the function only to
outputColumns, not params. For instance, the call

SetFieldNul1(NULL);
will set only outputColumns to NULL. Params will be unaffected.

To work on params, you must supply the actual address of the individual param you
want to work on, such as:

SetFieldNul1(&m_strParam);

This means you cannot set all params NULL, as you can with outputColumns.
IsFieldNull is implemented through DoFieldExchange.

See Also CRecordset::SetFieldNull, CRecordset::IsFieldDirty

CRecordset::IsFieldNullable

BOOL IsFieldNullable(void* pv);
throw(CDBException)

Parameters

Remarks

pv A pointer to the field data member whose status you want to check, or NULL to
determine if any of the fields can be set to a Null value.

Call this member function to to determine whether the specified field data member is
“nullable” (can be set to a Null value; C++ NULL is not the same as Null, which, in
database terminology, means “having no value”).

A field that cannot be Null must have a value. If you attempt to set a such a field to
Null when adding or updating a record, the data source rejects the addition or update,
and Update will throw an exception. The exception occurs when you call Update,
not when you call SetFieldNull.

1395

CRecordset::IsOpen

Using NULL for the first argument of the function will apply the function only to
outputColumns, not params. For instance, the call

SetFieldNull1(NULL);
will set only outputColumns to NULL. Params will be unaffected.

To work on params, you must supply the actual address of the individual param you
want to work on, such as:

SetFieldNul1(&m_strParam);

This means you cannot set all params NULL, as you can with outputColumns.
IsFieldNullable is implemented through DoFieldExchange.

See Also CRecordset::IsFieldNull, CRecordset::SetFieldNull

CRecordset::IsOpen

BOOL IsOpen() const;

Return Value
Nonzero if the recordset object’s Open or Requery member function has previously
been called and the recordset has not been closed; otherwise 0.

Remarks
Call this member function to determine if the recordset is already open.

CRecordset::Move

virtual void Move(long [Rows);
throw(CDBException);
throw(CFileException);
throw(CMemoryException);

Parameters
[Rows The number of rows to move forward or backward. Positive values move
forward, toward the end of the recordset. Negative values move backward, toward
the beginning.

Remarks
Call this member function to position the recordset [Rows records from the current
record. You can move forward or backward. Move(1) is equivalent to MoveNext,
and Move(-1) is equivalent to MovePrev. For more information, see the article
“Recordset: Scrolling (ODBC)” in Programming with MFC.

1396

CRecordset::MoveFirst

Call Move with the parameter AFX_MOVE_REFRESH to refresh the current
record by restoring the value it had before an AddNew or Edit call. This call also
ends any current AddNew or Edit mode if you were in one. This call does not refresh
data in a snapshot, since a snapshot is, by definition a static copy of the data, but you
can use it to end an AddNew or Edit mode.

Caution Calling any of the Move functions throws an exception if the recordset has no
records. Call both IsBOF and ISEOF before any move operation to determine whether the
recordset has any records.

if you have scrolled past the beginning or end of the recordset (ISBOF or ISEOF returns
nonzero), a call to Move results in an error. Move throws a CDBException.

If you call any of the Move functions while the current record is being updated or added, the
updates are lost without warning.

Example
This example uses Move to move from the first record of a newly opened recordset to
the sixth.

rsCust.MoveFirst();
rsCust.Move(5);

See Also CRecordset::MoveNext, CRecordset::MovePrev,
CRecordset::MoveFirst, CRecordset::MoveLast, CRecordset::ISBOF,
CRecordset: :ISEOF

CRecordset::MoveFirst

void MoveFirst();
throw(CDBException);
throw(CMemoryException);
throw(CFileException);

Remarks
Call this member function to make the first record in the recordset (if any) the current
record.

You do not have to call MoveFirst immediately after you open the recordset. At that
time, the first record (if any) is automatically the current record.

Caution Calling any of the Move functions throws an exception if the recordset has no
records. Call both ISBOF and ISEOF before any move operation to determine whether the
recordset has any records.

If you call any of the Move functions while the current record is being updated or added, the
updates are lost without warning.

1397

CRecordset::MoveL.ast
Example
See the example for ISBOF.

See Also CRecordset::MoveLast, CRecordset::MoveNext,
CRecordset::MovePrev, CRecordset::IsBOF

CRecordset::MovelLast

void MoveLast();
throw(CDBException);
throw(CMemoryException);
throw(CFileException);

Remarks
Call this member function to make the last record (if any) in the recordset the current
record.

Caution Calling any of the Move functions throws an exception if the recordset has no
records. Call both IsBOF and ISEOF before any move operation to determine whether the
recordset has any records.

Example
See the example for ISBOF.

See Also CRecordset::MoveFirst, CRecordset::MoveNext,
CRecordset::MovePrev, CRecordset::IsEOF

CRecordset::MoveNext

void MoveNext();
throw(CDBException);
throw(CMemoryException);
throw(CFileException);

Remarks
Call this member function to make the next record in the recordset the current record.

It is recommended that you call ISEOF before you attempt to move to the next record.
If you call MoveNext when the last record is current, ISEOF will subsequently return
nonzero, and calling MoveNext again results in an error. A call to MoveNext will
throw a CDBException if ISEOF returns nonzero, indicating that you have already
scrolled past the last record, or that no records were selected by the recordset.

1398

Example

CRecordset::OnSetOptions

Caution Calling any of the Move functions throws an exception if the recordset has no
records. Call both IsBOF and ISEQF before any move operation to determine whether the
recordset has any records.

See the example for IsSBOF.

See Also CRecordset::MovePrev, CRecordset::MoveFirst,
CRecordset::MoveLast, CRecordset::ISEOF

CRecordset::MovePrev

Remarks

Example

void MovePrev();
throw(CDBException);
throw(CMemoryException);
throw(CFileException);

Call this member function to make the previous record in the recordset the current
record.

It is recommended that you call ISBOF before you attempt to move to the previous
record. If you call MovePrev when the first record is current, IsSBOF will
subsequently return nonzero, and calling MovePrev again results in an error.

A call to MovePrev will throw a CDBException if ISBOF returns nonzero,
indicating either that you have already scrolled before the first record or that no
records were selected by the recordset.

Caution Calling any of the Move functions throws an exception if the recordset has no
records. Call both IsBOF and ISEOF before any move operation to determine whether the
recordset has any records.

See the example for ISBOF.

See Also CRecordset::MoveNext, CRecordset::MoveFirst,
CRecordset::MoveLast, CRecordset::IsBOF

CRecordset::OnSetOptions

virtual void OnSetOptions(HSTMT #Astmt);

Parameters

hstmt The HSTMT of the ODBC statement whose options are to be set.

1399

CRecordset::OnWaitForDataSource

Remarks

The framework calls this member function to set initial options for the recordset.
OnSetOptions determines the data source’s support for scrollable cursors and for
cursor concurrency and sets the recordset’s options accordingly.

Override OnSetOptions to set additional options specific to the driver or the data
source. For example, if your data source supports opening for exclusive access, you
might override OnSetOptions to take advantage of that ability.

For more information about cursors, see the article “ODBC” in Programming
with MFC.

See Also CDatabase::OnSetOptions

CRecordset::OnWaitForDataSource

virtual void OnWaitForDataSource(BOOL bStillExecuting);

Parameters

Remarks

bStillExecuting Nonzero if the data source is still executing an asynchronous
operation begun previously, or 0 if the data source has finished execution.

The framework calls this member function to yield processing time to other
applications.

Override OnWaitForDataSource if you want to give the user a chance to

cancel a long operation for this recordset. You must check whether the user wants
to abort; if so, call the Cancel member function. The framework will eventually
break out of the OnWaitForDataSource loop. The default implementation

calls the OnWaitForDataSource member function of class CDatabase. (See
CDatabase::OnWaitForDataSource for details.) Override the CDatabase version
if you need to customize the handling of all recordsets associated with a CDatabase
object, but in general override this version instead.

See Also CDatabase::OnWaitForDataSource, CRecordset::Cancel

CRecordset: :Open

1400

virtual BOOL Open(UINT nOpenType = AFX_DB_USE_DEFAULT_TYPE,
LPCSTR IpszSql = NULL, DWORD dwOptions = none);
throw(CDBException); '
throw(CMemoryException);
throw(CFileException);

CRecordset::Open

Return Value
Nonzero if the CRecordset object was successfully opened; otherwise 0 if
CDatabase::Open (if called) returns 0.

Parameters
nOpenIype Accept the default value, AFX_DB_USE_DEFAULT_TYPE, or use
one of the following values from the enum OpenType:

e CRecordset::dynaset A dynamic recordset with bi-directional scrolling.
o CRecordset::snapshot A static recordset with bi-directional scrolling.
¢ CRecordset::forwardOnly A read-only recordset with only forward

scrolling.

For CRecordset, the default value is CRecordset::snapshot. The default-value
mechanism allows the Visual C++ wizards to work on both ODBC CRecordset
and DAO CDaoRecordset, which have different defaults.

Caution I the requested type is not supported, the framework throws an exception.

IpszSql A string pointer containing one of the following:
e A NULL pointer.
e The name of a table.

¢ An SQL SELECT statement (optionally with an SQL WHERE or ORDER
BY clause).

e A CALL statement specifying the name of a predefined query (stored
procedure).

For more information about this string, see the table and the discussion of
ClassWizard’s role under Remarks.

Note The order of the columns in your result set must match the order of the RFX function
calls in your DoFieldExchange function override.

dwOptions One of the mutually exclusive values listed below. The default value is
none. Possible values are as follows:

e CRecordset::none No options set. By default, the recordset can be updated
with Edit or Deléte and allows appending new records with AddNew.
Updatability depends on the data source as well as on the option you specify.

¢ CRecordset::appendOnly Do not allow Edit or Delete on the recordset.
Allow AddNew only.

e CRecordset::readOnly Open the recordset as read-only.

1401

CRecordset::Open

Remarks

1402

You must call this member function to run the query defined by the recordset. Before
calling Open, you must construct the recordset object.

This recordset’s connection to the data source depends on how you construct the
recordset before calling Open. If you pass a CDatabase object to the recordset
constructor that has not been connected to the data source, this member function uses
GetDefaultConnect to attempt to open the database object. If you pass NULL to the
recordset constructor, the constructor constructs a CDatabase object for you, and
Open attempts to connect the database object. For details on closing the recordset and
the connection under these varying circumstances, see Close.

Note Access to a data source through a recordset is always shared. You cannot use a
recordset to open a data source with exclusive access.

When you call Open, a query, usually an SQL. SELECT statement, selects records
based on criteria shown in the following table.

Value of the Records selected Example
IpszSQL parameter are determined by
NULL The string returned by
GetDefaultSQL.
SQL table name All columns of the table-list in "Customer”
DoFieldExchange.
Predefined query (stored The columns the query is defined "{call
procedure) name. to return. OverDueAccts}"
SELECT column-list The specified columns from the "SELECT Custld,
FROM table-list specified table(s). CustName FROM
Customer”

The usual procedure is to pass NULL to Open; in that case, Open calls
GetDefaultSQL, whose value is generated by ClassWizard. This value gives
the table name you specified in ClassWizard. You can instead specify other
information in the lpszSQL parameter.

Whatever you pass, Open constructs a final SQL string for the query (the string may
have SQL. WHERE and ORDER BY clauses appended to the IpszSQL string you
passed) and then executes the query. You can examine the constructed string by
calling GetSQL after calling Open. For additional details about how the recordset
constructs an SQL statement and selects records, see the article “Recordset: How
Recordsets Select Records (ODBC)” in Programming with MFC.

The field data members of your recordset class are bound to the columns of the data
selected. If any records are returned, the first record becomes the current record.

If you want to set options for the recordset, such as a filter or sort, specify these after
you construct the recordset object but before you call Open. If you want to refresh the
records in the recordset after the recordset is already open, call Requery.

Example

For more information, including additional examples, see the articles “Recordset
(ODBC),” “Recordset: How Recordsets Select Records (ODBC),” and ‘“Recordset:
Creating and Closing Recordsets (ODBC)” in Programming with MFC.

The first example shows how to use dwOptions to open a read-only recordset based
on the recordset class’s default SQL statement. The second example gives several
different forms of the Open call.

//Example for CRecordset::0pen
void CMyDocument::MyCustomerFunction()

{
// Construct the recordset object
CCustSet dsCustSet(NULL);
// Initialize the recordset
dsCustSet.Open(CRecordset::snapshot, NULL, CRecordset::readOnly);
1/ ...
}

// Pass a complete SELECT statement

dsCustSet.Open(CRecordset::snapshot, "Select L_Name from Customer");
// Pass just a table name

dsCustSet.Open(CRecordset::snapshot, "Customer");

// Accept all defaults

dsCustSet.Open();

}

See Also CRecordset::CRecordset, CRecordset::Close,
CRecordset::GetDefaultSQL, CRecordset::GetSQL, CRecordset::m_strFilter,
CRecordset::m_strSort, CRecordset::Requery

CRecordset::Requery

CRecordset::Requery

virtual BOOL Requery();
throw(CDBException);
throw(CMemoryException);
throw(CFileException);

Return Value

Remarks

Nonzero if the recordset was successfully rebuilt; otherwise 0.

Call this member function to rebuild (refresh) a recordset. If any records are returned,
the first record becomes the current record.

In order for the recordset to reflect the additions and deletions that you or other users
are making to the data source, you must rebuild the recordset by calling Requery. If
the recordset is a dynaset, it automatically reflects updates that you or other users
make to its existing records (but not additions). If the recordset is a snapshot, you
must call Requery to reflect edits by other users as well as additions and deletions.

1403

CRecordset::SetFieldDirty

For either a dynaset or a snapshot, call Requery any time you want to rebuild the
recordset using a new filter or sort, or new parameter values. Set the new filter or sort
property by assigning new values to m_strFilter and m_strSort before calling
Requery. Set new parameters by assigning new values to parameter data members
before calling Requery. If the filter and sort strings are unchanged, you can reuse the
query, which improves performance.

If the attempt to rebuild the recordset fails, the recordset is closed. Before you call
Requery, you can determine whether the recordset can be requeried by calling the
CanRestart member function. CanRestart does not guarantee that Requery will
succeed.

Caution Call Requery only after you have called Open.

Example
This example rebuilds a recordset to apply a different sort order.

//Example for CRecordset::Requery
CCustSet rsCustSet(NULL); // Open the recordset
rsCustSet.0Open();
// Use the recordset ..
// Set the sort order and Requery the recordset
rsCustSet.m_strSort = “District, Last_Name”;
if(!rsCustSet.CanRestart())

return; // Unable to requery
if(!rsCustSet.Requery())

// Requery failed, so take action

See Also CRecordset::CanRestart, CRecordset::m_strFilter,
CRecordset::m_strSort

CRecordset::SetFieldDirty

void SetFieldDirty(void* pv, BOOL bDirty = TRUE);

Parameters
pv Contains the address of a field data member in the recordset or NULL. If NULL,
all field data members in the recordset are flagged. (C++ NULL is not the same as
Null in database terminology, which means “having no value.”)

bDirty TRUE if the field data member is to be flagged as “dirty” (changed).
Otherwise FALSE if the field data member is to be flagged as “clean”
(unchanged).

Remarks
Call this member function to flag a field data member of the recordset as changed or
as unchanged. Marking fields as unchanged ensures the field is not updated and
results in less SQL traffic.

1404

CRecordset::SetFieldNull

The framework marks changed field data members to ensure they will be written to
the record on the data source by the record field exchange (RFX) mechanism.
Changing the value of a field generally sets the field dirty automatically, so you will
seldom need to call SetFieldDirty yourself, but you might sometimes want to ensure
that columns will be explicitly updated or inserted regardless of what value is in the
field data member.

Important Cali this member function only after you have called Edit or AddNew.

Using NULL for the first argument of the function will apply the function only to
outputColumns, not params. For instance, the call

SetFieldNul1(NULL);

will set only outputColumns to NULL. Params will be unaffected.

To work on params, you must supply the actual address of the individual param you
want to work on, such as:

SetFieldNul1(&m_strParam);
This means you cannot set all params NULL, as you can with outputColumns.

See Also CRecordset::IsFieldDirty, CRecordset::SetFieldNull,
CRecordset::Edit, CRecordset::Update

CRecordset::SetFieldNull

void SetFieldNull(void* pv, BOOL bNull = TRUE);

Parameters

Remarks

pv Contains the address of a field data member in the recordset or NULL. If NULL,
all field data members in the recordset are flagged. (C++ NULL is not the same as
Null in database terminology, which means “having no value.”)

bNull Nonzero if the field data member is to be flagged as having no value (Null).
Otherwise 0 if the field data member is to be flagged as non-Null.

Call this member function to flag a field data member of the recordset as Null
(specifically having no value) or as non-Null. When you add a new record to a
recordset, all field data members are initially set to a Null value and flagged as
“dirty” (changed). When you retrieve a record from a data source, its columns either
already have values or are Null.

For example, if you specifically wish to designate a field of the current record as not
having a value, call SetFieldNull with bNull set to TRUE to flag it as Null. If a field
was previously marked Null and you now want to give it a value, simply set its new
value. You do not have to remove the Null flag with SetFieldNull. To determine
whether the field is allowed to be Null, call IsFieldNullable.

1405

CRecordset::SetLockingMode

Important Call this member function only after you have called Edit or AddNew.

Using NULL for the first argument of the function will apply the function only to
outputColumns, not params. For instance, the call

SetFieldNull1(NULL);

will set only outputColumns to NULL. Params will be unaffected.

To work on params, you must supply the actual address of the individual param you
want to work on, such as:

SetFieldNul1(&m_strParam);
This means you cannot set all params NULL, as you can with outputColumns.
SetFieldNull is implemented through DoFieldExchange.

See Also CRecordset::IsFieldNull, CRecordset::SetFieldDirty,
CRecordset::Edit, CRecordset::Update, CRecordset::IsFieldNullable

CRecordset::SetlLockingMode

void SetLockingMode(UINT nMode);

Parameters
nMode Contains one of the following values from the enum LockMode:

e optimistic Optimistic locking locks the record being updated only during the
call to Update.

e pessimistic Pessimistic locking locks the record as soon as Edit is called and
keeps it locked until the Update call completes or you move to a new record.

Remarks
Call this member function if you need to specify which of two record-locking
strategies the recordset is using for updates. By default, the locking mode of a
recordset is optimistic. You can change that to a more cauntious pessimistic locking
strategy. Call SetLockingMode after you construct and open the recordset object but
before you call Edit.

See Also CRecordset::Edit, CRecordset::Update

1406

CRecordset::m_hstmt

CRecordset::Update

virtual BOOL Update();
throw(CDBException);

Return Value

Remarks

Example

Nonzero if one record was successfully updated; otherwise O if no columns have
changed. If no records were updated, or if more than one record was updated, an
exception is thrown. An exception is also thrown for any other failure on the data
source.

Call this member function after a call to the AddNew or Edit member function. This
call is required to complete the AddNew or Edit operation.

Both AddNew and Edit prepare an edit buffer in which the added or edited data is
placed for saving to the data source. Update saves the data. Only those fields marked
or detected as changed are updated.

If the data source supports transactions, you can make the Update call (and its
corresponding AddNew or Edit call) part of a transaction. For more information
about transactions, see the article “Transaction (ODBC)” in Programming with MFC.

Caution If you call Update without first calling either AddNew or Edit, Update throws a
CDBException. If you call AddNew or Edit, you must call Update before you call MoveNext
or close either the recordset or the data source connection. Otherwise, your changes are lost
without notification.

For details on handling Update failures, see the article “Recordset: How Recordsets
Update Records (ODBC)” in Programming with MFC.

See the article “Transaction: Performing a Transaction in a Recordset (ODBC)” in
Programming with MFC.

See Also CRecordset::Edit, CRecordset::AddNew, CRecordset::SetFieldDirty,
CDBException

Data Members

CRecordset::m_hstmt

Remarks

Contains a handle to the ODBC statement data structure, of type HSTMT, associated

with the recordset. Each query to an ODBC data source is associated with an
HSTMT.

1407

CRecordset::m_nFields

Caution Do not use m_hstmt before Open has been called.

Normally you do not need to access the HSTMT directly, but you might need it for
direct execution of SQL statements. The ExecuteSQL member function of class
CDatabase provides an example of using m_hstmt.

See Also CDatabase::ExecuteSQL

CRecordset::m_nFields

Remarks

Example

Contains the number of field data members in the recordset class—the number of
columns selected by the recordset from the data source. The constructor for the
recordset class must initialize m_nFields with the correct number. ClassWizard
writes this initialization for you when you use it to declare your recordset class. You
can also write it manually.

The framework uses this number to manage interaction between the field data
members and the corresponding columns of the current record on the data source.

Important This number must correspond to the number of “output columns” registered in
DoFieldExchange after a call to SetFieldType with the parameter
CFieldExchange::outputColumn.

You can bind columns dynamically, as explained in the article “Recordset:
Dynamically Binding Data Columns (ODBC)” in Programming With MFC. If you do
so, you must increase the count in m_nFields to reflect the number of RFX function
calls in your DoFieldExchange member function for the dynamically bound
columns.

For more information, see the article “Recordset: Dynamically Binding Data
Columns (ODBC)” in Programming with MFC.

See the article “Record Field Exchange: Using REX” in Programming with MFC.

See Also CRecordset::m_nParams

CRecordset::m_nParams

Remarks

1408

Contains the number of parameter data members in the recordset class—the number
of parameters passed with the recordset’s query. If your recordset class has any
parameter data members, the constructor for the class must initialize m_nParams
with the correct number. The value of m_nParams defaults to 0. If you add
parameter data members-—which you must do manually —you must also manually

Example

CRecordset::m_strFilter

add an initialization in the class constructor to reflect the number of parameters
(which must be at least as large as the number of ‘?” placeholders in your m_strFilter
or m_strSort string).

The framework uses this number when it parameterizes the recordset’s query.

Important This number must correspond to the number of “params” registered in
DoFieldExchange after a call to SetFieldType with the parameter CFieldExchange::param.

See the articles “Recordset: Parameterizing a Recordset (ODBC)” and “Record Field
Exchange: Using REX” in Programming with MFC.

See Also CRecordset::m_nFields

CRecordset::m_pDatabase

Remarks

Contains a pointer to the CDatabase object through which the recordset is connected
to a data source. This variable is set in two ways. Typically, you pass a pointer to an
already connected CDatabase object when you construct the recordset object. If you
pass NULL instead, CRecordset creates a CDatabase object for you and connects it.
In either case, CRecordset stores the pointer in this variable.

Normally you will not directly need to use the pointer stored in m_pDatabase. If you
write your own extensions to CRecordset, however, you might need to use the
pointer. For example, you might need the pointer if you throw your own
CDBExceptions. Or you might need it if you need to do something using the same
CDatabase object, such as running transactions, setting timeouts, or calling the
ExecuteSQL member function of class CDatabase to execute SQL statements
directly.

CRecordset::m_strFilter

Remarks

After you construct the recordset object, but before you call its Open member
function, use this data member to store a CString containing an SQL WHERE
clause. The recordset uses this string to constrain—or filter—the records it selects
during the Open or Requery call. This is useful for selecting a subset of records,
such as “all salespersons based in California” (“state = CA”). The ODBC SQL syntax
for a WHERE clause is:

WHERE search-condition

1409

CRecordset::m_strSort

Example

Note that you do not include the WHERE keyword in your string. The framework
supplies it.

You can also parameterize your filter string by placing ‘?* placeholders in it,
declaring a parameter data member in your class for each placeholder, and passing
parameters to the recordset at run time. This lets you construct the filter at run time.
For more information, see the article “Recordset: Parameterizing a Recordset
(ODBC)” in Programming with MFC.

For more information about SQL WHERE clauses, see the article “SQL.” For more
information about selecting and filtering records, see the article “Recordset: Filtering
Records (ODBC).” Both articles are in Programming with MFC.

//Example for CRecordset::m_strFilter

CCustSet rsCustSet(NULL); // Construct a snapshot object
rsCustSet.m_strFilter = “state = 'CA'”; // Set its filter

// Run the filtered query

rsCustSet.Open(CRecordset::snapshot, “Customers”);

See Also CRecordset::m_strSort, CRecordset::Requery

CRecordset::m_strSort

Remarks

1410

After you construct the recordset object, but before you call its Open member
function, use this data member to store a CString containing an SQL ORDER BY
clause. The recordset uses this string to sort the records it selects during the Open or
Requery call. You can use this feature to sort a recordset on one or more columns.
The ODBC SQL syntax for an ORDER BY clause is

ORDER BY sort-specification [, sort-specification]...

where a sort-specification is an integer or a column name. You can also specify
ascending or descending order (the order is ascending by default) by appending
“ASC” or “DESC” to the column list in the sort string. The selected records are
sorted first by the first column listed, then by the second, and so on. For example, you
might order a “Customers” recordset by last name, then first name. The number of
columns you can list depends on the data source. For more information, see the
ODBC SDK Programmer’s Reference.

Note that you do not include the ORDER BY keyword in your string. The
framework supplies it.

CRecordset::m_strSort

For more information about SQL clauses, see the article “SQL.” For more
information about sorting records, see the article “Recordset: Sorting Records
(ODBC).” Both articles are in Programming with MFC.

Example

CCustSet rsCustSet(NULL); // Construct a snapshot object
rsCustSet.m_strSort = “District, Last_Name”; // Set its sort string
rsCustSet.Open(CRecordset::snapshot, “Customers”); // Run the sorted query

See Also CRecordset::m_strFilter, CRecordset::Requery

1411

CRecordView

CRecordView

1412

A CRecordView object is a view that displays database records in controls. The view
is a form view directly connected to a CRecordset object. The view is created from a
dialog template resource and displays the fields of the CRecordset object in the
dialog template’s controls. The CRecordView object uses dialog data exchange
(DDX) and record field exchange (RFX) to automate the movement of data between
the controls on the form and the fields of the recordset. CRecordView also supplies a
default implementation for moving to the first, next, previous, or last record and an
interface for updating the record currently on view.

Note If you are working with the Data Access Objects (DAO) classes rather than the Open
Database Connectivity (ODBC) classes, use class CDaoRecordView instead. For more
information, see the articles “Database Overview” and “DAO and MFC” in Programming
with MFC.

The most common way to create your record view is with AppWizard. AppWizard
creates both the record view class and its associated recordset class as part of your
skeleton starter application. If you don’t create the record view class with
AppWizard, you can create it later with ClassWizard. If you simply need a single
form, the AppWizard approach is easier. ClassWizard lets you decide to use a record
view later in the development process. Using ClassWizard to create a record view and
a recordset separately and then connect them is the most flexible approach because it
gives you more control in naming the recordset class and its .H/.CPP files. This
approach also lets you have multiple record views on the same recordset class.

CRecordView

To make it easy for end-users to move from record to record in the record view,
AppWizard creates menu (and optionally toolbar) resources for moving to the first,
next, previous, or last record. If you create a record view class with ClassWizard, you
need to create these resources yourself with the menu and bitmap editors. For more
information about these resources, see the articles “AppWizard: Database Support”
and “ClassWizard: Creating a Database Form.”

For information about the default implementation for moving from record to record,
see IsOnFirstRecord and IsOnLastRecord and the article “Record Views: Using a
Record View.”

CRecordView keeps track of the user’s position in the recordset so that the record
view can update the user interface. When the user moves to either end of the
recordset, the record view disables user interface objects—such as menu items or
toolbar buttons—for moving further in the same direction.

For more information about declaring and using your record view and recordset
classes, see the article “Designing and Creating a Record View.” For more
information about how record views work and how to use them, see the articles
“Forms,” “Record Views,” and “Record Views: Using a Record View.” All the articles
mentioned above are in Programming with MFC.

#include <afxdb.h>
See Also CRecordset, CFormView
In Programming with MFC: “AppWizard,” “ClassWizard”

Construction

CRecordView Constructs a CRecordView object.

Attributes

OnGetRecordset Returns a pointer to an object of a class derived from
CRecordset. ClassWizard overrides this function for you and
creates the recordset if necessary.

IsOnFirstRecord Returns nonzero if the current record is the first record in the
associated recordset.

IsOnLastRecord Returns nonzero if the current record is the last record in the
associated recordset.

Operations

OnMove If the current record has changed, updates it on the data source,

then moves to the specified record (next, previous, first, or last).

1413

CRecordView::CRecordView

Member Functions
CRecordView::CRecordView

CRecordView(LPCSTR IpszTemplateName);
CRecordView(UINT n/DTemplate);

Parameters

Remarks

Example

1414

IpszTemplateName Contains a null-terminated string that is the name of a dialog
template resource.

nIDTemplate Contains the ID number of a dialog template resource.

‘When you create an object of a type derived from CRecordView, call either form of
the constructor to initialize the view object and identify the dialog resource on which
the view is based. You can either identify the resource by name (pass a string as the
argument to the constructor) or by its ID (pass an unsigned integer as the argument).
Using a resource ID is recommended.

Note Your derived class must supply its own constructor. In the constructor of your derived
class, call the constructor CRecordView::CRecordView with the resource name or ID as an
argument, as shown in the example below.

CRecordView::OnlnitialUpdate calls UpdateData, which calls DoDataExchange.
This initial call to DoDataExchange connects CRecordView controls (indirectly) to
CRecordset field data members created by ClassWizard. These data members cannot
be used until after you call the base class CFormView::OnlInitialUpdate member
function.

Note If you use ClassWizard, the wizard defines an enum value CRecordView: : 1DD and
specifies it in the member initialization list for the constructor where you see 1DD_MYFORM in
the example. The example shows how you can specify the dialog template resource ID if you
write the code yourself without the wizard.

CMyRecordView: :CMyRecordView()
: CRecordView(IDD_MYFORM)
{
//{{AFX_DATA_INIT(CMyRecordView)
// NOTE: the ClassWizard will add member initialization here
//}YYAFX_DATA_INIT
// Other construction code, such as data initialization

}

See Also CRecordset::DoFieldExchange, CView::OnlInitialUpdate,
CWnd::UpdateData

CRecordView::IsOnLastRecord

CRecordView::IsOnFirstRecord

BOOL IsOnFirstRecord();

Return Value

Remarks

Nonzero if the current record is the first record in the recordset; otherwise 0.

Call this member function to determine whether the current record is the first record
in the recordset object associated with this record view. This function is useful for
writing your own implementations of default command update handlers written by
ClassWizard.

If the user moves to the first record, the framework disables any user interface objects
you have for moving to the first or the previous record.

See Also CRecordView::OnMove, CRecordView::IsOnLastRecord,
CRecordset::IsBOF, CRecordset::GetRecordCount

CRecordView::IsOnLastRecord

BOOL IsOnLastRecord();

Return Value

Remarks

Nonzero if the current record is the last record in the recordset; otherwise 0.

Call this member function to determine whether the current record is the last record
in the recordset object associated with this record view. This function is useful for
writing your own implementations of the default command update handlers that
ClassWizard writes to support a user interface for moving from record to record.

Caution The result of this function is reliable except that the view cannot detect the end of
the recordset until the user has moved past it. The user must move beyond the last record
before the record view can tell that it must disable any user interface objects for moving to the
next or last record. If the user moves past the last record and then moves back to the last
record (or before it), the record view can track the user’s position in the recordset and disable
user interface objects correctly. IsOnLastRecord is also unreliable after a call to the
implementation function OnRecordLast, which handles the ID_RECORD_LAST command, or
CRecordset::MoveLast.

See Also CRecordView::OnMove, CRecordView::IsOnFirstRecord,
CRecordset::ISEOF, CRecordset::GetRecordCount

1415

CRecordView::OnGetRecordset

CRecordView::OnGetRecordset

virtual CRecordset* OnGetRecordset() = 0;

Return Value
A pointer to a CRecordset-derived object if the object was successfully created;
otherwise a NULL pointer.

Remarks
Returns a pointer to the CRecordset-derived object associated with the record view.
You must override this member function to construct or obtain a recordset object and
return a pointer to it. If you declare your record view class with ClassWizard, the
wizard writes a default override for you. ClassWizard’s default implementation
returns the recordset pointer stored in the record view if one exists. If not, it
constructs a recordset object of the type you specified with ClassWizard and calls its
Open member function to open the table or run the query, and then returns a pointer
to the object.

For more information and examples, see the article “Record Views: Using a Record
View” in Programming with MFC.

See Also CRecordset, CRecordset::Open

CRecordView::OnMove

virtual BOOL OnMove(UINT nIDMoveCommand);
throw(CDBException);

Return Value
Nonzero if the move was successful; otherwise 0 if the move request was denied.

Parameters
nIDMoveCommand One of the following standard command ID values:

e ID_RECORD_FIRST Move to the first record in the recordset.
e ID_RECORD_LAST Move to the last record in the recordset.
o ID_RECORD_NEXT Move to the next record in the recordset.
e ID_RECORD_PREV Move to the previous record in the recordset.
Remarks
Call this member function to move to a different record in the recordset and display
its fields in the controls of the record view. The default implementation calls the

appropriate Move member function of the CRecordset object associated with the
record view.

By default, OnMove updates the current record on the data source if the user has
changed it in the record view.

1416

CRecordView::OnMove

AppWizard creates a menu resource with First Record, Last Record, Next Record,
and Previous Record menu items. If you select the Dockable Toolbar option,
AppWizard also creates a toolbar with buttons corresponding to these commands.

If you move past the last record in the recordset, the record view continues to display
the last record. If you move backward past the first record, the record view continues
to display the first record.

Caution Calling OnMove throws an exception if the recordset has no records. Call the
appropriate user interface update handler function—OnUpdateRecordFirst,
OnUpdateRecordLast, OnUpdateRecordNext, or OnUpdateRecordPrev—before the
corresponding move operation to determine whether the recordset has any records. For
information about the update handlers, see the article “AppWizard: Database Support” in
Programming with MFC.

See Also CRecordset::Move

1417

CRect

CRect

The CRect class is similar to a Windows RECT structure. CRect also includes
member functions to manipulate CRect objects and Windows RECT structures.

A CRect object can be passed as a function parameter wherever a RECT structure,
LPCRECT, or LPRECT can be passed.

Note This class is derived from the tagRECT structure. (The name tagRECT is a less-
commonly-used name for the RECT structure.) This means that the data members (left, top,
right, and bottom) of the RECT structure are accessible data members of CRect.

A CRect contains member variables that define the top-left and bottom-right points
of a rectangle.

When specifying a CRect, you must be careful to construct it so that it is
normalized—in other words, such that the value of the left coordinate is less than the
right and the top is less than the bottom. For example, a top left of (10,10) and
bottom right of (20,20) defines a normalized rectangle but a top left of (20,20) and
bottom right of (10,10) defines a non-normalized rectangle. If the rectangle is not
normalized, many CRect member functions may return incorrect results. (See
CRect::NormalizeRect for a list of these functions.) Before you call a function that
requires normalized rectangles, you can normalize non-normalized rectangles by
calling the NormalizeRect function.

Use caution when manipulating a CRect with the CDC::DPtoL.P and
CDC::LPtoDP member functions. If the mapping mode of a display context is such
that the y-extent is negative, as in MM_LOENGLISH, then CDC::DPtoLP will
transform the CRect so that its top is greater than the bottom. Functions such as
Height and Size will then return negative values for the height of the transformed
CRect, and the rectangle will be non-normalized.

When using overloaded CRect operators, the first operand must be a CRect; the
second can be either a RECT structure or a CRect object.

#include <afxwin.h>

See Also CPoint, CSize, RECT

Construction

CRect Constructs a CRect object.
Operations

Width Calculates the width of CRect.
Height Calculates the height of CRect.
Size Calculates the size of CRect.

1418

TopLeft Returns the top-left point of CRect.

BottomRight Returns the bottom-right point of CRect.

IsRectEmpty Determines whether CRect is empty. CRect is empty if the
width and/or height are 0.

IsRectNull Determines whether the top, bottom, left, and right member
variables are all equal to O.

PtInRect Determines whether the specified point lies within CRect.

SetRect Sets the dimensions of CRect.

SetRectEmpty Sets CRect to an empty rectangle (all coordinates equal to 0).

CopyRect Copies the dimensions of a source rectangle to CRect.

EqualRect Determines whether CRect is equal to the given rectangle.

InflateRect Increases the width and height of CRect.

DeflateRect Decreases the width and height of CRect.

NormalizeRect Standardizes the height and width of CRect.

OffsetRect Moves CRect by the specified offsets.

SubtractRect Subtracts one rectangle from another.

IntersectRect Sets CRect equal to the intersection of two rectangles.

UnionRect Sets CRect equal to the union of two rectangles.

Operators

operator LPCRECT Converts a CRect to an LPCRECT.

operator LPRECT Converts a CRect to an LPRECT.

operator = Copies the dimensions of a rectangle to CRect.

operator == Determines whether CRect is equal to a rectangle.

operator !=
operator +=
operator —=
operator &=
operator |=
operator +

operator —
operator &

operator |

Determines whether CRect is not equal to a rectangle.
Adds the specified offsets to CRect or inflates CRect.
Subtracts the specified offsets from CRect or deflates CRect.

Sets CRect equal to the intersection of CRect and a rectangle.

Sets CRect equal to the union of CRect and a rectangle.

Adds the given offsets to CRect or inflates CRect and returns
the resulting CRect.

Subtracts the given offsets from CRect or deflates CRect and
returns the resulting CRect.

Creates the intersection of CRect and a rectangle and returns
the resulting CRect.

Creates the union of CRect and a rectangle and returns the
resulting CRect.

CRect

1419

CRect::BottomRight

Member Functions
CRect::BottomRight

CPoint& BottomRight();
const CPoint& BottomRight() const;

Return Value
The coordinates of the bottom-right corner of the rectangle.

Remarks

The coordinates are returned as a reference to a CPoint object that is contained in
CRect.

You can use this function to either get or set the bottom-right corner of the rectangle.
Set the corner by using this function on the left side of the assignment operator.

See Also CRect::TopLeft, CPoint

CRect::CopyRect

void CopyRect(LPCRECT IpSrcRect);
Parameters
IpSrcRect Points to the RECT structure or CRect object that is to be copied.

Remarks
Copies the IpSrcRect rectangle into CRect.

See Also CRect::CRect, CRect::operator =, CRect::SetRect,
CRect::SetRectEmpty

CRect::CRect

CRect();

CRect(int , int ¢, int r, int b);

CRect(const RECT& srcRect);

CRect(LPCRECT IpSrcRect);

CRect(POINT point, SIZE size);

CRect(POINT topLeft, POINT bottomRight);

Parameters
[Specifies the left position of CRect.

t Specifies the top of CRect.
r Specifies the right position of CRect.

1420

CRect::DeflateRect

b Specifies the bottom of CRect.
srcRect Refers to the RECT structure with the coordinates for CRect.
IpSrcRect Points to the RECT structure with the coordinates for CRect.

point Specifies the origin point for the rectangle to be constructed. Corresponds to
the top-left corner.

size Specifies the displacement from the top-left corner to the bottom-right corner of
the rectangle to be constructed.

topLeft Specifies the top-left position of CRect.
bottomRight Specifies the bottom-right position of CRect.

Remarks
Constructs a CRect object. If no arguments are given, left, top, right, and bottom
members are not initialized.

The CRect(const RECT&) and CRect(LPCRECT) constructors perform a
CopyRect. The other constructors initialize the member variables of the object
directly.

See Also CRect::SetRect, CRect::CopyRect, CRect::operator =,
CRect::SetRectEmpty

CRect::DeflateRect

void DeflateRect(int x, int y);

void DeflateRect(SIZE size);

void DeflateRect(LPCRECT IpRect);
void DeflateRect(int /, int 7, int 7, int b);

Parameters
x Specifies the number of units to deflate the left and right sides of CRect.

y Specifies the number of units to deflate the top and bottom of CRect.

size A SIZE or CSize that specifies the number of units to deflate CRect. The cx
value specifies the number of units to deflate the left and right sides and the ¢y
value specifies the number of units to deflate the top and bottom.

IpRect Points to a RECT structure or CRect that specifies the number of units to
deflate each side.

[Specifies the number of units to deflate the left side of CRect.

t Specifies the number of units to deflate the top of CRect.

r Specifies the number of units to deflate the right side of CRect.
b Specifies the number of units to deflate the bottom of CRect.

1421

CRect::EqualRect

Remarks
DeflateRect deflates CRect by moving its sides toward its center. To do this,
DeflateRect adds units to the left and top and subtracts units from the right and
bottom. The parameters of DeflateRect are signed values; positive values deflate
CRect and negative values inflate it.

The first two overloads deflate both pairs of opposite sides of CRect so that its total
width is decreased by two times x (or cx) and its total height is decreased by two
times y (or ¢y). The other two overloads deflate each side of CRect independently of
the others.

See Also CRect::InflateRect, CRect::operator -, CRect::operator -=,
::InflateRect

CRect::EqualRect

BOOL EqualRect(LPCRECT IpRect) const;

Return Value
Nonzero if the two rectangles have the same top, left, bottom, and right values;
otherwise 0.

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

Parameters
IpRect Points to a RECT structure or CRect object that contains the upper-left and
lower-right corner coordinates of a rectangle.

See Also CRect::operator ==, CRect::operator !=, CRect::NormalizeRect,
::EqualRect

CRect::Height

int Height() const;
Return Value
The height of CRect.

Remarks
Calculates the height of CRect by subtracting the top value from the bottom value.
The resulting value may be negative.

Note The rectangle must be normalized or this function may fail. You can call NormalizeRect
to normalize the rectanglie before calling this function.

See Aiso CRect::Width, CRect::Size, CRect::IsRectEmpty, CRect::IsRectNull,
CRect::NormalizeRect

1422

CRect::IntersectRect

CRect::InflateRect

void InflateRect(int x, int y);

void InflateRect(SIZE size);

void InflateRect(LPCRECT IpRect);
void InflateRect(int /, int ¢, int 7, int b);

Parameters
x Specifies the number of units to inflate the left and right sides of CRect.

y Specifies the number of units to inflate the top and bottom of CRect.

size A SIZE or CSize that specifies the number of units to inflate CRect. The cx
value specifies the number of units to inflate the left and right sides and the cy
value specifies the number of units to inflate the top and bottom.

IpRect Points to a RECT structure or CRect that specifies the number of units to
inflate each side.

I Specifies the number of units to inflate the left side of CRect.
t Specifies the number of units to inflate the top of CRect.
r Specifies the number of units to inflate the right side of CRect.

b Specifies the number of units to inflate the bottom of CRect.

Remarks
InflateRect inflates CRect by moving its sides away from its center. To do this,
InflateRect subtracts units from the left and top and adds units to the right and
bottom. The parameters of InflateRect are signed values; positive values inflate
CRect and negative values deflate it.

The first two overloads inflate both pairs of opposite sides of CRect so that its total
width is increased by two times x (or cx) and its total height is increased by two times
y (or cy). The other two overloads inflate each side of CRect independently of the
others.

See Also CRect::DeflateRect, CRect::operator +, CRect::operator +=,
::InflateRect

CRect::IntersectRect

BOOL IntersectRect(LPCRECT IpRectl, LPCRECT IpRect2);

Return Value
Nonzero if the intersection is not empty; 0 if the intersection is empty.

1423

CRect::IsRectEmpty

Parameters
IpRect] Points to a RECT structure or CRect object that contains a source
rectangle.

IpRect2 Points to a RECT structure or CRect object that contains a source
rectangle.

Remarks
Makes a CRect equal to the intersection of two existing rectangles. The intersection
is the largest rectangle contained in both existing rectangles.

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

See Also CRect::operator &=, CRect::operator &, CRect::UnionRect,
CRect::SubtractRect, CRect::NormalizeRect, ::IntersectRect

CRect::IsRectEmpty

BOOL IsRectEmpty() const;

Return Value
Nonzero if CRect is empty; O if CRect is not empty.

Remarks
Determines whether CRect is empty. A rectangle is empty if the width and/or height
are 0 or negative. Differs from IsRectNull, which determines whether all coordinates
of the rectangle are zero.

Note The rectangle must be normalized or this function may fail. You can call NormalizeRect
to normalize the rectangle before calling this function.

See Also CRect::IsRectNull, CRect::SetRectEmpty, CRect::NormalizeRect,
::IsRectEmpty

CRect::IsRectNull

BOOL IsRectNull() const;

Return Value
Nonzero if CRect’s top, left, bottom, and right values are all equal to 0; otherwise 0.

Remarks
Determines whether the top, left, bottom, and right values of CRect are all equal to 0.
Differs from IsRectEmpty, which determines whether the rectangle is empty.

See Also CRect::IsRectEmpty, CRect::SetRectEmpty

1424

CRect::NormalizeRect

void NormalizeRect();

Remarks
Normalizes CRect so that both the height and width are positive. The function does a
comparison of the top and bottom value, swapping them if the bottom is greater than
the top. The same action is performed on the left and right values. This function is
useful when dealing with different mapping modes and inverted rectangles.

Note The following CRect member functions require normalized rectangles in order to work
properly: Height, Width, Size, IsRectEmpty, PtinRect, EqualRect, UnionRect,
IntersectRect, SubtractRect, operator ==, operator !=, operator |, operator |=, operator &,
and operator &=.

CRect::PtInRect

CRect::OffsetRect

void OffsetRect(int x, int y);
void OffsetRect(POINT point);
void OffsetRect(SIZE size);

Parameters
x Specifies the amount to move left or right. It must be negative to move left.

y Specifies the amount to move up or down. It must be negative to move up.

point Contains a POINT or CPoint specifying both dimensions by which to move.

size Contains a SIZE or CSize specifying both dimensions by which to move.
Remarks

Moves CRect by the specified offsets. Moves CRect x units along the x-axis and y

units along the y-axis. The x and y parameters are signed values, so CRect can be
moved left or right and up or down.

See Also CRect::operator +, CRect::operator +=, CRect:;operator -,
CRect::operator -=

CRect::PtInRect

BOOL PtInRect(POINT point) const;

Return Value
Nonzero if the point lies within CRect; otherwise 0.

Parameters
point Contains a POINT structure or CPoint object.

1425

CRect::SetRect

Remarks
Determines whether the specified point lies within CRect. A point is within CRect if
it lies on the left or top side or is within all four sides. A point on the right or bottom
side is outside CRect.

Note The rectangle must be normalized or this function may fail. You can call NormalizeRect
to normalize the rectangle before calling this function.

See Also CRect::NormalizeRect, ::PtInRect

CRect::SetRect

void SetRect(int x/, int y/, int x2, int y2);

Parameters
xI Specifies the x-coordinate of the upper-left corner.

vyl Specifies the y-coordinate of the upper-left corner.
x2 Specifies the x-coordinate of the lower-right corner.
y2 Specifies the y-coordinate of the lower-right corner.

Remarks
Sets the dimensions of CRect to the specified coordinates.

See Also CRect::CRect, CRect::operator =, CRect::CopyRect,
CRect::SetRectEmpty, ::SetRect

CRect::SetRectEmpty

void SetRectEmpty();

Remarks
Makes CRect a null rectangle by setting all coordinates to zero.

See Also CRect::CRect, CRect::SetRect, CRect::CopyRect, CRect::operator =,
CRect::IsRectEmpty, CRect::IsRectNull, ::SetRectEmpty

CRect::Size

CSize Size() const;

Return Value
A CSize object that contains the size of CRect.

Remarks
The cx and cy members of the return value contain the height and width of CRect.
Either the height or width may be negative.

1426

Note The rectangle must be normalized or this function may fail. You can call NormalizeRect
to normalize the rectangle before calling this function.

See Also CRect::Height, CRect::Width, CRect::IsRectEmpty,
CRect::IsRectNull, CRect::NormalizeRect

CRect::SubtractRect

CRect::SubtractRect

BOOL SubtractRect(LPCRECT IpRectSrcl, LPCRECT IpRectSrc2);

Return Value

Nonzero if the function is successful; otherwise 0.

Parameters

Remarks

IpRectSrcl Points to the RECT structure or CRect object from which a rectangle is
to be subtracted.

IpRectSrc2 Points to the RECT structure or CRect object that is to be subtracted
from the rectangle pointed to by the [pRectSrcl parameter.

Makes the dimensions of the [pRectSrcl rectangle equal to the subtraction of
IpRectSrc2 from IpRectSrcl. The subtraction is the smallest rectangle that contains
all of the points in IpRectScrl that are not in the intersection of JpRectScrl and
IpRectScr2.

The rectangle specified by IpRectSrcl will be unchanged if the rectangle specified by
IpRectSrc2 doesn't completely overlap the rectangle specified by IpRectSrc! in at
least one of the x- or y-directions.

For example, if IpRectSrc1 were (10,10, 100,100) and IpRectSrc2 were (50,50,
150,150), the rectangle pointed to by ipRectSrc1 would be unchanged when the
function returned. If [pRectSrcl were (10,10, 100,100) and IpRectSrc2 were (50,10,
150,150), however, the rectangle pointed to by /pRectSrcl would contain the
coordinates (10,10, 50,100) when the function returned.

SubtractRect is not the same as operator - nor operator -=. Neither of these
operators ever calls SubtractRect.

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

See Also CRect::operator -, CRect::operator -=, CRect::IntersectRect,
CRect::UnionRect, CRect::NormalizeRect, ::SubtractRect

1427

CRect::TopLeft

CRect:: TopLeft

CPoint& TopLeft();
const CPoint& TopLeft() const;

Return Value

Remarks

The coordinates of the top-left corner of the rectangle.

The coordinates are returned as a reference to a CPoint object that is contained
in CRect.

You can use this function to either get or set the top-left corner of the rectangle. Set
the corner by using this function on the left side of the assignment operator.

See Also CRect::BottomRight, CPoint

CRect::UnionRect

BOOL UnionRect(LPCRECT IpRectl, LPCRECT IpRect2);

Return Value

Nonzero if the union is not empty; O if the union is empty.

Parameters

Remarks

IpRect] Points to a RECT or CRect that contains a source rectangle.
IpRect2 Points to a RECT or CRect that contains a source rectangle.

Makes the dimensions of CRect equal to the union of the two source rectangles. The
union is the smallest rectangle that contains both source rectangles.

Windows ignores the dimensions of an empty rectangle; that is, a rectangle that has
no height or has no width.

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

See Also CRect::operator |=, CRect::operator |, CRect::IntersectRect,
CRect::SubtractRect, CRect::NormalizeRect, ::UnionRect

CRect::Width

int Width() const;

Return Value

1428

The width of CRect.

Remarks
Calculates the width of CRect by subtracting the left value from the right value. The
width may be negative.

Note The rectangle must be normalized or this function may fail. You can call NormalizeRect
to normalize the rectangle before calling this function.

See Also CRect::Height, CRect::Size, CRect::IsRectEmpty, CRect::IsRectNull,
CRect::NormalizeRect

CRect::operator =

Operators
CRect::operator LPCRECT

operator LPCRECT() const;

Remarks
Converts a CRect to an LPCRECT. When you use this function, you don't need the
address-of (&) operator. This operator will be automatically used when you pass a
CRect object to a function that expects an LPCRECT.

See Also CRect::operator LPRECT

CRect::operator LPRECT

operator LPRECT();

Remarks
Converts a CRect to an LPRECT. When you use this function, you don't need the
address-of (&) operator. This operator will be automatically used when you pass a
CRect object to a function that expects an LPRECT.

See Also CRect::operator LPCRECT

CRect::operator =

void operator =(const RECT& srcRect);

Parameters
srcRect Refers to a source rectangle. May be a RECT or CRect.

Remarks
Assigns srcRect to CRect.

See Also CRect::CRect, CRect::SetRect, CRect::CopyRect,
CRect::SetRectEmpty, ::CopyRect

1429

CRect::operator ==

CRect::operator ==

BOOL operator ==(const RECT& rect) const;

Return Value
Nonzero if equal; otherwise 0.

Parameters
rect Refers to a source rectangle. May be a RECT or CRect.

Remarks
Determines whether rect is equal to CRect by comparing the coordinates of their
upper-left and lower-right corners.

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

See Also CRect::operator !=, CRect::NormalizeRect, ::EqualRect

CRect::operator !=

BOOL operator !=(const RECT& rect) const;

Return Value
Nonzero if not equal; otherwise 0.

Parameters
rect Refers to a source rectangie. May be a RECT or CRect.

Remarks
Determines whether rect is not equal to CRect by comparing the coordinates of their
upper-left and lower-right corners.

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

See Also CRect::operator ==, CRect::NormalizeRect, ::EqualRect

CRect::operator +=

void operator +=(POINT point);
void operator +=(SIZE size);
void operator +=(LPCRECT IpRect);

Parameters
point A POINT or CPoint that specifies the number of units to move the rectangle.

size A SIZE or CSize that specifies the number of units to move the rectangle.

1430

IpRect Points to a RECT structure or CRect object that contains the number of
units to inflate each side of CRect.

Remarks
The first two overloads move CRect by the specified offsets. The parameter’s x and y
(or cx and cy) values are added to CRect.

The third overload inflates CRect by the number of units specifed in each member of
the parameter.

See Also CRect::OffsetRect, CRect::InflateRect, CRect::operator +,
CRect::operator -=

CRect::operator &=

CRect::operator —=

void operator —=(POINT point);
void operator —=(SIZE size);
void operator —=(LPCRECT I[pRect);

Parameters
point A POINT or CPoint that specifies the number of units to move the rectangle.
size A SIZE or CSize that specifies the number of units to move the rectangle.

IpRect Points to a RECT structure or CRect object that contains the number of
units to deflate each side of CRect.

Remarks
The first two overloads move CRect by the specified offsets. The parameter’s x and y
(or cx and cy) values are subtracted from CRect.

The third overload deflates CRect by the number of units specifed in each member of
the parameter. Note that this overload functions like DeflateRect.

See Also CRect::OffsetRect, CRect::DeflateRect, CRect::SubtractRect,
CRect::operator -, CRect::operator +=

CRect::operator &=

void operator &=(const RECT& rect);

Parameters
rect Contains a RECT or CRect.

Remarks
Sets CRect equal to the intersection of CRect and rect. The intersection is the largest
rectangle that is contained in both rectangles.

1431

CRect::operator |=

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

See Also CRect::operator &, CRect::operator |=, CRect::IntersectRect,
CRect::NormalizeRect, ::IntersectRect

CRect::operator |=

void operator |=(const RECT& rect);

Parameters
rect Contains a CRect or RECT.

Remarks
Sets CRect equal to the union of CRect and rect. The union is the smallest rectangle
that contains both source rectangles.

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

See Also CRect::operator |, CRect::operator &=, CRect::UnionRect,
CRect::NormalizeRect, ::UnionRect ’

CRect::operator +

CRect operator +(POINT point) const;
CRect operator+(LPCRECT I/pRect) const;
CRect operator+(SIZE size) const;

Return Value
The CRect resulting from moving or inflating CRect by the number of units
specified in the parameter.

Parameters
point A POINT or CPoint that specifies the number of units to move the return
value.

size A SIZE or CSize that specifies the number of units to move the return value.
IpRect Points to a RECT structure or CRect object that contains the number of
units to inflate each side of the return value.

Remarks
The first two overloads return a CRect object that is equal to CRect displaced by the
specified offsets. The parameter’s x and y (or cx and cy) parameters are added to
CRect’s position.

1432

The third overload returns a new CRect that is equal to CRect inflated by the
number of units specifed in each member of the parameter.

See Also CRect::operator +=, CRect::operator -, CRect::OffsetRect,
CRect::InflateRect

CRect::operator &

CRect::operator —

CRect operator —(POINT point) const;
CRect operator —(SIZE size) const;
CRect operator —-(LPCRECT IpRect) const;

Return Value
The CRect resulting from moving or deflating CRect by the number of units
specified in the parameter.

Parameters
point A POINT or CPoint that specifies the number of units to move the return
value.

size A SIZE or CSize that specifies the number of units to move the return value.

IpRect Points to a RECT structure or CRect object that contains the number of
units to deflate each side of the return value.

Remarks
The first two overloads return a CRect object that is equal to CRect displaced by the
specified offsets. The parameter’s x and y (or cx and cy) paraimeters are subtracted
from CRect’s position.

The third overload returns a new CRect that is equal to CRect deflated by the
number of units specifed in each member of the parameter. Note that this overload
functions like DeflateRect, not SubtractRect.

See Also CRect::operator -=, CRect::operator +, CRect::OffsetRect,
CRect::DeflateRect, CRect::SubtractRect

CRect::operator &

CRect operator &(const RECT& rect2) const;

Return Value
A CRect that is the intersection of CRect and rect2.

Parameters
rect2 Contains a RECT or CRect.

1433

CRect::operator |

Remarks
Returns a CRect that is the intersection of CRect and rect2. The intersection is the
largest rectangle that is contained in both rectangles.

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

See Also CRect::IntersectRect, CRect::operator &=, CRect::operator |,
CRect::NormalizeRect

CRect::operator |

CRect operator |(const RECT& rect2) const;

Return Value
A CRect that is the union of CRect and rect2.

Parameters
rect2 Contains a RECT or CRect.

Remarks
Returns a CRect that is the union of CRect and rect2. The union is the smallest
rectangle that contains both rectangles.

Note Both of the rectangles must be normalized or this function may fail. You can call
NormalizeRect to normalize the rectangles before calling this function.

See Also CRect::UnionRect, CRect::operator |=, CRect::operator &,
CRect::NormalizeRect

1434

CRectTracker

CRectTracker

The CRectTracker class allows an item to be displayed, moved, and resized in
different fashions. Although the CRectTracker class is designed to allow the user to
interact with OLE items by using a graphical interface, its use is not restricted to
OLE-enabled applications. It can be used anywhere such a user interface is required.

CRectTracker borders can be solid or dotted lines. The item can be given a hatched
border or overlaid with a hatched pattern to indicate different states of the item. You
can place eight resize handles on either the outside or the inside border of the item.
(For an explanation of the resize handles, see GetHandleMask.) Finally, a
CRectTracker allows you to change the orientation of an item during resizing.

To use CRectTracker, construct a CRectTracker object and specify which display
states are initialized. You can then use this interface to give the user visual feedback
on the current status of the OLE item associated with the CRectTracker object.

For more information on using CRectTracker, see the article “Trackers” in
Programming with MFC.

#include <afxext.h>

See Also COleResizeBar, CRect, CRectTracker::GetHandleMask

Data Members

m_nHandleSize
m_rect
m_sizeMin

Determines size of resize handles.
Current position (in pixels) of the rectangle.
Determines minimum rectangle width and height.

m_nStyle Current style(s) of the tracker.

Construction

CRectTracker Constructs a CRectTracker object.

Operations

Draw Renders the rectangle.

GetTrueRect Returns width and height of rectangle, including resize handles.

HitTest Returns the current position of the cursor related to the
CRectTracker object.

NormalizeHit Normalizes a hit-test code.

SetCursor Sets the cursor, depending on its position over the rectangle.

Track Allows the user to manipulate the rectangle.

TrackRubberBand Allows the user to “rubber-band” the selection.

1435

CRectTracker::AdjustRect

Overridables

AdjustRect Called when the rectangle is resized.

DrawTrackerRect Called when drawing the border of a CRectTracker object.
OnChangedRect Called when the rectangle has been resized or moved.
GetHandleMask Called to get the mask of a CRectTracker item’s resize handles.

Member Functions
CRectTracker::AdjustRect

virtual veid AdjustRect(int nHandle, LPRECT IpRect);

Parameters
nHandle Index of handle used.

IpRect Pointer to the current size of the rectangle.

Remarks
Called by the framework when the tracking rectangle is resized by using a resize
handle. The default behavior of this function allows the rectangle’s orientation to
change only when Track and TrackRubberBand are called with inverting allowed.

Override this function to control the adjustment of the tracking rectangle during a
dragging operation. One method is to adjust the coordinates specified by IpRect
before returning.

Special features that are not directly supported by CRectTracker, such as snap-to-
grid or keep-aspect-ratio, can be implemented by overriding this function.

See Also CRectTracker::Track, CRectTracker::TrackRubberBand,
CRectTracker::OnChangedRect

CRectTracker::CRectTracker

CRectTracker();
CRectTracker(LPCRECT IpSrcRect, UINT nStyle);

Parameters
IpSrcRect The coordinates of the rectangle object.

nStyle Specifies the style of the CRectTracker object. The following styles are
supported:

* CRectTracker::solidLine Use a solid line for the rectangle border.

¢ CRectTracker::dottedLine Use a dotted line for the rectangle border.

1436

CRectTracker::DrawTrackerRect

e CRectTracker::hatchedBorder Use a hatched pattern for the rectangle
border.

CRectTracker::resizeInside Resize handles located inside the rectangle.

® CRectTracker::resizeOutside Resize handles located outside the rectangle.

CRectTracker::hatchInside Hatched pattern covers the entire rectangle.
Remarks
Creates and initializes a CRectTracker object.

The default constructor initializes the CRectTracker object with the values from
IpSrcRect and initializes other sizes to system defaults. If the object is created with no
parameters, the m_rect and m_nStyle data members are uninitialized.

See Also CRect::CRect

CRectTracker::Draw

void Draw(CDC* pDC) const;

Parameters
pDC Pointer to the device context on which to draw.

Remarks
Call this function to draw the rectangle’s outer lines and inner region. The style of
the tracker determines how the drawing is done. See the constructor for
CRectTracker for more information on the styles available.

See Also CRectTracker::DrawTrackerRect, CRectTracker::CRectTracker,
CRect::NormalizeRect

CRectTracker::DrawTrackerRect

virtual void DrawTrackerRect(LPCRECT I/pRect, CWnd* pWndClipTo, CDC* pDC,
CWnd* pWnd);

Parameters
IpRect Pointer to the RECT that contains the rectangle to draw.

pWndClipTo Pointer to the window to use in clipping the rectangle.

pDC Pointer to the device context on which to draw.

pWnd Pointer to the window on which the drawing will occur.
Remarks

Called by the framework whenever the position of the tracker has changed while
inside the Track or TrackRubberBand member function. The default

1437

CRectTracker::GetHandleMask

implementation makes a call to CDC::DrawFocusRect, which draws a dotted
rectangle.

Opverride this function to provide different feedback during the tracking operation.

See Also CRectTracker::Track, CRectTracker::TrackRubberBand,
CDC::DrawFocusRect

CRectTracker::GetHandleMask

virtual UINT GetHandleMask() const;

Return Value

Remarks

1438

The mask of a CRectTracker item’s resize handles.

The framework calls this member function to retrieve the mask for a rectangle’s
resize handles.

The resize handles appear on the sides and corners of the rectangle and allow the
user to control the shape and size of the rectangle.

A rectangle has 8 resize handles numbered 0-7. Each resize handle is represented by
a bit in the mask; the value of that bit is 2*n, where 7 is the resize handle number.
Bits 0-3 correspond to the corner resize handles, starting at the top left moving
clockwise. Bits 4-7 correspond to the side resize handles starting at the top moving
clockwise. The following illustration shows a rectangle’s resize handles and their
corresponding resize handle numbers and values:

Handle numbers Bit values
0 4 1 1 ; 16 2
7 5 128 32

The default implementation of GetHandleMask returns the mask of the bits so that
the resize handles appear. If the single bit is on, the corresponding resize handle will
be drawn.

CRectTracker::HitTest

Override this member function to hide or show the indicated resize handles.

See Also CRectTracker::AdjustRect

CRectTracker::GetTrueRect

void GetTrueRect(LPRECT IpTrueRect) const;

Parameters
IpTrueRect Pointer to the RECT structure that will contain the device coordinates of
the CRectTracker object.

Remarks
Call this function to retrieve the coordinates of the rectangle. The dimensions of the
rectangle include the height and width of any resize handles located on the outer
border. Upon returning, */pTrueRect is always a normalized rectangle in device
coordinates.

See Also CRect::NormalizeRect

CRectTracker::HitTest

int HitTest(CPoint point) const;

Return Value
The value returned is based on the enumerated type CRectTracker::TrackerHit and
can have one of the following values:

e CRectTracker::hitNothing -1

e CRectTracker::hitTopLeft 0

¢ CRectTracker::hitTopRight 1

® CRectTracker::hitBottomRight 2
¢ CRectTracker:hitBottomLeft 3
¢ CRectTracker:hitTop 4

e CRectTracker:hitRight 5

¢ CRectTracker:hitBottom 6

¢ CRectTracker:hitLeft 7

¢ CRectTracker:hitMiddle 8

Parameters
point The point, in device coordinates, to test.

1439

CRectTracker: :NormalizeHit

Remarks
Call this function to find out whether the user has grabbed a resize handle.

See Also CRectTracker::NormalizeHit, CRectTracker::SetCursor

CRectTracker: :NormalizeHit

int NormalizeHit(int nHandle) const;

Return Value
The index of the normalized handle.

Parameters
nHandle Handle selected by the user.

Remarks ‘
Call this function to convert a potentially inverted handle.

When CRectTracker::Track or CRectTracker::TrackRubberBand is called with
inverting allowed, it is possible for the rectangle to be inverted on the x-axis, the
y-axis, or both. When this happens, HitTest will return handles that are also inverted
with respect to the rectangle. This is inappropriate for drawing cursor feedback
because the feedback depends on the screen position of the rectangle, not the portion
of the rectangle data structure that will be modified.

See Also CRectTracker::HitTest, CRectTracker::Track,
CRectTracker::TrackRubberBand

CRectTracker::OnChangedRect

virtual void OnChangedRect(const CRect& rectOld);

Parameters
rectOld Contains the old device coordinates of the CRectTracker object.

Remarks
Called by the framework whenever the tracker rectangle has changed during a call to
Track. At the time this function is called, all feedback drawn with
DrawTrackerRect has been removed. The default implementation of this function
does nothing.

Override this function when you want to perform any actions after the rectangle has
been resized.

See Also CRectTracker::AdjustRect, CRectTracker::Track,
CRectTracker::TrackRubberBand

1440

CRectTracker::Track

CRectTracker::SetCursor

BOOL SetCursor(CWnd* pWnd, UINT nHitTest) const;

Return Value
Nonzero if the previous hit was over the tracker rectangle; otherwise 0.

Parameters
pWnd Points to the window that currently contains the cursor.

nHitTest Results of the previous hit test, from the WM_SETCURSOR message.

Remarks
Call this function to change the cursor shape while it is over the CRectTracker
object’s region.

Call this function from inside the function of your window that handles the
WM_SETCURSOR message (typically OnSetCursor).

See Also CRectTracker::NormalizeHit, CRectTracker::HitTest,
CWinApp::LoadCursor, CWnd::OnSetCursor

CRectTracker::Track

BOOL Track(CWnd* pWnd, CPoint point, BOOL bAllowInvert = FALSE,
CWnd* pWndClipTo = NULL);

Return Value
If the ESC key is pressed, the tracking process is halted, the rectangle stored in the
tracker is not altered, and 0 is returned. If the change is committed, by moving the
mouse and releasing the left mouse button, the new position and/or size is recorded in
the tracker’s rectangle and nonzero is returned.

Parameters
pWnd The window object that contains the rectangle.

point Device coordinates of the current mouse position relative to the client area.

bAllowInvert If TRUE, the rectangle can be inverted along the x-axis or y-axis;
otherwise FALSE.

pWndClipTo The window that drawing operations will be clipped to. If NULL,
pWnd is used as the clipping rectangle.

Remarks
Call this function to display the user interface for resizing the rectangle. This is

usually called from inside the function of your application that handles the
WM_LBUTTONDOWN message (typically OnLButtonDown).

1441

CRectTracker:: TrackRubberBand

This function will capture the mouse until the user releases the left mouse button,
presses the ESC key, or presses the right mouse button. As the user moves the mouse
cursor, the feedback is updated by calling DrawTrackerRect and OnChangedRect.

If bAllowInvert is TRUE, the tracking rectangle can be inverted on either the x-axis
Or y-axis.

See Also CRectTracker::DrawTrackerRect, CRectTracker::OnChangedRect,
CRectTracker::CRectTracker, CRectTracker::TrackRubberBand

CRectTracker:: TrackRubberBand

BOOL TrackRubberBand(CWnd* pWnd, CPoint point, BOOL bAllowInvert = TRUE);

Return Value
Nonzero if the mouse has moved and the rectangle is not empty; otherwise 0.

Parameters
pWnd The window object that contains the rectangle.

point Device coordinates of the current mouse position relative to the client area.

bAllowInvert 1f TRUE, the rectangle can be inverted along the x-axis or y-axis;
otherwis¢ FALSE.

Remarks
Call this function to do rubber-band selection. It is usually called from inside the
function of your application that handles the WM_LBUTTONDOWN message
(typically OnLButtonDown).

This function will capture the mouse until the user releases the left mouse button,
presses the ESC key, or presses the right mouse button. As the user moves the mouse
cursor, the feedback is updated by calling DrawTrackerRect and OnChangedRect.

Tracking is performed with a rubber-band-type selection from the lower-right handle.
If inverting is allowed, the rectangle can be sized by dragging either up and to the left
or down and to the right.

See Also CRectTracker::DrawTrackerRect, CRectTracker::OnChangedRect,
CRectTracker::CRectTracker

Data Members
CRectTracker::m_nHandleSize

Remarks
The size, in pixels, of the CRectTracker resize handles. Initialized with the default
system value.

1442

CRectTracker::m_nStyle

CRectTracker::m_rect

Remarks
The current position of the rectangle in client coordinates (pixels).

See Also CRectTracker::CRectTracker, CRectTracker::Track,
CRectTracker::TrackRubberBand

CRectTracker::m_sizeMin

Remarks
The minimum size of the rectangle. Both default values, cx and cy, are calculated
from the default system value for the border width. This data member is used only by
the AdjustRect member function.

See Also CRectTracker::Track, CRectTracker::TrackRubberBand,
CRectTracker::AdjustRect

CRectTracker::m_nStyle

Remarks
Current style of the rectangle. See CRectTracker::CRectTracker for a list of
possible styles.

See Also CRectTracker::CRectTracker, CRectTracker::Draw

1443

CResourceException

CResourceException

A CResourceException object is generated when Windows cannot find or allocate a
requested resource. No further qualification is necessary or possible.

For more information on using CResourceException, see the article “Exceptions” in
Programming with MFC.

#include <afxwin.h>

Construction

CResourceException Constructs a CResourceException object.

Member Functions

CResourceException::CResourceException

CResourceException();

Remarks
Constructs a CResourceException object.

Do not use this constructor directly, but rather call the global function
AfxThrowResourceException. For more information about exceptions, see the
article “Exceptions” in Programming with MFC.

See Also AfxThrowResourceException

1444

CRgn

CRgn

The CRgn class encapsulates a Windows graphics device interface (GDI) region. A
region is an elliptical or polygonal area within a window. To use regions, you use the
member functions of class CRgn with the clipping functions defined as members of

class CDC.

The member functions of CRgn create, alter, and retrieve information about the
region object for which they are called.

For more information on using CRgn, see “Graphic Objects” in Chapter 1 of

Programming with MFC.
#include <afxwin.h>

Construction

CRgn

Initialization

Constructs a CRgn object.

CreateRectRgn
CreateRectRgnIndirect

CreateEllipticRgn
CreateEllipticRgnIndirect

CreatePolygonRgn

CreatePolyPolygonRgn

CreateRoundRectRgn

CombineRgn

CopyRgn

Initializes a CRgn object with a rectangular region.

Initializes a CRgn object with a rectangular region
defined by a RECT structure.

Initializes a CRgn object with an elliptical region.

Initializes a CRgn object with an elliptical region
defined by a RECT structure.

Initializes a CRgn object with a polygonal region. The
system closes the polygon automatically, if necessary,
by drawing a line from the last vertex to the first.

Initializes a CRgn object with a region consisting of a
series of closed polygons. The polygons may be
disjoint, or they may overlap.

Initializes a CRgn object with a rectangular region
with rounded corners.

Sets a CRgn object so that it is equivalent to the union
of two specified CRgn objects.

Sets a CRgn object so that it is a copy of a specified
CRgn object.

1445

CRgn::CombineRgn

CreateFromPath Creates a region from the path that is selected into the
given device context.

CreateFromData Creates a region from the given region and
transformation data.

Operations

EqualRgn Checks two CRgn objects to determine whether they
are equivalent.

FromHandle Returns a pointer to a CRgn object when given a
handle to a Windows region.

GetRegionData Fills the specified buffer with data describing the
given region.

GetRgnBox Retrieves the coordinates of the bounding rectangle of
a CRgn object.

OffsetRgn Moves a CRgn object by the specified offsets.

PtInRegion Determines whether a specified point is in the region.

RectInRegion Determines whether any part of a specified rectangle is
within the boundaries of the region.

SetRectRgn Sets the CRgn object to the specified rectangular
region.

Operators

operator HRGN Returns the Windows handle contained in the CRgn

object.

Member Functions
CRgn::CombineRgn

int CombineRgn(CRgn* pRgnl, CRgn* pRgn2, int nCombineMode);

Return Value
Specifies the type of the resulting region. It can be one of the following values:

COMPLEXREGION New region has overlapping borders.
ERROR No new region created.

NULLREGION New region is empty.

SIMPLEREGION New region has no overlapping borders.

Parameters
pRgnl Identifies an existing region.

PpRgn2 Identifies an existing region.

1446

CRgn::CopyRgn

nCombineMode Specifies the operation to be performed when combining the two
source regions. It can be any one of the following values:

e RGN_AND Uses overlapping areas of both regions (intersection).
e RGN_COPY Creates a copy of region 1 (identified by pRgn1).

e RGN_DIFF Creates a region consisting of the areas of region 1 (identified by
PRgnl) that are not part of region 2 (identified by pRgn2).

e RGN_OR Combines both regions in their entirety (union).
e RGN_XOR Combines both regions but removes overlapping areas.
Remarks

Creates a new GDI region by combining two existing regions. The regions are
combined as specified by nCombineMode.

The two specified regions are combined, and the resulting region handle is stored in
the CRgn object. Thus, whatever region is stored in the CRgn object is replaced by
the combined region.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory,
whichever is smaller.

Use CopyRgn to simply copy one region into another region.

See Also CRgn::CopyRgn, ::CombineRgn

CRgn::CopyRgn
int CopyRgn(CRgn* pRgnSrc);

Return Value
Specifies the type of the resulting region. It can be one of the following values:

COMPLEXREGION New region has overlapping borders.
ERROR No new region created.

NULLREGION New region is empty.

SIMPLEREGION New region has no overlapping borders.

Parameters
pRgnSrc Identifies an existing region.

Remarks
Copies the region defined by pRgnSrc into the CRgn object. The new region replaces
the region formerly stored in the CRgn object. This function is a special case of the
CombineRgn member function.

See Also CRgn::CombineRgn, ::CombineRgn

1447

CRgn::CreateEllipticRgn

CRgn::CreateEllipticRgn

BOOL CreateEllipticRgn(int x/, int y/, int x2, int y2);

Return Value

Nonzero if the operation succeeded; otherwise 0.

Parameters

Remarks

xI Specifies the logical x-coordinate of the upper-left corner of the bounding
rectangle of the ellipse.

vyl Specifies the logical y-coordinate of the upper-left corner of the bounding
rectangle of the ellipse.

x2 Specifies the logical x-coordinate of the lower-right corner of the bounding
rectangle of the ellipse.

y2 Specifies the logical y-coordinate of the lower-right corner of the bounding
rectangle of the ellipse.

Creates an elliptical region. The region is defined by the bounding rectangle specified
by x1, y1, x2, and y2. The region is stored in the CRgn object.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory,
whichever is smaller.

When it has finished using a region created with the CreateEllipticRgn function, an
application should select the region out of the device context and use the
DeleteObject function to remove it.

See Also CRgn::CreateEllipticRgnIndirect, ::CreateEllipticRgn

CRgn::CreateEllipticRgnIndirect

BOOL CreateEllipticRgnIndirect(LPCRECT IpRect);

Return Value

Nonzero if the operation succeeded; otherwise 0.

Parameters

Remarks

1448

IpRect Points to a RECT structure or a CRect object that contains the logical
coordinates of the upper-left and lower-right corners of the bounding rectangle of
the ellipse.

Creates an elliptical region. The region is defined by the structure or object pointed to
by IpRect and is stored in the CRgn object.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory,
whichever is smaller.

CRgn::CreateFromPath

When it has finished using a region created with the CreateEllipticRgnIndirect
function, an application should select the region out of the device context and use the
DeleteObject function to remove it.

See Also CRgn::CreateEllipticRgn, ::CreateEllipticRgnIndirect

CRgn::CreateFromData

BOOL CreateFromData(const XFORM?* [pXForm, int nCount, const RGNDATA* pRgnData);

Return Value
Nonzero if the function is successful; otherwise 0.

Parameters
IpXForm Points to an XFORM data structure that defines the transformation to
be performed on the region. If this pointer is NULL, the identity transformation
is used.

nCount Specifies the number of bytes pointed to by pRgnData.
pRgnData Points to a RGNDATA data structure that contains the region data.

Remarks
Creates a region from the given region and transformation data. An application can
retrieve data for a region by calling the CRgn::GetRegionData function.

See Also CRgn::GetRegionData, ::ExtCreateRegion

CRgn::CreateFromPath

BOOL CreateFromPath(CDC* pDC);

Return Value
Nonzero if the function is successful; otherwise 0.

Parameters
pDC Identifies a device context that contains a closed path.

Remarks
Creates a region from the path that is selected into the given device context. The
device context identified by the pDC parameter must contain a closed path. After
CreateFromPath converts a path into a region, Windows discards the closed path
from the device context.

See Also CDC::BeginPath, CDC::EndPath, CDC::SetPolyFillMode

1449

CRgn::CreatePolygonRgn

CRgn::CreatePolygonRgn

BOOL CreatePolygonRgn(LPPOINT IpPoints, int nCount, int nMode);

Return Value

Nonzero if the operation succeeded; otherwise 0.

Parameters

Remarks

1450

IpPoints Points to an array of POINT structures or an array of CPoint objects. Each
structure specifies the x-coordinate and y-coordinate of one vertex of the polygon.
The POINT structure has the following form:

typedef struct tagPOINT {
int x;
int y;

} POINT;

nCount Specifies the number of POINT structures or CPoint objects in the array
pointed to by IpPoints.

nMode Specifies the filling mode for the region. This parameter may be either
ALTERNATE or WINDING.

Creates a polygonal region. The system closes the polygon automatically, if necessary,
by drawing a line from the last vertex to the first. The resulting region is stored in the
CRgn object.

The size of a region is limited to 32,767, by 32,767, logical units or 64K of memory,
whichever is smaller.

‘When the polygon-filling mode is ALTERNATE, the system fills the area between
odd-numbered and even-numbered polygon sides on each scan line. That is, the
system fills the area between the first and second side, between the third and fourth
side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in which
a figure was drawn to determine whether to fill an area. Each line segment in a
polygon is drawn in either a clockwise or a counterclockwise direction. Whenever an
imaginary line drawn from an enclosed area to the outside of a figure passes through
a clockwise line segment, a count is incremented. When the line passes through a
counterclockwise line segment, the count is decremented. The area is filled if the
count is nonzero when the line reaches the outside of the figure.

When an application has finished using a region created with the CreatePolygonRgn
function, it should select the region out of the device context and use the
DeleteObject function to remove it.

See Also CRgn::CreatePolyPolygonRgn, ::CreatePolygonRgn

CRgn::CreatePolyPolygonRgn

CRgn::CreatePolyPolygonRgn

BOOL CreatePolyPolygonRgn(LPPOINT IpPoints, LPINT IpPolyCounts, int nCount, int
nPolyFillMode);

Return Value

Nonzero if the operation succeeded; otherwise 0.

Parameters

Remarks

IpPoints Points to an array of POINT structures or an array of CPoint objects that
defines the vertices of the polygons. Each polygon must be explicitly closed
because the system does not close them automatically. The polygons are specified
consecutively. The POINT structure has the following form:

typedef struct tagPOINT {
int x;
int y;

} POINT;

IpPolyCounts Points to an array of integers. The first integer specifies the number of
vertices in the first polygon in the IpPoints array, the second integer specifies the
number of vertices in the second polygon, and so on.

nCount Specifies the total number of integers in the ipPolyCounts array.

nPolyFillMode Specifies the polygon-filling mode. This value may be either
ALTERNATE or WINDING.

Creates a region consisting of a series of closed polygons. The resulting region is
stored in the CRgn object.

The polygons may be disjoint, or they may overlap.

The size of a region is limited to 32,767, by 32,767 logical units or 64K of memory,
whichever is smaller.

When the polygon-filling mode is ALTERNATE, the system fills the area between
odd-numbered and even-numbered polygon sides on each scan line. That is, the
system fills the area between the first and second side, between the third and fourth
side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in which
a figure was drawn to determine whether to fill an area. Each line segment in a
polygon is drawn in either a clockwise or a counterclockwise direction. Whenever an
imaginary line drawn from an enclosed area to the outside of a figure passes through
a clockwise line segment, a count is incremented. When the line passes through a
counterclockwise line segment, the count is decremented. The area is filled if the
count is nonzero when the line reaches the outside of the figure.

1451

CRgn::CreateRectRgn

When an application has finished using a region created with the
CreatePolyPolygonRgn function, it should select the region out of the device context
and use the CGDIObject::DeleteObject member function to remove it.

See Also CRgn::CreatePolygonRgn, CDC::SetPolyFillMode,
::CreatePolyPolygonRgn

CRgn::CreateRectRgn

BOOL CreateRectRgn(int x], int y/, int x2, int y2);

Return Value

Nonzero if the operation succeeded; otherwise 0.

Parameters

Remarks

x1 Specifies the logical x-coordinate of the upper-left corner of the region.
vyl Specifies the logical y-coordinate of the upper-left corner of the region.
x2 Specifies the logical x-coordinate of the lower-right corner of the region.

y2 Specifies the logical y-coordinate of the lower-right corner of the region.

Creates a rectangular region that is stored in the CRgn object.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory,
whichever is smaller.

When it has finished vsing a region created by CreateRectRgn, an application
should use the CGDIObject::DeleteObject member function to remove the region.

See Also CRgn::CreateRectRgnIndirect, CRgn::CreateRoundRectRgn,
::CreateRectRgn

CRgn::CreateRectRgnIndirect

BOOL CreateRectRgnIndirect(LPCRECT IpRect);

Return Value

Nonzero if the operation succeeded; otherwise 0.

Parameters

1452

IpRect Points to a RECT structure or CRect object that contains the logical
coordinates of the upper-left and lower-right corners of the region. The RECT
structure has the following form:

CRgn::CreateRoundRectRgn

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;
} RECT;

Remarks
Creates a rectangular region that is stored in the CRgn object.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory,
whichever is smaller.

When it has finished using a region created by CreateRectRgnIndirect, an
application should use the CGDIObject::DeleteObject member function to remove
the region.

See Also CRgn::CreateRectRgn, CRgn::CreateRoundRectRgn,
::CreateRectRgnIndirect

CRgn::CreateRoundRectRgn

BOOL CreateRoundRectRgn(int x/, int y/, int x2, int y2, int x3, int y3);

Return Value
Nonzero if the operation succeeded; otherwise 0.

Parameters
xI Specifies the logical x-coordinate of the upper-left corner of the region.

yI Specifies the logical y-coordinate of the upper-left corner of the region.
x2 Specifies the logical x-coordinate of the lower-right corner of the region.
¥2 Specifies the logical y-coordinate of the lower-right corner of the region.
x3 Specifies the width of the ellipse used to create the rounded corners.

¥3 Specifies the height of the ellipse used to create the rounded corners.

Remarks
Creates a rectangular region with rounded corners that is stored in the CRgn object.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory,
whichever is smaller.

When an application has finished using a region created with the
CreateRoundRectRgn function, it should select the region out of the device context
and use the CGDIObject::DeleteObject member function to remove it.

See Also CRgn::CreateRectRgn, CRgn::CreateRectRgnIndirect,
::CreateRoundRectRgn

1453

CRgn::CRgn

CRgn::CRgn
CRgn();

Remarks
Constructs a CRgn object. The m_hObject data member does not contain a valid
Windows GDI region until the object is initialized with one or more of the other
CRgn member functions.

CRgn::EqualRgn
BOOL EqualRgn(CRgn* pRgn) const;

Return Value
Nonzero if the two regions are equivalent; otherwise 0.

Parameters
pRgn ldentifies a region.

Remarks
Determines whether the given region is equivalent to the region stored in the CRgn
object.

See Also ::EqualRgn

CRgn::FromHandle

static CRgn* PASCAL FromHandle(HRGN %Rgn);

Return Value

A pointer to a CRgn object. If the function was not successful, the return value
is NULL.

Parameters
hRgn Specifies a handle to a Windows region.

Remarks
Returns a pointer to a CRgn object when given a handle to a Windows region. If a
CRgn object is not already attached to the handle, a temporary CRgn object is
created and attached. This temporary CRgn object is valid only until the next time
the application has idle time in its event loop, at which time all temporary graphic
objects are deleted. Another way of saying this is that the temporary object is only
valid during the processing of one window message.

1454

CRgn::GetRegionData

Int GetRegionData(LPRGNDATA IpRgnData, int nCount) const;

Return Value
Specifies the type of the resulting region. It can be one of the following values:

COMPLEXREGION New region has overlapping borders.
ERROR No new region created.

NULLREGION New region is empty.

SIMPLEREGION New region has no overlapping borders.

]

Parameters
IpRgnData Points to a RGNDATA data structure that receives the information. If
this parameter is NULL, the return value contains the number of bytes needed for
the region data.

nCount Specifies the size, in bytes, of the [pRgnData buffer.
Remarks
Fills the specified buffer with data describing the region. This data includes the

dimensions of the rectangles that make up the region. This function is used in
conjunction with the CRgn::CreateFromData function.

See Also CRgn::CreateFromData

CRgn::GetRgnBox

CRgn::GetRgnBox

int GetRgnBox(LPRECT IpRect) const;

Return Value
Specifies the region’s type. It can be any of the following values:

¢ COMPLEXREGION Region has overlapping borders.
NULLREGION Region is empty.

ERROR CRgn object does not specify a valid region.
SIMPLEREGION Region has no overlapping borders.

1455

CRgn::OffsetRgn

Parameters
IpRect Points to a RECT structure or CRect object to receive the coordinates of the
bounding rectangle. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;
} RECT;

" Remarks
Retrieves the coordinates of the bounding rectangle of the CRgn object.

See Also ::GetRgnBox

CRgn::OffsetRgn
int OffsetRgn(int x, int y);
int OffsetRgn(POINT point);

Return Value
The new region’s type. It can be any one of the following values:

e COMPLEXREGION Region has overlapping borders.

e ERROR Region handle is not valid.

e NULLREGION Region is empty.

e SIMPLEREGION Region has no overlapping borders.
Parameters

x Specifies the number of units to move left or right.

y Specifies the number of units to move up or down.

point The x-coordinate of point specifies the number of units to move left or right.
The y-coordinate of point specifies the number of units to move up or down. The
point parameter may be either a POINT structure or a CPoint object.

Remarks

Moves the region stored in the CRgn object by the specified offsets. The function
moves the region x units along the x-axis and y units along the y-axis.

The coordinate values of a region must be less than or equal to 32,767 and greater
than or equal to —32,768. The x and y parameters must be carefully chosen to prevent
invalid region coordinates.

See Also ::OffsetRgn

1456

CRgn::PtInRegion
BOOL PtInRegion(int x, int y) const;
BOOL PtInRegion(POINT point) const;

Return Value
Nonzero if the point is in the region; otherwise 0.

Parameters
x Specifies the logical x-coordinate of the point to test.

y Specifies the logical y-coordinate of the point to test.

point The x- and y-coordinates of point specify the x- and y-coordinates of the point
to test the value of. The point parameter can either be a POINT structure or a
CPoint object.

Remarks
Checks whether the point given by x and y is in the region stored in the CRgn object.

See Also ::PtInRegion

CRgn::RectInRegion

CRgn::RectInRegion
BOOL RectInRegion(LPCRECT IpRect) const;

Return Value
Nonzero if any part of the specified rectangle lies within the boundaries of the region;
otherwise 0.

Parameters
IpRect Points to a RECT structure or CRect object. The RECT structure has the
following form:

typedef struct tagRECT {
int Teft;
int top;
int right;
int bottom;
} RECT;

Remarks
Determines whether any part of the rectangle specified by IpRect is within the
boundaries of the region stored in the CRgn object.

See Also ::RectInRegion

1457

CRgn::SetRectRgn

CRgn::SetRectRgn

void SetRectRgn(int x1, int y], int x2, int y2);
void SetRectRgn(LPCRECT IpRect);

Parameters
xI Specifies the x-coordinate of the upper-left corner of the rectangular region.

vyl Specifies the y-coordinate of the upper-left corner of the rectangular region.
x2 Specifies the x-coordinate of the lower-right corner of the rectangular region.
y2 Specifies the y-coordinate of the lower-right corner of the rectangular region.

IpRect Specifies the rectangular region. Can be either a pointer to a RECT structure
or a CRect object.

Remarks
Creates a rectangular region. Unlike CreateRectRgn, however, it does not allocate
any additional memory from the local Windows application heap. Instead, it uses the
space allocated for the region stored in the CRgn object. This means that the CRgn
object must already have been initialized with a valid Windows region before calling
SetRectRgn. The points given by xI, yl, x2, and y2 specify the minimum size of the
allocated space.

Use this function instead of the CreateRectRgn member function to avoid calls to
the local memory manager.

See Also CRgn::CreateRectRgn, ::SetRectRgn

Operators
CRgn::operator HRGN

operator HRGN() const;

Return Value
If successful, a handle to the Windows GDI object represented by the CRgn object;
otherwise NULL.

Remarks
Use this operator to get the attached Windows GDI handle of the CRgn object. This
operator is a casting operator, which supports direct use of an HRGN object.

For more information about using graphic objects, see the article “Graphic Objects”
in the Win 32 SDK Programmer’s Reference.

1458

CRichEditCntrltem

CRichEditCntrltem

A “rich edit control” is a window in which the user can enter and edit text. The text
can be assigned character and paragraph formatting, and can include embedded OLE
objects. Rich edit controls provide a programming interface for formatting text.
However, an application must implement any user interface components necessary to
make formatting operations available to the user.

The CRichEditCntrItem class, with CRichEditView and CRichEditDoc, provides
the functionality of the rich edit control within the context of MFC’s document view
architecture. CRichEditView maintains the text and formatting characteristic of text.
CRichEditDoc maintains the list of OLE client items which are in the view.
CRichEditCntrItem provides container-side access to the OLE client item.

This Windows Common control (and therefore the CRichEditCtrl and related
classes) is available only to programs running under Windows 95, Windows NT
versions 3.51 and later, and Win32s versions 1.3 and later.

For an example of using rich edit container items in an MFC application, see the
WORDPAD sample application.

#include <afxrich.h>

See Also CRichEditDoc, CRichEditView

Constructor

CRichEditCntrItem Constructs a CRichEditCntrItem object.

Operations

SyncToRichEditObject Activates the item as another type.

1459

CRichEditCntrltem::CRichEditCntrItem

Member Functions
CRichEditCntrltem::CRichEditCntrltem

CRichEditCntrItem(REOBJECT* preo = NULL, CRichEditDoc* pContainer = NULL);

Parameters
preo Pointer to an REOBJECT structure which describes an OLE item. The new
CRichEditCntrItem object is constructed around this OLE item. If preo is
NULL, the client item is empty.

pContainer Pointer to the container document that will contain this item. If
pContainer is NULL, you must explicitly call COleDocument::AddItem to add
this client item to a document.

Remarks
Call this function to create a CRichEditCntrItem object and add it to the container
document. This function does not perform any OLE initialization.

For more information, see the REOBJECT structure in the Win32 documentation.

See Also COleDocument::AddItem, CRichEditDoc

CRichEditCntrltem::SyncToRichEditObject

void SyncToRichEditObject(REOBJECT& reo);

Parameters
reo Reference to an REOBJECT structure which describes an OLE item.

Remarks
Call this function to synchronize the device aspect, DVASPECT, of this
CRichEditCntrltem to that specified by reo.

For more information, see DVASPECT in the OLE documentation.

1460

CRichEditCtrl

CRichEditCtrl

A “rich edit control” is a window in which the user can enter and edit text. The text
can be assigned character and paragraph formatting, and can include embedded OLE
objects. Rich edit controls provide a programming interface for formatting text.
However, an application must implement any user interface components necessary to
make formatting operations available to the user.

The CRichEditCtrl class provides the functionality of the rich edit control. This
Windows Common control (and therefore the CRichEditCtrl class) is available only

to programs running under Windows 95, Windows NT versions 3.51 and later, and
Win32s versions 1.3 and later.

For an example of using a rich edit control in an MFC application, see the
WORDPAD sample application.

#include <afxcmn.h>

See Also CEdit, CRichEditView

Construction

CRichEditCtrl Constructs a CRichEditCtrl object.

Create Creates the Windows rich edit control and associates it with this
CRichEditCtrl object.

Line Operations

GetLineCount Retrieves the number of lines in this CRichEditCtrl object.

GetLine Retrieves a line of text from this CRichEditCtrl object.

GetFirstVisibleLine Determines the topmost visible line in this CRichEditCtrl object.

LineIndex Retrieves the character index of a given line in this
CRichEditCtrl object.

LineFromChar Determines which line contains the given character.

LineLength Retrieves the length of a given line in this CRichEditCtrl object.

LineScroll Scrolls the text in this CRichEditCtrl object.

1461

CRichEditCtrl

Selection Operations

GetSel Gets the starting and ending positions of the current selection in
this CRichEditCtrl object.

GetSelText Gets the text of the current selection in this CRichEditCtrl
object

GetSelectionType Retrieves the type of contents in the current selection in this
CRichEditCtrl object.

Clear Clears the current selection.

SetSel Sets the selection in this CRichEditCtrl object.

ReplaceSel Replaces the current selection in this CRichEditCtrl object
with specified text.

HideSelection Shows or hides the the current selection.

Formatting Operations

GetDefaultCharFormat Retrieves the current default character formatting attributes in
this CRichEditCtrl object.

GetSelectionCharFormat Retrieves the character formatting attributes in the current
selection in this CRichEditCtrl object.

GetParaFormat Retrieves the paragraph formatting attributes in the current
selection in this CRichEditCtrl object.

SetDefaultCharFormat Sets the current default character formatting attributes in this

SetSelectionCharFormat

CRichEditCtrl object.

Sets the character formatting attributes in the current selection
in this CRichEditCtrl object.

SetWordCharFormat Sets the character formatting attributes in the current word in
this CRichEditCtrl object.

SetParaFormat Sets the paragraph formatting attributes in the current selection
in this CRichEditCtrl object.

Editing Operations

Undo Reverses the last editing operation.

CanUndo Determines if an editing operation can be undone.

EmptyUndoBuffer Resets (clears) the undo flag of this CRichEditCtrl object.

StreamIn Inserts text from an input stream into this CRichEditCtrl
object.

StreamOQOut Stores text from this CRichEditCtrl object into an output

stream.

General Operations

CRichEditCtr}

GetModify
SetModify

FindText
GetRect

SetRect
GetCharPos

SetOptions
SetReadOnly
GetTextLength
GetLimitText

LimitText

GetEventMask
SetEventMask
RequestResize

SetBackgroundColor

SetTargetDevice
FormatRange
DisplayBand

Clipboard Operations

Determines if the contents of this CRichEditCtrl object have
changed since the last save.

Sets or clears the modification flag for this CRichEditCtrl
object.

Locates text within this CRichEditCtrl object.

Retrieves the formatting rectangle for this CRichEditCtrl
object.

Sets the formatting rectangle for this CRichEditCtrl object.

Determines the location of a given character within this
CRichEditCtrl object.

Sets the options for this CRichEditCtrl object.
Sets the read-only option for this CRichEditCtrl object.
Retrieves the length of the text in this CRichEditCtrl object.

Gets the limit on the amount of text a user can enter into this
CRichEditCtrl object.

Limits the amount of text a user can enter into the
CRichEditCtrl object.

Retrieves the event mask for this CRichEditCtrl object.
Sets the event mask for this CRichEditCtr] object.

Forces this CRichEditCtrl object to send request resize
notifications.

Sets the background color in this CRichEditCtrl object.

Sets the target output device for this CRichEditCtrl object.
Formats a range of text for the target output device.

Displays a portion of the contents of this CRichEditCtrl object.

Copy Copies the current selection to the Clipboard.

Cut Cuts the current selection to the Clipboard.

Paste Inserts the contents of the Clipboard into this rich edit control.

PasteSpecial Inserts the contents of the Clipboard into this rich edit control in
the specified data format.

CanPaste Determines if the contents of the Clipboard can be pasted into
this rich edit control.

OLE Operations

GetIRichEditOle Retrieves a pointer to the IRichEditOle interface for this rich
edit control.

SetOLECallback Sets the IRichEditOleCallback COM object for this rich edit
control.

1463

RichEditCtrl::CanPaste

Member Functions
RichEditCtrl::CanPaste

BOOL CanPaste(UINT nFormat = 0) const;

Return Value
Nonzero if the Clipboard format can be pasted; otherwise 0.

Parameters
nFormat The Clipboard data format to query. This parameter can be one of the
predefined Clipboard formats or the value returned by RegisterClipboardFormat.

Remarks
Call this function to determine if the rich edit control can paste the specified
Clipboard format. If nFormat is 0, CanPaste will try any format currently on the
Clipboard.

For more information, see EM_CANPASTE message and
RegisterClipboardFormat function in the Win32 documentation.

See Also CRichEditCtrl::Paste, CRichEditCtrl: :PasteSpecial

CRichEditCtrl::CanUndo

BOOL CanUndo() const;

Return Value
Nonzero if the last edit operation can be undone by a call to the Undo member
function; O if it cannot be undone.

Remarks
Call this function to determine if the last editing operation can be undone.

For more information, see EM_CANUNDO in the Win32 d.ocuimentation.
See Also CRichEditCtrl::Undo, CRichEditCtrl::EmptyUndoBuffer

CRichEditCtrl::Clear

void Clear()s

Remarks
Call this function to delete (clear) the current selection (if any) in the rich edit
control.

1464

CRichEditCtrl::Create
The deletion performed by Clear can be undone by calling the Undo member
function.

To delete the current selection and place the deleted contents onto the Clipboard, call
the Cut member function.

For more information, see WM_CLEAR in the Win32 documentation.

See Also CRichEditCtrl::Undo, CRichEditCtrl::Cut, CRichEditCtrl::Copy,
CRichEditCtrl::Paste

CRichEditCtrl::Copy

Remarks

void Copy();

Call this function to copy the current selection (if any) in the rich edit control to the
Clipboard.

For more information, see WM_COPY in the Win32 documentation.

See Also CRichEditCtrl::Paste, CRichEditCtrl::Cut

CRichEditCtrl::Create

BOOL Create(DWORD dwStyle, const RECT& rect, CWnd* pParentWnd, UINT niD);

Return Value

Nonzero if initialization is successful; otherwise, 0.

Parameters

Remarks

dwStyle Specifies the edit control’s style. Apply any combination of edit styles to the
control. For a list of edit styles, see “Edit Styles” in the “Styles” section.

rect Specifies the edit control’s size and position. Can be a CRect object or RECT
structure.

pParentWnd Specifies the edit control’s parent window (often a CDialog). It must
not be NULL.

nID Specifies the edit control’s ID.

You construct a CRichEditCtrl object in two steps. First, call the CRichEditCtrl
constructor, then call Create, which creates the Windows edit control and attaches it
to the CRichEditCtrl object.

When Create executes, Windows sends the WM_NCCREATE,
WM_NCCALCSIZE, WM_CREATE, and WM_GETMINMAXINFO messages
to the edit control.

1465

CRichEditCtrl::CRichEditCtrl

These messages are handled by default by the OnNeCreate, OnNeCalcSize,
OnCreate, and OnGetMinMaxInfo member functions in the CWnd base class. To
extend the default message handling, derive a class from CRichEditCtrl, add a
message map to the new class, and override the above message-handler member
functions. Override OnCreate, for example, to perform needed initialization for the
new class.

Apply the following window styles to an edit control. For a list of window styles, see
“Window Styles” in the “Styles Used by MFC” section.

e WS_CHILD Always.

e WS_VISIBLE Usually.

e WS_DISABLED Rarely.

e WS_GROUP To group controls.

e WS_TABSTOP To include edit control in the tabbing order.

See Also CRichEditCtrl::CRichEditCtrl

CRichEditCtrl::CRichEditCtrl

Remarks

CRichEditCtrl();

Constructs a CRichEditCtrl object. Use Create to construct the Windows rich edit
control.

See Also CRichEditCtrl::Create

CRichEditCtrl::Cut

Remarks

1466

void Cut();

Call this function to delete (cut) the current selection (if any) in the rich edit control
and copy the deleted text to the Clipboard.

The deletion performed by Cut can be undone by calling the Undo member function.

To delete the current selection without placing the deleted text into the Clipboard,
call the Clear member function.

For more information, see WM_CUT in the Win32 documentation.

See Also CRichEditCtrl::Copy, CRichEditCtrl::Undo, CRichEditCtrl::Clear

CRichEditCtrl::FindText

CRichEditCtrl::DisplayBand

BOOL DisplayBand(LPRECT pDisplayRect);

Return Value
Nonzero if the display of the formatted text succeeds, otherwise, 0.

Parameters
pDisplayRect Pointer to a RECT or CRect object specifying the area of the device
to display the text.

Remarks
Call this function to display a portion of the contents of the rich edit control (text and
OLE items), as previously formatted by FormatRange. The text and OLE items are
clipped to the area specified by the pointer pDisplayRect.

For more information, see EM_DISPLAYBAND in the Win32 documentation.
See Also CRichEditCtrl::FormatRange

CRichEditCtrl::EmptyUndoBuffer

void EmptyUndoBuffer();

Remarks
Call this function to reset (clear) the undo flag of this rich edit control. The control
will now be unable to undo the last editing operation. The undo flag is set whenever
an operation within the rich edit control can be undone.

The undo flag is automatically cleared whenever you call the CWnd member
function SetWindowText.

For more information, sse EM_EMPTYUNDOBUFFER in the Win32
documentation.

See Also CRichEditCtrl::CanUndo, CRichEditCtrl::Undo,
CWnd::SetWindowText

CRichEditCtrl::FindText

long FindText(DWORD dwFlags, FINDTEXTEX* pFindText) const;

Return Value
Zero-based character position of the next match; —1 if there are no more matches.

1467

CRichEditCtrl::FormatRange

Parameters
dwFlags Flags for the match criteria. Can be zero or more of the following values:

o FT_MATCHCASE Indicates that the search is case sensitive.

o FT_WHOLEWORD Indicates that the word boundaries should be
considered in the search.

pFindText Pointer to the FINDTEXTEX structure giving the parameters for the
search and returning the range where the match was found.

Remarks
Call this function to find text within the rich edit control.

For more information, see EM_FINDTEXTEX message and FINDTEXTEX
structure in the Win32 documentation.

See Also CRichEditCtrl::SetSel

CRichEditCtrl::FormatRange

long FormatRange(FORMATRANGE?¥ pfr, BOOL bDisplay = TRUE);

Return Value
The index of the last character that fits in the region plus one.

Parameters
pfr Pointer to the FORMATRANGE structure which contains information about
the output device. NULL indicates that cached information within the rich edit
control can be freed.

bDisplay Indicates if the text should be rendered. If FALSE, the text is just
measured.

Remarks
Call this function to format a range of text in a rich edit control for a specific device.
Typically, this call is followed by a call to DisplayBand.

For more information, see EM_FORMATRANGE message and FORMATRANGE
structure in the Win32 documentation.

See Also CRichEditCtrl::DisplayBand

CRichEditCtrl::GetCharPos

CPoint GetCharPos(long [Char) const;

Return Value
The location of the top-left corner of the character specified by [Char.

1468

CRichEditCtrl::GetEventMask

Parameters
IChar Zero-based index of the character.

Remarks
Call this function to get the position (top-left corner) of a given character within this
CRichEditCtrl object. The character is specified by giving its zero-based index
value. If IChar is greater than the index of the last character in this CRichEditCtrl
object, the return value specifies the coordinates of the character position just past the
last character in this CRichEditCtrl object.

For more information, see EM_POSFROMCHAR in the Win32 documentation.
See Also CRichEditCtrl::FindText

CRichEditCtrl::GetDefaultCharFormat

DWORD GetDefaultCharFormat(CHARFORMAT& cf) const;

Return Value
The dwMask data member of cf. It specified the default character formatting
attributes.

Parameters
¢f Pointer to a CHARFORMAT structure which will hold the default character
formatting attributes.

Remarks
Call this function to get the default character formatting attributes of this
CRichEditCtrl object.

For more information, see EM_GETCHARFORMAT message and
CHARFORMAT structure in the Win32 documentation.

See Also CRichEditCtrl::SetDefaultCharFormat,
CRichEditCtrl::GetSelectionCharFormat, CRichEditCtrl::GetParaFormat

CRichEditCtrl::GetEventMask

long GetEventMask() const;

Return Value
The event mask for this CRichEditCtrl object.

Remarks
Call this function to get the event mask for this CRichEditCtrl object. The event
mask specifies which notification messages the CRichEditCtrl object sends to its
parent window.

1469

CRichEditCtrl::GetFirstVisibleLine

For more information, see EM_GETEVENTMASK in the Win32 documentation.
See Also CRichEditCtrl::SetEventMask, CRichEditCtrl::CRichEditCtrl

CRichEditCtrl::GetFirstVisibleLine

int GetFirstVisibleLine() const;

Return Value
Zero-based index of the uppermost visible line in this CRichEditCtrl object.

Remarks
Call this function to determine the topmost visible line in this CRichEditCtrl object.

For more information, sese EM_GETFIRSTVISIBLELINE in the Win32
documentation.

See Also CRichEditCtrl::GetLine, CRichEditCtrl::GetLineCount

CRichEditCtrl::GetIRichEditOle

IRichEditOle* GetIRichEditOle() const;

Return Value
Pointer to the IRichEditOle interface that can be used to access this CRichEditCtrl
object’s OLE functionality; NULL if the interface is not accessible.

Remarks
Call this member function to access the IRichEditOle interface for this
CRichEditCtrl object. Use this interface to access this CRichEditCtrl object’s OLE
functionality.

For more information, see EM_GETOLEINTERFACE message and IRichEditOle
interface in the Win32 documentation.

See Also CRichEditCtrl::SetOLECallback

CRichEditCtrl::GetLimitText

long GetLimitText() const;

Return Value
The current text limit, in bytes, for this CRichEditCtrl object.

Remarks
Call this member function to get the text limit for this CRichEditCtrl object. The
text limit is the maximum amount of text, in bytes, the rich edit control can accept.

1470

CRichEditCtrl::GetLineCount

For more information, see EM_GETLIMITTEXT in the Win32 documentation.
See Also CRichEditCtrl::LimitText

CRichEditCtrl::GetLine

int GetLine(int nlndex, LPTSTR IpszBuffer) const;
int GetLine(int nindex, LPTSTR IpszBuffer, int nMaxLength) const;

Return Value
The number of characters copied into lpszBuffer.

Parameters
nlndex Zero-based index of the line to retrieve.

IpszBuffer Points to the buffer to receive the text. The first word of the buffer must
specify the maximum number of bytes that can be copied into the buffer.

nMaxLength Maximum number of characters that can be copied into IpszBuffer.
The second form of GetLine places this value into the first word of the buffer
specified by IpszBuffer.

Remarks
Call this function to retrieve a line of text from this CRichEditCtrl object. The
copied line does not contain a terminating null character.

For more information, see EM_GETLINE in the Win32 documentation.
See Also CRichEditCtrl::LineLength

CRichEditCtrl::GetLineCount

int GetLineCount() const;

Return Value
The number of lines in this CRichEditCtrl object.

Remarks
Call this function to retrieve the number of lines in the CRichEditCtrl object.

For more information, see EM_GETLINECOUNT in the Win32 documentation.
See Also CRichEditCtrl::GetLine

1471

CRichEditCtrl::GetModify

CRichEditCtrl::GetModify

BOOL GetModify() const;

Return Value
Nonzero if the text in this CRichEditCtrl object has been modified; otherwise 0.

Remarks
Call this function to determine if the contents of this CRichEditCtrl object have
been modified.

Windows maintains an internal flag indicating whether the contents of the rich edit
control have been changed. This flag is cleared when the edit control is first created
and can also be cleared by calling the SetModify member function.

For more information, see EM_GETMODIFY in the Win32 documentation.
See Also CRichEditCtrl::SetModify

CRichEditCtrl::GetParaFormat
DWORD GetParaFormat(PARAFORMAT& pf) const;

Return Value
The dwMask data member of pf. It specifies the paragraph formatting attributes that
are consistent throughout the current selection.

Parameters
pf Pointer to a PARAFORMAT structure to hold the paragraph formatting
attributes of the current selection.

Remarks
Call this function to get the paragraph formatting attributes of the current selection.
If more than one paragraph is selected, pf receives the attributes of the first selected
paragraph. The return value specifies which attributes are consistent throughout the
selection.

For more information, see EM_GETPARAFORMAT message and
PARAFORMAT structure in the Win32 documentation.

See Also CRichEditCtrl::SetParaFormat,
CRichEditCtrl::GetSelectionCharFormat

1472

CRichEditCtrl::GetRect

void GetRect(LPRECT I/pRect) const;

Parameters

Remarks

IpRect CRect or pointer to a RECT to receive the formatting rectangle of this
CRichEditCtrl object.

Call this function to retrieve the formatting rectangle for this CRichEditCtrl object.
The formatting rectangle is the bounding rectangle for the text. This value is
independent of the size of the CRichEditCtrl object.

For more information, see EM_GETRECT in the Win32 documentation.
See Also CRichEditCtrl::SetRect

CRichEditCtrl::GetSel

CRichEditCtrl::GetSel

void GetSel(CHARRANGEK cr) const;
void GetSel(long& nStartChar, long& nEndChar) const;

Parameters

Remarks

cr Reference to a CHARRANGE structure to receive the bounds of the current
selection.

nStartChar Zero-based index of the first character in the current selection.

nEndChar Zero-based index of the last character in the current selection.

Call this function to retrieve the bounds of the current selection in this
CRichEditCtrl object.

The two forms of this function provide alternate ways to get the bounds for the
selection. Brief descriptions of these forms follow:

o GetSel(cr) This form uses the CHARRANGE structure with its cpMin and
cpMax members to return the bounds.

o GetSel(nStartChar, nEndChar) This form returns the bounds in the parameters
nStartChar and nEndChar.

The selection includes everything if the beginning (cpMin or nStartChar) is 0 and
the end (cpMax or nEndChar) is 1.

For more information, see EM_EXGETSEL message and CHARRANGE structure
in the Win32 documentation.

See Also CRichEditCtrl::SetSel, CRichEditCtrl::GetSelText,
CRichEditCtrl::GetParaFormat, CRichEditCtrl::GetSelectionCharFormat

1473

CRichEditCtrl::GetSelectionCharFormat

CRichEditCtrl::GetSelectionCharFormat

DWORD GetSelectionCharFormat(CHARFORMAT& cf') const;

Return Value
The dwMask data member of cf. It specifies the character formatting attributes that
are consistent throughout the current selection.

Parameters
cf Pointer to a CHARFORMAT structure to receive the character formatting
attributes of the current selection.

Remarks
Call this function to get the character formatting attributes of the current selection.
The cf parameter receives the attributes of the first character in the current selection.
The return value specifies which attributes are consistent throughout the selection.

For more information, see EM_GETCHARFORMAT message and
CHARFORMAT structure in the Win32 documentation.

See Also CRichEditCtrl::GetDefaultCharFormat,
CRichEditCtrl::GetParaFormat, CRichEditCtrl::SetSelectionCharFormat,
CRichEditCtrl::GetSelText

CRichEditCtrl::GetSelectionType

WORD GetSelectionType() const;

Return Value
Flags indicating the contents of the current selection. A combination of the following
flags:
o SEL_EMPTY Indicates that there is no current selection.
o SEL_TEXT Indicates that the current selection contains text.

o SEL_OBJECT Indicates that the current selection contains at least one OLE
item.

e SEL_MULTICHAR Indicates that the current selection contains more than one
character of text.

o SEL_MULTIOBJECT Indicates that the current selection contains more than
one OLE object.

Remarks
Call this function to determine the selection type in this CRichEditCtrl object.

For more information, see EM_SELECTIONTYPE in the Win32 documentation.
See Also CRichEditCtrl::GetSel, CRichEditCtrl::GetSelText

1474

CRichEditCtrl::GetTextLength

CRichEditCtrl::GetSel Text

long GetSelText(LPTSTR /pBuf) const;
CString GetSelText() const;

Return Value
Depends on the form:

o GetSelText(lpBuf) The number of characters copied into IpBuf, not including
the null termination.

e GetSelText() The string containing the current selection.

Parameters
IpBuf Pointer to the buffer to receive the text in the current selection.

Remarks
Call this function to retrieve the text from the current selection in this
CRichEditCtrl object.

If you use the first form, GetSelText([pBuf), you must ensure that the buffer is large
enough for the text it will receive. Call GetSel to determine the number of characters
in the current selection.

For more information, sece EM_GETSELTEXT in the Win32 documentation.
See Also CRichEditCtrl::GetSel, CRichEditCtrl::GetSelectionType

CRichEditCtrl::GetTextLength

long GetTextLength();

Return Value
The length of the text in this CRichEditCtrl object.

Remarks
Call this function to retrieve the length of the text in this CRichEditCtrl object.

For more information, see WM_GETTEXTLENGTH in the Win32 documentation.
See Also CRichEditCtrl::LimitText, CRichEditCtrl::GetLimitText

1475

CRichEditCtrl::HideSelection

CRichEditCtrl::HideSelection

void HideSelection(BOOL bHide, BOOL bPerm);

Parameters
bHide Indicates if the selection should be shown or hidden, TRUE to hide the
selection.

pPerm Indicates if this change in visibility for the selection should be permanent.

Remarks
Call the function to change the visibility of the selection.

When pPerm is TRUE, it changes the ECO_NOHIDESEL option for this
CRichEditCtrl object. For a brief description of this option, see SetOptions. You can
use this function to set all the options for this CRichEditCtrl object.

For more information, see EM_HIDESELECTION in the Win32 documentation.
See Also CRichEditCtrl::SetSel, CRichEditCtrl::GetSelectionType

CRichEditCtrl::LimitText

void LimitText(long nChars = 0);

Parameters
nChars Specifies the length (in bytes) of the text that the user can enter. If this
parameter is 0, the text length is set to UINT_MAX bytes. This is the default
behavior.

Remarks
Call this function to limit the length of the text that the user can enter into an edit
control.

Changing the text limit restricts only the text the user can enter. It has no effect on
any text already in the edit control, nor does it affect the length of the text copied to
the edit control by the SetWindowText member function in CWnd. If an application
uses the SetWindowText function to place more text into an edit control than is
specified in the call to LimitText, the user can delete any of the text within the edit
control. However, the text limit will prevent the user from replacing the existing text
with new text, unless deleting the current selection causes the text to fall below the
text limit.

Note For the text limit, each OLE item counts as a single character.

For more information, see EM_EXLIMITTEXT in the Win32 documentation.
See Also CRichEditCtrl::GetLimitText

1476

CRichEditCtrl::LineIlndex

CRichEditCtrl::LineFromChar

long LineFromChar(long nindex) const;

Return Value
The zero-based line number of the line containing the character index specified by
nlndex. If nIndex is —1, the number of the line that contains the first character of the
selection is returned. If there is no selection, the current line number is returned.

Parameters
nindex Contains the zero-based index value for the desired character in the text of
the edit control, or contains —1. If nlndex is —1, it specifies the current line, that is,
the line that contains the caret.

Remarks
Call this function to retrieve the line number of the line that contains the specified
character index. A character index is the number of characters from the beginning of
the rich edit control. For character counting, an OLE item is counted as a single
character.

For more information, see EM_EXLINEFROMCHAR in the Win32
documentation.

See Also CRichEditCtrl::GetLineCount, CRichEditCtrl::GetLine,
CRichEditCtrl::LineIndex

CRichEditCtrl::Linelndex

int LineIndex(int nLine = -1) const;

Return Value
The character index of the line specified in nLine or —1 if the specified line number is
greater then the number of lines in the edit control.

Parameters
nLine Contains the index value for the desired line in the text of the edit control, or
contains —1. If nLine is -1, it specifies the current line, that is, the line that
contains the caret.

Remarks
Call this function to retrieve the character index of a line within this CRichEditCtrl
object. The character index is the number of characters from the beginning of the rich
edit control to the specified line.

For more information, see EM_LINEINDEX in the Win32 documentation.
See Also CRichEditCtrl::LineFromChar, CRichEditCtrl::GetLineCount

1477

CRichEditCtrl::LineLength

CRichEditCtrl::LineLength

int LineLength(int nLine = -1) const;

Return Value
When LineLength is called for a multiple-line edit control, the return value is the
length (in bytes) of the line specified by nLine. When LineLength is called for a
single-line edit control, the return value is the length (in bytes) of the text in the edit
control.

Parameters
nLine Specifies the character index of a character in the line whose length is to be
retrieved. If this parameter is —1, the length of the current line (the line that
contains the caret) is returned, not including the length of any selected text within
the line. When LineLength is called for a single-line edit control, this parameter
is ignored.

Remarks
Call this function to retrieve the length of a line in a rich edit control.

Use the LineIndex member function to retrieve a character index for a given line
number within this CRichEditCtr] object.

For more information, see EM_LINELENGTH in the Win32 documentation.
See Also CRichEditCtrl::LineIndex

CRichEditCtrl::LineScroll

void LineScroll(int nLines, int nChars =0);

Parameters
nLines Specifies the number of lines to scroll vertically.
nChars Specifies the number of character positions to scroll horizontally. This value

is ignored if the rich edit control has either the ES_RIGHT or ES_CENTER
style. Edit styles are specified in Create.

Remarks
Call this function to scroll the text of a multiple-line edit control.

The edit control does not scroll vertically past the last line of text in the edit control.
If the current line plus the number of lines specified by nLines exceeds the total
number of lines in the edit control, the value is adjusted so that the last line of the
edit control is scrolled to the top of the edit-control window.

LineScroll can be used to scroll horizontally past the last character of any line.

1478

CRichEditCtrl::ReplaceSel

For more information, see EM_LINESCROLL in the Win32 documentation.
See Also CRichEditCtrl::LineIndex

CRichEditCtrl::Paste

void Paste();

Remarks
Call this function to insert the data from the Clipboard into the CRichEditCtrl at the
insertion point, the location of the caret. Data is inserted only if the Clipboard
contains data in a recognized format.

For more information, see WM_PASTE in the Win32 documentation.

See Also CRichEditCtrl::Copy, CRichEditCtrl::Cut,
CRichEditCtrl::PasteSpecial

CRichEditCtrl::PasteSpecial

void PasteSpecial(UINT nClipFormat, DWORD dvAspect = 0, HMETAFILE hMF = 0);

Parameters
nClipFormat Clipboard format to paste into this CRichEditCtrl object.

dvAspect Device aspect for the data to be retrieved from the Clipboard.

hMF Handle to the metafile containing the iconic view of the object to be pasted.
Remarks

Call this function to paste data in a specific Clipboard format into this

CRichEditCtrl object. The new material is inserted at the insertion point, the
location of the caret.

For more information, see EM_PASTESPECIAL in the Win32 documentation.
See Also CRichEditCtrl::Paste, CRichEditCtrl::Copy, CRichEditCtrl::Cut

CRichEditCtrl::ReplaceSel

void ReplaceSel(LPCTSTR IpszNewText);

Parameters
IpszNewText Pointer to a null-terminated string containing the replacement text.

Remarks
Call this function to replace the current selection in this CRichEditCtrl object with
the specified text. To replace all the text in this CRichEditCtrl object, use
CWnd::SetWindowText.

1479

CRichEditCtrl::RequestResize
If there is no current selection, the replacement text is inserted at the insertion point,
that is, the current caret location.

Note This operation cannot be undone.

For more information, sce EM_REPLACESEL in the Win32 documentation.

See Also CRichEditCtrl::CanUndo, CRichEditCtrl::Undo,
CWnd::SetWindowText

CRichEditCtrl::RequestResize

void RequestResize();

Remarks
Call this function to force this CRichEditCtrl object to send
EN_REQUESTRESIZE notification messages to its parent window. This function is
useful during CWnd::OnSize processing for a bottomless CRichEditCtrl object.

For more information, see the EM_REQUESTRESIZE message and the
“Bottomless Rich Edit Controls” article in the Win32 documentation.

See Also CWnd::OnSize, CRichEditCtrl::Create

CRichEditCtrl::SetBackgroundColor

COLORREF SetBackgroundColor(BOOL bSysColor, COLORREF cr);

Return Value
The previous background color for this CRichEditCtrl object.

Parameters
bSysColor Indicates if the background color should be set to the system value. If this
value is TRUE, cr is ignored.

cr The requested background color. Used only if bSysColor is FALSE.
Remarks

Call this function to set the background color for this CRichEditCtrl object. The
background color can be set to the system value or to a specified COLORREF value.

For more information, see EM_SETBKGNDCOLOR message and COLORREF
structure in the Win32 documentation.

See Also CDC::SetBkColor

1480

CRichEditCtrl::SetModify

CRichEditCtrl::SetDefaultCharFormat

BOOL SetDefaultCharFormat(CHARFORMAT& cf);

Return Value
Nonzero if successful; otherwise, 0.

Parameters
¢f CHARFORMAT structure containing the new default character formatting
attributes.

Remarks
Call this function to set the character formatting attributes for new text in this
CRichEditCtrl object. Only the attributes specified by the dwMask member of ¢f are
changed by this function.

For more information, see EM_SETCHARFORMAT message and
CHARFORMAT structure in the Win32 documentation.

See Also CRichEditCtrl::GetDefaultCharFormat,
CRichEditCtrl::SetSelectionCharFormat

CRichEditCtrl::SetEventMask

DWORD SetEventMask(DWORD dwEventMask);

Return Value
The previous event mask.

Parameters
dwEventMask The new event mask for this CRichEditCtrl object.

Remarks
Call this function to set the event mask for this CRichEditCtrl object. The event
mask specifies which notification messages the CRichEditCtrl object sends to its
parent window.

For more information, see EM_SETEVENTMASK in the Win32 documentation.
See Also CRichEditCtrl::GetEventMask

CRichEditCtrl::SetModify

void SetModify(BOOL bModified = TRUE);

Parameters
bModified A value of TRUE indicates that the text has been modified, and a value
of FALSE indicates it is unmodified. By default, the modified flag is set.

1481

CRichEditCtrl::SetOLECallback

Remarks
Call this function to set or clear the modified flag for an edit control. The modified
flag indicates whether or not the text within the edit control has been modified. It is
automatically set whenever the user changes the text. Its value can be retrieved with
the GetModify member function.

For more information, see EM_SETMODIFY in the Win32 documentation.
See Also CRichEditCtrl::GetModify

CRichEditCtrl::SetOLECallback

BOOL SetOLECallback(IRichEditOleCallback* pCallback);

Parameters
pCallback Pointer to an IRichEditOleCallback object that this CRichEditCtrl
object will use to get OLE-related resources and information.

Return Value
Nonzero if successful; otherwise, 0.

Remarks
Call this function to give this CRichEditCtrl object an IRichEditOleCallback
object to use to access OLE-related resources and information. This CRichEditCtrl
object will call IUnknown::AddRef to increment the usage count for the COM object
specified by pCallback.

For more information, see EM_SETOLEINTERFACE message and
IRichEditOleCallback interface in the Win32 documentation.

See Also CRichEditCtrl::GetIRichEditOle

CRichEditCtrl::SetOptions

void SetOptions(WORD wOp, DWORD dwFlags);

Parameters
wOp Indicates the type of operation. One of the following values:

e ECOOP_SET Set the options to those specified by dwFlags.
e ECOOP_OR Combine the current options with those specified by dwFlags.

¢ ECOOP_AND Retain only those current options that are also specified by
dwFlags.

e ECOOP_XOR Retain only those current options that are not specified by
dwFlags.

dwFlags Rich edit options. The flag values are listed in the “Remarks” section.

1482

CRichEditCtrl::SetParaFormat

Remarks
Call this function to set the options for this CRichEditCtrl object.

The options can be a combination of the following values:

e ECO_AUTOWORDSELECTION Automatic word selection on double-click.

e ECO_AUTOVSCROLL Automatically scrolls text to the right by 10 characters
when the user types a character at the end of the line. When the user presses the
ENTER key, the control scrolls all text back to position zero.

e ECO_AUTOHSCROLL Automatically scrolls text up one page when the user
presses the ENTER key on the last line.

o ECO_NOHIDESEL Negates the default behavior for an edit control. The
default behavior hides the selection when the control loses the input focus and
shows the selection when the control receives the input focus. If you specify
ECO_NOHIDESEL, the selected text is inverted, even if the control does not
have the focus.

e ECO_READONLY Prevents the user from typing or editing text in the edit
control.

e ECO_WANTRETURN Specifies that a carriage return be inserted when the
user presses the ENTER key while entering text into a multiple-line rich edit control
in a dialog box. If you do not specify this style, pressing the ENTER key sends a
command to the rich edit control’s parent window, which mimics clicking the
parent window’s default button (for example, the OK button in a dialog box). This
style has no effect on a single-line edit control.

e ECO_SAVESEL Preserves the selection when the control loses the focus. By
default, the entire contents of the control are selected when it regains the focus.

e ECO_VERTICAL Draws text and objects in a vertical direction. Available for
Asian languages only.

For more information, see EM_SETOPTIONS in the Win32 documentation.
See Also CRichEditCtrl::HideSelection, CRichEditCtrl::SetReadOnly

CRichEditCtrl::SetParaFormat

BOOL SetParaFormat(PARAFORMATX pf);

Return Value
Nonzero if successful; otherwise, 0.

Parameters
pf PARAFORMAT structure containing the new default paragraph formatting
attributes.

1483

CRichEditCtrl::SetReadOnly

Remarks
Call this function to set the paragraph formatting attributes for the current selection
in this CRichEditCtrl object. Only the attributes specified by the dwMask member
of pf are changed by this function.

For more information, see EM_SETPARAFORMAT message and PARAFORMAT
structure in the Win32 documentation.

See Also CRichEditCtrl::GetParaFormat,
CRichEditCtrl::SetSelectionCharFormat

CRichEditCtrl::SetReadOnly

BOOL SetReadOnly(BOOL bReadOnly = TRUE);

Return Value
Nonzero if successful; otherwise, 0.

Parameters
bReadOnly Indicates if this CRichEditCtrl object should be read only.

Remarks
Call this member function to change the ECO_READONLY option for this
CRichEditCtrl object. For a brief description of this option, see SetOptions. You can
use this function to set all the options for this CRichEditCtrl object.

For more information, see EM_SETREADONLY in the Win32 documentation.
See Also CRichEditCtrl::Create, CRichEditCtrl::SetOptions

CRichEditCtrl::SetRect

void SetRect(LPCRECT I/pRect);

Parameters
IpRect CRect or pointer to a RECT that indicates the new bounds for the
formatting rectangle.

Remarks
Call this function to set the formatting rectangle for this CRichEditCtrl object. The
formatting rectangle is the limiting rectangle for the text. The limiting rectangle is
independent of the size of the rich edit control window. When this CRichEditCtrl
object is first created, the formatting rectangle is the same size as the client area of
the window. Use SetRect to make the formatting rectangle larger or smaller than the
rich edit window.

For more information, see EM_SETRECT in the Win32 documentation.
See Also CRichEditCtrl::GetRect
1484

CRichEditCtrl::SetSelectionCharFormat

CRichEditCtrl::SetSel

void SetSel(long nStartChar, long nEndChar);
void SetSel(CHARRANGEX cr);

Parameters
nStartChar Zero-based index of the first character for the selection.

nEndChar Zero-based index of the last character for the selection.
cr CHARRANGE structure which holds the bounds of the current selection.

Remarks
Call this function to set the selection within this CRichEditCtrl object.

The two forms of this function provide alternate ways to set the bounds for the
selection. Brief descriptions of these forms follow:

o SetSel(cr) This form uses the CHARRANGE structure with its cpMin and
cpMax members to set the bounds.

o SetSel(nStartChar, nEndChar) This form use the parameters nStartChar and
nEndChar to set the bounds.

The caret is placed at the end of the selection indicated by the greater of the start
(cpMin or nStartChar) and end (cpMax or nEndChar) indices. This function does
not scroll the contents of the CRichEditCtrl so that the caret is visible.

To select all the text in this CRichEditCtrl object, call SetSel with a start index of 0
and an end index of 1.

For more information, see EM_EXSETSEL message and CHARRANGE structure
in the Win32 documentation.

See Also CRichEditCtrl::GetSel, CRichEditCtrl::GetSelectionType

CRichEditCtrl::SetSelectionCharFormat

BOOL SetSelectionCharFormat(CHARFORMAT& cf);

Return Value
Nonzero if successful; otherwise, O.

Parameters
¢f CHARFORMAT structure containing the new character formatting attributes for
the current selection.

Remarks
Call this function to set the character formatting attributes for the text in the current
selection in this CRichEditCtrl object. Only the attributes specified by the dwMask
member of cf are changed by this function.

1485

CRichEditCtrl::SetTargetDevice
For more information, see EM_SETCHARFORMAT message and
CHARFORMAT structure in the Win32 documentation.

See Also CRichEditCtrl::GetSelectionCharFormat,
CRichEditCtrl::SetDefaultCharFormat

CRichEditCtrl::SetTargetDevice

BOOL SetTargetDevice(HDC 4DC, long [LineWidth);
BOOL SetTargetDevice(CDC& dc, long [LineWidth);

Return Value
Nonzero if successful; otherwise, 0.

Parameters
ADC Handle to the device context for the new target device.

{LineWidth Line width to use for formatting.
dc CDC for the new target device.
Remarks

Call this function to set the target device and line width used for WYSIWYG (what
you see is what you get) formatting in this CRichEditCtrl object.

If this function is successful, the rich edit control owns the device context passed as a
parameter. In that case, the calling function should not destroy the device context.

For more information, see EM_SETTARGETDEVICE in the Win32
documentation.

See Also CRichEditCtrl::FormatRange, CRichEditCtrl::DisplayBand

CRichEditCtrl::SetWordCharFormat

BOOL SetWordCharFormat(CHARFORMAT & cf);

Return Value
Nonzero if successful; otherwise, 0.

Parameters
¢f CHARFORMAT structure containing the new character formatting attributes for
the currently selected word.

Remarks

Call this function to set the character formatting attributes for the currently selected
word in this CRichEditCtrl object. Only the attributes specified by the dwMask
member of cf are changed by this function.

1486

CRichEditCtrl::StreamOut

For more information, sece EM_SETCHARFORMAT message and
CHARFORMAT structure in the Win32 documentation.

See Also CRichEditCtrl::SetSelectionCharFormat

CRichEditCtrl::StreamIn

long StreamIn(int nFormat, EDITSTREAM es);

Return Value

Number of characters read from the input stream.

Parameters

Remarks

nFormat Flags specifying the input data formats. See the “Remarks” section for
more information.

es EDITSTREAM structure specifying the input stream. See the “Remarks” section
for more information.

Call this function to replace text in this CRichEditCtrl object with text from the
specified input stream.

The value of nFormat must be one of the following:

e SF_TEXT Indicates reading text only.
e SF_RTF Indicates reading text and formatting.

Either of these values can be combined with SFF_SELECTION. If
SFF_SELECTION is specified, StreamlIn replaces the current selection with the
contents of the input stream. If it is not specified, StreamlIn replaces the entire
contents of this CRichEditCtrl object.

In the EDITSTREAM parameter es, you specify a callback function which fills a
buffer with text. This callback function is called repeatedly, until the input stream is
exhausted.

For more information, sse EM_STREAMIN message and EDITSTREAM structure
in the Win32 documentation.

See Also CRichEditCtrl::StreamOut

CRichEditCtrl::StreamOut

long StreamOut(int nFormat, EDITSTREAM& e¢s);

Return Value

Number of characters written to the output stream.

1487

CRichEditCtrl::Undo

Parameters

Remarks

nFormat Flags specifying the output data formats. See the “Remarks” section for
more information.

es EDITSTREAM structure specifying the output stream. See the “Remarks”
section for more information.

Call this function to write out the contents of this CRichEditCtrl object to the
specified output stream.

The value of nFormat must be one of the following:

o SF_TEXT Indicates writing text only.
o SF_RTF Indicates writing text and formatting.

e SF_RTFNOOBJS Indicates writing text and formatting, replacing OLE items
with spaces.

e SF_TEXTIZED Indicates writing text and formatting, with textual
representations of OLE items.

Any of these values can be combined with SFF_SELECTION. If
SFF_SELECTION is specified, StreamQOut writes out the current selection into the
output stream. If it is not specified, StreamQut writes out the the entire contents of
this CRichEditCtrl object.

In the EDITSTREAM parameter es, you specify a callback function which fills a
buffer with text. This callback function is called repeatedly, until the output stream is
exhausted.

For more information, see EM_STREAMOUT message and EDITSTREAM
structure in the Win32 documentation.

See Also CRichEditCtrl::StreamIn

CRichEditCtrl::Undo

BOOL Undo();

Return Value

1488

Nonzero if the undo operation is successful; otherwise, 0.

Remarks

Call this function to undo the last operation in the rich edit control.

An undo operation can also be undone. For example, you can restore deleted text with
the first call to Undo. As long as there is no intervening edit operation, you can
remove the text again with a second call to Undo.

For more information, see EM_UNDO in the Win32 documentation.

See Also CRichEditCtrl::CanUndo, CRichEditCtrl::EmptyUndoBuffer

CRichEditCtrl::Undo

1489

CRichEditDoc

CRichEditDoc

1490

A “rich edit control” is a window in which the user can enter and edit text. The text
can be assigned character and paragraph formatting, and can include embedded OLE
objects. Rich edit controls provide a programming interface for formatting text.
However, an application must implement any user interface components necessary to
make formatting operations available to the user.

The CRichEditDoc class, with CRichEditView and CRichEditCntrltem, provides
the functionality of the rich edit control within the context of MFC’s document view
architecture. CRichEditView maintains the text and formatting characteristic of text.
CRichEditDoc maintains the list of client items which are in the view.
CRichEditCntrItem provides container-side access to the OLE client items.

This Windows Common control (and therefore the CRichEditCtrl and related
classes) is available only to programs running under Windows 95, Windows NT
versions 3.51 and later, and Win32s versions 1.3 and later.

For an example of using a rich edit document in an MFC application, see the
WORDPAD sample application.

#include <afxrich.h>
See Also CRichEditView, CRichEditCntrItem, COleDocument, CRichEditCtrl
Attributes

GetStreamFormat Indicates whether stream input and output should include
formatting information.

GetView Retrieves the asssociated CRichEditView object.

Data Members

m_bRTF Indicates whether stream I/O should include formatting.

CRichEditDoc::GetStreamFormat

Overridables

CreateClientItem Called to perform cleanup of the document.

Member Functions
CRichEditDoc::CreateClientltem

virtual CRichEditCntrItem* CreateClientItem(REOBJECT* preo = NULL) const = 0;

Return Value
Pointer to a new CRichEditCntrItem object which has been added to this document.

Parameters
preo Pointer to an REOBJECT structure which describes an OLE item. The new
CRichEditCntrItem object is constructed around this OLE item. If preo is
NULL, the new client item is empty.

Remarks
Call this function to create a CRichEditCntrItem object and add it to this document.
This function does not perform any OLE initialization.

For more information, see the REOBJECT structure in the Win32 documentation.

See Also CRichEditCntrItem::CRichEditCntrItem, COleDocument::AddItem

CRichEditDoc::GetStreamFormat

int GetStreamFormat() const;

Return Vaiue
One of the following flags:

e SF_TEXT Indicates that the rich edit control does not maintain formatting
information.

o SF_RTF Indicates that the rich edit control does maintain formatting
information.

Remarks
Call this function to determine the text format for streaming the contents of the rich
edit. The return value is based on the m_bRTF data member. This function returns
SF_RTF if m_bRTF is TRUE; otherwise, SF_TEXT.

See Also CRichEditDoc::m_bRTF, CRichEditCtrl::StreamlIn,
CRichEditCtrl::StreamOut

1491

CRichEditDoc::GetView

CRichEditDoc::GetView

CRichEditView* GetView() const;

Return Value
Pointer to the CRichEditView object associated with the document.

Remarks
Call this function to access the CRichEditView object associated with this
CRichEditDoc object. The text and formatting information are contained within the
CRichEditView object. The CRichEditDoc object maintains the OLE items for
serialization. There should be only one CRichEditView for each CRichEditDoc.

See Also CRichEditView, CDocument::GetNextView

Data Members
CRichEditDoc::m_bRTF

Remarks
When TRUE, indicates that CRichEditCtrl::StreamIn and
CRichEditCtrl::StreamOut should store paragraph and character-formatting
characteristics.

See Also CRichEditDoc::GetStreamFormat

1492

CRichEditView

CRichEditView

A “rich edit control” is a window in which the user can enter and edit text. The text
can be assigned character and paragraph formatting, and can include embedded OLE
objects. Rich edit controls provide a programming interface for formatting text.
However, an application must implement any user interface components necessary to
make formatting operations available to the user.

The CRichEditView class, with CRichEditDoc and CRichEditCntrItem, provides
the functionality of the rich edit control within the context of MFC’s document view
architecture. CRichEditView maintains the text and formatting characteristic of text.
CRichEditDoc maintains the list of OLE client items which are in the view.
CRichEditCntrItem provides container-side access to the OLE client item.

This Windows Common control (and therefore the CRichEditCtrl and related
classes) is available only to programs running under Windows 95, Windows NT
versions 3.51 and later, and Win32s versions 1.3 and later.

For an example of using a rich edit view in an MFC application, see the WORDPAD
sample application.

#include <afxrich.h>

See Also CRichEditDoc, CRichEditCntrItem

1493

CRichEditView

1494

Constructor

CRichEditView Constructs a CRichEditView object.

Attributes

GetDocument Retrieves a pointer to the related CRichEditDoc.

GetCharFormatSelection

SetCharFormat

GetParaFormatSelection

SetParaFormat

GetTextLength
GetPaperSize
SetPaperSize
GetMargins
SetMargins
GetPrintWidth
GetPrintRect
GetPageRect
GetSelectedItem
GetInPlaceActiveltem

GetRichEditCtrl

Data Members

Retrieves the character formatting attributes for the current
selection.

Sets the character formatting attributes for the current
selection.

Retrieves the paragraph formatting attributes for the current
selection.

Sets the paragraph formatting attributes for the current
selection.

Retrieves the length of the text in the rich edit view.
Retrieves the paper size for this rich edit view.

Sets the paper size for this rich edit view.

Retrieves the margins for this rich edit view.

Sets the margins for this rich edit view.

Retrieves the print width for this rich edit view.
Retrieves the print rectangle for this rich edit view.
Retrieves the page rectangle for this rich edit view.
Retrieves the selected item from the rich edit view.

Retrieves the OLE item that is currently in-place active in
the rich edit view.

Retrieves the rich edit control.

m_nBulletIndent
m_nWordWrap

Indicates the amount of indent for bullet lists.
Indicates the word wrap constraints.

Operations

FindText Finds the specified text, invoking the wait cursor.

FindTextSimple Finds the specified text.

IsRichEditFormat Tells whether the Clipboard contains data in a rich edit or
text format.

CanPaste Tells whether the Clipboard contains data that can be pasted
into the rich edit view.

DoPaste Pastes an OLE item into this rich edit view.

InsertItem Inserts a new item as an OLE item.

InsertFileAsObject Inserts a file as an OLE item.

AdjustDialogPosition

CRichEditView::AdjustDialogPosition

Moves a dialog box so that it doesn’t obscure the current
selection.

OnCharkEffect Changes the character formatting for the current selection.

OnParaAlign Changes the alignment of paragraphs.

OnUpdateCharEffect Updates the Command UI for character public member
functions.

OnUpdateParaAlign Updates the Command UI for paragraph public member
functions.

PrintInsideRect Formats the specified text within the given rectangle.

PrintPage Formats the specified text within the given page.

Overridables

OnlnitialUpdate Refreshes a view when it is first attached to a document.

IsSelected Indicates if the given OLE item is selected or not.

OnFindNext Finds the next occurrence of a substring.

OnTextNotFound Handles user notification that the requested text was not
found.

OnReplaceAll Replaces all occurrences of a given string with a new string.

OnReplaceSel Replaces the current selection.

QueryAcceptData Queries to see about the data on the IDataObject.

OnPasteNativeObject Retrieves native data from an OLE item.

OnPrinterChanged Sets the print characteristics to the given device.

WrapChanged Adjusts the target output device for this rich edit view, based
on the value of m_nWordWrap.

GetClipboardData Retrieves a Clipboard object for a range in this rich edit
view.

GetContextMenu Retrieves a context menu to use on a right mouse-button

down.

Member Functions
CRichEditView::AdjustDialogPosition

void AdjustDialogPosition(CDialog* pDlg);

Parameters
pDlg Pointer to a CDialog object.

1495

CRichEditView::CanPaste

Remarks
Call this function to move the given dialog box so that it does not obscure the current
selection.

See Also CRichEditCtrl::GetSel

CRichEditView::CanPaste

BOOL CanPaste() const;

Return Value
Nonzero if the Clipboard contains data in a format which this rich edit view can
accept; otherwise, 0.

Remarks
Call this function to determine if the Clipboard contains information that can be
pasted into this rich edit view.

See Also CRichEditCtrl::Paste, CRichEditView::DoPaste,
CRichEditView::IsRichEditFormat

CRichEditView::CRichEditView

CRichEditView();

Remarks
Call this function to create a CRichEditView object.

See Also CRichEditDoc, CRichEditCtrl

CRichEditView::DoPaste

void DoPaste(COleDataObject& dataobj, CLIPFORMAT cf, HMETAFILEPICT hMetaPict);

Parameters
dataobj The COleDataObject containing the data to paste.

¢f The desired Clipboard format.
hMetaPict The metafile that represents the item to be pasted.
Remarks
Call this function to paste the OLE item in dataobj into this rich edit document/view.

The framework calls this function as part of the default implementation of
QueryAcceptData.

1496

CRichEditView::FindTextSimple

This function determines the type of paste based on the results of the handler for
Paste Special. If ¢fis 0, the new item uses the current iconic representation. If cfis
nonzero and hMetaPict is not NULL, the new item uses hMetaPict for its
representation.

See Also CRichEditCtrl::Paste, CRichEditView::IsRichEditFormat,
CRichEditView::InsertItem

CRichEditView::FindText

BOOL FindText(LPCTSTR IpszFind, BOOL bCase = TRUE, BOOL bWord = TRUE);

Return Value
Nonzero if the IpszFind text is found; otherwise 0.

Parameters
IpszFind Contains the string to search for.

bCase Indicates if the search is case sensitive.
bWord Indicates if the search should match whole words only, not parts of words.
Remarks

Call this function to find the specified text and set it to be the current selection. This
function displays the wait cursor during the find operation.

See Also CRichEditCtrl::FindText, CRichEditCtrl::SetSel,
CRichEditView::Find TextSimple, CWaitCursor

CRichEditView::FindTextSimple

BOOL FindTextSimple(LPCTSTR IpszFind, BOOL bCase = TRUE, BOOL bWord = TRUE);

Return Value
Nonzero if the IpszFind text is found; otherwise 0.

Parameters
IpszFind Contains the string to search for.

bCase Indicates if the search is case sensitive.
bWord Indicates if the search should match whole words only, not parts of words.

Remarks
Call this function to find the specified text and set it to be the current selection.

See Also CRichEditCtrl::FindText, CRichEditCtrl::SetSel,
CRichEditView::Find Text

1497

CRichEditView::GetCharFormatSelection

CRichEditView::GetCharFormatSelection

CHARFORMAT& GetCharFormatSelection();

Return Value
A CHARFORMAT structure which contains the character formatting attributes of
the current selection.

Remarks
Call this function to get the character formatting attributes of the current selection.

For more information, see the EM_GETCHARFORMAT message and the
CHARFORMAT structure in the Win32 documentation.

See Also CRichEditView::SetCharFormat,
CRichEditView::GetParaFormatSelection,
CRichEditCtrl::GetSelectionCharFormat

CRichEditView::GetClipboardData

virtual HRESULT GetClipboardData(CHARRANGE* Ipchrg, DWORD dwReco,
LPDATAOBJECT IpRichDataObj, LPDATAOBJECT?# Iplpdataobj);

Return Value
An HRESULT value reporting the success of the operation.

Parameters
Ipchrg Pointer to the CHARRANGE structure specifying the range of characters
(and OLE items) to copy to the data object specified by iplpdataobyj.

dwReco Clipboard operation flag. Can be one of these values.
¢ RECO_COPY Copy to the Clipboard.

¢ RECO_CUT Cut to the Clipboard.

¢ RECO_DRAG Drag operation (drag and drop).
e RECO_DROP Drop operation (drag and drop).
e RECO_PASTE Paste from the Clipboard.

IpRichDataObj Pointer to an IDataObject object containing the Clipboard data
from the rich edit control (IRichEditOle::GetClipboardData).

Iplpdataobj Pointer to the pointer variable that receives the address of the
IDataObject object representing the range specified in the [pchrg parameter. The
value of Iplpdataobj is ignored if an error is returned.

1498

CRichEditView::GetContextMenu

Remarks
The framework calls this function as part of the processing of
IRichEditOleCallback::GetClipboardData. If the return value indicates success,
IRichEditOleCallback::GetClipboardData returns the IDataObject accessed by
Iplpdataobj, otherwise, it returns the one accessed by [pRichDataObj. Override this
function to supply your own Clipboard data. The default implementation of this
function returns E_NOTIMPL.

This is an advanced overridable.

For more information, see IRichEditOle::GetClipboardData,
IRichEditOleCallback::GetClipboardData, and CHARRANGE in the Win32
documentation and see IDataObject in the OLE documentation.

See Also COleServerItem::GetClipboardData

CRichEditView::GetContextMenu

virtual HMENU GetContextMenu(WORD seltyp, LPOLEOBJECT ipoleobyj,
CHARRANGE?* Ipchrg);

Return Value
Handle to the context menu.

Parameters
seltyp The selection type. The selection type values are described in the “Remarks”
section.

Ipoleobj Pointer to a OLEOBJECT structure specifying the first selected OLE
object if the selection contains one or more OLE items. If the selection contains no
items, Ipoleobj is NULL. The OLEOBJECT structure holds a pointer to an OLE
object v-table.

Ipchrg Pointer to a CHARRANGE structure containing the current selection.
Remarks
The framework calls this function as part of the processing of

IRichEditOleCallback::GetContextMenu. This function is a typical part of right
mouse-button down processing.

The selection type can be any combination of the following flags:
e SEL_EMPTY Indicates that there is no current selection.
e SEL_TEXT Indicates that the current selection contains text.

¢ SEL_OBJECT Indicates that the current selection contains at least one OLE
item.

1499

CRichEditView::GetDocument

e SEL_MULTICHAR Indicates that the current selection contains more than one
character of text.

¢ SEL_MULTIOBJECT Indicates that the current selection contains more than
one OLE object.

The default implementation returns NULL. This is an advanced overridable.

For more information, see IRichEditOleCallback::GetContextMenu and
CHARRANGE in the Win32 documentation.

For more information on the OLEOBJECT type, see the “OLE Data Structures and
Structure Allocation” article in the OLE Knowledge Base.

See Also CRichEditCtrl::GetSelectionType

CRichEditView::GetDocument

CRichEditDoc* GetDocument() const;

Return Value
Pointer to a CRichEditDoc object associated with your CRichEditView object.

Remarks
Call this function to get a pointer to the CRichEditDoc associated with this view.

See Also CRichEditDoc, CView::GetDocument, COleClientItem::GetDocument

CRichEditView::GetInPlaceActiveltem

CRichEditCntrItem* GetInPlaceActiveltem() const;

Return Value
A pointer to the single, in-place active CRichEditCntrItem object in this rich edit
view; NULL if there is no OLE item currently in the in-place active state.

Remarks

Call this function to get the OLE item that is currently activated in place in this
CRichEditView object.

See Also COleDocument::GetInPlaceActiveItem, CRichEditCntrItem,
CRichEditView::GetSelectedItem

CRichEditView::GetMargins

CRect GetMargins() const;

Return Value
The margins used in printing, measured in MM_TWIPS.

1500

CRichEditView::GetParaFormatSelection

Remarks
Call this function to retrieve the current margins used in printing.

See Also CRichEditView::SetMargins, CRichEditView::GetPrintWidth,
CRichEditView::GetPrintRect, CRichEditView::GetPaperSize,
CRichEditView::PrintPage, CRichEditView::WrapChanged

CRichEditView::GetPageRect

CRect GetPageRect() const;

Return Value
The bounds of the page used in printing, measured in MM_TWIPS.

Remarks
Call this function to get the dimensions of the page used in printing. This value is
based on the paper size.

See Also CRichEditView::GetMargins, CRichEditView::GetPrintWidth,
CRichEditView::GetPrintRect, CRichEditView::GetPaperSize,
CRichEditView::PrintPage

CRichEditView::GetPaperSize

CSize GetPaperSize() const;

Return Value
The size of the paper used in printing, measured in MM_TWIPS.

Remarks
Call this function to retrieve the current paper size.

See Also CRichEditView::SetPaperSize, CRichEditView::GetMargins,
CRichEditView::GetPrintWidth, CRichEditView::GetPrintRect,
CRichEditView::GetPageRect, CRichEditView::PrintPage

CRichEditView::GetParaFormatSelection

PARAFORMAT& GetParaFormatSelection();

Return Value
A PARAFORMAT structure which contains the paragraph formatting attributes of
the current selection.

1501

CRichEditView::GetPrintRect

Remarks

Call this function to get the paragraph formatting attributes of the current selection.

For more information, see EM_GETPARAFORMAT message and
PARAFORMAT structure in the Win32 documentation.

See Also CRichEditView::GetCharFormatSelection,
CRichEditView::SetParaFormat, CRichEditCtrl::GetParaFormat

CRichEditView::GetPrintRect

CRect GetPageRect() const;

Return Value

Remarks

The bounds of the image area used in printing, measured in MM_TWIPS.

Call this function to retrieve the bounds of the printing area within the page
rectangle.

See Also CRichEditView::GetMargins, CRichEditView::GetPrintWidth,
CRichEditView::GetPaperSize, CRichEditView::GetPageRect,
CRichEditView::PrintPage

CRichEditView::GetPrintWidth

int GetPrintWidth() const;

Return Value

Remarks

The width of the printing area, measured in MM_TWIPS.

Call this function to determine the width of the printing area.

See Also CRichEditView::GetMargins, CRichEditView::GetPrintRect,
CRichEditView::GetPaperSize, CRichEditView::GetPageRect,
CRichEditView::PrintPage, CRichEditView:: WrapChanged

CRichEditView::GetRichEditCtrl

CRichEditCtri& GetRichEditCtrl() const;

Return Value

1502

The CRichEditCtrl object for this view.

CRichEditView::InsertFileAsObject

Remarks
Call this function to retrieve the CRichEditCtrl object associated with the
CRichEditView object.

See Also CRichEditCtrl, CEditView::GetEditCtrl, CTreeView::GetTreeCtrl,
CListView::GetListCtrl

CRichEditView::GetSelectedItem

CRichEditCntrIitem* GetSelectedItem() const;

Return Value
Pointer to a CRichEditCntrItem object selected in the CRichEditView object;
NULL is no item is selected in this view.

Remarks
Call this function to retrieve the OLE item (a CRichEditCntrItem object) currently
selected in this CRichEditView object.

See Also CRichEditCntrItem, CRichEditView::GetInPlaceActiveltem

CRichEditView::GetTextLength

long GetTextLength() const;

Return Value
The length of the text in this CRichEditView object.

Remarks
Call this function to retrieve the length of the text in this CRichEditView object.

See Also CRichEditCtrl::GetTextLength

CRichEditView::InsertFile AsObject

void InsertFileAsObject(LPCTSTR IpszFileName);

Parameters
IpszFileName String containing the name of the file to be inserted.

Remarks
Call this function to insert the specified file (as a CRichEditCntrItem object) into a
rich edit view.

See Also CRichEditView::InsertItem, CRichEditCntrItem

1503

CRichEditView::InsertItem

CRichEditView::Insertltem

HRESULT Insertltem(CRichEditCntrItem* pltem);

Return Value
An HRESULT value indicating the success of the insertion.

Parameters
pltem Pointer to the item to be inserted.

Remarks
Call this function to insert a CRichEditCntrItem object into a rich edit view.

Eor more information on HRESULT, see “Structure of OLE Error Codes” in the
OLE documentation.

See Also CRichEditView::InsertFileAsObject, CRichEditCntrItem

CRichEditView::IsRichEditFormat

BOOL IsRichEditFormat(CLIPFORMAT c¢f);

Return Value
Nonzero if ¢f'is a rich edit or text Clipboard format.

Parameters
¢f The Clipboard format of interest.

Remarks
Call this function to determine if ¢fis a Clipboard format which is text, rich text, or
rich text with OLE items.

See Also CRichEditCtrl::CanPaste, CRichEditCtrl::Paste,
CRichEditView::DoPaste

CRichEditView::IsSelected

virtual BOOL IsSelected(const CObject* pDocltem) const;

Return Value
Nonzero if the object is selected; otherwise 0.

Parameters
pDocltem Pointer to an object in the view.

Remarks
Call this function to determine if the specified OLE item is currently selected in
this view.

1504

CRichEditView::OnFindNext
Override this function if your derived view class has a different method for handling

selection of OLE items.

See Also CRichEditView::GetSelectedItem,
CRichEditView::GetInPlaceActiveltem

CRichEditView::OnCharEffect

void OnCharEffect(DWORD dwMask, DWORD dwE(fect);

Parameters
dwMask The character formatting effects to modify in the current selection.

dwEffect The desired list of character formatting effects.

Remarks
Call this function to change the character formatting effects for the current selection.

For more information on the dwMask and dwEffect parameters and their potential
values, see the corresponding data members of CHARFORMAT in the Win32
documentation.

See Also CRichEditView::SetCharFormat

CRichEditView::OnFindNext

virtual void OnFindNext(LPCTSTR IpszFind, BOOL bNext, BOOL bCase, BOOL bWord);

Parameters
IpszFind The string to find.

bNext The direction to search: TRUE indicates down; FALSE, up.
bCase Indicates whether the search is to be case sensitive.
bWord Indicates whether the search is to match whole words only or not.
Remarks
Called by the framework when processing commands from the Find/Replace dialog

box. Call this function to find text within the CRichEditView. Override this function
to alter search characterics for your derived view class.

See Also CRichEditView::FindText, CRichEditView::FindTextSimple

1505

CRichEditView::OnlnitialUpdate

CRichEditView::OnlnitialUpdate

virtual void OnInitialUpdate();

Remarks
Called by the framework after the view is first attached to the document, but before
the view is initially displayed. The default implementation of this function calls the
CView::OnUpdate member function with no hint information (that is, using the
default values of O for the IHint parameter and NULL for the pHint parameter).
Override this function to perform any one-time initialization that requires
information about the document. For example, if your application has fixed-sized
documents, you can use this function to initialize a view's scrolling limits based on
the document size. If your application supports variable-sized documents, use
OnUpdate to update the scrolling limits every time the document changes.

See Also CView::OnUpdate

CRichEditView::OnPasteNativeObject

virtual BOOL OnPasteNativeObject(LPSTORAGE IpStg);

Return Value
Nonzero if successful; otherwise, 0;

Parameters
IpStg Pointer to an ISterage object.

Remarks
Use this function to load native data from an embedded item. Typically, you would do
this by creating a COleStreamFile around the IStorage. The COleStreamFile can
be attached to an archive and CObject::Serialize called to load the data.

This is an advanced overridable.
For more information, see IStorage in the OLE documentation.

See Also COleStreamFile, CObject::Serialize, CArchive

CRichEditView::OnParaAlign

void OnParaAlign(WORD wAlign);

Parameters
wAlign Desired paragraph alignment. One of the following values:

e PFA_LEFT Align the paragraphs with the left margin.

1506

CRichEditView::OnReplaceAll

e PFA_RIGHT Align the paragraphs with the right margin.
e PFA_CENTER Center the paragraphs between the margins.

Remarks
Call this function to change the paragraph alignment for the selected paragraphs.

See Also CRichEditView::OnUpdateParaAlign

CRichEditView::OnPrinterChanged

virtual veid OnPrinterChanged(const CDC& dcPrinter);

Parameters
dcPrinter A CDC object for the new printer.

Remarks
Override this function to change characteristics for this rich edit view when the
printer changes. The default implementation sets the paper size to the physical height
and width for the output device (printer). If there is no device context associated wtih
dcPrinter, the default implementation sets the paper size to 8.5 by 11 inches.

See Also CRichEditView::SetPaperSize, CRichEditView::WrapChanged

CRichEditView::OnReplaceAll

virtual void OnReplaceAll(LPCTSTR IpszFind, LPCTSTR IpszReplace, BOOL bCase,
BOOL bWord);

Parameters
IpszFind The text to be replaced.

IpszReplace The replacement text.
bCase Indicates if the search is case sensitive.
bWord Indicates if the search must select whole words or not.
Remarks
Called by the framework when processing Replace All commands from the Replace

dialog box. Call this function to replace all occurrences of some given text with
another string. Override this function to alter search characterics for this view.

See Also CRichEditView::OnReplaceSel, CRichEditView::OnFindNext

1507

CRichEditView::OnReplaceSel

CRichEditView::OnReplaceSel

virtual void OnReplaceSel(LPCTSTR IpszFind, BOOL bNext, BOOL bCase, BOOL bWord,
LPCTSTR IpszReplace);

Parameters
IpszFind The text to be replaced.

bNext Indicates the direction of the search: TRUE is down; FALSE, up.
bCase Indicates if the search is case sensitive.
bWord Indicates if the search must select whole words or not.
IpszReplace The replacement text.
Remarks
Called by the framework when processing Replace commands from the Replace

dialog box. Call this function to replace one occurrence of some given text with
another string. Override this function to alter search characterics for this view.

See Also CRichEditView::OnReplaceAll

CRichEditView::OnTextNotFound

virtual void OnTextNotFound(LPCTSTR IpszFind);

Parameters
pszFind The text which was not found.

Remarks
Called by the framework whenever a search fails. Override this function to change
the output notification from a MessageBeep.

For more information, see MessageBeep in the Win32 documentation.

See Also CRichEditView::FindText, CRichEditView::Find TextSimple,
CRichEditView::OnFindNext

CRichEditView::OnUpdateCharEffect

void OnUpdateCharEffect(CCmdUI* pCmdUI, DWORD dwMask, DWORD dwEffect);

Parameters
pCmdUI Pointer to a CCmdUI object.

dwMask Indicates the character formatting mask.

dwEffect Indicates the character formatting effect.

1508

CRichEditView::PrintInsideRect

Remarks
The framework calls this function to update the command UI for character effect
commands. The mask dwMask specifies which character formatting attributes to
check. The flags dwEffect list the character formatting attributes to set/clear.

For more information on the dwMask and dwEffect parameters and their potential
values, see the corresponding data members of CHARFORMAT in the Win32
documentation.

CRichEditView::OnUpdateParaAlign

void OnParaAlign(CCmdUI* pCmdUI, WORD wAlign);

Parameters
pCmdUI Pointer to a CCmdUI object.

wAlign The paragraph alignment to check. One of the following values:
e PFA_LEFT Align the paragraphs with the left margin.
e PFA_RIGHT Align the paragraphs with the right margin.
e PFA_CENTER Center the paragraphs between the margins.
Remarks

The framework calls this function to update the command Ul for paragraph effect
commands.

See Also CRichEditView::GetParaFormatSelection,
CRichEditView::OnParaAlign, CRichEditView::SetParaFormat

CRichEditView::PrintInsideRect

long PrintInsideRect(CDC* pDC, RECT& rectLayout, long nindexStart, long nlndexStop,
BOOL bO0utput);

Return Value
The index of the last character that fits in the output area plus one.

Parameters
pDC Pointer to a device context for the output area.

rectLayout RECT or CRect which defines the output area.
nindexStart Zero-based index of the first character to be formatted.
nlndexStop Zero-based index of the last character to be formatted.

bOutput Indicates if the text should be rendered. If FALSE, the text is just
measured.

1509

CRichEditView::PrintPage

Remarks
Call this function to format a range of text in a rich edit control to fit within
rectLayout for the device specified by pDC. Typically, this call is followed by a call to
CRichEditCtrl::DisplayBand which generates the output.

See Also CRichEditCtrl::FormatRange, CRichEditView::PrintPage,
CRichEditCtrl::DisplayBand

CRichEditView::PrintPage

long PrintPage(CDC* pDC, long nindexStart, long nindexStop);

Return Value
The index of the last character that fits on the page plus one.

Parameters
pDC Pointer to a device context for page output.

nIndexStart Zero-based index of the first character to be formatted.

nlndexStop Zero-based index of the last character to be formatted.

Remarks
Call this function to format a range of text in a rich edit control for the output device
specified by pDC. The layout of each page is controlled by GetPageRect and
GetPrintRect. Typically, this call is followed by a call to
CRichEditCtrl::DisplayBand which generates the output.

See Also CRichEditView::PrintInsideRect, CRichEditView::GetPageRect,
CRichEditView::GetPrintRect

CRichEditView::QueryAcceptData

virtual HRESULT QueryAcceptData(LPDATAOBJECT /pdataobj,
CLIPFORMAT FAR * IpcfFormat, DWORD dwReco, BOOL bReally, HGLOBAL hMeraFile);

Return Value
An HRESULT value reporting the success of the operation.

Parameters
Ipdataobj Pointer to the IDataObject to query.

IpcfFormat Pointer to the acceptable data format.
dwReco Not used.
bReally Indicates if the paste operation should continue or not.

hMetaFile A handle to the metafile used for drawing the item’s icon.

Ve

1510

CRichEditView::SetMargins

Remarks
Called by the framework to paste an object into the rich edit. Override this function to
handle different organization of OLE items in your derived document class. This is
an advanced overridable.

For more information on HRESULT and IDataObject, see “Structure of OLE Error
Codes” and IDataObject, respectively, in the OLE documentation.

CRichEditView::SetCharFormat

void SetCharFormat(CHARFORMAT cf);

Parameters
¢f CHARFORMAT structure containing the new default character formatting
attributes.

Remarks
Call this function to set the character formatting attributes for new text in this
CRichEditView object. Only the attributes specified by the dwMask member of cf
are changed by this function.

For more information, see EM_SETCHARFORMAT message and
CHARFORMAT structure in the Win32 documentation.

See Also CRichEditView::GetCharFormatSelection,
CRichEditView::SetParaFormat

CRichEditView::SetMargins

void SetMargins(const CRect& rectMargin);

Parameters
rectMargin The new margin values for printing, measured in MM_TWIPS.

Remarks
Call this function to set the printing margins for this rich edit view. If
m_nWordWrap is WrapToTargetDevice, you should call WrapChanged after
using this function to adjust printing characteristics.

See Also CRichEditView::GetMargins, CRichEditView::GetPrintWidth,
CRichEditView::GetPrintRect, CRichEditView::GetPaperSize,
CRichEditView::GetPageRect, CRichEditView::PrintPage,
CRichEditView::WrapChanged

1511

CRichEditView::SetPaperSize

CRichEditView::SetPaperSize

void SetPaperSize(CSize sizePaper);

Parameters
sizePaper The new paper size values for printing, measured in MM_TWIPS.

Remarks
Call this function to set the paper size for printing this rich edit view. If
m_nWordWrap is WrapToTargetDevice, you should call WrapChanged after
using this function to adjust printing characteristics.

See Also CRichEditView::GetPaperSize, CRichEditView::GetMargins,
CRichEditView::GetPrintWidth, CRichEditView::GetPrintRect,
CRichEditView::GetPageRect, CRichEditView::PrintPage,
CRichEditView::WrapChanged

CRichEditView::SetParaFormat

void SetParaFormat(PARAFORMAT& pf);

Parameters
pf PARAFORMAT structure containing the new default paragraph formatting
attributes.

Remarks
Call this function to set the paragraph formatting attributes for the current selection
in this CRichEditView object. Only the attributes specified by the dwMask member
of pf are changed by this function.

For more information, see EM_SETPARAFORMAT message and PARAFORMAT
structure in the Win32 documentation.

See Also CRichEditView::GetParaFormatSelection,
CRichEditView::SetCharFormat

CRichEditView::WrapChanged

virtual void WrapChanged();

Remarks
Call this function when the printing characteristics have changed (SetMargins or
SetPaperSize).

1512

CRichEditView::m_nWordWrap

Override this function to modify the way the rich edit view responds to changes in
m_nWordWrap or the printing characteristics (OnPrinterChanged).

See Also CRichEditView::m_nWordWrap,
CRichEditView::OnPrinterChanged, CRichEditView::SetMargins,
CRichEditView::SetPaperSize

Data Members
CRichEditView::m_nBulletIndent

Remarks

The indentation for bullet items in a list; by default, 720 units, which is 1/2 inch.

CRichEditView::m_nWordWrap

Remarks

Indicates the type of word wrap for this rich edit view. One of the following values:

e WrapNone Indicates no automatic word wrapping.
e WrapToWindow Indicates word wrapping based on the width of the window.

¢ WrapToTargetDevice Indicates word wrapping based on the characteristics of
the target device.

See Also CRichEditView::WrapChanged

1513

CRuntimeClass

CRuntimeClass

1514

Each class derived from CObject is associated with a CRuntimeClass structure that
you can use to obtain information about an object or its base class at run time. The
ability to determine the class of an object at run time is useful when extra type
checking of function arguments is needed, or when you must write special-purpose
code based on the class of an object. Run-time class information is not supported
directly by the C++ language.

The structure has the following members:

LPCSTR m_lpszClassName A null-terminated string containing the ASCII
class name.

int m_nObjectSize The size of the object, in bytes. If the object has data members
that point to allocated memory, the size of that memory is not included.

WORD m_wSchema The schema number (-1 for nonserializable classes). See the
IMPLEMENT _SERIAL macro for a description of the schema number.

void (*m_pfnConstruct)(veoid* p) A pointer to the default constructor of your class
(valid only if the class supports dynamic creation).

CRuntimeClass* m_pBaseClass A pointer to the CRuntimeClass structure that
corresponds to the base class.

CObject* CreateObject(); Classes derived from CObject can support dynamic
creation, which is the ability to create an object of a specified class at run time.
Document, view, and frame classes, for example, should support dynamic creation.
The CreateObject member function can be used to implement this function and
create objects for these classes during run time. For more information on dynamic
creation and the CreateObject member, see the article “CObject Class” in
Programming with MFC.

Note To use the CRuntimeClass structure, you must include the IMPLEMENT_DYNAMIC,
IMPLEMENT_DYNCREATE, or IMPLEMENT_SERIAL macro in the implementation of the
class for which you want to retrieve run-time object information.

For more information on using CRuntimeClass, see the article “CObject Class:
Accessing Run-Time Class Information” in Programming with MFC.

See Also CObject::GetRuntimeClass, CObject::IsKindOf, RUNTIME_CLASS,
IMPLEMENT_DYNAMIC, IMPLEMENT_DYNCREATE,
IMPLEMENT_SERIAL

CScroliBar

CScrollBar

The CScrollBar class provides the functionality of a Windows scroll-bar control.

You create a scroll-bar control in two steps. First, call the constructor CScrollBar to
construct the CScrollBar object, then call the Create member function to create the
Windows scroll-bar control and attach it to the CScrollBar object.

If you create a CScrollBar object within a dialog box (through a dialog resource), the
CScrollBar is automatically destroyed when the user closes the dialog box.

If you create a CScrollBar object within a window, you may also need to destroy it.

If you create the CScrollBar object on the stack, it is destroyed automatically. If you
create the CScrollBar object on the heap by using the new function, you must call
delete on the object to destroy it when the user terminates the Windows scroll bar.

If you allocate any memory in the CScrollBar object, override the CScrollBar
destructor to dispose of the allocations.

For more information on using CScrollBar, see the article “Controls” in
Programming with MFC.

#include <afxwin.h>

See Also CWnd, CButton, CComboBox, CEdit, CListBox, CStatic, CDialog

Construction

CScrollBar Constructs a CScrollBar object.

Initialization

Create Creates the Windows scroll bar and attaches it to the CScrollBar
object.

Operations

GetScrollPos Retrieves the current position of a scroll box.

SetScrollPos Sets the current position of a scroll box.

GetScrollRange Retrieves the current minimum and maximum scroll-bar

positions for the given scroll bar.

1515

CScrollBar::Create

SetScrollRange Sets minimum and maximum position values for the given
scroll bar.

ShowScrollBar Shows or hides a scroll bar.

EnableScrollBar Enables or disables one or both arrows of a scroll bar.

SetScrolllnfo Sets information about the scroll bar.

GetScrollInfo Retrieves information about the scroll bar.

GetScrollLimit Retrieves the limit of the scroll bar

Member Functions
CScrollBar::Create

BOOL Create(DWORD dwStyle, const RECT& rect, CWnd* pParentWnd, UINT nID);

Return Value
Nonzero if successful; otherwise 0.

Parameters
dwStyle Specifies the scroll bar’s style. Apply any combination of scroll-bar styles to
the scroll bar. For a list of scroll-bar styles, see “Scroll Bar Styles” in the “Styles
Used by MFC” section.

rect Specifies the scroll bar’s size and position. Can be either a RECT structure or a
CRect object.

pParentWnd Specifies the scroll bar’s parent window, usually a CDialog object. It
must not be NULL.

nID The scroll bar’s control ID.
Remarks
You construct a CScrollBar object in two steps. First call the constructor, which

constructs the CSerollBar object; then call Create, which creates and initializes the
associated Windows scroll bar and attaches it to the CScrollBar object.

Apply the following window styles to a scroll bar. For a list of window styles, see
“Window Styles” in the “Styles Used by MFC” section.

WS_CHILD Always
WS_VISIBLE Usually
WS_DISABLED Rarely
WS_GROUP To group controls

See Also CScrollBar::CScrollBar

1516

CScrollBar::GetScrolllnfo

CScrollBar::CScrollBar

CScrollBar();

Remarks
Constructs a CScrollBar object. After constructing the object, call the Create
member function to create and initialize the Windows scroll bar.

See Also CScrollBar::Create

CScrollBar::EnableScrollBar

BOOL EnableScrollBar(UINT nArrowFlags = ESB_ENABLE_BOTH);

Return Value
Nonzero if the arrows are enabled or disabled as specified; otherwise 0, which
indicates that the arrows are already in the requested state or that an error occurred.

Parameters
nArrowFlags Specifies whether the scroll arrows are enabled or disabled and which
arrows are enabled or disabled. This parameter can be one of the following values:

¢ ESB_ENABLE_BOTH Enables both arrows of a scroll bar.

e ESB_DISABLE_LTUP Disables the left arrow of a horizontal scroll bar or
the up arrow of a vertical scroll bar.

e ESB_DISABLE_RTDN Disables the right arrow of a horizontal scroll bar or
the down arrow of a vertical scroll bar.

¢ ESB_DISABLE_BOTH Disables both arrows of a scroll bar.

Remarks
Enables or disables one or both arrows of a scroll bar.

See Also CWnd::EnableScrollBar, ::EnableScrollBar

CScrollBar::GetScrolllnfo

BOOL GetScrolllnfo(LPSCROLLINFO IpScroillnfo, UINT nMask);

Return Value
If the message retrieved any values, the return is TRUE. Otherwise, it is FALSE.

Parameters
IpScrolllnfo A pointer to a SCROLLINFO structure. See the Win32 SDK
Programmer’s Reference for more information about this structure.

1517

CScrollBar::GetScrollLimit

Remarks

nMask Specifies the scroll bar parameters to retrieve. Typical usage, SIF_ALL,
specifies a combination of SIF_PAGE, SIF_POS, SIF_TRACKPOS, and
SIF_RANGE. See SCROLLINFO for more information on the nMask values.

Call this member function to retrieve the information that the SCROLLINFO
structure maintains about a scroll bar. GetScrollInfo enables applications to use
32-bit scroll positions.

The SCROLLINFO structure contains information about a scroll bar, including the
minimum and maximum scrolling positions, the page size, and the position of the
scroll box (the thumb). See the SCROLLINFO structure topic in the Win32 SDK
Programmer’s Reference for more information about changing the structure defaults.

The MFC Windows message handlers that indicate scroll bar position,
CWnd::OnHScroll and CWnd::OnVScroll, provide only 16 bits of position data.
GetScrollInfo and SetScrolllnfo provide 32 bits of scroll bar position data. Thus, an
application can call GetScrollInfo while processing either CWnd::OnHScroll or
CWnd::OnVScroll to obtain 32-bit scroll bar position data.

Note for Win32/S programming only: The limitation on this technique applies to real-time
scrolling of a window’s contents. An application implements real-time scrolling by processing
CWnd::OnHScroll or CWnd::OnVScroll messages that carry the SB_THUMBTRACK
notification value, thereby tracking the position of the scroll box (thumb) as the user moves it.
Unfortunately, no function retrieves the 32-bit position scroll-box position as the user moves the
scroll box. Because GetScrollinfo provides only the static position, an application can obtain
only 32-bit position data before or after a scroll operation.

See Also CScrollBar::SetScrolllnfo, CWnd::SetScrollnfo, CWnd::SetScrollPos,
CWnd::OnVScroll, CWnd::OnHScroll, SCROLLINFO

CScrollBar::GetScrollLimit

int GetScrollLimit();

Return Value

Remarks

1518

Specifies the maximum position of a scroll bar if successful; otherwise 0.

Call this member function to retrieve the maximum scrolling position of the
scroll bar.

See Also CWnd::GetScrollLimit

CScrollBar::SetScrolllnfo

CScrollBar::GetScrollPos

int GetScrollPos() const;

Return Value
Specifies the current position of the scroll box if successful; otherwise 0.

Remarks
Retrieves the current position of a scroll box. The current position is a relative value
that depends on the current scrolling range. For example, if the scrolling range is 100
to 200 and the scroll box is in the middle of the bar, the current position is 150.

See Also CScrollBar::SetScrollPos, CScrollBar::GetScrollRange,
CScrollBar::SetScrollRange, ::GetScrollPos

CScrollBar::GetScrollRange

void GetScrollRange(LPINT IpMinPos, LPINT IpMaxPos) const;

Parameters
IpMinPos Points to the integer variable that is to receive the minimum position.

IpMaxPos Points to the integer variable that is to receive the maximum position.

Remarks
Copies the current minimum and maximum scroll-bar positions for the given scroll
bar to the locations specified by ipMinPos and IpMaxPos.

The default range for a scroll-bar control is empty (both values are 0).

See Also ::GetScrollRange, CScrollBar::SetScrollRange,
CScrollBar::GetScrollPos, CScrollBar::SetScrollPos

CScrollBar::SetScrolllnfo

BOOL SetScrolllnfo(LPSCROLLINFO [pScrollinfo, BOOL bRedraw = TRUE);

Return Value
If successful, the return is TRUE. Otherwise, it is FALSE.

Parameters
IpScrollinfo A pointer to a SCROLLINFO structure.

bRedraw Specifies whether the scroll bar should be redrawn to reflect the new
information. If bRedraw is TRUE, the scroll bar is redrawn. If it is FALSE, it is
not redrawn. The scroll bar is redrawn by default.

1519

CScrollBar::SetScrollPos

Remarks
Call this member function to set the information that the SCROLLINFO structure
maintains about a scroll bar. You must provide the values required by the
SCROLLINFO structure parameters, including the flag values.

The SCROLLINFO structure contains information about a scroll bar, including the
minimum and maximum scrolling positions, the page size, and the position of the
scroll box (the thumb). See the SCROLLINFO structure topic in the Win32
Programmer’s Reference for more information about changing the structure defaults.

See Also CScrollBar::GetScrolllnfo, CWnd::SetScrollinfo,
CWnd::SetScrollPos, CWnd::OnVScroll, CWnd::OnHScroll,
CWnd::GetScrolllnfo, SCROLLINFO

CScrollBar::SetScrollPos

int SetScrollPos(int nPos, BOOL bRedraw = TRUE);

Return Value
Specifies the previous position of the scroll box if successful; otherwise 0.

Parameters
nPos Specifies the new position for the scroll box. It must be within the
scrolling range.

bRedraw Specifies whether the scroll bar should be redrawn to reflect the new
position. If bRedraw is TRUE, the scroll bar is redrawn. If it is FALSE, it is not
redrawn. The scroll bar is redrawn by default.

Remarks
Sets the current position of a scroll box to that specified by nPos and, if specified,
redraws the scroll bar to reflect the new position.

Set bRedraw to FALSE whenever the scroll bar will be redrawn by a subsequent call
to another function to avoid having the scroll bar redrawn twice within a short
interval.

See Also CScrollBar::GetScrollPos, CScrollBar::GetScrollRange,
CScrollBar::SetScrollRange, ::SetScrollPos

CScrollBar::SetScrollRange

void SetScrollRange(int nMinPos, int nMaxPos, BOOL bRedraw = TRUE);

Parameters
nMinPos Specifies the minimum scrolling position.

nMaxPos Specifies the maximum scrolling position.

1520

CScrollBar::ShowScrollBar

bRedraw Specifies whether the scroll bar should be redrawn to reflect the change. If
bRedraw is TRUE, the scroll bar is redrawn; if FALSE, it is not redrawn. It is
redrawn by default.

Remarks
Sets minimum and maximum position values for the given scroll bar. Set nMinPos
and nMaxPos to O to hide standard scroll bars.

Do not call this function to hide a scroll bar while processing a scroll-bar notification
message.

If a call to SetScrollRange immediately follows a call to the SetScrollPos member
function, set bRedraw in SetScrollPos to 0 to prevent the scroll bar from being
redrawn twice.

The difference between the values specified by nMinPos and nMaxPos must not be
greater than 32,767. The default range for a scroll-bar control is empty (both
nMinPos and nMaxPos are 0).

See Also CScrollBar::GetScrollPos, CScrollBar::SetScrollPos,
CScroliBar::GetScrollRange, ::SetScrollRange

CScrollBar::ShowScrollBar

void ShowScrollBar(BOOL bSkow = TRUE);

Parameters
bShow Specifies whether the scroll bar is shown or hidden. If this parameter is
TRUE, the scroll bar is shown; otherwise it is hidden.

Remarks
Shows or hides a scroll bar.

An application should not call this function to hide a scroll bar while processing a
scroll-bar notification message.

See Also CScrollBar::GetScrollPos, CScrollBar::GetScrollRange,
CWnd::ScrollWindow, CScrollBar::SetScrollPos, CScrollBar::SetScrollRange

1521

CScrollView

CScrollView

1522

The CScrollView class is a CView with scrolling capabilities.

You can handle scrolling yourself in any class derived from CView by overriding the
message-mapped OnHScroll and OnVScroll member functions. But CScroll View
adds the following features to its CView capabilities:

¢ It manages window and viewport sizes and mapping modes.

¢ [t scrolls automatically in response to scroll-bar messages.

To take advantage of automatic scrolling, derive your view class from CScroll View
instead of from CView. When the view is first created, if you want to calculate the
size of the scrollable view based on the size of the document, call the SetScrollSizes
member function from your override of either CView::OnlInitialUpdate or
CView::OnUpdate. (You must write your own code to query the size of the
document. For an example, see Chapter 9, “Enhancing Views,” in Tutorials.)

The call to the SetScrollSizes member function sets the view’s mapping mode, the
total dimensions of the scroll view, and the amounts to scroll horizontally and
vertically. All sizes are in logical units. The logical size of the view is usually
calculated from data stored in the document, but in some cases you may want to
specify a fixed size. For examples of both approaches, see
CScrollView::SetScrollSizes.

You specify the amounts to scroll horizontally and vertically in logical units. By
default, if the user clicks a scroll bar shaft outside of the scroll box, CScrollView
scrolls a “page.” If the user clicks a scroll arrow at either end of a scroll bar,
CScrollView scrolls a “line.” By default, a page is 1/10 of the total size of the view; a
line is 1/10 of the page size. Override these default values by passing custom sizes in
the SetScrollSizes member function. For example, you might set the horizontal size
to some fraction of the width of the total size and the vertical size to the height of a
line in the current font.

CScrollView

Instead of scrolling, CScrollView can automatically scale the view to the current
window size. In this mode, the view has no scroll bars and the logical view is
stretched or shrunk to exactly fit the window’s client area. To use this scale-to-fit
capability, call CScrollView::SetScaleToFitSize. (Call either SetScaleToFitSize or
SetScrollSizes, but not both.)

Before the OnDraw member function of your derived view class is called, CScroll View
automatically adjusts the viewport origin for the CPaintDC device-context object that
it passes to OnDraw.

To adjust the viewport origin for the scrolling window, CScrollView overrides
CView::OnPrepareDC. This adjustment is automatic for the CPaintDC
device context that CScroll View passes to OnDraw, but you must call
CScrollView::OnPrepareDC yourself for any other device contexts you use,
such as a CClientDC. You can override CScrollView::OnPrepareDC to set
the pen, background color, and other drawing attributes, but call the base class
to do scaling.

Scroll bars can appear in three places relative to a view, as shown in the
following cases:

e Standard window-style scroll bars can be set for the view using the
WS_HSCROLL and WS_VSCROLL styles. For more information on
window styles, see “Windows Styles” in the “Styles Used by MFC” section.

e Scroll-bar controls can also be added to the frame containing the view, in which
case the framework forwards WM_HSCROLL and WM_VSCROLL messages
from the frame window to the currently active view.

e The framework also forwards scroll messages from a CSplitterWnd splitter
control to the currently active splitter pane (a view). When placed in a
CSplitterWnd with shared scroll bars, a CScrollView object will use the
shared ones rather than creating its own.

For more information on using CScrollView, see “Documents and Views” in
Chapter 3 and “Special View Classes” in Chapter 1 of Programming with MFC.

#include <afxwin.h>

See Also CView, CSplitterWnd

Operations

FillQutsideRect Fills the area of a view outside the scrolling area.

GetDeviceScrollPosition Gets the current scroll position in device units.

GetDeviceScrollSizes Gets the current mapping mode, the total size, and the
line and page sizes of the scrollable view. Sizes are in
device units.

GetScrollPosition Gets the current scroll position in logical units.

GetTotalSize Gets the total size of the scroll view in logical units.

1523

CScrollView::CScrollView

ResizeParentToFit Causes the size of the view to dictate the size of
its frame.
ScrollToPosition Scrolls the view to a given point, specified in
logical units.
SetScaleToFitSize Puts the scroll view into scale-to-fit mode.
SetScrollSizes Sets the scroll view’s mapping mode, total size, and

horizontal and vertical scroll amounts.

Construction

CScrollView Constructs a CScrollView object.

Member Functions
CScrollView::CScrollView

CScrollView();

Remarks
Constructs a CScroll View object. You must call either SetScrollSizes or
SetScaleToFitSize before the scroll view is usable.

See Also CScrollView::SetScrollSizes, CScrollView::SetScaleToFitSize

CScroll View::FillOutsideRect

void FillOutsideRect(CDC* pDC, CBrush* pBrush);

Parameters
pDC Device context in which the filling is to be done.

pBrush Brush with which the area is to be filled.

Remarks
Call FillOutsideRect to fill the area of the view that appears outside of the scrolling
area. Use FillOutsideRect in your scroll view’s OnEraseBkgnd handler function to
prevent excessive background repainting.

Example
BOOL CScaleView::0nEraseBkgnd(CDC* pDC)
{
CBrush br(GetSysColor(COLOR_WINDOW));
Fil1OutsideRect(pDC, &br);
return TRUE; // Erased
}

See Also CWnd::OnEraseBkgnd

1524

CScrollView::GetDeviceScrollSizes

CScrollView::GetDeviceScrollPosition

CPoint GetDeviceScrollPosition() const;

Return Value _
The horizontal and vertical positions (in device units) of the scroll boxes as a CPoint
object.

Remarks
Call GetDeviceScrollPosition when you need the current horizontal and vertical
positions of the scroll boxes in the scroll bars. This coordinate pair corresponds to the
location in the document to which the upper-left corner of the view has been scrolled.
This is useful for offsetting mouse-device positions to scroll-view device positions.

GetDeviceScrollPosition returns values in device units. If you want logical units, use
GetScrollPosition instead.

See Also CScrollView::GetScrollPosition

CScrollView::GetDeviceScrollSizes

void GetDeviceScrollSizes(int& nMapMode, SIZE& sizeTotal, SIZE& sizePage,
SIZE& sizeLine) const;

Parameters
nMapMode Returns the current mapping mode for this view. For a list of possible
values, see SetScrollSizes.

sizeTotal Returns the current total size of the scroll view in device units.

sizePage Returns the current horizontal and vertical amounts to scroll in each
direction in response to a mouse click in a scroll-bar shaft. The ex member
contains the horizontal amount. The cy member contains the vertical amount.

sizeLine Returns the current horizontal and vertical amounts to scroll in each
direction in response to a mouse click in a scroll arrow. The ¢x member contains
the horizontal amount. The cy member contains the vertical amount.

Remarks
GetDeviceScrollSizes gets the current mapping mode, the total size, and the line and
page sizes of the scrollable view. Sizes are in device units. This member function is
rarely called.

See Also CScrollView::SetScrollSizes, CScrollView::GetTotalSize

1525

CScrollView::GetScrollPosition

CScrollView::GetScrollPosition

CPoint GetScrollPosition() const;

Return Value
The horizontal and vertical positions (in logical units) of the scroll boxes as a CPoint
object.

Remarks
Call GetScrollPosition when you need the current horizontal and vertical positions
of the scroll boxes in the scroll bars. This coordinate pair corresponds to the location
in the document to which the upper-left corner of the view has been scrolled.

GetScrollPosition returns values in logical units. If you want device units, use
GetDeviceScrollPosition instead.

See Also CScrollView::GetDeviceScrollPosition

CScrollView::GetTotalSize

CSize GetTotalSize() const;

Return Value
The total size of the scroll view in logical units. The horizontal size is in the cx
member of the CSize return value. The vertical size is in the cy member.

Remarks
Call GetTotalSize to retrieve the current horizontal and vertical sizes of the
scroll view.

See Also CScrollView::GetDeviceScrollSizes, CScrollView::SetScrollSizes

CScrollView::ResizeParentToFit

void ResizeParentToFit(BOOL bShrinkOnly = TRUE);

Parameters
bShrinkOnly The kind of resizing to perform. The default value, TRUE, shrinks the
frame window if appropriate. Scroll bars will still appear for large views or small
frame windows. A value of FALSE causes the view always to resize the frame
window exactly. This can be somewhat dangerous since the frame window could
get too big to fit inside the multiple document interface (MDI) frame window or
the screen.

Remarks
Call ResizeParentToFit to let the size of your view dictate the size of its frame
window. This is recommended only for views in MDI child frame windows. Use

1526

CScrollView::SetScaleToFitSize

ResizeParentToFit in the OnlnitialUpdate handler function of your derived
CScrollView class. For an example of this member function, see
CScrollView::SetScrollSizes.

ResizeParentToFit assumes that the size of the view window has been set. If the
view window size has not been set when ResizeParentToFit is called, you will get an
assertion. To ensure that this does not happen, make the following call before calling
ResizeParentToFit:

GetParentFrame()->Recalclayout();
See Also CView::OnlnitialUpdate, CScrollView::SetScrollSizes

CScrollView::ScrollToPosition

void ScrollToPosition(POINT pt);

Parameters
pt The point to scroll to, in logical units. The ¢x member must be a positive value
(greater than or equal to 0, up to the total size of the view). The same is true for
the cy member when the mapping mode is MM_TEXT. The cy member is
negative in mapping modes other than MM_TEXT.

Remarks
Call ScrollToPosition to scroll to a given point in the view. The view will be scrolled
so that this point is at the upper-left corner of the window. This member function
must not be called if the view is scaled to fit.

See Also CScrollView::GetDeviceScrollPosition,
CScrollView::SetScaleToFitSize, CScrollView::SetScrollSizes

CScrollView::SetScaleToFitSize

void SetScaleToFitSize(SIZE sizeTotal);

Parameters
sizeTotal The horizontal and vertical sizes to which the view is to be scaled. The
scroll view’s size is measured in logical units. The horizontal size is contained in
the ex member. The vertical size is contained in the ¢y member. Both ¢x and cy
must be greater than or equal to 0.

Remarks
Call SetScaleToFitSize when you want to scale the viewport size to the current
window size automatically. With scroll bars, only a portion of the logical view may be
visible at any time. But with the scale-to-fit capability, the view has no scroll bars and
the logical view is stretched or shrunk to exactly fit the window’s client area. When

1527

CScrollView::SetScrollSizes

the window is resized, the view draws its data at a new scale based on the size of the
window.

You’ll typically place the call to SetScaleToFitSize in your override of the view’s
OnlnitialUpdate member function. If you do not want automatic scaling, call the
SetScrollSizes member function instead.

SetScaleToFitSize can be used to implement a “Zoom to Fit” operation. Use
SetScrollSizes to reinitialize scrolling.

SetScaleToFitSize assumes that the size of the view window has been set. If the view
window size has not been set when SetScaleToFitSize is called, you will get an
assertion. To ensure that this does not happen, make the following call before calling
SetScaleToFitSize:

GetParentFrame()->Recalclayout();
See Also CScrollView::SetScrollSizes, CView::OnlnitialUpdate

CScrollView::SetScrollSizes

void SetScrollSizes(int nMapMode, SIZE sizeTotal, const SIZE& sizePage = sizeDefault,
const SIZE& sizeLine = sizeDefault);

Parameters
nMapMode The mapping mode to set for this view. Possible values include:

Mapping Mode Logical Unit Positive y-axis Extends...
MM_TEXT 1 pixel Downward
MM_HIMETRIC 0.01 mm Upward

MM_TWIPS 1/1440 in Upward
MM_HIENGLISH 0.001 in Upward
MM_LOMETRIC 0.1 mm Upward
MM_LOENGLISH 0.01 in Upward

All of these modes are defined by Windows. Two standard mapping modes,
MM_ISOTROPIC and MM_ANISOTROPIC, are not used for CScroll View.
The class library provides the SetScaleToFitSize member function for scaling the
view to window size. Column three in the table above describes the coordinate
orientation.

sizeTotal The total size of the scroll view. The cx member contains the horizontal
extent. The cy member contains the vertical extent. Sizes are in logical units. Both
cx and cy must be greater than or equal to 0.

sizePage The horizontal and vertical amounts to scroll in each direction in response
to a mouse click in a scroll-bar shaft. The cx member contains the horizontal
amount. The cy member contains the vertical amount.

1528

Remarks

Example

CScrollView::SetScrollSizes

sizeLine The horizontal and vertical amounts to scroll in each direction in response
to a mouse click in a scroll arrow. The ¢x member contains the horizontal amount.
The cy member contains the vertical amount.

Call SetScrollSizes when the view is about to be updated. Call it in your override of
the OnUpdate member function to adjust scrolling characteristics when, for example,
the document is initially displayed or when it changes size.

You will typically obtain size information from the view’s associated document by
calling a document member function, perhaps called GetMyDocSi ze, that you supply
with your derived document class. The following code shows this approach:

SetScrol1Sizes(nMapMode, GetDocument()->GetMyDocSize());
Alternatively, you might sometimes need to set a fixed size, as in the following code:
SetScrol1Sizes(nMapMode, CSize(100, 100));

You must set the mapping mode to any of the Windows mapping modes except
MM_ISOTROPIC or MM_ANISOTROPIC. If you want to use an unconstrained
mapping mode, call the SetScaleToFitSize member function instead of
SetScrollSizes.

void CScaleView::0nUpdate()
{
/...
// Implement a GetDocSize() member function in
// your document class; it returns a CSize.
SetScrol1Sizes(MM_LOENGLISH, GetDocument()->GetDocSize());
ResizeParentToFit(); // Default bShrinkOnly argument
/! ...
}

See Also CScrollView::SetScaleToFitSize, CScroliView::GetDeviceScrollSizes,
CScrollView::GetTotalSize

1529

CSemaphore

CSemaphore

1530

An object of class CSemaphore represents a “semaphore”—a synchronization object
that allows a limited number of threads in one or more processes to access a resource.
A CSemaphore object maintains a count of the number of threads currently
accessing a specified resource.

Semaphores are useful in controlling access to a shared resource that can only
support a limited number of users. The current count of the CSemaphore object is
the number of additional users allowed. When the count reaches zero, all attempts to
use the resource controlled by the CSemaphore object will be inserted into a system
queue and wait until they either time out or the count rises above 0. The maximum
number of users who can access the controlled resource at one time is specified
during construction of the CSemaphore object.

To use a CSemaphore object, construct the CSemaphore object when it is needed.
Specify the name of the semaphore you wish to wait on, and that your application
should initially own it. You can then access the semaphore when the constructor
returns. Call CSyncObject::Unlock when you are done accessing the controlled
resource.

An alternative method for using CSemaphore objects is to add a variable of type
CSemaphore as a data member to the class you wish to control. During construction
of the controlled object, call the constructor of the CSemaphore data member
specifying the initial access count, maximum access count, name of the semaphore (if
it will be used across process boundaries), and desired security attributes.

To access resources contolled by CSemaphore objects in this manner, first create a
variable of either type CSingleLock or type CMultiLock in your resource’s access
member function. Then call the lock object’s Lock member function (for example,
CSingleLock::Lock). At this point, your thread will either gain access to the
resource, wait for the resource to be released and gain access, or wait for the resource
to be released and time out, failing to gain access to the resource. In any case, your
resource has been accessed in a thread-safe manner. To release the resource, use the
lock object’s Unlock member function (for example, CSingleLock::Unlock), or
allow the lock object to fall out of scope.

CSemaphore::CSemaphore

Alternatively, you can create a CSemaphore object stand-alone, and access it
explicitly before attempting to access the controlled resource. This method, while
clearer to someone reading your source code, is more prone to error.

For more information on how to use CSemaphore objects, see the article
“Multithreading: How to Use the Synchronization Classes” in Programming
with MFC.

#include <afxmt.h>

Construction

CSemaphore Constructs a CSemaphore object.

Member Functions
CSemaphore::CSemaphore

CSemaphore(LONG [InitialCount = 1, LONG [IMaxCount = 1, LPCTSTR pstrName = NULL,
LPSECURITY_ATTRIBUTES IpsaAstributes = NULL);

Parameters
lInitialCount The initial usage count for the semaphore. Must be greater than or
equal to 0, and less than or equal to /MaxCount.

IMaxCount The maximum usage count for the semaphore. Must be greater than 0.

pstrName The name of the semaphore. Must be supplied if the semaphore will be
accessed across process boundaries. If NULL, the object will be unnamed. If the
name matches an existing semaphore, the constructor builds a new CSemaphore
object which references the semaphore of that name. If the name matches an
existing synchronization object that is not a semaphore, the construction will fail.

IpsaAttributes Security attributes for the semaphore object. For a full description of
this structure, see SECURITY_ATTRIBUTES in the Win32 Programmer’s
Reference.

Remarks
Constructs a named or unnamed CSemaphore object. To access or release a
CSemaphore object, create a CMultiLock or CSingleLock object and call its Lock
and Unlock member functions.

See Also CMutex, CEvent, CMultiLock, CSingleLock

1531

CSingleDocTemplate

CSingleDocTemplate

1532

The CSingleDocTemplate class defines a document template that implements the
single document interface (SDI). An SDI application uses the main frame window to
display a document; only one document can be open at a time. For a more detailed
description of the SDI, see The Windows Interface: An Application Design Guide.

A document template defines the relationship between three types of classes:

e A document class, which you derive from CDocument.

o A view class, which displays data from the document class listed above. You can
derive this class from CView, CScrollView, CFormView, or CEditView. (You
can also use CEditView directly.)

e A frame window class, which contains the view. For an SDI document template,
you can derive this class from CFrameWnd; if you do not need to customize the
behavior of the main frame window, you can use CFrameWnd directly without
deriving your own class.

An SDI application typically supports one type of document, so it has only one
CSingleDocTemplate object. Only one document can be open at a time.

You don’t need to call any member functions of CSingleDocTemplate except the
constructor. The framework handles CSingleDocTemplate objects internally.

For more information on using CSingleDocTemplate, see “Document Templates” in
Chapter 1 of Programming with MFC.

See Also CDocTemplate, CDocument, CFrameWnd, CMultiDocTemplate,
CView, CWinApp

Construction

CSingleDocTemplate Constructs a CSingleDocTemplate object.

CSingleDocTemplate::CSingleDocTemplate

Member Functions
CSingleDocTemplate::CSingleDocTemplate

CSingleDocTemplate(UINT nIDResource, CRuntimeClass* pDocClass,
CRuntimeClass* pFrameClass, CRuntimeClass* pViewClass);

Parameters
nIDResource Specifies the ID of the resources used with the document type. This
may include menu, icon, accelerator table, and string resources.

The string resource consists of up to seven substrings separated by the “\n’
character (the ‘\n’ character is needed as a placeholder if a substring is not
included; however, trailing ‘\n’ characters are not necessary); these substrings
describe the document type. For information about the substrings, see
CDocTemplate::GetDocString. This string resource is found in the application’s
resource file. For example:
// MYCALC.RC
STRINGTABLE PRELOAD DISCARDABLE
BEGIN

IDR_MAINFRAME "MyCalc Windows Application\nSheet\nWorksheet\n
Worksheets (*.myc)\n.myc\nMyCalcSheet\n MyCalc Worksheet"
END
You can edit this string using the string editor; the entire string appears as a single
entry in the String Editor, not as seven separate entries.

For more information about these resource types, see the Visual C++ User’s
Guide, Chapter 9, “Using The String Editor.”

pDocClass Points to the CRuntimeClass object of the document class. This class is
a CDocument-derived class you define to represent your documents.

pFrameClass Points to the CRuntimeClass object of the frame window class. This
class can be a CFrameWnd-derived class, or it can be CFrameWnd itself if you
want default behavior for your main frame window.

pViewClass Points to the CRuntimeClass object of the view class. This class is a
CView-derived class you define to display your documents.

Remarks
Constructs a CSingleDocTemplate object. Dynamically allocate a
CSingleDocTemplate object and pass it to CWinApp::AddDocTemplate from the
InitInstance member function of your application class.

1533

CSingleDocTemplate::CSingleDocTemplate

Example

// example for CSingleDocTemplate::CSingleDocTemplate
BOOL CMyApp::InitInstance()

{
/1l ...
// Establish the document type
// supported by the application
AddDocTemplate(new CSingleDocTemplate(IDR_MAINFRAME,
RUNTIME_CLASS(CSheetDoc),
RUNTIME_CLASS(CFrameWnd),
RUNTIME_CLASS(CSheetView)));
/...
1

See Also CDocTemplate::GetDocString, CWinApp::AddDocTemplate,
CWinApp::InitInstance, CRuntimeClass, RUNTIME_CLASS

1534

CSingleLock

CSingleLock

An object of class CSingleLock represents the access-control mechanism used in
controlling access to a resource in a multithreaded program. In order to use the
synchronization classes CSemaphore, CMutex, CCriticalSection, and CEvent, you
must create either a CSingleLock or CMultiLock object to wait on and release the
synchronization object. Use CSingleLock when you only need to wait on one object
at a time. Use CMultiLock when there are multiple objects that you could use at a
particular time.

To use a CSingleLock object, call its constructor inside a member function in the
controlled resource’s class. Then call the Lock member function to determine if the
resource is available. If it is, continue with the remainder of the member function. If
the resource is unavailable, either wait for a specified amount of time for the resource
to be released, or return failure. After use of the resource is complete, either call the
Unlock function if the CSingleLock object is to be used again, or allow the
CSingleLock object to be destroyed.

CSingleLock objects require the presence of an object derived from CSyncObject.
This is usually a data member of the controlled resource’s class. For more
information on how to use CSingleLock objects, see the article “Multithreading:
How to Use the Synchronization Classes” in Programming with MFC.

#include <afxmt.h>

See Also CMultiLock

Construction

CSingleLock Constructs a CSingleLock object.
Methods

IsLocked Determines if the object is locked.
Lock Waits on a synchronization object.
Unlock Releases a synchronization object.

1535

CSingleLock::CSingleLock

Member Functions
CSingleLock::CSingleLock

CSingleLock(CSyncObject* pObject, BOOL blnitialLock = FALSE);

Parameters
pObject Points to the synchronization object to be accessed. Cannot be NULL.

blnitialLock Specifies whether to initially attempt to access the supplied object.
Remarks

Constructs a CSingleLock object. This function is generally called from within an
access member function of the controlled resource.

CSingleLock::IsLocked

BOOL IsLocked();

Return Value
Nonzero if the object is locked; otherwise 0.

Remarks
Determines if the object associated with the CSingleLock object is nonsignaled
(unavailable).

CSingleLock::Lock

BOOL Lock(DWORD dwTimeOut = INFINITE);

Return Value
Nonzero if the function was successful; otherwise 0.

Parameters
dwTimeOut Specifies the amount of time to wait for the synchronization object to be
available (signaled). If INFINITE, Lock will wait until the object is signaled
before returning.

Remarks
Call this function to gain access to the resource controlled by the synchronization
object supplied to the CSingleLock constructor. If the synchronization object is
signaled, Lock will return successfully and the thread now owns the object. If the
synchronization object is nonsignaled (unavailable), Lock will wait for the
synchronization object to become signaled up to the number of milliseconds specified
in the dwTimeQut parameter. If the synchronization object did not become signaled in
the specified amount of time, Lock returns failure.

1536

CSingleLock::Unlock

BOOL Unlock(); i
BOOL Unlock(LONG [Count, LPLONG I[PrevCount = NULL);

Return Value
Nonzero if the function was successful; otherwise 0.

Parameters
ICount Number of accesses to release. Must be greater than 0. If the specified
amount would cause the object’s count to exceed its maximum, the count is not
changed and the furiction returns FALSE.

IPrevCount Points to a variable to receive the previous count of the synchronization
object. If NULL, the previous count is not returned.

Remarks
Releases the synchronization object owned by CSingleLock. This function is called
by CSingleLock’s destructor.

If you need to release more than one access count of a semaphore, use the second
form of Unlock and specify the number of accesses to release.

CSingleLock::Unlock

1537

CSize

CSize

The CSize class is similar to the Windows SIZE structure, which implements a
relative coordinate or position.

Because CSize derives from tagSIZE, CSize objects may be used as SIZE structures.
The operators of this class that interact with a “size” accept either CSize objects or
SIZE structures.

Note This class is derived from the tagSIZE structure. This means you can pass a CSize in a
parameter that calis for a SIZE and that the data members of the SIZE structure are accessible
data members of CSize.

The ¢x and ¢y members of SIZE (and CSize) are public. In addition, CSize
implements member functions to manipulate the SIZE structure.

#include <afxwin.h>

See Also CRect, CPoint

Construction

CSize Constructs a CSize object.

Operators

operator == Checks for equality between CSize and a size.
operator != Checks for inequality between CSize and a size.
operator += Adds a size to CSize.

operator —= Subtracts a size from CSize.

Operators Returning CSize Values

operator + Adds two sizes.
operator — Subtracts two sizes.

Member Functions
CSize::CSize

1538

CSize();

CSize(int initCX, int initCY);
CSize(SIZE initSize);

CSize(POINT initPt);
CSize(DWORD dwSize);

CSize::operator +=

Parameters
initCX Sets the ¢x member for the CSize.

initCY Sets the cy member for the CSize.

initSize SIZE structure or CSize object used to initialize CSize.

initPr POINT structure or CPoint object used to initialize CSize.

dwSize DWORD used to initialize CSize. The low-order word is the cx member and
the high-order word is the ¢y member.

Remarks
Constructs a CSize object. If no arguments are given, ¢x and cy members are not
initialized.

Operators

CSize::operator ==
BOOL operator ==(SIZE size) const;

Remarks
Checks for equality between two sizes. Returns nonzero if the sizes are equal,
otherwize 0.

See Also CSize::operator !=

CSize::operator !=
BOOL operator !=(SIZE size) const;

Remarks
Checks for inequality between two sizes. Returns nonzero if the sizes are not equal,
otherwise 0.

See Also CSize::operator ==

CSize::operator +=
void operator +=(SIZE size);

Remarks
Adds a size to this CSize.

See Also CSize::operator +

1539

CSize::operator —=

CSize::operator —=
void operator —=(SIZE size);

Remarks
Subtracts a size from this CSize.

See Also CSize::operator -

CSize::operator +

CSize operator +(SIZE size) const;
CPoint operator +(POINT point) const;
CRect operator +(const RECT* [pRect) const;

Remarks
These operators add this CSize value to the value of parameter. See the following
descriptions of the individual operators:

e operator +(size) This operation adds two CSize values.

e operator +(point) This operation offsets (moves) a POINT (or CPoint) value
by this CSize value. The ¢x and ¢y members of this CSize value are added to the x
and y data members of the POINT value. It is analogous to the version of
CPoint::operator + that takes a SIZE parameter.

o operator +([pRect) This operation offsets (moves) a RECT (or CRect) value by
this CSize value. The cx and cy members of this CSize value are added to the left,
top, right, and bottom data members of the RECT value. It is analogous to the
version of CRect::operator + that takes a SIZE parameter.

See Also CPoint::operator +, CRect::operator +

CSize::operator —

CSize operator —(SIZE size) const;

CPoint operator —(POINT point) const;
CRect operator —(const RECT* IpRect) const;
CSize operator —() const;

Remarks
The first three of these operators subtract this CSize value to the value of parameter.
The fourth operator, the unary minus, changes the sign of the CSize value. See the
following descriptions of the individual operators:

e operator -(size) This operation subtracts two CSize values.

1540

CSize::operator —

o operator -(point) This operation offsets (moves) a POINT or CPoint value by
the additive inverse of this CSize value. The ¢x and ¢y of this CSize value are
subtracted from the x and y data members of the POINT value. It is analogous to
the version of CPoint::operator - that takes a SIZE parameter.

e operator -([pRect) This operation offsets (moves) a RECT or CRect value by
the additive inverse of this CSize value. The ¢x and cy members of this CSize
value are subtracted from the left, top, right, and bottom data members of the
RECT value. It is analogous to the version of CRect::operator - that takes a
SIZE parameter.

e operator -() This operation returns the additive inverse of this CSize value.

See Also CPoint::operator -, CRect::operator -

1541

CSliderCtrl

CShiderCtrl

1542

A “slider control” (also known as a trackbar) is a window containing a slider and
optional tick marks. When the user moves the slider, using either the mouse or the
direction keys, the control sends notification messages to indicate the change.

Slider controls are useful when you want the user to select a discrete value or a set
of consecutive values in a range. For example, you might use a slider control to
allow the user to set the repeat rate of the keyboard by moving the slider to a given
tick mark.

The CSliderCtrl class provides the functionality of the Windows common slider
control. This control (and therefore the CSliderCtrl class) is available only to
programs running under Windows 95 and Windows NT version 3.51 and later.

The slider moves in increments that you specify when you create it. For example, if
you specify that the slider should have a range of five, the slider can only occupy six
positions: a position at the left side of the slider control and one position for each
increment in the range. Typically, each of these positions is identified by a tick mark.

You create a slider by using the constructor and the Create member function of
CSliderCtrl. Once you have created a slider control, you can use member functions
in CSliderCtrl to change many of its properties. Changes that you can make include
setting the minimum and maximum positions for the slider, drawing tick marks,
setting a selection range, and repositioning the slider.

#include <afxcmn.h>

See Also CProgressCtrl

Construction

CSliderCtrl Constructs a CSliderCtrl object.

Create Creates a slider control and attaches it to a CSliderCtrl object.
Attributes

GetLineSize Retrieves the line size of a slider control.

SetLineSize Sets the line size of a slider control.

GetPageSize Retrieves the page size of a slider control.

SetPageSize Sets the page size of a slider control.

GetRangeMax Retrieves the maximum position for a slider.

GetRangeMin Retrieves the minimum position for a slider.

GetRange Retrieves the minimum and maximum positions for a slider.
SetRangeMin Sets the minimum position for a slider.

SetRangeMax Sets the maximum position for a slider.

SetRange Sets the minimum and maximum positions for a slider.
GetSelection Retrieves the range of the current selection.

SetSelection Sets the range of the current selection.

GetChannelRect Retrieves the size of the slider control’s channel.
GetThumbRect Retrieves the size of the slider control’s thumb.

GetPos Retrieves the current position of the slider.

SetPos Sets the current position of the slider.

GetNumTics Retrieves the number of tick marks in a slider control.
GetTicArray Retrieves the array of tick mark positions for a slider control.
GetTic Retrieves the position of the specified tick mark.

GetTicPos Retrieves the position of the specified tick mark, in client coordinates.
SetTic Sets the position of the specified tick mark.

SetTicFreq Sets the frequency of tick marks per slider control increment.
Operations

ClearSel Clears the current selection in a slider control.

VerifyPos Verifies that the position of a slider control is zero.
ClearTics Removes the current tick marks from a slider control.

CSliderCitrl::ClearSel

Member Functions
CSliderCtrl::ClearSel

void ClearSel(BOOL bRedraw = FALSE);

Parameters

bRedraw Redraw flag. If this parameter is TRUE, the slider is redrawn after the
selection is cleared; otherwise the slider is not redrawn.

Call this function to clear the current selection in a slider control.

See Also CSliderCtrl::GetSelection, CSliderCtrl::SetSelection

1543

CSliderCtrl::ClearTics

CSliderCtrl::ClearTics

void ClearTics(BOOL bRedraw = FALSE);

Parameters .
bRedraw Redraw flag. If this parameter is TRUE, the slider is redrawn after the tick
marks are cleared; otherwise the slider is not redrawn.

Remarks
Call this function to remove the current tick marks from a slider control.

See Also CSliderCtrl::GetTicArray, CSliderCtrl::GetTic,
CSliderCtrl::GetNumTics

CSliderCtrl::Create

BOOL Create(DWORD dwStyle, const RECT& rect, CWnd* pParentWnd,
UINT nID);

Return Value ‘
Nonzero if initialization was successful; otherwise 0.

Parameters
dwStyle Specifies the slider control’s style. Apply any combination of slider control
styles to the control.

rect Specifies the slider control’s size and position. It can be either a CRect object
or a RECT structure.

pParentWnd . Specifies the slider control’s parent window, usually a CDialog. It must
not be NULL.

nID Specifies the slider control’s ID.
Remarks

You construct a CSliderCtrl in two steps. First call the constructor, then call Create,
which creates the slider control and attaches it to the CSliderCtrl object.

Slider controls can have either a vertical or horizontal orientation. They can have tick
marks on either side, both sides, or neither. They can also be used to specify a range
of consecutive values. These properties are controlled by using slider styles, which
you specify when you create the slider control:

e TBS_HORZ Orients the slider horizontally. This is the default orientation.

e TBS_VERT Orients the slider vertically. If you do not specify an orientation, the
slider is oriented horizontally.

1544

CSliderCtrl::GetChannelRect

TBS_AUTOTICKS Creates a slider that has a tick mark for each increment in
its range of values. These tick marks are added automatically when an application
calls the SetRange member function. You cannot use the SetTic and SetTicFreq
member functions to specify the position of the tick marks if you use this style. Use
the ClearTics member function instead.’

TBS_NOTICKS Creates a slider that does not display tick marks.

TBS_BOTTOM Displays tick marks on the bottom of a horizontal slider. Can
be used with the TBS_TOP style to display tick marks on both sides of the slider
control.

TBS_TOP Displays tick marks on the top of a horizontal slider. Can be used
with the TBS_BOTTOM style to display tick marks on both sides of the slider
control.

TBS_RIGHT Displays tick marks on the right of a vertical slider. Can be used
with the TBS_LEFT style to display tick marks on both sides of the slider control.

TBS_LEFT Displays tick marks on the left of a vertical slider. Can be used with
the TBS_RIGHT style to display tick marks on both sides of the slider control.

TBS_BOTH Displays tick marks on both sides of the slider in any orientation.

TBS_ENABLESELRANGE Displays a selection range. When a slider control
has this style, the tick marks at the starting and ending positions of a selection
range are displayed as triangles (instead of vertical dashes) and the selection range
is highlighted. For example, selection ranges might be useful in a simple
scheduling application. The user could select a range of tick marks corresponding
to hours in a day to identify a scheduled meeting time.

See Ailso CSliderCtrl::CSliderCtrl

CSliderCtrl::CSliderCtrl

CSliderCtrl();

Constructs a CSliderCtrl object.
See Also CSliderCtrl::Create

CShiderCtrl::GetChannelRect

void GetChannelRect(LPRECT Iprc) const;

Iprc A pointer to a CRect object that contains the size and position of the channel’s

bounding rectangle when the function returns.

1545

CSliderCtrl::GetLineSize

Remarks
Call this function to retrieve the size and position of the bounding rectangle for a
slider control’s channel. The channel is the area over which the slider moves and
which contains the highlight when a range is selected.

See Also CSliderCtrl::GetThumbRect

CSliderCtrl::GetLineSize

int GetLineSize() const;

Return Value
The size of a line for the slider control.

Remarks
Call this function to retrieve the size of the line for a slider control. The line size
affects how much the slider moves for the TB_LINEUP and TB_LINEDOWN
notifications. The default setting for the line size is 1.

See Also CSliderCtrl::SetLineSize, CSliderCtrl::GetPageSize

CSliderCtrl::GetNumTics

UINT GetNumTics() const;

Return Value
The number of tick marks in the slider control.

Remarks
Call this function to retrieve the number of tick marks in a slider control.

See Also CSliderCtrl::GetTicArray, CSliderCtrl::GetTic,
CSliderCtrl::GetTicPos, CSliderCtrl::SetTicFreq, CSliderCtrl::ClearTics

CSliderCtrl::GetPageSize

int GetPageSize() const;

Return Value
The size of a page for the slider control.

Remarks

Call this function to retrieve the size of the page for a slider control. The page size
affects how much the slider moves for the TB_PAGEUP and TB_PAGEDOWN
notifications.

See Also CSliderCtrl::GetLineSize, CSliderCtrl::SetPageSize

1546

CSliderCtrl::GetRangeMin

CSliderCtrl::GetPos

int GetPos() const;

Return Value
The current position.

Remarks
Call this function to retrieve the current position of the slider in a slider control.

See Also CSliderCtrl::SetPos, CSliderCtrl::GetTicPos

CSliderCtrl::GetRange

void GetRange(int& nMin, int& nMax) const;

Parameters
nMin Reference to an integer that receives the minimum position.

nMax Reference to an integer that receives the maximum position.

Remarks
Call this function to retrieve the maximum and minimum positions for the slider in a
slider control. This function copies the values into the integers referenced by nMin
and nMax.

See Also CSliderCtrl::GetRangeMin, CSliderCtrl::GetRangeMax,
CSliderCtrl::SetRange

CSliderCtrl::GetRangeMax

int GetRangeMax() const;

Return Value
The control’s maximum position.

Remarks
Call this function to retrieve the maximum position for the slider in a slider control.

See Also CSliderCtrl::GetRangeMin, CSliderCtrl::GetRange,
CSliderCtrl::SetRange

CSliderCitrl::GetRangeMin

int GetRangeMin() const;

Return Value
The control’s minimum position.

1547

CSliderCtrl::GetSelection

Remarks
Call this function to retrieve the minimum position for the slider in a slider control.

See Also CSliderCtrl::GetRange, CSliderCtrl::GetRangeMax,
CSliderCtrl::SetRange

CSliderCitrl::GetSelection

void GetSelection(int& nMin, int& nMax) const;

Parameters
‘ nMin Reference to an integer that receives the starting position of the current
selection.

nMax Reference to an integer that receives the ending position of the current
selection.

Remarks
Call this function to retrieve the starting and ending positions of the current selection
in a slider control.

See Also CSliderCtrl::SetSelection, CSliderCtrl::ClearSel

CSliderCitrl::GetThumbRect

void GetThumbRect(LPRECT Iprc) const;

Parameters
Iprc A pointer to a CRect object that contains the bounding rectangle for the slider
when the function returns.

Remarks
Call this function to retrieve the size and position of the bounding rectangle for the
slider (thumb) in a slider control.

See Also CSliderCtrl::GetChannelRect

CSliderCtrl::GetTic

int GetTic(int nTic) const;

Return Value
The position of the specified tick mark or —1 if a7ic does not specify a valid index.

Parameters
nTic Zero-based index identifying a tick mark.

1548

CSliderCtrl::SetLineSize

Remarks
Call this function to retrieve the position of a tick mark in a slider control.

See Also CSliderCtrl::SetTic, CSliderCtrl::GetTicArray,
CSliderCtrl::GetTicPos, CSliderCtrl::SetTicFreq, CSliderCtrl::ClearTics

CSliderCtrl::GetTicArray

DWORD* GetTicArray() const;

Return Value
The address of the array containing tick mark positions for the slider control.

Remarks
Call this function to retrieve the address of the array containing the positions of tick
marks for a slider control.

See Also CSliderCtrl::SetTic, CSliderCtrl::GetTic, CSliderCtrl::GetTicPos,
CSliderCtrl::SetTicFreq, CSliderCtrl::ClearTics

CSliderCtrl::GetTicPos

int GetTicPos(int n7ic) const;

Return Value
The physical position, in client coordinates, of the specified tick mark or -1 if nTic
does not specify a valid index.

Parameters
nTic Zero-based index identifying a tick mark.

Remarks
Call this function to retrieve the current physical position of a tick mark in a slider
control.

See Also CSliderCtrl::SetTic, CSliderCtrl::GetTic, CSliderCtrl::SetTicFreq,
CSliderCtrl::ClearTics

CSliderCtrl::SetLineSize

int SetLineSize(int nSize);

Return Value
The previous line size.

Parameters
nSize The new line size of the slider control.

1549

CSliderCtrl::SetPageSize

Remarks
Call this function to set the size of the line for a slider control. The line size affects
how much the slider moves for the TB_LINEUP and TB_LINEDOWN
notifications.

See Also CSliderCtrl::GetLineSize, CSliderCtrl::SetPageSize

CSliderCtrl::SetPageSize

int SetPageSize(int nSize);

Return Value
The previous page size.

Parameters
nSize The new page size of the slider control.

Remarks

Call this function to set the size of the page for a slider control. The page size affects
how much the slider moves for the TB_PAGEUP and TB_PAGEDOWN
notifications.

See Also CSliderCtrl::GetPageSize, CSliderCtrl::GetLineSize

CSliderCtrl::SetPos

void SetPos(int nPos);

Parameters
nPos Specifies the new slider position.

Remarks
Call this function to set the current position of the slider in a slider control.

See Also CSliderCtrl::GetPos, CSliderCtrl::SetTic, CSliderCtrl:: VerifyPos

CSliderCtrl::SetRange

void SetRange(int nMin, int nMax, BOOL bRedraw = FALSE);

Parameters
nMin Minimum position for the slider.

nMax Maximum position for the slider.

bRedraw The redraw flag. If this parameter is TRUE, the slider is redrawn after the
range is set; otherwise the slider is not redrawn.

1550

CSliderCtrl::SetSelection

Remarks
Call this function to set the range (minimum and maximum positions) for the slider
in a slider control.

See Also CSliderCtrl::GetRange, CSliderCtrl::SetRangeMax,
CSliderCtrl::SetRangeMin

CSliderCtrl::SetRangeMax

void SetRangeMax(int nMax, BOOL bRedraw = FALSE);

Parameters
nMax Maximum position for the slider.

bRedraw The redraw flag. If this parameter is TRUE, the slider is redrawn after the
range is set; otherwise the slider is not redrawn.

Remarks
Call this function to set the maximum range for the slider in a slider control.

See Also CSliderCtrl::SetRange, CSliderCtrl::GetRangeMax,
CSliderCtrl::SetRangeMin

CSliderCitrl::SetRangeMin

void SetRangeMin(int nMin, BOOL bRedraw = FALSE);

Parameters
nMin Minimum position for the slider.

bRedraw The redraw flag. If this parameter is TRUE, the slider is redrawn after the
range is set; otherwise the slider is not redrawn.

Remarks
Call this function to set the minimum range for the slider in a slider control.

See Also CSliderCtrl::SetRange, CSliderCtrl::GetRangeMin,
CSliderCtrl::SetRangeMax

CSliderCtrl::SetSelection

void SetSelection(int nMin, int nMax);

Parameters
nMin Starting position for the slider.

nMax Ending position for the slider.

1551

CSliderCtrl::SetTic

Remarks
Call this function to set the starting and ending positions for the current selection in a
slider control.

See Also CSliderCtrl::GetSelection, CSliderCtrl::ClearSel

CSliderCitrl::SetTic

BOOL SetTic(int nTic);

Return Value
Nonzero if the tick mark is set; otherwise 0.

Parameters
nTic Position of the tick mark. This parameter must specify a positive value.

Remarks
Call this function to set the position of a tick mark in a slider control.

See Also CSliderCtrl::GetTic, CSliderCtrl::GetTicArray,
CSliderCtrl::GetTicPos, CSliderCtrl::SetTicFreq, CSliderCtrl::ClearTics

CSliderCtrl::SetTicFreq

void SetTicFreq(int nFreq);

Parameters
nFreq Frequency of the tick marks.

Remarks
Call this function to set the frequency with which tick marks are displayed in a slider.
For example, if the frequency is set to 2, a tick mark is displayed for every other
increment in the slider’s range. The default setting for the frequency is 1 (that is,
every increment in the range is associated with a tick mark).

You must create the control with the TBS_AUTOTICKS style to use this function.
For more information, see CSliderCtrl::Create.

See Also CSliderCtrl::Create, CSliderCtri::SetTic, CSliderCtrl::GetTicArray

1552

CSliderCtrl:: VerifyPos

CSliderCitrl:: VerifyPos

void VerifyPos();

Remarks
Call this function to verify that the current position of the slider in a slider control is
between the minimum and maximum values.

See Also CSliderCtrl::GetRange, CSliderCtrl::SetPos, CSliderCtrl::GetTicPos

1553

CSocket

CSocket

1554

Class CSocket derives from CAsyncSocket and inherits its encapsulation of the
Windows Sockets API. A CSocket object represents a higher level of abstraction of
the Windows Sockets API than that of a CAsyncSocket object. CSocket works with
classes CSocketFile and CArchive to manage the sending and receiving of data.

A CSocket object also provides blocking, which is essential to the synchronous
operation of CArchive. Blocking functions, such as Receive, Send, ReceiveFrom,
SendTo, and Accept (all inherited from CAsyncSocket), do not return a
WSAEWOULDBLOCK error in CSocket. Instead, these functions wait until the
operation completes. Additionally, the original call will termirate with the error
WSAEINTR if CancelBlockingCall is called while one of these functions is
blocking.

To use a CSocket object, call the constructor, then call Create to create the
underlying SOCKET handle (type SOCKET). The default parameters of Create
create a stream socket, but if you are not using the socket with a CArchive object,
you can specify a parameter to create a datagram socket instead, or bind to a specific
port to create a server socket. Connect to a client socket using Connect on the client
side and Accept on the server side. Then create a CSocketFile object and associate it
to the CSocket object in the CSocketFile constructor. Next, create a CArchive object
for sending and one for receiving data (as needed), then associate them with the
CSocketFile object in the CArchive constructor. When communications are
complete, destroy the CArchive, CSocketFile, and CSocket objects. The SOCKET
data type is described in the article “Windows Sockets: Background” in Programming
with MFC.

For more information, see “Windows Sockets in MFC,” “Windows Sockets: Using
Sockets with Archives,” “Windows Sockets: How Sockets with Archives Work,”
“Windows Sockets: Sequence of Operations,” “Windows Sockets: Example of Sockets
Using Archives,” and related articles in Programming with MFC. Also see
“Programming with Sockets” in the Win32 SDK documentation.

#include <afxsock.h>

See Also CAsyncSocket, CSocketFile

CSocket::Attach

Construction

CSocket Constructs a CSocket object.

Create Creates a socket.

Attributes

IsBlocking Determines whether a blocking call is in progress.

FromHandle Returns a pointer to a CSocket object, given a SOCKET
handle.

Attach Attaches a SOCKET handle to a CSocket object.

Operations

CancelBlockingCall Cancels a blocking call that is currently in progress.

Overridables

OnMessagePending Called to process pending messages while waiting for a

blocking call to complete.

Member Functions

CSocket::Attach

BOOL Attach(SOCKET #hSocker);

Return Value
Nonzero if the function is successful.

Parameters
hSocket Contains a handle to a socket.

Remarks

Call this member function to attach the ASocker handle to a CSocket object. The
SOCKET handle is stored in the object’s m_hSocket data member.

For more information, see “Windows Sockets: Using Sockets with Archives” and
related articles in Programming with MFC. Also see “Programming with Sockets” in
the Win32 SDK documentation.

See Also CAsyncSocket::Attach

1555

CSocket::CancelBlockingCall

CSocket::CancelBlockingCall

void CancelBlockingCall();

Remarks
Call this member function to cancel a blocking call currently in progress. This
function cancels any outstanding blocking operation for this socket. The original
blocking call will terminate as soon as possible with the error WSAEINTR.

In the case of a blocking Connect operation, the Windows Sockets implementation
will terminate the blocking call as soon as possible, but it may not be possible for the
socket resources to be released until the connection has completed (and then been
reset) or timed out. This is likely to be noticeable only if the application immediately
tries to open a new socket (if no sockets are available), or to connect to the same peer.

Canceling any operation other than Accept can leave the socket in an indeterminate
state. If an application cancels a blocking operation on a socket, the only operation
that the application can depend on being able to perform on the socket is a call to
Close, although other operations may work on some Windows Sockets
implementations. If you desire maximum portability for your application, you must be
careful not to depend on performing operations after a cancel.

For more information, see “Windows Sockets: Using Sockets with Archives” and
related articles in Programming with MFC. Also see “Programming with Sockets” in
the Win32 SDK documentation.

See Also CAsyncSocket::Accept, CAsyncSocket::Close,
CAsyncSocket::Connect, CSocket::IsBlocking, ::WSASetBlockingHook

CSocket::Create

BOOL Create(UINT nSocketPort = 0, int nSocketType = SOCK_STREAM,
LPCTSTR IpszSocketAddress = NULL);

Return Value
Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError.

Parameters
nSocketPort A particular port to be used with the socket, or 0 if you want MFC to
select a port.

nSocketType SOCK_STREAM or SOCK_DGRAM.

IpszSockAddress A pointer to the address of a SOCKADDR structure that contains
the network address.

1556

Remarks

CSocket::FromHandle

Call the Create member function after constructing a socket object to create the
Windows socket and attach it. Create then calls Bind to bind the socket to the
specified address. The following socket types are supported:

e SOCK_STREAM Provides sequenced, reliable, two-way, connection-based byte
streams. Uses Transmission Control Protocol (TCP) for the Internet address
family.

o SOCK_DGRAM Supports datagrams, which are connectionless, unreliable
buffers of a fixed (typically small) maximum length. Uses User Datagram Protocol
(UDP) for the Internet address family. To use this option, you must not use the
socket with a CArchive object.

Note The Accept member function takes a reference to a new, empty CSocket object as its
parameter. You must construct this object before you call Accept. Keep in mind that if this
socket object goes out of scope, the connection closes. Do not call Create for this new socket
object.

For more information about stream and datagram sockets, see the articles “Windows
Sockets: Background,” “Windows Sockets: Ports and Socket Addresses,” and
“Windows Sockets: Using Sockets with Archives” in Programming with MFC and
"Programming with Sockets” in the Win32 SDK documentation.

See Also CAsyncSocket::Create, CAsyncSocket::Bind

CSocket::CSocket

Remarks

CSocket();

Constructs a CSocket object. After construction, you must call the Create member
function.

For more information, see “Windows Sockets: Using Sockets with Archives” and
related articles in Programming with MFC. Also see “Programming with Sockets” in
the Win32 SDK documentation.

See Also CAsyncSocket::Create

CSocket::FromHandle

static CSocket* PASCAL FromHandle(SOCKET hSocket);

Return Value

A pointer to a CSocket object, or NULL if there is no CSocket object attached to
hSocket.

1557

CSocket::IsBlocking

Parameters
hSocket Contains a handle to a socket.

Remarks
Returns a pointer to a CSocket object. When given a SOCKET handle, if a CSocket
object is not attached to the handle, the member function returns NULL and does not
create a temporary object.

For more information, see “Windows Sockets: Using Sockets with Archives” and
related articles in Programming with MFC. Also see “Programming with Sockets” in
the Win32 SDK documentation.

See Also CAsyncSocket::FromHandle

CSocket::IsBlocking

BOOL IsBlocking();

Return Value
Nonzero if the socket is blocking; otherwise 0.

Remarks
Call this member function to determine if a blocking call is in progress.

For more information, see “Windows Sockets: Using Sockets with Archives” and
related articles in Programming with MFC. Also see “Programming with Sockets” in
the Win32 SDK documentation.

See Also CSocket::CancelBlockingCall

CSocket::OnMessagePending

virtual BOOL OnMessagePending();

Return Value
Nonzero if the message was handled; otherwise 0.

Remarks
Override this member function to look for particular messages from Windows and
respond to them in your socket. This is an advanced overridable.

1558

CSocket::OnMessagePending

The framework calls OnMessagePending while the socket is pumping Windows
messages to give you an opportunity to deal with messages of interest to your
application. For examples of how you might use OnMessagePending, see the article
“Windows Sockets: Deriving from Socket Classes” in Programming with MFC.

For more information, see “Windows Sockets: Using Sockets with Archives” and
related articles in Programming with MFC. Also see “Programming with Sockets” in
the Win32 SDK documentation.

See Also CSocket::CancelBlockingCall, CSocket::IsBlocking

1559

CSocketFile

CSocketFile

1560

A CSocketFile object is a CFile object used for sending and receiving data across a
network via Windows Sockets. You can attach the CSocketFile object to a CSocket
object for this purpose. You also can — and usually do — attach the CSocketFile
object to a CArchive object to simplify sending and receiving data using MFC
serialization,

To serialize (send) data, you insert it into the archive, which calls CSocketFile
member functions to write data to the CSocket object. To deserialize (receive) data,
you extract from the archive. This causes the archive to call CSocketFile member
functions to read data from the CSocket object.

Tip Besides using CSocketFile as described here, you can use it as a stand-alone file object,
just as you can with CFile, its base class. You can also use CSocketFile with any archive-
based MFC serialization functions. Because CSocketFile does not support all of CFile’s
functionality, some default MFC serialize functions are not compatible with CSocketFile. This
is particularly true of the CEditView class. You should not try to setialize CEditView data
through a CArchive object attached to a CSocketFile object using CEditView::SerializeRaw;
use CEditView::Serialize instead. The SerializeRaw function expects the file object to have
functions, such as Seek, that CSocketFile does not have.

For more information, see “Windows Sockets in MFC,” “Windows Sockets: Using
Sockets with Archives,” and related articles in Programming with MFC, as well as
“Programming with Sockets™ in the Win32 SDK documentation.

#include <afxsock.h>
See Also CAsyncSocket, CSocket

Construction

CSocketFile Constructs a CSocketFile object.

CSocketFile::CSocketFile

Member Functions
CSocketFile::CSocketFile

CSocketFile(CSocket* pSocket, BOOL bArchiveCompatible = TRUE);

Parameters
pSocket The socket to attach to the CSocketFile object.

bArchiveCompatible Specifies whether the file object is for use with a CArchive
object. Pass FALSE only if you want to use the CSocketFile object in a stand-
alone manner as you would a stand-alone CFile object, with certain limitations.
This flag changes how the CArchive object attached to the CSocketFile object
manages its buffer for reading.

Remarks
Constructs a CSocketFile object. The object’s destructor disassociates itself from the
socket object when the object goes out of scope or is deleted.

Note A CSocketFile can also be used as a (limited) file without a CArchive object. By default,
the CSocketFile constructor’s bArchiveCompatible parameter is TRUE. This specifies that the
file object is for use with an archive. To use the file object without an archive, pass FALSE in
the bArchiveCompatible parameter.

In its “archive compatible” mode, a CSocketFile object provides better performance
and reduces the danger of a “deadlock.” A deadlock occurs when both the sending
and receiving sockets are waiting on each other, or for a common resource. This
situation might occur if the CArchive object worked with the CSocketFile the way it
does with a CFile object. With CFile, the archive can assume that if it receives fewer
bytes than it requested, the end of file has been reached.

With CSocketFile, however, data is message based; the buffer can contain multiple
messages, so receiving fewer than the number of bytes requested does not imply end
of file. The application does not block in this case as it might with CFile, and it

can continue reading messages from the buffer until the buffer is empty. The
CArchive::IsBufferEmpty function is useful for monitoring the state of the
archive’s buffer in such a case.

For more information on the use of CSocketFile, see the articles “Windows Sockets:
Using Sockets with Archives” and “Windows Sockets: Example of Sockets Using
Archives” in Programming with MFC.

See Also CFile::CFile, CFile::Read

1561

CSpinButtonCtrl

CSpinButtonCtrl

1562

A “spin button control” (also known as an up-down control) is a pair of arrow buttons
that the user can click to increment or decrement a value, such as a scroll position or
a number displayed in a companion control. The value associated with a spin button
control is called its current position. A spin button control is most often used with a
companion control, called a “buddy window.”

The CSpinButtonCtrl class provides the functionality of the Windows common spin
button control. This control (and therefore the CSpinButtonCtrl class) is available
only to programs running under Windows 95 and Windows NT version 3.51 and
later.

To the user, a spin button control and its buddy window often look like a single
control. You can specify that a spin button control automatically position itself next to
its buddy window, and that it automatically set the caption of the buddy window to its
current position. You can use a spin button control with an edit control to prompt the
user for numeric input.

Clicking the up arrow moves the current position toward the maximum, and clicking
the down arrow moves the current position toward the minimum. By default, the
minimum is 100 and the maximum is 0. Any time the minimum setting is greater
than the maximum setting (for example, when the default settings are used), clicking
the up arrow decreases the position value and clicking the down arrow decreases it.

A spin button control without a buddy window functions as a sort of simplified scroll
bar. For example, a tab control sometimes displays a spin button control to enable the
user to scroll additional tabs into view.

#include <afxemn.h>

See Also CSliderCtrl

Construction
CSpinButtonCtrl Constructs a CSpinButtonCtrl object.
Create Creates a spin button control and attaches it to a

CSpinButtonCtrl object.

CSpinButtonCtrl::Create

Attributes

SetAccel Sets the acceleration for a spin button control.

GetAccel Retrieves acceleration information for a spin button control.

SetBase Sets the base for a spin button control.

GetBase Retrieves the current base for a spin button control.

SetBuddy Sets the buddy window for a spin button control.

GetBuddy Retrieves a pointer to the current buddy window.

SetPos Sets the current position for the control.

GetPos Retrieves the current position of a spin button control.

SetRange Sets the upper and lower limits (range) for a spin button
control.

GetRange Retrieves the upper and lower limits (range) for a spin button

control.

Member Functions
CSpinButtonCtrl::Create

BOOL Create(DWORD dwStyle, const RECT& rect, CWnd* pParentWnd, UINT nID);

Return Value

Nonzero if initialization was successful; otherwise 0.

Parameters

dwStyle Specifies the spin button control’s style. Apply any combination of spin
button control styles to the control.

rect Specifies the spin button control’s size and position. It can be either a CRect
object or a RECT structure

pParentWnd A pointer to the spin button control’s parent window, usually a
CDialog. It must not be NULL.

nID Specifies the spin button control’s ID.

Remarks

You construct a CSpinButtonCtrl object in two steps. First call the constructor, then
call Create, which creates the spin button control and attaches it to the
CSpinButtonCitrl object.

The following styles are specific to spin button controls:

e UDS_HORZ Causes the control’s arrows to point left and right instead of up and

down.

1563

CSpinButtonCtrl::CSpinButtonCtrl

e UDS_WRAP Causes the position to “wrap” if it is incremented or decremented
beyond the ending or beginning of the range.

o UDS_ARROWKEYS Causes the control to increment and decrement the
position when the UP ARROW and DOWN ARROW keys are pressed.

o UDS_SETBUDDYINT Causes the control to set the text of the buddy window
(using the WM_SETTEXT message) when the position changes. The text
consists of the position formatted as a decimal or hexadecimal string.

e UDS_NOTHOUSANDS Does not insert a thousands separator between every
three decimal digits.

e UDS_AUTOBUDDY Automatically selects the previous window in the Z-order
as the control’s buddy window.

e UDS_ALIGNRIGHT Positions the spin button control next to the right edge of
the buddy window. The width of the buddy window is decreased to accommodate
the width of the control.

o UDS_ALIGNLEFT Positions the spin button control next to the left edge of the
buddy window. The buddy window is moved to the right and its width decreased to
accommodate the width of the control.

See Also CSpinButtonCtrl::CSpinButtonCtrl

CSpinButtonCtrl::CSpinButtonCtrl

CSpinButtonCtrl();

Remarks
Constructs a CSpinButtonCtrl object.

See Also CSpinButtonCtrl::Create

CSpinButtonCtrl::GetAccel

UINT GetAccel(int nAccel, UDACCEL* pAccel) const;

Return Value
Number of accelerator structures retrieved.

Parameters
nAccel Number of elements in the array specified by pAccel.

PAccel Pointer to an array of UDACCEL structures that receives acceleration
information. For more information on the definition of the UDACCEL structure,
see CSpinButtonCtrl::SetAccel.

1564

Remarks
Call this function to retrieve acceleration information for a spin button control.

See Also CSpinButtonCtrl::SetAccel

CSpinButtonCtrl::GetPos

CSpinButtonCtrl::GetBase

UINT GetBase() const;

Return Value
The current base value.

Remarks
Call this function to retrieve the current base for a spin button control.

See Also CSpinButtonCtrl::SetBase

CSpinButtonCtrl::GetBuddy

CWnd* GetBuddy() const;

Return Value
A pointer to the current buddy window.

Remarks
Call this function to retrieve a pointer to the current buddy window.

See Also CSpinButtonCtrl::SetBuddy

CSpinButtonCtrl::GetPos

int GetPos() const;

Return Value
The current position in the low-order word. The high-order word is nonzero if an
error occurred.

Remarks
Call this function to retrieve the current position of a spin button control. When it
processes the value returned, the control updates its current position based on the
caption of the buddy window. The control returns an error if there is no buddy
window or if the caption specifies an invalid or out-of-range value.

See Also CSpinButtonCtrl::SetPos

1565

CSpinButtonCtrl::GetRange

CSpinButtonCtrl::GetRange

DWORD GetRange() const;
void GetRange(int &lower, int& upper) const;

Return Value
The first version returns a 32-bit value containing the upper and lower limits. The
low-order word is the upper limit for the control, and the high-order word is the
lower limit.

Parameters
lower Reference to an integer that receives the lower limit for the control.

upper Reference to an integer that receives the upper limit for the control.
Remarks

Call this function to retrieve the upper and lower limits (range) for a spin button
control.

See Also CSpinButtonCtrl::SetRange

CSpinButtonCtrl::SetAccel

BOOL SetAccel(int nAccel, UDACCEL* pAccel);

Return Value
Nonzero if successful; otherwise 0.

Parameters
nAccel Number of UDACCEL structures specified by pAccel.

pAccel Pointer to an array of UDACCEL structures, which contain acceleration
information. Elements should be sorted in ascending order based on the nSec
member.

Remarks
Call this function to set the acceleration for a spin button control. The UDACCEL
structure is defined as follows:

typedef struct {
int nSec;
int ninc;

} UDACCEL;

nSec Amount of elapsed time, in seconds, before the position-change increment
specified by nInc is used.

nIne Position-change increment to use after the time specified by nSec elapses.

See Also CSpinButtonCtrl::GetAccel

1566

CSpinButtonCtrl::SetPos

CSpinButtonCtrl::SetBase

int SetBase(int nBase);

Return Value
The previous base value if successful, or zero if an invalid base is given.

Parameters
nBase New base value for the control. It can be 10 for decimal or 16 for
hexadecimal.

Remarks
Call this function to set the base for a spin button control. The base value determines
whether the buddy window displays numbers in decimal or hexadecimal digits.
Hexadecimal numbers are always unsigned; decimal numbers are signed.

See Also CSpinButtonCtrl::GetBase

CSpinButtonCtrl::SetBuddy

CWnd* SetBuddy(CWnd* pWndBuddy);

Return Value
A pointer to the previous buddy window.

Parameters
pWndBuddy Pointer to the new buddy window.

Remarks
Call this function to set the buddy window for a spin button control.

See Also CSpinButtonCtrl::GetBuddy

CSpinButtonCtrl::SetPos

int SetPos(int nPos);

Return Value
The previous position.

Parameters
nPos New position for the control. This value must be in the range specified by the
upper and lower limits for the control.

Remarks
Call this function to set the current position for a spin button control.

See Also CSpinButtonCtrl::SetRange, CSpinButtonCtrl::GetPos

1567

CSpinButtonCtrl::SetRange

CSpinButtonCtrl::SetRange

void SetRange(int nLower, int nUpper);

Parameters
nLower and nUpper Upper and lower limits for the control. Neither limit can be
greater than UD_MAXVAL or less than UD_MINVAL. In addition, the
difference between the two limits cannot exceed UD_MAXVAL.

Remarks
Call this function to set the upper and lower limits (range) for a spin button control.

See Also CSpinButtonCtrl::GetRange, CSpinButtonCtrl::GetPos

1568

CSplitterWnd

CSplitterWnd

The CSplitterWnd class provides the functionality of a splitter window, which is a
window that contains multiple panes. A pane is usually an application-specific object
derived from CView, but it can be any CWnd object that has the appropriate child
window ID.

A CSplitterWnd object is usually embedded in a parent CFrameWnd or
CMDIChildWnd object. Create a CSplitterWnd object using the following steps:

1. Embed a CSplitterWnd member variable in the parent frame.
2. Override the parent frame’s CFrameWnd::OnCreateClient member function.

3. From within the overridden OnCreateClient, call the Create or CreateStatic
member function of CSplitterWnd.

Call the Create member function to create a dynamic splitter window. A dynamic
splitter window typically is used to create and scroll a number of individual panes, or
views, of the same document. The framework automatically creates an initial pane for
the splitter; then the framework creates, resizes, and disposes of additional panes as
the user operates the splitter window’s controls.

When you call Create, you specify a minimum row height and column width that
determine when the panes are too small to be fully displayed. After you call Create,
you can adjust these minimums by calling the SetColumnInfo and SetRowInfo
member functions.

Also use the SetColumnInfo and SetRowInfo member functions to set an “ideal”
width for a column and “ideal” height for a row. When the framework displays a
splitter window, it first displays the parent frame, then the splitter window. The
framework then lays out the panes in columns and rows according to their ideal
dimensions, working from the upper-left to the lower-right corner of the splitter
window’s client area.

All panes in a dynamic splitter window must be of the same class. Familiar
applications that support dynamic splitter windows include Microsoft Word and
Microsoft Excel.

1569

CSplitterWnd

1570

Use the CreateStatic member function to create a static splitter window. The user
can change only the size of the panes in a static splitter window, not their number or
order.

You must specifically create all the static splitter’s panes when you create the static
splitter. Make sure you create all the panes before the parent frame’s
OnCreateClient member function returns, or the framework will not display the
window correctly.

The CreateStatic member function automatically initializes a static splitter with a
minimum row height and column width of 0. After you call Create, adjust these
minimums by calling the SetColumnInfo and SetRowInfo member functions. Also
use SetColumnInfo and SetRowInfo after you call CreateStatic to indicate desired
ideal pane dimensions.

The individual panes of a static splitter often belong to different classes. For
examples of static splitter windows, see the graphics editor and the Windows File
Manager.

A splitter window supports special scroll bars (apart from the scroll bars that panes
may have). These scroll bars are children of the CSplitterWnd object and are shared
with the panes.

You create these special scroll bars when you create the splitter window. For example,
a CSplitterWnd that has one row, two columns, and the WS_VSCROLL style will
display a vertical scroll bar that is shared by the two panes. When the user moves the
scroll bar, WM_VSCROLL messages are sent to both panes. When the panes set the
scroll-bar position, the shared scroll bar is set.

For further information on splitter windows, see Technical Note 29 under MFC in
Books Online. For more information on how to create dynamic splitter windows, see
“Adding Splitter Windows” in the SCRIBBLE sample application in Chapter 9,
“Enhancing Views,” of Tutorials, and the MFC General sample VIEWEX.

#include <afxext.h>
See Also CView, CWnd

Construction

CSplitterWnd Call to construct a CSplitterWnd object.

Create Call to create a dynamic splitter window and attach it to the
CSplitterWnd object.

CreateStatic Call to create a static splitter window and attach it to the
CSplitterWnd object.

CreateView Call to create a pane in a splitter window.

CSplitterWnd

Operations
GetRowCount Returns the current pane row count.
GetColumnCount Returns the current pane column count.
GetRowlInfo Returns information on the specified row.
SetRowInfo Call to set the specified row information.
GetColumnInfo Returns information on the specified column.
SetColumnInfo Call to set the specified column information.
GetPane Returns the pane at the specified row and column.
IsChildPane Call to determine whether the window is currently a child pane
of this splitter window.
IdFromRowCol Returns the child window ID of the pane at the specified row
and column.
RecalcLayout Call to redisplay the splitter window after adjusting row or
column size.
GetScrollStyle Returns the shared scroll-bar style.
SetScrollStyle Specifies the new scroll-bar style for the splitter window’s
shared scroll-bar support.
Overridables
OnDrawSplitter Renders an image of a split window.
OnInvertTracker Renders the image of a split window to be the same size and
shape as the frame window.
CreateScrollBarCtrl Creates a shared scroll bar control.
DeleteView Deletes a view from the splitter window.
SplitRow Indicates wheere a frame window splits horizontally.
SplitColumn Indicated where a frame window splits vertically.
DeleteRow Deletes a row from the splitter window.
DeleteColumn Deletes a column from the splitter window.
GetActivePane Determines the active pane from the focus or active view in
the frame.
SetActivePane Sets a pane to be the active one in the frame.
CanActivateNext Checks to see if the Next Pane or Previous Pane command is
currently possible.
ActivateNext Performs the Next Pane or Previous Pane command.
DoKeyboardSplit Performs the keyboard split command, usually "Window
Split".
DoScroll Performs synchronized scrolling of split windows.
DoScrollBy Scrolls split windows by a given number of pixels.

1571

CSplitterWnd::ActivateNext

Member Functions
CSplitterWnd:: ActivateNext

virtual void ActivateNext(BOOL bPrev = FALSE);

Parameters
bPrev Indicates which window to activate. TRUE for previous; FALSE for next.

Remarks
This member function is called by the framework to perform the Next Pane or
Previous Pane command.

This member function is a high level command that is used by the CView class to
delegate to the CSplitterWnd implementation.

See Also CView, CSplitterWnd::CanActivateNext,
CSplitterWnd::SetActivePane

CSplitterWnd::CanActivateNext

virtual BOOL CanActivateNext(BOOL bPrev = FALSE);

Return Value
Nonzero if successful; otherwise 0.

Parameters
bPrev Indicates which window to activate. TRUE for previous; FALSE for next.

Remarks
This member function is called by the framework to check to see if the Next Pane or
Previous Pane command is currently possible.

This member function is a high level command that is used by the CView class to
delegate to the CSplitterWnd implementation.

See Also CSplitterWnd::ActivateNext, CSplitterWnd::SetActivePane

CSplitterWnd::Create

BOOL Create(CWnd* pParentWnd, int nMaxRows, int nMaxCols, SIZE sizeMin,
CCreateContext* pContext, DWORD dwStyle = WS_CHILD | WS_VISIBLE IWS_HSCROLL |
WS_VSCROLL | SPLS_DYNAMIC_SPLIT, UINT »nID = AFX_IDW_PANE_FIRST);

Return Value
Nonzero if successful; otherwise 0.

1572

CSplitterWnd::Create

Parameters

Remarks

pParentWnd The parent frame window of the splitter window.

nMaxRows The maximum number of rows in the splitter window. This value must
not exceed 2.

nMaxCols The maximum number of columns in the splitter window. This value
must not exceed 2.

sizeMin Specifies the minimum size at which a pane may be displayed.

pContext A pointer to a CCreateContext structure. In most cases, this can be the
pContext passed to the parent frame window.

awStyle Specifies the window style.

nID The child window ID of the window. The ID can be AFX_IDW_PANE_FIRST
unless the splitter window is nested inside another splitter window.

To create a dynamic splitter window, call the Create member function.

You can embed a CSplitterWnd in a parent CFrameWnd or CMDIChildWnd
object by taking the following steps:

1. Embed a CSplitterWnd member variable in the parent frame.
2. Override the parent frame’s CFrameWnd::OnCreateClient member function.

3. Call the Create member function from within the overridden OnCreateClient.

When you create a splitter window from within a parent frame, pass the parent
frame’s pContext parameter to the splitter window. Otherwise, this parameter can be
NULL.

The initial minimum row height and column width of a dynamic splitter window are
set by the sizeMin parameter. These minimums, which determine whether a pane is
too small to be shown in its entirety, can be changed with the SetRowInfo and
SetColumnInfo member functions.

For more on dynamic splitter windows, see Chapter 3, “Working with Frame
Windows, Documents, and Views,” in Programming with MFC, Technical Note 29,
and the CSplitterWnd class overview.

See Also CSplitterWnd::CreateStatic, CFrameWnd::OnCreateClient,
CSplitter Wnd::SetRowlInfo, CSplitter Wnd::SetColumnInfo,
CSplitterWnd::CreateView

1573

CSplitterWnd::CreateScrollBarCtrl

CSplitterWnd::CreateScrollBarCtrl

virtual BOOL CreateScrollBarCtrl(DWORD dwStyle, UINT nID);

Return Value
Nonzero if successful; otherwise 0.

Parameters
dwStyle Specifies the window style.

nID The child window ID of the window. The ID can be AFX_IDW_PANE_FIRST
unless the splitter window is nested inside another splitter window.

Remarks

This member function is called by the framework to create a shared scroll bar control.
Override CreateScrollBarCtrl to include extra controls next to a scroll bar. The
default behavior is to create normal Windows scroll bar controls.

See Also AfxGetInstanceHandle

CSplitterWnd::CreateStatic

BOOL CreateStatic(CWnd* pParentWnd, int nRows, int nCols, DWORD dwStyle = WS_CHILD |
WS_VISIBLE, UINT nID = AFX_IDW_PANE_FIRST);

Return Value
Nonzero if successful; otherwise 0.

Parameters
pParentWnd The parent frame window of the splitter window.

nRows The number of rows. This value must not exceed 16.
nCols The number of columns. This value must not exceed 16.
dwStyle Specifies the window style.

nID The child window ID of the window. The ID can be AFX_IDW_PANE_FIRST
unless the splitter window is nested inside another splitter window.

Remarks
To create a static splitter window, call the CreateStatic member function.

A CSplitterWnd is usually embedded in a parent CFrameWnd or CMDIChildWnd
object by taking the following steps:

1. Embed a CSplitterWnd member variable in the parent frame.

2. Override the parent frame’s OnCreateClient member function.

3. Call the CreateStatic member function from within the overridden
CFrameWnd::OnCreateClient.

1574

CSplitterWnd::Create View

A static splitter window contains a fixed number of panes, often from different
classes.

When you create a static splitter window, you must at the same time create all its
panes. The CreateView member function is usually used for this purpose, but you
can create other nonview classes as well.

The initial minimum row height and column width for a static splitter window is 0.
These minimums, which determine when a pane is too small to be shown in its
entirety, can be changed with the SetRowInfo and SetColumnInfo member
functions.

To add scroll bars to a static splitter window, add the WS_HSCROLL and
WS_VSCROLL styles to dwStyle.

See Chapter 3, “Working with Frame Windows, Documents and Views,” in
Programming with MFC, Technical Note 29, and the CSplitterWnd class overview
for more on static splitter windows.

See Also CSplitterWnd::Create, CFrameWnd::OnCreateClient,
CSplitterWnd::SetRowlInfo, CSplitterWnd::SetColumnInfo,
CSplitterWnd::CreateView

CSplitterWnd::Create View

virtual BOOL CreateView(int row, int col, CRuntimeClass* pViewClass, SIZE sizelnit,
CCreateContext* pContext);

Return Value
Nonzero if successful; otherwise 0.

Parameters
row Specifies the splitter window row in which to place the new view.

col Specifies the splitter window column in which to place the new view.
pViewClass Specifies the CRuntimeClass of the new view.
sizelnit Specifies the initial size of the new view.

pContext A pointer to a creation context used to create the view (usually the
pContext passed into the parent frame’s overridden
CFrameWnd::OnCreateClient member function in which the splitter window is
being created).

Remarks
Call this member function to create the panes for a static splitter window. All panes
of a static splitter window must be created before the framework displays the splitter.

1575

CSplitterWnd::CSplitterWnd

The framework also calls this member function to create new panes when the user of
a dynamic splitter window splits a pane, row, or column.

See Also CSplitterWnd::Create

CSplitterWnd::CSplitterWnd

CSplitterWnd();

Remarks ,
Construct a CSplitterWnd object in two steps. First call the constructor, which
creates the CSplitterWnd object, then call the Create member function, which
creates the splitter window and attaches it to the CSplitterWnd object.

See Also CSplitterWnd::Create

CSplitterWnd::DeleteColumn

virtual void DeleteColumn(int colDelete);

Parameters
colDelete Specifies the column to be deleted.

Remarks
This member function is called when a column is to be deleted.

This member function is called by the framework to implement the logic

of the dynamic splitter window (that is, if the splitter window has the
SPLS_DYNAMIC_SPLIT style). It can be customized, along with the virtual
function CreateView, to implement more advanced dynamic splitters.

See Also CSplitterWnd::DeleteRow, CSplitterWnd::CreateView,
CSplitterWnd::DeleteView

CSplitterWnd::DeleteRow

virtual void DeleteRow(int rowDelete);

Parameters
rowDelete Specifies the row to be deleted.

Remarks
DeleteRow is called when a row is to be deleted.

1576

CSplitterWnd::DoKeyboardSplit

This member function is called by the framework to implement the logic

of the dynamic splitter window (that is, if the splitter window has the
SPLS_DYNAMIC_SPLIT style). It can be customized, along with the virtual
function CreateView, to implement more advanced dynamic splitters.

See Also CSplitterWnd::DeleteColumn, CSplitterWnd::CreateView,
CSplitterWnd::DeleteView

CSplitterWnd::DeleteView

virtual void DeleteView(int row, int col)3
Parameters
row Specifies the splitter window row at which to delete the view.

col Specifies the splitter window column at which to delete the view.

Remarks
DeleteView is called when a view is to be deleted. If the active view is being deleted,
the next view will become active. The default implementation assumes the view will
auto delete in PostNcDestroy.

This member function is called by the framework to implement the logic of the
dynamic splitter window (that is, if the splitter window has the
SPLS_DYNAMIC_SPLIT style). It can be customized, along with the virtual
function CreateView, to implement more advanced dynamic splitters.

See Also CWnd::PostNcDestroy, CSplitterWnd::CreateView,
CSplitterWnd::DeleteColumn, CSplitter Wnd::DeleteRow

CSplitterWnd::DoKeyboardSplit

virtual BOOL DoKeyboardSplit();

Return Value
Nonzero if successful; otherwise 0.

Remarks
This member function is called by the framework to perform a keyboard split
command, usually Window Split.

This member function is a high level command that is used by the CView class to
delegate to the CSplitterWnd implementation.

See Also CView

1577

CSplitterWnd::DoScroll

CSplitterWnd::DoScroll

virtual BOOL DoScroll(CView* pViewFrom, UINT nScroliCode, BOOL bDoScroll = TRUE);

Return Value
Nonzero if synchronized scrolling occurs; otherwise 0.

Parameters
pViewFrom A pointer to the view from which the scrolling message originates.

nScrollCode A scroll-bar code that indicates the user's scrolling request. This
parameter is composed of two parts: a low-order byte, which determines the type
of scrolling occurring horizontally, and a high-order byte, which determines the
type of scrolling occurring veitically:

e SB_BOTTOM Scrolls to bottom.

e SB_LINEDOWN Scrolls one line down.
e SB_LINEUP Scrolls one line up.

¢ SB_PAGEDOWN Scrolls one page down.
e SB_PAGEUP Scrolls one page up.

e SB_TOP Scrolls to top.

bDoScroll Determines whether the specified scrolling action occurs. If bDoScroll is
TRUE (that is, if a child window exists, and if the split windows have a scroll
range), then the specified scrolling action can take place; if bDoScroll is FALSE
(that is, if no child window exists, or the split views have no scroll range), then
scrolling does not occur.

Remarks
This member function is called by the framework to perform synchronized scrolling
of split windows when the view receives a scroll message.

Override to require an action by the user before synchronized scrolling is allowed.

See Also CSplitterWnd::DoScrollBy, CView::OnScroll

CSplitterWnd::DoScrollBy

virtual BOOL DoScrollBy(CView* pViewFrom, CSize sizeScroll, BOOL bDoScroll = TRUE);

Return Value
Nonzero if synchronized scrolling occurs; otherwise 0.

Parameters
pViewFrom A pointer to the view from which the scrolling message originates.

sizeScroll Number of pixels to be scrolled horizontally and vertically.

1578

CSplitterWnd::GetColumnCount

bDoScroll Determines whether the specified scrolling action occurs. If bDoScroll is
TRUE (that is, if a child window exists, and if the split windows have a scroll
range), then the specified scrolling action can take place; if bDoScroll is FALSE
(that is, if no child window exists, or the split views have no scroll range), then
scrolling does not occur.

Remarks
This member function is called by the framework in response to a scroll message, to
perform synchronized scrolling of the split windows by the amount, in pixels,
indicated by sizeScroll. Positive values indicate scrolling down and to the right;
negative values indicate scrolling up and to the left.

Override to require an action by the user before allowing scroll.

See Also CSplitterWnd::DoScroll, CView::OnScroll

CSplitterWnd::GetActivePane

virtual CWnd* GetActivePane(int* pRow = NULL, int* pCol = NULL);

Return Value
Pointer to the active pane. NULL if no active pane exists.

Parameters
pRow A pointer to an int to retrieve the row number of the active pane.

pCol A pointer to an int to retrieve the column number of the active pane.
Remarks

This member function is called by the framework to determine the active pane in a
splitter window.

Override to require an action by the user before getting the active pane.

See Also CSplitterWnd::SetActivePane,
CFrameWnd::GetActiveView,CWnd::GetParentFrame, CWnd::GetFocus

CSplitterWnd::GetColumnCount

int GetColumnCount();

Return Value
Returns the current number of columns in the splitter. For a static splitter, this will
also be the maximum number of columns.

See Also CSplitterWnd::GetRowCount

1579

CSplitterWnd::GetColumnInfo

CSplitterWnd::GetColumnInfo

void GetColumnlInfo(int col, int& cxCur, int& cxMin);

Parameters
col Specifies a column.

cxCur A reference to an int to be set to the current width of the column.
cxMin A reference to an int to be set to the current minimum width of the column.

Remarks
Call this member function to obtain information about the specified column.

See Also CSplitterWnd::SetColumnInfo, CSplitterWnd::GetRowInfo

CSplitterWnd::GetPane

CWnd* GetPane(int row, int col);

Return Value
Returns the pane at the specified row and column. The returned pane is usually a
CView-derived class.

Parameters
row Specifies a row.

col Specifies a column.

See Also CSplitterWnd::GetActivePane, CSplitterWnd::IdFromRowCol,
CSplitterWnd::IsChildPane

CSplitterWnd::GetRowCount

int GetRowCount();

Return Value
Returns the current number of rows in the splitter window. For a static splitter
window, this will also be the maximum number of rows.

See Also CSplitterWnd::GetColumnCount

CSplitterWnd::GetRowInfo

void GetRowInfo(int row, int& cyCur, int& cyMin);

Parameters
row Specifies a row.

1580

CSplitterWnd::IdFromRowCol

cyCur Reference to int to be set to the current height of the row in pixels.

cyMin Reference to int to be set to the current minimum height of the row in pixels.

Remarks
Call this member function to obtain information about the specified row. The cyCur
parameter is filled with the current height of the specified row, and cyMin is filled
with the minimum height of the row.

See Also CSplitterWnd::SetRowInfo, CSplitterWnd::GetColumnInfo

CSplitterWnd::GetScrollStyle

DWORD GetScrollStyle() const;

Return Value
One or more of the following windows style flags, if successful:

o WS_HSCROLL If the splitter currently manages shared horizontal scroll bars.
e WS_VSCROLL If the splitter currently manages shared vertical scroll bars.

If zero, the splitter window does not currently manage any shared scroll bars.

Remarks
Returns the shared scroll-bar style for the splitter window.

See Also CSplitterWnd::SetScrollStyle

CSplitterWnd::IdFromRowCol

int IdFromRowCol(int row, int col);

Return Value
The child window ID for the pane.

Parameters
row Specifies the splitter window row.

col Specifies the splitter window column.
Remarks
Call this member function to obtain the child window ID for the pane at the specified

row and column. This member function is used for creating nonviews as panes and
may be called before the pane exists.

See Also CSplitterWnd::GetPane, CSplitterWnd::IsChildPane

1581

CSplitterWnd::IsChildPane

CSplitterWnd::IsChildPane

BOOL IsChildPane(CWnd* pWnd, int& row, int& col);

Return Value
If nonzero, pWnd is currently a child pane of this splitter window, and row and col
are filled in with the position of the pane in the splitter window. If pWnd is not a
child pane of this splitter window, 0 is returned.

Parameters
pWnd A pointer to a CWnd object to be tested.

row Reference to an int in which to store row number.
col Reference to an int in which to store a column number.
Remarks

Call this member function to determine whether pWnd is currently a child pane of
this splitter window.

See Also CSplitterWnd::GetPane

CSplitterWnd::OnDrawSplitter

virtual void OnDrawSplitter(CDC* pDC, ESplitType nType, const CRect& rect);

Parameters
pDC A pointer to the device context in which to draw. If pDC is NULL, then
CWnd::RedrawWindow is called by the framework and no split window is
drawn.

nType A value of the enum ESplitType, which can be one of the following:
o splitBox The splitter drag box.

o splitBar The bar that appears between the two split windows.

o splitIntersection The intersection of the split windows. This element will not
be called when running on Windows 95.

o splitBorder The split window borders.

rect A reference to a CRect object specifying the size and shape of the split
windows.

Remarks
This member function is called by the framework to draw and specify the exact
characteristics of a splitter window.

1582

CSplitterWnd::RecalcLayout

Override OnDrawSplitter for advanced customization of the imagery for the various
graphical components of a splitter window. The default imagery is similar to the
splitter in Microsoft Works for Windows or Microsoft Windows 95, in that the
intersections of the splitter bars are blended together.

For more on dynamic splitter windows, see Chapter 3, “Working with Frame
Windows, Documents, and Views,” in Programming with MFC, Technical Note 29,
and the CSplitterWnd class overview.

See Also CSplitterWnd::OnlInvertTracker

CSplitterWnd::OnlnvertTracker

virtual void OnInvertTracker(const CRect& rect);

Parameters

Remarks

rect Reference to a CRect object specifying the tracking rectangle.

This member function is called by the framework during resizing of splitters.

Override OnInvertTracker for advanced customization of the imagery of the splitter
window. The default imagery is similar to the splitter in Microsoft Works for
Windows or Microsoft Windows 95, in that the intersections of the splitter bars are
blended together.

For more on dynamic splitter windows, see Chapter 3, “Working with Frame
Windows, Documents, and Views,” in Programming with MFC, Technical Note 29,
and the CSplitterWnd class overview.

See Also CSplitterWnd::OnDrawSplitter

CSplitterWnd::RecalcLayout

Remarks

void RecalcLayout();

Call this member function to correctly redisplay the splitter window after you have
adjusted row and column sizes with the SetRowInfo and SetColumnInfo member
functions. If you change row and column sizes as part of the creation process before
the splitter window is visible, it is not necessary to call this member function.

The framework calls this member function whenever the user resizes the splitter
window or moves a split.

See Also CSplitterWnd::SetRowInfo, CSplitter Wnd::SetColumnInfo

1583

CSplitterWnd::SetActivePane

CSplitterWnd::SetActivePane

virtual void SetActivePane(int row, int col, CWnd* pWnd = NULL);
Parameters
row If pWnd is NULL, specifies the row in the pane that will be active.
col If pWnd is NULL, specifies the column in the pane that will be active.
pWnd A pointer to a CWnd object. If NULL, the pane specified by row and col is
set active. If not NULL, specifies the pane that is set active.

Remarks
This member function is called by the framework to set a pane as active when the
user changes the focus to a pane within the frame window. You may explicitly call
SetActivePane to change the focus to the specified view.

Specify pane by providing either row and column, or by providing pWnd.

See Also CSplitterWnd::GetActivePane, CSplitterWnd::GetPane,
CFrameWnd::SetActiveView

CSplitterWnd::SetColumnInfo

void SetColumnlnfo(int col, int cxIdeal, int cxMin);

Parameters
col Specifies a splitter window column.
cxldeal Specifies an ideal width for the splitter window column in pixels.

cxMin Specifies a minimum width for the splitter window column in pixels.

Remarks
Call this member function to set a new minimum width and ideal width for a column.
The column minimum value determines when the column will be too small to be fully
displayed. :

When the framework displays the splitter window, it lays out the panes in columns
and rows according to their ideal dimensions, working from the upper-left to the
lower-right corner of the splitter window’s client area.

See Also CSplitterWnd::GetRowInfo, CSplitterWnd::RecalcLayout

CSplitterWnd::SetRowInfo

void SetRowInfo(int row, int cyldeal, int cyMin);

Parameters
row Specifies a splitter window row.

1584

CSplitterWnd::SplitColumn

cyldeal Specifies an ideal height for the splitter window row in pixels.

cyMin Specifies a minimum height for the splitter window row in pixels.

Remarks
Call this member function to set a new minimum height and ideal height for a row.
The row minimum value determines when the row will be too small to be fully
displayed.

When the framework displays the splitter window, it lays out the panes in columns
and rows according to their ideal dimensions, working from the upper-left to the
lower-right corner of the splitter window’s client area.

See Also CSplitterWnd::GetRowInfo, CSplitterWnd::SetColumnInfo,
CSplitterWnd::RecalcLayout

CSplitterWnd::SetScrollStyle

void SetScrollStyle(DWORD dwStyle);

Parameters
dwStyle The new scroll style for the splitter window’s shared scroll-bar support,
which can be one of the following values:

o WS_HSCROLL Create/show horizontal shared scroll bars.
o WS_VSCROLL Create/show vertical shared scroll bars.

Remarks
Specifies the new scroll style for the splitter window’s shared scroll-bar support. Once
a scroll bar is created it will not be destroyed even if SetScrollStyle is called without
that style; instead those scroll bars are hidden. This allows the scroll bars to retain
their state even though they are hidden. After calling SetScrollStyle it is necessary to
call RecalcLayout for all the changes to take effect.

See Also CSplitterWnd::GetScrollStyle

CSplitterWnd::SplitColumn

virtual BOOL SplitColumn(int cxBefore);

Return Value
Nonzero if successful; otherwise O.

Parameters
cxBefore The position, in pixels, before which the split occurs.

1585

CSplitterWnd::SplitRow

Remarks

This member function is called when a vertical splitter window is created.
SplitColumn indicates the default location where the split occurs.

SplitColumn is called by the framework to implement the logic of the dynamic
splitter window (that is, if the splitter window has the SPLS_DYNAMIC_SPLIT
style). It can be customized, along with the virtual function CreateView, to
implement more advanced dynamic splitters.

See Also CSplitterWnd::CreateView, CSplitterWnd::SplitRow,
CSplitterWnd::RecalcLayout

CSplitterWnd::SplitRow

virtual BOOL SplitRow(int cyBefore);

Return Value

Nonzero if successful; otherwise 0.

Parameters

Remarks

1586

cyBefore The position, in pixels, before which the split occurs.

This member function is called when a horizontal splitter window is created.
SplitRow indicates the default location where the split occurs.

SplitRow is called by the framework to implement the logic of the dynamic splitter
window (that is, if the splitter window has the SPLS_DYNAMIC_SPLIT style). It
can be customized, along with the virtual function CreateView, to implement more
advanced dynamic splitters.

See Also CSplitterWnd::SplitColumn, CSplitterWnd::CreateView,
CSplitterWnd::RecalcLayout

CStatic

CStatic

The CStatic class provides the functionality of a Windows static control. A static
control displays a text string, box, rectangle, icon, cursor, bitmap, or enhanced
metafile. It can be used to label, box, or separate other controls. A static control
normally takes no input and provides no output; however, it can notify its parent of
mouse clicks if it's created with SS_NOTIFY style.

Create a static control in two steps. First, call the constructor to construct the CStatic
object, then call the Create member function to create the static control and attach it
to the CStatic object.

If you create a CStatic object within a dialog box (through a dialog resource), the
CStatic object is automatically destroyed when the user closes the dialog box.

If you create a CStatic object within a window, you may also need to destroy it. A

CStatic object created on the stack within a window is automatically destroyed. If
you create the CStatic object on the heap by using the new function, you must call
delete on the object to destroy it when the you are done with it.

#include <afxwin.h>

See Also CWnd, CButton, CComboBox, CEdit, CListBox, CScrollBar, CDialog

Construction

CStatic Constructs a CStatic object.

Initialization

Create Creates the Windows static control and attaches it to the CStatic
object.

Operations

SetBitmap Specifies a bitmap to be displayed in the static control.

GetBitmap Retrieves the handle of the bitmap previously set with SetBitmap.

Setlcon Specifies an icon to be displayed in the static control.

Getlcon Retrieves the handle of the icon previously set with SetIcon.

SetCursor Specifies a cursor image to be displayed in the static control.

1587

CStatic::Create

GetCursor Retrieves the handle of the cursor image previously set with
SetCursor.

SetEnhMetaFile Specifies an enhanced metafile to be displayed in the static control.

GetEnhMetaFile Retrieves the handle of the enhanced metafile previously set with
SetEnhMetaFile.

Member Functions
CStatic::Create

BOOL Create(LPCTSTR IpszText, DWORD dwStyle, const RECT& rect, CWnd* pParentWnd,
UINT nID = Oxffff);

Return Value
Nonzero if successful; otherwise 0.

Parameters
IpszText Specifies the text to place in the control. If NULL, no text will be visible.

dwStyle Specifies the static control’s window style. Apply any combination of static
control styles to the control. For a list of static styles, see “Static Styles” in the
“Styles Used by MFC” section.

rect Specifies the position and size of the static control. It can be either a RECT
structure or a CRect object.

pParentWnd Specifies the CStatic parent window, usually a CDialog object. It must
not be NULL.

nID Specifies the static control’s control ID.
Remarks
Construct a CStatic object in two steps. First call the constructor CStatic, then call

Create, which creates the Windows static control and attaches it to the CStatic
object.

Apply the following window styles to a static control:

e WS_CHILD Always
e WS_VISIBLE Usually
» WS_DISABLED Rarely

If you're going to display a bitmap, cursor, icon, or metafile in the static control,
you'll need to apply one of the following styles:

e SS_BITMAP Use this style for bitmaps.

1588

CStatic::GetCursor

e SS ICON Use this style for cursors and icons.
e SS_ENHMETAFILE Use this style for enhanced metafiles.

For cursors, bitmaps, or icons, you may also want to use the following style:

e SS_CENTERIMAGE Use to center the image in the static control.
See Also CStatic::CStatic

CStatic::CStatic

CStatic();

Remarks
Constructs a CStatic object.

See Also CStatic::Create

CStatic::GetBitmap

HBITMAP GetBitmap() const;

Return Value
A handle to the current bitmap, or NULL if no bitmap has been set.

Remarks
Call this member function to get the handle of the bitmap, previously set with
SetBitmap, that is associated with CStatic.

See Also CStatic::SetBitmap, STM_GETIMAGE
In the Win32 SDK documentation: “Bitmaps”

CStatic::GetCursor

HCURSOR GetCursor();

Return Value
A handle to the current cursor, or NULL if no cursor has been set.

Remarks
Call this member function to get the handle of the cursor, previously set with
SetCursor, that is associated with CStatic.

See Also CStatic::SetCursor, STM_GETIMAGE
In the Win32 SDK documentation: “Cursors”

1589

CStatic::GetEnhMetaFile

CStatic::GetEnhMetaFile

HENHMETAFILE GetEnhMetaFile() const;

Return Value
A handle to the current enhanced metafile, or NULL if no enhanced metafile has
been set.

Remarks
Call this member function to get the handle of the enhanced metafile, previously set
with SetEnhMetafile, that is associated with CStatic.

See Also CStatic::SetEnhMetafile, STM_GETIMAGE

CStatic::Getlcon

HICON Getlcon() const;

Return Value
A handle to the current icon, or NULL if no icon has been set.

Remarks
Call this member function to get the handle of the icon, previously set with SetIcon,
that is associated with CStatic.

See Also CStatic::SetIcon, STM_GETICON

In the Win32 SDK documentation: “Icons”

CStatic::SetBitmap

HBITMAP SetBitmap(HBITMAP /Bitmap);

Return Value
The handle of the bitmap previously associated with the static control, or NULL if no
bitmap was associated with the static control.

Parameters
hBitmap Handle of the bitmap to be drawn in the static control.

Remarks
Call this member function to associate a new bitmap with the static control.

The bitmap will be automatically drawn in the static control. By default, it will be
drawn in the upper-left corner and the static control will be resized to the size of the
bitmap.

1590

You can use various window and static control styles, including the following:

¢ SS_BITMAP Use this style always for bitmaps.

e SS_CENTERIMAGE Use to center in the static control. If the image is larger
than the static control, it will be clipped. If it is smaller than the static control, the
empty space around the image will be filled by the color of the pixel in the upper
left corner of the bitmap.

See Also CStatic::GetBitmap, STM_SETIMAGE
In the Win32 SDK documentation: “Bitmaps™

CStatic::SetCursor

CStatic::SetCursor

HCURSOR SetCursor(HCURSOR /hCursor);

Return Value

The handle of the cursor previously associated with the static control, or NULL if no
cursor was associated with the static control.

Parameters

Remarks

hCursor Handle of the cursor to be drawn in the static control.

Call this member function to associate a new cursor image with the static control.

The cursor will be automatically drawn in the static control. By default, it will be
drawn in the upper-left corner and the static control will be resized to the size of the
Cursor.

You can use various window and static control styles, including the following:

e SS_ICON Use this style always for cursors and icons.

e SS_CENTERIMAGE Use to center in the static control. If the image is larger
than the static control, it will be clipped. If it is smaller than the static control, the
empty space around the image will be filled with the background color of the static
control.

See Also CStatic::GetCursor, STM_SETIMAGE

In the Win32 SDK documentation: “Cursors”

1591

CStatic::SetEnhMetaFile

CStatic::SetEnhMetaFile

HENHMETAFILE SetEnhMetaFile(HENHMETAFILE hMetaFile);

Return Value
The handle of the enhanced metafile previously associated with the static control, or
NULL if no enhanced metafile was associated with the static control.

Parameters
hMetaFile Handle of the enhanced metafile to be drawn in the static control.

Remarks
Call this member function to associate a new enhanced metafile image with the static
control.

The enhanced metafile will be automatically drawn in the static control. The
enhanced metafile is scaled to fit the size of the static control.

You can use various window and static control styles, including the following:

o SS_ENHMETAFILE Use this style always for enhanced metafiles.
See Also CStatic::GetEnhMetafile, STM_SETIMAGE

CStatic::Setlcon

HICON SetIcon(HICON #hlicon);

Return Value
The handle of the icon previously associated with the static control, or NULL if no
icon was associated with the static control.

Parameters
hlcon Handle of the icon to be drawn in the static control.

Remarks
Call this member function to associate a new icon image with the static control.

The icon will be automatically drawn in the static control. By default, it will be
drawn in the upper-left corner and the static control will be resized to the size of
the icon. '

1592

You can use various window and static control styles, including the following:

e SS_ICON Uese this style always for cursors and icons.

¢ SS_CENTERIMAGE Use to center in the static control. If the image is larger
than the static control, it will be clipped. If it is smaller than the static control, the
empty space around the image will be filled with the background color of the static
control.

See Also CStatic::GetIcon, STM_SETICON
In the Win32 SDK documentation: “Icons”

CStatic::Setlcon

1593

CStatusBar

CStatusBar

1594

A CStatusBar object is a control bar with a row of text output panes, or “indicators.”
The output panes commonly are used as message lines and as status indicators.
Examples include the menu help-message lines that briefly explain the selected menu
command and the indicators that show the status of the SCROLL LOCK, NUM LOCK, and
other keys.

CStatusBar::GetStatusBarCtrl, a member function new to MFC 4.0, allows you to
take advantage of the Windows common control’s support for status-bar
customization and additional functionality. CStatusBar member functions give you
most of the functionality of the Windows common controls; however, when you call
GetStatusBarCtrl, you can give your status bars even more of the characteristics of a
Windows 95 status bar. When you call GetStatusBarCtrl, it will return a reference
to a CStatusBarCtrl object. See CStatusBarCtrl for more information about
designing toolbars using Windows common controls. For more general information
about common controls, see “Common Controls” in the Windows 95 SDK
Programmer’s Reference.

The framework stores indicator information in an array with the leftmost indicator at
position 0. When you create a status bar, you use an array of string IDs that the
framework associates with the corresponding indicators. You can then use either a
string ID or an index to access an indicator.

By default, the first indicator is “elastic™: it takes up the status-bar length not used by
the other indicator panes, so that the other panes are right-aligned.

To create a status bar, follow these steps:

1. Construct the CStatusBar object.

2. Call the Create function to create the status-bar window and attach it to the
CStatusBar object.

3. Call SetIndicators to associate a string ID with each indicator.

CStatusBar

There are three ways to update the text in a status-bar pane:
1. Call CWnd::SetWindowText to update the text in pane 0 only.

2. Call CCmdUI::SetText in the status bar’s ON_UPDATE_COMMAND_UI
handler.

3. Call SetPaneText to update the text for any pane.
Call SetPaneStyle to update the style of a status-bar pane.

For more information on using CStatusBar, see the article “Status Bars” in
Programming with MFC and Technical Note 31, “Control Bars,” available under
MFC in Books Online.

#include <afxext.h>

See Also CStatusBarCtrl, CControlBar, CWnd::SetWindowText,

CStatusBar::SetIndicators

Construction

CStatusBar Constructs a CStatusBar object.

Create Creates the status bar, attaches it to the CStatusBar object,
and sets the initial font and bar height.

SetIndicators Sets indicator IDs.

Attributes

CommandTolndex Gets index for a given indicator ID.

GetItemID Gets indicator ID for a given index.

GetItemRect Gets display rectangle for a given index.

GetPanelnfo Gets indicator ID, style, and width for a given index.

GetPaneStyle Gets indicator style for a given index.

GetPaneText Gets indicator text for a given index.

GetStatusBarCtrl Allows direct access to the underlying common control.

SetPaneStyle Sets indicator style for a given index.

SetPaneText Sets indicator text for a given index.

SetPanelnfo Sets indicator ID, style, and width for a given index.

1595

CStatusBar::CommandTolndex

Member Functions

CStatusBar::CommandTolndex

int CommandToIndex(UINT nIDFind) const;

Return Value
The index of the indicator if successful; —1 if not successful.

Parameters
nIDFind String ID of the indicator whose index is to be retrieved.

Remarks
Gets the indicator index for a given ID. The index of the first indicator is 0.

See Also CStatusBar::GetItemID

CStatusBar::Create

BOOL Create(CWnd* pParentWnd, DWORD dwStyle = WS_CHILD | WS_VISIBLE |
CBRS_BOTTOM, UINT nID = AFX_IDW_STATUS_BAR);

Return Value
Nonzero if successful; otherwise 0.

Parameters
pParentWnd Pointer to the CWnd object whose Windows window is the parent of
the status bar.

dwStyle The status-bar style. In addition to the standard Windows styles, these styles
are supported. For a list of window styles, see “Window Styles” in the “Styles”
section.

e CBRS_TOP Control bar is at top of frame window.

¢ CBRS_BOTTOM Control bar is at bottom of frame window.

e CBRS_NOALIGN Control bar is not repositioned when the parent is resized.
nID The toolbar’s child-window ID.

Remarks
Creates a status bar (a child window) and associates it with the CStatusBar object.
Also sets the initial font and sets the status bar’s height to a default value.

See Also CStatusBar::SetIndicators

1596

CStatusBar::GetltemRect

CStatusBar::CStatusBar

CStatusBar();

Remarks
Constructs a CStatusBar object, creates a default status-bar font if necessary, and sets
the font characteristics to default values.

See Also CStatusBar::Create

CStatusBar::GetltemID

UINT GetltemID(int n/ndex) const;

Return Value
The ID of the indicator specified by nindex.

Parameters
nlndex Index of the indicator whose ID is to be retrieved.

Remarks
Returns the ID of the indicator specified by nindex.

See Also CStatusBar::CommandToIndex

CStatusBar::GetltemRect

void GetItemRect(int n/ndex, LPRECT IpRect) const;

Parameters
nlndex Index of the indicator whose rectangle coordinates are to be retrieved.

IpRect Points to a RECT structure or a CRect object that will receive the
coordinates of the indicator specified by nindex.

Remarks
Copies the coordinates of the indicator specified by nlndex into the structure pointed
to by IpRect. Coordinates are in pixels relative to the upper-left corner of the status
bar.

See Also CStatusBar::CommandTolIndex, CStatusBar::GetPaneInfo

1597

CStatusBar::GetPanelnfo

CStatusBar::GetPanelnfo

void GetPanelnfo(int nindex, UINT& nID, UINT& nStyle, int& cxWidth) const;

Parameters
nlndex Index of the pane whose information is to be retrieved.

nID Reference to a UINT that is set to the ID of the pane.

nStyle Reference to a UINT that is set to the style of the pane.

cxWidth Reference to an integer that is set to the width of the pane.
Remarks

Sets nID, nStyle, and cxWidth to the ID, style, and width of the indicator pane at the
location specified by nilndex.

See Also CStatusBar::SetPanelnfo, CStatusBar::GetItemID,
CStatusBar::GetItemRect

CStatusBar::GetPaneStyle

UINT GetPaneStyle(int n/ndex) const;

Return Value
The style of the status-bar pane specified by nindex.

Parameters
nlndex Index of the pane whose style is to be retrieved.

Remarks
Call this member function to retrieve the style of a status bar’s pane. A pane’s style
determines how the pane appears.

For a list of styles available for status bars, see Create.

See Also CStatusBar::Create, CStatusBar::SetPaneStyle

CStatusBar::GetPaneText

CString GetPaneText(int n/ndex) const;
void GetPaneText(int nindex, CString& rString) const;

Return Value
A CString object containing the pane’s text.

Parameters
nlndex Index of the pane whose text is to be retrieved.

rString A reference to a CString object that contains the text to be retrieved.

1598

CStatusBar::SetIndicators

Remarks
Call this member function to retrieve the text that appears in a status-bar pane. The
second form of this member function fills a CString object with the string text.

See Also CStatusBar::SetPaneText

CStatusBar::GetStatusBarCitrl

CStatusBarCtrl& GetStatusBarCtrl() const;

Return Value
Contains a reference to a CStatusBarCtrl object.

Remarks
This member function allows direct access to the underlying common control.

Use GetStatusBarCitrl to take advantage of the functionality of the Windows status-
bar common control, and to take advantage of CStatusBarCtrl’s support for status-
bar customization. For example, by using the common control, you can specify a style
that includes a sizing grip on the status bar, or you can specify a style to have the
status bar appear at the top of the parent window’s client area.

For more general information about common controls, See “Common Controls” in
the Windows 95 SDK Programmer’s Reference.

CStatusBar::SetIndicators

BOOL SetIndicators(const UINT* I[pIDArray, int nIDCount);

Return Value
Nonzero if successful; otherwise 0.

Parameters
IpIDArray Pointer to an array of IDs.

nIDCount Number of elements in the array pointed to by IpIDArray.

Remarks
Sets each indicator’s ID to the value specified by the corresponding element of the
array IpIDArray, loads the string resource specified by each ID, and sets the
indicator’s text to the string.

See Also CStatusBar::CStatusBar, CStatusBar::Create,
CStatusBar::SetPanelnfo, CStatusBar::SetPaneText

1599

CStatusBar::SetPanelnfo

CStatusBar::SetPanelnfo

void SetPanelnfo(int nlndex, UINT nID, UINT nStyle, int cxWidth);

Parameters

nlndex Index of the indicator pane whose style is to be set.

nID New ID for the indicator pane.

nStyle New style for the indicator pane.

cxWidth New width for the indicator pane.

Remarks

Sets the specified indicator pane to a new ID, style, and width.

The following indicator styles are supported:

SBPS_NOBORDERS No 3-D border around the pane.
SBPS_POPOUT Reverse border so that text “pops out.”
SBPS_DISABLED Do not draw text.

SBPS_STRETCH Stretch pane to fill unused space. Only one pane per status
bar can have this style.

SBPS_NORMAL No stretch, borders, or pop-out.

See Also CStatusBar::GetPanelnfo

CStatusBar::SetPaneStyle

void SetPaneStyle(int nindex, UINT nStyle);

Parameters

nlndex Index of the pane whose style is to be set.

nStyle Style of the pane whose style is to be set.

Remarks

Call this member function to set the style of a status bar’s pane. A pane’s style
determines how the pane appears.

For a list of styles available for status bars, see Create.

See Also CStatusBar::Create, CStatusBar::GetPaneStyle

1600

CStatusBar::SetPaneText

CStatusBar::SetPaneText

BOOL SetPaneText(int nIndex, LPCTSTR IpszNewText, BOOL bUpdate = TRUE);

Return Value
Nonzero if successful; otherwise 0.

Parameters
nlndex Index of the pane whose text is to be set.

IpszNewText Pointer to the new pane text.
bUpdate If TRUE, the pane is invalidated after the text is set.

Remarks
Sets the pane text to the string pointed to by I[pszNewText.

See Also CStatusBar::GetPaneText

1601

CStatusBarCitrl

CStatusBarCtrl

A “status bar control” is a horizontal window, usually displayed at the bottom of a
parent window, in which an application can display various kinds of status
information. The status bar control can be divided into parts to display more than one
type of information.

The CStatusBarCtrl class provides the functionality of the Windows common status
bar control. This control (and therefore the CStatusBarCtrl class) is available only

1602

to programs running under Windows 95 and Windows NT version 3.51 and later.

#include <afxcmn.h>

See Also CToolBarCtrl

Construction

CStatusBarCtrl Constructs a CStatusBarCtrl object.

Create Creates a status bar control and attaches it to a CStatusBarCtrl
object.

Attributes

SetText Sets the text in the given part of a status bar control.

GetText Retrieves the text from the given part of a status bar control.

GetTextLength Retrieve the length, in characters, of the text from the given part
of a status bar control.

SetParts Sets the number of parts in a status bar control and the coordinate
of the right edge of each part.

GetParts Retrieves a count of the parts in a status bar control.

GetBorders Retrieves the current widths of the horizontal and vertical borders
of a status bar control.

SetMinHeight Sets the minimum height of a status bar control’s drawing area.

SetSimple Specifies whether a status bar control displays simple text or
displays all control parts set by a previous call to SetParts.

GetRect Retrieves the bounding rectangle of a part in a status bar control.

CStatusBarCtrl::Create

Overridables

Drawltem Called when a visual aspect of an owner-
draw status bar control changes.

Member Functions
CStatusBarCtrl::Create

BOOL Create(DWORD dwStyle, const RECT& rect, CWnd* pParentWnd, UINT niID);

Return Value
Nonzero if successful; otherwise zero.

Parameters
dwStyle Specifies the status bar control’s style. Apply any combination of status bar
control styles to the control. This parameter must include the WS_CHILD style. It
should also include the WS_VISIBLE style. See the “Remarks” section for more
information.

rect Specifies the status bar control’s size and position. It can be either a CRect
object or a RECT structure.

pParentWnd Specifies the status bar control’s parent window, usually a CDialog. It
must not be NULL.

nID Specifies the status bar control’s ID.

Remarks
You construct a CStatusBarCtrl in two steps. First call the constructor, then call
Create, which creates the status bar control and attaches it to the CStatusBarCtrl
object.

The dwStyle parameter can have any combination of the following values:

e CCS_BOTTOM Causes the control to position itself at the bottom of the parent
window’s client area and sets the width to be the same as the parent window’s
width. Status bar controls have this style by default.

e CCS_NODIVIDER Prevents a two-pixel highlight from being drawn at the top
of the control.

e CCS_NOHILITE Prevents a one-pixel highlight from being drawn at the top of
the control.

¢ CCS_NOMOVEY Causes the control to resize and move itself horizontally, but
not vertically, in response to a WM_SIZE message. If the CCS_NORESIZE style
is used, this style does not apply.

1603

CStatusBarCtrl::CStatusBarCtrl

e CCS_NOPARENTALIGN Prevents the control from automatically moving to
the top or bottom of the parent window. Instead, the control keeps its position
within the parent window despite changes to the size of the parent window. If the
CCS_TOP or CCS_BOTTOM style is also used, the height is adjusted to the
default, but the position and width remain unchanged.

o CCS_NORESIZE Prevents the control from using the default width and height
when setting its initial size or a new size. Instead, the control uses the width and
height specified in the request for creation or sizing.

e CCS_TOP Causes the control to position itself at the top of the parent window’s
client area and sets the width to be the same as the parent window’s width.

The default position of a status window is along the bottom of the parent window, but
you can specify the CCS_TOP style to have it appear at the top of the parent
window’s client area. You can specify the SBARS_SIZEGRIP style to include a
sizing grip at the right end of the status window. Combining the CCS_TOP and
SBARS_SIZEGRIP styles is not recommended, because the resulting sizing grip is
not functional even though the system draws it in the status window.

See Also CStatusBarCtrl::CStatusBarCtrl

CStatusBarCtrl::CStatusBarCtrl

CStatusBarCtrl();

Remarks
Constructs a CStatusBarCtrl object.

See Also CStatusBarCtrl::Create

CStatusBarCtrl::Drawltem

virtual void Drawltem(LPDRAWITEMSTRUCT IpDrawltemStruct);

Parameters
IpDrawltemStruct A long pointer to a DRAWITEMSTRUCT structure that
contains information about the type of drawing required.

Remarks
Called by the framework when a visual aspect of an owner-draw status bar control
changes. The itemAction member of the DRAWITEMSTRUCT structure defines
the drawing action that is to be performed.

By default, this member function does nothing. Override this member function to
implement drawing for an owner-draw CStatusBarCtrl object.

1604

CStatusBarCtrl::GetParts

The application should restore all graphics device interface (GDI) objects selected for
the display context supplied in lpDrawltemStruct before this member function
terminates.

See Also CWnd::OnDrawlItem

CStatusBarCtrl::GetBorders

BOOL GetBorders(int* pBorders) const;
BOOL GetBorders(int& nHorz, int& nVert, int& nSpacing) const;

Return Value
Nonzero if successful; otherwise zero.

Parameters
pBorders Address of an integer array having three elements. The first element
receives the width of the horizontal border, the second receives the width of the
vertical border, and the third receives the width of the border between rectangles.

nHorz Reference to an integer that receives the width of the horizontal border.

nVert Reference to an integer that receives the width of the vertical border.

nSpacing Reference to an integer that receives the width of the border between
rectangles.

Remarks
Call this function to retrieve the status bar control’s current widths of the horizontal
and vertical borders and of the space between rectangles. These borders determine the
spacing between the outside edge of the control and the rectangles within the control
that contain text.

See Also CStatusBarCtrl::GetParts, CStatusBarCtrl::SetParts

CStatusBarCtrl::GetParts

int GetParts(int nParts, int* pParts) const;

Return Value
The number of parts in the control if successful, or zero otherwise.

Parameters
nParts Number of parts for which to retrieve coordinates. If this parameter is greater
than the number of parts in the control, the message retrieves coordinates for
existing parts only.

1605

CStatusBarCitrl::GetRect

pParts Address of an integer array having the same number of elements as the
number of parts specified by nParts. Each element in the array receives the client
coordinate of the right edge of the corresponding part. If an element is set to —1,
the position of the right edge for that part extends to the right edge of the status
bar. ;

Remarks
Call this function to retrieve a count of the parts in a status bar control. This member
function also retrieves the coordinate of the right edge of the given number of parts.

See Also CStatusBarCtrl::GetBorders, CStatusBarCtrl::SetParts

CStatusBarCtrl;:GetRect

BOOL GetRect(int nPane, LPRECT IpRect) const;

Return Value
Nonzero if successful; otherwise zero.

Parameters
nPane Zero-based index of the part whose bounding rectangle is to be retrieved.

IpRect Address of a RECT structure that receives the bounding rectangle.

Remarks
Retrieves the bounding rectangle of a part in a status bar control.

See Also CStatusBarCtrl::GetParts

CStatusBarCtrl::GetText

int GetText(LPCTSTR [pszText, int nPane, int* pType) const;

Return Value
The length, in characters, of the text.

Parameters
IpszText Address of the buffer that receives the text. This parameter is a null-
terminated string.

nPane Zero-based index of the part from which to retrieve text.

pType Pointer to an integer that receives the type information. The type can be one
of these values:

e 0 The text is drawn with a border to appear lower than the plane of the
status bar.

1606

CStatusBarCtrl::SetMinHeight

¢ SBT_NOBORDERS The text is drawn without borders.

e SBT POPOUT The text is drawn with a border to appear higher than the
plane of the status bar.

Remarks
Call this function to retrieve the text from the given part of a status bar control.

See Also CStatusBarCtrl::SetText, CStatusBarCtrl::GetTextLength

CStatusBarCtrl::GetTextLength

int GetTextLength(int nPane, int* pType) const;
piyp

Return Value
The length, in characters, of the text.

Parameters
nPane Zero-based index of the part from which to retrieve text.

pType Pointer to an integer that receives the type information. The type can be one
of these values:

e 0 The text is drawn with a border to appear lower than the plane of the status
bar.

o SBT_NOBORDERS The text is drawn without borders.
e SBT_OWNERDRAW The text is drawn by the parent window.

e SBT POPOUT The text is drawn with a border to appear higher than the
plane of the status bar.

Remarks
Call this function to retrieve the length, in characters, of the text from the given part
of a status bar control.

See Also CStatusBarCtrl::GetText, CStatusBarCtrl::SetText

CStatusBarCtrl::SetMinHei ght

void SetMinHeight(int nMin);

Parameters
nMin Minimum height, in pixels, of the control.

1607

CStatusBarCtrl::SetParts

Remarks
Call this function to set the minimum height of a status bar control’s drawing area.
The minimum height is the sum of nMin and twice the width, in pixels, of the
vertical border of the status bar control.

See Also CStatusBarCtrl::GetRect, CStatusBarCtrl::GetBorders

CStatusBarCtrl::SetParts

BOOL SetParts(int nParts, int* pWidths);

Return Value
Nonzero if successful; otherwise zero.

Parameters
nParts Number of parts to set. The number of parts cannot be greater than 255.

pWidths Address of an integer array having the same number of elements as parts
specified by nParts. Each element in the array speciﬁes the position, in client
coordinates, of the right edge of the corresponding part. If an element is —1, the
position of the right edge for that part extends to the right edge of the control.

Remarks
Call this function to set the number of parts in a status bar control and the coordinate
of the right edge of each part.

See Also CStatusBarCtrl::GetBorders, CStatusBarCtrl::GetParts

CStatusBarCtrl::SetSimple

BOOL SetSimple(BOOL bSimple = TRUE);

Return Value
Zero if an error occurs.

Parameters
bSimple Display-type flag. If this parameter is TRUE, the control displays simple
text; if it is FALSE, it displays multiple parts.

Remarks
Call this function to specify whether a status bar control displays simple text or
displays all control parts set by a previous call to SetParts.

If the status bar control is being changed from nonsimple to simple, or vice versa, the
control is immediately redrawn.

See Also CStatusBarCtrl::SetParts

1608

CStatusBarCtrl::SetText

CStatusBarCtrl::SetText

BOOL SetText(LPCTSTR IpszText, int nPane, int nType)3

Return Value
Nonzero if successful; otherwise zero.

Parameters
IpszText Address of a null-terminated string specifying the text to set. If nType is
SBT_OWNERDRAW, IpszText represents 32 bits of data.

nPane Zero-based index of the part to set. If this value is 255, the status bar control
is assumed to be a simple control having only one part.

nType Type of drawing operation. It can be one of these values:

® 0 The text is drawn with a border to appear lower than the plane of the status
bar.

e SBT_NOBORDERS The text is drawn without borders.
* SBT_OWNERDRAW The text is drawn by the parent window.
e SBT_POPOUT The text is drawn with a border to appear higher than the

plane of the status bar.

Remarks
Call this function to set the text in the given part of a status bar control. The message
invalidates the portion of the control that has changed, causing it to display the new
text when the control next receives the WM_PAINT message.

See Also CStatusBarCtrl::GetText, CStatusBarCtrl::GetTextLength

1609

CStdioFile

CStdioFile

1610

A CStdioFile object represents a C run-time stream file as opened by the run-time
function fopen. Stream files are buffered and can be opened in either text mode (the
default) or binary mode.

Text mode provides special processing for carriage return—linefeed pairs. When you
write a newline character (0x0A) to a text-mode CStdioFile object, the byte pair
(0x0A, 0x0D) is sent to the file. When you read, the byte pair (0x0A, 0x0D) is
translated to a single 0x0A byte.

The CFile functions Duplicate, LockRange, and UnlockRange are not supported
for CStdioFile.

If you call these functions on a CStdioFile, you will get a CNotSupportedException.

For more information on using CStdioFile, see the article “Files” in Programming
with MFC and “File Handling” in the Run-Time Library Reference.

#include <afx.h>
See Also CFile, Duplicate, LockRange, UnlockRange, CNotSupportedException

Data Members

m_pStream Contains a pointer to an open file.

Construction

CStdioFile Constructs a CStdioFile object from a path or file pointer.
Text Read/Write

ReadString Reads a single line of text.

WriteString Writes a single line of text.

CStdioFile::CStdioFile

Member Functions
CStdioFile::CStdioFile

CStdioFile();

CStdioFile(FILE* pOpenStream);

CStdioFile(LPCTSTR IpszFileName, UINT nOpenFlags);
throw(CFileException);

Parameters
pOpenStream Specifies the file pointer returned by a call to the C run-time function
fopen.

IpszFileName Specifies a string that is the path to the desired file. The path can be
relative or absolute.

nOpenFlags Sharing and access mode. Specifies the action to take when the file is
opened. You can combine options by using the bitwise OR (I) operator. One access
permission and a text-binary specifier are required; the create and noInherit
modes are optional. See CFile::CFile for a list of mode options and other flags. In
MEC version 3.0 and later, share flags are allowed.

Remarks
The default version of the constructor works in conjunction with the CFile::Open
member function to test errors.

The one-parameter version constructs a CStdioFile object from a pointer to a file that
is already open. Allowed pointer values include the predefined input/output file
pointers stdin, stdout, or stderr.

The two-parameter version constructs a CStdioFile object and opens the
corresponding operating-system file with the given path.

CFileException is thrown if the file cannot be opened or created.

Example
// example for CStdioFile::CStdioFile
char* pFileName = "test.dat";
CStdioFile f1;
if(!fl1.0pen(pFileName,
CFile::modeCreate | CFile::modeWrite | CFile::typeText)) {
f#ifdef _DEBUG
afxDump << "Unable to open file" << "\n";

f#endif
exit(1);
;
CStdioFile f2(stdout);
TRY
{

1611

CStdioFile::ReadString

CStdioFile f3(pFileName,
CFile::modeCreate | CFile::modeWrite | CFile::typeText);

}
CATCH(CFileException, e)
{
J#ifdef _DEBUG
afxDump << "File could not be opened " << e->m_cause << "\n";
#endif
}
END_CATCH

CStdioFile::ReadString

virtual LPTSTR ReadString(LPTSTR Ipsz, UINT nMax);
throw(CFileException);

BOOL ReadString(CString& rString);
throw(CFileException);

Return Value

A pointer to the buffer containing the text data. NULL if end-of-file was reached
without reading any data; or if boolean, FALSE if end-of-file was reached without
reading any data.

Parameters

Remarks

Example

1612

Ipsz Specifies a pointer to a user-supplied buffer that will receive a null-terminated
text string.

nMax Specifies the maximum number of characters to read. Should be one less than
the size of the Ipsz buffer.

rString A reference to a CString object that will contain the string when the
function returns.

Reads text data into a buffer, up to a limit of nMax—1 characters, from the file
associated with the CStdioFile object. Reading is stopped by a carriage return—
linefeed pair. If, in that case, fewer than nMax~1 characters have been read, a
newline character is stored in the buffer. A null character (\0’) is appended in either
case.

CFile::Read is also available for text-mode input, but it does not terminate on a
carriage return—linefeed pair.

// example for CStdioFile::ReadString
extern CStdioFile f;
char buf[100];

f.ReadString(buf, 100);
See Also CStdioFile::WriteString, CFile::Read

CStdioFile::m_pStream

CStdioFile::WriteString

virtual void WriteString(LPCTSTR Ipsz);
throw(CFileException);

Parameters

Remarks

Example

Ipsz Specifies a pointer to a buffer containing a null-terminated text string.

Writes data from a buffer to the file associated with the CStdioFile object. The
terminating null character (\0’) is not written to the file. Any newline character in
Ipsz is written to the file as a carriage return—linefeed pair.

WriteString throws an exception in response to several conditions, including the
disk-full condition.

This is a text-oriented write function available to CStdioFile and its descendents, and
to CArchive. CFile::Write is also available, but rather than terminating on a null
character, it writes the requested number of bytes to the file.

// example for CStdioFile::WriteString
extern CStdioFile f;
char buf[] = "test string";

f.WriteString(buf);
See Also CArchive::ReadString, CFile::Write

Data Members
CStdioFile::m_pStream

Remarks

The m_pStream data member is the pointer to an open file as returned by the C run-
time function fopen. It is NULL if the file has never been opened or has been closed.

1613

CString

CString

1614

A CString object consists of a variable-length sequence of characters. CString
provides functions and operators using a syntax similar to that of Basic.
Concatenation and comparison operators, together with simplified memory
management, make CString objects easier to use than ordinary character arrays.

CString is based on the TCHAR data type. If the symbol _UNICODE is defined for
your program, TCHAR is defined as type wchar_t, a 16-bit character type;
otherwise, it is defined as char, the normal 8-bit character type. Under Unicode,
then, CString objects are composed of 16-bit characters. Without Unicode, they are
composed of 8-bit char type.

When not using _UNICODE, CString is enabled for both multibyte character sets
(MBCS, also known as double-byte character sets, DBCS).

CString objects also have the following characteristics:

¢ CString objects can grow as a result of concatenation operations.

¢ CString objects follow “value semantics.” Think of a CString object as an actual
string, not as a pointer to a string.

¢ You can freely substitute CString objects for const char* and LPCTSTR function
arguments.

® A conversion operator gives direct access to the string’s characters as a read-only
array of characters (a C-style string).

Tip Where possible, allocate CString objects on the frame rather than on the heap. This
saves memory and simplifies parameter passing.

CString assists you in conserving memory space by allowing two strings sharing the
same value also to share the same buffer space. However, if you attempt to change the
contents of the buffer directly (not using MFC), you can alter both strings
unintentionally. CString provides two member functions, CString::LockBuffer and
CString::UnlockBuffer, to help you protect your data. When you call LockBuffer,
you create a copy of a string, then set the reference count to -1, which "locks" the
buffer. While the buffer is locked, no other string can reference the data in that string,
and the locked string will not reference another string. By locking the string in the
buffer, you ensure that the string’s exclusive hold on the data will remain intact.
When you have finished with the data, call UnlockBuffer to reset the reference
count to 1.

For more information, see the “Strings” and “Strings: Unicode and Multibyte
Character Set (MBCS) Support” articles in Programming with MFC and “String
Manipulation Routines” in the Run-Time Library Reference.

#include <afx.h>

See Also In Programming with MFC: “Strings: Basic CString Operations,” “Strings:

CString Semantics,” “Strings: CString Operations Relating to C-Style Strings,”
“Strings: CString Exception Cleanup,” “Strings: CString Argument Passing,”
“Strings: Unicode and Multibyte Character Set (MBCS) Support”

Construction

CString Constructs CString objects in various ways.

The String as an Array

GetLength Returns the number of characters in a CString object.
IsEmpty Tests whether a CString object contains no characters.
Empty Forces a string to have 0 length.

GetAt Returns the character at a given position.

operator []

SetAt
operator LPCTSTR

Assignment/Concatenation

Returns the character at a given position—operator
substitution for GetAt.

Sets a character at a given position.

Directly accesses characters stored in a CString object as
a C-style string.

operator =
operator +

operator +=

Comparison

Assigns a new value to a CString object.
Concatenates two strings and returns a new string.

Concatenates a new string to the end of an existing string.

operator == <, etc.

Comparison operators (case sensitive).

Compare Compares two strings (case sensitive).

CompareNoCase Compares two strings (case insensitive).

Collate Obsolete. See Compare.

Extraction

Mid Extracts the middle part of a string (like the Basic MID$
function).

Left Extracts the left part of a string (like the Basic LEFT$
function).

Right Extracts the right part of a string (like the Basic RIGHT$
function).

SpanIncluding Extracts a substring that contains only the characters in
a set.

SpanExcluding Extracts a substring that contains only the characters not in

a set.

CString

1615

CString

1616

Other Conversions

MakeUpper Converts all the characters in this string to uppercase
characters.

MakeLower Converts all the characters in this string to lowercase
characters.

MakeReverse Reverses the characters in this string.

Format Format the string as sprintf does.

TrimLeft Trim leading whitespace characters from the string.

TrimRight Trim trailing whitespace characters from the string.

FormatMessage Formats a message string. ‘

Searching

Find Finds a character or substring inside a larger string.

ReverseFind Finds a character inside a larger string; starts from the end.

FindOneOf Finds the first matching character from a set.

Archive/Dump

operator << Inserts a CString object to an archive or dump context.

operator >> Extracts a CString object from an archive.

Buffer Access

GetBuffer Returns a pointer to the characters in the CString.

GetBufferSetLength Returns a pointer to the characters in the CString,
truncating to the specified length.

ReleaseBuffer Releases control of the buffer returned by GetBuffer.

FreeExtra Removes any overhead of this string object by freeing any
extra memory previously allocated to the string.

LockBuffer Disables reference counting and protects the string in the
buffer.

UnlockBuffer Enables reference counting and releases the string in the
buffer.

Windows-Specific

AllocSysString Allocates a BSTR from CString data.

SetSysString Sets an existing BSTR object with data from a CString
object.

LoadString Loads an existing CString object from a Windows
resource,

AnsiToOem Makes an in-place conversion from the ANSI character set
to the OEM character set.

OemToAnsi Makes an in-place conversion from the OEM character set

to the ANSI character set.

Member Functions
CString::AllocSysString

BSTR AllocSysString ();
throw(CMemoryException);

Return Value

Remarks

Points to the newly allocated string.

Allocates a new OLE Automation—compatible string of the type BSTR and copies the
contents of the CString object into it, including the terminating null character. A
CMemoryException is thrown if insufficient memory exists. This function is
normally used to return strings for OLE Automation.

Use ::SysFreeString in the rare case that you need to deallocate the returned string.

For more information about OLE allocation functions in Windows, see
::SysAllocString and ::SysFreeString in the Win32 SDK OLE
Programmer’s Reference.

See Also ::SysAllocString, ::SysFreeString, CMemoryException

CString::Collate

CString::AnsiToOem

Remarks

void AnsiToOem();

Converts all the characters in this CString object from the ANSI character set to the
OEM character set. See the ANSI Character Codes table in the C++ Language
Reference.

The function is not available if ' UNICODE is defined.
See Also CString::OemToAnsi

CString::Collate

int Collate(LPCTSTR Ipsz) const;

Return Value

Zero if the strings are identical, -1 if this CString object is less than Ipsz, or 1 if this
CString object is greater than psz.

1617

CString::Compare
Parameters
Ipsz The other string used for comparison.

Remarks
This member function is obsolete. Use Compare instead.

See Also CString::Compare, CString::CompareNoCase

CString::Compare
int Compare(LPCTSTR /psz) const;

Return Value
Zero if the strings are identical, < 0 if this CString object is less than Ipsz, or > 0 if
this CString object is greater than Ipsz.

Parameters
Ipsz The other string used for comparison.

Remarks
Compares this CString object with another string using the Windows function
Istremp. It is not locale-sensitive. See Istremp in the Win32 SDK Programmer’s
Reference for more information.

Example
The following example demonstrates the use of CString::Compare.

// example for CString::Compare

CString s1("abc”);

CString s2("abd");

ASSERT(sl.Compare(s2) == -1); // Compare with another CString.
ASSERT(sl.Compare("abe™) == -1); // Compare with LPTSTR string.

See Also CString::CompareNoCase, ::Istrcmp

CString::CompareNoCase

int CompareNoCase(LPCTSTR Ipsz) const;

Return Value
Zero if the strings are identical (ignoring case), —1 if this CString object is less than
Ipsz (ignoring case), or 1 if this CString object is greater than /psz (ignoring case).

Remarks
Compares this CString object with another string using the function Istrempi. See
Istrempi in the Win32 SDK Programmer’s Reference for more information.

The current locale is used to get the correct language-specific sort ordering.

1618

Example

The following example demonstrates the use of CString::CompareNoCase.

// example for CString::CompareNoCase

CString s1("abc");
CString s2("ABD");

ASSERT(sl.CompareNoCase(s2) == -1); // Compare with a CString.
ASSERT(sl.Compare("ABE") == -1); // Compare with LPTSTR string.

See Also CString::Compare, CString::Collate, ::lstrcmpi

CString::CString

CString::CString

CString();
CString(const CString& stringSrc);
throw(CMemoryException);
CString(TCHAR c#, int nRepeat =1);
throw(CMemoryException);
CString(LPCTSTR Ipch, int nLength);
throw(CMemoryException);
CString(const unsigned char* psz);
throw(CMemoryException);
CString(LPCWSTR Ipsz); -
throw(CMemoryException);
CString(LPCSTR Ipsz);
throw(CMemoryException);

Parameters

Remarks

stringSrc An existing CString object to be copied into this CString object.

ch A single character to be repeated nRepeat times.

nRepeat The repeat count for ch.

Ipch A pointer to an array of characters of length nLength, not null-terminated.
nLength A count of the number of characters in pch.

psz A null-terminated string to be copied into this CString object.

Ipsz A null-terminated string to be copied into this CString object.

Each of these constructors initializes a new CString object with the specified data.

1619

CString::Empty

Example

Because the constructors copy the input data into new allocated storage, you should
be aware that memory exceptions may result. Note that some of these constructors act
as conversion functions. This allows you to substitute, for example, an LPTSTR
where a CString object is expected.

Several forms of the constructor have special purposes:
e CString(LPCSTR Ipsz) Constructs a Unicode CString from an ANSI string.
o CString(LPCWSTR Ipsz) Constructs a CString from a Unicode string.

e CString(const unsigned char* psz) Allows you to construct a CString from a
pointer to unsigned char.

The following example demonstrates the use of CString::CString.

// example for CString::CString

CString sl; // Empty string

CString s2("cat"); // From a C string literatl
CString s3 = s2; // Copy constructor

CString s4(s2 + " " + s3); // From a string expression
CString s5(C 'x'); // sb = "Xx"

CString s6('x', 6); // s6 = "xxxxxx"

CString city = "Philadelphia™; // NOT the assignment operator
See Also CString::operator =

In Programming with MFC: “Strings: CString Exception Cleanup”

CString::Empty

Remarks

Example

1620

void Empty();
Makes this CString object an empty string and frees memory as appropriate.

The following example demonstrates the use of CString::Empty.

// example for CString::Empty
CString s("abc");

s.Empty();

ASSERT(s.GetlLength() == 0);

See Also CString::IsEmpty
In Programming with MFC: “Strings: CString Exception Cleanup”

CString::Find
int Find(TCHAR c#h) const;
int Find(LPCTSTR IpszSub) const;

Return Value
The zero-based index of the first character in this CString object that matches the
requested substring or characters; —1 if the substring or character is not found.

Parameters
ch A single character to search for.

IpszSub A substring to search for.

Remarks
Searches this string for the first match of a substring. The function is overloaded to
accept both single characters (similar to the run-time function strchr) and strings
(similar to strstr).

Example
The following example demonstrates the use of CString::Find.
// example for CString::Find
CString s("abcdef");

ASSERT(s.Find('c') == 2);
ASSERT(s.Find("de"™) == 3);

See Also CString::ReverseFind, CString::FindOneOf

CString::FindOneOf

CString::FindOneOf

int FindOneOf(LPCTSTR IpszCharSet) const;

Return Value
The zero-based index of the first character in this string that is also in [pszCharSet; —
1 if there is no match.

Parameters
IpszCharSet String containing characters for matching.

Remarks
Searches this string for the first character that matches any character contained in
IpszCharSet.

1621

CString::Format

Example

The following example demonstrates the use of CString::FindOneOf.

// exampie for CString::FindOnelf
€String s("abcdef");
ASSERT(s.FindOneOf("xd") == 3); // 'd' is first match

See Also CString::Find

CString::Format

void Format(LPCTSTR IpszFormat, ...);
void Format(UINT nFormatID, ...);

Parameters

Remarks

1622

IpszFormat A format-control string.

nFormatID The string resource identifier that contains the format-control string.

Call this member function to write formatted data to a CString in the same way that
sprintf formats data into a C-style character array. This function formats and stores a
series of characters and values in the CString. Each optional argument (if any) is
converted and output according to the corresponding format specification in
IpszFormat or from the string resource identified by nFormatID.

When you pass a character string as an optional argument, you must cast it explicitly
as LPCTSTR. The format has the same form and function as the format argument
for the printf function. (For a description of the format and arguments, see printf in
the Run-Time Library Reference.) A null character is appended to the end of the
characters written.

By default, Format only works with values that fit into a 128-byte buffer; however, if
you must work with larger buffers, you can increase the buffer size by calling
GetBuffer before calling Format. Increase the buffer size as follows:

CString str;
str.GetBuffer(1024);
str.Format("%s", strSomeHugeString);

See Also CString::GetBuffer
In the Run-Time Library Reference: sprintf, printf

CString::FormatMessage

void FormatMessage(LPCTSTR IpszFormat, ...);
void FormatMessage(UINT nFormatlD, ...);

Parameters

Remarks

IpszFormat Points to the format-control string. It will be scanned for inserts and
formatted accordingly. The format string is similar to printf-style format strings,
except it allows for the parameters to be inserted in an arbitrary order.

nFormatID The string resource identifier that contains the unformatted message
text.

Call this member function to format a message string. The function requires a
message definition as input. The message definition is determined by IpszFormat or
from the string resource identified by nFormatID. The function copies the formatted
message text to the CString, processing any embedded insert sequences if requested.

Each insert must have a corresponding parameter following the [pszFormat or
nFormatID parameter. Within the message text, several escape sequences are
supported for dynamically formatting the message. For a description of these escape
sequences and their meanings, see the Windows ::FormatMessage function in the
Win32 SDK Programmer’s Reference.

See Also ::FormatMessage, CString::LoadString, CString::Format
In the Run-Time Library Reference: printf

CString::GetAt

CString::FreeExtra

Remarks

void FreeExtra();

Call this member function to free any extra memory previously allocated by the string
but no longer needed. This should reduce the memory overhead consumed by the
string object. The function reallocates the buffer to the exact length returned by
GetLength.

CString::GetAt

TCHAR GetAt(int nlndex) const;

Return Value

A TCHAR containing the character at the specified position in the string.

1623

CString::GetBuffer

Parameters

Remarks

Example

nindex Zero-based index of the character in the CString object. The nindex
parameter must be greater than or equal to 0 and less than the value returned
by GetLength. The Debug version of the Microsoft Foundation Class Library
validates the bounds of nlndex; the Release version does not.

You can think of a CString object as an array of characters. The GetAt member
function returns a single character specified by an index number. The overloaded
subscript ([]) operator is a convenient alias for GetAt.

The following example demonstrates the use of CString::GetAt.

// example for CString::GetAt
CString s("abcdef™);
ASSERT(s.GetAt(2) = 'c¢');

See Also CString::GetAt, CString::GetLength; CString::operator []

CString::GetBuffer

LPTSTR GetBuffer(int nMinBufLength);
throw(CMemoryException);

Return Value

An LPTSTR pointer to the object’s (null-terminated) character buffer.

Parameters

Remarks

1624

nMinBufLength The minimum size of the character buffer in characters. This value
does not include space for a null terminator.

Returns a pointer to the internal character buffer for the CString object. The returned
LPTSTR is not const and thus allows direct modification of CString contents.

If you use the pointer returned by GetBuffer to change the string contents, you must
call ReleaseBuffer before using any other CString member functions.

The address returned by GetBuffer may not be valid after the call to ReleaseBuffer
since additional CString operations may cause the CString buffer to be reallocated.
The buffer will not be reallocated if you do not change the length of the CString.

The buffer memory will be freed automatically when the CString object is destroyed.

Note that if you keep track of the string length yourself, you should not append the
terminating null character. You must, however, specify the final string length when
you release the buffer with ReleaseBuffer. If you do append a terminating null
character, you should pass —1 for the length to ReleaseBuffer and ReleaseBuffer
will perform a strlen on the buffer to determine its length.

Example

CString::GetBufferSetLength

The following example demonstrates the use of CString::GetBuffer.

// example for CString::GetBuffer
CString s("abcd");

f#ifdef _DEBUG

afxDump << "CString s " << s <K< "\n";
fendif

LPTSTR p = s.GetBuffer(10);

strcpy(p, "Hello"); // directly access CString buffer
s.ReleaseBuffer(j;

#ifdef _DEBUG

afxDump << "CString s " << s <K< "\n";
fendif

See Also String::GetBufferSetLength, CString::ReleaseBuffer

CString::GetBufferSetLength

LPTSTR GetBufferSetLength(int nNewLength);
throw(CMemoryException);

Return Value

An LPTSTR pointer to the object’s (null-terminated) character buffer.

Parameters

Remarks

nNewLength The exact size of the CString character buffer in characters.

Returns a pointer to the internal character buffer for the CString object, truncating or
growing its length if necessary to exactly match the length specified in nlNewLength.
The returned LPTSTR pointer is not const and thus allows direct modification of
CString contents.

If you use the pointer returned by GetBuffer to change the string contents, you must
call ReleaseBuffer before using any other CString member functions.

The address returned by GetBufferSetLength may not be valid after the call to
ReleaseBuffer since additional CString operations may cause the CString buffer to
be reallocated. The buffer will not be reassigned if you do not change the length of
the CString.

The buffer memory will be freed automatically when the CString object is destroyed.

Note that if you keep track of the string length yourself, you should not append the
terminating null character. You must, however, specify the final string length when
you release the buffer with ReleaseBuffer. If you do append a terminating null
character when you call ReleaseBuffer, you should pass —1 (the default) for the
length. ReleaseBuffer will perform a strlen on the buffer to determine its length.

1625

CString::GetLength

For more information about reference counting, see the following articles:

e “Managing Object Lifetimes through Reference Counting” in the Win32 SDK
Programmer’s Reference

¢ “Implementing Reference Counting” in the Win32 SDK Programmer’s Reference
e “Rules for Managing Reference Counts” in the Win32 SDK Programmer’s
Reference

See Also CString::GetBuffer, CString::ReleaseBuffer

CString::GetLength

int GetLength() const;

Return Value
A count of the characters in the string.

Remarks
Call this member function to get a count of the characters in this CString object.
The count does not include a null terminator.

Example
The following example demonstrates the use of CString::GetLength.

// example for CString::GetlLength
CString s("abcdef");
ASSERT(s.GetlLength() == 6);

See Also CString::IsEmpty

CString::IsEmpty
BOOL IsEmpty() const;

Return Value
Nonzero if the CString object has 0 length; otherwise 0.

Remarks
Tests a CString object for the empty condition.

Example
The following example demonstrates the use of CString::IsEmpty.

// example for CString::IsEmpty
CString s;
ASSERT(s.IsEmpty());

See Also CString::GetLength

1626

CString::Left

CString Left(int nCount) const;
throw(CMemoryException);

Return Value
A CString object containing a copy of the specified range of characters. Note that the
returned CString object may be empty.

Parameters
nCount The number of characters to extract from this CString object.

Remarks
Extracts the first (that is, leftmost) nCount characters from this CString object and
returns a copy of the extracted substring. If nCount exceeds the string length, then the
entire string is extracted. Left is similar to the Basic LEFT$ function (except that
indexes are zero-based).

Example
The following example demonstrates the use of CString::Left.

// example for CString::Left
CString s(_T("abcdef"));
ASSERT(s.Left(3) == _T("abc"));

See Also CString::Mid, CString::Right

CString::LoadString

CString::L.oadString
BOOL LoadString(UINT nID);
throw(CMemoryException);

Return Value
Nonzero if resource load was successful; otherwise 0.

Parameters
nID A Windows string resource ID.

Remarks
Reads a Windows string resource, identified by nID, into an existing CString object.

1627

CString::LockBuffer

Example

The following example demonstrates the use of CString::LoadString.

// example for CString::LoadString
ffdefine IDS_FILENOTFOUND 1

CString s;
if (! s.LoadString(IDS_FILENOTFOUND))
{

AfxMessageBox(“Error Loading String: IDS_FILENOTFOQUND”);

CString::LockBuffer

LPTSTR LockBuffer();

Return Value

Remarks

1628

A pointer to a CString object or a NULL-terminated string.

Call this member function to lock a string in the buffer.

By calling LockBuffer, you create a copy of the string, and then set the reference
count to -1. When the reference count is set to -1, the string in the buffer is
considered to be in a "locked" state. While in a locked state, the string is protected in
two ways:

¢ No other string can get a reference to the data in the locked string, even if that
string is assigned to the locked string.

¢ The locked string will never reference another string, even if that other string is
copied to the locked string.

By locking the string in the buffer, you ensure that the string’s exclusive hold on the
buffer will remain intact.

After you have finished with LockBuffer, call UnlockBuffer to reset the reference
count to 1.

For more information about reference counting, see the following articles:

e “Managing Object Lifetimes through Reference Counting” in the Win32 SDK
Programmer’s Reference

¢ “Implementing Reference Counting” in the Win32 SDK Programmer’s Reference
¢ “Rules for Managing Reference Counts” in the Win32 SDK Programmer’s
Reference

See Also CString::UnlockBuffer, CString::GetBuffer, CString::ReleaseBuffer

CString::MakeLower

void MakeLower();

Remarks
Converts this CString object to a lowercase string.

Example
The following example demonstrates the use of CString::MakeLower.
// example for CString::Makelower
CString s("ABC");

s.MakeLower();
ASSERT(s == "abc");

See Also CString::MakeUpper

CString::MakeUpper

CString::MakeReverse

void MakeReverse();

Remarks
Reverses the order of the characters in this CString object.

Example

The following example demonstrates the use of CString::MakeReverse.

// example for CString::MakeReverse
CString s("abc");
s.MakeReverse();

ASSERT(s == "cbha");

CString::MakeUpper
void MakeUpper();

_ Remarks
Converts this CString object to an uppercase string.

Example
The following example demonstrates the use of CString::MakeUpper.
// example for CString::MakeUpper
CString s({ "abc");

s.MakeUpper();
ASSERT(s == "ABC");

See Also CString::MakeLower

1629

CString::Mid

CString::Mid

CString Mid(int nFirst) const;
throw(CMemoryException);

CString Mid(int nFirst, int nCount) const;
throw(CMemoryException);

Return Value

A CString object that contains a copy of the specified range of characters. Note that
the returned CString object may be empty.

Parameters

Remarks

Example

nFirst The zero-based index of the first character in this CString object that is to be
included in the extracted substring.

nCount The number of characters to extract from this CString object. If this
parameter is not supplied, then the remainder of the string is extracted.

Extracts a substring of length nCount characters from this CString object, starting at
position nFirst (zero-based). The function returns a copy of the extracted substring.
Mid is similar to the Basic MIDS$ function (except that indexes are zero-based).

The following example demonstrates the use of CString::Mid.

// example for CString::Mid
CString s(_T("abcdef"));
ASSERT(s.Mid(2, 3) == _T("cde"));

See Also CString::Left, CString::Right

CString::OemToAnsi

Remarks

1630

void OemToAnsi();

Converts all the characters in this CString object from the OEM character set to the
ANSI character set. See the ANSI Character Codes table in the C++ Language
Reference. ‘

This function is not available if _UNICODE is defined.
See Also CString::AnsiToOem

CString::ReleaseBuffer

void ReleaseBuffer(int nNewLength = -1);

Parameters
nNewLength The new length of the string in characters, not counting a null
terminator. If the string is null-terminated, the —1 default value sets the
CString size to the current length of the string.

Remarks
Use ReleaseBuffer to end use of a buffer allocated by GetBuffer. If you know that
the string in the buffer is null-terminated, you can omit the nNewLength argument. If
your string is not null-terminated, then use nNewLength to specify its length. The
address returned by GetBuffer is invalid after the call to ReleaseBuffer or any other
CString operation.

Example
The following example demonstrates the use of CString::ReleaseBuffer.

// example for CString::ReleaseBuffer

CString s;

s = "abc";

LPTSTR p = s.GetBuffer(1024);

strcpy(p, "abc"); // use the buffer directly

ASSERT(s.GetLength() == 3); // String length = 3
s.ReleaseBuffer(); // Surplus memory released, p is now invatid.
ASSERT(s.GetlLength() == 3); // Length still 3

See Also CString::GetBuffer

CString::ReverseFind

CString::ReverseFind

int ReverseFind(TCHAR c#) const;

Return Value
The index of the last character in this CString object that matches the requested
character; —1 if the character is not found.

Parameters
ch The character to search for.

Remarks
Searches this CString object for the last match of a substring. The function is similar
to the run-time function strrchr.

1631

CString::Right

Example
The following example demonstrates the use of CString::ReverseFind.

// example for CString::ReverseFind
CString s("abcabc");
ASSERT(s.ReverseFind('b') == 4);

See Also CString::Find, CString::FindOneOf

CString::Right

CString Right(int nCount) const;
throw(CMemoryException);

Return Value
A CString object that contains a copy of the specified range of characters. Note that
the returned CString object may be empty.

Parameters
nCount The number of characters to extract from this CString object.

Remarks
Extracts the last (that is, rightmost) nCount characters from this CString object and
returns a copy of the extracted substring. If nCount exceeds the string length, then the
entire string is extracted. Right is similar to the Basic RIGHT$ function (except that
indexes are zero-based).

Example
The following example demonstrates the use of CString::Right.

// example for CString::Right
CString s(_T("abcdef"));
ASSERT(s.Right(3) == _T("def"));

See Also CString::Mid, CString::Left

CString::SetAt

void SetAt(int nindex, TCHAR ch);

Parameters
nindex Zero-based index of the character in the CString object. The nindex
parameter must be greater than or equal to 0 and less than the value returned by
GetLength. The Debug version of the Microsoft Foundation Class Library will
validate the bounds of nlndex; the Release version will not.

ch The character to insert. Must not be \0’.

1632

CString::SpanExcluding

Remarks
You can think of a CString object as an array of characters. The SetAt member
function overwrites a single character specified by an index number. SetAt will not
enlarge the string if the index exceeds the bounds of the existing string.

See Also CString::GetAt, CString::operator []

CString::SetSysString
BSTR SetSysString(BSTR* pbstr);

Return Value
The new string.

Parameters
pbstr A pointer to a character string.

Remarks
Reallocates the BSTR pointed to by pbstr and copies the contents of the CString
object into it, including the NULL character. The value of the BSTR referenced by
pbstr may change. The function throws a CMemoryException if insufficient
Memory exists.

This function is normally used to change the value of strings passed by reference for
OLE Automation.

For more information about OLE reallocation functions in Windows, see
::SysReallocStringLen and ::SysFreeString in the Win32 SDK OLE Programmer’s
Reference, Volume 2.

See Also In the OLE Programmer’s Reference, Volume 2, ::SysReallocStringLen

CString::SpanExcluding
CString SpanExcluding(LPCTSTR IpszCharSet) const;
throw(CMemoryException);

Return Value
A substring that contains all characters found by the search, beginning with the first
character in the string, up to but excluding the first character that is in IpszCharSet.
It returns an empty string if [pszCharSet is not found in the string.

1633

CString::SpanIncluding

Parameters
IpszCharSet A string interpreted as a set of characters.

Remarks
Use this function to search the string for the first occurrence of any character in
the specified set IpszCharSet. SpanExcluding extracts and returns all characters
preceding the specified character set (in other words, the specified character set,
and all characters following it in the string, are not returned). If the specified
character set is not found in the string, then SpanExcluding returns an empty string.

Example
The following function returns the first portion of the src param.

// Portions are delimited by a semi-colon(;),
// a comma(,), a period(.), a dash(-),
// or a colon(:).

CString GetFirstPart(CString src);
{

return src.SpanExcluding(“;,.— :”);
}

See Also CString::SpanIncluding

CString::SpanIncluding

CString SpanIncluding(LPCTSTR IlpszCharSet) const;
throw(CMemoryException);

Return Value
A substring that contains all characters in the string that are in [pszCharSet,
beginning with the first character in the string. SpanIncluding returns an empty
substring if the first character in the string is net in the specified set.

Parameters
IpszCharSet A string interpreted as a set of characters.

Remarks
Call this member function to extract characters from the string, starting with the first
character, which are in the set of characters identified by IpszCharSet. If the first
character of the string is not in the character set, then SpanIncluding returns an
empty string. Otherwise, it returns a sequence of consecutive characters which are in
the set.

1634

Example

CString::UnlockBuffer

The following example demonstrates the use of CString::SpanIncluding.

// example for CString::Spanlncluding
CString str(“cabbage”);

CString res = str.Spanlncluding(“abc”);
ASSERT(res == “cabba”);

res = str.SpanIncluding(“xyz”);

ASSERT(res.IsEmpty());

See Also CString::SpanExcluding

CString:: TrimLeft

Remarks

void TrimLeft();

Call this member function to trim leading whitespace characters from the string.
Removes newline, space, and tab characters.

See Also CString::TrimRight, CString::Empty, CString::Mid, CString::Left,
CString::Right, CString::SpanIncluding, CString::SpanExcluding,
CString::MakeUpper, CString::MakeLower, CString::MakeReverse,
CString::Format

In Programming with MFC: “Strings”

CString:: TrimRight

Remarks

void TrimRight();

Call this member function to trim trailing whitespace characters from the string.
Removes trailing newline, space, and tab characters from the string.

See Also CString::TrimLeft, CString::Empty, CString::Mid, CString::Left,
CString::Right, CString::SpanIncluding, CString::SpanExcluding,
CString::MakeUpper, CString::MakeLower, CString::MakeReverse,
CString::Format

CString::UnlockBuffer

Remarks

void UnlockBuffer();

Call this member function to unlock the buffer that was previously secured by calling
LockBuffer. UnlockBuffer resets the reference count to 1.

1635

CString::operator =

The CString destructor implies UnlockBuffer to ensure that you do not leave the
buffer locked when the destructor is called.

See Also CString::LockBuffer, CString::GetBuffer, CString::ReleaseBuffer

Operators

CString::operator =

Remarks

Example

const CString& operator =(const CString& stringSrc);
throw(CMemoryException);

const CString& operator =(TCHAR c#);
throw(CMemoryException);

const CString& operator =(const unsigned char* psz);
throw(CMemoryException);

const CString& operator =(LPCWSTR Ipsz);
throw(CMemoryException);

const CString& operator =(LPCSTR Ipsz);
throw(CMemoryException);

The CString assignment (=) operator reinitializes an existing CString object with
new data. If the destination string (that is, the left side) is already large enough to
store the new data, no new memory allocation is performed. You should be aware that
memory exceptions may occur whenever you use the assignment operator because
new storage is often allocated to hold the resulting CString object.

The following example demonstrates the use of CString::operator =.

// example for CString::operator =

CString sl, s2; // Empty CString objects

sl = "cat"; // sl = "cat"”

s2 = sl; // sl and s2 each = "cat"

sl = "the " + sl; // Or expressions

sl = 'x"; // Or just individual characters

See Also CString::CString

CString::operator LPCTSTR

operatbr LPCTSTR () const;

Return Value

1636

A character pointer to the string’s data.

Remarks

CString::operator +

This useful casting operator provides an efficient method to access the null-
terminated C string contained in a CString object. No characters are copied; only a
pointer is returned. Be careful with this operator. If you change a CString object after
you have obtained the character pointer, you may cause a reallocation of memory that
invalidates the pointer.

CString::operator <<, >>

Remarks

Example

friend CArchive& operator <<(CArchive& ar, const CString& string);
throw(CArchiveException);
friend CArchive& operator >>(CArchive& ar, CString& string);
throw(CArchiveException);
friend CDumpContext& operator <<(CDumpContext& dc, const CString& string);

The CString insertion (<<) operator supports diagnostic dumping and storing to an
archive. The extraction (>>) operator supports loading from an archive.

The CDumpContext operators are valid only in the Debug version of the Microsoft
Foundation Class Library.

The following example demonstrates the use of CString::operator <<, >>.

// example for CString::operator <<, >>
extern CArchive ar;
CString s("abc");
f#ifdef _DEBUG
afxDump << s; // Prints the value (abc)
afxDump << &s; // Prints the address
fendif

if(ar.IsLoading())
ar >> s;

else
ar << s;

See Also CDumpContext

CString::operator +

friend CString operator +(const CString& stringl, const CString& string2);
throw(CMemoryException);

friend CString operator +(const CString& string, TCHAR ch);
throw(CMemoryException);

1637

CString::operator +=

friend CString operator +(TCHAR c#h, const CString& string);
throw(CMemoryException);

friend CString operator +(const CString& string, LPCTSTR Ipsz);
throw(CMemoryException);

friend CString operator +(LPCTSTR Ipsz, const CString& string);
throw(CMemoryException);

Return Value
A CString object that is the temporary result of the concatenation. This return value
makes it possible to combine several concatenations in the same expression.

Parameters
string, stringl, string2 CString objects to concatenate.

ch A character to concatenate to a string or to concatenate a string to.

Ipsz A pointer to a null-terminated character string.

Remarks
The + concatenation operator joins two strings and returns a CString object. One of
the two argument strings must be a CString object. The other can be a character
pointer or a character. You should be aware that memory exceptions may occur
whenever you use the concatenation operator since new storage may be allocated to
hold temporary data.

Example
The following example demonstrates the use of CString::operator +.

// example for CString::operator +

CString s1("abc");

CString s2("def");

ASSERT((sl + s2) == "abcdef");

CString s3;

s3 = CString("abc") + "def" ; // Correct

s3 = "abc" + "def";

// Wrong! The first argument must be a CString.

See Also CString::operator +=

CString::operator +=

const CString& operator +=(const CString& string);
throw(CMemoryException);

const CString& operator +=(TCHAR c#);
throw(CMemoryException);

const CString& operator +=(LPCTSTR Ipsz);
throw(CMemoryException);

1638

CString Comparison Operators

Parameters

Remarks

Example

string A CString to concatenate to this string.
ch A character to concatenate to this string.

Ipsz A pointer to a null-terminated string to concatenate to this string.

The += concatenation operator joins characters to the end of this string. The operator
accepts another CString object, a character pointer, or a single character. You should
be aware that memory exceptions may occur whenever you use this concatenation
operator because new storage may be allocated for characters added to this CString
object.

The following example demonstrates the use of CString::operator +=.

// example for CString::operator +=
CString s("abc");
ASSERT((s += "def") == "abcdef");

See Also CString::operator +

CString Comparison Operators

BOOL operator ==(const CString& s/, const CString& s2);
BOOL operator ==(const CString& s/, LPCTSTR 52);
BOOL operator ==(LPCTSTR s/, const CString& s2);
BOOL operator !=(const CString& s1, const CString& 52);
BOOL operator !=(const CString& s/, LPCTSTR 52);
BOOL operator !=(LPCTSTR s1, const CString& 52);
BOOL operator <(const CString& s/, const CString& s2);
BOOL operator <(const CString& s/, LPCTSTR 52);
BOOL operator <(LPCTSTR s/, const CString& s2);
BOOL operator >(const CString& s/, const CString& s2);
BOOL operator >(const CString& s/, LPCTSTR 52);
BOOL operator >(LPCTSTR s/, const CString& s2);
BOOL operator <=(const CString& s1, const CString& s2);
BOOL operator <=(const CString& s/, LPCTSTR s2);
BOOL operator <=(LPCTSTR s/, const CString& s2);
BOOL operator >=(const CString& s1, const CString& s2);
BOOL operator >=(const CString& s/, LPCTSTR s2);
BOOL operator >=(LPCTSTR s/, const CString& 52);

Return Value

Nonzero if the strings meet the comparison condition; otherwise 0.

Parameters

s1, s2 CString objects to compare.

1639

CString::operator []

Remarks
These comparison operators compare two strings. The operators are a convenient
substitute for the case-sensitive Compare member function.

Example
The following example demonstrates the use of CString Comparison Operators.

// example for CString Comparison Operators

CString s1("abc");

CString s2("abd");

ASSERT(sl1 < s2); // Operator is overloaded for both.
ASSERT(“ABC" < sl); // CString and char*

ASSERT(s2 > "abe");

CString::operator []
TCHAR operator [](int n/ndex) const;

Parameters
nlndex Zero-based index of a character in the string.

Remarks
You can think of a CString object as an array of characters. The overloaded subscript
([]) operator returns a single character specified by the zero-based index in nindex.
This operator is a convenient substitute for the GetAt member function.

Important You can use the subscript ([1) operator to get the value of a character in a

CString, but you cannot use it to change the value of a character in a CString.
Example

The following example demonstrates the use of CString::operator [].

// example for CString::operator []
CString s("abc");
ASSERT(s[1] == 'b');

Note The CString “Application Notes” have been moved to Programming with MFC. See the
articles “Strings: Exception Cleanup” and “Strings: CString Argument Passing.”

See Also CString::GetAt, CString::SetAt

1640

CStringArray

CStringArray

The CStringArray class supports arrays of CString objects.

The member functions of CStringArray are similar to the member functions of class
CODbArray. Because of this similarity, you can use the CObArray reference
documentation for member function specifics. Wherever you see a CObject pointer
as a return value, substitute a CString (not a CString pointer). Wherever you see a
CObject pointer as a function parameter, substitute a LPCTSTR.

CObject* CObArray::GetAt(int <nIndex>) const;
for example, translates to

CString CStringArray::GetAt(int <nIndex>) const;
and

void SetAt(int <nIndex>, CObject* <newElement)>)
translates to

void SetAt(int <nIndex>, LPCTSTR <newElement>)

CStringArray incorporates the IMPLEMENT_SERIAL macro to support
serialization and dumping of its elements. If an array of CString objects is stored to
an archive, either with an overloaded insertion operator or with the Serialize member
function, each element is serialized in turn.

Note Before using an array, use SetSize to establish its size and allocate memory for it. If
you do not use SetSize, adding elements fo your array causes it to be frequently reallocated
and copied. Frequent reallocation and copying are inefficient and can fragment memory.

If you need a dump of individual string elements in the array, you must set the depth
of the dump context to 1 or greater.

When a CString array is deleted, or when its elements are removed, string memory is
freed as appropriate.

For more information on using CStringArray, see the article “Collections” in
Programming with MFC.

#include <afxcoll.h>

1641

CStringArray

Construction

CStringArray Constructs an empty array for CString objects.

Bounds

GetSize Gets number of elements in this array.

GetUpperBound Returns the largest valid index.

SetSize Sets the number of elements to be contained in this array.

Operations

FreeExtra Frees all unused memory above the current upper bound.

RemoveAll Removes all the elements from this array.

Element Access

GetAt Returns the value at a given index.

SetAt Sets the value for a given index; array not allowed to grow.

ElementAt Returns a temporary reference to the element pointer within the
array.

Growing the Array

SetAtGrow Sets the value for a given index; grows the array if necessary.

Add Adds an element to the end of the array; grows the array if
necessary.

Insertion/Removal

InsertAt Inserts an element (or all the elements in another array) at a
specified index.

RemoveAt Removes an element at a specific index.

Operators

operator [] Sets or gets the element at the specified index.

CStringList

CStringlList

The CStringList class supports lists of CString objects. All comparisons are done by
value, meaning that the characters in the string are compared instead of the addresses
of the strings.

The member functions of CStringList are similar to the member functions of class
CObList. Because of this similarity, you can use the CObArray reference
documentation for member function specifics. Wherever you see a CObject pointer
as a return value, substitute a CString (not a CString pointer). Wherever you see a
CObject pointer as a function parameter, substitute an LPCTSTR.

CObject*& CObList::GetHead() const;

for example, translates to

CStringd& CStringlList::GetHead() const;
and

POSITION AddHead(CObject* <newElement>);
translates to

POSITION AddHead(LPCTSTR <newElement>);

CStringList incorporates the IMPLEMENT_SERIAL macro to support
serialization and dumping of its elements. If a list of CString objects is stored to an
archive, either with an overloaded insertion operator or with the Serialize member
function, each CString element is serialized in turn.

If you need a dump of individual CString elements, you must set the depth of the
dump context to 1 or greater.

When a CStringList object is deleted, or when its elements are removed, the CString
objects are deleted as appropriate.

For more information on using CStringList, see the article “Collections” in
Programming with MFC.

#finclude <afxcoll.h>

1643

CStringList

1644

Construction

CStringList

Head/Tail Access

Constructs an empty list for CString objects.

GetHead Returns the head element of the list (cannot be empty).

GetTail Returns the tail element of the list (cannot be empty).

Operations

RemoveHead Removes the element from the head of the list.

RemoveTail Removes the element from the tail of the list.

AddHead Adds an element (or all the elements in another list) to the
head of the list (makes a new head).

AddTail Adds an element (or all the elements in another list) to the tail
of the list (makes a new tail).

RemoveAll Removes all the elements from this list.

lteration

GetHeadPosition Returns the position of the head element of the list.

GetTailPosition Returns the position of the tail element of the list.

GetNext Gets the next element for iterating.

GetPrev Gets the previous element for iterating.

Retrieval/Modification

GetAt Gets the element at a given position.

SetAt Sets the element at a given position.

RemoveAt Removes an element from this list as specified by position.

Insertion

InsertBefore Inserts a new element before a given position.

InsertAfter Inserts a new element after a given position.

Searching

Find Gets the position of an element specified by string value.

FindIndex Gets the position of an element specified by a zero-based
index.

Status

GetCount Returns the number of elements in this list.

IsEmpty Tests for the empty list condition (no elements).

CSyncObject

CSyncObject

The CSyncObject class is a pure virtual class that provides common functionality
common to the synchronization objects in Win32. The Microsoft Foundation Class
Library provides several classes derived from CSyncObject. These are CEvent,
CMutex, CCriticalSection, and CSemaphore.

For information on how to use the synchronization objects, see the article
“Multithreading: How to Use the Synchronization Classes” in Programming
with MFC.

#include <afxmt.h>

Construction

CSyncObject Constructs a CSyncObject object.

Methods

Lock Gains access to the synchronization object.

Unlock Releases access to the synchronization object.

Member Functions
CSyncObject::CSyncObject

CSyncObject(LPCTSTR pstrName);
virtual ~CSyncObject();

Parameters
pstrName The name of the object. If NULL, pstrName will be null.

Remarks
Constructs a synchronization object with the supplied name.

1645

CSyncObject::Lock

CSyncObject::Lock

virtual BOOL Lock(DWORD dwTimeout = INFINITE);

Return Value
Nonzero if the function was successful; otherwise 0.

Parameters
dwTimeout Specifies the amount of time to wait for the synchronization object to be
available (signaled). If INFINITE, Lock will wait until the object is signaled
before returning.

Remarks
Call this function to gain access to the resource controlled by the synchronization
object. If the synchronization object is signaled, Lock will return successfully and the
thread now owns the object. If the synchronization object is nonsignaled
(unavailable), Lock will wait for the synchronization object to become signaled up to
the number of milliseconds specified in the dwTimeQOut parameter. If the
synchronization object did not become signaled in the specified amount of time, Lock
returns failure.

CSyncObject::Unlock

virtual BOOL Unlock() = 0;
virtual BOOL Unlock(LONG [Count, LPLONG IpPrevCount = NULL);

Return Value
Default implementation always returns TRUE.

Parameters
[Count Not used by default implementation.

IpPrevCount Not used by default implementation.

Remarks
The declaration of Unlock with no parameters is a pure virtual function, and must be
overridden by all classes deriving from CSyncObject. The default implementation of
the declaration with two parameters always returns TRUE. This function is called to
release access to the synchronization object owned by the calling thread. The second
declaration is provided for synchronization objects such as semaphores that allow
more than one access of a controlled resource.

1646

CTabCtrl

CTabCltrl

A “tab control” is analogous to the dividers in a notebook or the labels in a file
cabinet. By using a tab control, an application can define multiple pages for the same
area of a window or dialog box. Each page consists of a set of information or a group
of controls that the application displays when the user selects the corresponding tab.
A special type of tab control displays tabs that look like buttons. Clicking a button
should immediately perform a command instead of displaying a page.

The CTabCltrl class provides the functionality of the Windows common tab control.
This control (and therefore the CTabCtrl class) is available only to programs
running under Windows 95 and Windows NT version 3.51 and later.

#include <afxecmn.h>

See Also CHeaderCtrl, CListCtrl

Construction

CTabCtrl Constructs a CTabCltrl object.

Create Creates a tab control and attaches it to an instance of a CTabCtrl
object.

Attributes

GetBkColor Retrieves the background color of a tab control.

SetBkColor Sets the background color of a tab control.

GetImageList Retrieves the image list associated with a tab control.

SetImageList Assigns an image list to a tab control.

GetltemCount Retrieves the number of tabs in the tab control.

Getltem Retrieves information about a tab in a tab control.

SetItem Sets some or all of a tab’s attributes.

GetItemRect Retrieves the bounding rectangle for a tab in a tab control.

GetCurSel Determines the currently selected tab in a tab control.

SetCurSel Selects a tab in a tab control.

SetItemExtra Sets the number of bytes per tab reserved for application-defined

data in a tab control.

1647

CTabCtrl::AdjustRect

SetitemSize Sets the width and height of an item.

SetPadding Sets the amount of space (padding) around each tab’s icon and
label in a tab control.

GetRowCount Retrieves the current number of rows of tabs in a tab control.

GetTooltips Retrieves the handle of the tool tip control associated with a tab
control.

SetTooltips Assigns a tool tip control to a tab control.

GetCurFocus Retrieves the tab with the current focus of a tab control.

Operations

Insertltem Inserts a new tab in a tab control.

Deleteltem Removes an item from a tab control.

DeleteAllltems Removes all items from a tab control.

AdjustRect Calculates a tab control’s display area given a window rectangle,
or calculates the window rectangle that would correspond to a
given display area.

Removelmage Removes an image from a tab control’s image list.

HitTest Determines which tab, if any, is at a specified screen position.

Overridables

Drawltem Draws a specified item of a tab control.

Member Functions
CTabCltrl::AdjustRect

void AdjustRect(BOOL bLarger, LPRECT IpRect);
Parameters

bLarger Indicates which operation to perform. If this parameter is TRUE, IpRect
specifies a display rectangle and receives the corresponding window rectangle. If
this parameter is FALSE, IpRect specifies a window rectangle and receives the
corresponding display rectangle.

IpRect Pointer to a RECT structure that specifies the given rectangle and receives
the calculated rectangle.

Remarks
Call this function to calculate a tab control’s display area given a window rectangle,
~or calculate the window rectangle that would correspond to a given display area.

See Also CTabCtrl::SetItemSize, CTabCtrl::GetItemRect,
CTabCtrl::AdjustRect '

1648

CTabCtrl::Create

CTabCltrl::Create

BOOL Create(DWORD dwStyle, const RECT& rect, CWnd* pParentWnd, UINT nID);

Return Value
TRUE if initialization of the object was successful; otherwise FALSE.

Parameters
dwStyle Specifies the tab control’s style. Apply any combination of tab control styles
to the control.

rect Specifies the tab control’s size and position. It can be either a CRect object or a
RECT structure.

pParentWnd Specifies the tab control’s parent window, usually a CDialeg. It must
not be NULL.

nID Specifies the tab control’s ID.

Remarks
You construct a CTabCtrl object in two steps. First call the constructor, then call
Create, which creates the tab control and attaches it to the CTabCtrl object.

The following styles can be applied to a tab control:

e TCS_BUTTONS Modifies the appearance of the tabs to look like buttons.

e TCS_FIXEDWIDTH Makes all tabs the same width. (By default, the tab control
automatically sizes each tab to fit its icon.) You cannot use this style with the
TCS_RIGHTJUSTIFY style.

e TCS_FOCUSNEVER Specifies that a tab never receives the input focus.

¢ TCS_FOCUSONBUTTONDOWN Specifies that a tab receives the input focus
when clicked. This style is typically used only with the TCS_BUTTONS style.

o TCS_FORCEICONLEFT Forces the icon to the left, but leaves the tab label
centered. (By default, the control centers the icon and label with the icon to the left
of the label.)

e TCS_FORCELABELLEFT Left-aligns both the icon and label.

e TCS_MULTILINE Causes a tab control to display multiple rows of tabs. Thus
all tabs can be displayed at once. (By default, a tab control displays a single row
of tabs.)

e TCS_OWNERDRAWFIXED Specifies that the parent window draws the tabs
in the control.

e TCS_RIGHTJUSTIFY Right justifies tabs. (By default, tabs are left-justified
within each row.)

e TCS_SHAREIMAGELISTS Specifies that a tab control’s image lists are not
destroyed when the control is destroyed.

1649

CTabCltrl::CTabCltrl

TCS_TOOLTIPS Specifies that the tab control has a tool tip control associated
with it.

TCS_TABS Tabs appear as tabs, and a border is drawn around the display area.
This style is the default.

TCS_SINGLELINE Displays only one row of tabs. The user can scroll to see
more tabs, if necessary. This style is the default.

TCS_RAGGEDRIGHT Does not stretch each row of tabs to fill the entire width
of the control. This style is the default.

In addition, you can apply the following window styles to a tab control:

WS_CHILD Creates a child window that represents the tab control. Cannot be
used with the WS_POPUP style.

WS_VISIBLE Creates a tab control that is initially visible.
WS_DISABLED Creates a window that is initially disabled.

WS_GROUP Specifies the first control of a group of controls in which the user
can move from one control to the next with the arrow keys. All controls defined
with the WS_GROUP style after the first control belong to the same group. The
next control with the WS_GROUP style ends the style group and starts the next
group (that is, one group ends where the next begins).

WS_TABSTOP Specifies one of any number of controls through which the user
can move by using the TAB key. The TAB key moves the user to the next control
specified by the WS_TABSTOP style.

See Also CTabCtrl::CTabCtrl

CTabCtrl::CTabCtrl

CTabCtrl();

Remarks

Call this function to construct a CTabCtrl object.
See Also CTabCtrl::Create

CTabCltrl::Delete Allltems

BOOL DeleteAllltems();

Return Value
Nonzero if successful; otherwise 0.

1650

CTabCltrl::GetBkColor

Remarks
Call this function to remove all items from a tab control.

See Also CTabCltrl::Deleteltem

CTabCltrl::Deleteltem

BOOL DeleteIltem(int nitem);

Return Value
Nonzero if successful; otherwise 0.

Parameters
nltem Zero-based value of the item to delete.

Remarks
Call this function to remove the specified item from a tab control.

See Also CTabCtrl::DeleteAllltems

CTabCltrl::Drawltem

void DrawItem(LPDRAWITEMSTRUCT IpDrawltemStruct);

Parameters
IpDrawltemStruct A pointer to a DRAWITEMSTRUCT structure describing the
item to be painted.

Remarks
Called by the framework when a visual aspect of an owner-draw tab control changes.
The itemAction member of the DRAWITEMSTRUCT structure defines the
drawing action that is to be performed.

By default, this member function does nothing. Override this member function to
implement drawing for an owner-draw CTabCltrl object.

The application should restore all graphics device interface (GDI) objects selected for
the display context supplied in [pDrawltemStruct before this member function
terminates.

See Also CWnd::OnDrawltem

CTabCltrl::GetBkColor

COLORREF GetBkColor();

Return Value
The value of the background color (stored as a RGB color).

1651

CTabCltrl::GetCurFocus

Remarks
Call this function to retrieve the current background color of the tab control. If the
background mode is OPAQUE, the system uses the background color to fill the gaps
in styled lines, the gaps between hatched lines in brushes, and the background in
character cells.

See Also CTabCtrl::SetBkColor, COLORREF in the Win32 Programmer’s
Reference

CTabCltrl::GetCurFocus

int GetCurFocus() const;

Return Value
The zero-based index of the tab with the current focus.

Remarks
Call this function to retrieve the index of the tab with the current focus.

See Also CTabCtrl::GetCurSel

CTabCtrl::GetCurSel

int GetCurSel() const;

Return Value
Zero-based index of the selected tab if successful or —1 if no tab is selected.

Remarks
Call this function to retrieve the currently selected tab in a tab control.

See Also CTabCtrl::SetCurSel, CTabCtrl::GetCurFocus

CTabCltrl::GetImageList

HIMAGELIST GetImageList() const;

Return Value
The handle of the image list of the tab control if successful; otherwise NULL.

Remarks
Call this function to retrieve the image list associated with a tab control.

See Also CTabCtrl::SetImageList

1652

CTabCltrl::Getltem

BOOL Getltem(int nitem, TC_ITEM* pTabCtriltem) const;

Return Value

Returns TRUE if successful; FALSE otherwise.

Parameters

Remarks

nltem Zero-based index of the tab.

pTabCtriltem Pointer to a TC_ITEM structure, used to specify the information to
retrieve. Also used to receive information about the tab. This structure is used with
the InsertItem, GetItem, and SetItem member functions.

Call this function to retrieve information about a tab in a tab control.

When the message is sent, the mask member specifies which attributes to return. If
the mask member specifies the TCIF_TEXT value, the pszText member must
contain the address of the buffer that receives the item text and the cchTextMax
member must specify the size of the buffer.

The TC_ITEM structure is defined as follows:

typedef struct _TC_ITEM {
UINT mask;
UINT 1pReservedl; // reserved; do not use
UINT T1pReserved2; // reserved; do not use
LPSTR pszText;
int cchTextMax;
int ilmage;
LPARAM 1Param;
} TC_ITEM;

mask Value specifying which members to retrieve or set. This member can be
TCIF_ALL (meaning all members), zero, or a combination of the following
values:

e TCIF_TEXT The pszText member is valid.
e TCIF_IMAGE The ilmage member is valid.
e TCIF_PARAM The IParam member is valid.

pszText Pointer to a null-terminated string containing the tab text if the structure
contains information about a tab. If the structure is receiving information, this
member specifies the address of the buffer that receives the tab text.

CTabCltrl::Getltem

1653

CTabCtrl::GetltemCount

cchTextMax Size of the buffer pointed to by pszText. This member is ignored if the
structure is not receiving information.

ilmage Index into the tab control’s image list, or —1 if there is no image for the tab.

IParam Application-defined data associated with the tab. If there are more than
four bytes of application-defined data per tab, an application must define a
structure and use it instead of the TC_ITEM structure. The first member of the
application-defined structure must be a TC_ITEMHEADER structure. The
TC_ITEMHEADER structure is identical to the TC_ITEM structure, but
without the IParam member. The difference between the size of your structure and
the size of the TC_ITEMHEADER structure should equal the number of extra
bytes per tab.

See Also CTabCtrl::InsertItem, CTabCtrl::SetItem

CTabCltrl::GetltemCount

int GetltemCount() const;

Return Value
Number of items in the tab control.

Remarks
Call this function to retrieve the number of tabs in the tab control.

See Also CTabCtrl::GetItem, CTabCtrl::Setltem

CTabCtrl::GetltemRect

BOOL GetItemRect(int nltem, LPRECT IpRect) const;

Return Value
Nonzero if successful; otherwise 0.

Parameters
nltem Zero-based index of the tab item.

IpRect Pointer to a RECT structure that receives the bounding rectangle of the tab.
These coordinates use the viewport’s current mapping mode.

Remarks
Retrieves the bounding rectangle for the specified tab in a tab control.

See Also CTabCtrl::SetItemSize, CTabCtrl::AdjustRect

1654

CTabCltrl::GetRowCount

int GetRowCount() const;

Return Value
The number of rows of tabs in the tab control.

Remarks
Retrieves the current number of rows in a tab control. Only tab controls that have the
TCS_MULTILINE style can have multiple rows of tabs.

See Also CTabCtrl::Create

CTabCtrl::HitTest

CTabCltrl::GetTooltips

CWnd* GetTooltips() const;

Return Value
Handle of the tool tip control if successful; otherwise NULL.

Remarks
Retrieves the handle of the tool tip control associated with a tab control. A tab control
creates a tool tip control if it has the TCS_TOOLTIPS style. You can also assign a
tool tip control to a tab control by using the SetTooltips member function.

See Also CTabCtrl::SetTooltips, CTabCtrl::Create

CTabCtrl::HitTest

int HitTest(TC_HITTESTINFO* pHitTestInfo) const;

Return Value
Returns the zero-based index of the tab or —1 if no tab is at the specified position.

Parameters
pHitTestInfo Pointer to a TC_HITTESTINFO structure, which specifies the screen
position to test.

Remarks
Call this function to determine which tab, if any, is at the specified screen position.

The TC_HITTESTINFO structure is defined as follows:

typedef struct _TC_HITTESTINFO {
POINT pt; // position to hit test, in client coordinates
UINT flags; // receives results of hit test

} TC_HITTESTINFO;

1655

CTabCtrl::Insertltem

flags Variable that receives the results of a hit test. The tab control sets this member
to one of the following values:

e TCHT_NOWHERE The position is not over a tab.

e TCHT_ONITEM The position is over a tab, but not over its icon or its text.
For owner-drawn tab controls, this value is specified if the position is anywhere
over a tab. TCHT_ONITEM is a bitwise-OR operation on the
TCHT_ONITEMICON and TCHT_ONITEMLABEL values.

e TCHT_ONITEMICON The position is over a tab’s icon.
e TCHT_ONITEMLABEL The position is over a tab’s text.

CTabCltrl::Insertltem

BOOL InsertItem(int nitem, TC_ITEM* pTabCtriltem);

Return Value
Zero-based index of the new tab if successful; otherwise —1.

Parameters
nltem Zero-based index of the new tab.

plabCtriltem Pointer to a TC_ITEM structure that specifies the attributes of the
tab. For a description of this structure, see the CTabCtrl::GetItem member
function.

Remarks
Call this function to insert a new tab in an existing tab control.

See Also CTabCtrl::GetItem, CTabCtrl::SetItem

CTabCltrl::Removelmage

void Removelmage(int nimage);

Parameters
nlmage Zero-based index of the image to remove.

Remarks
Call this function to remove the specified image from a tab control’s image list. The
tab control updates each tab’s image index so that each tab remains associated with
the same image.

See Also CTabCltrl::GetImageList, CTabCtrl::SetImageList

1656

CTabCtrl::SetImageList

CTabCltrl::SetBkColor

BOOL SetBkColor(COLORREF cr);

Return Value
Nonzero if successful; otherwise 0.

Parameters
cr The value of the background color of the tab control (stored as a RGB color).

Remarks :
Call this function to set the background color of the tab control. If the
background mode is OPAQUE, the system uses the background color to
fill the gaps in styled lines, the gaps between hatched lines in brushes, and
the background in character cells.

See Also CTabCtrl::GetBkColor, COLORREEF in the Win32 Programmer’s
Reference

CTabCltrl::SetCurSel

int SetCurSel(int nltem);

Return Value
Zero-based index of the previously selected tab if successful, otherwise —1.

Parameters
nitem The zero-based index of the item to be selected.

Remarks
Selects a tab in a tab control. A tab control does not send a TCN_SELCHANGING
or TCN_SELCHANGE notification message when a tab is selected using this
function. These notifications are sent, using WM_NOTIFY, when the user clicks or
uses the keyboard to change tabs.

See Also CTabCtrl::GetCurSel, CTabCltrl::GetCurFocus

CTabCltrl::SetImageList

CImageList * SetImageList(CImageList * pImageList);

Return Value
Returns the handle of the previous image list or NULL if there is no previous
image list.

Parameters
pImageList Pointer to the image list to be assigned to the tab control.

1657

CTabCltrl::Setltem

Remarks
Call this function to assign an image list to a tab control.

See Also CTabCtrl::GetImageList

CTabCltrl::Setltem

BOOL SetItem(int nitem, TC_ITEM?* pTabCtriltem);

Return Value
Nonzero if successful; otherwise 0.

Parameters
nltem Zero-based index of the item.

pTabCtriltem Pointer to a TC_ITEM structure that contains the new item attributes.
The mask member specifies which attributes to set. If the mask member specifies
the TCIF_TEXT value, the pszText member is the address of a null-terminated
string and the cchTextMax member is ignored. For a description of this structure,
see the CTabCtrl::GetItem member function.

Remarks
Call this function to set some or all of a tab’s attributes.

See Also CTabCtrl::InsertItem, CTabCtrl::GetItem

CTabCltrl::SetltemExtra

int SetltemExtra(int nBytes);

Return Value
Nonzero if successful; otherwise 0.

Parameters
nBytes Number of extra bytes.

Remarks
Sets the number of bytes per tab reserved for application-defined data in a tab control.
By default, the number of extra bytes is four. An application that changes the number
of extra bytes cannot use the TC_ITEM structure to retrieve and set the application-
defined data for a tab. Instead, you must define a new structure consisting of the
TC_ITEMHEADER structure followed by application-defined members. For a
description of these structures, see the CTabCtrl::GetItem member function.

An application should only change the number of extra bytes when a tab control does
not contain any tabs.

1658

CTabCitrl::SetTooltips

CTabCltrl::SetltemSize

CSize SetItemSize(CSize size);

Return Value
Returns the old width and height of the tab control items.

Parameters
size The new width and height, in pixels, of the tab control items.

Remarks
Call this function to set the width and height of the tab control items.

See Also CTabCtrl::AdjustRect, CTabCtrl::Ge