
Up and Running

Microsoft® QuickC®

UP AND RUNNING

VERSION2.0

MICROSOFT CORPORATION

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software described in this docu­
ment is furnished under a license agreement or nondisclosure agreement. The software
may be used or copied only in accordance with the terms of the agreement. It is against
the law to copy the software on any medium except as specifically allowed in the li­
cense or nondisclosure agreement. No part of this manual may be reproduced or trans­
mitted in any form or by any means, electronic or mechanical, including photocopying
and recording, for any purpose without the express written permission of Microsoft.

©Copyright Microsoft Corporation, 1988. All rights reserved.
Simultaneously published in the U.S. and Canada.

Printed and bound in the United States of America.

Microsoft, MS, MS-DOS, and QuickC are registered trademarks of Microsoft
Corporation.

Amdek is a registered trademark of Amdek Corporation.

BRIEF is a registered trademark of UnderW are, Inc.

COMPAQ is a registered trademark of Compaq Computer Corporation.

Epsilon is a trademark of Lugaru Software, Inc.

Hercules is a registered trademark of Hercules Computer Technology.

IBM is a registered trademark of International Business Machines Corporation.

WordStar is a registered trademark of Micro Pro International Corporation.

Document No. 410840040-200-R00-1088
Part No. 04321
10 9 8 7 6 5 4 3 2 1

Table of Contents

Introduction
Read This Manual First

Features New to Version 2.0

Chapter 1 Unpacking QuickC@
System Requirements

The QuickC Package

Chapter 2 Installing QuickC
A Quick Overview

Running SETUP

Installing on a Floppy-Disk System

Using QuickC on a Floppy-Disk System

Chapter 3 Using QuickC
The QuickC Environment

Using Windows and Menus

Using the Editor

Compiling and Linking

The Debugger

Chapter 4 Getting Help
Keyword Help

Topic-Based Help

Environment Help

Error Help

Help on Help

Chapter 5 Where to Go from Here

Appendix: Editor Functions

iii

v

v

vi

1

1

1

5

5

6

15

16

19

19

20

29

32

39

41

42

47

50

51

53

55

59

Introduction

Welcome to Microsoft® QuickC® Version 2.0, a powerful and sophisticated yet
easy-to-use integrated environment for writing programs in the C language.

v

In recent years, the popularity of C has grown tremendously. C programs often
can be ported from one computer to another. C programs are fast. C source code is
compact and concise. The language encourages, but does not enforce, modular
and structured programming styles. For these and other reasons, many program­
mers and professional software developers prefer C to any other language.

Microsoft QuickC combines the power of C with an environment that makes C
easy to learn and to use. You can write code, compile and link it, run the program,
and debug it, all without leaving the QuickC environment.

Read This Manual First
This manual contains all the information you need to install and begin using
QuickC on your computer. There are five chapters:

Unpacking QuickC Chapter 1 lists the system requirements (hardware that
you provide) and the contents of this package (software and documentation that
we provide).

Installing QuickC Before you can start using QuickC, you must install it. Al­
though the installation process is quick and easy, you may want more information
about libraries and memory models. Chapter 2 guides you through installation and
provides answers to commonly asked questions.

Using QuickC Chapter 3 explains how to run QuickC and introduces the win­
dow and menu environment. Next, it presents a step-by-step example of a typical
development cycle: writing, compiling, linking, running, and debugging a short
program.

vi Up and Running

Getting Help The Microsoft QuickC Advisor (on-line help) provides impor­
tant reference information at the click of a button or press of a key. Chapter 4 il­
lustrates the many facets of QuickC' s powerful on-line help system.

Where to Go from Here Once you have unpacked QuickC, installed it on
your system, and compiled a sample program, you will probably want to inves­
tigate QuickC further. Chapter 5 provides some suggestions on what to do next.

Features New to Version 2.0
If you have used an earlier version of QuickC, you '11 find that with Version 2.0
you can perform many new operations and many old operations more quickly:

• Invoke the on-line help system by pressing the Fl key. The expanded and im­
proved help system gives you fast access to a unique electronic reference
book. Press one key for instant keyword help (including prototypes, explana­
tions, and examples), environment help, error help, and cross-references to re­
lated topics. There's even a HELPMAKE utility if you want to customize the
help system.

• Call dozens of new graphics functions. The presentation graphics functions
transform lists of data into charts and graphs. The font functions allow you to
display text in a variety of typefaces and styles. The real-coordinate graphics
functions automatically scale shapes to whatever size you prefer.

• Write programs that use any of the five memory models: small, medium, com­
pact, large, and huge. (Previous versions of QuickC were limited to the
medium model.)

• Include assembly-language routines in your C source code.

• Open the three new windows: local variables, programmer's notepad, and
registers.

• Cut and paste text from any window, including the example programs from on­
line help.

Introduction vii

• Compile from within QC.EXE or use QCL.EXE to compile and link from the
command line.

• Discover program bugs and logic errors more quickly with the improved
QuickC debugger.

• Compile programs faster when you make a small change to existing code be­
cause QuickC compiles and links incrementally.

• Use QuickC to write applications that run under Microsoft Windows.

• Customize the QuickC editor's key commands with the MKKEYprogram. If
you'd prefer to use your own word processor, just add it to the QuickC menu.

• Learn about these and other new features in the computer-based tutorial
program called LEARN.COM and in C for Yourself.

CHAPTER 1

Unpacking QuickC®

You're probably eager to install QuickC immediately. But you should first take a
few minutes to make sure your system meets minimum requirements and to deter­
mine that your package is complete.

System Requirements
QuickC requires the following minimum configuration:

• An IBM® Personal Computer or compatible running DOS Version 2.1 or later.

• One hard-disk drive and one floppy-disk drive or two floppy-disk drives. A
hard-disk drive is strongly recommended.

• 448K (kilobytes) of available memory (512K is recommended for medium to
large projects).

NOTE Microsoft documentation uses the term "DOS" to refer to both the Microsoft and the IBM
Disk Operating Systems (MS-DOS® and PC-DOS).

The QuickC Package
Check your QuickC package to see if everything is there. If any pieces are
missing, contact the retailer from whom you bought QuickC. In the package, you
should find the following items:

1

2 Up and Running

1t ~ 6/ohl_Zf ·~~~
Buwa __
Tdopll<rle __

'·'I_ ...

e
~

~ " ,.IX; Ml
..::f.~ i'it.r,
"~ ~~(

'!,·

Registration card: there are many advantages to being a
registered owner of QuickC Version 2.0, including notifi­
cation of future software releases and easy access to cus­
tomer assistance. Please take the time to fill out and mail
the registration card now.

Disks: ten 5 1/4 inch floppy disks or five 3 1/2 inch disks.
The distribution disk labeled "Setup" contains a file
named PACKING.LST that lists the location and descrip­
tion of all disk files in the Microsoft QuickC package.

Up and Running: the book you're reading now. It ex­
plains how to install and use QuickC.

C for Yourself: this book is written for programmers who
know at least one language (such as BASIC or Pascal)
but who don't know C. Part 1, "Leaming C," is a tutorial
that explains how to program in C. Many examples are in­
cluded. Part 2, "Using C," examines further the library
functions that perform input and output, the functions
that create graphics, and new features such as real coordi­
nate graphics, presentation graphics, fonts, and in-line as­
sembly. The appendixes summarize the C language and
QuickC library functions.

Microsoft QuickC Tool Kit: this book explains the in­
dividual tools and utilities that accompany QuickC.
Beginners probably won't need to refer to this book
while they're learning the fundamentals of C. Advanced
C programmers should tum to this book for detailed infor­
mation about compiling, linking, creating libraries, main­
taining multiple-module programs, and more.

CHAPTER2

Installing QuickC

This chapter tells you how to install QuickC on your system. The SETUP.EXE
program on the Setup distribution disk performs the installation.

SETUP.EXE does two things. First, it copies several programs (the compiler, the
linker, the library manager, the help system, and others) from the distribution
disks to your hard disk (or floppy disks). Second, it creates one or more combined
libraries. You can't program in C without a library.

This chapter also explains why it's necessary to build combined libraries and how
the components fit together.

If you follow the instructions, when you finish the chapter you'll have a working
version of QuickC on your system and you'll be ready to start programming in C.

A Quick Overview
There are four steps to installing QuickC:

1. Make backup copies of all distribution disks.

2. Read the first section of the README.DOC file for information on installing
QuickC. If there are any corrections to this book, they're listed at the begin­
ning ofREADME.DOC.

5

3. Run SETUP.EXE, which is an interactive program. The questions you answer
determine the QuickC environment that is installed. Default answers are listed
in brackets. At the bottom of each screen is a brief synopsis of what each ques­
tion means.

6 Up and Running

4. Adjust your system and environment variables. SETUP.EXE creates two files:
NEW-VARS.BAT and NEW-CONF.SYS. Add the information from NEW­
V ARS.BAT to your AUTOEXEC.BAT file. If you'd prefer not to make the
changes permanent, you can run NEW-VARS.BAT as a batch file. Change
yourCONFIG.SYS file if the files value and buffers value are cur­
rently smaller than the values in NEW-CONF.SYS. After modifying these
files, reboot.

The process is not difficult and each screen provides helpful guidance. If you have
enough DOS and programming experience to complete these four steps without
further assistance, we encourage you to do so. (If you get stuck, return to this
chapter.) You may then skip ahead to Chapter 3, "Using QuickC."

NOTE If you make a mistake during the setup process, just run the program again. SETUP.EXE
never erases files from the distribution disks.

Running SETUP
Before you run SETUP, back up the distribution disks using the DOS COPY com­
mand or the DISK COPY program. Then read the first part of the README.DOC
file by loading it into a word processor or by using the TYPE command:

TYPE README.DOC I MORE

When you are ready to install QuickC, insert the Setup disk in drive A and
then change to that drive (type A:). At the DOS command line, type

SETUP

NOTE The following instructions assume that you plan to install QuickC on a system that has at
least one floppy-disk drive and one hard-disk drive. If you don't own a hard drive, you must have at
least two floppy drives. Please read the section "Installing on a Floppy-Disk System" at the end of
this chapter if you aren't installing QuickC on a hard drive.

Correcting Mistakes

Each setup screen ends by asking if you want to change any of the options. If you
press the Y key, you can correct any of the answers you entered.

To exit the SETUP program at any time, press CTRL+C.

Installing QuickC 7

NOTE Remember, the SETUP program doesn't erase any files from the distribution disks. If you
make a mistake during the setup process, just run SETUP again.

Understanding Libraries
Compared to other programming languages, C is very lean. It contains only a few
dozen keywords and operators. To print something on the screen, for example,
you call the printf function, which is not a keyword or an operator. It's not in­
cluded in the C language proper. Strictly speaking, printf is a "library function."

When you link a program, the linker looks in the current library for any functions
that were not defined in the main program. If your source file calls printf, for ex­
ample, the linker looks in the library for the machine code that executes the func­
tion, adds it to the executable program, and resolves any references to printf.

A library, then, is just a set of commonly used functions that have been gathered
into one place. The American National Standards Institute (ANSI) defines a great
number of library functions (including printf). Microsoft QuickC adds even
more. In C, the keywords and operators number in the dozens, while the library
functions number in the hundreds. Incidentally, you can add your own heavily
used functions to the library (or combine them into a separate library) if you wish.
See Microsoft QuickC Tool Kit for more information on using the Library Man­
ager (LIB.EXE).

One of the key jobs performed by SETUP.EXE is building at least one large "com­
bined library." Individual smaller parts of the library are called "component librar­
ies." The two component libraries you must have are the memory model library
and the math package library. The two additional component libraries containing
graphics functions are optional.

You'll ultimately use one of the combined libraries when you compile and link a
program.

SETUP Options
SETUP has two options for shortcuts: /H and /L. You should not use these options
the first time you run SETUP.

Use the /L option after you have already installed QuickC and you want to build
additional combined libraries without going through the entire setup process.

8 Up and Running

Combined libraries are described above (see "Understanding Libraries"). If you
wish to add more libraries in the future, use the /L switch:

SETUP /L

The /H option suppresses the SETUP help information sent to the screen. If you in­
stall QuickC again, you can bypass the help information by using the /H option:

SETUP /H

SETUP Stage One
Before SETUP can install QuickC, it needs some information about your system
and the type of programming you intend to do. This first stage of SETUP is a ser­
ies of questions split into three screens.

First Screen: The Libraries

The first screen asks these questions:

Source of compiler files [A:J:
Installing on a hard disk drive [YJ :
Math Options: Emulator [YJ: 8087 [NJ:
Memory Models: Small (YJ: Medium [NJ: Compact (NJ: Large/Huge [NJ:
Delete the component libraries when finished [YJ :
Include in combined libraries: GRAPHICS.LIB (NJ: PGCHART.LIB [NJ

Do you want to change any of the above options [YJ :

The questions appear on the screen one at a time. An explanation of each option
appears at the bottom of the screen, unless you added the /H option when you ran
SETUP. Answer the questions by typing in your responses and pressing ENTER.

Each question ends with a default answer inside square brackets ([Y J , for ex­
ample). Press ENTER to accept the default. If you are unsure of the proper reply for
any of these questions, consider the default a good place to start. If you later find
you would have preferred to make another choice, you can always run SETUP
again.

Each screen concludes by asking if you want to change any of your choices.
When you're satisfied, press N (the default answer is Y, which returns you to the
first question on the screen). If you start over, the default answers become the
choices you made previously.

Installing QuickC 9

Which Disk Drive?
The first two questions on the first screen ask where you 're starting from (the
drive containing the distribution disks) and where you're going (destination disk):

Source of compiler files [A:J:
Installing on a hard disk drive [YJ :

Which Math Library?
Your answer to the third question determines which math component libraries will
be included in the combined library:

Math Options: Emulator [YJ: 8087 [NJ :

Some computers contain an 8087 or 80287 math coprocessor chip. Some don't.

If your machine is equipped with a coprocessor, linking your programs with the
combined library tailored for the 8087 will speed up all floating-point calcula­
tions. However, these programs will run only on a machine that has an 8087 or
80287 chip.

Programs linked with the emulator library, on the other hand, will run on any com­
puter, whether it has a coprocessor or not. The emulator library does check for the
presence of a math coprocessor. If the computer has a coprocessor, it performs all
floating-point math operations. If no coprocessor is installed, the emulator library
"emulates" (imitates) the actions of a coprocessor.

If you 're not sure which math library to include, choose the emulator library be­
cause it's the most flexible.

You may include both math libraries, but doing so doubles the number of com­
bined libraries SETUP builds, thus doubling the time it takes to install QuickC. If
you intend to install all possible library configurations, you'll need approximately
6 megabytes of available space on your hard disk. If you install just one library,
you'll need about 2.7 megabytes of free space.

Which Memory Model?
The next question asks which memory models you plan to use:

Memory Models: Small [YJ: Medium [NJ: Compact [NJ: Large [NJ:

The small memory model is the default. If you're in a hurry to install QuickC, ac­
cept the default answer by pressing ENTER four times and bypass the explanation
below. Should you discover that you need additional memory for your programs,

1 O Up and Running

you can run the SETUP program again. If you 're curious about memory models,
read on.

The 8086 processor and its relatives access memory in 64K blocks called "seg­
ments." To move outside of the current 64K segment requires additional machine
instructions. Also, an address within the 64K segment can be specified with only
two bytes. If you wish to access more than 64K of memory locations, their
addresses must include additional bytes (which makes pointer variables longer
and program execution slower).

C programs have two parts: the code (machine instructions) and the data (varia­
bles and constants). If you write programs that fit either the code or the data en­
tirely within one 64K segment of memory, the program will execute faster and use
less memory. However, if you need to use multiple memory segments for the code
or the data, you may, although the program will run more slowly.

The various configurations of memory usage are called "memory models."
QuickC supports five standard memory models. Table 2.1 illustrates the relation­
ship between the five available memory models and the limits placed on their
code and data segments.

Table 2.1 Memory Models

Code Data
Memory Segment Segment
Model Limit Limit

Small 64K 64K

Medium None 64K

Compact 64K None

Large None None

Huge None None

For a great many applications, the small memory model suffices. If you 're work­
ing on a large database manager, you might want one of the models that provides
unlimited data segments (compact, large, or huge). If you're writing a program
with a great many functions, you might want to remove the limit on the code seg­
ment (medium, large, or huge).

Installing QuickC 11

The huge memory model uses the same library as the large model, so the SETUP
program offers only four choices. The difference between large and huge is that
the huge model allows individual arrays to exceed 64K, whereas the large model
limits arrays to 64K.

Any or all of these memory models may be selected, but SETUP.EXE will build a
separate combined library for each model. For example, if you choose the small
memory model and the math emulator, the library file SLIBCE.LIB is created. If
you choose the medium model and the 8087 math package, MLIB C7 .LIB is
created. The small memory model libraries start with the letter "S," medium with
"M," compact with "C," and large with "L." Similarly, the emulator math package
is shown by a final "E" in the file name, the 8087 package by a "7."

Given four memory models and two math packages, you can create a total of eight
combined libraries. But the more combined libraries you create, the more space
they'll take on your hard disk and the longer the installation process will take.

The first time you install QuickC, create only one or two combined libraries. If
you find a need for other memory models or math packages, just rerun the SETUP
program.

Include Graphics Libraries?
The graphics library GRAPHICS.LIB contains numerous functions for drawing
lines, rectangles, circles, and other shapes. If you plan to write programs that use
these functions, press Y to answer the first of these two questions:

Include in combined libraries: GRAPHICS.LIB [NJ: PGCHART.LIB [NJ:

However, if you plan to write programs that use text output only, then you prob­
ably don't need GRAPHICS.LIB taking up room on your disk. Press N to omit the
graphics library. (If you very rarely need graphics functions, you can omit the
graphics library and, whenever you need the functions, explicitly link the graphics
library GRAPHICS.LIB. See the Microsoft QuickC Tool Kit manual for more in­
formation about linking with a specific library.)

The PGCHART.LIB library contains presentation graphics functions for creating
high-resolution graphs (line graphs, bar charts, column charts, scatter diagrams,
and pie charts). Again, if you want to display such graphics in your programs,
press Y to include this component library. If you '11 use presentation graphics
rarely or not at all, press N to omit this library.

12 Up and Running

Second Screen: Extra Files

The next screen asks the following questions about copying additional files to
your hard disk:

Install Microsoft Mouse [Y] :
Copy documentation files [Y] :
Copy the DOS patch file [N] :
Copy sample C programs [N]:
Copy the QuickC tutorial files [N] :

Do you want to change any of the above options [Y] :

SETUP will copy these extra files to your hard disk if you want them.

As before, each of these questions is accompanied by an explanation at the bottom
of your screen to help you decide if these files would be useful.

Third Screen: The Directories

The final set of questions asks for the names of directories in which to store the
various files.

Directory for Executable files [C:\QC2\BIN]:
Directory for Libraries [C:\QC2\LIB]:
Directory for Include files [C:\QC2\INCLUDE]:
Directory for Sample files [C:\QC2\SAMPLES]:
Directory for Tutorial files [C:\QC2\TUTORIAL]:

Do you want to change any of the above options [Y] :

You don't have to choose any of the default options. You might decide you want
your executable programs in C:\QC2\BIN and your source files in C:\C_CODE,
for example. Type in the names of directories you want SETUP to use (including
the drive name in the path). If the directories don't exist, SETUP asks if you want
to create them.

Checking the Available Disk Space

Before moving on to stage two, the SETUP program checks your hard disk to see
how much free space is available. If you don't have enough room to install
QuickC (the amount needed varies according to the options you've chosen), an
error message tells you how much space is required for the files you've requested.

Installing QuickC 13

If you attempt to install all possible libraries, you'll need approximately 6 mega­
bytes. If you install just one combined library, you'll need roughly 2.7 megabytes.

If you don't have enough room on your hard disk, you have two choices. First,
you can delete files from the hard disk until there's enough room for the libraries
you want to create. Second, you can reduce the number of libraries you request
(or you can choose not to copy the samples and documentation files), to cut down
the amount of space you need. Either way, you'll have to run SETUP again.

SETUP Stage Two
Now that you've specified your system and programming needs, SETUP goes to
work. This stage requires you to swap the distribution disks in and out of the
drive. Insert the disks as SETUP asks for them and press ENTER. If you put in the
wrong disk, SETUP will ask again for the proper disk.

At this point, all SETUP needs is the go-ahead from you. It starts building the
combined libraries you requested, placing them in the directories you specified.

SETUP Stage Three
When SETUP finishes creating the combined libraries, it creates two files: NEW­
VARS.BAT and NEW-CONF.SYS. To install these files permanently, you must
now adjust the DOS environment and modify both your AUTOEXEC.BAT and
CONFIG.SYS files.

NOTE If you use other languages that have their own LINK EXE program, you may not want to
put the QuickC linker in your path. If this is the case, you can modify CONFIG.SYS and run NEW­
VARS.BAT each time you use QuickC.

Changing AUTOEXEC.BAT
The file NEW-VARS.BAT created by SETUP might look something like this:

PATH=C:\QC2\BIN;C:\DOS;C:\MYEXE;C:\WIN386;C:\WORD
set LIB=C:\QC2\LIB
set INCLUDE=C:\QC2\INCLUDE

PATH is a system variable that tells your computer where to find executable pro­
grams. The LIB and INCLUDE variables tell QuickC where to find the libraries
and the include files.

14 Up and Running

To make the change permanent, load your current A UTOEXEC.BAT file into an
editor or word processor (you'll find AUTOEXEC.BAT in the root directory), add
the new path names, and save the modified file.

You can edit the AUTOEXEC.BAT file with the QuickC editor if you wish.
Change to the directory containing the QC.EXE program (for example, type
CD \QC2\BIN) and type QC \AUTOEXEC. BAT (the backslash indicates that
the file is in the root directory). Then use the File menu Merge command to merge
NEW-VARS.BAT into AUTOEXEC.BAT.

In most cases, it is best to change the AUTOEXEC.BAT file and reboot. How­
ever, if you use other languages and other compilers, you may wish to leave the
AUTOEXEC.BAT file alone and run the NEW-VARS.BAT file before each
QuickC session.

Modifying CONFIG.SYS
The NEW-CONF.SYS file might look like this:

f iles=20
buff ers=lO

You need to be sure that the files and buffer values are large enough to
contain QuickC. Load your CONFIG.SYS file into an editor or word processor
(again, it should be in the root directory), change the two lines that refer to files
and buffers, and save the modified file. If your current CONFIG.SYS file has
higher numbers (files = 3 0, for example), you can leave the higher value in ef­
fect. The numbers in NEW-CONF.SYS are minimums; you may safely use higher
values.

NOTE Merely changing the AUTOEXEC.BAT and CONFIG.SYS files does not affect the current
DOS environment. To put the changes into effect, you must reboot your machine by powering off
and then on or pressing CTRL+ALT+DEL

After installing QuickC, changing the files, and rebooting, you can proceed to
Chapter 3, "Using QuickC."

Installing QuickC 15

Installing on a Floppy-Disk System
The procedure for installing on a system with two floppy drives is similar to the
hard-drive installation procedure.

NOTE The explanations of libraries, memory models, and math emulators aren't repeated here.
Read the appropriate sections above for more about these topics.

Before you begin the SETUP program for a floppy-disk system, you'll need to
have ready one blank formatted disk for each combined library you plan to build
plus one extra. The extra disk is what SETUP calls a "scratch disk." SETUP
writes intermediate files to this disk when it builds combined libraries.

The first screen looks like this:

Source of compiler files [A:J:
Installing on a hard-disk drive [YJ :
Math Options: Emulator [YJ: 8087 [NJ:
Memory Models: Small [Y]: Medium [NJ: Compact [NJ: Large/Huge [N]:
Delete the component libraries when finished [YJ :
Include in combined libraries: GRAPHICS.LIB [NJ: PGCHART.LIB [N]

Do you want to change any of the above options [Y] :

To install QuickC on a floppy system, you must avoid the default answer to the
second question. Type N in response to the question about installing on a hard
drive.

The second and third screens (described above) do not appear. The final question
is this:

Drive to use to build combined libraries [B:]:

Do you want to change any of the above options [Y] :

The rest of the SETUP procedure involves swapping the disks that SETUP re­
quests. When this is complete, you no longer need the scratch disk and you may
delete any remaining files from it.

You must also change the AUTOEXEC.BAT and CONFIG.SYS files on your
boot disk. See the section "SETUP Stage Three."

When you have finished installing the libraries, reboot your computer.

16 Up and Running

Using QuickC on a Floppy-Disk System
To compile and link on a system with two floppy drives, both drives (A and B)
must be in your path. You can type the following line at the DOS prompt or add it
to your AUTOEXEC.BAT file:

SET PATH = A:\; B:\

In addition, you should choose one drive as the current drive and place the source­
code files on a working disk in that drive. If you use any #include directives, you
should copy the include files to the source-code disk. For example, if a program
called TEST. C contains the line

#include <stdio.h>

then both TEST.C and STDIO.H should be on the same disk.

You should use the second drive for the QC.EXE disk and other QuickC
programs. For example, if A is the current drive, you should place the QC.EXE
disk in drive B. To compile TEST.C (from the disk in drive A) using the QCL
program (in drive B), type this:

A:> QCL TEST.C

Note that the DOS prompt indicates A is the current working drive.

When you compile and link a program, you will be prompted to insert the ap­
propriate disks in drive B. The .OBJ and .EXE files will be created on drive A.

Warning You must have both drives in your path. The current working drive must contain the
source code. You must never swap disks from this drive; always swap from the other drive.

When you compile a program on a system with two floppy drives, QuickC
prompts you to insert disks as it needs them. Be sure to wait for the prompt before
you swap disks. For a complete list of disks and files, print out the file called
PACKING.LSTondisk 1.

CHAPTER3 19

Using QuickC

If you followed the instructions in Chapter 2, "Installing QuickC," you now have
a working version of QuickC and are ready to write your first program. This chap­
ter introduces the QuickC environment-a powerful tool to help you write and
test programs.

In this chapter you'll work through a sample compiling and linking session. When
you finish, you will have written, saved, built, and tested a working program.

If you'd prefer to experiment on your own or if you've previously used QuickC
Version 1.0, you may skip this chapter (or skim through it). We strongly suggest,
however, that if you do nothing else, review the next chapter, "Getting Help." In
addition, we recommend that all QuickC users run the LEARN program, which
teaches how to use the QuickC environment.

The QuickC Environment
QuickC is a window-based programming environment that integrates a text editor,
a compiler, a linker, a debugger utility, a make utility, and an on-line help
database. This chapter introduces and describes the following aspects of QuickC:

Windows and Menus The menu system allows you to quickly find the com­
mand or action you need. The first part of this chapter explains how to open and
close windows and how to navigate the menus. It also defines certain terms used
throughout the chapter.

Editor When you 're writing source code, you'll spend a lot of time using the
QuickC editor. If you know WordStar® commands, you'll know how to use the

20 Up and Running

QuickC editor. If you'd prefer to customize the editor, you can use the MK.KEY
utility, which is explained in the "Customizing the Editor" section.

Compiler/Linker You can compile, link, and test a program without ever
leaving the editor. QuickC's integrated environment saves you hours of develop­
ment time. This part of the chapter defines and illustrates the various compiling
and linking options.

Debugger The debugger allows you to set breakpoints, to monitor the status
of key variables, and to trace program execution line by line. This section of the
chapter provides a brief overview of the debugger utility. The LEARN program
includes a lesson that provides more details about the new, advanced debugging
enhancements.

Using Windows and Menus
Even if you've never used windows and menus before, you'll find the QuickC pro­
gramming environment easy to learn.

This section introduces the QuickC environment. You'll learn how to control win­
dows and to choose commands from the menus.

Getting Started
To run QuickC, type

QC

at the DOS prompt. You'll immediately enter the QuickC editor.

If you enter a file name after the QC command, for example,

QC MYFILE

QuickC automatically adds the extension .C that marks a C source file. Typing the
line above causes QuickC to load MYFILE. C.

If QuickC can't find the file you specified in the current directory, it asks if you
want to create a new file.

Using QuickC 21

If you do not enter a filename after the QC command, QuickC opens an empty
file named UNTITLED.C, which you can rename later or save with another name.

Command-Line Options

Depending on your particular hardware, you may be required to include one of the
following options on the command line after the QC command but before the file
name, for example, QC /b MYPROG.

Option Hardware

/b

/g

/h

/nohi

For black-and-white systems, including Hercules®
monochrome monitors, LCD screens, and black-and­
white monitors.

For AT-compatible systems that refresh the screen at
a slower rate than the standard AT (including some
CO:rvtPAQ® systems).

For systems equipped with EGA-, VGA-, or MCGA­
compatible graphics cards capable of displaying
more than 25 lines of text.

For systems that don't support high-intensity colors
(including LCD monochrome monitors and some
Amdek® color monitors).

Using the Mouse and Keyboard
You can enter all commands from the keyboard. If you own a Microsoft (or fully
compatible) Mouse, you may choose to use either the keyboard or the mouse to
enter commands. When this book explains a command, the two options are
marked with icons of a key or a mouse as follows:

~ Press the ALT key.

~ Click the File menu, then click Save.

NOTE Unless the right button is specifically mentioned, "clicking" means that you click the
mouse's left button once.

22 Up and Running

Windows
The system of windows and menus is simple to use and intuitive. Many program­
mers can learn how to use the QuickC environment without learning the terms
that describe the various menus and buttons. In addition, if you 're confused about
windows or menus, you can almost always call up a Help window that explains
how a menu works (see Chapter 4, "Getting Help"). However, if you want to read
further in this chapter, you'll have to understand the terms that are used.

Figure 3.1 shows a typical QuickC screen, with labels that describe its parts. Some
of the parts provide information only. For example, if the CAPS LOCK key is on, a
letter c appears in the bottom right comer. The letter c is informational (it tells
you the CAPS LOCK key is on). Other parts of a window perform actions triggered
by a specific key or mouse action. For example, if you click the little box in the
upper-left comer of a window, the window closes. The box is not informational;
it's active.

C::: Menu bar
Title bar
(Source window)

Maximize
button

Menu

1

name

Options ••••D•
#include <stdio.h>

Main<>
{

printf("This file is naMed \"UNTITLED. C\"\n") :
}

Figure 3.1 Parts of a Window

Displa1::1 •••
Make •••
Run I Debug •••
EnvironMent •••

•Full Menus

Using QuickC 23

The parts of a window, their status, and their use are listed in Table 3.1 below.

Table 3.1 Parts of a Window

Name Status

Close button Active

Menu bar Active

Title bar Informational

Source window Active

Maximize button Active

Reference bar InformationaV
Active

Scroll bars Active

Line/Column Informational
indicators

Using the Menu Bar

Use

Closes the current window (the Source window cannot be
closed). Appears in upper-left corner.

Lists names of the available menus.

Shows name of the window (the Source window title bar
lists the file currently being edited).

Contains source code for the program you're writing. Seven
other windows are supported: Debug, Help, Locals, Registers,
Notepad, Output, and Errors.

Shrinks or enlarges the current window.

Lists shortcut keystrokes (keyboard users) and direct commands
to QuickC (mouse users).

Indicate your position in the current file. If you click in the
gray area on either side of the position marker, you move in
that direction. If you click on the arrows, you move one line
(or one character) in that direction. If you click and drag the
position marker, you can move anywhere within the file.

Show the current line and column of the text cursor.
c means CAPS LOCK is on.
N means NUM LOCK is on.
R means the file is set to Read Only status.
D means Debugging History is on.
I means the debugging history includes user input.

To choose a command from a menu, you "pull down" or "open" the menu and
choose the command you want:

~ 1. Press the ALT key to activate the menu bar.

2. Press the highlighted character in the menu name (F =File, for example).

3. Press the highlighted character in the item name (in the File menu, S = Save,
for example).

Or follow these steps:

24 Up and Running

~ 1. Press the ALT key.

2. Use the right and left DIRECTION keys to move to the menu you want.

3. Use the up and down DIRECTION keys to highlight the command.

4. Press ENTER.

Or:

~ 1. Open the menu by clicking the menu name.

2. Click the command.

The Menu Vanishes
If at any point you decide that you don't want to choose a command from a menu,
you can make the menu disappear:

~ Press the ESC key.

~ Click somewhere on the screen outside of the menu.

Menus

Shortcut Keys
In the menus below, you'll notice that certain menu items are followed by names
of keys. These are the "shortcut keys" for heavily used commands. For example,
the Run menu Restart command is followed by SHIFT +F5, which means that in­
stead of opening the Run menu and choosing the Restart command, you can in­
stead hold down the SHIFT key and press F5.

NOTE The reference bar displays commonly used shortcut keys. In addition, the inside front
cover of this book lists the important shortcut keys for easy reference.

The menu bar contains ten menus, which you can pull down at any time. If you
don't know what a menu does, invoke the on-line help system by highlighting the
menu title (or highlighting a command within a menu) and pressing Fl or clicking
the right mouse button. QuickC uses the following menus:

~
1~1a1

Open •••
Open Last File FZ
Merge •..
Save
Save As •••
Save All

Print •••
DOS Shell

Exit Alt+F4

rEciill_
l'lml·•·1111i&m~H·El!I
Cut Shift+Del
Copy Ctrl +Ins
Paste Shift+ Ins
Clear Del

Read Only

Include •••

Output Screen F4
HaxiHize Ctrl+F10
IJlndo"'s •••

Search

Find ...
Selected Text Ctrl+\
Repeat Last Find F3
Change •..

Function •••

Next Error Shift+F3
Previous Error Shift+F4

CoMpile File UNTITLED.C
Build PrograM
Rebuild All

UNTITLED, EXE
UNTITLED. EXE

Set PrograH List •••
Edit PrograM List ...
Clear PrograM List

Using QuickC 25

The File menu controls files, allowing you to clear
the Source window (New), load an existing source
file (Open), append a file to the source code in
memory (Merge), save the current file (Save), re­
name the current file (Save As), print the source code
(Print), temporarily exit to DOS (DOS Shell), or per­
manently exit QuickC (Exit).

From the Edit menu you manipulate text by deleting,
cutting, copying, and pasting lines of code. You can
also set Read Only status to protect source files.

The View menu controls the visible screen. You can
rapidly switch between multiple modules (Source),
read through include files (Include), make visible the
output screen (Output Screen), expand the Source
window (Maximize), or open and close the various
windows (Windows).

The Search menu invokes the commands that find
or replace text or functions in source files. It also
searches for the next source line that caused a com -
piler error.

The Make menu allows you to compile (Compile) or
to compile and link (Build) programs. From this
menu, you also create or edit program lists that name
the components of a multimodule program.

26 Up and Running

Restart Shift +FS
Go rs
Continue To Cursor F7
Trace Into FB
Step Over F10
AnlMate

Debug}

11111
Breakpoint ••• F9
Uatchpoint •••

Watch Value. , ,
Modify Value •••

History On
Undo
Replay
Truncate User Input

Utility l
11nnw.i1.-'!H.1;1;51.1.w

CustoMize Menu •••

CustoM Edi tor

Options l
Make ••.
Run I Debug, ••
EnvironMent ...

•Full Menus

Help

Index
Contents
Topic: Fl
Help On Help Shift+Fl

Once a program is compiled and residing in memory,
use the Run menu to run it. You may run it from
beginning to end, selectively run individual sections,
or trace through the program line by line.

If your program contains logic errors, the Debug
menu allows you to set breakpoints and watchpoints.
In addition, you can keep track of variables and their
changing values. (This feature means there's no need
to sprinkle printf functions throughout your program
just to watch variables as they change values.)

The Utility menu allows you to run DOS commands
and programs from within the QuickC environment.
If you find that you use certain programs often, you
may want to add them to the Utility menu (Cus­
tomize Menu). For example, you can add your
favorite program editor to this menu if you wish.

The items on the Options menu control the integrated
environment. For example, the Options menu Dis­
play command allows you to change the colors used
on the screen. The Options menu Make command
controls flags that affect the actions of the compiler
and linker.

The Help menu is one route to the on-line help sys­
tem. For more about this topic, see Chapter 4, "Get­
ting Help."

Using QulckC 27

Short Menus and Full Menus

If you open the Options menu, you'll see one of the two menus below:

Op ions

Display ...
Make •••
Run I' Debug •••
EnvironMBnt •••

•Full Menus

HiffiUW
Full Menus

When five commands are listed under Options and a dot appears beside Full
Menus, it means full menus are turned on. When the Options menu holds only two
commands and Full Menus has no dot, short menus are in effect.

To change from full menus to short menus or vice versa, choose the Full Menus
command. The command is a toggle button; that is, it changes from on to off, or
off to on, when pressed.

The short menus contain all the commands you need to write, compile, and run a
C program. The short menus may seem easier to use, especially for beginners. If
you prefer to see every possible option, you should enable Full Menus. The choice
is yours.

NOTE When you set preferences from the Options menu-full menus, memory models, compile
options, and so on-your choices are saved in the current directory in a file called QC.IN/. If you set
an option, it stays set from one QuickC session to the next, or until you change it.

Shaded Commands
When a command within a menu is shaded, it is unavailable. You can't use it.

For example, when you first run QuickC and haven't yet compiled or linked a pro­
gram, you can open the Search menu and see that both Next Error and Previous
Error are shaded. You haven't done anything to generate errors, so there are no er­
rors to view.

28 Up and Running

Ellipses ...
When a command is followed by three periods (an ellipsis), it means QuickC
needs more information before it executes the command. If a command is not fol­
lowed by an ellipsis, choosing the command causes it to execute immediately.

For example, the File menu contains both the Save and Save As ... commands.
Choosing Save causes QuickC to save the current file with the current name (the
file name appearing at the top of the Source window). Choosing Save As ... causes
a dialog box to appear (see the following section). Within that dialog box, you
type the new name for your file.

Dialog Boxes
Very often, invoking a menu command causes a dialog box to appear. For
example, Figure 3.2 shows the dialog box opened by the Options menu Display
command.

Display Options
Colors

(•) Color 1
C) Color Z
<) Color 3
< > LCD

[Xl Scroll Bars
Tab Stops: [J

Figure 3.2 Dialog Box

.---- Other Options------.
Right Mouse Button

(•)Context Sensitive Help
C) Continue To Cursor

[XJ ProMpt Before Saving Files
[Xl Search Multiple Help Topics

< OK > <Cancel> < Help >

NOTE Dialog boxes usually offer a set of shortcut keys. Press ALT to see which keys are active
within a dialog box.

Dialog boxes can contain one or more of the items on the following list. Use the
TAB key to move between the various items in a dialog box.

Option Buttons (•)

Check Box [X]

Text Box [

Command Buttons
<OK>

List Boxes

Using the Editor

Using QuickC 29

Option buttons offer a list of choices, of which you
choose only one. Use the DIRECTION keys to move
between the choices. In Figure 3.2, four option but­
tons allow you to pick the screen color you prefer.
These are sometimes called "radio buttons," because
they're similar to the buttons on a car radio: pushing
in one button causes the others to pop out.

A check box is a yes/no switch. If the box is empty,
the feature is turned off. If it contains a letter X, the
feature is on. Press SPACEBAR to tum a check box on
or off. Use the TAB key to move between check
boxes.

A text box contains text that you enter. In Figure 3.2,
the setting for Tab Stops requires you to type in the
number of spaces to be inserted when you press the
TAB key.

Command buttons enclosed in angle brackets pass
commands to the dialog box. The< OK> button
means you 're satisfied with the choices you've made.
The < Cancel > button allows you to exit the dialog
box with no changes. If one of the command buttons
is highlighted, pressing ENTER invokes that command.

Certain dialog boxes display the current disk
directory inside a list box. If the number of files is
too large for the list box, you may use the DIRECTION
keys and PGUP/PGDN (keyboard) or click the scroll
bar to move around the list (mouse).

QuickC's program editor is an important part of the QuickC environment. This
part of the chapter provides a brief overview of its many functions.

Moving Around in a Source File
Many of the keys within the editor act as you would expect. The PGDN and PGUP
keys advance you forward or back within the source code. The HOME key moves
the cursor to the beginning of the current line. The END key moves the cursor to

30 Up and Running

the end of the current line. The DIRECTION keys move the cursor one character at
a time.

NOTE For a complete list of editor commands, use on-line help. Open the Help menu, choose
the Contents command, then ask for help about the Keyboard under the Using QuickC heading.

You can invoke many of the editor commands in two different ways. For example,
to move one word to the right, you can press either CTRL+RIGHT or CTRL+F. The
second choice is part of the WordStar-compatible command set. If you're familiar
with WordStar commands, you already know how to use the QuickC editor. There
is one difference you should know: you don't use separate commands to mark the
beginning and end of a block of text.

Defining a Block

While you 're working on a C program, you may want to delete a large block of
text or copy it to another place in the program. To do this, you must define the
block:

Move the cursor to the beginning of the block. Hold down the SHIFT key and
move to the end of the block. Use the other editing keys (HOME, END,
CTRL+RIGHT, and so on) while you're holding down SHIFT to extend the block.

Move the mouse cursor to the beginning of the block. While holding down the left
button, move to the end of the block.

After defining a block, you can do several things: use the DELETE key to erase it
or use SHIFT +DEL to copy it into the Paste buffer (then SHIFT +INS to insert the
buffer into the source file at the current cursor location).

While a block is defined, anything you type will replace the defined text.

You may also press the TAB key to indent the entire block an additional tab setting
or SHIFT+TAB to remove all tab settings.

Customizing the Editor
If you'd prefer to use another set of editing commands, QuickC comes with four
"key" files and a utility for making your own key file. The four key files are
QC.KEY, ME.KEY, BRIEF.KEY, and EPSILON.KEY. Refer to the Appendix for

Using QuickC 31

a complete list of the commands they control (for example, the QuickC and
Microsoft editors use CTRL+E to move the cursor up, while EpsilonrM uses CTRL+P).

To change to a new key file, use the /k: option when you run QuickC. For ex­
ample, to load the BRIEF.KEY file, enter this line:

QC /k:BRIEF.KEY

Your preference is automatically saved in the QC.IN! file. In future editing ses­
sions, you won't need to specify the key file.

Creating Your Own Key File
The MK.KEY program allows you to make your own key file. You must use three
options: -c, -i, and -o. The first (-c) specifies the type of conversion: ASCII to
binary (ab) or binary to ASCII (ba). The two others specify the input file (-i) and
the output file (-o).

To modify the default QC.KEY file, you first convert it to an editable ASCII file:

MKKEY -c ba -i QC.KEY -o MYEDITOR.TXT

You may use any text editor (including QuickC's) to edit the file named
MYEDITOR.TXT, which lists the keystrokes that perform certain actions. For
example, you press CTRL+G to delete a character. The line inMYEDITOR.TXT
looks like this:

Del : CTRL+G

You could change that command to any other keystroke (CTRL+D, say), as long as
the key isn't already assigned to another function. Elsewhere in the file, CTRL+D is
assigned to CharRight, so you'd have to delete or change that line if you wanted
to use CTRL+D for the Del function.

When you 're satisfied with the new functions, you must convert the ASCII file to
binary, so that it can be loaded into the QuickC editor:

MKKEY -c ab -i MYEDITOR.TXT -o MYEDITOR.KEY

Finally, to load the new key file, use the /k: option described above.

32 Up and Running

Using Another Editor
If you'd prefer to use your favorite word processor or text editor for writing pro­
grams, you may use the Utility menu Customize Menu command. This allows you
to run any other program (including word processors) from within the QuickC en­
vironment. When you exit the program, you'll return to QuickC.

Compiling and Linking
Your ultimate goal in writing C programs is to create an executable program. To
convert a C source file to a runnable program, you must compile and link it. This
section introduces the commands that compile and link programs, a process called
"building."

When QuickC builds a program, it performs two steps:

1. It compiles the .C source file into an object (.OBJ) file.

2. It links the object file with other object files or libraries to create an executable
(.EXE) file.

Although you have the option of going through these two steps, it's generally eas­
ier and more convenient to build a program with a single command.

Building within the QuickC Environment
In this section, we'll illustrate how to compile and link a C program. First, type in
this program:

/* HI.C: Prints hello and a name */

#include <stdio.h>

main()
{

char name[80];

printf("Type your name, please.\n");
gets(name);
printf ("Hello, %s\n", name);

Using QulckC 33

The output of this simple program tells you to type your name. You enter any
string of characters, and it says hello to you.

The program calls two library functions: printf and gets. For more information
about what these functions do, use the on-line help system. Position the cursor on
the function name and press Fl. To close the Help window, press ESC. On-line
help is explained in greater detail in the next chapter.

Compiling and Linking
You may notice that the reference bar at the bottom of the screen says
<Shift+F5=Restart>. To build a program, open the Make menu and choose
Build Program. Or use one of these shortcuts:

~ Press SHIFf +FS to build the program.

-e Click the <Shift+F 5=Restart> button on the reference bar.

A dialog box appears on the screen to show you how far the compiler and linker
have progressed. The compiler or linker may halt if anything goes wrong. When
the source file contains errors, the Errors window appears and the offending line
is highlighted in the Source window.

Running the Program
When the program has been built, the reference bar displays several new items, in­
cluding <F5=Run>. To run the program, open the Run menu and choose Go. Or
use the shortcuts:

~ Press FS.

-e Click <F5=Run> on the reference bar.

Compiling, Linking, and Running
It's not necessary to press SHIFf +FS (to build the program) before you press F5 (to
run it). If you simply press F5, the QuickC editor knows ifthe source code in
memory has changed. If it has changed, you '11 be asked if you want to rebuild the
program.

Viewing the Output Window
When you choose Go from the Run menu (or press FS), the output is automatically
directed to the output screen. To see this output:

34 Up and Running

Press F4 to toggle between the two screens.

Open the View window and choose Output Screen. Oick once to return to the
Source window.

If you'd prefer to have both the Output and Source windows visible at the same
time, choose the View menu Windows command and choose Output.

Saving the Program
To save the source file using the current name, go to the File menu and choose
either Save or Save As. If you use Save, QuickC automatically saves the file
under the name listed on the top line of the Source window. If you prefer to use
another name, choose Save As. The following dialog box appears:

C:\SOURCE Window: Source

File List: Drives / Dirs:

UNTITLED.C ..
DLL
DOC
JUNKEM
HE
MISC
SfiMPLE

< OK > <Cancel> < Help >

Figure 3.3 Save As ... Dialog Box

Type in the new name of the source file. If you don't add an extension, QuickC au­
tomatically adds .C (HI becomes HI.C, for example).

Building from Multiple Source Files
Now we'll make things a little more complicated by writing a multiple-module
program.

First, edit the HI.C program, adding a few lines:

/* HIA.C: Illustrates external functions */

#include <stdio.h>

main()
{

char name[80];

welcome();
outsider();
printf("Type your name, please.\n");
gets(name);
printf("Hello, %s\n", name);

welcome ()
{

printf("Welcome to the program.\n");

Using QuickC 35

The main function calls two new functions: welcome and outsider.
Unlike printf and gets, which are library functions, welcome and
outsider are functions defined within the program. Note the definition of
welcome below the main function.

Don't compile the program yet. Save it as HIA.C and then choose New from the
File menu. Type in this second program:

/* HIB.C: Second program for HIA.C */

outsider()
{

printf("This line is from the HIB.C file.\n");

Save it as HIB.C. Now there are two source files on your disk: HIA.C and HIB.C.

There are several reasons to split a file into multiple modules. If you write a func­
tion that's used in several programs, you can give it its own source file. If you
write long programs, splitting the file up makes editing easier. In addition, the
Build Program command runs faster when it compiles a program if you make
changes to one file, but not others. Build doesn't spend time recompiling a source
file that hasn't changed.

36 Up and Running

Creating a Program List

Since the example program now uses two source files, we must create a program
list (also called a "make file") that tells QuickC which source files should be
compiled.

Open the Make menu and choose Set Program List (you must have Full Menus
enabled). Type the name RIA.MAK as the name of the file containing the pro­
gram list (the MAK extension is used for make files), and press ENTER.

The following dialog box appears:

File NaMe: CHIB.C

C:\SOURCE

File List:

SORTDEMO.C
TEST.C
TESTl.C
TESTZ.C

TEST3.C
TEST4.C
TESTS.C
TESTG.C

PrograM List: HIA.MAK

TEST7.C
TESTB.C
TT.C
TURTLE.C

Drives / Dirs:

..
DLL
DOC
JUNKEM

l HIA.C l <Add/Delete>
HIB.C

<Clear All>

... 1ul~~~m~j~j~~~~~1~\~lll~~~l~~111~l~~\~l~~~~\~l~l~\~\1\~~~l~\l\~\~\~l~j~j~\~11m~ll\lm~1~l~~1~\1\~~~\mmlm~~~1mml~~r
<Save List> <Cancel> < Help >

Figure 3.4 Creating a Program List

Now you must add both HIA.C and HIB.C to the list of programs.

Press TAB until the cursor is within the list box containing the directory of C
source files (another list box lists the directory names). Use the DIRECTION keys to
move to the HIA.C file. Press ENTER and the file name will appear in the program
list below. Repeat this action to add HIB.C to the program list. (A second option is
to type the file names in the text box at the top of the screen.) When you're
finished, press TAB until the Save List command button is highlighted, and then
press ENTER.

Click HIA.C once and click the Add/Delete button (or just double-click HIA.C).
Do the same for HIB.C. When both programs appear in the program list, click the
Save List command button to save the make file.

Using QulckC 37

This program list tells QuickC that several source files are to be combined into
one program.

NOTE Within a program list, you can include source files (ending with the .C extension), object
files (.OBJ), or libraries (.LIB). For example, if you didn't include graphics in the combined library
when you ran the SETUP program, you can place GRAPHICS.LIB in the program list to gain
access to graphics functions .

Notice that the base name of the program list (RIA.MAK) matches the name of
one of the source files (HIA.C). Because the names match, when you load HIA.C
in the future, QuickC will ask if you wish to use the program list RIA.MAK. You
don't have to give the source file and the make file the same names, but it's a
good idea to do so.

The order that you list the files is inconsequential. It doesn't matter which file is
first or second.

When you choose the Rebuild All command from the Make menu, every . C file in
the program list is compiled into a .OBJ file. Then all of the .OBJ files are linked
with .LIB files to create one .EXE file.

However, if you press SHIFT +F5 or choose the Build Program command, QuickC
checks the time and date stamps on the source and object files. If the source code
has not changed since the last time a Build Program command executed, there's
no need to recompile the unchanged .OBJ files. Any files that have changed are re­
compiled; the others are not. This means the Build command is often faster than
the Rebuild All command when you have multiple source files.

Compiling and Linking from the Command Line
If you 're new to the C language, you can skip this section. You don't need to
know how to compile and link from the command line; you can do everything
within the QuickC environment.

However, if you want to, you may exit the QuickC environment to build programs
from the DOS prompt. This gives you slightly more control over the various op­
tions. In addition, if you 're building a series of related executable programs, you
can either put the compile and link commands in a batch file or create your own
make file. Either method is faster than building programs individually.

38 Up and Running

The program that builds from the command line is called QCL.EXE (the C and L
in the filename stand for "Compile" and "Link"). To build the HI.EXE program,
type this:

QCL HI.C

You may include a variety of command-line options between QCL and the file
name. For example,

QCL /AM HI.C

forces the linker to use the medium memory model (the default is the small
model). If you try this example, you must have a medium memory model library
installed. You will find a complete list of compiler and linker options in the
Microsoft QuickC Tool Kit manual (or type QCL /help).

QCL can also build multiple-module programs. Since HIA.C and HIB.C are two
parts of a multiple-module program, the following line does not build a program:

QCL HIA.C

The compiler works correctly, creating an .OBJ file, but when the linker looks for
the out sider function (which is in HIB.C), it fails and returns the error
unresolved external.

One solution is to specify both source files:

QCL HIA.C HIB.C

The example above builds a program called RIA.EXE, because HIA.C is listed
first.

Another solution is to compile the two files and then link them yourself:

QCL /c HIA.C
QCL /c HIB.C
LINK HIA.OBJ HIB.OBJ

The /c option tells the QCL program to compile but not link. It must be entered as
a lowercase character.

Using QuickC 39

Since you created a make file called RIA.MAK, which contained the program list,
you may also use the NMAKE program to build RIA.EXE. Simply pass it the
name of the make file:

NMAKE /F BIA.MAK

For a complete list of compiler, linker, and NMAKE options, see Microsoft
QuickC Tool Kit.

The Debugger
When you make obvious mistakes like misspelling a function name or forgetting
to end a line with a semicolon, your code causes a compile-time error. The com­
piler (or linker) refuses to continue until you fix the mistake.

Other mistakes cause run-time errors. Attempting to divide by zero is one such
example.

Still other mistakes are called logic errors. When a program includes a logic error,
it may run, but it eventually acts unpredictably or yields incorrect results.

QuickC's built-in debugger helps you track down and correct logic errors. In the
Run menu, you'll find Trace Into and Step Over, which execute the program in
memory line by line. Trace Into follows functions when they're called; Step Over
lets you execute a function without showing its inner workings.

You can use the Debug menu to set watchpoints and breakpoints and run a pro­
gram up to the breakpoint.

The Watch Value command from the Debug menu is also useful. You enter one or
more variable names and then monitor their values as you step through the pro­
gram. There's no need to place printf statements at various points in a program
just to monitor the value of a variable.

If you tum on Debugging History, the debugger records everything that happens
during the session. Later, you can review the events and watch for the logic error.

The on-line tutorial includes a lesson explaining how to use the debugger. If
you're interested in exploring this topic, run the LEARN program.

CHAPTER4 41

Getting Help

The on-line help system provides instant information on all important C topics.
You need not thumb through a large reference manual, trying to find a function
prototype or return value. Just press a key and the information you need prints in­
stantly on the screen. This chapter explains the many ways to use the QuickC
Advisor:

Keyword Help On-line help recognizes C keywords, operators, library func­
tions, and symbolic constants as topics for which it can provide definitions, proto­
types, and examples.

Topic-Based Help If you don't know the name of a function or keyword,
you can browse through the index of topics or look in the table of contents.

Environment Help If you're not sure what a menu does, you can ask for
help about the menu in general or one of the menu commands in particular. In
addition, whenever a dialog box appears and you want more information on the
choices, press Fl.

Error Help When the compiler returns an error message, QuickC highlights
the incorrect source line. If you're not sure what's wrong, on-line help will pro­
vide more information about the error message.

Help on Help The help system can also provide additional information about
using the help system itself.

Not only are the help screens a great learning tool for programmers who are new
to the C language, they're also a fast and useful reference database for expert C
programmers.

42 Up and Running

Keyword Help
You may ask for help about any keyword, operator, symbolic constant, or library
function. This section explains how to open a help screen, using printf as an
example.

First, run QuickC and type printf.

Here's how you ask for help about the printf function:

Position the cursor anywhere on pr intf (or on the space just after the word)
and open the Help menu. Choose the Topic: printf command. Note that the
word under the cursor is always inserted after Topic in the Help menu.

You may prefer to use the following shortcuts:

~ Position the cursor somewhere on pr intf and press the Fl key.

~ Move the mouse cursor to print f and click the right mouse button.

NOTE If nothing happens when you press the right mouse button, open the Options menu,
choose Display, and click Context Sensitive Help under the Right Mouse Button heading. Exit the
dialog box and click the right mouse button on print f again.

Getting Help 43

Whether you use the menu, the Fl key, or the right mouse button, the help screen
that describes printf instantly appears:

Include: <stdio.h>

Prototype; int printf<const char MforMat[, ar9uMentJ .•. >;

Returns: the nuMber of characters printed,

See also: fprintf, scanf, sprintf, vfprintf, vprintf, vsprintf
----------- C:\SOURCE\Ul"ITITLED.C -----------111
#include <stdio.h>

Main<>
{

printf("This is a test.\n" >:
}

Fl=Help> <Esc=Close> <PgDn> <Ctrl+F1=Next> <Alt+Fl=Back>

Figure 4.1 Help on printf

44 Up and Running

Topics and Hyper/inks
All keywords, operators, and library functions are called "topics" within the help
system. The example above activated the help screen for the printf topic.

Within the Help window describing printf, you'll see certain highlighted words
and phrases at the top of the screen. These are called "hyperlinks." They link the
current help screen to additional related topics.

The difference between a topic and a hyperlink is simple. You may ask for help on
any topic at any time (pressing Fl, clicking the right mouse button, or using the
Help menu). You may even ask for help from within the Help window.

However, if you select a topic that doesn't exist-"elephant," for example-the
help system looks through the list of available topics to see if it can offer help. If it
can't, no help screen appears.

Hyperlinks, on the other hand, always lead to a related help screen. You activate
hyperlinks the same way you ask for help about a topic: press Fl or click the right
mouse button.

For example, here's how you activate the hyperlink labeled escape
sequences from the printf Help window:

~ With the printf screen still visible, use the TAB key to position the cursor on the
hyperlink. Press Fl. (If the Source window is active, press F6 first to move to the
Help window.)

~ Move the mouse cursor to the hyperlink and click the right button.

Getting Help 45

The help screen on escape sequences appears below:

I• I

~Back• ~rintf table• ~scape sequences•

The C escape sequences are:

Seq. NaMe Seq. NaMe

\a alert <bell> \V vertical tab
\b backspace \' single quotation Mark
\f forM feed \" double quotation Mark
\n ne~ line \\ backslash
\r carriage return \ddd ASCII character in octal notation
\t horizontal tab \xdd ASCII character in hex notation

----------- C: \SOURCE\UNTITLED. C ---------
#include <stdio.h>

Main()
{

printf< "This is a test,\n" >:
}

<F1=Help> <Esc=Close> <PgDn> <Ctrl+F1=Next> <Alt+F1=Back>

Figure 4.2 Escape Sequences

R 00006:07

The newline character is described as \n. Suppose you want to add a new line
to the end of the string in the program. There are two ways to add \ n to the
program:

1. Return to the Source window by pressing F6 (keyboard) or clicking once in the
Source window (mouse). The Help window remains visible. Type the
characters you wish to add to the source file.

2. Copy the items you want to use from the Help window. Paste them into the
source file. This option is described in greater detail below.

46 Up and Running

Copy and Paste from Help
Any text that appears in the Help window can be copied quite easily to the Source
window (or to the Notepad window).

This feature of the on-line help system is very useful. If you'd like to test an ex­
ample program from the Help window, you can copy it to the Source window and
compile it. If you need to copy a few #include directives, you can do it quickly.

Just follow the steps below.

1. Move the cursor to the beginning or the end of the text you want to select.
Hold down the SHIFT key and move the cursor to the other end of the text. The
text is now highlighted.

2. Execute the Copy command. Press ALT to activate the menus, E for Edit, c for
Copy. Note that the menu lists the shortcut command (CTRL+INS), which may
be substituted for ALT, E, c.

3. Press F6 to switch to the Source window. Position the cursor where you want
to insert the text and execute the Paste command: ALT, E, P. Or use the

Or:

SHIFT +INS shortcut. The text from the Help window is automatically inserted
at the current cursor position.

1. Click and drag the cursor (hold down the left button while moving the mouse)
to select the text you want to copy.

2. Choose Copy from the Edit menu (or press CTRL+INS).

3. Click once in the Source window to activate it, move the mouse cursor to the
location where you want to insert the text, and click once. Then select Paste
from the Edit menu. The text from the Help window is automatically inserted
at the current cursor position in the program.

Viewing the Previous Help Screen
QuickC remembers the last 20 help screens you've accessed. Returning to one of
the previous screens is easy. Hold down the ALT key and press Fl as many times
as necessary to return to the screen you want to see. For example, if you want to

Getting Help 47

see the third screen back, press and release ALT+Fl three times. The help screen
you see is active; you can ask for help on any of its hyperlinks or topics.

Topic-Based Help
The on-line help system also includes a table of contents for help topics, which
comes in handy in those situations when you have only a general idea of what
you need. To browse through the help system, go to the Help menu and select
Contents.

~ Press ALT, H, c.

~ Click once on the Help menu. Choose Contents.

Below is the Contents screen that appears:

11 I

~elp on Help• <ontents• <1IndeX9> ~otes•

• Using Help • C Language
• pragMas

• Using QuickC • directives
• keyboard • key1.1ords
• Menus
• error Messages • Useful Tables
• C for ~ourself PrograMS • Regular Expressions

• Operator Precedence
• Run-tiMe Library • printf ForMatting Table

• . h files • Escape Sequences
• global variables • ASCII chart
• constants • Data Types
• structures • Key scan chart
• functions

t------------ C: \SOURCE\UNTITLED. C -----------t
Main()
{

printf< "This is a test,\n" >:
<F1=Help> <Esc=Close> <PgDn> <Ctrl+Ft=Next> <Alt+F1=Back>

Figure 4.3 On-Line Help Contents Screen

R 00001:076

Suppose you want more information about the run-time library.

~ Move the cursor to the Run-time Library topic and press Fl.

~ Click the right button on the Run-time Library topic.

48 Up and Running

The following screen appears:

~Run-TiMe Library•

The C run-tiMB library contains about 400 functions divided into the
categories listed below.

Category
Buffer Manipulation
Character classification
Data conversion
Directory control
File handling
Graphics - fonts
Graphics - Low-level
Graphics - Presentation
110 - StreaMs
110 - Loi.J-level
110 - Console and Port
Math
MeMory allocation
Process control

Contents
Manipulate areas of MeMory on a character basis
Test individual characters
Convert nuMbers to strings and vice versa
Manipulate directory structure and inforMation
Manipulate files
Font Manipulation
Graphics priMitives
Presentation and charting routines
StreaM 110 routines
Low-level 110 routines
Console and port 1/0 routines
Math routines
Allocate, free and realloate MeMory
Manipulate processes and prograMs

----------- c: \SOURCE\UNTITLED. c D
Maino
<Fl=Help> <Esc=Close> <PgDn> <Ctrl+Fl=Next> <Alt+Fl=Back> R 00001:076

Figure 4.4 Library Categories

Suppose that you 're looking for a function that waits for a keypress. One of the
topics is 1/0-Console and Port, which sounds like the right area to explore.

Getting Help 49

When you choose 1/0-Console and Port, the following screen appears:

I

~l/O - Console and Port• ~Run-TiMe Library• ~ontents• ~Inde~

cgets
inp
ungecth

cprintf
inp1,.1

cputs
kbhit

cscanf
outp

get ch
outp1,.1

getche
put ch

t---------- C: \SOURCE\UNTITLED. C ---------D
Main()
{

printf< "This is a test.\n");
}

<F1=Help> <Esc=Close> <PgDn> <Ctrl+F1=Next> <Alt+F1=Back>

Figure 4.5 110 Console and Port Functions

R 00001:070

The function called getch sounds promising. Ask for help about the function by
positioning the cursor on get ch and pressing Fl (keyboard) or by clicking the
right mouse button on get ch (mouse).

50 Up and Running

To read about getch, tab over to Description. The following help screen
appears:

~Sun111ary~ ~Description~ ~Exa111ple~

The getch function reads without echoing a single character fron standard
input. The getche function reads a single character fro111 the console and
echoes the character read. Heither function can be used to read CTRL+C.

When reading a function key or cursor-noving key, the getch and getche
functions 111ust be called twice; the first call returns 0 or E0 Chex) and the
second call returns the actual key code.

Return Value
The getch function returns the character read. There is no error return.

1------------ C:\SOURCE\UHTITLED.C ------------1[]
111ainO
{

printrC "This is a test.\n");
}

<F1=Help) <Esc=Close) (PgDn> <Ctrl+F1=Hext> <Alt+F1=Back)

Figure 4.6 Description of getch

R 00001:076

When you started, you didn't know the function name, but you tracked it down
through the table of contents.

Environment Help
Open the View menu. (Be sure you have Full Menus turned on.) Suppose you
notice that it has a command called Include ... , but you are not sure what it does.
Highlight-but don't choose-Include ... :

Press ALT, then v (for the View menu), and use the DOWN direction key until the
Include ... command is highlighted. Press Fl for help.

Click once with the left mouse button to open the View menu. Use the DOWN key
to highlight Include ... and press Fl.

Getting Help 51

The following screen appears:

File Edit Uiew Eliml!illliED'illllmDllE•m-!·~·111!1111111111~·111!·!D!llllllllllllllill
.------.----------.OURCE\UNTITLED. C ------------4
#inclu r-------- Include Co,....,and Cl of 3) -------.

Main<>
{

pri
}

Use the Uiew Include coMMand to display include files.
• Place the cursor on an #include directive and then

choose the Include coMMand to display the file.
• Use the dialog box shown below:

To load a file froM
the current directory:

File NaMe: *·hllll -----•----,
C:\XXX c....-current directory • Type the filenaMe

File List: Drives/Di rs
here, or

• Select the filenaMe
here

.....___ ___ ,_J
• Then choose <OK>

<PgDn = Next> <PgUp = Prev> < OK > <Cancel>

Fl=Help Enter Esc=Cancel Tab=Next field

Figure 4.7 Help on the Include Command

00001:001

Using the methods described above, you can ask for help about any of the menus
or menu options.

Error Help
The fourth type of help provides information about compiler and linker error
messages.

For example, suppose you try to build this program:

main()
{

case 12:
printf("The value is 12");

52 Up and Running

The following Error window appears at the bottom of the screen:

Main<>
{

case 1z:
printfC "the value is 12" >:

}

I 1 I

I ERRORS ------------til
untitled.cC3) error C2046: illegal case

<Fl=Help) <Alt=Nenu> <Fo=Uindow) <Shift+F3=Next err> 00003:001

Figure 4.8 Error Window

The error message says C2 0 4 6 : illegal case, which you might not
understand.

Move to the Errors window by opening the View menu and choosing Windows,
then choosing Errors. Or use the shortcut keystrokes:

Press F6 to change windows, then press Fl for help.

Position the mouse cursor anywhere on the error message and click the right
mouse button.

Getting Help 53

The Help window pictured below opens:

I - I • •••
Yt--------- HELP: Error Message ---------1

Error: CZ04G illegal case

The case keyword May appear only within a switch stateMent.
1----------- C: \SOURCE\ UNTITLED. C ----------1
#include <stdio.h>

Main<>
{

case 12:
printf("The value is 12.\n");

}

lrl----------:-:~-l'~*~mlmiktl--------------ilD
untitled.c(S) error C2046: illegal case

<Fl=Help> <Esc=Close> <F6=Window> <Shift+F3=Next err> R 00001:07

Figure 4.9 Help on Errors

As you can see, the case keyword requires a switch statement. If you don't know
what a switch statement is, ask for help about switch:

~ Move the cursor to the word switch and press Fl.

~ Click the right button on the word switch.

Help on Help
For quick reference to the available help functions, open the Help menu and
choose Help on Help. Or use the shortcut key SHIFr +Fl.

Help on Help describes briefly how to use the help system. From within the Help
on Help screen, you can use hyperlinks to see the Contents and Index. Those
screens can guide you to other subjects, including ASCII tables, lists of C key­
words, lists of pragmas, and much more.

CHAPTERS 55

Where to Go from Here

You've installed QuickC on your system and tried a sample editing session. What
you do next depends on your level of experience. You can experiment, or you can
further investigate some of the other books in this package.

Read README.DOC

The README.DOC file lists all known corrections and additions to the printed
manuals. Before you continue, please read this file. You can view it from within
on-line help or you can use the QuickC editor (type QC README . DOC to read
the file).

For All Programmers

The QuickC environment has been designed with you, the programmer, in mind.
You '11 find writing, compiling, and debugging QuickC programs faster and easier
than ever. To learn more about the editor, compiler, linker, and debugger, run the
disk-based tutorial on the QuickC distribution disk labeled "Leaming the Micro­
soft QuickC Integrated Environment."

Place your copy of the disk in your disk drive, type LEARN, and press ENTER.
The LEARN program contains four lessons: How to Use This Tutorial, Getting
Around in QuickC, Creating Programs in QuickC, and Debugging in QuickC.

For Programmers New to the C Language

We wrote the book C for Yourself for people who already know how to program
(in BASIC, Pascal, or some other language) but have never used C. Part 1 covers

56 Up and Running

everything from functions to flow control and from data types to pointers. If
you've never programmed in C or if you need a refresher course, start with C for
Yourself.

The introduction in C for Yourself lists several additional books that newcomers
to C may find helpful.

Another good source of information about how C works is the on-line help sys­
tem. Prototypes, explanations, and examples for any function are immediately
available at the press of a key. You may ask for help about a specific topic or
browse through the table of contents.

For C Programmers New to QuickC

Appendix A of Cf or Yourself is a guide to the QuickC implementation of C. Both
the proposed ANSI standard and the original Kernighan & Ritchie standard are
supported.

Appendix B of C for Yourself summarizes the most useful QuickC library func­
tions, listing the header files to include, values to pass, and values returned.

For specific details on the compiling, linking, library, and other support programs,
see the Microsoft QuickC Tool Kit manual.

For QuickC Programmers New to Version 2.0

Advanced C topics and features unique to QuickC are covered in Cf or Yourself.
Part 2 includes detailed information about the new functions such as real coordi­
nate graphics, presentation graphics, fonts, and in-line assembly. If you've pre­
viously used Version 1.0 of QuickC, we recommend that you read through Part 2
of C for Yourself. In addition, Appendix B summarizes commonly used functions
in the QuickC run-time library.

Where to Go from Here 57

Additional Tools

QuickC offers more than just an integrated editor, compiler, and linker. Additional
utilities include the QCL program (for compiling from the DOS command line),
the LINK program (for linking object modules), the NMAKE program (for auto­
mating the compile/link process and maintaining programs), and the LIB program
(for creating your own libraries).

The Microsoft QuickC Tool Kit manual explains how to use these advanced tools
to best advantage. Part 1 is a tutorial that explains step-by-step how these pro­
grams work. Part 2 is a complete and exhaustive reference guide that summarizes
the many options.

Appendix
Editor Functions

Table A.1

Function

Backspace

BegLine

BegPgm

Cancel

Cancel2

Change

Char Left

Char Right

59

This appendix has two parts. The first part, Table A. l, lists the keystrokes
that invoke commands within the QuickC Editor and three other editors.
The second part, Table A.2, lists the editor functions alphabetically and
defines them.

Each editor has its own .KEY file. Chapter 3, "Using QuickC," explains
how to use the /k: option to load one of the four .KEY files supplied with
QuickC. It also contains directions for using MK.KEY .EXE to customize
the commands within a .KEY file. Functions are not assigned default
values. If you omit Backspace from your customized .KEY file, you will
be unable to backspace.

Note that in Table A.1 below, the plus sign indicates that both keys should
be held down. For example, CTRL+H means that you hold down the CTRL

key while you press H. When keys are pressed separately, they are sepa­
rated with a comma. For example, ESC, D means that you press (and
release) Esc and then press the D key.

The CAPS LOCK key affects individual keystrokes, but not CTRL or ALT

sequences. Holding down the SHIFr key defines a block of text.

Editor Keystrokes

QuickC Microsoft BRIEF® Epsilon

CTRL+H CTRL+H CTRL+H

CTRL+Q,CTRL+S
CTRL+Q, S

CTRL+HOME ALT+A,PGUP CTRL+PGUP CTRL+HOME
CTRL+Q,CTRL+R ESC,<
CTRL+Q,R

ESC ESC ESC F12

F12 Fl2 F12 ESC

CTRL+Q,CTRL+A CTRL+L ALT+T ESC,%
CTRL+Q,A CTRL+\

CTRL+S CTRL+S LEFT CTRL+B
LEFT LEFT

CTRL+D CTRL+D RIGIIT CTRL+F
RIGIIT RIGIIT

60 Up and Running

Table A.1 (continued)

Function QuickC Microsoft BRIEF Epsilon

Del DEL DEL DEL DEL
CTRL+G CTRL+G CTRL+D

DelWord CTRL+T ALT+D
ESC,D

DoEsc ESC

Do Quote CTRL+P CTRL+P ALT+Q CTRL+Q
Character

Do Tab TAB TAB TAB TAB
ALT+TAB ALT+TAB

EndLine END END END END
CTRL+Q,CTRL+D CTRL+E
CTRL+Q,D

EndPgm CTRL+END ALT+A,PGDN CTRL+PGDN CTRL+END
CTRL+Q,CTRL+C ESC,>
CTRL+Q,C

EndScn CTRL+Q,CTRL+X ALT+A,DOWN CTRL+DOWN
CTRL+Q,X

EraseEol CTRL+Q,CTRL+Y ALT+A,CTRL+Y ALT+K CTRL+K
CTRL+Q,Y

Find CTRL+Q,CTRL+F ALT+S CTRL+S
CTRL+Q,F

GotoBookmarkO CTRL+Q,O

GotoBookmarkl CTRL+Q, 1

GotoBookmark2 CTRL+Q,2

GotoBookmark3 CTRL+Q,3

Horne Line HOME HOME HOME HOME
CTRL+A

HomeScn CTRL+Q,CTRL+E ALT+A,UP CTRL+HOME
CTRL+Q,E

KillLine CTRL+Y CTRL+Y ALT+D

Line Down DOWN DOWN DOWN DOWN
CTRL+X CTRL+X CTRL+N

Line Up UP UP UP UP

CTRL+E CTRL+E CTRL+P

Editor Functions 61

Table A.1 (continued)

Function QuickC Microsoft BRIEF Epsilon

MatchBrace CTRL+] CTRL+]

Menu ALT F11 ALT ALT

Menu2 F 11 ALT+M F 11 F 11

New Line CTRL+M CTRL+M CTRL+M CTRL+M

NextLine CTRL+J CTRL+J

PageDown PGDN PGDN PGDN PGDN

CTRL+C CTRL+C CTRL+V

PageLeft CTRL+PGUP CTRL+PGUP

PageRight CTRL+PGDN CTRL+PGDN

Page Up PGUP PGUP PGUP PGUP

CTRL+R CTRL+R ALT+V

ESC,V

ResetState CTRL+K,CTRL+U

CTRL+Q,CTRL+U

CTRL+U

ScrollDown CTRL+Z CTRL+Z CTRL+D CTRL+Z

CTRL+DOWN CTRL+DOWN

Scroll Up CTRL+UP CTRL+W CTRL+U CTRL+UP

CTRL+W ESC,Z

F4

SearchNext CTRL+L

SetBookMarkO CTRL+K,O ALT+M

SetBookMarkl CTRL+K, 1

SetBookMark2 CTRL+K,2

SetBookMark3 CTRL+K, 3

SplitLine CTRL+N CTRL+N CTRL+O

TogglelnsertMode INS INS ALT+I INS

CTRL+V CTRL+V

Undo CTRL+Q,CTRL+L ALT+H ALT+U

CTRL+Q,L

WordLeft CTRL+LEFI' CTRL+LEFI' CTRL+LEFI' CTRL+LEFI'

CTRL+A CTRL+A ALT+B

ESC,B

WordRight CTRL+RIGHT CTRL+RIGHT CTRL+RIGHT CTRL+RIGHT

CTRL+F CTRL+F ALT+F

ESC,F

62 Up and Running

Table A.2 Function Definitions

Function

Backspace

Beep

BegLine

BegPgm

Cancel

Cancel2

Change

Char Left

Char Right

Del

DelWord

DoEsc

DoQuoteCharacter

Do Tab

End.Line

EndPgm

EndScn

EraseEol

Find

GotoBookmarkO

GotoBookmarkl

GotoBookmark2

GotoBookmark3

Description

Moves the cursor left and erases the character in that
position.

Causes the computer to beep, usually when an unas­
signed key is pressed.

Moves the cursor to the beginning of the line (column 1),
ignoring any indentation.

Moves the cursor to the beginning of the program (line 1,
column 1).

Closes Help windows and cancels dialog boxes.

Cancels dialog boxes.

Searches for selected text and changes it to something
else.

Moves the cursor one character left.

Moves the cursor one character right.

Deletes the character under the cursor.

Deletes the word from the current cursor position to the
next white-space character.

Cancels the current selected text.

Inserts the next typed character into the text (except car­
riage returns, linefeeds, and nulls). This allows you to
insert characters such as CTRL+C.

Indents the entire defined block by one tab setting. A
shifted DoTab removes the tabs from a block.

Moves the cursor to the last nonspace character in the
current line.

Moves the cursor to column 1 of the last line in the cur­
rent file.

Moves the cursor to the bottom line of the current screen.
The current column is maintained.

Erases all characters from the cursor position to the end
of the line. The characters are placed in the insert buffer.

Searches from the current cursor position to the end of
the file for defined text.

Moves the cursor to bookmark 0.

Moves the cursor to bookmark 1.

Moves the cursor to bookmark 2.

Moves the cursor to bookmark 3.

Editor Functions 63

Table A.2 (continued)

Function Description

HomeLine Moves the cursor to the first nonspace character on the
line.

HomeScn Moves the cursor to line 1 of the current screen, maintain­
ing the current column position.

IgnoreChar Does nothing. In addition, the editor doesn't beep as it
would for undefined keys.

KillLine Erases everything on the current line and places the line
in the insert buff er.

LineDown Moves the cursor to the next line.

Line Up Moves the cursor to the previous line.

MatchBrace Finds matching (parentheses), [square brackets], or
{curly braces}. The editor searches for opening or clos­
ing braces, depending on which type the cursor is rest­
ing on.

Menu Activates the menu bar.

Menu2 Activates the menu bar.

New Line Splits the current line into two lines at the cursor posi­
tion. The new line is automatically indented to match the
line above.

PageDown Moves forward one screen.

PageLeft Moves left one screen.

PageRight Moves one screen to the right (each line on a screen may
contain up to 255 characters).

Page Up Moves back one screen.

ResetState Cancels prefix tables.

ScrollDown Scrolls down one line at a time, maintaining the current
cursor position.

Scroll Up Scrolls the text up one line at a time, maintaining the cur­
rent cursor position.

SearchNext Repeats the Find command.

SetBookMarkO

SetBookMarkl

SetBookMark2

SetBookMark3

SplitLine

Sets bookmark 0. You may later return to this position
with GotoBookMarkO.

Sets bookmark 1.

Sets bookmark 2.

Sets bookmark 3.

Splits a line in two (like New Line), but leaves the cursor
at the end of the first line instead of the beginning of the
second.

64 Up and Running

Table A.2 (continued)

Function Description

TogglelnsertMode

Undo

WordLeft

WordRight

Toggles between insert mode and overtype mode.

Cancels any commands that might have been performed
on the current line. Undo works only when the cursor re­
mains on the line being edited.

Moves the cursor to the previous word.

Moves the cursor to the next word.

MictOsott

1088 Part No 0412

